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The themes of the book cross the borders of several mathematical subjects
including the geometry of manifolds, stochastic analysis, set-valued analysis
and some chapters of mathematical physics. Thus, an important feature of the
book is that it includes a significant amount of preliminary material. However,
my original intention to make the book completely self-contained yielded such
an incredible volume of text that I had to reduce the preliminaries and assume
the reader to be at least a little familiar with the aforementioned branches
of mathematics. Nevertheless, I hope that the remaining preliminaries will
be useful for an expert in one of the subjects who wishes to understand the
others and will also familiarize non-experts with the general themes of this
work.
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am indebted to him for long and extremely useful discussions of the problems
that interested me, as well as for repeated invitations to Warwick University,
allowing me to ventilate my ideas with many mathematicians from all over
the world. In addition, I should specially mention Yu.L. Daletskĭı who was
also a great help.

I express my gratitude to my colleagues and co-authors: Ya.I. Belopolskaya,
B.D. Gelman, I.V. Fedorenko and T. Zastawniak and my former students and
co-authors: S.V. Azarina, Yu.S. Baranov, L.A. Morozova, A.V. Obukhovskii,
P.S. Ratiner and P.S. Zykov for their interest in our joint work. I am grate-
ful to Z. Brzezniak, V.Ya. Gershkovich, A.I. Shnirelman, A. Truman, A.M.
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Introduction

The main aim of this book is to develop and combine the methods of Global
Analysis and Stochastic Analysis allowing a more or less common treatment
of areas of mathematical physics that are traditionally considered distant
from one another and which have formerly required different methods of
investigation. Among the areas we mention are classical mechanics on non-
linear configuration spaces and some problems of statistical physics, quantum
physics and hydrodynamics. The idea, yielding the unification of these top-
ics, is based on the use of a geometrically invariant form of Newton’s second
law and its analogs (stochastic, set-valued, infinite-dimensional, etc.) as a
fundamental equation of motion. The realization of this idea allows one to
elaborate general approaches to the investigation of the above-mentioned the-
ories whose modification in each concrete case permits us to create effective
methods of investigation and to obtain new important results.

The principal project of the book incorporates a huge amount of math-
ematical machinery including, among other things, some branches of global
analysis, stochastic analysis, set-valued analysis and analysis on infinite di-
mensional manifolds. The large amount of space devoted to preliminary ma-
terial and recent results in the above-mentioned branches of mathematics is
a result of the author’s desire to make the book as self-contained as possible.
Some of this preliminary material can be used as a first introduction to the
subject. In those cases where a detailed description of the material would be
too lengthy to include, we simply give a survey of notions and constructions
without detailed proofs. Generally we limit ourselves to the material that is
necessary for the applications to mathematical physics which appear in the
last part of the book. Nevertheless, for the sake of completeness, we often
describe notions, results and constructions that are not used in the book but
that are close to its main theme.

The book consists of three parts (subdivided into chapters, sections and
sometimes subsections), devoted, respectively, to global analysis, stochastic
analysis and applications to mathematical physics. The contents of these
parts are interrelated, however each part can be read independently. The
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xvi Introduction

first part contains an introduction to the geometry of manifolds from the very
beginning to branches that are often absent in textbooks and monographs.
In particular, it includes the machinery that is used in stochastic analysis
on manifolds. Thus the first two parts together present a rather complete
introduction to the latter. Some chapters of Part 3 are related only to Part 1
and can be read without reference to the material of Part 2. Other chapters
use results and constructions from both Part 1 and Part 2.

The material of Part 1 is devoted to global analysis and forms the basis
for the subsequent exposition. We begin with a glossary of commonly used
definitions and formulae from the theory of manifolds. Following this we look
at Lie groups and algebras, fiber bundles and related topics, and introduce
Riemannian metrics, tensors, differential forms and Lie derivatives.

Most important for the forthcoming material is Chapter 2, devoted to the
theory of connections. For vector bundles we use the approach to connections
based on the so-called connectors (connection maps) first introduced by P.
Dombrovski in the 1960s (see [56]). This is easily generalized to, say, man-
ifolds of maps. The connections on manifolds are introduced as connections
on their tangent bundles. We look at curvature and torsion tensors and Rie-
mannian connections (in particular, the Levi-Civitá connection), connections
on principal bundles and a connection on the total space of a vector bundle
generated by a connection on the bundle and by a connection on the base. We
conclude the chapter with the notion of second order tangent vectors that are
transformed into ordinary (i.e., first order) tangent vectors by a connection.

Chapter 3 is devoted to ordinary differential equations on manifolds. The
first topic addresses the necessary and sufficient conditions for completeness
of flows of vector fields. We show how to modify the sufficient conditions
for completeness in both one-sided and two-sided cases in order to obtain
necessary and sufficient conditions. In both cases the necessary and sufficient
conditions involve a transition to the extended phase space. One-sided con-
ditions are formulated in terms of the existence of a proper function on the
extended phase space such that its derivative in the direction of the natural
extension of the right-hand side of the equation onto the extended phase space
is uniformly bounded. For this type of necessary and sufficient condition we
also find a natural infinite-dimensional generalization that is applicable also
to some cases where the right-hand side is given only on an everywhere dense
subset of the phase space.

Two-sided conditions are formulated in terms of the existence of a complete
Riemannian metric on the extended phase space such that the norm of the
natural extension of the right-hand side of the equation is uniformly bounded
with respect to this metric.

We then describe the basic construction and properties of integral opera-
tors with parallel translation, elaborated by the author. These operators and
their stochastic generalizations are applied to the investigation of various
equations below.
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In the remaining part of the chapter we describe second order differential
equations on manifolds as special vector fields on tangent bundles and as given
in terms of covariant derivatives. The latter, in particular, involve geodesic
sprays of connections. For completeness we conclude the chapter with a brief
account of Hamiltonian systems.

Chapter 4 is devoted to elements of set-valued analysis and forms the
basis for all following set-valued problems. Besides the standard notions of
upper and lower semi-continuous set-valued maps, differential inclusions, etc.,
here we also present two new results establishing the existence, in the finite-
dimensional case, of a sequence of special ε-approximations for an upper semi-
continuous set-valued map with convex values that point-wise converges to
a Borel measurable selector of the set-valued map as ε → 0. These results
are important in the later study of various stochastic differential inclusion
problems.

In Chapter 5 we describe analysis on groups of Sobolev diffeomorphisms
of a compact manifold. These groups are natural configuration spaces for sys-
tems of hydrodynamics in the framework suggested by Arnold-Ebin-Marsden.
The case of the group of diffeomorphisms of a flat torus is of special interest
since a fluid motion on the torus is often considered in classical hydrodynam-
ics.

The second part is devoted to the constructions and results from con-
temporary stochastic analysis with the main focus on stochastic analysis on
manifolds. In Chapter 6 we recall some material that is not generally in-
cluded in a standard university course. We describe, among other topics,
conditional expectations, martingales, weak convergence of probability mea-
sures, stochastic integrals and stochastic differential equations in Euclidean
spaces (both in Itô and in Stratonovich forms) and stochastic flows and their
generators (forward and backward).

In the next chapter we pass to manifolds. It should be pointed out that
topological and geometric constructions are used considerably in stochastic
analysis on manifolds. Thus the material of this chapter is based on the ma-
terial of Part 1 (first of all on the theory of connections) and, of course, on
the material of the previous chapter. First we describe stochastic differential
equations on manifolds in Stratonovich form. This formalism is widely used
since the right-hand sides of such equations are transformed under coordinate
changes like ordinary tangent vectors. Then we show that on each manifold
there exists a Riemannian metric having the so-called uniform Riemannian
atlas. If the coefficients of a Stratonovich equation are C1-smooth and uni-
formly C1 bounded with respect to such a metric, the flow is complete.

We then turn to Itô stochastic differential equations on manifolds. We de-
scribe an approach treating such equations as cross-sections of a special fiber
bundle (the Itô bundle) with an interesting structure group, interrelated ap-
proaches elaborated by Belopolskaya and Daletskii and by Baxendale (based
on the theory of connections), an approach based on integral operators with
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parallel translation along stochastic processes (due to the author), and some
other contemporary constructions.

We should mention a necessary and sufficient condition for completeness of
a stochastic flow, continuous at infinity. In some sense this is a generalization
of the one-sided necessary and sufficient condition for completeness of the
flow of a vector field described in section 3.1. There is also a result on criteria
of weak compactness of measures on path spaces corresponding to solutions
of stochastic differential equations on manifolds.

Besides the well-known Eells-Elworthy development we introduce another
one, the so-called Itô development whose construction is based on Itô equa-
tions. On this basis we introduce the notion of Itô processes on manifolds (as
Itô developments of Itô processes in tangent spaces), along which the parallel
translation is well-defined. The use of Itô processes makes the construction
of parallel translation simple and clear.

In addition, some general existence of solution theorems are proved, in par-
ticular for the so-called equations with unit diffusion coefficient on stochas-
tically complete Riemannian manifolds.

The chapter concludes with the notion of a martingale with respect to a
connection.

We then consider (in Chapter 8) a version of differential calculus for
stochastic processes, Nelson’s theory of mean derivatives. Later some equa-
tions of mathematical physics (in mechanics with random perturbation of
forces or velocities, in quantum theory and in hydrodynamics) are given in
terms of these derivatives.

The classical Nelson mean derivatives give information only about the drift
of a stochastic process. By a slight modification of a certain idea of Nelson we
introduce a new sort of mean derivative (called the quadratic mean deriva-
tive) that is responsible for the diffusion term. Considering the quadratic
derivative together with Nelson’s classical derivatives, we investigate first or-
der differential equations and inclusions with mean derivatives: with forward
mean derivatives, with backward mean derivatives and with the so-called
current velocity, having a physical interpretation as a stochastic analog of
ordinary physical velocity. In particular we prove some existence of solution
theorems. We create a list of the first and second mean derivatives for a
Wiener process, for solutions of Itô equations, for Itô diffusion type processes
with unit diffusion coefficient, etc., that allow us in forthcoming chapters to
prove the existence of solutions of higher order equations in mean derivatives.

The features of mean derivatives on manifolds are of special interest. The
construction of forward and backward mean derivatives on a manifold in-
volves a connection. It turns out that the forward and backward derivatives,
determined with respect to a certain connection, are naturally related to Itô
equations in Belopolskaya-Daletskii form, determined by the same connec-
tion. We show that forward and backward mean derivatives are related to for-
ward and backward generators of a flow that is governed by the Itô equation
(cross-section of the Itô bundle) corresponding to the Belopolskaya-Daletskii
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equation with respect to the given connection. This relationship is described
in terms of the same connection as a fiber-wise linear mapping from the sec-
ond order tangent bundle to the ordinary (i.e., first order) tangent bundle to
the manifold.

Note that the quadratic mean derivative and current velocity are defined
without using connections and have the form of a (2, 0)-tensor field and a
vector field, respectively.

Some existence of solutions theorems for equations and inclusions in mean
derivatives on manifolds are proved.

We conclude Part 2 with elements of stochastic analysis on groups of
diffeomorphisms. We consider right-invariant Itô stochastic differential equa-
tions in Belopolskaya-Daletskii form on general groups of diffeomorphisms
and on volume preserving groups. The Wiener process, used in the construc-
tion of the equations, is finite-dimensional. In the general case it is taken
from a Euclidean space in which the finite dimensional manifold is embedded
by Nash’s theorem. For the particular case of the group of diffeomorphisms
of a flat n-dimensional torus a special n-dimensional Wiener process is con-
structed that allows one to apply the corresponding equations to the investi-
gation of viscous hydrodynamics described below. Some existence of solution
theorems are obtained.

Making use of the material of Parts 1 and 2, Part 3 is devoted to the de-
scription and investigation of various mechanical and physical systems. The
exposition begins with a description of classical Newtonian mechanics in the
language of invariant geometry and topology. Newton’s second law is intro-
duced in terms of the covariant derivative of the Levi-Civitá connection of a
Riemannian metric that determines the kinetic energy on the configuration
space. After introducing such mechanical systems in a very general form, we
consider the special case of conservative systems, including Hamilton’s prin-
ciple of least action and Noether’s theorem. We also consider systems with
group structure, systems with discontinuous forces (where Newton’s law is
given in terms of differential inclusions), systems with delayed forces (de-
scribed in terms of parallel translation), systems with constraints given in
geometric form due to Vershik and Faddeev (including non-holonomic me-
chanics and the so-called vakonomic systems, i.e., variational problems with
constraints), integral equations of geometric mechanics (involving parallel
translations), velocity hodographs, and so on.

In Chapter 12 we apply the machinery developed above to the qualitative
behavior of trajectories of mechanical systems. We consider the two-point
boundary value problem for trajectories, i.e., whether it is possible to join
two points of configuration space by a trajectory. It should be noted that
on non-linear configuration spaces (i.e., on Riemannian manifolds), even for
smooth bounded forces independent of velocities, this problem may not have a
solution at all, unlike the case of linear configuration spaces. This may happen
if the points are conjugate along all geodesics of the Levi-Civitá connection
joining them (this is true for all types of forces, e.g., for forces depending on
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velocities with linear or quadratic growth). Besides, it is a well-known fact
that for forces with quadratic growth, all trajectories starting at a certain
point may be confined to some bounded domain for all time, unable to reach
an exterior point. Examples of all these cases of non-solvability are described
in the first section of the chapter.

A certain geometric condition is found for the geometry of a manifold, a
pair of points and a force field, having quadratic growth, such that if the
points are not conjugate along at least one geodesic and the condition is sat-
isfied, the points can be connected by a trajectory at least in a small enough
time interval. It is shown that if the force has less than quadratic growth,
this condition is always satisfied and so the problem is solvable for all pairs
of points, non-conjugate along at least one geodesic. If the manifold is flat
(in particular, this means that conjugate points are absent) and the force
is uniformly bounded, the construction yields the classical result that the
problem is solvable for any pair of points in any time interval. For forces with
quadratic growth an additional condition is found which, in combination with
the first condition, ensures that the problem is solvable in any time interval.
All results are proved for the general case of set-valued force fields with vari-
ous continuity conditions (ordinary single-valued results follow as corollaries)
and so they are connected with the problem of controllability for mechanical
systems. A generalization to systems with non-holonomic constraints is also
presented. In this case it is natural to investigate the problem of connecting
a point with a certain submanifold.

A modification of the constructions of this chapter is later applied to a
certain analogous problem on Lorentz manifolds.

In Chapter 13 we deal with the general theory of relativity. The material of
the first section can be considered as an introduction to the subject, presented
axiomatically, as is habitual for mathematicians. This part of the chapter is
the basis for all following relativistic problems. We then investigate a certain
two-point boundary value problem arising in A. Poltorak’s concept of refer-
ence frame. In this concept the reference frame is a certain manifold equipped
with a connection. On the basis of the machinery developed in Chapter 16, for
two particular cases of reference frame some geometric conditions are found
under which we can conclude from the fact that two events are connected by
a time-like geodesic in the reference frame, that the same can be done in the
space-time (i.e., if the second event belongs to proper future of the first one
in the reference frame, the same is true in the space-time).

In the last section we describe the motion of a classical particle in a classical
gauge field in terms of a special version of Newton’s law on a fiber bundle
with a connection (recall that mathematically the notion of a gauge field
coincides with the notion of a connection on a fiber bundle). This section
also contains a short introduction to the geometric theory of gauge fields.

In Chapter 14 we consider mechanical systems with random perturbation
of either the force fields or of the velocities. Newton’s laws for such systems
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are expressed in terms of forward mean derivatives and corresponding integral
operators with stochastic parallel translation.

First we investigate the so-called Langevin equation on a Riemannian man-
ifold. This is Newton’s law for a mechanical system on a nonlinear configura-
tion space whose force field takes the form a(t,m(t), ṁ(t)) +
A(t,m(t), ṁ(t))ẇ(t), where a(t,m,X) is a deterministic vector force field,
A(t,m,X) is a (1, 1)-tensor field (i.e., a field of linear operators in tangent
spaces), depending on velocity X, and ẇ(t) is an Itô white noise in tangent
space. In particular such an equation describes the motion of a physical Brow-
nian particle in a non-linear configuration space. We present a well-posed
mathematical description of this equation in terms of mean derivatives and
of integral operators with parallel translation that avoids using distribution
theory. Existence theorems for weak and strong solutions are proved. Nat-
ural analogs of Ornstein-Uhlenbeck processes on Riemannian manifolds are
described. Generalizations to the case of the so-called Langevin differential
inclusion (where both a and A are set-valued) are also considered.

We then consider the case where the velocity of a mechanical system tra-
jectory is subjected to random perturbation. This situation is motivated by
the motion of a particle, subjected to a deterministic force, that in addition
moves in a medium under random influence. Such systems are described by
Newton’s law in terms of mean derivatives, whose form is different from that
in the Langevin case. The stochastic integrals with stochastic parallel trans-
lation are applied to the investigation of such systems on manifolds. We also
consider such systems in linear spaces (in particular, with set-valued forces)
since some more general results can be obtained for them.

Another stochastic version of Newton’s second law, namely the so-called
Newton-Nelson equation, is considered in Chapter 15. It is given in terms of
mixed second order mean derivatives and describes the motion of a quantum
particle in the framework of Nelson’s stochastic mechanics. The main result
here is the existence of solution theorem where the force field is the sum of
a vector field, independent of velocities, and a (1,1)-tensor field (i.e., a field
of linear operators in tangent spaces), applied to the current velocity of the
process. We investigate the non-relativistic case (in R

n and on a manifold)
as well as the relativistic case (in Minkowski space and on a space-time of
general relativity). In fact we obtain a revised version of stochastic mechanics
that is free of the defects found by Nelson within his initial approach to this
theory.

In Chapter 16 we describe hydrodynamics via the modern Lagrangian
formalism suggested in the works of V.I. Arnold, D. Ebin and J. Marsden.
This formalism arises from Newton’s law on the group of Sobolev diffeomor-
phisms of a finite-dimensional manifold, formulated in terms of the covariant
derivative of the Levi-Civitá connection of a weak Riemannian metric (de-
termining the topology of the functional space L2). The basic system here
is the one of so-called diffuse matter. By considering a special force field we
obtain the description of a perfect barotropic fluid and, by defining a special
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constraint, the description of a perfect incompressible fluid. If we collect the
velocity vectors of a solution in the tangent space at the unit to the group
by right translations, the curve that we obtain in that tangent space satisfies
the Euler equation. The differential equation of motion (Newton’s law) on
the group usually has a smooth right-hand side. Passing to the Euler equa-
tion yields loss of derivatives. We prove, among other results, local existence
of solutions theorems, regularity of solutions theorems (including the case
of finite-dimensional manifolds with boundary) and a version of Noether’s
theorem.

For the description of viscous incompressible fluids we use stochastic anal-
ysis, particularly the machinery of mean derivatives. We mainly deal with the
model problem of a fluid moving on an n-dimensional flat torus. A special
second order equation is found with backward mean derivatives on the group
of diffeomorphisms, subjected to a certain constraint (a special stochastic
analog of Newton’s law), such that the expectations of its solutions are flows
of a viscous incompressible fluid on the torus. (It should be noted that the
stochastic Newton law here is expressed in terms of backward mean deriva-
tives and so it has a form different to that appearing in Chapters 14 and
15.) Passing to the Euler description yields a Navier-Stokes equation in the
tangent space at the unit in complete analogy to the appearance of the Euler
equation in the case of a perfect incompressible fluid.

In complete form this construction is realized under the assumption that
the backward mean derivative of the process satisfying the stochastic Newton
law, mentioned above, is generated by a right-invariant vector field. If this
is not the case, in the “algebra”, after passing to the Euler approach, some
other types of hydrodynamical equations may arise.

We finish the chapter by introducing a special stochastic perturbation
of a flow of diffuse matter on the group of diffeomorphisms such that the
perturbed flow satisfies the stochastic Newton law and the corresponding
curve in the tangent space at the unit satisfies the Burgers equation. The
same perturbation of a perfect incompressible flow without external force
satisfies the stochastic Newton law with zero force, but yields a curve in the
tangent space at the unit that is a solution of a Reynolds type equation.
Nevertheless, under the action of a certain special external force on the flow,
this curve becomes a solution of a Navier-Stokes equation without external
force. As above, we consider a fluid motion on the flat n-dimensional torus T n.

Everywhere in the book we use Einstein’s summation convention:

Einstein’s Convention.

A monomial with a shared upper and lower index represents the summation
where the common index ranges from 1 to n, n being the dimension of the
manifold under consideration.
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For example, aik
i =

n∑

i=1

aik
i . Further to this convention, we treat upper

indices appearing in a denominator as lower indices and lower indices ap-
pearing in a denominator as upper indices. Examples of such expressions are:
X = Xi ∂

∂qi and P = Pi
∂

∂pi
.





Part I

Global Analysis





Chapter 1

Manifolds and Related Objects

1.1 Manifolds, Vectors and Covectors. A Glossary

A manifold will generally be denoted by the symbol M . Recall that a finite-
dimensional manifold, as a topological space, is assumed to be Hausdorff and
satisfy the second countability axiom. Unless otherwise stated, dim M = n
for a finite-dimensional manifold M .

We denote the charts of a maximal atlas by the symbols (Vα, ϕα), where
Vα is an open ball in R

n, and the corresponding neighborhoods in M by
Uα = ϕαVα. Usually we do not distinguish between Vα and Uα and so the
latter are also called charts. Recall that in this case R

n is called the model
space.

The change of coordinates between Uα and Uβ (i.e., between Vα and Vβ) is
denoted by ϕβα = ϕ−1

β ϕα. If the changes of coordinates are homeomorphisms,
the manifold is called topological , and if Ck-smooth, a Ck-manifold . If k = ∞,
the manifold is said to be smooth.

Convention 1.1 Everywhere below, unless stated to the contrary, all mani-
folds are assumed to be smooth, i.e., C∞-smooth.

Theorem 1.2 (Whitney) Every smooth manifold with dimension n can be
embedded as a smooth surface into a linear space with dimension 2n + 1.

Finite dimensional manifolds are clearly locally compact. It is a well-known
fact that all locally compact spaces satisfying the second countability axiom
are paracompact (see, e.g., [30]). Thus every finite-dimensional manifold is
paracompact.

We introduce coordinates q1, . . . , qn in a chart Vα as in a domain in R
n

and analogously coordinates q1′
, . . . , qn′

in another chart Vβ . As there is no
chance of confusion, the corresponding coordinates in Uα and Uβ , obtained
by the homeomorphisms ϕα and ϕβ , are denoted by the same symbols. They
are called local or curvilinear coordinates. The change of coordinates ϕβα is
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given by expressing the coordinates qi′ of every point m ∈ Uαβ in terms of
its coordinates qj : qi′ = qi′(q1, . . . , qn). Of course the inverse mapping ϕαβ

is determined by expressing the coordinates qi in terms of qi′ . The change
of coordinates is smooth if all qi′(q1, . . . , qn) and qj(q1′

, . . . , qn′
) are jointly

smooth functions of all their variables.
On smooth manifolds the notion of a smooth mapping is well-defined. A

mapping f : M → N is determined not only by a chart Uα on M but also by
a chart Uγ on N and is denoted by fγα. For other charts Uβ on M and Uδ

on N we obtain fδβ = ϕδγ ◦fγα ◦ϕαβ . Recall that the changes of coordinates
ϕδγ and ϕαβ are smooth. Thus, if fγα is smooth at the point ϕ−1

α (m), fδβ is
smooth at the point ϕ−1

β (m).
A particular case of the above definition is a mapping from an interval of

R to a manifold, called a curve (or path) in the manifold. Thus, the notion
of a smooth curve is well-defined.

A submanifold M ′ of a manifold M is a subset of M that is a manifold
with the property that each point of M ′ belongs to a chart U of M such that
for the corresponding ball V of U (where V is a ball in a space E, say) the
intersection U

⋂
M ′ corresponds to an open ball of a linear subspace of E.

For certain manifolds M the charts for some points are not open balls but
“half-balls”, i.e., intersections of open balls with a closed half-space. Such
points form the boundary of M , which is usually denoted by the symbol ∂M .

If two copies of a manifold M with boundary ∂M are pasted together in
such a way that identical points of ∂M are pairwise identified and so that the
resulting manifold has no boundary, the latter manifold is called the double
of the manifold M . In the double of M the boundary ∂M is a submanifold
of codimension 1.

The case where the model space of a manifold is infinite-dimensional has
some special features. First of all the model space is assumed to be a Hilbert
or a Banach space since in more general infinite-dimensional spaces the notion
of differentiability is not completely well-defined. Manifolds with Hilbert or
Banach model spaces are respectively called Hilbert or Banach manifolds.

In addition, an infinite-dimensional manifold is not assumed to satisfy the
second countability axiom: it is a well-known fact that a topological space
satisfying the second countability axiom is separable, while many manifolds
arising in applications have non-separable model spaces. Usually (but not
necessarily) the manifolds are assumed to be paracompact.

A scalar field f on a manifold M is a mapping from M to a vector space
R

k, f : M → R
k. If this map is continuous (smooth), it is called a continuous

(smooth, respectively) scalar field. A scalar is a value of a certain scalar field
at some point m ∈ M , but usually (when it does not lead to confusion) a
scalar field also is called a scalar. Note that according to this convention a
scalar may have dimension greater than 1 (this corresponds to the use of the
term scalar by physicists).
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The characteristic feature of any scalar f(m) is that its presentation in
a chart does not transform under coordinate changes, unlike all other fields
(see below).

For the sake of future applications we should also give another presentation
of scalar fields. Consider the direct product M × R

k and denote by π the
projection onto M . Then a scalar field can be considered as a map f : M →
M × R

k such that for each m ∈ M the relation π(f(m)) = m holds. This
relation is often expressed in operator form: π◦f = id where id is the identity
map.

The tangent space to M at m ∈ M is denoted by TmM and the total
tangent bundle by TM . By π : TM → M we denote the natural projection.

In every TmM there is a basis generated by coordinates (q1, . . . , qn) in a
chart Uα � m. This basis is denoted by ∂

∂q1 , . . . , ∂
∂qn , where the vector ∂

∂qi

is the derivative of the i-th coordinate axis passing through m, with respect
to the corresponding parameter qi. Thus every tangent vector X ∈ TmM is
represented in Uα � m with coordinates (q1, . . . , qn) as Xα = Xi ∂

∂qi and in
Uβ � m with coordinates (q1′

, . . . , qn′
) as Xβ = Xi′ ∂

∂qi′ . Note that the indices
of vectors are subscripts while those of vector coordinates are superscripts.

The relation between Xα and Xβ is described by the formula

Xβ = ϕ′
βαXα, i.e., in coordinates Xi′ =

dqi′

dqj
Xj (1.1)

where ϕ′
βα is the Jacobi matrix of ϕβα. Formula (1.1) is the transformation

rule for vectors under a change of coordinates.
Given the basis ∂

∂qi in TmM , we can create a coordinate system in TmM

with respect to this basis. Denote by q̇i the coordinate corresponding to ∂
∂qi

and consider its coordinate axis passing through a certain point X ∈ TmM .
Consider the tangent space TXTmM to TmM at X. The coordinate system
(q̇1, . . . , q̇n) in TmM generates in TXTmM the basis ∂

∂q̇1 , . . . , ∂
∂q̇n by complete

analogy with the procedure that creates the basis ∂
∂qi in TmM from the

coordinate system (q1, . . . , qn) in Uα.
Obviously the linear space TXTmM is naturally isomorphic to the linear

space TmM (visually they differ only by the location of the origin: the origin of
TXTmM is located at the point X ∈ TmM). Denote by p : TXTmM → TmM
the linear isomorphism between them which is defined by the rule

p
(

∂

∂q̇i

)

=
∂

∂qi
. (1.2)

Note that the construction of p is valid for any linear vector space and its
tangent. For example, consider the space R

k and (using the previous notation)
denote a basis in it by ∂

∂q1 , . . . , ∂
∂qn . Then at a given point X ∈ R

k create
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the basis ∂
∂q̇1 , . . . , ∂

∂q̇n in TXR
k as described above. Now p : TXR

k → R
k is

well-defined by formula (1.2).
Consider a chart Uα on M and denote by TUα the restriction of the tangent

bundle to Uα. Note that TUα can be presented as the direct product TUα =
Uα × R

n since every point of TUα can be described by 2n coordinates: n
coordinates of the point in Uα and n coordinates of the vector with respect to
the basis ∂

∂qi . Such a presentation as a direct product is called a trivialization,
in the case under consideration, with respect to coordinates (q1, . . . , qn). If we
choose another system of coordinates in Uα, we obtain another trivialization.
There exist some other types of trivializations, for example, by a field of
orthonormal frames in a chart of a Riemannian manifold (see below).

Consider TUα as a chart in TM . The change of coordinates between TUα

and TUβ is given as a pair:

(ϕβα, ϕ′
βα) : Uα × R

n → Uβ × R
n (1.3)

where ϕβα sends the coordinates of points with respect to Uα into those of
the same points with respect to Uβ and ϕ′

βα sends coordinate columns of a
vector with respect to the basis ∂

∂qi into those of the same vector with respect
to the basis ∂

∂qi′ according to formula (1.1).
Note that if ϕβα is a Ck-map, ϕ′

βα is only a Ck−1-map, i.e. TM is a Ck−1-
manifold if M is Ck. However, if M is C∞, TM is also C∞ (recall that, unless
the contrary is stated, we assume our manifolds to be C∞).

Convention 1.3 In what follows we denote the points of a tangent bundle in
two different ways: (m, X) as a point in TM and Xm as a tangent vector to M
at m. Both symbols have the same meaning and can be used interchangeably;
we will favor one when it is more suitable that the other. Strictly speaking, this
notation makes proper sense only in charts but for the sake of convenience
we also use it in invariant language.

Definition 1.4. A vector field on M is a map X : M → TM such that
πX = id, i.e., πX(m) = m for each m ∈ M .

Note that for a general mapping X : M → TM the value X(m) could
belong to any fiber but from the relation πX(m) = m it follows that X(m) ∈
TmM .

Definition 1.5. We say that a vector field X is continuous (smooth) if the
map X : M → TM is continuous (smooth, respectively).

Clearly the derivative of a smooth curve is a tangent vector. Let a smooth
vector field X be given on M . The curve m(t) described by equation

ṁ(t) = X(m(t)). (1.4)

is called the integral curve of X.
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In a given chart, (1.4) can be considered as a differential equation in vec-
tor space. Hence, we can apply the theory of ordinary differential equations
to (1.4). In particular, since the right-hand side of (1.4) is smooth, we ob-
tain from the classical existence theorem that for any point m0 ∈ M there
exist a real number εm0 > 0 and a unique solution m(t) of (1.4) with the
initial condition m(0) = m0 that is well-defined for t ∈ [0, εm0). In order
to investigate all solutions of (1.4) we denote by gt(m0) the solution such
that g0(m0) = m0. From the theorem on smooth dependence of a solution
on initial values and parameters it follows that gt(m0) : U → M is jointly
smooth in t and m0 ∈ M , where U is some neighborhood of 0×M in R×M .
From the uniqueness theorem for solutions of ordinary differential equations
it follows that gt(·) is a diffeomorphism for all t such that gt(m) exists for all
m ∈ M .

Definition 1.6. gt(·) is called the general solution of (1.4) or the flow of
vecotr field X .

Let f : M → R be a real-valued function on M . Specify a point m ∈ M
and denote by m(t) the integral curve of X such that m(0) = m. Consider
the restriction of f onto m(t), i.e. the function f(m(t)). Note that f(m(t)) is
a real-valued function of a real argument.

Definition 1.7. d
dtf(m(t))|t=0 is called the derivative of f in the direction

of X at m. Having found the derivative of f along X at all points of M , we
obtain a new function on M , denoted by Xf , that is called the derivative of
f in the direction of X.

Note that applying the above construction to the derivative of f in the
direction of a vector field ∂

∂qi , we obtain the partial derivative ∂f
∂qi . This is

the reason for denoting this vector field by the partial derivative symbol.
Let X be a vector field on M and in a chart Uα let it be presented in

coordinate form as X = Xi ∂
∂qi . Then we easily obtain the following formula

for Xf in Uα:

Xf = Xi ∂f

∂qi
(1.5)

Let X and Y be smooth vector fields on M .

Definition 1.8. The Lie bracket [X,Y ] of X and Y is the vector field on M
such that for any smooth real-valued function f on M its derivative along
[X,Y ] is given by the formula: [X,Y ]f = X(Y f) − Y (Xf).

Usually the definition of [X,Y ] is given in operator form as follows:

[X,Y ] = X ◦ Y − Y ◦ X. (1.6)

By direct calculation one can easily show that the vector field [X,Y ] exists,
is unique and, in local coordinates, is described by the formula
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[X,Y ] =
(

X l ∂Y k

∂ql
− Y l ∂Xk

∂ql

)
∂

∂qk
. (1.7)

The Lie bracket is evidently skew-symmetric: [X,Y ] = −[Y,X].

Proposition 1.9 The Lie bracket satisfies the so-called Jacobi identity:

[X, [Y,Z]] + [Y, [Z, X]] + [Z, [X,Y ]] = 0. (1.8)

Consider a smooth mapping of manifolds F : M → N . Specify a point
m ∈ M and its image F (m) ∈ N . The mapping F generates a mapping
dmF : TmM → TF (m)N that in a chart at m and in a chart at F (m) is
described by the Jacobi matrix of F at m. We call dmF the differential of F
at m ∈ M .

Definition 1.10. The tangent mapping TF : TM → TN is defined by the
formula

TF (m, X) = (F (m), dmF (X)).

So, the tangent mapping TF is defined globally as a mapping of tangent
bundles, and the differential dmF of F at m is a restriction of TF to TmM .

Note that for a smooth curve m(t) in M we have the relation

d
dt

F (m(t)) = TF

(
d
dt

m(t)
)

, (1.9)

which can be considered as a coordinate-free definition of TF .
If F sends M into a linear space, say, F : M → R

k, the construction of
the differential can be modified so that it becomes a map from TM to R

k.
We introduce it as the composition

dF = p ◦ dmF : TmM → R
k (1.10)

where p is defined in (1.2). Note that dF can be applied to vectors from any
TmM, m ∈ M , so it is well-defined on the entire tangent bundle TM .

Definition 1.11. A cotangent vector (which we also call a covector or 1-
form) b at m ∈ M is a linear functional on the tangent space TmM , i.e. a
linear map b : TmM → R. The set of all covectors at m is called the cotangent
space at m and is denoted by T ∗

mM .

By definition, T ∗
mM is a linear space, dual to TmM . The total cotangent

bundle is denoted by T ∗M .
In every chart Uα the coordinates (q1, . . . , qn) generate the basis dq1, . . . ,

dqn in every T ∗
mM , dual to the basis ∂

∂q1 , . . . , ∂
∂qn (i.e., dqi( ∂

∂qj ) = δi
j where δi

j

equals 1 if i = j and 0 otherwise). Thus every covector a in Uα has coordinate
representation aα = aidqi (note that the indices of covectors are superscripts
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while the indices for their coordinates are subscripts). The relation between
such presentations aα and aβ in the charts Uα and Uβ is given by the formula

aβ = aα ◦ (ϕ′
βα)−1, i.e., in coordinates aj′ =

∂qi

∂qj′
ai. (1.11)

Note that in (1.11) the Jacobi matrix ϕ′
βα is applied to the row aα from

the right while in (1.1) it is applied to the column Xα from the left. Having
transposed both sides of (1.11) we obtain (1.11) in the form similar to (1.1):

aT
β = [(ϕ′

βα)−1]T ◦ aT
α . (1.12)

Proposition 1.12 The transformation rules (1.1) and (1.11) coincide if and
only if ϕ′

βα is an orthogonal matrix.

Indeed, if and only if ϕ′
βα is orthogonal, we have [(ϕ′

βα)−1]T = ϕ′
βα by a

characteristic property of orthogonal operators.
Recall that the velocity of a curve, in particular of the trajectory of a

mechanical particle, is a tangent vector. The momentum p of the trajectory
is introduced in elementary text books by the property that the inner product
of p and the velocity v is equal to the kinetic energy multiplied by 2:

p · v = 2K. (1.13)

Note that in fact p is a covector. Indeed the kinetic energy K is a scalar, i.e.
it takes the same value in all charts and coordinate systems. So, since v is
a vector (transforming under changes of coordinates by (1.1)), p · v in (1.13)
can take the same value in all coordinate systems if and only if p transforms
by (1.11), i.e., if p is a covector.

Another physical example of a covector is force. Indeed, the inner product
of a force f and velocity v is a scalar known as the power N :

f · v = N .

As in (1.13), since v transforms according to (1.1) and N has the same value
in all coordinate systems, f must transform according to (1.11), i.e., it is a
covector.

Note that in elementary text books only motion in R
3 with orthonormal

coordinate systems is considered. Thus, only orthogonal coordinate changes
are used and so the vectors v and covectors p and f have the same transfor-
mation rules (see above). This is not the case for systems given on manifolds
with arbitrary coordinate systems.

As for TM , T ∗M inherits a manifold structure from M : the charts on T ∗M
are of the form T ∗Uα, which can be represented as Uα × R

n, and changes
of coordinates are of the form (ϕβα, ((ϕ′

βα)−1)T ) (formula (1.12) is in use
instead of (1.1)). The points of T ∗M we shall denote either by (m, b) (as a
point of T ∗M) or, equivalently, as bm (covector b at the point m).
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As for TM we denote by the symbol π : T ∗M → M the projection which
sends (m, b) ∈ T ∗M into m ∈ M .

Definition 1.13. A covector field on M is a map b : M → T ∗M such that
π ◦ b = id (cf. Definition 1.4).

A covector field is called continuous (smooth) if b as a map of manifolds
is continuous (smooth, respectively).

Since R is a linear space, the construction of the differential df according
to (1.10) is well-defined for any given real-valued function f : M → R. Here
we are to emphasize the following:

Proposition 1.14 df is a covector field on M .

Indeed, by the construction, df is a map from TM into R which is linear
(coinciding with dmf) on any tangent space TmM . This means that at any
m ∈ M the map df is a linear functional on TmM , i.e. a covector.

In a given chart Uα, df can be expressed in terms of coordinates with
respect to a basis dq1, . . . dqn. To do this we should calculate the Jacobi
matrix for f in coordinates q1, . . . qn. We then find that it takes the form
( ∂f

∂q1 , . . . , ∂f
∂qn ) and hence

df =
∂f

∂qi
dqi. (1.14)

Remark 1.15. Note that in classical vector analysis ( ∂f
∂q1 , . . . , ∂f

∂qn ) is known
as the gradient of the function f while (1.14) has the form of a total differ-
ential. We should point out that both formulas describe (in different forms)
the object we have called the differential of f . The geometrically well-defined
definition of gradient is given in the next chapter in such a way that in Eu-
clidean n-space it turns out to be a vector (i.e., a coordinate column, not a
row) with coordinates ∂f

∂qi .

Taking into account (1.14), we obtain for X = Xi ∂
∂qi that

df(X) = Xi ∂f

∂qi
. (1.15)

Comparing (1.5) with (1.15) we obtain that the equality

Xf = df(X) (1.16)

holds for any X and any f .
Note that (1.16) is sometimes used as the definition of df .
Above we have described the notion of a tangent mapping of tangent

bundles generated by a smooth mapping of manifolds. A natural mapping of
a cotangent bundle is also generated but, unlike the tangent mapping, it sends
T ∗N to T ∗M . Let M and N be smooth finite-dimensional manifolds and let
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F : M → N be a smooth map. Specify a point m ∈ M and consider its image
F (m) ∈ N . Let a ∈ T ∗

F (m)N be a covector at F (m). It can be mapped into
T ∗

mM by the following procedure. Denote by T ∗F (a) the covector in T ∗
mM

such that its value on any vector X ∈ TmM is defined by the relation

T ∗F (a)(X) = a(TF (X)) (1.17)

where TF is the tangent mapping. By the construction of TF (see Definition
1.10), we get that TF (X) ∈ TF (m)N and so the value a(TF (X)) is well-
defined.

Definition 1.16. The map T ∗F : T ∗N → T ∗M is called the cotangent map-
ping of F : M → N or the pull-back .

1.2 Lie Groups and Lie Algebras

Definition 1.17. A manifold G is called a Lie group if there exists an alge-
braic operation • on G such that G is a group with respect to • and g1 • g2

is jointly smooth in g1, g2 ∈ G as a map from G × G to G.

The first examples of Lie groups are the space R
n (which is obviously a

commutative Lie group with respect to addition) and the circle S1, i.e. the
set of complex numbers with unit modulus, with respect to multiplication
(also commutative).

It is clear that the n-dimensional torus T n = S1 × · · · × S1 (the cartesian
product of n copies of S1) is a Lie group. The group operation on T n is given
by coordinate-wise multiplication.

Remark 1.18. T n may also be described as the quotient space R
n/Z

n of R
n

with respect to the integral lattice Z
n. This means that in R

n the points whose
corresponding coordinates differ from one other by an integer are considered
as equivalent and are pasted onto each other. It is clear that S1 is obtained
from the corresponding coordinate axis in R

n by factorization with respect
to integer points.

Let us turn to non-commutative groups. First we mention the three-
dimensional sphere S3 (the set of points with unit modulus in the space
of quaternions) and the sphere S7 (the set of points with unit modulus in the
space of octaves).

Consider the group of real invertible n × n matrices with respect to ma-
trix multiplication. We denote this group, called the general linear group, by
GL(n, R).

Theorem 1.19 GL(n, R) is a Lie group.
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The closed set det−1(0) ∈ L(n, R) subdivides GL(n, R) into two connected
components: the matrices with positive determinants and those with negative
determinants. Since the determinant of a product equals the product of the
determinants, the product of two matrices with positive determinants has
positive determinant, i.e., this connected component is a Lie sub-group of
GL(n, R).

Another Lie sub-group of GL(n, R) is the group O(n) of orthogonal n ×
n matrices. Recall that a matrix A is orthogonal if its action on vectors
preserves the inner product in R

n or, equivalently, if At = A−1 where At

is the transposed matrix. O(n) is a regular surface (i.e., a submanifold) in
GL(n, R).

Like GL(n, R), O(n) has two connected components: the orthogonal ma-
trices with determinant +1 and those with determinant −1. The former is a
Lie sub-group of O(n) (the product of matrices with unit determinant has
unit determinant). This group is called the special orthogonal group and is
denoted by SO(n). The matrices in SO(n) preserve the space orientation
while the matrices with determinant −1 reverse it. The latter set of matrices
is not a subgroup of O(n).

Definition 1.20. A left action of a Lie group G on a manifold M is defined
if a certain C∞-map G × M → M , denoted for g ∈ G and m ∈ M by gm, is
given such that the following hypotheses hold:

(i) for any g ∈ G the map g : M → M that sends m to gm is a diffeomor-
phism;

(ii) (g • h)m = g(hm) for g, h ∈ G, m ∈ M .

A right action of a Lie group G on a manifold M is the specification of a
certain C∞-map from M ×G to G, for g ∈ G and m ∈ M , which satisfies (i)
and the following replacement of (ii):

(iii) (g • h)m = h(gm) for g, h ∈ G, m ∈ M .

When a right action is given, the notation mg for g ∈ G, m ∈ M is used
so that m(g • h) = (mg)h.

In what follows we shall denote the unit of a Lie group G by e.
For g ∈ G two special maps, the left translation Lg : G → G and the

right translation Rg : G → G, are defined by the formulae Lgh = g • h and
Rgh = h • g, respectively, for any h ∈ G. From Definition 1.17 it follows that
both Lg and Rg are smooth maps of G.

Note that the tangent bundle TG is trivial, i.e., it can be presented as
direct product. Indeed, having taken a certain basis in TeG we can translate
it to TgG at each point g ∈ G by TLg (or TRg) and so obtain the presentation
of TG as G × R

n, where n = dim G.

Definition 1.21. The vector field on G obtained by left (right) translations
of a vector X ∈ TeG at all points of G is called the left-invariant (right-
invariant , respectively) vector field, generated by X.
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It should be noted that one can imitate the construction of left- and right-
invariant vector fields and define left- and right-invariant Riemannian metrics
and more general tensors (see the definitions of these object below).

Proposition 1.22 Let X̄ and Ȳ be left-invariant (right-invariant) vector
fields on G generated by X,Y ∈ TeG. Then the vector field [X̄, Ȳ ] is left-
invariant (right-invariant, respectively).

See, e.g., [26] for the proof of Proposition 1.22.
Denote by [X,Y ] the vector in TeG which generates [X̄, Ȳ ].

Definition 1.23. [X,Y ] is called the bracket of X,Y .

Proposition 1.24 The bracket in TeG introduced in Definition 1.23 satisfies
the Jacobi identity (1.8).

The assertion of Proposition 1.24 follows from Propositions 1.9 and 1.22.

Definition 1.25. A linear space on which an additional operation [·, ·] sat-
isfying the Jacobi identity is given is called a Lie algebra.

Thus, by Proposition 1.24, TeG has the structure of a Lie algebra.

Definition 1.26. The vector space TeG, equipped with the bracket defined
in Definition 1.23, is called the Lie algebra of the Lie Group G.

We generally denote Lie groups by Latin capitals (say, G) and their Lie
algebras by the corresponding lower case Fraktur characters (say, g).

It is known that every finite dimensional Lie algebra is the Lie algebra
of a certain Lie group, however different Lie groups may have the same Lie
algebra. For example, a group and a subgroup of the same dimension have
the same algebra.

Let us present some examples of Lie algebras.
On every linear space one can introduce the trivial bracket defined by the

equality [X,Y ] = 0 for every X and Y . Thus every linear space is a (trivial)
Lie algebra. It is clear that the algebras of the groups R

n, S1 and T n are
trivial, as well as the algebras of all commutative groups.

Consider Euclidean space R
3 together with the skew-symmetric vector

product operation. This operation is usually denoted by the bracket symbol,
a notation which we retain, i.e., for two vectors X,Y ∈ R

3 the symbol [X,Y ]
denotes their vector product. By direct calculation one can easily prove the
following:

Proposition 1.27 The vector product operation satisfies the Jacobi identity.

Thus, R
3 with the vector product is a Lie algebra.

The Lie algebra gl(n, R) is the set of all n×n matrices with linear addition
in the underlying vector space and with the bracket [A, B] = AB − BA
(commutator of matrices).
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The groups O(n) and SO(n) generate the same Lie algebra (indeed, the
unit of O(n) is contained in the subgroup SO(n)). This algebra is denoted
by so(n). It consists of skew-symmetric n×n matrices with the same bracket
as in gl(n, R) (so(n) is a Lie subalgebra of gl(n, R)).

A particular case, the algebra so(3), is of special interest to us because of
its use, below, in some examples of mechanical systems. The matrices from
so(3) have the form ⎛

⎝
0 a b

−a 0 c
−b −c 0

⎞

⎠ . (1.18)

Denote by Ψ : so(3) → R
3 the mapping that sends the matrix (1.18) to the

vector

⎛

⎝
−a
−b
−c

⎞

⎠. The next statement is obvious.

Proposition 1.28 Ψ is a linear isomorphism of so(3) to R
3.

Proposition 1.29 For every A, B ∈ so(3) the operator Ψ sends the commu-
tator AB − BA to the vector product of Ψ(A) and Ψ(B) in R

3.

We introduce on so(3) a bilinear form by the formula (A, B) = −1
2 tr(AB).

This bilinear form is called the Killing form.

Proposition 1.30 −1
2 tr(AB) equals the inner product of the vectors Ψ(A)

and Ψ(B) in R
3.

Propositions 1.29 and 1.30 are proved by direct calculation with matrices.
Thus −1

2 tr(AB) is an inner product in so(3) and so we have introduced
the structure of Euclidean space in so(3). From Propositions 1.29 and 1.30
we obtain:

Proposition 1.31 The linear isomorphism Ψ : so(3) → R
3 is an isomor-

phism of Lie algebras and of Euclidean spaces.

1.3 Fiber Bundles

Definition 1.32. A fiber bundle comprises the following five objects:

(i) a manifold M , called the base of the bundle;
(ii) a manifold E, called the total space of the bundle;
(iii) a manifold F , called the standard fiber of the bundle;
(iv) a Lie group G, called the structure group of the bundle;
(v) a smooth projection π : E → M , called the projection of the bundle,

and the following interrelations between these objects hold:
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1) a left action of G on F is given (see Definition 1.20);
2) for any chart Uα in M the set π−1Uα is homeomorphic to Uα × F ;
3) for Uα ∩ Uβ �= ∅ the “change of coordinates” from Uα × F to Uβ × F

is given as the pair (ϕβα, gβα(m)) where ϕβα : Uαβ → Uαβ is defined
above and gβα(m) : F → F is an element of G, smooth in m ∈ Uαβ ,
which is a diffeomorphism of F according to the definition of the left
action of G.

Usually we denote a fiber bundle by the symbol of its total space, say
E, and in this case Em denotes the fiber at the base point m (note that
Em = π−1(m) is homeomorphic to F ). In order to indicate the details of
a certain fiber bundle we may say that there is a bundle E over M or that
π : E → M is a fiber bundle. To denote the bundle with fiber F , a convenient
notation is F .

Strictly speaking Uα × F and Uβ × F are not charts, but Uα × F and
Uβ × F contain the charts in E of the form Uα × Vκ and Uβ × Vλ (where
Vκ and Vλ are charts in F ). Here, the restrictions of (ϕβα, gβα) become real
changes of coordinates.

The simplest example of a fiber bundle is a trivial (or product) bundle
E = M × F . Here all gβα are equal to the unique element e = id (unit) in G
(and so the group G may be reduced to its subgroup consisting of the unique
element e). The elements of any product bundle are scalars (see above). Recall
that under changes of coordinates in M , scalars are not transformed at all.

Note that according to Definition 1.32 every bundle over each chart Uα is
presented as a trivial one by means of a certain diffeomorphism Fα that is
called a trivialization (it is often said that over each chart the bundles are
trivial or that all bundles by means of Definition 1.32 are locally trivial).
It is important to understand from the very beginning that many different
trivializations of a bundle may exist even over a specified chart.

Definition 1.33. A vector bundle is a fiber bundle where F = R
k for a

certain k, G is the group GL(k, R) of non-degenerate linear operators in R
k, or

a subgroup thereof, and the elements of G act on R
k as linear automorphisms.

The product bundles with F = R
k are examples of vector bundles. Two

more examples are the tangent and the cotangent bundles of a manifold.
Indeed, for the tangent bundle, M is the base, TM is the total space, the
fiber is R

n (assuming that dim M = n), G = GL(n, R) with the natural
action on R

n and gαβ(m) = ϕ′
αβ(m) (see (1.3)). For the cotangent bundle,

M is also the base, T ∗M is the total space, the fiber is R
n and G is also

GL(n, R) with the same natural action on R
n but gαβ now takes the form

[(ϕ′
αβ)−1]T (see (1.12)).
Of course, in the infinite-dimensional case Definition 1.33 is modified by

replacing R
k with some Hilbert or Banach space and G = GL(n, R) by the

group of bounded invertible linear operators.

Definition 1.34. A principal bundle is a fiber bundle where F = G.
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It should be pointed out that on a principal bundle E both the left and
the right actions of its structure group G on fibers are well-defined, since any
fiber of E is isomorphic to G. In particular, having specified g ∈ G, we can
consider the right translation η ◦ g of each point η ∈ E. Thus we obtain the
right action of G on E (see Definition 1.20).

Every principal bundle generates the so-called associated bundle as follows.
Let E be a principal bundle with structure group G, and let F be a manifold
on which a left action of G is given. Consider the quotient of the direct product
E ×F with respect to the right action of G defined by the formula (η, f)g =
(η ◦ g, g−1f) (note that this is indeed a right action since (gh)−1 = h−1g−1).
Consider a chart Uα on M . The restriction of E×F on Uα has the form Uα×
G×F . The above-mentioned quotient space consists of the orbits of elements
of this product: for (m,h, f) ∈ Uα ×G× F the orbit is the set (m,hg, g−1f)
for all g ∈ G. Such an orbit is associated with the point (m,hf) ∈ Uα × F .
Indeed, for any point of the orbit we have (m, (hg)(g−1f)) = (m,hf) and so
this association is well-defined. Thus, over Uα, the above quotient space is
presented in the form Uα × F and the total quotient space is a bundle over
M with fiber F and structure group G where the gαβ are the same as in E.

Definition 1.35. The above quotient is called the bundle associated to E
with fiber F .

Notation 1.36 Denote by λ the mapping of E × F onto the total space
of the associated bundle that is the factorization sending the orbits to the
corresponding points in the quotient.

It should be noted that every non-principal fiber bundle is associated to
some principal bundle.

Let Q be a vector bundle with fiber R
k and let it be an associated bundle

to a principal bundle E with G = GL(k, R). Observe that, clearly, any b ∈ E
can be considered as a frame b = e1, . . . , ek in the fiber Qπb of Q through πb
and, consequently, as a linear map b : R

k → Qπb sending x = (x1, . . . , xk) to
bx = x1e1 + · · · + xkek.

Definition 1.37. The frame bundle BM of a manifold M is a principal bun-
dle over M with G = GL(n, R) (n = dim M) and gβα = ϕ′

βα.

Note that TM and T ∗M are bundles associated to BM , and so a point b ∈
BM may be regarded as a frame b = e1, . . . , en in the tangent space TπbM .
Thus b can also be considered as a linear mapping b : R

n → TπbM which sends
a vector x = (x1, . . . , xn) ∈ R

n to the vector bx = x1e1 + · · ·+xnen ∈ TπbM .

Definition 1.38. A cross-section X of a fiber bundle E is a map X : M → E
such that π ◦ X = id : M → M , i.e. X(m) ∈ Em for any m ∈ M .

Examples of cross-sections are vector fields (cross-sections of a tangent
bundle) and covector fields (cross-sections of a cotangent bundle). This im-
mediately follows from Definitions 1.38, 1.4 and 1.13. Every vector bundle E
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has a smooth cross-section, called the zero-section, which sends m ∈ M into
the origin of Em. Unlike vector bundles, a principal bundle has a global (i.e.,
defined on the entire manifold M) continuous cross-section if and only if the
bundle is trivial.

Definition 1.39. If the tangent bundle of a manifold M is trivial, M is called
parallelizable or trivializable.

As mentioned above, all Lie groups are parallelizable by left- or right-
invariant vector fields. In particular, the n-dimensional torus is parallelizable.

Remark 1.40. A natural trivialization Φ of the tangent bundle TT n can be
described as a trivialization by coordinate frames as follows. Introduce on
S1

i the angle coordinate qi = ϕ
2π where ϕ is an angle. We then obtain the

system of angle coordinates (q1, . . . , qn) on T n. At each point m ∈ T n the
vectors ∂

∂q1 , . . . , ∂
∂qn form an orthonormal frame in TmT n. For (Xi ∂

∂qi )m we
set Φ(Xi ∂

∂qi )m = (m, (X1, . . . , Xn)) ∈ T n × R
n.

Definition 1.41. If in each tangent space TmM to a manifold M a k-
dimensional linear subspace βm is chosen that smoothly depends on m ∈ M
(in the sense described below), we say that a k-dimensional distribution β is
given on M .

Smooth dependence of βm on m means that in some neighborhood of each
point m ∈ M there are k smooth linearly independent vector fields X1, . . . , Xk

such that at each m′ in this neighborhood the space βm′ is the linear span of
the vectors X1(m′), . . . , Xk(m′).

If on M there exists a smooth vector field nowhere equal to zero, the
straight lines spanned on the vectors of this field form a 1-dimensional dis-
tribution.

Definition 1.42. A k-dimensional distribution β is said to be integrable if
for each point m there exists a k-dimensional submanifold M ′ � m such that
at every point m′ ∈ M ′ the property Tm′M ′ = βm′ is fulfilled. In this case
the manifold M ′ is called an integral manifold of the distribution β.

Every 1-dimensional distribution is integrable. Its integral manifolds are
integral curves of the vector field on which the distribution is spanned. Dis-
tributions of dimension greater than 1 may not be integrable. There is a
necessary and sufficient condition for integrability that involves the notion of
involutory distributions.

Definition 1.43. A distribution β is called involutory if for every two vector
fields X and Y on M such that Xm, Ym ∈ βm at each m ∈ M , their Lie
bracket [X,Y ] also belongs to the space of distributions at each point of M .

Theorem 1.44 (Frobenius’ Theorem) A distribution is integrable if and
only if it is involutory.

A proof of Theorem 1.44 can be found, for example, in [26, 172, 212].



18 1 Manifolds and Related Objects

1.4 Riemannian and Semi-Riemannian Metrics

Definition 1.45. We say that a Riemannian metric is given on a manifold
M if in each tangent space TmM , m ∈ M , a symmetric positive-definite
bilinear form 〈·, ·〉m is specified which depends smoothly on m (in the sense
defined below). A manifold with a Riemannian metric is called a Riemannian
manifold.

When we say that 〈·, ·〉m depends smoothly on m we mean that for any
two smooth vector fields X and Y on M the real-valued function 〈Xm, Ym〉m
on M is smooth in m.

For a Riemannian manifold every tangent space TmM becomes a Euclidean
space with inner product 〈·, ·〉m.

In what follows, if it does not lead to confusion, we shall omit the point m
in the inner product notation. Indeed, 〈X,Y 〉 obviously has only one interpre-
tation: X and Y lie in the same tangent space and they are to be substituted
into the inner product of that space.

The first example of a Riemannian metric is the so-called first fundamental
form of a surface in Euclidean space. Recall that for X,Y ∈ TmM , where M
is a surface in a Euclidean space E, the number I(X,Y ) (the value of the first
fundamental form I at X and Y ) is defined by the equality: I(X,Y ) = (X,Y )
where (X,Y ) is the inner product in E. Note that, in spite of the fact that the
unique inner product in E is used to determine the inner products in tangent
spaces, the latter are still specific to their own spaces: we still cannot identify
different tangent spaces and so cannot say whether the inner products are
the same.

An embedding i : M → N of a Riemannian manifold M into another
Riemannian manifold N is isometrical if 〈X,Y 〉M = 〈iX, iY 〉N for every pair
X,Y of vectors belonging to the same tangent space of M . Note that an em-
bedded manifold with the first fundamental form is isometrically embedded
into Euclidean space.

Theorem 1.46 (Nash [186]) Every n-dimensional Riemannian manifold can
be isometrically embedded into a Euclidean space R

N with N = 1
2n(n+1)(3n+

11).

In a chart Uα the form 〈·, ·〉m can be described in terms of its matrix.
As is typical in linear algebra, we consider the coefficients of 〈·, ·〉m with
respect to the basis ∂

∂qk defined by the formula gij = 〈 ∂
∂qi ,

∂
∂qj 〉. Note that

the coefficients gij depend on m ∈ Uα and so they are real-valued functions
on Uα.

The linearity of 〈·, ·〉 allows us to derive a coordinate formula for the inner
product of vectors involving the coefficients gij . For vectors X = Xi ∂

∂qi and
Y = Y i ∂

∂qj we obviously have 〈X,Y 〉 = gijX
iY j . Note that this notation can

be applied both for vectors X and Y at a given point and for vector fields on
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Uα. In the latter case both the coefficients gij and the coordinates Xi and
Y j are functions on Uα.

One can easily prove that 〈·, ·〉m is smooth in m ∈ Uα if and only if all of
the functions gij(m) are smooth.

Using a Riemannian metric one can create natural analogs of many notions
of ordinary geometry in Euclidean space.

For a vector X ∈ TmM we define its norm ‖X‖ by the formula ‖X‖ =√
〈X,X〉. For two vectors X,Y ∈ TmM denote by θ the angle between them.

Then cos θ = 〈X,Y 〉
‖X‖·‖Y ‖ . Let m(t), t ∈ [a, b], be a curve in M . Its length s is

defined by the formula

s|ba =
∫ b

a

‖ṁ(t)‖dt. (1.19)

Note that all the notions introduced above, after embedding M isometrically
into a Euclidean space, coincide with the usual definitions of norm, angle and
length, respectively, in that space.

Let m0, m1 ∈ M . Denote by ℵ the total set of piecewise smooth curves in
M connecting m0 and m1.

Definition 1.47. The infimum of the lengths of the curves in ℵ is called the
Riemannian (or internal) distance in M between m0 and m1 and is denoted
by ρ(m0, m1).

Proposition 1.48 The distance ρ(·, ·) satisfies the axioms of a metric:

(i) ρ(m, m) = 0 and from ρ(m0, m1) = 0 it follows that m0 = m1;
(ii) ρ(m0, m1) = ρ(m1, m0) for every pair m0, m1 ∈ M ;
(iii) ρ(m0, m1) + ρ(m1, m2) ≥ ρ(m0, m2) for any m0, m1, m2 ∈ M .

The proof of Proposition 1.48 can be found, for example, in [26].
Hence, from Proposition 1.48 it follows that a Riemannian manifold is a

metric space with respect to its Riemannian distance ρ.

Definition 1.49. The Riemannian metric is called complete if the metric
space M with distance ρ generated by the Riemannian metric is complete.
In this case one says that M is a complete Riemannian manifold .

Recall that a bilinear form is called non-degenerate if its matrix (gij) is
not degenerate, i.e., it is invertible. Since the bilinear form of a Riemannian
metric is positive-definite it follows that the form is non-degenerate.

Definition 1.50. We say that a semi-Riemannian metric is given on a man-
ifold M if in each tangent space TmM , m ∈ M , a symmetric non-degenerate
bilinear form 〈·, ·〉m is specified which depends smoothly on m. A manifold
with a semi-Riemannian metric is called a semi-Riemannian manifold.

So, a Riemannian metric is a particular case of a semi-Riemannian metric.
For a semi-Riemannian metric a scalar square 〈X,X〉 may be negative or
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even zero for non-zero X, hence neither norm nor distance are well-defined
on semi-Riemannian manifolds. Nevertheless, semi-Riemannian metrics ap-
pear naturally in many physical theories. The main example for us is the
appearance of semi-Riemannian metrics in relativity theory.

Notation 1.51 For a Riemannian or semi-Riemannian metric with matrix
(gij) in a certain chart, we denote the inverse matrix (gij)−1 by (gij), i.e.,
its coefficients are denoted by gij.

Remark 1.52. One can easily show that (gij) is the matrix of an inner prod-
uct in the cotangent space at the corresponding point. Both the latter field
of inner products in cotangent spaces and the Riemannian metric (i.e., the
field of inner products in tangent spaces described by matrices (gij)) are
traditionally called “metric tensors”.

Real mechanical and physical objects can be described both as vectors
and as covectors which are said to be physically equivalent. The set up of a
physical problem usually involves a certain Riemannian or semi-Riemannian
metric on a manifold. These metrics determine the physical equivalence as
follows.

Definition 1.53. For X ∈ TmM the physically equivalent covector bX ∈
T ∗

mM is defined by the relation bX(Y ) = 〈X,Y 〉 for any Y ∈ TmM .
For b ∈ T ∗

mM the physically equivalent vector Xb ∈ TmM is defined by the
relation b(Y ) = 〈Xb, Y 〉 for any Y ∈ TmM .

From Definition 1.53 it follows that for any X ∈ TmM the physically equiv-
alent covector bX exists and is unique. Moreover, one can easily calculate its
coordinates. Let X = Xi ∂

∂di and Y = Y j ∂
∂dj . Denote by Xj the coordinates

of bX , i.e., bX = Xjdqj . Then, since b(Y ) = XjY
j and 〈X,Y 〉 = gijX

iY j for
any coordinate column Y j , we obtain from the definition

Xj = gijX
i. (1.20)

Applying (1.20) to the matrix (gij), the inverse of the matrix of the Rie-
mannian metric, one can easily see that

Xi = gijXj . (1.21)

Remark 1.54. Note that here we use the existence of the matrix (gij) =
(gij)−1, and do not use positive-definiteness. Thus physical equivalence is
well-defined for the general case of a semi-Riemannian metric, not only for a
Riemannian one.

Definition 1.55. The vector physically equivalent to the differential df of a
function f (see (1.14)) is called the gradient of f and is denoted by gradf .



1.5 Tensors 21

So, the gradient is determined by the relation df(X) = 〈gradf,X〉 for
any X. Comparing this formula with (1.16) we obtain the following equality
which holds for all X and f :

Xf = df(X) = 〈gradf,X〉. (1.22)

Convention 1.56 In what follows we shall denote the coordinates of phys-
ically equivalent vectors and covectors by the same character, using upper
indices for vector coordinates and lower indices for covector coordinates as
in formulae (1.20) and (1.21).

In mechanics and physics (1.20) and (1.21) are usually called ‘formulae of
lifting and lowering indices’. The term “physical equivalence” is suggested in
[200].

Let M be a Riemannian manifold. If in some TmM , m ∈ Uα, we have

gij = δij =
{

1 if i = j
0 if i �= j

,

i.e., the basis ∂
∂qi consists of orthonormal vectors, the coordinates of physi-

cally equivalent vectors and covectors coincide. In particular, and this is true
only in this case, dqi and ∂

∂qi are physically equivalent. However, a coordi-
nate system satisfying gij = δij can be created only in a Euclidean space.
In a general Riemannian manifold one can easily create a coordinate system
satisfying the above equality at a single point, but the relation will generally
not be satisfied at other points in its neighborhood. For semi-Riemannian
manifolds the situation is quite analogous, the only modification being: if ∂

∂qi

is an orthonormal basis, gii = ±1.

1.5 Tensors

Main definitions

In order to describe many physical and mechanical notions one needs to
use mathematical objects more general than vectors and covectors. These
objects are called tensors and, in common with vectors and covectors, they
are characterized by the rules for transformation of their components under
changes of coordinates. Moreover, vectors and covectors turn out to be trivial
particular cases of tensors.

Let m ∈ M and consider the Cartesian product of r copies of T ∗
mM and s

copies of TmM .

Definition 1.57. A tensor of type (r, s) (or (r, s)-tensor) at the point m is
a polylinear form on the above Cartesian product.
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This means that a tensor T of type (r, s) is a real-valued function, linear
in all its arguments, such that for any collection of r covectors a, b, . . . , c and
s vectors X, Y, . . . , Z the real value T(a, b, . . . , c,X, Y, . . . , Z) is defined.

A tensor field on M is defined if we associate to each point of M a tensor.

Definition 1.58. The total number of arguments in a tensor T is called its
valency . The number of covector arguments is called the contravariant rank
of T and the number of vector arguments is called the covariant rank of T.

Scalars are tensors of valency 0. Tensors of valency 1 are vectors and
covectors. By definition, a vector is a tensor of contravariant rank 1 and a
covector is a tensor of covariant rank 1.

There exists a construction allowing one to create tensors of higher va-
lency from vectors and covectors. Consider vectors E1, . . . , Er and covectors
p1, . . . , ps. Define the tensor T = E1 ⊗ · · · ⊗ Er ⊗ p1 ⊗ · · · ⊗ ps of type (r, s)
by the equality

E1 ⊗ · · · ⊗ Er ⊗ p1 ⊗ · · · ⊗ ps(a1, . . . , ar, X1, . . . , Xs)
= E1(a1) . . . Er(ar)p1(X1) . . . ps(Xs) (1.23)

for every multiplicity of covectors a1, . . . , ar and vectors X1, . . . , Xs.

Definition 1.59. A tensor of the form (1.23) is called the tensor product of
vectors E1, . . . , Er and covectors p1, . . . , ps. Tensors of this type are called
elementary.

The space of tensors of type (r, s) at a point m is obviously a linear space.
It is clear that the elementary tensors

∂

∂qi1
⊗ · · · ⊗ ∂

∂qir
⊗ dqj1 ⊗ · · · ⊗ dqjs , (1.24)

where the indices i1, . . . , ir, j1, . . . , js take all values from 1 to n (we assume
an n-dimensional manifold M), form a basis for this space.

For any (r, s)-tensor T, its coordinates with respect to the basis (1.24) are
denoted by Ti1...ir

j1...js
so that

T = Ti1...ir
j1...js

∂

∂qi1
⊗ · · · ⊗ ∂

∂qir
⊗ dqj1 ⊗ · · · ⊗ dqjs . (1.25)

In order to avoid any confusion (we usually assume that coordinates appear
with respect to a basis in T ∗

mM or in TmM), we call Ti1...ir

j1...js
the components

of the tensor T.
Note that, for the sake of simplicity, the summands of (1.25) are ordered so

that all ∂
∂qir precede all dqjs in the tensor products (and consequently, in the

components all terms with upper indices precede all terms with lower indices).
In arbitrary tensors the factors of types ∂

∂qir and dqjs (and component terms
with upper and lower indices) may appear in any order.
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Taking into account formulae (1.1) and (1.11), one can easily derive the
following formula for the transformation of components under a change of
coordinates:

T
i′1...i′r
j′1...j′

s
=

dqi′1

dqi1
. . .

dqi′r

dqir

dqj1

dqj′1
. . .

dqjs

dqj′s
Ti1...ir

j1...js
(1.26)

Note that all upper indices are transformed as in (1.1) and all lower indices
as in (1.11).

Formula (1.26) is the main characteristic of tensors. The above definition
of a tensor as a polylinear form is convenient only from the general point of
view. For concrete tensors, the fact that they can be presented as polylinear
forms may not be important for a given physical problem. On the other hand,
transformation rule (1.26) distinguishes tensors from all other objects.

In analogy with the constructions of tangent and cotangent bundles we
define the (r, s)-tensor bundle over M as the set of all (r, s)-tensors at all
points of M and define a smooth manifold structure on it as follows. The
sets of tensors over the charts Uα and Uβ in M play the roles of charts in
our bundle (note that using (1.25) one can easily see that these new charts
are presented as direct products) and the changes of coordinates are given in
the form (ϕβα, gβα) where ϕβα is the change of coordinate in M and gβα is
defined by (1.26). Now one can easily give the definition of an (r, s)-tensor
field as a cross-section of a tensor bundle according to Definition 1.38 (i.e.,
in analogy with Definitions 1.4 and 1.13).

It is clear that a Riemannian metric is an example of a (0, 2)-tensor, i.e.,
in a chart, 〈·, ·〉 = gijdqi ⊗ dqj . The matrix (gij), the inverse of the matrix
(gij) of a Riemannian metric in a certain coordinate system, is an example of
a (2, 0)-tensor, i.e., in a chart this metric tensor takes the form gij ∂

∂qi ⊗ ∂
∂qi .

Thus, in any T ∗
mM this matrix describes the inner product of covectors, dual

to the inner product on vectors in TmM (the Riemannian inner product)
with respect to physical equivalence.

It appears that (1, 1)-tensors are linear operators. Indeed, consider an ele-
mentary tensor E ⊗ p at some m ∈ M and substitute into p a certain vector
X ∈ TmM . Then E ⊗ p(·, X) = p(X)E ∈ TmM is vector linearly depen-
dent on X, i.e. E ⊗ p : TmM → TmM is a linear operator. Thus the tensor
T = ai

j
∂

∂qi ⊗ dqj is the linear operator in TmM with matrix (ai
j).

Note that we can substitute a covector a ∈ T ∗
mM into E in E ⊗ p so that

E ⊗ p(a, ·) = E(a)p ∈ T ∗
mM , i.e. E ⊗ p can be considered as a linear operator

acting on T ∗
mM . Hence ai

j
∂

∂qi ⊗dqj can also be considered as a linear operator
on T ∗

mM . This operator is known as the dual (or conjugate) operator to the
operator on TmM , mentioned above, with the same matrix (ai

j).

Operations with tensors

The set of all (r, s)-tensors at a point m ∈ M form a linear space, i.e., addition
and multiplication (by a real number) are well-defined. From this it follows
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that for tensor fields the operations of addition and of multiplication by a
real-valued function are also well-defined.

Further operations will be first determined for elementary tensors. Since
every tensor is a sum of elementary tensors (see expansion (1.25)), we can
easily extend the operations from elementary to all tensors.

The tensor product of an (r, s)-tensor A and a (k, l)-tensor B creates a new
(r+k, s+ l)-tensor A⊗B as follows. For A = E1⊗· · ·⊗Er ⊗p1⊗· · ·⊗ps and
B = Ē1 ⊗ · · · ⊗ Ēk ⊗ p̄1 ⊗ · · · ⊗ p̄l we have A⊗B = E1 ⊗ · · · ⊗Er ⊗ p1 ⊗ · · · ⊗
pS ⊗ Ē1 ⊗ · · · ⊗ Ēk ⊗ p̄1 ⊗ · · · ⊗ p̄l. For arbitrary tensors T and T̄, expanded
according to (1.25), we multiply by this rule each summand of T with each
summand of T̄ and sum up all the products to get the expansion of T ⊗ T̄.
This means that the set of components for T ⊗ T̄ is obtained by taking the
product of all components of T with all components of T̄.

A contraction (or trace) transforms an (r, s)-tensor into an (r − 1, s − 1)-
tensor as follows. For A = E1 ⊗ · · · ⊗ Er ⊗ p1 ⊗ · · · ⊗ ps its contraction by
l − th lower and v − th upper factors is the tensor of the form

pv(El)E1 ⊗ · · · ⊗ El−1 ⊗ El+1 . . . Er ⊗ p1 ⊗ · · · ⊗ pv−1 ⊗ pv+1 ⊗ · · · ⊗ ps.

Applying this rule to a general tensor T with expansion (1.25) and taking
into account that dqv( ∂

∂ql ) = δv
l , we see that the contraction causes a lot of

summands in (1.25) to vanish. The remaining non-zero summands have the
form T

i1...il−1 k il+1...ir

j1...jv−1 k jv+1...js
(the sum with respect to k = 1, . . . , n).

For example, consider the contraction of a (1, 1)-tensor (linear operator)
T = ai

j
∂

∂qi ⊗ dqj (see above). Evidently we get trT = ak
k, the ordinary trace

of the matrix of the linear operator T.

Physically equivalent tensors

Let M be a Riemannian manifold. For an elementary tensor we define a
physically equivalent tensor by replacing a certain vector (or covector) in the
corresponding tensor product by the physically equivalent covector (vector,
respectively).

When transforming an arbitrary tensor with expansion (1.25) into a phys-
ically equivalent one, we should remember that generally speaking ∂

∂qi is not
physically equivalent to dqi. This is why, on replacing a certain ∂

∂qi (of dqi)
by the physically equivalent object, we should create the expansion (1.25) for
the obtained tensor. Taking into account formulae (1.20) and (1.21), one can
easily derive the corresponding formulae for arbitrary tensors. For the sake of
simplicity we present them for tensors with three indices; the general formu-
lae are analogous. Usually the components of physically equivalent tensors
are denoted by the same character, changing only the location of indices. So,
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Ai
jk = gilAljk;

Bik
j = gljB

ilk;

Cij
k = giugjvCuvk,

and so on.

Remark 1.60. Note that the two versions of a metric tensor, i.e., matrices
(gij) and (gij) (see Remark 1.52), are physically equivalent to each other.

Symmetric tensors

We say that an (r, 0)- or (0, s)-tensor is symmetric or skew-symmetric if
the polylinear form describing the tensor is respectively symmetric or skew-
symmetric. A symmetric form is a form whose value does not depend on
the order of its arguments while the sign of a skew-symmetric form changes
whenever two of its arguments are interchanged.

We consider (0, s)-tensors since the case of (r, 0)-tensors is analogous. One
can easily see that for a symmetric tensor, if the basis tensors in expansion
(1.25) differ only by the order of their factors, the corresponding components
are equal. In order to simplify the notation we introduce the notion of a
symmetric tensor product :

dqi1 � · · · � dqis =
1
s!

s!∑

1

dqj1 ⊗ · · · ⊗ dqjs

where the summands dqj1 ⊗ · · · ⊗ dqjs differ only by the order of factors (it
is obvious that the number of such summands is s!). Thus, any symmetric
tensor has the expansion:

T = Ti1...isdqi1 � · · · � dqis

where the indices i1, . . . , is are written in increasing order. One can also
easily show that the tensors dqi1 � · · · � dqis form a basis in the space of all
symmetric (0, s)-tensors.

1.6 Differential Forms and Polyvectors

A skew-symmetric (0, s)-tensor given at a point on a manifold is called an
exterior s-form and the corresponding tensor field is called a differential s-
form; the valency of these tensors is called the degree of the form.

Skew-symmetric (r, 0)-tensors are called r-vectors. A vector field in which
all the tensors are r-vectors is sometimes called an r-vector field . If one
needn’t indicate the valency, we simply refer to an exterior (differential) form
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or polyvector (polyvector field). Often one also omits the words “exterior” or
“differential”, saying “s-form”.

Real-valued functions are included in this terminology as 0-forms, covec-
tors as 1-forms and vectors as 1-vectors. Note that the term “1-form” is far
more commonly used than the word “covector”. In what follows we shall gen-
erally refer to 1-forms, only rarely using the term “covector”. Similarly, the
term “1-vector” is rarely used, so we shall generally refer to vectors.

Clearly there are two parallel theories for s-forms and r-vectors. Our main
focus shall be on s-forms with the understanding that analogous results hold
for r-vectors. Only when we need to use both will polyvectors appear.

Exterior product

As for symmetric tensors, as described above, there exists a certain special
reduction of the tensor product which is very useful when dealing with s-
forms. It is called the exterior product .

Let ã1, ã2 . . . ãl be 1-forms. We introduce the following formal matrix with
1-form coefficients

A =

⎛

⎜
⎜
⎝

ã1ã2 . . . ãl

ã1ã2 . . . ãl

. . . . . . . . . . . .
ã1ã2 . . . ãl

⎞

⎟
⎟
⎠ . (1.27)

Just as for a matrix with real-valued coefficients, for (1.27) one can con-
sider its determinant detA where the ordinary product of real numbers is
replaced by the tensor product of 1-forms. Since the tensor product is not
commutative (unlike the ordinary numerical product) this yields a non-trivial
expression. For a permutation σ of {1, . . . , n}, the coefficient of the summand
ãσ(1)ãσ(2) · · · ãσ(n) in this determinant is equal to the sign of σ.

Definition 1.61.
ã1 ∧ ã2 ∧ · · · ∧ ãl = det A.

Immediately from Definition 1.61 we see that ã1 ∧ ã2 ∧ · · · ∧ ãl is a skew-
symmetric (0, l)-tensor; changing the order of any two forms in the product
results in a change of the sign. It follows that if there are at least two equal
factors in the product, the product is equal to zero (since the product remains
unchanged if we swap two such identical factors).

For two 1-forms a and b, by Definition 1.61, we obtain a∧b = (a⊗b−b⊗a).

Remark 1.62. Note that there are l! summands in the determinant of (1.27).
Thus it is tempting to insert the factor 1

l! before det A in the definition of the
exterior product, imitating the definition of the symmetric tensor product in
Section 1.5. We emphasize that we do not do so since it is rather convenient
to omit it in the formulae below. It should be pointed out that that the factor
1
l! does appear in some text-books. This leads to some changes in consequent
formulae. So, if you use formulae from different books, you should check what
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definitions of exterior product the authors use in order to avoid running into
absurdities of the sort 1 = 0.

From the definition of the exterior product we can easily see that any s-
form can be presented as a linear combination of exterior products of basis
1-forms (covectors) dqi. The problem is that these products are not linearly
independent: for example dq1 ∧dq2 ∧dq3, dq2 ∧dq1 ∧dq3 and dq3 ∧dq2 ∧dq1

differ from one another only by sign. Moreover, a product having at least two
common factors is equal to zero (see the previous section). In order to avoid
this problem we shall choose the order of factors in the exterior products of
basis 1-forms according to increasing order of indices and exclude the prod-
ucts with equal factors. The resulting products become linearly independent
and so they form the basis of the space of forms of specified degree at a point
of M .

Thus any s-form at a given point of M has the expansion

ω = ωi1...isdqi1 ∧ · · · ∧ dqis (1.28)

where i1 < · · · < is.
The space of all s-forms at a point m ∈ M is denoted by ∧sT ∗

mM and
the bundle of all s-forms by ∧sT ∗M . We can now calculate the dimension of
∧sT ∗

mM for the n-dimensional manifold M . By the construction it is equal to
the binomial coefficient Cs

n. Note that Cs
n = Cn−s

n . In particular this means
that ∧sT ∗

mM is isomorphic to ∧n−sT ∗
mM since the dimensions of these finite-

dimensional linear spaces coincide. Unfortunately, as usual, there are many
isomorphisms between these spaces but none can be considered as canonical
– the best one for all problems. Later we shall find a candidate for the ‘best’
isomorphism on a Riemannian manifold with some additional property.

Theorem 1.63 dim∧nT ∗
mM = 1, and hence ∧nT ∗

mM is isomorphic to the
space of 0-forms at m, i.e., to R

1.

Indeed, C1
n = Cn

n = 1. The unique basis form in ∧nT ∗
mM is dq1 ∧ dq2 ∧

· · · ∧ dqn.
We say that an n-form ω at some point m is identically zero if its value is

zero on any multiplicity of n vectors from TmM .

Corollary 1.64

(i) Let ω1, ω2 ∈ ∧nT ∗
mM and ω1 be not identically zero. Then ω2 = λω1

for some real number λ.
(ii) Let ω1, ω2 be two differential n-forms on M and ω1 be nowhere iden-

tically zero on M . Then ω2 = λ(m)ω1 where λ(m) is a real-valued
function on M .

Theorem 1.65 The forms of degree greater than n on a manifold with di-
mension n are identically zero.
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Indeed, if the degree is greater than n and there are only n basis 1-forms
dqi, there will be equal factors in the exterior products of expansion (1.28).
By the properties of the exterior product, all such products are equal to zero.

The exterior differential d

Recall that in Section 1.1 we defined the notion of the differential dF of a
map F sending a certain manifold M , dim M = n, to a linear space R

k.
This operation d was very useful for dealing with a real-valued function f on
M (here k = 1). It transforms f into the differential 1-form df on M (see
Proposition 1.14).

Here we extend the operation d to differential forms of higher degree so
that it transforms an s-form α into an (s+1)-form dα. This extension is called
the exterior differential . For the sake of simplicity we introduce the exterior
differential in terms of coordinates. This is probably the only exception to
our general idea to first introduce a new object in invariant form and then to
describe it in terms of coordinates. The invariant construction of the exterior
differential is more complicated than the coordinate construction.

We define the exterior differential d on 0-forms as the operation coinciding
with the above-mentioned d. For an s-form α, s > 0, with the expansion
(1.28), i.e.,

α = αi1...isdqi1 ∧ · · · ∧ dqis ,

we define the action of d by the formula

dα = dαi1...is ∧ dqi1 ∧ · · · ∧ dqis (1.29)

where dαi1...is is the differential of the function αi1...is , i.e., a 1-form that can
be expanded by general formula (1.14): dαi1...is = ∂αi1...is

∂qi dqi so that (1.29)
is transformed into

dα =
∂αi1...is

∂qi
dqi ∧ dqi1 ∧ · · · ∧ dqis . (1.30)

Note that (1.30) does not satisfy the above convention that the factors in
the exterior products dqi ∧ dqi1 ∧ · · · ∧ dqis should be ordered according
to increasing size of indices, so for each form α it needs to be rewritten
accordingly. Note also that dqi ∧ dqi1 ∧ · · · ∧ dqis may have equal factors so
that some summands in (1.30) may vanish.

Definition 1.66. If dα = 0 the form α is called closed . If α = dβ for some
form β, α is called exact .

Theorem 1.67 d2 = d ◦ d = 0, i.e., all exact forms are closed.

Remark 1.68. Note that in R
k all closed forms are exact. The same is true of

any contractible manifold. In the general case the difference between closed
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and exact forms indicates the topological structure of the manifold. This
difference is described by means of the so-called de Rham cohomologies.

Physically equivalent r-forms and r-vectors

Let M be a Riemannian manifold, i.e. a manifold M on which a Riemannian
metric 〈·, ·〉 = gijdqi ⊗ dqj is given. As for ordinary tensors, in this case the
notion of physical equivalence is well-defined for skew-symmetric tensors of
types (s, 0) and (0, s). For the sake of convenience we shall denote physically
equivalent forms and polyvectors by the same letter putting a tilde over the
form and a bar over the polyvector. For instance, X̃ and X̄ denote a form
and polyvector, respectively, each physically equivalent to the other.

Theorem 1.69 Let α̃ = ã1 ∧ · · · ∧ ãk be a k-form where ai are 1-forms.
Then ᾱ = ā1 ∧ · · · ∧ āk where āi are the vectors physically equivalent to ãi,
i = 1, . . . , k.

This theorem follows directly from the construction.
Recall that dqi and ∂

∂qi are generally not physically equivalent to each
other. This means that the transition to the physically equivalent object
should be done by means of the general formulae (1.20) and (1.21) in the
same manner as in Section 1.5 for general tensors.

The interior product

This is a version of a contraction (or trace, see Section 1.5) adapted to the
language of differential forms.

Consider an r-vector X and an s-form α, r < s. Their interior product is
denoted by X � α and is defined as follows. Create the tensor product of X
and α, both expanded as in (1.25). This yields an (r, s)-tensor. Now contract
it with respect to all r contravariant factors and the first r covariant factors in
each summand of the expansion (1.25) so that the k-th contravariant factor
is contracted with the k-th covariant factor. X � α is the resulting tensor of
type (0, s−r). Since X and α are skew-symmetric, so too is X � α, i.e., it is a
differential (exterior) form. Its expansion should be found in the form (1.28).

Volume forms. Orientable manifolds

Recall (see Corollary 1.64) that on an n-dimensional manifold M for two
n-forms α and β at some point m ∈ M , where β is not identically zero, we
have α = λβ where λ is a real number. Thus for two differential forms α and
β, such that β is identically zero nowhere on M , we have α = λ(m)β where
λ is a real-valued function on M .

The problem is whether there exist a differential n-form on M which is
nowhere identically zero. There are manifolds on which any n-form is iden-
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tically zero at at least one of its points. Such manifolds are called non-
orientable.

If there exist an n-form that is nowhere identically zero on M , M is called
orientable. Obviously if a single such form exists, there must be infinitely
many such forms: for example one can multiply the form by any real number
or by a non-zero real-valued function on M . The set of all such n-forms on an
orientable manifold M is naturally divided into two classes as follows: specify
a certain set of n linearly independent vectors at a given point m ∈ M , then
two n-forms belong to the same subclass if their values on the above set
have the same sign. We summarize this as follows: there exist two possible
orientations on an orientable manifold.

On an orientable manifold M it is convenient to specify a certain nowhere
identically zero n-form. In this case we say that an orientation has been
chosen on M and call M an oriented manifold . This form is called the volume
form on the oriented manifold M .

The latter term originates from the following. Let M be an oriented Rie-
mannian (or semi-Riemannian) manifold (as is commonly found in many
physical problems). In this case there is a canonical volume form Ω con-
structed as follows. Choose an orientation on M , i.e., specify a certain n-form
ω that is nowhere identically zero. Note that any tangent space TmM , m ∈ M ,
is a Euclidean (or semi-Euclidean, respectively) space. For any set of vectors
X1, . . . , Xn ∈ TmM define the value Ω(X1, . . . , Xn) to be the volume of the
parallelepiped spanning X1, . . . , Xn, with the sign + if ω(X1, . . . , Xn) > 0
and with the sign − if ω(X1, . . . , Xn) < 0. Note that if X1, . . . , Xn are not lin-
early independent, the volume of the spanning parallelepiped is equal to zero,
i.e. the above construction is well-defined. Obviously Ω is skew-symmetric,
i.e., it is an n-form at m. Doing this for all m ∈ M we obtain a differential
n-form that is clearly nowhere identical zero.

Definition 1.70. The above form Ω is called the Riemannian volume form.

In a Euclidean space with orthonormal basis ∂
∂q1 , . . . , ∂

∂qn (i.e., dqi( ∂
∂qj ) =

δi
j here) we have Ω = dq1∧, . . . ,∧dqn. In a chart of a Riemannian manifold

the Riemannian volume form is described by the formula (see [202])

Ω =
√

det(gij)dq1∧, . . . ,∧dqn. (1.31)

On a manifold the integrals of real-valued functions are well-defined if the
integrator is a volume form. We refer the reader, say, to [212] for details.

The operations ∗, δ and Δ

Let M be a Riemannian (or semi-Riemannian) oriented manifold with Rie-
mannian volume form Ω.

The operation ∗ is an isomorphism of the space of k-forms onto the space
of (n−k)-forms at any point m ∈ M . For a certain k-form α̃ the (n−k)-form
∗α̃ is defined by the formula:
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∗ α̃ =
1
k!

ᾱ � Ω (1.32)

where ᾱ is the k-vector physically equivalent to α̃. Note that the coefficient 1
k!

is involved in order to naturally coordinate the formulas with each other. For
instance, one can easily see that in the Euclidean space R

3, by formula (1.32),
∗(dq1 ∧ dq2) = dq3 while it would be equal to 2dq3 without the coefficient.

Since for all k = 0, . . . , n, ∗ : ∧kT ∗M → ∧n−kT ∗M is an isomorphism,
there exists an inverse ∗−1 : ∧sT ∗M → ∧n−sT ∗M for all s = 0, . . . , n. (Note:
if s = n − k then k = n − s.)

Definition 1.71. The operator δ = ∗−1d ∗ is called the codifferential.

Let α be a k-form. Then ∗α is an (n−k)-form, d∗α is an (n−k +1)-form
and δα = ∗−1d ∗ α is a (k − 1)-form.

Theorem 1.72 δ2 = 0.

Indeed, δ2 = (∗−1d∗)(∗−1d∗) = ∗−1d2∗ = 0 since d2 = 0 by Theorem 1.67.

Definition 1.73. Δ = (d + δ)2 is called the Laplace-de Rham operator (or
Kodaira-Hodge Laplacian).

Since d2 = 0 and δ2 = 0, one can easily calculate that

Δ = dδ + δd (1.33)

(note that d and δ do not commute and so the summands on the right-hand
side of (1.33) are not equal to each other).

If α is a k-form, then since d increases the degree by one and δ decreases
the degree by one, Δα is also a k-form, i.e., Δ preserves the degree.

Relations to operators of classical vector analysis

Making use of the operations with differential forms introduced above, one
can generalize the operators gradf , divX and rotX of vector analysis in
three-dimensional Euclidean space to spaces of higher dimension and to Rie-
mannian (semi-Riemannian) manifolds.

In the remainder of this section we consider a Riemannian (or semi-
Riemannian) manifold M , a smooth vector field X̄ and a smooth real-valued
function f on M . As introduced above, we use the symbols bar and tilde over
a certain expression to denote physically equivalent polyvectors and forms,
respectively. In particular, by X̃ we denote the 1-form physically equivalent
to X̄. Recall that the coordinates of X̃ are denoted by Xi and those of X̄ by
Xi.

Recall also the definition of the gradient of a function given in Definition
1.55. In our new notation gradf = df . One can easily see that in the Eu-
clidean space R

3, i.e., where dqi = ∂
∂qi , this formula yields the usual definition

of gradient from vector analysis.
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Definition 1.74. The divergence of the vector field X̄ is the function divX̄ =
δX̃.

By direct calculation one can easily show that in the Euclidean space R
3

the above definition gives the ordinary divergence.

Remark 1.75. Below (see Definition 1.86) we give an alternative definition
of divergence in terms of the so-called Lie derivative. It will be applicable in
even broader settings (for instance, the manifold M may not be Riemannian).

Definition 1.76. The rotation of the vector field X is the (n−2)-vector field
rotX̄ = ∗dX̃.

Notice that only for n = 3 do we have n − 2 = 1, i.e., only in this case is
rotX̄ a 1-vector field. As in the case of divergence, by direct calculations one
can easily show that in the Euclidean space R

3 the above definition gives the
ordinary rotation.

1.7 The Lie Derivative

Here we present a method of differentiation of various objects along a vector
field on a manifold. Note that even in Euclidean spaces this method, generally
speaking, does not coincide with the ordinary derivative.

First we should describe the general notion of differentiating something
along a smooth curve. Let Q be a vector space. Associate a copy of Q to each
point m of a manifold M and denote it by Qm. Let q(m) ∈ Qm be chosen so
that the “field” q(m) is given on M . Consider a smooth curve m(t), t ∈ [0, l].
Suppose that there exists a set of linear operators A(t) : Qm(t) → Qm(0).
Consider the curve q(t) = A(t)q(m(t)) in the vector space Qm(0). Calculate
d
dtq(t) at t = 0. This derivative (if it exists) is a vector of Qm(0), i.e., an object
of the same sort as the field q(m). Note that this manner of differentiating
depends on the operator A(t); having determined A(t) we obtain a specific
type of differentiation.

For example, if q(m) is a smooth vector field on M and A(t) is the opera-
tor of parallel translation, the above derivative coincides with the covariant
derivative D

dt (see Section 2.2).
The Lie derivative is defined according to the above scheme where the

operator A(t) is determined by a particular vector field on M , as we describe
below.

Let a smooth vector field X be given on M . Consider its flow gt(m) (see
Definition 1.6). Let for a point m0 ∈ M the integral curve gt(m0) exist for
t ∈ [0, εm0 ] and so for any t ∈ (0, εm0) the neighboring integral curves also
exist. Thus we can consider the map gt on a neighborhood of m0 and since it
is jointly smooth in t and m, we can consider its tangent Tgt and its cotangent
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T ∗gt mappings. These mappings will be used as operators A(t) for translating
vectors and forms along gt(m0) in the construction of Lie derivatives. Note
that since gt is a diffeomorphism, Tgt is also one-to-one and there exists an
inverse map Tg−1

t .
We begin the construction of the Lie derivative with that for real-valued

functions. Consider such a function f : M → R. Let m0 ∈ M and consider
the integral curve gt(m0). Note that here the general construction is reduced
since by definition all values f(gt(m0)) belong to the same real line R and so
we needn’t move them along. Thus, according to the general idea, we should
create the function f(gt(m0)) and differentiate it at t = 0. The resulting
number LXf(m0) is called the Lie derivative of f along X at m0. Having
done this at all points of M we obtain the function LXf called the Lie
derivative of f along X.

Proposition 1.77 LXf coincides with the ordinary derivative Xf of f
along X.

Indeed, the statement is obvious since the constructions of LXf and Xf
coincide (cf. Definition 1.7).

Now we generalize the construction to differential forms of higher degree.
Let α be a k-form, 0 < k ≤ n. Consider the forms αgt(m0) along gt(m0). In
order to move them to m0 along gt(m0) we should generalize the construction
of the cotangent mapping (see Definition 1.16) so that it applies to k-forms.
We do this for the map gt (the general construction is quite analogous).

Denote by T ∗gt(αgt(m0)) the k-form at the point m0 whose value on the k
vectors X̄1, . . . , X̄k ∈ TmM is given by:

T ∗gt(αgt(m0))(X̄1, . . . , X̄k) = αgt(m0)(TgtX̄1, . . . , T gtX̄k). (1.34)

Definition 1.78. The k-form d
dtT

∗gt(αgt(m0))|t=0 at m0 is called the Lie
derivative of α along X at m0 and is denoted by LXα(m0). Having carried
out this procedure at all points of M we obtain the k-form LXα on M which
is called the Lie derivative of α along X.

Theorem 1.79 LXα = X � dα + d(X � α).

Note that both summands on the right-hand side of the last formula have
degree k (this follows from the properties of d and the interior product). We
leave the proof to the reader as a (not so simple) exercise (for a proof, see
[212]).

The last modification of the construction deals with vector fields. Let Y be
a smooth vector field on M . Consider its restriction Y (gt(m0)) to the curve
gt(m0). Now we translate those vectors into Tm0M by Tg−1

t which by its
construction sends Tgt(m0)M into Tm0M .

Definition 1.80. The vector d
dtTg−1

t (Y (gt(m0))|t=0 ∈ Tm0M is called the
Lie derivative of Y along X at m0 and is denoted by LXY (m0). Having
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carried out this procedure at all points of M we obtain the vector field LXY ,
called the Lie derivative of Y along X.

Theorem 1.81 LXY = [X,Y ], the Lie bracket of X and Y .

It is important to understand what is meant if the Lie derivative of an
object along X is equal to zero. Directly from the construction of the Lie
derivative we obtain:

Theorem 1.82

(i) If LXf = 0, f is constant along integral curves of X.
(ii) If LXα = 0, T ∗gt(αgt(m)) = αm for all m ∈ M .
(iii) If LXY = 0, TgtYm = Ygt(m) for all m ∈ M .

Definition 1.83. If T ∗gt(αgt(m)) = αm (TgtYm = Ygtm) for all m ∈ M we
say that α (Y , respectively) is constant along the flow of X.

So, a zero value of a Lie derivative means that the corresponding object
is constant along the flow of X. Hence, in particular, if we apply gt to an
integral curve of Y such that [X,Y ] = 0, the image is also an integral curve
of Y . Since [X,Y ] = −[Y,X] (see above), the same is true of the image of an
integral curve of X under the action of the flow of Y .

Definition 1.84. If [X,Y ] = 0 we say that X and Y commute.

An obvious example of commuting vector fields is the pair of coordinate
fields ∂

∂qi and ∂
∂qj .

Theorem 1.85 (see, e.g., [26]) If [X,Y ] = 0 in some chart, in this chart
there exists a coordinate system (q1, . . . , qn) such that X = ∂

∂q1 and Y = ∂
∂q2 .

Using the Lie derivative one can extend the notion of divergence of a vector
field. Let Ω be a volume form on an orientable manifold M and let X be a
smooth vector field. The Lie derivative LXΩ is also an n-form and so it is
presented as the product of a real-valued function and Ω.

Definition 1.86. The function divX in the equality LXΩ = divX · Ω is
called the divergence of the vector field X on the manifold M with specified
volume form Ω.

Let M be a Riemannian manifold.

Proposition 1.87 If the form Ω in Definition 1.86 is the Riemannian vol-
ume form, divX from Definition 1.86 coincides with the divergence in Defi-
nition 1.74.

Proof. By Theorem 1.79 LXΩ = X � dΩ + d(X � Ω). Since Ω is an n-form,
dΩ = 0 and so LXΩ = d(X � Ω). But d(X � Ω) = d(∗X̃) (see (1.32)). On
the other hand, by construction divX from Definition 1.86 equals ∗−1LXΩ.
Hence divX = ∗−1d ∗ X̃ = δX̃ (see Definition 1.71). ��
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Connections

2.1 The Structure of a Tangent Bundle to a Vector
Bundle

Let π : Θ → M be a vector bundle with standard fiber R
d, dim M = n.

Denote by Θm the fiber at m ∈ M and by (m, ϑ) = ϑm the points of this
fiber. Consider a chart Uα on a manifold M with local coordinates (q1, . . . , qn)
and a trivialization Fα of the bundle over that chart. Let e1, . . . , ed be the
standard basis in R

d. Since Fα(π−1Uα) = Uα × R
d, this basis generates a

basis in every fiber Θm, m ∈ Uα. We obtain a smooth field of bases that
will also be denoted by e1, . . . , ed. Thus every cross-section ϑ of the bundle
Θ can be represented in terms of coordinates with respect to these bases in
the form ϑ = ϑiei, i = 1, . . . , d. In Uα × R

d the set of vectors Uα × {X0} for
some X0 ∈ R

d corresponds to the vectors ϑ from Θm, m ∈ Uα that have the
same coordinates with respect to e1, . . . , ed as X0. Another trivialization of
the bundle over Uα would generate another set of vectors equivalent to X0

that is different from the former.
In the vector bundle the set Fα(π−1Uα) = Uα × R

d can be considered
as a chart on the total space Θ. Denote by ϑi the coordinates in the fibers
Θm, m ∈ Uα, whose coordinate axes are spanned by the basis vectors ei in
the fibers. We obtain the coordinate system (q1, ..., qn, ϑ1, ..., ϑd) in the chart
Uα × R

d on Θ. By a general scheme (see Section 1.1) this system generates
a basis ∂

∂q1 , . . . , ∂
∂qn , ∂

∂ϑ1 , . . . , ∂
∂ϑd in the tangent space T(m,ϑ)Θ to the total

space Θ of the bundle at every point (m, ϑ), m ∈ Uα.
The symbols ∂

∂q1 , . . . , ∂
∂qn for the first “half” of the basis vectors coincide

with the symbols for the basis vectors ∂
∂q1 , . . . , ∂

∂qn in the tangent space TmM ,
m ∈ Uα, to M generated by coordinates (q1, . . . , qn). This is natural since
the former vectors are tangent to a submanifold Uα × {V } in Fα(π−1Uα)
where the coordinates (q1, . . . , qn) are generated by the projection of the
same coordinates from Uα, and that projection is an isomorphism. On the
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other hand, by construction the vectors ∂
∂ϑ1 , . . . , ∂

∂ϑd are tangent to the fiber
Θm, i.e., they belong to the tangent space TϑΘm.

Definition 2.1. The tangent space TϑΘm to the fiber of a bundle Θ at m is
called the vertical subspace in the tangent space T(m,ϑ)Θ to the total space
of the bundle and is denoted by V(m,ϑ). The vectors of V(m,ϑ) are said to be
vertical.

For every vector Y(m,ϑ) at a point (m, ϑ) ∈ Θ we can find its coordinate
decomposition with respect to the basis mentioned above: Y = Y i ∂

∂qi +
Ẏ j ∂

∂ϑj , i = 1, . . . , n, j = 1, . . . , d. By introducing vectors Y1 = Y i ∂
∂qi ∈ TmM

and Y2 = Ẏ j ∂
∂ϑj ∈ TϑΘm the vectors Y(m,ϑ) ∈ T(m,V )Θ are represented as

quadruples (m, ϑ, Y1, Y2). This notation is compatible with that of Convention
1.3 for tangent vectors as points of the tangent bundle: here (m, ϑ) is a point
of the manifold Θ and (Y1, Y2) is a tangent vector to Θ.

Let us find the formula of transformation of Y1 and Y2 under standard
changes of coordinates of the form (ϕβα, gβα(m)) (see Definition 1.32) on the
total space Θ. Recall that, since Θ is a vector bundle, gβα(m) is a linear
operator in R

d and so it is equal to its derivative. On the other hand the
derivative in m ∈ M of the linear operator gβα(m), depending on m, is
a bilinear operator. Denote it by g′βα(m)(·, ·). The first argument of this
operator is a vector from the fiber and the second argument is a vector
tangent to the base M . In particular, the derivative gβα(m) in m at the
point (m, ϑ) ∈ Θ takes the form g′βα(m)(ϑ, ·). Since ϕβα does not depend
on the points of fiber, the derivative of ϕβα in R

d equals zero. Taking this
into account it is easy to see that the derivative of the change of coordinates
(ϕβα, gβα(m)) at the point (m, ϑ) ∈ Θ is represented in the form

(ϕβα, gβα(m))′ =
(

ϕ′
βα 0

g′βα(m)(ϑ, ·) gβα(m)

)

.

This means that under the above-mentioned changes of coordinates the col-
umn (Y1, Y2) transforms by the formula

(Y β
1 , Y β

2 )(mβ ,ϑβ) =
(

ϕ′
βα 0

g′βα(mα)(ϑα, ·) gβα(mα)

)(
Y α

1

Y α
2

)

=
(

ϕ′
βαY α

1

g′βα(mα)(ϑα, Y α
1 ) + gβα(mα)(Y α

2 )

)

. (2.1)

In terms of quadruples formula (2.1) takes the form

(mβ , ϑβ , Y β
1 , Y β

2 ) (2.2)
= (ϕβαmα, gβα(mα)ϑα, ϕ′

βαY α
1 , g′βα(mα)(ϑα, Y α

1 ) + gβα(mα)(Y α
2 )).
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By the definition of the projection π we have π(q1, . . . , qn, ϑ1, . . . , ϑd) =
(q1, . . . , qn). Hence, the Jacobi matrix (presentation of the differential d(m,ϑ)π
in the given coordinate system) takes the form (I 0) where I and 0 are the
unit n × n matrix and zero k × n matrix, respectively. As a consequence we
obtain the formula for Tπ : TΘ → TM in the form

Tπ(m, ϑ, Y1, Y2) = (m, Y1) (2.3)

(by definition the tangent mapping Tπ acts as π on the points (m, ϑ) and
as d(m,ϑ)π on the vectors (Y1, Y2)). Recall that by construction Y1 on the
left-hand side of (2.3) belongs to T(m,ϑ)Θ while Y1 on the right-hand side
of (2.3) belongs to TmM but both vectors have the same coordinates with
respect to ∂

∂q1 , . . . , ∂
∂qn (the first “half”of the basis in T(m,ϑ)Θ and the entire

basis in TmM , respectively, are isomorphic to each other, see above). We do
not distinguish between these two vectors or the frames in this notation.

Formula (2.3) means that

Tπ

(

Y i ∂

∂qi
+ Ẏ j ∂

∂ϑj

)

= Y i ∂

∂qi
. (2.4)

Remark 2.2. As on every manifold, there is a natural projection of TΘ onto
Θ. Denote it by π1 : TΘ → Θ. In coordinates it is represented in the form

π1(m, ϑ, Y1, Y2) = (m, ϑ). (2.5)

We emphasize the difference between (2.3) and (2.5).

Let Y be a cross-section of the bundle Θ. Over the chart Uα we have
the decomposition Y = Y iei (see above). Recall that we consider the cross-
section Y as a mapping Y : M → Θ such that πY = id (see Definition 1.38).
Consider also its tangent mapping TY : TM → TΘ. Since Y has the form

Y (q1, . . . , qn) = (q1, . . . , qn, Y 1(q1, . . . , qn), . . . , Y k(q1, . . . , qn)),

its Jacobi matrix takes the form

dmY =

(
I(

∂Y i

∂qj

)
)

,

where I is the unit n× n matrix and
(

∂Y i

∂qj

)
is the n× d Jacobi matrix of Y .

Thus for (m, X) ∈ TM we obtain

TY (m, X) =
(

m, Y, X,

(
∂Y i

∂qj

)

X

)

(2.6)

(recall that TY acts as Y on points m and as dmX on X).
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On the vector bundle Θ the so-called action of the real line is given as
follows. For every a ∈ R defined a : Θ → Θ (we denote the number and the
corresponding mapping by the same symbol a) by:

a(m, ϑ) = (m, aϑ), (2.7)

where (m, ϑ) ∈ Θ, i.e. the action consists of multiplying all vectors from all
fibers of Θ by a. Thus a(q1, . . . , qn, ϑ1, . . . , ϑd) = (q1, . . . , qn, aϑ1, . . . , aϑd)

and evidently d(m,ϑ)a =
(

I 0
0 aI

)

, where I and 0 are the unit and zero

matrices, respectively, of corresponding dimensions. Hence

Ta(m, ϑ, Y1, Y2) = (m, aϑ, Y1, aY2). (2.8)

Below we shall often use the constructions described in this section on
tangent and cotangent bundles. For these cases we have to define the previous
formulae and notation more precisely.

Since the fibers of a tangent bundle are tangent spaces, they already have
the standard frames ∂

∂q1 , . . . , ∂
∂qn . For the case of a tangent bundle we most

often use such frames and the trivialization generated by them in a tangent
bundle over charts (the construction of this trivialization is described in Sec-
tion 1.1). Sometimes we shall also use alternative trivializations but those
cases will be mentioned explicitly.

In this case the notation q̇i for coordinates in fibers is compatible with the
interpretation of a tangent vector as a velocity of some curve. We replace ϑi

by this notation. Thus the frames in tangent spaces to TM have the form
∂

∂q1 , . . . , ∂
∂qn , ∂

∂q̇1 , . . . , ∂
∂q̇n .

For an analogous trivialization in a cotangent bundle we use the basis
dq1, . . . , dqn and coordinates in fibers with respect to those frames are de-
noted by pi (here we take into account the interpretation of cotangent vectors
as momenta). Respectively, the frame in a cotangent space to T ∗M takes the
form ∂

∂q1 , . . . , ∂
∂qn , ∂

∂p1
, . . . , ∂

∂pn
.

The frame in a cotangent space to TM is denoted by dq1, . . . ,dqn,
dq̇1, . . . ,dq̇n and in a cotangent space to T ∗M by dq1, . . . ,dqn, dp1, . . . ,dpn.

We consider in detail the case of tangent bundles. The constructions on
cotangent bundles are analogous.

Definition 2.3. The tangent bundle to a tangent bundle TM is called the
second tangent bundle to the manifold M and is denoted by TTM or T 2M .

The vectors of the second tangent bundle, i.e., tangent vectors to TM , are
described as quadruples of the form (m, X, Y1, Y2) where X and Y1 belong to
TmM while Y2 is a vector tangent to TmM .

The Jacobi matrix of the natural projection π : TM → M has the form
(I, 0) where I is the unit matrix and 0 is the zero matrix, both n × n. Thus
Tπ

(
Y i ∂

∂qi + Ỹ i ∂
∂q̇i

)
= Y i ∂

∂qi .
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The action of the real line on TM is defined as a particular case of the
general definition. For a ∈ R the Jacobi matrix of the corresponding mapping
a : TM → TM has the same form as above.

The transformation rule for quadruples describing vectors of the second
tangent bundle under changes of coordinates also has to be specified. First of
all on TM the transformation gβα(m) in fibers takes the form gβα(m) = ϕ′

βα.
Hence g′βα(m)(·, ·) = ϕ′′

βα(·, ·) where ′′ denotes the second derivative of the
change of coordinates ϕβα. Since the fiber of TM at m is the tangent space
TmM , both arguments in ϕ′′

βα(·, ·) have the same nature: they are vectors
tangent to M . This is why we replace the symbol ϑ in the notation for an
element in the fiber of Θ by the symbol X of a tangent vector to M .

Thus formula (2.1) is transformed into

(Y β
1 , Y β

2 )(mβ ,Xβ) =
(

ϕ′
βα 0

ϕ′′
βα(Xα, ·) ϕ′

βα

) (
Y α

1

Y α
2

)

=
(

ϕ′
βαY α

1

ϕ′′
βα(mα)(Xα, Y α

1 ) + ϕ′
βα(mα)(Y α

2 )

)

. (2.9)

So, by formula (2.9) the transformation of quadruples as vectors tangent to
TTM under the change of coordinates ϕβα on M has the form

(mβ , Xβ , Y β
1 , Y β

2 )
= (ϕβαmα, ϕ′

βαXα, ϕ′
βαY α

1 , ϕ′′
βα(Xα, Y α

1 ) + ϕ′
βα(Y α

2 )). (2.10)

We return to the general case.
Recall that by Definition 2.1 the space TϑΘm is called the vertical subspace

in T(m,ϑ)Θ and is denoted by V(m,ϑ). The vectors belonging to V(m,ϑ) are said
to be vertical.

As a direct consequence of the construction we obtain the following:

Proposition 2.4 The space V(m,ϑ) does not depend on the choice of the
chart Uα, its coordinate system (q1, . . . , qn) in a neighborhood of m ∈ M , or
on the choice of the trivialization of π−1Uα.

Indeed, the fiber Θm and hence the tangent space TϑΘm = V(m,ϑ) are
determined without use of any coordinate system. The system (q1, . . . , qn) is
involved only in representing V(m,ϑ) as the linear span of ∂

∂ϑ1 , . . . , ∂
∂ϑd . Notice

that these vectors do depend on the trivialization of π−1Uα.
Recall that by formula (1.2) we introduced the linear isomorphism p of a

tangent space to a vector space onto the vector space. Thus here p : V(m,ϑ) →
Θm is well-defined and takes the coordinate representation

p
(

∂

∂ϑi

)

= ei. (2.11)
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Denote by HE
(m,ϑ) the linear span of the vectors ∂

∂q1 , . . . , ∂
∂qn in T(m,ϑ)Θ.

By construction, HE
(m,ϑ) is the tangent space to the submanifold Uα × ϑ in

π−1Uα with respect to the given trivialization of π−1Uα. Immediately from
the definition we get T(m,ϑ)Θ = HE

(m,ϑ) ⊕ V(m,ϑ) where ⊕ is the direct sum.
Notice that for the vector Y(m,ϑ) = (m, ϑ, Y1, Y2) ∈ T(m,ϑ)Θ by definition
Y1 ∈ HE

(m,ϑ) and Y2 ∈ V(m,ϑ) so that Y(m,ϑ) = Y1 ⊕ Y2.

Proposition 2.5 The subspace HE
(m,ϑ) depends on the choice of trivialization

of π−1Uα and hence on the chart Uα.

Proof. Indeed, consider another chart Uβ with non-empty intersection Uαβ

with Uα. Let a trivialization of π−1Uβ be given so that the standard basis in
R

d generates another field of bases e′1, . . . , e
′
d different from the field e1, . . . , ed

generated by the above trivialization of π−1Uα. The layers in Uα ×R
d of the

vectors Uα × ϑ and in Uβ × R
d of the vectors Uβ × ϑ for a specified vector

ϑ ∈ R
d are different since the former is generated by those ϑ′’s from Θm′ ,

m′ ∈ Uα whose coordinates with respect to e1, . . . , ed are the same as the
coordinates of ϑ and the latter by those whose coordinates with respect to
e′1 . . . , e′d are the same as those of ϑ. Since the layers going through (m, ϑ)
are different, their tangent spaces at (m, ϑ) are also different. ��
Remark 2.6. From the definitions it immediately follows that the quadruple
for a vector from HE

(m,ϑ) takes the form (m, ϑ, Y1, 0) and, for a vector from
V(m,ϑ), the form (m, ϑ, 0, Y2).

Proposition 2.7 Tπ sends any HE
(m,ϑ) isomorphically onto TmM and V(m,ϑ)

is the kernel of Tπ at any T(m,ϑ)Θ.

Indeed, a vector from HE
(m,ϑ) takes the form (m, ϑ, Y1, 0) and from VE

(m,ϑ)

the form (m, ϑ, 0, Y2) (see Remark 2.6). So, by (2.3) Tπ(m, ϑ, Y1, 0) = (m, Y1)
and Tπ(m, ϑ, 0, Y2) = (m, 0).

2.2 Connections on Vector Bundles

Connection and connector

Definition 2.8. Let Θ be a vector bundle and suppose that in every tangent
space T(m,ϑ)Θ a subspace H(m,ϑ), complementary to V(m,ϑ) (i.e. T(m,ϑ)Θ =
H(m,ϑ) ⊕ V(m,ϑ) at any (m, ϑ) ∈ Θ), is specified such that the total family of
subspaces H = {H(m,ϑ)|(m, ϑ) ∈ Θ} satisfies the following two properties:

(i) the space H(m,ϑ) depends smoothly on (m, ϑ) ∈ Θ (in the sense de-
scribed below);

(ii) the family H is invariant with respect to the action of the real line on
Θ, i.e., TaH(m,ϑ) = H(m,aϑ) for every a ∈ R and (m, ϑ) ∈ Θ.

Then H is said to be a connection on Θ.
The subspaces H(m,ϑ) of a connection H are called horizontal , as are the

vectors of T(m,ϑ)Θ belonging to H(m,ϑ).
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The precise meaning of the statement that H(m,ϑ) is smooth in (m, ϑ) is as
follows. In a neighborhood of any point (m, ϑ) ∈ Θ there are n smooth linearly
independent vector fields such that, for any (m′, ϑ′) in the neighborhood, the
subspace H(m′,ϑ′) is the linear span of vectors of those fields at (m′, ϑ′).

Proposition 2.9 The family HE
(m,ϑ) introduced in Section 2.1 is a connection

on π−1Uα.

Proof. The presentation T(m,ϑ)Θ = HE
(m,ϑ) ⊕ V(m,ϑ) was derived in Section

2.1 from the definition of HE
(m,ϑ). Also by definition HE

(m,ϑ) is the linear span
of smooth linearly independent vectors ∂

∂q1 , . . . , ∂
∂qn .

At any point (m, ϑ) ∈ Θ the space HE
(m,ϑ) is the set of all vectors whose

quadruple presentation takes the form (m, ϑ, Y1, 0) (see Remark 2.6). By for-
mula (2.8) we see that Ta is a one-to-one mapping sending (m, ϑ, Y1, 0) to
the quadruple (m, aϑ, Y1, 0). Thus TaH(m,ϑ) = H(m,aϑ). ��

Definition 2.10. The family of subspaces HE
(m,ϑ) is called the Euclidean con-

nection of a given trivialization of π−1Uα.

Indeed, HE
(m,ϑ) depends on the trivialization (see Proposition 2.5).

There exist connections {H(m,ϑ)} that may not be presented as the Eu-
clidean connection of a trivialization. Of course, at a given point (m, ϑ) for a
subspace H(m,ϑ), complimentary to V(m,ϑ), one can find a trivialization such
that H(m,ϑ) coincides with the Euclidean connection of a trivialization at
(m, ϑ), but in general this cannot be achieved for subspaces at all points in
a given neighborhood. In order not to exclude general connections, we have
not limited ourselves to Euclidean connections.

Proposition 2.11 Tπ : H(m,ϑ) → TmM is a linear isomorphism.
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Proof. Recall that Tπ : T(m,ϑ)Θ → TmM is surjective and (by Proposi-
tion 2.7) V(m,ϑ) is the kernel of Tπ. Thus, the Proposition follows from the
general result of linear algebra that a surjective linear operator is one-to-one
on a complement to the kernel. ��

The above proof is also valid in the analogous case of HE
(m,ϑ) in Proposi-

tion 2.7. However, we used a coordinate proof there for simplicity.
Combining Propositions 2.7 and 2.11 we see that Tπ is connected with the

decomposition T(m,ϑ)Θ = H(m,ϑ) ⊕ V(m,ϑ) as follows:

Lemma 2.12

(i) Tπ : H(m,ϑ) → TmM is an isomorphism.
(ii) V(m,ϑ) = kerTπ.

Our next step is to construct a map that is one-to-one on V(m,ϑ) and
whose kernel is H(m,ϑ). Recall that the operator p that establishes a linear
isomorphism between the vector space Θm and the tangent space TϑΘm to
it acts by formula (2.11). Hence, for a vector from V(m,ϑ) with the quadruple
(m, ϑ, 0, Y2) (see Remark 2.6) where Y2 = Ẏ i ∂

∂q̇i , we have

p(m, ϑ, 0, Y2) = (m,pY2) = Ẏ iei. (2.12)

The decomposition T(m,ϑ)Θ = H(m,ϑ) ⊕ V(m,ϑ) yields the decomposition
Y(m,ϑ) = HY ⊕ VY for every Y(m,ϑ) ∈ T(m,ϑ)Θ, where HY ∈ H(m,ϑ) and
VY ∈ V(m,ϑ). The symbols H and V may be considered as projections H :
T(m,ϑ)Θ → H(m,ϑ) and V : T(m,ϑ)Θ → V(m,ϑ) in the above decomposition.

Definition 2.13. The map K = pV : T(m,ϑ)Θ → Θ is called the connector
of the connection H.
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Thus K(Y(m,ϑ)) = p(VY(m,ϑ)). Evidently K on V(m,ϑ) coincides with p and
so K maps V(m,ϑ) onto Θm isomorphically. On the other hand, V(H(m,ϑ)) =
0 ∈ V(m,ϑ) and so K(H(m,ϑ)) = 0 ∈ Θm. We summarize these properties in
the following lemma:

Lemma 2.14

(i) K : V(m,ϑ) → Θm is a linear isomorphism.
(ii) H(m,ϑ) = kerK.

Compare Lemmas 2.12 and 2.14. Notice the difference: we know that
V(m,ϑ) and Tπ exist on each vector bundle Θ while H(m,ϑ) and K must
be given “by hand”.

In order to work with H(m,ϑ) and K we need to describe them by means
of coordinates. The best way to do that is to compare H(m,ϑ) with HE

(m,ϑ) of
a certain trivialization over a chart Uα since the coordinate presentation of
HE

(m,ϑ) is known.
Consider a vector Y1 ∈ TmM . Since Tπ sends both H(m,ϑ) and HE

(m,ϑ)

onto TmM one-to-one, each of the spaces contains a unique vector whose im-
age under Tπ is Y1. The vector in HE

(m,ϑ) is usually denoted by the same
symbol Y1. Denote the vector in H(m,ϑ) by HY . Consider the difference
Γm(ϑ, Y1) = Y1 − HY ∈ T(m,ϑ)Θ. By construction we have TπΓm(ϑ, Y1) =
Tπ(Y1) − Tπ(HY ) = Y1 − Y1 = 0 ∈ TmM . Hence, Γm(ϑ, Y1) ∈ V(m,ϑ)

since V(m,ϑ) is the kernel of Tπ. Thus we can apply p to Γm(ϑ, Y1) and
obtain the vector pΓm(ϑ, Y1) ∈ Θm. We have constructed the operator
pΓm(·, ·) : Θm × TmM → Θm.

Definition 2.15. The operator pΓm(·, ·) is called the local connector (or local
connection coefficient) of the connection H.
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The word “local” means that the operator is constructed and calculated
in a certain chart Uα on M with respect to a certain trivialization of π−1Uα.

Theorem 2.16 The operator pΓm(·, ·) is linear in the second argument.

Indeed, pΓm(ϑ, Y1) = Tπ−1(Y1)|HE
(m,ϑ)

− Tπ−1(Y1)|H(m,ϑ)
. Since the op-

eration Tπ−1 and the operation of taking the difference are both linear,
pΓm(ϑ, Y1) is linear in Y1.

Theorem 2.17 The operator pΓm(·, ·) is linear in the first argument.

To prove Theorem 2.17 we need the following:

Lemma 2.18 Let B : E → E be a map in the vector space E, smooth and
homogeneous with degree 1. Then B is a linear operator.

Proof. (of Lemma 2.18) Recall that B is homogeneous with degree k if for
any vector X ∈ E and any λ ∈ R we have B(λX) = λkB(X). From the
homogeneity it follows that B(0) = 0.

Since B is smooth, we can expand it by the Taylor formula in a neighbor-
hood of 0 ∈ E up to a certain degree greater than 1. Thus, since B(0) = 0,
B(X) = B′(X) + 1

2B′′(X,X) + . . . where B′ is the first derivative of B at
the origin (recall that B′ is a linear operator), B′′ is the second derivative of
B at the origin (recall that B′′ is a bilinear operator), etc. On the right-hand
side only B′ is homogeneous with degree 1; B′′(X,X) is homogeneous with
degree 2 and the other summands have greater degrees of homogeneity. Thus
the left-hand side is homogeneous with degree 1 only if all summands on the
right hand side except B′ are equal to zero. Hence B = B′ and so it is a
linear operator. ��

Proof. (of Theorem 2.17) Since by Definition 2.8(i) both H(m,ϑ) and HE
(m,ϑ)

are smooth in ϑ, so too is pΓm(ϑ, Y1). We shall show that pΓm(ϑ, Y1) is
homogeneous with degree 1 in ϑ so that the statement of Theorem 2.17 will
follow from Lemma 2.18.

The vector HY = Tπ−1(Y1) ∈ H(m,ϑ) is presented as a quadruple in the
form (m, ϑ, Y1, Γm(ϑ, Y1)). By Definition 2.8(ii) and by formula (2.8) (de-
scribing Ta) the vector Ta(HY ) = (m, aϑ, Y1, aΓm(ϑ, Y1)) belongs to H(m,aϑ).
Using formula (2.3) we get Tπ((m, aϑ, Y1, aΓm(ϑ, Y1)) = (m, Y1). Since Tπ
is one-to-one on H(m,aϑ), it is the unique vector in H(m,aϑ) whose image
under Tπ is (m, Y1). But the vector HY = Tπ−1(Y1) ∈ H(m,aϑ), whose
quadruple takes the form (m, aϑ, Y1, Γm(aϑ, Y1)), also has this property:
Tπ(m, aϑ, Y1, Γm(aϑ, Y1)) = (m, Y1). Hence,

(m, aϑ, Y1, aΓm(ϑ, Y1)) = (m, aϑ, Y1, Γm(aϑ, Y1))

and so, since p is linear, pΓm(aϑ, Y1) = apΓm(ϑ, Y1). ��
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So, pΓm(·, ·) is linear in both arguments. It is useful to find its values
on basis vectors. Consider pΓm(ei,

∂
∂qj ). It is a vector from Θm and so it

can be expanded in coordinates Γ k
ij with respect to the basis e1, . . . , ed :

pΓm(ei,
∂

∂qj ) = Γ k
ijek. The coordinates Γ k

ij depend on m ∈ Uα (as well as on
a trivialization), this means that they are real-valued functions of m ∈ Uα.

Definition 2.19. The functions Γ k
ij are called Christoffel symbols of the sec-

ond kind for the connection H.

Knowing Γ k
ij , we can calculate the values pΓm(X,Y ) for any X ∈ Θm,

Y ∈ TmM . Indeed, let X = Xiei and Y = Y j ∂
∂qj , then by linearity we get

pΓ (X,Y ) = XiY jΓ k
ijek. (2.13)

Now let us turn back to the connector K. Recall that K(Y ) = pVY for Y ∈
T(m,ϑ)Θ. Thus we need to describe pVY . For Y we have two decompositions:

Y = Y1 +Y2 and Y = HY +VY . Hence Y1 +Y2 = HY +VY and so VY −Y2 =
Y1 − HY = Γm(ϑ, Y1). Thus VY = Y2 + Γm(ϑ, Y1) and consequently VY =
V(m, ϑ, Y1, Y2) = (m, ϑ, 0, Y2 + Γm(ϑ, Y1)). Finally we obtain the formula for
K in the form:

K(m, ϑ, Y1, Y2) = pV(m, ϑ, Y1, Y2) = (m,pY2 + pΓ (ϑ, Y1)). (2.14)

Compare (2.14) with (2.3) and (2.5).
Let Y2 = Ẏ k ∂

∂ϑk and ϑ = q̇iei. Using (2.12) we describe (2.14) in coordi-
nates as follows

K(m, ϑ, Y1, Y2) = (Ẏ k + q̇iY jΓ k
ij)ek. (2.15)
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Remark 2.20. If we choose arbitrary functions Γ k
ij(m) on Uα for all possible

values of i, j and k, we shall be able to define a local connector pΓm(·, ·) by
formula (2.13) and consequently a connector K by formula (2.14) or (2.15)
and then define the corresponding connection H on π−1Uα as kernels of K in
all tangent spaces.

Remark 2.21. We say that pΓm(ϑ, Y1) is a vector in Θm. If we change the
trivialization, this vector will no longer correspond to the local connector.
Indeed, the Euclidean connection will be changed (see Proposition 2.5) and
the old pΓm(ϑ, Y1) will not be the difference between VY and the new Y1.
So, the change of pΓm(ϑ, Y1) under a change of coordinates on M and of
a trivialization is described by a complicated “non-tensorial” formula that
follows from (2.2). We shall derive it in explicit form for some special cases
below (see formula (2.19)).

The covariant derivative and parallel translation

Here we present the general construction by which every connection defines
its own method of differentiating a cross-section of Θ along a vector field on
M . Notice that the use of a Euclidean connection of a natural trivialization
of R

n ×R
d gives the standard method of differentiating typically introduced

in a classical course in mathematical analysis.
Let X be a smooth vector field on M and Y be a cross-section of a vector

bundle Θ equipped with a connection H.

Definition 2.22. The covariant derivative ∇XY of a cross-section Y along
a vector field X is the cross-section of Θ determined by the formula ∇XY =
K ◦ TY (X).

Let us discuss this definition. The cross-section Y can be considered as a
smooth map Y : M → Θ. Its tangent map TY sends the vector X ∈ TmM
to the tangent space T(m,Y )Θ. On applying K we again map into Θm.

Example 2.23. Consider the Euclidean connection of a natural trivialization
of R

n × R
d. The section Y can be presented as the map m 	→ (m, Ym).

We express the tangent map TY in coordinates and find the vector TY (X).
Here V coincides with the projection along HE . One can easily see that the
obtained covariant derivative coincides with the ordinary derivative of Y
along the field X.

Theorem 2.24 The covariant derivative has the following properties for any
vector fields X, X1 and X2, smooth cross-sections Y , Y1 and Y2, smooth
function f : M → R and κ, λ ∈ R:

(i) ∇(κX1+λX2)Y = κ∇X1Y + λ∇X2Y ;
(ii) ∇fXY = f∇XY ;
(iii) ∇X(κY1 + λY2) = κ∇XY1 + λ∇XY2;
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(iv) ∇XfY = (Xf)Y + f∇XY ,

where Xf is the derivative of f along X.

Proof. Properties (i) and (ii) follow immediately from the linearity of TY :
TmM → T(m,Y )Θ, of the projection V and of p (see Definition 2.13 of K).
In order to prove (iii) one should recall the action of TY derived in (2.6)
and the representation of K via pΓm(·, ·) in (2.14). Now (iii) follows from
the fact that dmY is linear in Y and from the linearity of pΓm(·, ·) in the
first argument (Theorem 2.17). For the proof of (iv), we find a formula for
dm(fY ) according to the usual rules of differentiation as follows:

dm(fY ) =

(
I(

∂fY i

∂qj

)
)

=

(
I

Y df + f
(

∂Y i

∂qj

)
)

where df = ∂f
∂qi dqi is the differential of f (see (1.14)). Thus, taking into

account that Xf = df(X) (see formula (1.16)), we get

T (fY )Xm = T (fY )(m, X) =
(

m, fY, X, (Xf)Y +
(

∂Y i

∂qj

)

X

)

= (m, fY, 0, (Xf)Y ) +
(

m, fY, X, f

(
∂Y i

∂qj

)

X

)

.

By definition K
((

m, fY, X, f
(

∂Y i

∂qj

)
X

))
= f∇XY . Since (m, fY, 0, (Xf)Y )

is vertical (i.e., belongs to V(m,fY )), K((m, fY, 0, (Xf)Y )) = (m, (Xf)Y ).
��

Using the expression of K via Christoffel symbols (2.15), we find the ex-
pression for ∇XY in local coordinates in the form:

∇XY =
(

∂Y k

∂qj
Xj + Y iXjΓ k

ij

)

ek. (2.16)

Notice that ∂Y k

∂qj Xjek is the ordinary derivative of Y along X as in a trivial
bundle. Under a change of trivialization this term transforms incorrectly.
Only after adding Y iXjΓ k

ijek does (2.16) retain its form under a change of
coordinates and trivialization. In the language used by physicists, this means
that formula (2.16) is covariant. This is why we call the operation ∇XY the
covariant derivative.

For further applications we also need a covariant construction for differ-
entiating a cross-section in the “time” variable t along a certain curve m(t)
in M .

Let m(t) be a smooth curve on M and Y (t) be a cross-section of Θ over
m(·). This means that at any point m(t) there is associated a vector Y (t) ∈
Θm(t), and Y (t) is smooth in t. The vector d

dtY (t) at any t belongs to the
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tangent space T(m(t),Y (t))Θ. Consider the vector D
dtY (t) = K ◦ d

dtY (t) in
Θm(t).

Definition 2.25. The vector D
dtY (t) = K ◦ d

dtY (t) is called the covariant
derivative of Y (t) along m(t) in t.

Let us discuss the relation between the operations ∇ and D
dt . We might

hope that D
dtY (t) would be equal to ∇ṁ(t)Y = K ◦ TY (ṁ(t)) if the latter

expression were well-defined. Unfortunately this is not the case since the
cross-section Y (t) is given only at the points of the curve m(t) while, when
determining TY , it is necessary that Y is defined in a neighborhood of m(t).

This is why we have to apply the following trick. On a subinterval of the
domain, where the curve has neither self intersections nor periods where it
is constant, define an auxiliary smooth vector field Ỹ in a neighborhood of
m(t) such that at the points of m(t) it coincides with Y (t): Ỹm(t) = Y (t).
Various constructions of such fields are typically described in textbooks on
differential geometry and topology. The expression ∇ṁ(t)Ỹ = K ◦ T Ỹ (ṁ(t))
therefore makes sense.

Theorem 2.26 ∇ṁ(t)Ỹ = D
dtY (t) and so it does not depend on the choice

of smooth vector field Ỹ .

Proof. Since the curve m(t) and the map Ỹ : M → TM are smooth, the
curve Ỹm(t) in Θ is smooth and by the construction of the tangent map
T Ỹ (ṁ(t)) = d

dt Ỹm(t). But Ỹm(t) = Y (t), hence T Ỹ (ṁ(t)) = d
dtY (t) and so

∇ṁ(t)Ỹ = K ◦ T Ỹ (ṁ(t)) = K ◦ d
dtY (t) = D

dtY (t). In particular ∇ṁ(t)Ỹ does
not depend on the choice of Ỹ . ��

Remark 2.27. Taking into account Theorem 2.26 we shall sometimes use
the expression D

dtY (t) = ∇ṁY (t) where it is understood that in the right
hand side Y (t) represents some Ỹ such that Ỹm(t) = Y (t). This will simplify
the formulae and arguments below.

Thus, in order to obtain a representation of D
dt in terms of a local connector,

analogous to (2.16), we should replace the vector field X by the velocity vector
ṁ(t) = dmj

dt
∂

∂qj and T Ỹ (ṁ(t)) by d
dtY (t). So, the analog of (2.16) takes the

form
D
dt

Y (t) =
(

dY k

dt
+ Γ k

ijY
i dmj

dt

)

ek. (2.17)

If our vector bundle Θ is trivial and a trivialization is specified, the notion
of a constant cross-section of Θ is well-defined. Indeed, since Θ is represented
as a direct product M × R

d, the cross-section M × Y0 corresponding to the
layer of a fixed Y0 ∈ R

d can be considered where at any point m ∈ M the
same vector in Θm is applied. The visual image here is that all vectors of the
cross-section are parallel to each other. The derivative of such a cross-section
along any smooth curve in M is equal to zero.
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In a general non-trivial bundle the idea of “applying the same vector” at
each point of M cannot be realized. Nevertheless we still have a covariant
derivative along a curve (rather than an ordinary derivative, which is not
convenient, see above) and so we can consider cross-sections along curves
with zero covariant derivatives and say that they consist of vectors parallel
to each other. Let us give the exact definition.

Definition 2.28. A cross-section Y (t) along a curve m(t), t ∈ [0, l], is called
parallel if D

dtY (t) = 0 for all t ∈ [0, l].

It follows from (2.17) that a parallel cross-section is described by the sys-
tem of first order linear differential equations

dY k

dt
+ Γ k

ijY
i dmj

dt
= 0. (2.18)

Theorem 2.29 For any initial vector Y0 ∈ Θm(0) there exists a unique so-
lution Y (t) of the system (2.18), well-defined for all t ∈ [0, l].

Indeed, this is a well-known existence and uniqueness theorem for linear
first order differential equations. The only modification needed here is that
one should prove the existence and uniqueness in a finite number of charts
since (2.18) is given in terms of local coordinates.

Definition 2.30. The solution Y (t) whose existence is asserted in Theo-
rem 2.29 is called the parallel translation of vector Y0 along m(·).

The idea of parallel translation can also be expressed in another language.
Let a vector field X be given on M . At any point m ∈ M consider the fiber
Θm and the horizontal subspaces H(m,ϑ) at all points (m, ϑ) ∈ Θm. Recall
that (see Proposition 2.7) Tπ : H(m,ϑ) → TmM is one-to-one and so at any
(m, ϑ) we can define the vector X̃(m,ϑ) = Tπ−1(Xm)|H(m,ϑ)

.

Definition 2.31. The vector field X̃ on Θ is called the horizontal lift of the
field X.

Now restrict the bundle Θ to the curve m(·) and consider on Θm(·) the
horizontal lift of the field ṁ(t). This gives a smooth vector field on Θm(·) and,
taking the initial value Y0 ∈ Θm(0), we can find the unique integral curve Y (t)
of this vector field. One can easily see that Y (t) is the parallel translation of
Y0 according to Definition 2.30.

Let m(t), t ∈ [0, T ], be a smooth curve on M and ϑ(t) be a cross-section of
Θ along m(·) (i.e., ϑ(t) belongs to the fiber Θm(t) for all t ∈ [0, T ]). Denote by
Γs,t the linear operator of parallel translation along m(·) from Θm(t) to Θm(s).
Consider ϑ̄(t) = Γs,tϑ(t), a curve in the fiber Θm(s). Its derivative d

dt ϑ̄(t)|t=s

belongs to Tϑ̄(s)Θm(s). Applying to it the operator p, we obtain a vector in
the fiber Θm(s). Everywhere below we regard d

dt ϑ̄(t)|t=s as a free vector lying
in Θm(s) and so we do not distinguish in notation between p d

dtϑ(t)|t=s and
d
dtϑ(t)|t=s.
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Theorem 2.32 D
dtϑ(t)|t=s = d

dt (Γs,tϑ(t))|t=s.

Proof. Since the curve Γs,tϑ(t) lies in the fiber Θm(s), its derivative is vertical.
Clearly d

dtΓs,tϑ(t) = TΓs,t
d
dtϑ(t). Note that for any given t the vector Γs,tϑ(t)

is the value at s of the horizontal lift of m(t) that at t goes through q(t) ∈
Θm(t). Then the vector tangent to the horizontal lift belongs to the kernel of
the tangent mapping TΓs,t. But this vector is the horizontal component of
d
dtϑ(t). In particular, this means that d

dtΓs,tϑ(t)|t=s is the vertical component
of d

dtϑ(t)|t=s. Hence p d
dtϑ(t)|t=s = D

dtϑ(t)|t=s. Since (see above) we do not
distinguish between p d

dtϑ(t)|t=s and d
dtϑ(t)|t=s, the Theorem follows. ��

2.3 Connections on Manifolds

Since the tangent bundle TM of a manifold M is a particular case of a vector
bundle, all the constructions of Section 2.2 are also valid for tangent bundles.

Definition 2.33. A connection as in Section 2.2, given on the vector bundle
TM , is called a connection on the manifold M .

