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Preface

I have three vivid memories about learning statistics as an undergraduate

that all involve misconceptions. Firstly, I remember my lecturer telling

me that, after obtaining a result that was not statistically significant,

I should conclude that timber harvesting did not have an effect (on what,

I cannot remember). While the logic was flawed, I have since realized

that it is a misconception shared by many ecologists.

My second memory is of reading about Bayesian analyses in journal

articles. I wondered what Bayesian methods were, how they differed

from the statistical approaches I had been taught (frequentist methods

such as null hypothesis testing and construction of confidence intervals),

and why I had never heard of them before. On reading the articles,

I concluded that Bayesian methods must be hard to do. It turns out that

I was incorrect again.

My third memory is that statistics was boring. I was wrong again.

I was reasonably good at the mathematics involved, but it was not until

I started doing my own data analyses during my Ph.D. that I saw the

benefits of using statistics. I began to learn about different ways to do

statistics (e.g. likelihood-based methods), and also re-learnt some old

topics (e.g. realizing the importance of and learning how to calculate

statistical power). For me, statistics and probability continue to be

a world of learning.

This book represents a stage in my journey through the world of

statistics. It is born out of a frustration with how conventional statistical

methods are misused in ecology on a routine basis, and a belief that

Bayesian methods are relevant and useful. I hope this book convinces

readers of the value of Bayesian methods and helps them learn Bayesian

methods more quickly than me.

xi



Approximately five years ago I used null hypothesis significance testing

to evaluate the predictions of some models of population viability.

An astute reviewer questioned this approach because the models were

surely known to be wrong a priori. The reviewer provided a glorious list

of quotes that attacked null hypothesis significance testing (not unlike the

quotes in Chapter 2). I started thinking about alternatives, leading me

to Hilborn and Mangel’s (1997) The Ecological Detective, and beyond.

The Ecological Detective (Hilborn and Mangel, 1997) is one of the best

books available to ecologists for learning about Bayesian methods.

However, ecologists wishing to use the suggested methods need at least

some skills in computer programming. I intend my book to provide a

bridge between a desire to conduct Bayesian analyses and the book by

Hilborn and Mangel (1997). WinBUGS code for the analyses in this book

is available from http://arcue.botany.unimelb.edu.au/bayes.html.

The bridge is built by using the freely available program WinBUGS

(Spiegelhalter et al., 2005; Appendix A) to conduct the vast majority

of analyses in this book. I try to start gently, illustrating the most

basic analyses, before giving some more complicated examples. More

experienced users will find some analyses trivial, and novices may find

some examples impenetrable. The aim is to provide a sufficient diversity

of examples that the reader will be able to learn how to construct their

own statistical models and conduct their own analyses.

This book is not necessarily designed to be read from cover to cover.

Read Chapters 1 and 2 if you wish to know more about the differences

between Bayesian and frequentist methods. If you just want to learn how

to conduct Bayesian analyses, start with Chapter 1, Appendix A, and

then move to Chapter 3 or whichever topic is most relevant. As you

become more familiar with Bayesian methods, the entire content of

the book will become more accessible.

I have many people to thank for their help while writing this book.

Ralph Mac Nally and Alan Crowden’s suggestion to write this book

started the ball rolling. Brendan Wintle has been extremely important as

a colleague, a source of advice and insights, and a sounding board for

ideas. Kirsten Parris, David Lindenmayer, Jane Elith, Pip Masters, Linda

Broome, Tara Martin, Mark McDonnell, Michael Harper, Brendan

Wintle, Amy Hahs, Rodney van der Ree and many others have provided

data for analysis over the years. I would have learnt very little without

them.

This book owes much to the availability of WinBUGS, and I thank the

team that developed the software. In particular, David Spiegelhalter,
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Andrew Thomas and Bob O’Hara have answered questions and

investigated software bugs from time to time.

Hugh Possingham, Mark Burgman, David Lindenmayer and Mark

McDonnell have provided opportunities for me to conduct research into

risk assessment, and the use of Bayesian methods. They have been

influential, as have Fiona Fidler, Neil Thomason and my colleagues listed

above. Various funding agencies have supported my research, with

the Australian Research Council and The Baker Foundation being

particularly generous.

I’d like to thank my parents David and Sue for fostering my interests

in mathematics and ecology, and Dr John Gault for his enthusiastic

interest in Bayesian issues of a medical nature.

Finally, thank you to everyone who has provided comments,

in particular Mark Burgman, Geoff Cumming, Aaron Ellison, Ralph

Mac Nally, Kirsten Parris, Gerry Quinn and Julia Stammers, who read

most if not all of earlier drafts. Peter Baxter, Barry Brook, Ryan

Chisholm, Gareth Davies, Lou Elliott, Fiona Fidler, Bill Langford,

Terry Walshe and Nick Williams also provided helpful comments on

various sections.
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Introduction

There is a revolution brewing in ecology. Granted, it is a gentle and

slow revolution, but there is growing dissatisfaction with the statistical

methods that have been most commonly taught and used in ecology

(Hilborn and Mangel, 1997; Wade, 2000; Clark, 2005).1 One aspect of

this revolution is the increasing interest in Bayesian statistics (Fig. 1.1).

This book aims to foster the revolution by making Bayesian statistics

more accessible to every ecologist.

Ecology is the scientific study of the distribution and abundance

of biological organisms, and how their interactions with each other and

the environment influence their distribution and abundance (Begon et al.,

2005). The discipline depends on the measurement of variables and

analysis of relationships between them. Because of the size and com-

plexity of ecological systems, ecological data are almost invariably subject

to error. Ecologists use statistical methods to distinguish true responses

from error. Statistical methods make the interpretation of data trans-

parent and repeatable, so they play an extremely important role in

ecology.

The Bayesian approach is one of a number of ways in which ecologists

use data to make inferences about nature. The different approaches

are underpinned by fundamentally different philosophies and logic. The

appropriateness of different statistical approaches has been fiercely

debated in numerous disciplines but ecologists are only now becoming

aware of this controversy. This occurs at least in part because the

majority of statistical books read by ecologists propound conventional

1 The conventional statistical methods are known as frequentist statistics and include null
hypothesis significance testing (NHST) and construction of confidence intervals. NHST
attracts the most criticism. See Chapter 2 for more details of these methods.
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statistics, ignore criticisms of these methods and do not acknowledge

that there are alternatives (Fowler et al., 1998; Sokal and Rohlf, 1995;

Underwood, 1997; Zar, 1999). Those that do address the controversy

usually aim to change the status quo (Hilborn and Mangel, 1997;

Burnham and Anderson, 2002), although there are exceptions (Quinn and

Keough, 2002; Gotelli and Ellison, 2004).

The Bayesian approach is used relatively rarely (Fig. 1.1), so why

should it interest ecologists? There are several reasons but two are

particularly relevant ones. Firstly, Bayesian methods are fully con-

sistent with mathematical logic, while conventional statistics are only

logical when making probabilistic statements about data, not hypo-

theses (Cox, 1946; Berger and Berry, 1988; Jaynes, 2003). Bayesian

methods can be used to make probabilistic predictions about the

state of the world, while conventional statistics are restricted to

statements about long-run averages obtained from hypothetical replicates

of sampled data.

Secondly, relevant prior information can be incorporated naturally

into Bayesian analyses by specifying the appropriate prior proba-

bilities for the parameters. In contrast, conventional statistical

methods are forced to ignore any relevant information other than that

contained in the data. Difficulties with Bayesian methods and

other benefits are discussed more fully in Chapter 2 and throughout this

book.

Bayesian statistics are founded on the work of the Reverend

Thomas Bayes, who lived and died in eighteenth century England

(Box 1.1). Bayesian methods explicitly recognize and combine four

Fig. 1.1 The proportion of articles in the journals Ecology and Conservation

Biology that refer to ‘Bayes’ or ‘Bayesian’.
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components of knowledge. Prior knowledge and new data are combined

using a model to produce posterior knowledge.2 These four components

may be represented as:

priorþ data ��!
model

posterior

It is common in everyday life to combine prior information and

new data to update knowledge. We might hear a weather forecast that the

chance of rain is small. However, if we stepped outside and saw dark

2 Prior and posterior refer to before and after considering the data.

Box 1.1
The Reverend Thomas Bayes, FRS

Very little is known about Thomas Bayes. The portrait above

(O’Donnell, 1936) may be of Bayes, but no other portraits

are known (Bellhouse, 2004). Even the year (1701 or 1702) and

place of his birth (London or Hertfordshire, England) are

uncertain (Dale, 1999). There are few records to indicate the nature

of his early schooling, but he is known to have studied divinity

and mathematics at the University of Edinburgh. He was ordained

as a Presbyterian minister by 1728. He was elected as a Fellow of

the Royal Society in 1742 but it was not until after his death in

1761 that his most famous contribution, his essay in the

Philosophical Transactions of the Royal Society of London,

was published (Bayes, 1763). In that essay, Bayes described his

theory of probability and presented what is now known as

Bayes’ rule (or Bayes’ theorem), establishing the basis of

Bayesian statistics.
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clouds looming above us, most people would think that the risk

of rain was higher than previously believed. In contrast, our expecta-

tion of a fine day would be reinforced by a sunny sky. Thus, both the

prior information (the weather forecast) and the data (the current state of

the weather) influence our newly updated belief in the prospects of rain.

Our updated belief in the chance of rain (the posterior) will depend

on the relative weight we place on the prior information compared to

the new data and the magnitude of the difference between the two

pieces of information. In this case the ‘model’ is contained within our

understanding of the weather. Our thought processes combine the prior

information, data, and model to update our belief that it will rain.

Bayesian statistics provide a logically consistent, objective and repeatable

method for combining prior information with data to produce the

posterior, rather than the subjective judgement that most people would

use when stepping outside.

Before considering the benefits and limitations of Bayesian methods

and its alternatives in Chapter 2, I will illustrate the use of the different

statistical approaches with two examples. These highlight how Bayesian

methods provide answers to the kinds of questions that ecologists ask,

and how they can usefully incorporate prior information.

Example 1: Logic in determining the presence or absence

of a species

Consider an ecologist who surveys ponds in a city for frogs. On her

first visit to a pond, she searches the edge and listens for frog calls

over a 20-minute period. The southern brown tree frog (Litoria ewingii)

is the most common species in her study area, but it is not found on

this particular visit (Fig. 1.2). However, the researcher would not be

particularly surprised that the species was not detected because she knows

from experience that when surveying ponds, southern brown tree frogs

are detected on only 80% of visits when they are in fact present. Given

this information, what can she conclude about whether the southern

brown tree frog is present at the site or not?

The question about the presence of a species is a simple example of

those asked by ecologists. We assume that there is a particular true state

of nature and we hope to use scientific methods to determine a reasonable

approximation of the truth. However, the probability that a species is
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present at a site is rarely calculated by ecologists, although it should be a

fundamental part of any field study that depends on knowing where a

species does and does not occur. This probability is not calculated partly

because the statistical methods used by most ecologists are not well-suited

to this question. I will examine three different approaches to answering

this question and demonstrate that a satisfactory answer requires

Bayesian methods.

Frequentist approaches

Conventional approaches to data analysis in ecology estimate the

likelihood of observing the data (and more extreme data in the case of

null hypothesis testing). These approaches are referred to as frequentist

methods because they are based on the expected frequency that such data

would be observed if the same procedure of data collection and analysis

was implemented many times. Frequentist methods focus on the

frequency with which the observed data are likely to be obtained from

hypothetical replicates of sampling.

There are numerous types of frequentist statistics that are used in

ecology, including null hypothesis significance testing and information-

theoretic methods. These are applied below to the question about whether

southern brown tree frogs are present at the pond.

Fig. 1.2 The southern brown tree frog Litoria ewingii, a common species in

the ponds of Melbourne, Victoria. Photograph by Nick Clemann.
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Null hypothesis significance testing

The first statistical approach to answering the question is null hypothesis

significance testing. The null hypothesis for this first case might be that

the southern brown tree frog is absent from the site. The researcher

then seeks to disprove the null hypothesis with the collection of data.

The single piece of data in this case is that the frog was not detected.

The researcher then asks: ‘What is the probability of obtaining this result

if the null hypothesis were true?’3 This probability is the p-value of the

significance test. If the p-value is sufficiently small (conventionally if less

than 0.05), it means that the data (or more extreme data) would be

unlikely to occur if the null hypothesis is true. If the p-value is small, then

we assume that the data are inconsistent with the null hypothesis, which

is then rejected in favour of the alternative.

In the case of the frog survey, the p-value is equal to 1.0. This is

calculated as the probability that we would fail to record the frog

(i.e. obtain the observed data) if it is absent (i.e. if the null hypothesis is

true). The high p-value means that the researcher fails to reject the

null hypothesis that the frog is absent.

The other possible null hypothesis is that the frog is present at the

site. In this case, the probability of obtaining the data is equal to 0.2

(one minus the probability of detecting the species if present) given

that the null hypothesis is true. Thus, the p-value is 0.2, and using a

conventional cut-off of 0.05, the researcher would have a non-significant

result. The researcher would fail to reject the null hypothesis that the

southern brown tree frog was present.

It is surprising (to some people) that the two different null hypotheses

can produce different results. The conclusion about whether the species is

present or absent simply depends on which null hypothesis we choose.

The source of this surprise is our failure to consider statistical power,

which I will return to in Chapter 2.

Another possible source of surprise is that the p-value does not neces-

sarily provide a reliable indicator of the support for the null hypotheses.

For example, the p-value is equal to 1.0 for the null hypothesis that the

frog is absent. This is the largest possible p-value, but it is still not

proof that the null hypothesis is true. If we continued to return to the

3 In actual fact, a null hypothesis significance test asks what is the probability of obtaining
the data or a more extreme result. However, in this case, a more extreme result is not
possible; it is not possible to fail to detect the frog more than once with one visit, so the
p-value is simply the probability of observing the data.
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same pond and failed to find the frog, the p-value would remain equal to

1.0, insensitive to the accumulation of evidence that the frog is absent.

This apparent discrepancy occurs because frequentist methods in general

and p-values in particular do not provide direct statements about the

reliability of hypotheses (Berger and Sellke, 1987; Berger and Berry,

1988). They provide direct information about the frequency of occurrence

of data, which only gives indirect support for or against the hypotheses.

In this way, frequentist methods are only partially consistent with

mathematical logic, being confined to statements about data but not

directly about hypotheses (Berger and Sellke, 1987; Jaynes, 2003).

Information theoretic methods

An information theoretic approach based on ‘likelihood’ is an alternative

frequentist method to null hypothesis significance testing. It evaluates the

consistency of the data with multiple competing hypotheses (Burnham

and Anderson, 2002). In the current example, there are only two possible

hypotheses: the frog is absent (Ha) and the frog is present (Hp).

Likelihood-based methods ask: ‘What is the probability of observing the

data under each of the competing hypotheses?’ In this example it is the

probability of not detecting the species during a visit to a site.

Unlike null hypothesis testing, likelihood-based methods, including

information-theoretic methods, do not consider the possibility of more

extreme (unobserved) data. The likelihood for a given hypothesis can

be calculated as the probability of obtaining the data given that the

hypothesis is true.4 Despite the implication of its name, the likelihood of

a hypothesis is not the same as the probability that the hypothesis is true.

Under the first hypothesis (the frog is absent), the probability of

observing the data (Pr(D |Ha)) is equal to 1. Under the second hypothesis

(the frog is present) the probability (Pr(D |Hp)) is 0.2. Information-

theoretic methods then determine the amount of evidence in favour of

these two hypotheses by examining the ratio of these values (Burnham

and Anderson, 2002).5 These ratios may be interpreted by rules of thumb

(see also Chapter 4). Using the criteria of Burnham and Anderson (2002),

4 The likelihood need only be proportional to the probability of obtaining the data, not
strictly equal to it. Terms that do not include the data or the parameters being estimated
can be ignored because they will cancel out of the subsequent calculations.

5 Information-theoretic methods are modified by the number of parameters that are
estimated with the data. In this case, the parameter of the analyses (the detection rate) is
not estimated with the data, so the number of estimated parameters is zero.
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we might conclude that the southern brown tree frog is ‘considerably less’

likely to be present than it is to be absent (Pr(D |Hp)/Pr(D |Ha)¼ 1/5).

Bayesian methods

Frequentist methods are in general not well-suited to the species detection

problem because they are strictly limited to assessing long-run averages

rather than predicting individual observations (Quinn and Keough,

2002). This is revealing; frequentist methods are not strictly suitable for

predicting whether a species is absent from a particular site when it has

not been seen. Such a problem is fundamental in ecology, which relies

on knowing the distribution of species. In contrast, the species detection

problem can be tackled using Bayesian methods.

Bayesian methods are similar to likelihood-based methods, but also

incorporate prior information using what is known as ‘prior probabil-

ities’. Bayesian methods update estimates of the evidence in favour of

the different hypotheses by combining the prior probabilities and the

probabilities of obtaining the data under each of the hypotheses. The

probability that a hypothesis is true increases if the data support

it more than the competing hypotheses.

Why might the prior information be useful? If the researcher visited

a pond that appeared to have excellent habitat for southern brown tree

frogs (e.g. a large well-vegetated pond in a large leafy garden), then

a failure to detect the species on a single visit would not necessarily make

the researcher believe that the frog was absent. However, if the researcher

visited a pond that was very unlikely to contain the frog (e.g. a concrete

fountain in the middle of an asphalt car park), a single failure to detect

the frog might be enough to convince the researcher that the southern

brown tree frog did not occur at the pond. Frequentist methods cannot

incorporate such prior information, but it is integral to Bayesian

methods.

Another key difference between Bayesian methods and frequentist

methods is that instead of asking: ‘What is the probability of observing the

data given that the various hypotheses are true?’ Bayesian methods ask:

What is the probability of the hypotheses being true given the observed data?

At face value, this is a better approach for our problem because we are

interested in the truth of the hypotheses (the frog’s presence or absence

at the site) rather than the probability of obtaining the observed data

given different possible truths.
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In practice, Bayesian methods differ from likelihood methods by

weighting the likelihood values by the prior probabilities to obtain

posterior probabilities. I will use the two symbols Pr(Ha) and Pr(Hp) to

represent the prior probabilities. Therefore, the likelihood for the

presence of the frog given that it was not seen (0.2) is weighted by

Pr(Hp) and the likelihood for the absence of the frog (1.0) is weighted by

Pr(Ha). Thus, the posterior probability of presence is a function of the

prior probability Pr(Hp), the data (the frog was not seen) and the model,

which describes how the data were generated conditional on the presence

or absence of the frog. Now we must determine a coherent scheme for

determining the values for the prior probabilities Pr(Hp) and Pr(Ha).

This incorporation of prior information is one of the unique aspects

of Bayesian statistics. It also generates the most controversy.

Both hypotheses might be equally likely (prior to observing the

data) if half the sites in the study area were occupied by southern brown

tree frogs (Parris unpublished data). In this case, Pr(Ha)¼ 0.5, as does

Pr(Hp). With these priors, the probability of the southern brown tree

frog being absent will be proportional to 0.5� 1.0¼ 0.5, and the

probability of it being present will be proportional to 0.5� 0.2¼ 0.1.

The posterior probabilities must sum to one, so these proportional

values (0.5 and 0.1) can be converted to posterior probabilities by

dividing by their sum (0.5þ 0.1¼ 0.6). Therefore, the probability of

the frog being present is 1/6 (¼ 0.1/0.6), and the probability of absence

is 5/6 (¼ 0.5/0.6). So, with equal prior probabilities (Pr(Ha)¼

Pr(Hp)¼ 0.5), we would conclude that the presence of the frog is

five times less probable than the absence of the frog because the

ratio (Pr(Hp |D)/Pr(Ha |D)) equals 1/5. You may have noticed that

this result is numerically identical to the likelihood-based result. I will

return to this point later.

A different prior could have been chosen for the analysis. A statis-

tical model predicts the probability of occupancy of ponds by southern

brown tree frogs based on the level of urbanization (measured by road

density), characteristics of the vegetation, and the size of the pond (based

on Parris 2006.). If the pond represented relatively high-quality habitat,

with a predicted probability of occupancy of 0.75, then the probabil-

ity of the frog being present will be proportional to 0.75� 0.2¼ 0.15 and

the probability of absence will be proportional to (1� 0.75)� 1.0¼ 0.25.

With these priors, the probability of the frog being present is equal

to 3/8 (¼ 0.15/(0.15þ 0.25)), and the probability of absence is 5/8

(¼ 0.25/(0.15þ 0.25)).
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The incorporation of prior information (the presence of good quality

habitat) increases the probability that the pond is occupied by south-

ern brown tree frogs compared to when the prior information is ignored

(0.375 versus 0.167). The actual occupancy has not changed at all � the

pond is still either occupied or not. What has changed is the researcher’s

belief in whether the pond is occupied. These Bayesian analyses may be

formalized using Bayes’ rule, which, following a short introduction to

conditional probability (Box 1.2), is given in Box 1.3.

Box 1.2
Conditional probability

Bayes’ rule is based on conditional probability. Consider two events:

event C and event D. We are interested in the probability of event C

occurring given event D has occurred. I will write this probability

using the symbol Pr(C |D), and introduce three more symbols:

Pr(C) � the probability of event C occurring;

Pr(D) � the probability of event D occurring; and

Pr(C and D) � the probability of both events occurring together.

Conditional probability theory tells us that:

PrðC and DÞ ¼ PrðDÞ � PrðC jDÞ,

which in words is: the probability of events C and D both occurring is

equal to the probability of event C occurring given that event D has

occurred multiplied by the probability of event D occurring

(independent of event C ). The | symbol means ‘given the truth or

occurrence of ’.

The above can be rearranged to give:

PrðC jDÞ ¼ PrðC and DÞ=PrðDÞ:

For example, Pfiesteria, a toxic alga is present in samples with

probability 0.03 (Stow and Borsuk 2003). Pfiesteria is a subset of

Pfiesteria-like organisms (PLOs), the latter being present in

samples with probability 0.35. Therefore, we can calculate the

conditional probability that Pfiesteria is present given that PLOs

are present:

PrðPfiesteria jPLOÞ ¼ PrðPfiesteria and PLOÞ=PrðPLOÞ

¼ 0:03=0:35 ¼ 0:086:
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Box 1.3
Bayes’ rule for a finite number of hypotheses

Conditional probability (Box 1.2) states that for two events C and D:

PrðC and DÞ ¼ PrðDÞ � PrðC jDÞ:

C and D are simply labels for events (outcomes) that can be swapped

arbitrarily, so the following is also true:

PrðD and CÞ ¼ PrðCÞ � PrðD jCÞ:

These two equivalent expressions for Pr(C and D) can be set equal

to each other:

PrðDÞ � PrðC jDÞ ¼ PrðCÞ � PrðD jCÞ:

It is then straightforward to obtain:

PrðC jDÞ ¼ PrðCÞ � PrðD jCÞ=PrðDÞ:

Let us assume that event C is that a particular hypothesis is true,

and event D is the occurrence of the data. Then, the posterior

probability that the frog is absent given the data (Pr(Ha |D)) is:

PrðHajDÞ ¼ PrðHaÞ � PrðDjHaÞ=PrðDÞ:

The various components of the equation are the prior probability

that the frog is absent (Pr(Ha)), the probability of obtaining the data

given that it is absent (Pr(D |Ha), which is the likelihood), and the

probability of obtaining the data independent of the hypothesis being

considered (Pr(D)).

The probability of obtaining the data (the frog was not detected)

given Ha is true (the frog is absent) was provided when using the

likelihood-based methods:

PrðD jHaÞ ¼ 1:0:

Similarly, given the presence of the frog:

PrðD jHpÞ ¼ 0:2:

The value of Pr(D) is the same regardless of the hypothesis being

considered (Hp the frog is present, or Ha the frog is absent), so it

simply acts as a scaling constant. Therefore, Pr(Ha |D) is

proportional to Pr(Ha)�Pr(D |Ha), and Pr(Hp |D) is proportional to
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If on the other hand, the pond had poor habitat for southern brown

tree frogs, the prior probability of presence might be 0.1. Thus,

Pr(Hp)¼ 0.1 and Pr(Ha)¼ 0.9. As before, Pr(D |Hp)¼ 0.2 and

Pr(D |Ha)¼ 1.0. Note that the values for the priors but not the

likelihoods have changed. Using Bayes’ rule (Box 1.3), the posterior

probability of presence is:

PrðHp j DÞ ¼PrðHpÞ � PrðD jHpÞ = ½PrðHpÞ�PrðD j HpÞ þ PrðHaÞ�

PrðD j HaÞ�

¼ 0:1� 0:2 = ½0:1� 0:2þ 0:9� 1:0�

¼ 0:022

Therefore, there is only a small chance that the frog is at the site if it

has poor habitat and the species is not detected on a single visit.

Bayesian methods use probability distributions to describe uncer-

tainty in the parameters being estimated (see Appendix B for more

background on probability distributions). Probability distributions are

used for both priors and posteriors. The frog surveying problem has

Pr(Hp)�Pr(D |Hp), with both expressions having the same constant

of proportionality (1/Pr(D)).

