
http://www.cambridge.org/0521892422

This page intentionally left blank

UML Xtra-Light

UML Xtra-Light

How to Specify Your

Software Requirements

Milan Kratochvíl Barry McGibbon

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

First published in printed format

ISBN 0-521-89242-2 paperback
ISBN 0-511-04289-2 eBook

Milan Kratochvíl and Barry McGibbon 2004

2003

(netLibrary)

©

To my father, Jiří, and to generations of composers
before him who realized that architectural

standards, components, and reuse
all boost creativity and invention.

Milan Kratochvíl

To my wife, Vicky, for her lifetime
of love and support

Barry McGibbon

C o n t e n t s

Foreword ix

Preface xi

Acknowledgments xiii

About the Authors xv

How to Customize This Book xvii

Chapter 1 • Introduction 1

Software – Yet Another Knowledge Industry 1
Classifying the Knowledge Industry 2
Consequences of the Knowledge Industry 3
Sharing the Knowledge 5
Sharing the Responsibility for Getting It Right 6
Methods and Processes 8
Summary 11

Chapter 2 • Aligning to the Business 13

Using UML Activity Diagrams 15
Using Business Use-Case Diagrams 23
But What About the Data? 25
Summary 26

vii

Chapter 3 • Adding Rigor to the Requirements 27

Use Cases 27
Use-Case Example 29
Meeting the Devil 34
Use-Case Analysis at Two Levels, At Least 36
How to Avoid Messing Up Use Cases 39
Summary 46

Chapter 4 • Sketching the Inside Structure 47

Class Diagrams 48
The Class Diagram 50
Understanding Class Relationships 52
Summary 59

Chapter 5 • Sketching the Inside Dynamics 61

State Diagrams 61
Tying It All Together 67
UML Collaboration Diagrams 70
Other UML Diagrams 70
Summary 71

Chapter 6 • Moving Toward Components 73

Components Communicate with Everyone 76
Impact of the Component-Based Approach 79
Reusing Components 81
Building a Component Library 83
Sharing Components in Your Organization 84
Avoiding the Traps 85
Automating the Bid Process 87
Summary 88

Chapter 7 • Mapping from Classes to Data Models 89

Use Appropriate Diagrams and Standards 90
Mapping Relationships 91
Summary 95

Chapter 8 • Concluding Remarks 97

Think Big, Start Small, and Sustain the Effort 97
UML Under Time Constraints 98

Some Suggested Readings 101

Index 103

viii Contents

F o re w o rd

Yet another book about UML! Since its initial version, the Unified Modeling
Language has gone an impressive way in the IT community. Over the past
couple of years, we have been loading our bookcase with quite a few UML
books. Many of them deal with applying or extending UML for a specific
domain: UML for project management, UML for business modeling, UML
for Java, real-time UML, UML for components, UML for web applications,
and so fort h .

This book takes a somewhat diff e rent and, in our opinion, long-awaited
a p p roach. It goes back to the basics of UML: i m p roving the communication
among diff e rent stakeholders of a (software) project. As the authors of the
book write: “a UML made easy for people who specify, buy, or manage com-
plex software systems.” Many of these stakeholders are non-IT pro f e s s i o n a l s
in much need of an easy-to-digest introduction to UML.

Looking back on the IBM SanFrancisco project – one of the real success
p rojects in the field of object-oriented business applications – where we, at IBS,
played a central role as initiators and principal development partner to IBM,
a key success factor was the alignment among domain experts, sponsors,
and object experts – through a minimum set of concepts and techniques.

ix

In addition, this book focuses on the new paradigm in software develop-
ment: fast delivery of applications based on components sourced from vari-
ous suppliers. Even though UML initially placed considerable focus on cre a t-
ing applications from scratch, successful software projects today are all
about c reating, buying, and integrating software components. This leaves us
(who intend to stay competitive and successful!) extremely dependent on a
s t a n d a rd notation for any software - related communication, specification, and
knowledge sharing. The IBM SanFrancisco/We b S p h e re Business components
p rovide an extreme case for this. By using a standard notation language for
the component specs, any potential application builder will be able to
understand, integrate, and extend the components. Furt h e rm o re, tool ven-
dors have been easily able to integrate the components in their tool sets for
modeling and code generation.

E n j o y !

S t a ffan Ahlberg Tomas Bräne
C E O VP Research & Development
IBS AB IBS AB
w w w. i b s . s e t o m a s . b r a n e @ i b s . s e

x Foreword

P re f a c e

The excellent idea of writing a lightweight book on the Unified Modeling
Language (UML) wasn’t ours, we admit. This idea originated from Milan’s
customers. Having taught more than a hundred courses and seminars on
component approaches to software development and on UML over the past
few years, he was repeatedly asked for “UML made easy” for people who
s p e c i f y, buy, or manage complex software systems, yet don’t program them.
This demand seems logical given the way UML is being used in projects and
read of in the success stories1 – as well as the increasing specification work-
load in any knowledge industry (see Introduction). However, as we moved
on into this book project, both of us became increasingly enthusiastic about
the idea, as did Cambridge University Press (CUP). Luckily, a majority of our
readers are quite familiar with CUP from their own (variety of) fields; so this
book is likely to be seen as accessible in most senses of the word .

Any system specification can state re q u i rements on functionality, usabil-
i t y, re l i a b i l i t y, perf o rmance, and support a b i l i t y, as well as legal and technical
constraints where relevant. In UML projects, we start from a view of the busi-
ness – its processes and activities – and move into functionality, incre m e n t-

xi

1 The Object Management Group (OMG) owns and upgrades the UML standard; visit
w w w. o m g . o rg .

ing all the remaining, nonfunctional, bullet lists as we go. These are then
resolved later, during construction, rather than during specification. As
s t ressed in the chapter on components as well as implied throughout the
book, wherever we’re on the scale between “buy” and “build,” the specifica-
tion work and business analysis just don’t simply disappear. Even with an
o ff-the-shelf system, we still specify our re q u i rements, and we still need to
understand the essence of all those UML diagrams.

To keep this book lightweight, we stay reasonably lightweight on the art
of balancing the content of internal/technical UML views. This kind of bal-
ance is key down the road, that is, later on in a software development pro j e c t .
It re q u i res modeling the right aspects in the appropriate diagram view at a
right level of detail in the initial stage of a pro j e c t . However, we chose to
appeal to the reader’s common sense by pointing out the natural bound-
aries between the process view, the use-case view, and the structural (or
conceptual) view, with the strengths and limitations of each view. Neither a
blueprint of a building nor one of a software system can show everything at
once. Some drawings depict the walls and the roof, others electricity, and
yet others heating, air conditioning, water, and drainage; that is, we sepa-
rate the concerns. What is noteworthy is that people proposing buildings
learn quickly to keep away (hide) electricity aspects from the exterior view
and vice versa.

S t a n d a rds and components are a serious boost to pro d u c t i v i t y in software .
In our experience, however, these are more likely to be practiced when
i n t roduced in a step-by-step, nonacademic, and not too re s e rved manner, as
outlined in this book. As an enterprise sets its mind on component reuse,
all professionals from junior programmers to top management become
involved and, consequently, need to be off e red a brief guidebook within
their frame of re f e rence. So, for software specialists struggling to shift from a
detailed code-based approach to the conceptual models of the software
design and arc h i t e c t u re, we recommend exploring UML beyond this light-
weight version.

xii Preface

A c k n o w l e d g m e n t s

As mentioned in the Preface, many people have gradually made us re a l i z e
the need for a lightweight book like this, thus indirectly pushing it thro u g h .
Thanks to many people at the Object Management Group, Aonix-Select UK,
Linsoft, Cell Network, Rational Scandinavia, IBS. Thanks to Marie-Louise
We s t e r b e rg and Esa Falkenroth (Swedish Meteorological and Hydro l o g i c a l
Institute), Leif-Åke Andersson (Swedish Customs/IT), Eva Backe (Integra
Enterprise Systems), Anna Hermansson (Ericsson Telecom), Bjørn - E r i k
Willoch (Institute of Process Innovation, now CAP Management Consult-
ing), Stanislav Mlynář CEO, LBMS Prague), Esa Rantanen (Sema Gro u p) ,
Annika Hansen-Eriksson (Royal Institute of Te c h n o l o g y, now at Sema
G roup), and many others. For hints on knowledge enterprises, thanks to
Peter Stevrin (associate pro f e s s o r, IT Management, Blekinge Institute of
Technology) and Leif Edvinsson (Manager Intellectual Capital, at Skandia).
For my blueprint thinking as well as the life-cycle aspect introduced in the
earliest decades of systems development, thanks to my earlier employer,
Michael A. Jackson. Thanks to Johan Wretö (Wreto.com) and Dennis Parro t
(Select Software Tools, now at iPlanet) for interesting hints on teaching UML
to others. Special thanks to Richard M. Soley (Chair and CEO, Object Man-

xiii

agement Group) for his enthusiasm and encouragement at an early stage,
after the OMG day in Stockholm.

F i n a l l y, our publisher, Lothlórien Homet at Cambridge University Pre s s ,
c e rtainly deserves considerable thanks for keeping her humor thro u g h o u t
the process and for balancing the text skillfully between “practically noth-
ing” and “impractically heavyweight” (also, Lothlórien more or less banned
most of my favorite, extremely compact but neither tidy nor especially com-
p rehensible stock phrases, so thanks on behalf of the readers, too).

Milan Kratochvíl

To all my friends and colleagues over the years, especially Steve Latchem,
Dave Piper, Baz Maybank, Chris Simons, Adam Partridge, Dave West; to
Lothlórien Homet, my brilliant publisher; and to all my super clients, with-
out whom this book would not have been written.

B a rry McGibbon

xiv Acknowledgments

About the Authors

Milan Kratochvíl

A degree in Business & Administration and Data processing, Stockholm Uni-
v e r s i t y.

B o rn in Prague, living in the dynamic silicon area around Stockholm-
Kista (ranked by Wi red as a global number 2).

Working since 1977 as an IT consultant, instru c t o r, and writer in method-
ology; independent since 1989, focusing on areas where IT and knowledge-
intensive business meet.

Taught far more than a hundred courses and seminars on a commerc i a l
basis for developers, managers, or buyers of complex systems. Published
several articles, re p o rts, congress papers on methodology and knowledge
management. An initiator/catalyst and project leader of three experience-
exchange pools with The Swedish Computer Society in Stockholm a few
years ago.

Lessons learned: there are two things in this world you should reuse every
day – jokes and components.

B a rry McGibbon

Worked in the IT industry since 1966, gaining a wide variety of experience,
ranging from programming through to holding senior management posi-
tions with leading computing services and product pro v i d e r s .

xv

A consultant since 1985, with involvement in numerous major initia-
tives for significant enterprises in the United States, Europe, and the
United Kingdom.

P rovides advice and counsel on managing software development,
methodologies, improvement strategies, capability evaluations, and quality
management systems.

L e c t u res widely in the United States, the United Kingdom, and Euro p e .
Author of Managing Your Move to Object Technology: Guidelines & Strategies for
a Smooth Tr a n s i t i o n , published by SIGS Books Inc., and a contributor on
Component Based Software Engineering, published by Addison-We s l e y. Te c h n i-
cal chairman for Euro p e ’s largest component and object technology confer-
ence and a series editor for Cambridge University Pre s s .

xvi About the Authors

xvii

How to Customize This Book

Most readers of this book suffer from a lack of time, so here ’s a guide on
how you can focus on the key chapters relevant to your ro l e .

P rocess owners, reengineers, and similar ro l e s usually consider the top-
ics of Chapters 1 and 2 as the essence of a project, so you’re advised to re a d
those chapters thoroughly and browse through the re s t .

End-user re p resentatives or other ro l e s involved in man-machine inter-
action (MMI), manuals, user training, user interfaces (UI), or interfaces to
other systems are advised to focus on Chapter 3.

Domain expert s a re advised to concentrate on Chapter 4 and to bro w s e
t h rough Chapters 3 and 5.

Managers, project-plan coordinators, venture capitalists, headhunters,
or PA people could read Chapters 1, 2, and 3 quickly and focus on Chapter 6.

O t h e r s reading the book simply out of curiosity might want to bro w s e
t h rough the art first, and then choose topics that interest them for a second
i t e r a t i o n .

In general, those not interested in specific details can skip the footnotes
and boxes.

Chapter 1

Introduction

Software – Yet Another Knowledge Industry
Knowledge industries such as electronics, space, pharmaceuticals, or soft-
ware are special. On the surface, they’re the hotly-argued-upon backbone of
the new economy, a concept that’s no longer new. In our opinion, it’s the
approach to business that makes the difference, rather than a company’s
niche or age. Some old-economy veterans, such as global-automation ven-
dor ABB, have rapidly expanded their R&D initiatives and resources,
employing many more IT specialists than many so-called new high-profile
IT firms. IT provides a foundation to a variety of current business ideas,
including customer-driven manufacturing where a web customer configures
the product or even the software guiding an industrial robot in manufactur-
ing the chosen customized product.

Obviously, knowledge industries are more special under the shell than at
this slightly superficial mass-media/thematic level. On one hand, they have
business processes similar to other industries but, on the other hand, pro-
duction/operations is a small part of any business dominated by R&D and
by marketing the know-how of that organization.

1

Awareness of knowledge-industry specifics is a project-time saver, both
within the software industry itself and with the rapidly increasing number
of its customers in the other knowledge industries. Knowledge industries are
often interleaved with traditional industry sectors – today, you find com-
puter chips and software in all the flagships of industrialism, from heavy
trucks to railways. But, in a high-tech region, the complete knowledge-busi-
ness value chain can sometimes grow remarkably long without any tangible
(“hard”) products whatsoever (Figure 1-1). For example, your customer
might be a training company, whose customer is someone selling tools and
methodology to a software house, some of whose customers provide Inter-
net banking to e-traders, others providing sales configurators for customized
insurance packages, and on it goes; sometimes, all the tangible hardware
might seem to be produced on some other planet. Nevertheless, whichever
the surrounding corporate culture or age of the enterprise, its IT parts must
be considered a knowledge industry.

Classifying the Knowledge Industry
Figure 1-2 shows a kind of classification, pioneered 15 years ago by Karl-Erik
Sveiby’s team,1 which makes us aware of the climate in our firm or project
by starting from the extremes:

• A traditional office: a lack of real organization, of explicit common
objectives, of know-how. Professor Parkinson’s Laws apply. For
example, an office of more than 150 employees doesn’t need any
external input because of generating its workload itself!

• A traditional factory: traditionally a hierarchy. Even in a modern fac-
tory, there’s more focus on processes, work instructions/procedure

2 UML Xtra-Light

Figure 1-1 A possible knowledge industry value chain.

Training
Company

System
Integrator

Software
Component

Supplier

Banking
Service
Provider

Customer

1 Visit this Swedish-Australian writer and pioneer of knowledge management at
www.sveiby.com.au. Books include Managing Knowhow, by Sveiby and Lloyd (Bloomsbury,
London, 1997) and The New Organizational Wealth, by Sveiby (Berrett-Koehler, San Fran-
cisco, 1997).

steps than on creativity. In the past, the personnel were roughly
supposed to take their hands with them in the morning – leaving
their heads at home.

• An agency: creativity in an organizational chaos. Everyone is working
hard and loves it – forgetting about surroundings, lunches, and col-
leagues. Anyone who becomes a burnout is considered an admirable
role model.

• A knowledge enterprise: expertise combined with a common vision,
structure, and cooperation. A knowledge enterprise solves complex
problems of customers, while a service enterprise solves simple
problems with appropriate repeatable procedures.

As you can see, no organization fits into any of the previous cartoons.
The engine of the global economy is a gray zone that we prefer calling the
knowledge industry: firms or projects that package their know-how into
well-defined products and procedures, yet stay knowledge-intensive. Here,
component-based approaches boosted by standards are the engine in most
improvement efforts.

Consequences of the Knowledge Industry
Know-how intensity has some important practical consequences.

The production process becomes a packaging machine for the realization of
the know-how, for example, the pharmaceutical factory for the know-how
of R&D specialists. It must not fail, so all bottlenecks are banned, but these

Chapter 1 • Introduction 3

Figure 1-2 Where is your corporate culture?

Factory Knowledge Enterprise

Knowledge Industry

Office Agency

low high

Type
of

Organization

Know-how Intensity
(Knowledge Content in the Business)

production costs are pennies compared to the acquisition and development
of this know-how.

The silicon chip, the medical pill, the software CD, or the download-site is a
wrapper for the know-how. We don’t buy pills by weight. We pay for the
expected improvement instead, no matter how it’s packaged. Similarly, buying
software by kilo-lines, (kLocs) of code doesn’t make much sense. We pay for the
expected business improvement, no matter the amount of new code or reused
components. As the Object Management Group (OMG) points out, modern
software projects avoid writing all the code for the programs. In other words,
they reuse more infrastructure parts, off-the-shelf software components/busi-
ness-oriented components than traditional projects do. In knowledge industries
know-how is the real thing, whereas the wrapper is hardly relevant.

Unlike traditional mass production, the competitive edge isn’t in the
workflows of production/operations/administration, but in the mechanisms
of sharing and processing know-how across the firm. Therefore, a traditional
mechanical Business Process Reengineering (BPR) approach tends to solve
the wrong problem when applied in a knowledge industry because it’s focus-
ing on the basic activities, without considering the complexity of the busi-
ness logic in that activity.

The Asset Paradox

When the main asset of the firm is knowledge, then the trick is to stay fairly
independent of individuals by turning a knowledge enterprise into a knowl-
edge industry. This requires storing more knowledge in a format accessible to
as many co-workers as possible, most often using computers. The labor mar-
ket is simply a market. Therefore, even in a rather holistic bookkeeping
approach, the (fancy) knowledge-asset figures must be adjusted by a factor
reflecting their infrastructure, structuring, standardization, methodology,
component-sharing, and so forth.

Acquiring and keeping unique knowledge is key in a clear-cut knowledge
enterprise, whereas in a knowledge industry, the structure of the know-how –
and the infrastructure used in keeping it current and in feeding it through –
is as important as the know-how itself, a fact deserving attention from both
knowledge managers and financial analysts.2 Typically, a knowledge enter-

4 UML Xtra-Light

2 Estimating/forecasting high-tech shares has been hotly argued since the 1980s. Focusing
on knowledge structure and infrastructure is less fuzzy than trying to quantify pure knowl-
edge. We hope to see less roller-coaster rides on NASDAQ in the future, as tech shares
become less volatile when all such factors are thoroughly worked through and taken into
account by analysts, ahead of IPOs or mergers. As we show in Chapter 6, configurable
components can boost sales activities as well, by enabling a closer and cheaper match
between bids and specific customer needs in a variety of niches.

prise sells knowledge, whereas a knowledge industry sells its capability to
apply and deploy its knowledge packaged as, for example, software.

Sharing the Knowledge
Given all these specifics, the efficiency of specification and development
activities is extremely important in any knowledge industry. The toolkit of
improvement is all about knowledge sharing by:

• Standardizing the terms and the notation

• Practicing a common approach

• Sharing pretested components

UML has standardized the terms and the notation by providing a set of dia-
grams with a defined syntax. Unlike other knowledge industries, software
can’t be expressed by drawings or photographs of some spatial/physical,
musical, biological, or chemical properties. Even under a fancy microscope,
software stays invisible and intangible. A software-blueprint isn’t as intuitive
as a land map showing ice in white and water in blue. Rather, it presupposes
a general industry-wide agreement in the first place, on the agreed meaning
of every single symbol or relationship.

This makes us extremely dependent on a standard notation for any soft-
ware-related communication and specification, all the way from a project
developing a system from scratch to one selecting an off-the-shelf package.
As development projects become increasingly global, UML also helps those
of us communicating in our second or third language. For example, IBM
development labs are located in dozens of countries, each with its own
native language or languages, or the new Airbus Superjumbo involves indus-
tries from most of Europe. Atop of that, all natural languages include some
natural ambiguity.3 All things considered, word processors aren’t enough as
a tool of specifying requirements.

Practicing a common approach or method framework across projects, sup-
ported by a regularly upgraded knowledge aid, such as online mentors,
built-in hyperbooks, or intelligent checks in a PC-based tool (a UML case
tool), is knowledge sharing in a narrow sense. With cheap tools, we simply
access the expert knowledge of others (typically, using standard search
engines and hyperlinks) whereas, with automation tools, we can even run it

Chapter 1 • Introduction 5

3 A fact easily “rediscovered” while we’re writing this book and asking others to read our
first-draft text.

on a computer, and then simply access the results of the run (or let the com-
puter use them), be it calculations or a more qualitative business logic.

We share pretested components across the firm and across the software
industry. This kind of “canned know-how” from colleagues is a superior
stage of knowledge sharing – we can activate the result right away, without
ever acquiring the know-how that created it. This component that encapsu-
lates the expert’s knowledge and experience is kept up-to-date by the expert,
leaving all the other developers free to concentrate on the business solution.
This is an effective technique and a rather down-to-earth one when con-
trasted to preaching knowledge management at a thematic level. As we
point out in the Chapter 6, this degree of automation can be increased fur-
ther by smart configurator tools in the near future.

By and large, we encourage IT teams to exchange and adopt best practices
from other sectors of industry. That said, we recommend knowledge industries
as sources of ideas: many Business Process Reengineering cases and books
described processes with a low-to-medium knowledge content, hardly applica-
ble in the context of software specification and development. Although the
bottom line might look deceptively similar, the devices and the activities gen-
erating that bottom line do differ, and those differences may be significant.

Sharing the Responsibility for Getting It Right
Even the buyer, the reengineer, or the process owner is involved in specify-
ing and improving requirements throughout the project. In any knowledge
industry, the customer and the vendor share this responsibility. Here, “the
customer is always right” translates into “the customer always has the right
to get the right solution to the right problem.” If you go to your car dealer and
order a thirsty six-wheel-drive monster for driving from home to a job just
around the corner, your dealer might laugh, as Figure 1-3 shows, but he
offers and sells the monster to you anyway. On the other hand, if you try

6 UML Xtra-Light

Figure 1-3. Some simple old approaches to customer requirements don’t count in a
knowledge industry because a shared responsibility exists for the specification and its fit-for-
purpose.

something similar in a knowledge industry, a serious vendor will raise strong
objections on the mismatch between the business and your requirements
because of this shared responsibility.

Sharing responsibility across the negotiation table involves communica-
tion at a pretechnical high level, as does sharing know-how within a team.
Having combined rigor with easy-to-learn diagrams, UML has proven to be
an excellent common IT language. UML is an unrivaled smorgasbord4 of
diagram ingredients matching a variety of needs. In business modeling, the
stakeholder or the buyer works closely with the project team, gradually
transferring work to the IT staff members as we move on (iterate) through
the full system-development cycle.