Connections on manifolds have special features since here the fiber of the
bundle is also a tangent space to the manifold (the base of the bundle).
For this reason some constructions are simplified and some operators acquire
new properties. In this Section we describe these special features. We use the
notation and constructions from Section 2.1.

The vertical subspace V(m,X) ⊂ T(m,X)TM turns out to be the tangent
space to the fiber of the tangent bundle, i.e. V(m,X) = TXTmM . This is why
the operator p, introduced by formula (1.2), is an isomorphism of V(m,X) to
TmM .

When we specify a connection H on the tangent bundle, we introduce a
subspace H(m,X) in each T(m,X)TM that is complementary to V(m,X) in such
a way that the collection H satisfies Definition 2.8.

Recall that the tangent bundle of TM is called the second tangent bundle
to M and is denoted by TTM or T 2M (see Definition 2.3). So, the connector
K sends TTM onto TM and in particular it transforms each T(m,X)TM into
TmM . The subspaces H(m,X) are kernels of K and the mapping K on V(m,X)

coincides with p. As in the general case, Tπ sends H(m,X) isomorphically
onto TmM and V(m,X) is the kernel of Tπ. Thus for any vector Y ∈ TmM at
any point (m, X) ∈ TM there exists a unique vector Y l ∈ V(m,X) such that
pY l = Y , and a unique vector Y T ∈ H(m,X) such that TπY T = Y .

Definition 2.34. The vector Y l is called the vertical lift of Y at the point
(m, X), and the vector Y T is called the horizontal lift of Y at the point
(m, X).
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Recall that a Euclidean connection and the local connector corresponding
to it depend on a trivialization in π−1Uα. We retain the notation HE

(m,X) for a
trivialization by coordinate frames ∂

∂q1 , . . . , ∂
∂qn (see Sections 1.1 and 2.1). For

corresponding objects with respect to other trivializations we shall introduce
the special notation below. For the sake of simplicity we denote by Γ m(·, ·) the
local connector with respect to this trivialization, i.e., Γ m(·, ·) = pΓm(·, ·).

The local connector Γ m(·, ·) is a bilinear operator Γ m : TmM × TmM →
TmM . In particular, in this case the condition that Γ m is symmetric is rea-
sonable. The Christoffel symbols of the second kind Γ k

ij are well-defined for
indices i, j, k = 1, . . . , n. We emphasize that in the natural coordinate sys-
tems Γm

(
∂

∂qi ,
∂

∂qj

)
= Γ k

ij
∂

∂q̇k while Γ m

(
∂

∂qi ,
∂

∂qj

)
= Γ k

ij
∂

∂qk where Γ k
ij are

Christoffel symbols of the second kind.
Since the operator gβα in TM equals ϕ′

βα and Γm(X,Y1) as a quadruple
is presented in the form (m, X, Y1, Γm(X,Y1)), from formula (2.10) it follows
that under a change of coordinates ϕβα the local connector of a connection
on a manifold transforms in the following manner

Γ m(X,Y1)β = −ϕ′′
βα(mα)(Xα, Y α

1 ) + ϕ′
βα(Γ m(X,Y1)α). (2.19)

The geometric interpretation of formula (2.19) is the same as that given in
Remark 2.21.

Proposition 2.35 The difference Γ (·, ·) − Γ̄ (·, ·) of local connectors Γ (·, ·)
and Γ̄ (·, ·) of different connections is a (1, 2)-tensor.

Indeed, by formula (2.19) the difference transforms under coordinate
changes by the rule

Γ m(·, ·)β − Γ̄ m(·, ·)β = ϕ′
βα[Γ m(·, ·)α − Γ̄ m(·, ·)α].

Since the cross-sections of a tangent bundle are vector fields on M , the
covariant derivative ∇XY differentiates the vector field Y in the direction of
the vector field X and D

dtX(t) differentiates the vector field X(t) in the time
parameter along the curve m(t) (see Section 2.2).

Equations (2.16) and (2.17) take the forms

∇XY =
(

∂Y k

∂qj
Xj + Γ k

ijY
iXj

)
∂

∂qk
, (2.20)

D
dt

Y (t) =
(

dY k

dt
+ Γ k

ijY
i dmj

dt

)
∂

∂qk
. (2.21)

Since in each chart the basis vectors ∂
∂qi have constant coordinates in the

decomposition with respect to the same basis (the i-th coordinate is 1 and
all others equal zero), from formula (2.20) it follows that
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∇ ∂

∂qi

∂

∂qj
= Γ k

ij

∂

∂qk
. (2.22)

Theorem 2.36 Let ∇ and ∇̄ be covariant derivatives of two different con-
nections. Then there exists a unique (1, 2)-tensor S(·, ·), determined by the
connections, such that for any pair of smooth vector fields X and Y the equal-
ity ∇XY − ∇̄XY = S(X,Y ) holds.

Theorem 2.36 follows from formula (2.20) and Proposition 2.35.
If D

dtX(t) = 0, by analogy with Definition 2.28 we say that X(t) is a parallel
vector field along the curve m(t). From (2.21) it follows that a parallel vector
field satisfies the system of equations

dY k

dt
+ Γ k

ijY
i dmj

dt
= 0. (2.23)

A parallel vector field along a curve is an analog of a constant vector
field in a linear space. We refer the reader to Section 2.2 where the analogy
between a “constant” cross-section of a trivial vector bundle and a parallel
cross-section along a curve is described. Notice that the Euclidean connection
HE on a linear space has zero local connector and so the covariant derivative
generated by it coincides with the ordinary derivative of a vector field along
a vector field or in time along a curve. Thus, on a linear space, parallel vector
fields become constant.

Applying Theorem 2.29 to equation (2.23) we obtain that for every smooth
curve m(t) and for a specified initial vector X ∈ Tm0M , there exists a unique
parallel vector field X(t) with initial condition X(0) = X that is well-defined
for all t in the domain of the curve. This vector field is called the parallel
translation of X along m(t).

Remark 2.37. In the case of a Riemannian manifold M , there is another
commonly used trivialization of π−1Uα, namely by a field of orthonormal
frames. Let in each tangent space TmM , m ∈ Uα, an orthonormal frame
be specified that consists of vectors e1, . . . , en and let each vector field ei,
i = 1, . . . , n, be smooth. This frame field generates the trivialization in which
a point (m, Xiei) ∈ π−1Uα transforms into the point (m, (X1, . . . , Xn)) ∈
Uα ×R

n. The corresponding local connector is called a tetrad connector and
is denoted by p

◦
Γm (·, ·) (the term “tetrad” derives from general relativity

where n = 4). The tetrad Christoffel symbols are denoted by
◦

Γ k
ij and are

defined by the equality ∇eiej =
◦

Γ k
ij ek. Since p

◦
Γm (·, ·) is bilinear, it is

uniquely determined by the tetrad symbols. For more detail, see e.g. [57].



2.4 Geodesics 53

2.4 Geodesics

The notion of a parallel vector field along a curve leads to another important
notion.

Definition 2.38. A curve m(t) along which its velocity vector field ṁ(t) is
parallel is called a geodesic.

On a manifold with connection the geodesics are analogs of straight lines in
a vector space. Indeed, since a parallel vector field along a curve is an analog
of a constant vector field in linear space, the property of a curve possessing
a parallel velocity vector field is analogous to the property of a curve in a
vector space possessing constant velocity. In a vector space the straight lines
with natural parametrization, and only these lines, have the latter property.

From Definition 2.38 and the definition of parallel translation it follows
that a curve m(t) is a geodesic if and only if at each of its points the equality

D
dt

ṁ(t) = 0 (2.24)

holds. Equation (2.24) describes an analog of the property that straight lines
in linear spaces have zero second derivative.

We now derive the equation of geodesics in local coordinates. For this
purpose, in equation (2.23) we replace the coordinates of the vector Y by the
coordinates of the vector ṁ(t), since in our case the latter is parallel along
m(t). Then we obtain

d2mk

dt2
+ Γ k

ij

dmi

dt

dmj

dt
= 0. (2.25)

Unlike (2.18) and (2.23), (2.25) is a non-linear second order differential equa-
tion (recall that (2.18) and (2.23) are linear first order differential equations).
This is why we can apply only the most general existence of solution theorem
for second order differential equations with smooth right-hand sides, from
which we obtain the following statement of local existence and uniqueness of
geodesics with given initial data.

Theorem 2.39 For every point m ∈ M and every vector X ∈ TmM there
exists a unique geodesic m(t), with initial conditions m(0) = m and ṁ(0) =
X, that is defined for t ∈ [0, ε) where ε > 0 is a sufficiently small positive
number.

Theorem 2.39 is much weaker than existence Theorem 2.29 but it mirrors
the physical situation if no additional hypotheses are assumed. For example,
on an open manifold (e.g., consisting of only one open chart) the geodesic
exists for t ∈ [0, ε) where ε is the instant of time when the geodesic reaches
the boundary, but it does not exist at any later time.
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Definition 2.40. If each geodesic of a connection H exists for t ∈ (−∞,∞),
the connection H on M is said to be complete.

Let X ∈ TmM be a tangent vector at a point m. Denote by mX(t) the
geodesic with initial data m(0) = m and ṁ(0) = X (which we know exists for
t ∈ [0, ε) by Theorem 2.39). Specify a positive number λ < 1. One can easily
see that m(λt) is a geodesic with initial vector λX that exists for t ∈ [0, 1

λε).
Thus, if X is close enough to the origin, the geodesic mX(t) exists at t = 1.

Definition 2.41. The mapping exp : O → M , where O is a neighborhood of
the origin in TmM , is given by the formula exp(X) = mX(1), and is called
the exponential mapping of the connection H.

It is clear that if H is a complete connection, the exponential mapping is
well-defined on TmM . Sometimes, when dealing with exponential mappings
from tangent spaces at various points of M , we shall use the notation expm :
Om → M .

Theorem 2.42 There exists a neighborhood Om of the origin in TmM such
that expm is a diffeomorphism of Om onto expm Om and the exponential
mapping is smooth on the neighborhood

⋃

m∈M

Om of the zero-section in TM .

A proof of Theorem 2.42 can be found, for example, in [26] and [161].
Notice that the pair (Om, expm) satisfies the definition of chart. This pair

is called the normal chart (or normal neighborhood) of the connection H at the
point m. In this chart at m the connection space H(m,X) at each X ∈ TmM
coincides with the Euclidean connection space HE

(m,X) and so Γ m(·, ·) = 0.
Hence in a normal chart at m all Christoffel symbols of the second kind
Γ k

ij(m) for H at this point are equal to zero.
Suppose that the connection is complete and Om is the maximal domain

on which expm is one-to-one, i.e., such that the exponential map is one-to-one
on Om but not on the boundary ∂Om in TmM .

Definition 2.43. The set ∂Om ⊂ TmM is called the cut locus corresponding
to the point m. The same term is also used to designate the image of ∂Om

under the mapping expm.

All points of M besides the cut locus belong to the image of Om under
the diffeomorphism expm. From this it follows that each manifold can be
constructed from an open ball in a vector space by “gluing” the points of
the boundary (according to a rule, determined by the manifold) so that the
corresponding cut locus is obtained (see [140]).

Let the points m0 and m1 be connected by a geodesic a(·) of a connection
H. This means that m1 = expm0

X for some vector X ∈ Tm0M .

Definition 2.44. If the differential dX exp : TXTm0M → Tm1M at X is de-
generate, we say that m1 = expm0

X is conjugate with m0 along the geodesic
a(·) joining them.
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2.5 Curvature and Torsion Tensors

Let X and Y be smooth vector fields on a manifold M with connection. These
vector fields determine a transformation of an arbitrary smooth vector field
Z by the formula

RXY Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z. (2.26)

Observe that the value RXY Z at m ∈ M depends only on the values
of the vector fields X,Y, Z at m (it does not depend on their values in a
neighborhood of m), i.e., RXY Z is a tensor. (In particular this means that,
in spite of the definition, (2.26) is well-defined for non-smooth vector fields
X, Y and Z.)

Definition 2.45. RXY Z is called the curvature tensor.

If RXY Z = 0 for all X,Y, Z,, the connection is called flat . An example of
a flat connection is a Euclidean connection of any coordinate system.

The curvature is a (1, 3)-tensor and its description as a polylinear form
takes the form R(α,X, Y, Z) = α(RXY Z), where α is a covector field (1-
form). We denote the components of the curvature tensor by Ri

jkl.
For two vector fields X and Y on M one can consider a third vector field

T(X,Y ) = ∇XY −∇Y X − [X,Y ]. (2.27)

Observe that the value T(X,Y ) at m ∈ M depends only on the values of
X and Y at m (it does not depend on their values in a neighborhood of m),
i.e., T(X,Y ) is a tensor.

Definition 2.46. T(X,Y ) is called the torsion tensor.

The curvature and torsion tensors together “measure” how the vector can
be transformed under parallel translation along a closed infinitesimal loop
(for details see, e.g., [26]).

Torsion is a (1, 2)-tensor, i.e., its description as a polylinear form takes the
form T(α,X, Y ) = α(T(X,Y )) where α is a covector field (1-form). Denote
the components of T by the symbols T k

ij . To calculate these components we
substitute into (2.27) the coordinate expressions of ∇XY and ∇Y X from
formula (2.20) as well as the coordinate expression for [X,Y ] from Proposi-
tion 1.7. We then obtain

T(X,Y ) =
{(

∂Y k

∂qj
Xj + Y iXjΓ k

ij

)

−
(

∂Xk

∂qj
Y j + XiY jΓ k

ji

)

−
(

∂Y k

∂qj
Xj − ∂Xk

∂qj
Y j

)}
∂

∂qk

= Y iXjΓ k
ij − XiY jΓ k

ji.
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Hence,
T k

i,j = Γ k
ij − Γ k

ji. (2.28)

Formula (2.28) immediately yields:

Proposition 2.47 The equality T = 0 holds at all points m ∈ M if and only
if in all charts Γ k

ij = Γ k
ji, i.e., the local connector Γ m(·, ·) is a symmetric

bilinear operator.

2.6 Riemannian Connections. The Levi-Civitá
Connection

From all the connections on a Riemannian manifold M we select one whose
covariant derivative properties are the closest to those of the ordinary deriva-
tive in Euclidean space.

If on a manifold M a Riemannian metric and a connection are given in-
dependently, one should not expect, for the covariant derivative, to find an
analog of the Leibnitz formula for differentiating the inner product. Neverthe-
less for every Riemannian manifold there exists a class of connections having
this property.

Let a Riemannian or semi-Riemannian metric 〈·, ·〉 be given on M . For
two smooth vector fields Y and Z on M we consider the smooth function
〈Y,Z〉 that assigns the value of the Riemannian inner product 〈Ym, Zm〉 of
the vectors of Y and Z at m to the point m. We find the derivative X〈Y,Z〉
of the function 〈Y,Z〉 in the direction of a smooth vector field X.

Definition 2.48. A connection on M is said to be Riemannian if for all
smooth vector fields X, Y and Z on M the following equality holds:

X〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉. (2.29)

Taking into account the interrelation between ∇ and D
dt (see Remark 2.27)

one can easily derive the following version of formula (2.29) for D
dt

d
dt

〈Y (t), Z(t)〉 =
〈

D
dt

Y (t), Z(t)
〉

+
〈

Y (t),
D
dt

Z(t)
〉

, (2.30)

where Y (t) and Z(t) are smooth vector fields along a smooth curve m(t).
An existence theorem for Riemannian connections will be proved below

(see Remark 2.55).
Specify a Riemannian connection on a Riemannian manifold M .

Theorem 2.49 Let Y (t) and Z(t) be parallel vector fields along a smooth
curve m(t). Then 〈Y (t), Z(t)〉 = const.
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Proof. By the definition of a parallel vector field, D
dtY (t) = 0 and D

dtZ(t) = 0.
Having substituted these expressions into (2.30) we obtain

d
dt

〈Y (t), Z(t)〉 =
〈

D
dt

Y (t), Z(t)
〉

+
〈

Y (t),
D
dt

Z(t)
〉

= 0.

This means that the function 〈Y (t), Z(t)〉 is constant. ��

Corollary 2.50 If Y (t) is a parallel vector field along a smooth curve m(t),
‖Y (t)‖ = const.

Indeed, ‖Y (t)‖ =
√
〈Y (t), Y (t)〉 and the assertion of Corollary 2.50 follows

from Theorem 2.49.

Corollary 2.51 If Y (t) and Z(t) are parallel vector fields along a smooth
curve m(t), the cosine of the angle between those vectors is constant.

Since the cosine of the angle between Y (t) and Z(t) equals 〈Y (t),Z(t)〉
‖Y (t)‖‖Z(t)‖ ,

the assertion of Corollary 2.51 follows from Theorem 2.49 and Corollary 2.50.

Definition 2.52. The functions Γij,k = 〈∇∂qi∂qj , ∂qk〉 in a chart of a Rie-
mannian manifold M are called Christoffel symbols of the first kind.

We now describe the interrelation between Christoffel symbols of the first
and second kinds. By formula (2.22) ∇ ∂

∂qi

∂
∂qj = Γ l

ij
∂

∂ql . Thus

Γij,k =
〈

Γ l
ij

∂

∂ql
,

∂

∂qk

〉

= glkΓ l
ij . (2.31)

Applying the same arguments as in the derivation of formula (1.21), from
(1.20) we obtain

Γ k
ij = glkΓij,l. (2.32)

In particular, if the torsion tensor equals zero, i.e., Γ k
ij = Γ k

ji, then also
Γij,k = Γji,k.

Note that here we use only the fact that the matrix (gij) is invertible,
not that it is positive-definite. Thus formula (2.32) is well-defined both for
Riemannian and semi-Riemannian metrics.

Lemma 2.53 (The principal lemma of Riemannian geometry) On every
manifold M with Riemannian or semi-Riemannian metric 〈·, ·〉 there ex-
ists a unique Riemannian connection whose torsion tensor equals zero at
all m ∈ M .

Proof. Recall that by definition gij =
〈

∂
∂qi ,

∂
∂qj

〉
. Since the connection that

we are looking for is Riemannian, from formula (2.29) it follows that

∂

∂ql
gij =

∂

∂ql

〈
∂

∂qi
,

∂

∂qj

〉

=
〈

∇ ∂

∂ql

∂

∂qi
,

∂

∂qj

〉

+
〈

∂

∂qi
,∇ ∂

∂ql

∂

∂qj

〉

.
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So, taking into account Definition 2.52, we obtain ∂
∂ql gij = Γli,j + Γlj,i. Con-

sidering all rearrangements of the given indices i, j, l we obtain a system of
three equations of the same kind as above:

⎧
⎪⎨

⎪⎩

∂
∂ql gij = Γli,j + Γlj,i
∂

∂qi glj = Γil,j + Γij,l
∂

∂qj gil = Γji,l + Γjl,i.

(2.33)

Recall that the torsion tensor equals zero, i.e., the Christoffel symbols of the
first kind are symmetric in the first two indices. The system (2.33) of three
linear algebraic equations has three unknowns. Adding the second equation
to the third one and subtracting the first one from the sum, we obtain

Γij,l =
1
2

(
∂

∂qi
glj +

∂

∂qj
gli −

∂

∂ql
gij

)

. (2.34)

Then by formula (2.32)

Γ k
ij =

1
2

(
∂

∂qi
glj +

∂

∂qj
gli −

∂

∂ql
gij

)

gkl. (2.35)

Formula (2.35) uniquely determines the Christoffel symbols of the second
kind. From this it follows that the connection we are looking for is unique.
The existence is proved by an elementary verification that the connection with
Christoffel symbols (2.35) has the properties described in the hypothesis. ��

Definition 2.54. The connection whose existence is asserted in Lemma 2.53
is called the Levi-Civitá connection of the metric 〈·, ·〉.

It is easy to see that in the Euclidean space R
n the Levi-Civitá connection

of the standard inner product coincides with the Euclidean connection of the
standard coordinate system.

Remark 2.55. If a connection is Riemannian but the torsion is not zero,
system (2.33) consists of three equations but has six unknowns. This sys-
tem has an infinite set of solutions, each of them determining a Riemannian
connection.

Remark 2.56. The tetrad Christoffel symbols (see Remark 2.37) of the Levi-
Civitá connection are determined by the formula

◦
Γ k

ij=
1
2

(
ci
kj + cj

ki + ck
ij

)
, (2.36)

where cl
pq can be found from the equalities [ep, eq] = cl

pqel, see [57].

The next property of the Levi-Civitá connection follows from the fact that
its torsion tensor equals zero and so the property does not hold for other
Riemannian connections.
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Let γ(t, s) be a smooth mapping from the rectangle [a, b] × (c, d) into M .
Then one can consider the vector fields ∂

∂t and ∂
∂s on γ([a, b] × (c, d)).

Lemma 2.57 (Lemma on the second covariant derivative )

∇ ∂
∂t

∂

∂s
= ∇ ∂

∂s

∂

∂t
.

Proof. By construction, s and t are coordinates on [a, b] × (c, d). Hence on
γ([a, b] × (c, d)) the fields ∂

∂s and ∂
∂t commute, i.e.,

[
∂
∂t ,

∂
∂s

]
= 0 (see Sec-

tion 1.7). Then ∇ ∂
∂t

∂
∂s − ∇ ∂

∂s

∂
∂t = (Γ k

ij − Γ k
ji)

∂
∂qk = T

(
∂
∂t ,

∂
∂s

)
and the as-

sertion of the Lemma follows from the fact that the torsion tensor T equals
zero. ��

Lemma 2.57 is an analog of the classical equality ∂2

∂x∂y = ∂2

∂y∂x .
For the curvature tensor of the Levi-Civitá connection of a Riemannian or

semi-Riemannian metric we consider the following constructions. As above
denote by Ri

jkl the components of the curvature tensor R. Contract R by the
only contravariant and the second covariant indices (see Section 1.5). The
result is a tensor Ric called the Ricci curvature. Its components take the
form Rjl = Rk

jkl. If R = 0, it is evident that Ric = 0, but not vice versa. Ric
is a symmetric (0, 2)-tensor.

Let R̂ic be the (1, 1)-tensor with components Rl
j that is physically equiv-

alent to Ric. The contraction of R̂ic, i.e., the scalar S = Rj
j , is called the

Gaussian or scalar curvature. If Ric = 0, then S = 0 but not vice versa.
Nevertheless, if dim M = 2 the Gaussian curvature determines both the

Ricci curvature and the curvature tensor and if dim M = 3 the Ricci curva-
ture determines the curvature tensor. If dim M ≥ 4 no such determinations
are valid.

Definition 2.58. The operator ∇2 = ∇∇∗, where ∇∗ is the operator con-
jugate to the operation of covariant derivation of the Levi-Civitá connection
∇, is called the Laplace-Beltrami operator.

In local coordinates of a chart the operator ∇2 is described by the formula
∇2 = gij∇i∇j = −gijΓ k

ij
∂

∂qk +gij ∂2

∂qi∂qj where ∇k is the covariant derivative
in the direction of ∂

∂qk and gij are the components of the metric tensor (gij).
From this one can easily see that in a Euclidean space R

n with standard
basis, ∇2 coincides with the ordinary Laplacian. Note also that the above
coordinate representation of ∇2 defines its action on functions.

In general the Laplace-Beltrami operator does not coincide with the
Laplace-de Rham operator Δ = dδ + δd (see Definition 1.73) in spite of
the fact that in R

n, modulo the sign, they both give the Laplacian. On func-
tions both operators on all Riemannian manifolds take the same value. In
the general case of differential forms (polyvectors) on manifolds the relation
between the operators is described by the so-called Weitzenbök formulae (a
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special formula exists for each degree of the form), see [135]. For the mate-
rial below we need the following Weitzenbök formula for 1-forms (and so for
vector fields):

ΔX = −∇2X + R̂ic ◦ X. (2.37)

2.7 Connections on Principal Bundles

Let G be a principal bundle with fiber (structure group) G over base M . The
fiber at m ∈ M will be denoted Gm. Recall that Gm is homeomorphic to
the group G. In the tangent space TgG to G at g ∈ G, as is the case for any
bundle, we can consider the subspace that consists of the vectors tangent to
the fiber Gπg. As usual we call this space the vertical subspace and denote it
by Vg ⊂ TgG. The vectors in Vg are said to bevertical.

The collection of vertical subspaces at all points forms the bundle V → G
with fibers Vg.

Theorem 2.59 The bundle V → G is trivial.

Proof. Every point g ∈ G determines a diffeomophism of the group G onto
the fiber Gπg (which will be denoted by the same symbol g) by the formula
g ◦G, where ◦ is the right action of G on G (see Section 1.3). It is clear that
the diffeomorphism g sends the unit e ∈ G to the point g ∈ G. Since this is
a diffeomorphism, the tangent map Tg : TG → TGg is a linear isomorphism
of TeG = g onto the tangent space to the fiber Gπg at g, i.e., onto Vg. Thus
every vertical subspace Vg is linearly isomorphic to the Lie algebra g and the
isomorphism smoothly depends on the point g ∈ G. Hence, having specified
a vector X �= 0 ∈ g, we obtain the smooth vector field X̄g = TgX �= 0 on G.
In particular, taking vectors of a basis in g, we obtain a basis at every Vg.
So, we have represented V → G in the form of a direct product G × g. ��

Definition 2.60. The vector field X̄ on G, constructed in the proof of The-
orem 2.59 from the vector X ∈ g, is called a fundamental vector field.

Thus the fundamental vector fields trivialize the bundle V → G since they
determine the frames in the fibers of Vg.

Recall that for a vector bundle Θ we also constructed vertical subspaces
V(m,ϑ) ⊂ TϑΘm that were sent onto the fibers Θπq by the linear isomorphism
p. In the case of a principal bundle an isomorphism like p does not exist since
the fibers of the bundle are not vector spaces. However, Theorem 2.59 provides
us with something that was not available in the case of vector bundles: all
Vg are in a standard way isomorphic to a unique vector space g while in the
case of a vector bundle vertical subspaces at the points of Θm were sent onto
“their own” fiber Θm.

Notation 2.61 The isomorphism Vg → g, described above, is denoted by p.
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Definition 2.62. We say that a connection H is given on a principal bundle
G if to every TgG is associated a subspace Hg that is complementary to Vg,
smoothly depends on the point g ∈ G and is such that the connection H is
invariant with respect to the right action of the group G on G (i.e., for every
element h of G and every g ∈ G the equality TRhHg = Hg◦h holds where
Rh(g) = g ◦ h is the right action of h on G). The subspaces Hg comprising a
connection are called horizontal , as are the vectors belonging to them.

As in the case of a vector bundle, Y ∈ TgG is uniquely represented as the
sum Y = HY + VY where HY ∈ Hg and VY ∈ Vg.

Definition 2.63. The mapping ϕ : TG → g whose value at Y ∈ TG is given
by the formula ϕ(Y ) = pVY is called the connection form of H .

It is clear that the connection form is a direct analog of the connector
(connection map) on vector bundles. It turns out that connection forms have
a much richer collection of properties than connectors and their use allows
one to obtain much deeper results. We refer the reader, e.g., to [26] and [161]
for a more detailed exposition of the theory of general principal bundles and
their connection forms. Here we only describe some objects and constructions
that are used later.

For every k-form α on G with values in g the so-called covariant differential

Dα(·, . . . , ·) = dα(H·, . . . ,H·) (2.38)

is introduced where, as above, the symbol H denotes the projection onto the
connection subspace (i.e., H of a vector is the horizontal component of the
vector).

Definition 2.64. The 2-form Φ = Dϕ = dϕ(H·,H·) is called the curvature
form of the connection H.

Since ϕ takes values in the Lie algebra g, the composition [ϕ, ϕ] of the
operators ϕ and bracket [·, ·] is well-defined.

The so-called Bianchi identity

DΦ = 0 (2.39)

and the structure equation

dϕ = −1
2
[ϕ, ϕ] + Φ (2.40)

hold (for the proofs see, e.g., [26]). Note that for a matrix group G

− 1
2
[ϕ, ϕ] = −ϕ2 (2.41)

(for details see, e.g., [26, 146]).
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As in the case of vector bundles, by construction Tπ : Hg → TπgM is
a linear isomorphism. Via this we also obtain the well-defined notion of a
horizontal lift X̃ of a vector field X from the base M onto G: X̃g = Tπ−1

|Hg
Xπg.

Consider a smooth curve m(t) on the base. The pull-back of the bundle G

over this curve is a manifold on which the vector field ˜̇m(t), the horizontal
lift of the velocity vector field ṁ(t) of m(t), is given. Take a point g0 ∈ Gm(0)

and consider the integral curve g(t) of ˜̇m(t) with initial data g(0) = g0.

Definition 2.65. The curve g(t) is called the parallel translation of g0 along
the curve m(t).

Let Θ be a bundle with fiber F associated with a principal bundle G.
As on any other bundle, we can consider vertical subspaces in the tangent
spaces to Θ, i.e., the subspaces tangent to fibers. The mapping λ : G × F →
Θ (see Notation 1.36) sends horizontal subspaces on G into subspaces of
tangent spaces to Θ complementary to vertical subspaces. The collection of
subspaces that we obtain in this way is called the connection on Θ. The
parallel translation in the associated bundle Θ is defined by analogy with
Definition 2.65.

If G is GL(k, R), or one of its subgroups, with the standard action on R
k,

the associated bundle is a vector bundle.

Proposition 2.66 Every connection on a vector bundle by means of Section
2.2 is an image of some connection on the corresponding principal bundle
under the mapping λ.

Now let us consider what is for us the most important case of a prin-
cipal bundle, the frame bundle BM (see Definition 1.37). Recall that the
tangent bundle TM is associated with BM , i.e., by the last statement every
connection on the manifold M is obtained from some connection on BM as
explained above.

We introduce a connection H on BM by means of Definition 2.62. Consider
the bundle H → BM whose fiber at every point b ∈ BM is Hb.

Theorem 2.67 The bundle H → BM is trivial.

Proof. Specify a vector X ∈ R
n, i.e., a column with coordinates X1, . . . , Xn.

Every b ∈ BM , i.e., a frame b = e1, . . . , en in TπbM , can be considered
as a linear mapping b : R

n → TπbM defined by the formula bX = Xiei (see
Section 1.3). Denote by Eb(X) the vector in Hb of the form Eb(X) = Tπ−1

|Hb
bX.

One can easily see that the mapping Eb : R
n → Hb is a linear isomorphism

and smoothly depends on b ∈ BM . In particular a basis in R
n determines a

corresponding basis in every Hb so that, using coordinate decomposition of
vectors of Hb with respect to this basis, we can represent H → BM in the
form BM × R

n. ��

Definition 2.68. The vector field E(X) on BM that is equal to Eb(X) at
b ∈ BM is called the basic vector field.
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It is clear that basic vector fields are smooth. The basic vector fields triv-
ialize the bundle H → BM just as the fundamental vector fields trivialize
V → BM .

Theorem 2.69 The tangent bundle TBM is trivial.

This statement is a corollary to Theorem 2.59 and Theorem 2.67. Indeed,
by construction, for every b ∈ BM we have TbBM = Hb ⊕ Vb, but by the
theorems mentioned above the bundles H → BM and V → BM are trivial.

We introduce a mapping from TBM to R
n as follows. For b ∈ BM , where

b = (e1, . . . , en) is a basis in TπbM , consider a vector X ∈ TbBM . Then
TπX ∈ TπbM has the coordinate decomposition TπX = ωiei. The mapping
X 	→ (ω1, . . . , ωn) ∈ R

n is considered as a 1-form ω with values in R
n and

is called the displacement form. Note that the displacement form ω exists
without having to introduce a connection on BM . But if a connection H on
BM is specified, we can consider the covariant differential Dω = dω(H·, H·)
(see formula (2.38)) of ω with respect to this connection (cf. Definition 2.64).

Definition 2.70. The 2-form Ω = Dω is called the torsion form of H.

The curvature form Φ and the torsion form Ω determine the curvature and
torsion tensors, respectively (see details, e.g., in [26]). In addition to (2.40)
there is another structure equation for H on BM in terms of ω and Ω:

dω = −ϕω + Ω (2.42)

where ϕ is the connection form. The composition ϕω makes sense since ϕ is a
transformation of R

n (a matrix from gl(n, R)) and ω takes values in R
n (see

[26, 146] for details).
At the moment we have two constructions of a parallel vector field along

a curve on a manifold: by general Definition 2.28 applied to connections on
manifolds (see Section 2.3) and by analogy with Definition 2.65 for the case
of associated bundles. Here we describe a third construction.

Let m(t) be a smooth curve on M and b(t) be the parallel translation
of a basis b0 = b(0) in the tangent space Tm(0)M along m(t) by means
of Definition 2.65. As said above, every basis b(t) is a linear isomorphism
b(t) : R

n → Tm(t)M . Let X0 ∈ Tm(0)M and consider the vector field X(t) =
b(t)(b−1

0 X0) ∈ Tm(t)M along m(t). Notice that X(0) = b0(b−1
0 X0) = X0.

Proposition 2.71 The vector field X(t) along m(t), introduced above, does
not depend on the initial basis b0 of the parallel translation b(t).

Proof. Specify another basis b̄0 in Tm(0)M and let b̄(t) be the parallel trans-
lation of this basis along m(t). It is clear that there exists an h ∈ GL(n, R)
such that b̄0 = b0 ◦ h where ◦ denotes the right action of h on BM . Since by
definition a connection H on BM is invariant with respect to the right action
of GL(n, R) (see Definition 2.62), one can easily see that b̄(t) = b(t)◦h. Then
b̄(t)(b̄−1

0 X0) = b(t) ◦ h((b0 ◦ h)−1X0) = b(t) ◦ h((h−1 ◦ b−1
0 )X0) = X(t). ��
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Thus the formula X(t) = b(t)(b−1
0 X0) uniquely determines the translation

of X0 along m(t). The following statement holds:

Theorem 2.72 Let a connection on M be obtained from a connection on
BM as described above. Then the parallel translation by means of Definition
2.28 applied to connections on manifolds, the parallel translation introduced
analogously to Definition 2.65 for the case of associated bundles, and the
translation by formula b(t)(b−1

0 X0) coincide.

Remark 2.73. Let a connection on M be obtained from a connection on
BM as described above. It is clear that the geodesics of this connection, and
only these geodesics, are projections onto M of integral curves of basic vector
fields on BM (see Definition 2.68).

Consider the bundle of orthonormal frames OM on a Riemannian manifold
M . This is a principal bundle with a structure group O(n) of orthogonal
matrices. If a connection is given on BM , one can consider the spaces Hb of
this connection at the points b ∈ OM . However, this collection of subspaces
becomes a connection on OM only if it is invariant with respect to the right
action of O(n) on OM . In addition, a connection on a Riemannian manifold
M is Riemannian if and only if it is obtained from some connection on OM
as the image of the mapping λ.

Among the connections on OM there is unique connection with zero tor-
sion form. This connection corresponds to the Levi-Civitá connection M . A
detailed description of this material can be found in [26] and [161].

2.8 A Connection on the Total Space of a Vector Bundle

In this section we describe a construction that allows one to create a con-
nection on the total space of a vector bundle (as on a manifold) from a
connection of the bundle and a connection on the base (again as on a man-
ifold). A more detailed presentation of this material (at least for the case of
a tangent bundle) can be found in [23].

Denote by π : Θ → M the vector bundle and by Θm its fiber at m ∈ M .
Let a connection Hπ be given on Θ by means of Section 2.2. Denote the
connector of this connection by Kπ : TΘ → Θ.

In order to avoid confusion, in this section we denote the projection of a
tangent bundle TM on M by τ : TM → M . Let a connection be given on
the manifold M ; for this connection we introduce the notation Hτ and denote
its connector by Kτ : T 2M → TM (recall that according to Section 2.3 a
connection on a manifold M is a connection on its tangent bundle TM).

Using connections Hτ and Hπ, we construct a connection HΘ on the total
space of Θ (i.e., on the manifold Θ) as follows. We define the connector
K : T 2Θ → TΘ of this connection by the formula K = KH ⊕ KV with
KH : T 2Θ → Hπ and KV : T 2Θ → V where V is the vertical subspace at
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the corresponding point (recall that the fibers of the bundle V over Θ are
the subspaces in TΘ that are tangent to the fibers of Θ, see above). These
connectors we define in the form KH = Γ π ◦Kτ ◦T 2π where Γ π = Tπ−1 is a
linear isomorphism of tangent spaces to M onto Hπ (see Lemma 2.12) while
KV = p−1 ◦ Kπ ◦ TKπ where p : Vq → Θπq is the natural isomorphism of
the tangent space Vq to the vector space Θπq onto the space Θπq introduced
in (1.2) (see also (2.11)).

The covariant derivative on a manifold Θ corresponding to K will be
denoted by D

dt = K◦ d
dt . By construction, D

dt = D
dt

H
+ D

dt

V
where D

dt

H
= KH◦ d

dt

and D
dt

V
= KV ◦ d

dt . Notice the following important feature: Tπ D
dt = Tπ D

dt

H

and it is equal to the covariant derivative of the connection Hτ on M . From
this it follows that for a parallel translation X(t) along a curve q(t) in Θ
with respect to the connection HΘ, the vector field TπX(t) along the curve
m(t) = πq(t) in M is the parallel translation with respect to the connection
Hτ . In particular the geodesics of the connection HΘ on Θ are projected by
π onto the geodesics of the connection Hτ on M .

2.9 Second Order Tangent Vectors and Connections

Definition 2.74. A second order tangent vector to a manifold M at a point
m ∈ M is a second order differential operator on M at m with zero constant
term and a symmetric matrix of coefficients at second order derivatives in
local coordinates. The linear space of second order tangent vectors at a point
m ∈ M is called the second order tangent space and is denoted by τmM .

Usually the fact that the constant term of a second order differential op-
erator A equals zero is expressed by the condition A1 = 0 where 1 is the
function identically equal to unity.

Recall that a vector (i.e., a first order vector) may be considered as a
first order differential operator without constant term (the derivative in the
direction of a vector, see Section 1.1). By analogy, second order differential
operators without constant terms are called second order tangent vectors.

The set of all second order tangent vectors has the structure of a fiber
bundle with fiber τmM and is called the second order tangent bundle τM .

In local coordinates every second order tangent vector A ∈ τmM is
uniquely represented in the form: Ax = bi ∂

∂qi + βij ∂2

∂qj∂qj where the matrix

(βij) is symmetric since ∂2f
∂qj∂qj = ∂2f

∂qj∂qi for a smooth real-valued f . Thus ∂
∂xi

and ∂2

∂xi∂xj , i, j = 1, 2, . . . , n form a basis in τmM . The transformation of the
components of a second order vector under coordinate changes is described
by the formulae (see, e.g., [148])



66 2 Connections

βi′j′ =
∂qi′

∂qi

∂qj′

∂qj
βij ,

bk′
=

∂qk′

∂qk
bk +

∂2qk′

∂qi∂qj
βij . (2.43)

From (2.43) it follows that at every m ∈ M the first order tangent space TmM
is a subspace in τmM consisting of vectors with zero matrix (βij). However,
if this matrix is not zero, the column (bi) is not a first order tangent vector
since it has another transformation rule. On the other hand, by (2.43) the
field of matrices (βij) is a symmetric (2, 0)-tensor field and it is symmetric
in every coordinate system.

There is an analogous construction of second order differential forms.
The theory of second order vectors and differential forms is presented in

detail, for example, in [69, 179, 180, 204, 205]. In these works one can also
find an interesting approach to stochastic differential equations on manifolds.

At every m ∈ M there is a canonical isomorphisms between the space
TmM � TmM (where � denotes the symmetric tensor product, see Section
1.5) and the quotient space τmM/TmM , and hence between TM � TM and
τM/TM (see [205]). Taking into account this factorization, we construct the
morphism Q : τM → TM � TM , i.e., the field of linear projectors Qm :
τmM → TmM � TmM such that

QB(t,m) = Q

(

bi ∂

∂qi
+ βij ∂2

∂qi∂qj

)

= βij ∂

∂qi
⊗ ∂

∂qj
. (2.44)

Every connection H on M determines a linear operator from τmM to TmM
at any point m ∈ M as follows:

H

(

bk ∂

∂qk
+ βij ∂2

∂qj∂qj

)

=
(
bk + Γ k

ijβ
ij

) ∂

∂qk
, (2.45)

where Γ k
ij are the Christoffel symbols of the connection H. Thus connections,

and only connections, are smooth cross-sections of the bundle Hom(τM, TM)
of fiber-wise linear operators from τM to TM .

Let m(t) = (q1(t), . . . , qn(t)) be a smooth curve in a chart U. The second
order vector D2m(t) = q̈k ∂

∂qk + q̇iq̇j ∂2

∂qi∂qj is called the acceleration of m(t).

Proposition 2.75 For any smooth curve the equality D
dtṁ(t) = HD2m(t)

holds where D
dt is the covariant derivative of a connection H.

Indeed, by formula (2.45) we obtain that HD2m(t) = (q̈k + Γ k
ij q̇

iq̇j) ∂
∂qk .

Corollary 2.76 A curve m(t) is a geodesic of a connection H if and only if
HD2m(t) = 0.

Proof. By Proposition 2.75 the equality HD2m(t) = 0 means that for m(t)
the geodesic equation (2.25) holds. ��



Chapter 3

Ordinary Differential Equations

3.1 Global in Time Existence of Solutions of Ordinary
Differential Equations

Many criteria for the extendability to (−∞,∞) of the solutions of differential
equations in vector spaces are known (see, e.g., the bibliography in [144]). The
main aim of this section is to modify some conditions of this sort in such a
way that they become necessary and sufficient. The trick here is the transition
to extended phase spaces and an analysis of the so-called proper functions or
complete Riemannian metrics on manifolds.

3.1.1 A necessary and sufficient condition for
completeness of a vector field of one-sided type

Here we use the notation and notions from Section 1.1 concerning vector
fields.

Let M be a smooth manifold with dimension n < ∞ and a smooth vector
field X be given on M .

Definition 3.1. A vector field X and its flow are called complete if all its
integral curves are well-defined for t ∈ (−∞, +∞).

Denote by m(s) : M → M , s ∈ R, the flow of X. For any point m ∈ M
and time t the orbit m(s)(t,m) = mt,m(s) of the flow is the solution of the
equation

ṁt,m(s) = X(s,mt,m(s)) (3.1)

with the initial condition
mt,m(t) = m. (3.2)
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If the right-hand side of an equation is a complete vector field, we say that
the flow of this equation is complete, i.e., the completeness of vector fields
and their flows are equivalent.

Definition 3.2. A mapping F : X → Y of topological spaces is called proper
if the pre-image of every relatively compact set in Y is relatively compact in
X. In particular, a function f : X → R on a topological space X is called
proper if the pre-image of any relatively compact set in R is a relatively
compact set in X.

Recall that in any finite-dimensional space (in particular, in R) a set is
relatively compact if and only if it is bounded.

Examples of proper functions are the norm in a Euclidean space and the
distance function on a complete Riemannian manifold.

In what follows we shall mainly deal with proper functions on smooth
manifolds.

In questions connected with the completeness of flows in R
n the functions

f : R
n → R such that f(x) → ∞ as x → ∞ are often considered. Clearly

such functions are proper. The classical completeness theorem with so-called
one-sided estimates says that if there exists a function f as above such that
gradf · X < C (where · denotes the inner product in R

n) for a certain
constant C, the flow of the vector field X on R

n exists up to +∞. Note that
gradf · X = Xf , the derivative of f in direction of X. In this subsection we
show how to modify this completeness theorem in order to get a necessary
and sufficient condition for completeness.

Consider the extended phase space M+ = R × M with the natural pro-
jection π+ : M+ → M , π+(t,m) = m. Introduce the vector field X+ on M+

given at the point (t,m) ∈ M+ as X+
(t,m) = (1, X(t,m)). It is clear that its co-

ordinate representation is given in the form X+ = ∂
∂t +X1 ∂

∂q1 + ...+Xn ∂
∂qn .

Hence the corresponding differential operator on the space of C1-smooth
functions on M+ takes the form ∂

∂t + X.

Theorem 3.3 A smooth vector field X on a finite-dimensional manifold M
is complete if and only if there exists a smooth proper function ϕ : M+ → R

such that the absolute value of the derivative |X+ϕ| of ϕ in the direction of
X+ is uniformly bounded, i.e., |X+ϕ| = |( ∂

∂t +X)ϕ| ≤ C at any (t,m) ∈ M+

for some constant C > 0 that does not depend on (t,m).

Proof. Sufficiency.
Consider the flow m+(s) : M+ → M+, s ∈ R, with orbits m+(s)(t,m) =

m+
(t,m)(s) being the solutions of the equation

ṁ+
(t,m)(s) = X+

(
m+

(t,m)(s)
)

with initial conditions
m+

(t,m)(t) = (t,m).
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Consider the derivative X+ϕ of ϕ along X+. At (t,m) ∈ M+, by definition
of the derivative in the direction of a vector field, we get the equality

X+ϕ(t,m) =
d
ds

ϕ
(
m+

(t,m)(s)
)∣
∣
∣
s=t

,

and under the hypothesis of our Theorem
∣
∣
∣
∣

d
ds

ϕ
(
m+

(t,m)(s)
)∣
∣
∣
s=t

∣
∣
∣
∣ ≤ C. (3.3)

Represent the values of ϕ along the orbit m+
(t,m)(s) as follows:

ϕ
(
m+

(t,x)(s)
)
− ϕ((t,m)) =

∫ s

0

d
dτ

ϕ
(
m+

(t,m)(τ)
)

dτ.

From the last equality and from inequality (3.3) we obtain that if s belongs
to a finite interval, the values ϕ(m+

(t,x)(s)) are bounded in R. Then since ϕ is
proper, this means that the set m+

(t,m)(s) is relatively compact in M+.
Recall that by the classical solution existence theorem the domain of any

solution of an ODE is an open interval in R. In particular for s > t the
solution of the above Cauchy problem is well-defined for s ∈ [t, t+ε). If ε > 0
is finite, then from the above arguments it follows that the corresponding
values of the solution belong to a relatively compact set in M and so the
solution is well-defined for s ∈ [t, ε]. The same arguments are valid also for
s < t. Thus the domain is both open and closed and so it coincides with the
entire real line (−∞,∞).

Taking into account the construction of the vector field X+, we can repre-
sent the integral curves m+

(t,m)(s) in the form m+
(t,m)(s) = (s,mt,m(s)). Hence

from the global existence of integral curves of X+ we easily obtain the global
existence of integral curves of X. So, the vector field X is complete.

Necessity.
Let the vector field X be complete. Thus all orbits mt,m(s) of the flow

m(s) are well-defined on the entire real line. Let V = {Vi}i∈N be a countable
locally-finite cover of M where all Vi are open and relatively compact. Such
a cover exists since every finite-dimensional manifold is locally compact and
by definition satisfies the second countability axiom. Introduce the functions
ψi : M → R by the formula

ψi(m) =
{

i if m ∈ Vi

0 if m /∈ Vi.

Denote by {ϕi}∞i=1 the smooth partition of unity subordinate to the above
cover and define the function ψ on M by:
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ψ(m) =
∞∑

i=1

ψi(m)ϕi(m). (3.4)

It is clear that ψ(m) is smooth and proper by construction. Our construction
of the function ψ(m) is taken from [134].

Introduce the function Φ : M+ → R as follows. For any point (t,m) ∈
M+ set Φ(t,m) = ψ(mt,m(0)). By construction the function Φ is constant
along any orbit of the flow m+(s). Indeed, for m+(s)(t,m) = (s,mt,m(s)) the
equality ms,mt,m(s)(0) = mt,m(0) holds.

Consider the function ϕ : M+ → R, ϕ(t,m) = Φ(t,m) + t. Clearly ϕ is
smooth and proper. Consider X+ϕ. By the construction of the vector field
X+ and of the function ϕ we get

X+ϕ = X+(Φ(t,m)) + X+t = 0 + 1 = 1.

Thus we have proven the necessary part of our Theorem for C = 1. This
completes the proof. ��

3.1.2 A generalization to the infinite-dimensional case

A direct infinite-dimensional generalization of the results of the previous sub-
section cannot be obtained at least because of the absence of proper functions
on infinite dimensional manifolds. To avoid this difficulty, here we replace
functions which are proper with respect to the strong topology by functions
which are proper with respect to a weaker topology.

Another difference is that infinite-dimensional ordinary differential equa-
tions with smooth right-hand sides very rarely arise in applications. Gener-
ally the right-hand sides are locally Lipschitz continuous and/or completely
continuous (recall that equations with simply continuous right-hand sides in
infinite-dimensional cases may have no solutions at all) or even are given only
on an everywhere dense subset. Examples of the latter are, say, parabolic
equations, considered as ordinary differential equations on some function
spaces, or equations, close to hydrodynamical ones, on the Sobolev vector
fields on a compact manifold (see, e.g., [61]). In both cases the differential
operator on the right-hand side makes functions (vector fields) less smooth
so that the vectors of the right-hand side that are tangent to the manifold
(phase space) are well-defined only on an everywhere dense subset of “more
smooth” functions (vector fields).

In this subsection we obtain infinite-dimensional necessary and sufficient
conditions for the global existence of solutions both for the right-hand sides
given on the entire manifold and for those given on everywhere dense subsets,
under some additional conditions that seem to be natural.
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3.1.2.1 Basic results for linear Banach spaces

Let B be a Banach space and X(t,m) be a continuous non-autonomous vector
field on B, t ∈ R. For autonomous vector fields no simplification of the
construction and results occurs and so everywhere below we consider the
general non-autonomous case. For such a vector field we consider the following
Cauchy problem

d
ds

m(t,m)(s) = X(s,m(t,m)(s)) (3.5)

m(t,m)(t) = m. (3.6)

Since B is infinite dimensional, without additional conditions (3.5)–(3.6) may
not have solutions. Nevertheless solutions do exist if, say, X(t,m) is com-
pletely continuous, i.e., it is continuous jointly in t ∈ R and m ∈ B and for
each bounded set A ⊂ B and each interval [a, b] ⊂ R the mapping X sends
the set [a, b] × A into a compact set.

Definition 3.4. We say that the Cauchy problem for equation (3.5) is locally
well-posed if for each m ∈ B and t ∈ R there exists a unique local solution
of problem (3.5)–(3.6), well-defined on an interval (t− ε′(t,m), t + ε(t,m)), that
continuously depends on initial data, i.e., from mn → m, tn → t it follows
that m(tn,mn)(s) → m(t,m)(s) for s ∈

⋂
n(t − ε′(tn,mn), t + ε(tn,mn)), where

(t − ε′(tn,mn), t + ε(tn,mn)) is the domain of m(tn,mn)(·).

Remark 3.5. On (t − ε′(t,m), t] the curve m(t,m)(s) may be presented as a
solution of the equation d

dsm(t,m)(s) = −X(s,m(t,m)(s)), inverse to (3.5).
This is why instead of saying that the Cauchy problem (3.5)–(3.6) is locally
well-posed one sometimes says both the direct and inverse Cauchy problems
for (3.5) are locally well-posed.

We retain Definition 3.1 of complete vector fields for infinite-dimensional
systems.

Definition 3.6. A function f : E → R, where E is a Banach space, is called
weakly proper if for any relatively compact set in R its pre-image in E is
bounded.

Remark 3.7. Recall Definition 3.2 of a proper mapping of topological spaces.
Taking into account the features of weakly compact sets in Banach spaces
(see, e.g., [156, 223, 235]), one can easily see that if B is a reflexive Banach
space, Definition 3.6 means that a weakly proper function is indeed proper
with respect to the weak topology on B.

Consider the extended phase space B+ = R × B and the vector field
X+

(t,m) = (1, X(t,m)) on it. From the hypothesis one can easily derive that
X+

(t,m) is completely continuous. It is clear that the curves
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m+
(t,m)(s) = (s,m(t,m)(s)) (3.7)

satisfy the following Cauchy problem on B+

d
ds

m+
(t,m)(s) = X+

(
m+

(t,m)(s)
)

(3.8)

m+
(t,m)(t) = (t,m). (3.9)

Theorem 3.8 Let X(t,m) be a completely continuous vector field on a Ba-
nach space B. Let there exist a continuous weakly proper function f : B+ → R

such that for any curve m+
(t,m)(s), as defined by (3.7), there exists a real con-

stant C > 0 for which the relation
∣
∣
∣f(m+

(t,m)(s1)) − f(m+
(t,m)(s2))

∣
∣
∣ < C|s1 − s2| (3.10)

holds for every pair s1 and s2 in the domain of the curve m(t,m)(s). Then
X(t,m) is complete.

Proof. Let f be as in the hypothesis and let m(t,m)(s) be an arbitrary solution
of (3.5)–(3.6) that is well-defined on some interval s ∈ (t − ε′, t + ε). The
corresponding curve m+

(t,m)(s) is well-defined on the same interval.
If both ε and ε′ are infinite, the Theorem is proved. Let ε be finite. From

the hypothesis it follows that for s ∈ [t, t + ε) the inequality |f(m+
(t,m)(t)) −

f(m+
(t,m)(s))| < Cε holds. Thus on this interval the values |f(m+

t,m(s))|
are bounded by |f(m+

t,m(t))| + Cε. Then from Definition 3.6 it follows
that the points of this curve for s ∈ [t, t + ε) belong to a bounded set
Θ = f−1([t, t + ε)). Since Θ is bounded, the image of Θ under the com-
pletely continuous mapping X+ is compact. Thus the norm of X+ as a con-
tinuous function is bounded on Θ and so ‖X+(m+

(t,m)(s)‖ is bounded on
[t, t + ε). Thus the length of m+

t,m(s) for s ∈ [t, t + ε), which is equal to
∫ ε

t
‖ d

dsm+
(t,m)(s)‖ds =

∫ ε

t
‖X+(m+

(t,m)(s))‖ds, is bounded. Since B is com-
plete and since m+

(t,m)(s) is continuous in s, one can easily derive from this
fact that the limit lim

s→t+ε
m+

(t,m)(s) exists, i.e., m+
(t,m)(s) exists on the closed

interval [t, t + ε].
In complete analogy with these arguments we show that if ε′ is finite,

m+
(t,m)(s) exists on the closed interval [t− ε′, t]. This means that the domain

of m+
(t,m)(s) is both open and closed, hence it is equal to R. Obviously the

same is true for the domain of m(t,m)(s). Thus, since the solution m(t,m)(s)
was arbitrary, X is complete. ��

Corollary 3.9 Let X(t,m) be a completely continuous vector field on a
Banach space B. Suppose there exists a continuous weakly proper function
f : B → R such that for any solution m(t,m)(s) of (3.5)–(3.6) there exists a
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real constant C > 0 for which the relation (3.10) holds for every pair s1 and
s2 in the domain of m(t,m)(s). Then X(t,m) is complete.

Corollary 3.9 is an analog of a well-known sufficient condition for the
completeness of vector fields in finite-dimensional spaces (see the previous
subsection). The proof of Corollary 3.9 is the same as that of Theorem 3.8
with a certain simplification since here we do not use the extended phase
space. Notice that the conditions of Theorem 3.8 after some modification
become necessary and sufficient for the completeness of vector fields (see
Theorem 3.13 below) while Corollary 3.9 gives only sufficient conditions for
completeness.

The next statement describes a particular case where (3.10) is fulfilled.
The relation obtained here easier to verify in practice.

Theorem 3.10 Let a continuous weakly proper function f : B+ → R be
such that its derivative X+f in the direction of a vector field X+ (in the
ordinary sense) is well-defined and satisfies the estimate |X+f | < C at any
point (t,m) ∈ B+ for some constant C > 0 that is independent of (t,m).
Then along any curve m+

(t,m)(s), as introduced by (3.7), relation (3.10) is
satisfied with this C and so by Theorem 3.8 X(t,m) is complete.

Indeed,
∣
∣
∣f

(
m+

(t,m)(s1)
)
− f

(
m+

(t,m)(s2)
)∣
∣
∣ =

∣
∣
∣
∣

∫ s2

s1

(X+f)
(
m+

(t,m)(s)
)

ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ s2

s1

∣
∣
∣(X+f)

(
m+

(t,m)(s)
)∣
∣
∣ds

∣
∣
∣
∣ <

∣
∣
∣
∣

∫ s2

s1

Cds

∣
∣
∣
∣ = C|s1 − s2|.

The next statement gives a necessary condition for the completeness of
X(t,m) of the same sort as the sufficient condition of Theorem 3.8.

Theorem 3.11 Let X(t,m) be a continuous vector field on a Banach space
B such that the Cauchy problem (3.5)–(3.6) is locally well-posed (see Defi-
nition 3.4). If X(t,m) is complete, there exists a continuous weakly proper
function f : B+ → R such that for any curve m+

(t,m)(s), as introduced by
(3.7), there exists a real constant C > 0 for which relation (3.10) holds for
every pair s1 and s2.

Proof. Let the solutions m(t,m)(s) of the problem (3.5)–(3.6) exist on the
entire line. Introduce the weakly proper continuous function r : B → R,
r(m) = ‖m‖.

Denote by gs : B → B the flow of the vector field X, i.e., gs(m) =
m(0,m)(s). Since X(t,m) is complete, under the hypothesis of our Theo-
rem gs is well-defined and forms a continuous family of homeomorphisms
of B. For the same reason, for every point (t,m) ∈ B+ the value m(t,m)(0)
of the curve m(t,m)(s) is well-defined and continuously depends on (t,m).
Now construct the continuous function Φ : B+ → R by assigning the value
Φ(t,m) = r2(mt,m(0)) to the point (t,m) ∈ B+.
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Consider the continuous function f : B+ → R, f(t,m) = Φ(t,m) + t. One
can easily see that f is weakly proper.

By construction, Φ takes constant values along the curves m+
(t,m)(s) on

B+. Indeed, for m+
(t,m)(s) = (s,m(t,m)(s)) the equality m(s,m(t,m)(s))(0) =

m(t,m)(0) holds for all s. Hence,
∣
∣
∣f

(
m+

(t,m)(s1)
)
− f

(
m+

(t,m)(s2)
)∣
∣
∣

=
∣
∣r2

(
m(t,m)(0)

)
+ s1 − r2

(
m(t,m)(0)

)
− s2

∣
∣ = |s1 − s2|.

Thus, the constant C in the conclusion of the theorem may take any value
greater than or equal to 1. ��

For a smooth vector field X(t,m), under some additional hypotheses we
obtain a necessary condition for completeness of the same sort as the sufficient
condition of Theorem 3.10.

Theorem 3.12 Let a Banach space B have a smooth norm and let X(t,m)
be a smooth and complete vector field on B. Then there exist a smooth weakly
proper function f : B+ → R and a real constant C > 0 such that for the
derivative X+f of f in the direction of X+ the inequality |X+f | < C holds
on B+.

Proof. Since X(t,m) is smooth, it is locally Lipschitz continuous and so the
Cauchy problem (3.5)–(3.6) is locally well-posed. From the fact that both the
vector field X(t,m) and the function r2(m) are smooth it follows that the
function f : B+ → R, constructed in the proof of Theorem 3.11, is smooth.
Since Φ takes constant values along the curves m+

(t,m)(s) on B+, a direct
calculation shows that |X+f | = 1. ��

Now let a vector field X(t,m) on a Banach space B be completely contin-
uous and be such that the Cauchy problem (3.5)–(3.6) is locally well-posed.
Then as a corollary to Theorems 3.8 and 3.11 we obtain the following:

Theorem 3.13 Let B be a Banach space. A completely continuous vector
field X(t,m) on B for which the Cauchy problem (3.5)–(3.6) is locally well-
posed is complete if and only if there exists a continuous weakly proper func-
tion f : B+ → R such that for any curve m+

(t,m)(s), as introduced by (3.7),
there exists a real constant C > 0 for which relation (3.10) holds for every
pair s1 and s2 in the domain of the curve m(t,m)(s).

Corollary 3.14 Let B be a Banach space. Both completely continuous and
locally Lipschitz continuous vector fields X(t,m) on B are complete if and
only if there exists a continuous weakly proper function f : B+ → R such that
for any curve m+

(t,m)(s), as introduced by (3.7), there exists a real constant
C > 0 for which relation (3.10) holds for every pair s1 and s2 in the domain
of the curve m(t,m)(s).



3.1 Global in Time Existence of Solutions of Ordinary Differential Equations 75

Indeed, for a locally Lipschitz continuous vector field the Cauchy problem
(3.5)–(3.6) is locally well-posed.

As a corollary to Theorems 3.10 and 3.12 we obtain the following:

Theorem 3.15 Let a Banach space B have smooth norm and let X(t,m) be
a smooth and completely continuous vector field on B. X(t,m) is complete if
and only if there exist a smooth weakly proper function f : B+ → R and a
real constant C > 0 such that for the derivative X+f of f in the direction of
X+ the inequality |X+f | < C holds on B+.

3.1.2.2 The case when the right-hand side of the equation is
defined on an everywhere dense subset

Let D be a Banach space that is embedded into B by a continuous map so
that the image of D is everywhere dense in B. For the sake of simplicity we
do not distinguish between D and its image, so we regard D as a subset of
B.

Let for every m ∈ D and t ∈ R a vector X(t,m) ∈ B be given. Consider
the Cauchy problem

d
ds

m(t,m)(s) = X
(
s,m(t,m)(s)

)
(3.11)

m(t,m)(t) = m ∈ D. (3.12)

In analogy with the notions from the theory of partial differential equations
we give the following:

Definition 3.16. We say that the Cauchy problem (3.11)–(3.12) is locally
well-posed if for each m ∈ D and t ∈ R there exists a unique local solution,
given on a certain interval (t − ε′, t + ε), belonging to D and continuously
depending on the initial data, i.e., from mn → m it follows that m(t,mn)(s) →
m(t,m)(s) for s ∈

⋂
n(t− ε′n, t+ εn), where

⋂
n(t− ε′n, t+ εn) is the domain of

m(t,mn)(·). Here the convergence is understood to be in the topology of D.

We refer the reader, say, to [163, 164] for examples of conditions that
guarantee for an equation the well-posedness of the Cauchy problem (3.11)–
(3.12).

Definition 3.17. The Cauchy problem (3.11)–(3.12) is called regular if its
local solutions exist and, for a solution m(t,m)(s) with m ∈ D, from the
fact that at the time s∗ the point m(t,m)(s∗) belongs to B it follows that
m(t,m)(s∗) ∈ D.

Examples of regular Cauchy problems can be found, e.g., in [15, 34, 61].
In analogy with the above notation, we introduce D+ = R × D and

m+
(t,m)(s) = (s,m(t,m)(s)).
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Theorem 3.18 Let the embedding i : D → M be completely continuous,
let the Cauchy problem (3.11)–(3.12) be regular and let f : D+ → R be a
continuous weakly proper function such that for any curve m+

(t,m)(s) there
exists a real constant C > 0 for which the relation

∣
∣
∣f

(
m+

(t,m)(s1)
)
− f

(
m+

(t,m)(s2)
)∣
∣
∣ < C|s1 − s2|

holds for every pair s1 and s2 in the domain of the curve m(t,m)(s). Then all
solutions of (3.11)–(3.12) are well-defined for s ∈ (−∞,∞).

Proof. Let m(t,m)(s) be an arbitrary solution of the Cauchy problem (3.11)–
(3.12) that exists for s ∈ (t − ε′, t + ε). If both ε and ε′ are infinite, the
Theorem is proved. Suppose they are finite.

As in the proof of Theorem 3.8, from the inequality
∣
∣
∣f

(
m+

(t,m)(s1)
)
− f

(
m+

(t,m)(s2)
)∣
∣
∣ < C|s1 − s2|

along the curve m+
(t,m)(s) it follows that the curve m(t,m)(s) on (t− ε′, t + ε)

belongs to a bounded set in D. Since the embedding of D into B is completely
continuous, this set is relatively compact in B. So, the curve m(t,m)(s), con-
tinuous and relatively compact on (t−ε′, t+ε), can be extended to [t−ε′, t+ε]
in B. But since the solutions of (3.11)–(3.12) are regular, the extension be-
longs to D. Thus the domain of m(t,m)(s) is both open and closed and so it
coincides with R. ��

Theorem 3.19 Let the Cauchy problem (3.11)–(3.12) be locally well-posed
and all solutions of (3.11)–(3.12) exist for s ∈ (−∞,∞). Then there exists
a continuous weakly proper function f : D+ → R such that for any curve
m+

(t,m)(s) there exists a real constant C > 0 for which the relation

∣
∣
∣f

(
m+

(t,m)(s1)
)
− f

(
m+

(t,m)(s2)
)∣
∣
∣ < C|s1 − s2|

holds for every pair s1 and s2.

Proof. This proof is a simple modification of that for Theorem 3.11. The space
B+ is replaced by D+. Existence, uniqueness and continuity of solutions in
D+ now follow from the local well-posedness of the Cauchy problem according
to Definition 3.16. The remaining arguments are the same as in the proof of
Theorem 3.11. ��

Theorem 3.20 Let the embedding i : D → B be completely continuous and
let the Cauchy problem (3.11)–(3.12) be locally well-posed and regular. Then
all solutions of (3.11)–(3.12) are well-defined for all s ∈ (−∞,∞) if and only
if there exists a continuous weakly proper function f : D+ → R such that for
any curve m+

(t,m)(s) there exists a real constant C > 0 for which the relation
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∣
∣
∣f

(
m+

(t,m)(s1)
)
− f

(
m+

(t,m)(s2)
)∣
∣
∣ < C|s1 − s2|

holds for every pair s1 and s2 in the domain of the curve m(t,m)(s).

Theorem 3.20 is a simple corollary to Theorems 3.18 and 3.19.

3.1.2.3 The case of manifolds

Let M be a smooth Banach manifold with model Banach space B. For the
sake of convenience we consider charts on M as triples (U, V, ϕ), where V is
an open ball in the model space B, U is an open set in M and ϕ : V → U is
a homeomorphism. Recall that the structure of a smooth manifold is given
by the maximal atlas for whose charts (Uα, Vα, ϕα) and (Uβ , Vβ , ϕβ), such
that Uα ∩Uβ = Uαβ �= ∅, the changes of coordinates ϕ−1

β ◦ϕα : ϕ−1
α (Uαβ) →

ϕ−1
β (Uαβ) are smooth.
In addition to the maximal atlas, which defines the smooth structure, we

shall also consider atlases (called continuous) that define the structure of a
topological manifold on M with the same model space B. This means that the
changes of coordinates between charts of such an atlas are only continuous.
The charts of a continuous atlas will be denoted by (Ũα, Ṽα, ϕ̃α).

In this section we also assume an additional property of the manifold:

Condition 3.21 There exists a continuous atlas such that the images of all
bounded sets in B under its coordinate changes are bounded.

Sometimes we shall also assume that M satisfies the following:

Condition 3.22 M has a continuous (as in Condition 3.21) countable lo-
cally finite atlas such that for any its charts (Ũα, Ṽα, ϕ̃α) the set Ṽα ⊂ B is
bounded with respect to the norm of the model space B.

Definition 3.23. A set Θ ⊂ M is called relatively weakly compact if there
exists a finite collection of charts (Ũi, Ṽi, ϕ̃i) of a continuous atlas on M such
that Θ ⊂

⋃
i Ũi and for every i the set ϕ̃−1

i (Θ
⋂

Ũi) ⊂ Ṽi is bounded with
respect to the norm of the model space B that contains Ṽi.

Remark 3.24. Unlike the case of linear Banach spaces, the weak topology
is (generally speaking) ill-defined on Banach manifolds while the slightly
stronger topology of weak convergence is well-defined (for details, see [195]).
If the model space B of M is a reflexive Banach space, then under some nat-
ural conditions the relatively weakly compact set described in Definition 3.23
is relatively compact with respect to the topology of weak convergence on M
(see [195]). If M itself is a reflexive Banach space, then any relatively weakly
compact set (described in Definition 3.23) is relatively weakly compact (i.e.,
with respect to weak convergence) by the well-known properties of reflexive
Banach spaces (cf. Remark 3.7).
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Definition 3.25. A function f : N → R on a Banach manifold N is called
weakly proper if for any relatively compact set in R its pre-image is relatively
weakly compact in N as in Definition 3.23.

Definition 3.26. A vector field X(t,m) on M , t ∈ R, is called completely
continuous if its restriction to any chart (U, V, ϕ), as a mapping from R × V
into the model space B, is completely continuous in the ordinary sense.

For X(t,m) we shall consider the Cauchy problem (3.5)–(3.6) on M . We
retain the Definition 3.1 of a complete vector field as well as the Definition
3.4 of local well-posedness of solutions of the Cauchy problem.

As above, we consider the extended phase space M+ = R × M and the
vector field X+

(t,m) = (1, X(t,m)) on it. By formula (3.7) we also introduce
the curves m+

(t,m)(s) that satisfy the Cauchy problem (3.8)–(3.9) on M+.

Theorem 3.27 Let X(t,m) be a completely continuous vector field on a
Banach manifold M . Let there exist a continuous weakly proper function
f : M+ → R on M+ such that for any curve m+

(t,m)(s), as introduced by
(3.7), there exists a real constant C > 0 for which the relation (3.10) holds
for every pair s1 and s2 in the domain of the curve m(t,m)(s). Then X(t,m)
is complete.

The proof of Theorem 3.27 is a simple modification of that for Theorem 3.8
and is left to the reader.

We cannot prove a necessary condition of completeness in the same way
as in Theorem 3.11 since a weakly proper function such as r2(m) may not
exist on an arbitrary infinite-dimensional manifold and so it is a problem to
determine whether at least one weakly proper function on a Banach manifold
exists. We say that a Banach manifold M admits a continuous weakly proper
function if at least one such function is well-defined on M . The following
statements describe sufficient conditions for a Banach manifold M to admit
a weakly proper function of a sort different from r(m) on a Banach space.

Theorem 3.28 If M satisfies Condition 3.22, it admits a continuous weakly
proper function.

Proof. Let {(Ũi, Ṽi, ϕ̃i)} be an atlas as in the hypothesis. In particular, the
covering {Ũi} is locally finite and so there exists a continuous partition of
unity θi(m), i = 1, . . . ,∞ corresponding to {Ũi} (see, e.g., [172]).

Define the functions ψi : M → R by the formulae

ψi(m) =
{

i if m ∈ Ũi

0 if m /∈ Ũi

and construct the function ψ(m) on M by the formula:

ψ(m) =
∞∑

i=1

θi(m)ψi(m).
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By construction ψ(m) is continuous and weakly proper. ��

The construction of ψ above is a modification of the construction in [134]
(cf. the proof of Theorem 3.3).

Corollary 3.29

(i) If M is a paracompact Lindelöf topological space (see, e.g., [168]), it
admits a continuous weakly proper function.

(ii) If M is paracompact and separable, it admits a continuous weakly
proper function.

Proof. (i) For each m ∈ M choose a chart (Uα, Vα, ϕα) such that m ∈ Uα.
Then take an open bounded ball Vm ⊂ Vα centered at ϕ−1

α m and define
Um = ϕαVm. Since M is paracompact, there exists a locally finite refinement
of the covering {Um} (see [172]). Since M is a Lindelöf space, we can select a
countable subcovering {Ui} of that refinement. By construction each Ui is a
subset of some Uα and so there exists an open ball Vi = ϕ−1

α Ui ⊂ Vα. Denote
by ϕi the restriction of ϕα to Vi. Then the atlas {(Ui, Vi, ϕi)} satisfies the
conditions of Theorem 3.28.

(ii) Let Ξ be a countable everywhere dense subset of M . For each m ∈ Ξ
construct a chart (Um, Vm, ϕα) and a locally finite refinement of the covering
{Um} in the same manner as in the proof of (i). Since every point of Ξ is
contained only in a finite number of sets from that refinement, the collection
of sets in the refinement is countable. The rest of the proof is the same as
in (i). ��

Theorem 3.30 Let M admit a continuous weakly proper function and let
a vector field X(t,m) on M be such that the Cauchy problem (3.5)–(3.6) is
locally well-posed. If X(t,m) is complete, there exists a continuous weakly
proper function f : M+ → R on M+ such that for any curve m+

(t,m)(s), as
defined by (3.7), there exists a real constant C > 0 for which the relation
(3.10) holds for every pair s1 and s2.

Proof. Let X(t,m) be complete, i.e., the solutions m(t,m)(s) of the problem
(3.5)–(3.6) exist on the entire line. Let ψ be a weakly proper function on M
that exists by the hypothesis.

Denote by gs : M → M the flow of the vector field X, i.e., gs(m) =
m(0,m)(s). Since X(t,m) is complete and the Cauchy problem is locally well-
posed for it, gs is well-defined and forms a continuous family of homeomor-
phisms of M . From the completeness of X(t,m) it also follows that for every
pair (t,m) ∈ M+ the value m(t,m)(0) of the solution m(t,m)(s) is well-defined
and continuously depends on (t,m).

Now construct a continuous atlas on M+ as follows: for a chart (Uα, Vα, ϕα)
from the smooth atlas on M and for an interval (s1, s2) ⊂ R define

Ũα,(s1,s2) =
⋃

s∈(s1,s2)

(s, gs(Uα)), Ṽα,(s1,s2) = (s1, s2) × Vα
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and
ϕ̃α,(s1,s2)(s, x) = (s, gs(ϕα(x))

for x ∈ Vα. Construct also the continuous function Φ : M+ → R by assigning
the value Φ(t,m) = ψ(mt,m(0)) to the point (t,m) ∈ M+.

Consider the continuous function f : M+ → R, f(t,m) = Φ(t,m) + t.
Taking into account the construction of the continuous atlas

{
Ũα,(s1,s2), Ṽα,(s1,s2), ϕ̃α,(s1,s2)

}
,

one can easily see that f is weakly proper.
By its construction, Φ takes constant values along the curves m+

(t,m)(s) on
M+. Indeed, for m+

(t,m)(s) = (s,m(t,m)(s)) the equality m(s,m(t,m)(s))(0) =
m(t,m)(0) holds for all s. Hence,

∣
∣
∣f

(
m+

(t,m)(s1)
)
− f

(
m+

(t,m)(s2)
)∣
∣
∣

=
∣
∣ψ

(
m(t,m)(0)

)
+ s1 − ψ

(
m(t,m)(0)

)
− s2

∣
∣ = |s1 − s2|.

Thus, the constant C in the conclusion of the theorem may take any value
greater than or equal to 1. ��

Theorem 3.31 Let M be a Banach manifold that admits a continuous
weakly proper function. A completely continuous vector field X(t,m) on M
such that the Cauchy problem (3.5)–(3.6) is locally well-posed is complete if
and only if there exists a continuous weakly proper function f : M+ → R such
that for any curve m+

(t,m)(s), as defined by (3.7), there exists a real constant
C > 0 for which the relation

∣
∣
∣f

(
m+

(t,m)(s1)
)
− f

(
m+

(t,m)(s2)
)∣
∣
∣ < C|s1 − s2|

holds for every pair s1 and s2 from the domain of the curve m(t,m)(s).

Theorem 3.31 follows from Theorems 3.27 and 3.30.
As in the case of linear Banach spaces the following statement holds since

for locally Lipschitz continuous vector fields the Cauchy problems are locally
well-posed.

Corollary 3.32 Let M be a Banach manifold that admits a continuous
weakly proper function. Both completely continuous and locally Lipschitz con-
tinuous vector fields X(t,m) are complete if and only if there exists a con-
tinuous weakly proper function f : M+ → R on M+ such that for any curve
m+

(t,m)(s), as defined by (3.7), there exists a real constant C > 0 for which
the relation

∣
∣
∣f

(
m+

(t,m)(s1)
)
− f

(
m+

(t,m)(s2)
)∣
∣
∣ < C|s1 − s2|
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holds for every pair s1 and s2 in the domain of the curve m(t,m)(s).

An analog of Theorem 3.15 takes the following form:

Theorem 3.33 Let a Banach manifold M have a smooth countable locally
finite atlas such that for any its charts (Uα, Vα, ϕα) the set Vα ⊂ B is bounded
with respect to the norm of the model space B. Let M also admit a smooth
partition of unity. A smooth completely continuous vector field X(t,m) on
M is complete if and only if there exists a smooth weakly proper function
f : M+ → R and a real constant C > 0 such that for the derivative X+f of
f in the direction of X+ the inequality |X+f | < C holds on M+.

A new point in the proof of Theorem 3.33 is that having taken a smooth
partition of unity in the construction of the function ψ in the proof of Theo-
rem 3.28, one obtains a smooth ψ. Since the flow of a smooth X+ is smooth,
the function f constructed from ψ in the proof of Theorem 3.30 is also smooth.
A direct calculation shows that |X+f | = 1. The rest of proof is analogous to
the previous ones.

Remark 3.34. All finite dimensional manifolds are paracompact and sepa-
rable and they all admit smooth partitions of unity. This means that they all
admit smooth proper functions (all finite dimensional weakly proper func-
tions are proper with respect to the strong topology). Notice also that all
continuous finite-dimensional vector fields are completely continuous. Thus,
it follows from Theorem 3.33 that any smooth vector field X(t,m) on any
finite-dimensional manifold M is complete if and only if there exists a smooth
proper function f : M+ → R such that |X+f | < C on M+ for some constant
C > 0. This is the assertion of Theorem 3.3.

Let D be a Banach manifold that is embedded into M by a continuous
map so that the image of D is everywhere dense in M . Let for every m ∈ D
and t ∈ R a vector X(t,m) ∈ TmM be given. Consider the Cauchy problem

d
ds

m(t,m)(s) = X
(
s,m(t,m)(s)

)
(3.13)

m(t,m)(t) = m ∈ D. (3.14)

We use the same definitions of local well-posedness and regularity as in the
case of linear spaces (see Definitions 3.16 and 3.17). As above, we introduce
the manifold D+ = R × D, the vector field X+(t,m) = (1, X(t,m)) and the
curves m+

(t,m)(s) = (s,m(t,m)(s)).
By a combination of arguments used above in the proofs for cases of man-

ifolds and for right-hand sides defined on an everywhere dense subset in a
Banach space, we obtain the following:

Theorem 3.35 Let D be a Banach manifold that admits a weakly proper
function and let the embedding i : D → M be completely continuous. Let
the Cauchy problem (3.13)–(3.14) be locally well-posed and regular. Then all
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solutions of (3.13)–(3.14) are well-defined for all s ∈ (−∞,∞) if and only if
there exists a continuous weakly proper function f : D+ → R such that for
any curve m+

(t,m)(s) there exists a real constant C > 0 for which the relation

∣
∣
∣f

(
m+

(t,m)(s1)
)
− f

(
m+

(t,m)(s2)
)∣
∣
∣ < C|s1 − s2|

holds for every pair s1 and s2 in the domain of the curve m(t,m)(s).

3.1.3 A necessary and sufficient condition for
completeness of a vector field of two-sided type

An alternative type of sufficiency condition for the completeness of flows may
be formulated in terms of the so-called two-sided estimates, i.e., estimates of
the norm of the right-hand side under some additional condition. In R

n we
have, for example, the condition of sub-linear growth ‖X(t, x)‖ < C(1 +
‖x‖) and the famous Wintner theorem [144] (formulated below). Under the
hypotheses of some of these theorems, one can define a new Riemannian
metric on the phase space in such a way that the right-hand side of the
equation is uniformly bounded by a constant with respect to this metric.
Thus, in these cases, the extendability of solutions (the completeness of a
vector field) follows from the fact that a solution has bounded length on every
finite interval with respect to a complete Riemannian metric and, therefore,
is relatively compact.

It turns out that the requirement that the vector field should be bounded
with respect to a complete Riemannian metric can be modified in such a way
that it becomes necessary and sufficient.

Let M be a finite-dimensional smooth manifold and X(t,m) be a vector
field which is jointly smooth in t and m. Denote the extended phase space
R×M by M+. Clearly, T(t,m)M

+ = R×TmM . As in the previous subsections,
define a vector field X+ on M+ setting X+

(m,t) =
(
1, X(m, t)

)
.

Theorem 3.36 A field X on M is complete if and only if there exists a
complete Riemannian metric on M+ with respect to which X+ is uniformly
bounded.

Proof. Clearly, the completeness of X is equivalent to the completeness of
the vector field X+.

Assume that there exists a complete Riemannian metric on M+ with re-
spect to which the field X+ is bounded. Then every integral curve of X+

has finite length on every finite interval. Since the metric is complete, the
last assertion implies the relative compactness of the integral curve on every
finite interval. As above, we deduce that the domain of every integral curve
is both open and closed in R. This yields the completeness of the field.
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Let us prove the “only if” assertion. Let X be complete, then so is X+.
Since, by hypothesis, the field X is smooth, the field X+ is also smooth.
Consider an arbitrary smooth proper real-valued function ψ on the manifold
M (see Definition 3.2). The function g, satisfying the aforesaid conditions,
can be constructed in the same way as ψ in (3.4).

Pick an inner product depending smoothly on (m, t) on each tangent space
T(m,t)({t}×M) to the submanifold {t}×M of the manifold M+. For example,
one can take a Riemannian metric on M and extend it in a natural way. Now
we can construct a Riemannian metric 〈·, ·〉1 on M+ by regarding the vectors
of the field X+ as being of unit length and orthogonal to the subspaces
T(m,t)(M × {t}).

Denote by Φt the diffeomorphism of the manifold M ×{0} to the manifold
M×{t} along the trajectories of the field X+. The function ψ can be regarded
as given on M × {0}. Since the integral curves of the field X+ are globally
extendable, the function f : M+ → R given by the formula

f(m, t) = ψ
(
Φ−1

t (m, t)
)

+ t

is, obviously, smooth and proper. Clearly, X+f = 1, where X+f is the deriva-
tive of the function f in the direction of the field X+.

Let us now choose an arbitrary smooth function ϕ : M+ → R such that

ϕ(m, t) > max exp(Y f)2,

where Y ∈ T(m,t)

(
M × {t}

)
and ‖Y ‖1 = 1. Such a function can be defined

as follows. For a relatively compact neighborhood of each point (m′, t′) ∈
M+, there exists a constant greater than sup max exp(Y f)2, where, as above,
Y ∈ T(m,t)

(
M × {t}

)
and ‖Y ‖1 = 1, and the supremum is taken over all

points (m, t) from the neighborhood. Then, using the paracompactness of
M+ and, as a consequence, the existence of a smooth partition of unity, we
glue together the function ϕ so that it is defined on the whole of M+.

At every point (m, t) ∈ M+, define the inner product on T(m,t)M
+ by the

formula
〈Y,Z〉2 = ϕ2(m, t)〈pmY, pmZ〉1 + pXY · pXZ,

where Y,Z ∈ T(m,t)M
+ and pm, pX are (in the metric 〈 , 〉1) orthogonal

projections of T(m,t)M
+ onto T(m,t)

(
M ×{t}

)
and X+, respectively. Clearly,

‖X+‖2 = 1.

Lemma 3.37 The Riemannian metric 〈·, ·〉2 is complete on M+.

Proof. [of the lemma] By the Hopf-Rinow Theorem (Theorem 3.68) it is
enough to prove that every geodesic is extendable to the whole real axis.
It suffices to consider the geodesics with unit velocity vector norm. The other
geodesics can be obtained from these by linear changes of time.

Let c(s) be a geodesic with unit velocity vector norm, i.e., ‖ċ(s)‖2 = 1 for
all s. One can easily see that d

dsf(c(s)) = ċ(s)f = (pmċ(s))f + (pX ċ(s))f .
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Since ‖ċ(s)‖2 = 1 and since pmċ(s) and pX ċ(s) are orthogonal to each other
with respect to the metric 〈·, ·〉2, ‖pmċ(s)‖2 ≤ 1 and ‖pX ċ(s)‖2 ≤ 1. Hence,

∣
∣
∣
∣

d
ds

f(c(s))
∣
∣
∣
∣ ≤

∣
∣
∣
∣

pmċ(s)
‖pmċ(s)‖2

f

∣
∣
∣
∣ +

∣
∣
∣
∣

pX ċ(s)
‖pX ċ(s)‖2

f

∣
∣
∣
∣

=
∣
∣
∣
∣

1
ϕ(c(s))

pmċ(s)
‖pmċ(s)‖1

f

∣
∣
∣
∣ + |X+f | < 2

by construction of the functions ϕ and f .
Thus, the function f

(
c(s)

)
is bounded on any finite interval (a, b) and,

since f is proper, the set of points c(s) for s ∈ (a, b) is relatively compact.
This proves the unlimited extendability of the geodesic. ��

As mentioned above, ‖X+‖2 = 1, which completes the proof of Theo-
rem 3.36. ��

Remark 3.38. If the field X(t,m) is Ck-smooth on M+, then the above
construction gives a Ck-smooth complete Riemannian metric on M+, with
respect to which X+ is bounded.

3.1.4 Some sufficient conditions

As already mentioned above, sufficient conditions for the completeness of a
vector field are known and, when they hold, it is easy to find a Riemannian
metric such that the vector field is bounded. In this subsection, we construct
a complete Riemannian metric using a Wintner type hypothesis. Later, this
metric will be used to study complicated differential equations (stochastic,
with delay, etc).

Let us recall the classical Wintner theorem (see, e.g., [144]). Consider the
following differential equation on the Euclidean space R

n:

ẋ = f
(
t, x(t)

)
(3.15)

where f(x, t) is continuous in (t, x).

Theorem 3.39 (Wintner). Suppose that
∥
∥f(x, t)

∥
∥ ≤ ϕ(t) · L

(
‖x‖

)
,

where the function ϕ(t) is positive and integrable on any finite interval [0, l],
and L : [ 0,∞) → (0,∞) is continuous and satisfies the condition

∫ ∞

0

du

L(u)
= ∞. (3.16)

Then all solutions of (3.36) are defined on (−∞,∞).



3.1 Global in Time Existence of Solutions of Ordinary Differential Equations 85

The Wintner theorem will be derived from the following result.

Theorem 3.40 Let M be a complete Riemannian manifold with Riemannian
metric 〈 , 〉 and L : [ 0,∞) → (0,∞) be a smooth function satisfying (3.16).
Choose a point m0 ∈ M and define a Riemannian metric 〈·, ·〉∗ by

〈·, ·〉∗m =
1

L2
(
ρ(m0, m)

) 〈·, ·〉m (3.17)

at a point m ∈ M , where ρ is the Riemannian distance on M in the metric
〈·, ·〉. If 〈·, ·〉 is complete, then so is 〈·, ·〉∗.

Lemma 3.41 The minimal geodesics of 〈·, ·〉 and 〈·, ·〉∗ starting at m0 coin-
cide to within a parametrization.

Proof. The lemma can be proved with a straightforward calculation: it can
be shown that the minimal geodesics (beginning at m0) of the first metric
satisfy the geodesic equation of the second metric and the cut loci of both
metrics coincide.

Let us continue the proof of the theorem. It suffices to prove that the
metric ball UT , centered at m0, of any fixed radius T in the metric 〈·, ·〉∗
is compact. (By the Hopf-Rinow theorem, this implies completeness.) Sup-
pose the contrary, i.e., assume for some l that the ball Ul is not compact.
Since 〈·, ·〉 is a complete metric, it follows by Lemma 3.41 that Ul contains a
minimal geodesic u(s) of infinite length in the metric 〈·, ·〉, beginning at m0.
Here s is the natural parameter (the length) in the metric 〈·, ·〉. Denote the
reparametrization of u(s) with the length in 〈·, ·〉∗ by u(t). By Lemma 3.41,
u(t) is a minimal geodesic of the metric 〈·, ·〉∗.

The definition of the metric 〈·, ·〉∗ yields

ds

dt
= L (u(s)) = L(s)

and since u(s) lies in Ul,

∫ ∞

0

ds

L(s)
≤

∫ l

0

dt = l.

This contradicts condition (3.16). ��

Corollary 3.42 Let M be a complete Riemannian manifold, X(t,m) a vec-
tor field continuous in (t,m), and L : [0,∞) → (0,∞) a continuous function
satisfying (3.16). Suppose there exists a point m0 ∈ M such that at every
point m ∈ M the inequality

∥
∥X(t,m)

∥
∥ < ϕ(t) · L

(
ρ(m0, m)

)
holds, where ρ

is the Riemannian distance on M and ϕ is a positive function integrable on
every finite interval. Then the field X(t,m) is complete.

Proof. It is obvious that for any constant C > 0, the function L+ C satisfies
(3.16). There exists a smooth function Ψ(u) such that L < Ψ < L + C for
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u ∈ [ 0,∞). Clearly, Ψ satisfies (3.16). Let 〈·, ·〉 be a Riemannian metric on
M . Consider 〈·, ·〉∗m = Ψ−2(m)

(
ρ(mq, m)

)
〈·, ·〉m. By Theorem 3.40, 〈·, ·〉∗ is

complete. Now it suffices to observe that the length of every integral curve of
the field X(t,m) in the metric 〈·, ·〉∗ is bounded above on any interval [a, b)
by

∫ b

a
ϕ(t) dt. ��

Wintner’s theorem is a particular case of the corollary, where M is the
Euclidean space R

n.

3.2 Integral Operators with Parallel Translation

Ordinary differential equations on a vector space can be turned into equiva-
lent Volterra type integral equations. In fact, this method is very often used
in the investigation of ordinary differential equations. For example, one can
turn the Cauchy problem ẋ = f

(
t, x(t)

)
, x(0) = x0 in R

n into the integral
equation x(t) = x0 +

∫ t

0
f
(
τ, x(τ)

)
dτ. To do so, we use the fact that for any

continuous curve y(t) there exists a unique curve z(t) =
∫ t

0
f
(
τ, y(τ)

)
dτ such

that the derivative of z(t) at any point t is equal to f(t, y(t)). The existence
of the curve z(t) is possible only because of global parallelism on the tangent
bundle to the vector space. Indeed, the vectors ż(t) and f(t, y(t)) belong to the
tangent spaces at different points, and the equation ż(t) = f(t, y(t)) makes
sense only by virtue of the existence of global parallelism, i.e., a canonical
isomorphism between all tangent spaces and the vector space itself.

Global parallelism does not exist on an arbitrary manifold. Therefore clas-
sical integrals can be used only locally (in charts) and, moreover, the integrals
themselves depend on the choice of the coordinate system. In this section,
following [86, 88, 94], we describe a construction of an analog of the integral
operator, in which global parallelism is replaced with parallel translation
(with respect to a connection) along a chosen curve. For simplicity we use
the Levi-Civitá connection on a complete finite-dimensional manifold.

Similar notions of absolute and covariant integrals were introduced in a
different way by Vujičić. (See, e.g., [227, 228, 229] and the bibliography in
[229].) There, the integral is defined in a local coordinate system with the
connection coefficients used in such a way that the integral becomes covariant
with respect to changes of coordinates.

3.2.1 The operator S

Let M be a complete Riemannian manifold, let m0 ∈ M , I = [0, l] and let
v : I → Tm0M be a continuous curve.
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Theorem 3.43 There exists a unique C1-curve γ : I → M such that γ(0) =
m0 and the tangent vector γ̇(t) is parallel to the vector v(t) ∈ Tm0M for every
t ∈ I.

Proof. Let b0 = (e0
1, . . . , e

0
n) be a basis in the tangent space Tm0M ; b0 gives

rise to an isomorphism between R
n and Tm0M by the formula b0(x1, . . . , xn) =

x1e0
1 + . . . + xne0

n, where R
n is the model space of M .

Consider the time-dependent basic vector field E(b−1
0 v(t)) on the frame

bundle B(M). Clearly, this field is locally Lipschitz in b ∈ B(M). Hence,
for every point b ∈ B(M), there exists a unique integral curve b(t) passing
through b, b(0) = b. The curve γ(t) = πb0(t) is the one we are looking for.
(Here π is the natural projection of B(M) to M .) Indeed, for any point t∗ in
the domain of γ(·), the vectors γ̇(t∗) and v(t∗) are connected along γ(·) by
the parallel vector field b0(t)

(
b−1
0 v(t∗)

)
.

It remains to prove that γ(·) is defined on the whole interval [0, l]. Since
the metric on M is complete, the metric ball of radius

∫ l

0
‖v(s)‖ ds centered

at m0 is compact. Now assume that γ(t) is defined on [ 0, t∗), where t∗ ∈ [0, l].
The length of γ(·) on [ 0, t∗) equals

∫ t∗

0

‖v(s)‖ ds ≤
∫ l

0

‖v(s)‖ ds,

i.e., γ(t) belongs to a compact set and, therefore, can be extended to [0, t∗].
It is clear that one can extend γ(·) to a neighborhood of t∗. Thus, the domain
of γ(·) is open and closed in [0, l], i.e., it coincides with [0, l]. The theorem is
proved. ��

In what follows, we denote by Sv(·) the curve γ constructed as above
beginning with v.

Remark 3.44. It is important to emphasize that S(v(t)), for a continuous
curve v ∈ C0(I, Tm0M)), is independent of the basis b0 used in the proof
of Theorem 3.43. To see this, let us go back to the construction of γ(·) and
replace the basis b0 by b1 in Tm0M . Since there exists an invertible n × n
matrix b such that b1 = b0 ◦ b and since the connection is invariant with
respect to the right action of GL(n, R) on BM , it follows from the definition
of a basic vector field that πb1(t) = γ(t).

Remark 3.45. Let m(t) be a C1-smooth curve in M , t ∈ I, m(0) = m0. De-
note by Γ the operator of parallel translation along m(·) at Tm0M . The curve
C(m)(t) =

∫ t

0
Γṁ(s)ds is known as Cartan’s development of m(t) at Tm0M .

The curve Sv(·) introduced above is expressed via Cartan’s development as
Sv(t) = C−1(

∫ t

0
v(s)ds).

Consider the Banach space C0(I, Tm0M) of continuous maps from I to
Tm0M and the Banach manifold C1(I,M) of C1-smooth maps from I to M .



88 3 Ordinary Differential Equations

As follows from Theorem 3.43, the operator S : C0(I, Tm0M) → C1(I,M) is
well-defined. If M is a Euclidean space, Sv is a primitive of v.

It is easy to see that S is a homeomorphism between C0(I, Tm0M) and its
image C1

m0
(I,M) in C1(I,M), where the manifold C1

m0
(I,M) consists of all

C1-curves γ with γ(0) = m0.

Theorem 3.46 Let UK be the ball of radius K centered at the origin of
C0(I, Tm0M). Then, at every point t ∈ I, the inequality

∥
∥γ̇(t)

∥
∥ ≤ K holds

for all curves γ(·) in the set SUK .

This is obvious since parallel translation preserves the norm of a vector.

Theorem 3.47 Assume that the point m1 ∈ M is not conjugate to m0 along
some geodesic of the Levi-Civitá connection on M . Then for any geodesic
α(·), α(0) = m0, α(1) = m1, along which m0 and m1 are not conjugate,
and for any K > 0, there exists a constant L̄(m0, m1, K, α) > 0 with the
following property: for any t1, 0 < t1 < L̄(m0, m1, K, α), and for any curve
u(·) ∈ UK ⊂ C0

(
[0, t1], Tm0M

)
, there exists a unique vector Cu ∈ Tm0M ,

such that S(u + Cu)(t1) = m1, which belongs to a bounded neighborhood of
t−1
1 · α̇(0) ∈ Tm0M and depends continuously on u.

Proof. We divide the proof into two lemmas. Without loss of generality we
assume that the parameter t on g(t) is chosen so that g(0) = m0 and g(1) =
m1.

Lemma 3.48 There exists a ball Uε ⊂ C0([0, 1], Tm0M) with radius ε > 0
such that for any curve û(t) ∈ Uε ⊂ C0([0, 1], Tm0M) there exists a unique
vector Cû, belonging to a bounded neighborhood V of the vector α̇(0) in
Tm0M , that is continuous in û and such that S(û + Cû)(1) = m1.

Proof. [of Lemma 3.48] Consider the mapping from C0
(
[0, 1], Tm0M

)
×Tm0M

to M sending a pair (u,C), where u ∈ C0
(
[0, 1], Tm0M

)
and C ∈ Tm0M , to

the point S(u + C)(1). Note that the vector field E(b−1
0 (v(t)) on B(M) is

smooth in v(·). (See the proof of Theorem 3.43.) Using this fact, the definition
of S, and the classical theorem on the smooth dependence of solutions of
differential equations on parameters, one can easily show that this map is
jointly smooth in u and C. Clearly, we have S(C)(1) = exp(C) when u = 0.
Thus, by the hypotheses of the theorem, S

(
α̇(0)

)
(1) = m1 and S(C)(1) is a

diffeomorphism from a neighborhood of α̇(0) in Tm0M onto a neighborhood
of m1 in M .

Let us now think of S(u + C)(1) as a perturbation of S(C)(1) = exp(C).
Thus, there exists a ε > 0 such that for any fixed û ∈ Uε ⊂ C0

(
[0, 1], Tm0M

)

the operator S(û+C)(1) is a local diffeomorphism. Therefore, there is a ball
D ⊂ Tm0M centered at α̇(0) such that, for any û ∈ Uε, there exists a vector
Cû ∈ D solving the equation S(û+Cû)(1) = m1. Using the implicit function
theorem one may show that, when D is sufficiently small, the vector Cû ∈ D
is unique and Cû depends continuously on û. ��



3.2 Integral Operators with Parallel Translation 89

We introduce the notation sup
C∈V

‖C‖ = C where V is as defined in Lemma

3.48.

Remark 3.49. One can easily show that ε < C.

Lemma 3.50 In the conditions and notation of Lemma 3.48 let K > 0
and t1 > 0 be such that t−1

1 ε > K. Then for any curve u(t) ∈ UK ⊂
C0([0, t1], Tm0M) there exists a unique vector Cu in a neighborhood t−1

1 V
of the vector t−1

1 γ̇(0) in Tm0M , continuously depending on u and such that
S(u + Cu)(t1) = m1.

Proof. [of Lemma 3.50] For u(t) ∈ UK ⊂ C0([0, t1], Tm0M) let û(t) = t1u(t1 ·
t) ∈ Uε ⊂ C0([0, 1], Tm0M) and Cu = t−1

1 Cû. From Lemma 3.48 we get
S(û + Cû)(1) = m1 and d

dtS(û + Cû)(t) is parallel to û(t) + Cû. For the
curve γ(t) = S(û + Cû)(t · t1) we have d

dtγ(t) = t−1
1

d
dtS(û + Cû)(t · t1) and

this vector is parallel along the same curve to the vector t−1
1 (û(t) + Cû) =

u(t)+Cu. Thus γ(t) = S(u+Cu)(t) = S(û+Cû)(t · t−1
1 ) for t ∈ [0, t1]. Hence

S(u + Cu)(t1) = S(û + Cû)(1) = m1. ��

This completes the proof of Theorem 3.47. ��

Lemma 3.51 For specified t1 > 0 and K > 0 all curves S(v(t)+Cv)(t) with
v ∈ UK ⊂ C0([0, t1]Tm0M) lie in a compact set Ξ ⊂ M , where Ξ depends on
ε and C is as defined above.

Indeed, since parallel translation preserves the norm of a vector, for any
v(t) as above, the length of S(v(t) + Cv)(t) is no greater than

∫ t1
0

(K +
‖Cv‖)dt ≤

∫ t1
0

t−1
1 (ε + C)dt =

∫ 1

0
(ε + C)dt = ε + C. Since M is complete,

by the Hopf-Rinow theorem any closed metric ball of finite radius ε + C is
compact.

Remark 3.52. Note that if M is a Euclidean space, one can take any con-
stant as ε in the proof of Theorem 3.3., i.e., the theorem holds for every t1,
0 < t1 < ∞.

3.2.2 The operator Γ

Let γ(t), t ∈ I, be a C1-curve in M and X(γ(t)) a continuous vector field
along γ(·). Consider the curve ΓX

(
γ(t)

)
in Tγ(0)M where Γ is the operator

of parallel translation along γ(·) at γ(0).

Lemma 3.53 (Compactness lemma). Let Ξ ⊂ C0(I, TM) be such that
πΞ ⊂ C1(I,M), where π : TM → M is the natural projection, and the norms
of the derivatives of the curves πΞ are uniformly bounded by a certain con-
stant K > 0. If Ξ is relatively compact in C0(I, TM), then so is ΓΞ.
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Proof. Since the closure Ξ̄ of the set Ξ is compact in C0(I, TM), the vectors
of

{
ξ(t)

∣
∣ ξ(·) ∈ Ξ

}
are bounded and the set πΞ̄ is compact in C0(I,M). This

implies, in particular, that all curves in πΞ lie in a compact subset of‘M .
Let ξ∗(·) be a limit curve of the set Ξ. It is clear that the inequality

ρ (πξ∗(t), πξ∗(t′)) ≤ K |t − t′| ,

where t, t′ ∈ I and ρ is the Riemannian distance, holds for the curve πξ∗(·).
Note that this curve may not be smooth. Parallel translation along such
curves was defined in [29] as the limit of parallel translations along their
piecewise geodesic approximations. Moreover, it was shown that under the
hypothesis above, the procedure of parallel translation converges uniformly
on any bounded set of vectors. If the curve is smooth, the new definition
of parallel translation is equivalent to the classical one. It was also shown
that the parallel translation along a limit curve is just the limit of parallel
translations along curves converging to it. Therefore, Γ sends convergent
sequences to convergent ones. ��

If X(γ(t)) = X(t, γ(t)) is the restriction to γ(·) of a continuous vec-
tor field X(t,m), t ∈ I and m ∈ M , then we use the notation Γ ◦ γ for
ΓX(t, γ(t)). Thus, for a specified vector field X(t,m), we may consider the
operator Γ : C1(I,M) → C0(I, TM), which is clearly continuous.

Let ΩK be the set of curves from C1(I,M) satisfying the inequality
‖γ̇(t)‖ ≤ K, where K > 0, at every point t ∈ I and such that the set{
γ(0)

∣
∣ γ(·) ∈ ΩK

}
is bounded in M .

Theorem 3.54 The set of curves Γ (ΩK) is relatively compact in C0(I, TM).

Proof. Because M is complete, it is clear that ΩK is relatively compact in
C0(I,M). Since the field X(t,m) is continuous, the set of curves

{
X

(
t, γ(t)

) ∣
∣

γ(·) ∈ ΩK

}
is relatively compact in C0(I, TM). The theorem follows from

Lemma 3.53. ��

Corollary 3.55 The operator Γ is locally compact.

Proof. For every γ ∈ C1(I,M), the continuous function ‖γ̇(t)‖ assumes its
supremum Kγ on I. By the definition of the C1-topology, the inequality
‖γ̇1‖ < Kγ + ε holds for every γ1(·) in a small neighborhood of γ(·). ��

3.2.3 Integral operators

Consider the continuous composition operator

S ◦ Γ : C1
m0

(I,M) → C1
m0

(I,M).
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Theorem 3.56 The fixed points of S ◦ Γ are precisely the integral curves of
the field X(t,m) with the initial condition γ(0) = m0.

Proof. Let γ(t) be an integral curve of the field X(t,m), i.e., γ̇(t) =
X

(
t, γ(t)

)
. Then the operator Γ on γ(·) is equal to S−1, and so γ is a fixed

point of S ◦ Γ . Conversely, let γ(·) be a fixed point of the operator S ◦ Γ .
Using the parallel translation along γ(·), we transport the vector X

(
t, γ(t)

)

to γ(0) = m0 and then back to γ(t). The resulting vector coincides with γ̇(t)
by the definitions of S and Γ . Therefore, γ̇(t) = X

(
t, γ(t)

)
. ��

Thus, S ◦ Γ is a direct analog of the standard Urysohn-Volterra integral
operator from the theory of ordinary differential equations on vector spaces.

Theorem 3.57 The operator S ◦ Γ is locally compact.

The assertion of Theorem 3.57 follows from the local compactness of Γ
and the continuity of S.

Let Θ be a closed bounded set in M and C1
m0

(I, Θ̄) the subset in C1
m0

(I,M)
formed by curves lying in the closure of Θ. Consider the second iteration
(S ◦ Γ )2 of the operator S ◦ Γ .

Theorem 3.58 The set (S ◦ Γ )2C1
m0

(I, Θ̄) is compact in C1
m0

(I,M).

Proof. Since Θ is bounded and M is complete, Θ is compact. Therefore,
‖X(t,m)‖ is bounded on I × Θ by some constant K. Since parallel transla-
tion preserves the norm, the curves ΓC1

m0
(I, Θ̄) lie in

⋃
m∈Θ UK(m) and, by

Theorem 3.46, the set S ◦ ΓC1
m0

(I, Θ̄) is formed by curves which satisfy the
inequality ‖γ̇(t)‖ ≤ K at every point t ∈ I. Now the theorem follows from
Theorem 3.54 and the continuity of the operator S. ��

Composition operators, such as S ◦Γ , are employed to solve certain prob-
lems in the theory of differential equations on manifolds (for example, to
find periodic solutions for some special classes of differential equations). The
construction of such operators and their applications are described, e.g., in
the survey [33]. The theory of topological characteristics is also developed in
[28, 33, 109] for a large class of maps of infinite-dimensional manifolds. This
theory enables one to prove the existence of fixed points of these operators.

Let us discuss one more class of integral operators that can be used to
reduce certain problems on manifolds to problems on vector spaces. Consider
the composition Γ ◦ S. This operator is continuous and acts on the Banach
space C0(I, Tm0M). If v = Γ ◦ Sv, then Sv = S ◦ Γ ◦ Sv = (S ◦ Γ )Sv is a
fixed point of S ◦Γ and so, an integral curve of the field X(t,m). Conversely,
Sv = S ◦ Γ (Sv) implies that v = Γ ◦ Sv because S is one-to-one.

Theorem 3.59 The operator Γ ◦ S is completely continuous.

Proof. Let UK be a ball of radius K in C0(I, Tm0M). By Theorem 3.46,
SUK ⊂ ΩK and, by Theorem 3.54, the set Γ ◦ SUK is compact. ��
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Remark 3.60. As mentioned in the introduction to this section, we consider
the Levi-Civitá connection of a complete Riemannian metric only to simplify
the presentation of the material. Under certain hypotheses, the constructions
of the integral operators may be generalized to other connections. Note, for
example, that we have never used the fact that the connection has zero tor-
sion, i.e., all of our constructions hold for any Riemannian connection of
a complete Riemannian metric. In particular, the construction leads to the
classical multiplicative integral for a special choice of the connection on a Lie
group. (See, e.g., [78] for matrix groups.)

3.3 Second Order Differential Equations (Special Vector
Fields)

Let M be a manifold with tangent bundle TM . On the manifold TM there is
a class of vector fields that is naturally coordinated with the bundle structure
of TM . This class describes the second order differential equations on M .

Recall the well-known trick of reducing a second order differential equation
in R

n to a first order differential equation in R
2n: the differential equation

ẍ = f(t, x, ẋ) in R
n is equivalent to the system of first order differential

equations
ẋ = y

ẏ = f(t, x, y) (3.18)

in R
2n. We emphasize that a general system in R

2n has the form

ẋ = f1(t, x, y)
ẏ = f2(t, x, y),

i.e., (3.18) is a system of a special form.
It is clear that in every chart of a manifold a second order differential

equation must be reduced to a special system of first order equations on
the tangent bundle. It turns out that such systems are vector fields of a
special type connected with the bundle structure. Let us introduce the exact
definition.

Definition 3.61. A vector field Y (t, (m, X)) on the tangent bundle TM is
called a special vector field on TM or a second order differential equation on
M if at every point (m, X) ∈ TM the equality

TπY (t, (m, X)) = Xm (3.19)

holds where π : TM → M is the natural projection of TM onto M .

Recall that by Convention 1.3 Xm and (m, X) are two equivalent desig-
nations of the same object. Below, if it is not necessary to emphasize that
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the vector Y (t, (m, X)) is given at (m, X) ∈ TM , we shall also denote it by
Y (t,m,X). Represent a vector Y at a point (m, X) on TM as a quadruple

Y (t, (m, X)) = (m, X, Y1(t, (m, X)), Y2(t, (m, X))),

as described in Section 2.1. By applying formula (2.3) we find TπY (t, (m, X))
and substituting into the above, we obtain:

Tπ(m, X, Y1(t, (m, X)), Y2(t, (m, X))) = (m, Y1(t, (m, X))) = (m, X).

Thus, if Y is a second order differential equation Y1(t, (m, X)) = X, and so
the presentation as a quadruple takes the form

Y(m,X) = (m,X,X, Y2(t, (m, X))). (3.20)

We show that second order differential equations (special vector fields), as
defined in Definition 3.61, do indeed yield ordinary second order differential
equations in the charts of M . Let (m(t), X(t)) be an integral curve of a special
vector field Y on TM . This means that

d
dt

(m(t), X(t)) = Y(m(t),X(t)) = (m(t), X(t), X(t), Y2(t, (m(t), X(t)))),

i.e. d
dtm(t) = X(t) and d

dtX(t) = Y2(t, (m(t), X(t))). Thus the curve m(t) =
π(m(t), X(t)) on M (the projection of the integral curve of Y ) satisfies the
equation m̈(t) = Y2(t,m(t), X(t)) in the charts. The curve m(t) in M is
called a solution of the second order differential equation Y . It follows from
the above arguments that the integral curve of Y on TM is represented via
m(t) by the formula (m(t), ṁ(t)) where ṁ(t) = d

dtm(t).
Let a connection H be given on a manifold M . Recall (see Lemma 2.12)

that at any point (m, X) ∈ TM the mapping Tπ is a linear isomorphism of
H(m,X) onto TmM . Hence in H(m,X) there is a unique vector Z(m,X) such
that

TπZ(m,X) = Xm. (3.21)

On constructing such a vector at each point (m, X) ∈ TM , we obtain the
vector field Z on TM . From formula (3.21) it immediately follows that Z is
a second order differential equation (special vector field, see Definition 3.61).

Definition 3.62. The second order differential equation Z constructed above
is called the geodesic spray of the connection H.

Remark 3.63. A spray is a second order differential equation Y that has the
following property: for any real number a ∈ R and every point (m, X) ∈ TM
the equality Y(m,aX) = Ta(aY(m,X)) holds (see formula (2.7) where the action
of the real line on a vector bundle is defined). One can easily verify that Z
satisfies the definition of a spray.



94 3 Ordinary Differential Equations

For a given connection H the geodesic spray Z is a universal object
for the description of all second order differential equations. Let Y be
such an equation. Since every tangent space to TM is presented as di-
rect sum T(m,X)TM = H(m,X) ⊕ V(m,X), there is a unique decomposition
Y(m,X) = HY(m,X) + VY(m,X) where HY(m,X) ∈ H(m,X) is called the horizon-
tal component of Y(m,X) and VY(m,X) ∈ V(m,X) is the vertical component (see
Section 2.2).

Proposition 3.64 For any second order differential equation Y its horizon-
tal component is Z.

Proof. By the definition of second order differential equations, TπY(m,X) =
Xm. Since V(m,X) is the kernel of Tπ (see Lemma 2.12), we get that
TπVY(m,X) = 0 and so TπHY(m,X) = TπY(m,X) = Xm. But in H(m,X), as
mentioned above, there is unique vector Z(m,X) having this property. Thus
HY(m,X) = Z(m,X). ��

Let a curve m(t) in M be a solution of the second order differential equa-
tion Y , i.e., (m(t), ṁ(t)) is an integral curve of the vector field Y on TM ,
d
dt (m(t), ṁ(t)) = Y(m(t),ṁ(t)) (see above). Apply the connector K of the con-
nection H to both sides of this equality. Since K ◦ d

dt = D
dt and KY = pVY

(see Section 2.2), we obtain

D
dt

ṁ(t) = pVY. (3.22)

On the other hand, for the curve m(t) the derivative of the corresponding
curve (m(t), ṁ(t)) in TM is always a vector of some second order differential
equation for each t (i.e., property (3.19) is fulfilled). By Proposition 3.64, once
a connection on M given, any second order differential equation is uniquely
defined by its vertical component. If in addition m(t) satisfies (3.22), this
equation coincides with Y .Thus, we have proved the following:

Proposition 3.65 The solutions m(t) of the second order differential equa-
tion Y , and only these solutions, satisfy equation (3.22).

Corollary 3.66 The solutions of the geodesic spray Z, and only these solu-
tions, are geodesics of the connection H.

Proof. Since Z(m,X) ∈ H(m,X) and H(m,X) is the kernel of K (see Lemma
2.14(ii)), one obtains that KZ = 0 and equation (3.22) takes the form
D
dtṁ(t) = 0, i.e., m(t) satisfies (2.24). ��

Corollary 3.66 together with Remark 3.63 clarify the name “geodesic
spray” for Z.

Consider the equation

D
dt

ṁ(t) = Y (t,m(t), ṁ(t)), (3.23)
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where Y (t,m,X) is a non-autonomous vector field on M which depends, at
each point m ∈ M , on the vector parameter X ∈ TmM . Denote by Y l the
vector field on TM that at (m, X) ∈ TM and t ∈ R is the vertical lift of
Y (t,m,X) at the point (m, X) (see Definition 2.34). Evidently we obtain

Proposition 3.67 If a curve m(t) satisfies (3.23), it is a solution of the
second order differential equation Y l + Z.

Without proof we present the following classical result of finite-dimensional
Riemannian geometry (for a proof, see e.g., [26, 161]).

Theorem 3.68 (Hopf-Rinow theorem) For a finite-dimensional Riemann-
ian manifold M the following four statements are equivalent:

(i) M is a complete Riemannian manifold (see Definition 1.49), i.e., it is
complete as a metric space with respect to the Riemannian distance ρ;

(ii) every set that is bounded with respect to the Riemannian distance ρ is
relatively compact;

(iii) the Levi-Civitá connection is complete in the sense of Definition 2.40;
(iv) the geodesics of the Levi-Civitá connection, starting at some specified

point, are well-defined for all t ∈ (−∞,∞).
From equivalent statements (i)–(iv) it follows that:
(v) for every pair of points m0, m1 ∈ M there exists a geodesic of the Levi-

Civitá connection that joins them and whose length is equal to ρ(m0, m1).

Remark 3.69 (Hamiltonian systems). The additional vector bundle
structure on the tangent bundle TM yielded above the special class of vec-
tor fields on TM , second order differential equations. Analogously, the ad-
ditional structure on the cotangent bundle yields a single special object
called the canonical 1-form, the differential form θ whose value on a vec-
tor Y ∈ T(m,α)T

∗M at a point (m, α) ∈ T ∗M is given by the formula
θ(m,α)(Y ) = αm(TπY ), where π : T ∗M → M is the natural projection.

By routine calculation one can easily show that at αm = pidqi the canon-
ical 1-form obtains the coordinate presentation θ(m,α) = pidqi that coincides
with the coordinate expression of α at m ∈ M . For θ the coordinates corre-
spond to the covectors from the first half of the basis in T ∗

(m,α)T
∗M while for

α the entire basis in T ∗
mM is involved.

The canonical 2-form on T ∗M is Ω = dθ. Its coordinate presentation is
Ω = dpi ∧ dqi. We obtain directly from the definition that Ω is exact and so
it is closed. In addition one can easily prove that Ω is not degenerate, i.e.,
for every 1-form β at every point (m, α) ∈ T ∗M there exists a unique vector
Xβ ∈ T(m,α)T

∗M such that for every vector Y ∈ T(m,α)T
∗M the equality

β(Y ) = Ω(Y,Xβ) holds.
Let H : T ∗M → R be a smooth function and consider its differential

dH (i.e. a covector field). The vector field XH such that for every vector
field Y the equality dH(Y ) = Ω(Y,XH) holds is called the screw gradient of
H or Hamiltonian vector field with Hamiltonian H. For the screw gradient
XH = Xi ∂

∂qi +X̃i
∂

∂pi
the coordinates take the form Xi = ∂H

∂pi
, X̃i = −∂H

∂qi , and
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so the integral curve of XH with coordinates (q1(t), . . . , qn(t), p1(t), . . . , pn(t))
satisfies the system d

dtq
i = ∂H

∂pi
, d

dtpi = −∂H
∂qi . The latter system is called the

Hamiltonian system with Hamiltonian H.
Hamiltonian systems describe a broad class of processes in physics and

mechanics. For conservative mechanical systems (see Section 11.3 below) the
Hamiltonian H is the total energy expressed in terms of momenta.

The Hamiltonian H is constant along the integral curves of XH . Indeed,
XHH = dH(XH) = Ω(XH , XH) = 0 since Ω is skew symmetric. Taking into
account that the usual interpretation of the Hamiltonian in mechanics is the
total energy, this is a version of the conservation of energy law.

Consider two smooth functions f and g as Hamiltonians and (as usual) de-
note by Xf and Xg, respectively, their Hamiltonian vector fields. The function
{f, g} = Ω(Xf , Xg) is called the Poisson bracket of f and g. Its coordinate
representation is easily derived in the form {f, g} = ∂f

∂pi

∂g
∂qi − ∂f

∂qi
∂g
∂pi

.
The Poisson bracket is evidently skew-symmetric. It is easily shown that it

satisfies the Jacobi identity (1.8). So, the Poisson bracket defines the structure
of a Lie algebra on the space of smooth functions on T ∗M .

The Poisson bracket is useful for applications. In physical applications it
is more important to find the values of a function along a solution than the
solution itself (for example, the solution can describe a process in a chemical
reactor and the function of the solution, the temperature of the wall of the
reactor). Let γ(t) be a solution of a Hamiltonian system with Hamiltonian
H and f : T ∗M → R be a smooth function. Then one can easily show that
the real-valued function of the real variable f(γ(t)) satisfies the equation
d
dtf = {H, f}.

The notion of a Hamiltonian system can be generalized to a class of man-
ifolds much broader than cotangent bundles. A manifold M , on which a
smooth closed non-degenerate 2-form Ω is given, is called a symplectic man-
ifold and in this case Ω is called the symplectic form.

Every 2-form on an odd-dimensional manifold is degenerate. Hence all
symplectic manifolds are even-dimensional. The construction and results on
Hamiltonian systems can be translated to symplectic manifolds. Locally (i.e.,
in the charts) every symplectic manifold is organized as the cotangent bundle
of a certain manifold. This follows from a famous theorem of Darboux.

There is also a broad generalization of Hamiltonian theory to so-called
Poisson manifolds, i.e., manifolds in the space of smooth functions on which
a bracket operation {·, ·} satisfying the Jacobi identity is given ({·, ·} is the
Poisson bracket). In this case equations of the type d

dtf = {H, f} are consid-
ered instead of ordinary Hamiltonian systems.

We refer the reader, say, to [212] where a detailed geometrical description
of Hamiltonian theory is given.



Chapter 4

Elements of the Theory of Set-Valued
Mappings

In this chapter we survey some notions in the theory of set-valued mappings
which will be used below for the description of complicated mechanical sys-
tems such as systems with discontinuous forces, with control, etc.

More details can be found, for example, in [31, 155], where in particular
the proofs of many of the results presented here are given.

4.1 Set-Valued Mappings and Differential Inclusions

A set-valued mapping F from a set X into a set Y is a correspondence that
assigns a non-empty subset F (x) ⊂ Y to each point x ∈ X. F (x) is called
the value of x.

In order to distinguish set-valued mappings from single-valued mappings
we shall denote a set-valued mapping F sending X to Y by the symbol
F : X � Y while for a single-valued mapping we shall retain the notation
f : X → Y .

If X and Y are metric spaces, for set-valued mappings there are several
different analogs of continuity that in the case of single-valued mappings
coincide with the usual definition of continuity (here we do not deal with the
description of such a notion for set-valued mappings of topological spaces,
see, e.g., [31]).

Definition 4.1. A set-valued mapping F is upper semicontinuous at the
point x ∈ X if for each ε > 0 there exists a neighborhood U(x) of x such
that from x′ ∈ U(x) it follows that F (x′) belongs to the ε-neighborhood of
the set F (x). F is upper semicontinuous on X if it is upper semicontinuous
at every point of X.

Definition 4.2. A set-valued mapping F is lower semicontinuous at the
point x ∈ X if for each ε > 0 there exists a neighborhood U(x) of x such that
from x′ ∈ U(x) it follows that F (x) belongs to the ε-neighborhood of F (x′).
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F is lower semicontinuous on X if it is lower semicontinuous at every point
of X.

Definition 4.3. If F is both upper and lower semicontinuous, it is said to
be continuous (sometimes it is also called Hausdorff continuous).

A continuous set-valued mapping F with the property that, for each x, its
value F (x) is a closed bounded set, is continuous with respect to the so-called
Hausdorff metric on the space of all non-empty closed bounded subsets in
Y . In order to describe the Hausdorff metric we first introduce the submetric
H̄(A, B) = sup

a∈A
ρ(a, B) where ρ is the metric in Y . Then the Hausdorff metric

is defined by the formula

H(A, B) = max(H̄(A, B), H̄(B, A)). (4.1)

A set-valued mapping is said to be closed if its graph is a closed subset in
X × Y . If F is closed and for each point x ∈ X there exists a neighborhood
U(x) such that F (U(x)) is relatively compact, F is upper semicontinuous.

Definition 4.4. We say that F (t, x) satisfies the upper Carathéodory condi-
tion if:

1) for every x ∈ X the map F (·, x) : I � Y is measurable;
2) for almost all t ∈ I the map F (t, ·) : X � Y is upper semicontinuous.

Definition 4.5. Let I = [0, l] ⊂ R. The set-valued mapping F : I × X � Y
is said to be almost lower semicontinuous if there exists a countable sequence
of disjoint compact sets {In}, In ⊂ I such that:

(i) the measure of I\ ∪n In is equal to zero;
(ii) the restriction of F on each In × X is lower semicontinuous.

An important technical role in the investigation of set-valued mappings is
played by single-valued mappings that approximate the set-valued mappings
in some sense. We describe two kinds of such single-valued mappings: selectors
and ε-approximations.

Definition 4.6. Let F : X � Y be a set-valued mapping. A single-valued
mapping f : X → Y such that for each x ∈ X the inclusion f(x) ∈ F (x)
holds is called a selector of F .

Not every set-valued mapping has a continuous selector. However, for lower
semicontinuous set-valued mappings with convex closed values, their exis-
tence is proved in the following classical Theorem.

Theorem 4.7 (Michael’s Theorem) If X is an arbitrary metric space and Y
is a Banach space, then a lower semicontinuous mapping such that the value
of every point of X is a convex closed set has a continuous selector.
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If the values of a lower semicontinuous set-valued mapping are not, in gen-
eral, convex, it may not have continuous selectors. In this case the following
construction is often very useful.

Definition 4.8. Let E be a separable Banach space. A non-empty set M ⊂
L1([0, l]; E) is called decomposable if f ·χM +g ·χ[0,l]\M ∈ M for all f, g ∈ M
and for every measurable subset M in [0, l] where χ is the characteristic
function of the corresponding set.

The reader can find more details about decomposable sets in [48] and [155].

Theorem 4.9 (Bressan-Colombo Theorem) Let (Ω, d) be a separable metric
space, X be a Banach space and (J,A, μ) be a measurable space with a σ-
algebra A and a non-atomic measure μ such that μ(J) = 1. Consider the
space Y = L1

X(J,A, μ) of integrable mappings from (J,A, μ) into X. If a
set-valued mapping F : Ω � Y is lower semicontinuous and has closed
decomposable values, F has a continuous selector.

The assertion of Theorem 4.9 is proved, for example, as Lemma 9.2 in [48].
Upper semicontinuous mappings arise in applications more often than

lower semicontinuous mappings. Generally speaking, they do not have con-
tinuous selectors (but they do have measurable selectors). The so-called ε-
approximations are very useful for investigating upper semicontinuous map-
pings.

Definition 4.10. For a given ε > 0 a continuous single-valued mapping fε :
X → Y is called an ε-approximation of a set-valued mapping F : X � Y if
the graph of f , as a set in X×Y , belongs to the ε-neighborhood of the graph
of F .

We mention the following classes of upper semicontinuous set-valued map-
pings of finite-dimensional spaces, for which the existence of ε-approximations
is proved for each ε > 0:

(i) the mappings with convex closed values;
(ii) the mappings with values that are aspheric in all dimensions from 1

to n − 1 and weakly aspheric in the dimension n (see [32]). This class
of set-valued mappings was first considered by A.D. Myshkis in 1954
[184]. In [32] and [87] topological characteristics of topological index and
Lefschetz number types were constructed for such mappings. Later (in
the 1980s) this class was rediscovered and described as “the mappings
whose values at every point have the so-called uvk-property for k =
1, . . . , n” (for the exact definition see, e.g., [166]).

Let X be a Banach space and F : X � X be an upper semicontinuous set-
valued mapping with convex closed values. For each bounded subset Ω ⊂ X,
let the image F (Ω) be relatively compact. Then if F sends a ball B of X
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into itself, in B there exists a fixed point x ∈ F (x) of F (this is an analog of
Schauder’s principle known as the Glicksberg-Ky Fan Theorem).

Let F : R × R
n � R

n be a set-valued mapping. A differential inclusion

ẋ ∈ F (t, x) (4.2)

is an analog of a differential equation and transforms into the latter if F is
single-valued.

A solution of (4.2) is an absolutely continuous curve x(t) such that (4.2)
is satisfied for x(t) almost everywhere.

If F is upper semicontinuous and has convex closed bounded values, for
each pair x0 ∈ R

n, t0 ∈ R there exists a local in time solution of (4.2) with the
initial condition x(t0) = x0. It is also known that for an upper semicontinuous
F with closed bounded (not necessarily convex) values there exists a solution
of the Cauchy problem for the differential inclusion

ẋ ∈ coF (t, x),

where coF (t, x) is the convex closure of F (t, x).
The existence of solutions of (4.2) for lower semicontinuous F is possible

also for non-convex values. Often such existence can be proved by applying
the Bressan-Colombo Theorem (Theorem 4.9).

4.2 Special Approximations

Here, following [10, 11], we prove the existence of special approximations
for upper semicontinuous mappings in finite-dimensional spaces with convex
closed values which point-wise converge to a Borel measurable selector of the
set-valued mapping as ε → 0. These results will often be used below.

Theorem 4.11 Let Φ : R
n � R

n be an upper semi-continuous set-valued
mapping with convex closed bounded values. For a sequence εi → 0 there exists
a sequence of continuous εi-approximations for Φ that point-wise converges
to a Borel measurable selector of Φ. If Φ takes values in a convex set Ξ in
R

n, these ε-approximations also take values in Ξ.

Proof. It is shown in [79, Theorem 2] that, in the case under consideration,
for any εi there exists a lower semi-continuous set-valued map Ψi : R

n � R
n

with closed convex bounded values such that: (i) for any x ∈ R
n the inclusion

Φ(x) ⊂ Ψi(x) holds and (ii) the graph of Ψi belongs to the εi-neighborhood
of the graph of Φ. From the construction it follows that if Φ takes values
in a convex set Ξ in R

n, then the values of all Ψi(x) belong to Ξ. Notice
that for an upper semi-continuous mapping with compact values the sum of
such mappings and the products with a continuous function are upper semi-
continuous. Hence, from the proof of Theorem 2 of [79] it follows that, in
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the case under consideration, all Ψi are continuous set-valued mapping and,
in particular in our case, they are continuous with respect to the Hausdorff
metric.

Consider the minimal selector ψi(·) of Ψi(·), i.e., ψi(x) is the closest point
to the origin in Ψi(x), x ∈ R

n. We refer the reader to [5] for a complete
description of minimal selectors. In particular, it is shown there that minimal
selectors are continuous. Thus, ψi is an εi-approximation of Φ.

Let x ∈ R
n. Since Φ(x) ⊂ Ψi(x) for each i, for the Hausdorff submetric

H̄ we have H̄(Φ(x), Ψk(x)) = 0. Hence for the Hausdorff metric H we obtain
that H(Ψi(x), Φ(x)) = H̄(Ψi(x), Φ(x)) for each i.

Now specify εk. By the definition of upper semi-continuity, for any x ∈ R
n

there exists a δk > 0 such that for any x′ in the δk-neighborhood of x the
value Φ(x′) belongs to the εk-neighborhood of Φ(x). Since εi → 0, εk+l < δk

for some l = l(k, x) and without loss of generality we may take l(k, x) ≥ 0.
Thus H̄(Φ(x′), Φ(x)) < εk for each x′ in the εk+l-neighborhood of x.

Since the graph of Ψk+l belongs to the εk+l-neighborhood of the graph of
Φ, there exists a point x′′ in the εk+l-neighborhood of x such that Ψk+l(x)
belongs to the εk+l-neighborhood of Φ(x′′), i.e., H̄(Ψk+l(x), Φ(x′′)) < εk+l.

Thus

H(Ψk+l(x), Φ(x)) = H̄(Ψk+l(x), Φ(x))
≤ H̄(Ψk+l(x), Φ(x′′)) + H̄(Φ(x′′), Φ(x))
< εk+l + εk < 2εk.

Hence at each x the convex set Ψi(x) tends to the convex set Φ(x) with respect
to the Hausdorff metric as i → ∞. It follows that ψi(x) tends to the point
ϕ(x) ∈ Φ(x) that is the closest to the origin. The well-known fact that the
point-wise limit ϕ(·) of the sequence of continuous mappings ψi(·) is a Borel
measurable mapping completes the proof. 	


We introduce Ω̃ = C0([0, T ], Rn) – the Banach space of continuous curves
in R

n given on [0, T ], with the usual uniform norm – and the σ-algebra F̃
on Ω̃ generated by cylinder sets. By Pt we denote the σ-subalgebra of F
generated by cylinder sets with bases over [0, t] ⊂ [0, T ]. Recall that F̃ is the
Borel σ-algebra on Ω̃ (see [208]).

Let B : [0, T ] × Ω̃ → Z be a mapping to some metric space Z. Below
we shall often suppose that such mappings, for various spaces Z, satisfy the
following condition:

Condition 4.12 For each t ∈ [0, T ], from the fact that the curves x1(·) and
x2(·) ∈ Ω̃ coincide for 0 ≤ s ≤ t, it follows that B(t, x1(·)) = B(t, x2(·)).

Remark 4.13. The fact that a mapping B satisfies Condition 4.12 is equiv-
alent to the fact that B is measurable at each t with respect to a Borel
σ-algebra in Z and Pt in Ω̃ (see [83], cf. Condition 6.19(ii) below).
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Theorem 4.14 Let (εk) be a sequence of positive numbers such that εk → 0
as k → ∞. Let B be an upper semi-continuous set-valued mapping with com-
pact convex values sending [0, T ]× Ω̃ to a finite-dimensional Euclidean space
Y and satisfying Condition 4.12. Then there exists a sequence of continuous
single-valued mappings Bk : [0, T ] × Ω̃ → Y with the following properties:

(i) each Bk satisfies Condition 4.12;
(ii) the sequence Bk point-wise converges to a selector of B that is measur-

able with respect to the Borel σ-algebra in Y and the product σ-algebra
of the Borel σ-algebra on [0, T ] and F̃ on Ω̃;

(iii) at each (t, x(·)) ∈ [0, T ]× Ω̃ the inequality ‖Bk(t, x(·))‖ ≤ ‖B(t, x(·))‖
holds for all k;

(iv) if B takes values in a closed convex set Ξ ⊂ Y , the values of all Bk

belong to Ξ.

Proof. In this proof we combine and modify the ideas used in the proofs of
[79, Theorem 2] by Gel’man and Theorem 4.11 above.

For t ∈ [0, T ] define the mapping ft : Ω̃ → Ω̃ by the formula

ftx(·) =
{

x(s) if 0 ≤ s ≤ t
x(t) if t ≤ s ≤ T.

(4.3)

Clearly ftx(·) is jointly continuous in t ∈ [0, T ] and x(·) ∈ Ω̃. Since B satisfies
Condition 4.12, B(t, x(·)) = B(t, ftx(·)) for each x(·) ∈ Ω̃ and t ∈ [0, T ].

Choose an element εk from the sequence. Since B is upper semi-continuous,
for every (t, x(·)) ∈ [0, T ] × Ω̃ there exists a δk(t, x) > 0 such that for ev-
ery (t∗, x∗(·)) from the δk(t, x)-neighborhood of (t, x(·)) the set B(t∗, x∗(·))
is contained in the εk

2 -neighborhood of the set B(t, x(·)). Without loss of
generality we can suppose 0 < δk(t, x) < εk for every (t, x(·)). Consider the
δk(t,x)

4 -neighborhood of (t, x(·)) in [0, T ]× Ω̃ and construct the open covering
of [0, T ]×Ω̃ by such neighborhoods for all (t, x(·)). Since [0, T ]×Ω̃ is paracom-
pact, there exists a locally finite refinement {V k

j } of this covering. Without
loss of generality we can consider each V k

j as an ηk(tkj , xk
j )-neighborhood of

some (tkj , xk
j (·)) where by construction the radius ηk(tj , xj) ≤ δk(tj ,xj)

4 .
Consider a continuous partition of unity {ϕk

j } adapted to {V k
j } and in-

troduce the set-valued mapping Φk(t, x(·)) =
∑

j

ϕk
j (t, x(·))coB(V k

j ) where

co denotes the convex closure. Since B(t, x(·)) is upper semi-continuous and
has compact values, without loss of generality we can suppose δk(t, x) to be
such that the images B(V k

j ) are bounded in Y and so the sets coB(V k
j ) are

compact. Denote by Φk(t, x(·)) the closure of Φk(t, x(·)). Then one can easily
see that Φk : [0, T ] × Ω̃ → Y is a Hausdorff continuous set-valued mapping
with compact convex values.

Define Ψk : [0, T ] × Ω̃ → Y by the formula Ψk(t, x(·)) = Φk(t, ftx(·)) and
consider the set-valued mapping Ψk(t, x(·)). Since ft is continuous, every Ψk
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is a Hausdorff continuous set-valued mapping with compact convex values
and by construction it satisfies Condition 4.12.

The pair (t, ftx(·)) belongs to a finite collection of neighborhoods V k
ji

with centers at (tkji
, xk

ji
(·)), i = 1, . . . , n, and so by construction B(t, x(·)) =

B(t, ftx(·)) ⊂ B(V k
ji

) for each i. Hence B(t, x(·)) = B(t, ftx(·)) ⊂ Ψk(t, x(·))
for every pair (t, x(·)).

Let l be the index from the collection of indices ji above such that ηk(tkl , xk
l )

takes the greatest value among ηk(tkji
, xk

ji
). Then all (tkji

, xk
ji

(·)) are con-
tained in the 2ηk(tkl , xk

l )-neighborhood of (tkl , xk
l (·)) and so every V k

ji
is con-

tained in the 3ηk(tkl , xk
l )-neighborhood of (tkl , xk

l (·)) that is contained in
the δk(tkl , xk

l (·))-neighborhood of (tkl , xk
l ) by construction. Then, also by con-

struction, Ψk(t, x(·)) belongs to the εk

2 -neighborhood of B(tkl , xk
l (·)). Since

both Ψk(t, x(·)) and B(tkl , xk
l (·)) are convex, this means that Ψk(t, x(·)) also

belongs to the εk

2 -neighborhood of B(tkl , xk
l (·)). Notice that this is true for

each k.
Since B(t, x(·)) ⊂ Ψk(t, x(·)) ⊂ Ψk(t, x(·)), for the Hausdorff submetric H̄

we have
H̄ (B(t, x(·)) , Ψk(t, x(·))) = 0.

Hence for the Hausdorff metric H we obtain that

H
(
Ψk(t, x(·)), B(t, x(·))

)
= H̄

(
Ψk(t, x(·)), B(t, x(·))

)
.

Since εk → 0, for (t, x(·)) there exists an integer θ = θ(t, x(·)) > 0 such
that εk+θ < δk(t, x(·)). Without loss of generality we can suppose that θ ≥ 1.

Thus B(tk+θ
l , xk+θ

l (·)) belongs to the εk

2 -neighborhood of B(t, x(·)) and
so

H̄
(
B

(
tk+θ
l , xk+θ

l (·)
)
, B(t, x(·))

)
<

εk

2
.

Since Ψk+θ(t, x(·)) belongs to the εk+θ

2 -neighborhood of B(tk+θ
l , xk+θ

l (·))
(see above), we obtain that

H̄
(
Ψk+θ(t, x(·)), B

(
tk+θ
l , xk+θ

l (·)
))

<
εk+θ

2
.

Thus

H
(
Ψk+θ(t, x(·)), B(t, x(·))

)
= H̄

(
Ψk+θ(t, x(·)), B(t, x(·))

)

≤ H̄
(
Ψk+θ(t, x(·)), B

(
tk+θ
l , xk+θ

l (·)
))

+ H̄
(
B

(
tk+θ
l , xk+θ

l (·)
)
, B(t, x(·))

)

<
εk+θ

2
+

εk

2
< εk.

So, at each (t, x(·)) we have that H(Ψk(t, x(·)), B(t, x(·))) → 0 as k → ∞
and B(t, x(·)) ⊂ Ψk(t, x(·)) for all k.
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Consider the minimal selector Bk(t, x(·)) of Ψk(t, x(·)), i.e., Bk(t, x(·)) is
the closest point to the origin in Ψ i(t, x(·)). We again refer the reader to [5]
for a complete description of minimal selectors and, in particular, recall that
the minimal selectors we shall be considering are all continuous. One can
easily see that all Bk satisfy Condition 4.12.

By construction the minimal selectors Bk(t, x(·)) of Ψk(t, x(·)) point-wise
converge to the minimal selector B(t, x(·)) of B(t, x(·)) as k → ∞ since
at any (t, x(·)) we have that H(Ψk(t, x(·)), B(t, x(·))) → 0 as k → ∞ and
B(t, x(·)) ⊂ Ψk(t, x(·)) for all k (see above). It is a well-known fact that the
point-wise limit B of the sequence of continuous mappings Bk is measurable
with respect to the Borel σ-algebras in Y and in [0, T ] × Ω̃ (see [194]). The
latter coincides with the product σ-algebra of the Borel σ-algebra on [0, T ]
and F̃ on Ω̃ (see [208]). Properties (iii) and (iv) immediately follow from the
construction. 	