Pr(D) is calculated as the sum of the values Pr(H)�Pr(D |H)

under all hypotheses. When prior probabilities are equal

(Pr(Ha)¼Pr(Hp)¼ 0.5):

PrðDÞ ¼½PrðHaÞ � PrðD jHaÞ� þ ½PrðHpÞ � PrðD jHpÞ�

¼ð0:5� 1Þ þ ð0:5� 0:2Þ ¼ 0:6:

Therefore, the posterior probabilities are 5/6 (0.5/0.6) for the

absence of the frog, and 1/6 (0.1/0.6) for the presence of the frog.

So, for a finite number of hypotheses, Bayes’ rule states that

the probability of the hypothesis given the data is calculated using

the prior probabilities of the different hypotheses (Pr(Hj)) and the

probability of obtaining the data given the hypotheses (Pr(D |Hj)):

PrðHi jDÞ ¼
PrðHiÞ � PrðD jHiÞP
j

PrðHjÞ � PrðD jHjÞ

This expression uses the mathematical notation for summation
P

.
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two possible outcomes; the frog is either present or absent. Such a binary

outcome (e.g. presence/absence, heads/tails, increasing/decreasing) can

be represented by a Bernoulli probability distribution, which is a spe-

cial case of the binomial distribution with a sample size of one. Bernoulli

random variables take a value of one (representing the presence of the

frog) with a probability equal to p and a value of zero (representing

the absence of the frog) with probability 1-p. Therefore, uncertainty

about the presence of the frog at the pond can be represented as

a Bernoulli random variable in which the probability of presence is

equal to p.

It is important to note that a probability distribution is used to

represent the uncertainty about the presence of the frog. The frog is

assumed to be actually present or absent at the site, and the distribution is

used to represent the probability that it is present. There appears to be

misunderstanding among at least some ecologists that Bayesian para-

meters do not have fixed values, but change randomly from one measure-

ment to another. Although such models can be accommodated within

Bayesian analyses (e.g. by using hierarchical models, Box 3.6), parameters

are usually assumed to have fixed values. The prior and posterior

distributions are used to represent the uncertainty about the estimate of

the parameters.

I have illustrated three components of a Bayesian analysis: priors,

data and posteriors. I have not explicitly stated the model, which is the

fourth aspect I mentioned in the introduction. The model in the above

example is relatively simple and is the same as was used in the frequen-

tist analyses. It can be stated as: ‘the detection of the southern brown

tree frog during the survey occurs randomly with a probability (pdetect)

that depends on whether the pond is occupied (pdetect¼ 0.8) or not

(pdetect¼ 0.0)’.

This model may be written algebraically as:

pdetect ¼ 0:8� present

detected � BernoulliðpdetectÞ:

The second expression says that the variable called ‘detected’ is a

Bernoulli random variable. A value of one for ‘detected’ indicates that the

frog was detected and a zero indicates it was not. The probability of

detection is equal to pdetect, and is given in the first equation. It depends

on whether the frog is present at the site (present¼ 1, pdetect¼ 0.8) or

absent (present¼ 0, pdetect¼ 0.0).
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Random sampling from the posterior distribution using

WinBUGS

This Bayesian analysis can also be implemented in the freely

available software package WinBUGS (Spiegelhalter et al., 2005).

Appendix A provides information about obtaining the program

WinBUGS and a tutorial on its use. I will use WinBUGS throughout

the book, so it is worth investing some time in understanding it. Readers

who are unfamiliar with WinBUGS should study Appendix A now,

before continuing with the rest of the book.

The acronym WinBUGS is based on the original program BUGS

(Bayesian inference Using Gibbs Sampling), but is now designed to

run under the Microsoft Windows operating system (hence the Win

prefix). WinBUGS works by randomly sampling the parameters used

in Bayesian models from their appropriate posterior distributions.

Because the posterior distribution for the example of detecting

southern brown treefrogs can be calculated (Box 1.3), it is not neces-

sary to use WinBUGS in this case. However, for many problems it is

difficult or impossible to calculate the posterior distribution, but samples

from it can be obtained relatively easily using WinBUGS or other

MCMC software. If a sufficiently large number of replicates are taken,

the form of the posterior distribution can be determined and its

parameters, such as the mean, standard deviation, and percentiles, can

be estimated.

WinBUGS takes samples from the posterior distribution by using

‘Markov chain Monte Carlo’ (MCMC) methods. ‘Monte Carlo’ implies

random sampling, referring to roulette wheels and other games of chance.

‘Markov chain’ refers to the method of generating the random samples.

A series of random numbers in which the value of each is conditional

on the previous number is known as a Markov chain. MCMC algorithms

are constructed in such a way that the samples from the Markov chain

are equivalent to samples from the required posterior distribution

(see Appendix C).

The advantage of using Markov chains for sampling from the posterior

distribution is that it is not necessary to calculate the value of the denom-

inator in Bayes’ rule. The calculation is avoided because each successive

sample depends on the ratio of two posterior probabilities that share the

same denominator, which then cancels (Appendix C). This simplifies

matters, because the Bayesian analysis only requires the product of the

prior probability and the likelihood of the data.
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If each sample depends on the value of the previous sample, successive

values drawn from the Markov chain may be correlated. Correlations

between the samples have some important consequences. The first is that

the initial values that are used in the Markov chain may influence the

results until a sufficiently large number of samples is generated. After this

time, the ‘memory’ of the initial values is sufficiently small and the samples

will be drawn from the posterior distribution (Box 1.4). Because of the

potential for dependence on the initial values, their possible influence is

Box 1.4
The burn-in when sampling from Markov chains

It can take thousands of iterations for some Markov chains to

converge to the posterior distribution, while others converge

immediately. Therefore, it is necessary to check convergence, and

discard the initial samples from a Markov chain until convergence

is achieved. These discarded values are referred to as a ‘burn-in’.

There are several ways to check for convergence. One of the

simplest is to plot the sampled values versus the iteration number.

In the example in Fig 1.3, the initial value is approximately 1200,

changing to values in the approximate range 100 to 400 after five

samples. The values continue to be around 100 to 400 indefinitely,

suggesting that the chain has reached what is known as its stationary

distribution. The Markov chain is constructed in such a way for

Bayesian analyses that this stationary distribution is the posterior

distribution (Appendix C).

A further check for stationarity is to initiate the Markov chain

with a second set of initial values. The stationary distribution will be

insensitive to the initial values. If two chains with different initial

values converge, then it suggests that both chains have reached their

stationary distribution. There are formal methods for checking the

convergence of a pair of Markov chains, such as the Gelman-Rubin

statistic (Brooks and Gelman, 1998), which compares the variation of

the samples within chains and the variation of the samples when the

chains are pooled. Initially, the pooled variation will be greater than

the average variation of the two chains and then become equal as the

chains converge. Additionally, the level of variation both within and

between chains should stabilize with convergence.
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examined and it may be necessary to discard some of the initial samples

(perhaps the first few thousand or more) as a ‘burn in’ (Box 1.4).

A second consequence of any correlation is that, compared to an

uncorrelated sample, each additional sample contains only a fraction of

the information about the posterior distribution. Because of this, a large

number of samples may be required to obtain a sufficiently precise sample

if there is strong correlation between samples. Although the presence

of correlation in the Markov chain reduces the efficiency of the sampling

algorithm, it does not preclude the use of Markov chain methods.

The reduced efficiency is simply the cost to be paid when it is not possible

to obtain an analytical solution for the posterior distribution. Gilks et al.

(1996) provides further information about Markov chain Monte Carlo

methods.

The frog surveying problem in WinBUGS

Code for analysing the frog surveying problem in WinBUGS is given

in Box 1.5. A Bayesian model specified in WinBUGS has the four

components of a Bayesian analysis:

� prior distributions for the parameters being estimated;
� data;

� a model that relates the parameters to the data; and
� the posterior distributions for the parameters.

Fig. 1.3 The first 200 samples of the variance of the number of trees in a

remnant for the model in Box 3.2.
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Box 1.5
WinBUGS code for determining the presence

of a species

The frog surveying problem involves determining whether the

species is present at a site given that it was not detected during a

survey. In WinBUGS, the code works by specifying the prior for

the probability of presence and the model, which describes how

the parameter of interest (the presence of the frog) is related to

the data. Pseudo-code for this problem would be:

1. Specify the prior probability of presence;

2. Specify that the frog is either present or absent with a particular

probability;

3. Calculate the probability of detecting the species given that it

is either present (probability of detection¼ 0.8) or absent

(probability of detection¼ 0.0);

4. Cpecify that the detection of the frog or failure to detect the frog

(the data) arises randomly, depending on the probability of

detection.

Steps 1�2 specify the prior for the presence of the frog. Steps 3�4

specify the model, describing how the data (the observation of an

absence in this case) are related to the presence of the frog, which is

the parameter being estimated.

The WinBUGS code for the frog surveying problem is written

below.

model

{

prior <- 0.5 # the prior

probability of

presence

present ~ dbern(prior) # actual presence

drawn from a

Bernoulli

dist’n

prob_detect <- 0.8�present # prob of

detection depends

on

presence/absence
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detected ~ dbern(prob_detect) # actual detection

occurs with

random variation

}

list(detected = 0) # the data - the frog

was not detected

In this model we are interested in determining whether the frog is

present (represented by the variable present). The variable prior is

the prior probability of the frog being present. The prior probability

of the frog being absent is therefore 1�prior. The actual presence at

the site is determined randomly, by drawing from a Bernoulli

distribution; a value of one indicates the frog is present and zero

indicates the frog is absent. Therefore, the first two lines define the

expected presence of the frog prior to the collection of the data.

The next two lines describe the model of how the data were

collected. If present, the probability of detecting the frog (prob_

detect) is equal to 0.8, and it will equal zero if it is absent. The

fourth line then states that the data are assumed to occur randomly,

again drawn from a Bernoulli distribution, with the probability of

detecting the frog on a single visit being equal to prob_detect, and

the probability of not detecting the frog being equal to

1�prob_detect.

The observed data (written in the line list(detected=0))

then influence the values of the variable present, through the

application of Bayes’ rule within WinBUGS (Box 1.3). Values of

the variable present are sampled by WinBUGS such that they are

drawn as random samples from its posterior distribution. Sampling

in this way is called Monte Carlo sampling. It is a relatively common

method of analysing probabilistic models (Box 1.6). If enough samples

are taken, the probability of the frog being present can be estimated

by the proportion of times that the variable present equals one.

This proportion equals the mean of the variable present.

Sampling 100 000 times from this model in WinBUGS (after

ignoring the first 10 000 samples) leads to a mean value of present

of 0.17, which is equivalent to 1/6, as determined analytically. This is

our estimate of the posterior probability that the site is occupied

given the prior and the data. Changing the value of prior to 0.75

leads to a mean value of present that is equal to 0.38 (again based

on 100 000 samples), which is equivalent to 3/8 as determined

analytically.
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The results in WinBUGS are not exact because of random

sampling error. If we took more samples in WinBUGS, the results

would be closer to the truth. For example, the posterior probability

of presence equals 0.3754 if half a million samples are taken when the

prior for this value is 0.75. It is not precisely the same as the true

answer (0.3750), but the answer in WinBUGS will continue to

become more precise as more samples are taken.

Box 1.6
Monte Carlo methods

Monte Carlo methods use simulation to estimate the probability of

occurrence of uncertain events. For example, consider a five-card

poker hand. We could use probability theory to work out the chance

of obtaining a flush (five cards of the same suit). The probability is

equal to the probability that the second, third, fourth and fifth cards

are the same suit as the first. For a 52-card deck, this is equal to:

ð12=51Þ � ð11=50Þ � ð10=49Þ � ð9=48Þ ¼ 0:00033

We could also work out this probability with a Monte Carlo

method by dealing, shuffling, and re-dealing and calculating the

proportion of times that a flush appears. If we did this ten times,

we might get one flush (if we were lucky). Based on these results

(one occurrence out of ten deals), we might estimate that the

probability of a flush is 0.1. This is an imprecise estimate.

Obtaining more samples increases the precision. If we dealt the cards

10 000 times, we might get three flushes, implying that the probability

of a flush is 0.0003. This is better, but still not perfect; we could deal

the cards several million times and get an even more precise estimate

of the probability.

Of course, it is laborious to deal the cards that many times.

An efficient alternative might be for a machine to deal the cards for

us. Such a task might be suitable for computers, because they

specialize in repetitive tasks. However, instead of dealing a physical

deck of cards, the computer could use its circuitry to generate

‘random’ numbers that have the same statistical properties as the

cards. In this case, thousands of samples can be generated very

quickly by randomly generating integers between 1 and 52

(representing the 52 possible cards) with equal probability.
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WinBUGS code includes the prior for the parameters, but most of

the code is usually the model, which describes how the data are related

to the parameters. The posterior is then generated by WinBUGS with

Monte Carlo sampling (Box 1.6; Appendix C).

The advantage of using a Monte Carlo approach is that it is able

to sample from the posterior distribution without analysts having to do

the various calculations themselves. In the frog surveying problem, the

calculations done by hand are relatively easy. In the few cases where the

calculations can be done by hand, they are usually more difficult, and in

most other cases they are impossible.

Monte Carlo methods have another appealing property. Even rela-

tively complex statistical analyses (e.g. regression analysis) do not require

WinBUGS code that is much more complex than that presented in

Box 1.5. Once familiar with relatively simple analyses, it is not much more

difficult to write code for more complex analyses.

Example 2: Estimation of a mean

The second example of Bayesian analysis involves estimating the average

diameter of trees in a remnant patch of eucalypt forest (Harper et al.,

2005). The size of trees is important when studying, for example, nutrient

dynamics, provision of habitat for animals, production of nectar,

mitigation of temperature extremes, and amelioration of pollution

(Bormann and Likens, 1979; Attiwill and Leeper, 1987; Huang, 1987;

McPherson et al., 1998; Brack, 2002; Gibbons and Lindenmayer, 2002;

Brereton et al., 2004).

The mean diameter of trees could conceivably take any value between

zero and some large number. Therefore, the hypotheses are not discrete.

There are an infinite number of hypotheses, represented by any con-

ceivable value for the mean diameter of the trees. Bayesian methods are

able to accommodate these sorts of cases where hypotheses are distributed

This virtual random sampling is the same sort of process that

is used by WinBUGS. It generates samples that have the same

statistical properties as the posterior distribution. The samples

generated by WinBUGS can then be analysed to estimate the

statistical properties of the posterior distribution such as its mean

and percentiles.
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along a continuum, by using continuous rather than discrete probability

distributions to represent uncertainty in the variables. The only modi-

fication to Bayes’ rule is how the constant of proportionality is calculated

(Box 1.7).

Assume that a researcher has measured the diameter of 10 randomly

selected trees. In analysing the data, the researcher must choose the prior

probability distribution for the parameters being estimated. Although

the mean size of trees could be conceivably any positive number, the

researcher has previously measured more than 2500 trees in 43 other

Box 1.7
Bayes’ rule for continuous hypotheses

In the case of continuous hypotheses, continuous probability

distributions are used to represent different possible values for

parameters. Bayes’ rule is then expressed as:

PrðH jDÞ ¼
PrðHÞ � PrðD jHÞR1

0 PrðxÞ � PrðD jxÞdx
,

where H represents a particular value for the parameter. The integral

in the denominator substitutes for the summation in the discrete case,

and the limits of the integration are over all the possible values of

the parameter (x), which in this case is assumed to be positive.

This integral makes Bayesian methods difficult to conduct

analytically, because in most cases it cannot be determined.

Readers who are uncomfortable with mathematics may look

at the above equation and decide that they can never solve those sorts

of problems and decide that Bayesian methods are too hard.

The complexity of the equation should not be discouraging because

in most cases it is impossible to solve, regardless of a person’s

mathematical skills. Fortunately, software is available so users do

not need to evaluate or even construct the integral.

As with the case when there were a finite number of hypotheses

(Box 1.3), the denominator simply acts as a scaling constant, because

it is the same for all possible values for the parameter H. As with

discrete hypotheses, the posterior probability is simply proportional

to the prior probability (Pr(H )) multiplied by the likelihood

(Pr(D |H )). The main analytical task of Bayesian analyses is to

determine the constant of proportionality.
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remnants (Harper et al., 2005). After measuring so many trees in the study

area, he has a good idea about likely values for the mean diameter of trees

in the previously unmeasured remnant. Frequentist analyses do not permit

this additional information to be used in determining the mean diameter

of trees in the new remnant, but a Bayesian analysis does.

Based on data from the other 43 remnants, the mean diameter of

trees in remnants is 53 cm and the mean varies among remnants with

a standard deviation of approximately 5 cm. Assuming the mean

diameter of trees follows a normal distribution, we would expect approx-

imately 95% of remnants to have a mean tree diameter that is within 1.96

standard deviations of the overall average. Therefore, prior to collecting

the data there is a 95% chance that the mean diameter of trees in the new

remnant will be between approximately 43 and 63 cm. This prior reflects

the researchers’ expectation of the mean size of trees in a newly measured

remnant based on his previous experience in the study area. A plot of the

prior shows the range of likely values (Fig. 1.4).

The Bayesian solution for the normal mean

In the simplest case, and to make the analysis comparable to a traditional

frequentist analysis, we will assume that the diameter of trees within the

Fig. 1.4 The prior and posterior density functions and likelihood for the

mean diameter of trees in a remnant, based on a sample of ten trees.

The posterior would equal the likelihood if the prior was uninformative.

The posterior is more precise than both the prior and the likelihood function

because the posterior combines the information in both. The limits of the

95% credible interval of the posterior have 2.5% of the area under the curve

in each tail (shaded).

22 Introduction



remnant follows a normal distribution. In the case where the data and

the prior both have normal distributions, Bayes’ rule (Box 1.7) provides

an analytical solution for the posterior distribution. However, analytical

solutions are available for only a handful of Bayesian models, so I will

first illustrate this example using WinBUGS (Box 1.8). It is simply

a matter of specifying a prior distribution for the mean of the diameter

Box 1.8
Estimating a mean for a normal model

using WinBUGS

In estimating the mean diameter of trees, the prior has a mean

of 53 cm and a standard deviation of 5 cm. In WinBUGS,

the width of a normal distribution is expressed using the

precision (1/variance¼ 1/sd2), which in this case is equal to

0.04 (1/25¼ 1/52).

In this example, the variance of the data is assumed to be known,

making it equivalent to using a z-value rather than a t-value in a

frequentist analysis. However, uncertainty in estimating the precision

of the data can be included easily in the WinBUGS analysis

(Chapter 3).

The pseudo-code for the WinBUGS analysis is:

1. Specify the prior for the mean diameter of trees in the remnant as

being normally distributed with a mean of 53 and precision of

0.04 (standard deviation of 5).

2. Calculate the standard deviation of the data.

3. Specify the precision of the data as the inverse of the variance of

the diameter of trees in the remnant (the variance equals 184.9 in

this example).

4. For each of the ten trees that were measured, assume that their

diameter is drawn from a normal distribution with the mean and

precision as specified in steps 1 and 3.

The WinBUGS code is:

model

{

m ~ dnorm(53, 0.04) # prior for mean

stdev <- sd(Y[]) # calculate std deviation

of data
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prec <- 1/(stdev*stdev) # precision of the data =

1/variance

for (i in 1:10) # for each of the ten

trees . . .

{

Y[i] ~ dnorm(m, prec) # diameter drawn from a

normal distribution

}

}

list(Y = c(42, 43, 58, 70, 47, 51, 85, 63, 58, 46))

The ‘for loop’, designated by the line for (i in 1:10) and

subsequent line within the curly brackets, is equivalent to ten lines of

code, one for each of the ten trees, i.e. Y[1] ~ dnorm(m, prec), up

to Y[10] ~ dnorm(m, prec). It is shorthand to replace repetitive

sections of code.

The data are provided in the line:

list(Y = c(42, 43, 58, 70, 47, 51, 85, 63, 58, 46))

The ‘c’ before the brackets indicates that the following

data are concatenated (linked together) into the one

variable, with the first variable represented by Y[1], the second

by Y[2], etc.

This analysis also requires that the user specifies an initial

value of mean for the Markov chain (Box 1.4). The choice is not

important because the chain converges quickly to the posterior

distribution in this case, and could be generated randomly.

However, in some cases the speed of convergence is increased

if the Markov chain is initiated with values that are close

to the posterior distribution, so the following arbitrary value

was used:

list(m = 55) # an arbitrary initial value

After discarding the first 1000 samples as a burn-in,

100 000 samples were generated in WinBUGS. Of these

samples, 2.5% were less than 48.5 and 2.5% were more

than 61.3. Therefore the 95% credible interval is 48.5�61.3 cm for the

mean diameter of trees in the remnant. This result is insensitive to the

choice of the initial value.
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of trees in the remnant, and then constructing a model in which the

measured diameters are drawn from a distribution with that mean. The

posterior distribution calculated in WinBUGS is the same as that

obtained using the analytical solution (Box 1.9).

Confidence intervals and credible intervals

A frequentist analysis would ignore the prior information and simply

use the mean of the data and the standard error (¼
p
(184.9/10)¼ 4.3),

Box 1.9
Estimating a mean for a normal model analytically

When the data and prior have normal distributions, the posterior

distribution also has a normal distribution, the mean and variance of

which depends, not surprisingly, on the mean and variance of the

prior. The posterior distribution also depends on the sample size,

mean and variance of the data. The mean and variance of the

posterior can be calculated from the following formulae (Gelman

et al. 2004):

mpost ¼
mprior=s

2
prior þ mdatan=s

2
data

1=s2
prior þ n=s2

data

, and

s2
post ¼

s2
priors

2
data=n

s2
data=nþ s2

prior

,

where n is equal to the sample size, s2
prior, s

2
data, and s2

prior are the

variances of the prior, data and posterior, and mprior, mdata and mpost
are the means of the distributions.

These formulae provide useful insights into Bayesian statistics.

The mean of the posterior is a weighted average of the means of the

prior and data. The weights are the precisions of the prior (1/s2
prior)

and the data (n=s2
data). The influence of the data and prior on the

posterior mean depends on which is more informative. When there

are no data (n¼ 0), the mean of the posterior is equal to the mean of

the prior. When the variance of the prior is very large, 1/s2
prior

approaches zero and the mean of the posterior will be close to the

mean of the data. The prior is said to be uninformative when the
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leading to a 95% confidence interval of 47.9�64.7 cm (56.3+ 1.96� 4.3).

This is the same as the credible interval that was obtained when using

a Bayesian analysis with an uninformative prior (Box 1.10).

Bayesian credible intervals and frequentist confidence are usually

numerically identical if the Bayesian prior is uninformative. An

posterior is influenced exclusively by the data. This is achieved by

using a prior with a large variance.

The variance of the posterior has similar properties, but these are

most obvious when its formula is re-arranged to be expressed as the

inverse of the variance:

1

s2
post

¼
n

s2
data

þ
1

s2
prior

The inverse of the variance measures precision. Large values for

the precision mean the variance is small. The quantity n=s2
data is the

inverse of the standard error squared, and it measures precision in an

ordinary frequentist analysis. Therefore, the precision of the posterior

is simply equal to the precision based on the data (the inverse of the

standard error squared) plus the precision of the prior. The precision

of an estimate is increased by using prior information.

The diameter measurements of ten trees in the new remnant

(42, 43, 58, 70, 47, 51, 85, 63, 58, 46 cm) have a mean of 56.3 and

variance of 184.9. Given the prior has a mean and variance of 53 and

25, the posterior distribution for the mean diameter of trees in the

new remnant has the following mean and variance:

mpost ¼
53=25þ 56:3� 10=184:9

1=25þ 10=184:9
¼ 54:9

s2
post ¼

25� 184:9=10

184:9=10þ 25
¼ 10:6

The standard deviation of the posterior is 3.26 cm (
p
10.6).

Therefore, there is an approximate 95% chance that the mean

diameter of trees in the park is between 48.5 cm and 61.3 cm (the

mean of the posterior plus or minus 1.96 times the standard deviation

of the posterior) (Fig. 1.4). This 95% credible interval is the same as

that obtained from WinBUGS (Box 1.8).
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uninformative prior is one in which the data (via the likelihood, which is

Pr(D |H) in Bayes’ rule) dominates the posterior. This is achieved

by using a prior with a large variance. A large variance permits the

parameter to be drawn from a wide range of possible values and the prior

probabilities of all reasonable parameter values are approximately equal.

When the prior distribution is uninformative, the posterior distribution

has the same form as the likelihood (Fig. 1.5). The likelihood and

posterior have different forms when the prior is informative (Fig. 1.4).

The posterior distribution is less precise, and hence the credible

interval is wider, if the prior information is ignored (Fig. 1.5). Ignoring

the prior information would imply that the researcher believed that

the remnant could have any mean diameter prior to collecting the data.

Such a belief would be inconsistent with the researchers’ previous

experience in the study area, which provides useful data on the range of

likely results.

Although frequentist confidence intervals and Bayesian credible

intervals may appear similar, they are in fact different. For a 95%

Bayesian credible interval, there is a 95% chance that the true value of the

parameter will be within the interval. Ecologists are often interested in

this kind of interval because they want to know the chance that the true

value of the parameter is within a specified range. Such an answer

requires the use of Bayesian credible intervals.