A standard notation (or modeling language) greatly reduces ambiguity
throughout the project.5 This is important because ambiguity is a major
source of confusion. You say the same thing, which is understood/reacted to
in different ways by the listeners. For example, the clear statement “secure
the building” will cause the Marines to form a taskforce and storm the
building, a legal department to negotiate a long lease on the property, and
the security experts to install and manage an access control system.

A good analogy exists on being multilingual. Milan speaks Swedish in
Stockholm or Czech in Prague, just as you’re fluent in your business lan-
guage, be it in reinsurance, meteorology, switching, billing, or train control.
Methodology experts or developers of a UML-tool understand UML at this
level of detail, that is, all the diagrams’ types, syntax, and rules. Milan can
also speak a “standard language” – English – in frequent areas such as soft-
ware, but not in areas like bug species (except software bugs of course).

Most software developers understand UML at this standard level.6 UML
resembles a grammatical language, such as Spanish or German, because of
its predefined syntax and semantics. Nevertheless, we approach it in quite
an idiomatic, example-based manner as common with today’s English. With

Chapter 1 • Introduction 7

4 Usually translated as “Swedish table,” a large table of ready-made dishes located in the
middle of a restaurant, where the guests choose and pick their preferred combinations and
quantities themselves, and then eat at their restaurant-tables.
5 Language and reasoning are closely interrelated. As UML pioneer Dr. Ivar Jacobson
points out, IT people used to think as humans until attending computer science classes at
the university level, where they learn to think as computers (i.e., sequential Von Neumann
machines splitting the world into data values and procedural instructions, which are
poorly, or hardly, interrelated). UML provides the language necessary for reinventing the
natural, human way of reasoning in the context of software systems. You can view it as a
set of well-defined, preshrunk, standard mind maps that are useful to both the project
team members and the software development tools to be used in the project.
6 Typically, they also provide UML guidance to others throughout a project. The IIIE’s list
of software requirement qualities implies a cooperation here, stating that requirements
shall be unambiguous, complete, correct, consistent, traceable, modifiable, understandable,
verifiable, and ranked for importance and stability.

this language metaphor in mind, we found several good Webster’s dictionar-
ies are around for UML (addressing the “native”), as well as an extensive
English course book or three (addressing the ambitious “guest scientist from
abroad”).

The missing link so far was a tour book on the language, accessible to
many “frequent visitors” in the landscape of software projects. This tour
book needs to fit in a lightweight cabin bag and be reasonably comprehensi-
ble, even during jet lags. From our customers, the pressure was on as well –
so we wrote one.

Overconsumption of languages is excellent for brains, overconsumption
of standard notations is far from excellent for a project approaching delivery
deadline. With the smorgasbord principle in mind, let’s pick up what we
want and skip the cookies. If you’re a software specialist, you’ll soon read
deeper books anyway.

Methods and Processes
UML standardizes the system documentation independent of how you pro-
duce it. Methodologies, on the other hand, are paths to take you from the
problem to the solution and, during that journey, deliver the relevant UML
diagrams.

UML provides diagram notations for most kinds of applications, so it
works with all up-to-date methodologies, that is, with a component-based
approach. Nevertheless, various practical methodologies are based on vari-
ous ambitions and priorities. Some organize the overall problem-solving
activities within a project – the cookbook approach – whereas others pro-
vide more how-to and the ingredients for the problem solver – the toolkit
approach. Likely, this scale looks familiar to most readers who are specialists
in non-IT areas. Of course, you can combine both ends of the scale in the
same project: the UML notation works fine. Let’s briefly compare three
approaches in the following:

The Rational Unified Process™ (RUP)7 makes the development process in
a software project visible, from inception to deployment. Stressing, step by
step, roles (30 kinds of “workers”) and responsibilities for 60+ predefined

8 UML Xtra-Light

RUP SFSelect Perspective

Specialist’s path:
Predeveloped
components

Generalist’s path:
Development
process

7 from The Rational Corporation; visit www.rational.com.

Chapter 1 • Introduction 9

B A S I C S TA N D A R D I Z AT I O N A N D C R E AT I V I T Y
B O O S T E A C H O T H E R !

The recent standardization effort put into UML resembles trends from knowledge
industries of the past. For centuries, classical music has been pushing its ubiquitous
mix of science and creativity on a global market. We also find standard constructs in
the American tradition, from a 12-bar blues to a jazz standard tune. Interestingly, when
scaling-up sheer creativity into a knowledge industry, people always try to standardize
the basics, to enable a shift of focus from low-level work to the big picture, that is, to
what we do with the basics.

Unsophisticated music is as old as humanity itself. However, the “Big Art” music of
the Western world emerged from extensive standardization only a couple of centuries
ago. Before J. S. Bach, most churches used their own proprietary scales, some of which
were impossible to play on instruments. Also, a tone could be pitched differently in dif-
ferent scales; thus, the same tone was played on different keys of the same keyboard.
In cooperation with keyboard vendors, Bach pioneered standard tempered scales (major
and minor, with standard tone intervals), enabling a leap in composer work and in
interplay of instruments. A century later (W. A. Mozart and the classical period in
music), common architectural templates already existed, such as a concerto in three
movements (the slow one in the middle) or a symphony in four movements (the two
slow ones in the middle, the latter of them a minuet.*) Similar architectural rules also
governed the structure within each movement. A de-facto standard guided staging
appropriate numbers of appropriate instruments in an orchestra, which gave the com-
poser the necessary hints upfront in “design time,” while composing the music –
regarding the hardware to deploy the music later, onstage. As musicians were always
borrowing-extending-reusing jerks and themes invented by someone else, even what
we now call a component approach became frequent in the beginning of the classical
period. For example, in large divertimentos, an evening or event was configured from
a small “library” of ready-made components (movements). This greatly simplified and
streamlined the requirement specification, yet matched the preferences of that particu-
lar evening’s sponsor.

The long-term focus on Mozart in most creative professions** creates a major
obstacle for a minority of programmers still trying to claim “no standards and no com-
ponents, please – this is creativity.” Long-term experience from other knowledge
industries indicates exactly the opposite: extremely creative individuals benefit from
architectural standards and components.

* To be exact, Mozart’s Prague Symphony is the widely known exception to this rule because it omits
the minuet movement (according to the BBC’s “Best on Record,” some 80+ recordings of the sym-
phony exist worldwide).

** Many readers might remember Milos Forman’s film Amadeus or Ingmar Bergman’s Magic Flute, or
several BBC documentary films on Mozart’s music (among others). The creativity dimension was
recently explored by Don Campbell in his book The Mozart Effect (Avon Books, 1997) and his CD-pro-
duction, Music for Creativity and Imagination (Spring Hill Music®, 1997). In arguing that history repeats
itself, we’ve also checked facts with Jiří Kratochvíl (Milan’s father), a woodwind history expert at the
Prague Academy of Music (see Pamela Weston: Clarinet Virtuosi of Today, Egon Publishers Ltd, 1989).

kinds of artifacts, RUP is a process framework suited for large projects,
roughly of 70 members or more, with a large number of components to be
constructed. RUP also outlines splitting the project into use-case-based (see
Chapter 3) miniprojects, some running in sequence and some in parallel, in
several iterations. Because RUP is distinctly use-case driven, some strengths
and limitations of use cases affect the process itself. For example, a data ware-
house/data mining or knowledge-based system implies hard work inside the
system, despite rather simple external interaction, whereas use cases are easy
to apply to telecom switching or to order handling, where a much larger pro-
portion of external interaction (often with end users) takes place.

To a potential user of the process, we strongly recommend acquiring a
thorough knowledge of UML to ensure the right aspects are dealt with in
the right documents (artifacts). Providing guidelines from the requirement
specification all the way to test, the process has become rather heavyweight,
which implies some extensive process customization to start with to make
the process fit the purpose. This customization needs to be done in two
steps: first, for the enterprise, and second, for the project. In some 4,000+
web pages, this process framework defines roles, artifacts, work flows/activi-
ties, and project management.

IBM’s WebSphere® Business Components,8 an application framework
previously known as the SF (for San Francisco or Shared Frameworks) is, on
the other hand, a wholly component-driven approach. IBM supplies off-the-
shelf, pretested components, books, best practices, and instruction to solu-
tion suppliers who target customers requiring e-business, CRM, and ERP
packages. Thus, SF is a component framework for application projects – large
or small ones – typically employing more reused pretested components than
new ones. SF motivates the doers rather directly: here we have a box of soft-
ware Lego bricks and the directions for use, so let’s go ahead.

SF’s strengths and limitations are typical of a specialist’s method. Such
methods are precustomized for certain systems – in SF’s case, the closer to
ERP/CRM/e-business, the more useful it is. We hope similar complete frame-
works will also emerge in some other niches. By shrinking development
timescales, SF guides projects into smooth construction work: more assem-
bly, less programming. As senior developers at Swedish ERP-vendor IBS9 as
well as their R&D Manager and Vice President Tomas Bräne points out, hav-
ing found a couple of appropriate SF components, a day might sometimes
be enough to develop a sophisticated “new” one.

10 UML Xtra-Light

8 from the IBM Corporation; visit www.ibm.com/software.
9 At the end of 2001, IBS is ranked third in the world by AMR Research, and Frost & Sulli-
van in the field of supply chain management (visit www.ibs.se).

Aonix’s Select Perspective™10 is a balanced component-based approach in
the middle of the previous scale. It fits medium and large projects using a
medium-to-large proportion of pretested, internally developed (and owned)
components. Along with that, Aonix suggests employing IBM’s SF compo-
nents off-the-shelf, whenever appropriate. Guidance is delivered by books,
instruction, and an interactive manual (Process Mentor) integrated in Per-
spective’s UML-toolkit, the Select Component Factory. An object repository
is used to keep track of, cross-reference, and manage both project docu-
ments and common enterprise ones (cross-project), large or small. For exam-
ple, if phone-no is used in 20 components and we have to add three digits
to it for country codes, we alter only once. A practical interplay of compo-
nent management and application development is stressed throughout.
Select Perspective’s range is wider than SF’s and narrower than RUP’s: enter-
prise systems in finance, government, administration, airlines. Select Per-
spective shrinks the development process, aligns requirements to business
processes, and enables more assembly from components with less program-
ming and with improved delivery times.

As you can see, people use UML in a variety of approaches. An enterprise
can easily put together a customized approach, based on one or more com-
mon process-frameworks. The OMG is currently coordinating the develop-
ment of a Software Process Engineering standard (SPE) with the longer-term
objective of providing interoperability across tools and formats (repositories)
in the software process-engineering field.11

Whichever your firm’s variant, make sure both systematic component man-
agement and continuous component development processes are alive and well.
They deserve the same priority as in other sectors of industry because future
reduction in costs and lead time, with improved quality and flexibility, justi-
fies this initial investment. Therefore, we stress the component approach
throughout this book and focus on components in the final chapters.

Summary
Knowledge industry, including software, is special in many ways. The
responsibility for a good specification is shared across the negotiation table,
thus creating a need for high-level, pretechnical communication. Because
software is intangible, we rely on well-known diagrams with a standardized
notation. Standards and components are a great boost to any knowledge

Chapter 1 • Introduction 11

10 from Select Business Solutions of Aonix www.aonix.com.
11 Visit www.omg.org/techprocess/meetings/schedule/SPE_Management_RFP.html.

industry, from extremely old and up to dotcom. Even a basic knowledge of
how to communicate in UML can prevent considerable ambiguity and mis-
understanding in a project.

The original influences on the UML standard were rather diverse, result-
ing in a kind of smorgasbord of ingredients that the enterprise can cus-
tomize quite easily to fit its needs. At the moment, the field of software
development processes isn’t as standardized as the UML notation. Process
standardization efforts are underway within the OMG. This work will take
time, however, but the big leap toward a standard notation has already been
taken and the UML works fine with any up-to-date development process.

12 UML Xtra-Light

Chapter 2

Aligning to the Business

Before modeling the design of the system, a project team typically
models the business processes to identify the scope of the planned
system and to ensure that any chosen system aligns to the demands

of both this business model and business vision.
A variety of possible diagram techniques exist for delivering this business

model, as well as possible levels of ambition. With business redesign, a risk
occurs of having eyes for nothing else but the modeling and ignoring some
real dangers. The hard work isn’t about creating a best-of-breed business
model; it’s about enforcing corporate change within the organization. To
remind the reader of these risks, we’ve made separate box diagrams of the
more fancy UML features. Here, lengthy modeling exercises might become a
convenient excuse for avoiding challenge and confrontation with the per-
mafrost layers found in many organizations. This challenge and lack of con-
frontation is a common pitfall in implementing new business practices.
Therefore, process innovation methodologies spend little time analyzing the
current (as is) processes – often, a quick diagnosis is enough. Instead, we
focus on the new business models: the business to be.

Ownership of the business models must remain with the stakeholders

13

and process owners. This avoids the danger of the new processes being seen
as the work of the IT department, which can lead to rejection of the models
by the process owners. It must be made clear that the IT specialists act only
as agents in producing the business models.

Most business modeling methodologies try to structure activities, that is,
the everyday dynamics of a business. Others recommend using both dynam-
ics and structure in early business modeling. All things considered, we
always stress the view matching the nature of our business in a project, try-
ing out both dynamic and structural paths in a low-ceremony (quick)
approach, and then pushing forward through the most promising one.

In a knowledge-intensive process where a lot of knowledge is dispersed in
an unstructured form and held in many persons’ heads, forgetting about tra-
ditional industries and starting from structure and know-how is worthwhile.
These are represented in class diagrams, knowledge assets, business rules,
and so forth. We can eliminate most work flows early by aiming at an auto-
mated one-stop shop solution. As the UML provides a smorgasbord originat-
ing from several sources, its notation works fine with a variety of approaches
and priority objectives, as shown in Figure 2-1.

14 UML Xtra-Light

Figure 2-1. UML’s smorgasbord – ingredients originating from several fields and
appealing to a couple of fields each.

Data-Intensive,
but Simple, Algorithms

Flow-Intensive, Alignment
to Business Processes

Algorithm-Intensive,
but Simple, Data

Logic Intensive, Rules,
Cases/Analogy

Finance, ERP,
Enterprise

BPR, Process,
Innovation

Simulation,
and Technical

Knowledge
Engineering

Structured Modeling,
Computer Aid, Code

Generators

Business Rules
in Multiple Model Views

Dynamic Models,
 Use Cases,

Object Programming/
Machinery

External Process Model
Workflow

For example, when modeling a help desk for complex products, a tradi-
tional process model might show that each help-desk issue takes a carousel
ride through the enterprise, visiting the desktops of various specialists until
the issue is resolved. A structural approach, on the other hand, would stress
call avoidance instead, using computers to execute frequently used know-
how to resolve issues automatically, passing only exceptions to the human-
in-the-loop. In hi-tech industries, e-help desks are a good example of this
knowledge-oriented approach.1 Case bases being its simplest kind, adaptive
technology combines with the Web into an extremely powerful tool of busi-
ness automation. Where feedback of know-how from new real-world cases is
provided by thousands of web users, the system’s capability to resolve new
kinds of daily business problems will follow a steep learning curve, most
often keeping the whole support process a simple man-machine dialogue in
a semi-natural language.

With the process approach, two kinds2 of business process models can be
provided in the UML:

• Activity diagrams

• Business use cases, an extension to UML

Using UML Activity Diagrams
Like other process-flow approaches, UML activity diagrams show the com-
plete chain of activities for a single process. When there are many processes,
we recommend that the activity diagrams be complemented by some kind
of a graphical index of processes, for example, a simple, top-down process
hierarchy chart or a simple business use-case diagram.

Strengths
This process-flow modeling technique fits long/complex back-office process
chains, where other systems might be involved in addition to our system-to-
be and sometimes also interleaved with manual activities. If that sounds like
your project, then modeling the business process flows is what we recom-

Chapter 2 • Aligning to the Business 15

1 For an example of a case-based automated help desk, see Ask Iris Online.™ Ask a question, in plain
English, and Iris will try to answer it using a Toshiba knowledge base. www.csd.toshiba.com
2 You might want to investigate other alternatives further:

• Other process-flow notations (Catalyst, FirstSTEP, and so forth). The Workflow Management
Coalition also has a cross-tool standard Process Definition Language. PC-tools are around, some
of them supporting process simulation, what-if questions, and various resource-utilization/prod-
uct/efficiency analyses.

• T. Winograd’s Action-Workflow approach, top-down cycle-style.
• M. A. Jackson’s structure-influenced approach.

mend. Existing organization and software is often put in question and
reshaped as a result of this process analysis.

Limitations
Activity diagrams are usually less suited for knowledge-intensive activities,
however, where flows are a perfect solution for the wrong problem. They are
also less suited for front-office (e-) activities where the customer clicks/jumps
more freely across processes, thereby turning our business process redesign
into event-driven dialogue design, whether we like it or not.

Because a picture is worth a thousand words, we have shown several
examples of business process models using UML-activity diagrams:

1. Drinking in Florida

2. Drinking in Prague

3. Drinking in Stockholm

4. Drinking in 2080

Drinking in Florida

Figure 2-2 shows the basic thirst-slaking process for any business intending
to stay in the sun, for example, Florida.

With the variety of paths offered under a variety of circumstances [condi-
tions], the benefits of diagramming the flow become visible. The icons in an
activity diagram are simply activities performed by people, machines, or
both. Most often, we focus on activities and postpone (or skip) issues like
who will be doing what (see the box on p. 18).

As you can see in Figure 2-2, an activity can even have multiple exits,
labeled by [conditions] (see Ask for a Soft Drink). It can have multiple
entries, interpreted in an OR manner: the activity is simply triggered, no
matter which way it has been currently entered, as is the case with Pay. Con-
ditional paths might even be shown explicitly by decision nodes (see the
box on p. 20).

The horizontal bars, called synchronization bars, start and end parallel
activities, which is a major point in any process redesign. For example, to
improve lead time, we either remove an activity or choose to perform it in
parallel with other activities.

From this point of view, most old procedures were excessively sequential,
which can be diagnosed from a bar shortage in the activity diagram. Where
drawn at all, the as-is diagram version often grows to a rather unstructured,
wallpaper-sized sketch, so we usually skip it.

S W I M L A N E S

16 UML Xtra-Light

Drinking in Prague

Figure 2-3 shows a thirst-slaking business process in Prague where “one XL
size fits all.”

In Prague, for the last thousand years or so, native pub customers have
always expected only beer.3 This has resulted in a remarkably simple work-
flow. In some pubs for locals, taking a seat makes an appropriate number of
pints (half-liters) emerge automatically on the guests’ table, without an
explicit order – a true management-by-exception style. You drink the beers
placed before you, and then, in time refuse any more beers. No explicit
order occurs because entering the pub (a business event4) translates into an
implicit one.

Figure 2-3 shows that where an activity is entered once and repeated

Chapter 2 • Aligning to the Business 17

Figure 2-2. Drinking in Florida

Ask for a Hint

Order a Pepsi

Order a Cola

Ask for a
Soft Drink

Pay

Drink

[Done]
[Reject All Choices]

[Other Drinks Only]
[Cola Available]

[Pepsi Available]

Check Prices

Order Other
Soft Drink

3 Proving that reducing customer uncertainty by offering standardized products was practiced centuries
ahead of the current global trademarks and brand marketing!
4 You’ll discuss events often when producing activity diagrams. They are the key triggers to all main
processes.

S W I M L A N E S

Where “who does what” is important, some projects prefer a layout consisting of sev-
eral parallel swim-lane partitions within each activity diagram (see Figure B2-1). Lines
show the lane boundaries – with one department, person/role, or software component
responsible for each lane. This adds the dimension of responsibility and exposes “hand
overs” between different groups, which often causes process problems.* Most UML
tools support lanes.

In our experience, this is a later step because ahead of responsibility issues, the ini-
tial activity diagrams must capture the “what” and “what order” of the proposed busi-
ness process. If we try to start from responsibility instead, we often get stuck in old ver-
tical organization models and their functional, non-process ways of thinking. In
addition to this mental trap, many organizational units or automated software compo-
nents responsible for the proposed activities still remain to be specified and designed
down the road. Processes are horizontal and cross-department, so process redesign typ-
ically postpones the issue of responsibility. The typical course of steps here is customer-
value/process objective – order of activities – responsibility. Also, all these steps show
how important it is for the business experts and the process owners to become closely
involved at this stage.

Order a Cola

Customer/Parent Customer's ChildShop Assistant
or Machine

Submit the
Money

Accept Order
and Payment

Deliver the
Cola

Drink Cola

Figure B2-1. Swim lanes. With thirsty children or teenagers, a cola-order process
can be partitioned into three swim lanes, showing each responsibility partition.

* With parallel workflows, the communication between the threads is more restricted in the UML
than what is common elsewhere in “flow” style diagrams.

many times, it is modeled as one icon with an asterisk symbol (as is the case
with Drink), and then terminated by an arrow with a condition saying
something like [Refuse another one] or [No more left].

Here, the management-by-exception style leads to a greatly simplified
business process. This process simplification is common in full-scale projects
as well. Flow models, such as activity diagrams, tend to evolve into rather
simple ones as a result of process redesign – as some activities become super-
fluous, some are merged, and some are automated. This example also illus-
trates another common problem, however, as extreme process-optimization
introduces the risk of tunnel vision, translating into long-term costs some-
where else. In this example, the long-term costs are certainly transferred to
the health care sector.

As you can tell from the [Beer sold out] condition, modeling rare error
handling isn’t relevant because those can be taken care of manually, along-
side/outside this process. For the first version of an activity diagram – and of
any dynamic model – make sure to target only mainstream scenarios, that
is, the basic course, the happy path, the golden case, and so forth. Where
necessary at all, extra detail is introduced in the next version. Here, we
made such an addition, marking it as a dotted line. In our experience, such
additions emerge from security and control issues, rather than from the pri-
mary objective of the process.

Figure 2-3 shows the basic drinking process in this streamlined kind of a

Chapter 2 • Aligning to the Business 19

Figure 2-3. Drinking in Prague.

Sit Down in
Pub for Natives

Drink

Pay

[beer sold out]

[beer arrives automatically]

[refuse another one]

[done]

*

Prague pub. This order and consumption process can be complemented by
the matching supply process: a waiter waiting for the customer, opening the
next barrel, pouring the beers, serving tables until an order is refused, col-
lecting payment, tidying the table. This might introduce the concepts of
waits (see the Dangerous Waits box on p. 22), as it is important to show
other waiter activities when they’re waiting for customers.

20 UML Xtra-Light

D I A M O N D S M I G H T N O T B E Y O U R B E S T F R I E N D !