Remark 4.15. Unlike Ψ̄k(t, x(·)), the set-valued mapping Φ̄k(t, x(·)) may not
satisfy Condition 4.12 since two different curves x1(·) and x2(·) coinciding on
[0, t] may have different neighborhoods V k

j to which they belong, and so the
values Φ̄k(t, x1(·)) and Φ̄k(t, x2(·)) may be different. On the other hand, it
follows from [79] that Φ̄k is an εk-approximation of B while the same is not
true for Ψ̄k.



Chapter 5

Analysis on Groups of
Diffeomorphisms

5.1 General Concepts

By Hs we denote the Sobolev space of functions such that the functions and
their generalized derivatives up to order s belong to the functional space
L2. A detailed description of Sobolev spaces can be found, e.g., in [62]. An
introduction to the manifold structure in functional sets can be found in [64].
The reader may wish to consult [61] for details on the remaining material of
this section.

The case of a compact manifold without boundary

Let M , dim M = n, be a compact oriented manifold without boundary
equipped with a Riemannian metric 〈·, ·〉 and its Levi-Civitá connection H.

Denote by Hs = Hs(M,M) the set of Sobolev Hs-mappings from M to
M with s > 1

2n + 1. Recall that for s > 1
2n + k the maps from Hs are

Ck-smooth. Sometimes we shall also deal with sets Hs(M,N) where N is
a manifold with the same dimension as M . There is an infinite-dimensional
manifold structure on Hs(M,M) and Hs(M,N) (see [61]).

Consider the open neighborhood Ds(M) of the identical mapping in
Hs(M,M) that consists of all Hs-diffeomorphisms. Consider also its subset
Ds

μ(M) comprising the Hs-diffeomorphisms which preserve the Riemannian
volume form.

Ds(M) and Ds
μ(M) have the structures of smooth (and separable) Hilbert

manifolds as well as the natural multiplicative group structures (with respect
to composition). A detailed description of these structures and their inter-
connections can be found in [61]. The tangent space TeDs(M) at the unit
e = id is the space of all vector fields on M belonging to Hs, and TeDs

μ(M)
is the space of all divergent-free vector fields on M belonging to Hs. The
tangent space TgDs

μ(M), g ∈ Ds
μ(M), consists of the compositions of the

fields from TeDs
μ(M) with g, i.e., TgDs

μ(M) = {X ◦ g|X ∈ TeDs
μ(M)}. This
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means that Y ∈ TgDs
μ(M) is a map Y : M → TM such that πY (m) = g(m)

where π : TM → M is the natural projection. For X ∈ TeDs
μ(M) we have

πX(m) = m. Ds(M) also possesses the same features, i.e., TgDs(M) = {X ∈
Hs(M,TM)|π ◦ X = g}, etc.

Let N be a compact oriented Riemannian manifold without boundary.
Consider the mappings αg : Hs(M,N) → Hs(M,N) of the form αg(f) =
f ◦ g, and ωh : Ds(M) → Hs(M,N) of the form ωh(r) = h ◦ r.

Lemma 5.1 (α-lemma) αg is C∞-smooth and its derivative is also of the
form αg.

Lemma 5.2 (ω-lemma) ωh is continuous. If h ∈ Hs+k, ωh : Ds →
Hs(M,N) is a Ck-mapping with derivative of the form ωTh. In particular, if
h ∈ C∞, ωh is C∞-smooth.

The right translation Rf : Ds
μ(M) → Ds

μ(M), Rf ◦ θ = θ ◦ f , where θ, f ∈
Ds

μ(M), is C∞-smooth and thus one may consider right-invariant vector fields
on Ds

μ(M). The tangent to right translation takes the form TRfX = X ◦ f
for X ∈ TDs

μ(M). For Ds(M) we have analogous properties.

Convention 5.3 We shall consider TRg : TηDs(M) → Tη◦gDs(M) for all
η, g ∈ Ds(M) as a right action of Ds(M) on TDs(M).

Theorem 5.4 Let X ∈ TeDs(M) be a vector field on M and X̄ be the cor-
responding right-invariant vector field on Ds(M), X̄g = X ◦ g. The vector
field X̄ on Ds(M) is Ck-smooth if and only if the vector field X on M be-
longs to the class Hs+k. In particular, X̄ is C∞-smooth if and only if X
is C∞-smooth. The same property holds for right-invariant vector fields on
Ds

μ(M).

This fact is a consequence of the ω-lemma 5.2 and is also true for more
complicated fields (for example, for right-invariant tensor fields).

The left translation Lgf = g◦f is continuous. If g ∈ Ds+k(M), Lg is a Ck-
mapping. In particular, in this case TLg(X) = Tg◦X where Tg : TM → TM
is the tangent mapping of g and X ∈ TDs(M). The mapping g �→ g−1 is
continuous on Ds(M). If g ∈ Ds+k(M), this is a Ck-mapping from Ds+k(M)
to Ds(M). Thus, from the point of view of the standard finite-dimensional
definition, Ds(M) is not a Lie group.

Theorem 5.5 Let s > n
2 + 1 and let the right-invariant vector field X̄ on

Ds(M) be C1-smooth. Then:

(i) for every g ∈ Ds(M) there exists a unique integral curve γg(t) of this
field, well-defined for all t ∈ (−∞,∞), such that γg(0) = g;

(ii) γe(t) is the flow of the vector field X = X̄e on M , γg(t) = γe(t) ◦ g;
(iii) if s > n

2 + 2, assertion (i) is valid for a continuous right-invariant
vector field X̄ on Ds(M).

The same results are true for right-invariant vector fields of Ds
μ(M).
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For g ∈ Ds(M) consider the tangent space TgDs(M) (see above). Define
an inner product (·, ·) in TgDs(M) by the formula

(X,Y )g =
∫

M

〈X(m), Y (m)〉g(m)μ(dm), (5.1)

where X, Y ∈ TgDs(M) and μ is the Riemannian volume form. Recall that
πX(m) = πY (m) = g(m) so that the vectors X(m) and Y (m) belong to the
tangent space at g(m) and so the product is found with respect to 〈·, ·〉g(m).
Since the metric tensor 〈·, ·〉 is C∞-smooth, from the ω-lemma 5.2 it follows
that (5.1) is C∞-smooth in g ∈ Ds(M).

Clearly this metric introduces the topology of the functional space L2 =
H0 in the tangent spaces, which is weaker than the initial topology on Hs.
This is why (·, ·) is called a weak Riemannian metric.

One can easily check that the second tangent bundle TTDs(M) consists
of Hs maps from M to TTM with the additional properties that they are
projected into maps from Ds(M). Consider the connector K : TTM → TM
of the Levi-Civitá connection H on M .

Define the mapping K̄ : TTDs(M) → TDs(M) by the equality

K̄(Y ) = K ◦ Y. (5.2)

Theorem 5.6 K̄ is invariant with respect to right shifts on Ds(M).
K̄ is the connector of a connection H̄ that is proved to be the Levi-Civitá

connection of the metric (5.1).
For vector fields X,Y on Ds(M) and for a vector field X(t) along a cer-

tain smooth curve g(t) in Ds(M) define the covariant derivatives ∇̄XY and
D̄
dtX(t), respectively, by the usual formulae (cf. Definitions 2.22 and 2.25)

∇̄XY = K̄ ◦ TY (X) = K ◦ TY (X),
D̄
dt

X(t) = K̄ ◦ d
dt

X(t) = K ◦ d
dt

X(t). (5.3)

On Ds(M) with connection H̄ a vector field X along a curve g(t) is parallel
if D̄

dtX(t) = 0. The curve g(t) is geodesic if it satisfies the equation D̄
dt ġ(t) = 0,

where ġ(t) = d
dtg(t).

The geodesic spray Z̄ of H̄ is described as follows:

Z̄(X) = Z ◦ X (5.4)

for X ∈ TDs(M), where Z is the geodesic spray of the connection H on M .
Since Z is C∞-smooth, from the ω-lemma 5.2 it follows that Z̄ is C∞-smooth
on TDs(M). From (5.4) it evidently follows that Z̄ is Ds(M)-right-invariant.

Proposition 5.7 If g(t) is a geodesic of the connection H̄ on Ds(M), then
for every f ∈ Ds(M) the curve Rfg(t) is also a geodesic.

This follows from the fact that the geodesic spray Z̄ is right-invariant.
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Remark 5.8. The exponential mapping exp of the Levi-Civitá connection
on Ds(M) is well-defined. It is a C∞-mapping of a neighborhood of the zero
cross-section in TDs(M) to Ds. This follows from the existence, uniqueness
and smooth dependence on initial values of the local solution of the Cauchy
problem for integral curves of C∞-smooth vector fields. The fact that exp
sends a neighborhood in TeDs(M) onto a neighborhood of e in Ds follows
from general properties of smooth exponential mappings.

In what follows the tangent space TeDs(M) will be called the algebra of
the group Ds(M) in analogy with finite-dimensional Lie groups. In fact the
everywhere dense linear submanifold of C∞-vector fields in TeDs(M) really
is an infinite-dimensional Lie algebra, on which the bracket coincides with
the ordinary Lie bracket of vector fields. However, the entire tangent space
TeDs(M) is not an infinite-dimensional Lie algebra since the Lie bracket can
give values which are not in TeDs(M).

The restriction of (5.1) to TDs
μ(M) is evidently right-invariant. It is a weak

Riemannian metric on Ds
μ(M).

Recall the Hodge decomposition for M [61]

Hs(TM) = Gs ⊕ Es ⊕ kerΔ = Gs ⊕ TeDs
μ(M) (5.5)

where Gs is the space of gradients of all Hs+1 functions on M , Es is the space
of all Hs-co-gradients on M , kerΔ is the space of all harmonic (i.e., both
gradient and co-gradient) vector fields on M and ⊕ denotes the orthogonal
direct sum with respect to the L2-inner product (5.1) in TeDs(M). By a co-
gradient we mean a vector field corresponding to a co-exact form on M with
respect to the Riemannian metric 〈·, ·〉. ker Δ is a finite-dimensional space
and consists of C∞-smooth vector fields.

Denote by Pe : TeDs(M) = Hs(TM) → Es⊕ker Δ = TeDs
μ(M) the (·, ·)e-

orthogonal projection in (5.5). Consider the mapping P̄ : TDs(M)|Ds
μ(M) →

TDs
μ(M) determined for each η ∈ Ds

μ(M) by the formula

P̄η = TRη ◦ Pe ◦ TR−1
η . (5.6)

It is obvious that P̄ is Ds
μ(M)-right-invariant. There is an important and

rather complicated result (see [61]) that P̄ is C∞-smooth. Notice the conse-
quence of (5.5) and of the definition of Pe: the relation

Pe(Y ) = Y − gradp (5.7)

holds for every Y ∈ TeDs(M) where p is an Hs+1-function on M , unique to
within an additive constant.

Since Ds
μ(M) is a submanifold in Ds(M), according to the standard con-

structions of differential geometry there is a corresponding connection H̃ on
Ds

μ(M) whose connector K̃ and covariant derivatives ∇̃ and D̃
dt are described

by the formulae
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K̃ = P̄ ◦ K,

∇̃XY = P̄ ◦ ∇̄XY = P̄ ◦ K ◦ TY (X) = K̃ ◦ TY (X),

D̃
dt

X(t) = P̄ ◦ D̄
dt

X(t) = P̄ ◦ K
d
dt

X(t) = K̃
d
dt

X(t) (5.8)

where X,Y are vector fields on Ds
μ(M) and X(t) is a vector field along a

smooth curve g(t) in Ds
μ(M). So, a vector field X along a curve g(t) in

Ds
μ(M) is parallel if D̃

dtX(t) = 0 and the curve g(t) is geodesic if D̃
dt ġ(t) = 0.

Theorem 5.9 The geodesic spray S of the Levi-Civitá connection H̃ of
the metric (5.1) on Ds

μ(M) is a C∞-smooth right-invariant vector field on
TDs

μ(M) of the form S = T P̄ (Z̄) where Z̄ is the geodesic spray (5.4) on
TDs(M).

Indeed, P̄ and Z̄ are Ds
μ(M)-right-invariant and C∞-smooth on TDs

μ(M),
hence so is S. Denote by ẽxp the corresponding exponential map of a neigh-
borhood of the zero section in TDs

μ(M) onto Ds
μ(M). Clearly the map ẽxp is

C∞-smooth and Ds
μ(M)-right-invariant.

Theorem 5.10 There exists a neighborhood W of the unit e in Ds
μ(M) that

is covered by the image of TeDs
μ(M) under the exponential mapping of the

Levi-Civitá connection on Ds
μ(M).

This follows from the smoothness of S.

The case of M with boundary

Let, as above, s > n
2 + 1 and let M be a compact oriented manifold with

boundary ∂M . Denote by Ds(M) the set of C1-diffeomorphisms of M belong-

ing to the Sobolev class Hs and by
◦
Ds (M) the set in Ds(M) consisting of

diffeomorphisms coinciding with the identity on ∂M . In this case we cannot
use Hs(M,M) to introduce the smooth manifold structure on Ds(M) and on
◦
Ds (M) since Hs(M,M) has infinite-dimensional corners.

Consider an arbitrary compact oriented manifold N without boundary
that has the same dimension n as M and is such that M is embedded into
N . We can take, say, the double of M as N (see Section 1.1) with Riemannian
metric smoothly expanded over the boundary. Consider the Hilbert manifold
Hs(M,N).

Theorem 5.11 ([61]) Ds(M) and
◦
Ds (M) are smooth sub-manifolds in

Hs(M,N). For e = id ∈ Ds(M) the tangent space TeDs(M) is the space

of Hs-vector fields on M tangent to the boundary ∂M , and Te

◦
Ds (M) is the

space of Hs-vector fields on M equal to zero on ∂M .
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The description of tangent bundles, group structures as well as of smooth
properties of right and left shifts are completely analogous to those described
above. For convenience of reference we summarize the properties of right-
invariant vector fields in the following Remark.

Remark 5.12. If X ∈ TeDs(M) is an Hs+k-vector field on M , the corre-
sponding right-invariant vector field X̄ on Ds(M) is Ck-smooth. Neverthe-
less, generally speaking, the converse is not true. If X̄ is Ck on Ds(M), X is
Hs+k in the interior of M and in the directions tangent to the boundary ∂M ,
but it may not be Hs+k-smooth in the directions normal to the boundary.

On the manifold Hs(M,N) we introduce a weakly Riemannian metric in
the same way as (5.1). For this metric the analogs of the above-mentioned
theorems are obviously fulfilled. It is important to mention that this metric
can be considered at the points of the manifold Ds(M) ⊂ Hs(M,N). It is
also possible to define a geodesic spray Z ◦ X at X ∈ TDs(m) but in this
case the geodesics may not exist (exp is not well-defined) since the boundary
∂M , generally speaking, is not a completely geodesic manifold in N .

Definition 5.13. We say that a k-form α on M is tangent (normal) to the
boundary ∂M if the restriction to ∂M of the form ∗α (form α, respectively)
is the identically zero form.

There are several versions of the Hodge decomposition on a manifold with
boundary. We shall mainly deal with the following one (see [61]):

Hs(∧k) = dHs+1(∧k−1) ⊕ Es(∧k
t ), (5.9)

where ⊕ is the orthogonal direct sum with respect to the H0-inner prod-
uct (·, ·)e (5.1) and Es(∧k

t ) denotes the co-closed Hs-fields tangent to the
boundary ∂M .

From (5.9) we obtain the following important statement:

Theorem 5.14 ([61, 170]) For every Hs-vector field X, s ≥ 0, on M with
boundary ∂M there exists a unique divergence-free Hs-vector field Y tangent
to the boundary ∂M and unique to within an additive constant.

For M with boundary, Ds
μ(M) is a smooth submanifold in Ds(M) and

consequently in Hs(M,N). The space TeDs
μ(M) = Es(∧k

t ) is the space of
all divergence-free Hs-vector fields on M tangent to the boundary ∂M . Let
Pe : TeH

s(M,N) → TeDs
μ(M) be the orthogonal projector in (5.9). The

corresponding morphism P̄ , defined by analogy with (5.6), is C∞-smooth
and right-invariant. Thus we can introduce the covariant derivatives ∇̃ and
D̃
dt by formulae (5.8), the geodesic spray S as in Theorem 5.9, etc. From
Theorem 5.14 it follows that

Y = PeX = X − grad p. (5.10)
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Remark 5.15. In this case the following modification of Remark 5.12 holds.
If a divergence-free vector X tangent to the boundary belongs to the class
Hs+k, the corresponding right-invariant vector field X̄ on Ds

μ(M) is Ck-
smooth. However, if a right-invariant vector field X̄ on Ds

μ(M) is Ck-smooth,
the field X = X̄e on M belongs to Hs+k in the interior of M and in the
directions tangent to boundary, but it may not belong to this class in the
directions normal to the boundary.

Note that in the case of a manifold M with boundary direct analogs of
Theorems 5.9 and 5.10 remain true.

Strong Riemannian metrics

Let M be a manifold without boundary as above. Consider g ∈ Ds(M) and
also Xg and Yg ∈ TgDs(M) with Xg = X ◦ g and Yg = Y ◦ g where X,Y ∈
TeDs(M) (see the definition of TgDs(M) above). Introduce on TgDs(M) a
“strong” inner product (·, ·)(s)g by the formula

(Xg, Yg)(s)g =
∫

M

(〈Xg(m), Yg(m)〉g(m) (5.11)

+ 〈(d + δ)sX ◦ g(m), (d + δ)sY ◦ g(m)〉g(m))μ(dm),

where d is the differential, δ is the co-differential and (d+δ)2 = (dδ+δd) = Δ
is the Laplace-de Rham operator. Since the Riemannian metric is given on
M , we do not distinguish between 1-forms and vector fields.

We shall also use another strong right-invariant Riemannian metric:

((Xg, Yg))(s)g = (TR−1
g Xg, TR−1

g Yg)(s)e . (5.12)

5.2 The Group of Diffeomorphisms of a Flat Torus

Consider the constructions, introduced above, in the particular case where
M is a flat n-dimensional torus T n, i.e., T n = R

n/Zn and the Riemannian
metric on T n is inherited from the Euclidean space R

n via factorization with
respect to the integral lattice Zn (see Remark 1.18).

Recall that the tangent bundle TT n is trivial, i.e., there is a canonical
identification of TT n with T n×R

n that is also inherited from TR
n = R

n×R
n

(see Remark 1.40). Note that here the connection H̄ is generated by the flat
connection on T n inherited from the ordinary flat connection on R

n (the
Levi-Civitá connection of the Euclidean inner product).

Definition 5.16. We introduce the operators:

(i) B : TT n → R
n, the projection onto the second factor in T n × R

n;
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(ii) A(m) : R
n → TmT n, the inverse to B (see (i)) sending R

n onto the
tangent space TmT n to T n at m ∈ T n;

(iii) Qg = A(g(m)) ◦ B, the linear isomorphism Qg : TmT n → Tg(m)T n

where g ∈ Ds and m ∈ T n.

Note that if we specify a vector X ∈ R
n, A(X) : T n → TT n is a vector

field on T n with constant coordinates with respect to the standard basis
∂

∂q1 , . . . , ∂
∂qn in tangent spaces. In particular, this vector field is C∞-smooth

and divergence-free with respect to the above-mentioned metric on T n.
By construction, for every f ∈ Ds(T n) and X ∈ TfDs(T n) the vector

QgX lies in TgDs(T n). In particular, QeX ∈ TeDs(T n). Note that even for
f ∈ Ds

μ(T n), the operator Qe does not send TfDs
μ(T n) to TeDs

μ(T n), but
PeQe(TfDs

μ(T n)) = TeDs
μ(T n).

We describe the action of operator Qg on tangent vectors to Ds(T n) as
on mappings from T n to TT n and compare this action with the right shift.
Recall that a vector X ∈ TeDs(T n), i.e., a vector field on T n, sends a point
m ∈ T n to the vector (m, X(m)). The right shift TRg on TeDs(T n) sends
the latter vector to (g(m), X(g(m)), and Qg(m, X(m)) = (g(m), X(m)).

Lemma 5.17 The following relations hold:

TRg−1(QgX) = Qe(TRg−1X); (5.13)
TRg(Qg−1X) = Qe(TRgX). (5.14)

Proof. According to the above formulae, Qe(TRg−1X) sends a point m ∈
T n to (m, X(g−1(m))). On the other hand, QgX = (g(m), X(m)) and
TRg−1(QgX) = (m, X(g−1(m))). From this (5.13) follows. Formula (5.14)
is obtained from (5.13) by replacing g with g−1. ��
Theorem 5.18 Qg : TηDs(T n) → TgDs(T n) is the parallel translation in
Ds(T n) with respect to H̄.

Indeed, since (roughly speaking) the connectors on T n and on Ds(T n)
coincide, the parallel translations coincide as well.

For a specified x ∈ R
n we introduce the diffeomorphism Lx : T n → T n

by the formula Lx(m) = m + x modulo factorization with respect to the
integral lattice. Evidently Lx is C∞-smooth and preserves the volume. Note
that Lxg(m) = g(m) + x is in fact the left shift of g ∈ Ds(T n) by Lx.One
can easily see that TLx = QLx .

Theorem 5.19 Let g(t) be a geodesic of the flat connection H̄ on Ds(T n)
(i.e., D̄

dt ġ(t) = 0). Then Lxg(t) is also a geodesic.

Proof. Note that the derivative ġ(t) sends the point m ∈ T n to the vec-
tor (g(t)(m), ġ(t)(m)). Since g(t) is a geodesic of a flat connection, it satis-
fies the relation (g(t)(m), g̈(t)(m)) = (g(t)(m), 0). Then, since x is constant,
d
dt (Lxg(t)) sends m to (g(t)(m)+x, ġ(t)(m)) and for the covariant derivative
we obtain (g(t)(m) + x, g̈(t)(m)) = (g(t)(m) + x, 0). ��
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Stochastic Analysis





Chapter 6

Essentials from Stochastic Analysis in
Linear Spaces

6.1 Some Definitions from Probability Theory and the
Theory of Stochastic Processes

In this section we describe some facts and constructions from probability
theory and the theory of stochastic processes, some of which are not generally
included in standard university courses on these subjects. This is done mainly
for convenience of reference, but if necessary this material can be used as an
introduction to the subject. Nevertheless the reader is assumed to be familiar
with the main notions of probability theory including the notions of a σ-
algebra (in particular, a Borel σ-algebra), measure and independent random
variables.

We consider random variables (measurable mappings) given on a complete
probability space (Ω,F ,P) and taking values in a finite-dimensional linear
space R

n equipped with the Borel σ-algebra. For random variables with values
in non-linear manifolds and in infinite-dimensional spaces there are analogous
constructions.

A detailed exposition of this material can be found, e.g., in [175, 176, 194,
204, 208].

We say that a σ-subalgebra Bξ in F is generated by a random variable
ξ : Ω → R

n if Bξ is the minimal σ-algebra containing the pre-images of all
Borel sets in R

n under the mapping ξ or, equivalently, Bξ is the minimal
σ-algebra with respect to which ξ is measurable.

6.1.1 Stochastic processes. Cylinder sets

A stochastic process is a random variable, given on a probability space and
taking values in R

n, that depends on time. A process η(t), t ∈ [0,∞), has
almost surely (a.s.) continuous sample paths (or trajectories) P-a.s. if for
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ω ∈ Ω the curve η(t, ω) is continuous in t. The space of continuous curves
C0([0,∞), Rn) in this case is called the space of (sample) paths (or trajecto-
ries).

Specify a finite number t1, . . . , tk ∈ [0,∞) of time instants and a finite
collection of Borel sets B1, . . . , Bk ⊂ R

n. A cylinder set in C0([0,∞), Rn),
corresponding to the above collections of times and Borel sets, is the set of
curves

Jt1,...,tk
× (B1, . . . , Bk) = {x(·) ∈ C0([0,∞), Rn) | x(ti) ∈ Bi},

i.e., the set of curves that at time ti take a value in the set Bi, and arbitrary
values at the other times. The minimal σ-algebra that contains all cylinder
sets for a finite time interval t ∈ [0, T ] ⊂ R coincides with the Borel σ-
algebra on the Banach space C0([0, T ], Rn) of continuous curves in R

n given
on [0, T ], with the usual uniform norm. A stochastic process with a.s. contin-
uous sample paths is usually considered as a random variable with values in
C0([0,∞), Rn) equipped with the σ-algebra generated by cylinder sets, i.e., a
measurable mapping from Ω to C0([0,∞), Rn) with respect to the σ algebra
generated by cylinder sets in C0([0,∞), Rn) and the σ-algebra F in Ω.

Denote C0([0,∞), Rn) by Ω̃ and the σ-algebra generated by cylinder sets
by F̃ . Then, since a process ξ(·) can be considered as a measurable mapping
from (Ω,F) to (Ω̃, F̃), it generates a probability measure μξ on (Ω̃, F̃) in the
usual way: μξ(A) = P(ξ−1(A)) for A ∈ F̃ . This measure is called the measure
generated by ξ(t) on (Ω̃, F̃) or the distribution of ξ(t).

For any probability measure μ given on (Ω̃, F̃), one can construct a
stochastic process ημ(t) on the probability space (Ω̃, F̃ , μ) with values in
R

n as follows: ημ(t, ω) = ω(t) where the elementary event ω ∈ C0([0,∞), Rn)
is by definition a continuous curve ω : [0,∞) → Rn. The process ξμ(t) is
called the coordinate process on the probability space (Ω̃, F̃ , μ).

Note that for μ = μξ generated by a stochastic process ξ(t) with continuous
path in R

n, the corresponding coordinate process has, by construction, the
same distribution as ξ(t).

Every stochastic process ξ(t) in R
n, t ∈ [0, T ], given on a probability space

(Ω,F , P), determines three families of σ-subalgebras of the σ-algebra F :

(i) “past” Pξ
t , generated by pre-images of Borel sets in R

n by all mappings
ξ(s) : Ω → R

n for 0 < s < t;
(ii) “future” Fξ

t , generated by pre-images of Borel sets in R
n by all map-

pings ξ(s) : Ω → Rn for t < s < T ;
(iii) “present” (“now”) N ξ

t , generated by the mapping ξ(t).

We suppose that all of these families are complete, i.e., contain all sets of
probability zero: P = 0.

Let Bt be a non-decreasing family of σ-subalgebras of the σ-algebra F .
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Definition 6.1. A random process A(t) is said to be non-anticipative with
respect to a filtration Bt if A(t) is measurable with respect to Bt for every t.

Consider the measure space (Ω̃, F̃) introduced above. Denote by P̃t the
σ-algebra generated by cylinder sets with bases over [0, t]. Note that for any
probability measure μ on (Ω̃, F̃) the coordinate process ξμ(t) on the proba-
bility space (Ω̃, F̃ , μ) is non-anticipative with respect to P̃t and moreover, P̃t

is its “past”.

6.1.2 Conditional expectation

Consider the Hilbert space L2(Ω,F , P) of square integrable random variables.
Let F0 be a σ-subalgebra in F . Consider L2(Ω,F0, P), the Hilbert space of
square integrable random variables that are measurable with respect to F0.
It is clear that L2(Ω,F0, P) is a closed subspace in L2(Ω,F , P). Denote by
Q : L2(Ω,F , P) → L2(Ω,F0, P) the orthogonal projector. The projector Q
extends to the projector in the corresponding space L1 of integrable random
variables.

Definition 6.2. For every ξ ∈ L1(Ω,F , P) the random variable Qξ ∈
L1(Ω,F0, P) is called the conditional expectation of ξ with respect to F0

and is denoted by E(ξ|F0).

It is important to point out that (up to sets with probability zero) E(ξ|F0)
is the unique random variable in L1(Ω,F , P) such that for every set A ∈ F0

the equality
∫

A

ξdP =
∫

A

E(ξ|F0)dP holds. Recall that the existence of such

a function follows from the Radon-Nikodym theorem. This description of
E(ξ|F0) is equivalent to Definition 6.2 and is often used as the definition in
the probabilistic literature (see e.g., [208]). The details of the approach based
on Definition 6.2 are given, e.g., in [194].

It is not hard to see that the usual mathematical expectation is the condi-
tional expectation with respect to the trivial σ-algebra comprising two sets:
∅ and Ω.

Let A ∈ F and χA be the indicator of A. The value P(A|F0) = E(χA|F0)
is called a conditional probability.

Let us describe some properties of conditional expectation. These proper-
ties generally follow from the properties of projectors. A detailed presentation
of this material can be found in [194, 208]

Theorem 6.3

(i) Conditional expectation is a linear operator.
(ii) If η is measurable with respect to F0, E(η|F0) = η.
(iii) If F1 ⊂ F0, E(E(η|F0)|F1) = E(η|F1). In particular, the equality

E(E(η|F0)) = Eη holds.
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(iv) If F1 ⊂ F0, E(E(η|F1)|F0) = E(η|F1).
(v) If η does not depend on F0, E(η|F0) = Eη.
(vi) Let ξ and η be random variables with values in R. If ξ is measurable

with respect to F0, then for every η the equality E(ξη|F0) = ξE(η|F0)
holds. In the case of vector-valued random variables this property is
valid for inner products.

Let ξ and η be random variables given on a probability space (Ω,F , P)
and taking values in R

n. By E(ξ|η) we denote the conditional expectation
of ξ with respect to the σ-algebra generated by pre-images of Borel sets in
R

n under the mapping η : Ω → R
n. One can easily show (see, e.g., [194])

that there exists a unique Borel measurable mapping Y : R
n → R

n such that
E(ξ | η) = Y (η). The mapping Y is called the regression of ξ with respect to
η and is usually denoted by the expression Y (x) = E(ξ | η = x).

6.1.3 Markov processes

Let a non-decreasing family Bt of σ-subalgebras of a σ-algebra F , t ∈ [0,∞),
be given. A random process ξ(t) is called a Markovian (or Markov) process
with respect to Bt if P-a.s. P(B ∩ F | N ξ

t ) = P(B | N ξ
t ) · P(F | N ξ

t ) for every
t ∈ [0,∞), B ∈ Bt and F ∈ Fξ

t (see the Definition of “past”, “future” and
“present” in Section 6.1.1).

A process ξ(t) is called a simply Markovian (or simple Markov) process if
it is Markovian with respect its own “past” Pξ

t .
The next two conditions are equivalent to each other and to the fact that

the process is Markovian with respect to Bt.

1) For every t ∈ [0,∞) and every bounded Fξ
t -measurable random variable

ϕ with values in R the relation E(ϕ | Bt) = E(ϕ | N ξ
t ) holds.

2) For t ≥ s ≥ 0 and every (measurable) function f(x), for which
sup

x∈R
n

|f(x)| < ∞, the equality E(f(ξ(t)) | Bs) = E(f(ξ(t)) | N ξ
s ) holds.

A random variable τ(ω) taking values in [0,∞) is called a random time.
A random time is called a Markov time if for every t ≥ 0 the inclusion
{ω | τ(ω) ≥ t} ∈ Bt holds. If P(τ(ω) < ∞) = 1, the Markov time is called a
stopping time.

6.1.4 Martingales and semi-martingales

A stochastic process η(t) is called a martingale with respect to a non-
decreasing family of σ-algebras Bt, t ∈ [0,∞), if for every t the variable
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η(t) is measurable with respect to Bt (i.e., non-anticipative with respect to
Bt) and for every t ≥ s ≥ 0 the equality E(η(t) | Bs) = η(s) holds.

Directly from the definition of martingale and property (iii) of conditional
expectation (see Section 6.1.2) it follows that the mathematical expectation
of a martingale is constant.

A process η(t) is called a local martingale if there exists a non-decreasing
sequence of Markov times (stopping times) τn such that lim τn = ∞ and for
every τn(ω) the process η(t∧τn) is a martingale, where t∧τn = min(t, τn(ω)).

A stochastic process η(t) is called a semi-martingale if η(t) = A(t)+M(t)
where M(t) is a local martingale and A(t) is a process whose sample paths a.s.
have bounded variation in t (i.e., the Stieltjes integral of integrable functions
is well-defined with those paths as integrators).

It is clear that a martingale is a local martingale and that a local martin-
gale is a semi-martingale. Note that there is a construction of the integration
of random functions with respect to semi-martingales (see [176]), a particular
case of which is the stochastic integral with respect to the Wiener process
that is described below in Section 6.2.

Under a smooth change of coordinates in R
n martingales and local mar-

tingales do not transform into analogous processes, but semi-martingales are
transformed into semi-martingales. A decomposition into the sum of a local
martingale and a process of bounded variation is possible but in this decom-
position the summands are not the results of transformation of corresponding
summands in the previous coordinate system. From this property it follows
that the notion of a semi-martingale with values on a manifold is well-defined.

A stochastic process ξ(t) is called a backward martingale with respect to a
non-increasing family of σ-algebras Ft if for every t the variable ξ(t) is measur-
able with respect to Ft and for every s ≥ t ≥ 0 the equality E(η(t)|Fs) = η(s)
holds.

6.1.5 Weak convergence of probability measures

A detailed presentation of this material can be found in, e.g., [25, 194, 208].
Everywhere in this Section the symbol X denotes a separable complete metric
space and B is its Borel σ-algebra (i.e., the minimal σ-algebra generated by
open sets). Recall that a measure μ on (X,B) is called a probability measure
if μ(X) = 1.

Definition 6.4. A sequence of probability measures μn on (X,B) weakly con-
verges to a probability measure μ0 if

∫

X

f dμn →
∫

X

f dμ0 for every continuous

bounded function f : X → R.
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Definition 6.5. A family of probability measures {μα} on (X,B) is called
weakly relatively compact if every sequence of measures from {μα} has a
weakly convergent subsequence.

The measure to which the subsequence converges in Definition 6.5 may
not belong to the set {μα}. For short we shall often call weakly relatively
compact set of measures weakly compact, omitting the word “relatively”.

Theorem 6.6 (Prokhorov’s theorem) A family of probability measures M
on (X,B) is weakly relatively compact if and only if for every ε > 0 there
exists a compact Kε ⊂ X such that μα(Kε) > 1 − ε for every μα ∈ M.

6.2 A Survey on Stochastic Integrals and Equations

In this section we briefly describe the basic facts from the theory of stochastic
integrals and stochastic differential equations necessary for understanding
their geometric properties below. We consider only integrals with respect to
a Wiener process since they play the main role in the forthcoming sections.
A complete and detailed exposition of this material can be found in many
monographs and textbooks (see, e.g., [76, 83, 84, 162, 165, 175, 176, 216]).
We should particularly highlight the excellent introductory paper [50] which
illuminates those aspects of the theory that are especially important for our
approach.

6.2.1 White noise and Wiener processes

We begin this section with a physically motivated observation that leads to
an intuitive introduction to Wiener processes (for details, see [160]).

Consider an ordinary differential equation ẋ(t) = F (t, x(t)) in R
n and

suppose that its right-hand side is subjected to an additive random influence
that satisfies the following physically natural assumptions:

(a) the mechanism that produces the randomness is the same at all times;
(b) the randomness occurs at any time t independently of the other times;
(c) the mathematical expectation of the random variable equals 0 while

the dispersion equals 1.

We can interpret (a) as saying that the process has independent values at
different times and (b) as saying that the distributions of the values at all
times are the same. Assumption (c) is given for simplicity; one can consider
more general processes satisfying (a) and (b).

The above-mentioned process is denoted by ẇ(t) and is called white noise.
It turns out that this process takes values in generalized functions and so it
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is rather difficult to deal with. We shall avoid the use of generalized func-
tions in the usual way: we introduce the process w(t) =

∫ t

0
ẇ(s)ds. From

the properties (a)–(c) of ẇ(t) we intuitively derive that w(t) must have a.s.
continuous sample paths and independent increments such that for a given
difference t − s = δ all increments w(t1) − w(s1) with t1 − s1 = δ have the
same distribution. Finally, for all such increments, E(w(t) − w(s)) = 0 and
E(w(t) − w(s))2 = t − s.

The differential equation we started with, with the above random influence,
has the form ẋ(t) = F (t, x(t)) + ẇ(t). Avoiding the use of generalized func-
tions, we transform it into the integral equation x(t) = x0 +

∫ t

0
F (s, x(s))ds+

w(t). For a differential equation without random influence this transformation
yields the equivalent integral equation. In the presence of random influence
the transformation makes the equation easier to work with since it is given
in terms of processes with continuous sample paths.

w(t) has all the properties of a certain process, called a Wiener process,
that we want to formally introduce in this Section. The precise definition
requires the following abstract scheme.

Let (Ω,F , P) be a probability space and Bt, t ∈ [ 0,∞), be a nondecreasing
family of σ-subalgebras of the σ-algebra F . In what follows, we assume that
the σ-algebras Bt are complete, i.e., they contain all sets from F of measure
zero.

Here we consider only stochastic processes (random variables) on (Ω,F , P)
with values in a Euclidean space with an inner product (·, ·). Specifying a
basis, we shall describe its vectors by columns of coordinates, i.e., we identify
this space with R

n.

Definition 6.7. A stochastic process w(t) is called a Wiener process (relative
to the family Bt) if:

1) the sample paths of w(t) are almost surely (a.s.) continuous in t;
2) w(t) is a square integrable martingale with respect to Bt;
3) w(0) = 0 and E((w(t) − w(s))2|Bs) = t − s for t ≥ s.

In this case it is said that the Wiener process w(t) is adapted to Bt.

From Definition 6.7 we deduce that the Wiener process has the (intuitive)
properties that we listed the beginning of this Section:

Theorem 6.8 (Levi, see, e.g., [175]) If w(t) is a Wiener process, then it has
stationary independent Gaussian increments. Furthermore, w(t) satisfies the
following conditions: E(w(t) − w(s)) = 0 and E((w(t) − w(s))2) = t − s for
t ≥ s.

In other words, for t ≥ s, the increment w(t) − w(s) is independent of Bs

and has the same probability distribution as w(t − s).
The distribution density ρw(t, x) of a Wiener process in R

n is described
by the formula (see, e.g., [162])
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ρw(t, x) =
1

(2πt)
n
2

e−
x2
2t . (6.1)

One can easily see that Pw
t ⊂ Bt where Pw

t is the “past” of w(t) (see
Section 6.1.1).

Consider the space Ω̃ = C0([0,∞), Rn) of continuous curves in R
n given on

the semi-infinite interval [0,∞). Introduce in Ω̃ the σ-algebra F̃ generated by
cylinder sets (see Section 6.1.1). As for the other processes with continuous
sample paths, every Wiener process can be regarded as a mapping of the
measure space (Ω,F) into the measure space (Ω̃, F̃). Thus, P gives rise to a
measure ν on (Ω̃, F̃) according to the construction given in Section 6.1.1. The
measure ν, called the Wiener measure, depends only on the inner product on
R

n, not on a specific Wiener process w(t). The Wiener measure enables one to
introduce the probability distributions of w(t) in Ω̃ = C0([0,∞), Rn), i.e., the
conditional probability distributions of the random variables w(t1), . . . , w(tk)
in R

n for all collections t1, . . . , tk.
Consider (Ω̃, F̃ , ν) as a probability space and define the coordinate process

w̄(t) on (Ω̃, F̃ , ν) (see Section 6.1.1) via w̃(t, ω) = ω(t) (here the elementary
event ω ∈ C0([0,∞), Rn) is by definition a continuous curve ω : [0,∞) → R

n).
Consider the σ-algebra B̄t generated by the cylinder sets with base over [0, t],
i.e., B̄t = Pw̄

t . Clearly, w̄(t) is a Wiener process relative to the family B̄t.
The process w̄(t) is called a Brownian motion process or a standard Wiener
process.

Remark 6.9. Often in the probability literature one finds that the Wiener
process is described as unique. This phrase means only that the standard
Wiener process is unique since the Wiener measure ν (as well as the coordi-
nate process) is unique on (Ω̃, F̃). But there are plenty of concrete realiza-
tions of Wiener processes on various probability spaces. In particular different
Wiener processes can be independent.

To facilitate further references, we summarize here some results on Wiener
processes.

Theorem 6.10 Any Wiener process w(t) has the following properties:

1) A sample path of w(t, ω) is a.s. (i.e., with probability 1) non-differenti-
able for all t and has unbounded variation on any arbitrarily small in-
terval.

2) The coordinates wj(t) of w(t) are one-dimensional Wiener processes
that are mutually independent and the orthogonal projection of w(t) to
any k-dimensional subspace of R

n is a k-dimensional Wiener process.
3) Let a be an orthogonal operator in R

n. Then a◦w(t) is a Wiener process.
In particular, if w̄(t) is a standard Wiener process, then so is a ◦ w̄(t),
i.e., the Wiener measure is invariant under the action of orthogonal
operators on R

n.
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Note that assertion 1) of Theorem 6.10 clarifies the fact that white noise,
the “derivative” of a Wiener process, takes values only in generalized func-
tions.

6.2.2 Stochastic integrals

Our goal in this section is to define the stochastic integral with respect to a
Wiener process. For the sake of simplicity, we restrict our attention to the
construction based on a Riemann integral. An approach involving a Lebesgue
integral can be found in [76, 83, 84, 162, 175].

Specify a positive constant l < ∞. Let A : [0, l] × Ω → L(Rk, Rn) be a
random operator function, i.e., A(t) is a random linear operator from R

k to
R

n for every t ∈ [0, l]. In what follows the main role will be played by the
particular case k = n, i.e., where A(t) is a random linear operator in R

n.
Consider a Wiener process w(t) with respect to Bt with values in R

k. To
define the Itô integral of A(t), pick a partition q = (0 = t0 < t1 < . . . < tq = l)
of the interval [0, l] and consider the integral sum

q−1∑

i=0

A(ti)
(
w(ti+1) − w(ti)

)
. (6.2)

Note that we have selected the argument in A(·) as the left end of [ti, ti+1] in
the i-th summand. The limit (if it exists) of such sums as diam q → 0 (usually
in the space L2((Ω,F , P), Rn) but possibly with respect to some other type
of convergence of random variables) is called the Itô integral of A(t) and is
denoted by

∫ l

0
A(t)dw(t). Since the trajectories of w(t) have a.s. unbounded

variation, the Itô integral cannot be defined as the Stieltjes integral along
every trajectory.

It turns out that under certain boundedness hypotheses, the Itô integral
does exist as the L2-limit of the integral sums when A(t) is non-anticipative
with respect to Bt. In particular, it exists (as a Lebesgue type integral) if the
entries Aj

i (t) of A(t) satisfy the equality

P

⎧
⎨

⎩
ω

∣
∣
∣
∣
∣
∣

l∫

0

(Aj
i )

2(t, ω)dt < ∞

⎫
⎬

⎭
= 1. (6.3)

The Itô integral with varying upper limit is the process defined by

∫ t

0

A(τ) dw(τ) =
∫ l

0

χtA(τ) dw(τ),
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where χt is the characteristic function of [0, t]. Note that
∫ t

0
A(τ) dw(τ) is

linear in A and dw. Some other important properties of the integral are
given in the next theorem.

Theorem 6.11 The process
∫ t

0
A(τ) dw(τ) has the following properties:

(1) it is non-anticipative with respect to Bt;
(2) it is a martingale relative to Bt;
(3) its sample paths are a.s. continuous in t.

Let us outline the proof of Theorem 6.11(3) for future reference. Consider
processes with continuous trajectories of the form

∑q

I
(t) =

q−1∑

i=1

χt(ti+1)A(ti)
(
w(ti+1) − w(ti)

)
+ A(tk)

(
w(t) − w(tk)

)
,

where k = max {i |χt(ti) = 1}. Under certain hypotheses, the sequence
∑q

I(t)
contains a subsequence that converges a.s. uniformly to

∫ t

0
A(τ) dw(τ). This

yields assertion (3).
Note the following discrepancy between the ordinary Riemann and stochas-

tic Itô integrals. The former calculated for, say, a bounded continuous func-
tion f(t) with respect to some power α > 1 of dt always equals zero since the
integral sum

∑q−1
i=1 f(t∗)(ti+1 − ti)α, t∗ ∈ [ti, ti+1], tends to zero as diamq

tends to zero. However, this is not the case for the latter. One can define
the multiple stochastic integral

∫ t

0
a(τ) dw1(τ) · · · dwk(τ) of a given stochas-

tic process a(·) to be the limit of the integral sums
∑q−1

i=1 a(ti)
(
w1(ti+1) −

w1(ti)
)
· · ·

(
wk(ti+1) − wk(ti)

)
which may not be equal to zero.

Later on, we shall use the following result on the existence and properties
of multiple integrals.

Theorem 6.12 Let α(t) be a random real-valued function and w(t) be a
Wiener process with values in R

n, i.e., w(t) = (w1(t), . . . , wn(t)), where the
coordinates wi(t), i = 1, . . . , n are mutually independent one-dimensional
Wiener processes. Then:

(i)
t∫

0

α(τ)dwi(τ)dwj(τ) = 0 i �= j;

(ii)
t∫

0

α(τ)(dwi(τ))2 =
t∫

0

α(τ)dτ ;

(iii)
t∫

0

α(τ)dτdwi(τ) = 0;

(iv)
t∫

0

α(τ)(dwi(τ))3 = 0;

(v) all integrals of higher order in dτ and dwi(τ) exist and are equal to
zero.
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Here we just outline the proof. Assertion (i) follows immediately from the
hypothesis that wi(t) and wj(t) are independent. To prove (ii), it suffices to
observe that for any Wiener process w(t) we have E

((
w(t)−w(s)

)2
)

= |t−s|.
Assertions (iii)–(v) result from the fact that the multiple Riemann integral
with respect to (dt)k, k > 1, is equal to zero.

Remark 6.13. It is sometimes useful to use white noise (the “derivative” of
a Wiener process, see Section 6.2.1) to give a better physical interpretation
of solutions of certain equations but, as mentioned in Section 6.2.1, it is dif-
ficult to use in practice since it takes values in generalized functions. The
use of the Itô integral allows one to avoid dealing with white noise by us-
ing integral (rather than differential) equations and taking into account that
∫ t

0
A(t)ẇ(τ) dτ =

∫ t

0
A(t) dw(τ). Then, if an ordinary differential equation

ẋ(t) = a(t, x(t)) is subjected to a random perturbation and takes the form
ẋ(t) = a(t, x(t)) + A(t, x(t))ẇ(t) where A(t, x) is a linear operator, a mathe-
matically exact description of the perturbed equation is given by transition
to the integral equation x(t) = x0 +

∫ t

0
a(τ, x(τ))dτ +

∫ t

0
A(τ, x(τ))dw(τ).

The latter equation is called the stochastic differential equation in Itô form
or Itô stochastic differential equation. Such equations are considered in detail
below.

It should be pointed out that the value of a stochastic integral depends
on the point in [ti+1, ti] that is substituted as the argument value of the
integrand in the summands of the integral sum. Recall that in integral sums
of Itô integrals we choose the left end of [ti+1, ti].

Alternative choices yield some other versions of stochastic integrals. In
particular, we introduce the so-called backward (or anticipative) integral
∫ t

0
A(τ) d∗w(τ) [152] as the limit of the following integral sums

q−1∑

i=0

A(ti+1)
(
w(ti+1) − w(ti)

)
, (6.4)

(i.e., choosing the right end of [ti, ti+1]) if, of course, the limit exists. This
integral differs, in general, from the Itô integral. For example, the backward
integral with varying upper limit is not a martingale relative to Bt.

Considering the integral sums

Σq
S =

q−1∑

i=0

A(ti+1) + A(ti)
2

(w(ti+1) − w(ti)) (6.5)

we arrive at the Stratonovich integral
∫ t

0
A(τ) ◦ dw(τ) (or

∫ t

0
A(τ) dSw(τ))

defined as the limit of these sums (if it exists) (see [50, 216].) It is easy to
see that the Stratonovich integral is equal to half of the sum of the Itô and
backward integrals, provided that all three integrals exist. The Stratonovich
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integral with varying upper limit can be defined in the standard way. Note,
however, that this integral (like the anticipative integral and unlike the Itô
integral with varying upper limit) is not a martingale with respect to Bt.

Under an extra hypothesis, the Stratonovich integral may be defined as
the limit of the integral sums

∑q−1
i=0 A

(
ti+1−ti

2

) (
w(ti+1)−w(ti)

)
(i.e., where

the value of A is taken at the mid-point of the segment [ti, ti+1], see [177]).

Remark 6.14. The idea to use the mid-point, as in the definition of the
Stratonovich integral sums (6.5), is due to Richard Feynman.

The differentials dw, d∗w, and ◦ dw = dSw (appearing in the definitions of
the Itô, anticipative and Stratonovich integrals) are conveniently called the
forward , backward and symmetric differentials, respectively, in reference to
the location of the point t in [ti, ti+1] at which the value of A is evaluated.
The terminology we introduce here is actively used below.

Let us now turn to the formulas relating the values of the three integrals.
By the definition of the Stratonovich integral, we have

∑q

S
=

∑q

I
+

1
2

q−1∑

i=0

(
A(ti+1) − A(ti)

)(
w(ti+1) − w(ti)

)

where
∑q

I is the Itô integral sum (6.2). The limit of the second sum on the
right-hand side is a second order integral in dA and dw, which can naturally
be denoted by

∫ t

0
dAdw. Thus,

∫ t

0

A(τ) ◦ dw(τ) =
∫ t

0

A(τ) dw(τ) +
1
2

∫ t

0

dA(τ) dw(τ). (6.6)

Similarly, one can show that
∫ t

0

A(τ) d∗w(τ) =
∫ t

0

A(τ) dw(τ) +
∫ t

0

dA(τ) dw(τ). (6.7)

An Itô process is a process ξ(t) of the form

ξ(t) = ξ0 +
∫ t

0

a(s)ds +
∫ t

0

A(s)dw(s), (6.8)

where a(t) is a process with sample paths a.s. having bounded variation.
Let f(t, x) be a continuously differentiable mapping from R × R

n to R
n.

Consider its Taylor decomposition at a neighborhood of the point (t0, x0):

f(t, x) = f(t0, x0) +
∂f

∂t
Δt + f ′Δx +

1
2

∂2f

∂t2
(Δt)2 +

1
2
f ′′(Δx,Δx) + . . . ,

where the primes denote derivatives of f in x at x0 (recall that f ′ and f ′′ are
linear and bilinear operators respectively). Having replaced in this formula
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Δx by the increment Δξ(s) = a(s)Δs + A(s)Δw(s) of the Itô process ξ(t),
we obtain

f(s, ξ(s)) = f(t0, x0) +
∂f

∂s
Δs + f ′(a(s)Δs + A(s)Δw(s)) +

1
2

∂2f

∂s2
(Δs)2

+
1
2
f ′′(a(s)Δs + A(s)Δw(s), a(s)Δs + A(s)Δw(s)) + . . .

= f(t0, x0) +
∂f

∂s
Δs + f ′a(s)Δs + f ′A(s)Δw(s)

+
1
2
(f ′′(a(s), a(s))(Δs)2 + f ′′(a(s)Δs,A(a)Δw(s))

+ f ′′(A(s)Δw(s), a(s)Δs)
+ f ′′(A(s)Δw(s), A(s)Δw(s)) + . . . (6.9)

After integrating formula (6.9) we obtain that if f(t, x) is C1-smooth in t
and C2-smooth in x, the so-called classical Itô formula (see [50, 76, 83, 84,
162, 175], for example) holds for the process f(ξ(t)):

f(ξ(t)) = f(ξ0) +
∫ t

0

[
∂f

∂t
+ f ′(a(s)) +

1
2
trf ′′(A(s), A(s))

]

ds

+
∫ t

0

f ′(A(s))dw(s), (6.10)

where

trf ′′(A(s), A(s)) =
n∑

i=1

f ′′(A(s)ei, A(s)ei), (6.11)

and e1, ..., ek is an arbitrary orthonormal frame in R
k. Indeed, by formulae

(i) and (ii) from Theorem 6.12, exactly one second order integral

1
2

∫ t

0

f ′′(A(s)dw(s), A(s)dw(s)) =
∫ t

0

1
2
trf ′′(A(s), A(s))ds

is not equal to zero, which yields (6.10) (note that for the ordinary Riemann
integral in a non-random integrator, all integrals of the second and higher
orders equal zero and so all summands with derivatives of f of order higher
than 1 vanish upon integration).

Remark 6.15. It is a well-known result in linear algebra that the trace,
introduced by formula (6.11), does not depend on the choice of orthonormal
frame e1, . . . , ek in R

k.

A backward Itô process is a process of the form

ξ(t) = ξ0 +
∫ t

0

a(s)ds +
∫ t

0

A(s)d∗w(s). (6.12)
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For it the so-called backward Itô formula holds:

f(ξ(t)) = f(ξ0) +
∫ t

0

[
∂f

∂t
+ f ′(a(s)) − 1

2
trf ′′(A(s), A(s))

]

ds

+
∫ t

0

f ′(A(s))d∗w(s)

Indeed, in the Taylor expansion with respect to the right end of an interval
the summands with even derivatives change sign. Represent

∫ t

0
A(s)d∗w(s)

by formula (6.7) and substitute into the latter expansion. It is not hard to
see that the integral of higher order, in which dAdw is an argument in f ′′,
equals zero. Then (6.13) is proved by the same argument as (6.10).

Let us call a Stratonovich process a process of the form

ξ(t) = ξ0 +
∫ t

0

a(s)ds +
∫ t

0

A(s) ◦ dw(s). (6.13)

If f(t, x) is a smooth mapping as above,

f(ξ(t)) = f(ξ0) +
∫ t

0

[
∂f

∂t
+ f ′(a(s))

]

ds +
∫ t

0

f ′(A(s)) ◦ dw(s). (6.14)

Formula (6.14) is proved by the same arguments as (6.10) and (6.13) modified
by the fact that the Taylor expansion with respect to the mid-point does not
contain summands of even order at all. Note that the form of formula (6.14)
coincides with that for the transformation of non-random smooth curves.

Definition 6.16. An Itô process ξ(t) is called a diffusion type process if both
a(t) and A(t) are not anticipative with respect to the “past” filtration Pξ

t of
ξ(·) and the Wiener process w(t) is adapted to Pξ

t .

Diffusion type processes exist, say, as solutions of the so-called Itô diffusion
type equations (see Definition 6.21 below).

Definition 6.17. A diffusion type process ξ(t) is called a diffusion process
if β(t) = a(t, ξ(t)) and A(t) = A(t, ξ(t)) where a(t, x) and A(t, x) are Borel
measurable mappings of R × R

n to R
n and to the space of linear operators

L(Rk, Rn), respectively.

6.2.3 Stochastic differential equations

Let on the space R
n a non-autonomous vector field a(t, x) and a non-

autonomous field of linear operators A(t, x) be given (i.e., A(t, x) : R
k → R

n

is a linear operator depending on t ∈ R and x ∈ R
n). A Stochastic differential
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equation (SDE) in Itô form or an Itô stochastic differential equation is an
integral equation

ξ(t) = ξ(0) +
∫ t

0

a(τ, ξ(τ))dτ +
∫ t

0

A(τ, ξ(τ))dw(τ) (6.15)

where the second summand on the right-hand side is a Lebesgue integral. Here
we do not discuss the conditions under which all integrals in this expression
are well-defined. An interpretation of Itô stochastic differential equations as
ordinary differential equations with random perturbations is described in
Remark 6.13.

Equation (6.15) is usually written in the following formal differential form
(identical in meaning to (6.15))

dξ(t) = a(t, ξ(t))dt + A(t, ξ(t))dw(t). (6.16)

Equations of the form (6.15) are often called diffusion equations since
diffusion processes are described by equations of this sort (see below).

A Stochastic differential equation in Stratonovich form (or Stratonovich
stochastic differential equation) is the integral equation with Stratonovich
integral

ξ(t) = ξ(0) +
∫ t

0

a(τ, ξ(τ))dτ +
∫ t

0

A(τ, ξ(τ)) ◦ dw(τ), (6.17)

which is usually written in the reduced differential form as follows:

dξ(t) = a(t, ξ(t))dt + A(t, ξ(t)) ◦ dw(t). (6.18)

Definition 6.18. In a stochastic differential equation the coefficient a(t, x)
is called the drift and the bilinear form ((2, 0)-tensor field) A(t, x) ◦ A∗(t, x)
is called the diffusion coefficient.

There are more general types of SDEs called diffusion type SDEs. In these
equations the coefficients a(t, ·) and A(t, ·) depend not on x ∈ R

n but on a
curve x(·) given on the interval [0, t], i.e., they are equations with delayed
argument.

The exact description is as follows. Specify an interval [0, l] ⊂ [0,∞)
and consider the mappings a : [0, l] × C0([0, l], Rn) → R

n and A : [0, l] ×
C0([0, l], Rn) → L(Rk, Rn) where L(Rk, Rn) is the space of linear operators
from R

k to R
n and C0([0, l], Rn) is equipped with the σ-algebra of cylin-

der sets. We always assume that a(t, x(·)) and A(t, x(·)) satisfy the following
conditions:

Condition 6.19

(i) The mappings a(t, x(·)) and A(t, x(·)) are jointly measurable.
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(ii) For every t ∈ [0, l] the mappings a(t, ·) : C0([0, l], Rn) → R
n and

A(t, ·) : C0([0, l], Rn) → L(Rk, Rn) are measurable with respect to the σ-
algebra generated by cylinder sets with bases over [0, t] in C0([0, l], Rn),
and the Borel σ-algebras in R

n and L(Rk, Rn).

Remark 6.20. Condition 6.19(ii) (cf. Condition 4.12) is equivalent to the
fact that if for any t ∈ [0, l] two different curves x1(·) and x2(·) coincide on
the interval [0, t], then a(t, x1(·)) = a(t, x2(·)) and A(t, x1(·)) = A(t, x2(·))
(cf. Remark 4.13). For details, see [83] .

Definition 6.21. An equation of Itô type

dξ(t) = a(t, ξ(·))dt + A(t, ξ(·))dw(t) (6.19)

is called a diffusion type stochastic differential equation.

Equation (6.19) is a reduced form of the integral expression

ξ(t) = ξ0 +
∫ t

0

a(s, ξ(·))ds +
∫ t

0

A(s, ξ(·))dw(s). (6.20)

It is clear that equation (6.16) is a particular case of (6.19).
We shall often require that the coefficients of equation (6.19) in addition

satisfy the following:

Condition 6.22 The mappings a(t, x(·)) and A(t, x(·)) are jointly continu-
ous.

Sometimes one also needs to consider the equations with random coeffi-
cients (i.e., coefficients explicitly depending on ω ∈ Ω).

In the theory of stochastic differential equations one distinguishes between
two types of solution: strong and weak.

Definition 6.23. Equation (6.16) ((6.18) or (6.19), respectively) has a strong
solution ξ(t) if for every Wiener process w(t) on a probability space, and
adapted to a filtration Bt, there exists a stochastic process ξ(t) on the same
probability space as w(t) and non-anticipative with respect Bt, such that for
ξ(t) and w(t) a.s. for every t in some interval, equality (6.15) ((6.17) or (6.20),
respectively) is fulfilled.

Definition 6.24. Equation (6.16) ((6.18) or (6.19), respectively) has a weak
solution ξ(t) if there exist a probability space (Ω,F , P), a non-decreasing
family Bt of σ-subalgebras of the σ-algebra F , a process ξ(t) in R

n non-
anticipative with respect to Bt, and a Wiener process w(t) in R

k adapted to
Bt, such that for ξ(t) and w(t) a.s. for every t in some interval, the equation
(6.15) ((6.17) or (6.20), respectively) is fulfilled.
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It should be emphasized that a strong solution is well-defined on every
probability space on which a Wiener process is well-defined, and it is non-
anticipative with respect to the Wiener process. A weak solution ξ(t) must
be well-defined on at least one probability space and in some sense the cor-
responding Wiener process is non-anticipative with respect to ξ(t).

For strong solutions the “past” Pw
t of a Wiener process is usually taken as

Bt and it turns out that Pw
t = Pξ

t . On the other hand, for weak solutions it
is often the case that Bt = Pξ

t where Pξ
t is the “past” of ξ(t). Thus, in both

cases one may suppose that w(t) is adapted to Pξ
t .

A strong solution is said to be strongly unique if any two strong solutions
coincide a.s. A weak solution is called weakly unique if for any two weak
solutions the measures corresponding to them on the path space coincide
(see Section 6.1.1).

From Definitions 6.17, 6.23 and 6.24 it follows that the solutions of (6.16)
are diffusion processes. It also follows that the strong solutions of (6.16)
are Markov processes. The solutions of (6.19) are evidently diffusion type
processes (see Definition 6.16) and, generally speaking, they are not Markov
processes.

Definition 6.25. The coefficients of (6.16) are said to satisfy the Itô condi-
tion (have linear growth) if there exists a constant K > 0 such that for all
t ∈ R and x ∈ R

n the inequality

‖a(t, x)‖ + ‖A(t, x)‖ < K(1 + ‖x‖), (6.21)

is satisfied where ‖A‖ is the operator norm of A.

The Itô condition for a Stratonovich equation has the same form as for an
Itô equation. For a diffusion type equation it takes the form

‖a(t, x(·))‖ + ‖A(t, x(·))‖ < K(1 + ‖x(·)‖C0([0,l],Rn)). (6.22)

Existence theorems for local solutions of SDEs assert that a solution exists
up to the (random) hitting time of the boundary of a neighborhood of the
initial value. It is clear that for local existence, conditions of type (6.21) are
not required.

Conditions (6.21) or (6.22) guarantee the global in time existence of SDE
solutions (if local solutions exist). We discuss some generalizations of Condi-
tion (6.21) in Section 7.3 and conditions of another type in Section 7.4.

Existence theorems for strong solutions are mainly proved by the con-
traction mapping principle, e.g., if (6.21) is satisfied and the coefficients are
in some sense Lipschitz continuous (in this case the solution is well-defined
for t ∈ [0,∞)). Theorems of this sort exist for a broad class of equations
with random coefficients (see, e.g., [83, 84, 162]). For example, for equation
(6.19), the existence of a strong solution of the Cauchy problem for t ∈ [0,∞)
is proved if the coefficients are Lipschitz continuous or smooth and (6.22) is
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satisfied. There are existence of strong solution theorems based on some other
principles, and theorems which derive the existence of a strong solution from
that of a weak solution. Note that there are examples of equations that have
weak solutions but no strong solutions (see, e.g., [84]).

The notion of weak solution is due to A. Skorokhod. He also proved the
following classical existence theorem for weak solutions of equation (6.19) in
R

n with an n-dimensional Wiener process (see, e.g., [83, 84, 162]):

Theorem 6.26 Let the coefficients a(t, x(·)) and A(t, x(·)) in (6.20) satisfy
Conditions 6.19 and 6.22 and the Itô condition (6.22). Then for every deter-
ministic initial condition ξ(0) = x0 ∈ R

n equation (6.20) has a weak solution.

Theorem 6.26 is proved in [83, Theorem III.2.4]. Note that in some sense
this theorem is a natural analog of the existence of solution theorem for
ordinary differential equations with continuous right-hand sides.

The proof of Theorem 6.26 is based on the following technical statements
which we shall make use of later in the book.

Lemma 6.27 For a solution of the diffusion type stochastic differential equa-

tion ξ(t) = ξ0 +
t∫

0

a(s, ξ(·))ds +
t∫

0

A(s, ξ(·))dw(s) in R
n, t ∈ [0, T ], whose

coefficients satisfy (6.22) for some K > 0, for any integer p ≥ 2 there exists
a constant Cp > 0, depending only on p, K and T , such that the inequality
E(sup

t≤T
‖ξ(t)‖p) < Cp holds.

Lemma 6.27 follows from [83, Lemma III.2.1] and the remark after it.

Lemma 6.28 Let {μξ} denote the measures on the path space (Ω̃, F̃) (in the
notation from Section 6.1.1) corresponding to the solutions of the equations
(6.20) with various a(t, x(·)) and A(t, x(·)) that satisfy Conditions 6.19 and
6.22 and the Itô condition (6.22) with the same K. Then {μξ} is weakly
compact.

Lemma 6.28 is a Corollary to [83, Lemma III.2.2].
Consider a sequence of diffusion type equations with continuous coefficients

dξk(t) = ak(t, ξ(·))dt + Ak(t, ξ(·))dw(t) satisfying the hypothesis of Lemma
6.27 with the same K and T for all k. Let there exist (weak) solutions ξk of
the above equations and let μk be the corresponding measures on (Ω̃, F̃).

Lemma 6.29 Suppose the measures μk weakly converge to a measure μ.
Then for every integer p ≥ 1 the measures νk defined by the relations
dνk = (1 + ‖x(·)‖p)dμk weakly converge to the measure ν defined by the
relation dν = (1 + ‖x(·)‖p)dμ.

Proof. Let f : Ω̃ → R be an arbitrary bounded continuous function. The
random elements f(ξk(·))(1+‖ξk(·)‖p) are uniformly integrable. This follows
from the facts that f(x(·)) is bounded, that by Lemma 6.27
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∫

Ω̃

‖x(·)‖p+1dμk ≤ sup
t

E
(
‖ξk(t)‖p+1

)
< Cp+1

and that ∫

‖xi(·)‖>c

‖xi(·)‖pdμi <
1
c

∫

‖xi(·)‖>c

‖xi(·)‖p+1dμi

(see [25]). Then, since f(x(·))(1 + ‖x(·)‖p) is a continuous map from Ω̃ to R,
the weak convergence of μk to μ yields E(f(ξk)(1+‖ξk‖)) → E(f(ξ)(1+‖ξ‖))
as k → ∞ (see [25]). Thus lim

k→∞

∫
Ω

f(x(·))(1 + ‖x(·)‖p)dμk =
∫

Ω
f(x(·))(1 +

‖x(·)‖p)dμ and so lim
k→∞

∫
Ω

f(x(·))dνk =
∫

Ω
f(x(·))dν. ��

There are existence of weak solution theorems that require the linear op-
erator A(t, x) to be non-degenerate at all (t, x) and which therefore have
no analogs for ordinary differential equations. For example, if A(t, x) is non-
degenerate and continuous, a(t, x) is measurable, and they satisfy (6.21), then
for every initial condition there exists a weak solution of (6.16) well-defined
for t ∈ [0,∞) [83, Theorem III.3.3].

N.V. Krylov’s theorem [165, Theorem II.6.1] proves the existence of a weak
solution for the diffusion equation (6.16) in the case when both coefficients
are only measurable but uniformly bounded and A(t, x) is positive definite
and satisfies a qualified non-degeneracy condition.

We refer the reader to, say, [162], which contains a detailed survey of
existence theorems for strong and weak solutions of SDEs.

If the coefficient A is smooth, a solution of an equation in Itô form is also
a solution of an equation in Stratonovich form with different drift and vice
versa. Indeed, apply the Itô formula (6.10) to A(t, ξ(t)) as to a mapping.
Then

dA(t, ξ(t)) =
∂A

∂t
dt + A′(a(t, ξ(t)))dt +

1
2
trA′′(A, A)dt + A′(A(t, ξ(t)))dw(t).

Now substitute this expression for dA into the integral
∫ t

0
dAdw(τ). By The-

orem 6.12 only one summand in the expression for
∫ t

0
dAdw(τ) is not equal to

zero, so that
∫ t

0
dAdw(τ) =

∫ t

0
trA′(A(τ, ξ(τ)))dτ . Substitute this expression

into (6.6). Then

∫ t

0

A ◦ dw(τ) =
1
2

∫ t

0

trA′(A(τ, ξ(τ)))dτ +
∫ t

0

A(τ, ξ(τ))dw(τ), (6.23)

i.e., a solution ξ(t) of the equation in Itô form (6.16) satisfies the equation in
Stratonovich form

dξ(t) =
[

a(t, ξ(t)) − 1
2
trA′(A(t, ξ(t))

]

dt + A(t, ξ(t)) ◦ dw(t). (6.24)
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On the other hand, if ξ(t) is a solution of the equation in Stratonovich form
(6.17), it satisfies the equation in Itô form

dξ(t) =
[

a(t, ξ(t)) +
1
2
tr A′(A(t, ξ(t))

]

dt + A(t, ξ(t))dw(t). (6.25)

Note that in equivalent equations in Itô and Stratonovich forms the diffusions
are the same while the drifts are different.

So, if the coefficients of an equation in Stratonovich form are smooth
enough, by using formula (6.24) one can derive existence theorems for such
equations from those for equations in Itô form. If the coefficients are not
smooth enough, independent proofs are required. Existence of solution prob-
lem for equations in Stratonovich form have not been as deeply investigated
as for equations in Itô form.

By analogy with formula (6.24) (now by the use of formula (6.7)) one
can show that a solution ξ(t) of the equation in Itô form (6.16) satisfies the
following equation with anticipating integral:

ξ(t) = ξ0 +
∫ t

0

a(s, ξ(s))ds −
∫ t

0

trA′(A(s, ξ(s)))ds

+
∫ t

0

A(s, ξ(s))d∗w(s), (6.26)

There are various methods of approximating the Wiener process by pro-
cesses with smooth or piecewise smooth sample paths. Consequently a
stochastic differential equation is approximated by ordinary differential equa-
tions with coefficients depending on a parameter ω ∈ Ω. It turns out that the
solutions of these approximating equations tend to a solution of an equation
with initial coefficients in Stratonovich form rather than in Itô form.

Let q be a partition of the interval [0, l]. Consider the piecewise linear ap-
proximations of the Wiener process w(t) in the form wq(t) = 1

ti+1−ti
((ti+1 −

t)w(ti) + (t − ti)w(ti+1)), ti ≤ t ≤ ti+1, and the ordinary differential equa-
tions

dxq(t, ω)
dt

= a(t, xq(t, ω)) + A(t, xq(t, ω))
dwq

dt
, ω ∈ Ω. (6.27)

Note that by replacing w(t) by wq(t) we obtain the same equation (6.27) both
from the Itô and from the Stratonovich equations with equal coefficients. The
classical Wong-Zakai theorem asserts that under some conditions that guar-
antee the existence of solutions on the entire interval [0, l], the solutions of
(6.27) with initial conditions xq

m0
(0, ω) = m0(ω) tend with uniform probabil-

ity on [0, l] to a solution of the Stratonovich equation (6.18) (not of the Itô
equation (6.16)) with initial condition xm0(0, ω) = m0(ω) as diam q → 0. It
is clear that one can choose a sequence of partitions qi such that xqi

m0
tends

to ξm0 a.s. uniformly on [0, l].
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Several versions of this statement, due to McShane, can be found in [66].
We should also mention a theorem of P. Malliavin (see, e.g., [177]) where a
Wiener process is approximated by a process with averaged paths and the
solutions of the corresponding ordinary differential equations converge to a
solution of a Stratonovich SDE.

6.3 Stochastic Flows and their Generators

By analogy with the case of ordinary differential equations (see Section 1.1)
the general solution of a stochastic differential equation with smooth coef-
ficients is called a stochastic evolution family or, in the autonomous case, a
stochastic flow. For simplicity of presentation we shall use the term stochastic
flow for general solutions in both autonomous and non-autonomous cases.

Denote by ξ(t, s), s ≥ t ≥ 0 the flow generated by a stochastic differential
equation with smooth coefficients. This equation can be given in Itô or in
Stratonovich form. Since the coefficients are smooth, one can pass from Itô
to Stratonovich form and vice versa (see formulae (6.24) and (6.25)). For
x ∈ R

n and t ≥ 0 the Markov diffusion process ξt,x(s) (s ≥ t), the solution
of the above-mentioned equation with initial condition ξt,x(t) = x, is called
the orbit of the flow ξ(t, s). Generally speaking, x can be a random variable
with values in R

n, but if the contrary is not stated, we shall suppose x to be
a non-random point in R

n.
Denote by (Ω,F , P) the probability space on which the solutions of the

above-mentioned equation are given.
In general, it is not assumed that the orbit ξt,x(s) exists for all s ≥ t.

Definition 6.30. If for all t ∈ [0,+∞) and x ∈ R
n (or, in the general case,

x ∈ M , where M is a smooth manifold) the orbits exist a.s. for all s ∈ [t, +∞),
the flow is said to be complete.

For an arbitrary ω ∈ Ω the corresponding sample path ξt1,x1(s)ω of an
orbit ξt1,x1(s) may exist for all s ≥ t, yet ξt2,x2(s)ω may not exist for another
orbit ξt2,x2(s).

Definition 6.31. Denote by Ω̆ the set of those ω ∈ Ω for which, for all
t ∈ [0, +∞) and x ∈ R

n (or, in the general case, x ∈ M where M is a smooth
manifold), the sample path ξt,x(s)ω exists for s ∈ [t, +∞). The flow is said
to be strongly (or strictly) complete if P(Ω̆) = 1.

Some completeness criteria for the general case of stochastic flows on man-
ifolds will be considered in Section7.4 below.

In the general case the orbit exists on a random time interval.

Definition 6.32. Let [0, τ(ω)) be the maximal random time interval on
which a solution of a stochastic differential equation (in particular, an or-
bit of flow) exists. The random time τ(ω) is called the explosion time.
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An important role in the investigation of stochastic flows is played by the
so-called infinitesimal generators of flows (for short we shall often refer to
infinitesimal generators simply as generators). Let the equation describing
the flow be given in Itô form: (6.16). We introduce the following notation:
(q1, . . . , qn) denote coordinates in R

n and A∗ denotes the matrix of the op-
erator adjoint to A. Take a relatively compact open neighborhood U ⊂ R

n

of x ∈ R
n and let τ be the Markov time that the process ξt,x(s) first hits the

boundary of U . Let f : R
n → R be a real-valued function that has continuous

bounded derivatives up to the second order.

Theorem 6.33 (see, e.g., [76]) The equality

lim
Δt→+0

1
Δt

(E(f(ξt,x((t + Δt) ∧ τ))) − f(x)) = A(t, x)f (6.28)

holds where (t + Δt) ∧ τ = min((t + Δt), τ), Δt → +0 means that Δt → 0
and Δt > 0, the differential operator A(t, x) is given by the relation

A(t, x)f =
1
2

∑

i,j

σij(t, x)
∂2f

∂qi∂qj
+ a(t, x)f, (6.29)

the matrix (σij) = A ◦ A∗ is the diffusion coefficient of the equation, and
a(t, x)f denotes the derivative of f in the direction of the vector field a(t, x).

Proof. It is known that
∫ (t+Δt)∧τ

t
A(s, ξt,x(s))dw(s) is a martingale. Since

for Δt = 0 this integral equals zero, E(
∫ (t+Δt)∧τ

t
A(s, ξt,x(s))dw(s)) = 0 (see

Section 6.1.4). Taking into account this equality, one can derive from the Itô
formula that

E(f(ξt,x(t + Δt) ∧ τ))) − f(x)

= E

⎛

⎜
⎝

(t+Δt)∧τ∫

t

f ′(a(s, ξt,x(s)))ds

+
1
2

(t+Δt)∧τ∫

t

tr f ′′(A(s, ξt,x(s)), A(s, ξt,x(s))ds

⎞

⎟
⎠ .

Direct calculations in coordinates show that f ′(a) is the derivative a(t, x)f of
the function f in the direction of the vector field a(t, x) and that tr f ′′(A, A) =
∑

i,j

σij ∂2f
∂qi∂qj . So, the latter equality can be presented in the form:

E(f(ξt,x((t + Δt) ∧ τ))) − f(x) = E

(∫ (t+Δt)∧τ

t

(Af)(s, ξt,x(s))ds

)

.
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Since for s ∈ [t, (t+Δt)∧ τ) the process ξt,x(s) belongs to the compact set
U and since f is smooth, the values of f and of its derivatives are bounded.
Hence we can apply Lebesgue’s theorem on limits under integrals (expecta-
tions) and so there exists a random value s′ ∈ [t, (t + Δt) ∧ τ ] such that:

∫ (t+Δt)∧τ

t

(Af)(s, ξt,x(s)))ds = (Af)(s′, ξt,x(s′))((t + Δt) ∧ τ − t).

Evidently (t + Δt) ∧ τ − t = ((t + Δt) − t) ∧ (τ − t) = Δt ∧ (τ − t) and

lim
Δt→+0

1
Δt

E((Af)(s′, ξx(s′))((t + Δt) ∧ τ − t))

= E lim
Δt→+0

((Af)(s′, ξx(s′))
Δt ∧ (τ − t)

Δt
. (6.30)

Since at time t the process under consideration has value x, i.e., t is not the
first time that the sample path hits the boundary of the compact set U , we
see that a.s. τ − t > 0. In addition the expression τ − t does not depend on
Δt. Hence lim

Δt→+0

τ−t
Δt = +∞. From the last expression it follows that

lim
Δt→+0

1
Δt

(Δt ∧ (τ − t)) = 1 ∧ lim
Δt→+0

τ − t

Δt
= 1.

Since s′ ∈ [t, (t+Δt)∧τ ], by Lebesgue’s theorem s′ → t as Δt → +0. Passing
to the limit in (6.30) completes the proof. ��

Definition 6.34. The operator A defined by (6.29) is called the infinitesimal
generator (or simply generator) of the flow ξ.

If a and A satisfy some regularity conditions, the generator A determines
the diffusion process uniquely: any two processes having the same generator
and having the same initial value induce the same measure on the path space
(see Section 6.1.1). This means the process is weakly unique, see Section 6.2.3.

It is easy to see that the generator of the Wiener process is 1
2Δ where Δ

is the Laplace operator in R
n.

We should point out the following classical result of A.V. Skorokhod:

Theorem 6.35 (see, e.g., [81]) Let the coefficients of equation (6.16) be con-
tinuous and bounded together with their first and second derivatives in x on
the product R × R

n. Suppose that the function f : R
n → R has continuous

partial derivatives up to the second order and that it, and its first and sec-
ond derivatives, is bounded on R

n. Choose an arbitrary interval [0, l] ⊂ R.
Then the function v(t, x) = E(ξt,x(l)) on [0, l] × R

n is C1-smooth in t and
C2-smooth in x and it satisfies the equation ∂v

∂t + Av = 0.

Thus, solutions of stochastic differential equations play for parabolic equa-
tions a role similar to that of characteristics for first order partial differential
equations.
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By analogy with the case of ordinary differential equations (see Section 1.1
and Section 3.1), the mapping ξt,(·)(s) is a random diffeomorphism (random
homeomorphism – in the case of continuous coefficients of the equation) of
R

n onto its image. If the image coincides with R
n, ξ(t, s) is said to be a

stochastic flow of diffeomorphisms (homeomorphisms, respectively).
Note that unlike the case of ordinary flows (see Section 1.1), without ad-

ditional constructions the evolution (or group) property makes no sense for
stochastic flows since for such properties the flow must be defined for all
t, s ∈ (−∞,∞). Thus, we need to define a solution ξt,x(s) for s ≤ t and prove
the solution’s existence on the entire real line.

If ξ(t, s) is a flow of diffeomorphisms, there exists a backward flow ξ̂(s, t)
consisting of diffeomorphisms inverse to those in the flow ξ(t, s).

Theorem 6.36 [167] If a flow of diffeomorphisms ξ(t, s) is given by equation
(6.16), the backward flow ξ̂(s, t) is given by the Itô equation of the form

dξ̂(t) = [−a(t, ξ(t)) + tr A′(A(t, ξ(t))]dt − A(t, ξ(t))dw(t). (6.31)

If both forward and backward flows are strictly complete, it is not hard
to see that having defined for s ≤ t a value of ξ(t, s) equal to ξ̂(s, t), we
obtain a family of random diffeomorphisms for which the evolution property
ξs1,ξt,x(s1)(s2) = ξt,x(s1 + s2) holds for all t, s1, s2 ∈ (−∞, +∞).Note that
equation (6.31) is well-defined even if ξ(t, s) is not a flow of diffeomorphisms.

Definition 6.37. If the flow ξ(t, s) is not a flow of diffeomorphisms, the flow
generated by equation (6.31) is called the backward flow to ξ(t, s).

Definition 6.38. The generator Â of the backward flow generated by (6.31)
is called the backward generator of the flow ξ(t, s).

One can easily see that Â is given by the relation

Â(t, x)f =
1
2

∑

i,j

σij(t, x)
∂2f

∂qi∂qj
− a(t, x)f + tr A′(A(t, x))f, (6.32)

where trA′(A(t, x))f is the derivative of f along the vector field trA′(A(t, x)).
If a flow is given by an equation in Stratonovich form (6.18), it is not hard

to derive from formula (6.25) that in terms of the coefficients of equation
(6.18) the generators A and Â have the following presentations:

A(t, x) =
1
2

∑

i,j

σij(t, x)
∂2

∂qi∂qj
+ (a(t, x) +

1
2
tr A′(A(t, x)), (6.33)

Â(t, x) =
1
2

∑

i,j

σij(t, x)
∂2

∂qi∂qj
+ (−a(t, x) +

1
2
tr A′(A(t, x)). (6.34)

We refer the reader to, e.g., [1, 167] for a more detailed discussion of
stochastic flows.



Chapter 7

Stochastic Analysis on Manifolds

The purpose of this chapter is to describe and investigate the main features
of stochastic analysis on smooth manifolds. Our principal focus shall be on
stochastic differential equations. A monographic presentation of various al-
ternative aspects of and approaches to stochastic analysis on manifolds can
be found in [23, 66, 69, 147, 179, 180, 190, 205].

7.1 Stochastic Differential Equations in Stratonovich
Form on a Manifold

7.1.1 General construction

The theory of stochastic differential equations in Stratonovich form can be
generalized to the case of manifolds in a very simple way. The reason for
this is that by formula (6.14) a solution of an equation in Stratonovich form
(6.18) under the coordinate change ϕβα transforms into

dϕβα(ξ(t)) = ϕ′
βα[a(t, ξ(t)) + A(t, ξ(t)) ◦ dw(t)] (7.1)

which coincides with formula (1.1) for the transformation of a tangent vector.
Equations in Itô form are transformed by formula (7.6), i.e., they are cross-
sections of a special bundle, and so they require special constructions for their
description. This is why Stratonovich’s approach to stochastic differential
equations on manifolds is used so extensively in the literature.

In this section we describe an approach to stochastic differential equations
on manifolds which is based on that of Stratonovich. Itô’s approach will be
described in later sections.

Let M be a smooth finite dimensional manifold with dimension n.

Definition 7.1. The pair (a(t,m), A(t,m)), where a(t,m) is a vector field
on M and A(t,m) is a field of linear operators A(t,m) : R

k → TmM sending
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a certain Euclidean space R
k to the tangent spaces to M , is called an Itô

vector field.

For Itô vector fields we often use the notation (a, A). The value at the
point m is denoted by (am, Am) or (a(m), A(m)) (in the non-autonomous
case the notation (a(t,m), A(t,m)) is also used).

Since the space R
k is specified (i.e., it is not subjected to coordinate

changes), one can easily see that under a change of coordinates ϕβα in a
chart on M the coordinate descriptions Aα(t,m) and Aβ(t,m) are connected
by formula Aβ(t,m) = ϕ′

βαAα(t,m), i.e., under changes of coordinates both
components of the pair (a(t,m), A(t,m)) are transformed by formula (1.1).
This is the reason for using the term “Itô vector field”.

Lemma 7.2 Let A(t,m) be as above. Then AA∗ is a symmetric (2, 0)-tensor
field on M .

Proof. If the matrix of the operator A(t,m) is calculated with respect to the
standard basis in R

k and the basis in TmM is generated by the coordinate
system of some chart, the transposed matrix A∗(t,m) is the matrix of the
conjugate operator calculated with respect to the dual basis in the cotangent
space T ∗

mM and the standard basis in R
k (we identify R

k with its conjugate
space in terms of the standard inner product). Note that A(t,m)A∗(t,m)
sends T ∗

mM to TmM , i.e., a pair of cotangent vectors is transformed into a
pair comprising a tangent vector and a cotangent vector whose “coupling”
yields a real number that linearly depends on both cotangent vectors from
the initial pair. Thus A(t,m)A∗(t,m) is a bilinear form on cotangent vectors,
i.e., it is a (2, 0)-tensor field. The fact that the matrix of AA∗ is symmetric
in any coordinate system is obvious. ��

Let w(t) be a Wiener process in R
k and (a(t,m), A(t,m)) be an Itô vector

field on M . The expression

dξ(t) = a(t, ξ(t))dt + A(t, ξ(t)) ◦ dw(t) (7.2)

is called a stochastic differential equation in Stratonovich form on M , given
by Itô vector field (a(t,m), A(t,m)). This means that in every chart on M
the solution ξ(t) satisfies equation (6.17). As said above, (7.2) has the correct
transformation rule under changes of coordinates, i.e., it is well-defined.

Remark 7.3. Let M be embedded into a Euclidean space R
N as a subman-

ifold. Since the Itô vector field (a, A) on M is transformed as a vector under
changes of coordinates, the phrase “an Itô vector field is tangent to the sub-
manifold M in R

N” is well-defined. This means that a(t,m) ∈ TmM ⊂ TmR
N

and A(t,m) : R
k → TmM ⊂ TmR

N at every point m ∈ M ; notice that these
relations remain true under changes of coordinates. For Itô equations the
property of being tangent to M is ill-defined.
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We consider some examples of stochastic differential equations in Stratono-
vich form on manifolds.

Example 7.4. Embed the manifold M by Whitney’s Theorem (Theorem 1.2)
into a Euclidean space R

k for some sufficiently large k. Denote by Pm : R
k →

TmM the operator of orthogonal projection. Let a(t,m) be a vector field
and B(t,m) be a (1, 1)-tensor field on M . Define the field of linear operators
A(t,m) : R

k → TmM by the formula A(t,m) = B(t,m) ◦Pm. It is clear that
(a(t,m),A(t,m)) is an Itô vector field on M that generates the equation

dξ(t) = a(t, ξ(t))dt + A(t, ξ(t)) ◦ dw(t). (7.3)

Example 7.5. Let M be a Riemannian manifold with dimM = n. In this case
we set k = n. Consider the total space OM of the bundle of orthonormal
frames over M and the Levi-Civitá connection H on OM (see Section 2.7). Let
a(t,m) be a vector field and B(t,m) be a (1, 1)-tensor field on M . Consider
their horizontal lifts aT (t, b) and BT (t, b) onto OM . Recall that aT (t, b) =
Tπ−1(a(t, πb)|Hb

and BT (t, b) is defined analogously. Consider also the basic
vector field E(w(t)) on OM (see Definition 2.68), constructed from the vector
w(t) in R

n. The pair (aT (t, b), BT (t, b) ◦Eb) is an Itô vector field on OM and
together with w(t) from R

n it determines the equation

dξ(t) = aT (t, ξ(t))dt + BT (t, ξ(t)) ◦ Eξ(t)(◦ dw(t)). (7.4)

on OM .

Example 7.6. We present an example of a stochastic differential equation with
random coefficients. Let the following objects be given: a non-decreasing fam-
ily of σ-subalgebras Bt of the σ-algebra F (t ∈ [0, l], l > 0) to which a Wiener
process w(t) in R

k is adapted; a stochastic process a(t) in R
n and a stochas-

tic process A(t) with values in the space of linear mappings from R
k to R

n

that are non-anticipating with respect to Bt and having a.s. continuous sam-
ple trajectories; the field of linear operators Em : R

n → TmM , smooth in
m ∈ M . The pair (Ema(t), EmA(t)) on M is a random Itô vector field and
it generates the stochastic differential equation

dξ(t) = Eξ(t)a(t)dt + Eξ(t)A(t) ◦ dw(t)).

The notions of strong and weak solutions continue to be meaningful for
stochastic differential equations on manifolds.

Theorem 7.7 Let F : M → N be a smooth mappings of manifolds and ξ(t)
be a solution of equation (7.2) on M . Then F (ξ(t)) satisfies the equation

dF (ξ(t)) = TFa(t, ξ(t))dt + TFA(t, ξ(t)) ◦ dw(t),

on N where TF is the tangent mapping of F .

Theorem 7.7 follows from formula (6.14).
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Local existence of solution theorems for equation (7.2) with smooth enough
coefficients (a, A) can be proved via the following argument. Specify an initial
condition ξ(0) = m0 ∈ M and consider a relatively compact chart Uα � m0.
Since A(t,m) is smooth enough, in this chart it is possible to pass from
equation (6.17) (whose solution in the chart is ξ(t) by definition) to equation
(6.25). If the coefficients (a, A) are smooth enough, applying the existence
theorems for linear spaces from Section 6.2.3 (applicable in every chart) one
can easily see that the latter equation has a strong solution with given initial
condition. This solution exists on a random time interval [0, τω) where τω is
the time that a sample trajectory ξω(t) first hits the boundary of the domain
Uα (the stopping time, see Section 6.1.3).

We describe two tricks that from the very beginning have been applied
in this theory for proving the global existence of solutions (alternative tech-
niques will be considered later). The first trick embeds M into a Euclidean
space, as in Example 7.4 (but it is applicable in a much broader setting).
Embed M into a Euclidean space R

N of sufficiently large dimension. Con-
sider the normal bundle N(M) of M in R

N with fiber Nm. Take a tubular
neighborhood Θ of M . Recall that Θ is retracted onto M by the fibers of Nm

(see [172]). Denote by r̂ : Θ → M the corresponding retraction.
The neighborhood Θ is represented as a direct product M × W where W

is an open ball in R
N−n that at every point m ∈ M we can identify with a

ball of the normal space Nm to M . From the presentation of Θ as M ×W it
follows that the tangent space T(m,x)Θ = TmM×TxWm. It is obvious that T r̂
(where r̂ : Θ → M is the retraction introduced above) sends the subspaces
TxWm into zero vectors in TmM . Thus on the subspaces TmM the mapping
T r̂ is a linear isomorphism. Introduce vectors a(t, (m, x)) = T r̂−1a(t,m) and
linear operators A(t, (m, x)) = T r̂−1A(t,m) at x ∈ Θ. By Remark 7.3 it is
clear that (a(t, x), A(t, x)) is a well-defined Itô vector field on Θ.

Let O be a neighborhood of M such that Ō ⊂ Θ, where Ō is the closure of
O. Let ϕ(y) : R

N → R be a smooth function that meets the conditions: 0 ≤
ϕ ≤ 1, ϕ(y) = 1 for x ∈ Ō and ϕ(y) = 0 for x 
∈ Θ (Urysohn’s function). Con-
sider the Itô vector field (ā(t, x), Ā(t, x)) on R

N (ā(t, x), Ā(t, x)) of the form

ā(t, x) =
{

ϕ(x)a(t, x) x ∈ Θ,
0 x /∈ Θ,

Ā(t, x) =
{

ϕ(x)A(t, x) x ∈ Θ,
0 x /∈ Θ.

On R
N this vector field has the same smoothness as (a(t,m), A(t,m)) on M .

Specify an arbitrary initial condition ξ(0) = m0 ∈ M .

Theorem 7.8 Let the above-mentioned Itô vector field (ā(t, x), Ā(t, x)) on
R

N be smooth and C1-uniformly bounded. Then equation (7.2) on M with
initial condition ξ(0) = m0 ∈ M has a unique strong solution on M that
exists for all t ∈ [0,+∞).
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Proof. Consider the following equation in Stratonovich form in R
N

dξ̄(t) = ā(t, ξ̄(t))dt + Ā(t, ξ̄(t)) ◦ dw(t).

Pass by formula (6.25) to the corresponding equation in Itô form. Since
by hypothesis the coefficients (ā(t, x), Ā(t, x)) and their first derivatives are
smooth and uniformly bounded (from this it in particular follows that ā(t, x),
1
2 tr Ā′(Ā(t, x)) and Ā(t, x) are uniformly bounded), the corresponding equa-
tion in Itô form that we have obtained has a unique strong solution that
exists for t ∈ [0,+∞) (see Section 6.2.3). Since by construction the Itô vector
field (ā(t, x), Ā(t, x)) at the points x ∈ M coincides with (a(t, x), A(t, x)),
(i.e., it is tangent to M), it is easy to show that the solution ξ̄(t) with initial
conditions ξ̄(0) = m0 a.s. lies in M . ��

7.1.2 Riemannian uniform atlases

The second traditional trick that allows one to prove the existence of global
in time solutions of stochastic differential equations is based on the existence
of a certain covering, uniform in the following sense:

(i) for every point there exists a chart that together with the point contains
a ball of some specified radius, this radius being independent of the
point, the chart, etc.;

(ii) on every ball as described in (i), the coefficients of the equation are
bounded by a constant and that constant is independent of the ball,
the point, the chart etc.

The technique of proving the existence of a solution for t ∈ [0, +∞) is as
follows. Applying theorems of existence of strong solutions in vector spaces
(see Section 6.2.3), we can prove the existence and uniqueness of a solution
in the chart with center at m0 on a random interval [0, τ1] where τ1(ω) is the
Markov time of the first hit of a sample trajectory ξ(t, ω) on the boundary of
the above-mentioned ball with specified radius and center at m0 in this chart
(if ξ(t, ω) does not hit the boundary at all, τ(ω) = ∞). Then in an analogous
manner we start a solution from ξ(τ1, ω) given for [τ1, τ2] where τ2(ω) is the
Markov time of the first hit to the boundary of the ball centered at ξ(τ1, ω) in
the corresponding charts, etc. Some estimates are proved for the probability
of hitting the boundary of the ball for small t, based on boundedness of
the equation coefficients. Then it is derived from those estimates that a.s.
sup

n
τn = ∞.

Such a trick was used for the first time by Itô for equations in Itô form in
[149] (this is perhaps the first paper in the literature devoted to stochastic
differential equations on manifolds). For equations in Stratonovich form we
refer the reader to the paper by Clark [40] (see also [66]). The same trick was
used in [23] for Itô equations in Belopolskaya-Daletskii form (see below). In
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[66] the global existence of solutions for the equation from Example 7.6 was
proved by this method.

Usually the radii of balls are estimated in terms of Euclidean distance in
charts. This is why it is not clear whether such a covering exists on a given
manifold for a given equation.

Following [95], here we present a modification of such conditions in which
the radii of balls are measured with respect to a certain Riemannian metric
on the manifold, i.e., we introduce a special class of Riemannian metrics. We
prove an important result that such metrics exist on every finite-dimensional
manifold.

Let M be a connected finite-dimensional Riemannian manifold with Rie-
mannian metric 〈·, ·〉 and let ρ be the Riemannian distance function on M .

Definition 7.9. An atlas on M is called a uniform Riemannian atlas if for
every point m ∈ M there exists a chart (V, ϕ), m ∈ U = ϕ(V), of this
atlas such that U contains the metric ball Vm(r) centered at m and having
a specified radius r > 0 independent of m and U, where Vm(r) is taken with
respect to the Riemannian distance ρ.

Note that, in general, the metric ball Vm(r) = {m′ ∈ M |ρ(m, m′) < r}
may not be homeomorphic to a ball in the model space and may have a
complicated topological structure.

Obviously, a Riemannian metric possessing a uniform Riemannian atlas is
complete.

Theorem 7.10 [95] For any Riemannian metric on M , there exists a Rie-
mannian metric conformal to it that possesses a uniform Riemannian atlas.

To prove Theorem 7.10, we refine the methods developed in [140, 191] for
the investigation of convex neighborhoods and complete Riemannian metrics.
Theorem 7.10 is a generalization of the main result from [191] proving that
any Riemannian metric is conformal to a complete Riemannian metric.

Pick a Riemannian metric 〈·, ·〉 on M , i.e., let 〈·, ·〉m be an inner product
in the tangent space TmM , and let ρ be the Riemannian distance on M
corresponding to 〈·, ·〉.

It is known (see [161]) that for any point m ∈ M , there exists a number
a(m) > 0 such that the ρ-metric ball Vm

(
a(m)

)
lies in a normal coordinate

neighborhood (chart) of any point m′ ∈ Vm

(
a(m)

)
. Let r(m) be the least

upper bound of such a(m).
If r(m∗) = ∞ for a point m∗ ∈ M , the proof is clear. Assume that r(m) <

∞ for all m ∈ M .

Lemma 7.11 For any two points m, m′ ∈ M , the following inequality holds:
∣
∣r(m) − r(m′)

∣
∣ ≤ ρ(m, m′). (7.5)
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Proof. First, consider the case where m′ ∈ Vm(r(m)). Then Vm′(r(m) −
ρ(m, m′)) ⊂ Vm(r(m)) and, by the definition of r(m′), we have r(m′) ≥
r(m) − ρ(m, m′). If r(m) ≥ r(m′), then (7.5) follows. On the other hand,
m ∈ Vm(r(m′)) if r(m′) > r(m), and, therefore, r(m) ≥ r(m) − ρ(m, m′),
which proves (7.5). The case where m ∈ Vm′

(
r(m′)

)
can be dealt with in

the same manner. In the remaining case, the inequalities r(m) ≤ ρ(m, m′)
and r(m′) ≤ ρ(m, m′) follow from m′ 
∈ Vm(r(m)) and, at the same time,
m 
∈ Vm′(r(m′)) . Therefore, |r(m)− r(m′)| < ρ(m, m′), which completes the
proof of the lemma. ��

Without loss of generality, we may assume that the function r(m) is
smooth. If r(m) is not smooth, it can be approximated by a smooth function
r∗(m) such that 0 < r∗(m) < r(m) and r∗(m) satisfies (7.5).

Let us introduce a new metric 〈·, ·〉∗ on M by the formula

〈·, ·〉∗m =
1

r2(m)
〈·, ·〉m .

Denote by ρ∗ the Riemannian distance on M corresponding to 〈·, ·〉∗.

Lemma 7.12 If ρ(m, m′) ≥ r(m) then ρ∗(m, m′) ≥ 1/2.

Proof. Let γ(t) be an arbitrary piecewise smooth curve such that γ(a) = m
and γ(b) = m′. Denote its length in the metric 〈·, ·〉 by L, i.e.,

L =
∫ b

a

‖γ̇(t)‖ dt.

The length of γ in the metric 〈·, ·〉∗ can be found by the formula

L∗ =
∫ b

a

‖γ̇(t)‖
r (γ(t))

dt.

Using the classical mean value theorem, we obtain

L∗ =
1

r (γ(τ))

∫ b

a

‖γ̇(t)‖ dt =
L

r (γ(τ))
,

where τ ∈ [a, b]. Then

L∗ =
L

r(γ(τ)) − r(m) + r(m)

and, by Lemma 7.11,

L∗ >
L

r(m) + ρ
(
m, γ(τ)

) .
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By assumption, L > r(m). Moreover, ρ
(
m, γ(τ)

)
is not greater than the

length of γ on the interval [ a, τ), which, in turn, is not greater than L, i.e.,
L ≥ ρ

(
m, γ(τ)

)
. Thus

L∗ >
L

L + L
=

1
2

.

Since (2.2) holds for an arbitrary γ, ρ(m, m′) > 1/2 and the lemma is proved.
��

Proof. [of Theorem 7.10] By construction, the metric 〈·, ·〉∗ is conformal to
the original metric 〈·, ·〉. By definition, a normal chart of the metric 〈·, ·〉 at m
contains the metric ball Vm

(
r(m)

)
with respect to the distance ρ. It follows

from Lemma 7.12 that ρ(m, m′) < r(m) when ρ(m, m′) < 1/2. Thus, at every
point m ∈ M , the normal chart of the metric 〈·, ·〉 contains the ball centered
at m and having the radius 1/2 with respect to the metric ρ∗. Therefore,
〈·, ·〉∗ is the desired metric. The theorem is proved. ��
Theorem 7.13 Let there exist a Riemannian metric on M possessing a uni-
form Riemannian atlas such that a smooth Itô vector field (a(t,m), A(t,m))
is uniformly bounded with respect to the norm of the functional space C1

generated by this metric. Then for every initial condition ξ(0) = m0 ∈ M
equation (7.2) with this Itô vector field has a unique solution well-defined for
all t ∈ [0, +∞).

Theorem 7.13 is proved by the argument presented at the beginning of
this Section, modified by replacing distances with respect to the Euclidean
norm by Riemannian distances.

7.2 The Itô Bundle and Itô Equations on a Manifold

The investigation of equations in Itô form on manifolds was initiated by
Itô’s paper [149] and yielded interesting constructions clarifying the geometric
nature of stochastic differential equations (see, e.g., [21, 23, 77]).

According to the Itô formula (6.10), under a coordinate change ϕβα a
solution of the equation in Itô form (6.16) transforms into the equation

dϕβα(ξ(t)) = ϕ′
βα[a(t, ξ(t))dt + A(t, ξ(t))dw(t)]

+
1
2
tr ϕ′′

βα(A(t, ξ(t)), A(t, ξ(t)))dt, (7.6)

i.e., the solutions are cross-sections of a special fiber bundle. In order to
describe this bundle precisely, according to Definition 1.32, we first describe
its structure group.

Let M be a smooth manifold of dimension n. Denote by L(Rk, Rn) the
space of linear operators sending R

k to R
n, by GL(n, R) the group of in-

vertible n × n matrices (or invertible linear operators acting on R
n) and by
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L2(Rn) the set of bilinear mappings α : R
n × R

n → R
n (cf. the notation of

Section 1.2).

Definition 7.14. The Itô group GI is the set of pairs (B, β) where B ∈
GL(n, R) and β ∈ L2(Rn), with the operation defined by the following equal-
ity:

(B, β) · (C, γ) = (B ◦ C, B ◦ γ(·, ·) + β(C(·), C(·))). (7.7)

Theorem 7.15 GI with operation (7.7) is indeed a group.

Proof. The associativity of (7.7) is verified by direct calculation. The unit in
GI is the pair (I, 0) where I is the unit operator and 0 is the zero bilinear
mapping. For a pair (B, β) the inverse element with respect to (7.7) is the
pair (B, β)−1 = (B−1,−B−1 ◦ β(B−1(·), B−1(·))). ��

Remark 7.16. As for every Lie group, the tangent space T(I,0)GI at the unit
(I, 0) of GI has the structure of a Lie algebra. Note that T(I,0)GI consists
of the pairs {(D, δ)}, where D ∈ L(Rn), the group of all linear operators in
R

n (n × n matrices) and δ ∈ L2(Rn). Direct calculations with left-invariant
vector fields on GI according to formula (1.7) determining the Lie bracket
yields the following formula for the bracket of vectors (D, δ) and (E, ε) from
T(I,0)GI :

[(D, δ), (E, ε)] = (DE − ED, E(δ(I,D)) − D(ε(I, E))). (7.8)

We call the Lie algebra with bracket (7.8) the Itô algebra.

Recall that for a bilinear operator Ψ(·, ·) on an n-dimensional Euclidean
space taking values in the same space, its trace is the vector defined by the
formula

trΨ =
n∑

i=1

Ψ(ei, ei) (7.9)

where e1, . . . , en is an orthonormal frame and the trace does not depend on
the choice of orthonormal frame.

Let Ψ be a bilinear operator on the tangent space TmM of a Riemannian
manifold which takes values in TmM . Denote by Ψk

ij its coefficients with
respect to the basis ∂

∂q1 , . . . , ∂
∂qn in a chart and by gij the components of the

metric tensor (see Notation 1.51 and Remark 1.52). Then it is easy to see
that in local coordinates the trace is described by the formula

trΨ = gijΨk
ij . (7.10)

Define the left action of group GI on the product R
n × L(Rk, Rn) by the

formula

(B, β) · (X,A) =
(

BX +
1
2
trβ(A(·), A(·)), B ◦ A

)

. (7.11)
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Definition 7.17. The Itô bundle I(M) over a manifold M is the bundle
described in Definition 1.32 with standard fiber R

n×L(Rk, Rn) and structure
group GI that acts on R

n × L(Rk, Rn) from the left by formula (7.11).

It is clear that the remaining two elements from the Definition 1.32 of
the bundle (i.e., the total space and projection), are determined here by the
standard fiber and structure group. We emphasize that over every chart Uα

on M the Itô bundle is presented as a direct product Uα × (Rn ×L(Rk, Rn))
and under the change of coordinates ϕβα from the chart Uα to another chart
Uβ an arbitrary point (mα, (aα, Aα)) is transformed according to the rule

(mα, (aα, Aα)) �→
(

ϕβαmα,

(

ϕ′
βαaα +

1
2
tr ϕ′′

βα(Aα, Aα), ϕ′
βαAα

))

. (7.12)

It is not hard to describe the principal Itô bundle, i.e., the principal bundle
with GI as the structure group. In every chart Uα it is presented as a direct
product Uα × GI and under the change of coordinates ϕβα to a chart Uβ it
transforms according to the rule

(mα, (Bα, γα)) �→
(
ϕβαmα,

(
ϕ′

βαBα, ϕ′
βαγα(·, ·) + ϕ′′

βα (Bα(·), Bα(·))
))

.

It is easy to see that I(M) is a bundle associated with the principal Itô
bundle where the left action on the fiber is given by formula (7.11).

Definition 7.18. The cross-sections of the Itô bundle I(M) are called the
Itô equations.

We introduce the notation (â, A) for an Itô equation, the value at a
point m is denoted by (âm, Am) or (â(m), A(m)) (in the non-autonomous
case (â(t,m), A(t,m))). This notation makes sense in every chart. Notice
that the second element of the pair is well-defined as a linear operator
Am : R

k → TmM (under changes of coordinates A transforms as a linear
operator of this sort, see formula (7.12)). Taking a trivialization in a chart,
â can be identified with a vector from TmM , but this identification depends
on the choice of chart and trivialization (the transformation rule for â under
changes of coordinates depends on A). Convenient coordinate and invariant
descriptions of Itô equations will be given below.

Let (â, A) be an Itô equation and w(t) be a Wiener process in R
k. In a

given chart Uα we consider the following stochastic differential equation in
Itô form

dξ(t) = â(t, ξ(t))dt + A(t, ξ(t))dw(t). (7.13)

Comparing the Itô formula (7.6) and formula (7.12), one can easily see that
equation (7.13) has the correct transformation rule under a change of coor-
dinates, i.e., (7.13) can be considered on the entire manifold M .

A solution of (7.13) is a diffusion process according to Definition 6.17
(see also Section 6.2.3) and so it is a semi-martingale since ξ(t) in a chart
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is the sum of an Itô integral
∫ t

0
A(t, ξ(t))dw(t) (i.e., an ordinary martingale)

and a Lebesgue integral
∫ t

0
â(t, ξ(t))dt (i.e., a process with bounded variation

of sample paths). Recall (see Section 6.1.4) that under coordinate changes
semi-martingales are transformed into semi-martingales, i.e., the notion of a
semi-martingale is well-defined on manifolds.

However the notion of a martingale is ill-defined on manifolds since under
a coordinate change a martingale is transformed to a semi-martingale. A
natural generalization of the notion of a martingale to the case of processes
on manifolds is the notion of a martingale with respect to a connection that
arises in the works of L. Schwartz and P.A. Meyer. We refer the reader to
[69, 179, 180, 204, 205] where a detailed description of this material in the
general case can be found. Here we introduce it only for the particular case
of diffusion processes.

The construction of the generator described in Section 6.3 is valid for
a solution of (7.13). Recall that a generator is a second order vector field
on M (see Section 2.9). Introduce a connection H on M and consider the
corresponding field of fiber-wise linear operators H : τM → TM defined by
formula (2.45).

Definition 7.19. A diffusion process with generator A is called a martingale
with respect to a connection H if HA = 0.

For specialists we mention that in the general case a semi-martingale
is called a martingale with respect to a connection H if the mapping H sends
its quadratic characteristic to zero.

The notions of strong and weak solutions is naturally transferred to
stochastic equations (7.13) as well as to equations (7.2). The existence of
local solution theorems (in charts) also remain valid. Let us present a theo-
rem of existence of a global solution.

Use the natural trivialization of I(M) in every chart and for an Itô equation
(â, A) determine in this trivialization the norm ‖âm‖ as the Riemannian norm
of the vector in TmM that corresponds to the first element of the pair (â, A)
with respect to the given trivialization, and the norm ‖Am‖ as the norm of
the linear operator A sending R

n to TmM where the latter is equipped with
the Riemannian inner product. Recall that a Riemannian metric possessing
a uniform Riemannian atlas exists on every finite-dimensional manifold (see
Section 7.1.2).

Theorem 7.20 Let an Itô equation (â(t,m), A(t,m)) be smooth in m ∈ M
and continuous in t ∈ [0,∞). Let on M there exist a Riemannian metric
possessing a uniform Riemannian atlas and let in the charts of that atlas, in
every ball Vm(r), the estimates ‖â(t,m′)‖ < C and ‖A(t,m′)‖ < C hold for
all t ∈ [0,∞) and m′ ∈ Vm(r) where the constant C > 0 does not depend on
the choice of chart and ball. Then for every initial condition ξ(0) = m0 ∈ M
there exists a unique strong solution ξ(t) of equation (7.13) that is well-defined
for t ∈ [0,∞).
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Theorem 7.20 is proved by the same argument as Theorem 7.13 (see the
beginning of Section 7.1.2). It is a modification of classical existence state-
ments for solutions of stochastic differential equations on manifolds that are
proved in various settings in [23, 40, 66, 149, 177]. The difference is that
we use the charts of a uniform Riemannian atlas and postulate the uniform
boundedness of the equation in the balls of that atlas with respect to that
metric, while in the above-mentioned papers the existence of a special atlas
and boundedness with respect to Euclidean norms in the balls in the charts
are required (the exact formulation varies depending on the setting).

We should mention that the proof of Theorem 7.20 is quite analogous to
that of [23, Theorem 2.2]. A modification is required only for proving the
estimates (Propositions 2.1 and 2.2 of [23]): one should replace Euclidean
norms in the tangent space by Riemannian norms and Euclidean distances
in charts by Riemannian distances. The proof of [23, Theorem 2.2] remains
valid without change, taking into account the obvious statement that for
every m′ ∈ Vm( r

2 ) the inclusion Vm′( r
2 ) ⊂ Vm(r) holds.

Remark 7.21. Theorem 7.20 is a general statement on the existence of solu-
tions for t ∈ [0,∞) (completeness of stochastic flow). Some known conditions
of completeness of flow follow from this theorem as simple corollaries.

For example, let for an equation in Itô form (6.16) in R
n the following

condition of Wintner type (see Theorem 3.39) be fulfilled:

‖a(t,m)‖ + ‖A(t,m)‖ < L(‖m‖), (7.14)

where t ∈ [0,∞); m ∈ R
n; L : [0,∞) → (0,∞) is continuous and satisfies

inequality (3.16) (the norms are with respect to the Euclidean metric in R
n).

For example if L(u) = K(1 + u), K > 0, formula (7.14) turns into an Itô
condition of linear growth (6.21). Without loss of generality we can suppose
that L is smooth (see the proof of Corollary 3.42). Pass to a new Riemannian
metric (3.17), with respect to which from (7.14) it follows that the equation
is uniformly bounded for all t ∈ [0,∞) and m ∈ R

n. The existence of a
uniform Riemannian atlas for the metric (3.17) on R

n is obvious. Thus from
Theorem 7.20 and Condition (7.14) it follows that the flow of the equation
in R

n is complete.

Define another left action of GI on R
n × L(Rk, Rn) by the formula

(B, β) · (X,A) =
(

BX − 1
2
trβ(A(·), A(·)), B ◦ A

)

. (7.15)

Definition 7.22. The backward Itô bundle I∗(M) over a manifold M is a
bundle (according to Definition 1.32) with standard fiber R

n × L(Rk, Rn)
and structure group GI that acts on R

n×L(Rk, Rn) from the left by formula
(7.15).

Over every chart Uα on M the backward Itô bundle is presented as a
direct product Uα × (Rn × L(Rk, Rn)) and under the change of coordinates
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ϕβα from the chart Uα to another chart Uβ an arbitrary point (mα, (aα, Aα))
is transformed according to the rule

(mα, (aα, Aα)) �→
(

ϕβαmα,

(

ϕ′
βαaα − 1

2
tr ϕ′′

βα(Aα, Aα), ϕ′
βαAα

))

. (7.16)

Definition 7.23. The cross-sections of a backward Itô bundle I∗(M) are
called backward Itô equations and are denoted by (â∗, A).

7.3 Itô Equations in Belopolskaya-Daletskii Form

If a connection is specified on a manifold M , one can apply it to identify the
Itô equations from Section 7.2 with the Itô vector fields from Section 7.1 so
that this identification is invariant with respect to changes of coordinates,
i.e., it is well-defined on the entire manifold.

Definition 7.24. An Itô vector field (a, A) and an Itô equation (â, Â) are
said to canonically correspond to each other at a point m ∈ M with respect
to the connection H if at m they coincide under the trivialization in the
normal chart of H at m. If this identification is fulfilled at all points m ∈ M ,
(a, A) and (â, A) are said to canonically correspond to each other with respect
to H on M .

Lemma 7.25 An Itô vector field (a, A) and an Itô equation (â, Â) canoni-
cally correspond to each other with respect to a connection H on M if and
only if in every chart Uα the fields of linear operators A and Â coincide and
a and â are related by the formula

â(t,m) = a(t,m) − 1
2
tr Γ m(A(t,m), A(t,m)), (7.17)

where Γ m(·, ·) is the local connector of H in the chart.

Proof. The equality A(t,m) = Â(t,m) trivially follows from the facts that at
every point the linear operators coincide in the normal chart and have the
same rule of transformation under changes of coordinates.

To prove (7.17), choose some m ∈ Uα and consider the normal chart Un

of H at this point. Let X,Y ∈ TmM . Consider the vector in T(m,X)TM
which is described in Un by the quadruple (m, X, Y, 0) (see Section 2.1).
Then by formula (2.10) in another chart Uα this vector takes the form
(ϕαnm, ϕ′

αnX,ϕ′
αnY, ϕ′′

αn(X,Y )). Since in Un the local connector of H at
m equals zero, from formula (2.19) we obtain that Γ m(X,Y ) = −ϕ′′

αn(X,Y )
in Uα.

Since a(t,m) and â(t,m) coincide after trivialization, in the chart Un and
under the change of coordinates ϕαn they transform by formulae (1.1) and
(7.12), respectively, and in the chart Uα they satisfy the relation
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â(t,m) = a(t,m) +
1
2
tr ϕ′′

αn(A(t,m), A(t,m))

= a(t,m) − 1
2
tr Γ m(A(t,m), A(t,m)).

The proof of sufficiency is based on the same formulae. ��

The generator A of the flow of (â, A) is well-defined on a manifold, it is a
second order tangent vector (see Section 2.9) that in local coordinates of some
chart Uα takes the form A = âk ∂

∂qk + 1
2aij ∂2

∂qi∂qj where âk are coordinates of
â and aij are elements of the matrix AA∗.

Lemma 7.26 Let (a, A) be the Itô vector field canonically corresponding to
the Itô equation (â, A) with respect to the connection H. Then a = H(A)
where H : τM → TM is the mapping generated by the connection H via
formula (2.45).

Proof. Note that trΓ m(A(t,m), A(t,m)) = Γ k
ija

ij ∂
∂qk where, as above, aij

are the elements of the matrix AA∗ in local coordinates. By Lemma 7.25
â(t,m) = a(t,m) − 1

2 trΓ m(A, A). Then HA = a(t,m) − 1
2Γ k

ija
ij ∂

∂qk +
1
2Γ k

ija
ij ∂

∂qk = a(t,m). ��

We now turn to the construction of Ya.I. Belopolskaya and Yu.L. Daletskii
(see, e.g., [43, 23]), by means of which it is very easy to describe the Itô
equations in terms of Itô vector fields and connections.

Definition 7.27. The forward stochastic differential

a(t,m)dt + A(t,m)dw(t)

at a point m ∈ M given by an Itô vector field (a, A) is the class of stochastic
processes in the tangent space TmM that consists of the solutions of all
stochastic differential equations of the form

X(t + s) =
∫ t+s

t

ã(τ, X(τ))dτ +
∫ t+s

t

Ã(τ, X(τ))dw(τ),

where ã(τ, X) is a vector field on TmM ; Ã(τ, X) : R
k → TmM is a linear

operator depending on the parameters τ ∈ R and X ∈ TmM ; and the fol-
lowing conditions are satisfied: ã(τ, X) and Ã(τ, X) are Lipschitz continuous,
are equal to zero outside some neighborhood of the origin in TmM and such
that for τ ≥ t the equalities ã(τ, 0) = a(t,m) and Ã(τ, 0) = A(t,m) hold.

Note that since ã(τ, X) and Ã(τ, X) are Lipschitz continuous, the process
X(t+s) is a strong solution of the equation and so it is well-defined for every
Wiener process in R

k.
Let H be a connection and consider its exponential mapping exp.
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Definition 7.28. We say that a process ξ(t) satisfies the Itô equation in
Belopolskaya-Daletskii form

dξ(t) = expξ(t)(a(t, ξ(t))dt + A(t, ξ(t))dw(t)) (7.18)

if for every point ξ(t) there exists a neighborhood of ξ(t) in M such that
before ξ(t + s), s ≥ 0, leaves this neighborhood, ξ(t + s) a.s. coincides with a
process from the class expξ(t)(a(t, ξ(t))dt + A(t, ξ(t))dw(t)).

Theorem 7.29 Let (a, A) be the Itô vector field canonically corresponding
to (â, A) with respect to the connection H. Equation (7.13) for a process ξ(t)
is fulfilled if and only if equality (7.18) holds for ξ(t).

Proof. Let Γ m(·, ·) be the local connector of H in a chart Uα. By formula
(7.17) we have that â(t,m) = a(t,m)− 1

2 tr Γ m(A(t,m), A(t,m)). Thus equa-
tion (7.13) in Uα can be equivalently written by means of the Itô vector field
(a(t,m), A(t,m)) in the form

dξ(t) = a(t, ξ(t))dt − 1
2
tr Γ ξ(t)(A(t, ξ(t)), A(t, ξ(t)))dt + A(t, ξ(t))dw(t).

(7.19)
Recall that in the chart Uα the exponential mapping of H for m ∈ Uα and
X ∈ TmM to within terms of order X3 is presented via the Taylor expansion
(see [63])

expm X = m + X − 1
2
Γ m(X,X) + . . . . (7.20)

From formula (7.20) and Theorems 6.10 and 6.12 it follows that to within
terms of order higher than dt the equality

expξ(t)(aξ(t)dt + Aξ(t)dw(t)) = ξ(t) + a(t, ξ(t))dt

− 1
2
tr Γ ξ(t)(A(t, ξ(t)), A(t, ξ(t)))dt

+ A(t, ξ(t))dw(t) (7.21)

holds. The assertion of the theorem follows by comparing equalities (7.19)
and (7.21). ��

Thus for equations of type (7.18) the existence of solution theorems from
Section 7.2 are applicable.

Remark 7.30. In the literature the local expression (7.19) for (7.18) is
known as the Itô equation in Baxendale’s form after P. Baxendale who inde-
pendently found this presentation of Itô equations in charts (see. [21]). We use
this term strictly for the local description, retaining the term “Itô equation in
Belopolskaya-Daletskii form” for global expressions of type (7.18). The first
publication by Ya.I. Belopolskaya and Yu.L. Daletskii in this direction was
[44]. Notice also Gangolli’s paper [77] where local connectors were first used
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for the covariant description of diffusion processes on manifolds. This paper
was the inspiration for further constructions.

By Theorem 7.29, having specified various connections, we can express an
Itô equation in different Belopolskaya-Daletskii forms corresponding to those
connections. Thus it is a reasonable idea to look for the “best” connection
relative to a given problem. A “good” connection, well-defined in some special
cases, is described in [43]. Equations in Belopolskaya-Daletskii form with
respect to this connection are equations in Stratonovich form.

The next statement gives an example of another useful connection.

Theorem 7.31 Let (â, A) be an Itô equation on a manifold M that is
smooth, autonomous and such that A(m) has rank equal to dim M at all
m ∈ M . Then there exists a connection on M such that the corresponding
equation in Belopolskaya-Daletskii form has no drift, i.e., it is described as

dξ(t) = expξ(t)(A(ξ(t))dw(t)). (7.22)

Proof. Since A(m) is smooth and has rank equal to dimM at all m ∈ M ,
the symmetric (2, 0)-tensor field AA∗ on M is smooth and positive definite.
Hence it can be taken as a metric (2, 0)-tensor on M . Denote its matrix in a
chart by (aij). Then the (0, 2)-tensor (aij) = (aij)−1 is a Riemannian metric
on M . Note that aij and aij are the components of this metric tensor. Denote
by H the Levi-Civitá connection of this metric, by Γ (·, ·) its local connector
and by Γ k

ij the corresponding Christoffel symbols of the second kind. Thus the
equation in Belopolskaya-Daletskii form corresponding to (â, A) with respect
to H in a chart takes the form (7.19) with the above local connector where
(a, A) is the Itô vector field canonically corresponding to (â, A) with respect
to H.

In [148, Proposition V.4.3] it is shown that for every vector a = ak ∂
∂qi

(in particular for a, the first term of the Itô vector field (a, A)) there ex-
ists a Riemannian connection H̄ of the metric (aij) with Christoffel sym-
bols Γ̄ k

ij such that ak = 1
2aij(Γ k

ij − Γ̄ k
ij). Denote by Γ̄ (·, ·) its local con-

nector. Recall that trΓ (A, A) = aijΓ k
ij . Thus, replacing a(t, ξ(t)) in (7.19)

by 1
2aij(Γ k

ij − Γ̄ k
ij), we obtain that the equation takes the form dξ(t) =

−1
2 tr Γ̄ ξ(t)(A(ξ(t)), A(ξ(t)))dt+A(ξ(t))dw(t). Hence the equation in Belopol-

skaya-Daletskii form corresponding to (â, A) with respect to H̄ is (7.22). ��

Corollary 7.32 Let A(m) be a smooth autonomous second order vector field
on M with invertible matrices of coefficients at second derivatives. Then there
exists a connection on M such that A is the generator of a solution of a type
(7.22) equation with respect to this connection.

Remark 7.33. Theorem 7.31 and Corollary 7.32 are obtained by modifying
to Itô equations a construction from [148, Section V.4] involving equations in
Stratonovich form. The generalization of that construction to the case where
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A has non-maximal but constant rank, for equations in Stratonovich form, is
presented in [68, Theorem 2.1.1].

We describe the transformations of equations of type (7.18) under certain
special mappings. Let M and N be manifolds equipped with connections.
Denote the exponential mapping on N by expN and retain the notation exp
for the exponential mapping on M . Let F : M → N be a C2-mapping that
sends geodesics of the connection on M to geodesics of the connection on N .
This means that F ◦ exp(X) = expN (TF ◦X) for X ∈ TM (see Section 2.4).
From this we immediately obtain the statement that replaces Theorem 7.7
for equations (7.18) (see [23]):

Theorem 7.34 Under the above-mentioned assumptions for a solution ξ(t)
of equation (7.18) on M the process F (ξ(t)) on N satisfies the equation

dF (ξ(t)) = expN
F (ξ(t))(TF (a(t, ξ(t))dt + TFA(t, ξ(t))dw(t)).

Now we can present several existence theorems adapted to equation (7.18).
For this we introduce the following notion.

Definition 7.35. We say that a connection H and a Riemannian metric 〈·, ·〉
on M are compatible if 〈·, ·〉 has a uniform Riemannian atlas in whose charts
on the balls Vm(r) the local connector Γ m′(X,X) at all m′ ∈ Vm(r) is uni-
formly bounded in the norm generated by the metric, as a quadratic operator
of X, by a certain constant C0 > 0 independent of the choice of chart and
ball.

It is obvious that on a compact manifold every Riemannian metric and
every connection are compatible. Another class of examples exhibiting this
behavior are the left-invariant (right-invariant) Riemannian metrics and con-
nections on Lie groups. Indeed, a left-invariant metric 〈·, ·〉 on a Lie group G
has a uniform Riemannian atlas constructed by left shifts to points g ∈ G of
a specified chart in a neighborhood of the unit. The estimates for the local
connector of a left-invariant connection in the charts of the obtained atlas
remain the same as in the above-mentioned chart at the unit, i.e., they are
independent of the choice of chart and ball. The same argument is valid for
right-invariant metrics and connections.

Let a connection H be given on M . Denote by exp its exponential mapping.

Theorem 7.36 Let an Itô vector field (a(t,m), A(t,m)) be smooth in m ∈ M
and continuous in t ∈ [0,∞). Let there exist a Riemannian metric on M ,
compatible with H, with respect to which ‖a(t,m)‖ < C1 and ‖A(t,m)‖ < C1

(here C1 > 0 is a constant) for all t,m. Then for every initial condition
ξ(0) = m0 there exists a strong and strongly unique solution ξ(t) of equation
(7.18), well-defined for all t ∈ [0,∞).

Using Theorem 7.29 and formula (7.19), Theorem 7.36 is reduced to The-
orem 7.20.



156 7 Stochastic Analysis on Manifolds

Remark 7.37. The hypothesis of Theorem 7.36 is satisfied for an auton-
omous smooth Itô vector field on a compact manifold and any connection
H.

Let (Ω,F ,P) be a probability space. All σ-subalgebras of the σ-algebra F
that we use below in this section are assumed to be complete.

Theorem 7.38 Let the following objects be given: a non-decreasing family
of σ-subalgebras Bt of F (t ∈ [0, l], l > 0) and a Wiener process w(t) in R

n

adapted to Bt; a stochastic process a(t) in R
n and a stochastic process A(t)

with values in the space L(Rn) of linear automorphisms of R
n; a connection H

on the manifold M , compatible with a Riemannian metric 〈·, ·〉; and a field of
linear operators Em : R

n → TmM smooth in m ∈ M and uniformly bounded
in the norm generated by 〈·, ·〉. Assume that the processes a(t) and A(t) are
non-anticipating with respect to Bt, a.s. have continuous sample paths and
such that both a(t) and A(t) are a.s. bounded in norm, uniformly in t, by a
certain constant. Then for every initial condition ξ(0) = m0 ∈ M there exists
a strong and strongly unique solution ξ(t) of the equation

dξ(t) = expξ(t)(Eξ(t)a(t)dt + Eξ(t)A(t)dw(t)),

non-anticipating with respect to Bt and a.s. having continuous sample paths,
that is well-defined for t ∈ [0, l].

The equation (7.19) under consideration is reduced to an equation of type
(7.13) with random coefficients. The remaining part of the proof is analogous
to that of [23, Theorem 2.2], modified as described in Remark 7.21.

Note that the equation in Theorem 7.38 is an analog of the equation in
Stratonovich form in Example 7.6. The proof of Theorem 7.38 can also be
obtained from the results of [66] for equations in Stratonovich form.

Remark 7.39. The conditions formulated in the hypotheses of Theorems
7.36 and 7.38 can be slightly weakened. Indeed, from formula (7.19) and
Theorem 7.20 it follows that in Theorem 7.36 instead of the compatibility of
connection and metric it is enough to require that the estimate

‖trΓm′(A(t,m′), A(t,m′))‖ < c2

for m′ ∈ Vm(r) holds on the balls Vm(r) in the charts of a uniform Rieman-
nian atlas where c2 is a certain constant independent of ball and chart. In
Theorem 7.38 the conditions can be weakened in an analogous way.

Now we are in a position to present an example of an equation in Belopols-
kaya-Daletskii form that is used below.

Example 7.40. Consider an Itô vector field (a(t,m),A(t,m)) as in Exam-
ple 7.4 where a(t,m) and B(t,m) are smooth. For this field the Itô equation
in Belopolskaya-Daletskii form
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dξ(t) = expξ(t)(a(t, ξ(t))dt + A(t, ξ(t)))dw(t) (7.23)

is well-defined where w(t) is a Wiener process in R
k (see Example 7.4) and exp

is the exponential mapping of a connection on M . Introduce a Riemannian
metric on M (for example, the first fundamental form generated by the inner
product in R

k). If M is a compact manifold, the connection and metric are
compatible in the sense of Definition 7.35. The existence of a strong solution
for all t ∈ [0,∞) is proved as above.

We conclude this section with a description of a class of stochastic differ-
ential equations on infinite-dimensional Hilbert manifolds that will be used
below. This class is a particular case of the equations on infinite-dimensional
manifolds considered in [23] (see also [35, 66], where equations in Stratonovich
form are considered).

Let M be a Hilbert manifold, H be a connection on M and G(·, ·) be
a strong Riemannian metric on M (the term “strong” means that G(·, ·)
determines the topology of the model space in tangent spaces to M ; the
description of Riemannian metrics and connections on infinite-dimensional
manifolds can be found, e.g., in [172], see also Chapter 10 for the particular
case of groups of diffeomorphisms). Notice that in this case Definition 7.9 of
a uniform Riemannian atlas and Definition 7.35 of compatible metrics and
connections remain valid.

Let α(t,m) be a vector field and A(t,m) be a field of linear operators
A(t,m) : R

n → TmM where m ∈ M , t ∈ [0, l] and R
n is the Euclidean space

in which a Wiener process w(t) takes values. As in the finite-dimensional
case the pair (α,A) is called an Itô vector field and for this field (and for the
exponential mapping exp of the connection H) equation (7.18) is well-defined.
For convenience of reference we formulate an existence of solution theorem
for (7.18) in this case as a separate statement.

Theorem 7.41 Let the above mentioned objects G, H, α(t,m) and A(t,m)
be given on a Hilbert manifold M and let the conditions of Theorem 7.36 be
satisfied for them. Then for every m0 ∈ M there exists a strong and strongly
unique solution ξ(t) of equation (7.18) with initial condition ξ(0) = m0, well-
defined for all t ∈ [0, l].

Note that Theorem 7.41 is valid for every finite-dimensional Euclidean
space R

n. As for Theorem 7.36, the proof of Theorem 7.41 is reduced to
Theorem 7.20. Recall (see Remark 7.21) that the proof of Theorem 7.20 is
analogous to that of Theorem 2.2 in [23] (proved in the infinite-dimensional
case). The modification mentioned in Remark 7.21 is also valid here.



158 7 Stochastic Analysis on Manifolds

7.4 Completeness of Stochastic Flows

7.4.1 Setting up the problem and a necessary condition
for completeness

In this Section we follow [114] and [116].
Let M be a finite-dimensional non-compact manifold. Consider a stochas-

tic flow ξ(s) on M generated by a stochastic differential equation in Itô or in
Stratonovich form with smooth coefficients. Since the coefficients are smooth,
we can pass from the Stratonovich to the Itô equation and vice versa. By A
we denote the generator of this flow.

Consider the one-point compactification M
⋃
{∞} of M where the system

of open neighborhoods of ∞ consists of complements to all compact sets
of M . Denote by ξ(s) : M → M

⋃
{∞} the stochastic flow. For any point

m ∈ M and time t the orbit ξt,m(s) of this flow is the unique solution of
the above-mentioned equation with initial conditions ξt,m(t) = m. As the
coefficients of the equation are smooth, this is a strong solution and so a
Markov diffusion process given on some random time interval. The point ∞
is the “cemetery” where the solution (defined on a random time interval)
arrives after the explosion.

We refer the reader to [174] for more information on the behavior of a
diffusion process at infinity.

Recall that the generator A is a second order vector (see Definition 2.74).
In local coordinates one can find the matrix of its pure second order term,
which is symmetric and positive semi-definite.

For a stochastic flow the generator plays the same role as the derivative in
the direction of a vector field in the right-hand side of an ordinary differential
equation. The main result on completeness for stochastic flows here is analo-
gous to Theorem 3.3 where the derivative in the direction of the vector field
X+ is replaced with the corresponding generator. However in the stochastic
case there is an additional difficulty that for a flow with inverse time direction
the generator does not coincide with the generator for the flow itself. This
is why we obtain a necessary and sufficient condition for completeness only
for flows with the additional assumption that the flow must be continuous at
infinity (see the exact Definition 7.44 below).

We denote the probability space, where the flow is defined, by (Ω,F , P)
and assume that it is complete. We also deal with separable realizations of
all processes.

Let T be a positive real number.

Definition 7.42. The flow ξ(s) is complete on [0, T ] if ξt,m(s) a.s. takes val-
ues in M for any pair (t,m) (with 0 ≤ t ≤ T ) and for all s ∈ [t, T ]. The
flow ξ(s) is complete if it is complete on any interval [0, T ] ⊂ R (cf. Defini-
tion 6.30).
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We start with a sufficient condition for completeness of a stochastic flow
analogous to conditions for completeness of ODE flows with one-sided esti-
mates. This is a simple version of a rather general sufficient condition [66,
Theorem IX. 6A]. We use the notion of a proper function introduced in Def-
inition 3.2.

Theorem 7.43 Let there exist a smooth proper function ϕ on M such that
A(t,m)ϕ < C for some C > 0 at all t ∈ [0, +∞) and m ∈ M . Then the flow
ξ(t, s) is complete.

Proof. Consider the collection of subsets Wk = ϕ−1([0, k)) of M where k
ranges over the positive integers. Since ϕ is proper, these sets are relatively
compact and

⋃

k

Wk = M . Besides, by construction Wi ⊂ Wi+1, i = 1, 2, . . . .

Let t ∈ [0, +∞) and m ∈ M and consider the orbit ξt,m(s). Denote by
τk the first time ξt,m(s) hits the boundary of Wk. Transform ϕ(ξt,m(s ∧ τk))
by the Itô formula. Since Wk is relatively compact, the Itô integral on the
interval [t, s ∧ τk) is a martingale and so its expectation is equal to 0. Then

Eϕ(ξt,m(s ∧ τk)) = ϕ(m) +

s∧τk∫

t

(Aϕ)(θ, ξt,m(θ))dθ < ϕ(m) + Cs,

since A(t,m)ϕ < C and s ≥ s ∧ τk.
Consider the set Ωk

s = {ω ∈ Ω | s < τk}. Obviously k(1 − P(Ωk
s )) <

Eϕ(ξt,m(s ∧ τk)), since for ω /∈ Ωk
s we get ξt,m(s ∧ τk, ω) = ξt,m(τk, ω), i.e.,

ϕ(ξt,m(s ∧ τk, ω)) = k. Thus,

1 − P(Ωk
s ) <

ϕ(m) + Cs

k
. (7.24)

Hence lim
k→∞

(1−P(Ωk
s )) = 0. However by construction, lim

k→∞
Ωk

s =
∞⋃

i=1

Ωi
s = Ω,

i.e., for any given s ≥ t the value ξt,m(s) exists in M with probability 1. ��

7.4.2 A necessary and sufficient condition for
completeness of flows continuous at infinity

In this Section the maximal assumption on the stochastic flow is that its gen-
erator A(t, x) is smooth and strictly elliptic (i.e., in a local coordinate system
its pure second order term is described by a positive definite, i.e., invertible,
matrix). This assumption allows us to apply the machinery from [12]. Notice
that using this machinery we can reduce the condition that the stochastic
equation is C∞-smooth to the assumption that it is Hölder continuous. How-
ever, in some statements in this Section we use weaker assumptions, indicated
in the hypotheses.

Let ξ(s) be a (not necessarily complete) stochastic flow.
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Definition 7.44. We say that the flow ξ(s) is continuous at infinity if for
any 0 ≤ t ≤ T and any compact K ⊂ M the equality

lim
m→+∞

P(ξt,m(T )) ∈ K) = 0 (7.25)

holds.

One can easily see that continuity at infinity according to Definition 7.44
means that for any t ∈ [0, +∞) and for all s ∈ [t, +∞) the correspon-
dence (m, s) �→ ξt,m(s) is continuous (in probability) at the point (s, {∞}) ∈
[t,∞) × (M

⋃
{∞}). See [203, 206] for details.

As an example we mention that a flow whose diffusion semigroup has the
so-called C0 property is continuous at infinity. We refer the reader to [206]
for relations between continuity of a flow on M

⋃
{∞} and the C0 property of

the corresponding diffusion semigroup (see also, e.g., [12] and [67] for details
on the C0-property).

Our next task is to construct a special proper function associated to a
complete stochastic flow ξ(s).

Consider an expanding sequence of compact sets Mi such that Mi ⊂ Mi+1

for all i and
⋃

i Mi = M . Let (Ti) be an increasing sequence of real numbers
tending to +∞.

For (t,m) ∈ [0, Ti]×Mi the distribution function μt,m,s of random elements
ξt,m(s), s ∈ [t, Ti], on M form a weakly compact set of measures. Indeed,
take an arbitrary sequence of random elements ξtk,mk

(sk) with corresponding
measures μtk,mk,sk

. Since [0, Ti]×Mi×[0, Ti] is compact, it is possible to select
a subsequence (tkq , mkq , skq ) of the sequence (tk, mk, sk) which converges (to
(t0, m0, s0), say). It is a well-known fact that the function Ef(ξt,m(s)) is
continuous jointly in t,m, s for any bounded continuous function f : M →
R. Then we obtain that E(f(ξtkq ,mkq

(skq ))) → E(f(ξt0,m0(s0))), i.e., from
any sequence of measures described above it is possible to select a weakly
converging subsequence.

Take a monotonically decreasing sequence of positive numbers εi → 0 such

that the series
∞∑

i=1

√
εi converges. From Prokhorov’s theorem it follows that

for the measures corresponding to ξt,m(s), s ∈ [t, Ti], (t,m) ∈ [0, Ti] × Mi

mentioned above, there exists a compact Ξi ⊂ M such that for all μt,m,s

the inequality μt,m,s(M\Ξi) < εi holds. Construct an expanding system of

compact sets Θi ⊃
i⋃

k=0

Ξk for any i, being closures of open domains in M

with smooth boundary and such that Θi ⊂ Θi+1 for any i and
⋃

i Θi = M . By
construction, for s ∈ [0, Ti], (t,m) ∈ [0, Ti]×Mi the relation μt,m,s(M\Θi) <
εi holds. In particular, μt,m,s(Θi+1\Θi) < εi.