Box 1.10
Estimating the mean of a normal model with an

uninformative prior

An uninformative prior for the mean diameter of trees can be

specified by using the following line of code for the prior instead of

the one in Box 1.8:

mean ~ dnorm(0, 1.0E-6) # wide prior for mean

This is a very wide normal distribution with a mean of zero and a

standard deviation of 1000. Therefore, mean diameters between, for

example, zero and 200 cm have approximately the same prior

probability. If this uninformative prior is used, the posterior

distribution for the mean diameter of trees in the remnant has a mean

of 56.3 and 95% credible interval of 47.8�64.7, numerically

equivalent to the 95% confidence interval of a frequentist analysis.
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In contrast, a 95% frequentist confidence interval does not contain the

true parameter with 95% probability. Instead, it is based on the concept

of an infinite number of samples. If I repeat the data collection an infi-

nitely large number of times and construct 95% confidence intervals for

the mean for each set of data, 95% of these confidence intervals would

encompass the true mean.

This different meaning of confidence and credible intervals is not just

semantic. In some circumstances, it can lead to numerical differences

even when the credible interval is based on an uninformative prior.

For example, in estimating a fail-safe period from three observations

of failure times (12, 14 and 16), Jaynes (1976) shows that the shortest

possible 90% confidence interval is 12.1�13.8. This interval does not

contain the true fail-safe period, which must be less than the smallest

observed lifespan (12). This result is not an error. The method of

calculating 90% confidence intervals will produce intervals that enclose

the true value of the parameter 90% of time. However, the true value

might surely lie outside any single interval, as in this example.

In contrast, the Bayesian analysis with an uninformative prior arrives

at a sensible conclusion; the shortest possible 90% credible interval is

11.2�12.0 (Jaynes, 1976). When the intervals are the same, the choice of

Fig. 1.5 The prior and posterior density functions and likelihood for the

mean diameter of trees in a remnant, based on a sample of ten trees and

using an uninformative prior. The prior distribution (drawn on an arbitrary

scale to assist comparison) has a mean of zero and standard deviation of

1000 making mean diameters between 30 and 80 cm all equally likely a

priori. The likelihood and the posterior are indistinguishable. The posterior

is less precise than in Fig. 1.4 because the prior is uninformative.
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Bayesian or frequentist methods does not matter. However, when the

intervals are different, only Bayesian methods provide logical results

(Jaynes, 1976).

Concluding remarks

In introducing Bayesian methods, this chapter made two important

points. Firstly, Bayesian methods can answer questions that are relevant

to ecologists, such as: ‘What is the probability that this hypothesis

is true?’ and ‘What is the probability that a parameter will take values

within a specified interval?’ Secondly, relevant prior information can

also be incorporated into Bayesian analyses to improve the precision

of estimates.

Bayes’ rule is the basis of Bayesian methods. It is derived as a

simple expression of conditional probability. The rule specifies how prior

information and data are combined using a model to arrive at the

posterior state of knowledge. Both the prior and posterior states of

knowledge are represented as probability distributions. The posterior

probability simply equals the prior probability multiplied by the likeli-

hood of the data and a scaling constant. Bayesian methods become

difficult because the scaling constant is usually hard to calculate

analytically. However, recent numerical methods such as Markov chain

Monte Carlo make Bayesian methods accessible to all scientists.

Frequentist confidence intervals and Bayesian credible intervals will

usually be numerically equivalent if uninformative priors are used. In this

way Bayesian methods provide a numerical generalization of frequentist

methods. They also do so in such a way that probabilistic statements

about the state of nature are mathematically logical. The next chapter

provides a more thorough comparison of different statistical schools and

examines their various strengths and weaknesses.
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2

Critiques of statistical methods

Introduction

Statistics in the discipline of ecology is dominated by null hypo-

thesis significance testing. Apart from the construction of confidence

intervals, it is almost the only statistical method taught in ecology

at the undergraduate level. In leading ecological and conservation

journals, such as Conservation Biology, Biological Conservation, Ecology

and the Journal of Wildlife Management, null hypothesis testing has

been used in approximately 90% of articles between 1978 and 2001

(Anderson et al., 2000; Fidler et al., 2004), although this propor-

tion was only 80% in 2005 (Fidler, 2005). Since 1980, there have

been several thousand null hypothesis tests (on average) reported

each year in Ecology (Anderson et al., 2000), a further illustration of

the dominance of this method. In comparison, only about 5% of

ecological articles refer to Bayesian methods and even fewer use them

(Fig. 1.1).

Despite its dominance, null hypothesis significance testing has

ardent critics. There are alternatives but their use is controver-

sial. In this chapter, I review three different methods of statistical

analysis that are used in ecology (see also Oakes, 1986). These are

null hypothesis significance testing, information-theoretic methods,

and Bayesian methods. Readers will not be surprised, given the

topic of this book, that I believe there are clear advantages in

using Bayesian methods, although not necessarily to the total

exclusion of others. However, I will first present an example that further

illustrates some of the differences and similarities of the statistical

methods.
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Sex ratio of koalas

The following example illustrates how results of Bayesian and

likelihood-based methods can differ from those obtained using null

hypothesis significance testing.1 Consider a researcher who is studying the

population ecology of koalas (Phascolarctos cinereus) with a particular

interest in the sex ratio of pouch young of mothers in poor physical con-

dition. Assume that the researcher samples 12 female koalas in poor

condition each with an offspring in its pouch (pouch young). Three of the

offspring are male and nine are female. Based on this study, what can we

say about the sex ratio of koalas produced by females in poor physical

condition?

Null hypothesis significance testing

A reasonable null hypothesis in this case might be that the number of male

and female offspring would be equal. Under this hypothesis, the sex ratio

(the proportion of males in the population of pouch young) would be 0.5.

However, Trivers andWillard (1973) suggest that a female-biased sex ratio

would be expected in animals with poor physical condition. Thus, a

reasonable alternative hypothesis is that the sex ratio is less than 0.5.

The data could have been obtained in at least two ways. Firstly,

the researcher could have decided to sample 12 koalas with offspring,

in which case her data are the number of males (three males).

Alternatively, she may have sampled koalas until three males had been

obtained, in which case her data would be the number of female koalas

until the third male was encountered (nine females).2 Regardless of the

sampling strategy, the data are equivalent (three males and nine females);

the only difference is the stopping rule for her sampling strategy (sample

until 12 individuals, or sample until three males are obtained).

The null hypothesis tests under these two stopping rules are described

in Box 2.1. Under the first stopping rule the p-value is 0.073, so using the

1 This example is based on a thought experiment conducted by Lindley and Phillips (1976).
It has been modified from tossing of coins for an ecological audience (Johnson, 1999).

2 This second sampling strategy may seem odd at first, but it may occur in reality
when a researcher has multiple questions. For example, the study might be mainly
based on researching male offspring, with the calculation of the sex ratio as a secondary
interest. Additionally, the sample sizes may be regarded by some as very small (three
males or 12 offspring), but I chose them for illustration because this simplifies the
mathematics.
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Box 2.1
Null hypothesis tests for a proportion

In the first case, 12 offspring are sampled so that the number of males

can take any number between zero and 12. If the sex ratio (the

proportion of the population of pouch young that are male) were r,

the chance of getting 0 males would equal the probability of the first

being male (r), multiplied by the probability of the second being male

(r), etc. Thus, the probability of all 12 koalas being male equals r12.

The probability of one koala being male and the other 11 being

female is equal to the probability that the first is male and all the

others are female r(1-r)11, plus the probability that the second is male

and all others are female r(1-r)11, etc. Thus, the probability that only

one of the 12 is male is equal to 12r(1-r)11.

It turns out that the sampling in this case can be described by the

binomial distribution (Appendix B, Johnson et al., 1992, Fowler

et al., 1998), which states that the probability of there being x males

in a sample of 12 is given by:

Prðmales ¼ xÞ ¼
12!

ð12� xÞ!x!
rxð1� rÞ12�x,

where x! (‘x factorial’) equals 1� 2� 3� . . .�x, with 0!¼ 1.

The p-value for the null hypothesis r¼ 0.5 is the probability of

getting three males or a more extreme result (in this case, fewer than

three males) from a sample of 12. Thus:

P1 ¼ Prðmales ¼ 3Þ þ Prðmales ¼ 2Þ þ Prðmales ¼ 1Þ þ Prðmales ¼ 0Þ:

After substituting the binomial probabilities, one obtains P1¼ 0.073.

Thus, using the conventional ‘cut-off ’ (type I error rate) of 0.05,

we would conclude that the sex ratio is not significantly (in a

frequentist sense) less than 0.5.

What if the researcher used the different sampling strategy in

which she records the sex of koala pouch young until three males

have been sampled? The probability of there being no females in the

sample is equal to the probability that the first three pouch young are

male (r3).

One female will be sampled if one of the first three pouch young is

female while the fourth is male at which point sampling will cease.

Thus, the probability that there is one female in the sample is equal to
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usual type-I error rate of 0.05 we would not reject the null hypothesis that

the sex ratio is equal to 0.5. The p-value is 0.033 under the second

stopping rule, so we would accept the alternative hypothesis that the sex

ratio is less than 0.5.

The two different stopping rules for the sampling strategies lead to

different conclusions about the null hypothesis, even though the actual

data are identical. Therefore, our decision about the sex ratio of koala

pouch young would be determined not only by the data we collected

but by how we decided to stop sampling. The difference occurs because

the probability that two of the first three pouch young are male (and

one is female) (¼ (3!/1!� 2!)r2(1�r) from the binomial distribution)

multiplied by the probability that the fourth is also male (r), leading

to 3r3(1�r).

The probability that there are two females in the sample is equal

to the probability that two of the first four pouch young are male

(and two are female) (¼ (4!/2!� 2!)r2(1�r)2) multiplied by probability

that the fifth is male (r), leading to 6r3(1�r)2. This can be continued

indefinitely for any number of females.

More generally, the number of females until the ith (in this case

third) male is described by the negative binomial distribution

(Appendix B; Johnson et al., 1992; Fowler et al., 1998). Its

probabilities are given by:

Prðfemales ¼ xÞ ¼
ð3þ x� 1Þ!

x!2!
r3ð1� rÞx:

Using this sampling design, the p-value is equal to the probability

of sampling nine or more females before the third male, and it is

given by:

P2 ¼ Prðfemales ¼ 9Þ þ Prðfemales ¼ 10Þ þ Prðfemales ¼ 11Þ þ � � �

The series continues indefinitely (until ‘females’ equals infinity),

because there is the (small) possibility that three males will not be

sampled even after sampling many animals. Substituting the negative

binomial probabilities into the above equation leads to P2¼ 0.033.

If we again used the conventional type I error rate of 0.05, we

would conclude that the sex ratio is significantly (in a frequentist

sense) less than 0.5.

Sex ratio of koalas 33



the null hypothesis test depends on the data and more extreme (but

unobserved) values. The stopping rule does not influence the results if the

data are analysed using Bayesian or information-theoretic methods

because their results are not conditioned on unobserved data (Lindley

and Phillips, 1976; Berger and Berry, 1988). I will illustrate the

information-theoretic and Bayesian solutions below.

Information-theoretic methods

Information-theoretic methods use maximum likelihood estimation to

determine parameter values. Maximum likelihood methods can esti-

mate the sex ratio and place confidence intervals around the estimate

(Edwards, 1992; Hilborn and Mangel, 1997). Maximum likelihood

methods are so named because the best estimate is the one for which

the probability of obtaining the observed data is maximized. Under the

binomial model, the probability of obtaining the observed data (three

males) is:

Prðmales ¼ xÞ ¼
12!

ð12� xÞ!x!
rxð1� rÞ12�x

¼
12!

9!3!
r3ð1� rÞ9:

This expression is maximized when the term L¼ r3(1�r)9 is maximized.

This occurs when the sex ratio r is equal to 0.25, for which

Lmax¼ 0.001173.

Under the negative binomial model, the probability of obtaining the

observed data (nine females) is:

Prðfemales ¼ xÞ ¼
ð3þ x� 1Þ!

x!2!
r3ð1� rÞx ¼

11!

9!2!
r3ð1� rÞ9:

This is also maximized when the term r3(1�r)9 is maximized, illustrating

that methods based on maximum likelihood are not influenced by the

stopping rule.

Approximate confidence intervals can be placed on the maximum

likelihood estimate of the sex ratio r by finding values of r such that L

is equal to Lmaxexp(�w/2), where w is a value from the appropriate

chi-squared (w2) distribution (Edwards, 1992; Hilborn and Mangel, 1997).

For a 95% confidence interval w2¼ 3.84, which corresponds to a tail

probability of 0.05 for a chi-squared distribution with one degree of

freedom. Values of r for which L is equal to Lmaxexp(�3.84/2)¼ 0.000172

are 0.069 and 0.528. These define the limits of the 95% confidence

interval for the sex ratio.
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The Bayesian method

This problem can be analysed using a Bayesian method in WinBUGS

(Box 2.2). Regardless of the stopping rule that is used, the probability

density function for the sex ratio of offspring is the same. Therefore, only

the data (and our prior) influences the estimate of the sex ratio of pouch

young in koalas, not the choice of when to stop sampling. Unlike null

hypothesis testing, Bayesian methods are based only on the observed data

not unobserved (more extreme) values.

The mean of the posterior distribution for the sex ratio is 0.286, and

the 95% credible interval is 0.091�0.537. Thus, it is likely that the

sex ratio is less than 0.5, but it may in fact not be. Note that the

95% credible interval is similar to the confidence interval constructed

with maximum likelihood estimation, but is different because the chi-

squared value in the likelihood method requires a large-sample

approximation.

This example illustrates that null hypothesis significance testing

and Bayesian methods can lead to different conclusions. Additionally,

when an uninformative prior is used, estimates based on Bayesian

and information-theoretic methods are similar (see also Chapter 1).

However, informative priors increase the precision of Bayesian

estimates (e.g. Fig. 1.4). The strengths and weakness of the different

statistical methods are described in more detail in the following sections.

Null hypothesis significance testing

Null hypothesis testing works in a series of steps.

1. A null hypothesis is defined, along with a single alternative hypothesis.

2. Data are collected.

3. The analyst calculates the probability of collecting the data or more

extreme data given that the null hypothesis is true. This probability is

the p-value.

4. If this probability is sufficiently small, then the analyst concludes

that the data are unusual given the null hypothesis. The almost

universal convention is to use an arbitrary cut-off of 0.05. If the

p-value is less than 0.05, then the analyst concludes that the

null hypothesis is unlikely to be true, and the alternative hypothesis

is accepted.
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Box 2.2
Bayesian analysis of a proportion

The first sampling strategy (sample 12 koalas) can be analysed from a

Bayesian perspective in WinBUGS with the following code:

model

{

x ~ dbin(r, 12) # data sampled binomially with n = 12

r ~ dunif(0, 1)# prior for the sex ratio of pouch

young

}

list(x = 3) # 3 males sampled

The data are given by x, and r is the sex ratio being

estimated. We assume that the data are drawn from a binomial

distribution with a sample size of 12 (see Box 2.1). For simplicity,

I have chosen a uniform distribution for the sex ratio as an

uninformative prior. This ignores the fact that a sex ratio equal

to zero or one is very unlikely to occur in any mammal species.

I could use data on the sex ratio of offspring in other

mammals or other koala populations to generate a more

reasonable prior.

Sampling 100 000 times in WinBUGS (after discarding the first

10 000 samples) provides the posterior distribution (Fig. 2.1). The

mode of the distribution is 0.25 and the median is 0.275. The mean of

the distribution is 0.286, with a 95% credible interval of 0.091�0.537.

The posterior distribution indicates that the data are not entirely

inconsistent with a sex ratio of 0.5, but it is likely that the sex ratio is

less than 0.5, in accordance with the Trivers and Willard (1973)

hypothesis.

The second sampling strategy (sample until three males have been

recorded) can also be implemented in WinBUGS. In this case the

value for the number of females before the third male is encountered

is drawn from a negative binomial distribution (see Box 2.1 and

Appendix B). The WinBUGS code is:

model

{

x ~ dnegbin(r, 3)# number of females sampled neg.

binomially
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5. If the probability is not below the critical level, then the analyst fails to

reject the null hypothesis. By implication, the null hypothesis is

‘accepted’, but it is not proved because null hypothesis significance

testing can only falsify hypotheses.

Define the null hypothesis and its alternative

The null hypothesis is a statement about the state of the system, often

expressed in terms of parameter values. For example, an arbitrarily

r ~ dunif(0, 1)# prior for the sex ratio of pouch

young

}

list(x = 9) # 9 females sampled before the 3rd

male

Again, sampling from WinBUGS provides the posterior

distribution. In the negative binomial case, the result is identical to

the sampling strategy that used the binomial model (Fig. 2.1).

Therefore, only the data (and our prior) would influence the estimate

of the sex ratio of pouch young in koalas, not the choice of how to

stop sampling.

Fig. 2.1 Posterior probability density function for the sex ratio of koalas,

based on a sample of three males and nine females and a uniform prior

between 0 and 1.
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chosen null hypothesis3 is that the Shannon-Weiner index of plant

species diversity is the same in salt, brackish and fresh water marshes

(Mullan Crain et al., 2004). An alternative hypothesis is also chosen,

which will be accepted if the null is rejected. In this example, the

alternative hypothesis is that the plant species diversity is different in

marshes of different salinity.

The choice of a useful null hypothesis is important. Ideally, the null

hypothesis should be such that its rejection will have important logical

consequences that lead to better ecological understanding (Underwood,

1997). However, ecologists routinely use nil nulls (predicting no effect

or no difference) that are very unlikely to be correct (Johnson, 1995;

Anderson et al., 2000). These hypotheses are also referred to as false

or trivial null hypotheses, or silly nulls (Stephens et al., 2005). Anderson

et al. (2000) reported that 90% of ecological studies use silly nulls.

Silly nulls take forms such as ‘the survival of juveniles and adults is

the same’, ‘there is no relationship between two variables of interest’, or

‘the growth rate of individuals is the same’ (Anderson et al., 2000). While

studies that include silly nulls can provide useful scientific information

(e.g. by demonstrating the size of effects), the rejection of a trivial null

hypothesis is largely worthless because it was not a reasonable

proposition in the first place.

The above null hypothesis of Mullan Crain et al. (2004) could be viewed

as trivial. A priori we would expect that the diversity index for plants in

marshes will vary with the salt content of water. As ecologists, we know

fresh and salt water marshes would contain different plant species, and will

therefore almost certainly have different diversity indices. A fundamen-

tally more interesting question might be about how the diversity index

changes across the salt gradient. Mullan Crain et al. (2004) do address this,

but as it is not concerned with null hypothesis testing I will return to it later.

Why do ecologists use nil nulls so frequently when their rejection

is usually uninformative? Why do we bother trying to reject literally

thousands if not millions of hypotheses each year that are probably

false? Perhaps because it is difficult to construct null hypotheses with

a non-zero effect. For example, in the study of Mullan Crain et al. (2004),

an alternative null hypothesis is difficult to formulate a priori. Although

we can be reasonably sure that a difference would be expected, it is

difficult to specify a precise prediction for a non-nil hypothesis. A theory

3 This example was chosen as the first null hypothesis encountered after a randomly
selected page of the 2004 volume of the journal Ecology.
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that could predict species diversity of marshes as a function of the salt

content of the water would provide a reasonable null hypothesis.

Rejection of the null in this case would be very interesting, because

it would tell us that the theory is lacking.

Such falsification of a well-reasoned hypothesis is a potentially

powerful aspect of null hypothesis testing. However, ecological theory

is not sufficiently precise that exact null hypotheses (other than nil nulls)

can be constructed routinely. There are some exceptions, such as allom-

etric models that predict particular scaling exponents (West et al., 1997).

However, the prevalence of nil nulls suggests that similarly precise

predictions for non-nil nulls are rare in ecology. Although there is a large

amount of data available to ecologists, such data can at best be used to

make uncertain (probabilistic) predictions. Null hypothesis testing, like

other frequentist methods, is not suitable for evaluating predictions

that are imprecise.

Ecologists may also use null hypothesis testing through an adherence to

Popperian falsification (e.g. Underwood, 1997). However, the rejection of

a trivial null hypothesis fails to meet Popperian, or any other well-known

philosophical criteria for good scientific practice. Further, Popperian

falsification can be achieved without null hypothesis significance testing.

If null hypothesis testing is to be used successfully, ecologists need to use

logical null hypotheses. The evidence demonstrates that this does not occur

despite continued criticism of the use of null hypothesis testing in ecology

(Johnson, 1995; Anderson et al., 2000; Fidler et al., 2006).

Collect data

There is little that is controversial when it comes to collecting data

for null hypothesis testing. It is assumed that the subjects, quadrats

or other units of sampling are selected at random, while accounting for

any underlying stratification or structure in the data during the analysis.

Similar or identical assumptions apply to any statistical method. Readers

should refer to literature on experimental design for further information

(Underwood, 1997; Quinn and Keough, 2002).

Calculate the p-value

The p-value of null hypothesis testing is equal to the probability of

obtaining the observed data or more extreme data if the null hypothesis

is true. For example, consider the null hypothesis that the exponent of the
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scaling relationship between metabolic rate and body size is 0.75.

Then, we collect some data on metabolic rate and body size and estimate

the value of the exponent as 0.77, leading to a difference between the null

hypothesis and the estimate of 0.02. However, given the variation

expected in the data, a difference this large might be expected just by

chance. The p-value is the probability of getting a difference this big or

bigger if the null hypothesis is true.

Critics of null hypothesis testing ask: ‘Why should data that have

never been observed (e.g. the occurrence of an exponent greater than

0.77) influence our inference about the validity of the null hypothesis?’

This seems to be a reasonable concern. It is easy to construct examples in

which the observed data are impossible if the null hypothesis is true, but

where the p-value is not zero because more extreme data are possible (e.g.

a null hypothesis of an odd number of breeding birds in a monogamous

species).

In practice, most null hypotheses predict unimodal distributions

for the data, with the most common form being a normal distribution

or a similar distribution derived from the normal (e.g. t or chi-squared

distribution). As a result, there is usually a monotonic relationship

between the probability of obtaining the observed data and the p-value. As

the probability of observing the data increases, so too does the p-value.

Therefore, the influence of the ‘unobserved results’ is usually small. For

the example in Box 2.1, the different stopping rule led to different

interpretations of what constituted more extreme data. The subsequent

difference in the p-value was relatively small (0.033 versus 0.073), although

large enough that the result of the hypothesis test was affected in this case.

Reject the null hypothesis if the p-value is small

A small p-value indicates that the observed data would be unlikely to

occur if the null hypothesis were true. This then provides evidence against

the null hypothesis, and it will be rejected and the alternative hypothesis

accepted if the p-value is sufficiently small. The logic of this process is not

entirely straightforward and is often misinterpreted. The most common

misinterpretation is that the p-value is the probability of the null hypo-

thesis being true, given the data. This misinterpretation is even shared by

some of those who teach the method (Haller and Krauss, 2002).

However, it is actually the converse of this; it is the probability of data

(or more extreme data) given that the null hypothesis is true (Berger and

Sellke, 1987; Ellison, 1996).
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The distinction between the two probabilities can be illustrated with an

example of probability with which readers will be familiar. Consider

the null hypothesis that I am rolling a fair six-sided die. Let the observed

data be that a value of one is rolled. The p-value for this outcome is 0.167

(1/6). Now consider the inverse of this problem: if a one is rolled, what is

the probability that I am using a fair six-sided die? It is definitely not

0.167. The probability that I am using a fair die would depend on whether

I own and use biased dice. Your belief in whether I am using a fair die

has more to do with the perception of my character than the result of a

single throw of the die.

However, if I continued to roll ones on subsequent throws, you would

be rightly suspicious. The important point is that the probability of

obtaining the data and the probability of a hypothesis being true are not

the same, although there is a relationship between the two. This

relationship is defined by Bayes’ rule (Box 1.3).

Null hypotheses are routinely rejected when the p-value is less than an

arbitrary value of 0.05. This choice has virtually no basis in logic. It is

simply a number that ensures that correct null hypotheses would be

rejected only 5% of the time in the long run. This rate of rejection of

correct null hypotheses is the type I error rate. The type II error rate is the

proportion of times that false null hypotheses would not be rejected.

Power is equal to one minus the type II error rate. It is the proportion of

times that false null hypotheses are rejected.

Ideally, the probability of making a poor decision with null hypothesis

testing should decline to zero as the sample size increases. In fact, it would

be possible to ensure this is the case if statistical power was considered

by ensuring that both the type I and type II error rates were reduced

towards zero as the sample size increased. However, by having a slavish

adherence to the threshold of 0.05, ecologists set a limit such that even the

largest studies will lead to erroneous conclusions about true null

hypotheses 5% of the time.

When the null hypothesis is rejected, we accept the alternative hypo-

thesis without explicitly considering how well it matches the data. Unless

the alternative hypothesis is constructed with care and is a reasonable

choice, we run the risk of accepting a hypothesis that is even more

implausible (given the data) than the null we just rejected. Box 2.3 provides

an example where the apparent rejection of a hypothesis and acceptance

of an unlikely alternative has caused considerable trouble. The same data

are analysed using information theoretic methods and Bayesian methods.