UML even allows diagrams showing decisions as explicit nodes (empty diamond icons)
(see Figure B2-2). But, in practice these lead to lengthy discussions on gray-zone deci-
sion activities. For example, a decision step that includes work, like searching for and
fetching the things to be decided on, such as beverages, is an activity and needs to be
described as such. Therefore, if a project is pedantic on decision nodes, the size of the
diagram tends to double. Remember, the meaning of the model is exactly the same
even without the explicit decision nodes, that is, with arrows drawn directly from the
preceding activity icon.

Clutter (rather than glitter) in the diagram is the smaller problem. The bigger prob-
lem is the time spent discussing those gray-zone steps that some team members view as
an activity and others see as a decision. That’s why we skip the diamonds in Figure B2-3.

A Branch Diamond

A Merge Diamond

Fetch a Can

Do Beer
Activity

Do Next
Activity

Do Cola
Activity

[got cola]

[got beer]

(continued)
Figure B2-2. Decision nodes separated. All that glitters is not diamonds.

Drinking in Stockholm

Figure 2-4 shows a future thirst-slaking process demanded in the past by
some humoristic students in Stockholm.5 Suppose the customers are being
connected directly to the brewery, then the complex flow of process steps is
replaced by the rather literal flow of liquid to the customer.

This is an innovative process redesign, illustrating at the same time the
limitation of activity diagrams and flow models. With a high degree of
automation and self service, lengthy work flows collapse into only an activ-
ity or three. So, as the activity-diagram exercise nears completion, the dia-
gram itself tends to disappear.6 Ideally, the process modeling might deliver

Chapter 2 • Aligning to the Business 21

D I A M O N D S M AY N O T B E Y O U R B E S T F R I E N D ! (cont.)

Do Beer
Activity

Do Next
Activity

Do Cola
Activity

[got beer]

[got cola]
Fetch a Can

Figure B2-3. Decision nodes implied due to guard conditions. The mean-
ing of both diagrams in this box is the same.

5 A practical joke by a couple of students at The Royal Institute of Technology in Stockholm, Sweden,
was the purchase of only one stock share in Stockholm’s largest brewery. Since then, they’ve attended
every annual meeting of shareholders, proposing repeatedly a large pipeline across the city to connect the
brewery directly to the school (a “major customer to-be”).
6 This is a simple order-process example, but a high degree of automation has also been tested with
knowledge technologies in other processes. For example, the brewing process in North America, by
Beck’s Brewery (www.becks.de).

an almost-empty diagram of the process-to-be, replacing a wallpaper-sized
process-as-is, and resulting in some jokes about what management consul-
tants are paid for. However, this is a logical consequence of the objective to
accomplish more by less (“less is more”).

Business automation also results in increased complexity within the sys-
tem. This is prevalent when attempting to model processes involving cus-
tomers’ use of the Web. Web-based knowledge processing offers a shift from
zigzag work flows to a one-stop shop that makes the process model look
rather brief. This is caused by complex business logic – recently performed by
people – moving from the outside to the inside of the system and, thus,
turning business complexity into system complexity which needs to be
modeled in other kinds of UML diagrams. Remember, the complexity is still
there, except for some redundant activities being eliminated, but now, it’s
encapsulated within the future system.

Drinking in 2080

Imagine a new company called Wet-Liquids.com that delivers drinks to
subscribers in smart houses in the year 2080 – a future thirst-slaking busi-
ness. E-beer/e-cola can be downloaded on request to registered drinkers
with payment made against drinks consumed. If this sounds too futuristic,
then think of download-on-demand books or music instead, where this
distribution channel is already being used. Otherwise, just suppose our
firm of 2080 has several e-brewing patents pending that connect the Net

22 UML Xtra-Light

T H E D A N G E R O U S WA I T S

In a flow model, like an activity diagram, it’s practical to indicate waits because chal-
lenging them is the point of the whole exercise. If an insurance policy, for example,
takes four weeks to complete, while total active time, with our insurance people work-
ing on it, is only four minutes, then we obviously need a new, more straightforward
business process. If we’re in luck, we get rid of the wait in the final process version. If
we’re unlucky – as the cause of the wait might be beyond our control – we mark it
visually, to target it in the future.

Furthermore, by examining these wait points and asking “what happens if the
expected event doesn’t happen?” usually uncovers new functionality and requirements
for the planned solution. In our insurance example, an obvious question is “what hap-
pens if the policy isn’t completed in time?” Are there penalties? is it no longer legal?
can we sue someone? are customer claims valid? and so forth.

to water pipes, applying a kind of telecom package-switching technology
to liquids.7

Old, semi-manual work flows have disappeared because of extensive
automation. Business process logic has become system logic, which simpli-
fies our business model and makes activity diagrams less useful. We need
another way to express the business view. This is when Jacobson’s business
use-case diagrams are more appropriate for specifying requirements for such
highly automated systems.

Using Business Use-Case Diagrams
Business use-case diagrams emphasize value added and roles, called business
actors and business workers, thus sharing some strengths and limitations with
use cases (see Chapter 3). Generally speaking, a use case can be explained in
detail in a description of the sequence of activities. For example: customer
selects type of drink, system checks if valid request (depends on subscription

Chapter 2 • Aligning to the Business 23

7 According to some European newspapers, The Coca-Cola Company is about to test a prototype cola
distribution through the water supply system in New York. Test households then literally add the com-
pany’s essence to carbonated water. However, according to The Coca-Cola Company, that prototype -
doesn’t exist. If this is a practical joke by a news agency, we think it’s a good one and let it reappear in
2080 because, although appetizing in flow models (as shown), beverages are far from a hi-tech commod-
ity yet. On the other hand, it’s a commonly known one. Unlike hi-tech products, this commodity also per-
mits book examples to stay futuristic, yet lightweight (roughly, the opposite of regular frequenters).

Figure 2-4. Drinking in Stockholm. The flow of process steps has been replaced by a
literal flow of liquid to the customer.

Tap a Pint
and Drink It

Pay online

[no more, please]

[done]

*

and type of drink), system either dispenses drink or refuses request. If the
sequence is too complicated and involves waits, and so forth, then an activity
diagram offers more expressive power than a business use case.

Strengths
Business use cases typically fit front office (e-) activities with external inter-
actions where external business actors, such as customers or suppliers, tend
to skip across processes as they want. Where this is the case, we might need
to structure the dependencies between processes, sometimes borrowing even
standard use-case relationships from the next chapter.

When published several years ago, business use cases met much less
enthusiasm than Ivar Jacobson’s use cases did in general. Customers were
modeled as end users of a business, but this user relationship becomes rather
literal as businesses make web sites their front offices. A new niche for the
technique is thus emerging from a gray zone between traditional business
modeling and standard use cases.

Limitations
This technique alone doesn’t visualize long back-office style process chains.
If these seem important to our project, we stress business process flows and
we use activity diagrams.

Also, in a knowledge-intensive business, this technique is a starting point
– not the point. Under such circumstances, we have to express business rules
and constraints early or derive them by information-mining techniques,
such as rule induction, or capture real cases in a case base. In businesses
with high knowledge content, standard mainstream modeling tends to solve
peripheral problems and avoid facing the challenge of describing the knowl-
edge itself.

Figure 2-5 shows the four business use cases for Wet-Liquids.com. Each
use case corresponds to a business process that might develop into a larger
system use-case structure. This can even work without an activity diagram –
as all activities are moved into our e-business system. This is an example of
the gray zone between business-process modeling and standard use cases.
Here, the technique is accepted as natural by most people.

In Figure 2-5, a business actor called “Customer” (stick person icon) par-
ticipates directly in one business use case at a time, maybe using a graphical
menu.8 Use-case icons with a slanting line denote the business use cases,

24 UML Xtra-Light

8 Even in the past, however, with customers typically serviced by middlemen’s hands (i.e., by front-
office personnel), the diagram would look the same. The customer is viewed as the end user of the busi-
ness process.

whereas system use cases don’t have the slash. No matter what the notation,
we recommend you model use cases in two levels of detail to avoid a split of
focus: the business level and the system level.

With this kind of dialogue structures and interdependencies, use-case
modeling (the next step is covered in Chapter 3) is a practical technique in
the dialogue with analysts or system designers.

But What About the Data?
We have several reasons to keep data modeling short in this lightweight
book. As we explain in Chapter 7, data modeling is a technique suitable
later on in the development process and, in addition, it has been covered
thoroughly for decades.9 Also, in UML, we typically model both information
and what the system will be doing with it. This is shown in the structural
view (see Chapter 4).

Chapter 2 • Aligning to the Business 25

9 However, at this stage (the process model), some people list the assets needed by the process: person-
nel, machinery, raw materials/hardware components, knowledge/business rules, and even information,
including the inputs and outputs to the process (typically, by simply referring to existing ones – at this
stage, we’re concerned with the main items, such as personal details). Using a repository (a database of
UML definitions) this can be done by cross-referencing the relevant parts of the process-model view and
their corresponding parts in the structural view.

Figure 2-5. Drinking in 2080.

Pour Drink

Register as
Subscriber

Pay Drink
Account

Request
Support

Customer

Summary
Unsurprisingly, when aligning to business, we start with a business model,
consisting of up to three views:

• The process-flow view. UML activity diagrams mirror the course of
activities in a flow, stressing the structure of a particular process. As
the process innovation or automation exercise nears completion,
they might collapse to near zero.

• The e-view. Business use-case diagrams mirror a set of (sometimes
automated) procedures, some of which can be shown in detail in
activity diagrams. As the focus is on several processes, they can be
useful where e-customers use the business in an ad-hoc manner, fre-
quently crossing process boundaries. In most methodologies, we
continue from business use cases into standard (system) use cases
(see Chapter 3).

• The knowledge view. A third, structural view becomes necessary
where the domain is complex or knowledge intensive or the
processes are too simple. The structural view is provided by class
diagrams (see Chapter 4). We often need to add rules or case bases
to this view.

26 UML Xtra-Light

Chapter 3

Adding Rigor
to the Requirements

Business modeling concerns process owners, reengineers, or business
analysts with IT specialists in an advisory role. Later, in class model-
ing and especially in object interaction modeling, IT people become

the driving force. Here, in adding rigor to the requirements through use-case
modeling, there’s a shared effort. Business experts provide the essence of the
requirements, while IT specialists provide the structure. Having modeled the
business, we now start aligning the system specification – most of it being
the functional requirements – to the requirements of our business processes.

A diagram technique for this is very widespread: UML standard use cases
that were pioneered some 20 years ago by Ivar Jacobson. Use cases are simply
the ways in which the actors use the system. A similar step is natural in any
knowledge industry because exact requirements minimize lead time and
misunderstandings.

Use Cases
Human-computer interaction (HCI) is a vast field, to which use cases con-
tribute with a practical, down-to-earth technique for the doers. To end users

27

of the planned solution, the user interface often seems to be the entire sys-
tem. Use cases extend this simplified view by modeling what’s going to hap-
pen at the user interface, as well as interfaces to other systems. Use cases,
interface layout examples, and prototypes complement each other, so they
fully define the functional requirements of the system. Any remaining UML
diagrams specify the inside/kernel of the system hidden behind that inter-
face. The expectations to be met are similar in all three of the use cases, lay-
outs, and prototypes:

• Users need to rely on/feel comfortable with the system.

• The HCI feels easy, yet not boring, and it matches both common
standards and the user’s view of the business activity.

Sometimes, one use case can involve multiple forms of user interface. For
example, in a management game, all these kinds of views might be available
in parallel, as separate windows or as several partitions of the same window
in a use case like “Your next move.” For example, the views may include a
world map, 3-D movie shots, diagrams of results, and a control panel with
sliders for allocating/increasing/decreasing investment to various areas. Also,
a web-dialogue use case, such as e-purchase, can span four or five form pages
in only one use case, which isn’t completed until the last page has been suc-
cessfully submitted into the system.

Functional requirements are expressed in this UML use-case model,
whereas the nonfunctional requirements are recorded in supplementary
text, such as separate e-documents,1 or as footnotes to UML documents.

Requirement elicitation takes considerable cooperation in brainstorming,
workshops, interviews, storyboarding, and prototype evaluation. Use cases
work fine as long as you use them to specify functionality as external interac-
tions in the right place: the system boundary. This takes some experience and
common sense, so we provide “warnings” toward the end of this chapter.

Strengths
More than any other technique, use cases make external interaction require-
ments clear, including their interdependencies. This provides an answer to
the challenge of many, complex, or important external interactions. For
example, those for mobile phones, switching, booking, or incoming orders.
Use cases simplify some additional activities, such as project management,
mentioned in the section “Use-Case Example.”

28 UML Xtra-Light

1 We use the term “e-documents” throughout to indicate those documents produced by
the varieties of word processors and in various formats, including HTML.

Limitations
Sophisticated systems hide a complex interior behind a surprisingly simple
exterior. For example, on icy roads, drivers don’t expect a complex user dia-
logue from antiskid systems and stabilizers, but they do expect stability and
survival to be delivered automatically. With knowledge systems, data ware-
house, or data mining, standard use cases can only provide a sketchy starting
point, rather than the expected hints about our system-to-be. Sometimes
these starting points are as simple as Start, Stop, Repeat. Furthermore, in
complex agent/batch processing, systems often behave like (human) actors:
rather than being driven by external interactions, they can be self-driven by
internally generated events. In all similar cases, you need to specify the struc-
ture of your system-to-be early on in the project to get a realistic picture.

Why do we have rather general expressions like “actors” and “use cases”?
One reason is the practical convenience of a brief, well-defined term. An

actor covers both “a person like a user or system administrator” and “an external
system interacting with our system-to-be.” Similarly, a use case – “a behaviorally
related sequence of interactions, performed by an actor with the system” – cov-
ers a variety of external interactions, from a user dialogue to a stepwise hand-
shake between two software systems without humans in the loop.

Before we start to identify the use cases, we list all actors supposed to be in
touch with the system boundary. The list makes it easier to determine the use
cases required by these actors. Jacobson’s original Swedish term (aktör, with a
double-dot above the o) corresponds to “actor” in a market-like context,
rather than on stage. Typically, an actor has a well-defined role within a busi-
ness and some of the actor’s business activities become use cases in our sys-
tem-to-be. For example, in a system specification for a theater, UML actors
are payroll clerks, producers, marketing personnel, external travel agency sys-
tems, and so forth.2 Any actor can be involved in a single use case, or several
use cases, with or without other actors, as we can see in Figure 3-1.

Use-Case Example
In the business example for Drinking in 2080 in Chapter 2 (Figure 2-5), we saw
business use cases for downloading drinks and providing some online support.
As we look into the business use case called Request Support, the resulting use
cases for the system (called system use cases) turn out to be web-customer dia-
logues, as shown in Figure 3-2. The core is a mainstream system use case,
which is often outlined quite explicitly by the process-owner or reengineer.

From this mainstream system use case, others appear in the structure

Chapter 3 • Adding Rigor to the Requirements 29

2 They take part in system dialogues, rather than Shakespearean dialogues.

linked by use-case relationships (the dashed arrows in the diagram). These
related use cases – let’s call them mini-use cases – represent complementary
activities that are either less usual or common interactions reappearing in
other use cases. These mini-use cases and their relationships are usually
modeled by the IT staff, so for other stakeholders in the project, the ability
to read and understand the arrows will do.

In use-case relationships, the dashed arrows show the dependency and a
«stereotype» denotes a variant (this time, a variant of that dependency).
Thus, the «include» arrow between the use cases makes the mainstream use
case always include the mini-use case, that is, it’s dependent on that use case.
To get online support on our Web site, customers must confirm product

30 UML Xtra-Light

Figure 3-1. A system use case can be related to several actors, as is the case in Pay Drink
Account. An actor can be related to several use cases, as is the case with Web Customer.

Pay Drink Account

Request Support

Web
Customer

Card Fraud
Detector

Figure 3-2 System use cases for online support.

Confirm Product

Request Support

Browse Repair
Descriptions

Launch Advanced
Helper

View Videos

Extension points:
complexity; faq

<<extend>>
(faq)

<<extend>>

<<extend>>
(complexity)

<<include>>

Web
Customer

details. This mini-use case can now be shared by several mainstream use
cases, not only in support, but also in marketing or delivery planning. If this
mini-use case were made part of the mainstream, then the result would be
doubled maintenance in the future because changes to the product-confir-
mation mini-dialogue would be repeated in all those mainstream use cases.

The «extend» arrow between use cases makes the mainstream use case
pointed to sometimes extended by the one pointing to it. A condition will be
stated later on, referring to an extension point stated under the horizontal
line in the mainstream use case – for example, the extension point called
complexity. Another example:

Chapter 3 • Adding Rigor to the Requirements 31

G E N E R I C A C T O R S

UML also supports abstract (generic) actors,* such as “someone doing the bookings”
or “customer contact personnel.” Although not widespread, this simplifies both ven-
dor specifications for off-the-shelf software packages and enterprise systems that must
be adjusted to many local branches. For example, if you intend to sell a booking and
scheduling package to anyone from dentists to lawyers (as in Figure B3-1), the specifi-
cation can’t rely on actor definitions from a single sector of industry. Therefore, we pre-
fer a few abstract actors to start with for the use cases, rather than an ever-growing list
of “real” actors.

You can even let a single (“abstract”) stick figure generalize several roles in the same
business as long as it’s involved in the same dialogues.

Reception
Clerk

Nurse Dentist

Time Booker

Lawyer Driving
Instructor

* Abstract actors have their names put in italics.

Figure B3-1. An abstract actor represents several kinds of actors – often
from several business units – all of these using the system in the same way and playing
the same role in, for example, the booking dialogue. This technique comes in handy
where appropriate, although it is seldom used.

• If a possible repair is found, the customer can browse the informa-
tion and also view any relevant videos (another «extend»).

• If no repair is found, then the advanced helper is used to assist in
defining the problem.

Everyone needs some guidelines on reading the arrows here: unsurpris-
ingly, we always read in an arrow’s direction. Read the diagram once again if
you want.3 Thus, the «extend» arrows point the opposite way (to the main-
stream icon) because we parse them in their direction. Here. for example, we
want the (rare) Launch Advanced Helper mini-use case to extend the main-
stream one.

Because business experts or process owners prioritize the mainstream use
cases before the detail is added, most of these included and extending use
cases are discovered and defined by IT people as use-case analysis proceeds.
However, if we just list only the apparent ones among these mini-use cases
early for resolution later – simple footnotes in the mainstream description
will do – we’ll save time down the road. Again, the process owner provides
the essence here, the IT staff provides the structure, and a mutual dialogue
adds detail.

The result is a focused, structured, semi-formalized requirement specifica-
tion, beyond the expressive power of plain text. Some technology zealots
get bored by this unsophisticated work but, in any knowledge industry, a
well-thought-through specification saves considerable time. So, a project
manager must carry on with use cases and let such individuals program a
sketchy prototype instead. This prototype gives a facade that “fakes” the
events for some use cases, without having the real system in place. This con-
firms our interpretation of the specification.

Static layout prototypes like screens, windows, and web pages are a per-
fect supplement to use cases as use cases focus on the traffic (of transactions,
signals, and so forth) passing through the layout into our future system and
out from it. A layout visualizes only the look of the system boundary,
whereas a use case describes a course of events expected there.

Use cases help define the distinct system boundary early on in the pro-
ject, which is shown as the large rectangle enclosing the use cases.4 This

32 UML Xtra-Light

3 By the way, many first-cut use-case models tend to have an arrow or three pointing the
wrong way. This would make maintenance difficult because we’re unlikely to know the
details several months, or years, later.
4 In a complex solution where a number of systems might be communicating with each
other, sometimes it’s useful to show a rectangle for each system (often called a “domain”)
and the dependencies between use cases in different domains (for example, an activity dia-
gram, a business use-case diagram, or a high-level sequence diagram, mentioned in Chap-
ter 4).

early identification of the system boundary speeds the decisions on what’s
provided by users, by other systems (external and, therefore, modeled as
actor icons), and by use cases of our system-to-be.5

For Project Managers, use cases become useful in project planning and
monitoring. Stakeholders of the project – business managers, process own-
ers, and so forth – prioritize the use cases based on their importance or value
to the business. In the example in Figure 3-2, the top priority is for Request
Support (the mainstream), Confirm Product, and Browse Repair Descrip-
tions. The next priority would be View Videos and, finally, Launch
Advanced Helper, which would be handled by people following the early
deliveries of the solution. IT developers can then focus their efforts on
what’s important for the business and not what they think is the most inter-

Chapter 3 • Adding Rigor to the Requirements 33

5 This saves doubled effort across projects.

U M L U S E - C A S E G E N E R A L I Z AT I O N

A third kind of relationship applies when a use case provides a new “special” variant of
the mainstream one. A few steps can be added (that resembles «extend») and some
other steps are changed (this makes a difference because we alter rather than simply
complement a predefined course of events). Suppose you provide a special support
dialogue on our web site where customers get free support regarding our competitors’
products. This dialogue is only partly similar to the general mainstream one (same as
. . . , except . . .), as we can see in Figure B3-2. For example, this dialogue can be deco-
rated with tempting ad banners (promoting our products instead) and some spiteful
comments by a sharp and humorous cartoonist. So, although the customer objective is
the same in both dialogues, some steps leading there still differ. As we can see in this
dialogue, the definition of intent (or business value) tends to double where we’re
going to deal with direct e-customers. For example, where a customer intent (bug-
fixing) might be different from an enterprise intent (additional sales in the future to
beat a competitor) – both of them in the same use case.

Browse Repair
Descriptions

Browse Competitors’
Repair Descriptions

Figure B3-2. Use-case generalization. Here, we’ve joined them to beat them.

esting work to do, for example, the advanced helper. Use cases provide well-
defined sets of external functionality that aid IT developers in estimating
the effort required. Any use-case-based delivery schedule is more realistic
than the traditional approach of monolithic plans that imply “we’ll be fin-
ished in two and a half years from now, at 3:30 on a Tuesday morning. . . .”

Meeting the Devil
By and large, a use-case structure is easily understood: the “devil is in the
detail.” Each ellipse in the diagram must have a description that outlines the
course of events within the use case.

This might be complemented by more interesting details such as precon-
ditions and postconditions.6 If we apply a methodology or a process to our
project, then a predefined document template might already be supplied. If
we don’t, an enterprise template is easily developed from books. In a com-
pact approach, things that might be found in separate e-documents can be
made footnotes of a use-case description instead – say, some nonfunctional
requirements.