Choose neighborhoods Ui ⊂ Ũi of the set Θi that are proper subset of
Θi+1 and consider a smooth function ψi that equals 0 on Ui, equals 1 on
Θi+1\Ũi and takes values between 0 and 1 on Ũi\Ui. Construct the function
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θ on M setting its value on Θi+1\Θi equal to ψi
1√
εi

+ (1 − ψi) 1√
εi−1

. Notice

that on Θi+1\Θi the values of θ are not greater than 1√
εi

.
Immediately from the above construction we obtain the following:

Lemma 7.45 For a complete flow ξ(s) the function θ, constructed above, is
smooth, positive and proper.

Theorem 7.46 If the flow ξ(t) is complete, for every (t,m) and every T > t
the inequality Eθ(ξt,m(s)) < ∞ holds for each s ∈ [t, T ].

Proof. Take i such that [0, T ] ⊂ [0, Ti], t ∈ [0, Ti] and m ∈ Mi. Then
μt,m,s(M\Θi) < εi and so μt,m,s(Θi) > (1 − εi). By construction, the values
of the continuous function θ on compact Θi are bounded by the constant

1√
εi−1

. Then also by construction

Eθ(ξt,m(s)) ≤ 1
√

εi−1
+

∞∑

k=i

εk
1

√
εk

=
1

√
εi−1

+
∞∑

k=i

√
εk < C < +∞ (7.26)

for some positive constant C since by definition the series
∞∑

k=i+1

√
εk con-

verges. ��

Corollary 7.47 The function Eθ(ξt,m(s)) is integrable in s ∈ [t, T ].

Proof. From the construction in Theorem 7.46 it follows that for given t,m,
estimate (7.26) is valid with the same C for all s ∈ [t, T ]. ��

Theorem 7.48 For every stochastic flow ξ(s) on a manifold M that is com-
plete on an interval [0, T ], there exists a proper positive function θ on M such
that for all t ∈ [0, T ], m ∈ M and s ∈ [t, T ] the inequality Eθ(ξt,m(s)) < ∞
holds.

Theorem 7.48 follows from Lemma 7.45 and Theorem 7.46.
Let T > 0 and consider the direct product MT = [0, T ] × M . Denote by

πT : MT → M the natural projection: πT (t,m) = m.

Theorem 7.49 Let the generator A of the complete flow be smooth and
strictly elliptic. Then the function u(t,m) = Eθ(ξt,m(T )) on MT is C1-
smooth in t ∈ [0, T ], C2-smooth in m ∈ M and satisfies the equation

(
∂

∂t
+ A

)

u = 0 (7.27)

Proof. Since M is locally compact and satisfies the second countability axiom
(and hence is paracompact, see Section 1.1) we can choose a countable locally
finite open covering {Vi}∞i=1 of M such that all Vi have compact closures.
Consider a smooth partition of unity {ϕi}∞i=1 adapted to this covering. Then
at any point m ∈ M the equality θ(m) =

∑∞
i=1 ϕi(m)θ(m) holds.
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Introduce the functions vi(m) = ϕi(m)θ(m) and the functions ui(t,m) =

Evi(ξt,m(T )) and θk(t,m) =
k∑

i=0

ui(t,m). Notice that all vi(m) are smooth

and bounded. Then all vi(m) satisfy the conditions of [81, Theorem VIII.4.1]
and so all ui(t,m) are C1-smooth in t, C2-smooth in m and satisfy the relation
∂
∂tui + Aui = 0. Hence all functions θk(t,m), being finite sums of functions
ui(t,m), are also C1-smooth in t, C2-smooth in m and satisfy ∂

∂tθk+Aθk = 0.
In addition it is evident that θ(t,m) is the limit of θk(t,m) as k → ∞ and

the functions θk(t,m) form an increasing locally bounded sequence. Then,
since A is strictly elliptic, the assertion of the Theorem follows from standard
Schauder estimates. (For autonomous A, see [12, Lemma 1.8].) ��

Theorem 7.50 If a complete flow ξ(s) is continuous at infinity, the function
u(t,m) = Eθ(ξt,m(T )) on MT is proper.

Proof. Let ξ(s) be continuous at infinity. To prove the properness of u(t,m)
it is sufficient to show that u(t,m) → ∞ as θ(m) → ∞, i.e., that for any
C > 0 there exists Ξ > 0 such that θ(m) > Ξ yields u(t,m) > C for any
t ∈ [0, T ]. Since θ is proper, K = θ−1([0, 2C]) is compact. From formula
(7.25) in the Definition 7.44 of continuity at infinity it follows that for any
t ∈ [0, T ] there exists a Ξ such that P(ξt,m(T ) /∈ K) > 1

2 for θ(m) > Ξ. Then
u(t,m) = Eθ(ξt,m(T )) > 2C · 1

2 = C. Since t belongs to the compact set [0, T ]
and u(t,m) is continuous in t, this completes the proof. ��

On the manifold MT consider the flow η(s) = (s, ξ(s)). Obviously for
(t,m) ∈ MT the trajectory of η(t,m)(s) satisfies the relation πT (η(t,m)(s)) =
ξt,m(s). It is clear that η(s) is the flow with infinitesimal generator AT de-
termined by the formula:

AT
(t,m) = A(t,m) +

∂

∂t
. (7.28)

AT is a direct analog of the differentiation in the direction of X+ described
in Theorem 3.3.

Theorem 7.51 A flow ξ(s) on M , continuous at infinity and having a
smooth strictly elliptic generator, is complete on [0, T ] if and only if there ex-
ists a positive proper function uT : MT → R that is C1-smooth in t ∈ [0, T ],
C2-smooth in m ∈ M and such that AT uT < C for some constant C > 0 at
all points (t,m) ∈ MT .

Proof. Let there exist a smooth proper positive function uT (t,m) on MT

such that AT uT < C at all points of MT . Then from Theorem 7.43 it follows
that η(s) is complete. Thus ξ(s) is also complete.

Let ξ(s) be complete. Consider the function θ(m) on M introduced above
and the function uT (t,m) = Eθ(ξt,m(T )) on MT . Since ξ(s) is continuous at
infinity, uT (t,m) is proper by Theorem 7.50. By Theorem 7.49 it is also C1

in t, C2 in m and satisfies the relation ( ∂
∂t + A)uT = AT uT = 0. ��
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Corollary 7.52 A flow ξ(s) on M as in Theorem 7.51 is complete if and
only if for all T > 0 there exists a positive proper function uT : MT → R
on MT that is C1-smooth in t ∈ [0, T ], C2-smooth in m ∈ M and such that
AT u(t,m) < C for some constant C > 0 at all points (t,m) ∈ MT .

7.4.3 Remarks on L1-complete stochastic flows

For a stochastic flow ξ(s) in the Euclidean space R
n there is a property

stronger than ordinary completeness, where ξ(s) is complete and in addi-
tion each of its orbits ξt,x(s) at every s > t belongs to the functional space
L1((Ω,F , P), Rn), i.e., E‖ξt,x(s)‖ < ∞.

In the general case of flows on manifolds it is natural to replace the norm
by a proper function, i.e., to suppose that there exists a positive proper
function ψ on M such that Eψ(ξt,x(s)) < ∞ for all s > t (note that both the
norm in R

n and the distance with respect to a complete Riemannian metric
are proper functions). Moreover, by Theorem 7.48 such a function exists for
every complete flow.

In order not to lose some useful properties of E‖ξt,x(s)‖ (which are not
possessed by the function from Theorem 7.48 without additional assump-
tions), in [120, 121] we introduced the notion of an L1-complete stochastic
flow as follows:

Definition 7.53. A flow ξ(s) on a finite-dimensional manifold M is called
L1-complete on [0, T ] if the following conditions are fulfilled:

(i) ξ(s) is complete on [0,T];
(ii) there exists a smooth proper positive function v : M → R such that

Ev(ξt,m(T )) < ∞ for all m ∈ M , t ∈ [0, T ];
(iii) for each K > 0 there exists a compact CK,T ⊂ M , depending on K

and T , such that the inequality Ev(ξt,m(T )) < K yields m ∈ CK,T ;
(iv) the function f(t,m) = Ev(ξt,m(T )) is C1-smooth in t and C2-smooth

in m.

A flow is L1-complete if it is L1-complete on every interval [0, T ] ⊂ [0,∞).

As above, introduce MT = [0, T ] × M and the process η(t,m)(s) =
(s, ξt,m(s)) on MT . By AT we denote the generator of the flow η(s). Let
u : MT → R be a proper function. Consider the sequence of compact subsets
Wk = u−1([0, k]) of MT . Specify a point (t,m) ∈ MT and for k such that
(t,m) ∈ Wk, denote by τk the time η(t,m)(s) first hits the boundary of Wk.

In [120, 121] the following necessary and sufficient conditions for L1-
completeness are obtained.

Theorem 7.54 ([120, Theorem 3.1]) The flow ξ(s) on M is L1-complete on
[0, T ], T > 0, if and only if there exists a smooth proper positive function
u(t,m) on MT such that for all (t,m) ∈ MT the equality AT

(t,m)u = C holds
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where C is some constant, and for all (t,m) ∈ MT the random variables
u(η(t,m)(T ∧ τk)) are uniformly integrable.

Theorem 7.55 The flow ξ(s) on M is L1-complete on [0, T ], T > 0, if and
only if there exists a smooth proper positive function u on MT such that at
every (t,m) ∈ MT the following conditions are satisfied:

1) AT u ≤ C where C is a positive constant;
2) Eu(η(t,m)(T )) < ∞ and |Eu(η(t,m)(T )) − u(t,m)| < C1 where C1 is a

positive constant;
3) the function Eu(η(t,m)(T )) is C1-smooth in t and C2-smooth in m.

The assertion of Theorem 7.55 follows from [121, Theorem 3.6].
The constructions from Section 7.4.2 allow us to obtain the following suf-

ficient condition of L1-completeness.

Theorem 7.56 A complete flow, continuous at infinity and having a smooth
strictly elliptic generator, is L1-complete.

Indeed, from Lemma 7.45 and Theorems 7.46, 7.49 and 7.50 it follows that
the function θ constructed in Section 7.4.2, under the hypotheses of the The-
orem, meets all requirements set up for the function v by Definition 7.53. In
particular, Condition (iii) of Definition 7.53 is fulfilled since by Theorem 7.50
the function u(t,m) = Eθ(ξt,m(T )) is proper on MT .

7.5 A Condition for Weak Compactness of Measures
Corresponding to Solutions of Stochastic
Differential Equations

Lemma 7.57 Consider on M a sequence of smooth Itô equations (âq(t,m),
Aq(t,m)), t ∈ [0, T ] ⊂ R, with generators Aq(t,m), respectively, such that:

(a) over each compact set K ⊂ M the images (âq([0, T ],K), Aq([0, T ],K))
for all q belong to a compact set in I(M);

(b) there exists a C2-smooth proper function ψ : M → R such that for all
q the inequality

|Aqψ| < C (7.29)

holds for some constant C > 0 independent of q, t and m.

Then

(i) for every m0 ∈ M there exist strong solutions ξq(t) with initial con-
dition ξq(0) = m0 of all Itô equations (âq(t,m), Aq(t,m)) that are
strongly unique and well-defined on the entire interval [0, T ];

(ii) the set of measures {μq} corresponding to ξq(·) on the Banach manifold
Ω̃ = C0([0, T ], M) of continuous curves in M , equipped with the σ-
algebra F̃ generated by cylinder sets, is weakly compact.
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Proof. Recall that a solution that exists up to the first time the boundary of
some chart including m0 is hit is said to be a local solution. The existence
and strong uniqueness of strong local solutions ξq(·) for all q follows from the
fact that all (âq(t,m), Aq(t,m)) are smooth and hence are bounded on every
relatively compact chart. The global existence follows from Condition (b) by
Theorem 7.43.

For every integer p consider the set Wp = ψ−1([0, p]). Since ψ is proper,
these sets are compact and

⋃

p
Wp = M . Besides, by construction Wp ⊂ Wp+1

for all p = 1, 2, . . . . Thus m0 belongs to Wp for sufficiently large p.
For a curve x(·) ∈ C0([0, T ], M) denote by θ

x(·)
p the time the boundary of

Wp is first hit. Introduce the subset in Ω̃ of the form Ωp = {x(·) | T < θ
x(·)
p }

(i.e., every x(t) from Ωp lies in Wp for all t from t = 0 to t = T ). Taking into
account condition (b) it follows from the proof of Theorem 7.43 (see (7.24))
that μq(Ωp) > 1 − ψ(m0)+CT

p for all q. Thus for every ε > 0 there exists a p
large enough such that

μq(Ωp) > 1 − ε

2
(7.30)

for all q.
Employing the routine machinery of unit decomposition, one can easily

construct a sequence of smooth Itô equations (ãq(t,m), Ãq(t,m)) such that
(ãq(t,m), Ãq(t,m)) coincides with (âq(t,m), Aq(t,m)) for m ∈ Wp, for all q,
and (ãq(t,m), Ãq(t,m)) equals zero outside some relatively compact neigh-
borhood Vp of Wp for all q.

Now choose an arbitrary complete Riemannian metric g(·, ·) on M and
by Nash’s Theorem 1.46 embed M isometrically into a Euclidean space R

K

with K large enough. Introduce an Itô vector field (ăq(t,m), Ăq(t,m)) on
Vp by setting Ăq(t,m) = Ãq(t,m) and in each chart U in Vp by setting
ăk(t,m) = ãk(t,m) + Γ k

ijα̃
ij where Γ k

ij are Christoffel symbols of the second
kind of the Levi-Civitá connection of the metric g(·, ·) in U, (α̃ij) = (Ãi

l)(Ã
j
l )

∗.
Let N(M) be the normal bundle of M in R

K with fibers Nm, m ∈ M .
Denote by Θ a relatively compact tubular neighborhood of M over Vp in
R

K (it exists since Vp is relatively compact) and by r : Θ → Vp the smooth
retraction of Θ onto Vp along the fibers of N(M).

Recall that Θ has the structure of a direct product

Θ = Vp × O, (7.31)

where O is an open ball in R
K−n that at any point m ∈ Vp can be identified

with the normal space Nm.
At any point (m, x) ∈ Θ the presentation (7.31) yields the presentation

of a tangent space to R
K of the form T(m,x)R

K = TmM × TxO. Introduce a
new Riemannian metric g1(·, ·) on Θ by transferring the Riemannian inner
product from TmM into the factor TmM in the above product by determining
the inner product in the factor TxO as the restriction of the Euclidean inner
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product in R
K and by setting the factors in TmM ×TxO to be orthogonal to

each other. Let U be a chart on Vp and consider the chart U = U × O in Θ.
In this chart the matrix of the (0, 2)-metric tensor g1(·, ·) will be denoted by
(g1

ij) and the matrix of the corresponding (2, 0)-metric tensor by (gij
1 ).

Calculate the Christoffel symbols Γ̄ l
ij of the Levi-Civitá connection of

g1(·, ·) in U by the usual formula Γ̄ l
ij = 1

2glk
1 ( ∂

∂qi g
1
jk + ∂

∂qj g1
ik − ∂

∂qk g1
ij). One

can easily calculate that:

a) if ∂
∂qi ,

∂
∂qj , ∂

∂qk , ∂
∂ql ∈ TmM , then Γ̄ l

ij = Γ l
ij where Γ l

ij are the Christoffel
symbols of the Levi-Civitá connection of g(·, ·) on M in the chart U;

b) if ∂
∂qk ∈ TmM and ∂

∂ql ∈ TxO or vice versa, then Γ̄ l
ij = 0 for all ∂

∂qi and
∂

∂qj since gkl
1 = 0;

c) if ∂
∂qk , ∂

∂ql ∈ TmM and ∂
∂qi ∈ TxO, ∂

∂qj ∈ TmM , then g1
jk = gjk does not

depend on ∂
∂qi and so ∂

∂qi g
1
jk = 0. It is also obvious that g1

ik = 0 and
g1

ij = 0. Hence Γ̄ l
ij = 0. Applying analogous arguments we obtain that

Γ̄ l
ij = 0 for ∂

∂qi ∈ TmM , ∂
∂qj ∈ TxO and Γ̄ l

ij = 0 for ∂
∂qi ,

∂
∂qj ∈ TxO;

d) if ∂
∂qk , ∂

∂ql ∈ TxO then for all ∂
∂qi and ∂

∂qj we obtain Γ̄ l
ij = 0.

Let O be a neighborhood of Vp in Θ such that O ⊂ Θ where O is the
closure of O. Let φ(y) : R

K → R be a smooth function satisfying the relations
0 ≤ φ ≤ 1, φ(y) = 1 for y ∈ O and φ(y) = 0 for y /∈ Θ. Using the presentation
of the chart U on Θ as the above-mentioned direct product, introduce a new
object on U by the formula

Γ̂ k
i,j(m, x) = (φ(m, x)Γ̄ k

ij(m), 0), (m, x) ∈ Θ. (7.32)

Consider Θ as a chart with local coordinates inherited from the global
coordinate system in R

K . This chart will be called global . Find the values of
the Christoffel symbols Γ̄ k

ij in the global chart and define the values of Γ̂ k
ij

on the complement R
k\Θ as Γ̂ k

ij(m, x) = 0, (m, x) /∈ Θ. Thus the values of
Γ̂ k

ij are given on all of R
k and since the functions Γ̂ k

ij are smooth and have
non-zero values only on a compact set, their values are uniformly bounded.
By construction, both in the chart U and in the global chart, the symbols Γ̂ k

ij

on O coincide with the corresponding Γ̄ k
ij .

Define the vector fields âq, the fields of linear operators Âq : R × R
N →

TR
K and the (2, 0)-tensor fields aq on R

K by defining them in the chart U
by the formulae

âq(t,m, x) = (φ(m, x)ăq(t,m), 0);

Âq(t,m, x) =
(

φ(m, x)Ăq(t,m)
0

)

; (7.33)

aq(t,m, x) =
(

φ(m, x)(α̃ij) 0
0 0

)

,
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and by extending them to all of R
K by setting them to be equal to zero

elsewhere.
Notice that from condition (a) and from the construction it follows that

all fields âq(t,m, x), Âq(t,m, x) and aq(t,m, x) are uniformly bounded on
[0, T ] × R

K .
Denote the matrix of aq(t,m, x) in the chart U by (aij) and for the

object that in U is determined as Γ̂ k
ija

ij , introduce the invariant notation
tr(Γ̂ (Â, Â)).

Consider the following problems in R
K :

dξ̂q(t) = âq

(
t, ξ̂q(t)

)
dt − 1

2
tr

(
Γ̂
bξq(t)

(
Âq

(
t, ξ̂q(t)

)
, Âq

(
t, ξ̂q(t)

)))
dt

+ Âq

(
t, ξ̂q(t)

)
dw(t), (7.34)

ξ̂q(0) = m0 ∈ M.

Since all the coefficients in (7.34) are smooth and bounded, the equations
have unique strong solutions ξ̂q(t) well-defined on the interval [0, T ].

After transition to the chart U , taking into account the form of the
Christoffel symbols (see above), one can easily see that in the neighborhood
O ∩ U equations (7.34) are transformed into the system

{
dξ̆q(t) = ăq

(
t, ξ̆q(t)

)
dt − 1

2 tr
(
Γ̄ ξ̆q

(
Ăq, Ăq

))
dt + Ăq

(
t, ξ̆q(t)

)
dw(t),

dξ̄q(t) = 0
(7.35)

with initial conditions ξ̆q(0) = m0 and ξ̄q(0) = 0. Hence the solutions of (7.35)
(and so of (7.34)) a.s. belong to M for all t ∈ [0, T ] and coincide with the
solutions of the first parts of (7.35). In particular the corresponding measures
μ̂q on the path space take the value 1 on the curves lying in M . But since
the coefficients of (7.34) are uniformly bounded in R

K , from the Corollary
to [83, Lemma III.2.2] it follows that the set of corresponding measures {μ̂q}
on Ω̃ is weakly compact. Then by Prokhorov’s theorem (see, e.g., [82]) for
every ε > 0 there exists a compact set Ξ ⊂ C0([0, T ], M) such that for all q
the inequality μ̂q(Ξ) > 1 − ε

2 holds.
Note that by construction, on Wp the right-hand sides of the first parts

of (7.35) coincide with (âq, Aq). Then (see, e.g., [23, theorem III.3.3]) the
processes ξq(t) and ξ̂q(t) a.s. coincide before leaving Wp for all q. From this
and from (7.30) it follows that for the compact set Ωp ∩ Ξ the inequality
μq(Ωp ∩ Ξ) > 1 − ε holds for all q.

Thus, for every ε > 0 there exists a compact subset of Ω̃ whose measure
μq for all q is greater than 1 − ε. By Prokhorov’s theorem this means that
the set {μq} is weakly compact. ��
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7.6 Stochastic Development and Parallel Translation

7.6.1 The Eells-Elworthy and Itô developments

Let π : OM → M be the manifold of orthonormal frames on a Riemannian
manifold M , H be the Levi-Civitá connection on OM and V be the vertical
distribution on OM . Recall (see Section 2.7) that the bundles V and H over
OM are trivial: V is trivialized by fundamental vector fields and H by basic
vector fields E(x) where the vector Eb(x) ∈ Hb for b ∈ OM and x ∈ R

n is
defined by the equality Eb(x) = Tπ−1(bx)|Hb

(the frame b is considered here
as a linear operator b : R

n → TπbM , see the proof of Theorem 2.67 and
Definition 2.68). Thus the tangent bundle TOM = H ⊕ V is also trivial.

Definition 7.58. The Riemannian metric on OM , generated by the above-
mentioned trivialization of the tangent bundle TOM , is said to be induced.

Remark 7.59. It is easy to see that the restriction of every induced metric
to the connection space Hb in TbOM coincides with the pull-back of the
Riemannian inner product in TπbM under the mapping Tπ. The restriction
of an induced metric to V is determined by a certain inner product in the
algebra o(n). Thus, a Riemannian metric on M and an inner product in o(n)
uniquely define an induced metric on OM .

Consider a probability space (Ω,F , P) and a non-decreasing family Bt of
complete σ-subalgebras of the σ-algebra F such that a Wiener process w(t),
taking values in some Euclidean space R

k, is adapted to it. Let m0 ∈ M . Let a
stochastic process α(t), t ∈ [0, l] with values in Tm0M and a stochastic process
A(t), t ∈ [0, l], with values in the space of linear mappings L(Rk, Tm0M) be
given on (Ω,F , P) and let those processes be non-anticipative with respect to
Bt. Finally, let α(t) and A(t) a.s. have continuous sample paths and a.s. for
t ∈ [0, l] ⊂ R the integral

∫ t

0
α(τ)dτ and Stratonovich integral

∫ t

0
A(τ)◦ dw(τ)

be well-defined.
Take an orthonormal frame b0 in Tm0M and consider the processes b−1

0 α(t)
and b−1

0 A(t) in the Euclidean space R
n (here n is the dimension of M) and

in L(Rk, Rn), respectively. Construct a basic Itô vector field with random
coefficients on OM that at b ∈ OM has the form (Eb(b−1

0 α(t)), Eb(b−1
0 A(t))).

Consider the Stratonovich stochastic differential equation on OM (cf. Ex-
amples 7.5 and 7.6) of the form

dη(t) = Eη(t)(b−1
0 α(t))dt + Eη(t)(b−1

0 A(t) ◦ dw(t)). (7.36)

Since Eb : R
n → TOM is smooth in b (see Section 2.7), this equation has

a strong and strongly unique solution η 0,b0(t) in Tm0M with initial condi-
tion η 0,b0(0) = b0, well-defined (generally speaking) on some random time
interval.

Consider the process z(t) =
∫ t

0
α(τ)dτ +

∫ t

0
A(τ) ◦ dw(τ) in Tm0M .
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Definition 7.60. The process πη 0,b0(t) on M is called the Eells-Elworthy
development of the process z(t) and is denoted by REE z(t) (see, e.g., [66]).
The process η 0,b0(t) is called the horizontal lift of REE z(t) to OM with
initial condition b0.

The Eells-Elworthy development is a stochastic generalization of the op-
eration that is the inverse to Cartan’s development (see Remark 3.45).

Lemma 7.61 REE z(t) does not depend on the initial frame b0.

Proof. Let b̄ ∈ Om0(M). Since the fiber Om0M is isomorphic to the orthog-
onal group O(n), there exists an operator b′ ∈ O(n) such that b̄ = b0 ◦ b′.
Since the connection H is invariant with respect to the right action of O(n)
on OM , from the definition of the mapping E and from the uniqueness of
the solution of (7.36) it follows that η̄(t) = η 0,b0(t) ◦ b′ is the unique strong
solution of the equation

dη̄(t) = Eη̄(t)

(
b̄−1α(t)dt

)
+ Eη̄(t)

(
b̄−1A(t) ◦ dw(t)

)

that starts at b̄. The projections πη̄(t) and πη 0,b0(t) coincide. ��

Note that η̄(t) from the proof of Lemma 7.61 is the horizontal lift of
REEz(t) with initial value b̄.

For a development based on equations in Itô form on OM , we need addi-
tional constructions.

It is well-known (see, e.g., [26]) that the integral curves of autonomous
basic and fundamental vector fields, and only these curves, are respectively
the horizontal and vertical geodesics of the Levi-Civitá connection of every
induced metric on OM . (But integral curves of constant linear combinations
of basic and fundamental vector fields are not geodesics.) Recall (see Sec-
tion 2.7) that integral curves of basic vector fields, and only these curves, are
horizontal lifts of geodesics of the Levi-Civitá connection on M .

Denote by e the exponential mapping of the Levi-Civitá connection of
some induced metric on OM .

Lemma 7.62

(i) For all induced metrics the restrictions e|H coincide.
(ii) For every Y ∈ H the equality πe(Y ) = exp(TπY ) holds where exp is

the exponential mapping of the Levi-Civitá connection on M .
(iii) For all induced metrics in every specified chart on OM , the restrictions

of the local connectors Γ e(X,X) to H coincide as operators of X ∈ H.

Statements (i) and (ii) follow from the above-mentioned properties of in-
tegral curves of basic vector fields. In order to prove (iii) note in addition
that in a chart the operator −Γ e(X,X), X ∈ H, is the second derivative of
a horizontal geodesic with initial velocity X (i.e. it is an integral curve of a
basic vector field) that is independent of the choice of induced metric.
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Let processes α(t) and A(t) be given as above on the probability space
(Ω,F , P). Let the Itô integral

∫ t

0
A(τ)dw(τ) for t ∈ [0, l] be well-defined (this

condition replaces the above condition that the Stratonovich integral exists).
As above, construct the basic Itô vector field with random coefficients on
OM that at b ∈ OM takes the form (Eb(b−1

0 α(t)), Eb(b−1
0 A(t))). Consider the

following Itô equations in Belopolskaya-Daletskii form on OM :

dξ(t) = eξ(t)

(
Eb(b−1

0 α(t))dt + Eb(b−1
0 A(t)dw(t))

)
. (7.37)

As in the case of equation (7.36), from the fact that Eb is smooth in b it follows
that there exists a strong and strongly unique solution ξ 0, b0(t) of equation
(7.37) with initial condition ξ 0, b0(0) = b0 that is given on some random time
interval. In Tπb0M consider the Itô process y(t) =

∫ t

0
α(τ)dτ +

∫ t

0
A(τ)dw(τ).

Definition 7.63. The process πξ 0, b0(t) on M is called the Itô development
of the process y(t) in Tπb0M and is denoted by RI y(t). The solution ξ 0, b0(t)
of equation (7.37) is called the horizontal lift of the process RI y(t) to OM
with initial value b0.

By construction and by general formula (7.19) the description of equation
(7.63) in a chart on OM contains a local connector Γ e(X,X), restricted to H.
We emphasize that it follows from Lemma 7.62 that RI(y(t)) is independent
of the choice of induced metric on OM .

Lemma 7.64 RI y(t) does not depend on the choice of the initial value b0

of the horizontal lift.

The proof is analogous to that of Lemma 7.61. Here another horizontal lift
of RI y(t) also can be obtained by the action of an orthonormal operator to
the process ξ 0, b0(t).

Lemma 7.65 The process RI y(t) on M is a solution of the Itô equation in
Belopolskaya-Daletskii form

d(RI y(t)) = expRI y(t)(Tπ(Eb(b−1
0 α(t))dt + Eb(b−1

0 A(t)dw(t))).

This statement follows immediately from Theorem 7.34, Lemma 7.62(ii)
and the construction of the process RI y(t).

Remark 7.66. The process RIz(t) can be constructed in another way that
is analogous to the classical construction of the Itô integral with varied upper
limit. Indeed, for a subdivision q = (0 = t0 < t1 < ... < tq = l) determine
the process ξ̂q(t), starting at b̂, as follows. Start integral curves of the vector
field E(b̂−1(α(0)t1 + A(0)w(t1))) from b̂ up to t1, then start integral curves
of E(b̂−1(α(t1)(t2 − t1) + A(t1)(w(t2) − w(t1)))) from the points ξq(t1) up
to t2, etc. One can easily see that under the above conditions the process
ξ̂q(t1) is well-defined on the entire interval [0, l]. The process π̂ξq(t) M a.s.
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has piecewise geodesic sample paths. As diam q → 0 the processes πξ̂q(t)
converge in probability to πξ̂(t) uniformly in t. In particular it is possible to
select a subsequence converging to πξ̂(t) a.s. uniformly.

Remark 7.67. Like REE , the operator RI is a stochastic analog of the oper-
ation inverse to the classical Cartan development (see Remark 3.45). Note in
addition that according to the theory of stochastic processes the Itô processes
in Tm0M are analogs of smooth curves, to which the classical Cartan devel-
opment is applied. From Remark 7.66 it follows that RI is an extension of
the inverse of Cartan’s development from the set of piecewise smooth curves
to a.s. all sample trajectories of processes z(t) that are continuous but a.s.
not smooth [77].

One can apply analogous methods to “develop” processes from Euclidean
space R

n in which a Wiener process w(t) takes values. In this way it is possible
to construct developments with random initial data.

Consider a probability space (Ω,F ,P) and a non-decreasing family Bt, t ∈
[0, l], of complete σ-subalgebras of the σ-algebra F . Let on that probability
space the following objects be given: a Wiener process w(t) with values in a
Euclidean space R

n adapted to Bt, a process a(t) in R
n with a.s. continuous

sample paths and a process A(t) in L(Rn, Rn) also with a.s. continuous sample
paths, both a(t) and A(t) non-anticipative with respect to Bt and such that
the Itô process y(t) =

∫ t

0
a(τ)dτ +

∫ t

0
A(τ)dw(τ) is well-defined. Consider the

following Itô equation in Belopolskaya-Daletskii form on OM :

dξ(t) = eξ(t)(Eb(a(t))dt + Eb(A(t)dw(t))). (7.38)

Let x0 : Ω → M be a random element independent of Bt, and β0 be a
Borel measurable cross-section of OM (recall that on a non-parallelizable
manifold M the bundle OM may not have continuous cross-sections, but
Borel measurable cross-sections do exist).

Since the mapping E is smooth, as above a solution ξ̂0,β0(x0)(t) of equation
(7.38) with initial condition ξ̂0,β0(x0)(0) = β0(x0) exists on some random time
interval.

Definition 7.68. The process RI(β0(x0))y(t) = πξ̂0,β0(x0)(t) is called the
Itô development of the process y(t) in R

n generated by β0(x0). The process
ξ̂0,β0(x0)(t) is called the horizontal lift of the process RI(β0(x0))y(t) to OM
with initial value β0(x0).

Note that here the development depends on the initial value of the hori-
zontal lift.

An analogous construction is also valid for the Eells-Elworthy develop-
ment.
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7.6.2 Wiener processes on Riemannian manifolds.
Stochastic completeness

Let M be a Riemannian manifold and H be the Levi-Civitá connection on
OM . Consider a Wiener process w(t) in R

n and the “basic” stochastic process
Eb

(
w(t)

)
in Hb, b ∈ OM . Observe that the field of processes E

(
w(t)

)
is

smooth on OM , i.e., obtained from w by means of the smooth map E : OM×
R

n → H.
As above, for every m ∈ M , a frame b ∈ Om(M) can be regarded as a

linear operator b : R
n → TπbM (see Section 2.7).

Definition 7.69. The process TπEb(w(t)) = b w(t) is called a realization of
the Wiener process w in TπbM or simply a Wiener process in TπbM .

A realization of w in TmM gives rise to the standard Wiener process
in TmM , i.e., a measure on the space of continuous curves in TmM (cf.
Section 6.2.1).

Theorem 7.70 The standard Wiener process in TmM is independent of the
choice of w(t) on R

n and b ∈ OmM .

Proof. Since b is an orthogonal operator, b w(t) is a Wiener process in the Eu-
clidean space TmM with the inner product given by the Riemannian metric.
Thus, the measure determined by b w(·) on the space of curves in TmM is the
Wiener measure with respect to this inner product. Let b1, b2 ∈ Om(M). It is
clear that b1 and b2 differ by an orthogonal operator on TmM . The theorem
follows, since the Wiener measure is invariant with respect to the group of
orthogonal transformations. ��

Thus, once a Riemannian metric on M is specified, we have a well-defined
standard Wiener process in every tangent space to M . Furthermore, this
field of Wiener processes is smooth, i.e., obtained from the standard Wiener
process in R

n by means of a smooth linear transformation, namely, by means
of TπE. We denote the Wiener process on TmM by wm or just by w when
no confusion may arise. The realization of w in TmM obtained by the use of
b is denoted by b w.

Having taken a Wiener process w(t) in a tangent space Tm0M , we can
apply to it either the Eells-Elworthy development REE or the Itô development
RI .

Theorem 7.71 REEw(t) = RIw(t).

Proof. For w(t) equation (7.36) takes the form

dη(t) = Eη(t) ◦ dw(t), (7.39)

and equation (7.37), the form
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dξ(t) = eξ(t)Eξ(t)dw(t). (7.40)

We describe these two equations in the local coordinates of some chart on
OM . By formula (6.25) we transform equation (7.39) into the Itô equation

dη(t) =
1
2
tr E′ (Eη(t)

)
dt + Eη(t)dw(t),

and by formula (7.19) equation (7.40) takes the form

dξ(t) = −1
2
tr Γ e

ξ(t)(I, I)dt + Eξ(t)dw(t),

where I is the unit operator. The assertion of the theorem follows from the
fact that 1

2 tr E′(Eb) = −1
2 tr Γ e

b(I, I) at every b ∈ OM , i.e. the equations
coincide. ��

Note that both equation (7.39) and equation (7.40) are determined by the
Itô vector field (0,Eb).

Definition 7.72. The development RIwm0(t) = REEw(t) of a Wiener pro-
cess wm0 in Tm0M is called a Wiener process on M beginning at m0 ∈ M .

The definition of a Wiener process on M as the development of a Wiener
process in a tangent space is due to Eells and Elworthy (see the monograph
[66] and the bibliography therein.)

Theorem 7.73 The generator of a Wiener process on a manifold M is 1
2∇2

where ∇2 is the Laplace-Beltrami operator (see Definition 2.58) that in local
coordinates of some chart takes the form −gijΓ k

ij
∂

∂qk + gij ∂2

∂qi∂qj where Γ k
ij

are the Christoffel symbols of the Levi-Civitá connection.

Theorem 7.73 is proved by application of Lemma 7.62(ii) and Theorem 7.34
to equation (7.37) and then by direct calculation in local coordinates by the
use of formula (7.10).

Recall the Definition 7.19 of a martingale with respect to a connection.

Theorem 7.74 A Wiener process w(t) on a Riemannian manifold M is a
martingale with respect to the Levi-Civitá connection.

Proof. By Theorem 7.73 the generator of a Wiener process is 1
2∇2 that in

local coordinates has the presentation 1
2 (−gijΓ k

ij
∂

∂qk + gij ∂
∂qi∂qj ). Apply to

this generator the mapping H of the Levi-Civitá connection by formula (2.45).
Then H(1

2 (−gijΓ k
ij

∂
∂qk + gij ∂

∂qi∂qj )) = −1
2gijΓ k

ij
∂

∂qk + 1
2gijΓ k

ij
∂

∂qk = 0. ��

Definition 7.75. A Riemannian manifold M is called stochastically complete
if, for each m0 ∈ M , every Wiener process beginning at m0 a.s. extends to
[ 0,∞).
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On a stochastically complete manifold a Wiener process beginning at m0

gives rise to a measure on the space of continuous curves in M which, in turn,
begin at m0. It is not hard to see that this measure is actually independent
of the choice of Wiener process. The coordinate process on the space of such
curves is just the standard Wiener process on M beginning at m0. On the
other hand, the measure on the space of curves is not uniquely defined if with
a non-zero probability the development RIw goes to infinity in finite time.
In other words, the measure depends on the behavior of RIw at infinity, i.e.,
on the geometry of M . (See [66, 138].)

Note that there exist stochastically complete manifolds that are not com-
plete in the usual sense: if we exclude a single point from R

n it will become
incomplete but for every Wiener process wx(t) = x + w(t) (starting from
x at t = 0) the sample paths will still a.s. exist for t ∈ [0,+∞) since the
probability of hitting the excluded point equals zero. Note nevertheless that
the flow of a Wiener processes constructed in such a way in R

n by removing
a point will not be strongly complete (see Definition 6.30).

Note also that ordinary completeness is insufficient for the stochastic com-
pleteness of a Riemannian manifold.

Applying Theorem 7.43 one can obtain some sufficient conditions for
stochastic completeness of a manifold. Denote by Aw the generator of the
flow on OM given by equation (7.40) (or (7.39)). It is not hard to see that
in a chart on OM this operator is presented in the form

Aw
b = −1

2
trΓ e

b (I, I) +
1
2
aij ∂2

∂qi∂qj
, (7.41)

where (aij) is the matrix of the operator EbE
∗
b .

Theorem 7.76 If on OM there exists a proper function ϕ such that the
values of the generator Aw on ϕ are uniformly bounded, the Riemannian
manifold M is stochastically complete.

This statement follows immediately from Theorem 7.43.

Corollary 7.77 A compact Riemannian manifold is stochastically complete.

Indeed, since the group O(n) is compact, from the compactness of M it
follows that OM is compact, i.e., M is stochastically complete.

To avoid contradicting some statements in [66] concerning stochastic com-
pleteness, we emphasize that we are dealing with the usual Riemannian man-
ifolds, i.e., the manifolds with positive definite Riemannian inner product in
TmM at every point m ∈ M . In this case the group preserving the inner prod-
uct is the orthogonal group and is compact. If a manifold is semi-Riemannian,
the corresponding group that preserves the semi-Euclidean inner product is
not compact. Thus, the principal bundle with this group over a compact
manifold is not compact either.

The next statement is proved by applying Theorem 7.13 to equation (7.36)
on OM .
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Theorem 7.78 Assume that on OM there exists a Riemannian metric pos-
sessing a uniform Riemannian atlas and such that the Itô vector field (0, Eb)
is uniformly bounded on OM in the norm of the space C1 generated by this
metric. Then the Riemannian manifold M is stochastically complete.

Corollary 7.79 A Lie group with left (right) invariant metric is stochasti-
cally complete.

Indeed, the Levi-Civitá connection and basic vector fields Eb(x) are left
(right, respectively) invariant. A uniform Riemannian atlas on the group
can be constructed by left (right, respectively) translations of a chart in a
neighborhood of the unit element to the points of group. Define in the algebra
o(n) an inner product and translate it by left (right, respectively) shifts into
all points of O(n). For the constructed Riemannian metric on OM a uniform
Riemannian atlas can be also constructed by translations of some chart in a
neighborhood of the unit. Since the fibers of OM are isomorphic to O(n), we
obtain an induced metric on OM (see Definition 7.58 and Remark 7.59) and
by construction for this metric and the field Eb(x) the hypothesis of Theorem
7.78 is fulfilled.

Since the fibers of OM are compact, the proper functions on OM can be
constructed from proper functions on M : if ϕ is a proper function on M ,
ϕ̂ = ϕ◦π : OM → R is a proper function on OM . It is not hard to see that if
on M there is a proper function ϕ such that ∇2ϕ is uniformly bounded (here
∇2 is the Laplace-Beltrami operator, i.e., by Theorem 7.73 the generator of
the Wiener process), for ϕ̂ the hypothesis of Theorem 7.76 is fulfilled.

Theorem 7.80 (Elworthy [66]) If the Ricci curvature of a complete Rieman-
nian manifold M is bounded from below, M is stochastically complete.

Proof. It is shown in Yau’s paper [234] that under the hypothesis of this
Theorem there exists a proper function α (constructed from the Riemannian
distance) on M , for which ∇2α < C for some C > 0. A more complete proof
can be found in [66]. ��

Theorem 7.81 (Grigoryan [138]) Let M be a complete Riemannian man-
ifold and let V (r) denote the volume of the metric ball with radius r with
center m0 ∈ M . If the condition

∫ ∞ rdr
V (r) = ∞ is satisfied, M is stochasti-

cally complete.

Notice that if the hypothesis of Theorem 7.80 is fulfilled, V (r) < eCr where
C > 0 is a constant and so the hypothesis of Grigoryan’s theorem is satisfied.
Moreover, the hypothesis of the latter theorem is fulfilled if V (r) < eCr2

,
V (r) < eCr2 ln r, etc. If for some positive function f , regular in some sense,
the estimate

∫ ∞ rdr
f(r) < ∞ is fulfilled, there exists a complete Riemannian

manifold for which V (r) < Cf(r) but it is not stochastically complete. A
discussion of these questions can be found in Grigoryan’s paper [138].
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We also refer the reader to another paper of Grigoryan, [139], where ad-
ditional deep results concerning stochastic completeness are obtained.

Some criteria of stochastic completeness based on the use of atlases which
are in some sense uniform, and on the existence of a function with special
properties on M , can be found in [66].

7.6.3 Parallel translation along a stochastic process.
Itô processes on manifolds

Definition 7.82. A stochastic process on M is called an Itô process if it is
an Itô development of an Itô process in some tangent space.

Using the transformation of equations of Itô type into equations of
Stratonovich type and the expression of Itô processes in tangent spaces via
Stratonovich integrals it is possible to present Itô processes on manifolds as
the Eells-Elworthy development of a process with Stratonovich integral as in
Definition 7.60. For simplicity of presentation here we restrict ourselves to
the use of Itô developments.

It is possible to define the Riemannian parallel translation along Itô pro-
cesses on M analogously to the standard (i.e., non-stochastic) construction.
Let η(t) be an Itô process given for t ∈ [0, l] and let ξ̂(t) be a horizontal
lift of η(t) to OM with the initial condition ξ̂(0) = b̂. Let v ∈ Tη(0)M be a
(random) vector.

Definition 7.83. The parallel translation of the vector v along η(·) at the
point η(t) is the vector (ξ̂(t) ◦ (b̂−1v)) ∈ Tη(t)M.

It is obvious that parallel translation preserves the Riemannian norms
and does not depend on the choice of horizontal lift ξ̂. From the construc-
tion of the process RIy(t) where y(t) =

∫ t

0
α(τ)dτ +

∫ t

0
A(τ)dw(τ) in Tm0M

it is clear, in particular, that the vector TπEξ(t)(b̂−1α(t)) and the operator
TπEξ̂(t)(b̂

−1A(t)) from Lemma 7.65 are parallel along η(t) = RIy(t), respec-
tively, to the vector α(t) and to the operator A(t).

Remark 7.84. We mention the papers [58, 66, 151, 152] where the parallel
translation is constructed along stochastic processes of various sorts. It is not
hard to see that Itô processes in the sense of Definition 7.82 are local quasi-
martingales (i.e., special semi-martingales, see [176]) with continuous sample
paths, along which the parallel translation is constructed in [151], and the
parallel translations in the sense of [151] and in the sense of Definition 7.83 co-
incide. From this it follows, in particular, that the parallel translation along
an Itô process is the limit in probability of trajectory-wise parallel trans-
lations (in the ordinary “piecewise smooth” sense) along processes whose
sample paths are piecewise geodesic approximations of the trajectories of the
process η(t) (see [151]). It is clear that one can always select a sub-sequence
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of these approximations such that the trajectory-wise parallel translations
converge almost surely. Hence the parallel translation along η(t) as in Defi-
nition 7.83 is an extension of the classical parallel translation from the set of
piecewise smooth curves to a.s. all sample paths of η(t) that are continuous
but a.s. not smooth (cf. Remarks 7.66 and 7.67).

7.7 The Integral Approach to Stochastic Differential
Equations on Manifolds

In this Section we present an integral description of Itô stochastic differential
equations, analogous to the classical case in linear spaces as presented in
Section 6.2. The construction of the required integral operators is a stochastic
modification of the integral operators with Riemannian parallel translation
from Section 3.2 based on constructions from Section 7.6. Then, making use
of parallel translation along a stochastic process, we modify the notion of
a stochastic differential equation of Itô type and describe a broader class
of equations for which the notion of a non-degenerate (in particular, unit)
diffusion coefficient is well-defined.

7.7.1 General constructions

Let y(t) =
∫ t

0
b(τ)dτ +

∫ t

0
B(τ)dw(τ) be an Itô process in the tangent

space Tm0M to the Riemannian manifold M as in Section 7.6. Introduce
for the corresponding Itô process RIy(t) on M the new notation RIy(t) =
S(b(τ), B(τ))(t). One can easily see that the operator S introduced in this
way is a stochastic analog of the operator S with parallel translation from
Section 3.2.

Let ξ(t) be an Itô process that a.s. exists for t ∈ [0, l] and (α(t,m), A(t,m))
be an Itô vector field on M , t ∈ [0, l]. As in Section 2.2 (see Theorem 2.32),
denote by Γt,s the operator of parallel translation along ξ(·) from the random
point ξ(s) to the random point ξ(t). For the sake of simplicity, if t = 0,
i.e., if the translation is performed at the point ξ(0) rather than Γ0,s, we
shall often use the notation Γ analogous to that from Section 3.2.2. Thus
Γα(t, ξ(t)) is the random vector in Tξ(0)M obtained by parallel translation
of the random vector α(t, ξ(t)) along ξ(·) at the point ξ(0). Analogously,
ΓA(t, ξ(t)) is the random operator sending R

n to Tξ(0)M that is obtained by
parallel translation of A(t, ξ(t)) along ξ(·) at ξ(0).

Let an Itô vector field (α(t,m), A(t,m)) be Borel measurable. Consider
the processes Γα(t, ξ(t)) and ΓA(t, ξ(t)). Using the properties of horizontal
lift, i.e., of a strong solution of equation (7.37), it is not hard to show that
these processes are non-anticipative with respect to the family Bt that is used
in the definition of the Itô process ξ(t). Consider equation (7.37) on OM , in
which α is replaced by Γα and A by ΓA:

dξ(t) = eξ(t)

(
Eb

(
b−1
0 Γα(t)

)
dt + Eb

(
b−1
0 ΓA(t)dw(t)

))
. (7.42)
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For further developments it is important to present conditions under which
(7.42) has global solutions. This is the case, if, say, on OM there exists a
proper function ϕ such that the values of the generator of the Itô equation
on OM , corresponding to (7.42), are uniformly bounded.

In [107] the existence of global solutions of (7.42) is proved for α(t) and
A(t) (and hence for Γα(t) and ΓA(t) since the parallel translation preserves
the norms) uniformly bounded under the additional assumption that M is a
uniformly complete Riemannian manifold.

Definition 7.85. A Riemannian manifold M is said to be uniformly com-
plete if the following two conditions are satisfied:

(1) there exists an induced metric on OM which possesses a uniform Rie-
mannian atlas;

(2) on the balls Vb(r) of the atlas, the norm of the operator X �→ Γ e
b′(X,X),

where X ∈ Hb′ and b′ ∈ Vb(r), as a norm of a quadratic operator, is
bounded by a constant C > 0 independent of the chart and the ball.

Evidently compact Riemannian manifolds and Lie groups are examples of
uniformly complete Riemannian manifolds but the latter class of manifolds
is much broader than these two examples.

For uniformly complete manifolds and uniformly bounded Γα(t) and
ΓA(t) the solvability of (7.42) follows from Theorem 7.38.

Let, for any given initial data, equation (7.42) have a strong and strongly
unique solution that is well-defined for all t ∈ [0, l]. It is clear that the pro-
jection of this solution to M is the Itô process S(Γα(τ, ξ(t)), ΓA(τ, ξ(τ)))(t).

Definition 7.86. The Itô process S(Γα(τ, ξ(τ)), ΓA(τ, ξ(τ)))(t) on M is
called the line Itô integral with Riemannian parallel translation of the field
(α, A) along ξ(t).

S(Γα(τ, ξ), ΓA(τ, ξ))(t) is a direct analog of the ordinary line integral used
in the theory of Itô stochastic differential equations in Euclidean spaces. If
M is a Euclidean space, Γ is the identical mapping and

S(Γα(τ, ξ), ΓA(τ, ξ))(t) =
∫ t

0

α(τ, ξ)dτ +
∫ t

0

A(τ, ξ)dw(τ).

Like its classical analog, the integral S(Γα(τ, ξ), ΓA(τ, ξ))(t) is naturally
connected with the Itô equations.

Consider an Itô vector field (α(t,m), A(t,m)) on M and the corresponding
equation in Belopolskaya-Daletskii form

dη(t) = expη(t)(α(t, η(t))dt + A(t, η(t))dw(t)), η(0) = m0, (7.43)

where exp is the exponential mapping of the Levi-Civitá connection. It turns
out that its solution is an Itô process that satisfies the equation
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η(t) = S(Γα(τ, η(τ)), ΓA(τ, η(τ)))(t). (7.44)

Indeed, construct a horizontal lift of η(t) in the following way. Introduce an Itô
vector field (ᾱ(t, b), Ā(t, b)) on OM by the formulae ᾱ(t, b) = Tπ−1α(t, πb)|Hb

and Ā(t, b) = Tπ−1A(t, πb)|Hb
. For every b̂ ∈ Om(M) let there exist a unique

strong global solution ξ̂(t) of the equation

dξ̂(t) = eξ̂(t)

(
ᾱ

(
t, ξ̂(t)

)
dt + Ā

(
t, ξ̂(t)

)
dw(t)

)
, ξ̂(0) = b̂.

Consider the processes α(t) = b̂(ξ̂(t)−1 α(t, πξ̂(t))) in Tm0M and A(t) =
b̂(ξ̂(t)−1 A(t, πξ̂(t))) in L(Rn, Tm0M). By construction we obtain that ξ̂(t) is
a solution of equation (7.37) for α(t) and A(t). Thus ξ̂(t) is a horizontal lift
of η(t). So, α(t) = Γα(t, η(t)), A(t) = ΓA(t, η(t)) and for η(t) relation (7.44)
is satisfied.

Equation (7.44) is an analog of the integral form of the Itô equation in
Euclidean space (see Section 6.2.3). For (7.44) the usual notion of strong and
weak solutions are introduced as in Section 6.2.3.

Theorem 7.87 Let equation (7.44) have a weak solution η(t). Then η(t) is
a weak solution of equation (7.43).

Proof. Let ξ̂(t) be the horizontal lift of η(t) with initial condition ξ̂(0) =
b̂ ∈ Om0(M). From (7.44) and from the construction of the operator S it
follows that for every t ∈ [0, l] a.s. α(t, η(t)) = TπEξ̂(t)(b̂

−1Γα(t, η(t))) and

A(t, η(t)) = TπEξ̂(t)(b̂
−1ΓA(t, η(t))). Hence by Lemma 7.65 equation (7.43)

is satisfied for η(t) a.s. for all t ∈ [0, l]. All other conditions of Definition 7.82
are fulfilled by the hypothesis since η(t) is a weak solution of (7.44). ��

Corollary 7.88 If η(t) is a strong solution of (7.44), η(t) is a strong solution
of (7.43).

Proof. As in Theorem 7.87 it is proven that η(t) satisfies (7.43). Here all
requirements of Definition 6.23 are fulfilled since η(t) is a strong solution of
(7.44). ��

As in the case of ordinary differential equations (see Section 3.2) the use of
integral operators with parallel translation allows one to reduce some ques-
tions to the investigation of stochastic differential equations in a single tan-
gent space.

Let (α(t,m), A(t,m)) be an Itô vector field on M , t ∈ [0, l]. In Tm0M
consider the stochastic differential equation

z(t) =
∫ t

0

Γα(τ, RIz(τ))dτ +
∫ t

0

ΓA(τ, RIz(τ))dw(τ) (7.45)
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Theorem 7.89 An Itô process z(t) in Tm0M is a strong (weak) solution of
(7.45) if and only if η(t) = RIz(t) is a strong (weak, respectively) solution of
(7.43).

Proof. Assume that a Wiener process w(t) with values in R
n and an Itô pro-

cess z(t) =
∫ t

0
α(τ)dτ +

∫ t

0
A(τ)dw(τ) with values in Tm0M are given on a

probability space (Ω,F ,P) and that they satisfy (7.45). Then by Lemma 7.65,
by the construction of the mapping E and by the Definition 7.82 of par-
allel translation we obtain that for all t ∈ [0, l] equality (7.43) a.s. holds
for RIz(t). Conversely, let z(t) and w(t) be such that the development
η(t) = RIz(t) for all t a.s. satisfies (7.43). By the construction of the de-
velopment there is a horizontal lift ξ̂(t) of η(t), ξ̂(0) = b̂ ∈ Om0M and along
η(·) the parallel translation is well-defined. From Lemma 7.65 and equa-
tion (7.43) it follows that for all t ∈ [0, l] a.s. TπEξ̂(t)(b̂

−1α(t)) = α(t, η(t))

and TπEξ̂(t)(b̂
−1A(t)) = A(t, η(t)). Applying parallel translation along η(·)

at the point m0 to the latter equality, we obtain that for all t ∈ [0, l] a.s.
α(t) = Γα(t, η(t)) and A(t) = ΓA(t, η(t)). From this it follows that z(t) and
w(t) satisfy (7.45). It is easy to see that z(t) and w(t) are non-anticipative
with respect to the common family of σ-subalgebras: Pw

t in the case of a
strong solution and Bt (to which z(t) is adapted) in the case of a weak one.

��

As an example of the application of equation (7.45) to the investigation of
equation (7.43) we present a statement on the existence of a weak solution
of (7.43).

Theorem 7.90 Let an Itô vector field (α(t,m), A(t,m)), t ∈ [0, l], on a uni-
formly complete Riemannian manifold M (see Definition 7.85) be jointly con-
tinuous in t and m and uniformly bounded in the norm generated by the Rie-
mannian metric. Then for every initial condition m0 ∈ M equation (7.43)
has a weak solution.

Proof. We use the martingale approach to the construction of solutions
[83, 84, 162]. In the case under consideration we need some preliminary con-
structions that take into account the specific features of the equations. Since
(α, A) is uniformly bounded on [0, l]×M , one can easily construct a sequence
of smooth approximations (αi, Ai) that converge uniformly on [0, l] × M to
(α, A). Note that all (αi, Ai) are uniformly bounded by a common constant
since (α,A) is uniformly bounded. Let ηi be a strong solution of the equation

dηi(t) = expηi(t)(αi(t, ηi(t))dt + Ai(t, ηi(t))dw(t)), ηi(0) = m0,

that exists by Theorem 7.36. From the above statements it follows that the
processes zi(t) =

∫ t

0
Γαi(τ, ηi(τ))dτ +

∫ t

0
ΓAi(τ, ηi(τ))dw(τ) are strong solu-

tions of the equations
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zi(t) =
∫ t

0

Γαi(τ, RIzi(τ))dτ +
∫ t

0

ΓAi(τ, RIzi(τ))dw(τ).

Let Ω̃ = C0([0, l], Tm0M) be the Banach space of continuous mappings
from the interval [0, l] to Tm0M (i.e., continuous curves in Tm0M), F̃ be the σ-
algebra in Ω̃ generated by cylinder sets and Bt be the σ-subalgebra generated
by cylinder sets with bases on [0, t], t ∈ [0, l] (cf. Sections 6.1.1 and 6.2.1).
Recall that all σ-algebras are assumed to be complete (contain all sets of
measure zero). Denote by μi the probability measure on (Ω̃, F̃) generated by
the process zi. Consider the probability space (Ω̃, F̃ , μi) where the elementary
events are continuous curves x(·) ∈ C0([0, l], Tm0M) and the realization of
zi as the coordinate process on (Ω̃, F̃ , μi) : zi(t, x(·)) = x(t). Note that
the coordinate process is not anticipative with respect to Bt. Taking into
account Remarks 7.67 and 7.84 we obtain that for a continuous curve x(·) ∈
Ω̃ the processes RIx(t) and Y (RIx(t)) for Y ∈ TRIx(t)M are μi-a.s. well-
defined since RI and Γ are extensions of the inverse of Cartan’s development
and parallel translation, respectively, from the set of smooth curves to μi-
a.s. all continuous curves (sample paths of zi and RIzi). This is true for
every i, i.e., for every j and for all measures μi the processes Γαj(t, RIx(t))
and ΓAj(t, RIx(t)) are μi-a.s. well-defined. From the uniform convergence
of (αi, Ai) to (α,A) and from the properties of parallel translation it follows
that Γαj(t, RIx(t)) and ΓAj(t, RIx(t)) converge as j → ∞, μi-a.s. uniformly
in t for all i, to Γα(t, RIx(t)) and ΓA(t, RIx(t)), respectively. From the fact
that the fields (αi, Ai) are uniformly bounded by a common constant one can
easily deduce that the set of measures μi is weakly compact.

Let μ be a limit measure. Consider the coordinate process z(t, x(·)) = x(t)
on the probability space (Ω̃, F̃ , μ). By construction z(t) is not anticipative
with respect to Bt. Using Prokhorov’s Theorem 6.6 one can easily show that
the processes Γαj(t, RIx(t)) and ΓAj(t, RIx(t)) are μ-a.s. well-defined and μ-
a.s. converge uniformly in t to Γα(t, RIx(t)) and ΓA(t, RIx(t)), respectively.
The concluding arguments are exactly the same as in the classical existence of
weak solution theorem for equations with continuous coefficients [83]. Using
the above-mentioned convergencies a Wiener process w̃(t), adapted to Bt, is
constructed on (Ω̃, F, μ) so that z(t) and w̃(t) satisfy (7.45) for all t almost
surely. By Theorem 7.89, Rtz(t) is a weak solution of (7.43). ��

Remark 7.91.
(i) In the constructions and applications of operators with parallel trans-

lation in this section we have not used the fact that the torsion of the Levi-
Civitá connection equals zero. Thus all constructions and applications remain
true if we use an arbitrary Riemannian connection on M under the condition
analogous for that connection to, say, the condition of unform completeness.
Note that for some special choice of connection on a Lie group the above-
mentioned constructions yield the well-known multiplicative integral.

(ii) Let (α̂, A) be an Itô equation (cross-section of an Itô bundle). Recall
that its solution is described by equation (7.13). Using different Riemannian
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metrics and connections on M , one can describe this equation in the form
(7.43) with corresponding (strictly speaking, different) Itô vector fields that
canonically correspond to (α̂, A) with respect to the chosen connections. Inte-
gral operators with parallel translation and the presentation of the equation
(α̂, A) in integral form (7.44) or (7.45) also depend on the choice of metric
and connection. We emphasize that a solution of (7.43) or of (7.44) does not
depend on the choice of metric and connection since this solution is a solution
of (7.13).

7.7.2 Stochastic differential equations in terms of
Wiener processes in tangent spaces

Let a be a vector field and A be a (1,1)-tensor field on M , i.e., Am is a
linear operator TmM → TmM for every m ∈ M . Note that the fields may
be time-dependent and in this case we shall denote them by at,m and At,m,
respectively. Using these fields we construct a modification of equation (7.18)
in the following way. Assume that in every tangent space TmM a realization
wm(t) of a Wiener process is given. Then the equation

dξ(t) = expξ(t)

(
at,ξ(t)dt + At,ξ(t)dw(t)

)
(7.46)

is well-defined where exp is the exponential mapping of the Levi-Civitá con-
nection. Indeed, let bm be a field of orthonormal frames that determines the
realizations wm(t) = bm w(t) of a Wiener process in tangent spaces. Then
(at,m, At,m bm) is an Itô vector field (unlike the pair (a, A)).

We have changed the notation for equations of type (7.46) to avoid con-
fusion with equations of type (7.18).

For equations of type (7.46) it is necessary to modify the notion of solution.

Definition 7.92. We say that equation (7.46) has a strong solution ξ(t) if,
for any Wiener process w(t) in R

n, there is a process ξ(t) in M defined on
the same probability space as w(t) and non-anticipative with respect to Pw

t ,
and there is a realization bξ(t) w(t) of the Wiener process at ξ(t) such that
the processes wξ(t)(t) = bξ(t) w(t) and ξ(t) satisfy (7.46) for every t.

Definition 7.93. Equation (7.46) has a weak solution if there are:

(1) a probability space (Ω,F , P) with a non-decreasing family Bt of com-
plete σ-subalgebras of F ;

(2) a stochastic process ξ(t) on M , non-anticipative with respect to Bt;
(3) a Wiener process w(t) in R

n relative to Bt;
(4) realizations wξ(t) = bξ(t) w(t) of w(t) in Tξ(t)M ,

such that wξ(t)(t) and ξ(t) a.s. satisfy (7.46) for every t, as in Definition 7.28.
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Using (7.19) and Definitions 7.92 and 7.93 it is easy to show that in a
chart equation (7.46) takes the form

dξ(t) = a
(
t, ξ(t)

)
dt − 1

2
tr Γ ξ(t)(A, A) dt + Aξ(t)

(
bξ(t)dw(t)

)
, (7.47)

where Γ m(· ·) is the local connector and trΓ m(A, A) = trΓ m(Ambm, Ambm)
where bm ∈ Om(M) is a cross-section of OM , i.e., a field of orthonormal
frames bm : R

n → TmM , m ∈ U. Observe that trΓ m(A, A) is independent
of b (consistently with the notation), because the trace is invariant under the
action of the orthogonal group. Using this fact and the results of Section 7.3,
it is not hard to show that (7.47) is covariant with respect to changes of
coordinates. Below bξ(t) will usually arise as the horizontal lift of ξ(t).

By the definition of a Wiener process on a Riemannian manifold (see
Section 7.6.2), we have:

Theorem 7.94 A Wiener process w̃(t) on M is a strong solution of the
equation dw̃(t) = expw̃(t)(dw). In local coordinates, this equation reads
dw̃(t) = −1

2 tr Γw̃(t)(I, I) dt + bw(t)dw(t).

Assume that M is uniformly complete. To construct the integral operators
needed to study (7.46), we have to alter the construction of Section 7.7.1.

Let the probability space (Ω,F , P ), the family Bt, the manifold M , and
the functions a(t) in Tm0M and A(t) in L(Tm0M) be as in Section 7.7.1.
Specify a realization b w of the Wiener process w in Tm0M . It is clear that
the operator S from Section 7.7.1 is applicable to the pair (a,Ab).

Let a(t,m) and A(t,m) be a vector field and a (1, 1)-tensor field on M ,
respectively, and let η(t), t ∈ [0, l], be an Itô process on M . Consider the
vector and tensor fields Γa

(
t, η(t)

)
and ΓA

(
t, η(t)

)
obtained by the parallel

translation of a
(
t, η(t)

)
and, respectively, A

(
t, η(t)

)
along η(·) to η(0). The

operator S can be applied to the pair
(
Γa

(
t, η(t)

)
, ΓA

(
t, η(t)

))
, provided the

fields a(t,m) and A(t,m) are bounded and Borel measurable jointly in t and
m.

Therefore, we can define the Itô integral and the line integral with par-
allel translation in terms of the field of Wiener processes. To distinguish
these integrals from those of Section 7.7.1, we denote them by S

(
a(τ) dτ +

A(τ) dw(τ)
)
(t) and S

(
Γa

(
τ, η(τ)

)
dτ + ΓA

(
τ, η(τ)

)
dw(τ)

)
(t), respectively.

Then (7.44) is to be replaced by the following equation

ξ(t) = S
(
Γa

(
τ, ξ(τ)

)
dτ + ΓA

(
τ, ξ(τ)

)
dw(τ)

)
(t). (7.48)

Let b0w be the initial realization of the Wiener process in Tm0M . Observe
that the parallel translation of b0 along a solution ξ(·) of (7.48) gives rise to
a realization of the Wiener process at ξ(t). (See Definitions 7.92 and 7.93.)

The equation
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z(t) =
∫ t

0

Γa
(
τ, RIz(τ)

)
dτ +

∫ t

0

ΓA
(
τ, RIz(τ)

)
dwm0(τ) (7.49)

is an analog of (7.45). Similar results to Theorems 7.36, 7.87 and 7.90 hold
for equations (7.46), (7.48) and (7.49).

7.7.3 Equations with unit diffusion coefficients

Generalizing the classical notion, it is natural to call (7.46) an equation with
a non-degenerate diffusion coefficient if the operator A(t,m) : TmM → TmM
is non-degenerate for all m ∈ M and t ∈ [0, l] (cf. Definition 6.18).

Among equations with non-degenerate diffusion coefficients we are espe-
cially interested in those with A = I, i.e., with the diffusion coefficient equal
to the identity operator. Then the equation can be written down in the form:

dξ(t) = expξ(t)

(
at,ξ(t) dt + dw(t)

)
. (7.50)

Note that in this form the equations with a smooth field of linear operators
A(m) : R

k → TmM such that A(m)A∗(m) = I can also be represented.
Solutions of (7.50) will play a crucial role in Chapter 15 and in Section 14.4.

Note that for (7.50) the local expression (7.47) turns into the equality

dξ(t) = a
(
t, ξ(t)

)
dt − 1

2
tr Γξ(t)(I, I) dt + bξ(t)dw(t).

Theorem 7.95 Assume that the Riemannian manifold M is stochastically
complete and the vector field a(t,m) is Borel measurable jointly in (t,m) ∈
[0, l] × M and uniformly bounded. Then there exists a weakly unique weak
solution ξ(t) of (7.50) for any initial condition ξ(0) = m0 that is well-defined
on [0, l] .

Proof. Here, we are using a method based on a change of probability measure
[83, 84, 162]. Consider the standard Wiener process w̃ on Tm0M , i.e., the
coordinate process w̃

(
t, x(·)

)
= x(t) on the probability space (Ω̃, F̃ , ν), where

Ω̃ = C0
(
[0, l], Tm0M

)
, F̃ is the σ-algebra generated by cylinder sets, and ν

is the Wiener measure. Recall that the elementary event in Ω̃ is a continuous
curve x(·) ∈ C0

(
[0, l], Tm0M

)
. Observe that w̃(t) is non-anticipative with

respect to the family of σ-subalgebras Bt generated by the cylinder sets with
bases over [0, t], t ∈ [0, l]. (See Sections 6.2.1 and 7.7.)

Since M is stochastically complete, the development RIw̃(t) is well-
defined. Taking into account Remarks 7.67 and 7.84, we see that RIx(t)
and Γa

(
t, RIx(t)

)
exist for ν-almost all x ∈ Ω̃. Furthermore, it follows from

the properties of parallel translation, of RI and of a(t,m) that the stochastic
process Γa

(
t, RIw̃(t)

)
is uniformly bounded and non-anticipative with re-

spect to Bt. Consider the measure μ on (Ω̃, F̃) with density ρ with respect
to ν given by
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ρ (x(·)) = exp

(∫ l

0

〈Γa (t, RIx(t)) , dw̃(t)〉 − 1
2

∫ l

0

Γa (t, RIx(t))2 dt

)

.

(7.51)
It is known (see [83, 162]) that under the hypotheses of the theorem

∫

Ω̃

ρdν = 1, (7.52)

i.e., μ is a probability measure, and, furthermore, w
(
t, x(·)

)
= x(t) −

∫ t

0
Γa

(
τ, RIx(τ)

)
dτ is a Wiener process on (Ω̃, F̃ , μ) relative to Bt. It is

not hard to show that ρ > 0 everywhere, i.e., ν is absolutely continuous with
respect to μ and has density ρ−1. In other words, the probability measures μ
and ν are equivalent. The coordinate process z

(
t, x(·)

)
= x(t) on (Ω̃, F̃ , μ) is

non-anticipative with respect to Bt and, moreover, Bt = Pz
t . Since the mea-

sures μ and ν are equivalent, RI(z(t, x(·)) = RIx(t) exists μ-a.s. Thus, z(t)
and w(t) are related via the equation

dz(t) = Γa (t, RIz(t)) dt + dw (7.53)

on Tm0M . In other words, z(t) is a weak solution of (7.53). It is shown in
[83, 162] that every solution of (7.53) gives rise to a probability measure on
(Ω̃, F̃) with density ρ. This means that a solution of (7.53) is weakly unique.
By definition, the process RI(t) exists on (Ω̃, F̃ , μ). This process is, in fact,
a weak solution of (7.50). Hence the solution is weakly unique. ��

We point out that w(t), defined as in the proof of Theorem 7.95, is a Wiener
process relative to the family Pz

t generated by the weak solution z(t).

Theorem 7.96 Assume that M is stochastically complete, a(t,m) is Borel
measurable jointly in (t,m) ∈ [0, l] × M , the inequality

∫ l

0
‖a (t,m(t))‖2 dt <

∞ holds for any continuous curve m(·) : [0, l] → M , m(0) = m0 ∈ M , and
the density ρ defined by (7.51) satisfies (7.52). Then there exist a weakly
unique weak solution ξ of (7.50) with the initial condition ξ(0) = m0 that is
well-defined on [0, l].

This result is a simple generalization of Theorem 7.95. The only refine-
ment needed in the proof is as follows. Even though the hypothesis of The-
orem 7.96 does not guarantee that Γa

(
t, RIx(t)

)
is uniformly bounded,

ν-almost all x(·) ∈ Ω̃ with x(0) = 0 ∈ Tm0M satisfy the inequality
∫ l

0
‖Γa (t, RIx(t))‖2 dt < ∞. Arguing in the same way as in the proof of

Theorem 7.95, we see that this inequality together with (7.52) yield the ex-
istence and weak uniqueness of a solution of (7.53) as in [83, 162]. The rest
of the proof of Theorem 7.95 remains unchanged.

Corollary 7.97 Assume that
∫ l

0
‖a (t,m(t))‖2 dt < ∞ for any continuous

curve m(·) : [0, l] → M . Then, under the hypotheses of Theorem 7.96, the
assertion of the theorem holds for any initial condition ξ(0) = m ∈ M .
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From the proofs of Theorems 7.95 and 7.96 it is not hard to see that for
processes with unit diffusion coefficients their developments (as well as line
integrals with parallel translation) are well-defined on stochastically com-
plete Riemannian manifolds, i.e., on a broader class than the uniformly com-
plete Riemannian manifolds and manifolds satisfying the hypothesis of The-
orem 7.76. In addition, for such processes it is possible to weaken the require-
ment of boundedness and yet still obtain the existence of an Itô development
on every a priori given non-random time interval.

Consider a stochastic process β(t) on Tm0M non-anticipative with respect
to Bt and such that

P

(∫ ∞

0

‖β(τ)‖2 dτ < ∞
)

= 1. (7.54)

Define an Itô process z(t) on Tm0M by the formula

z(t) =
∫ t

0

β(τ) dτ + w(t). (7.55)

Theorem 7.98 Let M be stochastically complete. Then for any l > 0 the
development RIz(t) exists on [0, l] and is weakly unique.

Proof. Let (Ω̃, F̃ , ν) and Bt be as in the proof of Theorem 7.95. Denote
by μz the probability measure on (Ω̃, F̃) which corresponds to z. Then it
follows from (7.54) that μz is absolutely continuous with respect to ν (see
[175, Chapter 7]). Since M is stochastically complete, the development of a
standard Wiener process exists. In other words, the development can be a.s.
extended from the space of smooth curves to Ω̃. Since μz � ν, the same
holds true when μz is replaced by ν.

One can easily see that z(t) coincides with the coordinate process z
(
t, x(·)

)

= x(t) on (Ω̃, F̃ , μz). The theorem follows. ��

In the Euclidean space R
n consider a process β(t) that satisfies (7.54) and

is non-anticipative with respect to Bt and a Wiener process w(t) adapted
to Bt. Construct the Itô process ϑ(t) =

∫ t

0
β(τ)dτ + w(t). Let x0 : Ω → M

be a random element independent of Bt, and let β0 be a Borel measurable
cross-section of OM .

Consider the development RI(β0(x0))ϑ(t) from Definition 7.68.

Theorem 7.99 If a Riemannian manifold M is stochastically complete, the
development RI(β0(x0))ϑ(t) exists, is well-defined for t ∈ [0, l] and is weakly
unique.

The proof of Theorem 7.99 is analogous to that of Theorem 7.98.



Chapter 8

Mean Derivatives in Linear Spaces

8.1 General Definitions and Results

In this section we briefly describe some preliminary facts about mean deriva-
tives. For details, see [7, 106, 107, 115, 188, 190]. This notion was first in-
troduced by E. Nelson [187, 188, 190] for the needs of so-called stochastic
mechanics (see Chapter 15) but it turns out to be useful in some other prob-
lems of mathematical physics, economics, and elsewhere.

Consider a stochastic process ξ(t), t ∈ [0, T ], given on a probability space
(Ω,F , P), taking values in a separable Hilbert space and such that ξ(t) is an
L1 random element for all t. For the sake of convenience in this section we
work mainly with the Euclidean space R

n. The general case of Hilbert space
is quite analogous and we shall describe its features only when necessary.

In Section 6.1.1 for a stochastic process ξ(t) three families of σ-subalgebras
of the σ-algebra F were introduced: “the past” Pξ

t of ξ(t), “the future” Fξ
t of

ξ(t) and “the present” (“now”) N ξ
t of ξ(t). All the above families we suppose

to be complete, i.e., contain all sets of measure zero.
For the sake of convenience we denote by Eξ

t the conditional expectation
E(·|N ξ

t ) with respect to the “present” N ξ
t for ξ(t).

Generally speaking, the sample trajectories of ξ(·) a.s. are not differentiable
(see, e.g., Theorem 6.10 for Wiener processes) and so we cannot determine
the derivative of ξ(·) in the ordinary way. Following Nelson (see e.g. [187,
188, 190]) we give the following:

Definition 8.1.

(i) The forward mean derivative Dξ(t) of the process ξ(t) at time t is the
L1-random variable of the form

Dξ(t) = lim
Δt→+0

Eξ
t

(
ξ(t + Δt) − ξ(t)

Δt

)

(8.1)
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where the limit is assumed to exist in L1(Ω,F , P) and Δt → +0 means
that Δt → 0 and Δt > 0.

(ii) The backward mean derivative D∗ξ(t) of ξ(t) at t is the L1-random
variable

D∗ξ(t) = lim
Δt→+0

Eξ
t

(
ξ(t) − ξ(t − Δt)

Δt

)

(8.2)

where (as in (i)) the limit is assumed to exist in L1(Ω,F , P) and Δt →
+0 means that Δt → 0 and Δt > 0.

If ξ(t) is a Markov process (see Section 6.1.3) then Eξ
t can be replaced

by E(·|Pξ
t ) in (8.1) and by E(·|Fξ

t ) in (8.2). In order to distinguish these
constructions for non-Markovian processes, we introduce the following defi-
nition:

Definition 8.2. The forward mean derivative relative to the past (P-mean
derivative) DPξ(t) of a process ξ(t) at time t is the L1-random element of
the form

DPξ(t) = lim
�t→+0

E

(
ξ(t + �t) − ξ(t)

�t

∣
∣
∣Pξ

t

)

, (8.3)

where the limit is assumed to exist in L1 and �t → +0 means that �t tends
to 0 and �t > 0.

The backward mean derivative relative to the future (F-mean derivative)
DF

∗ ξ(t) of a process ξ(t) at time t is the L1-random element of the form

DF
∗ ξ(t) = lim

�t→+0
E

(
ξ(t) − ξ(t −�t)

�t

∣
∣
∣Fξ

t

)

, (8.4)

where the limit is assumed to exist in L1 and �t → +0 means that �t tends
to 0 and �t > 0.

Remark 8.3. In fact Nelson considered at most the case of Markov processes,
and so he gave in different works two equivalent definitions of mean deriva-
tives: with Eξ

t and with E(·|Pξ
t ) or E(·|Fξ

t ), respectively. We mainly consider
Itô diffusion type processes which are, generally speaking, non-Markovian,
and so these definitions become non-equivalent. Definition 8.1 is compati-
ble with the principle of locality in physics: the derivative depends on the
present but neither on the entire past nor on the entire future. Nevertheless
the P-mean and F -mean derivatives as in Definition 8.2 also arise in many
problems.

It should be noted that in general Dξ(t) �= D∗ξ(t) (but if ξ(t) a.s. has
smooth sample trajectories, these derivatives coincide).

From the properties of conditional expectation it follows that Dξ(t) and
D∗ξ(t) are expressed as compositions of ξ(t) and the Borel measurable vector
fields, namely the regressions (see Section 6.1.2)
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Y 0(t, x) = lim
Δt→+0

E

(
ξ(t + Δt) − ξ(t)

Δt

∣
∣
∣
∣ ξ(t) = x

)

(8.5)

Y 0
∗ (t, x) = lim

Δt→+0
E

(
ξ(t) − ξ(t − Δt)

Δt

∣
∣
∣
∣ ξ(t) = x

)

(8.6)

on R
n, i.e., Dξ(t) = Y 0(t, ξ(t)) and D∗ξ(t) = Y 0

∗ (t, ξ(t)).
The mean derivatives of Definition 8.1 are particular cases of the follow-

ing notions. Let x(t) and y(t) be L1-stochastic processes given on (Ω,F , P).
Introduce the y-forward derivative of x(t) by the formula

Dyx(t) = lim
Δt→+0

Ey
t

(
x(t + Δt) − x(t)

Δt

)

(8.7)

and the y-backward derivative of x(t) by the formula

Dy
∗x(t) = lim

Δt→+0
Ey

t

(
x(t) − x(t − Δt)

Δt

)

(8.8)

where, of course, the limits are assumed to exist in L1(Ω,F , P). If by anal-
ogy with (8.3) and (8.4) we replace Ey

t by E(· | Py
t ) in (8.7) and by

E(· | Fy
t ) in (8.8), we obtain the y-forward P-derivative DPy

x(t) of x(t)
and the y-backward F-derivative DFy

∗ x(t) of x(t), respectively. As above, if
y(t) is Markovian, DPy

x(t) coincides with Dyx(t) and DFy

∗ x(t) coincides
with Dy

∗x(t).

Lemma 8.4 For s < t

E (x(t) − x(s) | Py
s ) = E

(∫ t

s

(
DPy

x(τ)
)

dτ

∣
∣
∣
∣P

y
s

)

, (8.9)

E (x(t) − x(s) | Fy
t ) = E

(∫ t

s

(
DFy

∗ x(τ)
)

dτ
∣
∣
∣Fy

t

)

. (8.10)

Proof. Take a partition q = (s = t0 < t1 < · · · < tN = t) of the interval [s, t]
and consider the following integral sum

N−1∑

i=0

E

(
x(ti+1) − x(ti)

ti+1 − ti

∣
∣
∣
∣P

y
ti

(ti+1 − ti)
)

=
N−1∑

i=0

E
(
(x(ti+1) − x(ti))| Py

ti

)

whose limit as diam q → 0 is
∫ t

s
(DPy

x(τ))dτ . Since ti ≥ s, by the properties
of conditional expectation E(E(· | Py

ti
) | Py

s ) = E(· | Py
s ). Thus
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E

(
N−1∑

i=0

E (x (ti+1) − x (ti)| Py
ti

)∣
∣
∣
∣
∣
Py

s

)

= E

(
N−1∑

i=0

(x (ti+1) − x (ti))| Py
s

)

= E (x(t) − x(s)| Py
s ) .

This proves (8.9). The proof of (8.10) is similar, replacing the “past” by the
“future”.

Lemma 8.5

(i) x(t) is a martingale with respect to Py
t if and only if DPy

x(t) = 0.
(ii) x(t) is a backward martingale with respect to Fy

t if and only if
DFy

∗ ξ(t) = 0.

Proof. Let x(t) be a martingale with respect to Py
t . By the martingale prop-

erty (see Section 6.1.4) E(x(t + Δt)|Py
t ) = x(t) and so E(x(t + Δt) − x(t) |

Py
t ) = 0. Hence DPy

x(t) = 0.
Let DPy

x(t) = 0. Then by Lemma 8.4 for t > s we have E(x(t) − x(s) |
Py

s ) = 0. Thus E(x(t) | Py
s ) = E(x(s) | Py

s ). But E(x(s) | Py
t ) = x(s) and so

x(t) is a martingale with respect to Py
t .

This proves (i). The proof of (ii) is similar. ��
Corollary 8.6

(i) If x(t) is a martingale with respect to Py
t , Dyx(t) = 0.

(ii) If x(t) is a backward martingale with respect to Fy
t , D∗ξ(t) = 0.

In particular, if a process ξ(t) is a martingale, Dξ(t) = 0 and if it is a
backward martingale, D∗ξ(t) = 0.

This follows from the fact that Dξ(t) = Eξ
t (DPξ(t)) and D∗ξ(t) =

Eξ
t (DF

∗ ξ(t)).
Of course, when we use the word “martingale” without indicating the

filtration, we mean that it is with respect to it own “past” (and in the case
of a backward martingale, with respect to its own “future”).

Consider an Itô diffusion type process ξ(t) (see Definition 6.16)

ξ(t) = ξ0 +
∫ t

0

a(s)ds +
∫ t

0

A(s)dw(s) (8.11)

and a diffusion process (see Definition 6.17)

η(t) = η0 +
∫ t

0

a(s, η(s))ds +
∫ t

0

A(s, η(s))dw(s). (8.12)

It should be noted that ξ(t) can neither be a diffusion nor a Markov pro-
cess.
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Theorem 8.7 For a process ξ(t) of type (8.11) Dξ(t) exists and is equal to
Eξ

t (a(t)). For a diffusion process η(t) of type (8.12) Dη(t) = a(t, η(t)).

Proof. Evidently

D

(

ξ0 +
∫ t

0

a(s)ds +
∫ t

0

A(s)dw(s)
)

= Dξ

(∫ t

0

a(s)ds

)

+ Dξ

(∫ t

0

A(s)dw(s)
)

.

Since
∫ t

0
A(s)dw(s) is a martingale with respect to Pξ

t (see Theorem
6.11), from Corollary 8.6 it follows that Dξ(

∫ t

0
A(s)dw(s)) = 0. Then

Dξ(
∫ t

0
a(s)ds) = Eξ

t (a(t)) and Dη(t) = a(t, η(t)) since a(t, η(t)) is measur-
able with respect to N η

t . ��

Theorem 8.8 For diffusion type process (8.11) the derivative DPξ(t) exists
and takes the form DPξ(t) = a(t).

Proof. Note that ξ(t+�t)−ξ(t) =
∫ t+�t

t
a(s)ds+

∫ t+�t

t
A(s)dw(s). Since the

Itô integral is a martingale with respect to Pξ
t , E(

∫ t+�t

t
A(s)dw(s) | Pξ

t ) = 0
and so we get

E(ξ(t + �t) − ξ(t) | Pξ
t ) = E

⎛

⎝

t+�t∫

t

a(t)dt
∣
∣
∣Pξ

t

⎞

⎠ =

t+�t∫

t

E
(
a(t)

∣
∣
∣Pξ

t

)
dt.

Applying formula (8.3) we obtain that DPξ(t) = E(a(t) | Pξ
t ). Since, by

definition of a diffusion type process, a(t) is measurable with respect to Pξ
t ,

E(a(t) | Pξ
t ) = a(t). ��

Theorem 8.9 For a backward Itô process

ξ(t) = ξ0 +
∫ t

0

a(s)ds +
∫ t

0

A(s)d∗w(s)

given on an interval [0, T ] and such that A(t) is measurable with respect to
N ξ

t for all t, the derivative D∗ξ(t) at t ∈ (0, T ] exists and equals Eξ
t (a(t)) +

A(t)Dξ
∗w(t).

Proof. Indeed, as in Theorem 8.7, Dξ
∗(
∫ t

0
a(s)ds) = Eξ

t (a(t)). Approximate
the backward increment of

∫ t

0
A(s)d∗w(s) by a summand of the backward

integral sum (6.4) of the form A(t)(w(t) −w(t −�t)). Since A(t) is measur-
able with respect to N ξ

t , lim
�t→+0

Eξ
t (A(t) (w(t)−w(t−�t))

�t ) = A(t)Dξ
∗w(t). The

Theorem follows. ��
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By Theorem 8.7 the forward mean derivative gives information about the
drift of an Itô process. Following [6, 7] we introduce a new mean derivative
D2, called the quadratic mean derivative, that is responsible for the diffusion
term of a process. This is a slight modification of an idea of Nelson from
[188, 190].

Definition 8.10. For an L1-stochastic process ξ(t), t ∈ [0, T ], its quadratic
mean derivative D2ξ(t) is defined by the formula

D2ξ(t) = lim
�t→+0

Eξ
t

(
(ξ(t + �t) − ξ(t)) ⊗ (ξ(t + �t) − ξ(t))

�t

)

, (8.13)

where ⊗ denotes the tensor product and the limit is assumed to exist in
L1(Ω,F , P).

Note that here the tensor product of two vectors in R
n is the n×n matrix

formed by the products of every component of the first vector with every
component of the second one. Note also that for column vectors X,Y ∈ R

n

their tensor product X ⊗ Y equals the matrix product XY ∗ of the column
vector X and the row vector Y ∗ (the transpose of column Y ).

As in the case of forward mean derivatives, if ξ(t) is not Markovian, the
quadratic mean derivative with respect to the past differs from that in Defi-
nition 8.10. To distinguish these constructions we introduce:

Definition 8.11. The quadratic mean derivative relative to the past (for
short, quadratic P-mean derivative) DP

2 ξ(t) of ξ(t) at t is the L1-random
element of the form

DP
2 ξ(t) = lim

�t→+0
E

(
(ξ(t + �t) − ξ(t)) ⊗ (ξ(t + �t) − ξ(t))

�t

∣
∣
∣Pξ

t

)

, (8.14)

where the limit is assumed to exist in L1, �t → +0 means that �t tends to
0 and �t > 0 and ⊗ denotes the tensor product in R

n.

Denote by S+(n) the set of symmetric positive definite n×n matrices and
by S̄+(n) the set of symmetric positive semi-definite matrices (the closure of
S+(n) in the space of all symmetric matrices S(n)).

We emphasize that the tensor product in (8.13) is a symmetric positive
semi-definite matrix so that D2ξ(t) is a function with values in S̄+(n).

From the properties of conditional expectation (see, e.g., [194]) it follows
that there exists a Borel mapping α(t, x) from [0, T ]×R

n to S̄+(n) such that
D2ξ(t) = α(t, ξ(t)). As above, following [194], we call α(t, x) the regression.

Theorem 8.12 Let ξ(t) be a diffusion type process of the form (8.11). Then
D2ξ(t) = Eξ

t [α(t)] where α(t) = A(t)A∗(t), A∗(t) is the transposed ma-
trix A(t) and A(t)A∗(t) is the matrix product. If ξ(t) is a diffusion pro-
cess, D2ξ(t) = α(t, ξ(t)) where α is the diffusion coefficient. In particular,
D2ξ(t) = 0 if and only if ξ(t) a.s. has C1-smooth sample paths.
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Proof. By direct calculation it follows that the components of (ξ(t + �t) −
ξ(t)) ⊗ (ξ(t + �t)− ξ(t)) are elements of the matrix (ξ(t +�t)− ξ(t))(ξ(t +
�t) − ξ(t))∗ where we use the matrix multiplication of the column-vector
(ξ(t + �t) − ξ(t)) and the row-vector (ξ(t + �t) − ξ(t))∗ (i.e., the transpose
of (ξ(t + �t) − ξ(t))). The product is a symmetric positive semi-definite
matrix. Since ξ(t+�t)− ξ(t) =

∫ t+�t

t
a(s)ds+

∫ t+�t

t
A(s)dw(s), taking into

account the properties of the Lebesgue and Itô integrals one can see that
(ξ(t + �t) − ξ(t))(ξ(t + �t) − ξ(t))∗ is approximated by a(t)a(t)∗(Δt)2 +
(a(t)Δt)(A(t)Δw(t))∗ + (A(t)Δw(t))(a(t)Δt)∗ + A(t)A(t)∗Δt. Thus we see
that only A(t)A(t)∗Δt is infinitesimal of the same order as Δt while the
other summands are infinitesimals of order higher than Δt. Applying formula
(8.13), we obtain the assertion of Theorem since AA∗ = α (see above). If ξ(t)
a.s. has C1-sample paths, A = 0 a.s. and so D2ξ(t) = 0. On the other hand,
if D2ξ(t) = 0, this means that in the expression for (ξ(t+�t)− ξ(t))⊗ (ξ(t+
�t) − ξ(t)) there is no term with the same infinitesimal order as �t. Hence,
a.s. A = 0. ��
Theorem 8.13 For the above-mentioned Itô diffusion type process ξ(t) the
derivative DP

2 ξ(t) exists and takes the form DP
2 ξ(t) = A(t)A∗(t) where A∗(t)

is the transpose of the matrix A(t).

The proof of Theorem 8.13 is a simple modification of that for Theo-
rem 8.12 based on the fact that A(t) is measurable with respect to Pξ

t .
Below we will often deal with the particular case of the process (8.11) for

F = R
n with A = σI, where σ > 0 is a real constant and I is the identity

operator; i.e., with diffusion type processes in R
n of the form

ξ(t) = ξ0 +
∫ t

0

a(s)ds + σw(t). (8.15)

Note that Theorem 8.7 is valid for processes of the form (8.15).
For a process of type (8.15) we can obtain from the Itô formulae (6.10)

and (6.13) and from formulae (8.9) and (8.10) two important relations.

Lemma 8.14 Let f(t, x) be a smooth mapping. For a process of type (8.15)
for every t > s the relations

Eξ
s (f(t, ξ(t)) − f(s, ξ(s))) (8.16)

= Eξ
s

(∫ t

s

∂f

∂τ
dτ +

∫ t

s

f ′(Y 0(τ, ξ(τ)))dτ +
σ2

2

∫ t

s

∇2f(τ, ξ(τ))dτ

)

and

Eξ
t (f(t, ξ(t)) − f(s, ξ(s))) (8.17)

= Eξ
t

(∫ t

s

∂f

∂τ
dτ +

∫ t

s

f ′(Y 0
∗ (τ, ξ(τ)))dτ − σ2

2

∫ t

s

∇2f(τ, ξ(τ))dτ

)

hold.
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Proof. Note that by Theorem 8.7 and by formula (8.5) defining the regression
Y 0, the equality Eξ

t (a(t)) = Y 0(t, ξ(t)) holds. Also, trf ′′(·, ·) = ∇2f for a
smooth mapping f(t, x) where ∇2 is the Laplacian. Then for t > s and for a
smooth mapping f(t, x) one can easily derive from (6.10) and (8.9) that

Eξ
s (f(t, ξ(t)) − f(s, ξ(s)))

= Eξ
s

(∫ t

s

Dξf(τ, ξ(τ))dτ

)

= Eξ
s

(∫ t

s

∂f

∂τ
dτ +

∫ t

s

f ′(Y 0(τ, ξ(τ)))dτ +
σ2

2

∫ t

s

∇2f(τ, ξ(τ))dτ

)

since Eξ
s (
∫ t

s
f ′(dw(τ)) = 0.

For the process (8.15) the regression Y 0
∗ introduced by formula (8.6)

takes the form Y 0
∗ = Y 0 + Y 1 where Y 1 is the regression for Dξ

∗w(t), i.e.,
Y 1(t, ξ(t)) = Dξ

∗w(t). Obviously, the backward Itô formula (6.13) is applica-
ble to ξ(t) as well as (6.10). Then for t > s and for a smooth mapping f(t, x)
one can easily derive from (6.13), (8.10) and Theorem 8.9 that

Eξ
t (f(t, ξ(t)) − f(s, ξ(s)))

= Eξ
t

(∫ t

s

Dξf(τ, ξ(τ))dτ

)

= Eξ
t

(∫ t

s

∂f

∂τ
dτ +

∫ t

s

f ′(Y 0(τ, ξ(τ)))dτ − σ2

2

∫ t

s

∇2f(τ, ξ(τ))dτ

+
∫ t

s

f ′(Dξ
∗w(τ))dτ

)

= Eξ
t

(∫ t

s

∂f

∂τ
dτ +

∫ t

s

f ′(Y 0(τ, ξ(τ)))dτ − σ2

2

∫ t

s

∇2f(τ, ξ(τ)) dτ

+
∫ t

s

f ′(Y 1(τ, ξ(τ)))dτ

)

= Eξ
t

(∫ t

s

∂f

∂τ
dτ +

∫ t

s

f ′(Y 0
∗ (τ, ξ(τ)))dτ − σ2

2

∫ t

s

∇2f(τ, ξ(τ))dτ

)

.

��

Definition 8.15. The derivative DS = 1
2 (D + D∗) is called the symmetric

mean derivative. The derivative DA = 1
2 (D−D∗) is called the antisymmetric

mean derivative.

Consider the vectors vξ(t, x) = 1
2 (Y 0(t, x) + Y 0

∗ (t, x)) and uξ(t, x) =
1
2 (Y 0(t, x) − Y 0

∗ (t, x)).
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Definition 8.16. vξ(t) = vξ(t, ξ(t)) = DSξ(t) is called the current velocity
of the process ξ(t) and uξ(t) = uξ(t, ξ(t)) = DAξ(t) is called the osmotic
velocity of the process ξ(t).

In Nelson’s works it is shown that in many natural problems the current
velocity plays the same role as the ordinary velocity of a deterministic process.
The osmotic velocity measures the variation of randomness of a process. The
precise meaning of osmotic and current velocities is clarified by the following.

Denote by ρξ(t, x) the density of the process (8.15) with respect to
Lebesgue measure λ on [0, l] × R

n. This means that for any continuous inte-
grable function f(t, x) on [0, l] × R

n the following equality holds
∫

[0,l]×R
n

f(t, x)ρξ(t, x)dλ =
∫

Ω×[0,l]

f(t, ξ(t))dPdt.

Lemma 8.17 For the process (8.15) in R
n the vector field uξ(t, x) is pre-

sented in the form

uξ(t, x) =
1
2
σ2grad log ρξ(t, x) = σ2grad log

√
ρξ(t, x). (8.18)

Proof. We shall prove (8.18) using an idea developed in [65] for more compli-
cated processes. For an alternative proof see, e.g., [187, 188, 190] where only
Markovian diffusion processes are considered.

Let f be a smooth function on R
n with compact support. Since f(ξ(t)) is

N ξ
t -measurable,

E[f(ξ(t))Eξ
t (w(t) − w(t − Δt))] = E[f(ξ(t))(w(t) − w(t − Δt))]

(see the properties of conditional expectations in Section 6.1.2). Since f(ξ(t−
Δt)) and w(t)−w(t−Δt) are independent and E(w(t)−w(t−Δt)) = 0 (see
Theorem 6.8), we obtain the equality E[f(ξ(t−Δt))(w(t)−w(t−Δt))] = 0.
Thus E[f(ξ(t))Eξ

t (w(t) − w(t − Δt))] = E[(f(ξ(t)) − f(ξ(t − Δt)))(w(t) −
w(t−Δt))]. Using the Itô formula (6.10) and taking into account that f ′(a) =
gradf · a, we obtain the presentation

f(ξ(t)) − f(ξ(t − Δt))

=
∫ t

t−Δt

(gradf(ξ(s)) · a(s))ds +
σ2

2

∫ t

t−Δt

trf ′′(ξ(s))ds

+
∫ t

t−Δt

σgradf(ξ(s)) · dw(s).

Hence,
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E
[
f(ξ(t))Eξ

t (w(t) − w(t − Δt))
]

= E

[∫ t

t−Δt

(gradf(ξ(s)) · a(s))dsdw(s) +
σ2

2

∫ t

t−Δt

trf ′′(ξ(s))dsdw

+
∫ t

t−Δt

σgradf(ξ(s))ds

]

= E

[∫ t

t−Δt

σgradf(ξ(s))ds

]

,

and so

E[f((ξ(t))uξ(t, ξ(t))] = −1
2
E

[

σf(ξ(t)) lim
Δt→+0

1
Δt

Eξ
t (w(t) − w(t − Δt)

]

= −1
2
E[σ2grad f(ξ(t))]

= −1
2

∫

[0,l]×R
n

σ2grad f(x)ρξ(t, x)dλ

=
1
2

∫

[0,l]×R
n

σ2f(x)grad ρξ(t, x)dλ

=
1
2

∫

[0,l]×R
n

σ2f(x)
(

grad ρξ(t, x)
ρξ(t, x)

)

ρξ(t, x)dλ

=
1
2
E[σ2f(ξ(t))grad log ρξ(t, ξ(t))].

Since this is valid for every smooth function f with compact support, (8.18)
holds. ��

From (8.18) it follows that the osmotic velocity does indeed characterize
the ‘variation of randomness’ of the process.

Lemma 8.18 For the process (8.15) in R
n, the vector field vξ(t, x) and the

density ρξ(t, x) satisfy the continuity equation

∂ρξ(t, x)
∂t

= −div(ρξvξ). (8.19)

Proof. Let f(t, x) be a smooth real-valued function on [0, l]×R
n with compact

support. Note that for such f and a vector Y the equality f ′(Y ) = (gradf ·Y )
holds where the dot denotes the inner product in R

n. Recall that E(Eξ
t (·)) =

E(·). Then by formula (8.16) for t > s the equality

E[f(t, ξ(t)) − f(s, ξ(s))]

= E

[∫ t

s

∂f

∂t
dτ

∫ t

s

(gradf · Y 0(t, ξ(t)))dτ +
∫ t

s

σ2

2
∇2fdτ

]

holds. On the other hand, by formula (8.17) we get the equality
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E[f(t, ξ(t)) − f(s, ξ(s))]

= E

[∫ t

s

∂f

∂t
dτ +

∫ t

s

(gradf · Y 0
∗ (t, ξ(t)))dτ −

∫ t

s

σ2

2
∇2fdτ

]

.

Thus

E[f(t, ξ(t)) − f(s, ξ(s))] = E

[∫ t

s

∂f

∂t
dτ +

∫ t

s

(gradf · vξ(t, ξ(t)))dτ

]

,

where vξ(t, x) = 1
2 (Y 0(t, x) + Y 0

∗ (t, x)) (see above). But

E

[∫ t

s

∂f

∂t
dτ +

∫ t

s

(gradf · vξ(t, ξ(t)))dτ

]

=
∫

[s,t]×R
n

[
∂f(τ, x)

∂τ
ρ(τ, x) +

(
gradf · vξ(τ, x)ρ(τ, x)

)
]

dλ

=
∫

[s,t]×R
n

∂

∂t

[
f(τ, x)ρξ(τ, x)

]
dλ −

∫

[s,t]×R
n

[

f(τ, x)
∂ρξ(τ, x)

∂τ

]

dλ

−
∫

[s,t]×R
n

[
f(τ, x)div

(
vξ(τ, x)ρξ(τ, x)

)]
dλ

= E[f(t, ξ(t)) − f(s, ξ(s))] −
∫

[s,t]×R
n

f(τ, x)
∂ρξ(τ, x)

∂τ
dλ

−
∫

[s,t]×R
n

[
f(τ, x)div

(
vξ(τ, x)ρξ(τ, x)

)]
dλ.

Hence
∫

[s,t]×R
n

[

f(τ, x)
∂ρξ(τ, x)

∂τ

]

dλ = −
∫

[s,t]×R
n

[
f(τ, x)div

(
vξ(τ, x)ρξ(τ, x)

)]
dλ.

Since the last equality is valid for any f , the Lemma follows. An alternative
proof for a Markovian diffusion ξ(t) can be found, e.g., in [187, 188, 190]. ��

Lemmas 8.17 and 8.18 can be generalized for processes with more compli-
cated diffusion terms in the following way.

Consider an autonomous smooth field of non-degenerate linear operators
A(x) : R

n → R
n, x ∈ R

n. Suppose that ξ(t) is a diffusion type process
whose diffusion integrand is A(ξ(t)). Then its diffusion coefficient A(x)A∗(x)
is a smooth field of symmetric positive definite matrices α(x) = (αij(x)).
Since all such matrices are invertible, the field of inverse matrices (αij) exists
and is smooth and at any x the matrix (αij)(x) is symmetric and positive
definite. Thus it defines a new Riemannian metric α(·, ·) = αijdxi ⊗ dxj

on R
n. Consider the Riemannian volume form of this Riemannian metric

Λα =
√

det(αij)dx1 ∧ dx2 ∧ · · · ∧ dxn (see (1.31)).
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Denote by ρξ(t, x) the probability density of ξ(t) with respect to the volume
form dt ∧ Λα =

√
det(αij)dt ∧ dx1 ∧ dx2 ∧ · · · ∧ dxn on [0, T ] × R

n, i.e., for
any continuous bounded function f : [0, T ] × R

n → R the relation

T∫

0

E(f(t, ξ(t)))dt =

T∫

0

⎛

⎝
∫

Ω

f(t, ξ(t))dP

⎞

⎠ dt =
∫

[0,T ]×R
n

f(t, x)ρξ(t, x)dt ∧ Λα

holds. We have the following generalization of formula (8.18):

uξ(t, x) =
1
2
Grad log ρξ(t, x) = Grad log

√
ρξ(t, x), (8.20)

where Grad denotes the gradient with respect to the Riemannian metric
α(·, ·). Analogously for vξ(t, x) and ρξ(t, x) we have the following generaliza-
tion of formula (8.19) (equation of continuity)

∂ρξ(t, x)
∂t

= −Div(vξ(t, x)ρξ(t, x)) (8.21)

where Div denotes divergence with respect to the Riemannian metric α(·, ·).
The arguments for the derivation of (8.20) and (8.21) are analogous to those
in the proofs of Lemmas 8.17 and 8.18 with a natural modification for using
Grad and Div. For an alternative proof for Markovian diffusion processes, see
[190].

Let Z(t, x) be a C2-smooth vector field, and ξ(t) be a stochastic process.

Definition 8.19. The forward and backward mean derivatives of Z along ξ(·)
at t (denoted by DZ(t, ξ(t)) and D∗Z(t, ξ(t)), respectively) are the L1-limits
of the form

DZ(t, ξ(t)) = lim
Δt→+0

Eξ
t

(
Z(t + Δt, ξ(t + Δt)) − Z(t, ξ(t))

Δt

)

(8.22)

D∗Z(t, ξ(t)) = lim
Δt→+0

Eξ
t

(
Z(t, ξ(t)) − Z(t − Δt, ξ(t − Δt))

Δt

)

(8.23)

As in Definition 8.1, if ξ(t) is a Markov process, Eξ
t can be replaced by

E(·|Pξ
t ) in (8.22) and by E(·|Fξ

t ) in (8.23), see Remark 8.3.
Of course DZ(t, ξ(t)) and D∗Z(t, ξ(t)) can be presented as compositions

of ξ(t) with certain Borel vector fields on R
n. These vector fields (regressions)

will also be denoted by DZ and D∗Z, respectively.

Lemma 8.20 For the process (8.15) in R
n the following formulae hold

DZ =
∂

∂t
Z + (Y 0 · ∇)Z +

σ2

2
∇2Z, (8.24)

D∗Z =
∂

∂t
Z + (Y 0

∗ · ∇)Z − σ2

2
∇2Z, (8.25)
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where ∇ = ( ∂
∂x1 , ..., ∂

∂xn ), ∇2 is the Laplacian, the dot denotes the inner
product in R

n and Y 0(t, x) and Y 0
∗ (t, x) are as introduced in formulae (8.5)

and (8.6).

Proof. The vector field Z(t, x) can be considered as a map Z : [0, l]×R
n → R

n

and so one may apply formulae (8.16) and (8.17). Note that Z ′(Y ) = (Y ·∇)Z
for a vector Y . Formula (8.24) follows immediately from (8.16) and (8.22)
while (8.25) follows from (8.17) and (8.23). ��

In fact the forward mean derivative and the quadratic mean derivative
together make it possible in principle to recover a stochastic process from
its mean derivatives: the forward mean derivative gives information about
the drift while the quadratic mean derivative gives information about the
diffusion term. It turns out that such recovery is also possible for more com-
plicated relations with mean derivatives that we call equations with mean
derivatives (EMDs).

Specify a homogeneous polynomial f(x, y) of order k of two variables,
analogous polynomials gi(x, y), i = 1, ..., k − 1 of order i and two mappings:
F : R × R

n × ... × R
n → R

n and g : R × R
n → R

n.

Definition 8.21. A k-th-order stochastic equation with mean derivatives
(EMD) is a system

f(D, D∗)ξ(t) = F (t, ξ(t), g1(D, D∗)ξ(t), ..., gk−1(D, D∗)ξ(t)), (8.26)
D2ξ(t) = g(t, ξ(t)).

The definition of a differential inclusion with mean derivatives is anal-
ogous. In Section 8.4 below we prove some existence theorems for several
types of first order equations and inclusion with mean derivatives. Various
second order equations and inclusions with mean derivatives are considered
in Chapters 14 and 15 and in Section 16.4. For the construction of their so-
lutions we need to have formulae of mean derivatives for processes from a
sufficiently broad class. The next two sections are devoted to the derivation
of such formulae.

8.2 Calculation of Mean Derivatives for a Wiener
Process and for Diffusion Processes

For a Wiener process w(t) in R
n Dw(t) = 0, t ∈ [0, l), by Lemma 8.5(i) since

w(t) is a martingale.

Lemma 8.22 For t ∈ (0, l] the equality D∗w(t) = w(t)
t holds.
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Proof. In this case, from the definition of the osmotic velocity uw(t, w(t)) it
follows that D∗w(t) = −2uw(t, w(t)). Recall that the density ρw(t, x) is given
in formula (6.1). Thus according to formula (8.18) we have

uw(t, x) = −1
2
· x

t
i.e. D∗w(t) =

w(t)
t

.

��

Obviously the process w(t)
t does not exist at t = 0. Nevertheless the fol-

lowing statement holds:

Lemma 8.23 The integral
∫ t

0
w(s)

s ds exists a.s. for all t ∈ [0, l].

Proof. By standard calculations, using the density ρw(t, x) one can easily
obtain the estimate E

∫ t

0
‖w(s)

s ‖ds < C ·
√

t, where E denotes the expectation
and the constant C > 0 depends only on the dimension n. Then the result
follows from the classical Tchebyshev inequality. ��

Remark 8.24. To emphasize that mean derivatives essentially depend on
the σ-algebras with respect to which they are calculated, we consider the
following example. By Lemma 8.23 the process η(t) = −

∫ t

0
w(s)

s ds + w(t) is
well-defined. From Lemma 8.22 one can easily derive that Dw

∗ η(t) = 0 and
Dwη(t) = −D∗w(t). But it is shown in [153] that η(t) is a Wiener process
with respect to its own ‘past’ family of σ-algebras and so Dη(t) = 0.

Lemma 8.25

(i) Dw w(t)
t = −w(t)

t2 for t ∈ (0, l).
(ii) Dw

∗
w(t)

t = 0 for t ∈ (0, l].

Proof. It is easy to see that Dw w(t)
t = ( d

dt
1
t )w(t) + 1

t Dw(t) = −w(t)
t2 and

Dw
∗

w(t)
t = ( d

dt
1
t )w(t) + 1

t D∗w(t) = 0. ��

Lemma 8.26 Let a Markovian diffusion process ξ(t) be a solution of the Itô
equation (6.16). Then:

(i) Dξ(t) = a(t, ξ(t)) for t ∈ (0, l];
(ii) D∗ξ(t) = a(t, ξ(t)) − trA′(A(t, ξ(t))) + A(t, ξ(t))Dξ

∗w(t) for t ∈ (0, l],

where Dξ
∗w(t) is the backward mean derivative introduced in (8.8).

Proof. Assertion (i) is a corollary of Theorem 8.7. To prove (ii), represent
ξ(t) by formula (6.26). Then using the fact that the first two summands on
the right hand side of (6.26) are processes with a.s. smooth trajectories, as
well as the properties of the conditional expectation and formula (8.8), we
obtain
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D∗ξ(t) = Dξ
∗

(∫ t

0

a(s, ξ(s))ds −
∫ t

0

trA′(A(s, ξ(s))
)

ds

+
∫ t

0

A(s, ξ(s))d∗w(s))

= a(t, ξ(t)) − trA′(A(t, ξ(t)))

+ lim
Δt→+0

Eξ
t

(

A(t, ξ(t))
(

w(t) − w(t − Δt)
Δt

))

= a(t, ξ(t)) − trA′(A(t, ξ(t)))

+A(t, ξ(t)) lim
Δt→+0

Eξ
t

(
w(t) − w(t − Δt)

Δt

)

= a(t, ξ(t)) − trA′(A(t, ξ(t)) + A(t, ξ(t))Dξ
∗w(t).��

Theorem 8.27 Let ξ(t) be a solution of the Itô equation

ξ(t) = ξ0 +
∫ t

0

a(s, ξ(s))ds +
∫ t

0

trA′(A(s, ξ(s)))ds

−
∫ t

0

A(s, ξ(s))Dξ
∗w(s)ds +

∫ t

0

A(s, ξ(s))dw(s). (8.27)

Then for t ∈ (0, l] we have D∗ξ(t) = a(t, ξ(t)).

In fact Theorem 8.27 is a corollary of Lemma 8.26 and the proof is abso-
lutely analogous to the proof of the latter.

Lemma 8.28 For a diffusion type process ξ(t) the relation EDξ
∗w(t) = 0

holds.

Proof. By the definition of Dξ
∗ and the properties of conditional expectation

EDξ
∗w(t) = E lim

Δt→+0
Eξ

t

w(t) − w(t − Δt)
Δt

= lim
Δt→+0

E
w(t) − w(t − Δt)

Δt
= 0. �

Let ξ(t) be a Markovian diffusion process given on a finite interval t ∈
[0, T ].

Definition 8.29. The process wξ
∗(t) =

∫ T

t
Dξ

∗w(s)ds + w(t)−w(T ) is called
the backward Wiener process with respect to ξ(t).

Lemma 8.30 The process wξ
∗(t) is a backward martingale with zero mean

relative to Fξ
t .
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Proof. Since ξ(t) is Markovian, Dξ
∗w

xi∗(t) = DFξ

∗ wξ
∗(t). Note that Dξ

∗w
ξ
∗(t) =

−Dξ
∗w(t) + Dξ

∗w(t) = 0. Hence, DFξ

∗ wξ
∗(t) = 0 and the assertion of the

Theorem follows from Lemma 8.5(ii) and Lemma 8.28. ��

We should emphasize that wξ
∗(t) depends on the given process ξ(t); from

Lemmas 8.22 and 8.23 it follows that ww
∗ (t) =

∫ T

t
w(s)

s ds + w(t) − w(T ) and
it is well-defined. Below in formula (8.37) we find Dξ

∗w(s) for an Itô diffusion
type process ξ(t) with unit diffusion coefficient and so it is possible to find
wξ

∗(t) in this case. The same can also be done for more general processes ξ(t).
As mentioned above (after Theorem 8.7), it is convenient to use wξ

∗(t) for
representing ξ(t) via this backward martingale and hence for calculating the
backward derivatives (see below).

Let ξ(t) be a diffusion process, i.e., a solution of the Itô equation

ξ(t) = ξ0 +

t∫

0

a(τ, ξ(τ))dτ +

t∫

0

A(τ, ξ(τ))dw(τ) (8.28)

for t ∈ [0, T ]. Specify a time t. From the above formulae it follows that the
process η(t) satisfying for s < t the relation

η(t) − η(s) =

t∫

s

a∗(τ, η(τ))dτ +

t∫

s

A(τ, η(τ))d∗w
η
∗(τ) (8.29)

with a∗(t, x) = a(t, x) − trA′(A(t, x)) + A(t, x)Dη
∗w(t) and such that η(t) =

ξ(t), has the same backward mean derivative at t as ξ(t).

Lemma 8.31
∫ t

s
A(τ, η(τ))d∗w

η
∗(τ) is a backward martingale with respect to

Fη
t .

Proof. By Lemma 8.30 and Lemma 8.5(ii), DFη

∗ wη
∗(t) = 0. Approximate the

backward increment of
∫ t

0
A(τ, η(τ))d∗w

η
∗(s) by a summand of the backward

integral sum (6.4), A(t, η(t))(wη
∗(t)−wη

∗(t−�t)). Since A(t, η(t)) is measur-
able with respect to N ξ

t and hence with respect to Fη
t ,

DFη

∗

∫ t

s

A(τ, η(τ))d∗w
η
∗(τ)

= lim
�t→+0

E

((

A(t, η(t))
(wη

∗(t) − wη
∗(t −�t))

�t

)∣
∣
∣
∣F

η
t

)

= A(t, η(t))DFη

∗ wη
∗(t)

= 0.

Thus the assertion of the Theorem follows from Lemma 8.5(ii). ��

Lemma 8.31 is ‘symmetric’ to Theorem 6.11(2).
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Definition 8.32. The equality (8.29) is called an equation in backward dif-
ferentials and is denoted as follows

d∗ξ(t) = a(t, ξ(t))d∗t + A(t, ξ(t))d∗w
ξ
∗(t). (8.30)

Here d∗t means the increment in the negative time direction. We use this
notation only for convenience. From the above arguments it follows that for
s < t close enough to t, a solution of (8.30) approximates a solution of (8.29).

Lemma 8.33 Let f(t, x) be a function that is C1 in t ∈ R and C2 in x ∈ R
n.

Then for the process ξ(t) satisfying (8.30), the backward Itô formula

d∗f(ξ(t)) =
∂f

∂t
d∗t + f ′(a∗(t, ξ(t))d∗t

+
1
2
trf ′′(A(t, ξ(t)), A(t, ξ(t)))d∗t

+ f ′(A(t, ξ(t))d∗w
ξ
∗(t)

is valid.

The proof of Lemma 8.33 is analogous to that of formula (10.11). Here we
have to use the Taylor expansion at the right point and so the summands with
even numbers change sign. Taking into account the properties of integrals of
higher order, we obtain the assertion of the Lemma.

Remark 8.34. We refer the reader to Nelson’s books [188, 190] where an-
other approach to backward processes and equations is developed.

8.3 Calculation of Mean Derivatives for Itô Processes

This section is devoted to the calculation of mean derivatives for processes of
diffusion type of the form (8.15). To do this, we first describe a method for
calculating conditional expectations under a change of probability measure.

On a probability space (Ω,F ,P) consider a new probability measure
μ. Let μ be absolutely continuous with respect to P with a certain den-
sity θ, let B be a σ-subalgebra of F and ψ be a measurable map from
(Ω,F) into R

n equipped with the Borel σ-algebra. Denote by E0(ψ|B)
the conditional expectation of ψ with respect to B on the probability
space (Ω,F , P) and by E′(ψ|B) the same expectation on the probability
space (Ω,F , μ). Using E0(ψ|B) we can calculate E′(ψ|B) as follows (cf.,
e.g., [175]). For any function λ, measurable with respect to B, we have
E′(λψ) = E′(λE′(ψ|B)) = E0(λE′(ψ|B)θ) = E0(λE′(ψ|B)E0(θ|B)), and
on the other hand E′(λψ) = E0(λψθ) = E0(λE0(ψθ|B)). Thus
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E′(ψ|B) = E0(θ|B)−1E0(ψθ|B). (8.31)

Consider a process of diffusion-type (8.15) and for the sake of simplicity
suppose that σ = 1. For the space of continuous curves Ω̃ = C0([0, l], Rn)
and for the σ-algebra F̃ of cylinder sets on Ω̃, consider two probability spaces
(Ω̃, F̃ , ν) and (Ω̃, F̃ , μ) where ν is the Wiener measure and the measure μ
corresponds to the process ξ(t). Denote the coordinate process on (Ω̃, F̃)
by ζ(t). Recall that ζ(t), considered as a process on (Ω̃, F̃ , ν), is a Wiener
process. Let us denote this process by W (t). The process ζ(t), considered on
(Ω̃, F̃ , μ), is ξ(t).

It is well-known that if ξ(t) satisfies the condition

P

(∫ l

0

a(s)2ds < ∞
)

= 1, (8.32)

then μ is absolutely continuous with respect to ν. Under some additional
assumptions (see, e.g., [175]) one can show that the density of μ with respect
to ν has the form

θ(l) = exp

(

−1
2

∫ l

0

a(s)2ds +
∫ l

0

(a(s) · dW (s))

)

(8.33)

(the above assumptions mean that θ(l) is a probability density) and so μ and
ν are equivalent. For the remainder of this Section we suppose that (8.32)
and the assumptions are satisfied. Clearly

θ(l)−1 = exp

(
1
2

∫ l

0

a2ds −
∫ l

0

(a(s) · dW (s))

)

.

Determine θ(t) by analogy with formula (8.33) where l is replaced by t. Then
using the Itô formula one can easily show that

θ(l) = 1 +
∫ l

0

θ(s)(a(s) · dW (s)) (8.34)

(for details see, e.g., [175]).
Denote by E0 the (conditional) expectation on (Ω̃, F̃ , ν) and by E′ the

(conditional) expectation on (Ω̃, F̃ , μ). Then using formulae (8.31) and (8.34)
we can calculate
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Dξ(t) = lim
Δt→+0

E
′ζ
t

(
ζ(t + Δt) − ζ(t)

Δt

)

= lim
Δt→+0

E0ζ
t (θ(l))−1E0ζ

t

(
ζ(t + Δt) − ζ(t)

Δt
θ(l)

)

= E0ζ
t (θ(l))−1 lim

Δt→+0
E0ζ

t

(
ζ(t + Δt) − ζ(t)

Δt

)

+E0ζ
t (θ(l))−1 lim

Δt→+0
E0ζ

t

((
ζ(t + Δt) − ζ(t)

Δt

)(∫ l

0

θ(t)(a(t) · dW (t)

))

.

Let f : M → R be a smooth function with compact support. Then since
here ζ(t) = W (t) and so f(ζ(t))(ζ(t + Δt) − ζ(t))) =

∫ t+Δt

t
f(W (t))dW (s),

we can apply the usual properties of the multiplication of Itô integrals (see
Theorem 6.12) to obtain

E0(f(ζ(t)) lim
Δt→+0

E0ζ
t

(
ζ(t + Δt) − ζ(t)

Δt

)

= lim
Δt→+0

E0

(

f(ζ(t))
(

ζ(t + Δt) − ζ(t)
Δt

))

= lim
Δt→+0

E0

(∫ t+Δt

t
f(W (t))θ(s)a(s)ds

Δt

)

= E0(f(ζ(t))θ(t)a(t)).

Thus, since f is an arbitrary function of the above-mentioned type,

lim
Δt→+0

E0ζ
t

(
ζ(t + Δt) − ζ(t)

Δt

∫ t

0

θ(s)(a(s) · dW (s)
)

= E0ζ
t (θ(t)a(t))

On the other hand, by Theorem 8.7 Dξ(t) = Eξ
t (a(t)), thus

E0ζ
t (θ(l))−1E0ζ

t (θ(t)a(t)) = Eξ
t (a(t)) (8.35)

(note that formula (8.35) can also easily be obtained by direct calculation).
Then

D∗ξ(t) = lim
Δt→+0

E′ζ
t

(
ζ(t) − ζ(t − Δt)

Δt

)

= E0ζ
t (θ(l))

−1 lim
Δt→+0

E0ζ
t

(
ζ(t) − ζ(t − Δt)

Δt
θ(l)

)

.

Using the same arguments as above we easily obtain
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E0(f(ζ(t)) lim
Δt→+0

E0ζ
t

(
ζ(t) − ζ(t − Δt)

Δt
θ(l)

)

= lim
Δt→+0

E0

(

(f(W (t)) − f(W (t − Δt)))
W (t) − W (t − Δt)

Δt
θ(l)

)

+ lim
Δt→+0

E0

(

f(W (t − Δt))
W (t) − W (t − Δt)

Δt
θ(l)

)

.

As above, the second summand on the right hand side is equal to
E0(f(ζ(t))θ(t)a(t)). Let us calculate the first summand. Here we apply The-
orem 6.12, the Itô formula, and integration by parts. Denoting by the same
symbol the conditional expectation and the corresponding regression (see
Section 6.1.2), we have:

lim
Δt→+0

E0

(

(f(W (t) − f(W (t − Δt)))
W (t) − W (t − Δt)

Δt
θ(l)

)

= lim
Δt→+0

E0([f ′′(W (t − Δt))Δt

+(gradf(W (t − Δt)))(W (t) − W (t − Δt))]
W (t) − W (t − Δt)

Δt
θ(l))

= E0(gradf(W (t))θ(l))

=
∫

[0,l]×R
n

[(gradf(W (t)))θ(l)]ρW dλ

=
∫

[0,l]×R
n

[

f(W (t))
(

−gradρW

ρW

)

θ(l)
]

ρW dλ

+
∫

[0,l]×R
n

[

f(W (t))
[

−gradEW
t (θ(l))

θ(l)

]

θ(l)
]

ρW dλ

= E0

(

f(W (t))
(

−gradρW

ρW

)

θ(l)
)

−E0
(
f(W (t))

[
θ(l)−1gradEW

t (θ(l))
]
θ(l)

)

= E0

(

f(ζ(t))
(

W (t)
t

)

θ(l)
)

− E0
(
f(ζ(t))

[
θ(l)−1gradEW

t (θ(l))
]
θ(l)

)
,

where −gradρW

ρW = W (t)
t by Lemma 8.22.

Lemma 8.35 The following formulae hold:

D∗ξ(t) = Eξ
t (a(t)) +

ξ(t)
t

− Eξ
t (κ(t)), (8.36)

Dξ
∗w(t) =

ξ(t)
t

− Eξ
t (κ(t)), (8.37)

where κ(t) = θ(l)−1gradEW
t (θ(l)).

Proof. From the above formulae it follows that
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D∗ξ(t) = EW
t (θ(l))−1

{

EW
t (θ(t)a(t)) + EW

t

[(
W (t)

t

)

θ(l)
]

+EW
t

(
[θ(l)−1gradEW

t (θ(l))]θ(l)
)
}

and having applied (8.31), (8.34) and (8.35) we obtain (8.36). (8.37) is a
consequence of (8.35) and (8.36). ��

Lemma 8.36 Let g(t) and h(t) be L1-stochastic processes with continuous
sample paths in R

n defined for t ∈ [0, l) on the same probability space. Con-
sider the process Eh

t g(t). Suppose Dh(t) and D∗h(t) exist. Then:

(i) Dhg(t) exists if and only if DhEh
t g(t) exists and DhEh

t g(t) = Dhg(t);
(ii) Dh

∗g(t) exists if and only if Dh
∗Eh

t g(t) exists and Dh
∗Eh

t g(t) = Dh
∗g(t).

Proof. Fix an arbitrary smooth function f : R
n → R with compact support.

Using the equality

(Eh
t+Δtg(t + Δt))f(h(t + Δt)) − (Eh

t g(t))f(h(t))

= {(Eh
t+Δtg(t + Δt) − Eh

t g(t)}f(h(t))

+Eh
t+Δtg(t + Δt)){f(h(t + Δt)) − f(h(t))}

we obtain

EDh{(Eh
t g(t))f(h(t))}

= lim
Δt→+0

E

(

Eh
t

(
Eh

t+Δtg(t + Δt))f(h(t + Δt)) − (Eh
t g(t))f(h(t))

Δt

))

= E((DhEh
t g(t))f(h(t))) + E((Eh

t g(t))Dh
∗f(h(t))),

if the limit exists (cf. [188, 190]). Note that the existence of the second sum-
mand on the right-hand side follows from the conditions of the Lemma. Thus
the limit exists if and only if DhEh

t g(t) exists. On the other hand

E(Eh
t {(Eh

t+Δtg(t + Δt))f(h(t + Δt)) − (Eh
t g(t))f(h(t))})

= E(g(t + Δt)f(h(t + Δt)) − g(t)f(h(t)))

and by analogous arguments we obtain

EDh{(Eh
t g(t))f(h(t))} = E((Dhg(t))f(h(t))) + E(g(t)Dh

∗f(h(t)))

if and only if Dhg(t) exists. Clearly,

E((Eh
t g(t))Dh

∗f(h(t))) = E(g(t)Dh
∗f(h(t))),

hence
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E((DhEh
t g(t))f(h(t))) = E((Dhg(t))f(h(t))).

This proves (i). The proof of (ii) is analogous and is based on the equality

(Eh
t+Δtg(t + Δt))f(h(t + Δt)) − (Eh

t g(t))f(h(t))

= {(Eh
t+Δtg(t + Δt)) − Eh

t g(t)}f(h(t + Δt))

+Eh
t g(t)){f(h(t + Δt)) − f(h(t))}.

��

Lemma 8.37

(i) Dξ
(

ξ(t)
t

)
= Eξ

t

(
a(t)

t

)
− ξ(t)

t2 .

(ii) Dξ
∗

(
ξ(t)

t

)
= Eξ

t

(
a(t)

t − κ(t)
t

)
.

Lemma 8.37 is a corollary of Theorem 8.7 and Lemma 8.35. In particu-
lar, (ii) follows immediately from Theorem 8.7 and the construction of the
derivative.

Lemma 8.38 The following equalities hold:

DD∗ξ(t) = Dξa(t) + Eξ
t

(
a(t)
t

)

− ξ(t)
t2

, (8.38)

D∗Dξ(t) = Dξ
∗a(t), (8.39)

DξEξ
t (κ(t)) = 0. (8.40)

Proof. To prove (8.40) we apply Lemma 8.36 and formula (8.31) as follows:

DξEξ
t (κ(t))

= DξEξ
t

[
θ(l)−1gradEW

t (θ(l))
]

= Dξ
[
θ(l)−1gradEW

t (θ(l))
]

= lim
Δt→+0

Eξ
t

{
θ(l)−1grad

(
EW

t+Δt(θ(l)
)
− EW

t (θ(l)))
Δt

}

= EW
t (θ(l))−1 lim

Δt→+0
EW

t

({
θ(l)−1grad

(
EW

t+Δt(θ(l)
)
− EW

t (θ(l)))
Δt

}

θ(l)

)

= EW
t (θ(l))−1 lim

Δt→+0
EW

t

(
grad

(
EW

t+Δt(θ(l)
)
− EW

t (θ(l)))
Δt

)

= EW
t (θ(l))−1gradDW

(
EW

t θ(l)
)

= EW
t (θ(l))−1gradDW θ(l)

= 0.
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Formulae (8.38) and (8.39) follow from Lemmas 8.35–8.37, Theorem 8.7 and
formula (8.40). ��

8.4 First Order Differential Equations and Inclusions
with Mean Derivatives

Let a(t, x) and α(t, x) be Borel mappings from [0, T ]×R
n to R

n and to S̄+(n),
respectively. According to Definition 8.21 we call the system of the form

{
Dξ(t) = a(t, ξ(t)),

D2ξ(t) = α(t, ξ(t)), (8.41)

a first order differential equation with forward mean derivatives.
It is clear that the first equation of (8.41) determines the drift and the

second one determines the diffusion coefficient of the process.

Definition 8.39. We say that (8.41) has a weak solution on [0, T ] with initial
condition ξ(0) = x0 if there exists a probability space (Ω,F , P) and a process
ξ(t) given on (Ω,F , P) and taking values in R

n such that for almost all
t ∈ [0, T ] equation (8.41) is satisfied P-a.s. by ξ(t)

Later we shall need the following technical statement.

Lemma 8.40 Let α(t, x) be a jointly continuous (measurable, smooth) map-
ping from [0, T ]×R

n to S+(n). Then there exists a jointly continuous (mea-
surable, smooth, respectively) mapping A(t, x) from [0, T ]× R

n to L(Rn, Rn)
such that for all t ∈ R, x ∈ R

n the equality A(t, x)A∗(t, x) = α(t, x) holds.

Proof. Since the symmetric matrices α(t, x) from S+(n) are positive definite,
all diagonal minors of α(t, x) are positive (in particular, they are not equal
to zero). Then the Gauss decomposition is valid for α(t, x) (see [239, The-
orem II.9.3]): α = ζδz, where ζ is a lower-triangular matrix with units on
the diagonal, z is an upper-triangular matrix with units on the diagonal and
δ is a diagonal matrix. In addition, the elements of matrices ζ, δ and z are
rationally expressed via the elements of α, hence if the matrices α(t, x) are
continuous (measurable, smooth) jointly in t, x, the matrices ζ, δ and z are
also continuous (measurable, smooth, respectively) jointly in variables t, x.
From the fact that the elements of α are symmetric matrices one can easily
derive that z = ζ∗ (i.e., z equals the transpose of ζ). One can also easily see
that the elements of the diagonal matrix δ are positive. Thus the diagonal
matrix

√
δ is well-defined: its diagonal contains the square roots of the cor-

responding diagonal elements of δ. Consider the matrix A(t, x) = ζ
√

δ. By
construction A(t, x) is jointly continuous (measurable, smooth, respectively)
in t, x and A(t, x)A∗(t, x) = ζ(t, x)δ(t, x)z(t, x) = α(t, x). ��



210 8 Mean Derivatives in Linear Spaces

If α(t, x) takes values in S̄+(n) it is possible to construct continuous A(t, x)
under some stronger assumptions.

Lemma 8.41 If α(t, x) is a C2-smooth mapping from [0, T ]× R
n to S̄+(n),

there exists a mapping A(t, x) from [0, T ]×R
n to the space L(Rn, Rn) of n×n

matrices, jointly continuous in t, x, such that for all t ∈ R and x ∈ R
n the

equality A(t, x)A∗(t, x) = α(t, x) holds.

Lemma 8.41 is derived from [75, Theorem 1].
We can now prove several simple existence of solution theorems for (8.41).

Theorem 8.42 Let α(t, x) in the system (8.41) be jointly continuous in t, x
and positive definite (i.e., for all t ∈ [0, T ] and x ∈ R

n, α(t, x) belongs to
S+(n)). In addition, let the estimate

‖trα(t, x)‖ < K(1 + ‖x‖)2 (8.42)

hold for some K > 0. Let a(t, x) be Borel measurable and satisfy the estimate

‖a(t, x)‖ < K(1 + ‖x‖) (8.43)

for some K > 0. Then for every initial condition ξ(0) = x0 ∈ R
n equation

(8.41) has a weak solution that is well-defined on the entire interval [0, T ].

Proof. Since α(t, x) is continuous and positive-definite, by Lemma 8.40 there
exists a continuous A(t, x) such that A(t, x)A∗(t, x) = α(t, x). Directly from
the definition of trace we obtain in this case that trα(t, x) equals the sum of
the squares of the elements of the matrix A(t, x), i.e., it is the square of the
Euclidean norm in the space of n × n matrices. Since in a finite-dimensional
space S(n) of symmetric matrices all norms are equivalent, from condition
(8.42) it immediately follows that ‖A(t, x)‖ < K(1 + ‖x‖) for some K > 0.
Since α(t, x) is positive-definite, the matrix A(t, x) is invertible for all t, x.
Since a(t, x) is Borel measurable and satisfies (8.43), the pair a(t, x) and
A(t, x) satisfies [83, Theorem III.3.3] and so there exists a weak solution of
the stochastic differential equation

ξ(t) = ξ0 +
∫ t

0

a(s, ξ(s))ds +
∫ t

0

A(s, ξ(s))dw(s), (8.44)

that is well-defined on the entire interval [0, T ]. From Theorems 8.7 and 8.12
it follows that the solution ξ(t) of (8.44) P-a.s. satisfies (8.41). ��

Theorem 8.43 Let α(t, x) be C2-smooth, positive semi-definite (i.e., for all
t ∈ [0, T ] and x ∈ R

n, α(t, x) belongs to S̄+(n)) and satisfy (8.42). Let a(t, x)
be continuous and satisfy (8.43). Then for every initial condition ξ(0) = x0 ∈
R

n equation (8.41) has a weak solution well-defined on the entire interval
[0, T ].
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Proof. By Lemma 8.41 there exists a continuous mapping A(t, x) to L(Rn, Rn)
such that α(t, x) = A(t, x)A∗(t, x). As in the proof of Theorem 8.42, one can
obtain the estimate ‖A(t, x)‖ < K(1+‖x‖) for some K > 0. Since a(t, x) and
A(t, x) are continuous and (8.43) holds, equation (8.44) satisfies the condi-
tions of [83, Theorem III.2.4], i.e., it has a weak solution well-defined on the
entire interval [0, T ]. It is obvious that P-a.s. the solution satisfies (8.41). ��

Now we turn to differential inclusions with mean derivatives. We refer the
reader to Section 4.1 for the definitions and main results in the theory of
set-valued mappings that we use here.

Let a(t, x) and α(t, x) be set-valued mappings from [0, T ]×R
n to R

n and
to S̄+(n), respectively. The system

{
Dξ(t) ∈ a(t, ξ(t)),

D2ξ(t) ∈ α(t, ξ(t)). (8.45)

is called the first order differential inclusion with forward mean derivatives.

Definition 8.44. We say that (8.45) has a weak solution on [0, T ] with initial
condition ξ(0) = x0 if there exist a probability space (Ω,F , P) and a process
ξ(t) given on (Ω,F , P) and taking values in R

n such that P-a.s. and for almost
all t (8.45) is satisfied.

Analogous definitions are also valid for inclusions with backward deriva-
tives and with current velocities.

In this section we will mainly look for weak solutions in the class of diffu-
sion type processes.

In the simplest cases the problem of the existence of weak solutions for
(8.45) can be reduced to that for (8.41). We present some examples of such
statements.

Everywhere below for the set B in R
n or in L(Rn, Rn) we use the norm

defined by the formula ‖B‖ = sup
y∈B

‖y‖.

Theorem 8.45 Assume that α(t, x) takes values in positive definite matrices
S+(n), has closed convex values, is lower semicontinuous and for every α ∈
α(t, x) the estimate

‖trα(t, x)‖ < K(1 + ‖x‖)2

holds for a certain K > 0. Let a(t, x) be a Borel measurable set-valued map-
ping that satisfies the estimate

‖a(t, x)‖ < K(1 + ‖x‖) (8.46)

for some K > 0. Then for every initial condition ξ(0) = ξ0 there exists a
weak solution of (8.45) that is well-defined on the entire interval [0, T ].

Proof. Under the hypothesis, by Michael’s Theorem (Theorem 4.7) the set-
valued mapping α(t, x) has a continuous single-valued selector α(t, x). The
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Borel measurable set-valued mapping a(t, x) has a Borel measurable single-
valued selector a(t, x). Then the system

{
Dξ(t) = a(t, ξ(t)),

D2ξ(t) = α(t, ξ(t))

satisfies the conditions of Theorem 8.42 and so it has a weak solution that is
evidently a solution of (8.45). ��

Assume that α(t, x) and a(t, x) are lower semicontinuous, have closed con-
vex values in S̄+ and satisfy the estimates from the hypothesis of Theo-
rem 8.45. Suppose in addition that it is known that a continuous selector
α(t, x) of α(t, x) (that exists by Michael’s Theorem) is represented in the
form α(t, x) = A(t, x)A∗(t, x) with continuous A(t, x). Then one can easily
prove the existence of a weak solution of (8.45) by reducing the problem to
Theorem 8.43.

Theorem 8.46 Let a(t, x) be an upper semicontinuous set-valued mapping
with closed convex values from [0, T ]×R

n to R
n and let it satisfy the estimate

‖a(t, x)‖ < K(1 + ‖x‖) (8.47)

for some K > 0.
Let α(t, x) be an upper semicontinuous set-valued mapping with closed

convex values from [0, T ] × R
n to S̄+(n) such that for each α(t, x) ∈ α(t, x)

the estimate
‖tr α(t, x)‖ < K(1 + ‖x‖)2 (8.48)

holds for some K > 0.
Then for any initial condition ξ(0) = ξ0 ∈ R

n inclusion (8.45) has a weak
solution ξ(t), well-defined on the entire interval t ∈ [0, T ], that is a semi-
martingale.

Proof. For the norm in S(n) we take the restriction to S(n) of the Euclidean
norm (i.e., the square root of the sum of the squares of the elements of
a matrix) in the space L(Rn, Rn) isomorphic to R

n2
. Since all norms in the

finite-dimensional space S(n) are equivalent to each other, for this norm (8.48)
is also valid, perhaps with another constant, for which we keep the notation
K.

Since a(t, x) is an upper semicontinuous set-valued mapping with closed
convex values, for any ε > 0 it has an ε-approximation (see Section 4.1, in
particular Definition 4.10). We shall use the ε-approximations from Theo-
rem 4.11, i.e., for εi → 0 the εi-approximations point-wise converge to a
Borel measurable selector of the set-valued mapping.

Choose a positive sequence εi → 0. Denote by ai(t, x) the continuous εi-
approximations of a(t, x) in R

n from Theorem 4.11 and by a(t, x) the Borel
measurable selector of a(t, x) to which ai(t, x) converge point-wise. It is clear
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that all ai(t, x) and a(t, x) satisfy (8.47) for some constant that is bigger
than the constnant K from the condition of the Theorem. Nevertheless, for
simplicity, we shall retain the notation K for this constant.