Only Bayesian methods arrive at the correct conclusion in this case.
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Fail to reject the null when the p-value is large

If the p-value is large, it would be nice to be able to conclude that the null

hypothesis is true. Large p-values can occur if the null hypothesis is true

or close enough to being true. However, they can also occur if the study is

not sufficiently well-designed to have a reasonable chance of generating a

low p-value if an important difference from the null hypothesis actually

exists. Even a p-value of 1.0, which is the highest value it can possibly be,

does not necessarily provide strong evidence that the null is true because

large p-values can also be obtained if the null is false but the study is

poorly designed.

Box 2.3
Null hypotheses in the courts

Two sons of Sally Clark, a London lawyer, died while very young

about a year apart and both in mysterious circumstances. In 1998,

seven months after the second death, Sally Clark was charged with

murder. She was eventually tried, found guilty, and sentenced to two

life terms of imprisonment in 1999.

Part of the evidence presented in her trial was that the

probability of two children dying of cot death in the one family was

vanishingly small (quoted in court as one in 73 million). This is

essentially a p-value: the probability of the obtaining the data

(two children dying) given the null hypothesis (Sally Clark was

innocent). Since this probability is so small, the null hypothesis

of innocence could be rejected and the alternative hypothesis

(that Sally Clark murdered her children) accepted. As claimed by

the prosecutor, two cot deaths were ‘beyond coincidence’. Of course,

this acceptance of the alternative hypothesis ignores whether the

available evidence supports it and whether it is reasonable in the first

place.

The application of null hypothesis testing in this case

gets it alarmingly wrong. Despite the vanishingly small p-value,

evidence came to light that demonstrated that Sally Clark

was unlikely to have killed her two sons, and after spending

more than three years in prison she was released. A small

p-value does not necessarily mean that the alternative hypothesis

is true.
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The quality of a study is measured by its statistical power, and p-values

need to be interpreted in its light. Power is the probability of obtaining

a statistically significant result given that the null hypothesis is not true.

Statistical power can help determine necessary sample sizes and assist the

planning of data collection and subsequent analysis. The only problem

is that this is rarely done in ecology. Power is almost never reported

by ecologists, but in approximately half of all cases authors interpret

their non-significant results as evidence that the null hypothesis is true

(Peterman, 1990; Taylor and Gerrodette, 1993; Johnson, 1999; Anderson

et al., 2000; Fidler et al., 2004). This is despite the fact that power must be

known if we are to interpret the importance of non-significant results

(Fidler et al., 2004).

When calculating power it is necessary to specify both the difference

one wishes to detect and the variance of the data. Both values can be

difficult to determine, but any calculation of power is conditional on the

values that are used. Smaller differences may go undetected, and power

will be less than expected if the variance is underestimated.

Summary of null hypothesis testing

There are several problems with the use of null hypothesis significance

testing in ecology. These problems are mainly due to how the method is

implemented, rather than the basis of the method. In summary, errors

in the use of null hypothesis testing include:

1. using silly null hypotheses;

2. believing that the p-value is the probability that the null hypothesis

is true;

3. interpreting large p-values as evidence that the null hypothesis is true

(a sub-set of point 2);

4. ignoring statistical power (related to point 3);

5. following the almost universal convention to use a type I error rate

of 0.05, despite power being ignored, so the type-II error rate is

unknown; and

6. ignoring the size of effects being estimated and/or the evidence

in favour of competing hypotheses when p-values are cited in results.

There are two problems with the actual basis of null hypothesis testing:

1. Data that were never observed or cannot be obtained influence

the results (e.g. Box 2.1) because the p-value is based on data that
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are more extreme than those observed, as well as the observed

data; and

2. Evidence in support of the alternative hypothesis is ignored in

the decision about whether to reject the null hypothesis in favour of

the alternative.

In practice, these two problems need not have dire consequences

for null hypothesis testing. If the null and alternative hypotheses are

both reasonable (i.e. there has been logical and thoughtful develop-

ment of the hypotheses), then the p-value provides a measure of the

evidence in support of the two possible hypotheses, although it tends to

overstate the evidence against the null (Berger and Sellke, 1987; see also

Chapter 4). Despite warnings, silly nulls are common in ecology, and

ecologists routinely ignore power while interpreting non-significant

results as evidence that the null hypothesis is true. The same errors

and efforts to correct them are repeated in other disciplines (Fidler

et al., 2004). The evidence suggests that null hypothesis testing is

used poorly. Because of these repeated problems, there has been

ongoing and ardent criticism of null hypothesis testing (Parkhurst,

1997; see also http://www.warnercnr.colostate.edu/�anderson/null.html):

Clark (1963) ‘. . . no longer a sound or fruitful basis for statistical

investigation’
Bakan (1966) ‘. . . essential mindlessness in the conduct of research.’
Deming (1975) ‘. . . small wonder that students have trouble understanding

hypothesis tests. They may be trying to think.’
Carver (1978) ‘. . . significance testing should be eliminated; it is not only
useless, it is also harmful . . .’

Cohen (1994) ‘. . . hypothesis testing does not tell us what we want to
know . . . out of desperation, we nevertheless believe that it does.’
Rozeboom (1997) ‘Null hypothesis significance testing is surely the most

bone-headedly misguided procedure ever institutionalised in the rote training
of scientists.’

I recommend that ecologists largely stop using it in favour of the

methods discussed in the remainder of this chapter. One of these

methods is Bayesian statistics. Given the problems with null hypothesis

testing and its prevalence in ecology, one might ask how the discipline

has managed to progress (Dennis, 1996). I believe part of the answer

is that many ecologists do more than just null hypothesis testing

when analysing their data. They also estimate the size of effects that

they are studying. This answers more relevant questions such as ‘what

is the magnitude of the difference?’ rather than ‘is there a difference?’
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This approach to data analysis is considered more fully at the end of

the chapter.

Information-theoretic methods

Information-theoretic methods work in a series of steps:

1. A set of candidate models are selected that represent different hypo-

theses for explaining reality.

2. Data are collected.

3. The data are used to assess the relative support for the different

models, by estimating the amount of information lost when using each.

The best model is selected as the one that is estimated to lose the least

amount of information.

4. Any required predictions are made using an average of the models

that is weighted towards those that are estimated to lose less

information.

Select a set of candidate models

One of the main tenets of information theoretic methods is to select a set

of possible models (hypotheses) for explaining reality. Information theo-

retic methods are not constrained to examining only two possible hypo-

theses as required for null hypothesis testing. An arbitrary number of

hypotheses can be examined simultaneously, but Burnham and Anderson

(2002) recommend careful selection of the hypotheses. Each hypothesis is

represented as a statistical model. The statistical models link the data that

are to be collected to various parameter values. The models are selected

with the knowledge that most, if not all models in ecology will be imper-

fect. The aim is to find the most parsimonious model or set of models.

An example will illustrate the construction of possible hypotheses and

associated models. Grand et al. (1998; see also Anderson et al., 2000)

were interested in the effect of lead poisoning on female spectacled eider.

Data were available from two sites and the birds were classified as either

having been exposed to lead or not based on blood analysis. The five

possible hypotheses were:

1. Survival depended on lead exposure but did not vary among sites.

2. Survival depended on both lead exposure and site, with an additive

effect.
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3. Survival depended on both lead exposure and site, with an interaction

between the two (i.e. the effect of lead varied among the sites).

4. Survival did not depend on lead exposure but varied among the sites.

5. Survival did not depend on the site or lead exposure.

Grand et al. (1998) constructed statistical models for each of these

hypotheses. The models related the observations of each individual over

three years (the capture/recapture history) to the survival rates, and

the survival rates were functions of the relevant explanatory variables.

The results are presented later in this section.

Advocates of information-theoretic methods are some of the firmest

critics of the (mis)use of null hypothesis testing in ecology, in particular

the use of silly nulls (Johnson, 1999; Anderson et al., 2000). Of course,

information-theoretic methods are not immune to silly hypotheses. In the

above example, it could be argued that any model that did not include

an effect of lead on mortality can be discounted as unlikely a priori.

Similarly, one could argue that there must be at least some difference in

mortality of spectacled eiders among sites given that the birds will be

exposed to different conditions (hunters, predators, food, etc.). Further,

one would expect that the effect of lead poisoning on mortality would

depend on the site, with no two sites having perfectly identical responses.

So, we can claim a priori that model 3 is our best model and that the

other models are silly. Any number of other models could be added to the

list, such as those in which annual mortality varies as a function of

possible weather variables.

Of course, the production of an unlimited number of increasingly

complex models is counter to the aim of parsimony (finding the simplest

model that still fits the data reasonably well). Advocates of null

hypothesis significance testing might argue that by using silly nulls,

they are doing something very similar; only including detail when there

is evidence that the extra detail is justified. The difference is that

information-theoretic methods are based on an aim to minimize the loss

of information, whereas decisions about including parameters based on

null hypothesis testing depend on the type I error rate, which is usually

set at the arbitrary value 0.05.

Collect data

Again, the collection of data is a largely uncontroversial step, with

principles of randomization and replication being important, as well as
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attempts to minimize biases and imprecision. In the spectacled eider

example, the researchers marked individuals and constructed a re-sighting

history that recorded whether each bird was recorded in subsequent years.

Calculate the relative amount of information lost by each model

The concept of information loss is easy to envisage for digital images.

If an image is made up of many pixels, it will tend to be a good

reproduction of the original scene. However, as the number of pixels

decreases, the image will become less clear as the pixels become larger,

and greater amounts of information (detail) will be lost. Although no

digital image will provide a perfect representation of the original scene,

the various images that are available can be ranked on the basis of their

clarity, which measures the relative amount of information lost or gained

by using one image compared to another. Similarly, some ecological

models will lose more or less detail when trying to represent reality by

having different levels of bias and precision.

Akaike (1973) identified the relationship between a formal measure of

the information content of a model (Kullback-Leibler information) and

values of the maximum likelihood or deviance that are commonly used in

statistics (Anderson et al., 2000). This led to Aikake’s information

criterion (AIC) which is an estimate of the relative Kullback-Leibler

information of a model. AIC is calculated from the minimum deviance of

the model (a measure of fit) and the number of estimated parameters

(a measure of complexity). Poorer fitting models and more complex

models lead to greater AIC values. Chapter 4 provides more information

about likelihood, deviance, and AIC.

The best model, of those being considered, is the one that is expected

to lose the least amount of information (i.e. has the lowest AIC value).

Embedded in the calculation of AIC values is the concept of parsimony.

Using AIC to select the best model involves a trade-off between model fit

and complexity, with more complex models being selected only if they

provide a sufficiently superior fit (see Chapter 4).

The differences in AIC among models are more important than the

actual values. Differences are usually expressed relative to the model with

the smallest AIC value (�i¼AICi�AICmin). For the spectacled eider

example, the model with an effect of only lead was the best model, while

the model with additive effects of site and lead was the second best model

(Table 2.1)
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The AIC differences of each model (�i) can be converted to

Akaike weights (wi) that measure the likelihood of the data given the

model. When there are R candidate models, the Akaike weights are

wi ¼ expð��i=2Þ=
XR
r¼1

expð��r=2Þ:

This equation simply means that the Akaike weights are obtained by

transforming the AIC differences (�i) using expð��i=2Þ and then

re-scaling the subsequent values so that they sum to 1. Anderson et al.

(2000) interpret these weights as approximate probabilities that the model

(of those in the candidate set) is the Kullback-Leibler best model, i.e. that

of the models considered it minimizes the loss of information. This means

that the Akaike weights provide a measure of evidence in favour of each

of the candidate models provided we have a priori reasons to believe that

the models are equally reasonable. However, Box 2.4 illustrates that

a priori evidence matters. Burnham and Anderson (2002, pp. 302�5)

discuss more fully the relationship between Akaike weights and model

probabilities.

Information theoretic methods also permit evaluation of the evidence

that lead influences the mortality of spectacled eider. This is achieved by

summing the Akaike weights for the models that include an effect of

lead (0.998). Thus, there is very strong evidence that lead affects

survival, because the models that do not include lead as an effect have

very low weights.

Table 2.1. Differences in AIC values (Di) between the best model (model 1)

and the other models. Model weights (wi) were calculated using the relative

AIC values (Di). The effect size and standard error is based on the

maximum likelihood estimate for the effect of lead for that model.

Model �i wi Effect size (s.e.)

1. Lead effect 0.00 0.673 0.337 (0.105)
2. Additive lead and site

effects
2.07 0.239 0.335 (0.148)

3. Interactive lead and site
effects

4.11 0.086 0.330 (0.216)

4. Site effect (no lead effect) 14.25 0.001 -
5. No site or lead effect 12.71 0.001 -
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Average across models

Information-theoretic methods also provide a basis for including

uncertainty about the best model in assessments of effect sizes. For

example, model 1 predicts that the presence of lead reduces survival by

0.337 with a standard error of 0.105 (Table 2.1). However, the other

models predict slightly different effects. For example, the standard error

Box 2.4
Information theoretic methods in the courts

An information theoretic approach to the evidence in Sally Clark’s

case arrives at a similar conclusion to null hypothesis testing

(Box 2.3). In this case, we have basically two hypotheses: Sally Clark

murdered her children or did not murder her children (ignoring the

chance that she murdered only one of them). We can calculate the

likelihood of the data (her two children died) under the two

hypotheses. For the first, the probability of her two children dying

given that she murdered them is clearly 1. The probability of two

deaths under the second hypothesis that she is innocent can be

calculated from data on cot deaths in the UK. This value is

approximately one in 300 000 (not one in 73 million as quoted in

court because cot deaths are unlikely to be independent events within

families; Hill, 2004). We can calculate AIC values for these two

hypotheses. Because the data (two sons dying) are not used to

estimate the parameters of the models, K¼ 0 and the AIC values are

simply equal to the deviance (�2 In(likelihood)):

Hypothesis Likelihood AIC wi

Children murdered 1.000 0 �1.0
Children not murdered 3.4�10�6 25.2 3.4�10�6

Faced with this analysis, things are not looking up for Sally Clark.

The interpretation of Akaike weights (wi) as model probabilities

require us to conclude that it is likely that she murdered her two sons.

However, this analysis neglects a vital piece of information, which is

that parents only very rarely kill their children (Box 2.5).
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Box 2.5
Bayesian methods in the courts

Using the Bayesian method, the prior probability that Sally Clark

murdered her two sons can be estimated from rates of infanticide in

the United Kingdom (Hill, 2004). Most parents do not murder their

children, so the rate of murdering two children is very low (the

probability is approximately one in 2.7 million). Thus, we have the

prior probability that Sally Clark murdered her two sons

(0.00000037), and the probabilities of her two sons dying given the

two hypotheses (1 in 300 000 if she did not murder them and 1 if she

did), so we can calculate the posterior probability:

PrðSally Clark murdered her sons given the dataÞ

¼ 3:7� 10�7 � 1=½3:7� 10�7 � 1þ ð1� 3:7� 10�7Þ � 1=300000�

¼ 0:1:

Therefore, it is approximately ten times more likely than not

(given the two deaths) that Sally Clark is innocent (Hill, 2004; see also

Bondi, 2004 and Joyce, 2002). Of course, other evidence could be

brought to bear on this case. Firstly, the rate of infanticide among

parents is much lower than the figure used if those parents do not

have a history of violence towards their children, as is the case with

Sally Clark. At the same time, the rate of cot death is also lower for

such families (Hill, 2004). Secondly, medical evidence, some of which

only came to light on appeal, increases the likelihood of death by

natural causes. The first son was found to have a respiratory infection

and the second a bacterial infection, both of which were likely causes

of death. Thankfully, given the evidence, Sally Clark appealed her

conviction and is now free after spending more than three years in

jail. However, ecologists continue to fall into the same trap that

appears to have contributed to the conviction of Sally Clark, which is

known as the prosecutor’s fallacy. This is the mistaken belief that a

low probability of obtaining data given a hypothesis means that the

alternative hypothesis is likely to be true.
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for the effect of lead for model 3, which included the interaction term,

is almost twice that of model 1 (Table 2.1).

By using model averaging, it is possible to calculate an effect of

lead that accounts for uncertainty in the choice of the best model.

Model averaging weights the estimated effect by the Akaike weights.

Additionally, the standard error of the model-averaged predictions is

a function of the within-model variation (i.e. the standard error of

the prediction for each model), the between-model variation (i.e. the

differences in the predictions among the different models) and the Akaike

weights (see Burnham and Anderson, 2002 for details). In this example,

the model-averaged prediction is that lead reduces survival by 0.335

with a standard error of 0.125.

The ability to consider more than one model when making infer-

ences is one of the strengths of information theoretic methods. The chief

advantage is recognizing that there is usually some uncertainty about

which of the candidate models best describes the data. It is risky to

put all one’s eggs in one basket (a single model) when other plausible

models might make different predictions. More detail on using multi-

model inference in ecology can be found in Burnham and Anderson

(2002).

Summary of information-theoretic methods

Information theoretic methods have three advantages over null hypoth-

esis testing:

1. They are not influenced by extreme unobserved data.

2. In evaluating a hypothesis, the relative evidence in favour of the

different hypotheses is assessed simultaneously while null hypothesis

testing can lead to acceptance of the alternative without directly

assessing evidence in its favour.

3. They permit simultaneous assessment of multiple hypotheses rather

than being confined to pair-wise comparisons. Inference about the

magnitude of effects can be based on the relative evidence in favour

of these different hypotheses.

It has been argued that information-theoretic methods overcome the

problems of null hypothesis testing. However, many of the problems

of null hypothesis testing lie in its use rather than the method itself.

It is entirely possible that similar errors of use may arise when using

information theoretic methods (or other approaches to statistics such as

Information-theoretic methods 51



Bayesian methods). For example, the following possible errors that might

arise when using this method are largely analogous to the errors that

occur with the misuse of null hypothesis testing:

1. Using silly hypotheses;

2. Believing that the Akaike weight is the probability that the hypothesis

is true;

3. Choosing the best model (that with the smallest AIC value) and

ignoring other possible models with similar AIC values;

4. Not assessing the ability of study designs to distinguish between

different models a priori;

5. Using arbitrary thresholds for differences between AIC values to

decide whether a model is considered further or not;

6. Ignoring the size of effects being estimated when deciding which model

is most parsimonious.

It remains to be seen whether these errors or others become common

in ecology. Proponents of information-theoretic methods would argue

that such errors are the fault of the user, not of the method and that the

method has ways of dealing with them. A similar defence can be mounted

for most of the criticisms of null hypothesis testing. Therefore, I believe

that whether information theoretic methods are better than null hypo-

thesis testing will depend on how they are used; whether people make

fewer errors of interpretation and implementation when using one or the

other. This is largely a question of cognition, depending on how well the

different methods are taught and understood, the quality of the available

software, etc.

In the next section, I describe Bayesian methods that have some

clear advantages over null hypothesis testing and information theoretic

methods. Bayesian methods introduce some extra difficulties, but most

of these are easy to overcome.

Bayesian methods

Perhaps the main defining feature of Bayesian methods is calculation

of the probability of a hypothesis being true. These hypotheses can

be discrete (e.g. the frog surveying problem in Chapter 1) or continuous

(e.g. when estimating a mean, Box 1.8). While both null hypothesis

testing and information theoretic methods might seem to measure the

reliability of different hypotheses given the data (with p-values or
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Akaike weights), they actually represent the probability of obtaining

the data given the hypotheses.

The steps to conducting a Bayesian analysis are:

1. A set of candidate models are selected that represent different

hypotheses for explaining reality.

2. Prior probabilities are assigned to these different models.

3. Data are collected.

4. Bayes’ rule is used to combine the prior probabilities with the

information contained in the new data to generate the posterior

predictions.

Select a set of candidate models

This is essentially the same step as used in information theoretic

methods, with it being possible to use any number of competing models.

The same criticisms apply. While critics point out that null hypothesis

testing can lead to the use of silly nulls, there is nothing to stop silly

hypotheses being used with information theoretic or Bayesian methods.

Perhaps one advantage of Bayesian methods is that users are forced to

establish prior probabilities for the competing models. Therefore, silly

hypotheses may be noted and assigned small prior probabilities.

However, how does one assign these probabilities?

Assign prior probabilities

The frog surveying problem (Chapter 1) provides an example of assigning

priors to the different hypotheses. The two hypotheses are that the

southern brown tree frog is present or absent from a surveyed site. If we

had no previous information, then we might conclude there is nothing to

choose between the two hypotheses before collecting data and assign

equal prior probabilities to each. Such use of uniform priors is common

in the face of ignorance.

However, if we know from previous surveys that the species is found

in a particular fraction of ponds in the region, then we could use that

fraction as the probability that the frog is present. The probability of the

frog being absent is simply one minus the probability that it is present.

Finally, we might have a model for predicting the probability that the

frog is present at ponds based on their characteristics, in which case this

could be used as the prior. Each of these three cases reflects different
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levels of prior information. The first represents ignorance, the second the

mean rate of occurrence of the frog within ponds, and the third how the

rate of occurrence varies among ponds of different types. The addition of

prior information in this way influences the results. If the pond has a high

prior probability of the frog being present, then a single survey in which

it is not seen would not be enough for us to be reasonably sure it is absent

unless our ability to detect the frog was very good.

Using a uniform distribution to represent ignorance makes sense in

some ways, but is problematic in others. Consider the case where we wish

to determine the proportion of individuals that belong to each species in

an African national park. Among the herbivores, we might be interested

in the proportion of individuals that are zebras, wildebeest or some other

species. By using the uniform distribution to represent ignorance, we

would assign a one-third probability to each of these three classes (zebras,

wildebeest, other). However, the probability of one-third is simply an

artefact of our classification. The zebra would have had a probability of

one-quarter if we had included gazelles as an additional class. Therefore,

representing ignorance is not always straightforward.

Problems of representing ignorance also arise when specifying priors

for continuous hypotheses (see also Box 3.12). For example, we may wish

to estimate the density of territories of a species that are adjacent but

non-overlapping. We could assign the prior distribution as uniform

between 0.1 and 1.0 territories per ha if we were confident that the density

was somewhere within that range but unsure of the actual value. This

prior implies that the probability of the density being less than 0.2

territories per ha is 0.111 (0.1/0.9).

Alternatively, we could specify that the area of each territory is

between 1 and 10 ha. This is equivalent to our limits for density (1.0 and

0.1 territories per ha, respectively). If we used a uniform distribution

between 1 and 10 ha for territory size, the probability of the territory size

being more than 5 ha is 0.555 (5/9), which is five times the probability

calculated above for the equivalent density (0.2 territories per ha). Thus,

we seem to have proved that 0.111¼ 0.555.

The difference arises because the units of the two approaches are not

linearly related, so the probabilities are not conserved when they are

transformed (in this case by inversion). The prior distributions are very

different (Fig. 2.2). This effect of the scale of measurement is not unique

to Bayesian analyses. For example, a frequentist confidence interval

based on territory size would not be equivalent to a confidence interval

based on densities of territories per ha.
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One of the difficulties in establishing prior probabilities is that humans

tend to judge them poorly (Tversky and Kahneman, 1974; Kahneman

et al., 1982; Ayton and Wright, 1994; Gigerenzer and Hoffrage, 1995;

Anderson, 1998; Burgman, 2005). Construction of priors by using

subjective judgement is likely to depend on a range of personal attributes,

how the problem is presented, motivational biases and advocacy

(Anderson, 1998; Burgman, 2005). Experts are not immune to these

frailties of human nature (Burgman, 2005; see also Chapter 10).

Even when there are data for constructing priors, some subjective

judgement is required to determine how the prior information is repre-

sented as a probability distribution. Frequentist methods are not free of

subjective judgement because they also depend on judgements about the

questions to be examined, how the data are collected, the variables to be

analysed, and the statistical methods and models that are used (Howson

and Urbach, 1991).

It could be argued that although science is not free of subjectivity

(Burgman, 2005), it should seek to minimize it (Dennis, 1996). How can

Bayesian methods be used reliably and convincingly in the face of

subjectivity? One approach is to be as careful, rigorous and convincing

in the choice of prior as in the collection of data. This book contains

various examples of using previous results and data to construct priors.

Furthermore, there will be many cases where the choice of prior has

virtually no effect on the results.

Fig. 2.2 Prior distributions for the density of territories assuming that the

density is uniformly distributed between 0.1 and 1.0 territories per ha (the

uniform distribution) and assuming that the size of territories (the inverse of

density) is uniformly distributed between 1 and 10 ha (the sharply peaked

distribution). The probability of territory density being less than 0.2 per ha

(the areas under the curves to the left of 0.2) is very different for the two priors.
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However, there will still be cases where uncertainty in the choice of

prior remains. This uncertainty can be regarded as an honest incorpora-

tion of subjectivity in science (Berger and Berry, 1988, Howson and

Urbach, 1991). The role of science is to ensure that this opinion is

updated logically as evidence accumulates. Bayes’ rule ensures that beliefs

are updated logically, with differing opinions converging as data are

collected (Cox, 1946; Howson and Urbach, 1991; Crome et al., 1996;

Jaynes, 2003).