Here’s a generic template as a starter for your projects:

Use Case: Request Support

Objective/business value: Minimize customer downtime by
online support using semi-natural language queries for all customers

Delivery priority: High

Precondition: Customer identified and not on the hot list

Postcondition: Journal details of customer and case recorded

Steps

Actor: Enters license number

System: USE Confirm Product to match and confirm product type,
and then display Fault Report form

A: Enters fault description

S: Performs case-based search and displays list of possible conditions

A: Selects closest match or requests the Advanced Helper

34 UML Xtra-Light

6 Preconditions must be satisfied before the use case starts. Postconditions must be satis-
fied when the use case has completed.

S: USE Browse Repair Descriptions and View Videos for chosen match

A: Ends request

S: Record journal entry in case base (with customer and case details)

Footnotes

Advanced Helper is an agent-driven intelligent search (a separate
future use case)

Nonfunctional requirements and constraints

As per system availability, that is, 365 × 24 hour, downtime < 1 hour
per year

Case-based results on web server: 80 percent hit ratio (from case
bases of 200,000 accumulated cases and onward).

A simple use case and yet quite a list, isn’t it? Now suppose we didn’t
structure this as a diagram of several use cases. This initial list would double
at least, overloading the mainstream by additional detail about rare courses
of events.

The previous Actor-System-template is an effective reminder about the
system boundary, preventing us from rushing too far from it (see the follow-
ing warnings) as each A: simply “sets the agenda” here by referring to the
key actor (A-Actor) in the corresponding use-case diagram.7 This template
also copes well with changing requirements, as well as with sharing use
cases across projects.

The footnotes and nonfunctional requirements also provide a memory
boost later. This example list indicates already that the interactions
described by the use cases capture the starting point, rather than the full size
of the project. Getting the case base and the search mechanisms in place
will take effort. In other words, hard work is ahead, despite quite a simple
use-case dialogue. This is often perceived as an iceberg effect when an enter-
prise connects to the web – meaning, of course, real sales, not simply a tradi-
tional shop window or e-brochure with a few hyperlinks. As we move the
logic into the new system, many user interactions disappear, while the
inside of the system gets surprisingly complex.

Chapter 3 • Adding Rigor to the Requirements 35

7 Sometimes, other actors are in the use case, in which case you might choose to enlarge
this A stick figure to show the A-actor is the one who triggers the use case. A similar tech-
nique is showing this is an open-headed arrow pointing from the stick figure. Although
this arrow is common, some people still find it confusing because, in most A-actor cases,
the flow of information is bidirectional here: both to and from the actor.

If something like a semi-manual support procedure existed before, the
old system could be simple because logic looks deceptively simple, when
unstructured and/or inconsistent – in human brains and Post-it notes. How-
ever, business logic in heads of clerks would, for instance, hardly provide a
365 × 24 service to 500 parallel users in several languages.

Use-Case Analysis at Two Levels, At Least
In both the Unified Process and Select Perspective, a clear distinction exists
between a standard use case (called system use case) and a business use case.
In any process or methodology (including lightweight ones), two separate
steps are advisable, keeping these two levels of detail apart. To prevent end-
less discussions on clicks and technology issues, you can simply let the ini-
tial stage capture business events only (events like request support) and add
the complete bullet list (see the previous template) in the next stage where
system use cases mirror detailed user interaction, such as fill in, display, or
confirm.8

In the beginning of a use case, the key step of defining its business value
(or objective) hopefully implies an amount ending with many zeroes. Why
bother about that? Well, adding some measurable value is the purpose of
any use case. If you rush directly into detailed dialogue lists, you might miss
smarter ways to the goal, such as automation instead of interaction, in the
current version or in a later one. The tradeoff between user interaction “as
usual” and automation is a key point we stress throughout this book. In prac-
tice, this translates into a tradeoff between use cases on the one hand, and
business process and structure on the other.

An everyday-life example is paying your household bills. The objective is
simply staying creditworthy/sound and free from debts. Many people find
an Internet-bank dialogue state of the art. In many banks, however, there’s
also the automatic bill-payment option. Just pre-register all the accounts to
be paid to regularly and keep receiving the household bills as usual, except
for an important footnote on them, which says, provided no objection from
the household (as to amount, and so forth) the money will be transferred
automatically on date due without a human in the loop, management by
exception style. All you need do is file the bills and check the quarterly
reports from the account as usual. Computers simply do the daily work and
humans do the auditing. The goal remains the same. The way to get there

36 UML Xtra-Light

8 The initial stage includes only events corresponding to the last confirm (or submit-click)
of each dialogue or, more precisely, the instant when a business event proceeds from the
interface into the kernel of the system. Thus, the second stage adds the remaining
“preparatory” fill-ins and clicks preceding this final confirm.

has been straightened, changing most of the complexity from external to
internal (thus, no longer visible in the system use case Pay household bills).

A similar example is an engine driver on a high-velocity train. The goal is
clear because the business value of the Depart use case is the quick, safe,
environmentally sound transport of customers to their destination. In this
case, you can either rush into dialogues and a flood of windows regarding
weather, tunnel data, train priority, and so forth (as in Figure 3-3a), or you
can have the driver push a Notify ATC system button and depart (as in Fig-
ure 3-3b). The dialogue is close to zero, yet, the value is added anyway.

Chapter 3 • Adding Rigor to the Requirements 37

Figure 3-3a. Interaction, MS Windows style.

<<extend>>
(Tunnel Status)

<<extend>>
(Wind)

<<include>>

<<include>>
<<include>>

Depart

Enter Route Enter Traffic Lights

Enter Track Number

Enter Tunnel Detail

Extension points:
Wind; Tunnel Status

Engine Crew
Member

Enter Wind Detail

Figure 3-3b. Automation, twenty-first-century style. Click and let the system do the rest.

Depart

Engine Crew
Member

Guiding the train to its destination, today’s Automatic Train Control (ATC)
systems then communicate directly with the onboard software of the engine
and with other engines and systems as well. Again, the goal and the value
remain the same. The way to get there has been straightened, changing
most of the complexity from external to internal (thus, no longer visible in
the system use case Depart).

Recently, user interactions were considered by many as the essence of
computing. The automation approach usually puts that view in question.
The difference between the (a) and the (b) version is even bigger than the
diagrams indicate. In fact, the rather interactive, use case-based version (a)
of the Depart use case still omits the usual flood of technical, non-business
interactions, such as restarting Windows, running Scandisk, or starting an
antivirus scan – all of those too familiar to PC end users. In addition to this,
the rather automated version (b) of the Depart use case also contains an
extremely shrunken bullet list in its use-case description, along the lines of:

Steps

Actor: Pushes ATC button.

System: Performs the rest of the trip.

Nonfunctional requirements and constraints

System availability: i.e., 365 × 24 hour, downtime < 1 hour per
year

System safety strategy: whenever the kernel of the system and the
safety-checker subsystem arrive at different results, the system
must turn the red light on and activate all brakes of the train
immediately.

In fact, this rather minimal version captures the rationale behind modern
ATC systems. Unsurprisingly, we’ve no use of the use cases from 1995 in the
new, automated version as these two versions are totally different. Interest-
ingly, however, the objective/business value of the Depart use case is exactly
the same in both versions. So, although questioned by some people, the
business value statement is the only part of the use-case definition likely to
survive automation.

Some readers might remember a CEO of British Airways claiming that
tomorrow’s airplanes will be flown by a human and a dog: the human to
feed the dog, the dog to bite the human in case he/she tries to touch some-
thing. Apparently, such future systems will face the delicate problem of

38 UML Xtra-Light

switching the red light on and activating the brakes at the altitude of Mt.
Everest or higher. A safety mechanism useful in vital air traffic software is
based on triple subsystems: whenever any difference occurs in the results,
two “votes” override one “vote” when the system decides on appropriate
actions to be taken.

How to Avoid Messing Up Use Cases
People who are confident with use cases enjoy them, saving a lot of time
and misunderstandings. Some might have difficulty getting started with this
semi-formalized exercise, however, so we provide a list of traps below. Some
common blind alleys constitute a risk during the early days of the project,
where effort is spent on activities that have no part of the use-case
approach. Converts from older methodologies often insist on trying these
“mis-use cases” out in a project, but we always argue that staying away from
them is cheaper because a compact and effective UML documentation is an
act of balance among several views (“drawings”) within a model.

The Apollo 13 Syndrome

This is all about masquerading some high-level software components as use
cases, despite external interaction being equal to zero. Roughly, this is an
extreme form of functional decomposition, using a hierarchy of ellipses
instead of 1970-style rectangles9 (see Figure 3-4). This is an outdated idea
because functions are volatile – a typical change to a system is about altering
its functionality – whereas objects and classes (see Chapter 4) provide a
more stable foundation. This is why a use-case model of detailed system
internals is likely to make maintenance costs skyrocket. Let classes and com-
ponents provide the desired several levels of detail instead, working outside in
(not the opposite). Maintainable use cases stay on the system boundary, and
IT staff will later model the inside in a more formal way (for example, search
scenarios) in other UML views.

The Tying-It-Here Trap

A common symptom of this is a lengthy precondition/postcondition list in
each use case. Preconditions are great, if they don’t cross-connect separate
use cases (in other words, avoid sequencing conditions here). The more self-

Chapter 3 • Adding Rigor to the Requirements 39

9 In those good ol’ days, the top rectangle of a hierarchy could say “Fly to the moon” and
a leaf rectangle 20 levels below could say something like “Add one to count.”

contained the use cases are, the easier to change or reconfigure the business
process in the future or to share a use-case model across projects in an enter-
prise. This is a major point because of process redesign repeatedly altering
the process flows during a lifetime of a system.

Such sequencing conditions – not to mention manual business activities
– tend to press the entire business process into the use-case text template,
instead of a workflow providing literally the big picture, shown as an activity
diagram, across several use cases, interleaved with manual activities, if any.

Furthermore, only roles directly involved with our system-to-be become
actors, whereas those involved indirectly, say, a customer talking, faxing, or
mailing a customer agent (the real actor), are visible in the workflow or the
business use case only. The use-case model stays on the system boundary and
we work outside in, not from outside further outward, as in Figure 3-5.

40 UML Xtra-Light

Figure 3-4. Masquerading 1970-style functional decomposition as use cases.
This (outdated) path of reasoning most often results in skyrocketing maintenance later, no
matter what the shapes. It resembles speaking the words of a new language while insisting
on grammar and phrases from one’s “old” language.

Make
Rocket

Make Rocket

Make
Apollo

Make Lunar
Module

Make Lunar
Module

Go

Go

Fly to the Moon

Fly to the Moon

Add 1

Add 1

(...)

(...)
<<includes>>

<<includes>>
<<includes>>

<<includes>>

DANGER

Make Apollo

The Two-Models-in-One Trap

Many people do only a trivial use-case model, and then draw separate activ-
ity diagrams for each use case. With a tricky dialogue flow, consisting of
loops and conditional steps, this might become necessary, but there’s some
risk of structure moving away from one use-case diagram structure into many
activity diagrams. Generally speaking, use-case diagrams are powerful in
mirroring interaction structure and in keeping the interactions easy to
reconfigure as the business changes, while activity diagrams are powerful in
showing the big picture across several use cases in a business process flow, or
the workflow view. In a well-balanced UML model, changes in a business
process affect the activity diagram and not the rest.

The Value-Is-Self-Evident Trap

Rushing past use-case objective and business value right into interactions is
a 1990s PC-style approach. We find modern automation approaches more
often in IBM’s system management tools or in EHP Telecom’s10 telecom net-
work management tools than in enterprise systems. On the other side of the
PC coin, some under-automation occurred because of a preoccupation with
simple office software packages and the person in the loop. This leaves end
users with an information overload (too much to see), and powerful servers
lying increasingly idle. Often, e-business provided the lesson here, triggering

Chapter 3 • Adding Rigor to the Requirements 41

Figure 3-5. Masquerading workflow as use cases. This (wrong) path of reasoning
makes the system too sensitive to business process redesign. It interleaves the dialogue issues
into the current business process, which is likely to change in the future.

DANGER

1)

2)

Enter Long-term
Contract

Enter Customer
Order

Customer

Broker

Front Office
Order

10 Originally founded by Ericsson and Hewlett-Packard.

a renewed focus on automation of the business processes, for example, try
visiting web sites for home insurance11 quotes and see how automated these
processes have become.

As mentioned, an explicit business value statement in a use case even pro-
vides valuable hints on shortcuts and on how to eliminate the entire use
case in a future version of our system – by automation, by simplified busi-
ness processes, or by both.

The Smart Response Trap

This is when use cases tell too little about the system with an advanced kernel
hidden behind trivial interactions (Actor: Enters Query. Expert system: dis-
plays advice . . .). Other UML diagrams are used to capture important aspects
of a knowledge base or of complex batch and agent systems. Often, we also
need two rather simple use cases because of a time gap, splitting two business
events apart. For instance, number 1 “Order a batch report” done by a
human actor during office hours and number 2 “Run all the batch jobs,”
which is triggered at night by a separate actor, such as a Scheduler system.

Similarly, a Data warehouse or MIS might process aggregated data in 20
dimensions and display the results on the Web, GPRS/3G, Windows (all ten
versions of them) as tables, waves, bars, cheeses, and so forth. This might
make the layouts differ, but as long as the course of events in the user inter-
action is the same, we’re well off with only one use case covering all those
alternatives (see the box on the opposite page).

The Use-Class Trap

Many classes in an enterprise system correspond to business entities, typi-
cally persisting a series of use cases, with long idle periods between the use
cases. For example, a customer order goes through various stages in the busi-
ness process that alter the order’s state, say, from confirmed, to picked, to en
route, to delivered, to paid, along the lines of Figure 3-6. Some people tend
to merge several use cases regarding the same entity, but this is wrong. The
boundaries between use cases are provided by timing, not by components or
classes affected inside the system. Later, a state diagram showing the entity
life cycle tells the desired “dynamic” story per class, for example, for the
Customer-order class in our example.

Thus, use cases triggered on the same occasion are usually related,
whereas use cases affecting the same entity at different points in time aren’t
related. Keeping the use-case view apart from the internal views (see the fol-

42 UML Xtra-Light

11 Examples are www.theAA.com, www.insurancecenter.com.

Chapter 3 • Adding Rigor to the Requirements 43

PA R A M E T E R I Z E D U S E C A S E S

At the moment, neither UML nor the tools support parameterized use cases. By adding
such a compact construct, you can visualize the same dialogue being performed with
different input values resulting in different output layouts (or sorting, and so forth), yet
leaving the course of events unchanged. This saves dozens of trivial (and wrong)
extends or generalizations between use cases, especially in MIS, Data Warehousing, or
knowledge applications. Until having future standards and tools at hand, an enterprise
can create some temporary enterprise-wide agreement, for example, using color or
some proprietary UML-stereotype on the use-case icon («parameterized») or, tools per-
mitting, a UML dashed square listing the parameters on top of the use-case icon,* as
shown in Figure B3-3.

For example, imagine a weekly report per country and city, sorted alphabetically
from A to Z and showing market-share data as yellow “cheeses” on a map. This cer-
tainly differs in form and content from a quarterly report per product family and prod-
uct, sorted in descending order by launch-date and showing net margin as amber-col-
ored top portions of black bars of turnover. Some people tend to view this variance (in
layouts) as several use cases, arriving at wallpaper-sized use-case models. To prevent a

<<parameterized>>
Generate Statistics

Report

Generate
Statistics
Report

Amount, Color,
StartDate, EndDate,

SoftKeys, Layout

Cash Flow
Manager

Cash Flow
Manager

* The example reflects the fact that this compact approach typically fits systems or components
that provide information to decision-makers, atop the “operations information” provided to doers
in everyday business.

Figure B3-3. Parameterizing a use case for varying outputs – an example of
enterprise customization of a standard UML construct. Very different candy is going to
come out of the machinery, yet through the same course of events (dialogue steps) – in
other words, through the same use case.

(continued)

lowing chapters) makes things easier, preventing a split of focus.12 Also, if
you build application software, rather than an access control utility, actors
from the use-case view needn’t correspond to classes in the structural view
either.

The Useless User Trap

On one hand, end users of our system-to-be are a useful speaking partner in
human-computer interaction issues (dialogues, layouts, and so forth). On
the other hand, they’re often useless in big picture issues like business
process redesign, simplified work flow, business use cases, or an enterprise
business rule. They can, however, provide valuable hints on current prac-
tices breaking that business rule. Many projects run into a communication

44 UML Xtra-Light

PA R A M E T E R I Z E D U S E C A S E S (c o n t .)

conflict within the project between this wallpaper view and the compact view, we sim-
ply use parameters to indicate differences will exist (between the kinds of “candy”
being output), yet sticking to only one use case (Figure B3-3), as long as the course of
events in the dialogue is the same.

Notably, in both these examples, even the look of the user interface can be made
the same for both print requests: the actor selects kinds of amounts to be printed, out-
put colors, sort keys, and so forth by clicking on sliders and list boxes on the same
screen, no matter what the exact combination of output being requested.**An individ-
ual user might save a completely filled-in “favorite screen” or three for frequent print
requests (to reuse the filled-in values repeatedly, by simply clicking a Print button). But
to the system, all these are only one kind of layout with different input values. Thus,
both the dynamics of the dialogues (the use case) and the static look of the user inter-
faces remain the same. The mapping from different input values to their corresponding
output variants can be performed† by components in the kernel of the system.

** Stereotypes are UML’s amending mechanism to be used in creating your own variants of a stan-
dard UML construct, which is what we’re doing with UML use cases here. The dashed square is a
standard way of depicting parameterization in UML class diagrams (the structural view explained in
Chapter 4).
† Like parameterization in general, this technique not only makes the documentation compact, it
also greatly simplifies upgrades of the system. For example, producing a new combination of output
on a report in the future affects neither the course of the dialogue nor the layout of the user inter-
face. On these two reasons, a similar parameterized approach comes in handy even later, at the
technical design level, for example, in making only one user interface of only one system fit many
countries, languages, amount formats, date formats, and so forth.

12 Later, when we model the internal dynamics of the use-case interactions, UML sequence
diagrams tie the classes (via their objects) to the relevant use cases.

nightmare, which is easily avoided by simply having the right roles decide on
the right issues.

The Traditional Waterfall Project Trap

If you think the use-case model is 100 percent finished, then something is
wrong. It might be good – meaning easily modified, modular, well struc-
tured, self-contained – rather than finished forever. Requirement specifica-
tions and use cases in particular, do change at the same pace as business and
the forecasted rate of change is bad news for the traditional “waterfall”
approach to software projects. However, shared effort applies also to changes
in requirements. Changes within the use-case model have to be clarified,
estimated, priced, and planned by business and IT in cooperation.

Whatever the step, remember, all modern methodologies are explicitly
iterative. Therefore, use-case analysis reaches its peak early in the project, but
it doesn’t block parallel work on other UML diagrams. The particular mix of
issues and diagrams on our agenda depends on the nature of our particular
proposed system (see Chapter 4 for the structural view).

Chapter 3 • Adding Rigor to the Requirements 45

Figure 3-6. Masquerading an entity life cycle as use case extends (a menu-design-
zealot view). This path of reasoning makes business events difficult to track in the model. Use
cases can be interrelated if they happen at the same time, whereas, in this example, they are
triggered by separate business events on separate occasions. Therefore, all three of them must
be separate use cases related directly to the actor. How each of them affects the order can be
shown in a state diagram (see Chapter 5).

DANGER

Order Handling

Confirm Order

Enter Order Payment

Enter Delivery
Detail

<<extend>>

<<extend>>
<<extend>>

Front Office
Clerk

Summary
Now that we’ve defined the requirements with use cases, we’re ready to
specify the internals of the system in the next chapters – with classes, com-
ponents, and their interactions with each other to deliver the functionality
shown in use cases.

• Use cases define the system boundary, which is where we keep the
use-case modeling effort, too. We avoid a skid into internal detail, as
well as a skid into the surrounding business, away from the pro-
posed system.

• Use cases define system activities in terms of external functionality
based on business events.

• Use cases are powerful with systems that are going to interact exten-
sively with end users or other systems, whereas with many MIS,
Data Warehouse, or knowledge systems, we’re happy with few (pos-
sibly parameterized) use cases.

• Use cases involve actors that might be people or other systems.
Actors are the source where use cases come from and, thus, are a
good starting point.

• Use-case diagrams provide the structure of the interactions between
the actors and the system. Also, each use case must be comple-
mented by a structured bullet list.

• Use cases aid most stakeholders from analysis and design to project
planning and management.

46 UML Xtra-Light

Chapter 4

Sketching the
Inside Structure

Now that we’ve specified the external requirements, we begin map-
ping our system-to-be by sketching out its internal structure, gradu-
ally involving more IT personnel. Involvement of the stakeholders

depends on the nature of the system. If the system is to be highly interac-
tive, then much of the hard work has already been done during specifying
and defining the use cases. If the system-to-be is more complex than interac-
tive, such as a knowledge base, then you might have to do much more work
at this stage, for example, detailing the rules that affect each part of the
solution.

We’re also dependent on the skills of our IT personnel. Throughout the
project, experienced people familiar with both object methodology and con-
ceptual thinking will ask many of the important questions early in the spec-
ification stage, whereas new converts will appreciate more input from other
stakeholders, including help with first-cut key diagrams.

Because structure issues are key with most enterprise systems, we provide
boxes on some advanced constructs, as well as extensive footnotes on
details and semi-technical issues. We point out why some peripheral, or
seemingly peripheral, questions often emerge during modeling.

47

Some methodologies encourage a two-step process on defining classes:
first, model the business classes (the first cut), and then develop a complete
class model. In a lightweight approach, we can view these as two levels of
detail, which then gives an indication of the involvement of relevant busi-
ness expertise. The purpose of first-cut business class diagrams is to boost
communication between stakeholders and IT personnel on issues uncovered
during any development project. We use these class diagrams as a map of the
domain, showing the key elements (the kernel) of the system, as well as vali-
dating and verifying our use cases and process flow. This feedback loop is a
crucial part of the development process. By using the small set of UML dia-
grams, we can be sure, at each stage, the previous work still holds true. If
not, then we can change it early, thus avoiding later problems at the coding
and testing stages.

Class diagrams are crucial throughout the whole development cycle. As
we move forward, IT people add considerable technical detail to the kernel,
including the technical components. Many of those, like user interface com-
ponents of forms and buttons, are easily read “between the lines” of a use
case and its layout examples, while some require more experience.1 Along
with this, IT people are also responsible for making the structure maintain-
able and making its components reusable. Getting it simple and general is
vital, but this takes skills and time, as with most hi-tech products.