Like a(t, x), α(t, x) has in S(n) an ε-approximation from Theorem 4.11
for any ε > 0 since α(t, x) is an upper semicontinuous set-valued mapping
with closed convex values. Note that S̄+(n) is a convex set in S(n) and so
by Theorem 4.11 those approximations also take values in S̄+(n). For the se-
quence (εi) (see above) denote by ᾱi(t, x) an εi

2 -approximation of α(t, x). Let
αi(t, x) = ᾱi(t, x)+ εi

4 I where I is the unit matrix. Immediately from the con-
struction it follows that αi(t, x), for any i, is a continuous εi-approximation
of α(t, x) and that at any (t, x) it belongs to S+(n), i.e., it is strictly positive
definite. In addition, αi(t, x) satisfies (8.48) where the constant K > 0 is
bigger than the constant from the hypothesis of the Theorem. Also, by con-
struction, the sequence αi(t, x) point-wise converges to a Borel measurable
selector α(t, x) of α(t, x).

By Lemma 8.40 for any i there exists a continuous Ai(t, x) such that
Ai(t, x)A∗

i (t, x) = αi(t, x). Directly from the definition of trace we obtain
that tr αi(t, x) is equal to the sum of the squares of the elements of Ai(t, x),
i.e., it is the square of the Euclidean norm in L(Rn, Rn). Hence from (8.48)
it follows that ‖Ai(t, x)‖ < K(1 + ‖x‖) for some K > 0.

Thus the stochastic differential equation

ξ(t) = ξ0 +
∫ t

0

ai(s, ξ(s))ds +
∫ t

0

Ai(s, ξ(s))dw(s) (8.49)

satisfies the hypothesis of Theorem 6.26 and so it has a weak solution that is
well-defined on the entire interval [0, T ]. Denote this solution by ξi(t).

Below in this section we use the measure space (Ω̃, F̃) and the family
P̃t of σ-subalgebras of F̃ introduced in Section 6.1.1. On the measure space
([0, T ],B), where B is the Borel σ-algebra, we denote the Lebesgue measure
by λ1.

The process ξi(t) determines a measure μi on (Ω̃, F̃). On the probability
space (Ω̃, F̃ , μi) the process ξi(t) is the coordinate process, i.e., ξi(t, x(·)) =
x(t), x(·) ∈ Ω̃. In addition it is clear that Lemma 6.28 is valid for measures
μi and so the set of measures {μi} is weakly compact, i.e., it is possible to
select a subsequence weakly convergent to some measure μ. Denote by ξ(t)
the coordinate process on the probability space (Ω̃, F̃ , μ).

Define the measures νi on (Ω̃, F̃) by the relations dνi = (1 + ‖x(·)‖)dμi.
By Lemma 6.29 these measures weakly converge to the measure ν given by
the relation dν = (1 + ‖x(·)‖)dμ.

Since the sequence ai(t, x(·)) converges to a(t, x(·)) point-wise, it converges
almost surely with respect to all λ×μk and so the functions ai(t,x(·))

1+‖x(·)‖ converge

to a(t,x(·))
1+‖x(·)‖ almost surely with respect to all λ × νk.
Let δ > 0. By Egorov’s theorem (see, e.g., [235]) for every k there exists

a subset K̃k
δ ⊂ [0;T ] × Ω̃ such that (λ × νk)(K̃k

δ ) > 1 − δ and the sequence
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ai(t,x(·))
1+‖x(·)‖ converges to a(t,x(·))

1+‖x(·)‖ on K̃k
δ uniformly. Let K̃δ =

∞⋃

k=0

K̃k
δ . Then the

sequence ai(t,x(·))
1+‖x(·)‖ converges on K̃δ to a(t,x(·))

1+‖x(·)‖ uniformly and (λ× νk)(K̃δ) >

(λ × νk)([0;T ] × Ω̃) − δ for all k = 0, . . . ,∞ where ν∞ = ν.
Note that a(t, x(·)) is continuous on a set of full measure λ×ν on [0;T ]×Ω̃.

Indeed, consider a sequence δk → 0 and the corresponding sequence K̃δk

from Egorov’s theorem. From the above arguments we see that a(t, x(·)) is
a uniform limit of continuous functions on every K̃δk

. Thus this mapping is

continuous on every K̃δk
and so on each finite unit

n⋃

k=1

K̃δi . We have lim
n→∞

(λ×

ν)(
n⋃

k=1

K̃δk
) = (λ× ν)([0;T ]× Ω̃). Thus a(t,x(·))

1+‖x(·)‖ is continuous on a set of full

measure λ × ν on [0;T ] × Ω̃.
Let gt(x(·)) be an arbitrary continuous bounded function on Ω̃ that is P̃t

measurable. In particular let |gt(x(·))| < Ξ for all x(·) from Ω̃.
From the above-mentioned uniform convergence of ai(t,x(·))

1+‖x(·)‖ to a(t,x(·))
1+‖x(·)‖ on

K̃δ for all k and from the boundedness of gt we obtain that for i large enough
∥
∥
∥
∥
∥

∫

K̃δ

(∫ t+Δt

t

(ai(τ, x(·)) − a(τ, x(·)))dτ

)

gt(x(·))dμk

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∫

K̃δ

(∫ t+Δt

t

ai(τ, x(·)) − a(τ, x(·))
1 + ‖x(·)‖ dτ

)

gt(x(·))dνk

∥
∥
∥
∥
∥

< δ

uniformly for all k. Since (λ × μk)(K̃δ) > 1 − δ for all k, ‖ai(t,x(·))
1+‖x(·)‖ ‖ < K

by (8.47) for all i = 0, 1, . . . ,∞ (where i = ∞ corresponds to a) and since
|gt(x(·))| < Ξ, we obtain

∥
∥
∥
∥
∥

∫

Ω̃\K̃δ

(∫ t+Δt

t

(ai(τ, x(·)) − a(τ, x(·)))dτ

)

gt(x(·))dμk

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

∫

Ω̃\K̃δ

(∫ t+Δt

t

ai(τ, x(·)) − a(τ, x(·))
1 + ‖x(·)‖ dτ

)

gt(x(·))dνk

∥
∥
∥
∥
∥

< 2QΞδ.

From the last two formulae it follows that for k large enough
∥
∥
∥
∥
∥

∫

Ω̃

(∫ t+Δt

t

(ak(τ, x(·)) − a(τ, x(·)))dτ

)

gt(x(·))dμk

∥
∥
∥
∥
∥

< δ(2QΞ + 1)

From the fact that δ is an arbitrary number it follows that
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lim
k→∞

∫

Ω̃

(∫ t+Δt

t

ak(τ, x(·))dτ −
∫ t+Δt

t

a(τ, x(·))dτ

)

gt(x(·))dμk = 0.

(8.50)
The function a(t,x(·))

1+‖x(·)‖ is continuous λ× ν-a.s. (see above) and bounded on

[0;T ]×Ω̃. Hence by a lemma from [82, Section VI.4] we derive from the weak
convergence of the measures νk to ν that

lim
k→∞

∫

Ω̃

(∫ t+Δt

t

a(τ, x(·))dτ

)

gt(x(·))dμk

= lim
k→∞

∫

Ω̃

(∫ t+Δt

t

a(τ, x(·))
1 + ‖x(·)‖dτ

)

gt(x(·))dνk

=
∫

Ω̃

(∫ t+Δt

t

a(τ, x(·))
1 + ‖x(·)‖dτ

)

gt(x(·))dν

=
∫

Ω̃

(∫ t+Δt

t

a(τ, x(·))dτ

)

gt(x(·))dμ. (8.51)

Using the same arguments as above, we obtain

lim
i→∞

∫

Ω̃

(x(t + Δt) − x(t))gt(x(·))dμi

= lim
i→∞

∫

Ω̃

x(t + Δt) − x(t)
1 + ‖x(·)‖ gt(x(·))dνi

=
∫

Ω̃

x(t + Δt) − x(t)
1 + ‖x(·)‖ gt(x(·))dν

=
∫

Ω̃

(x(t + Δt) − x(t))gt(x(·))dμ. (8.52)

Recall that
∫

Ω̃

(

x(t + Δt) − x(t) −
∫ t+Δt

t

ai(τ, x(·))dτ

)

gt(x(·))dμi

= E

[(

ξi(t + Δt) − ξi(t) −
∫ t+Δt

t

ak(τ, ξi(τ))dτ

)

gt(ξi(·))
]

= 0 (8.53)

since ξi(t) is a solution of (8.49) and gt(ξi(·)) is independent from ξi(t+Δt)−

ξi(t) −
t+Δt∫

t

ak(τ, ξi(τ))dτ .
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From (8.50), (8.51), (8.52) and (8.53) we obtain that

0 = lim
k→∞

∫

Ω̃

(

x(t + Δt) − x(t) −
∫ t+Δt

t

ak(τ, x(·))dτ

)

gt(x(·))dμk

= lim
k→∞

∫

Ω̃

(

x(t + Δt) − x(t) −
∫ t+Δt

t

a(τ, x(·))dτ

)

gt(x(·))dμk

=
∫

Ω̃

[

(x(t + Δt) − x(t)) −
∫ t+Δt

t

a(τ, x(·))dτ

]

gt(x(·))dμ.

Thus
∫

Ω̃

[

(x(t + Δt) − x(t)) −
∫ t+Δt

t

a(s, x(·))ds

]

gt(x(·))dμ = 0. (8.54)

Since (8.54) is valid for every gt, we have proved the following:

Lemma 8.47 The process ξ(t)−
∫ t

0
a(s, ξ(s))ds is a martingale with respect

to P̃t.

Define the measures ρi on (Ω̃, F̃) by the relations dρi = (1 + ‖x(·)‖2)dμi.
By Lemma 6.29 these measures weakly converge to the measure ρ defined by
the relation dρ = (1 + ‖x(·)‖2)dμ.

Using an elementary modification of the above arguments (in particular,
replacing the measures νk by ρk, ai by αi, 1 + ‖x‖ and 1 + ‖x‖2, etc.) one
can easily show that for every bounded continuous function gt : Ω → R that
is measurable with respect to P̃t, the relation

lim
i→∞

∫

Ω

[

(x(t + Δt) − x(t))(x(t + Δt) − x(t))∗

−
∫ t+Δt

t

αi(s, x(·))ds

]

gt(x(·))dμi

=
∫

Ω

[

(x(t + Δt) − x(t))(x(t + Δt) − x(t))∗

−
∫ t+Δt

t

α(s, x(·))ds

]

gt(x(·))dμ

holds. Besides, for every i
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∫

Ω

[
(x(t + Δt) − x(t))(x(t + Δt) − x(t))∗

−
∫ t+Δt

t

αi(s, x(·))ds
]
gt(x(·))dμi = 0

and so
∫

Ω

[
(x(t + Δt) − x(t))(x(t + Δt) − x(t))∗

−
∫ t+Δt

t

α(s, x(·))ds
]
gt(x(·))dμ = 0.

From this we obtain:

Lemma 8.48 For the coordinate process ξ(t) on the probability space
(Ω̃, F̃ , μ) the process ξ(t)ξ∗(t) −

∫ t

0
α(s, ξ(·))ds is a martingale with respect

to P̃t.

From Lemmas 8.5 and 8.47 it immediately follows that

Dξ

(

ξ(t) −
∫ t

0

a(τ, ξ(τ))dτ

)

= 0

and so Dξ(t) = a(t, ξ(t)) ∈ a(t, ξ(t)).
Note that from the Definition 8.10 of the quadratic derivative it follows

that Dξ(ξ(t)ξ∗(t)) = D2ξ(t). Then from Lemma 8.48 we obtain that D2ξ(t) =
α(t, ξ(t)) ∈ α(t, ξ(t)).

Thus ξ(t) satisfies (8.45). From Lemma 8.47 it follows that ξ(t) is a semi-
martingale. ��

Theorem 8.49 Suppose that α(t, x) takes values in the space S̄+(n) of
positive semi-definite symmetric matrices, has closed convex values, is lower
semicontinuous and for each α ∈ α(t, x) the following estimate

‖tr α(t, x)‖ < K(1 + ‖x‖)2 (8.55)

holds for some K > 0. Let also a(t, x) be a Borel measurable set-valued
mapping and satisfy the estimate

‖a(t, x)‖ < K(1 + ‖x‖) (8.56)

for some K > 0. Then for any initial condition ξ(0) = ξ0 there exists a weak
solution of (8.45) that is well-defined on the entire interval t ∈ [0, T ].

Proof. From Michael’s theorem it follows that under the conditions of Theo-
rem 8.49 the set-valued mapping α(t, x) has a single-valued continuous selec-
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tor α(t, x). Obviously α(t, x) belongs to S̄+(n) for all t, x. The Borel measur-
able set-valued mapping a(t, x) has a Borel measurable single-valued selector
a(t, x).

Let εi → 0 be a positive sequence. Define αi(t, x) = α(t, x) + εiI where
I is the unit n × n matrix. Clearly the αi are strictly positive definite and
continuous. Then by Lemma 8.40 there exists a continuous Ai(t, x) such that
Ai(t, x)A∗

i (t, x) = αi(t, x). Recall that trαi(t, x) is equal to the sum of the
squares of the elements of Ai(t, x), i.e., it is the square of the Euclidean norm
in L(Rn, Rn). Since in the finite-dimensional linear space S(n) all norms are
equivalent, from (8.55) it immediately follows that ‖A(t, x)‖ < K(1+‖x‖) for
some K > 0. As αi(t, x) is positive definite, the matrix Ai(t, x) is invertible
for all t, x. Since a(t, x) is measurable and satisfies (8.55), under the above-
mentioned properties of Ai(t, x) by [83, Theorem III.3.3] there exists a weak
solution of the stochastic differential equation

ξi(t) = ξ0 +
∫ t

0

a(s, ξi(s))ds +
∫ t

0

Ai(s, ξi(s))dw(s), (8.57)

well-defined on the entire interval t ∈ [0, T ]. Denote this solution by ξi(t).
ξi(t) determines a measure μi on (Ω̃, F̃) where (Ω̃, F̃) was introduced in the
proof of Theorem 8.46.

The rest of the proof is analogous to that of Theorem 7.51. All equa-
tions (8.57) satisfy the hypothesis of Lemma 6.27. The set of measures
{μi} is weakly compact so that there exists a subsequence that weakly con-
verges to some measure μ. Denote by ξ(t) the coordinate process on the
probability space (Ω̃, F̃ , μ). Construct A(t, x(·)) by analogy with Theorem
7.51, i.e., as a weak limit in the corresponding L2 space of the bounded
(and so weakly compact) set Ai. The process ξ(t) satisfies the equality
ξ(t) = ξ0 +

∫ t

0
a(s, ξ(s))ds +

∫ t

0
A(s, ξ(·))dw where w(t) is some Wiener pro-

cess. Since by construction αi converges to α uniformly, one can easily show
that Eξ

t (AA∗) = α. By Theorem 8.7 and Theorem 8.12, this means that ξ(t)
is the weak solution of (8.45) that we are looking for. ��

Equations and inclusions with backward mean derivatives arise in the de-
scription of some special stochastic processes of mathematical physics. For
example (see, e.g., [113, 106, 115]) a second order equation in backward mean
derivatives of the group of Sobolev diffeomorphisms may be derived that de-
scribes a process whose expectation is a flow of a viscous incompressible fluid.
It should be pointed out that the study of such equations and inclusions is
generally much more complicated than that of equations and inclusions with
forward mean derivatives. Nevertheless there exists a simple method which
uses the inverse time direction to solve equations and inclusions with forward
mean derivatives, allowing one to obtain results for the case of backward
mean derivatives. We refer the reader to [7] for some statements of this sort.

As mentioned in Section 8.1, the notion of current velocity is analogous to
that of ordinary velocity for a non-random process. Thus, from the physical
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point of view, it is most natural to study equations and inclusions with current
velocities.

The system {
DSξ(t) = v(t, ξ(t))
D2ξ(t) = α(t, ξ(t)) (8.58)

is called the first order differential equation with current velocities.

Theorem 8.50 Let v : [0, T ] × R
n → R

n be smooth and α : R
n → S+(n) be

smooth and autonomous (so it determines the Riemannian metric α(·, ·) on
R

n, introduced in Section 8.1). Suppose in addition that v and α satisfy the
estimates

‖v(t, x)‖ < K(1 + ‖x‖), (8.59)
tr α(x) < K(1 + ‖x‖2) (8.60)

for some K > 0. Let ξ0 be a random element with values in R
n whose prob-

ability density ρ0 with respect to the volume form Λα of α(·, ·) on R
n (see

Section 8.1) is smooth and nowhere equal to zero. Then for the initial condi-
tion ξ(0) = ξ0 equation (8.58) has a weak solution that is well-defined on the
entire interval t ∈ [0, T ].

Proof. Since v(t, x) is smooth and the estimate (8.59) is fulfilled, its flow gt

is well-defined on the entire interval t ∈ [0, T ]. By gt(x) we denote the orbit
of the flow (i.e., the solution of the equation x′(t) = v(t, x)) with the initial
condition g0(x) = x. Since v(t, x) is smooth, its flow is also smooth.

The continuity equation (8.21) can clearly be transformed into the form

∂ρ

∂t
= −α(v, Grad ρ) − ρ Div v. (8.61)

Suppose that ρ(t, x) is nowhere zero in [0, T ]×R
n. Then we can divide (8.61)

by ρ so that it is transformed into the equation

∂p

∂t
= −α(v, Grad p) − Div v (8.62)

where p = log ρ. Let p0 = log ρ0.
We show that the solution of (8.62) with initial condition p(0) = p0 is

described by the formula p(t, x) = p0(g−t(x)) −
∫ t

0
(Div v)(s, gs(g−t(x))ds.

Consider the function p0 as given on the level surface (0, Rn) of the product
[0, T ]×R

n. Consider the vector field (1, v(t, x)) on [0, T ]×R
n. The orbits of

its flow ĝt, starting at the points of (0, Rn), have the form ĝt(0, x) = (t, gt(x))
and, like gt, the flow ĝt is smooth. Introduce on [0, T ] × R

n the Riemannian
metric α̂(·, ·) by the formula α̂((X1, Y1), (X2, Y2)) = X1X2+α(Y1, Y2). Notice
that for any (t, x) the point ĝ−t(t, x) belongs to (0, Rn) where the function
p0 is given. Thus on the one hand (1, v)p(t, x), the derivative of p(t, x) in the
direction of (1, v), by construction equals −Div v(t, x), and on the other hand
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one can easily calculate that (1, v)p(t, x) = ∂
∂tp(t, x)+α(v(t, x),Grad p(t, x)).

Thus (8.62) is satisfied.
Note that ρ = ep is indeed nowhere zero, i.e., our arguments are well-

defined.
Since ρ(t, x) is well-defined for all t ∈ [0, T ], it determines a process ξ(t)

with this probability density and so with initial density ρ0. By construction
DSξ(t) = v(t, ξ(t)).

Let u = 1
2Grad p = Grad log

√
ρ and a(t, x) = v(t, x) + u(t, x).

From Lemma 8.40 and from the hypothesis of the Theorem it follows that
there exists a smooth A(x) such that A(x)A∗(x) = α(x) and the relation
‖A(x)‖ < K(1 + ‖x‖) holds. Then ξ(t) satisfies the stochastic differential
equation

ξ(t) = ξ0 +
∫ t

0

a(s, ξ(s))ds +
∫ t

0

A(ξ(s))dw(s) (8.63)

and so by Theorem 8.12 D2ξ(t) = α(ξ(t)). ��

Lemma 8.51 Let α(x), ρ(t, x) and Λα be as in Theorem 8.50 and let the
vector field v from Theorem 8.50 be autonomous. Then the flow ĝt of the
vector field (1, v(x)) on [0, T ] × R

n preserves the volume form ρ(t, x)dt ∧ Λα

(i.e., ĝ∗t (ρ(t, x)dt ∧ Λα) = ρ0(x)dt ∧ Λα where ĝ∗t is the pull-back) and so for
any measurable set Q ⊂ R

n and for any t ∈ [0, T ] the relation
∫

Q
ρ0(x)Λα =

∫
gt(Q)

ρ(t, x)Λα holds.

Proof. It is enough to show that L(1,v)(ρ(t, x)dt∧Λα) = 0 where L(1,v) is the
Lie derivative along (1, v). Clearly L(1,v)(ρ(t, x)dt ∧Λα) = (L(1,v)ρ(t, x))dt∧
Λα + ρ(t, x)(L(1,v)dt ∧ Λα). For a function the Lie derivative coincides with
the derivative in the direction of the vector field, hence L(1,v)ρ(t, x) = ∂ρ

∂t +
α(v, Grad ρ) (see the proof of Theorem 8.50) and so (L(1,v)ρ(t, x))dt ∧ Λα =
(∂ρ

∂t + α(v, Grad ρ))dt ∧ Λα. Since neither the form Λα nor the vector field
v(x) depend on t, L(1,v)dt ∧ Λα = dt ∧ (LvΛα) = Div v (dt ∧ Λα) as the Lie
derivative along v of the volume form Λα equals (Div v)Λα (see Section 1.7).
Taking into account (8.61), we obtain L(1,v)(ρ(t, x)dt ∧ Λα) = 0. ��

We refer the reader to [7] where differential inclusions with current veloc-
ities are considered and a certain existence of solution result is obtained.

8.5 The Case of P-mean Derivatives

In what follows, for the sake of simplicity of presentation, we deal with pro-
cesses given on a finite time interval t ∈ [0, T ] ⊂ R.

As in the previous section, we use the measure space (Ω̃, F̃) and the family
P̃t introduced in Section 6.1.1.

Let a : [0, T ] × Ω̃ → R
n and α : [0, T ] × Ω̃ → S̄+(n) be measurable.
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Definition 8.52. An equation with P-mean derivatives is a system of the
form {

DPξ(t) = a(t, ξ(·)),
DP

2 ξ(t) = α(t, ξ(·)). (8.64)

Definition 8.53. We say that the equation (8.64) has a weak solution ξ(t) if
there exists a probability space (Ω,F , P) and a stochastic process ξ(t), given
on (Ω, F̃ ,P) and taking values in R

n, such that equation (8.64) is fulfilled
P-a.s.

For simplicity we deal with deterministic initial conditions only.

Lemma 8.54 For a continuous (measurable, Ck-smooth, k ≥ 1) mapping
α : [0, T ] × Ω̃ → S+(n) satisfying Condition 4.12, there exists a continuous
(measurable, Ck-smooth, respectively) mapping A : [0, T ] × Ω̃ → L(Rn, Rn)
that satisfies Condition 4.12 and such that α(t, x(·)) = A(t, x(·))A∗(t, x(·))
for each (t, x(·)) ∈ R × Ω̃.

The proof of Lemma 8.54 is a simple modification of that for Lemma 8.40.
The fact that ζ(t, x(·)),

√
δ(t, x(·)), and hence A(t, x(·)), satisfies Condition

4.12 follows from the construction.

Theorem 8.55 Let a : [0, T ] × Ω̃ → R
n and α : [0, T ] × Ω̃ → S+(n) be

jointly continuous in t, x(·) and satisfy Condition 4.12. Let also the following
estimates hold:

tr α(t, x(·)) < K1(1 + ‖x(·)‖)2, (8.65)
‖a(t, x(·))‖ < K2(1 + ‖x(·)‖). (8.66)

Then for every initial condition ξ0 ∈ R
n equation (8.64) has a weak solution

that is well-defined on the entire interval [0, T ].

Proof. Note that α(t, x(·)) satisfies the hypothesis of Lemma 8.54 and so there
exists a continuous A(t, x(·)) such that A(t, x(·))A∗(t, x(·)) = α(t, x(·)) and
A(t, x(·)) satisfies Condition 4.12. Immediately from the definition of trace in
this case it follows that tr α(t, x(·)) equals the sum of the squares of all the
elements of the matrix A(t, x(·)), i.e., it is the square of the Euclidean norm
in L(Rn, Rn). Since in the finite dimensional vector space all norms are equiv-
alent, from estimate (8.65) it follows that ‖A(t, x(·))‖ < K3(1 + ‖x(·)‖) for
some K3 > 0. Recall that a(t, x(·)) is continuous and satisfies Condition 4.12
and the estimate (8.66). Under all these conditions, by [83, Theorem III.2.4]
there exists a weak solution ξ(t) of the diffusion type stochastic differential
equation

ξ(t) = ξ0 +
∫ t

0

a(s, ξ(·))ds +
∫ t

0

A(s, ξ(·))dw(s),

that is a diffusion type process, well-defined on the entire interval [0, T ]. From
Theorems 8.8 and 8.13 it follows that ξ(t) a.s. satisfies (8.64). ��
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A more general existence result where α(t, x(·)) may take values in S̄+(n)
is obtained in Theorem 8.59 below.

Consider set-valued mappings a(t, x) and α(t, x) sending [0, T ] × Ω̃ to
R

n and S+(n), respectively, and satisfying Condition 4.12. The differential
inclusion with forward P-mean derivatives is a system of the form

{
DPξ(t) ∈ a(t, ξ(·)),
DP

2 ξ(t) ∈ α(t, ξ(·)). (8.67)

Definition 8.56. We say that the inclusion (8.67) has a weak solution with
initial condition ξ0 ∈ R

n if there exists a probability space and a stochastic
process ξ(t) given on it, taking values in R

n, such that ξ(0) = ξ0 and a.s. ξ(t)
satisfies inclusion (8.67).

As in the case of equations with P-mean derivatives, we deal with deter-
ministic initial conditions only.

If, say, a(t, x) and α(t, x) are lower semi-continuous and have closed convex
values, then by Michael’s theorem they have continuous selectors a(t, x(·))
and α(t, x(·)), respectively. If those selectors satisfy the conditions of Theorem
8.55, the weak solution of (8.64) with coefficients a(t, x(·)) and α(t, x(·)), that
exists by Theorem 8.55, is obviously a weak solution of (8.67).

Theorem 8.57 Let α(t, x) be an upper semi-continuous set-valued mapping
from [0, T ] × Ω̃ to S+(n) with closed convex values that satisfies Condition
4.12 and let for every α(t, x(·)) ∈ α(t, x(·)) the estimate

tr α(t, x(·)) < K1(1 + ‖x(·)‖)2 (8.68)

hold for some K1 > 0.
Let a(t, x(·)) be an upper semi-continuous set-valued mapping from [0, T ]×

Ω̃ to R
n with closed convex values that satisfies Condition 4.12 and let the

estimate
‖a(t, x(·))‖ < K2(1 + ‖x(·)‖) (8.69)

hold for some K2 > 0.
Then for any initial condition ξ(0) = ξ0 ∈ R

n inclusion (8.67) has a weak
solution.

Proof. Choose a sequence of positive numbers εk → 0. The set-valued map-
ping a(t, x(·)) satisfies the conditions of Lemma 4.14 and so there exists a
sequence of continuous single-valued mappings ak : [0, T ] × Ω̃ → R

n that
point-wise converges to a measurable selector a(t, x(·)) of a(t, x(·)) and every
ak(t, x(·)) satisfies both Condition 4.12 and the estimate

‖ak(t, x(·))‖ < K2(1 + ‖x(·)‖). (8.70)

The mapping α(t, x(·)) that takes values in the closed convex set S̄+(n)
in the space of all symmetric n × n matrices also satisfies the conditions
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of Lemma 4.14 and so there exists a sequence of continuous single-valued
mappings α̃k : [0, T ]× Ω̃ → S̄+(n) that point-wise converges to a measurable
selector α(t, x(·)) of α(t, x(·)) and every α̃k(t, x(·)) satisfies both Condition
4.12 and the estimate

tr α̃k(t, x(·)) < K1(1 + ‖x(·)‖)2. (8.71)

Define another sequence αk(t, x(·)) = α̃k(t, x(·)) + εkI where I is the unit
matrix, which evidently also point-wise converges to α(t, x(·)). All mappings
αk(t, x(·)) are continuous, satisfy Condition 4.12 and estimate (8.71) – at
least for k large enough – and in addition they all take values in the convex
open set S+(n) of positive definite symmetric matrices. Thus by Lemma 8.54
for every αk(t, x(·)) there exist continuous Ak : [0, T ]× Ω̃ :→ L(Rn, Rn) such
that αk(t, x(·)) = Ak(t, x(·))A∗

k(t, x(·)) and all Ak(t, x(·)) satisfy Condition
4.12.

As in Theorem 8.42, immediately from the definition of trace in this case it
follows that tr αk(t, x(·)) equals the sum of the squares of all elements of the
matrix Ak(t, x(·)), i.e., it is the square of the Euclidean norm of Ak(t, x(·))
in L(Rn, Rn). Hence, (8.71) means that ‖Ak(t, x(·))‖ < K1(1 + ‖x(·)‖) and
so from the latter estimate and (8.70) it follows that for each k the pair
(ak(t, x(·)), Ak(t, x(·))) satisfies the Itô condition (6.22) with K > 0 the
same for all k.

Consider the sequence of diffusion type Itô stochastic differential equations

ξk(t) = ξ0 +
∫ t

0

ak(s, ξk(·))ds +
∫ t

0

Ak(s, ξk(·))dw(s). (8.72)

Since their coefficients are continuous and satisfy Condition 4.12 and esti-
mate (6.22) with the same K, by Theorem 6.26 they all have weak solutions
ξk(t), well-defined on the entire interval [0, T ], and by Lemma 6.28 the set
of measures μk generated by ξk(t) on (Ω̃, F̃) is weakly compact. Hence we
can choose a subsequence (we retain the notation μk for this subsequence)
that weakly converges to a probability measure μ. Denote by ξ(t) the coor-
dinate process on the probability space (Ω̃, F̃ , μ). Note that Pt is the “past”
σ-algebra of ξ(t).

The fact that ξ(t)−
∫ t

0
a(s, ξ(·))ds is a martingale on (Ω̃, F̃ , μ) with respect

to P̃t and hence

E

(

[ξ(t + Δt) − ξ(t)] −
∫ t+Δt

t

a(s, ξ(·))ds
∣
∣
∣ P̃t

)
= 0 (8.73)

is proved by analogy with Lemma 8.47. From (8.73) it follows that

DPξ(t) = a(t, ξ(·)) ⊂ a(t, ξ(·)). (8.74)

Now turn to Ak(t, x(·)). Recall that αk(t, x(·)) = Ak(t, x(·))A∗
k(t, x(·))

point-wise converges to α(t, x(·)), a measurable selector of α(t, x(·)).
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The fact that the process [ ξ(t)⊗ ξ(t) ]−
∫ t

0
α(s, ξ(·))ds is a martingale on

(Ω̃, F̃ , μ) with respect to P̃t and hence

E

(

[(ξ(t + Δt) − ξ(t)) ⊗ (ξ(t + Δt) − ξ(t))] −
∫ t+Δt

t

α(s, ξ(·)))ds
∣
∣
∣ P̃t

)

= 0,

from which it follows that

DP
2 ξ(t) = α(t, ξ(·)) ⊂ α(t, ξ(·)), (8.75)

is proved by analogy with Lemma 8.48.
Relations (8.74) and (8.75) imply that ξ(t) is the solution of (8.67) that

we are looking for. ��

Remark 8.58. From (8.73) it follows that the solution ξ(t) of (8.67) ob-
tained in Theorem 8.57 is a semi-martingale with respect to P̃t since ξ(t) −
∫ t

0
a(s, ξ(·))ds is a martingale with respect to P̃t.

Theorem 8.59 Let a(t, x(·)) and α(t, x(·)) be as in Theorem 8.55 with the
exception that α sends [0, T ] × Ω̃ to S̄+(n) instead of S+(n). Then for every
initial condition ξ0 ∈ R

n equation (8.64) has a weak solution that is well-
defined on the entire interval [0, T ].

Indeed, we can construct a sequence of continuous single-valued mappings
αk = α + εkI : [0, T ] × Ω̃ → S+(n) satisfying Condition 4.12 that converge
to α. The proof of Theorem 8.59 then follows the same argument as that of
Theorem 8.57.



Chapter 9

Mean Derivatives on Manifolds

9.1 Forward and Backward Mean Derivatives

Let a connection H be given on a manifold M . Let ξ(t) be a stochastic process
on M . According to formulae (8.1) and (8.2) we can introduce mean forward
and mean backward derivatives of ξ(t), if they exist, in any chart. However,
from formula (7.19) it follows that for solutions of (7.18) we would obtain
the mean derivatives depending on the local connector of the connection H in
the chart and even on A, while for physical reasons the derivatives should be
vectors. This is why we modify the definition of mean derivatives as follows.

Consider the Borel fields Y 0(t, ·)α and Y 0
∗ (t, ·)α on a chart Uα such that

the forward (backward, respectively) mean derivative of ξ(t) at t, calculated
in Uα, is presented in the form Y 0(t, ξ(t))α (Y 0

∗ (t, ξ(t))α, respectively); see
Section 8.1. Of course Y 0(t, ·)α and Y 0

∗ (t, ·)α do not transform as vectors
under changes of coordinates. Now construct the vector field Y 0(t, ·) (and
Y 0
∗ (t, ·)) on M whose vector at any m ∈ M coincides with Y 0(t,m)n (with

Y 0
∗ (t,m)n, respectively), where Y 0(t,m)n (Y 0

∗ (t,m)n, respectively) is calcu-
lated in the normal chart Un(m) of H at m. Clearly the fields Y 0 and Y 0

∗ are
Borel measurable cross-sections of the tangent bundle TM .

Definition 9.1. DHξ(t) = Y 0(t, ξ(t)) and DH
∗ ξ(t) = Y 0

∗ (t, ξ(t)) are called
the forward and backward , respectively, mean derivatives of ξ(·) at t on M
with respect to H; DSξ(t) = vξ(t, ξ(t)) and DAξ(t) = uξ(t, ξ(t)) are called
the current and osmotic velocities, respectively, of ξ(·) where vξ(t,m) =
1
2 (Y 0(t,m) + Y 0

∗ (t,m)) and uξ(t,m) = 1
2 (Y 0(t,m) − Y 0

∗ (t,m)).

The current and osmotic velocities do not depend on the connection (see
Theorem 9.12 below) and so we do not indicate the connection in the notation.
If H is specified, we shall not indicate it in the notation of mean forward and
backward derivatives either.

In the same manner as in Definition 9.1 we modify the definitions of Dyx(t)
and Dy

∗x(t) (see (8.7) and (8.8)).
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Remark 9.2. Let f : M → M1 be a smooth mapping of manifolds. Since
the value of a mean derivative depends on the “now” σ-algebra of the pro-
cess, the tangent mapping Tf sends mean derivatives of a process η(t)
to mean derivatives of the process ξ(t) = f(η(t)) only in the following
form: Tf(Dη(t)) = Dη(ξ(t)) or Tf(Dξη(t)) = Dξ(t) but generally speaking
Tf(Dη(t)) �= Dξ(t). An analogous fact in true for backward mean deriva-
tives: Tf(D∗η(t)) = Dη

∗(ξ(t)) or Tf(Dξ
∗η(t)) = D∗ξ(t) but generally speaking

Tf(D∗η(t)) �= D∗ξ(t).

Lemma 9.3 Let ξ(t) be a solution of equation (7.18). Then Y 0(t,m) =
a(t,m) and so Dξ(t) = a(t, ξ(t)).

Proof. Let m ∈ M and consider a normal chart Un(m) of H at m. In this
chart the local connector of H at m is equal to zero, i.e., ξ(t) is described by
equation (7.19) with Γ m(A, A) = 0. Applying Lemma 8.26(i) and Definition
9.1 we then obtain Dξ(t)m = a(t,m). Since here both sides of the equation
are vectors, the equality remains true in all charts. Using these arguments
for all m we obtain the formula Dξ(t) = a(t, ξ(t)). ��

Recall that an invariant equation, independent of a choice of connection on
M , is an Itô equation (â, A), a cross-section of an Itô bundle (see Section 7.2).
If a connection is specified on M , we can pass to the canonically corresponding
Itô vector field (a, A) and obtain the Itô equation in Belopolskaya-Daletskii
form (7.18) whose solutions are solutions of (â, A) and vice versa. We also
use a connection for determining the forward mean derivatives on M .

Lemma 9.4 For a solution ξ(t) of the Itô equation (â, A) its forward mean
derivative Dξ(t) with respect to a connection H satisfies the equality

DHξ(t) = â(t, ξ(t)) +
1
2
trΓ ξ(t)(A(t, ξ(t)), A(t, ξ(t)) = H(A)

where A is the generator of the flow of equation (â, A), H : τM → TM is
the mapping generated by the connection H by formula (2.45) and Γ is the
local connector of H.

Proof. By formula (7.17), â(t,m) = a(t,m) − 1
2 trΓ ξ(t)(A(t, ξ(t)), A(t, ξ(t)).

Thus the equality DHξ(t) = â(t, ξ(t)) + 1
2 trΓ ξ(t)(A(t, ξ(t)), A(t, ξ(t)) follows

from Lemma 9.3. The fact that

a(t,m) = â(t, ξ(t)) +
1
2
trΓ ξ(t)(A(t, ξ(t)), A(t, ξ(t)) = H(A)

follows from Lemma 7.26. ��

From Lemmas 9.3 and 9.4 it follows that if we apply the same connection
both for the transition from (â, A) to (a, A) (and hence to equation (7.18))
and for determining the mean derivative, we obtain for a solution ξ(t) that
Dξ(t) = a(t, ξ(t)). Moreover, if we change the connection, the Itô vector field
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(a, A) canonically corresponding to (â, A) and the forward mean derivative
Dξ(t) will be changed but the equality Dξ(t) = a(t, ξ(t)) for those new values
will remain true.

For the sake of simplicity, if ξ(t) is a solution of (7.18) we rename the
vector Y 0

∗ (t,m) as a∗(t,m), thus D∗ξ(t) = a∗(t, ξ(t)).
Let H be a connection on M . Let (a, A) be an Itô vector field on M .

Denote by ∇A the covariant derivative of the field A(t,m) with respect to the
connection H. ∇A is a field of bilinear operators ∇A(t,m)(·, ·) : TmM×R

n →
TmM . Consider the field ∇A(t,m)(A·, ·) : R

n × R
n → TmM and the related

vector field
tr∇A(A)(t,m) = tr∇A(t,m)(A(t,m)(·), ·) (9.1)

(see the description of the trace in formula (7.9)). Determine on M the fol-
lowing equation

dξ(t) = expξ(t)(a(t, ξ(t))dt + tr∇A(A)(t, ξ(t))dt

−A(t, ξ(t))Dξ
∗w(t)dt + A(t, ξ(t))dw(t)), (9.2)

where (a(t,m)dt + tr∇A(A)(t,m)dt − A(t,m)Dξ
∗w(t)dt + A(t,m)dw(t)) de-

notes the class of stochastic processes in TmM consisting of the solutions of
all the equations of the form

X(t + r) =
∫ t+r

t

ã(s,X(s))ds +
∫ t+r

t

tr Ã′(Ã(s,X(s))ds

−
∫ t+r

t

Ã(s,X(s))DX
∗ (s)ds +

∫ t+r

t

Ã(s,X(s))dw(s), (9.3)

here r > 0, a(s,X) and A(s,X)) are analogous to those in Definition 7.27 with
the additional assumption that A(s,X) is smooth, and A′ : TmM × R

n →
TmM is the ordinary derivative of A in the vector space TmM .

Let us represent (9.2) in local coordinates in the same manner as (7.18) was
represented in the form (7.19). Note the formula (exp ′

mÃ)′ = exp ′′
m(·, Ã(·))+

exp ′
mÃ′(·, ·), (where the primes denote derivatives) and the equalities

exp ′
m(0) = I and exp ′′

m(0)(·, ·) = −Γ m(·, ·) that follow from formula (7.20).
Thus expm sends the vector tr Ã′(Ã(t, 0)), tangent to TmM , to the vector
exp ′

m tr Ã(Ã(t, 0)(·), ·) = trA′(t,m)(A(·), ·)+tr Γ m(A, A) = tr∇A(A)(t,m),
tangent to M (this clarifies the notation in (9.2)) and Ã(t, 0)DX

∗ w(t) turns
into A(t,m)Dξ

∗w(t). Summarizing the above formulae we obtain the presen-
tation for (9.2) in the local coordinates of a chart Uα as follows:

dξ(t) = a(t, ξ(t))dt + tr∇A(A)(t, ξ(t))dt (9.4)

−A(t, ξ(t))Dξ
∗w(t)dt − 1

2
tr Γ ξ(t)(A, A)dt + A(t, ξ(t))dw(t).

Direct verification shows that (9.4) transforms correctly (covariantly) under
changes of coordinates. This means that equation (9.2) is well-defined.
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Theorem 9.5 Let ξ(t), ξ(0) = m0, be a strong solution of (9.4). Then
D∗ξ(t) = a(t, ξ(t)) for t ∈ (0, l].

Proof. For the sake of simplicity consider ξ(t) in the normal chart of the
initial point m0. Let ξ(t) = expm0

X(t) where

X(t) =
∫ t

0

ã(s,X(s))ds +
∫ t

0

tr Ã(Ã(s,X(s)))ds

−
∫ t

0

Ã(s,X(s)))DX
∗ w(s)ds +

∫ t

0

Ã(s,X(s))dw(s)

is a process in Tm0M which exists by construction. Since D∗ξ(t) is a vector,
it suffices to show that D∗X(t) = ã(t,X(t)). The latter is a consequence
of (8.29). ��
Definition 9.6. The backward stochastic differential

a(t,m)∗d∗t + A(t,m)d∗w
ξ
∗(t)

of a process ξ(t) determined by the Itô vector field (a∗, A) is a class of stochas-
tic processes in the tangent space TmM consisting of solutions of the (back-
ward) stochastic equations

X(t − r) =
∫ t

t−r

ã(s,X(s))ds +
∫ t

t−r

Ã(s,X(s))d∗w
X
∗ (s), (9.5)

where r > 0, ã(t,m) and Ã(t,m) are analogous to the corresponding terms
in Definition 7.27, with the additional assumption that Ã(t,m) is smooth.

Definition 9.7. An Itô equation in backward differentials on M is an expres-
sion of the form

d∗ξ(t) = expξ(t)(a∗(t, ξ(t))d∗t + A(t, ξ(t))d∗w
ξ
∗(t)). (9.6)

This means that for each t in the domain of ξ(t) the process ξ(t − r),
r > 0, a.s. coincides with a process from the class expξ(t)(a∗(t, ξ(t))d∗t +
A(t, ξ(t))d∗w

ξ
∗(t)) until ξ(t − r) leaves some neighborhood of ξ(t).

From formula (8.29) it follows that (9.5) is equivalent to the following
equation in TmM of type (9.3)

X(t − r) =
∫ t

t−r

ã(s,X(s))ds +
∫ t

t−r

tr Ã′(Ã(s,X(s))ds (9.7)

−
∫ t

t−r

Ã(s,X(s)) ◦ DX
∗ w(s)ds +

∫ t

t−r

Ã(s,X(s))dw(s).

Let us describe (9.6) in the local coordinates of a chart Uα. To do
this consider (9.7) and then make a transition to the corresponding ex-
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pression of type (9.4) in local coordinates. Then replace tr∇A(A)(t,m) by
tr A′(t,m)(A(·), ·) + trΓ m(A, A) (see the derivation of equation (9.4)) and

∫ t

t−r

tr A′(s,m)(A(·), ·)ds −
∫ t

t−r

A(s,m) ◦ DX
∗ w(s)ds +

∫ t

t−r

A(s,m)dw(s)

by
t∫

t−r

A(s,m)d∗w
X
∗ (s) (cf. formula (8.29)). So we obtain the formula

d∗ξ(t) = a∗(t, ξ(t))d∗t +
1
2
tr Γ ξ(t)(A, A)d∗t + A(t, ξ(t))d∗w

ξ
∗(t) (9.8)

which is the description of (9.6) in local coordinates that we have been search-
ing for.

It should be pointed out that equation (9.6) plays an auxiliary role (as
equation (8.30) does in linear spaces). However, it can be considered as an
invariant form of formula (9.8) that is convenient for applications.

Let a process ξ(t) be a solution of equation (7.18), t ∈ [0, T ]. Fix t ∈ [0, T ].
From the above arguments we obtain the following:

Theorem 9.8 The process η(t) satisfying the Itô equation in backward dif-
ferentials (9.6) with a∗(t,m) = a(t,m) − tr∇A(A·, ·) + A(t,m)Dξ

∗w(t), such
that η(t) = ξ(t), has the same backward mean derivative at t as ξ(·).

Thus for small enough s < t such η(s) approximates ξ(s).

Remark 9.9. Note the description of mean derivatives for diffusion processes
on Riemannian manifolds given in [190]. There, the expressions in local coor-
dinates include Christoffel symbols (i.e., the local connectors) and lead to for-
mulas similar to (7.19) and (9.8). However that presentation is not connected
with stochastic differential equations. We have shown that Ito equations in
Belopolskaya-Daletskii form are naturally compatible with the machinery of
mean derivatives.

We introduce the notation â∗(t,m) = a∗(t, ξ(t)) + 1
2 tr Γ ξ(t)(A, A). Taking

into account formula (2.19), as in the proof of Lemma 7.25 we obtain that
Γ m(X,Y ) = −ϕ′′

αn(X,Y ) where ϕαn is the change of coordinates from the
normal chart to another chart Uα. Thus analogously to the proof of Lemma
7.25 one can easily see that under the change of coordinates ϕβα between the
charts Uα and Uβ the triple (m, (â∗, A)) transforms according formula (7.16)
in the form

(mα, (âα
∗ , Aα)) 	→

(

ϕβαmα,

(

ϕ′
βαâα

∗ − 1
2
tr ϕ′′

βα(Aα, Aα), ϕ′
βα(Aα)

))

(9.9)

Note that (9.9) can be obtained from Lemma 8.33 by replacing f by ϕβα.
Thus (â∗, A) is a backward Itô equation according to Definition 7.23.
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Recall that the process ξ(t) is described by the Itô equation (â, A) corre-
sponding to (7.18).

Definition 9.10. The Itô equation (â, A) and the backward Itô equation
(â∗, A) introduced above are said to be coupled to each other.

Denote by Â∗ the backward generator of (â∗, A) coupled with (â, A) that
describes the process ξ(t). In local coordinates it is clearly expressed in the
form

Â∗ = −âi
∗

∂

∂qi
+

1
2
(AA∗)ij ∂2

∂qi∂qj
. (9.10)

Lemma 9.11 DH
∗ ξ(t) = −H(Â∗) where H is the mapping generated as in

formula (2.45) by the connection H, with respect to which the mean derivatives
are calculated.

Proof. Note that DH
∗ ξ(t) = a∗(t, ξ(t)) and â∗(t, ξ(t)) = a∗+ 1

2 tr Γ ξ(t)(A, A) =
âk
∗

∂
∂qk + Γ k

ij(AA∗)ij ∂
∂qk . From formulae (2.45) and (9.10) we obtain that

H(Â∗) = −âk
∗

∂

∂qk
+ Γ k

ij(AA∗)ij ∂

∂qk

= −ak
∗

∂

∂qk
− Γ k

ij(AA∗)ij ∂

∂qk
+ Γ k

ij(AA∗)ij ∂

∂qk
= −a∗

∂

∂qk
. �

Lemma 9.11 is “symmetric” to Lemma 9.4.

9.2 Current and Osmotic Velocities

Now consider the current velocity DSξ(t) = 1
2 (a(t, ξ(t)) + a∗(t, ξ(t)) =

vξ(t, ξ(t)) where vξ(t,m) = 1
2 (a(t,m) + a∗(t,m)) is the regression.

Theorem 9.12 vξ(t,m) is a vector tangent to M , independent of the choice
of connection, with respect to which the forward and backward mean deriva-
tives are calculated.

Proof. Indeed,

vξ(t,m) =
1
2
(a(t,m) + a∗(t,m))

=
1
2

(

a(t,m) − 1
2
tr Γ ξ(t)(A, A) +

1
2
tr Γ ξ(t)(A, A) + a∗(t,m)

)

=
1
2
(â(t,m) + â∗(t,m)).

Under the change of coordinates ϕβα between charts Uα and (U)β the trans-
formation rule for â(t,m) is described in formula (7.12) while â∗(t,m) trans-
forms according to formula (7.16). Thus
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vξ(t,m)β =
1
2
(â(t,m)β + â∗(t,m)β)

=
1
2

(

ϕ′
βαâ(t,m)α +

1
2
tr ϕ′′

βα(Aα, Aα) + ϕ′
βαâ∗(t,m)

− 1
2
trϕ′′

βα(Aα, Aα)
)

=
1
2
ϕ′

βα(â(t,m)α + â∗(t,m)α) = ϕ′
βαvξ(t,m)α.

Hence under coordinate changes vξ(t,m) transforms by formula (1.1) and so
it is a tangent vector, independent of the choice of connection. ��

For current velocity (and osmotic velocity below) there is a simple gener-
alization of the presentation that we used in Section 8.1 for R

n in the case of
a smooth non-degenerate diffusion term of a diffusion process.

Let A(m) : R
k → TmM be smooth, autonomous and have rank equal

to dim M at every m ∈ M . Then α(m) = A(m)A∗(m) is smooth, sym-
metric and non-degenerate. Denote the matrix of α by (αij). Its inverse
(αij) is smooth, symmetric and non-degenerate, hence it determines on M
a Riemannian metric, which we denote by α(·, ·). Denote by ρξ(t, x) the
probability density of ξ(t) with respect to the volume form dt ∧ Λα =√

det(αij) dt ∧ dx1 ∧ dx2 ∧ · · · ∧ dxn (see Section 8.1).

Theorem 9.13 For vξ(t,m) and ρξ(t,m) the following generalization of for-
mula (8.19) (equation of continuity) holds

∂ρξ(t, x)
∂t

= −Div(vξ(t, x)ρξ(t, x)), (9.11)

where Div denotes divergence with respect to the Riemannian metric α(·, ·).

Theorem 9.13 generalizes formulae (8.19) and (8.21). The proof of Theo-
rem 9.13 is a modification of that for Lemma 8.18 (cf. the proof in [190]).

Consider also the osmotic velocity DAξ(t) = uξ(t) = 1
2 (a(t, ξ(t)) −

a∗(t, ξ(t)) whose regression uξ(t,m) takes the form uξ(t,m) = 1
2 (a(t,m) −

a∗(t,m)). In the case under consideration the following generalization of for-
mulae (8.18) and (8.20) holds:

Theorem 9.14 For uξ(t,m) the equality

uξ(t, x) =
1
2
Grad log ρξ(t, x) = Grad log

√
ρξ(t, x) (9.12)

is valid where Grad denotes the gradient with respect to the Riemannian
metric α(·, ·).

The proof of Theorem 9.14 is a modification of that for Lemma 8.17 (cf.
the proof in [190]).
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9.3 Mean Derivatives of Vector Fields Along Stochastic
Processes

The construction of mean derivatives for vector fields along a stochastic pro-
cess needs a modification that is typical in the transition from vector spaces
to manifolds.

Let Y (t,m) be a vector field on M . Consider the invariant mean derivatives

DY (t, ξ(t)) = lim
Δt→+0

Eξ
t

(
Y (t + Δt, ξ(t + Δt)) − Y (t, ξ(t))

Δt

)

,

D∗Y (t, ξ(t)) = lim
Δt→+0

Eξ
t

(
Y (t, ξ(t)) − Y (t − Δt, ξ(t − Δt))

Δt

)

, (9.13)

taking values in TTM . Specify a connection H and denote by K : TTM →
TM its connector (see Definition 2.13). Introduce the covariant mean deriva-
tives of Y (t,m) along ξ(t) by analogy with the ordinary covariant derivatives
via the formulae

DY (t, ξ(t)) = K ◦ lim
Δt→+0

Eξ
t

(
Y (t + Δt, ξ(t + Δt)) − Y (t, ξ(t))

Δt

)

= K ◦ DY (t, ξ(t)),

D∗Y (t, ξ(t)) = K ◦ lim
Δt→+0

Eξ
t

(
Y (t, ξ(t)) − Y (t − Δt, ξ(t − Δt))

Δt

)

= K ◦ D∗Y (t, ξ(t)). (9.14)

For an Itô process ξ(t) on M (see Definition 7.82) denote by Γs,t the
operator of parallel translation along ξ(·) from ξ(t) to ξ(s) (see the definition
and notation in Section 7.7.1). Let Y (t,m) be a C2-smooth vector field on
M . It is easy to see that the covariant mean derivatives DY (t, ξ(t)) and
D∗Y (t, ξ(t)) defined by formulae (9.14) can be equivalently described in this
case by the formulae

DY (t, ξ(t)) = lim
Δt→+0

Eξ
t

(
Γt,t+ΔtY (t + Δt, ξ(t + Δt)) − Y (t, ξ(t))

Δt

)

,

D∗Y (t, ξ(t)) = lim
Δt→+0

Eξ
t

(
Y (t, ξ(t) − Γt,t−ΔtY (t − Δt, ξ(t − Δt))

Δt

)

.(9.15)

Recall that the vector field Y can be considered as a mapping Y : M →
TM with the additional condition πY = id where π : TM → M is the natural
projection and id is the identity mapping (see Definition 1.4). In particular
the tangent mapping TY = (Y,dY ) sends TM to TTM . Let m ∈ M . The
restriction of the differential dY at TmM is the derivative (a linear operator)
Y ′ : TmM → T(m,Y (m))TM . Denote by Y ′′ the second derivative (a bilinear
mapping) that sends TmM × TmM to T(m,Y (m))TM .
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Let ξ(t) be a process on M that is given by an Itô equation (â, A) where
A(m) is autonomous, smooth and has maximal rank at every m as a mapping
A(m) : R

k → R
n for some k ≥ n. Then, as above, α(m) = A(m)A∗(m) has in

local coordinates a symmetric, smooth and non-degenerate matrix (αij) and
its inverse (αij) defines on M the Riemannian metric α(·, ·). Below in this
construction we deal with the Levi-Civitá connection H of this Riemannian
metric. In particular, in formulae (9.14) K is the connector of this connection,
and all covariant derivatives, the Laplace-Beltrami operator and all forward
and backward mean derivatives of ξ(t) are calculated with respect to this
connection.

Let ξ(t) have mean derivatives Dξ(t) = a(t, ξ(t)) and D∗ξ(t) = a∗(t, ξ(t)),
i.e., the vector fields a(t,m) and a∗(t,m) are the regressions of Dξ(t) and
D∗ξ(t), respectively. Then taking into account the forward and backward Itô
formulae (6.10) and (6.13) as well as the construction of mean derivatives one
can easily see that DY (t, ξ(t)) is a vector in T(ξ(t),Y (t,ξ(t))TM of the form

∂Y

∂t
+ Y ′(a(t, ξ(t)) +

1
2
trY ′′(I, I)

and D∗Y (t, ξ(t)) is a vector in the same space of the form

∂Y

∂t
+ Y ′(a∗(t, ξ(t)) −

1
2
trY ′′(I, I).

By the Definition 2.22 of the covariant derivative K(Y ′(a(t,m)) = ∇a(t,m)Y
and K(Y ′(a∗(t,m))) = ∇a∗(t,m)Y . One can also easily derive that
K(1

2 trY ′′(I, I) = 1
2∇2Y where ∇2 is the Laplace-Beltrami operator. Thus

from the above formulae we obtain the following description of the regressions
DY and D∗Y of the covariant derivatives (9.14):

DY =
∂Y

∂t
+ ∇aY +

1
2
∇2Y, (9.16)

D∗Y =
∂Y

∂t
+ ∇a∗Y − 1

2
∇2Y.

Formulae (9.16) and (9.17) are natural analogs of (8.24) and (8.25), respec-
tively.

We now turn to the case where we have to use a Riemannian metric spec-
ified a priori on M (i.e., not the metric generated by the diffusion coefficient
of an equation). In this case we find formulae for covariant mean derivatives
along an Itô process, using a modification of the construction of covariant
derivatives based on parallel translation. We use Itô processes and parallel
translation with respect to the Levi-Civitá connection of the above metric.

Let ξ(t) be an Itô development of the Itô process ζ(t) given in a certain
tangent space by the formula ζ(t) =

∫ t

0
a(s)ds + σw(t) where a(t) satisfies

(7.54). Let Dξ(t) = a(t, ξ(t)) and D∗ξ(t) = a∗(t, ξ(t)). Applying the Itô
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formulae together with formulae (9.15), we obtain the following modifications
of formulae (9.16) and (9.17):

DY =
∂Y

∂t
+ ∇aY +

σ2

2
∇2Y, (9.17)

D∗Y =
∂Y

∂t
+ ∇a∗Y − σ2

2
∇2Y.

9.4 The Quadratic Mean Derivative

For a stochastic process ξ(t) on a probability space (Ω,F , P ) with values
in a manifold M we introduce its quadratic derivative as follows (cf. Defini-
tion 8.10 for the case of linear spaces). Take any chart U and consider in it
the L1 random variable determined by the rule

D2ξ(t) = lim
�t→+0

Eξ
t

(
(ξ(t + �t) − ξ(t)) ⊗ (ξ(t + �t) − ξ(t))

�t

)

, (9.18)

where the limit is assumed to exist in L1(Ω,F , P ).

Definition 9.15. D2ξ(t) is called the quadratic mean derivative of the pro-
cess ξ(t) on M at time t.

Notice that for D2ξ(t) there exists a regression in any chart, i.e., a mea-
surable field α0(t,m) such that D2ξ(t) = α0(t, ξ(t)).

An important geometric feature of the quadratic mean derivative is that
(like current velocity) it is independent of the choice of connection; its re-
gression is a (2, 0)-tensor field.

Let ξ(t) be given by an Itô equation (â, A) (see Section 7.3), i.e., in par-
ticular, it is Markovian. Recall that here A(t,m) is a field of linear operators
A(t,m) : R

k → TmM with k sufficiently large.

Lemma 9.16 Suppose that ξ(t) is given by an Itô equation (â, A). Then

D2ξ(t) = A(t, ξ(t))A∗(t, ξ(t)) = 2(QA)(t, ξ(t)) (9.19)

where A∗ is the conjugate operator, A is the corresponding generator and Q

is defined by formula (2.44). A(t,m)A∗(t,m) is a (2, 0)-tensor field on M . In
particular, D2ξ(t) = 0 if and only if ξ(t) has C1-smooth sample paths.

Proof. Let H be a connection and represent (â, A) as an Itô equation in
Belopolskaya-Daletskii form in terms of the Itô vector field (a, A) canonically
corresponding to (â, A) with respect to H (see Section 7.3). Then in a local
chart ξ(t) is expressed in Baxendale form



9.4 The Quadratic Mean Derivative 235

ξ(t + �t) − ξ(t) =
∫ t+�t

t

a(s, ξ(s))ds

−1
2

∫ t+�t

t

trΓ ξ(t)(A(t, ξ(t)), A(t, ξ(t)))ds

+
∫ t+�t

t

A(s, ξ(s))dw(s)

where Γ m(·, ·) is the local connector of H in that chart. As in the proof
of Theorem 8.12, by direct calculation it follows that the components of
(ξ(t + �t) − ξ(t)) ⊗ (ξ(t + �t) − ξ(t)) are elements of the matrix (ξ(t +
�t) − ξ(t))(ξ(t + �t) − ξ(t))∗ where we use the matrix multiplication of the
column-vector (ξ(t +�t)− ξ(t)) and the row-vector (ξ(t +�t)− ξ(t))∗ (i.e.,
the transpose of (ξ(t + �t) − ξ(t))). In particular, this matrix product is a
symmetric positive semi-definite matrix.

Taking into account the properties of the Lebesgue and Itô integrals one
can see that (ξ(t+�t)− ξ(t))(ξ(t+�t)− ξ(t))∗ is approximated by the sum

a(t, ξ(t))(a(t, ξ(t)))∗(Δt)2

− 1
2
a(t, ξ(t)) (trΓ (A(t, ξ(t)), A(t, ξ(t))))∗(Δt)2

+ a(t, ξ(t))Δt)(A(t, ξ(t))Δw(t))∗

− 1
2
trΓ (A(t, ξ(t)), A(t, ξ(t)))(a(t, ξ(t)))∗(Δt)2

+
1
4
trΓ (A(t, ξ(t)), A(t, ξ(t)))(trΓ (A(t, ξ(t)), A(t, ξ(t))))∗(Δt)2

+ (A(t, ξ(t))Δw(t))(a(t, ξ(t))Δt)∗

+ A(t, ξ(t))(A(t, ξ(t)))∗Δt.

In this expression only the last summand is an infinitesimal of the same
order as Δt while the others are infinitesimals of higher order. Then applying
formula (9.18) we obtain that D2ξ(t) = Eξ

t (A(t, ξ(t))A∗(t, ξ(t))). Thus (9.19)
follows and it is obvious that this expression is independent of H. Recall (see
Lemma 7.2) that AA∗ is a (2, 0)-tensor field.

The fact that D2ξ(t) = 2QA now follows from the definitions.
From (9.19) it evidently follows that the equality D2ξ(t) = 0 means that

A(t,m) = 0 and so the sample paths of ξ(t) are C1-smooth. If they are C1-
smooth, from the definition of quadratic mean derivative (see Theorem 8.12)
we have D2ξ(t) = 0 (as always for C1-curves). ��

Recall that A(t,m)A∗(t,m) is the diffusion coefficient of ξ(t). Note also
that if AA∗ is non-degenerate, smooth and autonomous, it can be considered
as a metric (2, 0)-tensor so that its inverse is a Riemannian metric on M . In
particular, this metric can be used to determine forward and backward mean
derivatives of ξ(t). These derivatives turn out to have many uses.
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So, we can consider differential equations and inclusions in terms of forward
(or backward) mean derivatives or current velocities on the one hand and
quadratic mean derivatives on the other hand by analogy with Section 8.4.
In doing this we have to be able to represent a given (2, 0)-tensor field α(t,m)
in the form α(t,m) = A(t,m)A∗(t,m). Unlike the case of linear spaces (see
Section 8.4), on non-parallelizable manifolds there is a topological obstruc-
tion for obtaining such a presentation for smooth or continuous α(t,m) with
smooth or at least continuous A(t,m) : R

n → TmM where n is the dimension
of M (see, e.g., [150]). Nevertheless such a presentation is possible in larger
dimensions under some additional assumptions.

Theorem 9.17 Consider a symmetric (2, 0)-tensor field α(t,m) on an n-
dimensional manifold M . There exists a k > n such that, if α(t,m) is positive
definite and continuous (smooth), there exists a continuous (smooth, respec-
tively) field of linear operators A(t,m) : R

k → TmM such that the relation
α(t,m) = A(t,m)A∗(t,m) holds.

Proof. Denote by (αij) the matrix of α(t,m) in the local coordinates of some
chart Uα. Introduce an arbitrary Riemannian metric g(·, ·) on M with matrix
(gij) and denote by ḡ the corresponding metric (2, 0)-tensor with matrix
(gij) (see Notation 1.51 and Remark 1.52). Then the (2, 0)-tensor field α is
represented in the form α(·, ·) = ḡ(b(·), ·) where b(t,m)(·) is a (1, 1)-tensor
field of self-adjoint linear operators acting in the cotangent spaces to M . The
existence and uniqueness of b is derived as follows. In the local coordinates
of Uα the expression α(·, ·) = ḡ(b(·), ·) takes the form αij = gikbj

k where bi
j

are the coefficients of (b)α. Since (gij) is not degenerate, bi
j are presented in

the form bi
j = gjkαik. Since the metric tensor is C∞-smooth, the field b is

continuous (smooth, or Borel measurable) if α is continuous (smooth, Borel
measurable, respectively).

Let a1, . . . , an be a field of orthonormal frames with respect to the metric
ḡ(·, ·) in cotangent spaces at the points of Uα. With respect to these frames b
is represented by a matrix (b̄) that is symmetric, positive definite and satisfies
the conditions for applying the Gauss decomposition as in the proof of Lemma
8.40. Hence b(t,m) is presented in the form b(t,m) = f(t,m)f∗(t,m).

Embed by Nash’s Theorem (Theorem 1.46) the manifold M with metric
g(·, ·) isometrically into a Euclidean space R

k (see [186]). k can be chosen
so that it depends only on M (by Nash’s theorem it is determined by the
dimension M), i.e., it is the same for all Riemannian metrics on M .

Denote by Pm the orthogonal projector of R
k onto its subspace TmM (the

tangent space to M at m ∈ M). Let A(t,m) = f(t,m) ◦ Pm : R
k → TmM .

Then one can easily see that α(t,m) = A(t,m)A∗(t,m) and by construction
A(t,m) is continuous (smooth, respectively). ��
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9.5 Mean Derivatives of Itô Processes on Manifolds

Let a Riemannian manifold M satisfy the hypothesis of Theorem 7.76 or be
uniformly complete (see Definition 7.85). Under these assumptions the inte-
gral approach to stochastic differential equations on manifolds of Section 7.7
is well-posed.

Lemma 9.18 Let ξ(t) = RIz(t) where z(t) =
∫ t

0
a(s)ds +

∫ t

0
A(s)dw(s) is

an Itô process in Tm0M . Then ξ(t) satisfies the following Itô equation in
Belopolskaya-Daletskii form:

dξ(t) = expξ(t)(Γt,0a(t)dt + Γt,0A(t)dw(t)). (9.20)

From the Definition 7.83 of parallel translation it easily follows that
Lemma 9.18 is a reformulation of Lemma 7.65. Clearly the equation in local
coordinates (i.e., the Baxendale form) for (9.20) is as follows:

dξ(t) = Γt,0a(t)dt − 1
2
trΓ ξ(t)(Γt,0A(t), Γt,0A(t))dt + Γt,0A(t)dw(t) (9.21)

(recall that Γt,0 is the operator of parallel translation while Γ m(·, ·) is the
local connector).

Taking into account formulae (9.20) and (9.21), we can apply the results
of the preceding sections to the calculation of the mean derivatives of Itô
processes in manifolds. In particular, from Lemma 9.3 we have:

Lemma 9.19 For ξ(t) as in Lemma 9.18, Dξ(t) = Eξ
t (Γt,0a(t)).

Also, from Lemma 9.16 we have:

Lemma 9.20 For ξ(t) as in Lemma 9.18, D2ξ(t) = Eξ
t (Γt,0(A(t)A∗(t))).

For the applications below we have to calculate mean derivatives for an
Itô process ξ(t) = RIz(t) where z(t) is an Itô process in Tm0M for t ∈ [0, l]
of the form z(t) =

∫ t

0
a(s)ds + σw(t) where σ > 0 is a real constant and a(t)

satisfies (8.32). Recall (see Section 7.7.3) that in this case we can deal with
a stochastically complete M (a less restrictive assumption than above).

So, let M be stochastically complete. For the above ξ(t), formula (9.20)
takes the form

dξ(t) = expξ(t)(Γt,0 a(t)dt + Γt,0 dw(t)) (9.22)

so that (9.21) takes the form

dξ(t) = Γt,0 a(t)dt − 1
2
trΓξ(t)(I, I)dt + Γt,0 dw(t). (9.23)

Thus by Lemma 9.20
D2ξ(t) = σ2I (9.24)
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and by Lemma 9.19
Dξ(t) = Eξ

t (Γt,0 a(t)) (9.25)

(this also follows from Lemma 9.19) and

D∗ξ(t) = Eξ
t (Γt,0 a(t)) + Dξ

∗(Γt,0 w(t)). (9.26)

in any chart in M . Consequently

DSξ(t) = vξ(t, ξ(t)) = Eξ
t (Γt,0 a(t)) +

1
2
Dξ

∗(Γt,0 w(t)) (9.27)

and
DAξ(t) = uξ(t, ξ(t)) = −1

2
Dξ

∗(Γt,0 w(t)) (9.28)

also in any chart.

Lemma 9.21 Formulae (9.11) and (9.12) hold for the above mentioned pro-
cess ξ(t) = RIz(t).

Indeed, the fact that the coefficient at w(t) is σI means that the Rieman-
nian metric is generated by the diffusion coefficient as in Section 9.2.

Let a(t) satisfy (8.32) so that the measure μz corresponding to z(t) =
∫ t

0
a(s)ds + w(t) on the space (C0([0, l], Tm0M), F̃) is absolutely continuous

with respect to the Wiener measure ν with density (8.33). Then formula
(9.26) and consequently formulae (9.27) and (9.28) can be expressed in the
more precise form:

Lemma 9.22

D∗ξ(t) = Eξ
t (Γt,0a(t)) + Eξ

t

[

Γt,0

(
z(t)
t

− κ(t)
)]

(9.29)

DSξ(t) = Eξ
t (Γt,0a(t)) +

1
2
Eξ

t

[

Γt,0

(
z(t)
t

− κ(t)
)]

(9.30)

DAξ(t) = −1
2
Eξ

t

[

Γt,0

(
z(t)
t

− κ(t)
)]

(9.31)

where κ(t) is as defined in Lemma 8.35.

Proof. In order to derive (9.29) note that the probability of the event ξ(t) ∈
A, where A ⊂ M is a Borel set, is equal to μz(ξ(t)−1A), where ξ(t)−1A is the
set of curves from C0([0, l], Tm0M) such that the values of their developments
at t belong to A. Denote by Ξ(t) the set in Tm0M consisting of the values
at t of all curves from ξ(t)−1A. Generally speaking, N z

t and N ξ
t do not

coincide, in particular Ξ(t) may not belong to N z
t (but it certainly belongs

to Pz
t by construction). But we can calculate μz(ξ(t)−1A) by integrating

the probability density of z(t) over Ξ(t). This means that the value ξ(t) is
distributed as a map from Ω̃ into Tm0M which is measurable with respect
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to N ξ
t and has the same probability distribution as z(t). Taking into account

the relation between the probability distributions and mean derivatives (see
Lemma 8.17) as well as the construction of the Itô development, we obtain
(9.29). Formulae (9.30) and (9.31) follow immediately from (9.29) and from
(9.27) and (9.28), respectively. ��

Formulae (9.25) and (9.26), and consequently (9.29) and (9.30), can also
be derived from the following general statement. Let M be a Riemannian
manifold and z(t) be an Itô process in a certain Tm0M such that ξ(t) = RIz(t)
exists. Let y(t) be another process given on the same probability space.

Theorem 9.23

(i) Dyξ(t) exists if and only if Dyz(t) exists and Dyξ(t) is parallel to
Dyz(t) along ξ(·).

(ii) Dy
∗ξ(t) exists if and only if Dy

∗z(t) exists and Dy
∗ξ(t) is parallel to

Dy
∗z(t) along ξ(·).

This statement for ξ(t) = RIz(t) is an analog of the characteristic prop-
erty of the curve Sv(t) from Theorem 3.43. It follows directly from the con-
struction of RIz(t) (see Section 7.6.1). The principal point here is that the
conditional expectation with respect to the same σ-algebra N y

t is used in the
mean derivatives before and after the parallel translation. Note that Dξ(t)
and Dz(t) (as well as D∗ξ(t) and D∗z(t), respectively) are not, generally
speaking, parallel to each other along ξ(·) since N ξ

t and N z
t may not coin-

cide.

9.6 Equations and Inclusions with Mean Derivatives

In this section we introduce differential equations and inclusions with mean
derivatives on manifolds and prove some simple existence of solution theo-
rems.

Let M be a Riemannian manifold. In this section we use the Levi-Civitá
connection H of the Riemannian metric.

Take t ∈ [0, T ]. Consider a vector field a(t,m) and a symmetric positive
semi-definite (2, 0)-tensor field α(t,m) on M .

By a first order differential equation with mean derivatives we mean a
system of the form {

Dξ(t) = a(t, ξ(t)),
D2ξ(t) = α(t, ξ(t)). (9.32)

Definition 9.24. We say that (9.32) has a weak solution on [0, T ] with initial
condition ξ(0) = m0 if there exists a probability space (Ω,F , P) and a process
ξ(t) given on (Ω,F , P), taking values in M , such that P-a.s. and for almost
all t in [0, T ] system (9.32) is satisfied.
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We shall mainly look for weak solutions of (9.32) among solutions of some
equations of type (7.18). Taking into account Theorem 9.5 and Lemma 9.16
it is clear that the first equation of (9.32) determines the drift of a solution
of some equation of type (13.5) while the second equation determines the
diffusion coefficient. However, we do not assume a priori that a solution of
(9.32) is also a solution of an equation of the form (7.18). This is why we do
not consider the notion of strong solutions.

For each (t,m) denote by Aa,α(t,m) the generator determined by the
formulae HAa,α(t,m) = a(t,m) and QAa,α(t,m) = α(t,m) (see formulae
(2.45) and (2.44)).

Theorem 9.25 Assume that in (9.32) a(t,m) and α(t,m) are C1-smooth,
α(t,m) is positive definite and Aa,α(t,m) satisfies the conditions of Theorem
7.43. Then for any initial condition ξ(0) = m0 ∈ M equation (9.32) has a
weak solution that exists for all t ∈ [0, T ].

Proof. By Theorem 9.17 we can construct a field of linear operators A(t,m)
that is C1-smooth and such that α(t,m) = A(t,m)A∗(t,m). Consider equa-
tion (7.18) with these a(t,m) and A(t,m). Since its coefficients are C1-smooth
(i.e., locally Lipschitz continuous), for any initial condition ξ(0) = m0 ∈ M ,
by Theorem 7.36 the equation has a strongly unique local strong solution
that exists, by Theorem 7.43, on the entire interval t ∈ [0, T ]. From Theorem
9.5 and Lemma 9.16 it follows that this solution satisfies (9.32). ��

Now consider inclusions in mean derivatives on M . Let a(t,m) be a set-
valued vector field on M , i.e., for every point m ∈ M a set a(t,m) ⊂ TmM
is specified. Let also α(t,m) be a set-valued symmetric positive semi-definite
(2, 0)-tensor field on M (this means that for all t and m any tensor from the
set α(t,m) is symmetric and positive semi-definite). Consider the problem

{
Dξ(t) ∈ a(t, ξ(t)),

D2ξ(t) ∈ α(t, ξ(t)). (9.33)

Definition 9.26. We say that (9.33) has a weak solution on [0, T ] with initial
condition ξ(0) = m0 if there exists a probability space (Ω,F , P) and a process
ξ(t) given on (Ω,F , P), taking values in M , such that P-a.s. and for almost
all t in [0, T ] the inclusions (9.33) are satisfied.

Denote by Aa,α(t,m) the set-valued second order vector field with images
Aa,α(t,m) = {Aa,α(t,m) | a ∈ a(t,m), α ∈ α(t,m)} determined by formulae
HAa,α(t,m) = a(t,m) and QAa,α(t,m) = α(t,m) as above (see formulae
(2.45) and (2.44)).

Theorem 9.27 Let α(t,m) and a(t,m) be an upper semicontinuous set-
valued symmetric positive semi-definite (2, 0)-tensor field and a vector field
on M , respectively, with closed convex images. Let in addition for every com-
pact K ⊂ M the sets a([0, T ],K) and α([0, T ],K) be compact and assume
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that at every (t,m) the generator Aa,α from a neighborhood V of the graph
of Aa,α(t,m) satisfies the conditions of Theorem 7.43 with the same proper
function ϕ. Then for any initial condition ξ(0) = m0 there exists a weak
solution of (9.33), well-defined on the entire interval [0, T ].

Proof. Introduce a sequence of positive numbers εq → 0. By Theorem 4.11
for every εq there exists a single-valued continuous εq-approximation aq(t,m)
of a(t,m) and a single valued continuous εq-approximation α̃q(t,m)(·, ·) of
α(t,m) such that the sequences of those approximations point-wise converge
to a Borel measurable selection a(t,m) of a(t,m) and α(t,m) of α(t,m),
respectively, as q → ∞.

Note that the tensor fields α̃q(t,m)(·, ·) are symmetric and positive semi-
definite. Introduce another sequence

αq(t,m)(·, ·) = α̃q(t,m)(·, ·) + εqg(m)(·, ·)

where g(m)(·, ·) is the (2, 0)-metric tensor (Riemannian metric). It is evident
that the tensors αq(t,m)(·, ·) are continuous, positive definite and symmetric
and that the sequence αq(t,m)(·, ·) point-wise converges to α(t,m)(·, ·) as
q → ∞. Since continuous fields can be approximated by smooth ones, without
loss of generality we may suppose that all fields aq(t,m) and αq(t,m)(·, ·) are
smooth. For simplicity denote by Aq(t,m) the generator Aaq,αq (t,m).

From Theorem 9.17 it follows that there exist a sufficiently large integer
K and a sequence of smooth fields of linear operators Aq(t,m) : R

K →
TmM such that αq(t,m) = Aq(t,m)A∗

q(t,m) for all q, t and m. Note that
K depends only on the dimension of M since R

K is a space in which M
with arbitrary Riemannian metric can be isometrically embedded by Nash’s
Theorem (Theorem 1.46).

Now introduce âq(t,m) which, in a chart on M , has coordinates âk
q =

ak − 1
2Γ k

ijα
ij
q where Γ k

ij are the Christoffel symbols of H and (αij
q ) is the ma-

trix of αq. Note that Aq(t,m) is the field of generators for the Itô equation
(âq, Aq). By construction, for q large enough (m,Aq(t,m)) belongs to V. Then
one can easily derive from the hypothesis that the Itô equations (âq, Aq) sat-
isfy the conditions of Lemma 7.57 and so the equations (âq, Aq) have strong
and strongly unique solutions ξq, well-defined on the entire interval [0, T ], and
the set of corresponding measures {μq} on (Ω̃, F̃) is weakly compact. Hence
we can choose a subsequence that weakly converges to some measure μ. For
convenience we suppose that the sequence μq itself weakly converges to μ. De-
note by ξ(t) the coordinate process on the probability space (Ω̃,F , μ). Recall
that this means that for every x(·) ∈ C0([0, T ], M) we have ξ(t, x(·)) = x(t).

We show that ξ(t) is the solution that we are looking for.
Notice that the “present” σ-algebra N ξ

t of ξ(t) is a σ-subalgebra of Pξ
t and

so for conditional expectations the equality

E(E(· | Pt) | Nt) = E(· | Nt) (9.34)
holds.
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Consider the chart U , the global chart in R
K and the symbols Γ̂ k

ij in-
troduced in the proof of Lemma 7.57. Define āq(t,m, x), Āq(t,m, x) and
ᾱq(t,m, x)(·, ·) by formula (7.33) where ă, Ă and (α̃ij) are replaced by a(t,m),
A(t,m) and (αij), respectively. Define ā(t,m) and ᾱ(t,m)(·, ·) by the same
formulae via the replacements a(t,m) and α(t,m), respectively.

As in the proof of Lemma 7.57, one can easily show that the equation

dξ̄q(t) = āq

(
t, ξ̄q(t)

)
dt

−1
2
tr

(
Γ̂ ξ̄q(t)

(
Āq

(
t, ξ̄q(t)

)
, Āq

(
t, ξ̄q(t)

)))
dt (9.35)

+Āq

(
t, ξ̄q(t)

)
dw(t)

(analogous to (7.34)) is well-defined on R
K and that in U it transforms into

the system
{

dξq(t) = aq(t, ξq(t))dt − 1
2 tr(Γ ξq (Aq, Aq))dt + Aq(t, ξq(t))dw(t),

dξ̄q(t) = 0 (9.36)

where trΓ (Aq, Aq) = Γ k
ijα

ij
q , and so with probability 1 the solution of (9.35)

with initial condition ξ̄q(0) = m0 ∈ M lies in M and coincides with the
corresponding solution of (âq, Aa) for all q. Thus the measures on the path
space in R

K corresponding to the solutions are located on C0([0, T ], M) and
coincide there with μq for all q.

By construction the sequence āq(t, x(·)) = āq(t, x(t)) point-wise converges
to ā(t, x(·)) = ā(t, x(t)). Hence it converges almost surely with respect to all
λ × μq where λ is the normalized Lebesgue measure on [0, T ].

The fact that

E

(

ξ̄
(
(t + Δt) ∧ θx(·)

p

)
− x

(
t ∧ θξ(·)

p

)

−
(t+Δt)∧θx(·)

p∫

t∧θ
x(·)
p

[

ā (s, ξ(·)) − 1
2
tr

(
Γ̂ (ᾱ)

)]

ds

∣
∣
∣
∣Pt

)

= 0

is proved by a simple modification of the proof of Lemma 8.47. Introduce com-
pact Wp as in Lemma 7.57. Taking into account (9.34) the fact that a(t,m)
and α(t,m) are Borel measurable and that the above arguments are valid
for every p and ∪pWp = M , and so every m belongs to Wp for large enough
p, by transition to (9.36) one can easily derive from the last expression that
the regression (8.5) takes the form Y o(t,m) = a(t,m) − 1

2 tr(Γ m(α(t,m)).
Since in the normal chart of every m ∈ M with respect to H all Christof-
fel symbols Γ k

ij(m) are equal to zero, we obtain from Definition 8.2 that
DHξ(t) = a(t, ξ(t)).
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The fact that

E

(
(
ξ̄
(
(t + Δt) ∧ θx(·)

p

)
− ξ̄

(
t ∧ θx(·)

p

))

⊗
(
ξ̄
(
(t + Δt) ∧ θx(·)

p

)
− ξ̄

(
t ∧ θx(·)

p

))

−
(t+Δt)∧θx(·)

p∫

t∧θ
x(·)
p

ᾱ
(
s, ξ̄(·)

)
ds

∣
∣Pt

)

= 0

is proved by a slight modification of the proof of Lemma 8.48. From the last
relation one easily deduces that D2ξ(t) = α(t, ξ(t)). ��

9.7 Stochastic Differential Inclusions in Terms of
Infinitesimal Generators

In this Section we deal with a slight generalization of the notion of an in-
finitesimal generator which is well-defined for non-Markovian stochastic pro-
cesses. For a process ξ(t) with values in a manifold M (in particular, in R

n)
we introduce the generator as a field of second order semi-elliptic differential
operators acting on the (sufficiently smooth) function f according to the rule

A(t,m)f

= lim
Δt→+0

E

(
f(ξ((t + Δt)) ∧ τm) − f(ξ(t ∧ τm))

Δt

∣
∣
∣
∣ ξ(t) = m

)

(9.37)

where τm is the Markov time that ξ first hits the boundary of a given chart
containing m. The difference between (9.37) and Definition 6.34 is that here
we use the regression (see Section 6.1.2) instead of the unconditional expec-
tation. Note that if ξ(t) is Markovian, both (9.37) and Definition 6.34 define
the same object.

Clearly the generator defined by (9.37) is a second order tangent vector. As
in Lemma 9.4 and Lemma 9.16 one can easily prove that if A is the generator
of ξ(t) for a given connection H, the formulae

DHξ(t) = (HA)(t, ξ(t)) (9.38)
and

D2ξ(t) = 2(QA)(t, ξ(t)) (9.39)

hold where Q and H are defined by formulae (2.44) and (2.45), respectively.
Suppose that the field of second order tangent vectors A(t,m) is set-valued,

i.e., in every second order tangent space τmM to the manifold M a set A(t,m)
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depending on t ∈ [0,∞) is given. We want to find a stochastic process ξ(·)
such that for every t its generator A(t,m) a.s. satisfies the inclusion

A(t, ξ(t)) ∈ A(t, ξ(t)). (9.40)

Problems of this sort naturally arise if the process is described in terms of its
generator.

If the set-valued field A(t,m) has a continuous selector with some regular-
ity properties, one can find the process having that selector as generator. This
process is a solution of (9.40). For example, if A(t,m) is lower semi-continuous
and has convex closed values, by Michael’s theorem it has a continuous selec-
tor. If the selector has a positive definite (2, 0)-tensor component, the above
argument applies, proving the existence of solutions of (9.40).

If the selectors do not exist, the proof of solvability for (9.40) becomes much
more complicated. We consider a rather general case of this sort, important
for applications, where A(t,m) is upper semi-continuous and not necessarily
positive definite.

Theorem 9.28 Let A(t,m), t ∈ [0, T ], be an upper semi-continuous set-
valued second order vector field on a manifold M with closed convex values
such that:

(i) for every t ∈ [0, T ], m ∈ M , and for each A ∈ A(t,m), the (2, 0)-tensor
QmA is symmetric and positive semi-definite;

(ii) for every compact K ∈ M the set A([0, T ],K) is compact in τM ;
(iii) there exist a proper function ψ : M → R, a constant C > 0 and a

neighborhood V of the graph of A in [0, T ]× τ(M) such that for every
(t,m,A) ∈ V the inequality |Aψ| < C holds.

Then for every m0 ∈ M there exists a probability space and a stochastic
process ξ(t) with initial condition ξ(0) = m0, well-defined for all t ∈ [0, T ],
given on the probability space and taking values in M , such that, for its in-
finitesimal generator, inclusion (9.40) is a.s. satisfied.

Proof. In this proof we are working in the Banach manifold C0([0, T ], M)
equipped with the σ-algebra F generated by cylinder sets. By Pt we denote
the σ-subalgebra of F generated by cylinder sets with bases over [0, t] ⊂ [0, T ].

Specify an arbitrary complete Riemannian metric g(·, ·) on M with chart
components gij . This metric turns M into a metric space with respect to the
corresponding Riemannian distance. Denote by H the Levi-Civitá connection
of g(·, ·). Recall that gm(·, ·) is an inner product in TmM , m ∈ M . This inner
product determines the inner products gm(·, ·) in the space of (2, 0)-tensors at
m ∈ M by the rule gm((αij), (βlk)) = gikgjlα

ijβkl. Define the inner products
in τmM by the formula

g(A1,A2) = g(HA1, HA2) + g(QA1,QA2).
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Thus in all TmM , τmM and the space of (2, 0)-tensors over M the corre-
sponding Euclidean norms smoothly depending on m are given.

Let εq → 0 be a positive sequence. By Theorem 4.11 for every εq there
exists a single-valued ε-approximation Ãq(t,m) of A(t,m) such that the se-
quence Aq(t,m) point-wise converges to a Borel measurable selector A(t,m)
of A(t,m) as q → ∞.

Consider the sequences of vector fields aq(t,m) = HAq(t,m) and of
(2, 0)-tensor fields α̃q(t,m)(·, ·) = 2QAq(t,m), respectively. It is evident that
aq(t,m) point-wise converges to a(t,m) = HA(t,m), α̃q(t,m) point-wise con-
verges to α(t,m) = 2QA(t,m) as q → ∞ and that both a(t,m) and α(t,m)
are Borel measurable.

Note that the tensor fields α̃q(t,m)(·, ·) are symmetric and positive semi-
definite. Introduce another sequence

αq(t,m)(·, ·) = α̃q(t,m)(·, ·) + εqg(m)(·, ·).

It is clear that the tensors αq(t,m)(·, ·) are continuous, positive definite
and symmetric and that the sequence αq(t,m)(·, ·) point-wise converges to
α(t,m)(·, ·) as q → ∞. Since continuous fields can be approximated by smooth
fields, without loss of generality we may suppose that all fields aq(t,m) and
αq(t,m)(·, ·) are smooth. Denote by Aq(t,m) the smooth second order tan-
gent vector field corresponding to the pair (aq(t,m), αq(t,m)). By construc-
tion Aq(t,m) is a 2ε-approximation of A(t,m) and the sequence Aq(t,m)
point-wise converges to A(t,m) as q → ∞.

Note that the properties of aq(t,m) and αq(t,m) are the same as in the
proof of Theorem 9.27. Hence by imitating that proof we can show that
there exists a stochastic process ξ(t), defined for all t ∈ [0, T ], such that
DHξ(t) = a(t, ξ(t)) ∈ (HA)(t, ξ(t)) and D2ξ(t) = α(t, ξ(t)) ∈ 2(QA)(t, ξ(t)).
By construction this is the solution of (9.40) that we are looking for. ��

The inclusion (9.40) most often arises in applications in a linear space.
For the case in hand, we prove an existence theorem of another sort, whose
hypothesis is formulated in terms of estimates of Itô type.

Let A(t,m) be a set-valued second order vector field in R
n. Then we can

consider the set-valued vector field a(t,m), the vector part of A(t,m), and its
tensor part, the set-valued symmetric (2, 0)-tensor field α(t,m) taking values
in positive semi-definite tensors.

Theorem 9.29 Let the set-valued vector field a(t, x) be upper semi-continu-
ous, have closed convex values and satisfy the estimate

‖a(t, x)‖ < K(1 + ‖x‖) (9.41)

for some K > 0.
Let the set-valued (2, 0)-tensor field α(t, x) be upper semi-continuous, take

closed convex values in symmetric positive semi-definite tensors and be such
that for each α(t, x) ∈ α(t, x) the estimate
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‖trα(t, x)‖ < K(1 + ‖x‖)2 (9.42)

holds for some K > 0.
Then for every x0 ∈ R

n there exists a probability space and a stochastic
process ξ(t) on the probability space with initial condition ξ(0) = x0, well-
defined for all t ∈ [0, T ], taking values in R

n, such that for its infinitesimal
generator the inclusion (9.40) is a.s. satisfied.

Proof. Consider a sequence of positive numbers εq → 0. As in the proof of
Theorem 9.28 we can construct a sequence Aq(t, x) of smooth εq-approxi-
mations of A(t, x) that point-wise converges to a Borel measurable selector
A(t, x) of A(t, x) as q → ∞. As in the proof of Theorem 9.28, introduce
a sequence of smooth vector fields aq(t, x) point-wise converging to a Borel
measurable selector a(t, x) of a(t, x), and the sequence α̃q(t, x)(·, ·) of smooth
(2, 0)-tensor fields point-wise converging to a Borel measurable selector α(t, x)
of α(t, x). Construct the sequence αq(t, x)(·, ·) = α̃q(t, x)(·, ·)+εqI(·, ·) where
I(·, ·) is the (2, 0)-tensor field with unit matrix at every x ∈ R

n. Each
αq(t, x)(·, ·) is smooth, symmetric and positive definite, then by Lemma 8.40
for every q there exists a smooth field of linear operators Aq(t, x) : R

n → R
n

such that αq(t, x) = Aq(t, x)A∗
q(t, x) where A∗(t, x) is transposed to A(t, x).

Note that trαq(t, x) equals the sum of the squares of the elements of Aq(t, x),
i.e. it is the square of the Euclidean norm on Aq(t, x) in the corresponding
space of matrices. Thus from (9.42) it follows that

‖Aq(t, x)‖ ≤ K(1 + ‖x‖) (9.43)

for all q. Note that by construction all aq(t, x) satisfy the estimate of type
(9.41) for all q.

Consider the Itô equations

dξq(t) = aq(t, ξq(t))dt + Aq(t, ξq(t))dw(t). (9.44)

Applying Theorem 6.26 and the fact that the coefficients are smooth, one can
derive from the hypothesis and the above argument that every equation (9.44)
has a unique solution ξq(t) with initial condition ξq(0) = x0, well-defined on
the entire interval [0, T ]. Denote by μq the measure on (C0([0, T ], Rn), F̃)
corresponding to ξq(·) where F̃ is the σ-algebra generated by cylinder sets.
Taking into account (9.41) and (9.43) one derives from Lemma 6.28 that the
set {μq} is weakly compact. Thus we can select a subsequence that weakly
converges to some measure μ. Denote by ξ(t) the coordinate process on the
probability space (C0([0, T ], Rn),F , μ). The fact that ξ(t) satisfies (8.41) with
the above a(t,m) and α(t,m), where D denotes the forward mean derivative
with respect to the Levi-Civitá connection of the Euclidean metric in R

n,
is proved by analogy with the proof of Theorem 8.46. Hence A(t, x) is the
generator of ξ(·). Since, by construction, A(t, ξ(t)) ∈ A(t, ξ(t)) a.s., this means
that ξ(t) is the solution we are looking for. ��



Chapter 10

Stochastic Analysis on Groups of
Diffeomorphisms

Everywhere in this chapter we use the notions and notation introduced in
Chapter 5. We describe a stochastic differential equation of a special sort
on those groups of diffeomorphisms that arise in the applications to viscous
hydrodynamics described in Section 16.4 below (see, e.g., [100, 104, 113]).
This class of equations is characterized by the fact that they involve finite-
dimensional Wiener processes. It should be pointed out that a theory of
stochastic differential equations on infinite-dimensional manifolds involving
infinite-dimensional Wiener processes exists (see, e.g., [23, 35, 66]) and is
used in viscous hydrodynamics (see, e.g., [39]). However, the description of
this theory requires a complicated functional-analytic machinery that is not
included in our exposition. For simplicity of presentation, we restrict our-
selves to the finite-dimensional version of the theory since, in applications,
the theories yield very similar results.

10.1 The General Case

Consider an n-dimensional compact Riemannian manifold M without bound-
ary. Let s > n

2 + 1, then the group Ds(M) of Sobolev Hs-diffeomorphisms
of M is well-defined as are all the geometric objects on it as described in
Chapter 5, in particular, the weak Riemannian metric (5.1), its Levi-Civitá
connection with connector (5.2) and the corresponding exponential mapping
exp from Remark 5.8.

Using Nash’s Theorem (Theorem 1.46) embed M isometrically into a Eu-
clidean space R

N for some sufficiently large N . Construct the field of linear
operators A(t,m) : R

N → TmM introduced in Example 7.4 (see also Exam-
ple 7.40). For simplicity we shall suppose that the (1, 1)-tensor field B(t,m)
(see Example 7.4) is C∞-smooth.

Let X ∈ R
N . Applying to this vector all operators of the field A(t,m), we

obtain the C∞-vector field A(t,m)X on M , i.e., a vector in the tangent space
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TeDs(M). Thus the field A(t,m) generates the linear mapping Ā(t) : R
N →

TeDs(M) that acts according to the rule Ā(t)X = A(t,m)X. Applying this
mapping by right translation to all points of the group, we obtain the right-
invariant field of linear operators Ā(t, η) : R

N → TηDs(M) given by the
formula Ā(t, η)X = TRηĀ(t)X. In particular, this mapping can be applied
to a Wiener process w(t) in R

N and so it sends the Wiener process into all
tangent spaces to Ds(M).

By construction the field Ā(t, η) is right-invariant and, since A(t,m) is
C∞-smooth, from the results of Section 5.1 (see ω-lemma 5.2) it follows that
Ā(t, η) is also C∞-smooth.

Let a(t,m) be a vector field on M of Sobolev class Hs+1. Regard a(t,m) as
a tangent vector in the space TeDs(M). Denote by ā(t, η) the right-invariant
vector field on Ds(M) generated by this vector. By Theorem 5.4 the vector
field ā(t, η) is C1-smooth.

Thus on Ds(M) we can consider the following Itô stochastic differential
equation in Belopolskaya-Daletskii form

dξ̄(t) = expξ̄(t)

(
ā(t, ξ(t))dt + Ā(t, ξ(t))dw(t)

)
. (10.1)

Theorem 10.1 For every g ∈ Ds(M) equation (10.1) has a unique strong so-
lution ξ̄0,g(t) with initial condition ξ̄0,g(0) = g that exists for all t ∈ [0,+∞).

Proof. Define on Ds(M) the strong Riemannian metric (5.12). Let W be a
neighborhood of e in Ds(M) that is covered by the mapping expe according to
Theorem 5.10. Introduce in W a normal chart of the Levi-Civitá connection
of the weak Riemannian metric (5.1). The strong norm of the local connec-
tor Γ η(·, ·) for this connection in this chart, being the norm of a quadratic
operator, is a continuous function of the point η ∈ W and at e this function
equals zero since the connector itself equals zero. Hence, there exists an open
set U ⊂ W such that at every point of this set the above-mentioned norm
is less than any a priori given number C > 0. Since U is open, it contains
a ball Ve(r) centered at e of some radius r > 0 with respect to the strong
Riemannian distance on Ds(M) generated by the metric (5.12).

Now for every point η ∈ Ds(M) determine the chart in its neighborhood as
the right shift by η of the normal chart W. The existence of a local solution
ξ̄0,g(t) (up to the Markov time that Vg(r) first hits the boundary in the
chart at g, constructed above) follows from that fact that the coefficients of
equation (10.1) are smooth.

Since the metric (5.12) is right-invariant, the atlas, constructed by the
above-mentioned right shifts, is by construction a uniform Riemannian met-
ric for the strong metric (5.12). On the balls Vη(r) in the charts of this atlas,
the norm of the local connector Γ is bounded by C since the Levi-Civitá
connection of the weak metric (5.1) is right-invariant (Theorem 5.6). Clearly
the right-invariant Itô vector field (ā, Ā) on Ds

μ(T n) is bounded with respect
to the metric (5.12). Thus equation (10.1) satisfies the hypothesis of Theo-
rem 7.41. ��
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Denote ξ̄e(t) by ξ(t). From the fact that equation (10.1) is right-invariant
it follows that ξ̄g(t) = ξ(t) ◦ g. It is not hard to see that ξ(t) is a general
solution of the stochastic differential equation (7.23) on M . In other words,
for every m ∈ M the process ξ(t)(m) is a solution of (7.23) on M with the
initial condition m at t = 0.

Note that ξ(t) exists by Theorem 7.36 since M is compact and the field
(a,A) is smooth. However, the infinite-dimensional equation (10.1) gives
us additional information about the solution ξ(t): for ω ∈ Ω the mapping
ξ(t, ω) : M → M is a.s. an Hs-diffeomorphism.

An analogous construction can also be realized for equations in Stratono-
vich form. On Ds(M) consider the equation

dη̄(t) = ā(t, η(t))dt + Ā(t, η(t)) ◦ dw(t) (10.2)

with the same ā(t, η), Ā(t, η) and w(t) as in equation (10.1).

Theorem 10.2 For every g ∈ Ds(M), equation (10.2) has a unique strong
solution η̄0,g(t) with initial condition η̄0,g(0) = g that exists for all t ∈
[0, +∞).

The proof of Theorem 10.2 follows the same argument as that in The-
orem 10.1 with the following modification. In the normal chart W at e of
the Levi-Civitá connection of the weak metric (5.1) the strong norm of the
operator 1

2 trĀ′(t, η)(Ā(t, η)(·), ·) is a continuous function of η ∈ W. Let
‖1

2 trĀ′(t, e)(Ā(t, e)(·), ·)‖ < C. As U ⊂ W we take an open set such that
at each of its points ‖1

2 trĀ′(t, η)(Ā(t, η)(·), ·)‖ is less than the constant C.
The rest of the argument follows without modification.

The solution of (10.2), starting at time 0 from e, is the general solution of
the finite-dimensional equation (7.3).

The construction of the Itô vector field (ā, Ā) and of equation (10.2) on
Ds(M), generated by the Itô field (a,A) and equation (7.3) on the finite-
dimensional manifold M , is a version of a general construction due to K.D.
Elworthy (see [66]).

10.2 The Case of a Flat Torus

In the case where the Riemannian manifold M is a flat n-dimensional torus
T n (see Section 5.2) we can consider stochastic differential equations with a
special diffusion term. Equations with such a term will be used below in some
models of mathematical physics. It is also possible to introduce this type of
equation on the group Ds

μ(T n) of diffeomorphisms preserving the volume.
In this section we deal only with Itô equations in Belopolskaya-Daletskii

form. The transition to equations in Stratonovich form can be achieved by
analogy with that in the previous section.
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Let T n be an n-dimesional flat torus, i.e., the Riemannian metric 〈·, ·〉
on T n is inherited from R

n under factorization with respect to the integral
lattice.

Consider the group Ds(T n) of Hs-diffeomorphisms of the torus. Using the
flat metric 〈·, ·〉 on T n, introduce on Ds(T n) the weak Riemannian metric (·, ·)
by formula (5.1), the corresponding Levi-Civitá connection (5.2), its covariant
derivative ∇̄, the exponential mapping exp and the other geometric objects
as they were described in Sections 5.1 and 5.2.

Consider the mapping A from Definition 5.16(ii). It is clear that A is jointly
C∞-smooth in all variables and that for any given X ∈ R

n the vector field
A(X) on T n is constant (its coordinates with respect to the basis ∂

∂q1 , . . . , ∂
∂qn ,

mentioned in Remark 1.40, are constant). In particular this means that this
vector field is C∞-smooth and divergence-free (see Section 5.2).

Thus A generates the mapping Ā : Ds(T n) × R
n → TDs(T n) where Āe :

R
n → TeDs

μ(T n) ⊂ TeDs(T n) is given by the expression Āe(X) = A(X) and
for g ∈ Ds(T n) the mapping Āg : R

n → TgDs(T n) is constructed from A by
the right shift: Āg(X) = TRgĀe(X) = (A ◦ g)(X). Since A is C∞-smooth,
from Theorem 5.4 it follows that Ā is also jointly C∞-smooth in X ∈ R

n and
g ∈ Ds(T n), i.e., in particular, for all X ∈ R

n the right-invariant vector field
Ā(X) on Ds(T n) is C∞-smooth.

Let σ > 0 be a real number and a(t,m) be an Hα-vector field on T n

where t ∈ [0, l] and α > s is an integer. Denote by ā(t, g) the right invariant
vector field on Ds(T n) generated by a(t,m) as a vector of TeDs(T n). For the
above-mentioned α the smoothness of the field ā(t, g) is no coarser than C1.
The pair (ā, Ā) is an Itô vector field on Ds(T n).

Consider a Wiener process w(t) in R
n given on a probability space

(Ω,F , P). According to the description of stochastic differential equations on
Hilbert manifolds given at the end of Section 7.3, the Belopolskaya-Daletskii
approach is well-posed in this setting and we can consider on Ds(T n) the
stochastic differential equation of type (7.18) in the form:

dξ̄(t) = expξ̄(t)

(
ā(t, ξ̄(t))dt + σĀ(t, ξ̄(t))dw(t)

)
. (10.3)

Theorem 10.3 For every g ∈ Ds(T n) there exists a unique strong solution
ξ̄g(t) of (10.3) with initial condition ξ̄g(0) = g which is well-defined for all
t ∈ [0, l], where l > 0 is an arbitrary a priori specified real number.

Proof. Introduce the normal chart in a neghbourhood of e in Ds(T n) by ap-
plying exp. Note that at every point of this chart the local connector (5.2)
equals zero since the connection is generated by the Euclidean connection on
the torus T n. Take a strong right-invariant Riemannian metric on Ds(T n)
(say, generated by (5.12)). Since the above-mentioned normal chart is an open
set, there exists a real number r > 0 such that the ball Ve(r) (with radius
r with respect to the strong Riemannian distance on Ds(T n)) centered at
e is contained in this neighborhood. Then in a neighborhood of each point
g ∈ Ds(T n) we determine the chart by applying the right shift Rg to the
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ball Ve(r). In such a manner we obtain an atlas on Ds(T n) that is uniformly
Riemannian for the strong metric, and in the charts of this atlas the local con-
nectors of connection (5.2) equal zero since the connection is right-invariant
(see Theorem 5.6). By construction, the right-invariant Itô vector field (ā, σĀ)
is uniformly bounded with respect to the strong Riemannian metric. Thus
Theorem 7.41 can be applied to (10.3). ��

Denote ξ̄e(t) by ξ(t). From the fact that (10.3) is right-invariant, it follows
that ξ̄g(t) = ξ(t) ◦ g. It is not hard to see that ξ(t) is the general solution of
the following stochastic differential equation on T n:

dξ(t) = expξ(t)(a(t, ξ(t))dt + σAdw(t)). (10.4)

In other words, for every m ∈ T n the process ξ(t)(m) is a solution of (10.4)
on T n with initial condition m at t = 0.

Note that ξ(t) exists by Theorem 7.36, since T n is compact and the field
(ā, Ā) is smooth. However, as in the previous Section, the infinite-dimensional
equation (10.3) gives us additional information on the solution ξ(t): for ω ∈ Ω
the mapping ξ(t, ω) : T n → T n is a.s. an Hs-diffeomorphism of the torus T n.

Remark 10.4. In equations (10.3) and (10.4) we used the general notation
of Itô equations in Belopolskaya-Daletskii form. Nevertheless it should be
pointed out that since the connection on Ds(T n) is generated by the flat
connection on the torus, the corresponding exponential map is like that on a
linear space. So, without loss of generality we can employ the same notation
that is used for Itô equations in linear spaces. However, this is not the case for
equations on Ds

μ(T n) which we consider below. This is why it is sometimes
more convenient to to consider the latter equations as equations on Ds(T n)
subjected to the constraint β̄ obtained by right translations of TeDs

μ(T n) at
all points of Ds(T n), as introduced below in Section 16.2.

Theorem 10.5 Let σ > 0 be a real constant.

(i) For every ω ∈ Ω and t ∈ [0, l] the vector field A(σw(t, ω)) on T n, where
w(t) is a Wiener process in R

n, is divergence-free, i.e., A(σw(t)) is a
stochastic process in TeDs

μ(T n).

(ii) For every ω ∈ Ω and t ∈ [0, l] the mapping W
(σ)
ω (t) = expeA(σw(t, ω)) :

T n → T n is a volume-preserving Hs-diffeomorphism of T n, i.e.,
W (σ)(t) is a stochastic process in Ds

μ(T n).

Proof. Let ω ∈ Ω and t ∈ [0, l]. As mentioned above, the vector field
A(σw(t, ω)) on T n is constant (has constant coordinates with respect to
the basis ∂

∂q1 , . . . , ∂
∂qn ) and so it is C∞ and divergence-free. The mapping

W
(σ)
ω (t) sends m ∈ T n to expm A(w(t, ω)) where expm : TmT n → T n is the

exponential mapping of the flat torus T n. This means that every m is sent
to m + A(σw(t, ω)) = m + σw(t, ω) modulo factorization with respect to the
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integral lattice, i.e., all points of the torus T n under the mapping W
(σ)
ω (t)

carry out the same shift as that generated by the shift of the space R
n by

σw(t, ω). W
(σ)
ω (t) is clearly volume-preserving. ��

For ease of reference we highlight the formula for the action of the diffeo-
morphism W

(σ)
ω (t) on T n:

W (σ)
ω (t)(m) = m + σw(t, ω). (10.5)

Let a(t,m) be a divergence-free vector field on T n. In the rest of this
section we assume a(t,m) to be Hα-smooth where α > s. Thus the right
invariant vector field ā on the group Ds

μ(T n) of volume-preserving Hs-
diffeomorphisms of T n is at least C1-smooth (see Section 5.1). From Theorem
10.5(i) it follows that the mapping Ā can be restricted to Ds

μ(T n) and so we
can consider the restriction Ā : Ds

μ(T n) × R
n → TDs

μ(T n). In particular, Ā
sends the Wiener process w(t) on R

n to the tangent spaces to Ds
μ(T n).

Thus we can consider on Ds
μ(T n) the following stochastic differential equa-

tion
dξ̃(t) = ẽxpξ̃(t)

(
ā(t, ξ̃(t))dt + σĀ(ξ̃(t))dw(t)

)
, (10.6)

where ẽxp is the exponential mapping of the spray S on Ds
μ(T n) (see Sec-

tion 5.1) and σ > 0.

Theorem 10.6 For every g ∈ Ds
μ(T n) there exists a unique strong solution

ξ̃g(t) of (10.6) with initial condition ξ̃g(0) = g which is well-defined for all
t ∈ [0, l].

Proof. Introduce the strong Riemannian metric (5.11) on Ds
μ(T n). Recall

that this metric is right-invariant on Ds
μ(T n). Let W be a neighborhood of e

in Ds
μ(T n) which is covered by the mapping ẽxpe according to Theorem 5.10.

Consider the normal chart at e in W. The strong norm of the local connector
Γ η(·, ·), being a quadratic operator, is a continuous function of η ∈ W in
this chart. Moreover, at e we have Γ e(·, ·) = 0. Hence there exists an open
set U ⊂ W such that at each of its points the above-mentioned norm is less
than an a priori given constant C > 0. Since U is open, it contains the ball
Ve(r) centered at e and having some radius r > 0 with respect to the strong
Riemannian distance on Ds

μ(T n) generated by the metric (5.11).
Now we define a chart at a neighborhood of each point g ∈ Ds

μ(T n) by the
right shift of the normal chart W at g. The atlas constructed in this way is
obviously uniformly Riemannian for the strong metric (5.11). Moreover, on
the balls Vg(r) in the charts of this atlas the norm of the local connector Γ
of the Levi-Civitá connection of the metric (5.1) on Ds

μ(T n) is bounded by C
since the connection is right-invariant (Theorem 5.6). The right-invariant Itô
vector field (ā, Ā) on Ds

μ(T n) is bounded with respect to the right-invariant
metric (5.11). Thus, equation (10.6) satisfies the conditions of Theorem 7.41.

��
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Chapter 11

Newtonian Mechanics

11.1 A Geometric Language for Newtonian Mechanics

Let M be a finite-dimensional manifold. Recall that on the manifold TM
there is a vertical distribution V (a sub-bundle of the second tangent bundle
TTM) whose fibers consist of vectors tangent to the fibers of TM . The vectors
belonging to V are said to be vertical (see Section 2.1).

Definition 11.1. A 1-form on TM is said to be horizontal if it vanishes on
vertical vectors.

The horizontal 1-form α
(
t, (m, X)

)
∈ T ∗

(m,X)TM gives rise to a 1-form
α̃(t,m,X) ∈ T ∗

mM depending on X ∈ TmM via the formula

α̃(t,m,X)(Y ) = α (t, (m, X))
(
Tπ−1Y

∣
∣
T(m,X)TM

)
. (11.1)

We define a mechanical system to be the following collection of data:

1) a configuration space, i.e., a smooth manifold M ;
2) kinetic energy , i.e., a smooth function K on the tangent bundle TM ;
3) a force field , i.e., a horizontal 1-form α(t,m,X) on TM , which in general

is time-dependent.

The tangent space TM is called the coordinate-velocity phase space and
the cotangent space T ∗M is called the coordinate-momentum phase space (see
[134]). In what follows, we consider only mechanical systems with quadratic
kinetic energy, i.e., K(X) = 〈X,X〉/2, where X ∈ TM and 〈·, ·〉 is a Rieman-
nian metric on M .

Since α
(
t, (m, X)

)
is horizontal, the form α̃(t,m,X) is well-defined. For-

mula (11.1) gives a one-to-one correspondence between horizontal 1-forms
α
(
t, (m, X)

)
on TM and 1-forms α̃(t,m,X) on M . The latter will also be

called a force field.
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Let ᾱ(t,m,X) be the vector field on M (depending on X ∈ TmM) phys-
ically equivalent to the 1-form α̃(t,m,X) with respect to the Riemannian
metric 〈·, ·〉, which gives rise to the kinetic energy of the system. In other
words, 〈ᾱ(t,m,X), Y 〉 = α̃(t,m,X)(Y ) for any Y ∈ TmM .

Definition 11.2. A vector field a(t,m,X) where t ∈ R, m ∈ M and X ∈
TmM such that πa(t,m,X) = π(m, X) = m is called a vector force field.

One can easily see that ᾱ(t,m,X), as defined above, is an example of a
vector force field.

Remark 11.3. In the remainder of the book, with the exception of Chap-
ter 16, we shall consider only mechanical systems with a finite-dimensional
configuration space. The force fields are usually introduced as vector fields
and the passage to 1-forms is left to the reader as a simple exercise.

The motion of a mechanical system is governed by Newton’s second law,
i.e., the equation:

D
dt

ṁ(t) = ᾱ (t,m(t), ṁ(t)) , (11.2)

where D
dt is the covariant derivative of the Levi-Civitá connection of the metric

〈·, ·〉 (see Section 2.6). Recall also that a curve m(t) is a solution of (11.2) if
and only if the curve (m(t), ṁ(t)) in TM is an integral curve of the vector field

Z + ᾱ(t,m,X)l, (11.3)

where Z is the spray of the Levi-Civitá connection of 〈·, ·〉 and ᾱ(t,m,X)l is
the vertical lift of ᾱ(t,m,X) to the space V(m,X) ⊂ T(m,X)TM .

A curve m(t) on M is called a trajectory of the mechanical system if it is
a solution of (11.2). For any initial conditions m(0) = m0 and ṁ(0) = X0 ∈
Tm0M , there exists a trajectory m(t) on a sufficiently small interval of time
provided that, for example, α̃(t,m,X) satisfies the Carathéodory condition
[74]. To see this, observe that, since Z is smooth, the field (11.3) on TM sat-
isfies the Carathéodory condition and the local existence of a solution follows
from the classical existence theorem for ordinary differential equations. Below
we investigate the existence of trajectories for more general force fields (for
instance, in the case of a discontinuous force field, this question is related to
the passage from (11.2) to differential inclusions). Assume, for example, that
ᾱ(t,m,X) is locally Lipschitz. Then the trajectory is unique for any given
initial conditions.

The existence of trajectories on (−∞,∞) may be analyzed using the meth-
ods developed in Section 3.1. Let us point out that if the Riemannian metric
which gives rise to the kinetic energy is complete, then, by the Hopf-Rinow
theorem, the trajectories of the system with zero force field (i.e., geodesics)
are defined on (−∞,∞). From the physical point of view, this means that
a free particle in the system does not escape to infinity in finite time. Note
that the assumptions that the Riemannian metric is complete and that a
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solution of the Cauchy problem for trajectories is unique are easy to justify
for systems arising in physics. Here, however, we usually do not require in
advance that the solution should be unique.

The cotangent vector p physically equivalent to the velocity ṁ with respect
to the metric 〈·, ·〉 (i.e., where p = 〈ṁ, ·〉) is called the momentum of the
system. Consider the operator L : TM → T ∗M sending a vector X ∈ TmM
to the covector 〈X, ·〉 ∈ T ∗

mM . The operator L is called the inertia operator
(or the inertia tensor). In particular, p = L(ṁ). In terms of the inertia
operator, the kinetic energy of the system is given by the relation K(X) =(
L(X)

)
(X)/2.

The manifold M is often equipped with a canonical Riemannian metric
(·, ·) (e.g., the standard inner product in R

3), which is not related to the
metric 〈·, ·〉 giving rise to K. In this case, we may identify vectors and cov-
ectors by means of (·, ·). Then 〈X,Y 〉 = (LX,Y ) where L is a (1, 1)-tensor
field of self-adjoint linear operators in tangent spaces. L is also called the
inertia tensor; in fact this tensor is physically equivalent to L. Sometimes it
is convenient to define the kinetic energy not by the metric 〈·, ·〉 but by the
self-adjoint operator L : TM → TM once the canonical metric (·, ·) is given.

11.2 Mechanical Systems on Lie Groups

Consider a mechanical system which has a Lie group as the configuration
space with the kinetic energy given by a right- or left-invariant metric. We
shall call such a system a mechanical system on the group.

The best known example of a mechanical system on a group is the system
describing the motion of a rigid body which rotates about a stationary point
in R

3. It is easy to see that the configuration space of this system, i.e., the
set of all possible positions of the rigid body with a stationary point, is
the special orthogonal group SO(3). Choosing an orthonormal basis in R

3,
we may identify SO(3) with the group of all orthogonal matrices with unit
determinant. Recall that the Lie algebra so(3) of SO(3) at e = id is identified
with R

3 (see Section 1.2) so that after this identification, the Killing form
(A, B) = tr (A◦B) and the commutator [A, B] = A◦B−B◦A on so(3) become
the standard inner and vector products on R

3, respectively. The Riemannian
metric obtained from the Killing form by left translations turns out to be bi-
invariant. This metric is used as the canonical metric to express the kinetic
energy via the inertia tensor.

Let g(t) be a trajectory on SO(3) corresponding to the motion of the rigid
body. The velocity vector ġ(t) ∈ Tg(t)SO(3) can be translated to the algebra
so(3) = TeSO(3) (and so to R

3) in two different (and non-commuting) ways:
by left translation and by right translation (see Section 1.2). The vectors

ωc(t) = TL−1
g(t)ġ(t) and ωs(t) = TR

−1
g(t)ġ(t)

belong to so(3), which we have identified with the space R
3 where the body

moves (see above). The vector ωc is the angular velocity with respect to the
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body coordinates (i.e., the coordinate system “attached” to the body and
moving along with it) and the vector ωs is the angular velocity in the space
coordinates (i.e., with respect to a coordinate system fixed in space).

Let L : R
3 → R

3 be the inertia operator (tensor) of the rigid body. Recall
that L depends on the shape of the body and on the distribution of its mass.
The operator L is self-adjoint with respect to the standard inner product
on R

3. Let us define a new inner product 〈A, B〉e = (LA, B) on so(3). This
inner product gives rise to the left-invariant Riemannian metric 〈·, ·〉, which
determines the kinetic energy by the general formula K(X) = 〈X,X〉/2.
Note that the choice of the left-invariant metric is motivated by physics: the
kinetic energy depends on the angular velocity with respect to the body’s
coordinates, but not on the position of the body in space.
Remark 11.4. In Chapter 16 we consider a mechanical system on the
infinite-dimensional group of diffeomorphisms. This system describes the hy-
drodynamics of an ideal incompressible fluid and the energy is given by a
right-invariant (weak) Riemannian metric.

The classical Euler equation of motion of a rigid body (with a stationary
point) describes the time variation of the angular velocities ωc and ωs, as
well as the angular momenta Mc = L(ωc) and Ms = L(ωs). Thus, the Eu-
ler equation is an equation in the algebra so(3) or in the dual space so(3)∗.
Throughout this book, we adopt the following terminology of [47]. The equa-
tions in SO(3) are said to describe the motion in the material coordinates or
in the Lagrangian representation. The equations for ωs in so(3) are said to
be with respect to the space coordinates or in the Eulerian representation,
whereas the equations for ωc are in the body coordinates or in the convective
representation. Similar terminology is used for the corresponding angular
momenta equations.

Analogous terms are used to describe a mechanical system on an arbitrary
Lie group G. Thus, Newton’s equation on G is called the equation of motion in
the material coordinates (the Lagrangian representation). The corresponding
equation on the Lie algebra is called the Euler equation. If the equation
is obtained by right translations, then it is said to be with respect to the
space coordinates (the Eulerian representation), while for left translations it
is with respect to the body coordinates (the convective representation), etc.
This also applies to the so-called Eulerian and Lagrangian specifications in
hydrodynamics.

Mechanical systems on groups, especially the Euler equation on Lie alge-
bras, have been studied very intensively in the last few decades and there is a
substantial literature devoted to the subject. A detailed introduction to this
field may be found in Appendix 2 of [3].

11.3 Conservative Mechanical Systems

Definition 11.5. A mechanical system is called conservative if its force field
is independent of velocities (and is usually autonomous) and is equal to −dU ,
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the negative differential of a certain real function U on M which we call the
potential energy.

Thus the vector force field of a conservative mechanical system is −gradU
where the gradient is calculated with respect to a Riemannian metric defining
the kinetic energy, i.e., 〈X, grad U〉 = dU(X) for any vector field X on M .

For a conservative system Newton’s law (11.2) is transformed into

D
dt

ṁ(t) = −gradU . (11.4)

Recall that 〈X, gradU〉 = XU for any vector field X on M , where XU denotes
the derivative of the function U along the vector field X. In particular, for a
trajectory m(t) (i.e. a solution of (11.4)) this means that

d
dt

U(m(t)) = 〈ṁ, gradU〉. (11.5)

Recall also that the gradient of U depends both on U and on the Rieman-
nian metric 〈·, ·〉, i.e., on the form of the kinetic energy.

Now we can derive the principal laws of dynamics as theorems.
There is a notable difference in the definitions of kinetic and potential

energy: the kinetic energy is a function on TM (indeed, it assigns the value
1
2 〈X,X〉 to any vector X ∈ TM) while the potential energy is a function
on M . This is not convenient because, for example, we cannot sum these
functions. To overcome this obstacle we extend U to TM by the formula

U ◦ π : TM → R (11.6)

where π : TM → M is the natural projection.

Definition 11.6. The function E = K + U ◦ π : TM → R is called the total
energy .

Theorem 11.7 (Conservation of energy law). The total energy is con-
stant along any trajectory m(t) of a conservative mechanical system.

Proof. Since the Levi-Civitá connection is Riemannian, from (2.30) it follows
that d

dt 〈ṁ(t), ṁ(t)〉 = 〈 D
dtṁ(t), ṁ(t)〉 + 〈ṁ(t), D

dtṁ(t)〉 = 2〈 D
dtṁ(t), ṁ(t)〉.

Taking into account formula (11.5) we get

d
dt

E(m(t)) =
d
dt

(K(ṁ(t)) + U(m(t))) =
1
2

d
dt

〈ṁ(t), ṁ(t)〉 +
d
dt

U(m(t))

=
〈

D
dt

ṁ(t), ṁ(t)
〉

+ 〈grad U , ṁ(t)〉 .

Since by (11.4) D
dtṁ(t) = −grad U , we get d

dtE(m(t)) = 0. 	
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11.4 Hamilton’s Principle of Least Action

The Lagrangian of a natural mechanical system is the function L = K−U ◦π.
Let us recall some notions and formulae from the calculus of variations. A

function whose argument is a curve (for the sake of definiteness we assume
all curves to be parametrized by t in the interval t ∈ [0, T ]), not a point, is
(in the calculus of variations) called a functional .

The functional of action of the above-mentioned Lagrangian L is

A(m(t)) |T0 =
∫ T

0

L(m(t))dt =

T∫

0

(
1
2
〈ṁ(t), ṁ(t)〉 − U(m(t))

)

dt. (11.7)

We shall also deal with two more functionals: the functional of length
s(m(t)) =

∫ T

0
‖ṁ(t)‖dt =

∫ T

0

√
〈ṁ(t), ṁ(t)〉dt (cf. formula (1.19)) and the so-

called functional of action A0 (which is a particular case of (11.7) with U = 0)

A0(m(t)) =
∫ T

0

‖ṁ(t)‖2dt =
∫ T

0

〈ṁ(t), ṁ(t)〉dt. (11.8)

For a curve m(t) its variation m(t, s) is a smooth mapping from [0, T ] ×
(−ε, ε) into M such that m(t, 0) = m(t). The term “variation” refers to the
fact that by varying s, we vary the curve m(t), i.e. we obtain curves near to
it. As in Section 2.6 (see Lemma 2.57), we consider the vector fields ∂

∂t and
∂
∂s on the image of a variation. In particular, the field of vectors ∂

∂s along the
curve m(t) = m(t, 0) will be denoted by W (t) and called the field of variation.

Definition 11.8. A variation m(t, s) is called a variation with fixed end-
points if m(0, s) = const and m(T, s) = const for all s.

In particular, for a variation of a curve with fixed ends we have

∂

∂s
(0, s) = 0

∂

∂s
(T, s) = 0. (11.9)

The variation of a functional with respect to the variation of a curve is an
analog of the derivative of a function in ordinary analysis. It is denoted by
δ
ds . To find the variation of a functional one should substitute the variation of
the curve into the functional and differentiate the obtained expression with
respect to s at s = 0.

The extremal (an analog of the extremum) is a curve at which the variation
of the functional with respect to each variation of the curve equals zero. An
extremal with fixed end-points of a functional is a curve at which the variation
of the functional with respect to each variation of the curve with fixed ends
equals zero.

Lemma 11.9 The variation of the functional of action A0 at a smooth curve
m(t) with respect to the variation m(t, s) with fixed ends is equal to
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δ

ds
A0 = −2

∫ T

0

〈
D
dt

ṁ(t), W (t)
〉

dt, (11.10)

where W (t) is the field of variation m(t, s).

We refer the reader to [181] for a proof of Lemma 11.9. Note that in [181]
the variation is found in the class of piecewise smooth curves, from which
(11.10) follows as a particular case. This equation suffices for our purposes,
since the trajectories of mechanical systems are smooth.

Theorem 11.10 The geodesics of the Levi-Civitá connection, and only these
geodesics, are extremals with fixed ends of the functional of action A0.

Proof. Let m(t) be a geodesic, i.e., D
dtṁ(t) = 0. Then expression (11.10)

equals zero for any W (t). Thus the variation of A0 at m(t) equals zero with
respect to each variation of this curve with fixed ends. By definition this
means that m(t) is an extremal of A0 with fixed ends.

Let m(t) be an extremal with fixed ends, i.e., expression (11.10) equals zero
for each W (t). This can happen only if the second factor under the integral
is zero. Hence D

dtṁ(t) = 0 for all t, i.e., m(t) is a geodesic. 	


Theorem 11.11 The geodesics of the Levi-Civitá connection, and only these
geodesics, are extremals with fixed ends of the functional of length.

Proof. First we derive an analog of formula (11.10):

∂

∂s

∫ T

0

∥
∥
∥
∥

∂

∂t

∥
∥
∥
∥ dt|s=0 =

∂

∂s

∫ T

0

√〈
∂

∂t
,

∂

∂t

〉

dt|s=0

=
∫ T

0

∂

∂s

√〈
∂

∂t
,

∂

∂t

〉

dt|s=0

=
1
2

∫ T

0

∂
∂s

〈
∂
∂t ,

∂
∂t

〉

√〈
∂
∂t ,

∂
∂t

〉 dt|s=0.

Recall that the length (unlike the action A0) does not depend on the
parametrization. Hence we can change the parametrization t in the varia-

tion m(t, s) so that ‖ ∂
∂t (t, s)‖ =

√
〈 ∂

∂t ,
∂
∂t 〉 does not depend on t, i.e., is equal

to some constant C(s). Then ∂
∂s

∫ T

0
‖ ∂

∂t‖dt|s=0 = 1
2C(s)

∫ T

0
∂
∂s 〈

∂
∂t ,

∂
∂t 〉dt|s=0,

which differs from (11.10) only by the presence of the factor 1
2C(s) before the

integral. Thus the remaining argument coincides word-for-word with that of
the proof of Theorem 11.10. 	


So, unlike the straight lines of Euclidean spaces, the geodesics of the
Levi-Civitá connection realize only local minimums of length. In addition
we should mention that sometimes several geodesics can connect two points
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and yet it can happen that there exists no geodesic with length equal to
the Riemannian distance between those points. Conditions under which such
geodesics exist are given by the Hopf-Rinow Theorem (Theorem 3.68).

The next statement is often regarded as the central law of mechanics (see,
e.g., [171]).

Theorem 11.12 (Hamilton’s principle of least action). The trajecto-
ries of a natural mechanical system, and only these trajectories, are the ex-
tremals of the functional of action (11.7) with fixed ends.

Proof. The variation of A with respect to the variation m(t, s) of the curve
m(t), t ∈ [0, T ], is calculated as follows:

∂

∂s

∫ T

0

(
1
2
〈mt(t, s), mt(t, s)〉 − U(m(t, s))

)

dt|s=0

=
∂

∂s

∫ T

0

(
1
2
〈mt(t, s), mt(t, s)〉dt|w=0 −

∂

∂w

∫ T

0

U(m(t, s))

)

dt|s=0.

The first integral on the right-hand side here is one half of the variation of
the functional A0 and so we can substitute formula (11.9) divided by 2 for
its value. For the second integral we have:

∂

∂s

∫ T

0

U(m(t, s)))dt|s=0 =
∫ T

0

∂

∂s
U(m(t, s)))dt|s=0,

which is equal to
∫ t

0
〈grad U , ∂

∂sm(t, s)〉dt|s=0 by the definition of gradient.
Recall (see above) that ∂

∂wm(t, s)|s=0 is the field of variation denoted by
W (t). Thus, the formula of variation with fixed ends of A takes the form

−
∫ T

0

〈
D
dt

ṁ(t), W (t)
〉

dt −
∫ t

0

〈grad U , W (t)〉 dt. (11.11)

Now let m(t) be a trajectory, i.e., D
dtṁ(t) = −grad U by (11.4). In this

case, by (11.11) the variation of A is equal to zero for any W , i.e., m(t) is
an extremal. If (11.11) equals zero for every W (t), D

dtṁ(t) = −gradU and so
the extremal is a trajectory. 	


For conservative systems we also have the principle of least action in Mau-
pertuis form. According to this principle, trajectories with total energy h are
simply the geodesics of a new metric (the so-called Jacobi metric):

(h − U)〈·, ·〉. (11.12)

Note that the Jacobi metric (11.12) is Riemannian only when h > U
everywhere on M . Hence, in this case, the analysis of trajectories reduces
to the description of geodesics on M with the metric given by (11.12). If
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there are points where the value of U is greater than or equal to h, then the
trajectories lie in the domain Ωh =

{
m ∈ M

∣
∣ U(m) < h

}
called the domain

of possible motion (with boundary). The geometry of this domain has been
studied by many authors in connection with certain problems of mechanics.
Particularly active research in this area was initiated by the works of Kozlov.
In [169] the reader may find a detailed review of this subject.

Remark 11.13. A more complex case is where one has the so-called gyro-
scopic force in addition to the potential one. A gyroscopic force field has the
form α̃1(m, X) = ω(X, ·), where ω is a 2-form on M . (Recall that the 1-form
α̃1(m, X) takes the value ωm(X,Y ) on Y ∈ TmM .) Usually one assumes that
the form ω is closed or even exact. An example of a gyroscopic force is the ac-
tion of a magnetic field on a charge. Substantial progress in the study of such
systems was achieved by Novikov [193]. Another approach was developed in
[169].

11.5 Noether’s Theorem

Recall the following:

Definition 11.14. A non-constant smooth function on a manifold, on which
a differential equation is given, is called the first integral or an integral of
motion of the equation if it is constant along every solution of the equation.
Sometimes one says that the equation has a conservation law .

Examples of first integrals (conservation laws) are the Hamiltonian for a
Hamiltonian system (see Remark 3.69) and the total energy for a conservative
mechanical system (see Theorem 11.7).

In this section, for the case of conservative mechanical systems, we
prove one of the most important theorems in contemporary natural science,
Noether’s theorem, which gives a standard method of finding conservation
laws.

Definition 11.15. A one-parameter diffeomorphism group gs is a mapping
g : R × M → M , jointly smooth in all variables, for which the following
conditions are satisfied:

(i) for each s ∈ R the mapping gs : M → M is a diffeomorphism (i.e., gs

is one-to-one and smooth and g−1
s is also smooth);

(ii) for each m ∈ M and all s, u ∈ R the relation gs+u(m) = gs(gu(m))
holds (this relation is usually written as gs+u = gs ◦ gu).

From (ii) above it is clear that g0(m) = m for each m ∈ M and that
g−1

s = g−s.
Denote by g(m) the set of points obtained from m by the action of gs

for all s ∈ R; such a set is called a trajectory or orbit of the one-parameter
diffeomorphism group gs.
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For m ∈ M consider the vector Ym = d
dsgs(m)|s=0. Assigning, for each

m ∈ M , the vector Ym to the point m we obtain a smooth vector field Y on
M that is called the generator of the group gs. Note that the orbits of the
group, and only the orbits, are integral curves of its generator Y .

Recall that on a compact manifold M every smooth autonomous vector
field is a generator of a one-parameter diffeomorphism group that is the flow
of the vector field. In the general case of non-compact manifolds, a smooth
vector field is a generator of a one-parameter diffeomorphism group if the
flow is complete.

Definition 11.16. A group gs is said to preserve a non-constant function
f : M → R if f is constant along the orbits of gs.

It is clear that gs preserves a smooth function f if and only if for every
m ∈ M the relation d

dsf(gs(m))|s=0 = Y f |g=0 = 0 holds where Y is the
generator of gs.

Let gs be a one-parameter diffeomorphism group on M . Then it is easy to
see that Tgs is a one-parameter diffeomorphism group on the tangent bundle
TM where Tgs is the tangent mapping to gs. Let L = K − U ◦ π : TM → R
be the Lagrangian of a conservative mechanical system.

Definition 11.17. A one-parameter diffeomorphism group gs is said to pre-
serve the Lagrangian L if Tgs preserves L according to Definition 11.16.

Theorem 11.18 (E. Noether) Let on the configuration space M of a con-
servative mechanical system with Lagrangian L = K − U ◦ π there be a one-
parameter diffeomorphism group gs that preserves the Lagrangian L. Then
this system has a conservation law.

Proof. Consider a trajectory m(t) of the mechanical system for t ∈ [0, l].
Recall that m(t) satisfies Newton’s second law (11.4). Applying the diffeo-
morphisms in gs, for s ∈ (−ε, ε), to m(t), we obtain the set N = gsm(t) in
M as the image of the mapping m : [0, l] × (−ε, ε) → M , m(t, s) = gsm(t).
Consider the vector fields ∂

∂t = ∂
∂tm(t, s) and ∂

∂s = ∂
∂sm(t, s) on N . It is clear

that ∂
∂s coincides with the generator Y of the group gs.

Lemma 11.19 For any given s∗ ∈ (−ε, ε) the curve m(t, s∗) is a trajectory
of the mechanical system.

Proof. [of Lemma 11.19] By Hamilton’s principle of least action (Theo-
rem 11.12) the trajectory m(t) is an extremal with fixed ends of the ac-
tion functional with Lagrangian L. Since gs preserves L, the values of the
action functional on the curves under the action of gs are preserved. Thus
m(t, s∗) = gs∗γ(t) is also an extremal, i.e., it is a trajectory of the mechanical
system. 	
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By the hypothesis, gs preserves the Lagrangian L, i.e., for all t the value
L(m(t, s)) = K( ∂

∂t ) − U(m(t, s)) is constant in s, i.e.,

∂

∂s
L(m(t, s)) =

∂

∂s
K

(
∂

∂t

)

− ∂

∂s
U(m(t, s)) = 0.

Taking into account the definition of K, formula (2.29) defining the notion of a
Riemannian connection and Lemma 2.57 on the second covariant derivative
(recall that they are both valid for the Levi-Civitá connection), we obtain
that ∂

∂sK( ∂
∂t ) = ∂

∂s
1
2 〈

∂
∂t ,

∂
∂s 〉 = 〈∇ ∂

∂s

∂
∂t ,

∂
∂t 〉 = 〈∇ ∂

∂t

∂
∂s , ∂

∂t 〉.
Applying consequently formula (11.5), Newton’s second law (11.4) and

Remark 2.27 we obtain

∂

∂s
U(m(t, s)) = dU

(
∂

∂s

)

=
〈

∂

∂s
, grad U

〉

= −
〈

∂

∂s
,
D
dt

∂

∂t

〉

= −
〈

∂

∂s
,∇ ∂

∂t

∂

∂t

〉

.

Thus

0 =
∂

∂s
L(m(t, s)) =

〈

∇ ∂
∂t

∂

∂s
,

∂

∂t

〉

+
〈

∂

∂s
,∇ ∂

∂t

∂

∂t

〉

.

By formula (2.29) this expression equals ∂
∂t 〈

∂
∂s , ∂

∂t 〉. Hence, ∂
∂t 〈

∂
∂s , ∂

∂t 〉 = 0,
i.e., 〈 ∂

∂s , ∂
∂t 〉 is constant in t.

We have shown that along every trajectory m(t) of the mechanical system
the product 〈Y, ṁ〉 is constant where ṁ is the velocity vector of the trajectory
and Y is the generator of the one-parameter diffeomorphism group gs. 	


As the first application of Noether’s theorem we prove the momentum
conservation law for some special systems.This law is not as universal as the
conservation of energy law since it is not valid for all conservative systems.

Consider the motion of two material particles in R
3. Let x be the vector

in R
3 corresponding to the first particle and y the vector corresponding to

the second particle. It is clear that the system’s state at a given time is
described by the pair x, y of vectors in R

3, i.e., the configuration space is
R

6 = R
3 × R

3. We allow the particles to be located at the same point R
3

(otherwise the configuration space would have the form (R3 × R
3)\ where

 is the diagonal set {(x, y) ∈ R
3 × R

3|x = y}).
The kinetic energy here is the sum of the kinetic energies of both particles.

It depends only on the velocities and does not depend on the positions of the
particles. This situation is natural for Euclidean spaces, where it is possible
to translate the vectors along the space.

Suppose that the force depends only on the distance between the par-
ticles and does not depend on the positions of the particles (this situation
occurs, for example, in Newton’s law of gravitation and in Coulomb’s law in
electrostatics). Denote the force by ᾱ(t, x1 − y1, x2 − y2, x3 − y3). It is clear
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that the Euclidean distance in R
3 is a function of the differences of the same

coordinates.
Suppose in addition that the force field ᾱ(t, x1 − y1, x2 − y2, x3 − y3) =

−grad U(x1 − y1, x2 − y2, x3 − y3) where U is a smooth real-valued function
on R

3.
Consider on the configuration space R

6 of this system the one-parameter
diffeomorphism group of the form

gs(x1, x2, x3, y1, y2, y3) = (x1 + s, x2, x3, y1 + s, y2, y3).

Diffeomorphisms of this group do not change the differences x1 −y1, x2 −y2,
x3 − y3. For this reason, and since U and K do not depend on the location
of a point in configuration space, this group preserves the Lagrangian. The
generator takes the form ∂

∂x1 + ∂
∂y1 , and by Noether’s theorem the system has

a conservation law of the form 〈 ∂
∂x1 + ∂

∂y1 , ṁ〉 = m1ẋ
1 + m2ẏ

1. Notice that
m1ẋ

1 +m2ẏ
1 is the first coordinate of the complete momentum of the system

that by definition (see [3]) equals m1ẋ+m2ẏ where m1 and m2 are the masses
of the particles. By analogy, introducing the one-parameter diffeomorphism
groups by adding t to the other coordinates of particles, we obtain that the
other coordinates of the complete momentum are also integrals of motion.
This means that the complete momentum of the system is preserved.

There is another example where a one-parameter diffeomorphism group
preserves the Lagrangian. This is a mechanical system on a group such that
the Riemannian metric defining the kinetic energy is left-invariant and the
force equals zero. For the system of a rigid body with stationary point (see
Section 11.2) the conservation law that arises here, by Noether’s theorem, is
known as the conservation law of angular momentum. In Section 16.3 below
we present the proof of an analogous fact on an infinite-dimensional group
of diffeomorphisms that has a hydrodynamical interpretation, as well as a
certain infinite-dimensional version of Noether’s theorem.