There are extensions to Bayesian methods for dealing with uncertainty

in the choice of priors. The methods, lumped under the title of ‘robust

Bayesian analysis’, can also deal with uncertainty in the models used to

represent the hypotheses. They involve, for example, placing bounds on

the possible parameters or distributions for priors and likelihoods and,

therefore, bounds on the possible posterior distributions (e.g. Berger,

1985; Walley, 1991; Ferson, 2005). Robust Bayesian methods are not

without controversy, and they usually add to the computational burden.

In providing an introduction to Bayesian methods for ecology, I will only

touch on them briefly in Chapter 10. Interested readers are referred to

Berger (1985) and Ferson (2005).

Although the prior can pose difficulties for Bayesian methods, it is in

fact one of its strengths. Ecologists, in the discussion sections of journal

articles, routinely consider their results in the light of previous studies.

Bayesian methods provide a formal basis for these comparisons through

the use of priors. Scientists may be forced to be more rigorous and less

subjective when using priors to represent previous work than when simply

using their judgement to make comparisons. Bayes’ rule provides the

means of incorporating previous findings into the formal interpretation

of new data.

Use Bayes’ rule to combine the prior and the data

Bayes’ rule states that the probability of a hypothesis given data (the

posterior) is proportional to the product of the prior and the probability

of the data given the hypothesis. The constant of proportionality is given

by a sum (for discrete hypotheses) or an integral (for continuous

hypotheses).

There is little that is controversial about Bayes’ rule itself. Given a prior

probability, some data and a set of hypotheses, it provides the updated

belief in the hypotheses. Bayes’ rule provides a logical means (some

claim the only logical means, Jaynes, 2003) of updating belief (Box 2.5).
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Given that having a posterior belief in hypotheses requires a prior belief,

Bayesian methods are required if we wish to use data to assign degrees of

belief to hypotheses (Cox, 1946; Jeffreys, 1961; Jaynes, 2003). Bayesian

methods are required even when it is difficult to construct the priors. As

mentioned previously, the main controversy with Bayesian methods

involves how these priors are constructed. While critics of Bayesian

methods point to difficulties of establishing priors, proponents are

uncomfortable about ignoring relevant prior information if it exists.

In Bayesian statistics, probability distributions for the prior and

posterior distribution represent uncertainty about a parameter value.

Because of this use of probability distributions, some authors refer

to Bayesian parameters as random variables (Dennis, 1996; Ellison,

2004). However, this does not necessarily mean that the true value for

a parameter is assumed to vary randomly from one measurement to

another (Clark, 2005). The parameter might have a fixed but unknown

value, which can only be expressed probabilistically. The probability

distribution represents the uncertainty about the parameter, describing

which values are more or less probable. As more (unbiased) data are

collected, the posterior distribution becomes more concentrated on the

true value for the parameter.

Arbitrarily complex statistical models can be analysed using Bayesian

methods. For example, the numerical procedures for most analyses of

variance require that the variance of the data for each level of a factor is

identical; Bayesian analyses can easily handle cases where the variances

are different. Similarly, variances can be assumed to change across the

range of the data for regression analyses, rather than assuming the

variance is constant. Another example is that it is relatively straight-

forward to introduce hierarchical effects (Clark, 2005), making it much

easier to deal with problems such as pseudo-replication. Therefore, rather

than making the study design conform to the required analysis, Bayesian

data analyses can be made to conform to the study design. This opens the

possibility of combining data from multiple sources and using a wider

range of statistical models.

Nevertheless, some computational limitations of Bayesian methods

remain. Computationally intensive methods (e.g. multivariate factor

analyses) can take a long time to analyse with Bayesian methods, and

may not be feasible if the required mathematical functions are not

contained in the available software. Although these issues limit some

current applications, they will most likely be surmounted with further

software development.
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Estimating effect sizes

One of the main types of questions asked by ecologists is how big is

the effect or what is the nature of the relationship between variables?

For example, we might ask how has the population size changed over

time or what is the strength of the relationship between these ecological

variables? Bayesian and information theoretic methods, and with slight

modification the basic statistical machinery that is used to calculate

p-values, can be used to answer these questions. So, rather than asking:

‘Does plant diversity of marshes vary with salinity?’ we could ask: ‘How

does plant diversity of marshes vary with salinity?’ The former question

was answered by Mullan Crain et al. (2004) using null hypothesis testing

(p<0.0001).

Mullan Crain et al. (2004) also reported the answer to the second

question—species diversity increased from salt to brackish to fresh

marshes. The estimated Shannon diversity indices were 0.12+ 0.013

(mean+ s.e.) for salt, 0.22+ 0.015 for brackish and 0.39+ 0.016 for

fresh. By providing standard errors, readers can construct confidence

intervals for the estimated plant species diversity and consider the

magnitude of the differences. Such considerations show that there is

a trend in plant species diversity, with the diversity index in freshwater

being approximately three times that of saltwater. This result is clearly

more informative than ‘salinity affects plant species diversity’, which

we expected to be true prior to the data collection and analysis. However,

we might not have known the nature of those differences.

There is virtually no disagreement that the estimated size of effects

and a measure of the precision of the estimate should be provided

for any statistical analysis (Fidler et al., 2004). The Ecological Society

of America encourages this practice in their guide to authors who wish to

publish in their journals. Despite this encouragement, it is not routinely

practised by ecologists or by researchers in some other disciplines

(Fidler et al., 2004).

Frequentist confidence intervals and Bayesian credible intervals can be

used to represent the precision of an estimate.4 Such intervals can be used

to determine whether an estimated effect is likely to be ecologically

important. For example, McCarthy and Parris (2004) presented Bayesian

95% credible intervals for the effect of clipping toes from frogs on return

4 This representation of precision is based on the length of the interval, rather than the
earlier definition of precision as the inverse of the variance.
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rates of marked animals (Fig. 2.3). The results demonstrate that toe

clipping almost certainly reduces return rates in three of the four studies

examined because the intervals are less than zero. Because the confidence

and credible intervals in this case are numerically similar, this is equiv-

alent to obtaining a statistically significant result, rejecting the null

hypothesis that there is no effect of toe clipping (represented by the

dashed line at zero).

In one study, the credible interval is rather wide and does encompass

zero. This is equivalent to not rejecting the null hypothesis. However, the

results can also be compared to values that might be deemed ecologically

important. A value of �0.03 might be regarded as ecologically important,

because given that it is not unusual to clip three toes from frogs in mark-

recapture studies, the actual reduction in return rate would be �10% per

frog. If 10% of frogs are not recaptured because of the marking method,

this might lead to unacceptable bias in the results as well as impacts

on the population if the toe clipping is causing mortality.

By inspecting the credible intervals (Fig. 2.3), we can determine

whether the results are consistent with an ecologically important effect

such as �0.03. In three of the four studies, we can be confident that

effects are at least this large. In the other study, there is a reasonably large

chance that the reduction is greater than 0.03 per toe, but it is possible

that the effect is not this large.

Fig. 2.3 Estimated effect of toe clipping on return rates of frogs for four

different studies. The bars represent 95% Bayesian credible intervals and the

circles are the means of the predicted effect. Negative values indicate an

adverse effect (from McCarthy and Parris, 2004). See Chapter 8 for more

details.
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This illustrates one of the advantages of using intervals; the results can

be compared easily to values that are ecologically meaningful, rather than

only focusing on statistical significance. Although ecological importance

can be examined with null hypothesis testing (e.g. by using a null

hypothesis that is ecologically important), the prevalence of silly nulls

means that this is rarely done.

An additional advantage of using confidence or credible intervals

is that the concept of power is communicated by the width of the interval.

A wide interval (relative to the size of the difference we wish to detect)

means that the study has low precision—it is equivalent to having low

power in null hypothesis testing. In the toe clipping example, a study

would need to have a narrow confidence interval centred on a value close

to (or greater than) zero to show that the adverse effect of toe clipping

was not large.

A focus on ecological importance can be difficult, because we often

do not know what constitutes an important difference. In these cases, one

might argue that null hypothesis testing should then rely on determining

the presence or absence of any difference, so a null hypothesis of no

difference is appropriate. However, if we cannot establish whether an

observed difference is important or not, should we be testing for any

particular difference in the first place? Analyses that quantify the magni-

tude of effects, precision of their estimates, and the relationships

among different variables would be more appropriate in these circum-

stances. These studies could then help us to identify ecologically

important results.

In most cases, the choice between Bayesian credible intervals and

frequentist confidence intervals is not important because the results are

numerical similar. However, for some statistical models or when prior

information is available, the two approaches will generate different

answers (Jaynes, 1976; see also Chapter 1). In such circumstances, the

frequentist confidence intervals perform poorly compared with the

Bayesian credible intervals (Jaynes, 1976).

There are numerous calls for estimating effect sizes in ecology and

other disciplines (Anderson et al., 2000; Fidler et al., 2004; Ziliak and

McCloskey, 2004). As discussed above, there are several advantages of

using intervals. Additionally, the results are much more useful for meta-

analyses (Arnquist and Wooster, 1995; Gurevitch and Hedges, 2001), and

the ecological importance of the results is more readily apparent. From

merely selfish perspectives, this should encourage authors and editors to

use intervals in their manuscripts because their work will be cited more
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frequently if the results are clearer and more appropriate for meta-

analysis. These points relate to the progress of science, in which evidence

accumulates over time. Both meta-analyses that rely on estimating effect

sizes and Bayesian analyses are cumulative over studies, whereas null

hypothesis testing is not.

Concluding remarks

Frequentist and Bayesian methods of statistical analysis differ in how

they treat the notion of probability. Bayesian methods use probabilities

to assign degrees of belief to hypotheses or parameter values. In contrast,

frequentist methods (null hypothesis testing and information theoretic

methods) are confined to stating the frequency with which data would be

collected given hypothetical replicate sampling and specified hypotheses

being true. Given the disagreement about which approach to statistics is

preferred, the relative merits of the different methods are clearly a matter

of opinion. My preference is for Bayesian methods because I believe

ecologists are usually attempting to assign degrees of belief in parameter

values, models or hypotheses more generally (Table 2.2). Ecologists

regard the truth as uncertain and attempt to use science to gain an

improved understanding of the truth. Such an approach is consistent

with Bayesian statistics.

Many of the criticisms of the different statistical methods are

directed at the use of the methods, rather than their underlying basis.

Null hypothesis significance testing is criticized because of its

Table 2.2. Benefits and limitations of Bayesian statistics (adapted from

O’Hagan and Luce, 2003).

Benefits Limitations

Allows for intuitive interpretation Introduces an element of subjectivity
(although treating it explicitly rather
than ignoring it may be a benefit)

Uses prior information There are difficulties in constructing
priors

Addresses a greater range of problems Bayesian methods are not commonly
taughtAllows complex models to be analysed

easily
Accommodates decision making
Use all the information transparently
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widespread misuse. However, it also has logical shortfalls because

unobserved data influence the results, and acceptance of the alternative

hypothesis does not depend on how well the evidence supports it.

Frequentist methods in general are forced to ignore any relevant prior

information. Additionally, they are not well-suited to decisions about

individual cases, being restricted to assessing long-run frequencies

obtained from hypothetical samples. Bayesian methods are criticized

because it can be difficult to determine how prior information should be

incorporated into analyses.

Despite the differences, Bayesian and frequentist methods often

generate numerically similar answers, especially when estimating param-

eters and prior information is uninformative. In these circumstances, the

best approach will be largely determined by which is most easily and

successfully taught, learnt, and executed. Therefore, the success of the

different methods lies firmly in the realm of cognitive psychology not just

statistics. However, Bayesian methods have the distinct advantage that

when the numerical results differ, the Bayesian methods are invariably

correct (Jaynes, 1976).
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3

Analysing averages and frequencies

Ecologists routinely calculate averages and frequencies, such as the

average density of a plant, or the proportion of individuals in a population

that is of a particular type. In some cases, these averages are the main focus

of the data analysis, while in others we are more interested in determining

relationships among the items being studied and other explanatory vari-

ables. Nevertheless, analysis of averages and frequencies forms the basis of

much of ecology. Therefore, I have chosen averages and frequencies as

a starting point for the data analyses illustrated in this book.

The average

All ecologists are familiar with averages, particularly the arithmetic

mean. The mean of a sample is calculated by summing the values

observed in the sample and dividing by the sample size:

�x ¼
X

xi

� �
=n:

To further explore the analysis of a mean, I will revisit the

second example in Chapter 1, in which the following measurements

of diameter (in cm) were obtained from a sample of ten trees:

42,43,58,70,47,51,85,63,58,46:

The average diameter of the ten trees in the sample is 56.3 cm (563/10).

However, we might be more interested in knowing the mean diameter of

trees in the entire remnant, which is the population from which

the sample was taken. The observed average (56.3 cm) would seem like

a useful estimate of it, but how reliable is it? The question of reliability of

an estimate is answered by considering its precision. The usual
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non-Bayesian way of expressing the precision of an estimate is to calcu-

late the standard error and perhaps also a confidence interval. In this

case, the standard error is 4.3 and the 95% confidence interval

is 46.6�66.0 (Box 3.1).

Box 3.1
A frequentist approach to estimating an average

A typical frequentist approach to estimating the mean is to

calculate the sample mean ( �x) and the standard error (se),

determine the appropriate t-value (t) and place a confidence interval

on the mean by calculating the lower ( �x� t� se) and upper

( �xþ t� se) confidence limits (Fowler et al., 1998). In Chapter 1 it was

assumed that the standard deviation of data was known so a z-value

(1.96 for a 95% interval) was used. However, uncertainty associated

with the estimation of the standard deviation of the data, and hence

the standard error (the standard deviation of the mean) requires the

use of a t-value. This leads to a wider interval.

For the tree diameter data, the sample mean is 56.3, the

standard error is 4.3, and the t-value for a 95% confidence interval

is 2.262 (Fowler et al., 1998). The resulting confidence interval is

46.6�66.0 cm.

A common misinterpretation of frequentist confidence intervals is

that they represent a specified (in this case 95%) chance that the

average diameter of trees in the remnant is between 46.6 and 66.0.

This misinterpretation partly arises because researchers would often

like to know the probability that the truth is within a specified

interval. However, this interpretation of a confidence interval

requires a Bayesian analysis.

Frequentist confidence intervals are based on the concept of

multiple independent samples from the same population. If the

method of sampling the population and constructing the frequentist

95% confidence interval were repeated many times, 95% of the

intervals would encompass the (fixed, but unknown) true population

mean. The frequentist confidence interval and the Bayesian credible

interval are often numerically equivalent when an uninformative

prior distribution is used. However, there is often additional

information that makes the Bayesian interval narrower.
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This calculation of a confidence interval is based on a model.

The model states that the diameter of trees is drawn randomly from

a normal distribution with a particular mean and standard deviation.

Another way to think of the estimate of the mean is that it estimates one

of the parameters of this model. This approach allows for a richer use of

statistics—one that is based on the development of models, parameter

estimation and model evaluation.

So, how might the above data be analysed using a Bayesian approach

that is based on this perspective of model development, parameter

estimation, and model evaluation? The first step is model development.

One possible model is that the diameter of trees is drawn from a normal

distribution, as used in the frequentist analysis (Box 3.1). This model has

two parameters that need to be estimated, the mean and standard

deviation. Using uninformative priors for the parameters, the estimated

mean diameter of trees is 56.3 with a 95% credible interval of 46.6�66.0.

These results are the same numerically as those based on the frequentist

analyses, although they are philosophically different (Box 3.1). Given

that most ecologists interpret confidence intervals as credible intervals

(i.e., by assuming that they represent likely ranges for the parameter

being estimated), the philosophical difference is often not important

(Hoenig and Heisey, 2001, but see Jaynes, 1976).

However, confidence intervals and credible intervals differ numerically

when prior information is used. In this example, prior information on the

diameter of trees in 43 other remnants is available (Chapter 1). The mean

diameter of trees in these other remnants has an approximate normal

distribution with a mean of 53 cm and variance of 25. This distribution

describes how the mean size of trees in a remnant is likely to vary

among remnants. Further, prior information exists on how the variance

of tree diameter varies among remnants. Some remnants have more

variable tree sizes than others, but the prior information indicates the

likely range of values for the variance in the remnant being measured.

When the natural logarithm of the variances is taken, the transformed

values have an approximate normal distribution with mean of 4.75 and

variance of 0.328 (precision of 3.05). Therefore, a lognormal distribution

could be used as an informative prior for the variance. The mean of

the posterior would then be 55 cm with a 95% credible interval of

48.8�61.1 cm (Box 3.2).

The prediction is more precise when the prior information is included,

but is it better? After measuring all the trees in the remnant (Harper et al.,

2005), the mean diameter turned out to be 58.7 cm, well within the
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Box 3.2
A Bayesian approach to estimating an average

The normal distribution is one of the most commonly used

distributions in ecology. It is often specified by two parameters, the

mean of the distribution and its variance (see Appendix B on

probability distributions). In WinBUGS, the two parameters used to

specify the distribution are the mean and the precision, with this latter

parameter being equal to 1/variance.

In specifying uninformative prior distributions for these

parameters, the mean is often assumed to have an extremely flat

normal distribution. In comparison, it is necessary to ensure that the

precision (or variance) is positive because negative variances are not

possible. Any broad continuous distribution would be suitable.

This example uses a lognormal distribution.

The WinBUGS code for analysing the mean diameter of

trees in the remnant is given below. It is similar to Box 1.8

but includes uncertainty in the variance of the data rather

than assuming it is known. Uninformative priors are used in the

code below.

model

{

mean ~ dnorm(0, 1.0E-6) # mean diameter of

trees in the remnant

(uninformative

prior)

var ~ dlnorm(0.0, 1.0E-6) # variance of tree

diameters

(uninformative

prior)

prec <- 1/var # converts variance

to precision

for (i in 1:10) # for each of the ten

trees

{

Y[i] ~ dnorm(mean, prec) # tree diameter drawn

from normal

distribution

}

}
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Data

list(Y = c(42, 43, 58, 70, 47, 51, 85, 63, 58, 46))

# site 2 sample

Initial values

list(var = 100, mean = 100)

The for loop (for (i in 1:10)) means that i takes all possible

values between 1 and 10, making the expression

Y[i]~dnorm(mean, prec) insidet the loop equivalent to ten

separate lines (e.g., Y[1]~dnorm(mean, prec) up to

Y[10]~dnorm(mean, prec)).

Extreme values for the precision can cause numerical errors.

Therefore, it is often helpful to specify initial values for the

precision that are close to the posterior distribution rather than

generating them randomly with WinBUGS. The first samples

(1000 in this case) are discarded as a burn-in to ensure that

samples from the Markov chain are not influenced by the

choice of the initial values. In this case, the initial values have

the approximate order of magnitude of the posterior distribution

(100 and 100), but the Markov chain converges quickly to the

posterior distribution.

A total of 100 000 samples from the posterior distribution

provides the estimate of the mean as 56.3 cm with a 95% credible

interval of 46.6�66.0, which is the same as the frequentist 95%

confidence interval (Box 3.1).

However, there is prior information available for both the mean

diameter of trees within remnants and the variance of the diameter.

This variance of the diameter describes how different the trees are

within remnants. But this variance itself varies from remnant to

remnant; some remnants have more variable tree diameters than

others. Based on the data from the previously visited sites, variation

in the variance of the diameters can be described by a lognormal

distribution, the log-transformed values of which have a mean of

4.75 and variance of 0.328 (precision¼ 3.05). Variation in the mean

diameter among remnants can be described by a normal distribution

with a mean of 53 cm and a variance of 25 (precision¼ 0.04).

Therefore, to include this prior information, the uninformative priors

are replaced by the following lines of code:

mean ~ dnorm(53, 0.04) # prior with mean 53 and sd

5 (precision = 1/(5*5))
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narrower 95% credible interval, suggesting that the prior information was

useful. Although this single comparison is of limited value, it and other

examples demonstrate how Bayesian methods can provide improved

estimates of parameters compared to frequentist methods (O’Hagan and

Luce, 2003; McCarthy and Masters, 2005).

Distributions other than the normal can be used to describe the

samples. Trees cannot have negative diameters, which is possible with

a normal model. However, the diameters are sufficiently large in the

previous example (Box 3.2) that the normal is a reasonable approxima-

tion. The assumption of normality is evaluated in the next chapter by

examining the skewness and kurtosis of the residuals.

Nevertheless, there are other cases in which the normal model is unrea-

sonable. For example, in studying the density of trees in a New York

park (McDonnell, unpublished data), the number of red oak trees in ten

quadrats, each 400 m2 in area, was: 6, 0, 1, 2, 1, 7, 1, 5, 2, 0:

These data are far from normally distributed because the numbers are

discrete, non-negative, and the mean is not far from zero. As a first

approximation, the Poisson distribution is a reasonable model because

it takes only non-negative, integers (0, 1, 2, etc.), which is necessary for

counts of the number of trees in quadrats (Box 3.3). It is also a reasonable

choice because the Poisson distribution arises out of a model of ran-

domness (Box 3.3). While trees are unlikely to be completely random,

I will assume the Poisson distribution for now (Box 3.4). Under this

model, the density of trees is estimated as 62.5 per ha with 95% credible

intervals of 40�89.

This example illustrates one of the advantages of using Bayesian

methods instead of statistical methods that rely on normal distributions.

Here, the structure of the data influences our choice of statistical

model, and it is not necessary to force the data to conform to one of

the available statistical models (such as those that assume a normal

distribution, equal variances, independence, etc.). This advantage is also

var ~ dlnorm(4.75, 3.05) # informative prior for

variance

The 95% credible interval is 48.8�61.1 cm with these priors,

improving the precision by reducing the width of the interval from

19.4 cm to 12.3 cm.
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Box 3.3
The Poisson distribution

The Poisson distribution is appropriate for counts because the

number of objects within a quadrat will follow a Poisson distribution

if the objects are distributed randomly in space. The probability

distribution function for the Poisson distribution is:

PrðX ¼ xÞ ¼
e�llx

x!
,

where X is the random variable (e.g. the number of plants in the

quadrat), l is a parameter that is equal to both the mean number of

plants in the quadrat and the variance in this number, and e is the

constant equal to 2.71828 . . . The expression x! (‘x factorial’) is equal

to 1� 2� 3� . . .�x, with 0! equal to 1.

Thus, the probability of having no plants in a quadrat is equal to

e�l (lx and x! are both equal to 1 when x¼ 0), the probability of one

plant is e�ll, the probability of two is e�ll2/2, the probability of

three is e�ll3/6, etc.

Therefore, if the quadrat is 1 m2, Fig. 3.1 shows the expected

distribution of counts of the number of plants per quadrat (x) for

different densities of plants (l) ranging from 0.5�3 plants m�2.

Fig. 3.1 Three Poisson distributions describing variation in the number of

plants in 1-m2 quadrats for three different plant densities: 0.5 (black), 1.5

(grey) and 3.0 (white) plants m�2.
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Box 3.4
Analysing the mean of the Poisson distribution

Researchers studying the structure of vegetation in New York

measured the density of saplings and trees at ten quadrats (each

400 m2 in area) in Van Cortlandt Park, one of their study sites

(McDonnell, unpublished data). To estimate the average density of

red oak (Quercus rubra) in the park, the Poisson distribution (as a

model of randomness) is a reasonable description of the variation in

the number of trees sampled in the quadrats.

An uninformative prior distribution for the mean density of red

oak in each quadrat needs to take positive values and have a broad

distribution. A lognormal distribution that had a mean of zero and

standard deviation of 1000 for log-transformed values would be

suitable. Using this prior, the WinBUGS code for this analysis is:

model

{

for (i in 1:10) # for each of the ten

quadrats

{

y[i] ~ dpois(m) # number of trees drawn

from Poisson with mean m

}

m ~ dlnorm(0.0, 1.0E-6) # uninformative prior for

mean trees per quadrat

}

Sampling 100 000 times (after an initial burn-in of 10 000

iterations is discarded) with this model in WinBUGS, using the data:

list(y = c(6,0,1,2,1,7,1,5,2,0))

and the initial value:

list(m = 5)

provides an estimate of the mean number of trees per quadrat of 2.5,

and 95% credible interval of 1.6�3.6. The credible interval states that

there is a 95% probability that the mean number of trees per quadrat is

between 1.6 and 3.6. Because the quadrat size is 400 m2, or 1/25th of

a hectare, the density can be re-scaled to 62.5 trees per ha with a 95%

credible interval of 40�89 trees per ha bymultiplying the density by 25.
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shared by likelihood-based methods, although it is easier to fit more

complicated models with Bayesian programs such as WinBUGS

(Clark, 2005).

The Poisson distribution with extra variation

The Poisson distribution was introduced in Box 3.3 as a model of

randomness. Of course, plants and most other organisms may not be

distributed randomly in the environment. In fact, the study of ecology is

based largely on the principle that there are non-random factors that

influence the distribution of organisms. Nevertheless, the Poisson distri-

bution provides an important starting point when considering counts

of organisms and other entities (e.g. Box 3.3).