Class Diagrams
The structural foundation of our system-to-be is modeled in standard UML
class diagrams. As mentioned in the previous chapter, use cases capture
functional and, thus, volatile requirements, changing in future versions of
our system. Class diagrams, on the other hand, provide a static model in the
positive sense of the word. First, class diagrams model structure, which is a
static view, while other UML views provide the dynamic aspects. Second, in
the business logic layer (the kernel of our system-to-be), class diagrams mir-
ror real-world business artifacts, which undergo notably less change than
the functional requirements or the workflows. For example, from our initial
system for a few medieval-style pubs and all the way to our Wet-
Liquids.com net version (year 2080 style, extended functionality), the kernel
of the system would consist of rather timeless classes like Customer, Serving
(or Portion), Drink (or Beverage), Invoice, and so forth. Thus, class diagrams
set the stage, resilient to changing scenarios. This is sometimes called isomor-

48 UML Xtra-Light

1 All the detail is because of later automation: UML tools provide (“generate”) the struc-
ture-dependent parts of the code, in our particular programming language, instead of
spending weeks writing those parts manually.

phism: the real-world objects from the real-world business are mirrored in
their original form, directly in the system.

Strengths
Class diagrams are powerful on structural aspects. Much of their power is
because of modularity: although quite self-contained, many classes simply
complement each other. In practice, 80 percent of our classes might be the
“same as except . . . ,” that is, the same as some existing class except for a
few additional details – as is the case with Beverage and SoftDrink, as shown
in Figure 4-1. UML provides a construct called generalization, that enables
you to build layers of hierarchy from the generic down to the specific. For
example, we all have different kinds of bank accounts: checking account,
savings account, credit card account, loan account, stock account, and so
forth which have common features—account number, account holder, date
opened, various operations such as doWithdrawal or doDeposit, and so
forth – that can now be defined once in a class called Bank Account. If you
didn’t do this generalization, then you would be facing the burden of alter-

Chapter 4 • Sketching the Inside Structure 49

Figure 4-1. The timeless aspect. An example class diagram for Wet-Liquids.com.

price

fetchPrice

Liquid

dataDue

quantityServed

personalDetail

address
addCustomer

payInvoicecalculatePayment

Invoice

Serving
allergyRating

Detergent

percentAlcohol
Beer

tasteRating
rateTaste rateAllergy

Beverage

percentSugar
coolit payAlcoholTax

onSpecialOffer

Pepsi
percentVitaminC

Juice

startOffer
onTVCampaign

Cola

startCampaign

Soft Drink

Customer

Household

1 1

1..*

1..*

* *

ing, on every upgrade, these common features in every kind of bank
account again and again.

Limitations
Life cycles, messages such as transaction steps or signals passed between
objects within the system (see Chapter 5) and external functionality/use
cases (see Chapter 3), all belong to other UML diagrams.

The Class Diagram
Each class in the diagram starts as a simple box icon with a name to which
features (attributes and operations) are added. Later, the final class defini-
tion will include a complete list of all its features. In a first-cut class diagram,
we might prefer to show a key operation (or three) that handles key business
events. For example, in Figure 4-1, there is no class called “Payment,” which
implies a payment-processing operation is probably a part of Invoice.2 As we
discover first-cut business classes, we track the purpose of each class.3 For
the example of Invoice, we can say it has to record sold items, to calculate
monies due, to record payments, and to issue receipts. We can then leave
the precise class definition to the IT personnel.

Getting There
There are two families of class-discovery strategies:

• Business semantics-driven, which focuses on attributes (data).

• Business service-driven, which focuses on business events to be
processed (behavior), as understood from use cases and the dynamic
UML views.

In practice, we recommend a mix. If your project colleagues are experi-
enced in data modeling, then stress business events to start. If the majority
of your colleagues are experienced programmers, though, then stress (ini-
tially) business semantics (data) instead. This initial push is to ensure a long-
term balance in the mix of strategies, roughly fifty-fifty.

In our thirst-slaking business of Wet-Liquids.com, we begin by discover-
ing the key business concepts (usually identified as the nouns in documents,

50 UML Xtra-Light

2 We read such important operations almost as a part of the structure. This operation tells
indirectly why the Payment class wasn’t considered necessary.
3 In some cases, the enterprise might predefine its own, rather extended, set of class
stereotypes. Where this isn’t the case, we can use other means of expressing the purpose of
a class, for example, by listing high-level, business-event-related operations of that class.

including our use-case descriptions), as well as the key business events.
Skilled IT people can provide other stakeholders with a checklist as a starting
point and with a process framework or a book chapter as a guideline. Ini-
tially, we might arrive at a few dozen classes, whereas in a final, detailed ver-
sion for a full-scale object ERP package, IT staff might arrive at several hun-
dred (or even a few thousand) classes later. Some of these classes are
essential and will be encountered early. We then work through the structure
middle out – from business to technical, from key to peripheral, from typical
up to more general or down to more special.4

Although denoted by a noun in the singular, a class always defines all
objects of the same kind.5 For example, Customer would define all individ-
ual customers, that is, the common features of all of them. Serving defines all
individual servings, and so on.

Chapter 4 • Sketching the Inside Structure 51

O C L A N D K N O W L E D G E T O O L S
T RY T O R U L E O U T R U L E T R O U B L E S

With complex business rules, the UML’s Object Constraint Language (OCL) is powerful,
but still rarely understood by many software specialists unfamiliar with combining
declarative business rules with a class structure. At the same time, lawyers and con-
trollers of today are unfamiliar with classes and how class relationships can keep the
business rules where they’re applicable – instead of causing a flood of exceptions to
general rules, which, in turn, complicate enterprise systems even further.

Knowledge tools, on the other hand, do provide support for complex business rules
(for example, in telecom management or in finance). This kind of support enables
seniors or process owners to enter the rules into the system directly without traditional
programming, IT specialists then advise on tests, structure, maintainability, reuse, and
so forth. At the moment, full UML and OCL are often only a “future feature” in a
knowledge tool. Wherever the tool offers some industry-specific graphical “language”
that models the business logic, however, this is the easiest way to go (for example, in
telecom network management or financial analyses).

4 You might even face an initial explosion of candidate classes in the first iterations if you
tend to document every key concept as a class. However, this will get better soon! Tech-
niques are down the road (parameterization, extensive use of associations, and many oth-
ers) to make the structure simpler and easier to maintain. Classes have to be grouped into
high-level components (packages) simplifying reuse and maintenance. IT staff assist other
stakeholders in keeping the model robust and tidy.
5 The italicized (or abstract) classes like Beverage don’t supply any objects themselves.
Instead, they simply come in handy as superclasses of other classes, which, in turn, supply
the individual objects. For example, Pepsi supplies Pepsi objects. Again, this becomes
important later, rather than at this initial conceptual stage, so simply accept some itali-
cized UML-class names as something the IT people will need soon.

A significant and twofold difference occurs between a class diagram and
the more traditional data models you might have seen before. First, you use
several kinds of standard relationships (see the following). Second, each class
icon has three main parts: its name, its attributes, and its operations that
work on the attributes. For example, class Invoice not only has attributes,
such as dateDue, it also has operations. The most important operation is
probably calculatePayment.6

Understanding Class Relationships
Four types of relationships occur between classes:

• Association: a very loose relationship, which might even be rather
short term and changing. Similar to one between a company and
the rental cars currently hired by that company.

• Aggregation: whole-part, a “medium,” typically long-term rela-
tionship. By and large, similar to a long-term cooperation of your
firm with your A customers (frame agreement, minority ownership,
and so forth).

• Composition: whole-part, a strictly defined lifetime relationship.
Similar to one between your office building and its floors.

• Generalization: general-specific, a structural relationship. Similar

52 UML Xtra-Light

C L A S S E S A N D O B J E C T S

A clear distinction exists between a class and an individual instance of that class. This
instance is called an object. We discover, design, and write/generate code for the
classes; these are static in nature. Objects run (inside the computer) as instances of a
class; these are dynamic in nature. For any class, many objects might be running (inside
the computer) at any one time and each can be referenced by a unique identifier value,
for example, “portfolio_number_77”. Throughout the project, a class diagram docu-
ments the proposed structure of the system, whereas an object diagram can illustrate
some individual example objects in the system if requsted by some stakeholder.

6 To challenge the old axioms given by many developers with a data modeling back-
ground, we chose this operation in Invoice, instead of having a Payment class. This
would be considered rare in a data model because operations aren’t visible there. How-
ever, in the opposite case, if this book were intended to make programmers switch to con-
ceptual thinking, we would probably challenge their old axioms by stressing the attributes
instead.

to the kinship between savings account and account in general (of
all kinds).

These all can be combined on any class diagram, so it’s important you
understand their characteristics. The distinctions between them are quite
important as they’re interpreted the same way throughout: by stakeholders,
by designers/software developers, as well as by software tools.7

Associations

The most common relationship is an association, which is shown as a
straight line linking classes in the diagram (this is similar to the “tradi-
tional” data modeling association). During the modeling exercise, the fol-
lowing keywords indicate an association:

• connected

• associated to

• related

So we’re not too specific about the relationship.8

We’re interested in the minimum and maximum number (of instances)
being related between the classes. This is called cardinality or multiplicity,
meaning the possible range of numbers on each side of the association. This
has been extremely non-standardized in the past. Fortunately, UML defines
the symbols to be used at each end of the associations. Examples are * (the
same as the more explicit 0..*), which means zero, one, or more; 0..1, which
means an optional one; and 1..*, which means one or more. These are
“read” from the opposite side of the association, for example, one customer
per invoice and multiple invoices per customer. One liquid per serving means
we don’t mix different liquid sales on one serving – which would result in a
rather long setup time on our liquid-package switching hardware, version

Chapter 4 • Sketching the Inside Structure 53

7 Such as code generators, object database engines, or (likely) future database technology
standards, such as ANSI SQL3.
8 Association names, as well as association-role names, simply illustrate the purpose of
the association – the relationship still staying as loose as an unlabeled one. When more
than one association is between the same two, we name each of the association links or
the roles on either side. For example, a Customer might be associated to several tele-
phone lines (with role names such as home, mobile, home office, and so forth). Then, a
billing system can easily specify those phone lines as three entries on a bill (called home,
mobile, and home office), in addition to a bottom line stating “your total bill this
month.”

2080. If we did intermix in that way, we’d have to show this as a many-to-
many association instead between Liquid and Invoice (* at both ends).

The association between Liquid and Invoice relates it to any kind of liq-
uid, whether a detergent or any beverage, that is, invoices don’t care whether
liquids rinse throats or baths.9

Aggregation
A whole-part relationship is called an aggregation (shown as a diamond and a
line between two classes in Figure 4-2). Classes in an aggregation aren’t only
connected, they constitute a “whole” from a business perspective. For exam-
ple, a household site consists of one or more customers; an e-trader cus-
tomer might consist of one or more portfolios.

Example keywords indicating an aggregation:

• has a . . .

• consists of, are parts of (respectively)

• whole and part/s

So we’re rather specific about the kind of the relationship.
The normal number at the diamond side, that is, at the “whole” of an

aggregation, is exactly 1 and, therefore, it can be implied where it isn’t
explicitly stated, as is the case in the diagram. In an association, it would be
read as undefined, instead of implied because there’s no concept of a part or
a whole in an association. The whole is what makes it possible to imply the
1 in aggregations (Figure 4-2). In your first UML project or three, however,
being overly explicit is a good idea, always showing the 1 (even in aggrega-
tions10). Remember, the point of UML is reducing ambiguity. Here, we have
to figure out what exactly our project colleagues call unambiguous.

The zero in 0..* is useful down the road because a common cause of error
is wrong program code in a program loop processing a “collection” of
objects that happens to be empty (zero objects) in the particular case. By
showing the zero explicitly, we remind the system developer upfront of this

54 UML Xtra-Light

9 The relationship between these two is rather loose. Invoices assume liquids to rinse in
whatever way and to do whatever else is the purpose of the Liquid class – invoices just
minding their own “money business.”
10 Unlike in a composition relationship, a part of an aggregation can (rarely, but still)
belong to several “wholes” at the same time. For example, a parking lot belonging to two
office buildings or a driveway belonging to two houses. Both examples are long-term rela-
tionships, but to two wholes. So, while composition parts always belong to “mandatory
one” whole, aggregation parts belong to typically one whole. Therefore, implying the 1
makes sense, even in an aggregation where no number was explicitly stated.

risk. This very simple example shows that unambiguous “blueprints” of the
system improve quality, lead time, and cost levels.

Composition
UML also provides a stronger, restricted degree of aggregation called compo-
sition and marked by a solid, filled-in diamond on the whole side (see Figure
4-2). Composition would tell we’re sure every part belongs throughout its
lifetime to exactly one whole and removing a whole always has the effect of
removing all the parts as well.11

The key question to ask of any aggregation is “are the lifetimes the same?”
If they are, then it’s a composition and, otherwise, it’s a simple aggregation.

In Figure 4-1, the relationship between the Invoice and the Serving is a
composition because when the Invoice is deleted, we’re no longer interested
in the Servings. Also, we don’t move individual servings across invoices. In
contrast, we have a simple aggregation between the Household and Customer
because they might have different lifespans as our online customers grow up
from their teens, starting new household sites, but still keeping their original
customer number, gold customer status, and so forth. So, changes on either
side of the aggregation relationship are neither very frequent nor banned.

You can view the empty diamonded aggregation as a gray zone kind of
relationship between association and composition. Selecting from these
three when drawing a particular first-cut class diagram brings about some
modeling difficulty to people unfamiliar with UML (later on during design,

Chapter 4 • Sketching the Inside Structure 55

Figure 4-2. Implied 1 in aggregation and composition.

Upper End:
Implied 1

Upper End:
Undefined

1..* 1..* 0..*

11 When deleting an object , that object first tells the object on the other side of the rela-
tionship “I’m disappearing,” that is, any link between them will no longer work. In a com-
position relationship, deleting the whole then cascades to deleting all the parts as well. In
a multitier architecture, such consistency issues can be automated by a separate handler
class, monitoring each relationship and even synchronizing the tiers of the system. This
technology keeps technical operations apart from business classes.

however, this distinction isn’t a big technical issue). Therefore, we develop a
common example a bit further here, as shown in Figure 4-3.

Trains are a frequently used example of aggregation. They consist of an
engine and one or more railroad cars, but the degree or strength of the rela-
tionship varies, depending on the proposed system’s view of the domain. In
a train project, we would probably start from the empty aggregation dia-
mond, and then raise additional questions as we move on. For most trains,
the aggregation relationship holds true: a whole exists, the relationship is
not extremely short term and, yet, it isn’t a lifetime one.

For some other train company, composition might provide the correct
picture. Suppose the owner of the future system is an operator of high-veloc-
ity trains, with a strict safety policy of always checking the entire train, even
if only a minor failure occurs on one of the cars. In such a case, we ask the
questions about lifetimes early. Suppose the company has a policy of always
buying only a complete train at a time, as well as scraping (or disposing of, in
some way) only a complete train all at once. This makes the lifetime of the
cars equal to the lifetime of the train. For such trains (where we’re certain of
this), the composition relationship holds true: a whole does exist and the
relationship is a lifetime one.

For yet another train company system, association might provide the cor-
rect picture. Suppose we’re specifying a freight-car ledger system intended to
be used by many train operators from several countries, pooling their cars
across an entire continent. Here, we probably ask several additional ques-
tions early to take a closer look at the whole. The business specialists might
tell us about cars being switched frequently from one train to another.
Maybe they tell us real-life stories about cars spending months just standing

56 UML Xtra-Light

Figure 4-3. Medium, close, and loose relationships. The coupling between trains
and railroad cars varies, depending on the proposed system’s view of the domain.

0..* 1..* 0..*

0..1

Car Car Car

Train Train Train

Most Trains
aggregation

Most Fast Trains
composition

Freight-Car Ledger
association

Chapter 4 • Sketching the Inside Structure 57

G E N E R A L I Z AT I O N S I N A D VA N C E D M O D E L I N G

In the UML, we can even tackle less-frequent cases, where the generalization structure
is more than only one straightforward hierarchy. Such cases bring about technical diffi-
culty, rather than modeling difficulty.* In fact, the first-cut class diagrams are made
quite compact by these techniques, saying each detail only once. In practice, these
cases are encountered less often, so both modeling techniques shown here are
advanced/powerful, rather than commonplace.

In some systems with a sophisticated logic, typically where the system-to-be is able
to use several views or paths of reasoning, several generalization fork arrows can point
to the same superclass. For example, along with the classification in our previous class
diagram, liquids can be classified as domestic, NAFTA, or overseas, in which case, all
we’ve said about Liquid applies to all its subclasses in both generalization structures
under Liquid. This is called multiple classification. We label each of the generalizations
by a discriminator, for example, Region of Origin, as shown in Figure B4-1.

In some systems with an extensive reuse of classes, several generalization arrows

Liquid

Overseas

Detergent

Beer

Beverage

PepsiJuice Cola

Soft Drink

NAFTA

Domestic

Content

Region of Origin

* The limitations of commonplace programming languages can be circumnavigated by standard
solutions, such as a design pattern.

Figure B4-1. Multiple classification from Liquid can combine customer value
and custom value in Wet-Liquid.com’s logistics.

(continued)

on private sidings and dead ends “somewhere far south,” and then being
thoroughly serviced directly on return to their owner company. In addition
to disconnecting the lifetimes, this makes the concept of a train extremely
fuzzy. In fact, while standing forgotten in a dead end, a car doesn’t belong
to any train at all. For such trains, the association relationship holds true: no
clear whole exists and the relationship to a train is usually short term.

Generalization
A general-specific relationship is called a generalization – shown as an arrow
and a line between classes in the diagram. Example keywords indicating a
generalization:

58 UML Xtra-Light

GENERALIZATIONS IN ADVANCED MODELING (cont .)

can point from the same subclass. For example, some people might argue that they
classify Cola as both beverage and detergent because of its effect on stain spots. If this
is so, then all we’ve said about Beverage and Detergent also applies to Cola, as in Fig-
ure B4-2. This is called multiple inheritance.

Liquid

Detergent

Beer

Beverage

PepsiJuice Cola

SoftDrink

Figure B4-2. Multiple inheritance to Cola indirectly explains some extremely
mysterious answers in Wet-Liquid.com’s customer polls.

• is, is a, is always a . . .

• is the same as . . . except . . .

• is (at the same time) even a . . .

Again, we’re rather specific about the kind of the relationship.
The generalization class structure is usually called a class hierarchy (or tree)

linking superclasses and their subclasses. For example in Figure 4-1, Pepsi is
a subclass of SoftDrink, which is, in turn, the superclass of Pepsi.

This is a rather close, clear-box style relationship. All we say about Soft-
Drink applies automatically to Pepsi. When used in a unified, organized
manner, this saves much time and makes things easier in upgrades and new
versions of our system.12

Summary

• Class diagrams show the structure of the parts of the system and
how they’re interrelated. These diagrams are key in enterprise sys-
tems.

• Class diagrams are two level: business and detailed IT/technical.

• Among all the UML views in a requirement specification, business-
level class diagram is the least changing (and exceptions to this rule
of thumb aren’t frequent13).

• When completed, each class definition icon contains class name,
operations, and attributes.

• A class diagram combines four kinds of relationship: association,
aggregation, composition, and generalization.

Chapter 4 • Sketching the Inside Structure 59

12 For example, the attribute called percentSugar, in the SoftDrink class can be computed
on by operations in any of its subclasses, without explicitly copying that attribute from
SoftDrink. Therefore, the programmer of Pepsi, for example, needs to know all the detailed
features of SoftDrink and its superclasses.
13 For example, in a knowledge base reflecting a research-intensive domain where “truths”
are frequently changed or on some (rare) mergers when trying to harmonize systems from
different sectors of industry.

Chapter 5

Sketching the
Inside Dynamics

Having set the stage with class diagrams, we’ll now look more
closely at what is likely to happen on that stage. We examine life
cycles and (with the assistance of IT staff) interactions between all

the small parts within the system.

State Diagrams
Some business entities have interesting life cycles because of real-world regu-
larities and constraints, such as business rules, legislation, laws of nature,
and so forth governing their “lives.” Because these business entities are rep-
resented by a class, we model this dynamic aspect in a state diagram per
class.1

61

1 Many analysts might perceive UML state diagrams as an upgrade and standardization,
not too far from their early experience in entity life-cycle modeling using, for example,
some old variant of state diagrams or M. A. Jackson’s JSD or Bo Sundgren’s models of busi-
ness entity careers.

In most enterprises, some key business entities have an interesting life
cycle, which makes a state diagram necessary. These examples show the key
states (life-cycle phases) for certain key entities in different industries:

• Banking: Account (in_credit – overdrawn – blocked – overdrawn
and blocked – closed)

• Travel: Reservation (registered – on waiting list – reserved – paid)

• Brokerage, shares, bonds: Order (placed – activated at desired price –
deal-confirmed – closed)

• Insurance: Retirement plan (employed – payment-aged – retired –
deactivated)

We find such key entities in practically any business. The latter example
simply mirrors the life cycle from a retirement plan point of view.

Strengths
A state diagram is a compact, yet quite intuitive, notation. These diagrams
are versatile because they can mirror the lifetime dynamics of a rather long
“life” in the kernel of an enterprise system, as well as a rather short “life” in
a user dialogue or in a real-time system.2 A process owner/stakeholder is pri-
marily involved in the long life cycles because of their business nature. Basi-
cally, we’re diagramming one category of business rules, although not all cate-
gories: the rules dependent on states and state changes. Therefore, the states
of key business entities can be modeled in parallel with early class diagrams,
which means stakeholder involvement is needed with both class and state
diagrams. That will prevent force-fitting the life-cycle aspects into use cases;
in order to stay easy to reconfigure, a use case usually mirrors a single busi-
ness event in a much longer life cycle of an entity.

Limitations
A UML state diagram models one class and all events relevant to that class,
which is confusing for some people with a technical/real-time background,
where only one traditional wallpaper-sized state diagram tended to depict
the entire system.3 Sequence diagrams (see the following) show the comple-
mentary dynamic view, per business event and across all classes affected.

62 UML Xtra-Light

2 The path of reasoning is rather similar in both models, except for the clock ticking days-
to-decades in the long, persistent case, but ticking nanoseconds-to-seconds in the short,
transient case. In addition, state diagrams can even show parallel behavior where neces-
sary, using bars, as shown with business process flows in activity diagrams (see Chapter 2).
3 Such diagrams are trying to represent the complexity of a “state-machine.”

We need state diagrams for relevant classes only (for irrelevant classes, see
the boxes).

Mainstream Before Detail

Again, dynamic models start from the mainstream, that is, the trouble-free,
golden case, happy path scenarios. The mainstream version of a state dia-
gram is worth being maintained on its own because it will easily guide us
back into the basic business logic during future upgrades of our system.

If the life cycle fits all kinds of beverages (that is, not liquids in general
because there’s no need to proof taste detergents!), we then can create a state
model for Beverage, as shown in Figure 5-1. This means these states apply to
all its subclasses as well because, for example, a Cola is a beverage.