Remark 11.20. Taking into account Noether’s theorem, it is possible to
derive the energy conservation law from the fact that both the potential and
kinetic energies of a conservative mechanical system do not depend on time,
i.e., they are preserved under shifts in t of the form t + s.

11.6 Geometric Mechanics with Linear Constraints

This section is an introduction to the modern geometric approach to me-
chanics with constraints, which goes back to the paper [71] by Faddeev and
Vershik. (See also [224, 225, 226] and the bibliography therein.) Here we focus
on systems with quadratic kinetic energy, as in previous sections, and linear
constraints only. Note that the papers mentioned above are devoted to La-
grangian mechanics with more general Lagrangians and possibly non-linear
constraints.
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11.6.1 The notion of a linear mechanical constraint

Consider a mechanical system, in the sense of Section 11.1, on a configuration
space M .

Definition 11.21. A linear constraint in the system is a smooth distribution
(i.e., a sub-bundle of the tangent bundle) β on M in the sense of Defini-
tion 1.41.

In what follows we call a linear constraint simply a constraint.

Definition 11.22. A tangent vector is called admissible if it lies in the distri-
bution β. A curve in M is admissible if all its tangent vectors are admissible.

A constraint β imposes a restriction on the motion of the system: all its
trajectories must be admissible.

Let P : TM → β be the operator of orthogonal projection (with respect to
the Riemannian metric on M that determines the kinetic energy) of tangent
spaces onto their subspaces β, i.e., we have Pm : TmM → βm for every m ∈
M . Let us define the reduced covariant derivative ∇̄a on admissible vectors by
the formula ∇̄XY = P∇XY , where ∇ is the covariant derivative of the Levi-
Civitá connection. Denote by D̄

dt = P D
dt the reduced covariant derivative along

a curve. Let ᾱ(t,m,X) be the vector force field of the mechanical system.
The equation of motion of the mechanical system with the constraint β is
the following analog of Newton’s equation:

D̄
dt

ṁ(t) = Pᾱ(t,m, ṁ). (11.13)

In the same way as for (11.2) and (3.17), one may show that a curve m(t)
is a solution of (11.13) if and only if its derivative ṁ(t), regarded as a curve
in the total space of the bundle β, is an integral curve of the vector field

Y = TP (Z) +
(
Pᾱ(t,m, ṁ)

)l
. (11.14)

It is not hard to see that TπY (m, X) = X ∈ βm and Y ∈ T(m,X)β.
If the distribution β is involutory (i.e., integrable, by Frobenius’ Theo-

rem 1.44), then the constraint is said to be holonomic, and (11.13) turns into
Newton’s equation (11.2) on the integral manifolds of the distribution. Thus,
a system with a holonomic constraint reduces to one with no constraint on a
manifold of lower dimension.

When the distribution β fails to be involutory (i.e., it is not integrable), the
constraint is called non-holonomic. In this case, some extra effort is needed
to study the mechanical system.

Definition 11.23. A constraint β is totally non-holonomic if the Lie brackets
of the admissible vector fields generate the entire Lie algebra of vector fields
on M .
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Remark 11.24. One may introduce the notion of the degree of non-
holonomity [225], which we do not consider here. Note also that linear con-
straints are admissible and ideal in the sense of [224].

11.6.2 Reduced connections

Consider the orthonormal frame bundle π̄ : Oβ(M) → M of β (i.e., b ∈ Oβ
m

is an orthonormal frame in βm). It is clear that Oβ(M) is a principal bundle
with structure group O(k), k = dim βm.

Theorem 11.25 The reduced covariant derivative ∇̄ has all four properties
of the regular covariant derivative described in Theorem 2.24.

Proof. Since the operator P is linear on the fibers of TM , only the fourth
property deserves a proof. For admissible X, Y and a smooth function f , we
have

∇̄X(fY ) = P∇X(fY ) = P
(
f∇XY + (Xf)Y

)
= f∇̄XY + (Xf)Y,

because PY = Y . 	


Thus, ∇̄ is the covariant derivative on admissible vectors and, in particular,
it gives rise to the parallel translation of admissible vectors along admissible
curves. The definition of such a parallel translation is quite similar to the
standard one. Since P is orthogonal, it is clear that the parallel translation
preserves the inner product on fibers of β and (2.29) holds for ∇̄. Therefore,
on the fibers of β, the parallel translation of orthonormal frames is defined
along admissible curves. Consider now the sub-bundle H̄ of TOβ(M), which
is defined as follows. The fiber of H̄ over a point (m, b) ∈ Oβ(M) is formed
by “infinitesimal” parallel translations of the frame b. It is easy to check that
the sub-bundle is invariant with respect to the right action of O(k) and the
fibers of H̄ have zero intersection with the vertical subspaces V̄(m,b). Thus,
H̄ can be thought of as an analog of a connection.

Definition 11.26. The sub-bundle H̄ is called the reduced connection.

Remark 11.27. If the constraint is holonomic, the reduced connection is the
Levi-Civitá connection on the integral manifolds with respect to the induced
Riemannian metric. (Compare the construction of the reduced connection
with that of the connection on the adapted frame bundle [161].)

Theorem 11.28 Let X1, X2, . . . , Xk be orthonormal admissible vector fields
in a chart U (i.e., at every m ∈ U the vector fields X1, . . . , Xk form an

orthonormal basis in βm). Then ∇̄XiXj =
◦
Γ l

ijXl, where
◦
Γ l

ij are the tetrad
Christoffel symbols (see Remarks 2.37 and 2.56) taken for an orthonormal
frame in U which contains X1, . . . , Xk as a subframe.



11.6 Geometric Mechanics with Linear Constraints 269

The result follows from Remark 2.56.

Corollary 11.29 The reduced connection of a non-holonomic constraint de-
pends on the Riemannian metric on the entire manifold M rather than only
on the restriction of the metric to β.

Remark 11.30. A variety of open problems concerning reduced connections,
as well as their additional properties, is discussed in, e.g., [224]. Here we only
point out that the torsion tensor of a reduced connection cannot be defined
in the standard way. The reason is that even though the Christoffel symbols
of the reduced connection are symmetric by definition, the difference

∇̄XY − ∇̄Y X − [X,Y ] = P
(
[X,Y ]

)
− [X,Y ]

is zero only if the distribution is involutory.

11.6.3 Length minimizing and least constrained
non-holonomic geodesics

Let β be a non-holonomic constraint on M .

Definition 11.31. An admissible curve m(t) in M is called a least con-
strained non-holonomic geodesic if it satisfies the equation

D̄
dt

ṁ(t) = 0.

It is clear that the least constrained geodesics are, in fact, trajectories of
constrained mechanical systems with a zero force field. Definition 11.31 is
analogous to the standard definition of geodesics of a connection.

Definition 11.32. An admissible curve m(t) is a length minimizing non-
holonomic geodesic if it is an extremum of the action functional

∫ T

0

〈
ṁ(t), ṁ(t)

〉
dt,

an analog of the functional A0, see (11.8), on the space of admissible curves
with fixed end-points (for simplicity of presentation we consider the curves
parametrized by the interval [0,T] as in (11.8)).

For a non-holonomic constraint, the notions of least constrained and length
minimizing geodesics are not equivalent. Moreover, if the constraint is non-
holonomic, the equation of the least constrained geodesics is not equivalent to
any variational principle, even if the force is conservative (cf. Theorem 11.12).
A more detailed discussion of this matter can be found, for example, in [224].
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Remark 11.33. The two notions of geodesics we discuss here are due to
Heinrich Hertz, who was apparently the first to notice that Newton’s equation
and the variational principle become non-equivalent to each other for a system
with constraint [224, 225].

Theorem 11.34 (Chow-Rashevsky, see [225, 226]). Let a constraint β be
totally non-holonomic. Then for any two points m0, m1 ∈ M , there exists an
admissible curve which joins m0 and m1.

Corollary 11.35 (see [226]) Let a constraint be totally non-holonomic. Then
any two points in M can be joined by a length minimizing non-holonomic
geodesic.

Remark 11.36. The differential equation of length minimizing geodesics
(see, e.g, [225]) involves admissible vectors as well as their annihilators (i.e.,
vectors in TM orthogonal to β). Therefore, once the beginning m0 ∈ M
of a length minimizing geodesics is specified, the space of initial conditions
has dimension n. Thus, as mentioned above, if the constraint is totally non-
holonomic, length minimizing geodesics (beginning at m0) fill the entire man-
ifold M . This question is discussed in more detail in [225, 226].

Theorem 11.37 On a complete Riemannian manifold, the reduced con-
nection is complete in the sense that all non-holonomic least constrained
geodesics extend to (−∞,∞).

Indeed, since the Riemannian norm of all “velocity vectors” of a least con-
strained geodesic is constant, the Riemannian length of the curve is bounded
on every finite interval. Thus, the arc of the geodesic taken over a finite in-
terval is relatively compact because the manifold is complete. This, in turn,
means that the geodesic extends to (−∞,∞).

Corollary 11.38 (see [224]) Let the constraint β on M be totally non-
holonomic. Then any two points of M can be joined by a piecewise least
constrained geodesic.

Remark 11.39. The corollary is sharp: two generic points in M cannot be
joined by a least constrained geodesic even if the constraint is totally non-
holonomic. The equation of least constrained geodesics is a second order
differential equation on the total space of the bundle β. (The equation is
given by the vector field TP (Z) from (11.14).) Thus, the space of initial
conditions of least constrained geodesics starting at a given point m0 ∈ M
has dimension k = dimβm and the geodesics cannot fill the entire manifold
M .

In the contemporary mathematical literature the study of least-constraint
geodesics (or, more generally, of solutions of equations of type (11.13))
is called non-holonomic dynamics while the study of length minimizing
geodesics (or more generally, of variational problems with non-holonomic con-
straints) is called vakonomic dynamics.
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Remark 11.40. We should draw the reader’s attention to the paper [37]
where some geometric fundamentals of non-holonomic and vakonomic dy-
namics are investigated. For non-holonomic dynamics a certain invariant,
the torsion of a special extension of a reduced connection, is found such
that if it equals zero, the distribution β of the constraint is integrable. If
the orthogonal complements to βm form an integrable distribution, a (local)
Ehresmann connection is constructed whose torsion characterizes the vako-
nomic dynamics. If this characteristic equal zero, the distribution β is also
integrable.

Remark 11.41. We refer the reader to [107, Section 16] where stochastic
differential equations in Belopolskaya-Daletskii form with constraints are in-
troduced. The main idea is to use the exponential mapping of the reduced
connection instead of the general exponent to get a constrained analog of
the equations from Section 7.3. The constrained analogs of stochastic inte-
gral operators and the equations of Section 7.7 are also presented in [107,
Section 16]. In their construction the parallel translation with respect to the
reduced connection along the corresponding stochastic processes is applied.
Note that the constrained Belopolskaya-Daletskii and integral approaches to
SDEs with constraint have to be applied even for constraint equations in R

n,
assuming of course that the constraint is not trivial (i.e., does not consists of
subspaces parallel to each other).

11.7 Mechanical Systems with Discontinuous Forces and
Systems with Control. Differential Inclusions

Consider a mechanical system with a discontinuous force field. Such fields
appear, for example, in systems with dry friction, switching, or with motion
in several media having different resistance forces. When the configuration
space is linear, the following method is often used to study systems with
a discontinuous force. First, one extends the discontinuous force field to a
set-valued vector field with convex images. Then one passes from (11.2) to a
differential inclusion whose solutions are trajectories of the system (see [74]).
This approach in linear space is knows as Filippov’s method . In this section,
we develop a similar method for non-linear configuration spaces [165].

The equation of motion of a mechanical system with feedback control may
also be reduced to a differential inclusion. In this case, the set-valued force,
a subset in every tangent space, is formed by all values of the force for all
possible values of the controlling parameter at a given point.

The requisite notions and results on set-valued mappings we use here can
be found in Chapter 4.

Consider a locally bounded vector field f on a finite-dimensional manifold
M . The vector field f is not assumed to be continuous, nor even measurable.
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For each point m0, let us define a subset R(m0) of Tm0M as follows. The
set R(m0) is formed by the limits of all sequences f(mk) as mk → m0 with
mk �= m0. It is easy to see that

R(m0) =
⋂

ε>0

{

cl

[(
⋃

m∈Uε

f(m)

)

\ f(m0)

]}

,

where Uε is the ε-neighborhood of the point m0 and cl denotes the closure.

Definition 11.42. The set F (m0) = coR(m0) ⊂ Tm0M , where co denotes
the convex hull, is called the essential extension of the field f at m0.

Definition 11.43. A set-valued map f : R × TM � TM such that for any
point (m, X) ∈ TM (meaning that X ∈ TmM , i.e., X is a tangent vector
to M at the point m ∈ M) the relation πf(t,m,X) = π(m, X) = m holds
is called a set-valued vector force field (cf. the Definition 11.2 of vector force
fields).

The essential extension F is a set-valued mapping which assigns a subset
of Tm0M to m0 ∈ M . One can easily see that F is a set-valued vector field.
Note that F = f if f is continuous.

Theorem 11.44 The set-valued vector field F is upper semicontinuous.

Proof. Let δ > 0 be a real number. Fix a metric ρ on TM which gives
rise to a topology equivalent to that on the tangent bundle. Denote the δ-
neighborhoods of R(m0) and F (m0) by R

δ(m0) and F δ(m0), respectively. We
prove that for any δ and any m ∈ M , there exists a neighborhood U(m) ⊂ M
of m such that R(m′) ⊂ R

δ(m) for every m′ ∈ U(m) and, therefore, F (m′) ⊂
F δ(m).

By the definition of the set R(m), there exists a neighborhood U(m) of
m such that for all m′ ∈ U(m) we have ρ(f(m′), R(m)) < δ. Then there
exists an open neighborhood V (m′) ⊂ U(m) of the point m′ such that the
inequality ρ

(
f(m′′), R(m′)

)
< δ is satisfied for every m′′ ∈ V (m′). Pick a

sequence m′′
k → m′ in V (m′). We have

lim ρ
(
f(m′′

k), R(m)
)

= ρ lim
(
f(m′′

k), R(m)
)

< δ .

Hence, R(m′) ⊂ R
δ(m) and F (m′) ⊂ F δ(m). 	


Now consider a mechanical system with configuration space M and kinetic
energy K(X) = 〈X,X〉/2, where 〈·, ·〉 is the Riemannian metric on M . Let
ᾱ(t,m,X) be a force field that we require only to be locally bounded in
all variables. (As above, we do not assume that ᾱ is continuous or even
measurable.) Consider the vector field Z(m, X) + ᾱ(t,m,X)l (i.e., a second
order differential equation on M ; see Section 3.3), where Z is the geodesic
spray of the Levi-Civitá connection of 〈·, ·〉 and ᾱ(t,m,X)l is the vertical lift
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of ᾱ(t,m,X) to the point (m, X) ∈ TM (see (4.3)). It is easy to see that
the essential extension (with respect to all variables) of Z(m, X)+ ᾱ(t,m,X)
may be written in the form

Z(m, X) + a(t,m,X)l, (11.15)

where a(t,m,X)l is the vertical lift of the essential extension a(t,m,X) of
ᾱ(t,m,X) to the point (m, X). Note that a(t,m,X) = coQ(t,m,X), where
Q(t,m,X) is the set of limit points of all sequences ᾱ(tk, mk, Xk) such that
(tk, mk, Xk) → (t,m,X), Xk ∈ Tmk

M , and (tk, mk, Xk) �= (t,m,X).
From now on, we focus on the differential inclusion in TM given by the

formula
γ̇(t) ∈ Z (γ(t)) + a (t, γ(t))l

. (11.16)

Definition 11.45. A solution of (11.16) is an absolutely continuous curve
γ(t) in TM which almost everywhere satisfies (11.16).

Alternatively, making use of covariant derivatives, we consider the follow-
ing differential inclusion on M :

D
dt

ṁ(t) ∈ a (t,m(t), ṁ(t)) . (11.17)

Definition 11.46. A solution of (11.17) is a C1-curve m(t) in M such that
ṁ(t) is absolutely continuous and (11.17) is almost everywhere satisfied.

Taking into account (11.15) and the definition of D
dt , it is easy to check

that (11.16) and (11.17) are equivalent. More precisely, this means that m(t)
is a solution of (11.17) if and only if ṁ(t), regarded as a curve in TM , is a
solution of (11.16).

Definition 11.47. A solution of (11.17) is called a trajectory of the mechan-
ical system with discontinuous force field ā.

It is easy to see that Definition 11.47 is justified from the physical point
of view. As mentioned above, for a flat configuration space the reasons for
supporting the definition are discussed, for example, in [74].

The right-hand side of (11.16) is an upper semicontinuous set-valued vector
field with convex images. This implies that locally there exists a solution
of the Cauchy problem for (11.16) (see Chapter 4). Thus, for any initial
conditions m ∈ M and X ∈ TmM , inclusion (11.17) has a solution on a
sufficiently small interval.

Note that an interesting question for applications in physics is whether or
not the local solution of (11.17) is unique. Certain uniqueness conditions are
found in [74].

Another class of mechanical systems involving inclusions like (11.17) is
the class of mechanical systems with feedback control. Let the force field
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ᾱ(t,m,X, u) depend on the parameter u ∈ U . We define the set-valued vector
field a(t,m,X) on TM as

a(t,m,X) =
⋃

u∈U

ᾱ(t,m,X, u).

Now we have to assume that this field is upper semicontinuous and has closed
convex images. The solution of (11.17) is a trajectory of the control system for
a time-dependent control u(t). Let us point out that, since the configuration
space is non-linear, we cannot assume the control force to be independent of
time, coordinates or velocity, as is usually the case for linear spaces. Some
very particular examples where such an assumption does make sense will be
considered in Section 11.9 and in Chapter 12.

Note that in systems with control the inclusions of type (11.17) with lower
semicontinuous a can also arise. Let us consider an example of such an inclu-
sion.

Consider a set-valued bounded and Hausdorff continuous vector force field
a(t,m,X) with convex closed values.

Definition 11.48. A point a of a convex set a is called extreme if there does
not exist an open interval of a straight line in a that contains a. Denote
by Ext a(t,m,X) the set-valued vector force field whose values at all points
(t,m,X) consist of extreme points of a(t,m,X).

Lemma 11.49 For a set-valued bounded Hausdorff continuous vector force
field a(t,m,X) with convex closed values the set-valued vector force field
Ext a(t,m,X) is lower semicontinuous.

Lemma 11.49 is a well-known statement from set-valued analysis. A proof
can be found in [222, Lemma 2.1.1] and in [48, Proposition 6.2]. Note that
Ext a(t,m,X) is bounded and may not have convex values.

Definition 11.50. We say that a trajectory m(t) of a mechanical system
with Hausdorff continuous vector force field a(t,m,X) occurs under ex-
tremal values of controlling force if almost everywhere D

dtṁ(t) belongs to
Ext a(t,m(t), ṁ(t)).

Thus for a mechanical system with control given by (11.17), with set valued
vector force field as above, the problem of the existence of solutions that
occurs under extremal values of controlling force is reduced to the differential
inclusion

D
dt

ṁ(t) ∈ Ext a(t,m(t), ṁ(t)) (11.18)

with a lower semicontinuous right-hand side having non-convex values.
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11.8 Integral Equations of Geometric Mechanics. The
Velocity Hodograph

In this chapter we use the integral operators with parallel translation in-
troduced in Section 3.2 to find integral equations equivalent to Newton’s
equation of geometric mechanics (see Section 11.1). One of these equations
describes the velocity hodograph in the sense of [217]. This is an ordinary
integral equation in a specified tangent space. We also introduce analogous
integral equations for a system with constraint. Our approach is based on the
results of [88, 90, 94, 98].

Integral versions of Newton’s equation and, in particular, the equation of
the velocity hodograph turn out to be useful in the study of certain qualita-
tive problems concerning the behavior of mechanical systems, for example,
the existence of special trajectories. It is important to emphasize that the
equation of the velocity hodograph is an integral equation in a linear space,
and therefore standard methods may be applied to study it. Integral equa-
tions are used in Chapter 12 and also in Chapters 14 and 15 where we work
with versions of integral equations for random force fields.

11.8.1 General constructions

Consider a mechanical system as in Section 11.1. We assume here that the
Riemannian metric 〈·, ·〉 is complete (and so a trajectory of a free particle can-
not escape to infinity in finite time) and that the vector force field ᾱ(t,m,X)
is jointly continuous in all variables. The case of discontinuous force fields
will be studied in Chapter 12.

Since the metric is complete, we can use the operator S introduced in
Section 3.2

Let Γᾱ
(
t,m(t), ṁ(t)

)
denote the curve in Tm0M such that the vector

Γ ᾱ(t,m(t), ṁ(t)) is parallel to ᾱ(t,m(t), ṁ(t)) along m(·) for every t. Specify
a point m0 ∈ M and a vector C in Tm(0)M and consider the integral equation

m(t) = S
(∫ t

0

Γ ᾱ (τ, m(τ), ṁ(τ)) dτ + C

)

(11.19)

on I = [0, l].

Theorem 11.51 The solutions of (11.2) with the initial conditions m(0) =
m0 and ṁ(0) = C coincide with the solutions of (11.19).

Proof. It is easy to show that for a given v ∈ C0(I, Tm0M), the C2-curve

m(t) = S
(∫ t

0

v(τ) dτ + C

)
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is the only one satisfying the conditions m(0) = m0, ṁ(0) = C and such
that for every t ∈ I the vector D

dtṁ(t) is parallel to v(t) along m(·). To see
this, let for some t ∈ I the curve m̄(·) in Tm(t)M be obtained by the parallel
translation of ṁ to the point m(t). Then, by Theorem 2.32 we have

d
dτ

m̄(t + τ)|τ=0 =
D
dt

ṁ(t).

It is clear that the vector
∫ t

0
v(τ) dτ +C ∈ Tm0 is parallel to m̄(t) along m(·).

In other words, the vector D
dtṁ(t) is parallel to v(t) along m(·). Let us set

v(t) = Γ ᾱ
(
t,m(t)ṁ(t)

)
. Then (11.19) means that the vector D

dtṁ(t) can be
obtained by transporting ᾱ (t,m(t), ṁ(t)) ∈ Tm(t)M along m(·) first to the
point m0 = m(0) and then back to m(t). The theorem follows. 	


Let m(t), t ∈ I, be a trajectory of the mechanical system, i.e., a solution
of (11.2).

Definition 11.52. The velocity hodograph of the trajectory m(t) is the curve
v : I → Tm(0)M such that v(t) is parallel to ṁ(t) along m(·).

It is not hard to see that the velocity hodograph of a solution of (11.19)
satisfies the equation

v(t) =
∫ t

0

Γ ᾱ

(

τ,Sv(τ),
d
dτ

Sv(τ)
)

dτ + C, (11.20)

It is clear that if v is a solution of (11.20), then Sv is a solution of (11.19),
i.e., by Theorem 11.51, a trajectory of the mechanical system.

Remark 11.53. The notion of a velocity hodograph in the sense of Defini-
tion 11.52 was introduced by Synge in [217] where analogs of the standard
properties of the hodograph were proved for some mechanical systems (see
also [218]). The hodograph equation (11.20) originally appeared in [88].

Remark 11.54. If we have a mechanical system on a group, then it is natural
to pick the initial condition m(0) = e. Thus, (11.20) becomes an equation in
the Lie algebra similar to the Euler equation in the body or space coordinates.
All three equations are equivalent to Newton’s equation on the configuration
space. However, for an arbitrary configuration space, (11.20) is the only one
among these three that makes sense.

Let us denote the operator which sends v ∈ C0(I, Tm0M) to

∫ t

0

Γ ᾱ

(

τ,Sv(τ),
d
dτ

Sv(τ)
)

dτ + C ∈ C0(I, Tm0M)

by
∫

Γ ◦ ᾱ ◦ SC .
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Theorem 11.55 The operator
∫

Γ ◦ ᾱ ◦ SC : C0(I, Tm0M) → C0(I, Tm0M)

is completely continuous.

Proof. Since S, ᾱ and Γ are continuous, so is the operator. Let UK be the ball
in C0(I, Tm0M) of radius K centered at the origin. Because ᾱ is continuous,
Theorem 3.46 and Lemma 3.53 imply that

(∫
Γ ◦ ᾱ ◦ SC

)
(UK) is compact.

	


11.8.2 An integral formalism of geometric mechanics
with constraints

Let the configuration space M be a complete Riemannian manifold equipped
with a constraint β, which may be non-holonomic (Section 11.6). To develop
an adequate integral formalism, we use parallel translation of admissible vec-
tors along admissible curves. Such a parallel translation arises from the re-
duced connection H̄.

Let m(t), t ∈ I, be an admissible C1-curve and X(t,m) an admissible
vector field on M . Denote by ΓβX

(
t,m(t)

)
the curve in βm(0) such that the

vector X (t,m(t)) at m(0) is parallel to ΓβX (t,m(t)) along m(·) under the
reduced connection. The properties of the operator Γβ are similar to those
of Γ studied in Section 3.2.2.

As in Section 11.6.2 consider the orthonormal frame bundle π̄ : Oβ(M) →
M of β (i.e., b ∈ Oβ

m is an orthonormal frame in βm).
Consider the map Ē : Oβ ×R

k → H̄, k = dimβm, defined by the formula
Ēb(X) = Tπ−1(bX) |H̄b

, where b ∈ Oβ
m(M) is regarded as an orthogonal

operator from R
k to βm (cf. Definition 2.68 of basic vector fields in the non-

holonomic case). It is easy to see that Ē is smooth and fiber-wise linear.
Let v(t) be a continuous curve in βm0

. Fix b0 ∈ Oβm0
(M) and consider the

time-dependent vector field Ē
(
b−1
0 v(t)

)
on Oβ(M). By definition, this vector

field is smooth in b for a fixed t and continuous in t for a fixed b ∈ Oβ(M).
Hence, for this vector field, the Cauchy problem has a solution. As above, it
is easy to show that the integral curves of Ē

(
b−1
0 v(t)

)
extend to the entire

interval I = [0, l]. Consider the integral curve b0(t) beginning at b0 and its
projection Sβv(t) = π̄b0(t). It is clear that Sβv(·) is an admissible curve and,
in addition, for every t ∈ I the vector d

dtSβv(t) is parallel to v(t) along Sβv(·)
with respect to the reduced connection H̄.

The following result can be proved in the same way as Theorem 3.56.

Theorem 11.56 Let X(t,m) be an admissible vector field which is jointly
continuous in all its variables. An admissible curve m(t) is an integral curve
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of X(t,m) if and only if it satisfies the equation

m(t) = Sβ ◦ ΓβX (t,m(t)) . (11.21)

Theorem 11.57 A continuous curve v(t) ⊂ βm0 is a solution of the equation
v(t) = ΓβX

(
t,Sβv(t)

)
if and only if Sβv(t) satisfies (11.21).

The operators Sβ, Γβ and their compositions have the same compactness
and continuity properties as the integral operators from Section 3.2.

Now consider the integral equation

m(t) = Sβ

(∫ t

0

ΓβPᾱ (τ, m(τ), ṁ(τ)) dτ + C

)

, (11.22)

where C is a vector in βm0
. Taking into account the relationship between

parallel translations and covariant derivatives, we get the following result.

Theorem 11.58 An admissible curve with the initial conditions m(0) = m0

and ṁ(0) = C satisfies (11.13) (i.e., m(·) is a trajectory of the system with
the constraint β) if and only if it is a solution of (11.22).

It is clear that the equation of the velocity hodograph of a solution of
(11.22) is

v(t) =
∫ t

0

ΓβPᾱ

(

τ,Sβv(τ),
d
dτ

Sβv(τ)
)

dτ + C (11.23)

on the space of continuous curves in βm0
.

Remark 11.59. We emphasize that even if M is the Euclidean space R
n,

the integral operators considered in this subsection (e.g., Sβ, Sβ ◦ Γ β , etc.)
cannot be reduced to their classical analogs (antiderivatives, the Urysohn-
Volterra operator, etc.) unless the distribution β is trivial, i.e., all the spaces
βm are parallel (in the Euclidean sense) to β0 ⊂ T0R

n = R
n.

11.9 Mechanical Interpretation of Parallel Translation
and Systems with Delayed Control Forces

In this section, following [91, 92, 93, 94], we study a certain type of differential
equation with delay on Riemannian manifolds. In these equations one of
the terms on the right-hand side is obtained by parallel translation to the
corresponding point along a solution. The equations are analogous to those
differential equations on Euclidean space with discrete delay or where the
right-hand side depends only on time. Our analysis of the equations in terms
of geometric mechanics is based on the mechanical interpretation of parallel
translation.
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The mechanical interpretation of Riemannian parallel translation was dis-
covered by Johann Radon and described by Blaschke in [159]. A similar idea
was independently used by Synge [217] in order to define the hodograph for
a geometric mechanical system. (See Remark 11.53.)

Radon proved that for a pendulum moving in the configuration space of a
mechanical system, the direction of oscillation is a parallel translation along
its trajectory. In other words, the coordinate system attached to a gyroscope
(e.g., the stationary system for a flat configuration space) is parallel along a
trajectory.

Consider the motion of a mechanical system with a force field ᾱ and a
“control” force Φ. The latter depends on time, the velocity and on the co-
ordinates of the point. Faithfully modeling the delays that occur in real life
systems, Φ acts after time h. The equation of motion of such a system is as
follows:

D
dt

ṁ(t) = ᾱ (t,m(t), ṁ(t)) +
∥
∥Φ (t − h,m(t − h), ṁ(t − h)) , (11.24)

where
∥
∥ denotes the Riemannian parallel translation along the solution.

Similarly, one may consider the evolution of a system with a velocity field
V and delayed control “velocity” W , i.e., a system given by the equation

ṁ(t) = V (t,m(t)) +
∥
∥W (t − h,m(t − h)) . (11.25)

If M is a Euclidean space, (11.24) and (11.25) are quite simple differential
equations with discrete constant delay [4]. However, if M is not flat, (11.24)
and (11.25) have much more complex properties.

First, since the parallel translation is defined along C1-curves and depends
on a curve and its derivative, (11.25) is an equation of neutral type [4].

Secondly, the first order equation corresponding to (11.24) has distributed
delay. The reason is that if M is not flat, the parallel translations of a vertical
vector in TM do not necessarily coincide with the lift of the parallel trans-
lation in M . (Here the manifold TM is equipped with the standard metric
arising from the metric on M .)

Finally, note that the first order equation, which is equivalent to (11.24)
and thus, as we have just explained, has distributed delay, is again an equation
of neutral type on TM because the right hand side is neither continuous in
the C0-topology nor defined on arbitrary curves.

Let φ : [−h, 0] → M be a C1-curve.

Definition 11.60. A continuous curve m(·) : [−h, ε) → M , ε > 0 is a so-
lution of (11.24) (respectively, (11.25)) on the interval [−h, ε) with initial
condition φ if m(·) is C1-smooth on (0, ε), coincides with φ on [−h, 0], and
satisfies (11.24) (respectively, (11.25)) on [ 0, ε).

It is useful to first analyze the particular cases of (11.24) and (11.25) where
the control force depends on time only. These mechanical systems are given
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by the equations

D
dt

ṁ(t) = ᾱ (t,m(t), ṁ(t)) +
∥
∥Φ(t) (11.26)

ṁ(t) = V (t,m(t)) +
∥
∥W (t) (11.27)

In this case Φ and W take values in the tangent space to M at the initial
point m0.

It is essential that (11.24) and (11.25) can be reduced to (11.26)
and (11.27), respectively. To see this, specify an initial condition φ ∈
C1([−h, 0], M) and consider the following Tφ(0)M -valued functions of θ ∈
[−h, 0]: Φ(θ) = ‖Φ(θ +h, φ(θ +h), φ̇(θ +h)) and W (θ) = ‖W (θ +h, φ(θ +h)).
Let t = θ+h. It is clear that the solutions of (11.26) and (11.27) with control
forces Φ(t) and W (t) coincide with those of (11.24) and (11.25), respectively.

Note that the equations above make sense only if their solutions are C1-
smooth, for the parallel translation is not defined otherwise.

Theorem 11.61 Let V (t,m) be a continuous vector field on M and W (t) a
continuous curve in Tm0M . Then:

(i) equation (11.27) has a local C1-solution;
(ii) the solution is unique provided that for any t ∈ I the field V (t,m) is

locally Lipschitz continuous in m.

Proof. Let O(M) be the orthonormal frame bundle over M and H the
Levi-Civitá connection on O(M). The tangent map of the natural projec-
tion π : O(M) → M induces the isomorphism Tπ : Hb → TπbM at ev-
ery point b ∈ O(M). Hence, at every b ∈ O(M), we obtain the vector
Tπ−1V (t, πb) ∈ Hb ⊂ TbO(M). These vectors form a horizontal vector field
on O(M) (i.e., belonging to H).

Let O be an orthonormal frame in Tm0M . The frame O gives rise to the
isomorphism O : R

n → Tm0M and, therefore, we have a horizontal time-
dependent basic vector field E(O−1W (t)) on O(M) (see Definition 2.68).

Consider the vector field Ṽ (t, b) = Tπ−1V (t, πb)+E(O−1W (t)) on O(M).
By the existence theorem for ordinary differential equations, this vector field
has an integral curve γ∗, γ∗(0) = O, defined on the interval [ 0, ε). Since
the vector field Ṽ is horizontal, the frame γ∗(t) is parallel to O along γ =
πγ∗ for every t ∈ [ 0, ε). By definition, we have γ̇∗(t) = Tπ−1[V (t, γ(t)) +
γ∗(t)(O−1W (t))], where the last term is the vector with coordinates O−1W (t)
in the basis γ∗(t). Hence, γ̇(t) = V (t, γ(t)) + γ∗(t)O−1(W (t)). Furthermore,
by the definition of parallel translation, the last term is parallel to W (t) along
γ(·). This means that γ(t) is a solution of (11.27).

Note that the field E
(
O−1W (t)

)
is smooth in b for a fixed t. If V (t,m) is

locally Lipschitz in m (for every fixed t), then Ṽ is locally Lipschitz in b and
the resulting solution is unique. 	
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Corollary 11.62 Assume that the fields V (t,m) and W (t,m) are jointly
continuous in all variables. Then for any C1-initial condition φ : [−h, 0] →
M , there exists a solution of (11.25). The solution is unique if V is locally
Lipschitz in m for any fixed t.

Theorem 11.63 Assume that the field ᾱ satisfies the Carathéodory condi-
tion (see, e.g., [74]) and Φ(t) is an integrable function with values in Tm0M .
Then for any initial condition C ∈ Tm0M :

(i) equation (11.26) has a local C1-smooth solution;
(ii) the solution is unique if ᾱ is locally Lipschitz continuous for all t.

Proof. Consider the direct product O(M) × R
n, n = dim M , equipped with

the right action of O(n) given by the formula (b, x)g = (bg, g−1x), where
b ∈ O(M), x ∈ R

n and g ∈ O(n). The quotient space of O(M) × R
n under

the right action can be naturally identified with TM . We denote the natural
projection O(M) × R

n → TM by λ (see Section 2.7 and Notation 1.36).
Let (b, x) ∈ O(M)×R

n. It is easy to see that Tλ induces an isomorphism
of Hb ∈ TbO(M) with the horizontal space in Tλ(b,x)TM and an isomorphism
of Vx = TxR

n with the vertical space Vλ(b,x). (Recall that the latter is the
tangent space to TπbM , where π : O(M) → M is the natural projection.)

Pick an orthonormal basis O in Tm0M and define the function O−1Φ(t)
with values in R

n to be the coordinates of Φ(t) with respect to the basis O.
As in the proof of Theorem 11.61, the function gives rise to the horizontal
vector field E(O−1Φ(t)) on O(M). We see that any basis b ∈ O(M) gives
rise to a vector TπEb(O−1Φ(t)) in the tangent space TπbM .

Consider the vector fields A, B, and C on O(M) × R
n such that for any

(b, x) ∈ O(M)×R
n we have A(b,x) = Tλ−1Zλ(b,x) ∈ Hb, where Z is the spray

of the Levi-Civitá connection on M and

B(b,x)(t) = Tλ−1 (ᾱ (t, π̄λ(b, x), λ(b, x))) ∈ Vx,

C(b,x)(t) = Tλ−1
(
TπEb

(
O−1Φ(t)

))
∈ Vx.

By definition, A is a smooth field. Since ᾱ satisfies the Carathéodory con-
dition, so does B(t). By the hypothesis of the Theorem, the field C(t) is
smooth on O(M) × R

n for every fixed t and is measurable in t for any fixed
(b, x). Therefore, the field A+B(t)+C(t) satisfies the hypothesis of the clas-
sical theorem which guarantees the existence of a local solution of the Cauchy
problem. Furthermore, if ᾱ is locally Lipschitz in t, then the hypothesis of the
uniqueness theorem is also satisfied (see [62], Theorems 1 and 2 of Section 1).
Note that local solutions are, by construction, absolutely continuous curves.

Let (b(t), x(t)) be the local solution with initial condition (O,O−1C). The
curve λ(b(t), x(t)) is absolutely continuous in TM and, hence, the tangent
vector

Y (t) = Tλ (A + B(t) + C(t)) = Zλ(b(t),x(t)) + Tλ (B(t) + C(t))λ(b(t),x(t))
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exists for almost all t. The vector Zλ(b(t),x(t)) belongs to the connection and
both vectors Tλ(B(t))λ(b(t),x(t)) and Tλ(C(t))λ(b(t),x(t)) are in the vertical
subspace. Hence, TπY (t) = TπZ. On the other hand, since Z is the spray,
T π̄Zλ(b(t),x(t)) = λ(b(t), x(t)). As one can easily see, this means that the curve
λ(b(t), x(t)) in TM has the form (γ(t), γ̇(t)), where γ(t) = πλ(b(t), x(t)) is a
C1-curve. In particular, the parallel translation is defined along γ.

By definition, the projection of (b(t), x(t)) to O(m) is horizontal, and so
b(t) is a parallel frame field along γ. Hence, for every t the vector Tλ(C(t)) ∈
Tγ(t)M is parallel to Φ(t) along γ. Taking into account the definition of the
covariant derivative, we see that γ satisfies (11.26). It is clear that γ(0) = m0

and γ̇(0) = C. 	


Corollary 11.64 Assume that ᾱ satisfies the Carathéodory condition and
Φ(t,m,X) is jointly measurable in all variables. Then for any C1-curve
φ : [−h, 0] → M , there exists a local solution of (11.24) with initial condi-
tion φ provided that ‖Φ(t, φ(t), φ̇(t))‖ is integrable on [−h, 0]. If for every
fixed t the vector field ᾱ is locally Lipschitz in (m, X), then the solution is
unique.

Theorem 11.65 Let the Riemannian metric 〈·, ·〉 be complete. Assume also
that for some point m0 ∈ M the inequalities ‖ᾱ(t,m,X)‖ ≤ Ψ(t)L(ρ(m0, m))
and, respectively, ‖V (t,m)‖ ≤ Ψ(t)L(ρ(m0, m)) hold where the function L is
defined in Section 3.1.4 and satisfies (3.16), ρ is the Riemannian distance
on M , and Ψ is a positive function integrable on finite intervals. Then the
solutions of (11.24) and (11.25), respectively, are defined on [−h,∞).

Proof. Without loss of generality we may assume that inf L = C > 0. (Oth-
erwise, we simply replace L by L + C.) Let us rewrite (11.24) and (11.25)
in their equivalent forms (11.26) and (11.27), respectively, and consider the
complete Riemannian metric 〈·, ·〉∗ introduced in Section 3.1.4. In this metric,
‖V (t,m)‖∗ ≤ Ψ(t). The norm of W (t) with respect to 〈·, ·〉, being a continu-
ous function, is bounded on [−h, 0] by a constant K > 0. It is easy to show
that any local solution m(t) of (11.27) satisfies the inequality

‖ṁ(t)‖ < Ψ(t) +
K

C
,

where the norm ‖ · ‖ is taken with respect to 〈 , 〉. Thus, m(t) extends to
[−h, h]. Covering any given interval I by intervals of length h, one can prove
that the solution extends to I. For (11.24) the proof is similar. 	


We conclude this section by noting that the shift operators along solutions
of (11.24), (11.25) and some other neutral type equations were studied in
[28, 91, 92, 93]. The existence of fixed points of these operators (i.e., periodic
solutions for a periodic right-hand side) was proved by the methods of [28, 33].



Chapter 12

Accessible Points and Sub-Manifolds
of Mechanical Systems. Controllability

12.1 Discussion of the Problem

In this chapter we study the question of whether or not two points m0 and
m1 in the configuration space of a mechanical system can be connected by
a trajectory. It is known (see, e.g., [144]) that for a second order differential
equation (i.e., in particular, for Newton’s law) on Euclidean space such a
trajectory exists provided that the right-hand side of the differential equation
is bounded and continuous. More precisely, for any two points m0 and m1

and any interval [a, b], there exists a solution m(t) such that m(a) = m0

and m(b) = m1. When the right-hand side is linearly bounded, some similar
results are known for small time intervals.

Note that if the right-hand side is quadratic in velocity, even in R
n there

may be pairs of points that cannot be connected by a solution. In Section 12.2
we give a simple example of this phenomenon.

The situation becomes much more complicated for a non-linear configura-
tion space. In Section 12.2, we illustrate this with four examples of mechanical
systems on the two-dimensional sphere. In the first example, the force field
is smooth and independent of time and velocity (and so it is bounded). How-
ever, none of the trajectories beginning at the South Pole reach the North
Pole. In the second example, the force field is still bounded, autonomous, and
smooth but now depends on the velocity. In this case there is no trajectory
connecting any two antipodal points on the sphere. In the third example, we
consider a gyroscopic force on S2 (hence, the force field is linear in velocity).
The behavior of trajectories in this system turns out to be quite similar to
the second example. The same behavior occurs in the fourth example where
the force field is quadratic in velocity.

There is a deep geometric reason for the difference in the behavior of
trajectories on flat and “curved” configuration spaces. The points on a sphere
in the above-mentioned examples are conjugate along all geodesics joining
them. Since in the flat case conjugate points are absent, this is not true in R

n.
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Below we show that if the force field on a complete Riemannian manifold
has less than quadratic growth in velocity, then for any two points m0 and
m1, there exists a trajectory joining m0 and m1 provided that the points
are not conjugate along some geodesic. This is true only for a small enough
time interval, even if the force field is uniformly bounded (however, we show
that from our construction it follows that for uniformly bounded forces on flat
configuration spaces the required solution exists on every finite time interval).
For force fields quadratic in velocity we find a geometric condition on the
distance between points (not conjugate along at least one geodesic), and
conditions on the geometry of the manifold and on the right-hand side of the
equation, under which the solution, joining the points, exists at least on a
small enough time interval. In fact the existence of the required trajectory in
the case of less than quadratic growth follows from the fact that the latter
case always satisfies the above-mentioned condition. We also find a subclass
of systems with quadratic growth for which, under the above condition, the
solution exists on every finite time interval.

Besides its mechanical interpretation, the problem where the force is quad-
ratic in velocity is important since it is a generalization of the well-known
classical question which asks whether it is possible to join two given points in
a manifold by a geodesic curve of a certain connection (see, e.g., [161]). Recall
(see Theorem 2.36) that if ∇ and ∇̄ are covariant derivatives of two different
connections on a manifold M , there exists a (1, 2)-tensor field S(·, ·) on M
such that for any two vector fields X and Y on M the equality ∇̄XY =
∇XY + S(X,Y ) holds. From this it follows that in terms of the covariant
derivative ∇ the geodesics of the connection ∇̄ are always described by an
equation of the form

D
dt

ṁ(t) = α(m(t), ṁ(t)), (12.1)

where α(m, X) = Sm(X,X) is a vector field on M that is quadratic in X ∈
TmM at any point m ∈ M .

For the Levi-Civitá connection on a complete Riemannian manifold the
existence of a geodesic joining any two points m0 and m1 follows from the
Hopf-Rinow theorem (Theorem 3.68). However this is not the case in general,
even for a Riemannian connection with non-zero torsion: in [20, 85, 140] ex-
amples of Riemannian connections are presented for which this problem is not
solvable (in particular, on a compact manifold, the two-dimensional torus).

We consider the general case of systems with discontinuous forces or forces
with control, i.e., whose Newton law is described by differential inclusion
(11.17) (see Section 11.7). The results for continuous single-valued forces
(i.e., for equations of the form (11.2)) follow as simple corollaries. The inter-
pretation of set-valued forces as forces with control allows us to investigate
the so-called controllability problem, i.e., the problem of whether there exists
a time-dependent control under which a trajectory of a mechanical system
starting at a given point m0 can reach another point m1 of the configuration
space.
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We also consider the problem for constrained systems. In this case we look
for a solution that connects a given point and a certain submanifold.

The method of investigation is based on the use of integral operators with
parallel translation and the velocity hodograph equation (see Section 11.8).

Below, in Section 13.2, we apply the machinery developed in this Chapter
to the investigation of geodesics of some connections on Lorentz manifolds.

The two-point boundary value problem for (11.17) and (11.2) with non-
conjugate points has been investigated under various conditions more re-
strictive than ours. For equation (11.2) (i.e., for single-valued force fields)
its solvability was shown by the author for continuous force fields in [88]
(bounded case) and in [101] (for linear growth in X), by E. Yakovlev, e.g., in
[232], for smooth force fields under some complicated conditions and by V.
Ginzburg in [85] for smooth force fields with less than quadratic growth in X.
The solvability of this problem for inclusion (11.17) has been demonstrated
for set-valued force fields of several types (B. Gel’man and Y. Gliklikh [80],
Y. Gliklikh and A. Obukhovskĭı [124, 125], M. Kisielewicz [158], etc.) but
only in the uniformly bounded case.

Here we follow our joint work with P. Zykov [131, 133]. Note that in [241]
P. Zykov found some conditions for the solvability of the problem in cases
where the right-hand sides have greater than quadratic growth in velocity
(see Remarks 12.22 and 12.26).

12.2 Examples of Points that Cannot be Connected by a
Trajectory

Example 12.1. Let X = (x, y) ∈ R
2 and let a > 0 be a real number; denote

the norm in R
2 by ‖ · ‖. In R

2 consider the following system of type (2):
{

ẍ(t) = −a‖Ẋ‖ẏ
ÿ(t) = a‖Ẋ‖ẋ

with initial conditions X(0) = 0, Ẋ(0) = X0. Since here the vectors Ẋ and
Ẍ are orthogonal to each other along the solution, ‖Ẋ‖ is constant. Let
‖X0‖ = C and represent the vector X0 in the form X0 = C(− sin ϕ0, cos ϕ0).
Then the solution of the above-mentioned Cauchy problem takes the form
x(t) = 1

a cos(Cat + ϕ0) − 1
a cos ϕ0, y(t) = 1

a sin(Cat + ϕ0) − 1
a sin ϕ0. Hence

any solution is a circle of radius 1
a and it does not leave the disc of radius 2

a
centered at the initial point. We should emphasize that the radius decreases
as a increases.

Example 12.2. [90, 94]. Consider the mechanical system on the unit sphere
S2 in R

3 with the force field ᾱ(r̄) = (−y, x, 0), where r̄ = (x, y, z) ∈ S2. The
motion of the system is given by the following equations in R

3:

¨̄r = ᾱ(r̄) − 2K · r̄
or, equivalently,
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ẍ = −y − 2K · x,

ÿ = x − 2K · y, (12.2)
z̈ = −2K · z.

where
K = ‖ ˙̄r‖2/2 = (ẋ2 + ẏ2 + ż2)/2

is the kinetic energy. To obtain these equations, one applies d’Alembert’s
principle (see, e.g., [190]) to the holonomic constraint F (r̄) = x2 + y2 + z2.

Denote the North and South Pole of the sphere by N = (0, 0, 1) and
S = (0, 0,−1), respectively. Let r̄(t) =

(
x(t), y(t), z(t)

)
be the trajectory of

the system such that r̄(t0) = S for some t0 and ˙̄r(t0) = V �= 0. Note that if
V = 0, then r̄(t) ≡ S. It is clear that V ∈ TSS2 must have the form (X,Y, 0).
We claim that the kinetic energy increases along r̄(t) until r̄ hits the North
or South Pole. By (12.2) we have

K̇ (r̄(t)) = ẋy + ẏx and K̈ (r̄(t)) = x2 + y2.

Note also that K̇(r̄(t0)) = 0. This means that K̇(r̄(t)) > 0, unless r̄(t) = S
or r̄(t) = N . In fact, the derivative K̇(r̄(t)) is also increasing. Since K̇(N) =
K̇(S) = 0, we have K̇(r̄(t)) �= N for any t > t0.

To clarify the geometric picture, consider the function z(t) = z(r̄(t)). Let
t1 > t0 be such that ż(t1) = 0 and z(t) is increasing on [t0, t1]. The last
equation in (12.2) implies that z(t1) > 0 and, as a consequence, z̈(t1) < 0,
i.e., z(t1) is a local maximum of z(t). Since K is increasing along r̄(t), we see
that z(t1) < 1. In the same way, one may show that

signz(ti) = (−1)i+1 and |z(ti)| > |z(ti+1)|

for all points t1 < t2 < . . . such that ż(ti) = 0.
Therefore the trajectory r̄(t) heads to the equator of S2 and oscillates near

it. In particular, the trajectory never reaches the point N = (0, 0, 1).

Example 12.3. Let us replace the field ᾱ in the system of Example 12.2 by
the force field

Ω (r̄, ˙̄r) =
[ ˙̄r, r̄]

1 + ‖ ˙̄r‖ ,

where [·, ·] is the vector product in R
3. The equation of motion of the me-

chanical system is as follows:

¨̄r = Ω (r̄, ˙̄r) − 2K · r̄. (12.3)

A straightforward calculation shows that

K̇ = (Ω (r̄, ˙̄r) , ˙̄r) − 2K · (r̄, ˙̄r) = 0
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along a solution of (12.3) (i.e., the force is always orthogonal to the velocity)
and ˙̄b = 0, where

b̄ = [ ˙̄r, ¨̄r] = −‖ ˙̄r‖2 · r̄
1 + ‖ ˙̄r‖ −

∥
∥ ˙̄r

∥
∥2·

[
˙̄r, r̄

]
.

Therefore, the kinetic energy K = ‖ ˙̄r‖2
/2 is constant along the trajectory

r(t) and r(t) lies in the plane orthogonal to the constant vector b̄. In other
words, the trajectory is the circle

(
r̄(t), b̄

)
= const on S2. Assume that there

is a trajectory passing through two antipodal points. Then it must be a great
circle on S2 and, therefore,

(
r̄(t), b̄

)
= 0.

Let α be the angle between r̄(t) and b̄. A straightforward calculation (based
on the explicit formulas for ‖b̄‖ and (r̄(t), b̄) and on the equality ‖r̄(t)‖ ≡ 1)
shows that

cos α =
φ (‖ ˙̄r‖)
‖ ˙̄r‖2

,

where φ : [ 0,∞) → R is a bounded function. Hence, (r̄(t), b̄) tends to zero
as K → ∞, assuming non-zero values only. This means that there is no
trajectory in the system passing through two antipodal points. Note also that
any two points which are not antipodal can be connected by a trajectory with
sufficiently high kinetic energy.

Example 12.4. Replace the force Ω (r̄, ˙̄r) of the preceding example by the
gyroscopic force A(r̄, ˙̄r) = [ ˙̄r, r̄]. The equation of motion of the new system is

¨̄r = [ ˙̄r, r̄] − 2K ˙̄r.

The analysis of this example is quite similar to that of Example 2. First, we
prove that K̇ = 0 and ˙̄b = 0, where b̄ = [ ˙̄r, ¨̄r]. This implies that the trajectory
lies in the plane orthogonal to b̄. If the trajectory were a great circle, so that
(r̄, b̄) = 0, then this would give us the equality [r̄, ˙̄r] = 0, which is impossible.

The author is grateful to Evgenii I. Yakovlev for pointing out Exam-
ple 12.4.

Example 12.5. Replace the force Ω (r̄, ˙̄r) of the preceding example by

α (r̄, ˙̄r) = [r̄ , ˙̄r] ‖ ˙̄r‖ .

By d’Alembert’s principle, as above, the equation of motion with a constraint
takes the form: ¨̄r = [r̄ , ˙̄r] ‖ ˙̄r‖ − 2T r̄ where the kinetic energy T = 1

2
˙̄r2. Since

the acceleration is everywhere orthogonal to the velocity, it is obvious that
Ṫ = 0. Then, as above, we prove that ˙̄b = 0 for b̄ = [ ˙̄r, ¨̄r]. Direct calculations
yield ˙̄b = 0. This means that any trajectory satisfies the relation (b̄, r̄) = const
(the parentheses denote the inner product in R

3), i.e., it is a circle on the
sphere that also lies in a plane orthogonal to the constant vector b̄. Antipodal
points are joined by a great circle, i.e., (b̄, r̄) = 0. From this we get the equality
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for the mixed product (r̄, ˙̄r, ¨̄r) = 0, which is impossible. Thus antipodal points
on the sphere cannot be connected by a trajectory.

12.3 Existence of Solutions

In the examples of Section 12.2, the points which could not be connected
by a trajectory were conjugate along all geodesics of the Levi-Civitá connec-
tion. In this section, we prove that if two points are not conjugate along a
geodesic, then there exists a trajectory joining the points if the force has less
than quadratic growth in velocity, or quadratic growth under some additional
assumption. We consider the general case where the force field ᾱ(t,m,X) is
discontinuous or includes a control parameter (see Section 11.7.) Thus the
trajectories are, in fact, solutions of the differential inclusion (11.17) with a
set-valued vector force field a(t,m,X) which can be either upper or lower
semicontinuous and has convex closed values. This general result yields, as a
simple corollary, the existence of such a trajectory for a mechanical system
with continuous ᾱ [88, 90]. The case of bounded force, which is a special
case of force with sub-quadratic growth in velocity, has many specific conse-
quences.

The requisite definitions from set-valued analysis can be found in Sec-
tion 4.1.

We start with the following technical statement.

Lemma 12.6 Let a real number δ satisfy the inequality 0 < δ < ε
(ε+C)2 .

Then there exists a sufficiently small positive number ϕ such that (εt−1
1 −ϕ) >

0 and the inequality δ((εt−1
1 − ϕ) + Ct−1

1 )2 < εt−2
1 − ϕt−1

1 holds.

Proof. For δ satisfying the hypothesis of the Lemma we get δ(εt−1
1 +Ct−1

1 )2 <
εt−2

1 . From the continuity of both sides of this inequality it follows that there
exists a sufficiently small ϕ > 0 such that (εt−1

1 − ϕ) > 0 and the inequality
δ((εt−1

1 − ϕ) + Ct−1
1 )2 < (εt−1

1 − ϕ)t−1
1 = εt−2

1 − ϕt−1
1 holds. 	


For the remainder of this section, M is a complete Riemannian manifold
and by ‖ · ‖ we denote the norm in a tangent space generated by the Rie-
mannian metric. Introduce a norm on the set a(t,m,X) ∈ TmM by the usual
formula ‖a(t,m,X)‖ = supy∈a(t,m,X) ‖y‖.

Definition 12.7. We say that a(t,m,X) has less than quadratic growth in
X if for any compact Θ ⊂ M and any finite interval [0, l] the relation

lim
‖X‖→∞

‖a(t,m,X)‖
‖X‖2

= 0

holds uniformly in t ∈ [0, l] and m ∈ Θ.
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Definition 12.8. We say that a(t,m,X) has a quadratic bound in X if for
any compact Θ ⊂ M and any finite interval [0, l] the relation

lim
‖X‖→∞

‖a(t,m,X)‖
‖X‖2

= a(t,m)

holds uniformly in t ∈ [0, l] and m ∈ Θ, where a(t,m) ≥ 0 is a real bounded
function on [0, l] × Θ that is not identical zero.

For the case of set-valued vector force fields we modify the definitions from
Section 4.1 as follows:

Definition 12.9. We say that a(t,m,X) satisfies the upper Carathéodory
condition if:

1) for every (m, X) ∈ TM the map F (·, m, X) : I � TmM is measurable;
2) for almost all t ∈ I the map F (t, ·, ·) : TM � TM is upper semicontin-

uous.

Definition 12.10. Let I = [0, l] ⊂ R. The set-valued force field a : I×TM �
TM is said to be almost lower semicontinuous if there exists a countable
sequence of disjoint compact sets {In}, In ⊂ I, such that:

(i) I\ ∪n In has measure zero;
(ii) the restriction of a on each In × TM is lower semicontinuous.

Theorem 12.11 Let a(t,m,X) satisfy the upper Carathéodory condition,
have convex closed bounded values and have less than quadratic growth in X.
Let the points m1 and m0 be non-conjugate along a geodesic g of the Levi-
Civitá connection. Then there exists a positive number L(m0, m1, g) such that
if 0 < t1 < L(m0, m1, g) there exists a solution m(t) of (11.17) for which
m(0) = m0 and m(t1) = m1.

Proof. For a C1-curve γ(t) = Sv(t), v(·) ∈ C0(I, Tm0M), consider the set-
valued vector field a(t, γ(t), γ̇(t)). Denote by Γ the operator of parallel trans-
lation of vectors along γ(·) at the point γ(0) = m0. Apply the operator Γ
to all sets a(t, γ(t), γ̇(t)) along γ(·). As a result, for any v ∈ C0(I, Tm0M)
we obtain a set-valued map ΓaSv : [0, l] � Tm0M that has convex values.
It is shown in [125] that the map ΓaS : C0 ([0, l], Tm0M) × [0, l] � Tm0M
satisfies the upper Carathéodory condition. Denote by PΓaSv the set of all
measurable selectors of ΓaSv : [0, l] � Tm0M (such selectors exist by [31]).
Define on C0([0, t1], Tm0M) the set-valued operator

∫
PΓaS by the formula

∫

PΓaSv =
{∫ t

0

f(τ)dτ

∣
∣
∣
∣ f(·) ∈ PΓaSv

}

.

Lemma 12.12 The map
∫

PΓaS sends bounded subsets of C0(I, Tm0M) to
compact sets.
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Proof. Since the metric 〈·, ·〉 is complete, for any ball UK in C0(I, Tm0M)
the union of curves {(γ, γ̇)|γ ∈ UK} lies, by Lemma 3.53, in a compact
subset of TM . Then for those curves ‖γ̇(t)‖ is uniformly bounded. Hence,
since Definition 12.7 is fulfilled for a, all sets a(t, γ, γ̇), where γ ∈ SUK , are
uniformly bounded. As a consequence, since parallel translations preserve
the norm, the sets (ΓaSv)(t) for v ∈ UK are also uniformly bounded, and so
are all their measurable selectors PΓaSv. Thus, the continuous curves u ∈⋃

v∈UK
(
∫

PΓaS)v are uniformly bounded and equicontinuous. The lemma
follows. 	

Lemma 12.13 The map

∫
PΓaS is upper semicontinuous and has convex

values.

Proof. It suffices to prove that the set-valued map
∫

PΓA ◦ S has a closed
graph. In other words, that vk → v0 and uk → u0, where uk ∈ (

∫
PΓaS)vk

implies that u0 ∈ (
∫

PΓaS)v0, i.e., u̇0 ∈ (ΓaSv0)(t) for almost all t. Since
the map

∫
PΓaS sends bounded sets to compact sets, the map is upper

semicontinuous provided that it has a closed graph (see [31]). Recall that the
sets (ΓaSv0)(t) are convex and the map (ΓaSv)(t) is upper semicontinuous
in v and t. As a result, we have u̇0 ∈ (ΓaSv0)(t). 	


Consider the numbers ε and C from Lemma 3.48 constructed for the points
m0 and m1 and the geodesic g. Let Ξ be the compact set from Lemma 3.51,
and let [0, l] be some interval. Choose a positive number δ < ε

(ε+C)2 . Since
a satisfies Definition 12.7, one can easily see that there exists a Q > 0 such
that for ‖X‖ ≥ Q the inequality

max
(t,m)∈I×Ξ

‖a(t,m, Y )‖ < δ‖X‖2 (12.4)

holds for all ‖Y ‖ < ‖X‖. For sufficiently small t1 > 0 we get t1 ∈ [0, l] and
t−1
1 ε − ϕ > Q where ϕ is as in Lemma 12.6. Let L(m0, m1, g) be the upper

bound of t1 such that the above relations hold and let 0 < t1 < L(m0, m1, g).
For this t1 denote by K the corresponding number t−1

1 ε − ϕ.
By construction, t−1

1 ε > K and so by Lemma 3.50 the operator B(v) =∫
PΓaS(v + Cv) that sends UK to C0([0, t1], Tm0M) is well-defined. Like∫
PΓaS, this operator is upper semicontinuous, has convex values and maps

bounded sets from C0([0, t1], Tm0M) to compact sets.
For v ∈ UK ⊂ C0([0, t1], Tm0M), since parallel translation preserves the

norm of a vector, from the construction of the operator S, from (12.4) and
from Lemma 12.6 it follows that

∥
∥
∥
∥a(t,S(v(t) + Cv),

d
dt

S(v(t) + Cv))
∥
∥
∥
∥ < δ(t−1

1 ε − ϕ + Ct−1
1 )2

< (t−2
1 ε − t−1

1 ϕ).

Since parallel translation is norm-preserving, from the last inequality it fol-
lows that
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‖Z(v + Cv)‖ =
∥
∥
∥
∥

∫

PΓaS(v(τ) + Cv)
∥
∥
∥
∥

C0([0,t1],Tm0M)

< (t−1
1 ε − ϕ) = K.

Thus B sends the ball UK into itself and from the Glicksberg-Ky Fan The-
orem (see, e.g., [31]) it follows that B has a fixed point u∗ ∈ UK , i.e.
u∗ ∈ Bu∗. Let us show that m(t) = S(u∗(t) + Cu∗) is the desired solu-
tion. By construction we have m(0) = m0 and m(t1) = m1, m(t) is a
C1-curve and ṁ(t) is absolutely continuous. Note that u̇∗ is a selector of
Γa(t,S(u∗ + Cu∗), d

dtS(u∗ + Cu∗)) since u∗ is a fixed point of Z. In other
words, the inclusion u̇∗(t) ∈ Γa(t,S(u∗ + Cu∗), d

dtS(u∗ + Cu∗)) holds for all
points t at which the derivative exists. Using the properties of the covari-
ant derivative and the definition of u∗, one can show that u̇∗(t) is parallel
to D

dtṁ(t) along m(·) and Γa(t,S(u∗ + Cu∗), d
dtS(u∗ + Cu∗)) is parallel to

a(t,m(t), ṁ(t)). Hence, D
dtṁ(t) ∈ a(t,m(t), ṁ(t)). 	


Theorem 12.14 Let a(t,m,X) be almost lower semicontinuous, have closed
bounded values and have less than quadratic growth in X. Let the points m1

and m0 be non-conjugate along a geodesic g of the Levi-civitá connection.
Then there exists a positive number L(m0, m1, g) such that if 0 < t1 <
L(m0, m1, g) there exists a solution m(t) of (11.17) for which m(0) = m0

and m(t1) = m1.

Proof. Here we use the same notation as in the proof of Theorem 12.11. Notice
that from the condition of less than quadratic growth for a it follows that for
all v ∈ C0([0, l], Tm0M) the curves from PΓaSv are integrable. Hence, the set-
valued map PΓaS sends C0([0, l], Tm0M) into L1(([0, l],A, μ), Tm0M), where
A is the Borel σ-algebra and μ is the normalized Lebesgue measure. Since
a is almost lower semicontinuous, by analogy with [155] one can easily show
that PΓaS : C0([0, l], Tm0M) → L1(([0, l], a, μ), Tm0M) is lower semicontin-
uous and has decomposable values. Then by the Bressan-Colombo Theorem
(Theorem 4.9) it has a continuous selector, which we denote by pΓaS.

Let Q, L(m0, m1, g), 0 < t1 < L(m0, m1, g) and K be as in the proof of
Theorem 12.11. Then on the ball UK ⊂ C0([0, t1], Tm0M) the operator

Bv =
∫ t

0

pΓaS(v(s) + Cv),
d
dt

S(v(s) + Cv))ds : UK → C0([0, t1], Tm0M)

is well-defined.

Lemma 12.15 The mapping B : C0(I, Tm0M) → C0(I, Tm0M) is com-
pletely continuous.

Proof. The fact that B sends bounded sets to compact sets is proved by
analogy with the argument in the proof of Lemma 12.13.

From the properties of the operators S and Γ (see Section 3.2) it follows
that the operator B : C0(I, Tm0M) → L1((I,A, μ), Tm0M) is continuous.
Since Cv continuously depends on v (see Theorem 3.47), this means that the
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vector
∫ l

0
pΓa(s,S(v(·) + Cv), d

dsS(v(·) + Cv))ds ∈ Tm0M is continuous in
v ∈ C0(I, Tm0M). A very simple modification of the above argument shows
that for any t∗ ∈ I the map sending v(·) ∈ C0(I, Tm0M) to the restriction
of pΓa(t,S(v(·) + Cv), d

dtS(v(·) + Cv)) on [0, t∗] is continuous as a map from
C0(I, Tm0M) to L1(([0, t∗],A, μ), Tm0M), hence we obtain that the vector
∫ t∗

0
pΓa(s,S(v(·)+Cv), d

dsS(v(·)+Cv))ds is jointly continuous in t and v for
any t∗ ∈ I. Thus for any ε > 0, v ∈ C0(I, Tm0M) and t∗ ∈ I there exists a
δ = δ(ε, v, t∗) > 0 such that if ‖v(·)−v1(·)‖C0(I,Tm0M) < 1

2δ and |t− t′| < 1
2δ,

then
∥
∥
∥
∥

∫ t

0

pΓa(s,S(v(·)), d
ds

S(v(·)))ds

−
∫ t′

0

pΓa(s,S(v1(·)),
d
ds

S(v1(·)))ds

∥
∥
∥
∥
∥

Tm0M

< ε.

Since I is compact, for a given v we can find a unique δ = δ(ε, v) for all t ∈ I.
This completes the proof of continuity of B. 	


Since parallel translation preserves the norm of a vector, from the con-
struction of S for any u ∈ UK with given a we get

‖Bv‖ =
∥
∥
∥
∥

∫ t

0

pΓa(s,S(v(s) + Cv),
d
dt

S(v(s) + Cv))ds

∥
∥
∥
∥

C0([0,t1],Tm0M)

< (t−1
1 ε − ϕ) = K.

Hence B sends UK into itself and hence, by the classical Schauder principle,
it has a fixed point u∗ ∈ UK . Using the same argument as in the proof of
Theorem 12.11, one can easily prove that m(t) = S(u∗ + C∗

u)(t) is a solution
of (11.17) such that m(0) = m0 and m(t1) = m1. 	


Theorem 12.16 Let a(t,m,X) either satisfy the upper Carathéodory condi-
tion and have convex closed bounded values or be almost lower semicontinuous
and have closed bounded values. Let also a(t,m,X) have a quadratic bound in
X and the points m1 and m0 be non-conjugate along a certain geodesic g of
the Levi-civitá connection. Assume in addition that for t ∈ [0, l] and m ∈ Ξ,
where [0, l] is some interval and Ξ is the compact set from Lemma 3.51, for
the function a(t,m) from Definition 12.8 there exists a real number δ such that
the estimate a(t,m) < δ < ε

(ε+C)2 holds. Then there exists a positive number
L(m0, m1, g) such that if 0 < t1 < L(m0, m1, g) there exists a solution m(t)
of (11.17) for which m(0) = m0 and m(t1) = m1.

The proof of Theorem 12.16 follows the same argument as that for Theo-
rems 12.11 and 12.14. The only modification here is that for a with a quadratic
bound in X we assume the existence of a δ such that a(t,m) < δ < ε

(ε+C)2
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while in the proof of Theorems 12.11 and 12.14 an analogous δ is shown to
exist for any a with less than quadratic growth in X.

It is worth noting that if there is more than one geodesic along which m0

and m1 are not conjugate, then any of these geodesics can be used in the
proof. Naturally, different geodesics can give rise to different solutions and
constants L.

If a geodesic, along which m0 and m1 are not conjugate, is length mini-
mizing, the constant C characterizes the Riemannian distance between these
points. C and ε together provide certain characteristics of the Riemannian
geometry on M in a neighborhood of m0. Theorem 12.16 establishes an in-
terrelation between C, ε and the quadratic bounds of (11.17), under which
the two-point boundary value problem for non-conjugate points m0 and m1

is always solvable.
Note that the case of uniformly bounded force is a particular case of force

with less than quadratic growth in velocity. Assume that the configuration
space M is compact, the metric 〈·, ·〉 has a non-negative sectional curvature
and the force is uniformly bounded. Then there are no conjugate points on
M . Recall that in the conditions of Theorems 12.11 and 12.14 there exists a
constant L > 0 such that any two points can be connected by a trajectory
m(t) with t ∈ [0, t0] for any t0 < L. If the force is bounded and M is flat and
possibly non-compact, one may take L = ∞ (see Remark 3.52) In particular,
one may take L = ∞ if M is a Euclidean space. This means that, in such M ,
the corresponding two-point boundary-value problem has a solution on any
time interval.

Unlike the case of bounded forces, for force fields of less than quadratic
growth in velocity (and consequently for those with a quadratic bound) even
on flat configuration spaces a trajectory joining the points generally exists
only on small time intervals. Nevertheless there is a subclass of forces with
quadratic bound that has the following property: if a field and a pair of points
satisfy the conditions of Theorem 12.16, there exists a trajectory joining the
points on every finite time interval. This is the class satisfying the estimate

‖a(t,m,X)‖ < a(t,m)‖X‖2, (12.5)

where a(t,m) > 0 is a continuous real-valued function on I × M . Evidently
the force satisfying (12.5) also satisfies the Definition 12.8 of a quadratic
bound.

It should be pointed out that the existence of the above-mentioned solution
on an arbitrary finite time interval was previously known for single-valued
quadratic fields a on manifolds that correspond to vector fields of geodesic
sprays of connections on tangent bundles. In the latter case, applying a linear
change of time along the solution on a given time interval, one obtains a so-
lution on another time interval and by this method a solution on an arbitrary
finite interval can be constructed. This approach cannot be extended to the
general set-valued case with estimate (12.5).
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We begin the proof of the above-mentioned property for inclusions satis-
fying (12.5) with two technical statements.

Lemma 12.17 For 0 < δ < ε
(ε+C)2 and for any t > 0 both roots K1,2 of the

equation δ(Kt + Ct−1)2 = K are positive.

Proof. Transform the equation δ(Kt + Ct−1)2 = K into the form (δt2)K +
(2Cδ−1)K+C2t−2δ = 0. Its discriminant is equal to D = 1−4Cδ. This means
that for δ < 1

4C the roots are real and take the form K1,2 = 1−2Cδ±
√

1−4Cδ
2δt2 .

Since (1 − 2Cδ) >
√

1 − 4Cδ2δt2, we have K1,2 > 0. But, as pointed out in
Remark 3.49, ε < C and so ε

(ε+C)2 < 1
4C . 	


Lemma 12.18 For 0 < δ < ε
(ε+C)2 and for all t > 0 the inequality t−1ε >

1−2Cδ−
√

1−4Cδ
2δt holds.

Proof. In order to prove this statement, consider the following system
{

δ < 1
4C

1−2Cδ−
√

1−4Cδ
2δ < ε.

By means of elementary transformations, taking into account Remark 3.49,
this system can be transformed into the following form

⎧
⎨

⎩

[
δ < ε

ε2+2Cε+C2

δ ≥ 1
2(ε+C)

δ < 1
4C .

Since by Remark 3.49 ε < C, we obtain that δ < ε
(ε+C)2 . 	


Theorem 12.19 Let a(t,m,X) have convex closed bounded values satisfy the
upper Carathéodory condition and the estimate (12.5) for some continuous
function a(t,m) > 0. Let the points m1 and m0 be non-conjugate along a
geodesic g(·) of the Levi-Civitá connection and let the estimate a(t,m) < δ
hold on I × Ξ, where the compact set Ξ is as in Lemma 3.51 and δ > 0
satisfies the inequality δ < ε

(ε+C)2 . Then for any t1 > 0, t1 ∈ I there exists a
solution m(t) of the inclusion (11.17) for which m(0) = m0 and m(t1) = m1.

Proof. For a C1-curve γ(t) = Sv(t), v(·) ∈ C0(I, Tm0M), consider the set-
valued vector field a(t, γ(t), γ̇(t)). Denote by Γ the operator of parallel trans-
lation of vectors along γ(·) at the point γ(0) = m0. Apply the operator Γ
to all sets a(t, γ(t), γ̇(t)) along γ(·). As a result for any v ∈ C0(I, Tm0M) we
obtain a set-valued map ΓaSv : [0, l] � Tm0M that has convex values. As in
the proof of Theorem 12.11 the map ΓaS : C0 ([0, l], Tm0M)× [0, l] � Tm0M
satisfies the upper Carathéodory condition. Consider the operator

∫
PΓaS

from the proof of Theorem 12.11. This operator is upper semicontinuous, has
convex values and sends bounded sets from C0([0, t1], Tm0M) to compact
sets.
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Let 0 < t1 < l. Taking into account the hypotheses of the Theorem,
we obtain from Lemma 12.17 that K = 1−2Cδ−

√
1−4Cδ

2δt2 is positive and from
Lemma 12.18 that t−1

1 ε > Kt1. Consider the ball UKt1 of radius Kt1 centered
at the origin in the Banach space C0([0, t1], Tm0M). Since t−1

1 ε > Kt1, by
Lemma 6.27 for any v(·) ∈ UKt1 the vector Cv is well-defined. Thus we can
introduce the operator B from the proof of Theorem 12.11. This operator
is also upper semi-continuous, convex-valued and sends bounded sets from
C0([0, t1], Tm0M) to compacts sets.

Since parallel translation preserves the norms of vectors, from the con-
struction of S and from the hypothesis we derive that for any v ∈ UKt1 and
t ∈ [0, t1] the estimate

∥
∥
∥
∥a(t, S(v(t) + Cv),

d
dτ

S(v(t) + Cv))
∥
∥
∥
∥ < δ‖v(t) + Cv‖2

holds. By construction δ‖v(t) + Cu‖2 ≤ δ(Kt1 + Ct−1
1 )2 = K. Since parallel

translation is norm-preserving, for any curve u(t) ∈ Zv(t) and for any t ∈
[0, t1] the inequality ‖u(t)‖ ≤ Kt ≤ Kt1 holds. Thus B sends the ball UKt1

into itself and from the Bohnenblust-Karlin fixed point theorem it follows
that B has a fixed point u∗ ∈ UKt1 , i.e. u∗ ∈ Bu∗. The fact that that m(t) =
S(u∗(t) + Cu∗) is the desired solution is proved by analogy with the proof of
Theorem 12.11. 	


Theorem 12.20 Let a(t,m,X) be almost lower semicontinuous, have closed
bounded values and satisfy (12.5) with a continuous function a(t,m) > 0. Let
the points m1 and m0 be non-conjugate along a geodesic g(·) of the Levi-Civitá
connection and let the estimate a(t,m) < δ hold on I ×Ξ, where the compact
set Ξ is as in Lemma 3.51 and δ > 0 satisfies the inequality δ < ε

(ε+C)2 . Then
for any t1 > 0, t1 ∈ I there exists a solution m(t) of the inclusion (11.17)
for which m(0) = m0 and m(t1) = m1.

Proof. Here we use the same notation as in the proof of Theorem 12.19. From
the hypothesis it follows that for all v ∈ C0([0, l], Tm0M) the curves from
PΓaSv are integrable. Hence the set-valued map PΓaS sends C0([0, l], Tm0M)
into L1(([0, l],A, μ), Tm0M), as in the proof of Theorem 12.14, and the oper-
ator

PΓaS : C0([0, l], Tm0M) � L1(([0, l],A, μ), Tm0M)

is lower semicontinuous and has decomposable values. Then by the Bressan-
Colombo Theorem (Theorem 4.9) it has a continuous selector, which we de-
note by pΓaS.

Let t1 and K be as in the proof of Theorem 12.19. Then on the ball
UKt1 ⊂ C0([0, t1], Tm0M) the operator B from the proof of Theorem 12.14 is
well-defined and is completely continuous. Since parallel translation preserves
the norm of a vector, from the construction of S, from Lemma 12.17 and from
Lemma 12.18, for any u ∈ UKt1 with given a we get
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‖Bv‖ =
∥
∥
∥
∥

∫ t

0

pΓa(s,S(v(s) + Cv),
d
dt

S(v(s) + Cv))ds

∥
∥
∥
∥

C0([0,t1],Tm0M)

≤ δ(Kt1 + Ct−1
1 )2t1 = Kt1.

Hence the completely continuous operator B sends UKt1 into itself and hence,
by the classical Schauder principle, it has a fixed point u∗ ∈ UKt1 . Using the
same argument as in the proof of Theorem 12.19, one can easily prove that
m(t) = S(u∗+C∗

u)(t) is a solution of (7.46) with m(0) = m0 and m(t1) = m1.
	


Consider a bounded Hausdorff continuous force field a(t,m,X) with con-
vex closed values on M , as above. Following Definition 11.50 we say that a
trajectory m(t) of the mechanical system with force a(t,m,X) is governed by
extreme values of controlling force if a.e. ṁ(t) belongs to Ext a(t,m(t), ṁ(t))
(see Definition 11.48), i.e. (11.18) is satisfied.

Theorem 12.21 Assume that a is Hausdorff continuous and has convex
closed values, and let m1 be non-conjugate to m0 along at least one geodesic
g(·) joining them.

(i) If a has lower than quadratic growth in velocity, then there exists a
positive number L(m0, m1, g) such that if 0 < t1 < L(m0, m1, g), there
exists a trajectory, governed by extreme values of controlling force, for
which m(0) = m0 and m(t1) = m1.

(ii) If a has a quadratic bound and a(t,m) satisfies the hypothesis of The-
orem 12.16, then the conclusion of (i) above holds.

(iii) If ‖a(t,m,X)‖ < a(t,m)‖X‖ and a(t,m) satisfies the hypothesis of
Theorem 12.20, the conclusion of (i) above holds for every t1 > 0.

Recall that the trajectories governed by extreme values of controlling force
are described by the inclusion (11.18) and, in the case under consideration,
the right-hand side of (11.18) is lower semicontinuous (see Lemma 11.49).
Thus the Theorem follows from Theorems 12.14, 12.16 and 12.20.

Remark 12.22. We refer the reader to [241, Theorems 3.3 and 3.4] where the
following generalization of Theorem 12.16 for right-hand sides with greater
than quadratic growth in velocity is obtained. Let a(t,m,X) either satisfy
the upper Carathéodory condition and have convex closed bounded values
or be almost lower semicontinuous and have closed bounded values. Let m0

and m1 be non-conjugate along some geodesic of the Levi-Civitá connection.
Then ε and C, defined as above, and the compact set Ξ from Lemma 3.51
are well-defined. Suppose that for t ∈ [0, t1], for some t1 > 0, and for m ∈ Ξ
the estimate ‖a(t,m,X)‖ < f(‖X‖) holds where f : [0,∞) → [0,∞) is a
function increasing on [0,∞]. If f(εt−1

1 + Ct−1
1 ) ≤ εt−2

1 , then there exists a
solution m(t) of (11.17) for which m(0) = m0 and m(t1) = m1. The method
of proof is a modification of the one given above in this Section.
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12.4 Generalizations to Systems with Constraints

In this section, we show how to generalize the existence theorems of Sec-
tion 12.3 to systems with constraints (see Section 11.6). In the framework
of mechanics with constraints, it is more natural to consider the question of
whether or not a submanifold transversal to the union of the least constrained
geodesics leaving a specified point is accessible from that point. The author
is grateful to Boris D. Gel’man for pointing out this problem.

The main technical trick here is the replacement of the operators S and
Γ by their constraint analogs Sβ and Γβ introduced in Section 11.8.2.

Let M be a complete Riemannian manifold equipped with a constraint
β. Let m0 ∈ M . The exponential map expβ

m0
: βm0

→ M can be defined in
the same manner as that for a manifold without constraint. Explicitly, for
X ∈ βm0

, we set expβ
m0

(X) = γX(1), where γX(t) is the least constrained
geodesic with γX(0) = m0 and γ̇X(0) = X. It is clear that expβ

m0
is a C∞-

smooth map.

Definition 12.23. A point m1 ∈ expβ
m0

(βm0
) is not conjugate to m0 along

the geodesic γX (where γX(1) = m1) if the differential d expβ
m0

has maximum
rank at X ∈ βm0

.

In particular, this means that the image of expβ
m0

is a smooth submanifold
in a neighborhood of m1 if m1 is not conjugate to m0. Moreover, expβ

m0
is a

diffeomorphism of a neighborhood of X ∈ βm0 onto a neighborhood of m1 in
the submanifold.

Assume that m0 is not conjugate to m1 along a least constrained geodesic
γX . Let N ⊂ M , m1 ∈ N , be a submanifold which is transversal to the image
of expβ

m0
. (In other words, the sum of the spaces Tm0N and Tm0 expβ

m0
(βm0)

coincides with Tm0M .) An example of such a manifold is an open neighbor-
hood of m1 in M .

Theorem 12.24 Under the above-mentioned hypothesis for any K > 0 there
exists a constant L̄(m0, N, K, γX) > 0 such that for 0 < t1 < L̄(m0, N, K, γX)
and for any continuous curve u(t) ∈ UK ⊂ C0([0, t1], βm0), there exists a
vector Cu ∈ βm0 satisfying the condition Sβ(u + Cu)(t1) ∈ N . Furthermore,
Cu is unique in a neighborhood of t−1

1 X ∈ βm0
and is continuous in u.

The proof is quite similar to that of Theorem 3.47. The only extra argu-
ment needed is that the manifold N stays transversal to a C1-small pertur-
bation of the image of expβ

m0
= Sβ(·)(1). Below, in this section, we use ε̂ and

Ĉ in analogy with ε and C from Lemma 3.48.
Let a be a set-valued vector field on M and Pm : TmM → βm be the

field of orthogonal projections. Consider the following set-valued analog of
the constrained Newton law (11.13)

D̄
dt

ṁ(t) ∈ Pa (t,m(t), ṁ(t)) , (12.6)
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where the constraint covariant derivative D̄
dt is defined in Section 11.6. The

inclusion (12.6) arises in constraint analogs of the problems considered in
Sections 11.7 and 12.3, for example, as a discontinuous force acting on the
system, or where the image of Pa is formed by all possible values of the control
force. It is easy to see that if a has convex values, the sets Pa(t,m,X) are also
convex and the set-valued vector field Pa is upper (lower) semicontinuous if
a is upper (lower) semicontinuous, respectively.

Since the norm of the orthogonal projector P equals 1, by replacing S
and Γ by Sβ and Γβ, respectively, by using the space C0(I,βm0

) in place
of C0(I, Tm0M) and by using Theorem 12.24 rather than Theorem 3.47, one
can easily prove the following analogs of the non-constrained theorems from
Section 12.3.

Theorem 12.25 Let a(t,m,X) either satisfy the upper Carathéodory condi-
tion and have convex closed bounded values or be almost lower semicontinuous
and have closed bounded values. Let the points m1 and m0 be non-conjugate
along some least constraint geodesic g.

(i) If a has less than quadratic growth in X, for any submanifold N � m1

transversal to the image of expβ
m0

, there exists a positive number
L(m0, N, g) such that if 0 < t1 < L(m0, N, g), there exists an ad-
missible solution m(t) of (12.6) for which m(0) = m0 and m(t1) ∈ N .

(ii) Suppose that a has a quadratic bound in X and in addition, for t ∈
[0, l] = I and m ∈ Ξ, where [0, l] = I is some interval and Ξ is the
compact set from Lemma 3.51, for the function a(t,m) from Definition
12.8 there exists a real number δ such that the estimate a(t,m) < δ <

ε̄
(ε̄+C̄)2

holds. Then for any submanifold N � m1 transversal to to the
image of expβ

m0
, there exists a positive number L(m0, N, g) such that

if 0 < t1 < L(m0, N, g), there exists an admissible solution m(t) of
(12.6) for which m(0) = m0 and m(t1) ∈ N .

(iii) Suppose that a satisfies the estimate (12.5) with a continuous function
a(t,m) > 0, that the estimate a(t,m) < δ holds on I × Ξ, where
the compact set Ξ is as in Lemma 3.51 and that δ > 0 satisfies the
inequality δ < ε̄

(ε̄+C̄)2
. Then for any submanifold N � m1 transversal

to the image of expβ
m0

, and for any t1 > 0, t1 ∈ I, there exists an
admissible solution m(t) of the inclusion (12.6) for which m(0) = m0

and m(t1) ∈ N .

Remark 12.26. In [241, Theorems 3.7 and 3.8] a generalization of Theo-
rem 12.25 is obtained which is analogous to that of Theorem 12.16, mentioned
in Remark 12.22.



Chapter 13

Some Problems on Lorentz Manifolds

13.1 Introduction to Relativity Theory

In this Section we give a brief introduction to some core notions of relativity
theory. This material suffices to understand the language of relativity and to
describe the relativistic problems discussed below. We are mainly interested
in the constructions of general relativity, the formulae of special relativity
arising as consequences of the latter. Since the exposition is intended for
mathematicians, we present it axiomatically, starting from a basic set of pos-
tulates. Such an approach allows us to focus on the mathematical background
of general relativity and on the physical interpretation of the mathematical
developments. We do not touch on the physical background, however it is
used to motivate the above-mentioned postulates. We refer the reader to
[182, 200] for details.

13.1.1 Space-times

Recall that in Definition 1.50 we introduced the notion of a semi-Riemannian
metric on a manifold M as a family of symmetric non-degenerate but not
necessarily positive definite bilinear forms 〈·, ·〉m on the tangent spaces TmM ,
i.e., it is a symmetric non-degenerate (0, 2)-tensor field that, like its inverse,
is called a metric tensor (see Remark 1.52). Recall also that in the definition
of physical equivalence (see Sections 1.4 and 1.5), and in the construction of
the Levi-Civitá connection, we used only the non-degeneracy of the metric
tensor and did not use its positive definiteness. Thus for all semi-Riemannian
metrics the notion of physical equivalence and the construction of the Levi-
Civitá connection are well-defined. In particular, this means that the notions
of covariant derivative, parallel translation and geodesic are well-defined on
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semi-Riemannian manifolds, and their properties are analogous to those on
Riemannian manifolds.

Among the semi-Riemannian metrics, some play a special role in the math-
ematics of general relativity. Recall that for any non-degenerate symmetric
bilinear form on a vector space there exists a basis (an orthonormal basis)
such that the matrix (gij) of the metric tensor with respect to this basis is
a diagonal matrix with diagonal entries equal to +1 or −1. For positive def-
inite forms, of course, the diagonal entries are all equal to +1. For general
non-degenerate forms the row of signs + and − corresponding to the values
+1 and −1 appearing on the diagonal is called the signature of the form.

Definition 13.1. A semi-Riemannian metric is said to be a Lorentz metric
if its signature is either (−+ · · ·+) or (+− · · ·−), i.e., the above-mentioned
diagonal form of (gij) includes only one −1 and all other elements of the
diagonal are +1 (or only one diagonal element is +1 and all other elements
are −1). A manifold on which a Lorentz metric is specified is called a Lorentz
manifold .

Notice that the case where only one diagonal element is equal to −1 (and all
others +1) can be transformed into the other case simply by multiplication by
−1, and so both cases are equivalent. For a Riemannian metric, multiplication
by −1 results in a negative definite (and hence, not Riemannian) metric, but
for a semi-Riemannian metric such multiplication does not lead us out of the
class of semi-Riemannian metrics. For the sake of simplicity we choose one of
the above equivalent cases, namely the case with signature (− + · · ·+), i.e.,
where the diagonal form has only one −1 (and all others +1). The other case
leads to the same theory.

In contemporary physics the notions of space and time, considered sepa-
rately in classical physics, are united into a common continuum called space-
time.

Postulate 1 The physical space-time of our universe is described mathemat-
ically as a 4-dimensional Lorentz manifold.

Among all 4-dimensional Lorentz manifolds, those whose Levi-Civitá con-
nection satisfies the so-called Einstein equation (derived by Einstein and
Hilbert) expressing the connection via the distribution of matter in the uni-
verse, are called space-times. The Einstein equation is a complicated partial
differential equation. We discuss it briefly in Section 13.1.6 below. In common
with many other PDEs, the Einstein equation has many different solutions
depending on the initial data, boundary conditions and other constraints.
Such solutions describe the metric in different cases: locally (e.g., in a neigh-
borhood of a certain star), globally, in special cases when certain negligible
influences can be omitted, and so on.

Notation 13.2 Everywhere in this section, by M4 we denote a space-time
under consideration, i.e., a 4-dimensional Lorentz manifold whose metric sat-
isfies the Einstein equation.
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In all Sections dealing with general relativity below we use the Levi-Civitá
connection of a Lorentz metric to determine the covariant derivative, parallel
translation, geodesics, etc.

In a space-time we shall denote local coordinates by the symbols q0, q1,
q2 and q3. The index 0 denotes the direction corresponding to the −1 entry
in the signature (i.e., vectors tangent to this axis have negative squares)
while the others correspond to +1 and so their tangent vectors have positive
squares.

Notation 13.3 In order to avoid confusion we shall use Greek letters for
indices which take values from 0 to 3 and Latin indices for indices which
range from 1 to 3.

Thus, gαβ indicates that all coefficients of the Lorentz metric are under
consideration while gij indicates that only those in the so-called “space di-
rections” are under consideration (i.e., i, j = 1, 2, 3; here the word “space”
has no physical meaning).

Let us present three examples of space-times. At present the global topo-
logical structure (i.e., the actual view) of physical space-time is not known.
We can deal only with a neighborhood of our galaxy that resembles a part
of a vector space (a chart). In the examples below we obtain various 4-
dimensional manifolds that can be considered as models of physical reality.
We are mainly interested in the metrics on space-times. These metrics will
(according to the general notation of Section 1.5 and of this section) be de-
noted by gαβdqα ⊗ dqβ .

Example 13.4. Minkowski space. M4 is the standard vector space R
4 and

the coefficients of the Lorentz metric are of the form g00 = −1, gii = 1 for

i = 1, 2, 3 and all others are zero. i.e., 〈·, ·〉M = −dq0 ⊗ dq0 +
3∑

i=1

dqi ⊗ dqi.

This is the simplest Lorentz manifold playing the same role as the Euclidean
space among Riemannian manifolds. It corresponds to the case when the
gravitational influence is so small that it can be omitted and so it is used
in special relativity where only the electromagnetic field is under considera-
tion. Notice that for any Lorentz manifold M any tangent space TmM has
the structure of Minkowski space. This is an analog of the fact that on a
Riemannian manifold every tangent space is equipped with the structure of
Euclidean space.

Example 13.5. Einstein–de Sitter space-time. M4 is the “upper” half-
space of R

4, i.e., M4 = R
4
+ = {(q0, q1, q2, q3) ∈ R

4|q0 > 0}. The coefficients
of the Lorentz metric are as follows: g00 = −1, gii = (q0)

4
3 , i = 1, 2, 3,

and all others are zero, i.e., 〈·, ·〉ES = −dq0 ⊗ dq0 + (q0)
4
3

3∑

i=1

dqi ⊗ dqi. The

Einstein–de Sitter space-time is an example of a so-called Friedman universe.
The level surfaces q0 = const have the structure of Euclidean spaces with an
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inner product (q0)
4
3

3∑

i=1

dqi ⊗ dqi depending on the value of q0 (which can be

considered as an analog of the time variable).
Specify a value q0 and consider two points x1 = (q0, q1

1 , q2
1 , q3

1) and x2 =
(q0, q1

2 , q2
2 , q3

2) on its level surface. The Euclidean distance between x1 and x2

is
(q0)

2
3

√
(q1

1 − q1
2)2 + (q2

1 − q2
2)2 + (q3

1 − q3
2)2.

Consider another value q0
∗ > q0. On its level surface the distance between

“the same” points x∗
1 = (q0

∗, q
1
1 , q2

1 , q3
1) and x∗

2 = (q0
∗, q

1
2 , q2

2 , q3
2) is equal to

(q0
∗)

2
3

√
(q1

1 − q1
2)2 + (q2

1 − q2
2)2 + (q3

1 − q3
2)2.

Since q0
∗ > q0, the latter distance is greater than the former. This is a model

for the so-called redshift, the experimental fact that all distances are increas-
ing in time. Below in Remark 13.13 it will be shown that along the lines
q1 = c1, q2 = c2, q3 = c3 where c1, c2, c3 are constants, the variable q0 has
the physical interpretation of time. Notice that the points do not move in
the level surfaces and that the growth of distance is a consequence of the
variation of the metric.

By contemporary physical theory our Universe was born 15–20 billion
years ago from a single point in an event called the Big Bang. Observe that
all distances in level surfaces in Einstein-de Sitter space-time tend to zero as
q0 → 0. This is a model of the Big Bang. In this model the Universe (i.e., the
level surface) does not shrink into a single point as q0 → 0 but the metric
becomes degenerate.

The Einstein-de Sitter space-time describes our Universe at an early stage
after the Big Bang. There are other models, with a different metric, for the
Universe at the present time (Robertson-Walker space-times).

Example 13.6. Schwarzschild space-time. Let μ > 0. Consider two 2-
dimensional manifolds: S2, the 2-dimensional sphere, and the manifold A2 =
{(r, t) ∈ R

2 | r �= 2μ}. Let M4 = A2 × S2. Since at any m = (a, s) ∈ M4

the tangent space TmM4 = TaA2 ⊕ TsS
2, where a ∈ A2 and s ∈ S2, we can

determine the following Lorentzian metric on M4: 〈·, ·〉Sch
(a,s) = −(1− 2μ

r(a) )dt⊗
dt+(1− 2μ

r(a) )dr⊗dr+〈·, ·〉s where r(a) is the value of coordinate r at a ∈ A2

and 〈·, ·〉s is the first fundamental form of S2 at s.
Schwarzschild space-time is M4 with the metric 〈·, ·〉Sch. It describes phys-

ical space-time in a neighborhood of a black hole with mass 8πμ. Notice that
M4 is divided into two components: the points with r(a) > 2μ are said to
be “outside the black hole”, and the points with r(a) < 2μ are said to be
“inside the black hole”. We point out that t plays the role of q0 outside the
black hole (i.e., vectors in its direction have negative square) and r plays the
role of q0 inside the black hole (for some details, see Remark 13.13 below). In
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the popular scientific literature this fact is usually expressed by the words:
inside a black hole, space and time exchange places.

13.1.2 World lines. The light cone. Proper time

As a space-time unites space and time into a common continuum, we need to
change the notation usually found in the old physics. For example, in the old
physics a ‘point’ typically means an element of space, a ‘trajectory’ means a
line describing how the position in space depends on time, etc.

Points of a space-time are called events. The interpretation is “something
held at a certain point of space at a certain moment of time”. Instead of the
word “trajectory” we shall use the term “world line”. This is a certain smooth
curve in the space-time that is interpreted as a 1-dimensional continuum
of events. We do not specify a parameter in the world line from the very
beginning, this will be done in a special way a little later. Thus a world line
is a certain 1-dimensional manifold embedded (or immersed) into M4.

In a tangent space TmM4 at any event m to the space-time M4 one can
find non-zero vectors whose squares are negative, positive and equal to zero.

Definition 13.7. The set of vectors in TmM4 whose square is equal to zero
is called the light cone. Vectors lying on the light cone are also called isotropic
or light-like.

A vector X ∈ TmM4 such that X2 < 0 is called time-like. The set of
time-like vectors is called the interior of the light cone. It is also said that a
time-like vector lies inside the light cone.

A vector X ∈ TmM4 such that X2 > 0 is called space-like or is said to lie
outside the light cone.

The interior of the light cone has two non-intersecting components while
the light cone itself, and the set of space-like vectors, are connected. The
physical interpretation of the two components of the interior of the light
cone is that one of them is directed into the future and the other one into the
past. Of course, in order to obtain a consistent theory these directions must
be coordinated at different points of space-time in a similar way to the notion
of an orientation on a manifold (see Section 1.6). We shall not consider here
the general construction of such orientation of directions, instead defining
only a certain special case of it that is, in any case, general enough for our
purposes.

Definition 13.8. A space-time M is called time-oriented if there exists a
smooth vector field X on M such that X2 < 0 at all events in M . The part
of the light cone in the tangent space at any event that contains X is said to
be “directed into the future”.

Everywhere below we consider time-oriented space-times.
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Definition 13.9. A world line for which all tangent vectors are time-like is
called a time-like world line; a world line for which all tangent vectors are
light-like is called a light-like or isotropic world line; a world line for which
all tangent vectors are space-like is called a space-like world line.

Postulate 2 Only time-like and light-like (isotropic) world lines have a sen-
sible physical interpretation. The time-like world lines describe the “life” of
objects moving slower than the speed of light while light-like world lines de-
scribe the “life” of objects traveling at light speed.

Postulate 2 may be considered as an experimental fact. One may consider
also space-like world lines whose tangent vectors are space-like, but they play
an auxiliary role since they describe the motion of objects moving faster than
light, which is forbidden in the present theory. From Postulate 2 it follows
in particular that the type of world line of a material object cannot change.
The physical interpretation of this fact will be clarified later.

Postulate 3 Along any world line, corresponding to a material object, there
is a vector field P , called the 4-momentum, that is tangent to the world line,
directed into the future and which has constant square.

For light-like world lines the above constant square is evidently zero while
for time-like ones it is a negative number (if it were zero, P would be a zero
vector, i.e. directionless, contradicting the fact that it should be directed into
the future).

Definition 13.10. The positive real number m such that m2 = −P 2 is
called the mass of the object corresponding to the time-like world line under
consideration.

Thus along any time-like or light-like world line m(·) a unique (up to an
additive constant) parameter η can be introduced such that d

dη m(η) = P .

Postulate 4 If there is no influence of forces other than gravity, the time-
like (or light-like) world line parametrized by η is a geodesic.

This postulate means that the equation of the above world line is

D
dη

d
dη

m(η) = 0 (13.1)

where D
dη is the covariant derivative of the Levi-Civitá connection, and that

d
dη m(η) = P is parallel along m(η).

Along a time-like world line we can construct another important vector
field.

Definition 13.11. The vector field V which, at any event of a time-like world
line m(·), is tangent to m(·), directed into the future and has square equal
to −1, is called the 4-velocity of the world line m(·).



13.1 Introduction to Relativity Theory 305

V exists along any time-like world line, i.e., its existence need not be
postulated, unlike the existence of P . Immediately from the definition it
follows that P = mV .

As above, in the case of P there exists a unique (up to an additive constant)
parameter τ along a time-like world line m(·) such that d

dτ m(τ) = V .

Definition 13.12. The above parameter τ is called the proper time of the
time-like world line.

The physical interpretation of proper time is that it is the time that is
shown by the watch of an observer whose world line is under consideration.
Every observer has its own proper time, i.e., we all live according to our own
time.

One can easily show that a time-like world line that is geodesic with respect
to the parameter η described above (i.e., such that no force besides gravitation
has an influence on it) also satisfies the geodesic equation

D
dτ

V = 0. (13.2)

Remark 13.13. In Examples 13.4 and 13.5, along all lines of the form q1 =
c1, q2 = c2, q3 = c3 where c1, c2, c3 are constants, the variable q0 is a proper
time. Indeed, such a curve is described in coordinates as (q0, c1, c2, c3) so that
its derivative in q0 takes the form (1, 0, 0, 0). Substituting this vector into the
metrics of the above-mentioned examples one easily finds that its square is
−1.

In Example 13.6 the situation is not so simple. Let s∗ ∈ S2. It is obvious
that the curve (r = const, t, s∗) ∈ M4 outside the black hole and the curve
(r, t = const, s∗) ∈ M4 inside black hole are time-like: the squares of their
derivatives in t and r, respectively, are negative, but generally speaking are
not equal to −1. So, changing the parameters, we can find the proper times
along those world lines. Thus, the proper time flows along the former lines
outside and along the latter lines inside the black hole. Hence, the space and
time variables are exchanged inside the black hole, as was claimed in the
example above.

13.1.3 Reference frames and 3-dimensional notions

In this section we explain how the above-mentioned 4-dimensional objects
correspond to the 3-dimensional reality around us. Without this interpreta-
tion, the content of the previous sections would be nothing more than an
abstract mathematical construction, while in fact it is a mathematical model
of physics.

Let m(τ) be a time-like world line describing the evolution in the space-
time M of an observer where τ is the proper time. Let m = m(0) be an event
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in the world line and construct in TmM a basis e0, e1, e2, e3 such that e0 is
the 4-velocity of our observer and e1, e2, e3 are space-like vectors with square
+1, orthogonal on M to each other and to e0 with respect to the Lorentzian
metric (such a basis is called an orthonormal basis).

Definition 13.14. The above basis is called a reference frame of the observer
at m.

Remark 13.15. The reference frame described in Definition 13.14 is a very
particular case of a general notion used in contemporary physics, but it is
convenient for our exposition. We refer the reader, e.g., to [182, 199, 200] for
a detailed discussion. Below in Section 13.2 we deal with a special type of
reference frame suggested by A. Poltorak [196, 197, 198].

The linear span of e1, e2, e3 is a 3-dimensional subspace in TmM4, or-
thogonal to the 4-velocity of the observer, that is interpreted as the space of
3-dimensional velocities of physical objects around the observer at m. Vectors
from this subspace of TmM4 are called 3-vectors. For any 3-vector we can
find a unique geodesic starting from m in its direction. The surface filled by
such geodesics is interpreted as the set of events perceived by the observer as
synchronous with the event m in his (or her) world line.

Notice that for two different observers at the same event m their syn-
chronous surfaces are different since they depend on (i.e., are orthogonal to)
the 4-velocity of the observer.

Remark 13.16. (Past and Future Domains) Unlike the synchronous surface,
which depends on the 4-velocity (and hence on the reference frame) of the
observer, the notions of “past” and “future” are “absolute”, i.e., they depend
only on the event and so they are the same for all observers located at the
same event. These notions are introduced as follows.

Specify an event m ∈ M4. We say that an event m1 belongs to the future
for m if there exists a time-like or light-like world line that starts from m and
as τ (or η) increases, eventually reaches m1 for some value of the parameter.
If such a world line is time-like, we say that m1 belongs to the proper future
of m.

The notions of “past” and “proper past” are introduced analogously. Note
that “proper future” and “proper past” are open domains in M4 while “past”
and “future” are closed, i.e., they are the closures of the “proper future” and
the “proper past”, respectively.

There are simple examples describing the following phenomenon: If m2

belongs neither to “future” nor to “past” for m1 (and so vice versa), there
exists an observer for whom those events are synchronous, an observer for
whom m1 happens earlier than m2 and an observer for whom m2 happens
earlier than m1.

Let V ∈ TmM be the 4-velocity of some object. Represent V as a pair
V = (q̇0, V̄ ) where q̇0 is collinear with e0 and V̄ belongs to the linear span
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of e1, e2, e3. V̄ is interpreted as an infinitesimal motion in space and q̇0 is
interpreted as an infinitesimal increment of time. Thus from the usual physical
ideology we get the following:

Definition 13.17. v = V̄
q̇0 is called the 3-velocity corresponding to the 4-

velocity V with respect to the above reference frame.

In the same manner we can define the 3-velocity of light. This means
that for any light-like vector X ∈ TmM we consider its decomposition X =
(X0, X̄), where X0 is collinear with e0 and X̄ belong to the linear span of
e1, e2, e3, and then define the 3-velocity of light as X̄

X0 .

Proposition 13.18 For every observer the norm of the 3-velocity of light
(i.e., light speed) is equal to 1.

Proof. Without loss of generality we can suppose that X̄ is collinear with e1

(if this is not the case we simply rotate the triple e1, e2, e3 around e0). Thus
the coordinate presentation of X in this basis is X = (X0, X1, 0, 0), i.e.,
X̄ = (X1, 0, 0). On the one hand X2 = 0 and on the other hand, in our case,
X2 = 〈X,X〉 = −(X0)2 + (X1)2. Thus X0 = X1 and ‖ X̄

X0 ‖ = X1

X0 = 1. 
�

Following Proposition 13.18, we shall be working in a system of units where
the speed of light c is equal to 1.

Now let us turn back to time-like vectors. Of course the observer can see
only 3-velocities. If a v with norm less than 1 is given, then it is possible to
recover V since it is the unique time-like vector with square −1 such that
v = V̄

q̇0 . To find V notice that the square of the vector (1, v) is equal to −1+v2

so that the square of ( 1√
1−v2 , v√

1−v2 ) is −1. Since v√
1−v2 divided by 1√

1−v2

gives v, we have V = ( 1√
1−v2 , v√

1−v2 ).
Since P = mV we obtain P = ( m√

1−v2 , mv√
1−v2 ). The 3-vector p = mv√

1−v2

is interpreted as 3-momentum. Since v is much less that c (i.e., less than 1
in our system of units), the denominator is very close to 1 and, by ignoring
this negligible difference, the above formula turns into the usual definition of
momentum one finds in high school physics.

In order to understand the physical interpretation of m√
1−v2 let us find its

Taylor expansion in v at a neighborhood of v = 0. This expansion has no odd
terms and we get:

m√
1 − v2

= m +
mv2

2
+ . . .

Further terms are negligible, so they can be omitted. mv2

2 is the kinetic en-
ergy. The quantity m is interpreted as the internal energy of the object with
mass m. It is well-known as E = mc2 (Einstein’s famous formula of internal
energy) and takes the above form only because c = 1 in our system of units.

Thus m√
1−v2 has the physical interpretation of total energy, a type of energy

previously unknown in classical physics.
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Notice that as v → 1 (i.e., as the speed of an object approaches light
speed) both the 3-momentum and the total energy tend to infinity.

Remark 13.19. Sometimes m is called the rest mass and another sort of
mass mr = m√

1−v2 , called relativistic mass, is introduced. In this notation
p = mrv and one says that the relativistic mass (and the 3-momentum) tends
to infinity as v → 1. From the mathematical point of view (a view shared by
many physicists) since this approach is equivalent to that presented above,
there is no reason to introduce the notion of relativistic mass.

If a world line m(τ) is not a geodesic, then it describes the “life” of an
observer under the action of the so-called 4-force F and the equation of this
world line takes the form

D
dτ

P = F (m(τ), V ). (13.3)

Note that since 〈V, V 〉 = −1 (constant), d
dτ 〈V, V 〉 = 2〈 D

dτ V, V 〉 = 0. From
this it follows that D

dτ P = m D
dτ V is orthogonal to V .

Remark 13.20. The 4-force is always orthogonal to the 4-velocity and so,
in particular, it necessarily depends on the 4-velocity.

The 4-force F can be represented in the same manner as V and P , i.e., as
the pair (f0, f̄). The 3-vector f̄ is interpreted as 3-force, the physical force
that can be measured by the observer. In order to understand the meaning
of f0 recall that 〈F, V 〉 = 0 (see above). Hence −f0 m√

1−v2 + f̄ · mv√
1−v2 = 0

where the dot denotes the inner product in the linear span of e1, e2, e3 (recall
that it is positive definite since e1, e2 and e3 are space-like). Thus f0 = f̄ · v
is the power of the 3-force f̄ .

13.1.4 Some consequences

The parameter of velocity and hyperbolic trigonometry

The coordinate expansion of a vector X ∈ TmM at some m ∈ M with re-
spect to e0, e1, e2, e3 takes the form (X0, X1, X2, X3). Consider the subspace
consisting of vectors with X2 = X3 = 0. This is a 2-dimensional vector space
with (Minkowski) inner product 〈X,Y 〉 = −X0Y 0 +X1Y 1. An analog of the
Euclidean unit circle is the set of vectors in this subspace whose square is
−1. Of course this set is not a circle but the hyperbola −(X0)2 +(X1)2 = −1
(equivalently, (X0)2 − (X1)2 = 1).

The length of an arc in the above hyperbola, starting at (1, 0), is an analog
of the angle, and the abscissa and ordinate of the end point of the arc are
analogs of cosine and sine, respectively.
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In order to investigate these analogs, represent the hyperbola in para-
metric form X(θ) = (X0(θ), X1(θ)) and consider its derivative Ẋ(θ) =
(Ẋ0(θ), Ẋ1(θ)). Since 〈X(θ), X(θ)〉 = −1, we have

〈X(θ), Ẋ(θ)〉 =
1
2

d
dθ

〈X(θ), X(θ)〉 = 0

and so Ẋ(θ) is orthogonal to X(θ), i.e., Ẋ(θ) is collinear to (X1(θ), X0(θ)):
indeed, 〈(X0(θ), X1(θ)), (X1(θ), X0(θ))〉 = −X0(θ)X1(θ)+X1(θ)X0(θ) = 0.

Without loss of generality we may suppose that Ẋ(θ) = (X1(θ), X0(θ)).
Thus, in particular, Ẋ(θ)2 = −(X1(θ))2 + (X0(θ))2 = −X(θ)2 = 1 so that,
on the one hand, the vector Ẋ(θ) is space-like and on the other hand the
parameter θ is the length of the arc since the norm of the derivative with
respect to this parameter is 1.

Definition 13.21. The parameter θ introduced above is called the parameter
of velocity on the hyperbola X2 = −1.

Now let us try to find the coordinates X0(θ) and X1(θ) of a point in the
hyperbola, i.e., the analogs of cosine and sine. Introduce the variables Y (θ) =
X0(θ) + X1(θ) and Z(θ) = X0(θ)−X1(θ). Since Ẋ(θ) = (X1(θ), X0(θ)), we
have Ẋ0(θ) = X1(θ) and Ẋ1(θ) = X0(θ). Thus Ẏ (θ) = Y (θ) and Ż(θ) =
−Z(θ). These are linear differential equations whose solutions with initial
conditions Y (0) = 1 and Z(0) = 1 (corresponding to the initial point (1, 0)
of the hyperbola) are Y (θ) = eθ and Z(θ) = e−θ, respectively. Then X0(θ) =
1
2 (Y (θ) + Z(θ)) = eθ+e−θ

2 = cosh θ, the hyperbolic cosine of θ, and X1(θ) =
1
2 (Y (θ) − Z(θ)) = eθ−e−θ

2 = sinh θ, the hyperbolic sine of θ.
Now the 3-velocity v, corresponding to V = (X0(θ), X1(θ)) belonging to

the unit hyperbola (i.e., it is some 4-velocity), is represented in the form
v = X1(θ)

X0(θ) = sinh θ
cosh θ = tanh θ, the hyperbolic tangent of θ. This is why we call

θ the parameter of velocity (see Definition 13.21).

Composition of velocities

Consider the reference frame of an observer as described in Section 13.1.3.
Suppose that, for example, a brick with 4-velocity Vb is in flight near the
observer. Then the 3-velocity vb of the brick with respect to the observer
can be calculated as the hyperbolic tangent of the parameter of velocity θ1

between e0 and Vb (see above) in the reference frame of the observer.
Suppose in addition that an ant with 4-velocity Va is creeping along the

brick in the same direction that the brick is passing the observer. The 3-
velocity vab of the ant with respect to the brick is the hyperbolic tangent of
the parameter of velocity θ2 between Vb and Va in the reference frame of the
brick.

Since the brick and the ant are moving in the same direction, in classical
Newtonian physics the vector of the ant, with respect to the observer, would
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be given by the vector in this common direction with norm equal to the sum
of the norms of the brick vector, relative to the observer, and the ant vector,
relative to the brick. This is not the case in Relativity Theory.

Let us suppose that the direction of e1 coincides with the common direction
of the motion of the brick and the ant. The parameter of velocity for Va in
the reference frame of the observer is θ1 + θ2. It then follows from the above
constructions that va = tanh(θ1 + θ2). One can easily find the following
formula for the hyperbolic tangent of a sum:

tanh(θ1 + θ2) =
tanh θ1 + tanh θ2

1 + tanh θ1 tanh θ2

(compare this with the formula for the usual tangent of a sum). Thus we get
that

va =
vb + vab

1 + vbvab
.

This is the well-known relativistic rule for the composition of velocities. Notice
that if both vb and vab are negligible in comparison with 1 (the light speed
in our system of units), this formula turns into the familiar formula for the
composition of velocities of classical physics.

Proposition 13.22 The speed of light does not depend on the speed of the
light source.

Proof. Let us replace the ant of the above example by a beam of light. This
means that Va is replaced by a light-like vector X and that its 3-velocity in
the reference frame of the brick is 1. By the above formula for the composition
of velocities we get that the 3-velocity of light with respect to the observer is
vb+1
1+vb

= 1. 
�

The assertion of Proposition 13.22 was the starting point of Einstein’s
relativity theory.

Lorentz transformations

In Euclidean space there are linear operators A which satisfy Ax ·Ay = x · y
for any vectors x, y, where · is the inner product, i.e. the operator does not
change the inner product of any pair of vectors. Such operators are said to be
orthogonal . By physical reasons we suppose those operators to be orientation
preserving. In 2-dimensional Euclidean space the form of the matrix of an
orthogonal operator (a rotation) with respect to an orthonormal basis is well-
known: (

cos ϕ sin ϕ
− sin ϕ cos ϕ

)

where ϕ is the angle of rotation.
In Minkowski space there are analogous operators which leave the

Lorentzian inner product unchanged.
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Definition 13.23. An operator L in Minkowski space such that for any vec-
tors X,Y the relation 〈AX, AY 〉 = 〈X,Y 〉 holds, where 〈·, ·〉 is the Lorentzian
inner product, is called a Lorentz transformation.

In particular, if we have two observers at an event of a Lorentzian mani-
fold, a Lorentz transformation sends the reference frame of one observer into
that of another. In this case we can restrict ourselves to the 2-dimensional
subspace spanned by the 4-velocities of the observers. The basis (a “part” of
the reference frame) corresponding to each observer in this subspace consists
of the 4-velocity and the space-like vector orthogonal to the 4-velocity and
having square +1. This basis is orthonormal with respect to the Lorentzian
inner product.

By physical reasons we consider Lorentz transformations preserving both
standard and time orientations. They form the so-called proper orthochronous
Lorentz group (see [72]).

Denote by θ the parameter of velocity between e0 in some reference frame
and its image Le0 under the Lorentz transformation L. It is well-known that
the matrix of L in the corresponding 2-dimensional subspace with respect to
an orthonormal basis takes the form:

(
cosh θ sinh θ
sinh θ cosh θ

)

.

Denote by A the reference frame of an observer. Thus the coordinates
(X0′

, X1′
) of the vector X with respect to the reference frame L(A) are

expressed via the coordinates (X0, X1) of the same vector with respect to A
by the formulae X0′

= X0 cosh θ+X1 sinh θ and X1′
= X0 sinh θ+X1 cosh θ.

Recall that in hyperbolic trigonometry we have the relation cosh2 θ−sinh2 θ =
1 (easily derived from the definitions). So we can divide the right-hand sides
of the above expressions by

√
cosh2 θ − sinh2 θ = 1. Canceling cosh θ and

taking into account that the 3-velocity v of L(A) with respect to A is the
hyperbolic tangent v = tanh θ, we get

X0′
=

X0 + vX1

√
1 − v2

, X1′
=

vX0 + X1

√
1 − v2

.

This is the standard form of a Lorentz transformation. The formulae de-
scribe the differences between the time and space components of any 4-vector
in different reference frames.

The twin paradox

One of the most well-known consequences of relativity theory is the so-called
twin paradox. Suppose that following the birth of twins one twin is placed
in a spaceship that leaves Earth moving at a speed very close to the speed
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of light while the other twin remains on the planet. When the traveling twin
returns to Earth he (or she) is much younger than the Earth-bound twin.

The twin paradox is explained as follows. Introduce the functional of
proper time on the set of time-like world lines by analogy with the func-
tionals mentioned in Section 11.4. The formula for the variation of proper
time with fixed end-points is practically the same as that for the length on
Riemannian manifolds and the proof of this formula is similar to the proof
of Theorem 11.11. Imitating the proof of Theorem 11.11, one can prove that
the geodesics, and only the geodesics, are extremals with fixed end-points
of proper time. But unlike the distance in Section 11.4, the geodesics on a
Lorentz manifold attain the maximum proper time among all time-like world
lines close to the extremal (while, in contrast, in a Riemannian manifold the
geodesics attain minimum length).

The remainder of the argument is as follows. Since there are no forces
except gravitation acting on Earth, its world line is a geodesic (see Postu-
late 4), while the world line of the spaceship is not a geodesic since some other
forces act on it. Consider the world lines of both twins intersecting at the two
events: the departure of the spaceship from Earth and its return. Since the
world line of the Earth-bound twin coincides with that of the Earth, it is a
geodesic, while the world line of the traveling twin is not a geodesic. Thus the
interval of proper time between the above events is shorter along the world
line of the traveling twin and so he (or she) is younger.

13.1.5 The electromagnetic field

Let M be a Riemannian or semi-Riemannian manifold and J̄ be a vector field
on M .

Definition 13.24. The system of equations

dF = 0
δF = J̃ (13.4)

where F is a 2-form and J̃ is the 1-form physically equivalent to J̄ , is known
as Maxwell’s equations. F is called the electromagnetic field corresponding to
the current density J̄ .

The world line of a charged particle with charge e that is moving in the
presence of an electromagnetic field F is described by the so-called Lorentz
equation

D
dτ

P = e (V  F ). (13.5)

On the right-hand side of (13.5) there is a 4-force (see Section 13.1.3) in
which: V F is the interior product of the 4-velocity V and the 2-form of
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the electromagnetic field F (thus the result is a 1-form) and e (V  F ) is the
vector physically equivalent to the 1-form multiplied by the scalar e (with
the corresponding sign).

If M = R
n then, as stated above, any closed form is exact. Hence, from the

first equation of (13.4) it follows that F = dA where A is some 1-form. On an
arbitrary manifold M such A may not exist and usually one assumes that F
is exact (i.e., F = dA for some A). The 1-form A is called the vector potential
of the electromagnetic field F . Such A is not unique; both A and A + dλ,
where λ is an arbitrary smooth function, lead to the same electromagnetic
field F = dA since by Theorem 1.67 ddλ = 0.

In the following, we work in Minkowski space (see Example 13.4). In this
space equations (13.4) take on a familiar special form.

To make our notation consistent with the usual one for electrodynamics, we
replace the symbol q0 by t. The coordinate system (t, q1, q2, q3) on Minkowski
space determines a certain observer for whom the “zero” coordinate axis is
the world line and so t is the proper time. Thus all our constructions are
made in the reference frame of this observer.

Recall that physical equivalence with respect to an orthonormal frame
(see formulae (1.20) and (1.21)) leaves invariant the absolute value of the
components. But since in the Lorentz case g00 = g00 = −1 and gii = gii = 1,
the sign of the “zero” coordinate under a transition to a physically equivalent
object is changed while the other signs remain unchanged.

The 1-form of the 4-current density J̃ in the above reference frame has
the coordinate decomposition J̃ = ρdt + j̄idqi. The physically equivalent 4-
vector of the current density has the form J̄ = −ρ ∂

∂t + ji ∂
∂qi where jj = ji.

The function ρ is called the “density of electric charge” and the 3-vector j̄ =
(j1, j2, j3) is called “three-dimensional current density” (where everything is
in the reference frame of our observer).

In our reference frame the 2-form F has the coordinate decomposition
F = Eidt∧dqi+B1dq2∧dq3−B2dq1∧dq3+B3dq1∧dq2. Consider the vectors
E = (E1, E2, E3) and B = (B1, B2, B3) composed from the components of F .
Under a Lorentz transformation of Minkowski space these vectors transform
as ordinary 3-dimensional vectors. E is called the electric field strength and
B is called the magnetic field strength.

The vector-potential A in our reference frame takes the form A = ϕdq0 +
Ajdqj where ϕ is called the potential of the electric field and Ã = (A1, A2, A3)
is called the vector potential of the magnetic field. Then

F = dA

=
∂ϕ

∂qα
dqα ∧ dt +

∂Aj

∂qα
dqα ∧ dqj (13.6)

= − ∂ϕ

∂qi
dt ∧ dqi +

∂Ai

∂t
dt ∧ dqi +

(
∂A1

∂q2
− ∂A2

∂q1

)

dq1 ∧ dq2

+
(

∂A2

∂q3
− ∂A3

∂q2

)

dq2 ∧ dq3 −
(

∂A1

∂q3
− ∂A3

∂q1

)

dq1 ∧ dq3.
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From (13.6) we obtain that E = −grad ϕ+ ∂Ã
∂t and B = rot Ã. These relations

between A and F are commonly used in classical electrodynamics.
By formula (1.30) we find that dF = ∂Ei

∂qα dqα ∧ dt ∧ dqi + ∂B1
∂qα dqα ∧ dq2 ∧

dq3 − ∂B2
∂qα dqα ∧dq1 ∧dq3 + ∂B3

∂qα dqα ∧dq1 ∧dq2. Recall that since the exterior
product is skew-symmetric, it equals zero if at least two factors are equal
to each other. Then from the first equation of (13.4) we obtain that (∂B1

∂q1 +
∂B2
∂q2 + ∂B3

∂q3 )dq1 ∧ dq2 ∧ dq3 = 0. This means that div B = 0.
Another consequence of (13.4) is that (∂E1

∂q2 − ∂E2
∂q1 + ∂B3

∂t )dt∧dq1∧dq2 = 0
and analogous relations hold for the other coordinates. One can easily see
that this yields rotE = −∂B

∂t .
Now let us turn to the calculation of δF . The Riemannian volume form

on Minkowski space is dt∧dq1 ∧dq2 ∧dq3. On the other hand, by the above-
mentioned rules of physical equivalence the 2-vector F̄ , physically equivalent
to F , takes the form F̄ = −Ei ∂

∂t∧
∂

∂qi +B1 ∂
∂q2∧ ∂

∂q3−B2 ∂
∂q1∧ ∂

∂q3 +B3 ∂
∂q1∧ ∂

∂q2 ,
Ei = Ei, Bi = Bi. Then ∗F = Bidt∧dqi−E1dq2∧dq3+E2dq1∧dq3−E3dq1∧
dq2 (cf. the above formula for F in coordinates). Using the definition of
δ = ∗−1d∗ (see Definition 1.71) and the second equation of (13.4), by analogy
with the above calculations we obtain that div E = ρ and rot B = j̄ + ∂E

∂t .
The four equalities derived above:

div E = ρ, rotE = −∂B
∂t ,

div B = 0, rotB = j̄ + ∂E
∂t

yield the form of Maxwell’s equations that is usually found in classical elec-
trodynamics.

13.1.6 Gravitational fields

In this section we briefly describe the Einstein equation of a gravitational
field and discuss some its features. Details can be found, e.g., in [182, 200].

By Ric we denote the Ricci tensor of the Levi-Civitá connection of a
Lorentz metric 〈·, ·〉 and by S the scalar curvature (see Section 2.5).

Definition 13.25. A (0, 2)-tensor

G(X,Y ) = Ric(X,Y ) − 1
2
S · 〈X,Y 〉

is called an Einstein tensor.

Space-time which is outside the influence of large masses and physical
fields is said to be “empty”. The Einstein equation in “empty” space-time
has the form

G = 0. (13.7)
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It is not hard to show that (13.7) is equivalent to Ric = 0 (see [182, 200]).
Thus outside the influence of large masses and physical (non-gravitational)

fields space-time has zero Ricci curvature. Taking into account the material
of Section 2.5 one can see that “empty” space-time is not necessarily flat. In
particular there may exist solutions of (13.7) which are “gravitational waves”.
We remark that gravitational waves have not been directly observed.

The condition of “emptiness” is fulfilled by the inter-planetary space of
the solar system. Specify a reference frame in the solar system in which the
planetary speeds are small relative to the speed of light. Let the metric satisfy
(13.7), be independent of time in this reference frame and have small enough
curvature in M4. Under these assumptions it is shown that the equation of a
time-like geodesic in this reference frame is well-approximated by Newton’s
classical law of gravitation (for details, see, e.g., [51]).

In the general case the Einstein equation takes the form

G = T, (13.8)

where the T on the right-hand side is the so-called stress-energy tensor.
The equation (13.8) continues to make mathematical sense if T is any

(0, 2)-tensor with the same features as G.
From a physical point of view the notion of a stress-energy tensor is much

more complicated. Such a tensor must be assigned to every type of matter
in order to describe the features of the latter (for details, see [182, 200]). We
present two examples of stress-energy tensors, one for a beam of particles and
another for an electromagnetic field.

Example 13.26. For a beam of particles with density η its stress-energy tensor
equals ηP̃⊗P̃ where P̃ is the 1-form physically equivalent to the 4-momentum
P .

Example 13.27. Let F be an electromagnetic field (see Section 13.1.5). The
components of F , and of the tensors physically equivalent to it, are denoted
by Fαβ , Fα

β and Fαβ . Then the stress-energy tensor of F has the components

Tαβ =
1
4π

(

FαμFμ
β − 1

4
gαβFμνFμν

)

.

The behavior of a particle in a gravitational field is described by the
geodesic equations (13.1) and (13.2) (in the absence of forces other than
gravitation) or by equation (13.3) if other forces are present. Thus for those
equations we need to know the Levi-Civitá connection of the Lorentz metric
rather than the metric itself and so the connection plays the role of the field
strength. It is clear that Einstein equations (13.7) and (13.8) are equations
with respect to the Christoffel symbols of the Levi-Civitá connection.

Comparing formulae (2.33) and (2.35) for Christoffel symbols with formula
(13.6) for the description of the electromagnetic field via its 4-potential, we
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see that that the coefficients of the metric play the role of the potential for
the field strength.

13.2 A Two-Point Boundary Value Problem on a
Lorentz Manifold Arising in A. Poltorak’s Concept
of Reference Frame

13.2.1 Discussion of the problem

In [196, 197] A. Poltorak suggested a concept in which a reference frame in
general relativity is defined as a certain smooth manifold with a connection.
In the most simple cases this is Minkowski space (see Example 13.4) with
its natural flat connection but in more complicated cases some more general
manifolds and connections may also appear.

In the reference frame, the gravitational field is described as a (1, 2)-tensor
G (see Theorem 2.36) that on any pair of vector fields X and Y takes the
value

G(X,Y ) = ∇XY − ∇̄XY,

where ∇̄ is the covariant derivative of the Levi-Civitá connection of the
Lorentz metric while ∇ is the covariant derivative of the connection in the
reference frame. Denote by D

dτ the covariant derivative of the connection in
the reference frame along a given world line with respect to some parameter
τ . Then the geodesic m(τ) of the Levi-Civitá connection in M (a world line in
the absence of all force fields except gravitation) is described in the reference
frame by the equation

D
dτ

m′(τ) = Gm(τ)(m′(τ), m′(τ)) (13.9)

where Gm(X,Y ) is the value of G(X,Y ) at point m (cf. equation (12.1)).
Notice that the right-hand side of (13.9) is quadratic in the velocity m′(τ).

We refer the reader to [196, 197] for more details on Poltorak’s concept
and for a physical interpretation of the covariant derivative of a connection
in the reference frame, of the tensor G and several other objects associated
with it. The subsequent development of this idea can be found in [198].

We suggest a version of the concept where the manifold of the reference
frame is the tangent space TmM4 at an event m ∈ M4 and where a Lorentz-
orthonormal basis eα, where α = 0, 1, 2, 3, is specified (the time-like vector e0

is the observer’s 4-velocity). We assume that this reference frame is valid in a
neighborhood O of the origin in TmM4, which is identified with a neighbor-
hood U of the event m by the exponential map of the Levi-Civitá connection
of the Lorentz metric (the normal chart).
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We deal with two choices of connection on the manifold TmM4. In the first
one, we consider on TmM4 its natural flat connection of Minkowski space
(the main case considered by A. Poltorak). In the second case, we involve a
Riemannian connection of a certain (positive definite) Riemannian metric on
TmM4. This case is motivated by a natural development of the idea yielding
Euclidean models in quantum field theory. Observe that the above-mentioned
Riemannian connection may not be the Levi-Civitá connection, and that a
non-zero torsion connection compatible with the metric is also allowed. In
principle, this also allows one to consider electromagnetic interactions.

For the two reference frames mentioned above, we investigate the question
of whether it is possible to connect two events m0 and m1 in M4 by a time-
like geodesic if they are connected in the reference frame by a geodesic of the
corresponding connection whose initial vector is time-like, i.e., lies inside the
light cone in the space Tm0M

4. This question can be interpreted as follows:
does the event m1 belong to the proper future of the event m0 if this is true
in the reference frame? (See Remark 13.16.) The fact that this is not always
so is illustrated by the following example:

Example 13.28. For the sake of simplicity we deal with a 2-dimensional space-
time. Consider the manifold R

2
+ = {(q0, q1) ∈ R

2|q0 > 0} with the Lorentz
metric g = −dq0 ⊗ dq0 + (q0)4/3dq1 ⊗ dq1. This is a 2-dimensional Lorentz
submanifold in the Einstein-de Sitter space-time (see Example 13.5). The flat
Minkowski connection of the metric h = −dq0⊗dq0 +dq1⊗dq1 plays the role
of a connection in the reference frame while g is the metric transferred into
the reference frame from the space-time by the exponential map as described
above.

Let m0 = (a0, b0) ∈ R
2
+ be an event. The proper future Ih of m0 with

respect to the flat Minkowski connection is the interior of the light cone
at m0, i.e., the events from its future are located between the lines (a0 +
t, b0 + (a−2/3

0 )t) and (a0 + t, b0 − (a−2/3
0 )t) where t > 0. On the other hand,

the proper future Ig of m0 with respect to the Levi-Civitá connection of g
consists of the events located between the curves (a0 + t, b0 + 3 3

√
a0 + t) and

(a0 + t, b0 − 3 3
√

a0 + t), t > 0. One can easily see that the closure Īg (simply
called “the future”), except the event m0, is a proper subset of the open set
Ih. This means that if an event m1 ∈ Ih is “far enough” from m0 and “close
enough” to the boundary of the light cone Ih, it may not lie in Ig, hence
it may not be connected to m0 by a time-like geodesic of the Levi-Civitá
connection of g. But by construction m1 is connected to m0 by a time-like
geodesic of the flat Minkowski connection (its initial vector is time-like).

If m1 is conjugate with m0 along all geodesics joining them in a reference
frame, it may be impossible to connect m0 and m1 by a geodesic of another
connection (in particular, of the connection in the space-time; see general
examples of this sort in Section 12.2).

For the two reference frames described above we find geometric conditions
that in each case guarantee a positive answer to the aforementioned question.
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The conditions take the form of a certain interrelation between the tensor G
and some geometric characteristics measuring in particular “how far” m1 is
from m0 and “how close” m1 is to the boundary of the “proper future” of
m0 and to conjugate points (if they exist) in the reference frame. For this
investigation we use the machinery developed in Chapter 12.

13.2.2 The reference frame with flat connection

In this section we investigate the reference frame of the first type mentioned
above, i.e., the manifold of the reference frame is TmM4 with a basis eα,
where α = 0, 1, 2, 3, such that the time-like vector e0 is the 4-velocity of some
observer, and the connection in TmM4 is the flat connection of the Minkowski
space.

In this case, it is convenient to regard O as a domain in a linear space
on which there are given the Lorentz metric, the tensor G and other objects
described above. Here we can make use of the familiar facts of linear algebra.
In particular, the tangent space Tm̄M4 at m̄ ∈ O can be identified with
TmM4 by a translation and for any m̄ ∈ O we may consider the light cone
in Tm̄M4 (generated by the Lorentz metric tensor at m̄) as lying in TmM4

but depending on m̄.
Geodesics in TmM4 with respect to the flat connection are straight lines.

Thus, in this reference frame, the question under consideration takes the
following form: is it possible to connect the events m0 and m1 on M4 by a
time-like geodesic if they are connected by the straight line a(τ) in O so that
a(0) = m0, a(T ) = m1 and which lies inside the light cone in Tm0M

4? Here
τ is a parameter that can be, say, the proper time on M4 or the natural
parameter in the reference frame, etc. In this case the fact that the straight
line a(τ) belongs to the light cone in Tm0M

4 is equivalent to the fact that the
vector of the derivative a′(0) = d

dτ a(τ)|τ=0 lies inside that cone, as postulated.
Since the covariant derivative with respect to the flat connection coincides

in this case with the ordinary derivative in TmM4, equation (1) takes the
form

d
dτ

m′(τ) = Gm(m′, m′). (13.10)

Thus the main problem is reduced to the two-point boundary value problem
for (13.10). Since the right-hand side of (13.10) has quadratic growth in
velocity, for some pairs of points the two-point problem may have no solutions
(see Sections 12.1 and 12.2).

Recall that the tangent space TmM4 to the Lorentz manifold M4 has
the natural structure of a Minkowski space whose inner product is the metric
tensor of M4 at the event m. Since the specified basis eα, where α = 0, 1, 2, 3,
is Lorentz-orthonormal, the Minkowski inner product of X = Xαeα and
Y = Y αeα has the form
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X · Y = −X0Y 0 + XiY
i,

where Xi = Xi for i = 1, 2, 3. Introduce a Euclidean inner product in TmM4

by changing the sign of the time-like summand, i.e., by setting

(X,Y ) = X0Y 0 + XiY
i.

Hereafter in this section all norms and distances are determined with respect
to the latter inner product.

By a linear change of time introduce a parameter s along a(·) such that for
the line ã(s) obtained from a(τ) we get ã(0) = m0 and ã(1) = m1. Consider
the Banach space C0([0, 1], TmM4) of continuous curves in TmM4 with the
usual supremum norm.

Lemma 13.29 There exists a sufficiently small real number ε > 0 such that,
for any curve ṽ(s) from the ball Uε ⊂ C0([0, 1], TmM4) of radius ε centered
at the origin, there exists a vector C̃ṽ ∈ TmM4 belonging to a bounded neigh-
borhood of the vector ã′(0) = d

ds ã(s)|s=0 and such that C̃ṽ lies inside the light
cone of the space Tm0M

4 and the curve m0 +
∫ s

0
(ṽ(t)+ C̃ṽ)dt takes the value

m1 at s = 1. The vector C̃ṽ continuously depends on ṽ(·) and ‖C̃ṽ‖ < C for
any curve ṽ ∈ Uε for some C > 0.

Proof. By explicit integration one can easily prove that Cṽ such that m0 +∫ 1

0
(ṽ(t)+ C̃ṽ)dt = m1 exists and is continuous in ṽ. Then by continuity, from

the fact that the vector ã′(0) lies inside the light cone of the space Tm0M
4,

it follows that for a perturbation ṽ(·) sufficiently small with respect to the
norm, the vector C̃ṽ also lies inside the same light cone. Take for C the
upper bound of the set of norms of the vectors C̃ṽ from the above-mentioned
bounded neighborhood of d

ds ã(s)|s=0. 
�

C is an estimate of the Euclidean distance between m0 and m1.
We turn back to the parametrization of the line a(·) by the parameter τ .

Consider the Banach space C0([0, T ], TmM4).

Lemma 13.30 Let a real number k > 0 be such that T−1ε > k, where
ε is as in Lemma 13.29. Then for any curve v(t) from the ball Uk ⊂
C0([0, T ], TmM4) of radius k centered at the origin, there exists a vector
Cv ∈ TmM4 from a bounded neighborhood of the vector a′(0) = d

dτ a(τ)|τ=0

such that the vector Cv lies inside the light cone of the space Tm0M
4 and the

curve m0 +
∫ τ

0
(v(t) + Cv)dt takes the value m1 at τ = T . The vector Cv is

continuous in v(·).

Proof. Changing the time along a(τ) construct the straight line ã(s) = a(Ts)
that meets the conditions ã(0) = m0 and ã(1) = m1 as in Lemma 13.29. For
any curve v(·) ∈ Uk ⊂ C0([0, T ], TmM4), construct the curve ṽ(s) = Tv(Ts)
that lies in Uε ⊂ C0([0, 1], TmM4), i.e., which satisfies Lemma 13.29. In
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particular, for this curve, there exists a vector C̃ṽ such that ‖C̃ṽ‖ < C from
Lemma 13.29. By explicit calculation one can easily derive that

m0 +
∫ 1

0

(ṽ(s) + C̃ṽ)ds = m0 +
∫ T

0

(v(t) + Cv)dt = m1,

where Cv = T−1C̃ṽ. 
�

By construction ‖Cv‖ < T−1C for any v ∈ Uk.
For the tensor G, introduced above, define the norm ‖Gm‖ by the standard

formula
‖Gm‖ = sup

X∈TmM4,‖X‖≤1

‖Gm(X,X)‖.

The definition immediately implies the estimate

‖Gm(X,X)‖ ≤ ‖Gm‖‖X‖2 for any X ∈ TmM4. (13.11)

Theorem 13.31 Let m0 and m1 be connected in O by a straight line a(τ)
that lies inside the light cone of the space Tm0M

4 and satisfies the conditions
a(0) = m0 and a(T ) = m1. Let m0 and m1 belong to a ball V ⊂ TmM4 such
that for any m̂ ∈ V the inequality ‖Gm̂‖ < ε

(ε+C)2 holds, where ε and C are
as in Lemma 13.29. Then on M4 there exists a time-like geodesic m0(τ) of
the Levi-Civitá connection of the Lorentz metric such that m0(0) = m0 and
m0(T ) = m1.