One extension to the Poisson distribution is to consider that the

average density of plants (equal to the parameter l in the Poisson model)

varies across the landscape. So, a randomly placed quadrat may fall into

an area of high plant density or low plant density, simply as a matter of

chance. We can modify the Poisson model to account for this extra source

of variation by assuming that the average density of plants varies across

the study area.

Any continuous distribution that is restricted to positive values

might be suitable for describing the variation in the mean plant density

among randomly placed quadrats. An example is analysed in Box 3.5

in which the expected number of plants per quadrat varies among

quadrats varies according to a lognormal distribution. This is an example

of a hierarchical model (Box 3.6).

Estimating differences

Analyses of averages can also be used to evaluate differences

between paired observations. For example, Quinn and Keough (2002)

discuss a study by Elgar et al. (1996) who analysed the effect of light

on the size of orb spider webs. A total of 17 orb spiders were studied,

each spinning a web in low and high light conditions. These data can be

treated as a paired comparison by analysing the difference in the size of

the web in low and high light conditions (Box 3.7).
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Box 3.5
The Poisson model with extra variation

The data on tree density were analysed in Box 3.4 by assuming a

Poisson distribution, and are re-analysed here by assuming that the

average density of trees varies among quadrats. If it is assumed that

the variation in the average density among quadrats is described by

a lognormal distribution and sampling variation is described by a

Poisson distribution, the code can be written as:

model

{

for (i in 1:10) # for each of the 10 quadrats

{

mean[i] ~ dlnorm(m, tau) # mean density drawn

from lognormal

y[i] ~ dpois(mean[i]) # no. of plants drawn

from Poisson

}

m ~ dnorm(0, 1.0E-6) # mean of the log

density of plants

sd ~ dunif(0, 10) # sd of the log

density of plants

tau <- 1/(sd*sd) # precision

}

A broad uniform prior is used for the standard deviation

(for the lognormal distribution in WinBUGS, this is the

standard deviation of the log-transformed density). The posterior

distribution for the standard deviation has a mean of 1.2 and 95%

credible interval of 0.33�2.9. Plausible values for the standard

deviation of log-transformed density are illustrated by considering

the complete posterior distribution (Fig. 3.2). The posterior

distribution suggests that there is likely to be variation in density

among quadrats because the standard deviation is unlikely to be

close to zero.

The median density of Quercus rubra can be calculated by adding

one line to the WinBUGS code (median <- exp(m)), which

back-transforms the parameter estimate for the median (which for a

normal distribution is equal to the mean) of the log-transformed

data. The median is used instead of the mean because lognormal
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Required sample sizes when estimating means

In the previous examples, estimates of parameters were obtained by

using sampled data and sometimes also by using prior information.

In general, the precision of these estimates will increase as more data

are collected, but how much data is necessary for a particular level of

precision?

When estimating an average it is important to know what sample

size is required. Ecological data can be highly variable, so sample sizes

might need to be large to achieve a desired level of precision for

parameter estimates. Ecological studies often suffer from insufficient

sample size because unless it is calculated explicitly, scientists routinely

overestimate the level of precision that they will obtain (Burgman, 2005).

Fig. 3.2 Posterior distribution of the standard deviation among quadrats of

log transformed density of Quercus rubra in Van Cortlandt Park, New York.

distributions can be highly skewed, which may make the mean much

greater than the most likely values.

The 95% credible interval for the median number of Quercus

rubra trees and saplings per quadrat is 0.43�3.9, which is wider than

the 95% credible interval of the mean density when variation among

quadrats is ignored (1.6�3.6, see Box 3.4). The uncertainty in the

estimate has increased because the analysis permits an extra source of

variation, the possibility of variation in density among quadrats. This

more complicated model seems to be warranted because the posterior

distribution of the standard deviation suggests its value is likely to be

greater than zero (Fig. 3.2).
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Box 3.6
Hierarchical models

The mean density of plants (l) varies from site to site for the model in

Box 3.5. Rather than assuming the parameter l is constant (as in

Box 3.4), it is treated as a random variable, taking different values in

each of the different quadrats. However, these values are not

arbitrary numbers; the different values of l for each quadrat are

drawn from a common probability distribution, which has two

parameters (m and sd).

In this example, probability distributions are used to represent

two different types of uncertainty. Prior distributions are specified

for the parameters m and sd, and posterior distributions are

calculated (e.g. Fig. 3.2). These distributions reflect uncertainty in

our estimate of parameters that have fixed values. In contrast, the

mean density of plants in the quadrats is a random variable; its

distribution reflects actual variation in the mean density of plants

across the park.

This is an example of a hierarchical model (Fig. 3.3). The

parameters of the probability distribution that describes variation

among quadrats in plant density are hyper-parameters. Hierarchical

models are particularly useful when adding complexity to models, for

example, when considering unexplained differences in fecundity

among individuals.

Rather than assuming that all individuals in a population have the

same average fecundity rate, or that the fecundity rates of individuals

bear no relationship to each other, we can use a hierarchical model in

which the fecundity of each individual is drawn from a common

probability distribution. Hierarchical models permit us to estimate

the parameters of that distribution.

A practical advantage of hierarchical models is that we do not

need to assume that we have described the underlying process

perfectly. In the case of plant density, we might extend the model to

include a prediction of how the density of oaks varies across the park,

for example, as a function of soil type. But even then, it is unlikely

that we will make perfect predictions of the mean. A hierarchical

model would allow us to include such deterministic trends but still

permit the possibility that quadrats with the same soil type would

have different mean densities. This is achieved by using a parameter
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However, for non-hierarchical models, it is relatively easy to cal-

culate the likely precision of a parameter estimate for a given level

of effort.

Required sample sizes (Adcock, 1997) can be determined by calculating

the precision (or variance or standard deviation) of a parameter estimate

assuming that the samples are drawn from a normal distribution.

In the absence of prior knowledge, the standard deviation of a mean

(commonly referred to as the standard error) is equal to s/
p
n, where s is the

standard deviation of the data and n is the sample size. If we wish to obtain

a standard error of a particular magnitude (E), then the sample size must

equal s2/E2, which is obtained by re-arranging the formula E¼ s/
p
n.

describing the level of variation among quadrats with the same

soil type.

Hierarchical models can conceivably have an arbitrary

number of levels, with hyper-parameters themselves also being treated

as random quantities. In this case, the diagram in Fig. 3.3 would

become a tree with an increasing amount of branching. However, the

amount of data and desired level of complexity of the model will limit

the number of levels that are included in the model. Further examples

of hierarchical models are presented in this book, and their use in an

ecological context is discussed by Clark (2005).

Fig. 3.3 The diagram on the left represents the generation of data under the

non-hierarchical model in Box 3.4. The diagram on the right is the

hierarchical model in Box 3.5. Ovals represent randomly generated variables,

while rectangles represent fixed parameters that are estimated with

uncertainty.
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Box 3.7
Estimating the difference between paired observations

Elgar et al. (1996) studied the sizes of webs spun by 17 orb spiders.

Each spider spun one web in high light conditions and one in low

light conditions. The difference in the vertical and horizontal size of

each pair of webs was determined. Using null hypothesis testing,

Quinn and Keough (2002) concluded that the webs were significantly

smaller in the horizontal dimension but not significantly different in

the vertical dimension when spun in high light conditions.

By focusing on parameter estimation, we can measure the size of

the difference. For the Bayesian analysis I assume that the differences

are drawn from a normal distribution. The mean of this distribution

measures the influence of light on the size of the web. Using

uninformative priors that reflect a lack of prior information, the

WinBUGS code for assessing the vertical difference is:

model

{

vmeandiff ~ dnorm(0, 1.0E-6) # uninformative

prior for mean

vert. diff.

prec ~ dgamma(0.001, 0.001)) # uninf. prior for

precision of

vert. diff.

for (i in 1:17) # for each of the

17 spiders

{

VertDiff[i] ~ dnorm(vmeandiff, prec) # observed

diff. drawn from a normal dist’n

}

}

As with all the examples, the code and data are available on the

book’s website. Using 100 000 samples after excluding an initial

burn-in of 10 000 provides an estimate of the mean vertical difference

of �20.5 cm with a 95% credible interval of �65.6�24.4. The fact

that the interval overlaps zero suggests that we cannot be sure that

there is no difference in the size of the webs under the different light

regimes, although the estimated effect is that the webs are

approximately 20 cm shorter in high light. The Bayesian credible
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When there is prior information in which the standard deviation of the

prior is equal to v, the required sample size is equal to (Adcock, 1997, see

also Box 3.8):

n� ¼ s2
1

E2
�

1

v2

� �
:

When the prior is uninformative, v is large relative to E, so the calcula-

tion of the required sample size approaches the value that is obtained

when prior information is ignored (1/v2 approaches zero). In contrast,

when the prior is informative, the required sample size is reduced.

For example, when the standard deviation of the prior is twice that

required for the posterior, the required sample size is 25% lower than

when prior information is ignored. Thus, by including prior information,

it is possible to use a smaller sample size to attain the same level of

precision. An example of using these formulae is provided in Box 3.9.

Propagating uncertainty in the required sample size

In calculating the required sample size in the previous examples, uncer-

tainty in the standard deviation was ignored. If the standard deviation

interval is consistent with the frequentist confidence interval and

p-value of 0.349 (Quinn and Keough, 2002).

For the horizontal dimension, the estimated reduction in web size

is 46 cm, with a 95% credible interval of a 1�92 cm reduction. The

credible interval, which is close to but not overlapping zero, is

consistent with the frequentist p-value of 0.047 obtained by Quinn

and Keough (2002).

This example used a gamma distribution with mean of 1 and

variance of 1000 as the uninformative distribution for the precision

(prec). The gamma distribution is commonly used as a prior for

precisions because when data are normally distributed, the posterior

of the precision will follow a gamma distribution when the prior has a

gamma distribution. This feature simplified the computations prior

to the advent of MCMC algorithms, and by convention the gamma

distribution is now commonly used for precisions. As a result of a

similar convention, the normal distribution is commonly used in

regression (for both Bayesian and frequentist analyses).
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(or its square, the variance) is underestimated, then the required sample

size will also be underestimated (and vice versa). It is possible to use

WinBUGS to examine how uncertainty in the variance of the data

propagates through to uncertainty in the required sample size.

Uncertainty in the variance is closely linked to the chi-squared distri-

bution when data are drawn from a normal distribution. In fact, the ratio

of a sample variance to the true variance multiplied by n�1 has a

chi-squared distribution (with n�1 degrees of freedom), where n is the

sample size used to calculate the variance (Sokal and Rohlf, 1995).

Therefore, if only the sample variance and sample size are provided,

Box 3.8
More on sample sizes

If precision is defined as the inverse of the variance, the precision

of the posterior for samples drawn from a normal distribution is

simply equal to the sum of the precision of the prior and the precision

of the estimate based on the data alone (Chapter 1). Thus, the

precision of the posterior is given by:

1

E2
¼

n

s2
þ

1

v2
,

where s is the standard deviation of the data, n is the sample size

and v is the standard deviation of the prior. The precision of the

estimate based on the data alone is given by n/s2 (the inverse of the

standard error squared). Re-arranging the above equation provides

the required sample size:

n� ¼ s2
1

E2
�

1

v2

� �

Another way of considering the problem is to think of the prior in

terms of its effective sample size (m). In this case, the variance of the

prior (v2) is equal to s2/m, and the precision of the posterior is equal

to (mþ n)/s2. Therefore, the total sample size (mþ n) must equal

s2/E2, and the required (new) sample size is equal to s2/E2
�m. This is

simply the sample size required in the absence of prior information

minus the sample size that has effectively been collected already by

using the prior.
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the probability distribution for the variance can be calculated.

The probability distribution of the variance of the data will lead to a

probability distribution of the required sample size. To ensure (with

reasonable certainty) that the required precision is achieved, a greater

sample size is needed to account for the possibility that the variance of the

data will be greater than the value that was assumed. This feature is used

in Box 3.10 to calculate the probability distribution of the required

sample size for the example in Box 3.9.

The important result of the analysis in Box 3.10 is that the required

sample size is underestimated if uncertainty in the standard deviation

is ignored. As the sample size used to estimate the standard deviation of

the data increases, the precision of the required sample size also increases

and the bias decreases. However, for sample sizes that are likely to be

used in pilot studies (say, n¼ 10 to 20), the bias may be important.

Adcock (1997) reviews a number of other approaches to deter-

mine sample sizes, including the use of a utility function (Lindley, 1997).

Lindley’s (1997) approach recognizes that extra sampling entails costs.

Box 3.9
An example of calculating required sample sizes

Here I will illustrate the use of the formulae for the required sample

size (Box 3.8). In the spider web example of Elgar et al. (1996, see

Box 3.7), the standard deviation of the posterior for the difference in

web size under high and low light was approximately 23 cm for both

the horizontal and vertical dimensions. The standard deviation of the

data (s) is estimated to be 94.8 cm ¼ 23�
ffiffiffiffiffi
17

p� �
. Therefore, if we

wished to reduce the standard deviation of the posterior to 10 cm and

used the data from the study of Elgar et al. (1996) as the prior, the

number of new spiders required would equal:

94:82� ð1=102 � 1=232Þ

¼ 94:82 � ð0:01� 0:00189Þ

¼ 72:9:

Therefore, approximately 73 additional spiders would be needed to

increase the precision of the estimated effect of light on the size of

spider webs to the required level.
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Box 3.10
Uncertainty in the required sample size

The sample size required to obtain a standard deviation of 10 cm for

the posterior distribution of the effect of light on spider webs was

estimated to be 73 (Box 3.9). However, this calculation ignored

uncertainty in the standard deviation of the data, which was

estimated to be 94.8 cm using a sample size of 17. In the following, it

is assumed that the standard deviation is based on a sample size of

17 (hence, df¼ 16). Uncertainty in the true standard deviation is

represented as a probability distribution by using the relationship

between the chi-squared distribution and the ratio of the observed to

true variance (Sokal and Rohlf, 1995).

Assuming the data are normally distributed, the WinBUGS code

can be written as:

model

{

req_sd <- 10 # required sd of posterior

prior_sd <- 23 # sd of prior

df <- 16

x ~ dchisqr(df) # a chi-squared variate

r <- x/df # ratio of observed to

true variance

sigma <- 94.8/sqrt(r) # true sd based on sample

sd of 94.8

nreq <- sigma*sigma*(1/(req_sd*req_sd) - 1/

(prior_sd*prior_sd))

# number of samples required to achieve desired sd

}

In this case, the prior distribution has a standard deviation of 23,

based on the sample size of 17. The required number of extra

measurements has a wide 95% credible interval (40�168), and the

mean of its posterior distribution (83) is greater than the sample size

that was calculated when uncertainty in the standard deviation was

ignored. If a sample size of 73 were to be chosen for additional study,

there is a good chance that the required precision for the effect of

light on spider webs would not be obtained. A sample size of 168

would be required to be 97.5% sure of obtaining a standard deviation

of the posterior that was less than 10 cm.
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Further, the benefits obtained from extra sampling depend on the objec-

tive and the amount of information already collected. Therefore, the

utility function will equal the benefits minus the costs, both of which will

be a function of the sample size. The optimal sample size is then chosen

so that the expected value of the utility function is maximized (Lindley,

1997), or so that the probability of obtaining a minimally acceptable

utility is maximized.

Estimating proportions

Ecologists are often interested in estimating proportions, such as the

prevalence of disease in a population (proportion infected), the level of

mortality or fecundity (proportion dying or reproducing), or sex ratios

(proportion that is male). An ecologist might take a random sample of

ten plants and count those that are infected with a particular disease such

as Phytophthora. If five plants were infected, it is sensible to assume that

the best estimate of the rate of infection in the population is 0.5 (5/10).

What can we say about our uncertainty in this estimate?

A common way of measuring uncertainty is to calculate the standard

error and a confidence interval. The most common estimate of the

standard error of a proportion is (Fowler et al., 1998):

se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

n� 1

r
,

where p is the proportion of the item in the sample and n is the sample

size. The usual procedure for placing a confidence interval assumes that

the estimate is normally distributed and uses a z-value to construct the

confidence interval (Fowler et al., 1998). For example, the 95% confi-

dence interval for the above data would be 0.17�0.83 (0.5+1.96� 0.167).

However, this is only an approximation relying on the Central Limit

Theorem, so the sample size must be ‘large’ and the proportion not ‘too

far’ from 0.5. For example, if only two of the plants had been diseased,

the 95% confidence interval would be calculated as �0.06�0.46, which

is nonsensical because a proportion can never be less than 0 or greater

than 1.

It is relatively easy to analyse this problem in WinBUGS without the

need for approximation (Box 3.11). If five of ten plants are diseased, the

95% credible interval is 0.23�0.77 if there is no useful prior information.
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This is narrower than the confidence interval that was constructed using

the normal approximation. If only two diseased plants were observed

in the sample of ten, the 95% credible interval would be 0.06�0.52,

which is clearly superior to the interval that was based on the normal

approximation. The Bayesian approach is also easier to interpret � the

probability that the proportion is within the 95% credible interval is 0.95.

There are other methods for estimating proportions that do not rely on

the normal approximation or Bayesian statistics. Likelihood-based

methods could also be used to estimate the proportion and place confi-

dence intervals on the estimate, resulting in a 95% confidence interval

of 0.22�0.78 for the proportion 5/10, and 0.036�0.50 for the proportion

2/10. These are similar to the values for the Bayesian analysis and clearly

superior to those based on the normal approximation. The difference

Box 3.11
Estimating a proportion

Assume we have sampled ten plants that each has a specified

probability of being diseased. If the incidence of disease occurs

independently among the ten plants, then the actual number of

diseased plants will be a sample from a binomial distribution

(Appendix B). This distribution is therefore the model used in the

WinBUGS analysis. Assuming an uninformative prior for the

proportion, the code would be written as:

model

{

x ~ dbin(p, n) # the number of diseased plants

is a binomial sample

p ~ dunif(0.0, 1.0) # the prior for the probability

of being diseased

}

To represent five diseased plants in a sample of ten, the data are

coded as:

list(x = 5, n = 10)

Sampling 100 000 times from WinBUGS provides the 95%

credible interval, which is 0.23�0.77 for five observations from a

sample of ten.
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between the likelihood approach and the Bayesian approach arises

because the former uses a chi-squared approximation to construct the

confidence interval. This approximation relies on the sample size being

sufficiently large.

So in summary, the Bayesian approach provides logical estimates for

proportions. Frequentist methods can provide useful approximations for

the confidence interval, although some of these approximations may

fail to provide accurate (or even reasonable) answers in some situa-

tions. Bayesian methods provide intervals with a natural interpretation

(i.e. there is a 95% chance that the true parameter value lies within a 95%

Bayesian credible interval), while alternative methods can only approx-

imate this value. Why would one bother with an alternative? If you are

not convinced by this simple example, consider the following use of

prior information to improve a prediction.

Annual mortality of powerful owls

Powerful owls are Australia’s largest owl, with the mass of females

averaging approximately 1.35 kg. However, as with many owls, they are

difficult creatures to study. Powerful owls occur at low population den-

sities, are mainly active at night, and are unreliably detected using typical

owl survey methods (Wintle et al., 2005a). Because of this, few people

have the necessary fortitude to study them. Approximately 30 powerful

owl nestlings were banded in Victoria up to 1999, but none of these

banded individuals were resighted as adults (McCarthy et al., 1999).

McCarthy et al. (1999) used data from three birds that could be

identified without bands to estimate annual mortality of powerful owls.

One of these birds disappeared after eight years, while the other two were

observed to remain alive for ten and 17 years. A single death in one year

and 35 years of survival suggests the annual mortality rate is 0.03 (1/36),

although given the paucity of data it is not surprising that the 95%

credible interval is wide (0.0066�0.14, using x¼ 1 and n¼ 36 in

Box 3.11). This interval corresponds to the owls having an average

lifetime of as little as approximately seven years (1/0.14) and approxi-

mately 150 years (1/0.0066) because average lifespan is approximately

equal to the inverse of the annual mortality rate. The wide confidence

interval is not surprising given the relatively small amount of data.

This upper limit of 150 years appears unreasonably large. The

lifespan of a single owl, let alone the average of a species, is unlikely to

be as long as 150 years. Although the credible interval for mortality of
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0.0066�0.14 (using a uniform prior between zero and one) is consistent

with the data, it is not consistent with common sense. It is tempting to

limit the survival rate to sensible values. However, it would be good to do

this in a repeatable, explicit and logically consistent way. This is where

Bayesian statistics can lend a hand, by using additional information to set

the prior.

One approach to establishing the prior would be to use intuition to

limit the possible values. Given that this is a large bird, it is unlikely that

the mortality rate is greater than about 0.2, which would correspond to

an average lifespan of 5 years. Similarly, it is unlikely that the average

lifetime is greater than 50 years, which corresponds to an annual mor-

tality of 0.02. Using a prior for the annual mortality that is uniform

between 0.02 and 0.2 leads to a posterior distribution with a mean of

0.06 and 95% credible interval of 0.02�0.14 (Box 3.12).

In some ways, this is a perfectly good estimate. The assumptions have

been clearly stated and the data have been used in a logical way to update

the prior belief by using Bayes’ rule. Therefore, the estimate is internally

consistent with the stated logic and data. However, if the same ecologist

does this calculation on a different day, he or she may arrive at a different

result by deciding that 40 years would be the maximum possible average

age, or 4 or 10 years as the minimum. A different ecologist is likely to use

a different prior again.

The exact same ecologist using the same intuition could arrive

at a different answer by using a different formulation for the prior.

Instead of assuming that the mortality rate had a prior that was uniform

between 0.02 and 0.2, the ecologist might assume that the average age of

death was uniform between 5 and 50 years. In this case, the prior

for the mortality rate would not be uninformative, but peaked near 0.02

(Box 3.12).

The posterior distribution for the mortality rate is influenced by this

prior, giving a mean of 0.037 and a 95% credible interval of 0.02 to 0.09.

The difference occurs because the inverse of a uniformly distributed

variable will be markedly skewed (e.g. Fig. 2.2).

The potential arbitrary choice of priors is one of the limitations

of Bayesian statistics. However, the potentially arbitrary influence of

subjective judgement on the interpretation of results is not limited

to Bayesian statistics. Faced with a conclusion that the mean lifetime of

powerful owls is likely to be between 7 and 150 years, most ecolo-

gists would believe that the upper limit is unrealistically high, and

would conclude that the mean lifetime is certainly less than 150 years.
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Box 3.12
Estimating a proportion with a subjective uniform prior

The example of estimating the annual mortality of powerful owls

using a subjectively derived prior is essentially the same as estimating

a proportion (Box 3.11). However, the prior for the proportion is

limited to the range 0.02 to 0.2 by using a uniform distribution.

The WinBUGS code for this analysis is:

model

{

x ~ dbin(m, n) # number of deaths follows a

binomial distribution

m ~ dunif(0.02, 0.2) # a subjective prior for the

mortality rate

}

To represent that one death and 35 years of survival, the data are

coded as:

list(x = 1, n = 36)

Alternatively, it could be assumed that the prior for the average

age of death is uniform between 5 and 50 years. The code for this

model is given below, and results in a noticeably different posterior

distribution for the annual mortality.

model

{

age ~ dunif(5, 50)

m <- 1/age

x ~ dbin(m, n)

}

One might wonder why a geometric model was not used to

represent survival. Under the geometric model, the probability of

observing the data (8 years of survival and the death) is (1�m)8m

for the owl that died. For the two owls that survived, the probabilities

of observing the data are (1�m)10 and (1�m)17 (10 and 17 years of

survival). The overall probability of observing the data is the product

of these three probabilities ((1�m)35m). This is exactly proportional to

the likelihood under the binomial model with one death from

36 years, so the two approaches yield the same result.
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So, without explicitly using an informative prior, subjective judgements

about the reliability of the credible interval are still likely to be made.

Without an explicit method for incorporating this subjective judgement,

the logic will be opaque and the subjective judgement will tend to go

unacknowledged.

By using Bayesian methods and a specified prior, intuition can be

included in an explicit and internally consistent manner. Because the

results can be sensitive to how the prior is constructed, a real challenge in

Bayesian analyses is to develop informative priors that are coherent and

logical. Importantly, if the prior used by an ecologist is to be viewed by

others with the same confidence as the data, the method for establishing

the prior needs to be clear and repeatable. The methods used to develop

informative priors need to be as carefully planned, executed, and docu-

mented as the methods used to collect data. Without this detail, the

rigour of the Bayesian analysis will be rightly questioned.

One possible solution to establishing a reasonable prior for the analysis

of powerful owl mortality lies in the observation that mortality rates

of animals vary with body mass. McCarthy et al. (1999) developed a

regression model to predict mortality rates of powerful owls by collating

data on annual adult mortality of diurnal and nocturnal birds of prey.

Based on this model, the predicted annual mortality of owls is:

m ¼
1

1þ e0:775þ0:954b
,

where b is the body mass (kg). Based on a body mass of 1.35 kg, the

predicted annual mortality of female powerful owls is 0.11, with a stan-

dard error of 0.05 (McCarthy et al., 1999). This prediction can be used as

a coherent and logical prior, drawing on the experience of ecologists

that mortality rates tend to decline in larger bodied animals.