The boxes with rounded corners (Figure 5-1) are states, which take some
time.4 We can, therefore, use state names in continuous present (-ing, in Eng-
lish). The arrows denote business events that are instantaneous in the system,

Chapter 5 • Sketching the Inside Dynamics 63

Figure 5-1. State diagram of the Beverage class.

Being
Proof tasted/

Priced

Being Sold

Awaiting
Rating

Being Test
Marketed

Running Down
Stock

withdrawn

found new

flopped

launched

rated

priced

sold out

brand

4 Again, whether “time” is measured in milliseconds or decades depends on the nature of
the class. Key business entities typically have rather long lives and slow clocks (ticking from
days up to years).

64 UML Xtra-Light

U N I N T E R E S T I N G L I F E C Y C L E S

Boring Life Cycles
We draw state diagrams for relevant classes only. Therefore, we skip boring life cycles,*
that is, states of trivial classes with an overrestricted set of possible business events. For
example, things in the universe get born, changed, and die, repeating the same proce-
dure forever, so there’s no point in hundreds of extremely trivial state diagrams for that
in an enterprise system. Typical examples of boring life cycles are the “life” of a list of
income tax percentages per household size or of a list of town names per ZIP code.
These are only created, changed, and removed – a universal story, which we’ve heard
many times before (Figure B5-1).

Unstructured Life Cycles
Unstructured life cycles,** that is, those of totally unrestricted, solely event-driven classes
aren’t very interesting either. Even if such a class might have something like states,
they’re of little importance in the model because they don’t restrict the set of possible
events in each state. Its behavior is virtually “stateless,” permitting any business event
to occur at any time. With such classes, the resulting state depends only on the event,

Living (active)

gone

created

changed

DANGER

* Along the lines of simplified TV-sofa psychology, some people call them neurotic life cycles, as the
objects of such a class “don’t dare” to engage in other business events, except these rather self-
evident ones. In the early days of system development, Michael A. Jackson pioneered the term bor-
ing structures for this kind of non-diagrams. We find both terms quite humorous, but “boring”
sounds more self-explanatory.

** To stay consistent with simplified TV-sofa psychology, this would translate to psychotic life
cycles because the objects of such a class exhibit any kind of behavior at any time, no matter what
their current state or the rules and logic governing commonsense behavior. Again, of these quite
humorous terms, Jackson’s sounds more self-explanatory (he pioneered unstructured structures) for
this kind of pointless diagram.

Figure B5-1. State diagram of a boring life cycle having “nothing interest-
ing to say” in UML. This adds much clutter to the state model, thus, discouraging
many people from reading it. This is unnecessary because the basic rule of nature dia-
grammed here is generally known and applies to any object. Avoid it.

(continued)

Chapter 5 • Sketching the Inside Dynamics 65

U N I N T E R E S T I N G L I F E C Y C L E S (c o n t .)

no matter the original, preceding state. If connected to a user interface, all user
options are always enabled and valid (in any state being displayed in the window). For
example, none of the click buttons in that interface is ever shadowed. For this kind of
class, we’re happy with a simple list, instead of a state diagram:

Name of Event Name of Resulting State
created State A

a State A
b State B
c State C

gone (Nonexistent)

Note: all events can occur in all states, except the “created” event (which can only cre-
ate a new, recently “nonexistent” object).

As we can see, the list is more compact and comprehensive than a diagram (Figure
B5-2) in this particular kind of cases, which are extremely rare with key business enti-
ties. This is because it corresponds to, for example, deposits and withdrawals being

DANGER created

created

State A

State A

State B

State B

State C

State C

gone gone

gone gone
gone

gone

b

c

c

c

b

b a

a

a

Figure B5-2. Stateless states. A state diagram of an unstructured life cycle, “saying
too much and without structure” in UML. No matter if it’s standard syntax (upper part) or
compact syntax (lower part, “shorthand”), no interesting sequences or cycles exist to
care about because any of the events can occur in any of the states.

(continued)

rather than continuous, so we avoid the “-ing” in event names. For exam-
ple, the state of a Beverage Being test-marketed can be changed by two kinds
of business event: either a full-scale launch or a flop.5

Error Handling

State diagrams also greatly improve error handling. So, IT staff will most often
also maintain a more complex version covering important unusual scenar-
ios. For example, a few customers happy with Cola as a detergent might
make strange cycles (of business events) happen in a consumer poll system.
Or, some odd, outdated Web browser might (wrongly) permit a withdrawal
request to reach a closed account in an e-bank, thus, requiring some appro-
priate error message from the system.

Even those scenarios are most often a worthwhile investment because,
without life cycle models, error handling grows inconsistent and excessively
complex as it gets ‘improved’ by generations of programmers. At the same
time, because no one is keeping track of the normal life cycle and the big
picture, the mainstream is polluted from a large number of muddy, zigzag
“side streams.”6

66 UML Xtra-Light

5 Events coming into the system via an external interface, for example, by a button click, a
bar code scan, or a signal from an external system. With a business entity, each event typi-
cally corresponds to the last Submit-Click in each use-case dialogue.
6 Technical, “non-business” error handling is worth standardizing throughout the enter-
prise. In such cases, we diagram its principles only once, omitting them in the rest of our
state diagrams. Later, during design, many errors can be blocked on input (by filter classes,
apart from our business class) or prevented by techniques such as blocking all invalid click
button options ahead of each dialogue step. Otherwise, error handling tends to multiply
complexity, which is good to know in advance when estimating construction time.

U N I N T E R E S T I N G L I F E C Y C L E S (c o n t .)

allowed at any time, even on overdrawn or closed accounts. As shown in the list of
example key business entities in this chapter, their life cycles are much more prede-
fined and regulated in practice by a set of business rules (making state diagrams
worthwhile†).

In our experience, the real danger with both boring and unstructured life cycles is
in not seeing the regularities in “real” life cycles as they might seem to be one of these
sorts to a less-skilled analyst at first glance (or maybe both of these sorts at the same
time – to an extremely unskilled analyst). Both give us a false sensation of “modeling,”
without helping us at all to visualize some relevant business logic.

† In some code generators, however, state diagrams for classes with boring or unstructured life
cycles might be used to make the code generator do what you want. Nevertheless, such tricks are for
design and implementation, that is, neither requirement specification nor analysis activities.

Tying It All Together
The remaining dynamic UML view is provided by sequence diagrams. Some
projects use UML collaboration diagrams instead, however, visualizing the
same aspects in a class-diagram style layout. Whatever the syntax, we rec-
ommend that other stakeholders keep their involvement at a reasonably low
level here.7 With enterprise systems, this is an IT staff exercise; but it results
in some questions that call for cooperation with other stakeholders.

In sequence diagrams, we’re projecting a “bullet” step from our use-case
description on to our class structure and checking how the structure is
affected by that particular step of that particular use case. Most people do
show the use-case actor as the source triggering the whole sequence here too,
in order to increase legibility, as shown in Figure 5-2.8 Thus, we model internal
interactions between the cooperating objects.9 This is crucial because an object

Chapter 5 • Sketching the Inside Dynamics 67

7 On maintenance reasons, we prefer sequence diagrams, even for sketchy, high-level
interactions explaining the basics to managers. In addition to those, we recommend col-
laboration diagrams in user-interface discussions across several use cases, for example, doc-
umenting Web-based navigation.
8 Whether you show the return arrow (the dotted lines between objects) is a matter of
style because they can add significant clutter to large diagrams. If you use them at all, we
recommend showing the return only if it’s conveying some relevant information. For
example, “amountDue,” whereas a return code that simply means “everything went fine
here” can be implied instead, as an “enterprise standard” after each solid arrow. Showing a
return that directly affects the course of the sequence is often worthwhile. For example, if
a particular return value triggers an “extending” mini-sequence beside the mainstream.
9 As previously mentioned, objects are dynamic. Sequence diagrams show the dynamic
aspect per event, across many objects. Some UML tools are already capable to animate the
diagram, thus, making the dynamic aspects more visible.

Figure 5-2. Sequence diagram for the Pay use case.

c5:Customer i20:Invoice s*:Serving pilsner:Beer

payInvoice

calculatePayment

fetchPrice

* getQuantity

architecture results in many reusable components (at several levels of granu-
larity – from large/high-level to small – that is, object level) and we need to
see how these interact, without having to read program code. With enterprise
systems, we simply remember that sequence diagrams provide a view that ties
the other views together, thus enabling us to postpone internal interactions in
all the other views until now. Otherwise, a split of focus might hit both qual-
ity and lead time during use-case and class modeling. Again, projects save
effort by keeping the right issues in the right UML view (remember keeping the
electricity away from the exterior picture of the building).

Strengths
A sequence diagram is easy to understand and to maintain. It specifies how
parts of the system cooperate in delivering the functionality stated in a use
case. It makes the time dimension visible.

Limitations
A sequence diagram is much easier to draw in a tool than on a whiteboard.
As you can guess from its name, it’s easiest to maintain if you partition the
model into several clear-cut sequences, without “branches” of conditional
arrows. Again, a consistent mainstream-before-detail approach saves time
here. If you lean toward only one big diagram instead, it tends to grow into
a “bush,” rather than a sequence, thus becoming difficult to understand and
maintain.

Sequence diagrams provide the view per event and across all objects involved
(objects of several classes), whereas state diagrams show all events per class. A
simple way of explaining the interrelationship between these two dynamic
views is a detailed use-case dialogue-description (bullet list) from a require-
ment specification of some future animator tool; at the moment, animators
have just begun to emerge on the market.10 Let’s call the tool DA-2005 or
Double Animator, version 2005. Double indicates the tool shall animate – in
parallel – the sequence diagram and the corresponding state transitions in
each corresponding state diagram affected by that particular sequence. So,
instead of specifying the tool for only a static, abstract matrix of sequence
arrows and state-transition arrows, we specify it to “run” the same matrix
logic dynamically and visually, directly in the diagrams.

68 UML Xtra-Light

10 At the moment, Aonix’s Object-Animator in Select Enterprise can illustrate dynamically
each interaction step between the objects in the sequence diagram (or collaboration dia-
gram). Also, several real-time tools animate state diagrams. With large diagrams and many
arrows, this boosts the team’s understanding of the dynamic aspects before we move on to
implementation. This benefit is similar to one of more advanced process simulators in
business process modeling tools.

Use Case: Animate dynamic behavior, stepwise.

Objective/business value: ensure understanding and quality of
application being developed by animating its proposed behavior,
step by step, in both sequence diagrams and state diagrams.

Delivery priority: Medium

Steps

Actor: Clicks or presses ENTER

System: Highlights next message arrow in the sequence

A: Clicks arrowhead of highlighted arrow in the sequence

S: Displays a small pop-up window on top of arrowhead, showing
the state diagram of the receiving object’s class. Highlights the state-
transition arrow corresponding to the message to this object (that is,
to the event conveyed by the arrow highlighted in the sequence).

Here, hyperlinks in the “bullets” of use-case descriptions can become the
menu. When these kinds of tools are available – we hope in a matter of
months, rather than years – the team specifying the system will gain total
control of the proposed dynamic behavior and the possibility to “desktop
test” it before any program code is written.11

Suppose you have a Pay use case, stating the external interactions con-
veying a card payment into the system for customer payment for an invoice
containing different servings of a liquid. If these four are affected,12 the inter-
nal interactions look like the sequence diagram in Figure 5-2. An actor trig-
gers the payment sequence (via some user interface13), which then asks the

Chapter 5 • Sketching the Inside Dynamics 69

11 The idea of animating dynamic behavior “dynamically” is powerful, natural, and cer-
tainly reused. Already in the 1960s, Dutch software-structure pioneer Dijkstra pointed out
the limitations of “static” sheets of paper (and lines of code) in describing a process that is
dynamic in nature. In the 1980s, one of us took part in a project developing some of the
first PC animators for lines of program-code and for diagrams of entity-life structures (so
the previous idea of animating several views in parallel is a reused one, too).
12 In your real-life project, there will be many more of them, yet in the same kind of struc-
ture. Also, several different objects of the same class might be involved in the same
sequence, such as an invoice requesting the serving details from each of its servings (the
asterisk-marked arrow in this sequence). During some future discount calculation, this par-
ticular invoice might even be asking another, previous invoice, for example, how timely it
was paid by this Customer.
13 This is a card reader in a credit-card terminal or a click button in a Web form. These will
be designed in detail later, during user interface design with all the (extra) user interface
objects added to the sequence diagram.

invoice to calculate payment due. Invoice, in turn, retrieves price amount
from the particular beer and quantity from each serving (within this particu-
lar invoice).

Starting from the mainstream golden case/happy path as usual, the
sequence is fairly intuitive as we just read down in the diagram, each arrow
mirroring a message, such as a signal, a transaction, a return, and so forth
passed between two objects. The vertical lines under the objects are their
lifelines. Because time goes from top to bottom in the diagram, each line is
as long as the object (shown as its header) is present in the system, that is,
from creation to deletion. The thick portion of the lifeline indicates the
object is activated (performing an operation or waiting for a return from
some other object). The sequence path in the diagram follows the associa-
tions, aggregations, and compositions in the class diagram structure.

UML Collaboration Diagrams
Collaboration diagrams tell the same story in a slightly different UML syn-
tax, as shown in Figure 5-3. They make the coupling between objects visible.
The class-diagram style of layout is useful in brainstorming with Post-it
notes on the whiteboard, whereas sequence diagrams usually win the race in
maintenance.

Other UML Diagrams
You might come across some other UML diagrams. These are mainly created
by IT staff, so you have only a very general idea of what they’re trying to
show.

70 UML Xtra-Light

T H E R E ’ S M O R E I N S E Q U E N C E D I A G R A M S

A complete sequence diagram can show both timing detail and technical detail. For
example, messages can be sent directly (synchronously) or posted (asynchronously)
without blocking the “sender” by waiting for a direct response. Even some nonfunc-
tional performance requirements might be attached to the arrows and bars of the dia-
gram, such as response time.

As shown with getQuantity in Figure 5–2, an asterisk is used to mark repeated
requests.

We can also choose to draw sequence diagrams at several levels of granularity. If,
let’s say, a CIO asks for a high-level sketch of the basic transaction flow between several
subsystems (diagrammed as UML “packages”), then a sequence diagram of packages
can help in showing those basics while hiding the detail.

Later, during design and deployment, physical code components can be
modeled in UML component diagrams.

Where the system-to-be is a mix of both software and hardware, both can
be modeled in a UML deployment diagram (showing hardware as cubes, with
software components on the front of each cube). This is interesting where
some specific hardware is an important part of the proposed system, as is
often the case in telecom, automatic train control, naval systems, automo-
tive electronics, and so forth. Deployment diagrams were rare for enterprise
systems, which exploited common “standard” environments or standard-
ized middleware. But with the explosion of Web-enabled front ends to most
enterprise systems, deployment diagrams have become a more frequent
technical design document.14 Generally speaking, adding another couple of
diagram types to a project skidding out of control would make it skid totally
out of control.

Summary

• State diagrams model the dynamic aspects per class, showing its
life cycle as states and events affecting this class. There are two parallel

Chapter 5 • Sketching the Inside Dynamics 71

Figure 5-3. Collaboration diagram for the Pay use case.

c5:Customer

pilsner:Beer

i20:Invoice

s*:Serving

1:payInvoice

1.1:calculatePayment

1.1.2:fetchPrice1.1.1*[for all Servings]:
getQuantity

14 Deployment diagrams can show the location of components on different hardware con-
figurations necessary for Web-based systems. By 2080, Wet-Liquids.com can show the hard-
ware and software components together in a deployment diagram, including our Digital Bev-
erage-Subscriber Line (DBSL) devices (patent applied for).

versions – mainstream and detailed (including less-usual courses of
events).

• Sequence diagrams model the dynamic aspects per event (typi-
cally, a use-case step), showing the interaction among all the affected
objects. These again are at two levels: mainstream and detail
(adding “less-usual” courses of events on top of the mainstream, in
a manner similar to extend/include between use cases, as discussed
in Chapter 3).

• In practice, all dynamic models start from the mainstream, that is,
the “golden” happy path (which calls for considerable stakeholder
involvement), adding less-usual scenarios in the next iteration,
which, typically, is an IT-staff exercise.15

72 UML Xtra-Light

15 At the moment, standardization work is going on within the Object Management
Group, affecting the exact interrelationship of mainstream and detail diagrams. This, in
turn, will affect the style of work likely to be practiced here in the future.

Chapter 6

Moving Toward
Components

In recent years, an evolutionary change has occurred in the way modern
systems are developed or, perhaps, we should now say “assembled.”
Instead of building systems from the ground up – designing, construct-

ing, and testing every part, thereby incurring time delays and huge costs –
modern systems are being assembled from a combination of components to
meet the needs of the business. These components or services might have
been rented or bought from third-party suppliers, reused from previous sys-
tems, or built to provide a special set of services for the solution. The aim is
to avoid building most of the solution.

This component-based development strategy can be summed up as
“Reuse before you Buy before you Build.” It’s the new approach to meet the
needs of tomorrow. Interestingly, the UML, as well as 99 percent of this
book, works fine with any of these alternatives, including a combination of
alternatives. This chapter explains the background of many seemingly odd
questions raised by IT people, which might seem to be too early in the pro-
ject. As we show, components can early on play a key role in the bid/pro-
posal stage of a project.

73

Yesterday’s development approach was for large amounts of time and
effort spent in developing basic parts of the system architecture,1 for exam-
ple, visual controls, communications interfacing, and so forth with a smaller
amount of time and effort spent in project-related activities, that is, deliver-
ing solutions, as shown in Figure 6-1. Today’s development approach reuses
many components that were once built and maintained by your IT organi-
zation and the effort has moved to working mainly on projects to deliver
solutions. But little cross-project or cross-product sharing of components
occurs. Too often, every project is an “island.” And, still, despite their best
intentions, it takes too long for software developers to build the systems.
They can’t write code any faster with the present set of concepts and
resources, and they’ve reached the limits of many development tools.

Tomorrow’s development approach2 – and today’s forerunners’ approach –
using components reduces our project workload because most of the work is
component-related, cross-project/cross-product activities. We try to develop
components once to a high quality, thus minimizing the effort of writing the
same functionality many times for future solutions. This, then, meets our
need to improve productivity – otherwise, the lost earnings through late
delivery of products dramatically affect the bottom line of all organizations.

One way to consider the differences between the approaches is with the
analogy of restaurants and cafeterias.

74 UML Xtra-Light

1 One of the authors remembers having to write drum storage access software before he
could use a new computer. This was in the early 1970s. The other one of us remembers
writing many parts of an online transaction monitor before he could make the system
receive data from end –users, which occurred in the late 1970s.
2 The idea of “yesterday vs. today” is a reused component. It originates from Objectory
(Lars Wiktorin, currently at IT-Plan). We added the vision of a configure-and-deploy
“tomorrow” to it.

Figure 6-1. Yesterday – today – tomorrow effort matrix.

Hours in
Project

Work

Hours in
Continuous

Work

Yesterday Today Tomorrow

In a restaurant, diners choose from a menu prepared by expert chefs. This
menu reflects their requirements: what is in season, which combinations are
popular, what can be offered in different ways to reduce waste, and so forth.
Diners can only choose from these set combinations; things not on the menu
are unavailable. This is a form of supply-side control, similar to the old style of
software development where the IT department controlled all activities.

In contrast, the cafeteria (or the smorgasbord) offers a selection of foods
prepared by experts that are laid out and replenished regularly. Diners now
choose any combination to suit their own requirements, that is, they create
their own meals. They might need expert help, say, in carving some of the
ingredients but, if competent, they can undertake the task themselves. This
is demand-side control, which reflects the new style of development found in
most knowledge industries.

Not everyone likes to eat in a cafeteria, however, as the choice might still
be limited and the offerings of poor quality. Whereas, when ordering through
a waiter, special instructions can be given to the cooks, and then sometimes
fulfilled on delivery or sometimes misunderstood and not fulfilled. Cafeterias
require an attentive customer and a joint effort in configuring the meal.

The same is true for component reuse. Attentive management and atten-
tive stakeholders are needed to ensure that components don’t become stale
and that a best-match configuration is selected. Of course, the smorgasbord
is an excellent principle of quickly meeting heterogeneous requirements of
customers from a variety of niches (allergy, special diet, vegetarian, children,
curious tourist, and so forth). Many e-enterprises call this principle “Config-
ure and Buy.”3 Having the right components ready upfront enables them to
do in minutes what used to take weeks or months with traditional restau-
rant approaches.

This is only the beginning of the story, however. In the knowledge indus-
try, change is added on top of all this. On top of differences among cus-
tomers/stakeholders already in the first version, the requirements are fre-
quently changed as the “meal” is being configured and consumed. Again,
meeting variance over time is more straightforward and cost-effective with
configurable components. Configured systems tend to keep a rather con-
stant reconfiguration cost, whereas maintenance costs of proprietary solu-
tions tend to accelerate in an uncontrollable manner after a few upgraded
versions. This is a major point, which is quite different from many other
sectors of industry: whereas adding a fifth engine to a Jumbo jet is consid-
ered a non-option, software functionality is frequently (sometimes also fun-
damentally) altered and upgraded after delivery and regular use. In our opin-
ion, this point was paid too little attention during the pre-UML era.

Chapter 6 • Moving Toward Components 75

3 Witness the recent explosion of interest in Web services.

Thus, having the right components ready makes both version 1 projects
and upgrade projects lean, as shown in Figure 6-1.

Components Communicate with Everyone
From the requirement specification point of view, components offer a more
powerful and predefined way of communication. Instead of the drawn-out
process of specifying each and every detail of the requirements we can just
identify a known component or specify the services that we want. In many
sectors of industry, this has resulted in an improved efficiency within the
sales process of the forerunners of component-based product architectures.
Thus, the component approach itself is a key strategy in extending your
market share by covering more segments and niches. This important mecha-

76 UML Xtra-Light

W H AT I S A C O M P O N E N T ?

Several competing definitions exist for a component, but they share common charac-
teristics. Such characteristics include components as units of runable, deployable soft-
ware that offer services (high-level “operations”) via interfaces, using standard fittings
(a standard communications technology), and are assembled with other components
to realize a business solution.

Several UML diagrams deal with components. The most general construct is a UML
package, shown in Figure B6-1. Packages can be used for several purposes. Often,
packages are used for grouping low-level constructs into high-level components.* The
most common relationship between packages is a dependency (see the dotted arrow
in Figure B6-1). The most commonly used stereotype of this dependency is «commu-
nicate», that is, requests sent to the other components to obtain help from them in
completing the tasks of the component sending the request.**

A B

* Packages can even be nested – in packages on the next “level,” and next, up to subsystems or sys-
tems. As you can guess from the name, package is primarily a packaging technique in design, rather
than an analysis tool. As mentioned in Chapter 4, the path of reasoning in analysis is middle-out
rather than top-down.