Proof. Consider the ball UK ⊂ C0([0, T ], TmM4) of radius K = T−1ε −
ϕ centered at the origin, where ϕ is as in Lemma 12.6. Since K < T−1ε,
the assertion of Lemma 13.30 is true for UK and the following completely
continuous operator

Bv =
∫ τ

0

Gm0+
R t
0 (v(s)+Cv)ds(v(t) + Cv, v(t) + Cv)dt

is well-defined on this ball. Let us show that this operator has a fixed point
in UK . Recall that, for any curve v ∈ UK , its C0-norm is not greater than
K = T−1ε−ϕ and that by Lemma 13.30 ‖Cv‖ < T−1C. Then the hypothesis
of the Theorem, the estimate (13.11) and Lemmas 12.6, 13.29 and 13.30 imply
that

∥
∥
∥Gm0+

R t
0 (v(s)+Cv)ds ((v(t) + Cv), (v(t) + Cv))

∥
∥
∥

≤
∥
∥
∥Gm0+

R t
0 (v(s)+Cv)ds

∥
∥
∥

(
(εT−1 − ϕ) + CT−1

)2

< (T−2ε − T−1ϕ).

From the last inequality we obtain
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∥
∥
∥
∥

∫ τ

0

Gm0+
R t
0 (v(s)+Cv)ds((v(t) + Cv), (v(t) + Cv))dt

∥
∥
∥
∥ < (T−1ε − ϕ) = K.

This means that the operator B sends the ball UK into itself and so, by
Schauder’s principle, B has a fixed point v0(t) in this ball. It is easy to see
that m0(τ) = m0 +

∫ τ

0
(v0(t)+Cv0)dt is a solution of the differential equation

(13.10) such that m0(0) = m0 and m0(T ) = m1. Notice that by construction
m0(τ) is a geodesic of the Levi-Civitá connection of the Lorentz metric on
M4. The equality Bv0 = v0 and the definition of B implies that v0(0) = 0,
and hence d

dτ m0(τ)|τ=0 = Cv0 , where by Lemma 13.30 the vector Cv0 lies in
the light cone of the space Tm0M

4, i.e., its Lorentz scalar square is negative.
Since the scalar square of the derivative is constant along the geodesic of the
Levi-Civitá connection of the Lorentz metric, this geodesic is time-like. 
�

Remark 13.32. Recall (see above) that C estimates the Euclidean distance
between m0 and m1. By construction, ε estimates in some sense “how close”
m1 is to the boundary of the proper future of m0 in the reference frame. This
clarifies the meaning of the condition ‖Gm̂‖ < ε

(ε+C)2 .

13.2.3 The reference frame with Riemannian
connection

In this section we investigate the reference frame at the event m ∈ M4 of the
second type described in Section 13.2.1. The manifold here is identical to the
manifold in the previous section: TmM4 with a specified orthonormal basis,
while the connection may be not flat but it is assumed to be compatible with
a (positive definite) Riemannian metric on TmM4 (see Section 13.2.1). We
do not assume this connection to be torsionless.

Here, the question of the existence of a geodesic of the Levi-Civitá con-
nection on M4 that we are looking for is reduced to the solvability of the
two-point boundary value problem for equation (13.9) in the reference frame.

An important difference between this case and the case of a flat connection
is the fact that for non-flat connections conjugate points may exist. This yields
additional difficulties since there are examples (see Section 12.2) showing
that, for a pair of points conjugate along all geodesics joining them, the
boundary value problem for a second order differential equation may have
no solutions at all. We suppose from the very beginning that m0 and m1

are connected by a geodesic in the reference frame along which they are
not conjugate. Under these conditions, we find conditions under which the
problem for (13.9) is solvable.

The case of a non-flat connection requires more complicated machinery
than the previous case. In particular, we replace ordinary integral operators
(used in the previous section) by the integral operators with parallel trans-
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lation from Section 3.2. In fact the method we use here is a modification of
that elaborated in Chapter 12.

Everywhere in this section the norms in the tangent spaces and the dis-
tances on manifolds are induced by the above-mentioned positive definite
Riemannian metric.

Recall that the operator S from Section 3.2 is well-defined on complete
Riemannian manifolds. Consider the neighborhood O in TmM4 described in
Section 13.2.1. Without loss of generality we may assume that the Rieman-
nian metric on O is a restriction of a complete Riemannian metric on TmM4.
Indeed, take a relatively compact domain O1 ⊂ O with smooth boundary
such that O1 contains the points 0 ∈ Tm0M

4, m0 and m1 as well as the
geodesic γ(t), where t ∈ [0, 1], joining m0 and m1 (if O is relatively compact
one can take O1 = O). Then it is possible to change the Riemannian metric
outside O1 so that it becomes complete on TmM4, and to use O1 in place of
O. Thus, the operator S is well-defined in this case.

Recall that for a constant curve v(t) ≡ X ∈ Tm0M we get by construction
that Sv(t) = exp X, where exp is the exponential map of the given connection
(see Section 3.2).

Let the points m0, m1 ∈ O be connected in O by a geodesic γ(t) of the
Riemannian connection so that γ(0) = m0 and γ(1) = m1. In particular, we
get m1 = exp( d

dtγ(t)|t=0) = S( d
dtγ(t)|t=0), where exp is the exponential map

of the Riemannian connection. Let m0 and m1 be non-conjugate along γ(·)
and the vector d

dtγ(t)|t=0 lie inside the light cone of Tm0M
4.

Hereafter we denote by Uk the ball of radius k centered at the origin in
some Banach space of continuous maps.

Lemma 13.33 In the conditions and notation of Lemmas 3.48 and 3.50, the
number ε can be chosen so that for the curve ũ(·) ∈ Uε ⊂ C0([0, 1], Tm0O)
the vector C̃ũ lies inside the light cone of the space Tm0M

4 and, for the curve
u ∈ UK ⊂ C0([0, T ], Tm0O), the vector Cu also lies inside the light cone of
the space Tm0M

4.

Proof. The fact that, for sufficiently small ε > 0, the vector Cũ belongs to
the interior of the light cone is derived from continuity considerations as in
Lemma 13.29. For Cu, this statement follows from the fact that Cv = T−1Cṽ,
where ṽ(s) = Tv(Ts) ∈ Uε ⊂ C0([0, 1], Tm0O) (see above). 
�

Hereafter we choose ε satisfying the hypotheses of Lemmas 3.48 and 13.33.
Let γ(t) be a C1-curve given for t ∈ [0, T ] and let X(t,m) be a vector

field on O. Denote by ΓX(t, γ(t)) the curve in Tγ(0)O obtained by parallel
translation of vectors X(t, γ(t)) along γ(·) at the point γ(0) with respect to
the connection of the reference frame.

Imitating the previous section, we introduce the norm ‖Gm‖ by means
of the norms of vectors with respect to the Riemannian metric on O, as
mentioned above. Clearly, (13.11) is valid for ‖Gm‖, as in the previous section.

With the help of S and Γ we construct the integral operator B : Uk →
C0([0, T ], Tm0M

4) of the following form:
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Bv =
∫ τ

0

ΓGS(v(t)+Cv)

(
d
dt

S(v(t) + Cv),
d
dt

S(v(t) + Cv)
)

dt, (13.12)

where k and T satisfy the conditions of Lemmas 3.50 and 13.33. One can
easily see that the operator B is completely continuous.

Theorem 13.34 Let m0, m1 ∈ O and let there exist a geodesic γ(τ) of the
connection in the reference frame such that γ(0) = m0, γ(T ) = m1, m0 and
m1 are not conjugate along γ(·) and the vector d

dtγ(t)|t=0 lies inside the light
cone of the space Tm0M

4. If m0 and m1 belong to the ball V ⊂ O such that
at any m ∈ V the inequality ‖Gm‖ < ε

(ε+C)2 holds, where ε and C are as in
Lemmas 3.48 and 13.33, then there exists a time-like geodesic m0(τ) of the
Levi-Civitá connection of the Lorentz metric on M4 such that m0(0) = m0

and m0(T ) = m1.

Proof. Let k := T−1ε − ϕ, where ϕ is as in Lemma 12.6. For this k, the
hypothesis of Lemma 3.50 is satisfied. Hence, on the ball

Uk ⊂ C0([0, T1], Tm0M
4),

the operator (13.12) is well-defined. Recall that, for the curve v(·) ∈ Uk, its
C0-norm is not greater than k, that ‖Cv‖ < T−1C and that the parallel
translation with respect to the Riemannian connection preserves the norms
of vectors. Then taking into account the definition of operator S we see that

∥
∥
∥
∥

d
dτ

S(v(τ) + Cv)
∥
∥
∥
∥ < (T−1ε − ϕ) + T−1C.

Hence, formula (13.11), the hypothesis of theorem and Lemma 12.6 imply
that

∥
∥
∥
∥GS(v(τ)+Cv)

(
d
dτ

S(v(τ) + Cv),
d
dτ

S(v(τ) + Cv)
)∥

∥
∥
∥

≤
∥
∥GS(v(τ)+Cv)

∥
∥ ((T−1ε − ϕ) + T−1C)2 (13.13)

< (T−2ε − T−1ϕ).

Since the operator Γ of parallel translation preserves the norms of the vectors,
from the last inequality we obtain:

∥
∥
∥
∥

∫ τ

0

ΓGS(v(t)+Cv)

(
d
dt

S(v(t) + Cv),
d
dt

S(v(t) + Cv)
)

dt

∥
∥
∥
∥

≤
∫ τ

0

∥
∥
∥
∥GS(v(t)+Cv)

(
d
dt

S(v(t) + Cv),
d
dt

S(v(t) + Cv)
)∥

∥
∥
∥ dt

< (T−1ε − ϕ) = k. (13.14)

This means that the completely continuous operator B sends the ball Uk

into itself. Hence, by Schauder’s principle, B has a fixed point v∗(τ) in Uk.
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Then from the definition of the operator S and the usual properties of the
covariant derivative it follows that m∗(τ) = S(v∗(τ) + Cv∗) is a solution of
the differential equation (13.9) (see Chapter 12). By construction the curve
m∗(τ) is a geodesic of the Levi-Civitá connection of the Lorentz metric on
M4 and, for it, m∗(0) = m0 and m∗(T ) = m1.

From the equality Bv∗ = v∗ and (13.12) it follows that v∗(0) = 0. Then
from the definition of the operator S it follows that d

dτ m0(τ)|τ=0 = Cv∗ ,
where the vector Cv∗ belongs to the light cone of the space Tm0M

4 by
Lemma 13.33. This means that the Lorentz scalar square of the vector Cv∗ is
negative. Since Cv∗ is the initial vector of the derivative of the geodesic m∗(τ)
of the Levi-Civitá connection on M4 and since the Lorentz scalar square of
the derivative along this geodesic is constant, the geodesic m∗(τ) is time-like.


�

The meaning of condition ‖Gm‖ < ε
(ε+C)2 is analogous to that in the

previous section (see Remark 13.32), but here C estimates the Riemannian
distance between m0 and m1 while ε depends on the geometry of the reference
frame and in some sense estimates “how close” m1 is to the boundary of
the “proper future” of m0 and “how close” it is to conjugate points in the
reference frame.

13.3 A Classical Particle in a Classical Gauge Field

In this Section we introduce and investigate a special class of differential
equations on the total spaces of fiber bundles equipped with connections. We
interpret these equations as equations of motion for a classical particle in a
classical gauge field.

It should be pointed out that the term ‘gauge field’, as used in contempo-
rary physics, means a connection on a fiber bundle. Gauge fields are generally
used in quantum physics.

The problem of the motion of a classical particle in a classical gauge field
was first treated by S.K. Wong (see [231]). Further developments can be
found, e.g., in [143, 201, 213, 214, 215]. The symplectic geometry and the
Hamiltonian formalism on some special fiber bundles were exploited in [213,
214, 215]. Here we suggest another approach using the connection (i.e., the
gauge field itself) on bundles different from those of [143, 213, 214, 215].
This approach seems to be more natural; we show that in the special case
of the electromagnetic field our equation is reduced to the ordinary Lorentz
equation (13.5).

In what follows we denote fiber bundles and their total spaces by the same
symbols.
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13.3.1 A brief introduction to gauge fields and some
preliminary constructions

Let M4 be a Lorentz manifold with a metric g(·, ·). We retain the standard
notation M4 of this chapter for a Lorentz manifold since our principal ex-
ample of such a manifold is a space-time. Nevertheless please note that in
all constructions below in this section we do not use the fact that the di-
mension of the manifold is 4 and so all our results are valid in arbitrary
finite-dimensional Lorentz manifolds.

Consider a principal bundle Π : E → M4 with structure group G. The Lie
algebra of G will be denoted by g.

Let H be a connection on the bundle E . Recall (see Section 2.7) that H is
a distribution on E , i.e., a sub-bundle of TE , that is invariant with respect
to the natural right action of G on E and is complementary to the vertical
distribution V consisting of subspaces tangent to the fibers of E . Note that
all subspaces Vb ⊂ TbE are canonically isomorphic to g (see Section 2.7).
We introduce a semi-Riemannian (Lorentz) metric gE on the manifold E by
determining an inner product in g, and hence in all subspaces V, by defining
the inner product in the subspaces H as the inverse image of g with respect
to TΠ, and by setting the subspaces Vb and Hb in all TbE to be orthogonal to
each other. Following this we can treat the manifold E as an ordinary semi-
Riemannian manifold, in particular, we can consider all the usual operations
with differential forms on E .

In what follows we shall also denote by V and H the projections of TbE =
Vb ⊕ Hb onto the vertical (i.e., Vb) and horizontal (i.e., Hb), respectively,
subspaces in TbE where b ∈ E is an arbitrary point. So, for X ∈ TbE , VX
is its vertical component and HX is its horizontal component. This notation
will be used when dealing with all types of fiber bundles with connections.

Consider the connection form ϕ and the curvature form Φ = Dϕ of H where
the covariant differential D on the right hand side is defined by the usual
formula Dϕ(·, ·) = dϕ(H·, H·) (see Section 2.7). Recall that ϕ is a vertical
1-form (i.e., equal to zero on subspaces H) and Φ is a horizontal 2-form (i.e.,
equal to zero on subspaces V), both taking values in g. We interpret Φ as the
gauge field strength. The gauge field, as usual, is determined by the equations

DΦ = 0, D ∗ Φ = ∗J, (13.15)

where J is a horizontal 1-form on E with values in g and ∗ is the star operator.
The first equation is Bianchi’s identity (2.39). Note that (13.15) are analogous
to Maxwell’s equations (13.4).

Let F be a (real or complex) linear space with inner product h(·, ·). Sup-
pose that the left action of G on F is given and h(·, ·) is invariant under this
action. We interpret F as the space of internal states of the particle and the
group G as the group of its internal symmetries. In addition, we suppose that
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a charge is given, i.e., a map e : F → g∗ that is constant on the orbits of G.
The space g∗ is a coalgebra, i.e., g∗ is dual to g.

Note that the electromagnetic field is an example of a gauge field with
G = U(1) (the group of unitary operators in the complex plane C

1), F = C
1

and h(X,Y ) = XȲ , where the bar indicates complex conjugation. Below we
show how in this case Maxwell’s equations (13.4) can be derived from (13.15)
(see formula (13.22)).

Consider the bundle π : Q → M4 associated to E with standard fiber F (see
Section 1.3). Recall that Q is obtained by the factorization λ : E×F → Q with
respect to the right action of G on E × F determined as (ē, f̄)g = (bg, g−1f)
for g ∈ G, b ∈ E and f ∈ F . In particular, the tangent map Tλ sends the
spaces of the connection H from the tangent spaces to E into the tangent
spaces to Q (see Section 2.7). The connection on Q obtained from H (recall
that Tλ is one-to-one on H) is denoted by Hπ. Since Q is a bundle with
connection, the notation V and H will be also used to denote the projections
onto vertical and horizontal, respectively, subspaces in tangent spaces to Q,
as was mentioned above. To avoid any confusion we shall denote the vertical
distribution on Q by Vπ.

Consider a point q = (m, c) ∈ Q, where m = πq so that c belongs to the
fiber Qm of Q at m. Note that by definition Vπ

(m,c), the vertical subspace in
T(m,c)Q, is the tangent space to Qm and so, since the latter is a linear space,
these spaces are naturally isomorphic to each other. Denote by pπ : V(m,c) →
Qm the natural linear isomorphism as in formulae (1.2) and (2.11). Recall
that the connector (connection map) of Hπ is the map Kπ : TQ → Q defined
as the composition K = pπ ◦ V.

The restriction of Tπ : Hπ → TM4 to Hq is a linear isomorphism of Hq

onto TmM4 for m = πq. Its inverse map Tπ−1
|Hπ

q
sends the tangent space TmM4

into the connection Hπ
q ⊂ TqQ at a specified point q ∈ Q such that πq = m.

Let U be a chart on M4. The bundle Q over U is represented as the
cartesian product U×F . The subspace UHπ

q in TqQ, q = (m, c), m = πq ∈ U,
corresponding to the tangent space to U in the above product, is obviously
complementary to Vq. It is called the Euclidean connection of the coordinate
system in U (see Sections 2.1 and 2.2). Using the presentation TqQ = UHπ

q ⊕
Vq we obtain the description of any vector Y ∈ TqQ in local coordinates as
a quadruple Y = (m, c, Y1, Y2), Y1 ∈ UHπ

q and Y2 ∈ Vq.
Since UHπ

q is complementary to Vq = KerTπ, the map Tπ : UHπ
q →

TmM4 is one-to-one (as for Hπ
q , see above). For a vector X ∈ TmM4 consider

the vector Tπ−1
| UHπ

q
X − Tπ−1

|Hπ
q
X. Since this vector belongs to Vq, we can

apply pπ to it. As in Sections 2.2 and 2.3, the resulting vector Γ π
m(c, X) =

pπ(Tπ−1
| UHπ

q
X−Tπ−1

|Hπ
q
X) ∈ Qm is called the local coefficient of the connection

Hπ (or local connector of Hπ) in the chart U. Recall that the connector Kπ

has the following description in local coordinates:

Kπ(m, c, Y1, Y2) = (m, Y2 + Γ π
m(c, Y1)).
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Consider the tangent bundle τ : TM4 → M4 (here, to avoid any confu-
sion, we denote the natural projection by τ) and let Hτ be the Levi-Civitá
connection of the metric g(·, ·). This means that Hτ is a distribution on TM4

complementary to the vertical distribution Vτ . Special features of Hτ can be
found in Section 2.6. For a point (m, X) ∈ TM4, where m = τ(m, X) and
X ∈ TmM4, the subspace Vτ

(m,X) in the second tangent space T(m,X)TM4

is tangent to the fiber TmM4. Denote by pτ : Vτ
(m,X) → TmM4 the natu-

ral linear isomorphism as in formulae (1.2) and (2.11). Now we can consider
the connector Kτ : T 2M4 → TM4 of Hτ defined by the natural formula
Kτ = pτ ◦ Vτ (here T 2M4 is the second tangent bundle TTM4).

The general construction of the Euclidean connection, the presentation of
vectors as quadruples and the definition of the local coefficient of a connection
in a chart described above for the bundle Q are valid for the tangent bundle
with Hτ . Denote the local coefficient of Hτ by Γ τ

m(Y,X), X,Y ∈ TmM4.
(Here TmM4 plays the role of Qm and so c ∈ Qm is replaced by Y ∈ TmM4.)

We shall use the connection HQ on the manifold Q (the total space of
the bundle Q) constructed from the connections Hπ and Hτ in Section 2.8.
Denote by K : T 2Q → TQ its connector.

Recall that K = KH ⊕ KV where KH : T 2Q → Hπ and KV : T 2Q → Vπ,
KH is determined by the formula KH = Tπ−1

|Hπ◦Kτ◦T 2π, T 2π : T 2Q → T 2M4

is the tangent map to Tπ : TQ → TM4 and the latter is the tangent map to
π. Note that the image Kτ ◦T 2π(T(q,C)TQ) belongs to TmM4 where m = πq

so that Tπ−1
|Hπ sends it into Hπ

q ⊂ TqQ as is required in the definition of a
connector.

On the other hand KV = (pπ)−1 ◦ Kπ ◦ TKπ. Note that the image Kπ ◦
TKπ(T(q,C)TQ) belongs to the fiber Qm where m = πq and (pπ)−1 sends it
into Vq as required.

The covariant derivative of HQ on Q is defined by the usual formula D
dt =

K ◦ d
dt . By construction we have D

dt = D
dt

H
+ D

dt

V
, where D

dt

H
= KH ◦ d

dt and
D
dt

V
= KV ◦ d

dt .
Define a Riemannian metric gQ(·, ·) on Q so that it coincides with h(·, ·)

in vertical subspaces Vπ, with the inverse image Tπ∗g in the horizontal sub-
spaces Hπ and so that the spaces Hπ

q and Vπ
q at any point q ∈ M4 are

orthogonal to each other.
In this particular case a vector ᾱ and a 1-form α̃ on Q are said to be

physically equivalent to each other with respect to the metric gQ if for any
vector Y we have α̃(Y ) = gQ(ᾱ, Y ) (cf. Section 1.4). We shall denote them
by the same symbol, using a bar over vectors and a tilde over 1-forms.
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13.3.2 The equation of motion

Since λ is a one-to-one map from the standard fiber F onto each fiber of
Q, the charge e is well-defined on the whole manifold Q. Also Tλ is a one-
to-one map of the connections and Φ is equivariant (see [26]). Hence we
can set up the form Φ̃ with values in g on the manifold Q by the equality
Φ̃q(X,Y ) = Φb(Tλ−1HX,Tλ−1HY ) for q = λ(b, f), where b ∈ E , f ∈ F , and
for X,Y ∈ TqQ. Unlike Φ̃q(·, ·), the 2-form e(q) • Φ̃q(·, ·) on TqQ takes values
in R and so it is an ordinary scalar-valued 2-form. The symbol • denotes the
coupling of the elements e(q) ∈ g∗ and Φ̃q(·, ·) ∈ g.

Thus, on the total space Q we may consider the following equation, an
analog of Newton’s second law (11.2) and of the Lorentz equation (13.5), in
the form

D
dt

q̇ = e(q) • Φ̃q(·, q̇). (13.16)

We interpret these equations as equations of motion for a classical particle
with charge in a classical gauge field.

Proposition 13.35 The vector e(q) • Φ̃q(·, q̇) is horizontal, i.e., at any point
q ∈ Q it belongs to Hπ

q .

Proof. Since Φ is a horizontal form by construction, so too is Φ̃(·, ·), i.e.,
Φ̃q(Y, q̇) = 0 for all Y ∈ Vπ

q . Thus e(q) • Φ̃q(Y, q̇) = 0 for the same Y . Hence

gQ(e(q) • Φ̃q(·, q̇), Y ) = 0. 
�

From Proposition 13.35 it follows that equation (13.16) is equivalent to
the system

D
dt

H

q̇ = e(q) • Φ̃(·, q̇), (13.17)

D
dt

V

q̇ = 0. (13.18)

Theorem 13.36 If q(t) is a solution of (13.16) with horizontal initial con-
dition q̇(0) = q̇0 ∈ Hπ, then q(t) is a horizontal curve (i.e., q̇ ∈ Hπ for all t,
for which it exists) and e(q(t)) is constant.

Proof. To prove this we consider local coordinates so that q(t) = (m(t), c(t)),
where m(t) ∈ M4, and c(t) belongs to the fiber Qm(t). Hence q̇ = (m, c, ṁ, ċ)
and Kπ q̇ = Kπ(m, c, ṁ, ċ) = (m, ċ + Γ π

m(c, ṁ)). So, the condition q̇0 ∈ Hπ in
the local coordinates means that ċ0 + Γ π

m(c0, ṁ0) = 0. We have,

TKπ d
dt

q̇ =
d
dt

Kπ q̇ =
d
dt

(m, ċ + Γ π
m(c, ṁ))

=
(

m, ċ + Γ π
m(c, ṁ), ṁ,

d
dt

(ċ + Γ π
m(c, ṁ))

)

.
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By (13.18) DV

dt q̇ = (pπ)−1 ◦Kπ ◦TKπ d
dt q̇ = 0 so that TKπ d

dt q̇ belongs to the
connection. This means that

d
dt

(m, ċ + Γ π
m(c, ṁ)) = (m, ċ + Γ π

m(c, ṁ), ṁ,−Γ π
m(ċ + Γ π

m(c, ṁ), ṁ)) .

Thus
d
dt

(ċ + Γ π
m(c, ṁ)) = −Γ π

m (ċ + Γ π
m(c, ṁ), ṁ)) . (13.19)

Equality (13.19) is an ordinary linear differential equation with respect to
ċ + Γ π

m(c, ṁ). For zero initial conditions (see above) it has a unique solution
ċ + Γ π

m(c, ṁ) = 0. This proves the first statement.
By construction the curve q(t) = (m(t), c(t)) is horizontal and so it can

be represented as (m(t), bt(f)), where bt is a horizontal lift of m(t) into E
and f is some vector in F . Hence bt(f) belongs to an orbit of G in F and so
e(q(t)) = e(bt(f)) is constant. 
�

Theorem 13.37 If m(t) = πq(t) is the projection of a solution of (13.16),
then m(t) satisfies D

dt

τ
ṁ(t) = Tπ(e(q) • Φ̃(·, q̇)) where D

dt

τ
is the covariant

derivative of the Levi-Civitá connection on M4.

Proof. Denote q = (m, c) as above. Describing vectors in local coordinates
by quadruples, we obtain q̇ = (m, c, ṁ, q̇) and d

dt q̇ = (m, c, ṁ, ċ, ṁ, ċ, m̈, c̈).
For m = πq the vector ṁ clearly belongs to TmM4 and so we represent it

in the form (m, ṁ) as a point of TM4. Then d
dtṁ = (m, ṁ, ṁ, m̈).

By the definition of covariant derivative

D
dt

τ

ṁ = Kτ d
dt

ṁ = Kτ (m, ṁ, ṁ, m̈).

On the other hand, from the construction of KH

Tπ
D
dt

H

q̇ = TπKH d
dt

q̇ = Kτ ◦ T 2π(m, c, ṁ, ċ, ṁ, ċ, m̈, c̈) = Kτ (m, ṁ, ṁ, m̈).

Thus, D
dt

τ
ṁ = Tπ D

dt

H
q̇. So, applying Tπ to both sides of (13.17) we obtain

the theorem. 
�

The most important cases are those where G is U(1), or SU(2), or SU(3)
and F is a complex space with appropriate dimension. They correspond to
the well-known gauge fields. As an example we consider the particular case
of an electromagnetic field with G = U(1), F = C

1, h(X,Y ) = XȲ , where
the bar denotes complex conjugation.

Here the algebra U(1) = R
1 is one dimensional and hence commutative.

Thus ϕ and Φ are ordinary differential forms with values in R. The charge
takes values in real numbers and it is constant on the circles in C1 centered at
zero. Recall the structure equation (2.40): dϕ = −1

2 [ϕ, ϕ]+Φ. From the com-
mutativity of U(1) it follows that [ϕ, ϕ](X,Y ) = ϕ(X)ϕ(Y )−ϕ(Y )ϕ(X) = 0,
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for each pair X,Y ∈ TbE , b ∈ E . Thus Φ = Dϕ = dϕ and

DΦ = Ddϕ = ddϕ(H·,H·,H·) = 0
D ∗ Φ = D ∗ dϕ = d ∗ dϕ(H·,H·,H·). (13.20)

From (12.6) and (13.20) we obtain

dΦ = 0, d ∗ Φ = ∗J. (13.21)

Recall that Φ is horizontal and equivariant (see [26]). Since the group
U(1) is commutative, the latter means that Φ is invariant with respect to the
natural right action of G on E : ΦRgb(TRgX,TRgY ) = Φb(X,Y ) where Rg is
the right action of g ∈ G on E , b ∈ E and X,Y ∈ TbE . Thus the equality

Ψm(X,Y ) = Φb(TΠ−1
|Hb

X,TΠ−1
|Hb

Y ),

for any m ∈ M4, b ∈ E , Πb = m and X,Y ∈ TmM4, defines a 2-form Ψ(·, ·)
on M that is well-defined (i.e., does not depend on the choice of b over m).

For Ψ equations (13.21) are reduced to

dΨ = 0, d ∗ Ψ = ∗J̃ . (13.22)

Taking into account Definition 1.71 of the codifferential δ = ∗−1d∗, one can
easily see that (13.22) are the ordinary Maxwell equations (13.4) on the
Lorentz manifold M4 where J̃m(X) = J(TΠ−1

Hb
X), m = Πb and X ∈ TmM4

are well-defined. Thus we may consider Ψ as the strength of the electromag-
netic field on M4.

Clearly Tπ(e(q) • Φ̃(·, q̇)) = e(q)Ψ(·, ṁ). Hence, from Theorem 13.37 it
follows that a particle with charge e(q) is governed by the Lorentz equation
(13.5):

Dτ

dt
ṁ = e(q)Ψ(·, ṁ)

on M4 and the charge e is constant.



Chapter 14

Mechanical Systems with Random
Perturbations

14.1 Setting Up the Problem

It is a well-known fact that a second order differential equation ẍ(t) =
ᾱ(t, x(t), ẋ(t)) expressing Newton’s law in R

n may be represented as a first
order system on the space of dimension 2n:

{
ẋ(t) = v(t)
v̇(t) = ᾱ(t, x(t), v(t)). (14.1)

We call the first equation of the above system horizontal and the second
one vertical. This is consistent with the terminology in the general case of a
mechanical system on a non-linear configuration space M , where Newton’s
law is presented by means of covariant derivatives in the form (11.2), equiv-
alent to equation (11.3) with a special vector field (second order differential
equation) on the phase space TM . Recall that the field (11.3) is the sum
of the Levi-Civitá geodesic spray Z (which is horizontal, i.e. belongs to the
connection) and the vertical lift of the vector force field (which belongs to
the vertical subspace).

Thus a random perturbation of Newton’s law can arise in the horizontal
equation and in the vertical equation (possibly both). Note that a vertical
perturbation is a perturbation of the force field while a horizontal perturba-
tion is a perturbation of velocity. All the cases are physically reasonable but
they require different methods of investigation. It should also be pointed out
that under random perturbations, Newton’s law becomes a random differen-
tial equation, which we shall present in terms of mean derivatives. Taking
into account various possible constructions of second order mean derivatives
(forward, backward, mixed, etc.), this yields several equations of motion from
different parts of physics.

In this chapter we deal with Newton’s law in terms of forward mean deriva-
tives. Its physical interpretation is the description of the motion of an ordi-
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nary mechanical system with random perturbations. We consider both per-
turbations of forces and of velocities.

The versions of Newton’s law in terms of backward and mixed mean deriva-
tives will be considered in forthcoming chapters. Newton’s law in special
mixed derivatives (the so-called Newton-Nelson equation) describes the mo-
tion of a quantum particle (see Chapter 15). Newton’s law in backward mean
derivatives on groups of diffeomorphisms describes the motion of a viscous
incompressible fluid (Chapter 16).

We begin this Chapter with an investigation of the so-called Langevin
equation.

The Langevin equation describes mechanical systems with both determin-
istic and random forces which have comparable magnitudes (i.e., neither the
deterministic nor random part can be neglected) where the random force
is a transformed white noise. Examples of such processes are well-known in
physics. One can easily see that in this case the trajectories of the process
are a.s. C1-smooth. This makes the analysis technically much simpler than
that for more general systems. In particular we can apply the machinery
of ordinary integral operators with Riemannian parallel translation of Sec-
tion 3.2 and study the Langevin equations arising on non-linear configuration
spaces.

In Section 14.2, we introduce the Langevin equation on a Riemannian
manifold and reduce it to the velocity hodograph equation, which is an equa-
tion in a single tangent (i.e., vector) space. This enables us to apply some
standard results and carry out a detailed analysis. We also study an impor-
tant particular case of the Langevin equation: the equation describing the
so-called Ornstein-Uhlenbeck processes arising, for example, in the mathe-
matical model of physical Brownian motion [188]. Sometimes only the latter
equation is called the Langevin equation, whereas the equation applicable in
a more general context is said to be the generalized Langevin equation.

In Section 14.3 we study the case where the force field in the Langevin
equation is set-valued (i.e., it is constructed from an essentially discontinuous
force or where a force with feedback control is under consideration).

Throughout Sections 14.2 and 14.3, all Riemannian manifolds are assumed
to be complete, but not necessarily uniformly or stochastically complete.

In Section 14.4 we investigate mechanical systems with random perturba-
tions of velocity motivated by the motion of a particle, subjected to a deter-
ministic force, that in addition moves in an enveloping medium with random
influence. First we consider systems in R

n with single-valued and set-valued
forces. The systems on manifolds are investigated under some more restric-
tive assumptions. In particular, we assume the manifold to be stochastically
complete and use the machinery of stochastic parallel translation to reduce
the system to the corresponding velocity hodograph equation.
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14.2 The Langevin Equation and Ornstein-Uhlenbeck
Processes on Manifolds

Everywhere in this section we deal with processes given on a finite time
interval [0, l] ⊂ R.

Consider a mechanical system in the sense of Section 11.1, i.e., a Rieman-
nian manifold M together with a force field on M . As just mentioned, M is
assumed to be complete, i.e., a free particle on M cannot escape to infinity in
finite time. The Riemannian metric enables us to identify differential forms
and vector fields on M , so henceforth we regard the force field as a vector
field (see Section 11.1). In addition to the Definition 11.2 of a vector force
field we give the following:

Definition 14.1. A map A from R × TM to the bundle of (1, 1)-tensors
over M (either single or set-valued), such that π1A(t,m,X) = π(m, X) = m
(where π1 is the projection of the bundle of (1, 1)-tensors onto M) will be
called a tensor force field.

Recall that a (1, 1)-tensor at m ∈ M is a linear operator in TmM . Thus for
a tensor force field A(t,m,X) and a vector field Y (m) on M the composition
A(t,m,X)Y (m) is a vector force field.

Let ᾱ(t,m,X) be a vector force field and A(t,m,X) a (1, 1)-tensor field
on M . In other words, for every t ∈ [0, l], m ∈ M , and X ∈ TmM , we
have a vector ᾱ(t,m,X) ∈ TmM and a linear operator A(t,m,X) : TmM →
TmM . Making use of the construction given in Section 7.7.2, specify a Wiener
process w(t) on the tangent spaces to M and denote by ẇ the white noise of
w(t) (see Section 6.2.1).

The Langevin equation describes the evolution of a system with the force
field

ᾱ(t,m,X) + A(t,m,X)ẇ. (14.2)

More formally, the equation of motion must read

D
dt

ξ̇(t) = ᾱ
(
t, ξ(t), ξ̇(t)

)
+ A

(
t, ξ(t), ξ̇(t)

)
ẇ(t), (14.3)

however this expression is meaningful only in the sense of distributions.
Our first goal is to give a rigorous meaning to (14.3) without using distri-

butions. We do this in terms of forward mean derivatives, the construction of
which can be simplified in the case under consideration. Then we transform
the obtained equation into an equivalent integral form employing the inte-
grals with Riemannian parallel translation from Section 3.2 by analogy with
that given in Section 11.8. In particular we use the transition to the corre-
sponding velocity hodograph equation which is much easier to study since it
is an equation in a single tangent (i.e., linear) space. Note that previously,
in [94, 118, 119], the Langevin equation was considered only in this integral
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form. A local coordinate version of the equation was independently given in
[180].

We assume that ᾱ(t,m,X) and A(t,m,X) are jointly continuous in all
variables and that these fields have linear growth in X. In other words, there
exists a constant K > 0 such that

‖ᾱ(t,m,X)‖ + ‖A(t,m,X)‖ < K (1 + ‖X‖) (14.4)

for all t ∈ [0, l], m ∈ M , and X ∈ TmM , where the norm is given by the
Riemannian metric. The estimate (14.4) is a version of the Itô condition.

One can show, appealing to physical reasoning, that a process subjected to
the force (14.2) a.s. has continuous velocities and as a consequence it a.s. has
C1-smooth sample paths. Below we shall show that solutions of the Langevin
equation do indeed exist in the class of processes with C1-smooth sample
paths. This is why we start by examining some features of such processes.

Let ξ(t) be a stochastic process on M with a.s. C1-smooth sample paths
given on a probability space (Ω,F ,P), and let a vector field Y be given on
M . As above, by Γt.s we denote the operator of parallel translation along
a C1-smooth curve x(·) from x(s) to x(t). Since the sample paths of ξ(t)
are C1-smooth, the parallel translation in the definition of a forward mean
derivative, by formula (9.15), is the ordinary parallel translation (i.e., we
needn’t deal with the general construction of a stochastic parallel translation
from Section 7.6). Thus we have obtained:

Lemma 14.2 The covariant forward mean derivative of the vector field Y
along the process ξ(t) on M with a.s. C1-smooth sample paths at time t is
the L1 random element of the form

DY (t, ξ(t)) = lim
�t↓0

Eξ
t

(
Γt,t+�tY (t + �t, ξ(t + �t)) − Y (t, ξ(t))

�t

)

, (14.5)

where Γt,s is the ordinary parallel translation along C1-smooth curves.

Consider a probability space (Ω,F ,P) and a non-decreasing family of com-
plete σ-subalgebras Bt of F . In a given tangent space Tm0M introduce a
Wiener process w(t) adapted to Bt, and an Itô diffusion type process v(t) of
the form v(t) =

∫ t

0
b(s)ds +

∫ t

0
B(s)dw(s) with b(t) and B(t) a.s. having con-

tinuous sample paths. In particular this means that v(t) is non-anticipative
with respect to Bt and a.s. has continuous sample paths. Thus we can apply
the operator S introduced in Section 3.2 to the sample paths of v(t). Then
we obtain the process ξ(t) = Sv(t) having C1-smooth sample paths. Recall
that S : C0 ([0, l], Tm0M) → C1

m0
([0, l], M) is continuous. Since in addition

v(t) is non-anticipative with respect to Bt, this proves the following:

Lemma 14.3 The process Sv(t) is non-anticipative with respect to Bt.

Consider a special case of the probability space (Ω̄, F̄ , P̄) where Ω̄ =
C0([0, l], Tm0M), F̄ is the σ-algebra generated by cylinder sets and the mea-
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sure P̄ is the measure generated by a certain stochastic process in Tm0M . In
this case we shall deal with the family B̄t of σ-subalgebras of F̄ where for
some t the σ-subalgebra B̄t is generated by cylinder sets with bases on [0, t].

Lemma 14.4 The process Sv(t) is non-anticipative with respect to B̄t.

Proof. Indeed, if the curves v1(·) and v2(·) from Ω̄ = C0([0, l], Tm0M) coin-
cide at all t ∈ [0, l0] where 0 < l0 < l, then Sv1(t) coincides with Sv2(t) for
t ∈ [0, l0] by construction of the operator S. By [83, Chapter III, Section 2]
this is the assertion of Lemma 14.4. ��

Consider the vector field ξ̇(t) along ξ(t) = Sv(t).

Theorem 14.5
Dξ̇(t) = Eξ

t (Γt,0b(t)).

Proof. From the properties of parallel translation and from the construction
of ξ(t) it follows that

Eξ
t (Γt,t+�tξ̇(t + �t) − ξ̇(t))

= Eξ
t

(

Γt,0

(∫ t+�t

t

b(s)ds +
∫ t+�t

t

B(s)dw(s)

))

.

Note that N ξ
t is a σ-subalgebra in Pv

t . Since the Itô integral
∫ t+�t

t
B(s)dw(s)

is a martingale with respect to Pv
t , by the properties of conditional expecta-

tion we obtain that

Eξ
t

(∫ t+�t

t

B(s)dw(s)

)

= 0.

The Theorem follows. ��

Along a process ξ(t) = Sv(t) as above we can define the covariant
quadratic mean derivative of ξ̇(t) as follows. Introduce the notation �ξ̇(t) =
Γt,t+�tξ̇(t + �t) − ξ̇(t) where (as above in this section) Γt,s is the ordinary
parallel translation along C1-smooth curves.

Definition 14.6. The quadratic mean derivative of ξ̇(t) along ξ(t) = Sv(t)
on M at time t is an L1 random element of the form

D2ξ̇(t) = lim
�t↓0

Eξ
t

(
�ξ̇(t) ⊗�ξ̇(t)

�t

)

,

where ⊗ is the tensor product and Γt,s is the ordinary parallel translation
along C1-smooth curves.
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Theorem 14.7 Consider a process ξ(t) = Sv(t) with v(t) =
∫ t

0
b(s)ds +

∫ t

0
B(s)dw(s) in Tm0M as above. Then D2ξ̇(t) = Eξ

t (Γt,0(B(t)B∗(t))) where
B∗ is the adjoint operator.

Proof. As in the proof of Theorem 14.5, from the properties of parallel trans-
lation and from the construction of ξ(t) it follows that

Eξ
t (�ξ̇(t) ⊗�ξ̇(t)) = Eξ

t (Γ0,t(�v(t) ⊗�v(t))),

where �v(t) =
∫ t+�t

t
b(s)ds +

∫ t+�t

t
B(s)dw(s). In addition from the prop-

erties of the Itô integral we obtain that in the expression �v(t)⊗�v(t) only
the summand (

∫ t+�t

t
B(s)dw(s))⊗ (

∫ t+�t

t
B(s)dw(s)) is infinitesimal of the

same order as �t while all other summand are infinitesimals of higher order
than �t. Now the Theorem follows from Definition 14.6 and from the prop-
erties of the Itô integral. ��

The fact that ξ(t) a.s. has C1-smooth paths is equivalent to the equality
D2ξ(t) = 0 (see Theorem 8.12 and Lemma 9.16). Thus we are in a position
to give the following:

Definition 14.8. The Langevin equation with force field (14.2) is the system
⎧
⎨

⎩

Dξ̇(t) = ᾱ(t, ξ(t), ξ̇(t))
D2ξ̇(t) = A(t, ξ(t), ξ̇(t))A∗(t, ξ(t), ξ̇(t))
D2ξ(t) = 0.

(14.6)

Let ξ(t) be a stochastic process with values in M which is non-anticipative
with respect to Bt and such that the sample trajectories of ξ are a.s. C1-
smooth and ξ(0) = m0 ∈ M . Thus, as above, we can use the ordinary Rie-
mannian parallel translation along the sample paths of ξ. Retaining the nota-
tion of Sections 3.2 and 11.8, we denote Γ0,t by Γ and so Γᾱ(t, ξ(t), ξ̇(t)) and
ΓA(t, ξ(t), ξ̇(t)) are obtained by the parallel translation of ᾱ(t, ξ(t), ξ̇(t)) and
A(t, ξ(t), ξ̇(t)), respectively, along ξ(·) from the point ξ(t) to ξ(0) = m0, where
ᾱ and A are the coefficients of force field (14.2). The processes Γ ᾱ(t, ξ, ξ̇) and
ΓA(t, ξ, ξ̇) take values in Tm0M and L(Tm0M,Tm0M), respectively, and their
trajectories are a.s. continuous, for so are the fields ᾱ(t,m,X) and A(t,m,X).
Since parallel translation preserves the Riemannian norm, it follows from
(14.4) that

∥
∥
∥Γ ᾱ

(
t, ξ(t), ξ̇(t)

)∥
∥
∥ +

∥
∥
∥ΓA

(
t, ξ(t), ξ̇(t)

)∥
∥
∥ < K

(
1 +

∥
∥
∥Γ ξ̇(t)

∥
∥
∥
)

. (14.7)

Lemma 14.9 The processes Γᾱ
(
t, ξ(t), ξ̇(t)

)
and ΓA

(
t, ξ(t), ξ̇(t)

)
are non-

anticipative with respect to Bt.

The lemma is a consequence of the fact that the parallel translation opera-
tor Γ is continuous on the space of C1-curves equipped with the C1-topology
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and of our assumptions that ξ is non-anticipative and the fields ᾱ and A are
both continuous.

By Lemma 14.9, we can define the process z(t) in Tm0M as

z(t) =
∫ t

0

Γ ᾱ
(
τ, ξ(τ), ξ̇(τ)

)
dτ +

∫ t

0

ΓA
(
τ, ξ(τ), ξ̇(τ)

)
dw(τ), (14.8)

where the second term on the right-hand side is the Itô integral. It is clear
that z(t) given by (14.8) is non-anticipative with respect to Bt and almost
surely has continuous trajectories.

Setting v(t) = z(t), we obtain the Langevin equation (14.6) in the integral
form:

ξ(t) = S
(∫ t

0

Γ ᾱ
(
τ, ξ(τ), ξ̇(τ)

)
dτ +

∫ t

0

ΓA
(
τ, ξ(τ), ξ̇(τ)

)
dw(τ) + C̄

)

.

(14.9)

Indeed, one can easily see that a process satisfying (14.9) also satisfies (14.6).
On the other hand, taking into account the relationship between Newton’s
equation (11.2) and the integral equation (11.19), we see that a solution ξ(t)
of (14.9) is a stochastic trajectory of the system with the force field given by
(14.2) and with the initial condition ξ(0) = m0 and ξ̇(0) = C̄ ∈ Tm0M .

Definition 14.10. We say that (14.9) has a weak solution on [0, l] ⊂ R with
initial conditions ξ(0) = m0, ξ̇(0) = C if there exist a probability space
(Ω,F ,P), an M -valued stochastic process ξ(t) with a.s. C1-smooth sample
paths, defined on (Ω,F ,P) with initial conditions ξ(0) = m0 and ξ̇(0) = C
and a Wiener process w(t) in R

n, defined on (Ω,F ,P) and adapted to ξ(t),
such that for all t ∈ [0, l] P-a.s. (14.9) is fulfilled.

Definition 14.11. We say that (14.9) has a strong solution on [0, l] ⊂ R with
initial conditions ξ(0) = m0, ξ̇(0) = C if on every probability space (Ω,F , P)
which admits a Wiener process, and for any Wiener process w(t) in R

n,
defined on (Ω,F , P), there exists an M -valued stochastic process ξ(t), non-
anticipative with respect to w(t) and having a.s. C1-smooth sample paths,
that is defined on (Ω,F ,P) with initial condition ξ(0) = m0, such that for
all t ∈ [0, l] P-a.s. (14.9) is fulfilled.

Remark 14.12. Equation (14.9) involves the Itô integral
∫ t

0
ΓA(τ, ξ, ξ̇) dw.

A similar equation involving the Stratonovich integral
∫ t

0
ΓA(τ, ξ, ξ̇) ◦ dw is

also well-defined.

The velocity hodograph equation corresponding to (14.9) is

v(t) =
∫ t

0

Γ ᾱ

(

t,Sv(t),
d
dt

Sv(t)
)

dτ+
∫ t

0

ΓA

(

t,Sv(t),
d
dt

Sv(t)
)

dw(τ)+C̄

(14.10)
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(cf. Section 11.8.1). It is clear that the fields Γᾱ
(
t,Sx(t), d

dtSx(t)
)

and
ΓA

(
t,Sx(t), d

dtSx(t)
)

are defined along any curve x(·) ∈ C0
(
[0, l], Tm0M

)

and continuous on the space R×C0
(
[0, l], Tm0M

)
. By construction (see Sec-

tion 3.2.1) and by the properties of parallel translation, we have
∥
∥
∥
∥

d
dt

S (x(t))
∥
∥
∥
∥ = ‖x(t)‖ ,

and, therefore, by (14.7),
∥
∥
∥
∥Γ ᾱ

(

t,Sx(t),
d
dt

Sx(t)
)∥

∥
∥
∥ +

∥
∥
∥
∥ΓA

(

t,Sx(t),
d
dt

Sx(t)
)∥

∥
∥
∥ ≤ K (1 + ‖x(t)‖) .

(14.11)

Lemma 14.13 Γᾱ
(
t,Sx(t), d

dtSx(t)
)

and ΓA
(
t,Sx(t), d

dtSx(t)
)

are non-
anticipative with respect to the family B̄t from Lemma 14.4.

The assertion of Lemma 14.13 clearly follows from the construction of
Γ ᾱ

(
t,Sx(t), d

dtSx(t)
)

and ΓA
(
t,Sx(t), d

dtSx(t)
)

and from the properties of
parallel translation, as well as from Lemma 14.4.

Equation (14.10) is an Itô stochastic differential equation of diffusion type
on the linear space Tm0M . Since Definitions 6.23 and 6.24 are valid for
(14.10), we needn’t introduce any special notions of strong and weak so-
lutions for it.

It is clear that v(t) and the Wiener process w(t) in Tm0M satisfy (14.10)
if and only if Sv(t) (taking values in M) and w(t) satisfy (14.9). Observe
also that Sv(t) is defined on the same probability space and has the same
measurability properties with respect to w(t) as v(t). Thus, we have proved:

Theorem 14.14 The process v(t) is a strong (respectively, weak) solution of
(14.10) if and only if Sv(t) is a strong (respectively, weak) solution of (14.9).

Remark 14.15. Let us specify a realization of w(t) in Tm0M . Applying to
it the parallel translation along Sv(·), we obtain realizations of w(t) in all
spaces TSv(·)M . These realizations give rise to a force field defined along the
trajectory. One may also use the realizations to introduce the notion of a
solution of (14.9) in a similar way to Definitions 7.92 and 7.93.

Theorem 14.16 Assume that ᾱ(t,m,X) and A(t,m,X) are jointly con-
tinuous in all variables and satisfy (14.4). Then on [0, l] there exists a
weak solution of equation (14.9) for any initial conditions ξ(0) = m0 and
ξ̇(0) = C̄ ∈ Tm0M .

Proof. First, we pass to (14.10), which is equivalent to (14.9). Note that
(14.10) is a diffusion type equation on a vector space. Recall that this means
that the coefficients of (14.10) depend on the past, i.e., on the entire tra-
jectory on the interval [0, t]. As has been shown, Γᾱ

(
t,Sx(t), d

dtSx(t)
)

and
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ΓA
(
t,Sx(t), d

dtSx(t)
)

are well-defined and continuous on R×C0([0, l], Tm0M)
Moreover, they satisfy (14.11), the linear growth condition and by Lemma
14.13 they are not anticipative with respect to the family of σ-subalgebras B̄t.
Thus, the standard existence theorem in linear spaces (see, e.g., [83, Chap-
ter 3, Section 2] or [162, Section 19.3.8]) guarantees that a weak solution of
(14.10) exists. To complete the proof we simply apply Theorem 14.14. ��

The following results can also be proved by passing to (14.10) and applying
the results of the standard theory of stochastic equations on vector spaces
[83, 84, 162].

Theorem 14.17 Let ᾱ(t,m,X) and A(t,m,X) be as in Theorem 14.16. As-
sume that the operator A(t,m,X) is invertible for all t, m, and X. If a
solution of the equation

ξ(t) = S
(∫ t

0

ΓA
(
τ, ξ(τ), ξ̇(τ)

)
dw(τ)

)

(14.12)

is weakly unique, then so is a solution of (14.9).

Theorem 14.18 Let ᾱ(t,m,X) be jointly continuous in all variables, satisfy
(14.4), and be such that the solution of the Cauchy problem for (11.2) is
unique. In addition, let Aε(t,m,X), where ε ∈ (0, δ) and δ > 0, be jointly
continuous in ε, t, m and X, and satisfy (14.4) with K independent of ε.
Assume also that:

(i) A0 = 0;
(ii) lim

ε→0
Aε → 0 uniformly on every compact subset of [0, l] × TM ;

(iii) a solution of the equation

ξ(t) = S
(∫ t

0

Γ ᾱ
(
τ, ξ(τ), ξ̇(τ)

)
dτ

+
∫ t

0

ΓAε

(
τ, ξ(τ), ξ̇(τ)

)
dw(τ) + C̄ε

)

(14.13)

is weakly unique for some C̄ε such that lim
ε→0

C̄ε = C̄.

Then the measures on C1
m0

([0, l], M) corresponding to the solutions of
(14.13) weakly converge as ε → 0 to the measure concentrated on the unique
solution of (11.2).

Example 14.19. Let A = εI, where I is the identity operator. Then it is clear
that a solution of (14.12) is unique. Thus, for ᾱ as before, the equation

ξ(t) = S
(∫ t

0

Γ ᾱ
(
τ, ξ(τ), ξ̇(τ)

)
dτ + εw(t) + C

)
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has a unique solution. If, for example, ᾱ is locally Lipschitz in m and X, then
Theorem 14.18 holds true for the latter equation.

Remark 14.20. Let β be a (possibly, non-holonomic) constraint on M . Em-
ploying the operators Sβ and Γβ defined in Section 11.8.2, one can extend
the notion of a Langevin equation to manifolds with constraints. In this case,
the velocity hodograph equation in a fiber of β turns out to be very similar
to (14.10). As a consequence, analogs of all results of this section hold true
for the Langevin equations with constraints.

It is known that equation (14.9) has a strongly unique strong solution
provided that the coefficients of the diffusion type equation (14.9) satisfy a
Lipschitz type condition (see e.g., [66, 170] and Section 6.2.3). However, the
existence of a strong solution is rather hard to prove in the general case where
the coefficients involve the operators Γ and S. The reason is that Γ and S
are defined by means of parallel translation and, as a consequence, we have a
condition imposed on the entire mechanical system, rather than just on the
force field.

On the other hand, the existence can easily be verified for certain particular
force fields. Here we consider three examples of such fields:

(i) The drag force:

ᾱ(t,m,X) = φ (t, ‖X‖) · âm(X),
A(t,m,X) = Ψ

(
t, ‖X‖

)
· Âm(X),

where φ and Ψ are scalar functions, â is a (1, 1)-tensor field with ∇â =
0, and Â is a field of operators Âm : TmM → L(TmM) parallel along
every curve in M . (Note that the equation ∇â = 0 is a restriction of the
same kind as that imposed on Â: the operators âm : TmM → TmM are
parallel along every curve.) For example, one may take â = ±I or, if
M is an oriented two-dimensional manifold, then âm may be a rotation
by a fixed angle. The same operators can be taken as examples of Â
if we assume in addition that Âm(X) is independent of X (i.e., Âm,
regarded as a function of X, is constant).

(ii) A particular case of (i) involving friction and constant diffusion:

ᾱ(t,m,X) = −b(t) · X, A(t,m,X) = φ(t) · Âm,

where the friction coefficient b ≥ 0 is a real-valued function of time
and Â is a (1, 1)-tensor field with ∇Â = 0.

(iii) A force given in a “stationary coordinate system”. Let the mappings
ᾱm0(t) : Tm0M → Tm0M and Am0(t) : Tm0M → L(Tm0M), t ∈ [0, l]
be given. The operators ᾱ and A at other points of the trajectory ξ(t)
are obtained by the parallel translation of ᾱm0 and Am0 along ξ(·).
(See Section 11.9 for a mechanical interpretation of parallelism.)
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Theorem 14.21 Let ᾱ and A be as in (i)-(iii). Assume also that ᾱm0 and
Am0 are Lipschitz in X ∈ Tm0M and satisfy (14.4), the linear growth condi-
tion. Then (14.9) has a strongly unique strong solution on [0, l].

Proof. Under the hypotheses of the theorem, equation (14.10) on Tm0M is
equivalent to the following:

v(t) =
∫ t

0

ᾱ (τ, m0, v(τ)) dτ +
∫ t

0

A (τ, m0, v(τ)) dw(τ) + C̄. (14.14)

This equation has a strongly unique strong solution defined on [0, l]. The
initial velocity C̄ can be viewed as a random vector measurable with respect
to the σ-algebra B0 [170, 66]. To finish the proof it suffices to apply Theorem
14.14. ��

If ᾱ and A are as in (ii), then the hypotheses of Theorem 14.21 are au-
tomatically satisfied, provided that b and φ are bounded. In this case, the
solution v(t) of (14.14) and the solution Sv(t) of the Langevin equation are
called the Ornstein-Uhlenbeck velocity process and the Ornstein-Uhlenbeck
coordinate process, respectively.

The assumption that b and φ are bounded can be omitted in the hodograph
equation for Ornstein-Uhlenbeck processes so that the velocity process exists
on a random interval up to the explosion time (see Definition 6.32).

Recall that Ornstein-Uhlenbeck processes describe Brownian motion in
a medium with a drag force. A detailed discussion can be found in [188].
Ornstein-Uhlenbeck processes on manifolds are also discussed in [154].

Let v(t) be a solution of (14.14). Denote by Ev(t) the mathematical ex-
pectation of v(t) in Tm0M .

Definition 14.22. The curve S(Ev(t)) on M is said to be the mathematical
expectation of the process Sv(t). The function E(Ev(t)− v(t))2 is called the
dispersion of Sv(t).

It is easy to see that for the system defined in (i) and, in particular, for
(ii) the mathematical expectation of a solution of (14.9) satisfies (11.2).

Passing to the hodograph equation and applying standard results on equa-
tions in a vector space, we obtain the following theorem.

Theorem 14.23 Under the assumptions of Theorem 14.21, the solutions of

ξ(t) = S
(∫ t

0

Γᾱ
(
τ, ξ(τ), ξ̇(τ)

)
dτ

+ ε

∫ t

0

ΓA
(
τ, ξ(τ), ξ̇(τ)

)
dw(τ) + εC̄

)

(14.15)

converge as ε → 0 to the solution of (11.19) in the topology of the space

S
(
C0([0, l], L2(Ω, Tm0M))

)
.
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The mathematical expectation of the solution of (14.15) uniformly converges
to the solution of (11.19).

Here L2(Ω, Tm0M) is the space of square integrable maps from Ω to Tm0M
and S(C0([0, l], L2(Ω, Tm0M))) is the image of the space of continuous curves
in L2(Ω, Tm0M) given on [0, l], under the mapping S. Note that the conver-
gence means that the dispersion of ξ converges uniformly to zero. Recall also
that equations (11.19) and (11.2) are equivalent.

Remark 14.24. For the Langevin equation with constraint mentioned in Re-
mark 14.20, the Ornstein-Uhlenbeck processes with constraint can be defined
analogously as strong solutions of the corresponding hodograph equations.

14.3 Set-Valued Forces. Langevin Type Inclusions

In this section we investigate second order stochastic differential inclusions
on Riemannian manifolds which are set-valued analogs of the Langevin equa-
tions from Section 14.2. As mentioned above, the set-valued force arises in
a system with control or may be obtained from a discontinuous force (for
instance, if dry friction is considered or if the motion takes place in a compli-
cated medium). If the force is discontinuous there are well-known methods
of transition to a set-valued force (for stochastic differential equations the
pioneering paper was [41]). Examples of systems having discontinuous forces
with random components of the above-mentioned sort are rather common in
physics, for example, they describe the motion of a physical Brownian par-
ticle in a complicated medium. The use of Riemannian manifolds allows one
to cover mechanics on non-linear configuration spaces.

In this Section we use the set-valued vector force fields and set-valued
tensor force fields introduced in Definition 11.43 and Definition 14.1, respec-
tively.

Let α and A be a set-valued vector force field and a set-valued tensor
field, respectively. For a stochastic process ξ(t) with a.s. C1-smooth sample
paths consider the set-valued maps Γα(τ, ξ(τ), ξ̇(τ)) and ΓA(τ, ξ(τ), ξ̇(τ))
sending [0, l] into Tm0M and into the space of linear operators on Tm0M and
denote by PΓα(τ, ξ(τ), ξ̇(τ)) and PΓA(τ, ξ(τ), ξ̇(τ)) the sets of their Borel
measurable selectors.

A Langevin inclusion is a system of the form
⎧
⎨

⎩

Dξ̇(t) ∈ α(t, ξ(t), ξ̇(t))
D2ξ̇(t) ∈ A(t, ξ(t), ξ̇(t))A∗(t, ξ(t), ξ̇(t))
D2ξ(t) = 0

(14.16)

where D and D2 are defined in Section 14.2 by means of ordinary parallel
translation along C1-smooth curves. In integral form (14.16) is expressed as
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ξ(t) ∈ S
(∫ t

0

PΓα
(
τ, ξ(τ), ξ̇(τ)

)
dτ +

∫ t

0

PΓA
(
τ, ξ(τ), ξ̇(τ)

)
dw(τ) + C

)

.

(14.17)

Definition 14.25. We say that (14.16) has a weak solution on [0, l] ⊂ R

with initial conditions ξ(0) = m0, ξ̇(0) = C if there exist a probability space
(Ω,F , P), an M -valued stochastic process ξ(t) with a.s. C1-smooth sample
paths, defined on (Ω,F , P) with initial conditions ξ(0) = m0 and ξ̇(0) = C,
a Wiener process w(t) in R

n, defined on (Ω,F , P) and adapted to ξ(t), a
single-valued vector field ᾱ(t,m,X) on M and a single-valued (1, 1)-tensor
field A(t,m,X) such that:

(i) for all t the random vector ᾱ(t, ξ(t), ξ̇(t)) belongs to α(t, ξ(t), ξ̇(t))
P-a.s.;

(ii) for all t the random tensor A(t, ξ(t), ξ̇(t)) belongs to A(t, ξ(t), ξ̇(t))
P-a.s.;

(iii) the integrals
∫ t

0
Γ ᾱ(τ, ξ(τ), ξ̇(τ))dτ and

∫ t

0
ΓA(τ, ξ(τ), ξ̇(τ))dw(τ) are

well-defined for ξ(t), w(t), ᾱ and A,

and for all t ∈ [0, l] P-a.s.

ξ(t) = S
(∫ t

0

Γ ᾱ
(
τ, ξ(τ), ξ̇(τ)

)
dτ +

∫ t

0

ΓA
(
τ, ξ(τ), ξ̇(τ)

)
dw(τ) + C

)

.

(14.18)

Definition 14.26. We say that (14.16) has a strong solution on [0, l] ⊂ R

with initial conditions ξ(0) = m0, ξ̇(0) = C if on any probability space
(Ω,F , P) which admits a Wiener process, and for any Wiener process w(t) in
R

n, defined on (Ω,F , P), there exist: a stochastic process ξ(t) with a.s. C1-
smooth sample paths in M , defined on (Ω,F , P) and non-anticipating with
respect to w(t) with initial condition ξ(0) = m0 and ξ̇(0) = C, a single-valued
vector field ᾱ(t,m,X) on M and a single-valued (1, 1)-tensor field A(t,m,X)
such that:

(i) for all t the random vector ᾱ(t, ξ(t), ξ̇(t)) belongs to α(t, ξ(t), ξ̇(t))
P-a.s.;

(ii) for all t the random tensor A(t, ξ(t), ξ̇(t)) belongs to A(t, ξ(t), ξ̇(t))
P-a.s.;

(iii) the integrals
∫ t

0
Γ ᾱ(τ, ξ(τ), ξ̇(τ))dτ and

∫ t

0
ΓA(τ, ξ(τ), ξ̇(τ))dw(τ) are

well-defined for ξ(t), w(t), ᾱ and A and P-a.s. (14.18) holds for all
t ∈ [0, l].

As in Section 14.2 one can easily prove that ξ(t) as above satisfies (14.18)
if and only if its velocity hodograph v(t) (i.e., v(t) given by the relation
ξ(t) = Sv(t)) satisfies the velocity hodograph equation of the form
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v(t) =

t∫

0

Γ ᾱ

(

τ,Sv(τ),
d
dτ

Sv(τ)
)

dτ+

t∫

0

ΓA

(

τ,Sv(τ),
d
dτ

Sv(τ)
)

dw(τ)+C

(14.19)
which is an equation of diffusion type in the tangent (i.e., linear) space at
m0 and hence is easier to study. Below, we shall find ᾱ and A as in Defini-
tions 14.25 and 14.26 and a corresponding v(t), being a solution of (14.19) in
the weak or strong sense, and then obtain ξ(t) = Sv(t) satisfying (14.18).

If both α and A have continuous selectors satisfying the Itô condition (see
(14.20) below), the existence of a weak solution trivially follows from that for
the Langevin equation obtained in Section 14.2. If this is not the case, the
existence problem for Langevin inclusions requires special constructions.

For vector and tensor set-valued force fields on manifolds we use the fol-
lowing modification of Definition 3.49:

Definition 14.27. A continuous single-valued force field ᾱε(t,m,X) is called
an ε-approximation of the set-valued force field α(t,m,X) on M if its graph
(t,m,X, ᾱε(t,m,X)) lies in an ε-neighborhood of (t,m,X, α(t,m,X)) (the
graph of α) in [0, l] × TM ⊕ TM , where ⊕ denotes the Whitney sum. For
(1, 1)-tensor fields the definition is analogous.

One can easily see that the natural analog of Theorem 4.11 holds for both
vector and (1, 1)-tensor force fields.

We say that α and A satisfy the Itô condition if they have linear growth in
velocities, i.e., there exists a Θ > 0 for which the following inequality holds:

‖α(t,m,X)‖ + ‖A(t,m,X)‖ < Θ(1 + ‖X‖). (14.20)

Theorem 14.28 Let the set-valued force field α(t,m,X) and set-valued
(1, 1)-tensor field A(t,m,X) be upper semi-continuous with convex bounded
closed values and satisfy the Itô condition (14.20) for some Θ.

Then for any m0 ∈ M and C ∈ Tm0M the Langevin inclusion (14.16) has
a weak solution with initial conditions ξ(0) = m0, ξ̇(0) = C, well-defined for
all t ∈ [0,∞).

Proof. Let l > 0. Denote by B the Borel σ-algebra on [0, l] and by λ the
normalized Lebesgue measure on it. Here we use the following notation: Ω̃ =
C0([0, l], Tm0M) is the Banach space of continuous curves x : [0, l] → Tm0M
with the usual uniform norm and F̃ is the σ-algebra generated by cylindrical
sets on Ω̃. By P̃t we denote the σ-algebra generated by cylinder sets with
bases over [0, t] (cf. Section 6.1.1).

We shall use several measures on (Ω̃, F̃) and on the product space [0, l]×Ω̃
we shall introduce the corresponding product measures.

Take a sequence εi → 0 and construct sequences fi(t,m,X) and ai(t,m,X)
of continuous εi-approximations of F (t,m,X) and A(t,m,X), respectively,
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as in Theorem 4.11. In particular, denote by Ψi(t,m,X) a continuous set-
valued force field with convex closed values whose graph belongs to the εi-
neighborhood of the graph of F (t,m,X) and such that for all (t,m,X) the
inclusion F (t,m,X) ⊂ Ψi(t,m,X) holds (the existence of such Ψi(t,m,X)
follows from [79]). Then as in the proof of Theorem 4.11 the minimal se-
lectors fi(t,m,X) of Ψi(t,m,X) point-wise converge to the minimal selector
f(t,m,X) of F (t,m,X) as i → ∞ and f(t,m,X) is Borel measurable. By an
analogous argument we introduce a continuous (1, 1)-tensor field Ψ̂i(t,m,X)
whose graph belongs to the εi-neighborhood of the graph of A(t,m,X) and
such that for all (t,m,X) the inclusion A(t,m,X) ⊂ Ψ̂i(t,m,X) holds. The
minimal selectors ai(t,m,X) of Ψ̂i(t,m,X) point-wise converge to the mini-
mal selector a(t,m,X) of A(t,m,X) as i → ∞ and a(t,m,X) is Borel mea-
surable.

Taking into account Definition 14.27 and inequality (14.20) we have

‖fi(t,m,X)‖ + ‖ai(t,m,X)‖ < Q(1 + ‖X‖)

for a certain Q > Θ and for all i.
Pass from the sequences fi(t,m,X) and ai(t,m,X) to the sequences

f̃i : [0, l] × Ω̃ → TM and ãi : [0, l] × Ω̃ → TM , where f̃i(t, x(·)) =
fi(t,Sx(t), d

dtSx(t)) and ãi(t, x(·)) = ai(t,Sx(t), d
dtSx(t)). In addition, intro-

duce f̃(t, x(·)) = f(t,Sx(t), d
dtSx(t)) and ã(t, x(·)) = a(t,Sx(t), d

dtSx(t)).
Consider the maps Γ f̃i(t, x(·)) from [0, l] × Ω̃ into Tm0M and Γ ãi(t, x(·))

from [0, l] × Ω̃ into the set of linear endomorphisms on Tm0M . One can
easily see that Γ f̃k(t, x(·)) point-wise converges to Γ f̃(t, x(·)) and Γ ãk(t, x(·))
point-wise converges to Γ ã(t, x(·)) as k → ∞.

Since d
dtSx(t) is by construction parallel to x(t) along Sx(·) and the par-

allel translation preserves the norms, we get

‖Γ f̃i(t, x(·))‖ + ‖Γ ãi(t, x(·))‖ < Q(1 + ‖x(·)‖). (14.21)

By construction, Γ f̃i(t, x(·)) and Γ ãi(t, x(·)) are continuous on [0, l] × Ω̃
(this follows from the continuity of Γ , see [99, 106, 107, 115]) and measurable
with respect to the σ-subalgebra Pt in F generated by cylindrical sets with
bases over [0, t]. Since it also satisfies (14.21), by Theorem 6.26 there exists
a weak solution vi(t) of the equation

vi(t) =

t∫

0

Γ f̃i(τ, vi(·))dτ +

t∫

0

Γ ãi(τ, vi(·))dw(t) + C (14.22)

Denote by μi the measure on (Ω̃, F̃) corresponding to vi. Recall that vi(t)
is represented as the coordinate process vi(t, x(·)) = x(t) on the probability
space (Ω̃, F̃ , μi).
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By Lemma 6.28, since all Γ f̃i(t, x(·)) and Γ ãi(t, x(·)) satisfy (14.21) with
the same Q, one can show that the set of measures {μi} is weakly compact and
so there exists a subsequence converging weakly to some probability measure
μ on (Ω̃, F̃). For the sake of convenience we use the same notation and say
that μi itself is the converging subsequence. Denote by v(t) the coordinate
process on (Ω̃, F̃ , μ).

The fact that the process v(t) −
∫ t

0
Γ f̃(s, v(s))ds is a martingale on

(Ω̃, F̃ , μ) with respect to P̃t is proved by analogy with Lemma 8.47.
Choose an orthonormal basis in Tm0M . Then the vectors in Tm0M are

considered as coordinate columns. If X is such a vector, the transposed row
vector is denoted by X∗. Note that for a column X and a row Y ∗ the product
XY ∗ with respect to matrix multiplication is a matrix. Linear operators from
Tm0M to Tm0M are represented in coordinates as n× n matrices, where the
symbol ∗ denotes conjugate transposition.

Consider the sequence ai(t,m,X) of εi-approximations of A(t,m,X) that
point-wise converges to the Borel-measurable selector a(t,m,X) (see the be-
ginning of this proof). One can easily see that ai(t,m,X)(ai(t,m,X))∗ point-
wise converges to a(t,m,X)(a(t,m,X))∗. Then by analogy with the proof of
Lemma 8.48 one can show that

v(t)v(t)∗ −
t∫

0

Γ ã(s, x(·))(Γ ã(s, x(·)))∗ds

is a martingale on (Ω̃, F̃ , μ) with respect to P̃ and so

E

(

(x(t + Δt) − x(t))(x(t + Δt) − x(t))∗ −

−
t+Δt∫

t

Γ ã(s, x(·))(Γ ã(s, x(·)))∗ds | P̃t

)

= 0. (14.23)

Using the standard Girsanov technique one can derive from the above
arguments that on (Ω̃, F̃ , μ) there exists a Wiener process w(t), adapted to
Pt, such that v(t) on (Ω̃,F , μ) satisfies the equality

v(t) = C +

t∫

0

Γ f̃(s, v(·))ds +

t∫

0

Γ ã(s, v(·))dw(s) (14.24)

(see [83]). Then, taking into account the construction of f̃ and the operators
S and Γ , one can easily see that the process ξ(t) = Sv(t) satisfies the equation



14.3 Set-Valued Forces. Langevin Type Inclusions 347

ξ(t) = S

⎛

⎝

t∫

0

Γf

(

s, ξ(s),
d
ds

ξ(s)
)

ds +

t∫

0

Γa

(

s, ξ(s),
d
ds

ξ(s)
)

dw(s) + C

⎞

⎠

(14.25)
Since f(t,m,X) ∈ F (t,m,X) and a(t,m,X) ∈ A(t,m,X) and l > 0 is an
arbitrary number, this completes the proof. ��

In some cases we can prove the existence of a strong solution of the
Langevin inclusion (14.16). Let us present an example of such an existence
theorem.

In what follows we use [0, l], B, Ω̃, F and Pt as introduced in the proof of
Theorem 14.28. By Bt we denote the Borel σ-algebra on [0, t] for t ∈ [0, l].

We introduce the notation compZ for the space of compact subsets in the
metric space Z. Thus, we say that the set-valued force vector field B(t,m,X)
sends [0, l] × TM into comp TM if for any (t,m,X) ∈ [0, l] × TM the image
B(t,m,X) ⊂ TmM is compact.

We recall several definitions.

Definition 14.29. A single-valued map β : [0, l] × Ω̃ → R
n is called {Pt}-

progressively measurable if for every t it is measurable with respect to Bt×Pt.

Definition 14.30. A set-valued map B : [0, l]×Ω̃ → compR
n is called {Pt}-

progressively measurable if {(t, ω) ∈ [0, l]× Ω̃ | B(t, ω)∩C �= ∅} ∈ Bt ×Pt for
every closed set K ⊂ R

n.

Definition 14.31. We say that a set-valued vector force field B : [0, l] ×
TM → comp TM :

(i) is dissipative if for all t ∈ [0, l], m ∈ M , X,Y ∈ TmM and U ∈
B(t,m,X), V ∈ B(t,m, Y ) the inequality 〈X − Y,U − V 〉 ≤ 0 holds.

(ii) is maximal if for t, m, X, Y and V as in (i) the inequality 〈X −Y,U −
V 〉 ≤ 0 is equivalent to the assumption that U ∈ B(t,m,X).

Denote by w(t) a one-dimensional Wiener process. Let F (t,m,X) and
G(t,m,X) be set-valued vector force fields on M as above. Then we can
consider the stochastic differential inclusion of Langevin type

ξ(t) ∈ S
(∫ t

0

PΓF (τ, ξ(τ), ξ̇(τ))dτ +
∫ t

0

PΓG(τ, ξ(τ), ξ̇(τ))dw(τ) + C

)

.

(14.26)
Inclusion (14.26) is a particular case of (14.17) since ΓG(τ, ξ(τ), ξ̇(τ))dw(τ)

can be represented as ΓG(τ, ξ(τ), ξ̇(τ))(PdW (τ)) (P is the orthogonal pro-
jection onto the linear span of vectors ΓG(τ, ξ(τ), ξ̇(τ))).

Theorem 14.32 Let the set-valued vector fields F (t,m,X) and G(t,m,X),
F,G : [0, l] × TM → comp TM be Borel measurable, uniformly bounded,
dissipative and maximal. Then there exists a strong solution of (14.26), well-
defined for t ∈ [0, l], with initial conditions ξ(0) = m0 and ξ̇(0) = C for any
m0 ∈ M and C ∈ Tm0M .
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Proof. Let (Ω,F , P) be a probability space admitting a one-dimensional
Wiener process w(t). Denote by Pw

t the σ-subalgebra of F generated by
all w(s) for 0 ≤ s ≤ t and completed by all sets of zero probability. Let
Y : Ω → Ω be a measurable map. From the properties of parallel translation
and the assumed hypothesis one can easily derive that the coefficients

ΓF (t, ω, Y ) = ΓF

(

t,SY (ω)(t),
d
dt

SY (ω)(t)
)

and

ΓG(t, ω, Y ) = ΓG

(

t,SY (ω)(t),
d

d
dtSY (ω)(t)

)

for ω ∈ Ω satisfy all the conditions of [183, Theorem 1] and so on (Ω,F ,P)
there exists a continuous Pw

t -progressively measurable process v(t) (v(0) = 0)
in Tm0M and L2-selectors f(t, ω) of ΓF (t, ω, v) and g(t, ω) of ΓG(t, ω, v) such
that a.s.

v(t) =
∫ t

0

f(τ, ω)dτ +
∫ t

0

g(τ, ω)dw(τ) + C. (14.27)

Consider the M -valued process ξ(t) = Sv(t) with v(t) satisfying (14.27). In
the same manner as in the proof of Theorem 14.28 we can construct Borel
measurable selectors f(t,m,X) of F (t,m,X) and g(t,m,X) of G(t,m,X)
such that a.s.

ξ(t) = S
(∫ t

0

Γf(τ, ξ(τ), ξ̇(τ))dτ +
∫ t

0

Γg(τ, ξ(τ), ξ̇(τ))dw(τ) + C

)

.

��

14.4 Systems with Random Perturbation of Velocity

In the previous two sections we dealt with equations obtained from the or-
dinary version of Newton’s law by a stochastic perturbation of the vertical
component on the right-hand side, i.e., of the force field (see Section 14.1).
Here we investigate the systems in which the horizontal part is subjected
to stochastic influence. This means that a random perturbation of velocity
arises. Such a situation can appear, for example, if a particle, subjected to a
deterministic force, in addition moves within a random media. Note that in
this model the perturbation is independent of the particle velocity.

We investigate the system (14.1) with ᾱ independent of velocities, i.e., it
turns into {

ẋ(t) = v(t)
v̇(t) = ᾱ(t, x(t)). (14.28)
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A particular example of such a force is −gradU in a conservative mechanical
system.

Now suppose that in (14.28) the right-hand side of the horizontal (i.e. first)
equation is subjected to a random perturbation of the form A(t, x(t))ẇ(t)
where ẇ(t) is white noise. Note that this perturbation is independent of the
velocity of the particle. In appropriate terms this means that the process
ξ(t) describing the motion of the particle satisfies the equality ξ(t) = ξ0 +
∫ t

0
v(s, ξ(s))ds +

∫ t

0
A(s, ξ(s))dw(s) where the vector field v(t, x) satisfies the

relation Dv(t, ξ(t)) = ᾱ(t, ξ(t)). The formal equation of motion in terms of
forward mean derivatives then takes the form

⎧
⎨

⎩

Dξ(t) = v(t, ξ(t))
D2ξ(t) = A(t, ξ(t))A∗(t, ξ(t))

Dv(t, ξ(t)) = ᾱ(t, ξ(t)).
(14.29)

We also suppose that A(t, x) and ᾱ(t, x)) satisfy the Itô condition

‖A(t, x)‖ + ‖ᾱ(t, x)‖ < K(1 + ‖x‖) (14.30)

for some K > 0.

Theorem 14.33 Let A(t, x) and ᾱ(t, x) be jointly continuous in t, x and
satisfy (14.30). Then for every pair ξ0, v0 ∈ R

n there exists a weak solution
of (14.29) with initial conditions ξ(0) = ξ0 and v(0) = v0.

Proof. In C0([0, l], Rn) introduce the σ-algebra F̃ generated by cylindrical
sets. By P̃t denote the σ-algebra generated by cylindrical sets over [0, t] ⊂
[0, l].

Consider the map v̄ : [0, l] × C0([0, l], Rn) → R
n defined by the formula

v̄(t, x(·)) = v0 +
∫ t

0

ᾱ(τ, x(·)))dτ. (14.31)

By construction this map is jointly continuous in t ∈ [0, l] and x(·) ∈
C0([0, l], Rn). In addition it is obvious that if x1(·) and x2(·) coincide on
[0, t] then v̄(t, x1(·)) = v̄(t, x2(·)). This means that v̄(t, x(·)) is measurable
with respect to P̃t (see, e.g., [83]).

Taking into account (14.30) one can easily derive the inequality

‖v̄(t, x(·))‖ =
∥
∥
∥
∥

∫ t

0

ᾱ(τ, x(·)))dτ

∥
∥
∥
∥

≤
∫ t

0

‖ᾱ(τ, x(·)))‖dτ

≤ K

∫ t

0

(1 + ‖x(τ)‖)dτ
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≤ K

∫ t

0

(1 + ‖x(·)‖C0)ds

≤ lK(1 + ‖x(·)‖C0),

where ‖ · ‖C0 is the norm in C0([0, l], Rn).
Introduce A(t, x(·)) as A(t, x(·)) = A(t, x(t)). Notice that A(t, x(·)) is mea-

surable with respect to P̃t and that from (14.30) it follows that ‖A(t, x(·))‖ ≤
K(1+ ‖x(·)‖C0). So, both v̄(t, x(·)) and A(t, x(·)) satisfy the Itô condition in
the form

‖v̄(t, x(·)‖ + ‖A(t, x(·)‖ ≤ K̄(1 + ‖x(·)‖C0)

with K̄ = max(K, lK).
Now the pair v̄(t, x(·)) and A(t, x(·)) satisfies all the conditions of [83,

Theorem III.2.4], hence, the stochastic differential equation

x(t) = x0 +
∫ t

0

v̄(s, x(·))ds +
∫ t

0

A(s, x(·))dw(s) (14.32)

has a weak solution on [0, l]. This means that there exist a probabilistic
measure μ on (C0([0, l], Rn), F) and a Wiener process in R

n, given on
(C0([0, l], Rn),F , μ) and adapted to Pt, such that the coordinate process x(t)
on (C0([0, l], Rn),F , μ) and w(t) satisfy (14.32). Let v(t, x) be the regression
v(t, x) = E(v̄(t, x(·)) | x(t) = x). This together with the construction of the
process v̄(t, x(·)) completes the proof of the Theorem. ��

The simple construction used in the proof of Theorem 14.33 can be gener-
alized so that it is applicable in more complicated settings. First we consider
the case where the force field is set-valued, lower semi-continuous but not
necessarily convex valued.

Let F (t, x) be a lower semi-continuous set-valued map F : R × R
n � R

n

with closed images and A(t, x) : R
n → R

n be a field of single-valued linear
operators jointly continuous in parameters t ∈ R and x ∈ R

n. We suppose
that F (t, x) and A(t, x) satisfy the Itô condition, i.e., that there exists a
constant Θ > 0 such that

‖F (t, x)‖ + ‖A(t, x)‖ < Θ(1 + ‖x‖) (14.33)

for all t ∈ R and x ∈ R
n where ‖A(t, x)‖ is the operator norm and ‖F (t, x)‖ =

supy∈F (t,x) ‖y‖.
The system of equations (14.30) is now replaced by the following analogous

inclusion ⎧
⎨

⎩

Dξ(t) = v(t, ξ(t))
D2ξ(t) = A(t, ξ(t))A∗(t, ξ(t))

Dv(t, ξ(t)) ∈ F (t, x(t)).
(14.34)

In what follows we consider R
n and R with their Borel σ-algebras Bn

and B, respectively. Let x(·) be a continuous curve. Consider the set-
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valued vector field F (t, x(t)) along x(·) and denote by PF (·, x(·)) the set
of all measurable selectors of F (t, x(t)), i.e., the set of measurable maps
{f : R → R

n : f(x(t)) ∈ F (t, x(t))}. It is clear that, since condition (14.33)
is satisfied, all such selectors are integrable on any finite interval in R with
respect to Lebesgue measure. Denote by

∫
PF (·, x(·)) the set of integrals with

varying upper limits of these selectors.
We recall some facts and notions which will be used shortly. Let l > 0. In

what follows we denote by λ the normalized Lebesgue measure on [0, l], i.e.,
such that λ([0, l]) = 1.

Lemma 14.34 Let (Ξ, d) be a separable metric space, X be a Banach space.
Consider the space Y = L1(([0, l],B, λ), X)) of integrable maps from [0, l] into
X. If a set-valued map G : Ξ → Y is lower semicontinuous and has closed
decomposable images, then it has a continuous selector.

This is a particular case of the Bressan-Colombo Theorem (Theorem 4.9).
Denote by C0([0, l], Rn) the Banach space of continuous maps from [0, l]

to R
n (i.e., continuous curves in R

n, given on [0, l]).

Theorem 14.35 As above, let F (t, x) be a lower semi-continuous set-valued
map F : R×R

n � R
n with closed values and A(t, x) : R×R

n → R
n be a field

of single-valued linear operators jointly continuous in the parameters t ∈ R

and x ∈ R
n. Let also (14.33) be fulfilled. Then for any l > 0, x0, v0 ∈ R

n

inclusion (14.34) has a solution on [0, l] with initial position x0 and initial
velocity v0.

Proof. In C0([0, l], Rn) introduce the σ-algebra F̃ generated by cylindrical
sets. By P̃t denote the σ-algebra generated by cylindrical sets over [0, t] ⊂
[0, l].

Consider the set-valued mapping B sending x(·) ∈ C0([0, l], Rn) into
PF (·, x(·)). Since under condition (14.33) all selectors from PF (·, x(·)) are
integrable (see above), B takes values in the space L1(([0, l],B, λ), Rn). It is
known (see, e.g., [155, Section 5.5]) that under the above-mentioned condi-
tions B : C0([0, l], Rn) → L1(([0, l],B, λ), Rn) is lower semicontinuous and
for any x(·) ∈ C0([0, l], Rn) the set PF (·, x(·)), i.e., the image B(x(·)), is de-
composable and closed. Thus, by Lemma 14.34, B has a continuous selector
b : C0([0, l], Rn) → L1(([0, l],B, λ), Rn).

For any t ∈ [0, l] introduce the map ft : C0([0, l], Rn) → C0([0, l], Rn) that
sends a curve x(·) ∈ C0([0, l], Rn) into the curve

ft(τ, x(·)) =
{

x(τ) for τ ∈ [0, t]
x(t) for τ ∈ [t, l] .

Obviously the map ft is continuous. Since ft(τ, x(·)) belongs to C0([0, l], Rn),
the curve b(ft(τ, x(·))) ∈ L1(([0, l],B, λ), Rn) is well-defined. By construction
b(ft(τ, x(·))) ∈ F (τ, x(τ)) for almost all τ ∈ [0, t] and this selector continu-
ously depends on t in L1(([0, l],B, λ), Rn).
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Consider the map v : [0, l] × C0([0, l], Rn) → R
n defined by the formula

v(t, x(·)) = v0 +
∫ t

0

b(ft(τ, x(·)))dτ. (14.35)

By construction this map is jointly continuous in t ∈ [0, l] and x(·) ∈
C0([0, l], Rn). In addition it is clear that if x1(·) and x2(·) coincide on [0, t]
then v(t, x1(·)) = v(t, x2(·)). This means that v(t, x(·)) is measurable with
respect to P̃t (see, e.g., [83]).

Taking into account (14.33) one can easily derive the inequality

‖v(t, x(·))‖ =
∥
∥
∥
∥

∫ t

0

b(ft(τ, x(·)))dτ

∥
∥
∥
∥ ≤

∫ t

0

‖b(ft(τ, x(·)))‖dτ

≤
∫ t

0

‖F (τ, x(τ))‖dτ ≤ Θ

∫ t

0

(1 + ‖x(τ)‖)dτ

≤ Θ

∫ t

0

(1 + ‖x(·)‖C0)ds ≤ lΘ(1 + ‖x(·)‖C0),

where ‖ · ‖C0 is the norm in C0([0, l], Rn).
Define A(t, x(·)) by A(t, x(·)) = A(t, x(t)). Notice that A(t, x(·)) is mea-

surable with respect to P̃t and that from (14.33) it follows that ‖A(t, x(·))‖ ≤
Θ(1 + ‖x(·)‖C0). So, both v(t, x(·)) and A(t, x(·)) satisfy the Itô condition in
the form

‖v(t, x(·)‖ + ‖A(t, x(·)‖ ≤ Θ̄(1 + ‖x(·)‖C0)

with Θ̄ = max(Θ, lΘ).
Now the pair v(t, x(·)) and A(t, x(·)) satisfies all the conditions of [83,

Theorem III.2.4], hence, the stochastic differential equation

x(t) = x0 +
∫ t

0

v(s, x(·))ds +
∫ t

0

A(s, x(·))dw(s) (14.36)

has a weak solution on [0, l]. This means that there exist a probabilistic
measure μ on (C0([0, l], Rn), F) and a Wiener process in R

n, given on
(C0([0, l], Rn),F , μ) and adapted to Pt, such that the coordinate process x(t)
on (C0([0, l], Rn),F , μ) and w(t) satisfy (14.36). This together with (14.35)
completes the proof of the Theorem. ��

To investigate this problem on a manifold we use the constructions of
Section 7.7.3. The assumptions here are more restrictive than in the case of
Euclidean space.

Let M be a stochastically complete Riemannian manifold on which a vector
force field ᾱ(t,m) independent of velocities is given. Thus the Newton law of
the mechanical system takes the form

D
dt

ṁ(t) = ᾱ(t,m(t)).
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We suppose that the random perturbation of velocity takes the form A(m)ẇ(t)
where A(m) : R

k → TmM is a smooth field of linear operators. We suppose
in addition that A(m)A∗(m) = I where I is the unit operator in TmM . This
assumption can be interpreted as the fact that the Riemannian metric on M
is determined by the diffusion coefficient generated by A(m). In particular it
means that we can apply the machinery of the equations with unit diffusion
coefficient from Section 7.7.3.

The equation of motion for the system with random perturbation of veloc-
ity is given here in terms of mean derivatives on manifolds as introduced by
Definition 9.1 and formula (9.18), and by the covariant mean derivative in-
troduced by (9.15) in terms of stochastic parallel translation (see Sections 9.3
and 9.4). This equation takes the form

⎧
⎨

⎩

Dξ(t) = v(t, ξ(t))
D2ξ(t) = I

Dv(t, ξ(t)) = ᾱ(t, ξ(t)).
(14.37)

Theorem 14.36 Let the force field ᾱ(t,m) be jointly continuous in t,m and
be uniformly bounded, i.e., ‖ᾱ(t,m)‖ < K for all m ∈ M and t ∈ [0, l] ⊂ R

for some K > 0. Then for every pair m0 ∈ M , v0 ∈ Tm0M there exists
a solution of (14.37) with initial conditions ξ(0) = m0, v(0) = v0 that is
well-defined on the entire interval t ∈ [0, l].

Proof. The idea of the proof is analogous to that for Langevin equations. We
reduce (14.37) to the equation of velocity hodograph type in a single linear
space. Then we show that the latter has a weak solution and that its Itô
development satisfies (14.37). The difference is that here we use the velocity
hodograph equation in terms of stochastic parallel translation (unlike the
case of the Langevin equation where the ordinary parallel translation was
applied) and so we have to appeal to the constructions of Section 7.7.3. In
fact the proof uses the same argument as that of Theorem 7.95 and we refer
the reader to the latter for a detailed explanation.

Consider the space Ω̃ = C0([0, l], Tm0M) with the σ-algebra F̃ generated
by cylinder sets and a Wiener measure ν on F̃ . On the probability space
(Ω̃, F̃ , ν) the coordinate process w̃(t, x(·)) = x(t) is a Wiener process adapted
to the family of σ-subalgebras Pt that for each t is generated by cylinder sets
with bases on [0, t] and is completed by all sets with ν-measure zero.

Since M is stochastically complete, the Itô development RIw̃(t) is well-
defined on [0, l] for ν-a.s. all curves in Ω̃ and the parallel translation along
ν-almost all sample paths of RIw̃(t) is also well-defined (see Section 7.6).
Thus we can apply the operator Γ of parallel translation along RIw̃(·) from
each RIw̃(t) to RIw̃(0) = m0.

Introduce the process β(t, x(·)) =
∫ t

0
Γᾱ(s,RIx(s))ds in Tm0M . From the

properties of parallel translation and of RI it follows that β(t) is uniformly
bounded by the constant lK and that it is non-anticipative with respect to
Pt. In addition the density
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ρ (x(·)) = exp

(∫ l

0

〈β (t, x(·)) ,dw̃(t)〉 − 1
2

∫ l

0

β (t, x(·))2 dt

)

(14.38)

satisfies the equality ∫

Ω̃

ρdν = 1, (14.39)

and so the measure μ on (Ω̃, F̃) defined by the relation dμ = ρdν is a prob-
ability measure.

Then the coordinate process v̄(t) on the probability space (Ω̃, F̃ , μ) satis-
fies the equation

v̄(t) = v0 +
∫ t

0

β(s, v̄(s))ds + w(s) (14.40)

where w(t) is a Wiener process in Tm0M , given on (Ω̃, F̃ , μ), that is non-
anticipative with respect to Pt. The Itô development ξ(t) = RI v̄(t) has the
same sample paths as RIw̃(t) and so it is well-defined on the entire interval
[0, l].

Introduce the vector field v(t,m) as the regression

v(t, x) = E(Γ0,tβ(t) | RI v̄(t) = x)

where Γt,0 is the operator of parallel translation along RI v̄(·) from RI v̄(0) =
m0 to RI v̄(t). Taking into account the properties of the Itô development
and of parallel translation as well as the construction of the covariant mean
derivatives (9.15) and (9.18), one can easily show that ξ(t) and v(t,m) satisfy
(14.37). ��



Chapter 15

The Newton-Nelson Equation

The Newton-Nelson equation is a version of Newton’s law formulated in terms
of mixed symmetric second order mean derivatives. It describes the motion
of a quantum particle in the framework of stochastic mechanics.

Nelson’s stochastic mechanics is a subject based on the ideas of classical
physics but giving the same predictions as quantum mechanics. Stochastic
mechanics can be considered as a third method of quantization differing from
the well-known Hamiltonian and Lagrangian (path integrals) methods. Each
method has its own domain of applicability, and these domains have a large
intersection (where the results are equivalent), but none of them includes any
other completely.

The history of stochastic mechanics is presented, for example, in [45, 136,
187, 188, 190]. Apparently, the idea was first suggested by I. Fenyes [73], but
it only became widely known, and obtained a natural form, following the
appearance of Nelson’s independently developed work [187, 188]. At present,
among other things, a description of spinning particles, relativistic particles,
the uncertainty principle and some parts of quantum field theory have been
given in the language of stochastic mechanics (see, e.g., [45, 55, 136, 141, 142,
237, 238]). Nelson’s book [190] surveys the main developments of the theory
up to 1985.

In the version of stochastic mechanics pioneered by Nelson, the trajectory
of a particle was assumed to be a Markov diffusion process. It is important to
point out that in the works of V.P. Dmitriev and of H. Grabert, P. Hanggi and
P. Talkner (see, e.g., [52, 137] and the references therein) physical reasoning
is used to conclude that such a trajectory must be a non-Markov process.
In addition, in his later work, E. Nelson discovered that in the framework of
his “Markov” approach some higher momenta of two independent particles
could be dependent.

We develop another approach to stochastic mechanics where the equation
of motion is that of Nelson (the Newton-Nelson equation) but the trajectory is
allowed to be an Itô diffusion type process that may not be a Markov process.
Nevertheless we show that this version is related to quantum mechanics in an
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analogous way to Nelson’s original version. Moreover, following the ideology
of equations with mean derivatives of Section 8.1 (see Definition 8.21) we
suggest an equation of Itô type for finding solutions of the Newton-Nelson
equation such that for two independent particles it splits into two independent
equations. Another (very simple) modification is that we find the diffusion
term of the process from a separate equation with quadratic mean derivative
and do not postulate its value a priori.

The intersection of the domains of applicability of stochastic mechanics
and ordinary (Hamiltonian) quantum mechanics is as follows: for the case of
forces for which the Schrödinger equation is well-defined (i.e., for potential
forces, certain forces with friction and the magnetic field), there exists a
natural interrelation between the processes of stochastic mechanics and wave
functions, the solutions of the corresponding Schrödinger equations (see, e.g.,
[187, 188, 233]). Below in Section 15.1.1 we describe this interrelation for the
case of potential forces. Note that in the paper [38] (see also [27, 192, 240]) this
interrelation and the methods of partial differential equations were applied to
obtain the existence of trajectories for non-relativistic stochastic mechanical
systems with potential forces in R

n where the potential belongs to the so-
called Rellich class. It should be pointed out that the trajectories obtained in
[27, 38, 73, 240] are Markov diffusion processes, as was postulated in Nelson’s
pioneering works [187, 188].

15.1 Stochastic Mechanics in R
n

This section consists of two subsections. In Subsection 15.1.1 we present
the basic ideas of stochastic mechanics and, in particular, we describe the
Newton-Nelson equation and its relation to the Schrödinger equation.

In Subsection 15.1.2, following [102, 105, 128, 129], we prove the existence
of trajectories for non-relativistic stochastic mechanical systems under vari-
ous initial conditions and with forces in R

n which are a sum of a force inde-
pendent of velocities and a force linearly dependent on velocities. We do not
assume the forces to be potential or gyroscopic; i.e., we include cases where
other methods of quantization are not applicable (e.g., where the Schrödinger
equation does not exist).

We apply the methods developed in Chapter 8.

15.1.1 Principal ideas of Nelson’s stochastic mechanics

Let ξ(t) be a stochastic process and assume that the mean derivatives (see
Section 8.1) exist for ξ(t).
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Definition 15.1. The vector 1
2 (DD∗ +D∗D)ξ(t) is called the acceleration of

the stochastic process ξ(t).

Of course there exists a Borel vector field on R
n (the regression) such that

the above acceleration is the composition of that vector field and ξ(t).
Direct calculations show that

1
2
(DD∗ + D∗D)ξ(t) = (DSDS − DADA)ξ(t) = DSvξ(t) − DAuξ(t) (15.1)

(see Definitions 8.15 and 8.16).
In this Section we shall mainly deal with a process of type (8.15), i.e., of

the form ξ(t) = ξ0 +
∫ t

0
a(s)ds + σw(t). For such a process, from formulae

(8.24) and (8.25) it follows that

DSvξ(t) =
∂

∂t
vξ(t) + (vξ(t) · ∇)vξ(t) (15.2)

and

DAuξ(t) = (uξ(t) · ∇)uξ(t) +
σ2

2
∇2uξ(t). (15.3)

(Note that the right hand side of (15.2) has the form of an ordinary derivative
of a non-autonomous vector field in the direction of itself in R

n.) Thus, from
(15.1)–(15.3) we obtain for a ξ(t) of type (8.15) that

1
2
(DD∗ + D∗D)ξ(t) (15.4)

=
(

∂vξ(t)
∂t

+ (vξ(t) · ∇)vξ(t)
)

−
(

σ2

2
∇2uξ(t) + (uξ(t) · ∇)uξ(t)

)

.

Consider a Newtonian mechanical system in R
n with the vector force field

ᾱ(t, x, X). Here Newton’s law (11.2) takes the following trivial form:

ẍ(t) =
1
m

ᾱ(t, x(t), ẋ(t)), (15.5)

where m is the mass of a particle, ẍ(t) is the acceleration vector and ẋ(t) is
the velocity vector of the curve x(t).

In stochastic mechanics the trajectory of a particle is assumed to be a
stochastic process, not a deterministic curve. More precisely, we have the
following:

Definition 15.2. A diffusion type process ξ(t) in R
n is called a stochastic-

mechanical trajectory of a particle with mass m > 0 under the action of the
force field ᾱ(t, x, X) if it satisfies the system

⎧
⎨

⎩

1
2 (DD∗ + D∗D)ξ(t) = 1

m ᾱ(t, ξ(t), vξ(t))

D2ξ(t) = �

mI
(15.6)
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where � = h
2π , h is Plank’s constant and I is the unit n × n matrix. In this

case we also say that the stochastic-mechanical system with force ᾱ(t, x, X)
is given. The equality (15.6) is called the Newton-Nelson equation.

From the second equation of (15.6) it follows that ξ(t) is a process of type
(8.15) with σ such that σ2

2 = �

2m .
If σ = 0, the process ξ(t) from Definition 15.2 turns into a deterministic

curve and (15.6) becomes the ordinary Newton law (15.5). Without loss of
generality we assume m = 1.

Remark 15.3. Equality (15.6) for the Euclidean space R
n was first obtained

by Nelson in [187]. It was also shown there that among all possible definitions
of the acceleration of a stochastic process which are symmetric in time (i.e.,
well-defined physically) and coincide with the ordinary definition for smooth
trajectories, only Definition 15.1 gives the correct result for some particular
examples in quantum mechanics. Later equation (15.6) (for potential forces
and in the form where the right-hand side is transformed according to (15.4))
was derived from some variational principles (see [190]).

Note that in stochastic mechanics one deals with the “quantization” of
Newton’s second law, while in the ordinary quantization procedures some
other equations of motion (Euler-Lagrange or Hamilton) are involved.

The correspondence between stochastic mechanics and ordinary (Hamil-
tonian) quantum mechanics was established for potential forces (see, e.g.,
[187, 188, 190]) and for certain forces with friction [233] where both the
Schrödinger equation and Newton-Nelson equation (15.6) are well-defined.
We illustrate this correspondence with an example of potential forces. The
arguments here are close to those in [187], but since we apply Lemmas 8.17
and 8.18 instead of classical results for Markov diffusions, we show that the
correspondence is also valid under the assumption that the trajectories are
Itô processes of diffusion type.

Let the force field ᾱ of the mechanical system be a potential, i.e., it does
not depend on velocity and ᾱ = −grad V , where V is the potential energy.
Let ξ(t) be a trajectory of the stochastic-mechanical system as in Definition
15.2 with this force. Recall that for the osmotic velocity uξ(t) = uξ(t, ξ(t))
the vector field uξ(t, x) is always described in the form uξ = σ2gradR, where
R = 1

2 log ρξ(t, x) (see (8.18)). Let us suppose that for the current velocity
vξ(t) = vξ(t, ξ(t)) the vector field vξ(t, x) is also a gradient vξ = σ2gradS for
some real function S(t, x). Note that S(t, x) is defined to within the functions
depending only on t, i.e., whose gradient is zero. Consider the complex-valued
function Ψ on M of the form Ψ(t, x) = exp(R + iS).

Theorem 15.4 Ψ satisfies the Schrödinger equation

∂Ψ

∂t
= i

σ2

2
∇2Ψ − i

1
�
V Ψ. (15.7)
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Proof. From Lemmas 8.17 and 8.18 it follows that ∂uξ

∂t = −σ2

2 grad div vξ −
grad (vξu̇ξ). From (15.4) and (15.6) for ᾱ = −grad V it follows that ∂vξ

∂t =
−grad V −(vξ ·∇)vξ +(uξ ·∇)uξ + σ2

2 ∇2uξ. Then straightforward calculations
show that

∂Ψ

∂t
=

(
∂R

∂t
+ i

∂S

∂t

)

Ψ. (15.8)

In order to find (∂R
∂t +i∂S

∂t ) we note that grad (∂R
∂t +i∂S

∂t ) = 1
σ2 (∂uξ

∂t +i∂vξ

∂t ) and
so, by the above expressions for ∂uξ

∂t and ∂vξ

∂t , since uξ and vξ are gradients,
we obtain the formula

grad
(

∂R

∂t
+ i

∂S

∂t

)

= −grad div vξ − 1
σ2

grad (vξ · uξ) − i
σ2

gradV

− i
σ2

(vξ · ∇)vξ +
i

σ2
(uξ · ∇)uξ +

i
2
∇2uξ

= grad
(

−1
2
div vξ − 1

σ2
(vξ · uξ) − i

σ2
V − i

2σ2
(vξ)2 +

i
2σ2

(uξ)2 +
i
2
div uξ

)

= grad
(

i
2
(div uξ + i div vξ) +

i
2σ2

(uξ + ivξ)2 − i
σ2

V

)

.

Hence,
(

∂R

∂t
+ i

∂S

∂t

)

= − i
2
(div uξ+i div vξ)+

1
2σ2

(uξ+i vξ)2− i
σ2

V +i f(t) (15.9)

where f(t) is a real function, depending only on t, i.e., grad f(t) = 0. On the
other hand,

∇2Ψ = Ψ

(
1
σ2

(u2 + iv2)2 +
1
σ4

(div uξ + i div vξ)
)

. (15.10)

Comparing (15.8), (15.9) and (15.10), we see that the following equality holds:

∂Ψ

∂t
= i

σ2

2
∇2Ψ − i

1
�
V Ψ + i f(t)Ψ. (15.11)

Adding to S an appropriate constant depending on t, one can obtain the
equality f = 0. So (15.11) turns into the Schrödinger equation (15.7) with
potential V . ��

So, Ψ(t, x) is a Schrödinger wave function corresponding to the above
mechanical system. Conversely, let Ψ satisfy the Schrödinger equation (15.7)
with potential V . Consider the functions R = Re log Ψ and S = Im log Ψ
and the vector fields u(t, x) = σ2gradR, v(t, x) = σ2gradS and a(t, x) =
v(t, x) + u(t, x).
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Theorem 15.5 Solutions ξ(t) of the Itô equation

dξ(t) = a(t, ξ(t))dt + σdw(t), (15.12)

where a(t, x) and σ are as introduced above, satisfy equation (15.6) with ᾱ =
−grad V .

We leave the proof to the reader as a simple exercise. Note that for a
solution ξ(t) of (15.12) we have vξ(t, x) = v(t, x) and uξ(t, x) = u(t, x), and
it should be emphasized that in this case the assumption that vξ(t, x) is a
gradient is fulfilled automatically. Note also that strong solutions of (15.12)
are Markov diffusion processes (see Definition 6.17). Thus we can formulate:

Proposition 15.6 If a stochastic-mechanical trajectory ζ(t) with the force
ᾱ = −grad V is an unique strong solution of (15.12) corresponding to a
Schrödinger wave-function Ψ as described above, then ζ(t) is a Markov dif-
fusion process.

Indeed, ρζ(t, x) = |Ψ(t, x)|2 = ρξ(t, x), where ρξ(t, x) is the probability
density of the diffusion process ξ(t), the solution of (15.12) constructed from
Ψ(t, x), which corresponds to ζ(t). The above diffusion process (trajectory)
can be shown to exist when V belongs to the very broad so-called Rellich
class (see [38]).

15.1.2 Existence theorems

In this Section we prove the existence of the trajectory assuming neither the
Schrödinger equation to be well-defined nor its solution to exist. In this case
the trajectory is not a diffusion process but an Itô process of type (8.15).
First we consider deterministic initial data for the solution which leads to a
singularity at t = 0 resembling the Big Bang (see Remark 15.10 below). Then
we obtain another version of the construction that yields the existence of a
solution, for random initial data, such that its distribution is nowhere zero.
In the latter case no singularity at time zero arises.

Everywhere below in this Section we consider the vector force field ᾱ
of the form ᾱ(t, x, X) = ᾱ0(t, x) + ᾱ1(t, x)X where ᾱ0(t, x) is a vector
field on R

n depending on t ∈ [0, l] and ᾱ1(t, x) is a linear operator in
R

n depending on the parameters t ∈ [0, l] and x ∈ R
n, i.e., ᾱ1(t, x) is a

(1.1)-tensor field on R
n. Consider the derivative of ᾱ1(t, x), i.e., the field

of bilinear operators ᾱ′
1(t, x))(·, ·) : R

n × R
n → R

n, and the vector field
trᾱ′

1(t, x)(ᾱ1)ds =
∑n

i=1 ᾱ′
1(t, x)(ᾱ1(t, x)ei, ei), where e1, . . . , en is an arbi-

trary orthonormal frame in R
n. We assume the following condition to be

fulfilled:
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Condition 15.7 The vector field ᾱ0(t, x) and the tensor field ᾱ1(t, x) are
Borel measurable jointly in t and x, trᾱ′

1(s,W (s))(ᾱ1) exists and is also Borel
measurable jointly in t, x and there exists a constant C > 0 such that

∫ l

0

(‖ᾱ0(t, x(t))‖2 + ‖ᾱ1(t, x(t))‖2 + ‖trᾱ′
1(t, x(t))(ᾱ1)‖2)dt < C

for any continuous curve x(t) in R
n, t ∈ [0, l], where ‖ᾱ1(t, x)‖ is the operator

norm.

Condition 15.7 is fulfilled, for example, if ᾱ0(t, x) is continuous and uni-
formly bounded, ᾱ1(t, x) belongs to the functional space C1(R×R

n×R
n, Rn)

and has a bounded norm in that space.
For the sake of simplicity, without loss of generality we may assume σ = 1.

We shall deal with stochastic processes starting at a non-random point in R
n,

and for the sake of simplicity we assume this point to be equal to the origin.
Consider the probability space (Ω̃, F̃ , ν) where Ω̃ = C0([0, l], Rn), F̃ is the

σ-algebra generated by the cylindrical sets, and ν is a Wiener measure (see
Section 6.2.1). Denote by Bt the σ-algebra generated by the cylindrical sets
with the bases over [0, t]; all the Bt are completed by the sets of ν-measure
zero.

Recall that the coordinate process W (t, x(·)) = x(t), x(·) ∈ Ω̃, on (Ω̃, F̃ , ν)
is a Wiener process in R

n.
Let t0 ∈ (0, l) and for t ∈ [0, l] denote by t0(t) the function

t0(t) =

⎧
⎨

⎩

1
t0

if t < t0,

1
t if t ≥ t0.

(15.13)

Recall that we are looking for a solution as a process of type (8.15) that under
the above assumptions takes the form ξ(t) =

∫ t

0
a(s)ds+w(t) where a(t) is to

be found. Pick a deterministic initial condition a0 ∈ R
n for a(t) and consider

in R
n the equation

a(t) = a0 +
∫ t

0

ᾱ0(s,W (·))ds +
∫ t

0

ᾱ1(s,W (s))dW (s) +
1
2

∫ t

0

trᾱ′
1(ᾱ1)ds

−1
2

∫ t

0

t0(s)a(s)ds +
1
2

∫ t

0

t0(s)dW (s) − 1
2
t0(t)W (t) (15.14)

Equation (15.14) has a unique strong solution for t ∈ [0, l]. Indeed, the coef-
ficients of (15.14) are either Lipschitz continuous and have a linear growth
with respect to a or do not depend on a. Since the solution is strong, it exists
for any Wiener process and is non-anticipative with respect to PW

t = Bt. In
what follows we will consider a(t) for the realization of W (t) as the coordinate
process on (Ω̃, F̃ , ν).

From Condition 15.7 it follows that a(t) satisfies (8.32).
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Below in this Section we will use the notation introduced in Section 8.3.
Consider the function θ(l) on Ω̃ determined for the process a(t) by formula
(8.33). From the above condition it easily follows that θ(l) is a probability
density on (Ω̃, F̃ , ν). Denote by μξ the corresponding measure on (Ω̃, F̃), i.e.,
dμξ = θ dν (note that μξ and ν are equivalent), and by ξ(t) the coordinate
process on (Ω̃, F̃ , μξ). Then (see Section 8.3) the process ξ(t) is expressed in
the required form

ξ(t) =
∫ t

0

a(s)ds + w(t) (15.15)

where w(t) is a Wiener process on (Ω̃, F̃ , μξ) adapted to Pξ
t = PW

t = Bt.
Since ξ(t) and W (t) coincide as coordinate processes on (Ω̃, F̃), (15.14)

clearly turns into

a(t) = a0 +
∫ t

0

ᾱ0(s, ξ(s))ds +
∫ t

0

ᾱ1(s, ξ(s))a(s)ds +
∫ t

0

ᾱ1(s, ξ(s))dw(s)

+
1
2

∫ t

0

trᾱ′
1(s, ξ(s))(ᾱ1)ds +

1
2

∫ t

0

t0(s))dw(s) − 1
2
t0(t)ξ(t). (15.16)

Lemma 15.8

(i) Dξ
∗ᾱ1(s, ξ(s))dw(s) = −trᾱ′

1(t, ξ(t))(ᾱ1) + ᾱ1(t, ξ(t))
ξ(t)

t

−ᾱ1(t, ξ(t))E
ξ
t (κ(t)).

(ii) Dξ
∗
∫ t

0
t0(s)dw(s) = ξ(t)

t2 − Eξ
t

(
κ(t)

t

)
for t > t0,

where κ(t) is as in Lemma 8.35.

In order to prove (i) one should replace the Itô integral by a backward Itô
integral according to formula (6.7) and then apply formula (8.37) with the
same arguments as in the proof of Lemma 8.26(ii). Assertion (ii) follows from
formula (8.37), the definition of the Itô integral, and the definition of t0(t)
given by formula (15.13).

Theorem 15.9 For t ∈ (t0, l) the process ξ(t) satisfies (15.6), i.e., it is a
trajectory of the stochastic mechanical system with force ᾱ(t,m,X).

Proof. Recall that for t ∈ (t0, l) we have t0(t) = 1
t . From (15.15) and Theorem

8.7 it follows that Dξ(t) = Eξ
t (a(t)). By (8.36) we obtain D∗ξ(t) = Eξ

t (a(t))+
ξ(t)

t − Eξ
t (κ(t)). In particular

vξ(t) = DSξ(t) = Eξ
t (a(t)) +

1
2

ξ(t)
t

− 1
2
Eξ

t (κ(t)) (15.17)

and

uξ(t) = DAξ(t) = −1
2

ξ(t)
t

+
1
2
Eξ

t (κ(t)). (15.18)
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Then for t > t0, using formula (8.38) and equation (15.16), as well as Lem-
mas 8.36, 8.37 and 8.38, one can obtain

DD∗ξ(t) = ᾱ0(t, ξ(t)) + ᾱ1(t, ξ(t))E
ξ
t (a(t)) +

1
2
trᾱ′

1(s, ξ(s))(ᾱ1)

+Eξ
t

(
a(t)
t

)

− ξ(t)
t2

− 1
2
Eξ

t

(
a(t)
t

)

+
1
2

a(t)
t2

.

Analogously, using in addition formula (8.39) and Lemma 15.8, one can cal-
culate

D∗Dξ(t) = ᾱ0(t, ξ(t)) + ᾱ1(t, ξ(t))E
ξ
t (a(t)) + ᾱ1(t, ξ(t))

(
x(t)

t

)

−ᾱ1(t, ξ(t)E
ξ
t (κ(t)) − 1

2
trᾱ′

1(t, ξ(t))(ᾱ1) +
1
2

ξ(t)
t2

− 1
2
Eξ

t

(
κ(t)

t

)

−1
2
Eξ

t

(
a(t)
t

)

+
1
2
Eξ

t

(
κ(t)

t

)

.

So

1
2
(DD∗ + D∗D)ξ(t) = ᾱ0(t, ξ(t)) (15.19)

+ᾱ1(t, ξ(t))
[

Eξ
t (a(t) +

1
2

ξ(t)
t

− 1
2
κ(t))

]

.

From formula (15.17) it follows that (15.19) coincides with the first equation
of (15.6).

Since ξ(t) is a process of the form (8.15) (see above), by Theorem 8.12
D2ξ = I (recall that we set σ = 1) and so system (15.6) is fulfilled. ��

Remark 15.10. Generally speaking, ξ(t) for t ∈ (0, t0) does not satisfy
(15.6). Thus ξ(t) can be interpreted only as a trajectory of the stochastic
mechanical system beginning at the instant t0 in the random configuration
ξ(t0) with the initial forward derivative Eξ

t (a(t0)). It is clear that t0 may be
chosen arbitrarily close to zero, and so we can bring the initial values of the
trajectory to the origin for the configuration and, again as close as we want,
to a0 for the forward derivative. But we cannot put t0 = 0, since the integral∫ t

0
1
sdw(s) does not exist (

∫ t

0
1
s2 ds diverges, see, e.g., [162] and Section 6.2.2),

i.e., when t0 = 0 equations (15.14) and (15.16) are ill-posed. This behavior
of the solution is interpreted in Section 15.3 as a possible description of the
Big Bang (see Remark 15.51).

Remark 15.11. If ᾱ = −grad V then there may exist a trajectory of the
stochastic mechanical system obtained by Carlen [38] (see above). Suppose
that both our and Carlen’s trajectories are connected with the same solu-
tion Ψ of the corresponding Schrödinger equation. Then those trajectories



364 15 The Newton-Nelson Equation

determine different probability measures on the space of sample paths but
the densities ρ on R × R

n coincide and are equal to |Ψ |2.

Since the function t0(t) is piecewise smooth (see its definition by formula
(15.13)) we may consider its derivative t′0(t) defined by the formula

t′0(t) =
{

0 if t < t0,
− 1

t2 if t ≥ t0.
(15.20)

Theorem 15.12 Equations (15.14) and (15.16) are equivalent to the follow-
ing equations of Stratonovich type

a(t) = a0 −
1
2

∫ t

0

t0(s)a(s)ds − 1
2

∫ t

0

t′0(s)W (s)ds

+
∫ t

0

ᾱ0(s,W (·))ds +
∫ t

0

ᾱ1(s,W (s)) ◦ dW (s) (15.21)

and

a(t) = a0 −
1
2

∫ t

0

t0(s)a(s)ds − 1
2

∫ t

0

t′0(s)ξ(s)ds +
∫ t

0

ᾱ0(s, ξ(·))ds

+
∫ t

0

ᾱ1(s, ξ(s))a(s)ds +
∫ t

0

ᾱ1(s, ξ(s)) ◦ dw(s), (15.22)

respectively.

Proof. Indeed, by the Itô formula (6.10) for f(t, x) = t0(t)x we have

d(t0(t)W (t)) = t′0(t)W (t)dt + t0(t)dW (t)

and
d(t0(t)ξ(t)) = (t0(t)a(t) + t′0(t)ξ(t))dt + t0(t)dw(t).

An application of formula (6.23) (which follows from (6.6)) to A = ᾱ1 com-
pletes the proof. ��

Remark 15.13. Equations (15.21) and (15.22) show that a(t) is a vector
(belongs to the tangent bundle), a fact which plays a significant role in the
transition to manifolds. Note also that if ᾱ1 = 0, a(t) becomes a process with
a.s. smooth sample paths.

Now we are in position to prove the existence of a solution of the Newton-
Nelson equation (15.6) with random initial data. Here we shall obtain a pro-
cess that is a solution for all positive times, i.e., without singularity at t = 0.
However, the initial density must be nowhere equal to zero.

The main technical difference from the above case is that here we can
calculate some derivatives “beforehand” and then use them to construct a
solution of (15.6).
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As above, consider equation (15.6) with ᾱ(t, x, X) = ᾱ0(t, x) + ᾱ1(t, x)X
and suppose that ᾱ0 and ᾱ1 satisfy Condition 15.7. Consider the initial data
for (15.6) of the form

ξ(0) = x0, Dξ(0) = a0, (15.23)

where x0 and a0 are random elements with values in R
n, x0 has a smooth

distribution ρ0 with respect to Lebesgue measure on R
n with ρ(x) 
= 0 for all

x and a0 is bounded.
All processes below in this section are considered on some finite time in-

terval [0, l].
Let W0(t) be the standard Wiener process on R

n, i.e., the coordinate
process on the probability space (Ω̃, F̃ , ν) introduced at the beginning of this
section. The filtration PW0

t is generated by cylinder sets with bases on [0, t].
Consider the process W (t) = x0 +W0(t). Its density, denoted by ρW (t, x),

satisfies the diffusion equation

∂

∂t
ρW (t, x) =

1
2
ΔρW (t, x)

with initial condition ρW (0, x) = ρ0. Thus the density ρW (t, x) can be
considered as given a priori and we use it in the further construction. By
Lemma 8.17 the osmotic velocity uW (t,W (t)) of W (t) can be found by the
formula

uW (t, x) =
1
2
grad log ρW (t, x).

Hence uW (t, x) is uniquely constructed from ρW (t, x) (and, like ρW (t, x), will
also be used later in the construction).

Consider the Itô equation

a(t) = a0 +
∫ t

0

ᾱ0(s,W (s)) ds (15.24)

+
∫ t

0

ᾱ1(s,W (s)) dW (s) +
1
2

∫ t

0

tr∇ᾱ1(ᾱ1(s,W (s))) ds

+
∫ t

0

DW uW (s,W (s)) ds +
∫ t

0

(a(s) · ∇)uW (s,W (s)) ds,

where DW is defined in (8.7) and may be represented as DW = ∂
∂t + 1

2Δ (see
(8.22) and (8.24)). Thus DW uW (s,W (s)) is known and we can prove the
existence of a solution a(t) of equation (15.24) by imitating the method used
for equation (15.14). Since (15.24) is linear in a, under the above conditions
this equation has a unique strong solution that we shall again denote by a(t).
Let θ(l) be defined by formula (8.33) with a(t) and W (t) as above. Clearly
θ(t) is a martingale with expectation 1. Introduce a new probability measure
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μ on (Ω̃, F̃) by the relation dμ = θ(l) dν. On the probability space (Ω̃, F̃ , μ)
the coordinate process W (t) turns into ξ(t) = x0+

∫ t

0
a(s)ds+w(t) where w(t)

is a “new” Wiener process on (Ω̃, F̃ , μ), adapted to PW
t = Pξ

t (Girsanov’s
theorem). Note that by construction a(t) is not anticipative with respect to
Pξ

t , i.e., ξ(t) is a diffusion type process.

Theorem 15.14 The process ξ(t) satisfies equation (15.6) and the initial
conditions (15.23).

Lemma 15.15 The random element x0 has the same probability distribution
on (Ω̃, F̃ , ν) and on (Ω̃, F̃ , μ).

Proof. Let f be an arbitrary bounded Borel measurable function. As in Sec-
tion 8.3 we denote by E0(ψ | B) the conditional expectation for ψ with
respect to B on the probability space (Ω,F , ν) and by E′(ψ | B) the same
conditional expectation on (Ω,F , μ). Then

E′[f(x0)] = E0[f(x0)θ(l)] = E0[f(x0)E0
0θ(l)] = E0[f(ξ0)],

because E0
0θ(l) = θ(0) = 1 (since θ(t) is a martingale). The assertion of the

Lemma follows from the fact that f is arbitrary. ��

Proof. [of Theorem 15.14] On the probability space (Ω̃, F̃ , μ) equation (15.24)
turns into

a(t) = a0 +
∫ t

0

ᾱ0(s, ξ(s)) ds +
∫ t

0

ᾱ1(s, ξ(s))a(s) ds

+
∫ t

0

ᾱ1(s, ξ(s))dw(s) +
1
2

∫ t

0

tr∇ᾱ1(s, ξ(s)) ds

+
∫ t

0

DW uW (s, ξ(s)) ds +
∫ t

0

(a(s) · ∇)uW (s, ξ(s)) ds.

Now the proof is reduced to the verification that the required formulae are
satisfied. This is done by application of formulae from Section 8.3 (for details,
see [128] and [129]). ��

Let a1 be an arbitrary bounded random element with values in R
n.

Corollary 15.16 Let there exist a δ > 0 such that for all x ∈ R
n the in-

equality ρ0(x) > δ holds and let in addition grad log ρ0 be uniformly bounded.
Then for a0 = a1 + uW (0, x0) the process ξ(t) from Theorem 15.14 satisfies
equation (15.6) with initial conditions ξ(0) = x0 and DSξ(0) = a1.
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15.2 The Geometric Form of Stochastic Mechanics

15.2.1 Some comments on stochastic mechanics on
Riemannian manifolds

Stochastic-mechanical systems are influenced by the geometry of configura-
tion space even more so than the systems of classical mechanics. As in the
classical case the Riemannian metric on the configuration space determines
the kinetic energy of the system, but it also defines the field of Wiener pro-
cesses in terms of which the motion is described, so that the quadratic deriva-
tive of a trajectory yields the (2, 0) metric tensor. In addition, the curvature
of the configuration space is involved in the stochastic version of Newton’s
law.

Let M be a n-dimensional Riemannian manifold. We study the exponential
map, parallel translation and other geometric objects on M generated by the
Levi-Civitá connection.

Let ξ(t) be a stochastic process in M and assume that the mean derivatives
in the sense of Definition 9.1 and formulae (9.14) and (9.15) exist for ξ(t).

Definition 15.17. The vector 1
2 (DD∗ + D∗D)ξ(t) is called the acceleration

of ξ(t) (cf. Definition 15.1).

As in Section 15.1.1 there exists a Borel vector field on M (the regression)
such that the acceleration is the composition of that field and ξ(t).

On determining the covariant mean derivatives DS = 1
2 (D + D∗) and

DA = 1
2 (D − D∗), we then obtain the following analog of formula (15.1)

1
2
(DD∗ +D∗D)ξ(t) = (DSDS −DADA)ξ(t) = DSvξ(t)−DAuξ(t). (15.25)

Now suppose that D2ξ(t) = σ2ḡ where D2 is the quadratic mean derivative,
σ > 0 is a constant and ḡ is the metric (2, 0)-tensor. According to the material
of Section 9.4 this means that we determine the forward and backward mean
derivatives with respect to the Levi-Civitá connection of Riemannian metric
given by D2ξ(t). In this case we derive from formulas (9.17) and (9.18) the
following analogs of formulas (15.2) and (15.3):

DSvξ(t) =
∂

∂t
vξ(t) + ∇vξ(t)v

ξ(t), (15.26)

DAuξ(t) = ∇uξ(t)u
ξ(t) +

1
2
σ2∇2uξ(t), (15.27)

where ∇ is the covariant derivative of the Levi-Civitá connection and ∇2

is the Laplace-Beltrami operator (see Definition 2.58). Thus from formulae
(15.25)–(15.27) it follows that for such ξ(t) the following formula
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1
2
(DD∗+D∗D)ξ(t) =

(
∂

∂t
vξ(t)+∇vξ(t)v

ξ(t)
)

−
(

σ2

2
∇2uξ(t)+∇uξ(t)u

ξ(t)
)

(15.28)
holds (this is the analog of formula (15.4)).

Let M be the configuration space of a mechanical system as in Section 11.1
with a force field ᾱ(t,m,X), i.e., the trajectory of the system is governed
by equation (11.2). It seems to be natural to determine Newton’s law for
stochastic mechanics in this case by complete analogy with equation (15.6),
i.e., by setting the acceleration equal to the force. But in doing this we will
not obtain the correspondence with the solutions of the Schrödinger equations
analogous to those described in Section 15.1.1. More precisely, the situation
is as follows. One can easily make a minimal modification of the construction
and prove an analog of Theorem 15.4 (we leave this to the reader as a simple
exercise) but one obtains the Laplace-Beltrami operator ∇2 in the analog of
equation (15.7), while physicists would normally use the Laplace-de Rham
operator Δ = dδ+δd from Definition 1.73 (this difference seems to have been
first highlighted in [45]).

So, in order to obtain the correspondence mentioned above we might re-
place the Laplace-Beltrami operator by the Laplace-de Rham operator in the
right hand side of (15.28), i.e., change the above definition of acceleration (a
variant of such a change is discussed below in Remark 15.19). Instead we take
into account Weitzenbock’s formula (2.37) and define a stochastic mechanical
system on M as follows (cf. Definition 15.2):

Definition 15.18. A process ξ(t) in M is called a stochastic-mechanical tra-
jectory in M of a particle with mass m, under the action of the force field
ᾱ(t,m,X), if it satisfies the system

⎧
⎨

⎩

1
2 (DD∗ + D∗D)ξ(t) = 1

m ᾱ(t, ξ(t), vξ(t)) + �

2m R̂ic(ξ(t)) ◦ uξ(t),

D2ξ(t) = �

m ḡ,

(15.29)

where ḡ is an autonomous positive definite symmetric (2, 0)-tensor and all
mean derivatives and the Ricci tensor in the first equality of (15.29) are de-
termined with respect to the Levi-Civitá connection of the Riemannian (0, 2)-
metric tensor inverse to ḡ. In this case we say that a stochastic-mechanical
system with force ᾱ(t,m,X) is given on M . Relation (15.29) is called the
Newton-Nelson equation on M .

Note that (15.29) determines the Riemannian metric which defines the
kinetic energy for a classical mechanical system whose quantization is de-
scribed by (15.29). In particular, the Newton law (11.2) for the latter system
is given in terms of the covariant derivative of the Levi-Civitá connection of
that metric.

In what follows we shall look for solutions of (15.29) in the class of Itô
processes that are Itô developments of processes in tangent spaces of the form
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ζ(t) =
∫ t

0
a(s)ds + σw(t) where σ =

√
�

m (see Section 9.3). In this case it is

evident that if �

m ≈ 0 (i.e., if the mass is very big in comparison with Plank’s
constant), similarly to the trajectories in R

n, ξ(t) turns into a deterministic
curve and the first equality of (15.29) becomes the classical Newton law
(11.2) if the metric determined from the second equality of (15.29) remains
unchanged (recall that for a deterministic curve its quadratic derivative is
zero).

We shall not deal with limits as �

m → 0 and so without loss of generality
in what follows we shall suppose the mass �

m = 1.
Now the correspondence between stochastic mechanics and ordinary quan-

tum mechanics on manifolds is analogous to that of Section 15.1.1 and is
proved via the same argument (cf. [190]).

Remark 15.19. In order to make natural the definition of acceleration in
the form ( ∂

∂tv
ξ(t) + ∇vξ(t)v

ξ(t)) − (−1
2Δu + ∇uξ(t)u

ξ(t)) with the Laplace-
de Rham operator Δ (see above), in [53, 54] the construction of the parallel
translation along stochastic processes was modified so that the parallel trans-
lation obtained takes into account the deviation of geodesics. Having defined
D̄ and D̄∗ by formula (9.15), where the new parallel translation is involved,
one obtains the Newton-Nelson equation in the form

1
2
(D̄D∗ + D̄∗D)ξ(t) = ᾱ(t, ξ(t), vξ(t)), (15.30)

completely analogous to the usual form. Of course, (15.30) is equivalent to
(15.29). Note that the Newton-Nelson equation in the form (15.30) is given
in [53, 54, 190]. We do not use the form (15.30) since our constructions below
are based on the usual parallel translation.

15.2.2 Existence theorems

The main purpose of this section is to generalize the existence theorem of Sec-
tion 15.1.2 to a rather broad class of Riemannian manifolds, not necessarily
Euclidean spaces (see [106, 107, 115]).

Our generalization follows the same scheme as the basic existence theo-
rems of Section 15.1.2, the necessary modification is based on the methods
developed in Chapters 8 and 9. Using parallel translation along stochastic
processes we construct a special stochastic equation in the tangent space at
the initial configuration of the motion (a certain stochastic version of the
velocity hodograph equation (11.20), different from (14.10)) and prove the
existence of its solutions. Then we show that the developments of the solu-
tions satisfy the Newton-Nelson equation (at least after a certain non-zero
instant, fixed in advance, if the initial configuration is deterministic). Note
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that the trajectory is an Itô process of diffusion type on a manifold, not
necessarily a diffusion process.

We consider a vector force field ᾱ of the same kind as in Section 15.1.2,
namely of the form ᾱ(t,m,X) = ᾱ0(t,m) + ᾱ1(t,m)X where ᾱ0(t,m) is a
vector field on M depending on t ∈ [0, l] and ᾱ1(t,m) is a linear operator in
TmM depending on the parameter t ∈ [0, l], i.e., ᾱ1(t,m) is a (1, 1)-tensor
field on M . Examples of such ᾱ include potential and gyroscopic force fields
(e.g., a magnetic field or an electromagnetic field on a general relativistic
space-time).

As in Section 15.1.2, for the sake of simplicity (and without loss of gener-
ality) we set �

m = 1 (i.e., we work in the system of units with this property).
Let us introduce some notation. For a (1, 1)-tensor field υ(t,m) we will deal

with its covariant derivative, the (1, 2)-tensor field ∇υ(t,m)(·, ·) : TmM ×
TmM → TmM , as well as with the tensor ∇υ(t,m)(υ(t,m)·, ·) : TmM ×
TmM → TmM and its trace, the vector field

tr∇υ(t,m)(υ) =
n∑

i=1

∇υ(t,m)(υ(t,m)ei, ei),

where e1, . . . , en is an orthonormal frame in TmM (see formula 6.11).
Examples of the above (1, 1)-tensor fields are R̂ic(m) and ᾱ1(t,m), for

which we consider the vector fields (traces) tr∇R̂ic(m)(R̂ic) and
tr∇ᾱ1(t,m)(ᾱ1). Note that the field tr∇R̂ic(m)(R̂ic) is C∞-smooth since
the tensor field R̂ic is also C∞-smooth.

In what follows in this Section we assume the next two conditions to be
fulfilled.

Condition 15.20 The Riemannian manifold M is complete in the usual
sense (see Definition 1.49 and the Hopf-Rinow Theorem (Theorem 3.68)).
The Ricci tensor, the linear operator R̂ic(m) : TmM → TmM , is bounded
uniformly in m with respect to the operator norm generated in the tangent
spaces by the Riemannian metric 〈·, ·〉. The vector field tr∇R̂ic(R̂ic) on M is
also uniformly bounded with respect to the norm generated by the Riemannian
metric.

Condition 15.21 The vector field ᾱ0(t,m) and the tensor field ᾱ1(t,m) are
Borel measurable jointly in t and m, the vector field tr∇ᾱ1(t, x)(ᾱ1) exists
and is also Borel measurable jointly in t and m, and there exists a constant
C > 0 such that

∫ l

0

(
‖ᾱ0(t,m(t))‖2 + ‖ᾱ1(t,m(t))‖2 + ‖tr∇ᾱ1(t, x)(ᾱ1)‖2

)
dt < C

for any continuous curve m(t) on M , t ∈ [0, l], and where ‖ᾱ1(t,m)‖ is the
operator norm.
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Remark 15.22. From Theorem 7.80 it follows that under Condition 15.20
the Riemannian manifold M is stochastically complete.

Let m0 ∈ M and introduce the probability space (Ω̃, F̃ , ν) where Ω̃ =
C0([0, l], Tm0M), F̃ is the σ-algebra generated by the cylinder sets and ν is
the Wiener measure (recall that Tm0M is an n-dimensional Euclidean space
with respect to the metric tensor 〈·, ·〉 at m0). Denote by B̃t the σ-algebra
generated by the cylinder sets with bases over [0, t], all the B̃t being completed
by the sets of ν-measure zero.

Recall that the coordinate process W (t, ω(·)) = ω(t), ω(·) ∈ Ω̃, is a Wiener
process in Tm0M . Since by Remark 15.22 M is stochastically complete, the
Itô development RIW (t) is well-defined for t ∈ [0, l] and Riemannian parallel
translation is also well-defined along RIW (t) (see Section 7.6.1). Further on
we will use the operator Γt,s of parallel translation introduced in Section
7.7.1.

Thus for any vector or tensor field υ(t,m) we can consider the vector
(tensor) field Γ0,tυ(t, RIW (t)) at m0 to be the result of parallel translation
of υ(t, RIW (t)) along RIW (·) from the (random) point RIW (t) to the point
RIW (0) = m0. Since RIW (t) is an extension of Cartan’s development Rc

from the class of piecewise smooth curves onto ν-almost all continuous curves
in Tm0M and the analogous fact is valid for parallel translation along RIW (·)
(see Remarks 7.67 and 7.84), Γ0,tυ(t, RIW (t) is determined along ν-almost
all continuous curves in Tm0M . This field along ω(·) ∈ Ω̃ will be denoted by
(Γ0,tυ)(t, ω(·)). Note that it may depend on t (which is compatible with the
notation) even if υ(m) is autonomous.

Pick t0 ∈ (0, l) and for t ∈ [0, l] consider the function t0(t) defined by
formula (15.13).

Let a0 ∈ Tm0M and consider in Tm0M the equation

a(t) = a0 +
∫ t

0

(Γ0,sᾱ0)(s,W (·))ds − 1
4

∫ t

0

(
Γ0,str∇R̂ic

(
R̂ic

))
(s,W (·))ds

+
1
2

∫ t

0

(Γ0,str∇ᾱ1(ᾱ1))(s,W (s))ds

+
1
2

∫ t

0

((
Γ0,sR̂ic

)
(s,W (·)) − t0(s)

)
a(s)ds

+
∫ t

0

(

(Γ0,sᾱ1)(s,W (·)) − 1
2

(
Γ0,sR̂ic

)
(s,W (·)) +

1
2
t0(s)

)

dW (s)

−1
2
t0(t)W (t) (15.31)

(an analog of equation (15.14)).
Equation (15.31) has a unique strong solution for t ∈ [0, l]. Indeed, the

coefficients of (15.31) are either Lipschitz continuous and have linear growth
with respect to a, or do not depend on a. Since the solution is strong, it
exists for any Wiener process and is non-anticipative with respect to PW

t . In
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what follows we will consider a(t) for the realization of W (t) as the coordinate
process on (Ω̃, F̃ , ν). From Condition 15.21 it follows that a(t) satisfies (7.54).

Consider the probability density θ(l) on (Ω̃, F̃) defined for the above a
by formula (8.33) (cf. Section 15.1.2). Introduce the measure μζ = θdν on
(Ω̃, F̃) and denote by ζ(t) the coordinate process on (Ω̃, F̃ , μζ). Then (see
Sections 8.3 and 15.1.2) ζ(t) is expressed in the form

ζ(t) =
∫ t

0

a(s)ds + w(t) (15.32)

where w(t) is a Wiener process on (Ω̃, F̃ , μζ) adapted to PW
t = Pζ

t = Bt.
Since ζ(t) and W (t) coincide as coordinate processes on (Ω̃, F̃), (15.31) turns
into

a(t) = a0 +
∫ t

0

(Γ0,sᾱ0)(s, ζ(·))ds − 1
4

∫ t

0

(
Γ0,str∇R̂ic

(
R̂ic

))
(s, ζ(·))ds

+
1
2

∫ t

0

(Γ0,str∇ᾱ1(ᾱ1))(s, ζ(·))ds +
∫ t

0

(Γ0,sᾱ1)(s, ζ(·)) ◦ a(s)ds

+
∫ t

0

((Γ0,sᾱ1)(s, ζ(·)) − 1
2

(
Γ0,sR̂ic

)
(s, ζ(·)) +

1
2
t0(s))dw(s)

−1
2
t0(t)ζ(t) (15.33)

(an analog of equation (15.16)).
Since by Remark 15.22 M is stochastically complete and since a(t) satisfies

(7.54), from Theorem 7.98 it follows that for ζ(t) the Itô development ξ(t) =
RIζ(t) is well-defined on the entire interval t ∈ [0, l].