In using the mean and standard error to establish the prior, it is

necessary to choose an appropriate distribution. A normal distribution

with a mean of 0.11 and standard deviation of 0.05 would not be suitable

because an appreciable proportion of samples would be less than

zero, which is not permitted for mortality rates. In contrast, a beta

distribution with a mean of 0.11 and standard deviation of 0.05 is

appropriate. Beta random variables take values between 0 and 1, making

them useful priors for proportions (see Appendix B for more information

on the beta distribution). The posterior distribution for the annual

mortality rate, when using a beta distribution as an informative prior

and confronted with the data of one death and 35 years of survival,
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has a mean of 0.07 (Box 3.13). The 95% credible interval for the mortality

rate is 0.024�0.14.

The mortality rates of the 95% credible interval correspond to an

average life expectancy of between 7 and 41 years. By using Bayesian

methods, we have ensured that this estimate is logically consistent with

the observed mortality rates of other birds of prey based on their body

mass and the small amount of available data on powerful owls. Impor-

tantly, it provides a much more precise and meaningful estimate than

using the data in isolation.

This analysis illustrates how the prior and the data combine to

provide the posterior distribution for a parameter estimate (Fig. 3.4).

Box 3.13
Estimating a proportion with a beta prior

When using an informative beta distribution to analyse the annual

mortality of powerful owls, it is necessary to determine how to

calculate the required parameters. The beta distribution is defined by

two parameters, a and b. Appendix B gives the formulae for

calculating the values of a and b given the mean and variance of the

beta distribution. A beta distribution with a mean of 0.11 and

standard deviation of 0.05 requires that parameter a is equal to 4.198

and b is equal to 33.96. This then becomes the prior for the analysis

of powerful owl mortality. The WinBUGS code is written as:

model

{

m ~ dbeta(4.198, 33.96) # prior with mean of

0.11, and sd of 0.05

x ~ dbin(m, n) # assume data drawn from

a binomial

distribution

}

The corresponding data for the powerful owl analysis are again:

list(x = 1, n = 36).

After 100 000 samples from WinBUGS, the 95% credible interval

for the annual mortality rate is 0.024�0.14.
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The posterior is more precise than the data in isolation or the prior,

and the mean of the posterior (0.07) is a weighted average of the mean of

the prior (0.11) and data (0.053). This averaging of the estimate and

narrowing of the credible interval by including prior information is

a feature of Bayesian analysis.

It is possible to use more sophisticated models both to determine the

prior distribution of the mortality rate and to analyse the available data.

For example, we could account for differences among species, differences

among studies of the same species, and error within each study. Similarly,

most data on mortality rates are derived from mark-recapture studies in

which animals might not be recaptured even though they are still alive.

This kind of analysis is illustrated in Chapter 7, using the example of the

European dipper.

Multinomial models

The data on powerful owls allow for two possibilities for each bird (dead

or alive). In such circumstances a binomial model is often appropriate.

A greater number of possibilities may arise in other ecological examples.

For example, habitats might be categorized into a number of different

vegetation types, organisms might be classified into a number of different

species, or individuals of a species might be placed into a number of age

Fig. 3.4 Annual mortality of powerful owls showing the prior based on

mortality estimates in other birds of prey, the data on powerful owls, and the

posterior that combines the prior and the data (circles are means and bars

are 95% intervals).
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classes. The powerful owl example used a binomial model with two

possible states (alive or dead). When there are more than two possible

states, data can be analysed with a multinomial model.

An example of the use of the multinomial model is an analysis of the

age structure of a koala population. The age structure of a population

describes the distribution of individuals among age classes. This measure

is important in population ecology because it can influence the rate of

growth of species and the likely response to management.

The age of koalas is determined by assessing the degree of tooth wear,

specifically, the degree of wear on the premolar. McLean (2003) recog-

nized nine different tooth wear classes that define age. If we sampled

a population of koalas and determined the tooth wear classes (e.g. see

data in Table 3.1), what could we infer about the age structure of the

population from which the sample was taken?

By using a multinomial model, in which it is assumed that each

individual is assigned to one of the nine possible age classes and that each

individual is a random and independent sample from the population,

it is possible to estimate the age structure of the population (Box 3.14).

Thus, animals in TWC II are predicted to make up 33% of the popu-

lation, with 95% credible intervals of 28�37%. The upper bound of the

95% credible interval for TWC VII is approximately 1%, suggesting

that the number of animals in this oldest TWC represents a very small

proportion of the total population (Fig. 3.5).

Using proportions

One of the advantages of WinBUGS is that it is easy to calculate arbi-

trarily complex functions of parameters and propagate the uncertainty

in those parameters through the calculations when making predictions.

For example, the proportion of individuals in a community that belong to

Table 3.1. Tooth wear class of female koalas at Snake Island in 1997 (data

from McLean, 2003). The tooth wear classes are ordered from youngest

(TWC I) to oldest (TWC VII).

TWC I II III IVA IVB IVC V VI VII

Frequency 55 132 88 48 31 26 14 3 0
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Box 3.14
Analysing multinomial proportions

McLean (2003) classified koalas into one of nine possible

tooth wear classes. A useful model for this kind of data is a

multinomial distribution, where the chance of an individual

being classified into a given class is a specified probability.

The sum of these probabilities must be equal to one, because

the classes define all possible classifications. The data are used

to estimate these probabilities, which reflect the age structure of

the population.

The Dirichlet distribution is a useful prior for the

probabilities because it is a multivariate distribution (with one

value for each class) and the sum of the probabilities is equal to one,

as required for the multinomial analysis. It is the multivariate

equivalent of the beta distribution. An uninformative Dirichlet

distribution can be specified by setting all its parameters equal to

one. See Appendix B for more information on the Dirichlet,

multinomial, and other distributions.

In the analysis of the data on the koala age structure (Table 3.1),

we will use an uninformative prior for the age structure.

The WinBUGS code may be written as:

model

{

Y[1:9] ~ dmulti(p[1:9], N) # N is equal to sum(Y[])

# number of koalas in each tooth wear class drawn

from a multinomial distribution

p[1:9] ~ ddirch(alpha[])

# uninformative prior for proportions (p[]) if all

values of alpha are equal to one

}

The data may be entered as:

list(N = 397, Y = c(55, 132, 88, 48, 31, 26, 14, 3, 0),

alpha = c(1, 1, 1, 1, 1, 1, 1, 1, 1))

The result of taking 100 000 samples from the posterior

distribution provides the predicted age structure of the koala

population on Snake Island (Fig. 3.5).
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different species is used to calculate diversity indices. For example,

Shannon’s diversity index is (Begon et al., 2005):

H ¼ �
XS
i¼1

Pi lnðPiÞ,

where S is the number of species in the community and Pi is the

proportion of individuals in the community that belong to species i. We

will never know the proportions precisely, so our estimate of Shannon’s

diversity index will be imprecise. Although it might be possible to

propagate the uncertainty in some simple data transformations or by

using re-sampling methods in a frequentist framework, this example is

easy to analyse with Bayesian methods (Box 3.15).

Fig. 3.5 The predicted age structure of koalas on Snake Island in 1997

(McLean, 2003). The columns represent the means of the posterior

distribution and the error bars represent 95% credible intervals.

Box 3.15
Uncertainty in complex functions—diversity of a pond

community

Fowler et al. (1998) describe a sample of 75 pupae of Dixella species

that were obtained from a pond.

D. autumnalis D. aestivalis D. amphibia D. attica

24 32 10 9
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Concluding remarks

This chapter introduced methods for analysing averages and frequencies

that are based on models in which the observations are drawn from

The abundance of the different species in the sample can estimate

the proportion of each in the community. As in Box 3.14 for the

assignment of koalas to tooth-wear classes, estimates of the

proportions are uncertain. This uncertainty can then be propagated

through to our estimate of species diversity. The WinBUGS model is

essentially the same as for the koala example, but with an additional

calculation of the diversity index.

model

{

N <- sum(f[1:4]) # N equals 75 in this

example

p[1:4] ~ ddirch(alpha[]) # proportion of each

species in the

community

f[1:4] ~ dmulti(p[], N) # number of each species

in the sample

for (i in 1:4) # for each of the 4 species

{

h[i] <- p[i]*log(p[i]) # individual components

of Shannon’s index

}

H <- -sum(h[1:4]) # Shannon’s index is the

sum of the

4 components

}

list(alpha = c(1,1,1,1), f = c(24, 32, 10, 9))

The mean of the posterior distribution for the Shannon diversity

index is 1.25 and the 95% credible interval is 1.13�1.34. A frequentist

approach would require a re-sampling method (e.g. the jack-knife) to

estimate the confidence interval. For comparison, the jack-knife

method produces a standard error of 0.059 and a 95% confidence

interval of 1.13�1.37, which is similar to the 95% credible interval.
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a probability distribution. The normal, Poisson, binomial, and multi-

nomial distributions were introduced for these purposes. By using prior

information, Bayesian methods improve the precision of parameter

estimates, and uncertainty in parameter estimates can be easily

propagated in calculations that use them.

A further advantage of using Bayesian methods is that hierarchical

models, in which some parameters of the model are treated as a random

variable, are relatively easy to calculate and compare to equivalent non-

hierarchical models. Before extending these analyses of means and

frequencies to explore how they might vary in relation to explanatory

variables, it is necessary to describe how the adequacy of models can be

evaluated. This is examined in the next chapter, drawing on some of the

examples from this chapter.
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4

How good are the models?

Statistical analyses rely on models that approximate reality. For example,

when analysing a mean, it is usually assumed that the data are drawn

from a particular probability distribution. Such probability distributions

are unlikely to emulate perfectly the real processes that generated the

data. Because models are imperfect, ecologists need to consider both how

well a model approximates reality, and also how well different models

perform relative to each other.

There is a range of approaches to evaluating data and models.

Exploratory data analysis uses graphs to detect outliers and errors, and

illustrate trends prior to formal analysis (Tukey, 1997; Ellison, 2001;

Quinn and Keough, 2002; Gotelli and Ellison, 2004). As part of the

formal analysis, it is necessary to assess the various assumptions of the

statistical model that is being used, and how well the model fits the data.

Analyses of residuals, influence diagrams, probability plots, and other

diagnostic methods are available for assessing the model’s assumptions

(Sokal and Rohlf, 1995; Quinn and Keough, 2002; Gotelli and Ellison,

2004). R-squared (R2) values are commonly used by ecologists to

determine how well a statistical model fits the data, but other measures

are used for some types of analyses (e.g. ROC, Kappa values, probability

plots, Quinn and Keough, 2002; Wintle et al., 2005b). All these aspects

of model evaluation are important, but I do not deal with them here

because they are not uniquely Bayesian.

This chapter focuses on methods of evaluating models that are unique

to Bayesian statistics. The principal questions are which model is the best

of several competing models, and whether there are some models that

appear to be almost as good as the apparent best model (Hilborn and

Mangel, 1997). The emphasis is on which models are the best candidates

of those that are available.
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There are two main features that need to be considered when

evaluating the relative performance of models. The first is how well the

different models fit the data. A well-fitting model will describe both the

central tendency of the data and the variation in the data, and will make

both unbiased and precise predictions. The second aspect that needs to be

considered when evaluating models is parsimony, i.e. all else being

equal, a simple model is better than a more complicated model. This is

because the aim of modelling is to provide a simplified representation

of reality � we do not want to include unnecessary complexity.

These two aspects (fit and simplicity) are desirable features of models,

but they are also somewhat antagonistic. It is always possible to get

a better fit by adding extra complexity to a model. However, there is

a point where the extra complexity only provides a small improvement in

the fit of the model. More importantly, there will be a point at which

extra complexity, while improving the fit of the model to the data, will

actually reduce the model’s predictive performance. Fitting more param-

eters increases the possibility of generating spurious associations

simply by chance. How do we determine whether the extra complexity

is warranted? Below I discuss the two aspects of model fit and simplicity

separately and then discuss a way of combining them to provide an

overall evaluation of a model.

How good is the fit?

In any modelling exercise, it is a good idea to plot the data. In particular,

comparing the predictions and observations graphically can illustrate

where a model could be improved. For example, McCarthy et al. (1994)

modelled the number of young raised by helmeted honeyeater pairs as

a Poisson distribution. The parameter for the Poisson distribution can

be estimated by assuming an uninformative prior, and the predicted

probability distribution can be compared to the observed distribution

(Box 4.1). There is reasonably good agreement between the observations

and the predictions when using the mean of the posterior distribution

for the Poisson parameter (Fig. 4.1).

One might also ask whether some of the differences between the predic-

tions and the observations are unusually large. It is possible to calculate

credible intervals for the observed proportions and compare the predicted

probabilities to those intervals. The credible intervals on the observed pro-

portions can be calculated by using a multinomial distribution (Box 4.2).
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If the model is an accurate description of the data, most if not all of the

95% credible intervals will encompass the predictions of the Poisson

distribution. Given that the predictions are generally well within the

credible intervals, there is little to suggest that the fit of the model is poor

(Fig. 4.1). We will return to a more formal comparison of the predictions

and observations in this example later in the chapter when we consider

both the fit and simplicity of a model simultaneously.

Box 4.1
Analysing the mean of a Poisson distribution, using a gamma

prior

The helmeted honeyeater is a rare passerine occurring to the east of

Melbourne in southeastern Australia. Modelling the annual number

of young raised by pairs of this bird is straightforward using a Poisson

distribution in WinBUGS. We simply loop over the 35 pairs for which

data are available, and estimate the parameter of the Poisson

distribution. It is the same as the model in Box 3.4, but uses an

uninformative gamma distribution (see section on conjugacy in

Appendix B) as the prior for the parameter of the Poisson distribution.

model

{

lambda ~ dgamma(0.001, 0.001) # broad prior

for mean

productivity

for (i in 1:35) # for each of

the 35 pairs

{

Offspring[i] ~ dpois (lambda) # productivity

drawn from a

Poisson

dist’n

}

}

The data are simply the number of offspring raised by each pair in

a breeding season:

list(Offspring = c(0,0,0,0,0,1,1,1,1,1,1,1,1,1,

2,2,2,2,2,2,2,2, 3,3, 5, 0,0,0,0,0, 1,1,1,1, 2))
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Fig. 4.1 Predicted and observed probability distributions of the number of

young raised by helmeted honeyeater pairs. The prediction is based on

a Poisson distribution with a mean of 1.2. The calculation of the 95%

credible intervals on the observed probabilities (bars) is described in

Box 4.2.

Box 4.2
Credible intervals for proportions

A method for calculating credible intervals for proportions is

described in Box 3.9, and this could be used to construct such

intervals for the probability distribution of helmeted honeyeater

productivity. An alternative method for achieving this task is

described here to illustrate the use of the categorical distribution

dcat().

It is possible to construct any arbitrary probability distribution in

WinBUGS by using the dcat()distribution. The required parameter

for dcat()is an array of probability values. The only requirement

(as for any probability distribution) is that these probabilities sum to

one. In using the categorical distribution, we assume that the

outcome (number of young raised) of each pair occurs with a

particular probability.

Five different results have been observed for the productivity of

helmeted honeyeaters (0, 1, 2, 3, and 5 offspring per pair). Another

two would be possible (4, and ¸ 6). Thus, there are 7 possible classes

for the observed data.

The Dirichlet distribution is a useful prior for the probabilities of

the categorical distribution because it ensures that their sum is one
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(see Appendix B). An uninformative Dirichlet distribution has all the

parameters set to values of 1. The following code could be used to

implement this model in WinBUGS.

model

{

for (i in 1:35) # for each of the 35 pairs

{

OClass[i] <- Offspring[i] + 1 # recode the data

(0-41, 1-42,

etc)

OClass[i] ~ dcat(p[1:7]) # each outcome is

drawn from a

categorical

dist’n

# recoding is necessary b/c the smallest number

returned from dcat() is 1, not 0

}

p[1:7] ~ ddirch(alpha[1:7]) # the prior for the

prob’s of each

category

}

And the data are given by:

list(Offspring = c(0,0,0,0,0,1,1,1,1,1,1,1,1,1,

2,2,2,2,2,2,2,2, 3,3, 5, 0,0,0,0,0, 1,1,1,1, 2),

alpha = c(1,1,1,1,1,1,1))

The variable Offspring[] records the number of young

raised by each of the 35 pairs. Note that this value is

incremented by one in the code so that it refers to the

appropriate probability. This is necessary because WinBUGS

does not permit p[0] to be used. Arrays in WinBUGS are

indexed from 1, so p[1] represents the probability of a pair

raising no young, p[2] represents the probability of raising

one young, etc. Thus, p[i] provides the probability of raising

i-1 young, except with p[7] being the probability of raising

six or more young. A total of 100 000 samples from the

posterior distribution leads to the 95% credible intervals

shown in Fig. 4.1.
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A measure of fit

The above graphical procedure is only one of many for evaluating the fit

of a model. Although these graphical methods are useful, this section

describes a quantitative approach to evaluating the fit of a model. This

approach helps to formalize the process of model evaluation and allows

different models to be compared. So while the Poisson distribution seems

to provide a reasonable fit (Fig. 4.1), an alternative model may do better

or worse.

In the predictions in Fig. 4.1, it was assumed that the number of

offspring raised by a pair was drawn from a Poisson distribution. For this

distribution, the probability of the number of offspring equalling x is

given by the formula:

PrðX ¼ xÞ ¼ e�llx=x!,

where l is the parameter of the probability distribution (see Box 3.3).

This formula can be used to calculate the likelihood of obtaining

a particular result for different values of l. For the sake of illustration,

consider a situation where only two observations are made of helmeted

honeyeater productivity, with two and three offspring being observed.

If the two observations are assumed to be independent, then the

joint likelihood of these two observations is L¼ (e�ll2/2!)�(e�ll3/3!).
The value of l that maximizes the likelihood L of obtaining the data is

the maximum likelihood estimate, which is l¼ 2.5 in this case (Fig 4.2a).

The likelihood at this value of lambda and for these two observations

is 0.0548 [Lmax¼ (e�2.52.52/2!)�(e�2.52.53/3!)].

An alternative model would be to permit different values of lambda

for each observation. Unsurprisingly, the maximum likelihood for this

alternative model is obtained when lambda equals two for the obser-

vation of two, and three for the observation of three. This model is more

complex because it has two parameters rather than one. The maximum

value for the likelihood is 0.0606 [Lmax¼ (e�222/2!)�(e�333/3!)].

Therefore, we would conclude that the second model provides a better

fit to the data than the first because its likelihood is greater. In fact, it

would be impossible for this second model to fit worse than the first

because it contains greater flexibility by virtue of its extra parameter.

The approach illustrated above with a sample size of two can be

extended to any sample size, by simply multiplying together the likelihoods

for all the individual observations. To obtain the likelihood for the 35

observations of pair productivity, we simply calculate the likelihood for
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each pair and multiply them together, assuming that the data

have arisen independently. For larger datasets, the likelihood value will

tend to decrease towards zero. For example, the maximum likelihood

for the data on the productivity of the 35 helmeted honeyeater pairs

(L¼ [e�ll0/0!]10[e�ll1/1!]13[e�ll2/2!]9[e�ll3/3!]2[e�ll5/5!]) is approx-

imately 5.5� 10�22, which is obtained when l¼ 1.2.

Taking the natural logarithm of the likelihood helps to resolve numer-

ically small differences that may nevertheless be important when the

likelihood is close to zero. Thus, for the first model considered above and

the two observations of 2 and 3, the maximum log-likelihood is �2.903,

and for the second (more complex) model, it is �2.803.

For several reasons that I will not elaborate (see Edwards, 1992,

Hilborn and Mangel, 1997, Burnham and Anderson, 2002 for further

Fig. 4.2 Likelihood (a) and deviance (b) versus the mean young per pair for

the Poisson model with data from two pairs, one of which raised two young

and the other three. The same parameter value that maximizes the likelihood

(2.5) also minimizes the deviance, with the minimum deviance (Dmin) equal

to 5.81.
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information), log-likelihood values are often converted to what is known

as the ‘deviance’ (D) of the model by multiplying by �2. Therefore, the

minimum deviance (Dmin) is 5.81 for the first model (the smallest value

in Fig. 4.2b) and 5.61 for the second. A larger value for the deviance

indicates a poorer fit. The deviance is used as a basis for comparing

models in a range of statistical approaches.

In maximum likelihood estimation, the best parameter estimates

are those that maximize the likelihood. The same parameter values

that maximize the likelihood also minimize the deviance (Fig. 4.2)

because there is a negative monotonic relationship between the two

(D¼�2ln(L)). The parameter estimates that maximize the likelihood

are equivalent to the mode of the posterior distribution in a Bayesian

analysis that employs uninformative priors.

The deviance calculated at the mode of the posterior will be the

minimum deviance (Dmin). If the posterior distributions of the parameters

of a model are symmetrical, the mode and the mean will be equal.

Therefore, the deviance of the model calculated at the mean of the

posteriors (D̂, called ‘D hat’) will approximately equal Dmin. The calcu-

lation of the deviance at the mean of the posterior distributions is

automated for many models in WinBUGS, making it easy to calculate.

The procedure is described in Box 4.3 for the models in Boxes 4.1 and 4.2.

Quantitative measures of model fit help to formalize the process of

model evaluation. Such a measure is provided by the deviance, with lower

values indicating a better fit. If calculated at the ‘best’ parameter esti-

mates, it can be used to measure the relative fit of different models. More

complex models have greater ability to conform to the data, so they tend

to fit better. Whether the better fit provided by a more complex model

is justified is another matter, which will be dealt with after considering

how to measure model complexity.

How complex is the model?

The Poisson model of the number of young raised by helmeted honeyeater

pairs is very simple (Box 4.1). Its simplicity is embodied in the single

parameter that needs to be estimated. The model based on a categorical

distribution is more complex, requiring seven parameters to be estimated

(Box 4.2). A key question is whether the extra parameters are justified.

We will make this comparison more formally in the next section where the

trade-off between model simplicity and model fit is considered.
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Box 4.3
Calculating D̂ as a measure of model fit

The deviance calculated at the mean of the posterior distribution

is generated automatically in WinBUGS for many statistical

models. To calculate this value, take samples until the stationary

distribution is reached and then open the DIC Tool (under the

Inference menu). Click ‘set’ on the DIC Tool, and then generate

numerous samples from the posterior distribution. Click on

‘DIC’ in the DIC Tool, and the results of the analysis will be

displayed. The deviance at the mean of the posterior distribution (D̂)

for different elements of the data will be displayed under the column

title Dhat.

For example, consider the model of helmeted honeyeater

productivity in Box 4.1. After excluding the first 10 000 samples as a

burn-in, clicking ‘set’ in the DIC Tool, and taking a subsequent

100 000 samples, the following output is obtained by clicking ‘DIC’ in

the DIC Tool.

Dbar Dhat DIC pD

Offspring 98.91 97.9 99.91 1.004
total 98.91 97.9 99.91 1.004

The rows provide the results for each individual set of data

(Offspring in this case) and for all the data combined (total),

which in this case is equivalent to offspring because there is only

one set of data. The deviance at the mean of the posterior

distribution (D̂, Dhat) is 97.9. Dbar, pD, and DIC are explained later

in the chapter.

For the model that uses the categorical distribution (Box 4.2), the

equivalent output from WinBUGS is:

Dbar Dhat DIC pD

OClass 101.0 97.83 104.2 3.184
total 101.0 97.83 104.2 3.184
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However, the complexity of a model cannot always be measured by

simply counting the number of parameters, particularly when including

random effects or informative prior distributions. For example, consider

the example where the mean density of oaks varied among quadrats

(Box 3.5). In this case, each quadrat has its own mean density, so we

might think that the number of parameters is equal to the number of

quadrats (ten in this case). However, the means of the quadrats are not

completely independent of each other, being drawn from the same

probability distribution. The dependence among the parameters means

that the effective number of parameters will be less than ten.

The effective number of parameters will also be less than the actual

number of parameters when the prior distributions are informative.

When a parameter has an informative distribution, it is not free to vary

entirely over its possible range. In the extreme case where the prior is very

precise, it is effectively fixed as a constant and makes little contribution

to the effective number of parameters. In the other extreme, where the

prior is uninformative, the parameter is free to vary across a wide

range and only the data are available to estimate it. In this case, its

estimation contributes a full parameter to the effective number of

parameters. For intermediate cases, where the prior is somewhat

informative, the parameter contributes proportionally to the effective

number of parameters.

Spiegelhalter et al. (2002) proposed a measure of the effective number

of parameters. A brief intuitive description is provided here, although

readers are encouraged to read the article by Spiegelhalter et al. (2002)

for themselves. This measure of the effective number of parameters (pD)

is obtained as the difference between the mean of the posterior deviance

of the model ( �D, ‘D-bar’) and the deviance of the model when using the

means of the posterior distributions of the parameters (D̂, which is the

previously mentioned measure of fit):

pD ¼ �D� D̂:

Therefore, this second model provides a better fit because the

deviance at the mean of the posterior distribution (D̂, Dhat) is

smaller (97.83 versus 97.9). This is not surprising; the second model

has greater flexibility to fit to the data because the distribution is not

constrained to be a Poisson.
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Because the deviance is approximately minimized when the parameters

are equal to their posterior means, different values of the parameters

will lead to larger values of the deviance. If the parameters are sampled

from their posterior distributions and the deviance is recalculated for

each sample, the mean of these recalculated deviances is the mean of

the posterior deviance ( �D).