** Other stereotypes of dependencies can be more “technical,” for example, compilation dependen-
cies when the computer requires all the interdependent components as input at the same time, i.e.,
“all of it or none of it” (for compiling or linkage). In “design to configure,” we can also choose to dia-
gram inclusion/exclusion dependencies between components on various levels. Later on, these can
become rules to be applied automatically by a configurator package while “assembling” our system.

Figure B6-1. UML packages (components).

nism deserves more attention on the component agenda – which in high-
tech enterprises generally tends to focus on product and production.

The communicative power of a component is similar to a technical term
in natural language: if a financial analyst mentions something like “a black
Monday scenario” to a colleague, they probably save pages of detailed text
because the scenario has previously been analyzed, described, and labeled.
So, if you talk about the Accounts Department (as a high-level software
component in, say, a Web shop), you can easily mention the services you
expect for your solution, for example, take a credit-card payment, check the
“hot list” for defrauders, and alert when accounts are overdue.

Where solutions are assembled from bought-in parts (and where they are
wholly constructed from the ground up by the development teams), the spec-
ification work and business analysis don’t simply walk away. It’s critical for
the stakeholders to specify the (business) services required in the new solu-
tion and to discuss the resulting component models to ensure these services
will be delivered.

Specifying Components for Wet-Liquids.com

If we return to our 2080 example for Wet-Liquids.com, we can identify a
number of components that represent the obvious business elements: sales
department, product, distribution, Accounts Department, and customer.
These components are at a “near-top” level.4 Large component libraries, such
as IBM’s SanFrancisco (SF), are typically at several levels of granularity. Both in
SF and in OMG’s view of components, our “product” and “customer” (see
Figure 6-2) are standard examples of so-called business objects. They’re far
above the technical level, but still frequent in most kinds of systems.

Distribution (in Figure 6-2) is an example of SF’s top level, originally
called application frameworks or SanFrancisco Towers, that is, “Lego-brick
towers,” assembled of business objects (other examples at this level are
financials, HRM, or manufacturing). Figure 6-2 shows these components, as
well as another one added within the Accounts Department to deal with the
online credit-card banking service. This is an example of wrapping compo-
nents up in other components (or nesting). The dotted line shows the depen-
dencies between the components,5 that is, sales needs to know about all the
other components, but all the other components don’t need to know about

Chapter 6 • Moving Toward Components 77

4 Some other people might choose to make each activity of a process a component (to
increase configurability), which isn’t at “top,” yet is at quite a high level.
5 These dependencies are of the «communicate» stereotype, to be exact: technically, the
sales-department component will be sending requests to the other components whenever
necessary.

each other. If we reconfigure the system to run some new process in addi-
tion to the current order process, then we probably just add some more
dependencies here.

Once these components are identified, we now outline the responsibilities
allocated to each one:

• Sales Department: responsible for processing each customer’s
drink request (listing products, validating choices, submitting orders
to distribution), managing customer subscriptions, and issuing sales
orders.

• Customer: responsible for recording personal and subscription
details, knowing their own account balance and payment status,
and holding a history of sales.

• Product: responsible for knowing details of the product including
restrictions (for example, age/alcohol), providing pricing and dis-
counts, recording stock levels, and monitoring the shelf-life status.

• Distribution: responsible for managing the product inventory
and distribution channels [sic], accepting new products from suppli-
ers, dispensing the product to customers, and reporting the status of
the distribution channels.

• Accounts Department: responsible for issuing customer state-

78 UML Xtra-Light

Figure 6-2. Example components for Wet-Liquids.com.

Distribution

Sales Dept.

Product
CC Banker

Accounts Dept.

Customer

ments, collecting payments, updating customer payment records,
and reporting defaulters.

• CC Banker: responsible for validating credit cards and charging
payments to customer credit-card accounts; an online authorization
service.

These are high-level components. Some of them can be bought as com-
ponents, some can be rented as Web services, some can be bought as parts
of a package, some can be reused from previous projects, and some can be
developed now.

From this “Lego kit,” we can, in principle, configure a process chain, for
example, the order cycle. Now, suppose we have a merger a few years later,
resulting in a new marketing policy. Because of this, before adding a cus-
tomer address to the mailing list of the sales department component, the
current credit rating of the customer must be checked automatically to
invest Wet-Liquids.com’s sales efforts in customers with proper liquid assets.
The dependency between the sales department and accounts is already in
place. We simply adjust our sequence diagram (activating the credit-rating
check in the Accounts Department component) and reconfigure the system.
The credit-rating checker component can be nested within the Accounts
Department from the beginning or easily purchased otherwise, for example,
from Dun & Bradstreet or from a component broker.

In fact, this modest change can evolve into a rather extreme example of
Reuse before Buy before Build. The traditional build and deploy approach (“sup-
ply-side” control) could easily spend weeks specifying and designing this
upgrade. A new proprietary rating component could take years to develop and
another year to fine-tune, especially with business-to-business customers. If
you’re serious about making computers interpret and analyze complex finan-
cial information (producing credible, realistic credit ratings), you need a lot6

of financial data, smart information-mining tools, a couple of sophisticated
knowledge bases, a panel of credit-rating experts to keep the knowledge cur-
rent, plus a skilled team of IT people. In our humble opinion, reusing a com-
ponent of proven quality developed by someone else is more realistic.

Impact of the Component-Based Approach
“Reuse before you Buy before you Build” means components might already
exist as part of existing solutions and can be reused in the planned system.

Chapter 6 • Moving Toward Components 79

6 Although the results, i.e., the ratings per company, might fit on a CD-ROM or three, the raw
material necessary for producing them can be hundreds of gigabytes of financial databases.

Or, it can be bought to fit your requirements, configured, if necessary. Build-
ing them is the last resort if no components are available that fit the solu-
tion. Figure 6-3 shows we can have a scale between the buying and building,
which shows the different nature of the development processes; whichever
is used, specification is still critical on all of them.

Buying Components
Buying components is attractive to most organizations, but both advantages
and disadvantages exist with bought components. The advantages include:

• Cost savings, especially for maintenance because this is transferred
to the component supplier.

• Engineered to meet the requirements of the reuser.

• Earlier payback because only the cost of the components is to be
recovered. This usually makes projects leaner and (therefore) their
start procedure is much shorter.

• Manpower savings because they can be deployed onto other projects.

• Greater range of capabilities, for example, new service offerings,
such as our previous credit-rating example.

• Technology leverage giving the capability to enter new domains, for
example, mobile 3G/GPRS interfacing.

• Reliability – provided previous use on other projects.

• Documentation7 that encourages reuse. You know up front what
you’re going to get.

But difficulties exist with bought components:

• Little use in the application for (reusing) the components; for exam-
ple, they might offer great screen controls that you don’t need.

80 UML Xtra-Light

Figure 6-3. Different aspects on the scale between buying and building
solutions.

OTS-Package
Purchase Focus

Specification Effort

Design Effort

Components and
Services

Tools and
Services

Critical Critical Critical

Low Intensity Medium Intensity High Intensity

7 You would expect or demand such documentation to be in the UML format!

• Delays might occur in the procurement of the component. It’s the
supplier’s schedule, not yours. Control lies with the supplier and not
with your organization. If the supplier drops the component, prob-
lems in upgrades and maintenance must be dealt with by your own
staff.

• In-house expertise is needed to reuse the components.

• In-house improvements might also be required, giving a potential
maintenance hazard.

• New role of component buyer feels inconvenient both to the tradi-
tional buyer – skilled in buying coffee, furniture, and pencils – and
to the software-people – skilled in developing components, rather
than in buying them.

When to Buy or Build
In deciding when to buy or build, the focus needs to be on the benefits to
the user of the component.

• What is it worth (value) to the user?

• Is the user willing to pay to have the best version of this component
or to have one that’s minimally sufficient?

• What is the impact if the component is not provided?

• How big, stable, service-minded, and reliable is the component
vendor?

As a general example, let’s take the colored housing for the rear light on a
car. This is obviously needed, so we can’t drop the requirement, but does it
need to be the best available? The car buyer wouldn’t be willing to pay a
premium for a rear light, so the choice is for one that’s minimally sufficient.
Car designers then look at the available housings and design the vehicle’s
rear end accordingly. If the case was for a new high-performance fuel-cell
engine for which the car buyer was willing to pay a premium, then the car
design would be driven by both the engine and the engine space.

Reusing Components
When considering reuse, it’s necessary to be aware of the differences among
pluggable, customizable, and configurable components.

Pluggable components support the “black-box” concept: you know what
the component does, but not how it does it. The component has hard edges

Chapter 6 • Moving Toward Components 81

specified as well-defined software interfaces. It can be likened to Lego bricks
for children. Each brick has a well-defined interface or connecting part that
will fit any other brick with the same style of connection. Lego firmly deem-
phasizes how to do things in favor of what to do. Lego bricks are very easy to
use, but very hard to design and build8 to ensure they fit together well.
Users of components (and Lego bricks) expect a useful set of artifacts to
undertake some task and look to the expert component maker to provide
this useful set. For this expert, the components must be designed and con-
structed to meet both the requirements of their reusers and to an extremely
high quality. Lego connections (fittings) show clearly why interfaces are key
in modern software architectures.9

Customizable components are the form of adaptive reuse, that is, what to
do and how to do it. The components have soft edges and soft contents,
which allows the reusers to adjust the components to fit their exact require-
ments. Such components are easier to design and construct because they
only need to provide a generic set of features and let the reusers modify
accordingly. Such components, however, are difficult and expensive to
maintain because any updates must be examined for the impact on the cus-
tomized component and any new works retested. This can occur any num-
ber of times throughout the lifespan of a system, making a continual coordi-
nation of system versions and component versions necessary.

Configurable components are pluggable components that can have their
behavior or data changed through well-defined mechanisms. These still
remain a “black box” because the configurator doesn’t know how the inter-
nals of the component have been changed.

The “boundary” between component-based development and “packages”
has been growing quite fuzzy recently – a trend of which IBS is an example.
As former packages evolve into “UML-packages” of configurable compo-
nents, the enterprise buying the package can either use it right away as a
large, single, off-the-shelf package (just as before) or intermix components
from several sources, including its own legacy components. Again, wherever
we are on this new scale between “buy” and “build” (Figure 6-3), the specifi-
cation work and business analysis doesn’t simply disappear. Even in the tra-

82 UML Xtra-Light

8 In fact, the molds for the bricks are cut on expensive machines that are accurate to a
micron by using spark-erosion technology.
9 Consequently, in addition to UML, which is a “specification and design-time” standard,
most OMG “deployment-time” standards for multiplatform systems are published in terms
of standard interface definitions. These tell the software industry which services shall be pro-
vided to other systems (or other components) through each interface – without the detail of
implementing those services behind that interface. This focus on interfaces makes the sys-
tem architecture reconfigurable and resilient to change, by “insulating” most changes inside
each component from the rest.

ditional off-the-shelf case, despite all the design outside the buyer’s enter-
prise shrinking the whole project, we still need a requirement specification
and we still need to understand the essence of all those UML diagrams.

Building a Component Library
Considering every component that exists for reuse is neither possible nor
practical. The first step is a decision on which reusable components you
want to manage as reusable assets. This means considering the structure of
the business, the needs of the existing or planned projects, your computer
architecture, and the opinions of potential reusers.

Components that support the business are the most useful. These can be
found in the structure of your business. Organizational boundaries show
independent business units that have responsibility for creating, delivering,
and supporting its own products. While each unit will have its own require-
ments, these can be met by local reusable components or supplied from
components that are organization-wide – that is, sharable across many
units. Another approach is to look for different levels of generality. There
will be components of interest to any business, those of interest to any com-
pany within the industry, and, finally, those specific to a company. For
example, screen widgets are useful to all businesses, tax rules are useful to
many companies, and a polymer paint-mixing recipe is useful to a specific
company.

When considering the need of existing or planned projects a number of
strategies can be used. One strategy, called domain analysis, attempts to
understand the fundamental abstractions in a given area, whether business-
or technology-related. If a general domain model can be produced, then this
will be useful to multiple projects. The outcome of a domain analysis is the
identification of reuse opportunities across applications in a domain, for
example, personnel, inventory, accounts receivable, and so forth. Another
approach is on-the-fly identification. Faced with short-term deadlines and an
aggressive attitude to exploit new technology, a number of projects are
started simultaneously, hampering any attempts at domain analysis. In this
environment, reuse is handled with a just-in-time attitude, projects helping
each other through assigning team members to cross-project teams.

Can I Trust This Component?
If you’re going to rely on this component in your new system, you’ll want
some guarantee from the supplier. Certification ensures that the reusable
components meet some level of quality. This engenders trust in the compo-
nent when you can be confident that an independent evaluation of the com-

Chapter 6 • Moving Toward Components 83

ponent has been done. But what happens if that process is slow or compo-
nents are needed promptly? Most successful certification schemes issue levels
of certification with the reusable component, ranging from 0: just arrived, so
use with care, to 5: used successfully in at least four other systems.

Sharing Components in Your Organization
Components do not come out of thin air. As in many other industries, the
following scale (in addition to Figure 6-2) illustrates clearly how top man-
agement becomes increasingly involved in the adoption process of software
components and standards. Middle-sized software houses became the fore-
runners, mainly because of the sustained attention paid to components by
their top management. Reusability starts from object technology and the
UML, whereas reuse in real life, that is, component sharing, starts from well-
informed, dedicated, and pushy top management.

Our rather informal scale of component-sharing maturity provides a hint
on the state of affairs in practice within our project and our enterprise:

0. Sharing within a team: a dedicated person or three with hazy
roles and management.

1. Sharing within a family of products or projects.

2. Sharing across families of products or projects, of components
developed within the firm. Staying profitable for almost seven decades
in a tough market, truck maker Scania is a forerunner of this level of
sharing. For example, some 80 percent of a bus platform’s components
are reused truck designs.

3. Sharing across a group of companies. On several continents,
carmakers within the VW Group are among the forerunners having
used a common component management system for many years.

4. Sharing with a competitor. Some firms seem to succeed here;
others try the next stage. For example, several car makers have
achieved this higher level of sharing and seem happy with that. On
the other hand, although collaborating for several years, ERP and
CRM-vendors IBS and Mapics proceeded to the next stage anyway.

5. Sharing within a sector of industry. The twenty-first century
“top performance”: enterprises sharing standard components with all
firms interested. Typically, as the component activity grows, it becomes
a business and profit stream in its own right. In software, there are com-
ponent libraries and frameworks, complete object versions of ERPs,

84 UML Xtra-Light

open-source software, and so forth. In the mid nineties, Swedish ERP-
vendor IBS provided some key ideas and experts to IBM, triggering a
large-scale Shared Framework project (SF, SanFrancisco). Later, having
provided several thousands of components at several levels of granular-
ity, SF spun off into an IBM company on its own with 500+ customers
using the framework on a royalty basis. Currently, SF is the Business
Components10 part of IBM’s Websphere® product suite.

Thus, even when developing one-of-a-kind systems, a one-of-a-kind cost
level isn’t necessary.11 The ROI of component sharing is good, to say the
least,12 but a threshold exists because of the investment and the focus neces-
sary on entry. Firms relying on a few technical enthusiasts are stuck at level
0, R&D managers cope at levels 1, 2, and 3, whereas levels 4 and 5 imply
CEO commitment.13

Avoiding the Traps
Again, there are some common pitfalls here and, again, staying away from
them seems much cheaper. This time, the list of traps is rather generic.

Just-a-New-Diagram

The UML provides several semi-technical diagrams. Package diagrams, com-
ponent diagrams, and deployment diagrams mirror what we need to know
at a technical/architectural level. These also prevent people from force-
fitting high-level components (such as searchers, reporters, and so forth)
somewhere else, typically into use cases (as mentioned earlier, a use case
usually spans across several components, so use cases aren’t the right place).
They also enable us to show an overall system structure quickly, including
some technical components at a high, zoomed-out level.

However, the UML techniques alone aren’t enough to take us to the top
of the previous scale.

Chapter 6 • Moving Toward Components 85

10 The new WebSphere® Business Components version of SF conforms to a software com-
ponent standard (Enterprise Java Beans™) coordinated by Sun. See http://java.sun.com/
products/ejb/training.html.
11 Similar sharing initiatives seem to be under way elsewhere. The trick here is simply to
avoid writing/making the program code, by reusing shared components instead, industry-
wide and world-wide.
12 WebSphere Business Components cut development time by more than half.
13 The comparison of generalist and specialist methodologies in the introduction provides
only a hint on a method’s overall ambition regarding high-level components. This scale,
on the other hand, is much more focused on the current state of an enterprise.

Brainware Is a Beautiful Trap

At the moment, among the “would-be-nice-ifs” of software tools the funda-
mental missing feature is intelligent configurators. Whereas Scania’s truck-
order process has been supported by smart sales configurators for several
decades, the software industry itself is still mostly low-tech on this point.
That’s not logical because configurators are the harvesting machinery, in a
sense, for all the benefits of object technology and of any component-based
architecture.

However, now that the OMG has a format standard for UML-model inter-
change across tools,14 even configurator vendors can join the UML race.15

Configurators will also make it much easier to reconfigure an enterprise
system immediately after a major business change, so such tools certainly
deserve to be closely watched and thoroughly tested during the next few
years. With other configurable products in, for example, complex manufac-
turing, there has been quite a long takeoff run. Configurators didn’t pay off
until a culture of “design to configure” became rooted in the R&D depart-
ment and spread throughout the enterprise. Unsurprisingly, previous prod-
uct architectures, not designed to be configured by computer programs,
turned out to be hardly configurable at all. This stepwise start procedure
indicates it’s high time for the software industry to enter, starting the first
iteration right away.

Remember, configuration management tools are not sales configurators.
These tools basically keep track of existing configurations, most often
already made by people “by hand.”

Beware of Lawyers!

A major trap is the protection of your legal interests when you buy and sell
reusable components. Software legislation doesn’t consist of a unique set of
dedicated laws, but is an adaptation from different, old, well-established
fields of law, for example, copyright law. One of the major complexities
when considering the legal aspects is the source of the various components
that make up a system. Components might have been bought from third

86 UML Xtra-Light

14 The XML Metadata Interchange (XMI) is a standard that makes it possible for teams
using different UML tools with different internal data formats to cooperate and exchange
their UML diagrams.
15 As in other knowledge industries, a quick-’n-dirty configurator prototype is a non-option
in the long run. Rather than simple things in Visual Basic, we need smart software tools to
process component lists of potentially thousands of components at several levels of granu-
larity viable in millions of possible combinations – yet capturing and correctly interpreting
all their interdependencies, constraints, inclusion/exclusion rules, and so forth. When these
tools are finally connected to the Web (or otherwise customer-enabled), they become
extremely interesting to the sales manager.

parties, extended to increase the functionality, and then further extended
and paid for as part of a client contract. Three levels of component are here:
bought with licensed use, developed to include trade secret, and passed by
copyright to a client.

When approaching components for protection, three legal categories can
be identified.

• strategic knowledge confined to organization

• non-strategic knowledge with commercial value

• non-strategic knowledge of little value

This gives a clue to what level of protection you might seek. Care is also
needed if your organization delivers reusable components. Binary code and
user documentation would require a different level of protection than when
the component comprised the specification, source code, and so forth. At
the same time, your organization also has to take competitors into account
in some niches, including components like freeware, shareware, and open
source software.

Automating the Bid Process
CIOs (and sales managers of software firms) need to be rather open-minded
on configurators and component-based architectures. In the knowledge
industry, hitting dates in tenders and contests is essential. Surprisingly, con-
sidering the levels of automation in today’s production and the short supply
of skilled sales engineers, it’s amazing how rarely automated the early steps
of the high-tech order cycle are.

As mentioned in this book’s introduction, workflow-oriented, standard
BPR cases typically provide a perfect solution to the wrong problem. Rather,
by using knowledge as supplied in design-to-configure components and
with intelligent software tools, long-term efficiency can be attained.

A few years ago, British (Benchmark UK) and American (Gartner US)
industry surveys presented – fairly similar – interesting findings on the bid-
ding process. In complex software and telecom, a UK industry average was
1,000+ working hours per bid. With a hit rate slightly above 35 percent, this
meant some 3,000 hours per real order.16

Thus, from the various points of view of development, production,
deployment, and sales, in particular, all the effort put into components and

Chapter 6 • Moving Toward Components 87

16 When these figures are shown to representatives from large European defense and elec-
tronics industries, they report that the figures might even be an underestimate.

configurability is definitely worthwhile. This effort pays off in both foreseen
and unforeseen ways. During times when a shortage exists of skilled person-
nel, successful bids can still be created using the captured knowledge in the
components. And, in times of cost-consciousness and severe price competi-
tion, improvements in development productivity and exploitation of exist-
ing proven components ensures your bids meet these constraints, and the
cost estimates underlying the bid are realistic.

Consequently, any enterprise strategy (and practice) must cover compo-
nent issues, including software components. In a knowledge industry, our
enterprise might build its entire business idea on components, growing into
a component vendor, a component buyer/assembler (that is, component-
based package vendor), a tool vendor, an adviser, a component broker, and
so on. Most often, components are key to any knowledge-intensive business
idea.

Summary
Components, component-based development methods, and techniques is
the way forward for the future. Software development is essentially a knowl-
edge industry and not a craft industry. Software development has to think
in terms of the successes of using and reusing components in an enterprise.
With system development departments in several countries, you can have a
“cooperative race” in component sharing similar to the one among the car
makers within the VW group, where a car design employing, say, 60 percent
of shared components can be regarded as a “winner.”17

The point is, unsurprisingly, to design and build each component only
once, making it really good instead.

88 UML Xtra-Light

17 Although there’s not extremely tough competition among the brands of the whole VW
group in the marketplace. In a sense, this is a race within the same team (and a profitable
race, for all parties).

Chapter 7

Mapping from Classes
to Data Models

Data modeling has been covered thoroughly for decades. Like class
diagrams, it provides a structural view. Unlike class diagrams, data
modeling omits business-level operations that the proposed system

will perform. Most often, it also omits some key relationships, such as gener-
alization, despite the fact that various data-model notations for generaliza-
tion have been around for almost two decades. Because most data models
are on a design level, they already take into account some restrictions posed
by the underlying implementation technology (data tables).