Theorem 15.23 For t ∈ (t0, l) the above-mentioned process ξ(t) satisfies
(15.29) with the force ᾱ(t,m,X) = ᾱ0(t,m)+ᾱ1(t,m)X, i.e., it is a trajectory
of the stochastic mechanical system with that force.

Proof. By construction ξ(t) satisfies equation (9.22). This allows us to derive
some technical statements which follow from the results of Section 7.7 and
from those on the calculation of mean derivatives in Chapters 8 and 9.

Lemma 15.24

(i) Dξ(t) = Eξ
t (Γt,0a(t)).

(ii) D∗ξ(t) = Eξ
t (Γt,0a(t)) + Eξ

t

[
Γ0,t

(
ζ(t)

t − κ(t)
)]

, where κ(t) is as de-
fined in Lemma 8.35.

Proof. Assertion (i) is in fact formula (9.25), and (ii) is (9.29). ��

Corollary 15.25

(i) DSξ(t) = Eξ
t (Γt,0a(t)) + 1

2Eξ
t

[
Γt,0

(
ζ(t)

t − κ(t)
)]

.
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(ii) DAξ(t) = −1
2Eξ

t

[
Γt,0

(
ζ(t)

t − κ(t)
)]

.

Corollary 15.25 can be obtained from formulae (9.30) and (9.31).

Lemma 15.26

(i) DD∗ξ(t) = Dξ (Γt,0a(t)) + Eξ
t

(
Γt,0

a(t)
t

)
− Eξ

t

(
Γt,0

ζ(t)
t2

)
.

(ii) D∗Dξ(t) = Dξ
∗(Γt,0a(t)).

The assertion of Lemma 15.26 follows from Lemma 15.24, Lemma 8.36
(which can evidently be generalized to the processes in M) and Lemma 8.38.

So the proof of Theorem 15.23 is reduced to the calculation of mean deriva-
tives for Γt,0a(t) which can be done by calculating the derivatives for the
summands in (15.33).

Lemma 15.27 For t ≥ t0:

(i) Dξ
∗Γt,0

(∫ t

0
t0(s)dw(s)

)
= Eξ

t

[
Γt,0

(
ζ(t)
t2 − κ(t)

t

)]
;

(ii) DξΓt,0

(
ζ(t)

t

)
= Eξ

t

[
Γt,0

(
a(t)

t − ζ(t)
t2

)]
;

(iii) D∗ξΓt,0

(
ζ(t)

t

)
= Eξ

t

[
Γt,0

(
a(t)

t − κ(t)
t

)]
.

The proof of Lemma 15.27(i) is analogous to that of Lemma 15.8(ii) with
a modification based on formulae (9.15). The proofs of (ii) and (iii) are anal-
ogous to that of Lemma 8.37.

Lemma 15.28

(i) Dξ
∗Γt,0

(∫ t

0
(Γ0,tᾱ1) (s, ζ(·)) dw(s)

)
=

− Γt,0 (Γ0,ttr∇ᾱ1 (ᾱ1)) (t, ζ(t))

+ Γt,0 (Γ0,tᾱ1) (t, ζ(·)) ◦ Eξ
t

[
Γt,0

(
ζ(t)

t − κ(t)
)]

.

(ii) Dξ
∗Γt,0

(∫ t

0

(
Γ0,tR̂ic

)
(s, ζ(·)) dw(s)

)
=

− Γt,0

(
Γ0,ttr∇R̂ic

(
R̂ic

))
(s, ζ(s))

+ Γt,0

(
Γ0,tR̂ic

)
(t, ζ(·)) ◦ Eξ

t

[
Γt,0

(
ζ(t)

t − κ(t)
)]

.

To prove Lemma 15.28 one should apply formulae (9.15), the definitions of
the integrands and the expression for Itô integrals via the backward integrals
(6.7) and (6.26) (cf. Lemma 15.8(i)).

All other summands in (15.32) are differentiated directly according to
(9.15).

By the definition of the processes ζ(t) and ξ(t) and of the operator of
parallel translation Γt,s the following relations hold:

Γt,0(Γ0,tᾱ)(t, ζ(·)) = ᾱ(t, ξ(t));

Γt,0(Γ0,tR̂ic)(t, ζ(·)) = R̂ic(ξ(t)).
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Thus by Lemmas 15.26–15.28 and formula (15.33)

1
2
(DD∗ + D∗D)ξ(t)

= ᾱ0(t, ξ(t)) + ᾱ1(t, ξ(t)) ◦ a(t) +
1
2
Eξ

t

[

Γt,0

(
ζ(t)
t

− κ(t)
)]

+
1
2
R̂ic(ξ(t)) ◦

{

−Eξ
t

[

Γt,0

(
ζ(t)
t

− κ(t)
)]}

. (15.34)

Taking into account Corollary 15.25 one sees that (15.34) coincides with
(15.29). Theorem 15.23 follows. ��

Remark 15.29. As in Remark 15.11 we should point out that ξ(t) does not
satisfy (15.29) for t ∈ (0, t0) because here t0(t) = 1

t0
and Eξ

t (Γt,0
ζ(t)
t·t0 ) 
=

Eξ
t (Γt,0

ζ(t)
t2 ). Thus ξ(t) can be interpreted only as a trajectory of the stochas-

tic mechanical system beginning at the instant t0 from the random configu-
ration ξ(t0) with the initial mean forward derivative Eξ

t (Γt,0a(t0)) (see the
details in Remark 15.10). A certain analog of this situation with ‘big bang’
will be described below in Section 15.3.2, which is devoted to general relativ-
ity.

Remark 15.30. One can easily see that Eξ
t (a(t)) is the hodograph of the

forward mean derivative for the process ξ(t) and that equation (15.33) is a
direct analog of the velocity hodograph equation (11.20).

We now turn to the proof of an existence theorem analogous to Theo-
rem 15.14.

Theorem 15.31 Let Conditions 15.20 and 15.21 be fulfilled. Let η be a ran-
dom element taking values in M with density ρ(m) 
= 0 for all m ∈ M . Let a
be a bounded Borel measurable vector field on M . Then there exists a solution
ξ(t) of (15.29) with initial conditions ξ(0) = η and Dξ(0) = a(η). If there
exists a δ > 0 such that ρ0(m) > δ for all m ∈ M and Grad log ρ0 (see (8.20))
is bounded, then there exists a solution ξ(t) of (15.29) with initial conditions
ξ(0) = η and DSξ(0) = a(η).

Proof. Denote by W (t) the coordinate process on the probability space
(C0([0, l], Rn),F , ν) taking values in R

n where F is the σ-algebra gener-
ated by cylinder sets and ν is a Wiener measure. As above, it is clear that
W (t) is a standard Wiener process in R

n. Take some Borel measurable cross-
section b0 of the bundle OM and consider the Itô development RIW (t) with
initial data b0(η) (see Definition 7.68). RIW (t) exists for t ∈ [0, l] by The-
orem 7.99 since, by Remark 15.22, from Condition 15.20 it follows that M
is stochastically complete. Consider the following objects along RIW (t): the
vector field uW (t,m) constructed for RIW (t) by formula (8.20), the vector
field DW uW (t,m) and the tensor field ∇uW (t,m) = K ◦ T (uW (t,m)) (the
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operator of covariant derivative applied to uW (t,m)). Using the construc-
tion of parallel translation along RIW (t) (see Section 7.6), in this section
the operator Γt,0 is applied to a tensor υ(t, RIW (t)) yielding the tensor field
Γt,0υ(t,W (t)) along W (t) in R

n, which is well-defined along a.s. all continu-
ous curves in R

n with respect to Wiener measure (see Section 7.6).
Denote by a0 the vector b(0)−1[a(η) + uW (0, W (0))] and consider the fol-

lowing stochastic differential equation in R
n:

a(t) = a0 +
∫ t

0

Γ0,sα0(s,W (s))ds +
∫ t

0

Γ0,sα1(s,W (s)) ◦ dW (s)

+
∫

Γ0,sD
W uW (s,W (s))ds +

∫ t

0

(
Γ0,s∇uW (s,W (s)) ◦ a(s)

)
ds

−1
2

∫ t

0

Γ0,sR̂ic(s,W (s)) ◦ dW (s), (15.35)

where ◦ dW (s) denotes Stratonovich integration in composition with parallel
translation, i.e.,

∫ t

0

Γ0,sA(s,W (s)) ◦ dW

=
∫ t

0

Γ0,sA(s,W (s))dW (s) +
1
2

∫ t

0

Γ0,str∇A(t,m)(A)ds

for a (1, 1)-tensor field A on M .
Since (15.35) is linear in a, it has a unique solution a(t). From Condi-

tion 15.21 it follows that a(t) satisfies (7.54). Set

θ(t) = exp
{

−1
2

∫ t

0

a(s)2ds +
∫ t

0

a · dW.

}

Under these assumptions θ(t) is a martingale with Eθ(t) = 1. Thus we can
introduce a new probability measure μ on (C0([0, l], Rn),F) by the relation
dμ = θ(l)dν. Denote by ζ(t) the coordinate process on (C0([0, l], Rn),F , μ).
By Girsanov’s theorem ζ(t) =

∫ t

0
a(s)ds + w(t) where w(t) is a Wiener pro-

cess on C0([0, l], Rn),F , μ) adapted to ζ(t) and a(t) is not anticipative with
respect to Pζ

t , i.e., ζ is a process satisfying the hypothesis of Theorem 7.99.
Since M is stochastically complete and a(t) satisfies (7.54), there exists an

Itô development ξ(t) = RIζ(t) with initial condition η.

Lemma 15.32 The process ξ(t) is the solution of equation (15.29) with ini-
tial conditions ξ(0) = η and DSξ(0) = a(η).

Proof. From the definition of Itô development it evidently follows that

Γt,0Γ0,tu
W (t, ξ(t)) = uW (t, ξ(t)); Γt,0Γ0,t∇uW ◦ a = ∇Γt,0auW
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Γt,0Γ0,tα0 = α0; Γt,0Γ0,tα1 = α1; Γt,0Γ0,tRic = Ric;

Γt,0Γ0,ttr∇α1(t, ξ(t))(α1) = tr∇α1(t, ξ(t))(α1);

Γt,0Γ0,ttr∇Ric(t, ξ(t))(Ric) = tr∇Ric(t, ξ(t))(Ric)

and so on. Thus the fact that ξ(t) satisfies (15.29) follows by direct calcula-
tion. ��

To obtain a solution with initial conditions ξ(0) = η and Dξ(0) = a(η), in
the above construction one should take a0 in the form b(0)−1(a(η)). ��

15.3 Relativistic Stochastic Mechanics

15.3.1 Stochastic mechanics in Minkowski space

In this section we present a modification of stochastic mechanics which is
well-posed for describing relativistic particles in Minkowski space (see Exam-
ple 13.4). In particular we obtain generalizations of the existence theorems
of Section 15.1 to the relativistic case. In our constructions, following [103],
we apply the relativistic definition of mean derivatives suggested by Guerra
and Ruggiero [55, 142] and Zastawniak’s idea of transition from stochastic
processes in Minkowski space to those in the underlying Euclidean space (see,
e.g., [237, 238]). The material of this section forms the basis for the construc-
tion of stochastic mechanics in the general relativistic case in Section 15.3.2
below (see [130]).

For the sake of simplicity, in this section we work in a system of units in
which the speed of light c = 1. We also consider particles with rest mass 1.

In this subsection we denote by M4 the Minkowski space with inner prod-
uct (·, ·) (see Example 13.4). Choose a certain orthonormal frame (with re-
spect to (·, ·)) in M4. Let R

4 be the (underlying) Euclidean space in which
the above frame is orthonormal in the Euclidean sense. The (positive-definite)
inner product in R

4 will be denoted by a dot ·. The main idea here is to con-
sider Itô processes ξ(τ) of the form (8.15) as processes in M4 while Wiener
processes are defined with respect to R

4. This idea originated in the work
of Zastawniak (see [237]). Here τ is an invariant parameter which plays the
role of proper time. For such ξ(τ), according to an idea of Guerra and Rug-
giero [55, 142], we define the relativistic forward mean derivative D+ξ(τ) and
relativistic backward mean derivative D−ξ(τ) as follows:

D+ξ(τ)

= lim
Δτ↓0

E

(
ξ(τ + Δτ) − ξ(τ)

Δτ

∣
∣
∣
∣N

ξ
t , (ξ(τ + Δτ) − ξ(τ))2 ≤ 0

)

(15.36)

+ lim
Δτ↓0

E

(
ξ(τ) − ξ(τ − Δτ)

Δτ

∣
∣
∣
∣N

ξ
t , (ξ(τ) − ξ(τ − Δτ))2 ≥ 0

)

;
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D−ξ(τ)

= lim
Δτ↓0

E

(
ξ(τ) − ξ(τ − Δτ)

Δτ

∣
∣
∣
∣N

ξ
t , (ξ(τ) − ξ(τ − Δτ))2 ≤ 0

)

(15.37)

+ lim
Δτ↓0

E

(
ξ(τ + Δτ) − ξ(τ)

Δτ

∣
∣
∣
∣N

ξ
t , (ξ(τ + Δτ) − ξ(τ))2 ≥ 0

)

.

It should be noted that (15.36) and (15.37) are covariant under the Lorentz
transformations. Below we will deal with both D+ and D− on the one hand
and D, D∗ and D2 on the other hand, applied to a process ξ(τ) where D,
D∗ and D2 will be calculated in R

4 by formulae (8.1), (8.2) and (8.13),
respectively.

Of course, D+ξ(τ) = Y+(τ, ξ(τ)) for the vector field

Y+(τ, x)

= lim
Δτ↓0

E

(
ξ(τ + Δτ) − ξ(τ)

Δτ

∣
∣
∣
∣ ξ(τ) = x, (ξ(τ + Δτ) − ξ(τ))2 ≤ 0

)

+ lim
Δτ↓0

E

(
ξ(τ) − ξ(τ − Δτ)

Δτ

∣
∣
∣
∣ ξ(τ) = x, (ξ(τ) − ξ(τ − Δτ))2 ≥ 0

)

and D−ξ(τ) = Y−(τ, ξ(τ)) for the vector field

Y−(τ, x)

= lim
Δτ↓0

E

(
ξ(τ) − ξ(τ − Δτ)

Δτ

∣
∣
∣
∣ ξ(τ) = x, (ξ(τ) − ξ(τ − Δτ))2 ≤ 0

)

+ lim
Δτ↓0

E

(
ξ(τ + Δτ) − ξ(τ)

Δτ

∣
∣
∣
∣ ξ(τ) = x, (ξ(τ + Δτ) − ξ(τ))2 ≥ 0

)

.

Consider the coordinate decomposition of some process ζ(τ) with re-
spect to the frame mentioned above: ζ(τ) = (ζ0(τ), ζ̄(τ)) where ζ̄(τ) =
(ζ1(τ), ζ2(τ), ζ3(τ)). Then clearly

D+ζ(τ) = (Dζζ0(τ), Dζ
∗ ζ̄(τ)) (15.38)

and
D−ζ(τ) = (Dζ

∗ζ
0(τ), Dζ ζ̄(τ)), (15.39)

where Dζ and D∗ζ are defined in R
4 by (8.7) and (8.8), respectively.

Let us introduce the relativistic current velocity v̄ζ(τ) = 1
2 (D+ζ(τ) +

D−ζ(τ)) and the relativistic osmotic velocity ūζ(τ) = 1
2 (D+ζ(τ) − D−ζ(τ)).

We have v̄ζ(τ) = v̄ζ(τ, ζ(τ)) where v̄ζ(τ, x) = 1
2 (Y+(τ, x) + Y−(τ, x)) and

ūζ(τ) = ūζ(τ, ζ(τ)) where ūζ(τ, x) = 1
2 (Y+(τ, x) − Y−(τ, x)).

Lemma 15.33 The relativistic current velocity v̄(τ) and the usual current
velocity v(τ), calculated in R

4 by Definition 8.16, coincide.

To prove that v̄ζ(τ) = vζ(τ), compare formulae (15.38) and (15.39).
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Lemma 15.34 The relativistic osmotic velocity takes the form

ūζ(τ) =
(
Dζ

Aζ0(τ),−Dζ
Aζ̄(τ)

)

while the usual osmotic velocity, calculated in R
4 by Definition 8.16, takes

the form
uζ(τ) =

(
Dζ

Aζ0(τ), Dζ
Aζ̄(τ)

)
,

and so they do not coincide.

Lemma 15.34 follows immediately from (15.38) and (15.39).

Lemma 15.35
ūζ(τ, x) = −1

2
σ2Grad log ρζ(τ, x) (15.40)

where ρζ(τ, x) is the density of ζ(τ) with respect to Lebesgue measure, defined
in Section 8.1, and Grad is the gradient calculated with respect to the inner
product (·, ·) in M4.

Lemma 15.35 follows from the above coordinate decomposition for ūζ(τ),
formula (8.18) and the definition of the inner product (·, ·) in M4 (note in
particular, that Grad f = (− ∂f

∂x0 , ∂f
∂x1 , ∂f

∂x2 , ∂f
∂x3 ) while grad f = ( ∂f

∂x0 , ∂f
∂x1 , ∂f

∂x2 ,
∂f
∂x3 ) for any function f on M4).

Lemma 15.36 Formula (8.19) remains true for v̄ζ and ρζ

Indeed, this follows from the fact that v̄ζ(τ) = vζ(τ) (see above).
For a vector field Z(τ, x) on M4 define the relativistic forward D+Z(τ, ζ(τ))

and backward D−Z(τ, ζ(τ)) mean derivatives along ζ(τ) by the formulae

D+Z(τ, ζ(τ)) = (15.41)

lim
Δτ↓0

E

(
Z(τ + Δτ, ζ(τ + Δτ)) − Z(τ, ζ(τ))

Δτ

∣
∣
∣
∣N

ζ
t , (ζ(τ + Δτ) − ζ(τ))2 ≤ 0

)

+

lim
Δτ↓0

E

(
Z(τ, ζ(τ)) − Z(τ − Δτ, ζ(τ − Δτ))

Δτ

∣
∣
∣
∣N

ζ
t , (ζ(τ) − ζ(τ − Δτ))2 ≥ 0

)

and

D−Z(τ, ζ(τ)) = (15.42)

lim
Δτ↓0

E

(
Z(τ, ζ(τ)) − Z(τ − Δτ, ζ(τ − Δτ))

Δτ

∣
∣
∣
∣N

ξ
t , (ζ(τ) − ζ(τ − Δτ))2 ≤ 0

)

+

lim
Δτ↓0

E

(
Z(τ + Δτ, ζ(τ + Δτ)) − Z(τ, ζ(τ))

Δτ

∣
∣
∣
∣N

ζ
t , (ζ(τ + Δτ) − ζ(τ))2 ≥ 0

)
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(a modification of (8.22) and (8.23), respectively, by analogy with (7.46) and
(7.47)). Taking into account (8.24) and (8.25), one can easily derive

D+Z(τ, ζ(τ)) =
∂

∂τ
Z + (Y+,∇)Z +

σ2

2
�Z,

DZ(τ, ξ(τ)) =
∂

∂τ
Z + (Y−,∇)Z − σ2

2
�Z, (15.43)

where � = − ∂2

∂x02 + ∂2

∂x12 + ∂2

∂x22 + ∂2

∂x32 is the wave operator (the d’Alembertian,
cf. (8.24) and (8.25)).

Definition 15.37. The vector 1
2 (D+D−+D−D+)ξ(τ) is called the 4-acceler-

ation of the process ξ at τ .

Below we use the ordinary quadratic mean derivative D2 introduced in Def-
inition 8.10. The introduction of a special relativistic quadratic mean deriva-
tive is not necessary in the problems under consideration for the following
reasons.

Introduce “relativistic” increments of the process ζ(τ) as follows:

Δ+ζ(τ) = (ζ0(τ + Δτ) − ζ0(τ), ζ̄(τ) − ζ̄(τ − Δτ))

and
Δ−ξ(τ) = (ζ0(τ) − ζ0(τ − Δτ), ζ̄(τ + Δτ) − ζ̄(τ))

which are related to ordinary increments in the same way as relativistic for-
ward and backward mean derivatives are related to ordinary forward and
backward mean derivatives.

Lemma 15.38 Let ζ(τ) be an Itô diffusion type process on M4 whose dif-
fusion term is given by a Borel measurable field of linear operators A(x) :
R

k → M4 that is independent of the past and so depends only on x ∈ M4.
Denote by D2 the ordinary quadratic mean derivative as in Definition 8.10.
Then

D2ζ(τ) = lim
Δτ→+0

Δ+ζ(τ) ⊗ Δ+ζ(τ)
Δτ

= lim
Δτ→+0

Δ−ζ(τ) ⊗ Δ−ζ(τ)
Δτ

= A(ζ(τ))A∗(ζ(τ)). (15.44)

The proof of Lemma 15.38 is based on the fact that in the case under
consideration the diffusion term of ζ(τ) and of the process with inverse time
direction coincide. Note that in (15.44) we do not use conditional expectation
since A(x) is Borel measurable and does not depend on the past.

We should recall (see Remark 13.20) that in relativistic dynamics the 4-
force necessarily depends on the 4-velocity. In addition, by definition it is
independent of the proper time τ since it is an absolute object (independent of
a reference frame: recall that proper time is well-defined only in the reference
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frame of an observer). This is why, below, we consider a force field on M4 only
in the form ᾱ = ᾱ(x)X where ᾱ(x) is a (1, 1)-tensor, i.e., a linear operator
in M4, depending on x ∈ M4 (an analog of ᾱ1 from Section 15.1.2).

Definition 15.39. (cf. Definition 15.2) The relativistic Newton-Nelson equa-
tion with 4-force ᾱ(x)X is the system in the Minkowski space M4 of the form

{
1
2 (D+D− + D−D+)ξ(t) = ᾱ(ξ(τ))vξ(τ)

D2ξ(t) = �

mI
(15.45)

where m is the mass (rest mass) of a particle.

We shall look for solutions of (15.45) among all Itô processes. From (15.45)
one can easily see that the stochastic-mechanical world line of a relativistic
particle with rest mass m is an Itô process ξ(τ) in R

4 of the form (8.15) with
σ2

2 = �

2m such that it satisfies the first equation of (15.45) as a process in
M4.

Recall that everywhere in this Subsection we assume m = 1 without loss
of generality.

Theorem 15.40 For ξ(τ) as above the following equality holds

1
2
(DD∗ + D∗D)ξ(τ) =

1
2
(D+D− + D−D+)ξ(τ). (15.46)

Proof. This statement is proved by straightforward calculation. Indeed, by
formulae (15.38), (15.39), (15.41) and (15.42) we have

D+D−ξ(τ) =
(
Dξ

∗D
ξξ0(τ), DξDξ

∗ξ̄(τ)
)

and
D−D+ξ(τ) =

(
DξDξ

∗ξ
0(τ), Dξ

∗D
ξ ξ̄(τ)

)

which leads to (15.46). ��

Let the force field ᾱ(x)X on M4 satisfy Condition 15.7 (with ᾱ0(τ, x) = 0
and ᾱ1 = ᾱ) relative to the Euclidean metric of R

4. Then for any initial
forward derivative a0 ∈ M4 and for the function t0(τ) defined by formula
(13.13), we can apply the construction of a(τ) and θ of Section 15.1.2 and so
obtain the corresponding Itô process ξ(τ) in R

4.
The following statement is a simple corollary of Theorems 15.9 and 15.40.

Theorem 15.41 For τ ∈ (t0, l) the process ξ(τ) in M4, mentioned above,
satisfies (15.45) and so it is a stochastic-mechanical world line.

Let the tensor field α(x) be a closed 2-form, i.e., α = dω where ω is a
1-form on M4 (a particular case is an electromagnetic field F = dA, see
Section 13.1.5). The trajectory of the stochastic-mechanical system with 4-
force ᾱX on M4, where as usual ᾱ is physically equivalent to α with respect
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to (·, ·), is connected with the solution of the corresponding Klein-Gordon
equation, so there is a link between relativistic stochastic mechanics and
relativistic quantum mechanics. This is a generalization of the construction of
Section 15.1.1 for the non-relativistic case. We describe it briefly, following the
scheme of Guerra and Ruggiero [55, 142] developed for the electromagnetic
field. In order to avoid confusion, in the case of an electromagnetic field we
assume (without loss of generality) that the electric charge e of the particle
is equal to 1.

Let ξ(τ) be a stochastic-mechanical world line. Let us make the additional
assumption that there exists a function S such that σ2GradS = v̄ξ + ω̄
where ω̄ is the vector physically equivalent to ω with respect to (·, ·) and
Grad is defined in Lemma 15.35. Introduce the complex-valued function Ψ =
exp(R+iS) where R = 1

2 log ρξ. Then, taking into account Lemmas 15.35 and
15.36, imitating the proof of Theorem 15.4 one can deduce that Ψ satisfies
the equality

i h
∂Ψ

∂τ
=

σ2

2

(

∇− i
�
ω̄,∇− i

�
ω̄

)

Ψ (15.47)

where in the right hand side we have the formal inner product (with respect
to (·, ·)) of differential operators, considered as formal vectors (cf. Lemma
8.20 where the definition of ∇ is also given). Note that (∇,∇) = �.

Suppose that Ψ(τ, x) = exp(−i m
2�

τ)ϕ(x). Then from (15.47) it follows that
ϕ(x) satisfies the equality

((

∇− i
�
ω̄,∇− i

�
ω̄

)

− 1
h2

)

ϕ = 0. (15.48)

Formula (15.48) is the Klein-Gordon equation. In particular, if ω = 0, (15.48)
takes the form (

� − 1
h2

)2

ϕ = 0. (15.49)

The inverse construction is more straightforward. We describe it briefly
according to [237, 238] where it was derived for the electromagnetic field.

Let a complex-valued function ϕ on M4 satisfy (15.48). Represent it in the
form ϕ(x) = exp(R + iS) and consider the vector fields v̄(x) = σ2GradS − ω̄
and ū(x) = σ2GradR = 1

2σ2(Grad log ρ) = 1
2σ2 Grad ρ

ρ on M4 for ρ = ϕϕ̄.

Theorem 15.42 Equation (15.48) is equivalent to the following system:

� div ū + (ū, ū) − (v̄, v̄) = 1, (15.50)
� div v̄ + 2(ū, v̄) = 0. (15.51)

To prove Theorem 15.42 one should substitute ϕ = exp(R + iS) into
(15.48) and then, after natural transformations similar to those in the proof
of Theorem 15.4, separate real and imaginary parts.
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The vector fields v̄ and ū generate the vector fields Y+(x) = v̄(x)+ ū(x) =
GradS + GradR + ω̄ and Y−(x) = v̄(x) − ū(x) = GradS − GradR + ω̄.
Having made the coordinate decompositions Y +(x) = (Y 0

+, Ȳ+) and Y−(x) =
(Y 0

−, Ȳ−), introduce the vector fields Y (x) = (Y 0
+, Ȳ−) and Y∗(x) = (Y 0

−, Ȳ+).
Consider the diffusion process ξ(τ) on R

4 satisfying the Itô equation

dξ(τ) = Y (ξ(τ))dτ + σ dw(τ) (15.52)

where σ > 0 is as above.

Lemma 15.43 For ξ(τ) from (15.52) D+ξ(τ) = Y+(ξ(τ)), D−ξ(τ) =
Y−(ξ(τ)) and so v̄ξ = v̄ and ūξ = ū.

The assertion of Lemma 15.43 is a trivial consequence of the construction.

Theorem 15.44 ξ(τ) from (15.52) satisfies the Newton-Nelson equation
(15.45) with ᾱX physically equivalent to dω(·, X) with respect to (·, ·).

Proof. By straightforward calculations of D+D−ξ(τ) and D−D+ξ(τ) one ob-
tains the formula

1
2
(D+D− + D−D+)ξ(τ) = −1

2
∇(� div ū + (ū, ū) − (v̄, v̄)) + ᾱv (15.53)

where ᾱ is physically equivalent to dω(·, X) with respect to (·, ·). From (15.50)
it follows that the first summand on the right-hand side of (15.53) vanishes
so that (15.53) is equal to (15.45) with the above ᾱ. ��

Theorem 15.45 Let the Klein-Gordon equation (15.48) be well-defined for a
given 4-force ᾱ and let ξ(τ) be a solution of the corresponding Newton-Nelson
equation (15.45). Then

E((vξ)2 + (uξ)2) = −1. (15.54)

Proof. Clearly (vξ)2+(uξ)2 = (−� div uξ +(vξ)2−(uξ)2)+(� div uξ +2(uξ)2).
Direct calculations show that (� div uξ +2(uξ)2) = σ4

2
∇2ρξ

ρξ where ∇2 = ∇·∇
and so

E
(
� div uξ + 2(uξ)2

)
=

σ4

2

∫

R
4

∇2ρξ

ρξ
ρξdλ =

σ4

2

∫

R
4
∇2ρξdλ.

Note that ξ(τ), as a solution of (15.52), is a diffusion process in R
4. Thus the

Kolmogorov-Fokker-Planck equation

∂

∂τ
ρξ =

σ2

2
∇2ρξ − div(ρξY )

is valid for ρξ where Y is as in (15.52). By construction ρξ is independent of τ .
Hence E(� div uξ + 2(uξ)2) = σ2

∫
M4 div(ρξY )dλ where the latter integral is
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equal to zero by a standard application of the divergence formula. So (15.54)
follows from (15.50). ��

Remark 15.46. Equality (15.54) may be considered as the characteristic
feature for τ to be a proper time along a stochastic-mechanical world-line
ξ(τ) (cf. Definition 13.12). This idea, as well as the proof of (15.54), was
apparently first suggested by Zastawniak [237].

15.3.2 Stochastic mechanics in the space-times of
general relativity

In this subsection M4 is a 4-dimensional Lorentz manifold with metric (·, ·)
whose signature is (−, +, +, +) (see Section 13.1.1). For the sake of simplicity
we assume from now on that M4 is orientable and oriented in time. In other
words, a well-defined ‘future’ time direction is specified in every tangent space
TmM4, m ∈ M4.

Consider the principal bundle L(M4) with structural group L+
−, the proper

orthochronous Lorentz group (see [72]). The action of L+
− on Minkowski space

preserves the standard and time orientation. The bundle L(M4) is a sub-
bundle of the principal bundle of Lorentz-orthonormal frames. Denote by H
the restriction of the Levi-Civitá connection to L(M4) and by V the vertical
distribution on L(M4). As on OM in Section 2.7, the bundles H and V over
L(M4) are trivial. In particular H is trivialized by the basic vector fields on
L(M4).

The generalization of Itô processes to the Lorentz manifold M4 requires
some modification with respect to the case of Minkowski space. Choose a
point m0 ∈ M4 and a Lorentz orthonormal frame b in Tm0M

4. Introduce a
Euclidean structure in Tm0M

4 by setting b to be orthonormal in the Euclidean
sense. We may now consider a Wiener process w(τ) in Tm0M

4 as well as Itô
processes with this w(τ). One can easily show that the entire construction of
Itô developments on manifolds can be clearly generalized to the above case
of processes on the Lorentz manifold M4 by using connections on L(M4)
instead of on OM . Those developments will be called Itô processes on the
Lorentz manifold M4.

The above parameter τ will play the role of proper time. So for a process
ξ(τ) we may expect that (15.54) is fulfilled.

In order to avoid any possible confusion we assume in this section that
M4 is stochastically complete. This means that the development of a Wiener
process in the above-mentioned sense exists for τ ∈ [0,∞) (see Section 7.6.2).
Unfortunately nothing like the criterion of stochastic completeness of Theo-
rem 7.80 is known for Lorentz manifolds.

Itô processes on M4, which are the developments of Itô processes of diffu-

sion type of the form z =
∫ τ

0
a(s)ds + σw(τ) with σ =

√
�

m , are of particular
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interest to us. Let ξ(τ) be such a process in M4. In a chart (U,ϕ) we can
apply formulae (15.36) and (15.37) to define relativistic forward and back-
ward, respectively, mean derivatives D+ξ(τ) and D−ξ(τ) and represent them
as compositions of ϕY 0

+(τ, m) and ϕY 0
−(τ, m) (determined in the chart (U,ϕ))

with ξ(τ) (cf. Section 9.1). As in Section 9.1 we determine X0
+(τ, m) and

X0
−(τ, m) by formulae X0

+(τ, m) = Y 0(τ, m)n and X0
−(τ, m) = Y 0

∗ (τ, m)n,
respectively, for any m ∈ M4 where n denotes the calculations in the nor-
mal chart at m. Then we define the relativistic forward and backward mean
derivatives of ξ on M4 with respect to H by the formulae

D+ξ(τ) = X0
+(τ, ξ(τ)), D−ξ(τ) = X0

−(τ, ξ(τ)) (15.55)

(cf. Definition 9.1).
The derivative D̄S = 1

2 (D+ + D−) is called the relativistic symmetric
mean derivative. Consider the vector v̄ξ(τ, m) = 1

2 (X0
+(τ, m) + X0

−(τ, m));
v̄ξ(τ, ξ(τ)) = D̄Sξ(τ) is called the relativistic current 4-velocity of the pro-
cess ξ(τ); D̄A = 1

2 (D+ − D−) is called the relativistic antisymmetric mean
derivative. Consider for ξ(τ) as above the vector ūξ(τ, m) = 1

2 (X0
+(τ, m) −

X0
−(τ, m)); ūξ(τ, ξ(τ)) = D̄Aξ(τ) is called the relativistic osmotic velocity of

ξ(τ).
Let Y (τ, m) be a C2-smooth vector field on M4. Making the same modifica-

tion for formulae (9.15) as above in this section, we can define the covariant
relativistic mean derivatives D+Y (τ, ξ(τ)) and D−Y (τ, ξ(τ)). Here we use
parallel translation with respect to the Levi-Civitá connection on L(M4).

We can also apply the Levi-Civitá connection on L(M4) (i.e., its normal
charts on M4, parallel translation of vectors in TM4, etc.) to define Dξ(τ),
D∗ξ(τ), Dξη(τ), Dξ

∗η(τ), DY (τ, ξ(τ)) and D∗Y (τ, ξ(τ)) as in Chapters 8
and 9. In spite of the fact that these objects differ from those in the above
sections, since the connections are different, we use the old notation without
any ambiguity.

Let us pick a Lorentz orthonormal frame in TmM4 at some m and represent
a vector in terms of its coordinates with respect to the frame X = (X0, X̄)
where X0 denotes the ‘time-like’ component and X̄ the 3-dimensional ‘space-
like’ component. Note that this coordinate decomposition is covariant with
respect to Lorentz transformations in TmM4 for D+ξ(τ) and D−ξ(τ) and not
covariant for Dξ(τ) and D∗ξ(τ). Nevertheless vξ(τ) is covariant, since one can
can easily see that vξ(τ) = v̄ξ(τ). Indeed, direct calculations show that both
vξ(τ) and v̄ξ(τ) have the same coordinate decomposition: (Dξ

Sξ0(τ), Dξ
S ξ̄(τ))

(cf. Section 15.3.1).
As in Section 15.3.1, for the osmotic velocity ūξ(τ) we have

ūξ(τ) =
(
Dξ

Aξ0(τ),−Dξ
Aξ̄(τ)

)

while uξ(τ) = (Dξ
Aξ0(τ), Dξ

Aξ̄(τ)). The following formula holds:
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ūξ(τ, x) =
1
2
σ2 Grad log ρξ(τ, x), (15.56)

where Grad is the gradient calculated with respect to the Lorentz metric.

Definition 15.47. The vector 1
2 (D+D−+D−D+)ξ(τ) is called the 4-acceler-

ation of the process ξ at τ .

Theorem 15.48 For an Itô process ξ(τ) in M4 as above the following equal-
ity holds

1
2
(DD∗ + D∗D)ξ(τ) =

1
2
(D+D− + D−D+)ξ(τ). (15.57)

As for formula (15.46), this statement is proved by direct calculation.
Indeed,

D+D−ξ(τ) = (Dξ
∗D

ξξ0(τ),DξDξ
∗ξ̄(τ))

and also
D−D+ξ(τ) = (DξDξ

∗ξ
0(τ),Dξ

∗D
ξ ξ̄(τ)),

which yields (15.57).
Here we consider the relativistic Newton-Nelson equation of the form

{
1
2 (D+D− + D−D+)ξ(τ) = ᾱ(ξ(τ), v̄ξ(τ, ξ(τ))),

D2ξ(τ) = �

mI,
(15.58)

where ᾱ is a 4-force, i.e., it does not depend on τ and necessarily depends on
4-velocity. This is why we consider below the force field on M4 in the form
ᾱ(m, X) = ᾱ1(m)X, where ᾱ1(x) is a linear operator in TmM4, as above.

There is no R̂ic term in (15.58) (for the same reasons that such a term
appeared in (15.29); see Section 15.2.1). In the relativistic case a natural
relation between the Newton-Nelson equation and the Klein-Gordon equation
is established (for Minkowski space this was illustrated in Section 15.3.1,
see also, e.g., [55, 142, 189, 190, 228, 237, 238]). But in the Klein-Gordon
equation (unlike the Schrödinger equation on a Riemannian manifold) the
wave operator � = ∇∗ · ∇ is involved, where ∇ is the covariant derivative of
the Levi-Civitá connection on M4 (see, e.g., [49]). Since we need not obtain
Δ = dδ + δd in the corresponding equation of Schrödinger type, here we do
not include the R̂ic term in (15.58) (cf. Section 15.2.1).

Definition 15.49. An Itô process ξ(τ) on M4 of the type mentioned above
is called a trajectory of a relativistic stochastic-mechanical system with force
field ᾱ(m, X) if it satisfies (15.58).

Let M4 be stochastically complete. Specify a point m0 ∈ M4 and con-
sider the Itô development RIW (τ) of a Wiener process W (τ) in Tm0M

4 as
described above in this section. Choose a Lorentz-orthonormal frame b in
Tm0M

4.
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Let the force field ᾱ(m, X) = ᾱ1(m)X on M4 be such that the tensor
ᾱ1(m) and its covariant derivative have bounded absolute values of compo-
nents with respect to the frames, parallel to b along RIW (τ). The simplest
example of such an ᾱ is ᾱ = 0, it holds when no external forces but gravitation
alone are under consideration.

Make the parallel translation of ᾱ1(RIW (τ)) and tr∇ᾱ1(ᾱ1) along
RI(W (·)) to m0. Introduce the Euclidean inner product in Tm0M

4 by consid-
ering b as an orthonormal frame in the Euclidean sense. Fix some t0 ∈ (0, l).
Now, having omitted all summands with a R̂ic term in equations (15.31),
(15.33), etc., one can apply the construction of Section 15.2.2 and easily ob-
tain the existence of the corresponding ζ(τ) and its development ξ(τ).

Theorem 15.50 For τ ∈ (t0, l) the process ξ(τ) satisfies (15.58).

This is a simple corollary of (15.57) and the equality vξ(τ) = v̄ξ(τ).

Remark 15.51. It should be pointed out that ξ(τ) does not satisfy (15.58)
for τ ∈ (0, t0) since here t0(τ) = 1

t0
and Eξ

τ (Γτ,0θ
−1 ζ(τ)

τ ·t0 ) 
= Eξ
τ (Γτ,0θ

−1 ζ(τ)
τ2 ).

Thus ξ(τ) can be interpreted only as a trajectory of a stochastic mechanical
system beginning at the instant t0 of proper time from a random configuration
ξ(t0) with initial mean forward derivative Eξ

τ (Γτ,0a(t0)). It is clear that t0
may be chosen arbitrarily close to zero, and so we can bring the initial values
to m0 and a0 as closely as desired. However, we cannot set t0 = 0, since
the integral

∫ τ

0
1
sdW (s) does not exist (indeed,

∫ τ

0
1
s2 ds diverges, see, e.g.,

[162]), i.e., when t0 = 0 the analogs of equations (15.31) and (15.33) are ill-
posed. We suggest the hypothesis that this situation may be thought of as a
description of the ‘big bang’, the initial point for all the trajectories. Indeed,
all the equations of physical laws are ill-posed at the ‘big bang’; we can set
initial conditions for any time greater than the instant of the ‘big bang’, but
cannot do this for the ‘big bang’ itself.

The following analog of Theorem 15.31 holds.

Theorem 15.52 Let the Levi-Civitá connection on L(M4) be stochastically
complete and the (1, 1)-tensor field α(m) be continuous and have compact
support. Then for η as in Theorem 15.31 and for a continuous vector field
a(m) with compact support there exists a solution ξ(τ) of equation (15.58)
with initial conditions ξ(0) = η and D̄Sξ(0) = a(η).

The analogous statement with initial condition for the forward mean
derivative Dξ(0) = a(η) is also true.

Taking into account formula (15.57) and the fact that v̄ξ(τ) = vξ(τ) (see
above) it is easy to see that Theorem 15.52 is a simple generalization of
Theorem 15.31 (here we use another bundle and another connection). Note
that the hypothesis of Theorem 15.52 has been expressed in a form that is
easy to verify. It can be replaced by the corresponding analogs of Conditions
15.20 and 15.21.



Chapter 16

Hydrodynamics

16.1 The Lagrangian Formalism of the Hydrodynamics
of an Ideal Barotropic Fluid

Following the lines of Chapter 11, we can apply the results of Section 5.1 to
study mechanical systems on the configuration spaces Ds(M), Hs(M,M),
or Hs(M,N) with kinetic energy given by the (weak) Riemannian metric.
Here we analyze those systems which are naturally related to certain prob-
lems of hydrodynamics. Note that according to the Lagrangian formalism, a
trajectory of such a system gives the flow of a fluid.

16.1.1 Diffuse matter

In what follows, we use the notation and the hypotheses of Section 5.1. In
particular, M denotes a compact Riemannian manifold without boundary
and 〈·, ·〉 is its Riemannian metric.

Consider a mechanical system on Hs(M,M) with zero potential energy
and kinetic energy K(X) = (X,X)

2 , where (·, ·) is given by (5.1). Then New-
ton’s equation for the system is

D̄
dt

ġ(t) = 0, (16.1)

where D̄
dt is defined as in Section 5.1.

Definition 16.1. The mechanical system defined above by (16.1) is called a
Lagrangian hydrodynamical system (LHS ) of diffuse matter (with zero exter-
nal force).
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It is clear by (16.1) that the trajectory of every particle of diffuse matter
is a geodesic of 〈·, ·〉 on M . In other words, the trajectory of the LHS with
initial condition e = id is given by the vector field X ∈ TeDs(M) of the initial
velocities and the metric 〈·, ·〉.

The kinetic energy is constant along a trajectory of the LHS on Hs(M,M)
and the trajectory is an extremal of the action functional with the Lagrangian
L = K.

Similarly, one may define an LHS of diffuse matter on a manifold M with
boundary. This time, however, the motion takes place on a larger manifold
N without boundary (dimN = dimM). The construction still holds if we
take Hs(M,N) as the configuration space. One may also consider an LHS of
diffuse matter with an external force.

Note that by Proposition 3.67 the curve (g(t), ġ(t)) in TDs(M) is an inte-
gral curve of the geodesic spray Z̄ (see (5.4)), i.e.,

d
dt

(g(t), ġ(t)) = Z(g(t), ġ(t)). (16.2)

Proposition 16.2 For every X ∈ TeDs(M) there exists a unique solution
g(t) of (16.1) with initial conditions g(0) = e and d

dtg(0) = X that is well-
defined for t in a sufficiently small interval [0, ε).

Indeed, (16.1) is equivalent to (16.2) (which has a smooth right-hand side).
Recall that the group Ds(M) is an open neighborhood of e in Hs(M,M)

and so a solution of (16.1) that starts at e, for t in a sufficiently small in-
terval [0, ε), belongs to Ds(M). A key role in the Euler description of diffuse
matter is played by the vector v(t) ∈ TeDs(M) obtained by right transla-
tion of the velocity ġ(t) ∈ Tg(t)Ds(M) to the tangent space at the unit, i.e.,
v(t) = TR−1

g(t)ġ(t) (see Section 11.2). Specify some t and consider the right-
invariant vector field v̄(t) on Ds(M) constructed by right translations of v(t)
to all points of Ds(M). Note that the derivative ∂

∂tv(t) is a vertical vector in
T(e,v(t))TDs(M) and from (16.2) it follows that ∂

∂tv(t) equals the difference
between Z̄ and its component “tangent” to the submanifold v̄(t) at the given
t with respect to the decomposition T(e,v(t))TDs(M) = V̄(e,v(t))⊕T(e,v(t))v̄(t).
In fact, if v(t) is an Hs-vector field on M , v̄(t) is only continuous (see Section
5.1), but if it is Hs+k for some integer k > 0, then v̄(t) is Ck-smooth and so
it really has the tangent space at (e, v(t)).

We introduce the notation ḡ(t + Δt) = R−1
g(t)g(t + Δt). From the construc-

tion of the geodesic spray and of v̄(t) it follows that

Z̄(e, v(t)) = lim
Δt→+0

v̄(t, ḡ(t + Δt)) − v(t)
Δt

− K̄ lim
Δt→+0

v̄(t, ḡ(t + Δt)) − v(t)
Δt

where the first summand on the right-hand side is tangent to v̄(t). Then
∂
∂tv(t), as the difference between Z̄ and the latter summand takes the form
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∂

∂t
v(t) = −K̄ lim

Δt→+0

v̄(t, ḡ(t + Δt)) − v(t)
Δt

.

Since K̄ lim
Δt→+0

v̄(t,ḡ(t+Δt))−v(t)
Δt = ∇v(t)v(t), taking into account that the vec-

tor v(t) ∈ TeDs(M) is a vector field v(t,m) on M and that the connector K̄
is defined via the connector K of the Levi-Civitá connection on M by formula
(5.2), we obtain that v(t) satisfies the equation

∂

∂t
v + ∇vv = 0 (16.3)

on M . This is the so-called Hopf equation describing the motion of diffuse
matter in the framework of Euler’s approach. Sometimes it is also called the
Burgers equation without viscous term. Note that on the flat torus (16.4)
takes the form

∂

∂t
v + (v · ∇)v = 0. (16.4)

It should be pointed out that, unlike (16.1), equations (16.3) and (16.4) lose
derivatives, as is typical in Euler’s approach.

The motion of diffuse matter is not of much interest for hydrodynamics
and we shall use it only as a starting point for our further analysis.

16.1.2 A barotropic fluid

Let us now turn to Lagrangian hydrodynamical systems of an ideal barotropic
fluid. The major difference between such an LHS and that described in Sec-
tion 16.1.1 is the presence of a force field, the potential of which is called the
internal energy of the fluid. Strictly speaking, an LHS of an ideal barotropic
fluid is not covered by the general construction of Chapter 11 because the
force field loses smoothness, i.e., it is an Hs−1-smooth “vector field” on M . If
we considered only C∞-diffeomorphisms, then the force field would be C∞-
smooth. However, then the configuration space D∞(M) would be modeled
on a locally convex space, rather than on a Banach space. As a consequence,
the whole analysis would become much more complicated.

Here we briefly outline some definitions and results on LHSs of a barotropic
fluid on a closed manifold. A more detailed account can be found in [59, 210,
211].

Let M be a compact Riemannian manifold without boundary and let
Ds(M) be the group of Hs-diffeomorphisms of M with s > n/2 + 2. De-
note by Vs−1 the space of Hs−1-smooth volume forms ν on M such that

∫

M

ν =
∫

M

μ,
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where μ is the Riemannian volume form. Following Smolentsev [210], consider
the map Ψμ : Ds(M) → Vs−1 defined as Ψμ(g) = (g−1)∗μ, where (g−1)∗μ is
the pull-back of μ under the map g−1. Since any two volume forms differ
by a multiplier (see Section 1.6) which is a scalar function on M , we have
Ψμ(g) = ρ(g)μ, where ρ(g) : M → (0,+∞) is an Hs−1 function called the
density of the fluid at g ∈ Ds(M).

Let U1 : (0,∞) → (0,∞) be a smooth function. The composition
U1(ρ) : M → (0,∞) is called the specific internal energy of the system. Then
the internal energy U : Ds(M) → (0,∞) is defined as

U(g) =
∫

M

U1(ρ) ρμ =
∫

M

U1(ρ) ν,

where ν = ρμ = Ψμ(g). In a true physical system, the function U1 depends
on the properties of the fluid.

Consider also the function p : M → R given by p(ρ) = ρ2 dU1
dρ , which

is known as the state equation in mechanics. The function p is called the
pressure of the fluid at g, where Ψμ(g) = ρμ.

Remark 16.3. To explain the terminology, we emphasize that the fluid un-
der consideration is compressible, since we have taken the entire group Ds(M)
as the configuration space. In mechanics a compressible fluid is said to be
barotropic if the pressure depends only on the density.

The gradient of U with respect to (·, ·) on Ds(M) might not exist because
(·, ·) is just a weak Riemannian metric. However, as the following theorem
shows, the gradient exists in the class of Hs−1-vector fields on M .

Theorem 16.4 Let F be the vector field on Ds(M) defined by the equation

Fg = TRg

(
1
ρ

grad p(ρ)
)

,

where Ψμ(g) = ρμ. Then for any Y ∈ TgD
s(M), we have dU(Y ) = (Y, Fg),

i.e., F = gradU .

Proof. [219] Let g(t) be the flow of Y on M . Differentiating the equation
μ = g∗(ρ(t)μ), we see that d

dt g∗(ρ(t)μ) = 0 or, equivalently, ∂ρ
∂t +div (ρV ) = 0

where V = TR−1
g(t) Yg(t). Therefore, we have
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dU(Y ) =
d
dt

U(g(t))
∣
∣
∣
∣
t=0

=
d
dt

∫

M

U1(ρ) ρdμ

∣
∣
∣
∣
t=0

=
∫

M

∂U1

∂ρ
(−div (ρY )) ρdμ +

∫

M

U1(ρ) (−div (ρY )) ρdμ

=
∫

M

〈

grad
(

ρ
dU1

dρ

)

, Y

〉

ρdμ +
∫

M

〈gradU1, Y 〉 ρdμ

=
∫

M

〈

grad
p

ρ
, Y

〉

ρdμ +
∫

M

dU1

dρ
〈grad ρ, Y 〉ρdμ

=
∫

M

〈grad p, Y 〉 ρdμ −
∫

M

p

ρ2
〈grad p, Y 〉 ρdμ

+
∫

M

p

ρ2
〈grad p, Y 〉 ρdμ =

∫

M

〈
grad p

ρ
, V

〉

ρdμ

=
(

TRg

(
grad p(ρ)

ρ

)

, TRgV

)

g

= (F, Y )g. �

Definition 16.5. An LHS of an ideal barotropic fluid without external force
is the mechanical system on Ds(M) with kinetic energy K(X) = (X,X)

2 given
by (5.1) and potential energy U .

The force field in such an LHS is −gradU , so that Newton’s equation takes
the form

D̄
dt

ġ(t) = −gradU . (16.5)

Using standard properties of the Levi-Civitá connection, it is not hard to
show that the total energy E = K + U ◦ π is constant along a trajectory of
the LHS and that every trajectory is an extremal with fixed end-points of
the action functional with the Lagrangian L = K − U ◦ π.

Let Φ be a vector field on M and Φ̄ the induced right-invariant vector field
on Ds(M).

Definition 16.6. An LHS of an ideal barotropic fluid with the external force
Φ is the mechanical system on Ds(M) with K as in Definition 16.5 and the
total force field −gradU + Φ̄. Newton’s equation for this system is

D̄
dt

ġ(t) = −gradU + Φ̄. (16.6)

Let us now show how to pass to Euler’s equation for a barotropic ideal
fluid. Let g(t) be a trajectory of the LHS (16.6). Consider the curve u(t) =
TR−1

g(t)ġ(t) in TeDs(M). According to the definitions given in Section 11.2,
the curve u(t) satisfies Euler’s equation, which, in this particular case, co-
incides with Euler’s equation of an ideal barotropic fluid. To see this, we
observe that by the definition of Φ̄ and Theorem 16.4, the right-hand side
of (16.6) turns into − 1

ρgrad p + Φ after being right-translated to TeDs(M).
Then, applying the same arguments as in Section 16.1.1, we obtain that
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d
dtu(t,m) = −∇u(t,m)u(t,m) − 1

ρgrad p + Φ where u(t,m) is u(t) considered
as a vector field on M . On the other hand, similarly to the proof of Theo-
rem 16.4, we can deduce that ∂ρ

∂t + div(ρu) = 0. As a result, we obtain the
system of Euler equations

{ ∂u
∂t + ∇uu + 1

ρgrad p = Φ
∂ρ
∂t + div (ρu) = 0.

(16.7)

Remark 16.7. We finish this section by giving some general references on
the material presented here. The manifold of C∞-diffeomorphisms was stud-
ied in [210, 211]. In this case the principle of least action in Maupertuis’
form has been proved and the integrals of motion have been analyzed. The
manifold Ds(M) was studied in [59]. Note that, in general, it is harder to
work with Ds(M) than with D∞(M), yet the existence theorems have been
proved only for Ds(M). In [59], an LHS of an ideal barotropic fluid was re-
garded as a system with a strong constraint force given by a potential having
a minimum on the manifold Ds

μ(M) of volume preserving diffeomorphisms.
The latter group is the configuration space for an ideal incompressible fluid.
It has been shown that a trajectory on Ds(M) approaches the submanifold
Ds

μ(M) as the parameters of the system go to infinity, so that the fluid be-
comes incompressible.

16.2 Lagrangian Hydrodynamical Systems of an Ideal
Incompressible Fluid

The LHS of an ideal incompressible fluid is described as the LHS of dif-
fuse matter subjected to a constraint in the sense of Section 11.6. This
constraint is described as follows. Both in the case of a finite-dimensional
manifold M without boundary and with boundary introduce the notation
β = TeDs

μ(M) ⊂ TeDs(M) and translate this subspace to tangent spaces at
all points of Ds(M). As a result we obtain the distribution β̄, a sub-bundle
of TDs(M) that plays the role of a constraint. This constraint is holonomic,
its integral manifold passing through e is Ds

μ(M) and so we shall generally
restrict the constraint equations to TeDs(M). However, in our considerations
below it is sometimes more convenient to deal with β̄ as a constraint rather
than restricting ourselves to Ds

μ(M).

Note that in this case the covariant derivatives ∇̃ = P̄ ◦ ∇̄ and eD
dt =

P̄ ◦ D̄
dt introduced by formulae (5.8), where the operator P̄ is defined by

formula (5.6), coincide with the reduced covariant derivatives by means of
Section 11.1.

Let F be an Hs-smooth vector force field on M , i.e., a vector in TeDs(M).
Construct the right-invariant field F̄ on Ds(M) (F̄e = F ) and consider the
Newton law on Ds(M) of the obtained system with constraint in the form
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D̃
dt

ġ(t) = P̄ ◦ F̄ . (16.8)

Remark 16.8. P̄ ◦ F̄ is a right-invariant vector field on Ds(M) such that
(P̄ ◦ F̄ )e = P ◦ F is the divergence-free (and tangent to the boundary if M
is with boundary) component of F in the Hodge decomposition (5.7) ((5.10),
respectively). For this reason, without loss of generality, we may consider F as
divergence-free (and tangent to the boundary, respectively), i.e., as belonging
to TeDs

μ(M).

Since, as mentioned above, β̄ is integrable, following the general theory
we can restrict the system to the integral manifold Ds

μ(M) that yields a
mechanical system without constraint on that integral manifold.

Definition 16.9. A Lagrangian hydrodynamical system of an ideal incom-
pressible fluid without external forces is a mechanical system with configura-
tion space Ds

μ(M) and kinetic energy K(X) = 1
2 (X,X), X ∈ TDs

μ(M) where
(·, ·) is a weak Riemannian metric (5.1), and so Newton’s law takes the form

D̃
dt

ġ(t) = 0, (16.9)

where D̃
dt is as defined in (5.8).

Note that D̃
dt is the covariant derivative of the Levi-Civitá connection of

the metric (·, ·) on Ds
μ(M), as follows from general results of Riemannian

geometry. Thus the trajectories of the LHS (16.9) are the geodesics of that
metric (i.e., in particular, they are extremals with fixed ends for the action
functional with Lagrangian L = K).

Let F ∈ TeDs
μ(M) and F̄ be the corresponding right-invariant vector field

on Ds
μ(M).

Definition 16.10. A Lagrangian hydrodynamical system of ideal incompress-
ible fluid with external force F is a mechanical system with configuration
space and kinetic energy as in Definition 16.9, with external force F̄ and
hence with Newton’s law in the form

D̃
dt

ġ(t) = F̄ . (16.10)

Taking into account Remark 16.8, one can easily see that we do not lose
generality by choosing the external forces from TeDs

μ(M).
Recall that the geodesics of the Levi-Civitá connection of the metric (·, ·)

on Ds
μ(M) are described by the geodesic spray S (see Theorem 5.9).

Theorem 16.11 For every X ∈ TeDs
μ(M) there exists a unique solution g(t)

of equation (16.9) with ġ(0) = X that is well-defined on some sufficiently
small interval t ∈ [0, ε).
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Indeed, the solutions of (16.9), and only these solutions, are described as
curves πγ(t) where π : TDs

μ(M) → Ds
μ(M) is the natural projection and

γ(t) is an integral curve of the geodesic spray S on TDs
μ(M). Such a curve

γ(t) locally exists and is unique for every initial condition X ∈ TDs
μ(M) (in

particular, X ∈ TeDs
μ(M)) since S is smooth.

Remark 16.12. Since S is right-invariant, the choice of initial condition X ∈
TeDs

μ(M)) does not restrict generality. Indeed, by a right shift the initial point
of a trajectory can be translated to e.

Theorem 16.13 Let F be a divergence-free (and tangent to the boundary if
M is with boundary) H l-vector field on M where l > n

2 +2. If l ≥ s > n
2 +1,

for every X ∈ TeDs
μ(M) the solution g(t) of (16.10) with g(0) = e and

ġ(0) = X, exists for t > 0 small enough, and is unique.

Proof. F generates on TDs
μ(M) the second order differential equation (special

vector field) S + (F̄ )l (where (F̄ )l is the vertical lift of F̄ ). Its integral curves
are sent by the mapping π to the solutions of (16.10). The field S + F̄ l on
TDs

μ(M) is at least C1-smooth (see Theorem 5.4) which yields the local
existence and uniqueness of a solution. If s = l > n

2 + 2, the existence and
uniqueness of a solution on TDs

μ(M) follow from its existence and uniqueness
on TDs−1

μ (M) and from the smooth dependence of the flows on TM on the
initial data (cf. Theorem 5.5). �

Note the following hydrodynamical interpretation of Theorem 5.10: the
flow of an ideal incompressible fluid without external forces can realize every
configuration of the fluid that is sufficiently close to the initial configuration.

Now we can derive the Euler equation in “space coordinates” (see Sec-
tion 11.2) corresponding to the LHS (16.9) or (16.10). Let g(t) be a solution
of (16.10) and consider u(t) = R

−1
g ◦ ġ(t) ∈ TeDs

μ(M). As in the derivation

of the Euler equation (16.7), using the definition of D̃
dt = P̄ D̄

dt , one can easily
show that u(t) in TeDs

μ(M) satisfies the equation P (∂u
∂t + ∇uu) = F . Since

u ∈ TeDs
μ(M), we have P ∂u

∂t = ∂u
∂t . Hence, since P (∇uu) = ∇uu+grad p (see

(5.7) and (5.10)), we obtain the classical Euler equation of the motion of an
ideal incompressible fluid:

∂u

∂t
+ ∇uu + grad p = F. (16.11)

Remark 16.14. Usually one finds the coefficient 1
ρ before grad p in the Euler

equation, where ρ is the fluid density. Since the fluid is incompressible, its
density is constant and we can conveniently adopt a system of units in which
ρ = 1.

Remark 16.15. The condition div u = 0 (and the condition that u is tangent
to the boundary if M is with boundary) is also incorporated into the Euler
equation. We emphasize that this condition is equivalent to u ∈ TeDs

μ(M).
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Remark 16.16. When we prove the existence and uniqueness of solutions
in Theorems 16.11 and 16.13 in the framework of Lagrangian formalism,
we use the fact that the field S on TDs

μ(M) is smooth and right-invariant.
When we pass to the Euler description, i.e., to the Euler equation (16.11) in
TeDs

μ(M), we lose information about S. We emphasize that the Euler equation
is a partial differential equation that is well-defined only on the everywhere
dense subset TeDs+1

μ (M) of TeDs
μ(M). The proof of the existence of solutions

for the Euler equation (16.11), which is independent of Theorems 16.11 and
16.13, is rather complicated.

The Newton Law
D̃
dt

ġ(t) = F̄ (t, g(t), ġ(t)) (16.12)

with non-right-invariant vector force field F̄ (t, g, Y ), Y ∈ TgDs
μ(T n) describes

fluid motion under a force that depends on the fluid configuration and on
velocity. Equation (16.12) can obviously be reduced to the first order equation
on TDs

μ(T n) with special vector field S+F̄ l(t, g, Y )|(g,Y ). Recall that S is C∞-
smooth. Hence, if F̄ (t, g, Y ) is smooth enough, (16.12) has a solution g(t) of
the Cauchy problem g(0) = e, ġ(0) = X0 ∈ TeDs

μ(T n), well-defined on a
sufficiently small time interval. Denote by u(t) the curve in TeDs

μ(T n) (i.e., a
divergence-free vector field on T n) obtained by right translations of vectors
ġ(t), i.e., u(t) = ġ(t) ◦ g−1(t) = TR−1

g(t)ġ(t). Applying the above arguments
one can easily see that u(t) satisfies the Euler equation

∂

∂t
u + (u · ∇)u − gradp = TR−1

g(t)F̄ (t, g(t), u(t, g(t))). (16.13)

16.3 The Regularity Theorem and a Review of Results
on the Existence of Solutions

As we have shown, a trajectory of an LHS of an ideal incompressible fluid
exists locally on Ds

μ(M) provided that s > n/2+1. (See Theorem 16.11 and,
for a system with external force, Theorem 16.13.) Passing from the LHS to
(16.11), we obtain the local existence of solutions of Euler’s equation. The
solutions belong to Hs with s > n/2 + 1, and so are smooth in the stan-
dard sense. The existence of solutions on the interval (−∞,∞) has so far
been proved only on two-dimensional manifolds. For various two-dimensional
problems, results of this kind were obtained in [157, 230, 236]. In higher
dimensions, proving global existence is an important and still unsolved prob-
lem. This difference between hydrodynamics on two- and three-dimensional
manifolds has its roots in the fact that the geometric properties of the group
of volume preserving diffeomorphisms Ds

μ(M) change drastically as we pass
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from dim M = 2 to higher dimensions. (See [3, Appendix 2] and [178] for a
detailed discussion of this matter.)

Consider an LHS of an ideal incompressible fluid without external force on
a manifold M . Geometrically, the existence of trajectories on (−∞,∞) means
that the weak Riemannian manifold Ds

μ(M) with the metric given by (5.1) is
geodesically complete. Note that here we have no analog of the Hopf-Rinow
theorem, i.e., geodesic completeness does not mean that any two points of
Ds

μ(M) can be connected by a geodesic. Later in this section we discuss the
problem of whether or not any element of Ds

μ(M) can be obtained as a flow
of an incompressible fluid with the initial condition e ∈ Ds

μ(M).
Now let us turn to the regularity theorem, which is a very important result

in higher-dimensional hydrodynamics. This theorem claims that on the inter-
val where the flow of the fluid exists, the diffeomorphisms forming the flow
are as smooth as the initial conditions. (In two-dimensional hydrodynamics
the regularity theorem follows from the existence and uniqueness theorem.)

Let M be a compact orientable Riemannian manifold, possibly with
boundary, and let n = dim M . Assume also that s > n/2 + 1, q > 0, and
the external force f0(t) ∈ TeDs+q

μ (M) ⊂ TeDs
μ(M) is continuous in t in the

topology of TeDs+q
μ (M). Select the initial condition X0 ∈ TeDs

μ(M) to be an
Hs+k-smooth vector field on M with 0 ≤ k ≤ q. Denote by η(t) ∈ Ds

μ(M)
the flow of an ideal fluid on M with external force f0 such that η(0) = e and
η̇(0) = X0.

For the case of M with boundary we need the following technical state-
ment. Let N be a compact orientable Riemannian manifold without bound-
ary, dimN = dim M , such that M is a compact submanifold of N . For
example, if M is a given Riemannian manifold, we may set N = double M
(see Section 1.1) and equip N with a Riemannian metric which coincides with
the original metric on one of the copies of M ⊂ N . Assume that s > n/2 + 1
and denote by Ds

μ(M) and Ds
μ(N) the groups of volume preserving diffeo-

morphisms of M and N , respectively. Also, let j : VectN → VectM be the
restriction morphism of vector fields, S the spray on TDs

μ(N) (Theorem 5.9),
and π : TDs

μ(N) → Ds
μ(N) the natural projection.

Theorem 16.17 [18, 19] There exists a C∞-smooth right-invariant sub-
bundle Ξs of TDs

μ(N) and a C∞-smooth fiber-wise right-invariant projection
R̄ : TDs

μ(N) → Ξs with the following properties:

(i) The projection j : Ξs
e → TeDs

μ(M) is an isomorphism. (Here Ξs
e is the

fiber of Ξs over e.)
(ii) The distribution Ξs is non-holonomic. The fibers of Ξs have infinite

dimension and infinite codimension in the fibers of TDs
μ(N).

(iii) Denote by TR̄ : TTDs
μ(N) → TΞs the tangent map of R̄. Let X(t) be

the integral curve of TR̄ ◦ S with the initial condition X(0) = Y ∈ Ξs
e .

Then the curve η(t) = πX(t) consists of diffeomorphisms which pre-
serve M , and η(t) |M is a curve in Ds

μ(M). This curve is a trajectory
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of the LHS of an ideal incompressible fluid (without external force) on
M with the initial condition Y0 = j(Y ).

A detailed proof of Theorem 16.17 is given in [106, Section 26].
Note that the family of diffeomorphisms η(t) does not correspond to the

motion of the fluid on N\M , even though η(N \ M) = N \ M . We should
also point out that a “free” geodesic on Ds

μ(N) with initial condition Y is a
flow of the fluid on N that mixes M and N \ M .

Let f(t) ∈ Ξs
e be a time-dependent external force and f̄(t) the right-

invariant vector field on Ds
μ(N) corresponding to f(t). To obtain the results

on the flow of a fluid with external force, we just need to slightly refine (ii).
We replace the field TR̄ ◦ S by the field TR̄ ◦ (S + f̄(t)l), where f̄(t)l is the
vertical lift of f̄(t) to TDs

μ(N). With this modification in mind, we have:

Corollary 16.18 The curve η(t) |M in Ds
μ(M) is a trajectory of the LHS

of an ideal incompressible fluid on M with the external force f0(t) = j f(t).
Theorem 16.17 (suitably modified) still holds for η(t) as above.

It is clear from (i) that f(t) and Y are entirely given by specifying f0(t)
and Y0, respectively.

Remark 16.19. It is clear by definition that the vector bundle Ξk defined
for all k ≥ s is the intersection of Ξs with TDk

μ(N) ⊂ TDs
μ(N) and R̄ is a

vector bundle morphism TDk
μ(N) → Ξk.

Note that we have two equivalent descriptions of the flow of an ideal in-
compressible fluid on a manifold M with boundary. The first one uses an
LHS on Ds

μ(M), while the second one is in terms of an LHS on Ds
μ(N) with

constraint Ξ. This means that the solutions of flow equations in both descrip-
tions must exist for the same values of t simultaneously. It turns out that the
use of the second description sometimes simplifies the argument. We apply
this in the proof of the following.

Theorem 16.20 (Regularity theorem) Let X0 and f0 belong to the space
TeDs+k

μ (M) ⊂ TeDs
μ(M) and η(t) be the flow of an ideal incompressible fluid

on M with external force f0 such that η(0) = e and η̇(0) = X0. For M both
with and without boundary the diffeomorphism η(t) belongs to Ds+k

μ (M) for
all t for which the flow exists in Ds

μ(M). Equivalently, the solution X(t),
X(0) = X0, of Euler’s equation with external force f0 is an Hs+k-smooth
vector field on M (i.e., X(t) ∈ TeD

s+k
μ (M)) for all t such that X(t) exists

as an element of Hs.

Proof. Following [15, 17, 18, 19], we first analyze the more complex case where
∂M �= ∅, and then conclude the proof by indicating what modifications can
be made when ∂M = ∅.

Let, as before, N be a closed Riemannian n-manifold and let M be isomet-
rically embedded in N via an embedding i. Recall that one may, for example,
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take the double of M as N . Then the metric on N is chosen to coincide
with the original metric on one of the copies of M ⊂ N . First, let us use
the constraint Ξs introduced in Theorem 16.17. Let Y0 = R̄e ◦ i(X0) and
f = R̄e ◦ i(f0). By definition, we have (see Remark 16.19)

Y0 ∈ Ξs
e ∩ TeD

s+k
μ (N) = Ξs+k

e and f ∈ Ξs
e ∩ TeD

s+q
μ (N) = Ξs+q

e .

Denote by Ȳ0 the right-invariant vector field on Ds
μ(N) such that (Ȳ0)e = Y0.

Clearly, Ȳ0 is a Ck-section of Ξs which is Ck-smooth as a vector field on
Ds

μ(N) (see Theorem 5.4).
Consider the mechanical system with the constraint Ξs and the vector field

TR̄(S + f̄ l) on Ξs introduced above. (Recall that f̄ l is the vertical lift of the
right-invariant vector field f̄(t).) By definition, TR̄(S + f̄ l) is right-invariant
on Ds

μ(N). This field is also Ck-smooth, since f̄(t) is Ck-smooth on Ds
μ(N)

and TR̄ and S are both C∞-smooth. Denote by φt the flow of TR̄(S + f̄ l) on
Ξs. The local existence of φt is guaranteed by the smoothness of the field. In
other words, for any initial condition V ∈ Ξs, the map t �→ φt(V ) is defined
for a sufficiently small t. Since the field is Ds

μ(N)-right-invariant, so is the flow
φt. For a fixed t, the diffeomorphism φt is a Cq-smooth map Ξs → Ξs. Since
Ȳ0 and φt are both right-invariant, the domain of the function t �→ φt(V )
is independent of V ∈ Ȳ0. For the same reason, the field Ȳ (t) = φt(Ȳ0) is
right-invariant for every t. Note also that because Ȳ0 is a Ck-submanifold of
Ξs, the field Ȳ (t) is Ck-smooth on Ds

μ(N) for every t. Denote by Ye(t) the
vector of Ȳ (t) that belongs to Ξs

e ⊂ TeDs
μ(N). The results of Chapter 5 yield

that Ye(t) is an Hs+k-smooth vector field on N for all t such that φt(Ȳ0)
exists, i.e., Ye(t) ∈ TeDs

μ(N).
Let η̃(t) be the flow of Ye(t) on N . It follows from the results of Chapter

5 that η̃(t) ∈ Ds+k(N) as long as Ye(t) ∈ TeDs
μ(N). Furthermore, η̃(t) is a

Ck-smooth curve on Ds
μ(N) (Section 5.1). In particular,

d
dt

η̃(t) = Ye(t) ◦ η̃(t) = Ȳ (t) |η̃(t) .

By Corollary 16.18, we see that η(t) = η̃(t) |M is a trajectory of the LHS
of an ideal incompressible fluid on M and X(t) = Ye(t) |M is a solution of
Euler’s equation. It is clear that η(t) ∈ Ds+k

μ (M) and X(t) ∈ TeDs+k
μ (M) for

all t for which η(t) and X(t) exist and belong to Hs.
If ∂M = ∅, the proof is easier; there is no need to pass to Y0, f , and the

fields on Ξs. Instead, working with X0, f0, and S + f̄ l on TDs
μ(M), one can

apply the same argument. �
Corollary 16.21 Let the force f0(t) be a continuous curve in TeD∞

μ (M)
and let X0 ∈ TeD∞

μ (M). Then η(t) ∈ D∞
μ (M) as long as η(t) ∈ TeDs

μ(M).
Equivalently, X(t) is C∞-smooth as long as it is Hs-smooth.

Remark 16.22. The idea of our proof of Theorem 16.20 was originally used
in [61] to prove the regularity theorem on a closed manifold or on M\∂M . It is
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essential that in our method (developed in [17, 18]) we deal with vector fields
on Ξs right-invariant under Ds

μ(N) and that the latter group can “move” the
boundary ∂M . On the other hand, the group Ds

μ(M) used in [61] preserves
∂M . As a consequence, one cannot obtain regularity in the normal directions
to ∂M by working only with the fields on TDs

μ(M).

Remark 16.23. In [151], the regularity for a manifold with boundary was
proved in the particular case of a potential external force. The proof of this
result can be reduced to the study of the flow of a free fluid. In our proof the
force is only assumed to be divergence-free. As pointed out in Remark 16.8,
the general case can be formally derived from the case we have analyzed. Note
also that the regularity theorem for a general external force on a bounded
domain in R

n was announced in [219, 220]. However, as the author later
pointed out (see [221]), the proof was incomplete.

Let us now turn to the problem of whether or not two given elements of
Ds

μ(M) can be connected by a flow of an ideal incompressible fluid with-
out external force, i.e., by a geodesic of the weak Riemannian metric. For
dim M = 2 and dimM = 3, this problem was studied by Shnirelman [209] in
the following context. Let η ∈ Ds

μ(M) and let there exist a piecewise smooth
curve η(t), t ∈ [0, 1], in Ds

μ(M) which joins id with η (i.e., η(0) = id and
η(1) = η). In other words, we assume that η belongs to the path-connected
component of id. Denote by l0(η(·)) |10 the length of the curve η(t) evaluated
with respect to the H0-metric defined by (5.1). Thus,

l0 (η(·))
∣
∣
∣
∣

1

0

=
∫ 1

0

√
(η̇(t), η̇(t)) dt.

Taking into account that the flow of an ideal incompressible fluid is a
geodesic of (5.1), we see that the question is whether or not there exists a
smooth extremal of l0 with fixed end-points id and η.

The main result of [209] (Theorem 1.1) is as follows. Let M be the three-
dimensional cube. Then there is a diffeomorphism η in the path-connected
component of id such that for any piecewise smooth path η(·) with η(0) = id
and η(1) = η, there exists a path η′(·) with the same end-points and strictly
smaller length: l0(η′(·)) |10< l0(η(·)) |10. As a consequence, η cannot be joined
with id by a flow of the fluid.

For a two-dimensional manifold M , it is still unknown whether or not a
given diffeomorphism η from the connected component of id in Ds

μ(M) can
be connected with id by a flow of the ideal fluid. However, it was conjectured
in [209] that such a flow always exists.

The proof of the main theorem of [209] is based on the following important,
though technical, results. Let dist(ξ1, ξ2) be the infimum of the l0-lengths over
all curves in Ds

μ(M) which connect ξ1 and ξ2. As in the finite-dimensional
case, dist is a metric (i.e., a Riemannian distance) on Ds

μ(M). This metric
induces the weak (i.e., H0-) topology on Ds

μ(M). (According to a result of
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[209], the closure of Ds
μ(M) with respect to dist contains no interior points.) It

is shown in [209] that the diameter of Ds
μ(M) with respect to dist is finite if M

is three-dimensional and contractible, and infinite if M is a two-dimensional
domain. When M is three-dimensional, we have the following estimate for
dist. Let Δξ(x) = ρ (x, ξ(x)) be the distance from x to ξ(x) on M . It is not
hard to see that Δξ ∈ L2(M). As shown in [209], there exist constants α > 0
and C > 0, which depend on M only, such that for every ξ ∈ Ds

μ(M)

dist(id, ξ) ≤ C (‖Δξ‖L2)α
.

Let n = dimM and s > n/2 + 1. Recall that, by Theorem 5.14 (proved
originally in [61]), for any manifold M , there exists an Hs-neighborhood W
of id ∈ Ds

μ(M) such that every element of W belongs to a flow of a free
ideal incompressible fluid starting at id. It is shown in [13] that W is also
filled out by flows of the fluid with an external force, provided that the
following smoothness hypothesis holds. We assume first that s > n/2+1 and
either the external force f is independent of time and Hs+1-smooth (i.e., f ∈
TeDs+1

μ (M)) or, if f is time-dependent, then f(t) is Hs+1-smooth for every t,
continuous in t in TeDs+1

μ (M) and C1-smooth in t in TeDs
μ(M). Furthermore,

if s > n/2 + 2, then these assumptions can be relaxed: f ∈ TeDs
μ(M) for an

autonomous f ; or, otherwise, f(t) is continuous in t in TeDs
μ(M).

To prove the latter assertion one passes to the group Ds−1
μ (M) and then

applies the regularity theorem (Theorem 16.20) together with the relative
version of the theory of topological degree [13].

Remark 16.24. As is shown in [14], the neighborhood W is also covered by
flows of a viscous incompressible fluid. The problem of determining the size
of W seems to be interesting and important. The aforementioned results of
[209] show that in the three-dimensional case W is strictly smaller than the
connected component of id in Ds

μ(M).

In conclusion, let us prove that the flow of a free incompressible fluid
has a first integral. This result is analogous to the angular momentum con-
servation law for the motion of a rigid body with a stationary point. (See
Section 11.2 and, in particular, Remark 11.4.) The existence of such a first
integral is known in hydrodynamics as the circulation conservation law [3].
Apparently, this integral was originally considered in [211] by means of the
Lagrangian approach for the group of C∞-diffeomorphisms. Similarly to the
finite-dimensional case, the existence of a first integral follows from the fact
that the metric (the Lagrangian) is invariant with respect to the group
structure (Noether’s theorem). The proof below is obtained by adapting the
standard finite-dimensional argument to the infinite-dimensional setting on
Ds

μ(M) (cf., [3]). An essentially new point in the proof is that now we apply
the regularity theorem (Theorem 16.20).

Let s > n/2 + 1. Consider the set βs−1 of Hs−1-smooth divergence-free
vector fields on M which are tangent to the boundary. The fields from βs−1



16.3 The Regularity Theorem and a Review of Results on the Existence of Solutions 401

are continuous on M , but may not be C1-smooth. Thus, the vanishing of the
divergence means only that βs−1 is orthogonal to the space of exact forms in
the Hodge decomposition. (See (5.5) and (5.9).)

Denote by β̄s−1 the bundle over Ds
μ(M) obtained by right-translations of

βs−1 = β̄s−1
e , i.e., with fibers β̄s−1

g = {X ◦ g | X ∈ βs−1, g ∈ Ds
μ(M)}. For

V ∈ βs−1, let V̄ be the left-invariant cross-section of β̄s−1, i.e., V̄g = Tg ◦ V .
Observe that the fibers of β̄s−1 inherit the right-invariant inner product given
by (5.1). Since TeDs

μ(M) ⊂ β̄s−1, the inner product (V̄g, Xg)g, where Xg ∈
TgDs

μ(M), is well-defined.
We emphasize that the metric given by (5.1) is simply the restriction of

the metric on the fibers of β̄s−1 to the fibers of TDs
μ(M).

Let X0 ∈ TeDs
μ(M) and let η(t) be the geodesic on Ds

μ(M) (the flow of
fluid) with initial conditions η(0) = id and η̇(0) = X0.

Theorem 16.25 For any V ∈ βs−1, the inner product (V̄ , η̇) is constant
along η.

Proof. First, let us assume that

V ∈ β = TeDs
μ(M) and X0 ∈ TeDs+1

μ (M) ⊂ TeDs
μ(M).

Then by Theorem 16.20, we have η(t) ∈ Ds+1
μ (M) as long as η(t) exists as

an element of Ds
μ(M). Hence, V̄g = Tg ◦ V ∈ TgDs

μ(M). Denote the flow of
V by g(τ). In what follows we regard g(τ) as a one-parameter subgroup of
Ds

μ(M) and consider the right action Rg(τ) on Ds
μ(M). Since η ∈ Ds

μ(M), we
have

d
dτ

Rg(τ) ◦ η =
d
dτ

(
η ◦ g(τ)

)
= Tη ◦ d

dτ
g(τ) = Tη ◦ V = V̄η.

Thus, V̄ is the generator of Rg(τ). Since the spray S on TDs
μ(M) is right-

invariant under the action of Ds
μ(M) (see Section 5.1), the curve t �→ Rg(τ)η(t)

is a geodesic for every fixed τ .
Let

η(t, τ) = Rg(τ)η(t) and η̇(t, τ) =
d
dt

η(t, τ).

By definition, we have d
dτ η(t, τ) = V̄ . It is easy to see that the fields η̇(t, τ)

and V̄ commute on the intersection of their domains, i.e.,
[
η̇(t, τ), V̄

]
= 0.

Clearly,

V̄ (η̇(t, τ), η̇(t, τ)) =
d
dτ

(η̇(t, τ), η̇(t, τ)) = 0,

where V̄ (η̇(t, τ), η̇(t, τ)) is the derivative of the scalar function (η̇(t, τ), η̇(t, τ))
in the direction of V̄ . Because η̇(t, τ) and V̄ commute and the Levi-Civitá
connection is torsion-free, we have

∇̃η̇(t,τ)V̄ = ∇̃V̄ η̇(t, τ).
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Observe that

∇η̇(t,τ)η̇(t, τ) =
D̃
dt

η̇(t, τ) = 0.

Then, by the definition of the Riemannian connection (see formula (2.29)),

0 = V̄ (η̇, η̇) = 2
(
∇̃V η̇, η̇

)
= 2

(
∇̃η̇V̄ , η̇

)

= 2
(
∇̃η̇V̄ , η̇

)
+ 2

(
∇̃η̇ η̇, V̄

)
= 2

d
dt

(
V̄ , η̇(t, τ)

)

along η(t, τ). Therefore, d
dt

(
V̄ , η̇(t)

)
= 0 along the geodesic η(t) = η(t, 0).

This completes the proof of the particular case.
Now let us turn to the general case where V ∈ βs−1 and X0 ∈ TeDs

μ(M).
Recall that β = TeDs

μ(M) is dense in βs−1 and TeDs+1
μ (M) is dense in

TeDs
μ(M). Thus, there exists a sequence Vj ∈ βs−1 converging to V in the

Hs−1-topology and a sequence Xi ∈ TeDs+1
μ (M) converging to X0 in the

Hs-topology. We pass to the limit as follows.
Let ηi(t) be the geodesic in Ds

μ(M) with η̇i(0) = Xi. Since the solution
of a differential equation depends continuously on its initial condition, ηi(t)
converges to η(t) uniformly on every finite interval. Note that for ηi(t), Xi,
and V̄j , the theorem has already been proved.

It is not hard to see that the linear map V �→ (V, ·), where (·, ·) is the
weak inner product (5.1), is a continuous embedding of β into T ∗

e Ds
μ(M). The

convergence of the vector fields in the Hs−1-topology implies the convergence
in the space H−s. Recall that in the theory of Sobolev spaces the latter space
is identified with the dual to Hs by means of the H0-inner product. It is clear
that the sequence (Vj , η̇i) converges to (V, η̇) as i, j → ∞. Since (Vj , η̇i) is
constant along ηi, the function (V, η̇) must also be constant along η. �

16.4 Description of Deterministic Viscous
Hydrodynamics Via a Stochastic Version of
Newton’s Law on Groups of Diffeomorphisms

Everywhere in this section we deal with fluids moving in a flat n-dimensional
torus T n. Recall that T n is the quotient space of R

n with respect the integral
lattice where the Riemannian metric is inherited from R

n (see Sections 5.2
and 10.2).

16.4.1 General construction

This section is devoted to the approach to hydrodynamics in terms of the
geometry of groups of diffeomorphisms, suggested for perfect fluids by Arnold
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[2] and Ebin and Marsden [61] (see the previous sections). It turns out that
to give an adequate description of viscous fluids in this language requires the
involvement of stochastic processes (see, e.g., [106] and [107]). In particular,
Newton’s second law on the groups of diffeomorphisms, used in the case of
perfect fluids, is replaced by its special stochastic analog in terms of Nelson’s
mean derivatives.

Here we use the material from Chapters 5 and 10. We shall deal with Itô
type equations on Ds(T n). Since the connection on Ds(T n) is generated by
the flat connection on the torus, the corresponding exponential map is like
that on a linear space. So, without loss of generality we use a notation that is
typical for Itô equations in linear spaces (see Remark 10.4). Below we consider
a certain equation on the manifold β̄ (a sub-bundle of TDs(T n) introduced
in Section 16.2) in general Belopolskaya-Daletskii form with respect to the
exponential map of some special connection. The equations on Ds

μ(T n) are
considered as those on Ds(T n) subjected to a constraint β̄ as described in
Remark 10.4.

The main idea of the description of viscous hydrodynamics in the language
of mean derivatives is as follows.

Let a random flow ξ(t,m) with initial data ξ(0, m) = m ∈ T n be given
on a flat n-dimensional torus T n. Suppose that it is a general solution of a
stochastic differential equation of the type

ξ(t,m) = m +
∫ t

0

a(s, ξ(s,m))ds + σw(t) (16.14)

modulo factorization with respect to the integral lattice, with real constant
σ > 0. Let D∗ξ(t,m) = v(t, ξ(t,m)), where v(t,m) is a C1-smooth (in t) and
a C2-smooth (in m ∈ T n) vector field on T n. Let ξ(t,m) satisfy the relation

D∗D∗ξ(t,m) = F (t,m), (16.15)

where F (t,m) is a vector field on T n. Taking into account formula (8.25), we
obtain

D∗D∗ξ(t,m) =
(

∂

∂t
v + (v,∇)v − σ2

2
∇2v

)

=
∂

∂t
v + (v,∇)v − σ2

2
∇2v.

(16.16)
Thus (16.15) means that v(t,m) satisfies the equality

∂

∂t
v + (v,∇)v − σ2

2
∇2v = F (t,m), (16.17)

which is the Burgers equation with viscosity σ2

2 and external force F (t,m).
We interpret (16.15) as a stochastic analog of Newton’s second law on the
group of Sobolev diffeomorphisms Ds(T n).



404 16 Hydrodynamics

The case of viscous incompressible fluids requires some additional con-
structions. Consider the vector space TeDs(T n) of all Sobolev Hs-vector
fields (s > n

2 + 1) on T n with the L2-inner product introduced by formula
(5.1) where M is replaced by T n. Consider the subspace β = TeDs

μ(T n)
consisting of all divergence-free vector fields and the orthogonal projector
Pe : TeDs(T n) → TeDs

μ(T n) = β introduced in Section 5.1. Recall that by
formula (5.7) for any Y ∈ TeDs(T n) we have Pe(Y ) = Y − gradp where p is
a certain Hs+1 function on T n that is unique to within an additive constant
for given Y .

Let a random flow ξ(t) be given on T n. Suppose that ξ(t) is a general
solution of a stochastic differential equation of the type (16.14). Let D∗ξ(t) =
u(t, ξ(t)), where u(t, x) is a divergence-free vector field on T n, C1-smooth in
t and C2-smooth in m ∈ T n, and that ξ(t, x) satisfies the relation

PeD∗D∗ξ(t) = F (t, ξ(t)), (16.18)

where F (t, x) is a divergence-free vector field on T n. Taking into account
formulae (8.25) and (5.7), we obtain

PeD∗D∗ξ(t, x) = Pe

(
∂

∂t
u + (u,∇)u − σ2

2
∇2u

)

=
∂

∂t
u + (u,∇)u − σ2

2
∇2u − gradp. (16.19)

Thus (16.18) means that the divergence-free vector field u(t, x) satisfies the
relation

∂

∂t
u + (u,∇)u − σ2

2
∇2u − gradp = F, (16.20)

which is the Navier-Stokes equation with viscosity σ2

2 and external force
F (t, x).

We interpret (16.18) as a stochastic analog of Newton’s second law on the
group Ds(T n), subject to the mechanical constraint β̄ that is introduced in
Section 16.2. In spite of the fact that the constraint is holonomic (i.e., inte-
grable), we do not restrict attention to its integral manifolds. This allows us
to apply both the finite and infinite-dimensional language to the investigation
more easily.

Now we are in a position to describe this approach in detail. We present it
for the case of a viscous incompressible fluid. The compressible case (leading
to the Burgers equation as above) can be investigated by a simplification of
the incompressible arguments and we leave it for the reader.

For simplicity of presentation, we suppose s > n
2 + 2. This means that the

Hs vector fields on T n are at least C2.
The definition of mean derivatives for processes on Ds(T n) is analogous to

that on R
n and on T n. In order to distinguish the derivatives on Ds(T n) and



16.4 Viscous hydrodynamics 405

on T n we denote the former by D̄, D̄∗ and D̄2 while D, D∗ and D2 remain
valid for T n.

Let a(t, x) be a divergence-free Hs vector field on T n. Denote by ā(t, f)
the corresponding right-invariant vector field on Ds(T n). Consider also the
right-invariant field of the linear operators Ā introduced in Section 10.2, Āg :
R

n → TgDs(T n). The flow on T n generated by equation (16.14) is a solution
of the equation

dξ(t) = ā(t, ξ(t))dt + σĀ(ξ(t))dw(t) (16.21)

on Ds(T n). One can easily see that for the quadratic mean derivative for
such ξ(t) we obtain the equality

D̄2ξ(t) = σ2Ī (16.22)

where Ī is the field of unit operators in tangent spaces to T n. It is also evident
that if ξ(t) is described by an equation in Itô form and satisfies (16.22), the
diffusion term of the equation is σĀ(ξ(t))dw(t).

The mechanical interpetation of the sub-bundle β̄ introduced in Sec-
tion 16.2 is a constraint. According to the ideology of the geometric de-
scription of constraints from Section 11.6, we give the following definition.

Definition 16.26. A stochastic process ξ(t) is said to be forward admissible
to the constraint β̄ if Dξ(t) ∈ β̄ξ(t) a.s. for all t.

A stochastic process ξ(t) is called backward admissible to the constraint β̄
if D∗ξ(t) ∈ β̄ξ(t) a.s. for all t.

A vector field X is called admissible if Xf ∈ βf at any f ∈ Ds(T n).

Following general ideas of mechanics with constraints we can introduce
the notions of covariant mean derivatives with respect to a constraint. By P̄
we denote the right-invariant field of projectors introduced by formula (5.6).

Definition 16.27. For an admissible vector field X and forward admissible
process ξ(t) the expression P̄ D̄X(t, ξ(t)) is called the covariant forward mean
derivative with respect to the constraint β̄.

For an admissible vector field X and backward admissible process ξ(t) the
expression P̄ D̄∗X(t, ξ(t)) is called the covariant backward mean derivative
with respect to the constraint β̄.

Let η(t) be a backward admissible process. Then, according to Definition
16.27, we can consider the covariant backward mean derivative P̄ D̄∗D̄∗ξ(t).
Let F (t, x) be a divergence-free Hs-vector field on T n, i.e., F (t, x) can be
considered as a time-dependent vector F (t) ∈ β̄e. Denote by F̄ (t, f) the
right-invariant vector field on Ds(T n) generated by F (t).

Theorem 16.28 Let for a process ξ(t) on Ds(T n) the relation D̄∗ξ(t) =
ū(t, ξ(t)) holds where ū(t, f) is a right-invariant vector field on Ds(T n), gen-
erated by a divergence-free Hs-vector field u(t, x) on T n. If ξ(t) satisfies
(16.22) and the constrained Newton law
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P̄ D̄∗D̄∗ξ(t) = F̄ (t, ξ(t)) (16.23)

u(t, x) on T n satisfies the Navier-Stokes equation (16.20).

The proof of Theorem 16.28 is reduced to the finite-dimensional arguments
used above.

The divergence-free vector field u(t, x) on T n from Theorem 16.28, i.e., a
time-dependent vector in βe ⊂ TeDs(T n), can be obtained by right transla-
tion of the backward velocity D̄∗ξ(t) at e, and so the Navier-Stokes equation
(16.20) plays the role of the Euler equation in the “algebra” TeDs

μ(T n) ac-
cording to the general approach to Euler equations described in Section 11.2.
The flow of u(t, x) on T n, which is a curve on Ds(T n) describing the motion
of a viscous incompressible fluid, may be considered as the expectation of the
process ξ(t).

So, we need to construct a backward admissible process on Ds(T n) sat-
isfying (16.22) that also satisfies (16.23). It is a difficult problem to find a
process with given backward mean derivatives. That is why we shall try to
construct ξ(t) by solving first a certain equation of type (16.21) and then
changing the time direction in its solution.

Let a process η(t) on Ds
μ(T n) be a solution of the stochastic differential

equation of type (16.21) with initial condition η(0) = e and suppose it exists
for t in a non-random time interval [0, T ]. Consider the process with inverse
time direction ξ(t) = η(T − t). Our aim now is to construct an equation for η
such that (16.23) is fulfilled for ξ(t), and D̄∗ξ(t) = ū(t, ξ(t)) where ū(t, f) is an
admissible right-invariant vector field with initial condition u(0, e) = u0 ∈ βe

where u0 = u0(x) is a divergence-free Hs-vector field on T n.
Since the backward mean derivative for ξ(t) is equal to the negative of

the forward mean derivative for η(T − t), we have D̄η(t) = −D̄∗ξ(T − t) =
−u(T − t, η(t)). Hence, taking into account Theorem 8.7 and the fact that
TπS(X) = X and TπF̃ l = 0, we deduce that ξ(t) satisfies (16.23) if η(t)
satisfies the equality

dη(t) = −ũ(T − t, η(t))dt + σĀ(η(t))dw(t) (16.24)

and the process ū(T − t, η(t)) in β̄ satisfies the equality

Dηũ(T − t, η(t)) = −S(ũ(T − t, η(t))) − F̄ l(T − t, ũ(T − t, η(t))) (16.25)

where F̄ l(T − t, ũ(T − t, η(t))) is the vertical lift of F̄ (T − t, ũ(T − t, η(t))).
Denote by ĀT the horizontal lift of the field Ā onto TDs(T n). Introduce on

β̄ the connection from Section 2.8. Recall that the projections of its geodesics
onto Ds(T n) are geodesics of the connection H̄. Denote the exponential map
of this connection by expT .

Theorem 16.29 Let the process u(T − t, η(t)) on β̄ satisfy the Itô equation
in Belopolskaya-Daletskii form
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dū(T − t, η(t)) = expT
ū(T−t,η(t))(−S(ū(T − t, η(t)))dt (16.26)

−F l(t, ū(T − t, η(t)))dt + ĀT (ũ(T − t, η(t)))dw(t)).

Then the process η(t) and the right-invariant admissible vector field ū on
Ds(T n) satisfy (16.24) and (16.25), respectively, and so ξ(t) = η(T − t) satis-
fies (16.23) and (16.22). Hence the divergence-free vector field u(t, x) on T n

is a solution of (16.20).

Theorem 16.29 follows from the infinite-dimensional version of Lemma 9.3.
The following finite-dimensional interpretation clarifies the construction.

The process η(t) with initial condition η(0) = e on Ds(T n) that satisfies
(16.24) is a random flow on T n. Denote this flow by η(t, x) with η(0, x) =
x. The flow η(t, x) is the general solution of the Itô stochastic differential
equation on T n

dη(t, x) = −u(T − t, η(t, x))dt + σdw(t) (16.27)

with divu(t, x) = 0, the finite-dimensional version of (16.24). By direct cal-
culation of the forward mean derivatives for the finite dimensional process
η(t, x) we show that Dη(t, x) = −u(T − t, η(t, x)) and

PDDη(t, x) =
∂

∂t
u(T − t, η(t, x)) + (u(T − t, η(t, x)),∇)u(T − t, η(t, x))

−σ2

2
∇2u(T − t, η(t, x)) − gradp.

The latter equality is turned into (16.19) under the change of variables
η(t, x) = ξ(T − t). Thus equation (16.26) guarantees that for the process
η(t) satisfying (16.27) the relation PDDη(t, x) = F (t, x) holds.

For a stochastic differential equation with respect to a process ζ(t) on
Ds(T n) denote by ζt(s) its solution with initial condition ζt(t) = e. Consider
the following system on Ds(T n):

dη(t) = −ũ(T − t, η(t))dt + σĀ(η(t))dw(t)

u(t) = PEQe(u0 ◦ ηT−t(T )) +
∫ t

0

F (s)ds (16.28)

where Qe is introduced in Definition 5.16 and u0 = u(0) ∈ β̄e is the initial
value for u(t) (see above). Notice that the first equation of (16.28) is (16.24).

Theorem 16.30 If the process η(t) and the vector u(t) satisfy (16.28), then
u(t), considered as a divergence-free vector field on T n, satisfies (16.20).

Indeed, taking into account the routine stochastic presentation of solu-
tions of PDEs one can easily derive from the second equation of (16.28) that
PDDη(t, x) = F (t, x).
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The system (16.28) is similar to the system considered by Ya. Belopol-
skaya in [22] (see also [24]). Equation (16.27) is a part of another system of
stochastic differential equations, connected with the Navier-Stokes equation,
that was also studied by B. Busnello [36].

We should also mention [42] where the theory of forward-backward stochas-
tic differential equations on the diffeomorphism group of a torus is used to
describe viscous incompressible hydrodynamics, and [39] where the infinite-
dimensional Wiener process in the stochastic differential equations on that
group is used.

16.4.2 Solutions of Burgers, Reynolds and
Navier-Stokes equations via stochastic
perturbations of inviscid flows

If the backward mean derivative of a process satisfying the stochastic Newton
law of the previous section is not generated by a right-invariant vector field,
in the “algebra”, after passing to the Euler approach, some other types of
hydrodynamical equations may arise.

In this section we introduce a special stochastic perturbation of a flow of
diffuse matter such that the perturbed flow satisfies the stochastic Newton
law of type (16.15), and show that the corresponding curve in the tangent
space at the unit satisfies Burgers’ equation. The same perturbation of a flow
of a perfect incompressible flow without external force satisfies the stochastic
Newton law (16.23) with F̄ = 0, but yields a curve in the tangent space at
the unit that is a solution of a Reynolds type equation. Nevertheless, under
the action of a certain special external force on the flow, this curve becomes
a solution of a Navier-Stokes equation without external force. As above, we
consider a fluid motion on the flat n-dimensional torus T n.

In this section we take s > n
2 + 2 so that the diffeomorphisms from

Ds(T n) and Ds
μ(T n) are C2-smooth and TeDs(T n) consists of C2-smooth

vector fields. We often use the operator Q introduced in Definition 5.16(iii).
Everywhere below we use the same process W (σ)(t) constructed from a

Wiener process w(t) in R
n by formula (10.5) (see also Theorem 10.5). If, in

the formula, several random elements appear with subscript ω, this means
that they all are taken at “the same” ω ∈ Ω, i.e., sometimes the formula may
be considered as a description of a non-random element depending on the
parameter ω ∈ Ω.

Let g(t) be a solution of (16.1) with initial conditions g(0) = e and ġ(0) =
v0 ∈ TeDs(T n). Recall (see Proposition 16.2) that such a solution exists on
some time interval t ∈ [0, T ] (for the sake of convenience we take a closed
interval inside the domain of g(t)). Recall also that g(t) is a flow of diffuse
matter without external forces. Consider v(t) = R−1

g(t)ġ(t) = ġ(t) ◦ g−1(t) ∈
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TeDs(T n). This infinite-dimensional vector, considered as a vector field on
T n, will also be denoted by v(t,m). Recall that this vector field satisfies the
Hopf equation (16.4).

Consider a process on Ds(T n) of the form η(t) = W (σ)(t) ◦ g(t), t ∈ [0, T ],
where W (σ)(t) is defined by (10.5). In the finite-dimensional terminology,
η(t) is a random diffeomorphism of T n of the form η(t,m) = g(t,m) + σw(t)
modulo the factorization with respect to the integral lattice. Introduce the
process ξ(t) = η(T − t), i.e., in the finite-dimensional notation, ξ(t,m) =
g(T − t,m) + σw(T − t).

Since w(t) is a martingale with respect to its own “past”, one can easily
derive from the properties of conditional expectation that D∗ξ(t) = ġ(T −
t,m) = v(T − t, g(T − t,m)) and so P̄D∗D∗ξ(t) = D̄

ds ġ(s)|s=T−t = 0.
Consider the random process

ξt(s) = ξ(s) ◦ ξ−1(t) = W (σ)(T − s) ◦ g(T − s) ◦ g−1(T − t) ◦ (W (σ)(T − t))−1.

Notice that the random diffeomorphism (W (σ)(t))−1 acts by the rule

(W (σ)(t))−1(m) = m − σw(t).

Obviously ξt(t) = e. A finite-dimensional description of this process can be
given as follows.

By construction m = ξ(t, ξ−1(t,m)) = g(T − t, ξ−1(t,m)) + σw(T − t).
Then g(T − t, ξ−1(t,m)) = m−σw(T − t) and so ξ−1(t,m) = g−1(T − t,m−
σw(T − t)). Thus,

ξt(s,m) = ξ(s, g−1(T − t,m − σw(T − t))
= g

(
T − s, g−1(T − t,m − σw(T − t))

)
+ σw(T − s).

We have ξt(t,m) = m − σw(T − t) + σw(T − t) = m, indeed, ξt(t) = e on
Ds(T n).

Since ξt(t) = e, the “present” σ-algebra N ξt

t is trivial and so the con-
ditional expectation with respect to it coincides with the ordinary mathe-
matical expectation. Hence, using the relation between v(t) and g(t) and the
definition of D∗, one can easily derive that

D∗ξt(s)|s=t = E (v(T − t,m − σw(T − t)))

= E
(
QeTR−1

W (σ)(T−t)
v(T − t)

)
(16.29)

(here t is fixed and the derivative is taken with respect to s).
Introduce on T n the vector field V (t,m) = E(v(t,m − σw(t))). As an

infinite dimensional vector, we denote it also by V (t) = E(QeTR−1
W (σ)(t)

v(t)).
Formula (16.29) means that D∗ξt(s)|s=t = V (T − t).

Theorem 16.31 The vector field V (T − t,m) satisfies the Burgers equation
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d
dt

V (T−t,m)+(V (T−t,m)·∇)V (T−t,m)− σ2

2
∇2V (T−t,m) = 0, (16.30)

where ∇2 is the Laplace-Beltrami operator which on the flat torus coincides
with the ordinary Laplacian.

Proof. For t ∈ [0, T ] and ω ∈ Ω, define the curve ζt,ω(s) in s ∈ [0, T ] depend-
ing on the parameter ω by the formula

ζt,ω(s) = R−1

W
(σ)
ω (T−t)

g(T − s, g−1(T − t)) = g(T − s, g−1(T − t,m− σw(T ))).

Note the only difference between ζt,ω(s) and ξt,ω(s): the stochastic summand
σw(T − s) appears in the expression for ξt,ω(s) while it is absent in ζt,ω(s).
This means that ζt,ω(s) is an a.s. smooth curve with random initial condition
ζt,ω(t) = (W (σ)

ω (T − t))−1.
We have d

dsζt,ω(s)|s=t = −TR−1

W
(σ)
ω (T−t)

v(T − s). Since g(T − s) is a

geodesic, from Proposition 5.7 it follows that “for almost all ω” (i.e., a.s.
for ω ∈ Ω) the curve ζt,ω(s) is also a geodesic, i.e., D̄

ds
d
dsζt,ω(s) = 0. From the

construction of the operator Lx in Section 5.2 it follows that the action of the
diffeomorphism W

(σ)
ω (t) coincides with that of Lσwω(t). Hence, by Theorem

5.19 the curve (W (σ)
ω (T − t))ζt,ω(s) = L(σwω(T−t))ζt,ω(s) is a.s. geodesic as

well, i.e., D̄
ds

d
ds l(σwω(T−t))ζt,ω(s) = 0. Note that

d
ds

l(σwω(T−t))ζt,ω(s)|s=t = Qe
d
ds

ζt,ω(s)|s=t = −QeTR−1

W
(σ)
ω (T−t)

v(T − t).

Recall that EQeTR−1

W
(σ)
ω (T−t)

v(T − t) = V (T − t) and D∗ξt(s)|s=t = V (T − t)

(see above). Then from the above arguments and constructions we derive
that

D∗D∗ξt(s)|s=t = D∗V (T−t, ξt(s))|s=t = −E

(
D̄

ds

d
ds

l(σwω(t))ζt,ω(s)|s=t

)

= 0.

But since D∗ξt(s)|s=t = V (T − t), by formula (8.25) the backward derivative
D∗V (T − t, ξt(s)) coincides with the left-hand side of (16.30). Hence (16.30)
is satisfied. �

Now, let us turn to the case of viscous incompressible fluids. Let g(t) be a
solution of (16.9) on Ds

μ(T n) with initial conditions g(0) = e and ġ(0) = u0 ∈
TeDs

μ(T n). Theorem 16.11 tells us that such a solution exists in some time
interval t ∈ [0, T ] (for the sake of convenience we again take a closed interval
inside the domain of g(t)). Recall that g(t) is a flow of a perfect incompressible
fluid without external forces. Consider u(t) = ġ(t)◦g−1(t) ∈ TeDs

μ(T n). This
infinite-dimensional vector, considered as a divergence-free vector field on
T n, will be denoted u(t,m). Recall that this vector field satisfies the Euler
equation (16.11) without external forces (see Section 16.2).
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Since W (σ)(t) takes values in Ds
μ(T n) (see Theorem 10.5), we can repeat on

Ds
μ(T n) the above constructions for Ds(T n), i.e., define η(t) = W (σ)(t)◦g(t),

where t ∈ [0, T ], and ξ(t) = η(T − t) (i.e., in the finite-dimensional notation
ξ(t,m) = g(T−t,m)+σw(T−t)). It is easy to see that D∗ξ(t) = ġ(T−t,m) =
u(T − t, g(T − t,m)) and so P̄D∗D∗ξ(t) = D̃

ds ġ(s)|s=T−t = 0 on Ds
μ(T n).

As above, the process ξt(s) = ξ(s) ◦ ξ−1(t) has the property ξt(t) = e. Its
finite-dimensional description is quite analogous to the case of Ds(T n).

Introduce on T n the vector field U(t,m) = E(u(t,m − σw(t))) (a direct
analog of V (t,m)). We also denote this field as an infinite dimensional vector
by U(t) = E(QeTR−1

W (σ)(t)
u(t)).

Lemma 16.32 The vector field U(t,m) is divergence-free.

Proof. By construction, for an elementary event ω ∈ Ω, the diffeomorphism
(W (σ)(t)ω)−1 is a shift of the entire torus by a constant vector. Hence, Qe

applied to TR−1
W (σ)(t)ω

u(t) is the parallel translation on the torus of the entire
divergence-free vector field u(t) by the same constant vector into the opposite
direction. Thus QeTR−1

W (σ)(t)
u(t) is a random divergence-free vector field on

the torus. Hence its expectation is divergence-free. �

So, U(t) ∈ TeDs
μ(T n). In particular, we have proved above that

D∗ξt(s)|s=t = U(T − t). (16.31)

Since nothing like Theorem 5.19 holds on Ds
μ(T n), we have PD∗D∗ξt(s)|s=t =

D∗U(T − t, ξt(s))|s=t �= 0 (the value of this mean derivative is calculated in
Remark 16.34 below). Hence there is no analog of Theorem 16.31. We can
prove only the following:

Theorem 16.33 The vector field U(t,m) satisfies the following Reynolds
type equation (see, e.g., [207]):

∂

∂t
U + E [((u · ∇)u) (t,m − σw(t))] − σ2

2
∇2U − grad p = 0. (16.32)

Proof. It follows from the Itô formula that

du(t,m − σw(t))

=
∂u

∂t
(t,m − σw(t))dt +

σ2

2
∇2u(t,m − σw(t))dt − σ u′ dw(t),

where ∇2, as above, is the Laplace-Beltrami operator and u′ is the linear
operator of the derivative of u in m ∈ T n.

Recall that u(t,m) satisfies the Euler equation without external force, i.e.,
∂u
∂t = −P ((u · ∇)u). Since

E

(
d
dt

u(t,m − σw(t))
)

=
∂

∂t
Eu(t,m − σw(t)) =

∂

∂t
U(t)
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and E(σ(∇u)dw(t)) = 0, we derive that

∂

∂t
U = E

(
d
dt

u(t,m − σw(t))
)

= E

[

−P ((u · ∇)u) (t,m − σw(t)) +
σ2

2
∇2u(t,m − σw(t))

]

= −E [((u · ∇)u) (t,m − σw(t))] +
σ2

2
∇2U + grad p.

�

There are standard methods for transforming (16.32) into the standard
Reynolds form (see [207]). For a divergence-free vector field X(m) on T n

(i.e., for a vector X ∈ TeDs
μ(T n)) introduce the random divergence-free

vector field ŬX(t,m) = X(m − σw(t)) − E(X(m − σw(t)) (i.e., the vector
ŬX(t) = QeTR−1

W (σ)(t)
X − E(QeTR−1

W (σ)(t)
X) in TeDs

μ(T n)). For X = u(t),

we obtain Ŭu(t)(t,m) = u(t,m − σw(t)) − U(t,m) and so u(t,m − σw(t)) =
U(t,m) + Ŭu(t)(t,m) and EŬu(t)(t,m) = 0. Then one can easily see that
E([(u · ∇)u](t,m − σw(t))) = (U · ∇)U + E[(Ŭu(t) · ∇)Ŭu(t)]. Thus, (16.32)
transforms into

∂

∂t
U + (U · ∇)U − σ2

2
∇2U − grad p = −E[(Ŭu(t) · ∇)Ŭu(t)], (16.33)

which is the standard form of the Reynolds equation. It differs from the
Navier-Stokes type relation with viscosity σ2

2 by the external force −E[(Ŭu(t) ·
∇)Ŭu(t)] which depends on u(t,m), not on U(t,m). Recall that (16.33) de-
scribes the turbulent motion of a fluid if the dependence of E[(Ŭu(t) ·∇)Ŭu(t)]
on U is given (say, derived from experimental data, see [207]).

Remark 16.34. For ξt(s) as introduced above, formula (16.31) tells us that
D̄∗ξt(s)|s=t = U(T − t). Then, taking into account formula (8.25), one can
easily derive that

P̄D∗D∗ξt(s)s=t = P̄D∗U(T−s, ξt(s))s=t =
∂

∂t
U+(U ·∇)U−σ2

2
∇2U−grad p.

Thus, (16.33) implies that P̄D∗D∗ξt(s)s=t = −PE[(Ŭu(T−t) · ∇)Ŭu(T−t)].

Our next aim is to show that a slight modification of the above argument
allows us to annihilate the external force in (16.33) by introducing a special
random force field on Ds

μ(T n) into (16.12).
For a random divergence-free a.s. Hs+1-vector field Xω(m) on T n (i.e.,

for a random vector Xω ∈ TeDs+1
μ (T n) ⊂ TeDs

μ(T n)), construct the random
vector field ŬXω (t,m) which, for any ω ∈ Ω, is given by the formula
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ŬXω (t,m) = Xω(m − σwω(t)) − E(Xω(m − σwω(t)).

Introduce the non-random Hs vector field PE[(ŬXω · ∇)ŬXω ] and then con-
struct the random vector Fω(t,Xω) in TeDs

μ(T n) by the formula

Fω(t,Xω) = QeTR
W

(σ)
ω (t)

PE[(ŬXω · ∇)ŬXω ].

Note that PE[(ŬXω · ∇)ŬXω ] and hence Fω(t,Xω) lose their derivatives, i.e.,
they are Hs-vector fields only since Xω (and so ŬXω ) is Hs+1. Thus Fω(t,Xω)
is well-defined only on an everywhere dense subset TeDs+1

μ (T n) of TeDs
μ(T n).

Now introduce the right-invariant vector force field F̄ω(t, g, Yω) on Ds
μ(T n),

where Yω ∈ TgDs
μ(T n), which for g ∈ Ds+1

μ (T n) and ω ∈ Ω is determined by
the formula

F̄ω(t, g, Yω) = TRgFω(t, TR−1
g Yω),

where TR−1
g Yω is a divergence-free a.s. Hs+1-vector field.

Consider the equation

D̃
dt

ġω(t) = F̄ω(t, gω(t), ġω(t)) (16.34)

on Ds
μ(T n) whose right-hand side is well-defined on the everywhere dense

subset Ds+1
μ (T n) in Ds

μ(T n). Equation (16.34) has no diffusion term and
so it is an ordinary differential equation with parameter ω ∈ Ω. Here we
do not investigate the solvability of (16.34) but suppose that for the initial
conditions gω(0) = e and ġω(0) = u0 ∈ TeDs+1

μ (T n) it a.s. has a unique
Hs+1-solution gω(t) which is a.s. well-defined on a non-random time interval
t ∈ [0, T ] for some T > 0. Consider the divergence-free a.s. Hs+1-vector field
uω(t,m) on T n given by the relation ġω(t) = uω(t, gω(t)). The analog of the
above-mentioned vector U now takes the form

U(t,m) = E
(
uω(t,m − σwω(t))

)
= EQeTR−1

W
(σ)
ω (t)

uω(t). (16.35)

As in Lemma 16.32 it is easy to see that the vector field (16.35) is divergence-
free.

Theorem 16.35 The divergence-free vector field U given by (16.35) satisfies
the Navier-Stokes equation without external force and with viscosity σ2

2 :

∂

∂t
U + (U · ∇)U − σ2

2
∇2

U − grad p1 = 0. (16.36)

Proof. For the random field u′
ω(t,m) of linear operators and the random

field u′′
ω(t,m) of bilinear operators (here the primes denote derivatives of u

in m ∈ T n) the stochastic integrals
∫ t

0
u′

ω(t,m)dwω(t) and
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∫ t

0

u′′
ω(t,m)(dwω(t), dwω(t)) =

∫ t

0

tr u′′
ωdt =

∫ t

0

∇2uω dt

are well-defined. Then by applying standard arguments to the Taylor series
expansion of uω, one can easily see that the Itô formula is well-defined for
uω(t,m − σwω(t)) and so

E (duω(t,m − σwω(t)))

= E

(
∂

∂t
uω(t,m − σwω(t))dt +

σ2

2
∇2uω(t,m − σwω(t))dt

)

.

From (16.34) it follows (see (16.12) and (16.13)) that ∂
∂tuω = −P [(uω ·∇)uω]+

Fω(t, uω(t)). Thus, in the same manner as in the proof of Theorem 16.33 and
the derivation of (16.33), we obtain

∂

∂t
U(t,m) = E

(
d
dt

uω(t,m − σwω(t))
)

= −E
[(

(uω · ∇)uω

)
(t,m − σwω(t))

]

+
σ2

2
∇2

U + grad p + EQeTR−1
W (σ)(t)

Fω(t, uω(t))

= −(U · ∇)U +
σ2

2
∇2

U + gradp − E[(Ŭuω(t) · ∇)Ŭuω(t)]

+EQeTR−1
W (σ)(t)

Fω(t, uω(t)). (16.37)

But by construction and by formulae (5.13) and (5.14) we get

EQeTR−1

W
(σ)
ω (t)

Fω(t, uω(t))

= EQeTR−1

W
(σ)
ω (t)

QeTR
W

(σ)
ω (t)

PE
[
(Ŭuω(t) · ∇)Ŭuω(t)

]

= EQeTR−1

W
(σ)
ω (t)

TR
W

(σ)
ω (t)

Q
W

(σ)
ω (t)−1PE

[
(Ŭuω(t) · ∇)Ŭuω(t)

]

= PE
[
(Ŭuω(t) · ∇)Ŭuω(t)

]
. (16.38)

Since U is divergence-free, the vector fields ∂
∂tU and ∇2

U are divergence-
free as well. Hence, grad p in (16.37) is taken from relation (5.7) for Y =
E([(uω · ∇)uω](t,m − σwω(t))), i.e.,

PE ([(uω · ∇)uω](t,m − σwω(t))) = E ([(uω · ∇)uω](t,m − σwω(t)))−grad p.

Define grad p1 and grad p2 by the relations P (U · ∇)U = (U · ∇)U − grad p1

and PE[(Ŭuω(t) ·∇)Ŭuω(t)] = E[(Ŭuω(t) ·∇)Ŭuω(t)]−grad p2. Clearly, grad p =
grad p1 + grad p2 (i.e., to within an additive constant p = p1 + p2). Thus
(16.36) follows from (16.37) and (16.38) in the natural form ∂

∂tU+(U ·∇)U−
σ2

2 ∇2
U − grad p1 = 0. �
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155. Kamenskĭı, M., Obukhovskĭı, V., Zecca, P.: Condensing Multivalued Maps and Semi-
linear Differential Inclusions in Banach Spaces. Walter de Gruyter, Berlin-New York

(2001)
156. Kantorovich, L.V., Akilov, G.P.: Functional analysis. Pergamon Press, Oxford (1982)

157. Kato T. On classical solutions of the two dimensional non-stationary Euler equation.
Arch. for Rat. Mech. and Analysis. 25 (3), 188-200 (1967)

158. Kisielewicz, M.: Some remarks on boundary value problem for differential inclusions.
Discussiones Mathematicae. DICO. 17 (1,2), 43-50 (1997)
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{Pt}-progressively measurable, 347

p, 5

p, 60

Q, 66

Q, 112

RI , 170

REE , 169

(r, s)-tensor, 21

(r, s)-tensor bundle, 23

(r, s)-tensor field, 23
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ε-approximation, 99
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ω-lemma, 106
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of a stochastic process, 357
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curve, 267

tangent vector, 267

vector field, 405

algebra of a group, 108

almost lower semicontinuous

set-valued force field, 289

set-valued mapping, 98

anticipating integral, 125

antisymmetric mean derivative, 194

relativistic, 384

associated bundle, 16

atlas

continuous, 77

uniform Riemannian, 144

backward admissible stochastic process,

405

backward differential, 126

backward Itô bundle, 150

backward Itô equation (section of backward
Itô bundle), 151

backward Itô formula, 128

backward Itô integral, 125

backward Itô process, 127

backward martingale, 119

backward mean derivative, 188, 198

relative to the future, 188

with respect to H, 225

covariant, 405

relativistic, 376

backward stochastic differential, 228

backward stochastic flow, 138

backward Wiener process, 201

Banach manifold, 4

barotropic fluid, 390

base of a bundle, 14

basic vector field, 63

Bianchi identity, 61

bilinear form

non-degenerate, 19

signature, 300

body coordinates, 258

Bohnenblust-Karlin fixed point theorem,
295

Borel σ-algebra, 119

boundary, 4

bracket

Lie, 7

of vector fileds, 13

Poisson, 96

trivial, 13

Bressan-Colombo Theorem, 99

Brownian motion, 122

bundle, 14

associated, 16

base, 14

cotangent, 9

cross-section, 16

frame, 16

principal, 15

projection, 14

standard fiber, 14

structure group, 14

tangent, 5

tensor, 23

total space, 14

vector, 15

zero-section, 17

Burgers equation, 403

without viscous term, 389

canonical 1-form, 95

canonical 2-form, 95

canonical correspondence with respect to a
connection, 151

Cartan’s development, 87

Cauchy problem

locally well-posed, 71, 75

regular, 75

Chow-Rashevsky Theorem, 270

Christoffel symbols

of the first kind, 57

of the second kind, 45, 51

tetrad, 52

closed form, 28

closed set-valued mapping, 98

co-gradient, 108

codifferential, 31

commuting vector fields, 34

compactness lemma, 89

compatible connection and metric, 155

complete

connection, 54

flow of a vector filed, 67

Riemannian manifold, 19

Riemannian metric, 19

stochastic flow, 135, 158

vector field, 67

completely continuous vector field, 78

components of a tensor, 22

conditional expectation, 117

conditional probability, 117

configuration space, 255

conjugate

operator, 23

point, 54

connection

complete, 54
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connector, 42

Euclidean, 41, 326

flat, 55

form, 61

Levi-Civitá, 58

on a manifold, 50

on a principal bundle, 61

on a vector bundle, 40

reduced, 268

Riemannian, 56

connector, 42

local, 43, 326

conservation law, 263

of angular momentum, 266

conservation of energy law, 259

conservative mechanical system, 258

constraint, 267

holonomic, 267

non-holonomic, 267

totally non-holonomic, 267

continuous

atlas, 77

covector field, 10

scalar field, 4

set-valued mapping, 98

vector field, 6

contraction of a tensor, 24

contravariant rank, 22

controllability problem, 284

convective representation, 258

coordinate process, 116

coordinate-momentum phase space, 255

coordinate-velocity phase space, 255

coordinates

curvilinear, 3

local, 3

cotangent

bundle, 9

mapping, 11

space, 8

vector, 8

coupled Itô equations, 230

covariant

backward mean derivative, 405

derivative, 46, 48, 51

derivative (reduced), 267

differential, 61

formula, 47

forward mean derivative, 405

mean derivative, 232

rank, 22

covector, 8

physically equivalent, 20

covector field, 10

continuous, 10

smooth, 10

cross-section

of a bundle, 16

parallel, 49

current 4-velocity

relativistic, 384

current velocity, 195

curvature

form, 61

Gaussian, 59

scalar, 59

tensor, 55

Ricci, 59

curve, 4

acceleration, 66

admissible, 267

variation, 260

variation with fixed ends, 260

curvilinear coordinates, 3

cut locus, 54

cylinder set, 116

decomposable set, 99

degree, 25

density of electric charge, 313

derivative

covariant, 46, 48, 51

of a function in the direction of a vector
field, 7

differential

s-form, 25

backward, 126

covariant, 61

exterior, 28

forward, 126

of a function, 10

of a mapping, 8

symmetric, 126

differential equation with mean derivatives

first order, 239

differential form, 26

differential inclusion, 100

forward mean derivatives, 211

with forward P-mean derivatives, 222

diffusion

coefficient, 129

process, 128

type process, 128

type stochastic differential equation, 130

direction

to future, 303

to past, 303

displacement form, 63
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dissipative set-valued vector force field, 347

distance

internal, 19

Riemannian, 19

distribution, 17

integrable, 17

involutory, 17

of a process, 116

divergence, 32, 34

domain of possible motion, 263

double of a manifold, 4

drag force, 340

drift, 129

dual operator, 23

Eells-Elworthy development, 169

Einstein equation, 314, 315

Einstein tensor, 314

Einstein’s Convention, xxii

Einstein-de Sitter space-time, 301

electric charge

density, 313

three-dimensional density, 313

electric field

potential, 313

strength, 313

electromagnetic field, 312

elementary tensor, 22

EMD, 199

equation in backward differentials, 203

equation with P-mean derivatives, 221

equation with mean derivatives (EMD),
199

kth-order, 199

essential extension of a vector field, 272

Euclidean connection, 41, 326

Euler equation, 258, 392, 394

Eulerian representation, 258

event, 303

exact form, 28

explosion time, 136

exponential map, 54

exterior

s-form, 25

codifferential, 31

differential, 28

form, 26

product, 26

extremal, 260

values of controlling force, 274

with fixed end-points, 260

extreme point, 274

fiber bundle, 14

field of variation, 260

Filippov’s method, 271

filtration, 117

first fundamental form, 18

first integral, 263

first order differential equation

with current velocities, 219

with forward mean derivatives, 209

flat connection, 55

flow

of a vector field, 7

complete, 67

stochastic, 135

L1-complete, 163

backward, 138

complete, 135, 158

continuous at infinity, 160

of diffeomorphisms, 138

of homeomorphisms, 138

strictly complete, 135

strongly complete, 135

force, 9

force field, 255

form

s-form, 26

bilinear, 19

canonical 1-form, 95

canonical 2-form, 95

closed, 28

connection, 61

curvature, 61

differential, 26

differential s-form, 25

displacement, 63

exact, 28

exterior, 26

exterior s-form, 25

first fundamental form, 18

horizontal 1-form, 255

identically zero, 27

tangent, 110

torsion, 63

volume, 30

forward admissible stochastic process, 405

forward differential, 126

forward mean derivative, 187, 198

with respect to H, 225

covariant, 405

relative to the past, 188

relativistic, 376

forward stochastic differential, 152

frame bundle, 16

Friedman universe, 301

Frobenius’ Theorem, 17
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functional

calculus of variations, 260

of action, 260

of length, 260

variation, 260

fundamental vector field, 60

future

σ-algebra, 116

domain, 306

proper, 306

Gaussian curvature, 59

general linear group, 11

generalized Langevin equation, 332

generator

of a stochastic flow, 137

backward, 138

of a one-parameter diffeomorphism

group, 264

geodesic, 53

spray, 93

Glicksberg-Ky Fan Theorem, 100, 291

global chart, 166

gradient, 20

group action, 12

gyroscopic force field, 263

Hamilton’s principle of least action, 262

Hamiltonian, 95

system, 96

vector field, 95

Hausdorff

continuous set-valued mapping, 98

metric, 98

submetric, 98

Hilbert manifold, 4

holonomic constraint, 267

Hopf equation, 389

Hopf-Rinow Theorem, 95, 262

horizontal

1-form, 255

component, 94

lift, 49, 50, 169–171

subspace, 40, 61

vector, 40

identically zero form, 27

induced Riemannian metric, 168

inertia

operator, 257

tensor, 257

infinite-dimensional manifold, 4

infinitesimal generator, 137

backward, 138

integrable distribution, 17

integral

curve of a vector field, 6

manifold, 17

of motion, 263

interior

of light cone, 303

product, 29

internal

distance, 19

energy, 389

involutory distribution, 17

isometrical embedding, 18

isotropic

vector, 303

world line, 304

Itô algebra, 147

Itô bundle, 148

backward, 150

principal, 148

Itô condition, 131

Itô development, 170, 171

Itô equation

backward, 151

coupled, 230

in backward differentials, 228

in Baxendale’s form, 153

in Belopolskaya-Daletskii form, 153

section of an Itô bundle, 148

Itô formula, 127

backward, 128

Itô group, 147

Itô integral, 123

backward, 125

line Itô integral with Riemannian
parallel translation, 178

Itô process, 126

backward, 127

on a Lorentz manifold, 383

on a manifold, 176

Itô stochastic differential equation, 125,

129

Itô vector field, 140, 157

Jacobi identity, 8

Jacobi metric, 262

Killing form, 14

kinetic energy, 255

Kodaira-Hodge Laplacian, 31

Kolmogorov-Fokker-Planck equation, 382

Lagrangian hydrodynamical system (LHS)

of an ideal barotropic fluid, 391
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of an ideal incompressible fluid, 393

of diffuse matter, 387

Lagrangian of a natural mechanical system,

260

Lagrangian representation, 258

Langevin equation, 336

Langevin inclusion, 342

Laplace-Beltrami operator, 59

Laplace-de Rham operator, 31

least constrained non-holonomic geodesic,
269

left action of a group, 12

left-invariant vector field, 12

length minimizing non-holonomic geodesic,

269

less than quadratic growth, 288

Levi-Civitá connection, 58

LHS

of an ideal barotropic fluid with external
force, 391

of an ideal barotropic fluid without
external force, 391

of an ideal incompressible fluid with
external force, 393

of an ideal incompressible fluid without

external forces, 393

Lie algebra, 13

of a Lie group, 13

Lie bracket of vector fields, 7

Lie derivative, 33, 34

Lie group, 11

light cone, 303

interior, 303

light-like

vector, 303

world line, 304

line Itô integral with Riemannian parallel
translation, 178

linear constraint, 267

local connection coefficient, 43, 326

local connector, 43, 51, 326

local coordinates, 3

local martingale, 119

local solution, 165

locally well-posed Cauchy problem, 71, 75

Lorentz equation, 312

Lorentz manifold, 300

Lorentz metric, 300

Lorentz transformation, 311

standard form, 311

lower semicontinuous set-valued mapping,

97

magnetic field

strength, 313

vector potential, 313

manifold

Banach, 4

complete Riemannian, 19

connection, 50

double of, 4

Hilbert, 4

infinite-dimensional, 4

integral, 17

Lorentz, 300

non-orientable, 30

orientable, 30

oriented, 30

parallelizable, 17

Poisson, 96

Riemannian, 18

second order differential equations, 92

semi-Riemannian, 19

smooth, 3

stochastically complete Riemannian, 173

symplectic, 96

topological, 3

trivializable, 17

uniformly complete, 178

with boundary, 4

Markov process, 118

simple, 118

Markov time, 118

martingale, 118

backward, 119

with respect to a connection, 149

mass, 304

material coordinates, 258

mathematical expectation, 341

Maupertuis principle of least action, 262

maximal set-valued vector force field, 347

Maxwell’s equations, 312, 314

mean derivative

F-mean derivative, 188

P-mean derivative, 188

antisymmetric, 194

antisymmetric relativistic, 384

backward, 188, 198

with respect to H, 225

backward covariant, 232, 405

backward relative to the future, 188

backward relativistic, 376

covariant, 232

forward, 187, 198

with respect to H, 225

forward covariant, 232

quadratic, 192, 234, 335

quadratic P-mean derivative, 192
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quadratic relative to the past, 192

relativistic symmetric, 384

symmetric, 194

mechanical system, 255

on a Lie group, 257

metric

complete Riemannian, 19

Hausdorff, 98

induced Riemannian, 168

Lorentz, 300

Riemannian, 18

semi-Riemannian, 19

weak Riemannian, 107

metric tensor, 20, 299

Michael’s Theorem, 98

Minkowski space, 301

model space, 3

momentum

4-momentum, 304

conservation law, 265

of a mechanical system, 257

Nash’s theorem, 18

Navier-Stokes equation, 404

Newton-Nelson equation, 358, 368, 385

Noether’s theorem, 264

non-anticipative process, 117

non-conjugate point, 297

non-degenerate bilinear form, 19

non-holonomic constraint, 267

non-holonomic dynamics, 270

non-orientable manifold, 30

normal chart, 54

normal neighborhood, 54

one-parameter diffeomorphism group, 263

orbit

of a flow, 67

of a one-parameter diffeomorphism
group, 263

of a stochastic flow, 135

orientable manifold, 30

orientation, 30

oriented manifold, 30

Ornstein-Uhlenbeck coordinate process,

341

Ornstein-Uhlenbeck velocity process, 341

orthogonal

matrix, 12

operator, 310

osmotic velocity

of a process, 195

relativistic, 384

parallel cross-section, 49

parallel translation, 49, 52, 62

along a stochastic process, 176

parallel vector field, 52

parallelizable manifold, 17

parameter of velocity, 309

past

σ-algebra, 116

domain, 306

proper, 306

path, 4

phase space

coordinate-momentum, 255

coordinate-velocity, 255

physically equivalent

covector, 20

vector, 20

Poisson bracket, 96

Poisson manifold, 96

polyvector, 26

field, 26

potential

energy, 259

of an electric field, 313

power, 9

present σ-algebra, 116

pressure, 390

principal bundle, 15

principal Itô bundle, 148

principal lemma of Riemannian geometry,

57

principle of least action

Hamilton’s form, 262

Maupertuis form, 262

probability measure, 119

projection of a bundle, 14

Prokhorov’s Theorem, 120

proper

function, 68

future, 306

mapping, 68

past, 306

time, 305

pull-back, 11

quadratic P-mean derivative, 192

quadratic bound, 289

quadratic mean derivative, 192, 234, 335

relative to the past, 192

random diffeomorphism, 138

random homeomorphism, 138

random time, 118
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realization of a Wiener process in tangent
space, 172

redshift, 302

reduced connection, 268

reduced covariant derivative, 267

reference frame, 306

regression, 118, 192

regular Cauchy problem, 75

Regularity Theorem, 397

relatively weakly compact set, 77

relativistic antisymmetric mean derivative,
384

relativistic backward mean derivative, 376

relativistic current 4-velocity, 384

relativistic forward mean derivative, 376

relativistic mass, 308

relativistic Newton-Nelson equation, 380

relativistic osmotic velocity, 384

relativistic symmetric mean derivative, 384

rest mass, 308

Ricci curvature tensor, 59

Riemannian connection, 56

Riemannian distance, 19

Riemannian manifold, 18

complete, 19

stochastically complete, 173

uniformly complete, 178

Riemannian metric, 18

complete, 19

induced, 168

weak, 107

Riemannian volume form, 30

right action of a group, 12

right-invariant vector field, 12

rotation, 32

sample path, 116

scalar, 4

scalar curvature, 59

scalar field, 4

continuous, 4

smooth, 4

Schwarzschild space-time, 302

screw gradient, 95

second order differential equation on a
manifold, 92

second order tangent bundle, 65

second order tangent space, 65

second order tangent vector, 65

second tangent bundle, 38

selector of a set-valued mapping, 98

semi-martingale, 119

semi-Riemannian manifold, 19

semi-Riemannian metric, 19

set-valued force field, 272

almost lower semicontinuous, 289

set-valued mapping, 97

almost lower semicontinuous, 98

closed, 98

continuous, 98

Hausdorff continuous, 98

lower semicontinuous, 97

selector, 98

upper semicontinuous, 97

value, 97

set-valued vector force field, 272

dissipative, 347

maximal, 347

signature of a bilinear form, 300

simple Markov process, 118

skew-symmetric tensor, 25

smooth

change of coordinates, 4

covector field, 10

manifold, 3

mapping of manifolds, 4

scalar field, 4

vector field, 6

space coordinates, 258

space of sample paths, 116

space of trajectories, 116

space-like

vector, 303

world line, 304

space-time, 300

time-oriented, 303

special orthogonal group, 12

special vector field, 92

specific internal energy, 390

spray, 93

standard fiber of a bundle, 14

standard form of a Lorentz transformation,
311

state equation, 390

stochastic differential

backward, 228

forward, 152

stochastic differential equation

in Itô form, 129

in Stratonovich form, 129

in Stratonovich form on a manifold, 140

section of an Itô bundle, 148

with constraints, 271

stochastic evolution family, 135

stochastic flow, 135

L1-complete, 163

complete, 135

continuious at infinity, 160
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of diffeomorphisms, 138

of homeomorphisms, 138

strictly complete, 135

strongly complete, 135

stochastic process, 115

acceleration, 357

backward admissible, 405

forward admissible, 405

stochastic-mechanical trajectory, 357, 368

stochastically complete Riemannian

manifold, 173

stopping time, 118

Stratonivich process, 128

Stratonovich integral, 125

Stratonovich stochastic differential
equation, 129

stress-energy tensor, 315

strictly complete stochastic flow, 135

strong Riemannian metric, 111

strong solution, 130, 182, 337, 343

strongly complete stochastic flow, 135

strongly unique solution, 131

structure equation, 61

structure group of a bundle, 14

submanifold, 4

symmetric

differential, 126

mean derivative, 194

tensor, 25

tensor product, 25

symplectic

form, 96

manifold, 96

tangent bundle, 5

second, 38

second order, 65

tangent form, 110

tangent mapping, 8

tangent space, 5

second order, 65

tangent vector, 5

admissible, 267

second order, 65

tensor

(r, s)-tensor field, 23

bundle, 23

components, 22

contraction, 24

curvature, 55

elementary, 22

field, 22, 23

force field, 333

inertia, 257

metric, 20

of type (r, s), 21

Ricci curvature, 59

skew-symmetric, 25

stress-energy, 315

symmetric, 25

torsion, 55

trace, 24

type (r, s), 21

tensor product, 22, 24

symmetric, 25

tetrad

Christoffel symbols, 52, 58

connector, 52

three-dimensional current density of
electric charge, 313

time-like

vector, 303

world line, 304

time-oriented space-time, 303

topological manifold, 3

torsion

form, 63

tensor, 55

total energy, 259

total space of a bundle, 14

totally non-holonomic constraint, 267

trace of a tensor, 24

trajectory, 256

of a one-parameter diffeomorphism

group, 263

of a relativistic stochastic-mechanical
system, 385

of a stochastic process, 116

of a system with discontinuous force
field, 273

stochastic-mechanical, 357, 368

trivial bracket, 13

trivializable manifold, 17

trivialization, 6, 15

uniform Riemannian atlas, 144

uniformly complete Riemannian manifold,
178

upper Carathéodory condition, 98, 289

upper semicontinuous set-valued mapping,

97

vakonomic dynamics, 270

valency, 22

value of a set-valued mapping, 97

variation

of a curve, 260

of a curve with fixed ends, 260
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of a functional, 260
vector

3-vector, 306
r-vector, 25

cotangent, 8
horizontal, 40

isotropic, 303
light-like, 303

physically equivalent, 20
space-like, 303

time-like, 303
vertical, 36, 60, 255

vector bundle, 15
connection, 40

vector field, 6
r-vector field, 25

admissible, 405
basic, 63

complete, 67
completely continuous, 78

continuous, 6
divergence, 34

essential extension, 272
flow, 7

fundamental, 60
Hamiltonian, 95
integral curve, 6

Itô, 140
left-invariant, 12

Lie bracket, 7
parallel, 52

right-invariant, 12
rotation, 32

smooth, 6
special, 92

vector fields
commuting, 34

vector force field, 256
set-valued, 272

vector potential

of a magnetic field, 313

of an electromagnetic field, 313

velocity

4-velocity, 304

of a mechanical system, 257

velocity hodograph, 276

vertical

component, 94

lift, 50

subspace, 36, 50, 60

vector, 36, 60, 255

volume form, 30

weak convergence of measures, 119

weak Riemannian metric, 107

weak solution, 130, 182, 209, 211, 221, 222,
239, 240, 337, 343

weak uniqueness, 131

weakly proper function, 71, 78

weakly relatively compact set of measures,
120

Weitzenbök formulae, 59

white noise, 120

Whitney’s Theorem, 3

Wiener measure, 122

Wiener process, 121, 172

backward, 201

on a manifold, 173

standard, 122

Wong-Zakai Theorem, 134

world line, 303

isotropic, 304

light like, 304

space-like, 304

time-like, 304

zero-section, 17
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