Strengths
Data models cope well with the data to be stored in the bottom layer of a
system. Therefore, data modeling is a technique suitable later on, during
design. The mapping to data models enables modern object-oriented sys-
tems to use ordinary relational database engines, which are standard in
enterprise systems. In practice, brief previews with Database Administrators
are a good idea to coordinate legacy and other systems with our models to
come. By the time data modeling becomes really interesting in our project,
we already have a more technical focus.

89

Limitations
Data models omit most of the behavior and business logic. Also, what data
modelers call constraints or rules typically turns out to mean special data-
related ones (such as rules of referential integrity across data tables), whereas
UML includes a more versatile and powerful standard for declaring complex
business logic, the UML Object Constraint Language (OCL). At the specifica-
tion stage, a data focus is likely to trigger a rush into design solutions, result-
ing in the full-plate syndrome – in other words, overloading everyone with
decisions on the technical detail of the system.

Use Appropriate Diagrams and Standards
We strongly recommend a layered system architecture or at least a layered
way of thinking here. This makes understanding where UML fits in (the
business logic layer) and where data models fit in (the bottom layer) much
easier. Data models in the form of entity relationship (ER) diagrams have fre-
quently been used instead of UML class diagrams, rather than as a comple-
mentary view: the data-centric view. Such approaches are likely to result in a
system much less resilient to change and in databases too specific to a single
system because of a hazy (or nonexistent) business-logic tier, making the
database contain some of that logic instead. Unsurprisingly, data models
will do on data, but not on the rest: the system behavior, the business logic,
the program logic, and so forth.

The OMG has recently adopted a vendor-independent standard for data
modeling and database creation1 to make life easier for an enterprise with
several database platforms.

People are also using variants of the UML class icon, “stereotyped” for
data modeling as «Table» or «T». Among the abundance of notations and
techniques here, however, Erwin®2 tools for ER models have been near de
facto standard, so many UML tools offer an Erwin bridge for ER-diagram
generation from UML class diagrams.3 This facility greatly simplifies design,
implementation, and upgrade by an automatic linkage to data. Taking
advantage of this facility, however, takes a good knowledge of both UML
and data models, as well as of the mapping techniques between object and

90 UML Xtra-Light

1 The Common Warehouse Metamodel (CWM) (www.omg.org/technology/cwm/index.htm).
2 By Computer Associates, www.cai.com.
3 Modern UML tools provide an automated mapping from the business logic layer to the
data layer by generating the data model in, for instance, Erwin, as well as by generating the
database schema in SQL’s Data Definition Language from standard UML class diagrams.
The bulk of the work is done by the tool. The modelers make only the high-level decisions
on the structure of the data model.

relational technology.4 The three following alternatives show the main
options we have at the conceptual level. The issue of database mapping is
wider and deeper than outlined here, though, especially as we move on into
design of tables and keys.

Mapping Relationships
Whereas computer program structures are generated from UML in a straight-
forward manner, data models and database schemas require several deci-
sions to be made up front. The easier part is mapping the attributes from
classes on to columns of tables, although some complex attributes, such as a
world map or a video shot to be used on the Web, usually also require fur-
ther decomposition or additional work. The trickier part is the structure of
the model because a necessary conceptual transform takes place from UML
class diagrams to data models whose structures also match the low end:
table lines and references between table lines (to be stored as so-called for-
eign keys). Generalization relationships (see Chapter 4) deserve special
attention during the transform. Conceptually, we choose from three alterna-
tives when mapping UML generalizations to a data model (some UML-map-
ping tools5 ask us to select one alternative up-front):

1. Make one to one. Generate one data-model entity or one database
table, per UML class. Each UML generalization becomes a one-to-one
association between tables, connecting each table line to its corre-
sponding line in the table of its superclass. This alternative is quite
straightforward and resilient to upgrades of the class diagram.6

2. Roll down. In principle, generate one bigger entity, or one table, per
“leaf “ at the bottom level of the UML tree (the class hierarchy)7 and
include even the data from all superclasses of that leaf into the same
table. This makes one table of each UML-generalization path, including

Chapter 7 • Mapping from Classes to Data Models 91

4 The technical knowledge necessary to make the right decisions here includes bidirec-
tional association, many-to-many associations, referential integrity (with one to one, one
to many, and aggregation), design of primary keys and foreign keys (especially with UML-
class generalization relationships), logical access facilities provided by the database engine,
such as indices (especially for many-to-many and bidirectional one-to-many associations).
5 This is likely to be simplified in the near future when SQL 3 becomes an ANSI standard
for databases.
6 With some database engines, however, this complicates the update of data in an individ-
ual object stored as lines in several tables. This is because, at the moment, many database
engines can’t update several tables automatically from temporary data (i.e., from a view or
from a cursor).
7 To be more exact, for each class having real objects, i.e., isn’t abstract.

data from each class level on that path. Each individual object corre-
sponds to exactly one row in exactly one table. This alternative
might be fine as long as searches rarely regard a superclass, while
answering requests, such as “count all liquids,” becomes much more
technically complicated. This alternative also generates redundant,
repeated, superfluous, more-of-the-same, column definitions in the
table headers. For example, in Figure 7-1 the definitions of “price”
and all future attributes of the UML class called Liquid (the “root”
level of the UML tree) must now be defined and maintained in all
five tables of its leaf subclasses (Detergents, Beers, Juices, Colas, Pep-
sis). This is at the definition level only (or the “table header level,”
the schema), however. No redundancy occurs in the rows of data
being actually stored in those tables because each individual object is
of exactly one UML subclass (or leaf), thus belonging to exactly one
table. For example, we don’t store price values of various beer-objects
in various tables – we simply store all those in rows of the Beers table
(and nowhere else).

92 UML Xtra-Light

Figure 7-1. The UML class diagram of Wet-Liquids.com. This is the structure view.

price

fetchPrice

Liquid

dataDue

quantityServed

personalDetail

addCustomer

payInvoicecalculatePayment

Invoice

Serving
allergyRating

Detergent

percentAlcohol
Beer

tasteRating
rateTaste

Beverage

percentSugar
coolit payAlcoholTax

onSpecialOffer

Pepsi
percentVitaminC

Juice

startOffer
onTVCampaign

Cola

startCampaign

Soft Drink

Customer

Household

1 1

1..*

1..*

* *

address

rateAllergy

3. Roll up. In principle, generate one big pseudo-entity, or one table,
per UML class tree and include data from all classes in that tree. This
alternative might be fine, as long as searches rarely regard a subclass
(requests like “count colas” take long searches in an extremely large
table). In addition, advanced UML structures combining all three kinds
of UML relationships will look like relationships within the same data
table, although they span several UML classes. In each row – depend-
ing on the class of the particular object whose data are stored in the
row – null values will be in the columns that aren’t applicable to that
class. So, here, unlike in the previous alternative two, we’ll be facing
redundant null values8 in each of the stored rows of this long table,
resulting in some waste of storage. This alternative is technically possi-
ble, therefore, but hardly comprehensible, especially in upgrade time.
Database administrators generally agree this alternative is the “last
resort,” and rather questionable both in the object community and in
the data-modeling community.

Chapter 7 • Mapping from Classes to Data Models 93

8 On practical reasons, there will also be an extra column containing a “type flag” or “class
flag,” telling the class of the object stored in a particular row.

Figure 7-2. Data model of Wet-Liquids.com. Alternative 1: Make one to one, which
means one data-model entity, or table, per UML class. Straightforward from most points of
view, except data updates from complete objects (implying data from several tables at a time).

Liquids Invoices Customers

Households

Detergents Servings

BeersSoft Drinks

Juices Pepsis Colas

Beverages

94 UML Xtra-Light

Figure 7-3. Data model of Wet-Liquids.com. Alternative 2: Roll down, which
means one bigger entity, or table, per “leaf “ in the UML class tree, including the data from
its superclasses into the same table. This might be fine as long as searches rarely regard a
superclass. As we can see here, for example, no such table as Liquids exists, so a query
regarding Liquids triggers searches in five tables (Detergents, Juices, Pepsis, Colas, and
Beers).

Beers

Detergents Juices

Colas

Servings

Invoices

Customers Households

Pepsis

Rule of Referential Integrity
Each row in the Invoice Table
must be connected to exactly
one row in exactly one of the
following tables: Detergents,
Juices, Pepsis, Colas, Beers.

Figure 7-4. Data model of Wet-Liquids.com. Alternative 3: Roll up, which
means one huge table per UML class tree, including the data from all its classes into the
same table – thus, Liquids contains attributes from the UML class Liquid, plus from its sub-
classes (Detergent, Beverage, Beer, Soft drink, Juice, Pepsi, and Cola) – altogether, data from
eight classes in one table. Use very sparingly. This is impractical in requests regarding any
class except Liquid and quite hopeless in maintenance.

Liquids ServingsInvoices

Customers Households

In Figures 7-2 through 7-4, we mapped our class diagram (Figure 7-1) of
Wet-Liquids.com on a data model. The ER notation here is slightly different
from UML:

• UML 0..1 corresponds to a ring symbol.

• UML * corresponds to a fork symbol.

• UML 1 corresponds to a straight line.

The path of reasoning here is also different. Also, remember we’re model-
ing only the data and not the behavior.

Summary

• Data models provide the data view at the bottom tier of a layered-
system architecture, in a slightly different notation.

• The mapping from UML to data models requires several decisions to
be made up front. A conceptual transform occurs from UML class
diagrams to a semi-technical view, which is closer to the underlying
storage.

• Among all the architectural and technical decisions to be made here,
the major one is the choice among Make one to one, Roll down,
and Roll up.

Chapter 7 • Mapping from Classes to Data Models 95

Chapter 8

Concluding Remarks

Think Big, Start Small, and Sustain the Effort
Most people agree that analysis occurs only when the domain expert is in
the room.1 In our experience, in addition to being present, experts are also
supposed to understand the language “spoken” in the room. The language
problem has often turned out to be even bigger than that of business-travel
logistics. The UML, however, provides many powerful tools to make yourself
understood in the room, which come in handy for the frequent visitor. By
writing this book, we simply seized the opportunity and packaged much of
the substance in a lightweight manner for this purpose.

Implementing UML models (and tools) to specify requirements doesn’t
take much time. Employing them in a practical approach preshrunk to fit
your type of systems takes more training days and practical experience.
Finally, adopting a component approach throughout the enterprise can take
years of sustained effort, but it’s definitely worthwhile.2

97

1 This concise wording originates from Brad Kain.
2 Scania has fine-tuned its modular truck architecture for 50 years. Industry leaders simply
don’t emerge overnight.

UML Under Time Constraints
We believe the lightweight style of this book makes it possible for experts
from many other areas to approach practical, basic UML. A frequent guest to
the landscape of software can view this as a phrase book for the journey,
keeping grammar detail at a minimum because many good grammar books
already exist for this modeling language.

At the same time, we’ve provided some hints on cooperation with the
hosts and on what parts of the language a guest typically becomes involved
with in practice. The basic guideline is this: focus on your part of the job. Pro-
vide clear input and answers to others’ questions, so they can focus on their
jobs.

Good communication in a common language based on a world standard saves
time, avoids misunderstanding, and reduces effort. As the boundaries of sys-
tems and components are made visible, the same thing happens to bound-
aries between roles in a project. Intercommunication becomes more stan-
dardized and targeted, both in the project and in the product. The
viewpoint throughout this book is more one of every day modeling work
than one of planning or managing a development project, which is yet
another area that’s well covered by other books.

Figure 8-1 shows the degree of involvement of nonprogrammers who
specify the system and the programmers who develop the system. Over the
past decade, the boundary line in the figure has been moving slowly from
left to right. Business experts are becoming more involved in the modeling
stages. Standardization, in general, and UML, in particular, facilitate this
trend.

98 UML Xtra-Light

Figure 8-1 Degree of involvement.

Business Model
Business Use Cases
Activity Diagrams

External Functionality
Use Cases

Domain Model
Class Diagrams
Business Rules
State Diagrams

Interaction Model
Sequence Diagrams

Technical/Architecture
Package Diagrams
Component Diagrams
Deployment Diagrams

Nonprogrammers

Programmers

• Business model: business use cases, activity diagrams, or similar.
Word documents (e-documents).

• External functionality: use cases (focusing around mainstream
scenarios).

• Domain model: class diagrams – first-cut, middle-out from key
business entities.

• Complex business rules: OCL (not diagrammatic) or a domain-
specific knowledge-based tool.

• Life cycles: state diagrams for entities (focusing around relevant
mainstream scenarios).

• Internal interactions: either sequence or collaboration diagrams
(for your information).

• Technical/architecture: package, component, deployment dia-
grams (for your information).

These aren’t complicated. Like any language, it’s hard to start, but once
you learn the few basics, you’ll begin to understand and communicate your
requirements to the IT staff.

Try it. It’s easier than you think!

Chapter 8 • Concluding Remarks 99

Some Suggested Readings

Allen, Paul, and Stuart Frost. Component-Based Development for Enterprise Systems:
Applying the Select Perspective. Cambridge University Press, 1998. ISBN 0-521-64999-4.

Bremdal, Bernt, Hjelmervik, Ove R., and Wang, Kesheng. Introduction to Knowledge
Management, Principles and Practice. Tapir Academic Press, 2001. ISBN 82-519-1660-7.

Fowler, Martin, and Kendall Scott. UML Distilled: Applying the Standard Object Modeling
Language, 2nd Edition. Addison-Wesley, 1999. ISBN 0-201-65783-X.

Heineman, George T., and William T. Councill. Component-Based Software Engineering:
Putting the Pieces Together. Addison-Wesley, 2001. ISBN 0-201-70485-4.

Jaaski, Ari (ed). Tried & True Object Development: Practical Approaches with UML. Cam-
bridge University Press, 1999. ISBN 0-521-64530-1.

Jacobson, Ivar, et al. The Object Advantage: Business Process Reengineering with Object
Technology. Addison-Wesley, 1995. ISBN 0-201-42289-1.

McGibbon, Barry. Managing Your Move to Object Technology: Guidelines and Strategies for
a Smooth Transition. SIGS Books, 1995. ISBN 0-132420-09-0.

Penker, Mangus, and Hans-Eric Eriksson. Business Modeling with UML: Business Patterns
at Work. John Wiley & Sons, 2000. ISBN 0-471-29551-5.

Svejby, Karl Erik. Managing Know-how. Out of print.

101

Taylor, David A. Business Engineering with Object Technology: A Manager’s Guide. John
Wiley & Sons, 1995. ISBN 0-471-04521-7.

. . . plus many more.

You can also visit our profound business case at www.Wet-Liquids.com (how-
ever, your hardware of today is most probably not compatible yet for bever-
age downloads of the future).

102 Some Suggested Readings

abstract actors, 31
activity diagrams, 15–23

abstract actors in, 31
diamonds in, 20–21
process-flow view in, 26
swim lanes in, 18
waits, 22

actors, 29, 35, 46
generic, 31

agencies, 3
aggregations, 52, 54–55
animators (tools), 68
Aonix, 11n, 68n
Apollo 13 syndrome, 39
application frameworks, 77
asset paradox, 4–5
associations, 52–54

automation
business, 21–22
examples of, 36–39
tradeoffs in, 36

Bach, J.S., 9
batch processing, 29
Bergman, Ingmar, 9n
boring life cycles, 64
Bräne, Tomas, 10
building components, 81
business modeling, 13, 27
business objects, 77
Business Process Reengineering (BPR),

4
business semantics-driven strategies,

50

Index

business service-driven strategies, 50
business use cases, 23–25

e-views in, 26
standard use cases distinguished

from, 36
buying components, 80–81

Campbell, Don, 9n
cardinality (multiplicity), 53
certification of components, 83–84
class diagrams, 48–52

data modeling compared with, 89
class-discovery strategies, 50
classes

mapping relationships among,
91–95

objects distinguished from, 52
relationships among, 52–53
state diagrams of, 61–63

class hierarchies, 59
class modeling, 27
collaboration diagrams, 67, 70
Common Warehouse Metamodel

(CWM), 90n
communications

among components, 76–79
in sharing responsibilities, 7

component diagrams, 71
component-driven approaches, 10
components, 76

bidding process for, 87–88
building, 81
buying, 80–81
certification of, 83–84
communications among, 76–79
development strategy for, 73–74
impact of, 79–81
libraries of, 83–84
responsibilities of, 78–79
reusing, 81–83
sharing, 84–85
traps in, 85–87
used in music, 9

compositions, 52, 55–58
configurable components, 82
configuration management tools, 86
copyright law, 86
customizable components, 82

database schemas, 91
data modeling, 25, 89–90

diagrams and standards for, 90–91
mapping relationships in, 91–95

demand-side control, 75
deployment diagrams, 71
diamonds, in activity diagrams,

20–21
Dijkstra, Edsger W., 69n
documentation, 8
domain analysis, 83
domain models, 99
domains, 32n, 48

Enterprise Java Beans, 85n
entity relationship (ER) diagrams, 90
error handling

in activity diagrams, 19
in state diagrams, 66

Erwin (tool), 90
e-views, 26

factories, 2–3
Forman, Milos, 9n

generalizations
in advanced modeling, 57–58
in class diagrams, 49–50
among classes, 52–53, 58–59

human-computer interaction (HCI),
27–28

IBM (International Business Machines
Corp.), 10n, 85

IBS (firm), 10, 82, 85
intelligent configurators, 86

104 Index

interaction modeling, 27
interfaces

for components, 82
user interfaces, 28

isomorphism, 48–49

Jackson, Michael A., 61n, 64n
Jacobson, Ivar, 23, 27, 29

Kain, Brad, 97n
key business entities, 61–62
knowledge

as asset, 4–5
sharing, 5–6

knowledge enterprises, 3–5
knowledge industries, 1–2

know-how in, 3–5
types of, 2–3

knowledge tools, 51
knowledge views, 26
Kratochvíl, Jiří, 9n

legal issues in components, 86–87
libraries of components, 83–84
life cycles, 50, 61, 99

boring, 64
state diagrams of, 61–62
unstructured, 64–66

management-by-exception style, 17, 19
mapping relationships, in data models,

91–95
methodologies, 8, 36, 48
Mozart, W.A., 9
multiplicity (cardinality), 53
music, 9

Object-Animator, 68n
Object Constraint Language (OCL),

51, 90
object interaction modeling, 27
Object Management Group (OMG), 4,

72n, 86

on data modeling and database
creation, 90

Software Process Engineering stan-
dard by, 11

objects distinguished from classes, 52
offices, 2
on-the-fly identification, 83

packages, 76
components and, 82

parameterized use cases, 43–44
pluggable components, 81–82
process-flow view, 26
project management, 28, 33–34
prototypes, 28, 32

Rational Unified Process (RUP), 8–10
responsibilities, of components, 78–79
reusing components, 81–83

Select Business Solutions, 11n
Select Component Factory, 11
Select Perspective, 11, 36
sequence diagrams, 62, 67–70, 72
SF, see WebSphere Business Compo-

nents
sharing components, 84–85
smart response trap, 42
software

bidding process for, 87–88
know-how in production of, 4
legal issues involving, 86–87
see also components

Software Process Engineering (SPE)
standard, 11

SQL (structured query language), 53n
standard use cases, 36
state diagrams, 61–66, 71–72
state-machines, 62n
states, 63
stereotypes, 44n, 90
Sundgren, Bo, 61n
Sveiby, Karl-Erik, 2

Index 105

swim lanes (in activity diagrams), 18
synchronization bars, 16
system boundaries, 46
system documentation, 8
system use cases (standard use cases),

36

traditional waterfall project trap, 45
tying-it-here trap, 39–40

UML (Unified Modeling Language)
methodologies used with, 8
Object Constraint Language of, 51
other diagrams in, 70–71
smorgasbord, 14–15
standardization of, 5, 8

unstructured life cycles, 64–66
use-case analysis, 36–39
use cases, 27–29

business, 23–25
example of, 29–34
generalization of, 33
parameterized, 43–44
prioritization of, 32–34
standard versus business, 36
template for, 34–35
traps in, 39–45

use-class trap, 42–44
useless user trap, 44–45
user interfaces, 28

value-is-self-evident trap, 41

WebSphere Business Components (SF;
IBM), 10, 85

XML Metadata Interchange (XMI), 86n

106 Index

	Half-title
	Title
	Copyright
	Dedication
	Contents
	Foreword
	Preface
	Acknowledgments
	About the Authors
	Milan Kratochvíl
	Barry McGibbon

	How to Customize This Book
	Chapter 1 Introduction
	Software – Yet Another Knowledge Industry
	Classifying the Knowledge Industry
	Consequences of the Knowledge Industry
	The Asset Paradox

	Sharing the Knowledge
	Sharing the Responsibility for Getting It Right
	Methods and Processes
	Summary

	Chapter 2 Aligning to the Business
	Using UML Activity Diagrams
	Strengths
	Limitations
	Drinking in Florida
	Drinking in Prague
	Drinking in Stockholm
	Drinking in 2080

	Using Business Use-Case Diagrams
	Strengths
	Limitations

	But What About the Data?
	Summary

	Chapter 3 Adding Rigor to the Requirements
	Use Cases
	Strengths
	Limitations

	Use-Case Example
	Meeting the Devil
	Use-Case Analysis at Two Levels, At Least
	How to Avoid Messing Up Use Cases
	The Apollo 13 Syndrome
	The Tying-It-Here Trap
	The Two-Models-in-One Trap
	The Value-Is-Self-Evident Trap
	The Smart Response Trap
	The Use-Class Trap
	The Useless User Trap
	The Traditional Waterfall Project Trap

	Summary

	Chapter 4 Sketching the Inside Structure
	Class Diagrams
	Strengths
	Limitations

	The Class Diagram
	Getting There

	Understanding Class Relationships
	Associations
	Aggregation
	Composition
	Generalization

	Summary

	Chapter 5 Sketching the Inside Dynamics
	State Diagrams
	Strengths
	Limitations
	Mainstream Before Detail
	Error Handling

	Tying It All Together
	Strengths
	Limitations

	UML Collaboration Diagrams
	Other UML Diagrams
	Summary

	Chapter 6 Moving Toward Components
	Components Communicate with Everyone
	Specifying Components for Wet-Liquids.com

	Impact of the Component-Based Approach
	Buying Components
	When to Buy or Build

	Reusing Components
	Building a Component Library
	Can I Trust This Component?

	Sharing Components in Your Organization
	Avoiding the Traps
	Just-a-New-Diagram
	Brainware Is a Beautiful Trap
	Beware of Lawyers!

	Automating the Bid Process
	Summary

	Chapter 7 Mapping from Classes to Data Models
	Strengths
	Limitations
	Use Appropriate Diagrams and Standards
	Mapping Relationships
	Summary

	Chapter 8 Concluding Remarks
	Think Big, Start Small, and Sustain the Effort
	UML Under Time Constraints

	Some Suggested Readings
	Index