We would expect the mean of the posterior deviance ( �D) to be

greater than the minimum deviance (which is approximately D̂).

The more parameters there are, the greater the scope for differences

from the minimum (i.e. it is less likely that all the parameters are sampled

close to the values that generate the minimum deviance). However,

if a parameter is somewhat constrained (e.g. either by a prior or because

it is a random effect drawn from a probability distribution it shares

with other random effects), it will be less likely to take a value that is

different from the one that generated the minimum deviance. Therefore,

constraints on the parameters will tend to reduce the possible difference

between the mean of the posterior deviance ( �D) and the deviance when

the mean parameter values are used (D̂).

It turns out that the difference between the mean of the posterior

deviance and the deviance of the model when using the means of the

parameters is approximately equal to the effective number of param-

eters. This property can be illustrated by the model of helmeted

honeyeater productivity. For the model that uses a Poisson distribution

(Box 4.1), pD equals 1.004 (obtained in WinBUGS as the value of pD

from the DIC output in Box 4.3), which is essentially equal to the

number of parameters being estimated (the single parameter of the

Poisson distribution).

The model that uses the categorical distribution for helmeted

honeyeater productivity (Box 4.2) has seven parameters (one for each

outcome zero to five, and one for the outcome ¸ 6). However, these

parameters are not free to vary without restraint because they must

sum to precisely one. When six have been specified, the seventh is

pre-determined. Therefore, there are certainly no more than six effective

parameters. However, even when one parameter is defined, the maximum

possible value for any of the others is limited. As an extreme example, if

one of the probabilities is equal to one, then all the other probabilities

must equal zero. Therefore, it would not be surprising to find that

the effective number of parameters in this example is less than six. In fact,

the estimate of the effective number of parameters is 3.184 in this case

(Box 4.3).
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Readers may wish to calculate the effective number of parameters for

some of the other models developed in Chapter 3. For example, pD¼ 2.1

for the two-parameter model of the mean difference in the size of spider

webs (Box 3.4), pD¼ 1.011 for the one-parameter model of red oak density

(Box 3.4), pD¼ 6.4 for the hierarchical model of red oak density (Box 3.5),

and pD¼ 6.65 for the categorical model of koala age structure (Box 3.9).

So far we have considered two models for helmeted honeyeater

productivity; one using a Poisson distribution and one based on a more

flexible categorical distribution. How do we determine which is better?

Not surprisingly, the model with more parameters provided a better fit

(Box 4.3). However, a simpler model is preferable to a more complex

model. How do we assess the trade-off between these two measures of

simplicity and fit that we have assessed separately? The answer lies in

a combined measure of the two, in which the fit of a model is penalized

by its complexity.

Combining measures of fit and simplicity

Akaike’s information criterion

By definition, models are meant to approximate reality. The best model is

one that explains the maximum level of detail in the simplest possible way.

Akaike (1973) considered how to measure the amount of information lost

when using a model to approximate reality. The approach measures how

well different models approximate reality even though reality may be

unknown. Models that lose the least amount of information will tend to

make the best predictions of replicate datasets.

This relative measure of the information content might be appreci-

ated by an analogy of travel between two stars Alpha Centauri and

Betalgeuse. If we were told we had travelled for 1000 km towards

Betalgeuse, we would know we were 1000 km closer to our destination,

but we would not necessarily know how much further there was to go.

When using Akaike’s approach to evaluate the relative information

content of models, we measure how much closer each model is to reality,

not the actual distance between the models and reality. This latter

quantity can be evaluated using other measures of fit such as R2 values,

predictive performance, etc.

Akaike demonstrated a relationship between the expected informa-

tion content of a model and the log-likelihood at its maximum point
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(i.e. the minimum deviance). Akaike (1973) estimated the relative amount

of information that is lost when using models to describe the truth.

This estimate of the information loss leads to Akaike’s Information

Criterion, which is given by the formula:

AIC ¼ Dmin þ 2K,

where Dmin is the smallest deviance for the model (i.e. the deviance when

using the best-fitting parameter set for the model) and K is the number of

estimated parameters. We have encountered the two parts of this formula

in the two previous sections of this chapter. When deciding between two

or more models, the best model can be chosen as the one with the lowest

AIC value, because it is expected to lose the least amount of information.

Put another way, the model with the smallest AIC is expected to provide

the best predictions for a replicate set of data.

Deviance information criterion

Spiegelhalter et al. (2002) proposed an alternative to AIC, known as

the deviance information criterion (DIC). This has a very similar form

to AIC and is given by:

DIC ¼ D̂þ 2pD,

where D̂ is the deviance when using the mean of the posterior distri-

butions for the parameters and pD is the effective number of estimated

parameters. The similarities between AIC and DIC are evident. D̂ will be

equal to Dmin when the posterior distributions are symmetrical. Further,

pD and K will be approximately equal for models without constraints on

parameters.

As noted in the previous section, it can sometimes be difficult to

determine the effective number of parameters in a model (K ), especially

when random effect terms and informative prior distributions are used.

However, the effective number is easily estimated as pD with MCMC

methods, making DIC valuable for comparing Bayesian models.

How different are the models?

It is worth remembering that AIC and DIC only estimate the relative

information content of models. The values of AIC and DIC will depend

on the particular data that were collected. Burnham and Anderson (2002)
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developed rules of thumb for assessing differences in AIC values between

a given model and the model with the smallest AIC. These differences are

given by �AIC (Table 4.1). A model with an AIC value within 2 units of

the smallest AIC has substantial support. Larger differences suggest less

support.

Similar interpretations apply for DIC values (Spiegelhalter et al., 2002).

Therefore, Table 4.1 can be used to help determine the set of plausible

models. Those with DIC values within 10 of the smallest DIC value might

be regarded as possibly the best model, while those within 2�4 might be

regarded as the more likely candidates.

Consider the two models of helmeted honeyeater productivity.

The DIC for the Poisson model (Box 4.1) was 99.9 and the categorical

model (Box 4.2) was 104.1 (obtained from the DIC output in WinBUGS,

Box 4.3). The difference (4.2) suggests there is relatively strong support

for the first model relative to the second (Table 4.1), but it does not

mean that the first model is good in an absolute sense. This latter

attribute can be assessed by the fit (e.g. Fig. 4.1).

The model of the number of young raised by helmeted honeyeater

pairs based on a Poisson distribution (Box 4.1) ignores almost everything

that we know about the productivity of birds by assuming that all pairs

have the same average productivity. However, pairs that remain intact

for the entire breeding season have a greater opportunity to produce

more offspring than pairs that do not remain intact. The main reason that

pairs do not remain intact is the death of one or both of the birds.

A model that accommodates differences in productivity for the

two types of pairs would require two parameters; one for the pairs that

remain intact for the breeding season and one for the pairs that split.

Because this model has two parameters, it is more complex than the

model with a single parameter in which the mean productivity of all pairs

Table 4.1. Interpretation of the level of support for

apparently inferior models relative to the model with the

lowest AIC, based on differences in their AIC values

(from Burnham and Anderson, 2002, p. 70).

�AIC Degree of support

0�2 Substantial
4�7 Considerably less
410 Essentially none
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was the same. A key question is whether this extra parameter is justified.

Given that the mean number of offspring raised by split pairs is 0.6 (range

0�2), while that of intact pairs is 1.44 (range 0�5), we might think that

it is. The DIC value for the two parameter model (DIC¼ 97.2, Box 4.4) is

smaller than the single parameter model (Box 4.1) suggesting that the

extra parameter is warranted, although the evidence is not compelling. It

makes biological sense that pairs that breed for longer will produce more

offspring on average than those that do not. Therefore, it would be

reasonable to accept the more complex model as the better of these two.

Assessing priors

DIC values are most commonly interpreted as measuring the relative

performance of different models, because they arise from the literature of

model evaluation. However, different priors can also be compared using

DIC values. These priors might represent different points of view, and

when confronted with the same data and model we can evaluate which

views are most consistent with the evidence. An example is given in

Chapter 6.

The Bayes factor and model probabilities

Information criteria such as DIC and AIC are used to help select

among competing models. Posterior model probabilities based on Bayes

factors (Jeffreys, 1961; Kass and Raftery, 1995) offer an alternative

approach by evaluating the probability that the different models are

correct. Of course, such a definitive statement requires that the set of

models is exhaustive. If it is not, then the Bayes factor will only provide

the relative probability of those models being considered (Link and

Barker, 2006).

The posterior probability that a particular model (Mi) is correct

(given the data D) is (Jeffreys, 1961):

PrðMi jDÞ ¼
PrðMiÞPrðD jMiÞP
j

PrðMjÞPrðD jMjÞ
:

This is a simple application of Bayes’ rule, with the denominator

being a sum over all the models being considered. The values Pr(D | Mj)

are the prior probabilities of obtaining the data under each of the

different models Mj.
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Box 4.4
Comparing different models

The productivity of helmeted honeyeater pairs is likely to depend on

whether the pair remains intact over the entire breeding season. This

can be specified in WinBUGS by having two different parameters for

the Poisson distribution, one for the pairs that remain intact and one

for the others. It is possible to include a variable in the data that

identifies which of the pairs remained intact. This variable can then

be used to determine which of the two means is used. The WinBUGS

code would then be:

model

{

lambda[1] ~ dgamma(0.001, 0.001) # mean if pairs

split

lambda[2] ~ dgamma(0.001, 0.001) # mean if pairs

remain intact

for (i in 1:35) # for each of the

35 pairs

{

Offspring[i] ~ dpois(lambda[Intact[i] + 1])

# actual offspring drawn from Poisson

# mean (lambda) depends on whether pair remains

intact or not

}

}

We also need to include the variable Intact to discriminate

between pairs that remain intact (taking a value of 1), and those that

do not (taking a value of 0):

list(Offspring = c(0,0,0,0,0,1,1,1,1,1,1,1,1,1,

2,2,2,2,2,2,2,2, 3,3, 5, 0,0,0,0,0, 1,1,1,1, 2),

Intact = c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1, 0,0,0,0,0,0,0,0,0,0))

The DIC value for this model is 97.2, which suggests it is a better

model than the one that ignored differences in productivity among

pairs (Box 4.1, DIC¼ 99.9), but the difference is not large. As

expected, the estimated number of parameters is approximately two

(pD¼ 2.03). The fit of the model appears to be good, with all

predictions contained within the 95% credible intervals around the

observed proportions (Fig. 4.3).



For the sake of illustration, only two models will be considered, M1

and M2. If we consider the ratio of the posterior model probabilities

Pr(M1 |D) and Pr(M2 |D), the denominator cancels out of the above

equation, leading to:

PrðM1 jDÞ

PrðM2 jDÞ
¼

PrðM1ÞPrðD jM1Þ

PrðM2ÞPrðD jM2Þ
¼

PrðM1Þ

PrðM2Þ
�

PrðD jM1Þ

PrðD jM2Þ
:

The latter ratio (Pr(D |M1)/Pr(D |M2)) is the Bayes factor, and is

commonly represented by the symbol B. It is the degree to which the

ratio of the model probabilities (the model odds) changes when the

data are considered. If the Bayes factor B4 1, the first model (M1)

is supported by the data more than M2. M2 is favoured over M1 when

B<1.

Fig. 4.3 Predicted and observed probability distribution of the number of

young raised by intact and split helmeted honeyeater pairs. The 95%

intervals on the observed probabilities (bars) were calculated using the

method described in Box 4.2. The predictions are based on two different

Poisson distributions with means of 1.44 and 0.6 respectively.
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The Bayes factor is similar in form to the likelihood ratio. The dif-

ference is that the likelihood ratio is calculated at the particular values of

the parameters (those that maximize the likelihood), while the Bayes

factor is based on the prior probability of the data, so it is integrated

over the values of the parameters specified by the prior.

Bayes factors are conceptually simple, but there are two main diffi-

culties with their use. Firstly, it can be difficult to calculate the values

Pr(D |Mj). A simple example is illustrated below, which is hard enough.

There are numerical methods for more complex problems (e.g. see Kass

and Raftery, 1995). The other difficulty is that the Bayes factor can be

very sensitive to the choice of the prior. The choice of prior often has little

influence when estimating parameters and constructing credible intervals,

but it can be very influential when calculating Bayes factors.

The difficulty in calculating the values Pr(D |Mj) arises because the

probability is integrated over possible values of the models’ parameters.

For example, consider models of sex ratio. The first model (M1) might be

that the proportion of males and females are equal, so the proportion of

males ( p) is equal to 0.5. If there are 20 males and 8 females observed in

a sample of deer, for example, (Flueck, 2001), it is easy to calculate the

probability of the data for M1 using binomial probabilities (Box 2.1),

which is 0.0116.

The alternative model (M2) might be that the sex ratio is not equal

to 0.5. However, this alternative model needs to be specified in terms

of a probability distribution for p the proportion of males. If any value

between zero and one was considered equally likely, a priori, then the

appropriate distribution would be uniform between zero and one.

For such a distribution, the probability density is given by f(p)¼ 1.

The probability of the data under this model (0.0345, Box 4.5) allows

us to calculate the Bayes factor for the two models, which is B¼ 0.336.

This means the data support M2 more than M1. If both models had equal

prior probabilities of 0.5, the posterior probabilities of the two models

would be Pr(M1 |D)¼ 0.25 and Pr(M2 |D)¼ 0.75. Therefore, there is not

compelling evidence that the sex ratio p is different from 0.5, but the data

are suggestive. This is a form of hypothesis testing because we have

evaluated the probability that the sex ratio p is 0.5 versus the alternative

that p 6¼ 0.5. However, Bayesian hypothesis testing is different from usual

null hypothesis testing because the calculation is not influenced by more

extreme data than those observed, and it provides direct statements about

the probability of the different hypotheses being correct, rather than

focusing on the probability of obtaining the data.

The Bayes factor and model probabilities 111



Box 4.5
Model probabilities and Bayes factors

Flueck (2001) determined the sex of 28 deer to determine if the sex

ratio differed from parity. The first model can be expressed as the sex

ratio p is equal to 0.5. Under this model the probability of obtaining

the data (20 males) can be calculated as:

PrðD jM1Þ ¼ Prð20 males & 8 females j p ¼ 0:5Þ

¼
28!

20!8!

� �
0:520ð1� 0:5Þ8 ¼ 0:0116:

However, when calculating the probability of the data for the

model in which the sex ratio (p) is not equal to 0.5 (M2), we need to

weight p by the prior probabilities and integrate over the possible

values:

PrðD jM2Þ ¼Prð20 males & 8 females j p is not equal to 0:5Þ

¼

Z 1

0

28!

20!8!

� �
p20ð1� pÞ8fðpÞdp;

¼
28!

20!8!

� �Z 1

0

p20ð1� pÞ8fðpÞdp:

where f(p) is the prior probability distribution for the sex ratio p when

it is not equal to 0.5.

One possible prior would be that the sex ratio is uniformly

distributed between zero and one, so the prior probability density

function is given by f(p)¼ 1 (Appendix B). Thus:

PrðD jM2Þ ¼
28!

20!8!

� �Z1
0

p20ð1� pÞ8dp:

Some tedious algebra provides the solution of this integral, which

leads to:

PrðD jM2Þ ¼
28!

20!8!

� �
1

90135045
¼

3108105

90135045
¼ 0:0345:

Therefore, the Bayes factor is equal to:

B ¼ PrðD jM1Þ=PrðD jM2Þ ¼ 0:0116=0:0345 ¼ 0:336:
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If both models had equal prior probabilities of 0.5, the posterior

probabilities of the two models would be:

PrðM1 jDÞ ¼ 0:5� 0:0116=ð0:5� 0:0116þ 0:5� 0:0345Þ ¼ 0:25, and

PrðM2 jDÞ ¼ 0:5� 0:0345=ð0:5� 0:0116þ 0:5� 0:0345Þ ¼ 0:75:

Therefore, there is not compelling evidence that the sex ratio p is

different from 0.5, but the data are suggestive.

A uniform prior probability for the alternative model (M2) means

that sex ratios close to zero or one are as equally likely as a sex ratio

equal to 0.5. This seems improbable, with sex ratios close to, but

different from, 0.5 more likely. In this case, a beta distribution

centred on 0.5 could be used as the prior. Beta distributions are given

by the following equation when the mean (and mode) are equal to 0.5

(Appendix B):

fðpÞ ¼
�ð2aÞ

�ðaÞ2
pa�1ð1� pÞa�1:

When the parameter a is equal to 1, the prior is a uniform distribution

between zero and 1, as was evaluated previously. The precision of this

prior distribution increases as a increases, with more of the

probability concentrated around 0.5 (Fig. 4.4). When a is very large,

the prior distribution for M2 approaches that of M1 (p¼ 0.5).

Using the beta prior with a mean of 0.5,

PrðD jM2Þ ¼
28!

20!8!

� �Z1
0

p20ð1� pÞ8
�ð2aÞ

�ðaÞ2
pa�1ð1� pÞa�1dp

¼
28!

20!8!

� �
�ð2aÞ

�ðaÞ2

Z1
0

p20þa�1ð1� pÞ8þa�1dp

This can be solved for a given value of a by using the definition of

the beta function (Appendix B, p. 267):Z 1

0

ta�1ð1� tÞb�1dt ¼
�ðaÞ�ðbÞ

�ðaþ bÞ
,

so

Z1
0

p20þa�1ð1� pÞ8þa�1dp ¼
�ðaþ 20Þ�ðaþ 8Þ

�ð2aþ 28Þ
, and
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Note that a null hypothesis significance test of these data leads to

a p-value of 0.036 for the null hypothesis p¼ 0.5 and the alternative

hypothesis of p 6¼ 0.5. Using the conventional cut-off of 0.05 leads to

rejection of the null hypothesis, even though the probability that the

alternative is true is only 0.75.1 This emphasizes the difference between

null hypothesis significance testing and Bayesian hypothesis testing.

The latter provides direct statements about the probability of hypotheses

being true, while p-values tend to overstate the evidence against null

hypotheses (Berger and Sellke, 1987).

A uniform prior probability for the alternative model (M2) means that

sex ratios close to zero or one are as likely as a sex ratio equal to 0.5. This

seems improbable, with sex ratios close to, but different from, 0.5 more

likely. In this case, a beta distribution centred on 0.5 could be used as the

prior for model M2 (Fig. 4.4). The resulting model probabilities depend

on the choice of the variance for this prior. The smallest posterior

probability for M2 is 0.2, demonstrating that an observation of 20 males

in a sample of 28 deer provides only modest evidence that the sex ratio is

different from zero (Fig. 4.5).

Although somewhat complicated, the calculations in Box 4.5 are some

of the easiest for determining Bayes factors and model probabilities.

PrðD jM2Þ ¼
28!

20!8!

� �
�ð2aÞ

�ðaÞ2
�ðaþ 20Þ�ðaþ 8Þ

�ð2aþ 28Þ
:

The posterior probability of M1 being correct (Pr(M1 |D)) can be

calculated for different values of a by using this expression for

Pr(D |M2). This demonstrates that the smallest possible posterior

probability of M1 being correct is approximately 0.2 when a is

approximately 3 (Fig. 4.5). As a increases towards infinity, the

posterior probability of the models approach 0.5, which is not

surprising because the two models are largely indistinguishable with

high values of a. Therefore, regardless of the choice of a, an

observation of 20 males in a sample size of 28 deer provides only

modest evidence that the sex ratio is different from 0.5.

1 With Bayesian hypothesis testing there is not a conventional cut-off at which point we
would reject one or more of the possible hypotheses being considered. In Bayesian
analyses, this decision depends on the benefits and costs of being right and wrong, and the
objective, a field of research known as Bayesian decision analysis (Gelman et al., 2004).
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The level of complexity for most models and the sensitivity of results to the

choice of the prior mean that model probabilities are not always calcu-

lated. Information criteria, such as DIC, are commonly used as surrogates

when distinguishing between competing models. However, such methods

only approximate model probabilities. If ecologists wish to assign proba-

bilities to models, they should do so by calculating model probabilities,

despite the computational difficulties and sensitivity to priors.

There are a range of numerical procedures for calculating model

probabilities and Bayes factors (Kass and Raftery, 1995). These analyses

Fig. 4.4 Four different beta distributions with means of 0.5 and different

variances, influenced by the parameter a.

Fig. 4.5 The posterior probability that the sex ratio of deer is equal to 0.5

(M1) for different values of a, the parameter that influences the precision of

the prior distribution for the alternative model M2. Regardless of the value

of a, the posterior probability that the sex ratio equals 0.5 is always greater

than 0.2.
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can be extended to consider how uncertainty in the choice of models

propagates through to uncertainty in predictions and parameter esti-

mates by using model averaging (Draper, 1995; Volinsky et al., 1997;

Hoeting et al., 1999; Wintle et al., 2003). There are methods that work

in WinBUGS, by using an indicator variable to select the different

models. (Carlin and Chib, 1995; see also Congdon, 2003).

Evaluating the shape of distributions

This chapter concludes by briefly describing methods for evaluating

whether the shapes of distributions that are used in analyses are appro-

priate. In Box 3.5, it is assumed that the variables called ‘mean[]’ are

lognormally distributed, so the variables log(mean[]) should be

normally distributed. It is possible to check this, by recording their

sampled values and comparing them to what would be expected from a

normal distribution. This is easy to do graphically by constructing a

probability plot (Chambers et al., 1983).

The shape of probability distributions can also be evaluated by

calculating their skewness and kurtosis. It is then possible to determine

whether the posterior distribution of these statistics differ from the values

expected for the given probability distribution (Gelman and Meng, 1996).

Skewness measures the asymmetry of a distribution and kurtosis mea-

sures the ‘fatness’ of the tails. The formulae for calculating skewness and

kurtosis are provided in Appendix B. For a normal distribution, skewness

equals zero and kurtosis equals three, which can be compared to the

values obtained from MCMC samples.

For the example in Box 3.5, the code would be modified as follows to

calculate the skewness and kurtosis of the logarithm of the mean density

of trees in quadrats.

model

{

for (i in 1:10)

{

mean[i] ~ dlnorm(m, tau)

Y[i] ~ dpois(mean[i])

lm[i] <- log(mean[i])

r3[i] <- pow(lm[i] - m, 3)

r4[i] <- pow(lm[i] - m, 4)

}
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skewness <- mean(r3[])*pow(tau, 1.5)

kurtosis <- mean(r4[])*pow(tau, 2)

m ~ dnorm(0, 1.0E-6)

sd ~ dunif(0, 10)

tau <- 1/sd/sd

}

The variables r3[] and r4[] measure third and fourth powers of

deviations from the expected value of the normal distribution. The means

of these values are used with the precision (inverse of the variance) to

calculate skewness and kurtosis. For this data set, the 95% credible

interval is [�2.5, 2.0] for skewness, and [0.15, 9.3] for kurtosis based on

100 000 samples from the posterior distribution. These intervals bound

the expected values of zero and three, suggesting that the lognormal

distribution is a reasonable model of variation in mean density of plants

among quadrats, although the wide intervals suggest that other

distributions might perform at least as well.

The analysis of tree diameters in Box 3.2 provides a second example

of evaluating the shape of a distribution by calculating its skewness and

kurtosis. The code would be modified to:

model

{

mean ~ dnorm(53, 0.04)

var ~ dlnorm(4.75, 3.05)

prec <- 1/var

for (i in 1:10)

{

Y[i] ~ dnorm(mean, prec)

r3[i] <- pow(Y[i] - mean, 3)

r4[i] <- pow(Y[i] - mean, 4)

}

skewness <- mean(r3[])*pow(prec, 1.5)

kurtosis <- mean(r4[])*pow(prec, 2)

}

The resulting values suggest that the data may be positively skewed

because the expected value of zero tends to occur towards the tail of the

posterior distribution of the variable skewness (the 95% credibility

interval of [�0.23, 4.2] only just includes zero). In comparison, the

expected kurtosis is well-contained within the corresponding 95%
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credibility interval of [0.89, 14.7]. Given the suggestion of positive

skewness, and the constraint that diameters cannot be negative, a

lognormal distribution (or equivalently log-transformation of the

diameter measurements) is likely to provide a better fit in this case.

Concluding remarks

In this chapter, DIC is presented as a criterion for selecting models.

Like other information criteria such as AIC and BIC (see Burnham

and Anderson, 2002), it aims to assess the trade-off between fit and

complexity. Good models provide a reasonable fit but are not overly

complicated. AIC and its derivative DIC are based on estimating the

amount of information lost when using a model to approximate reality.

A model is chosen as the best if it is estimated to lose the least

information; it is the model that is expected to make the best predictions

for a replicate dataset.

DIC and AIC are relatively new and their application to a variety of

models is not well-studied (Richards, 2005). It is also possible to calculate

posterior model probabilities, i.e. the probability that a particular model

is true. The required calculations can be difficult for novices, and the

posterior model probabilities can be very sensitive to the choice of the

prior distributions that are used for the parameters of the models. One of

the main advantages of using model probabilities is that predictions can

be averaged across the different competing models (Wintle et al., 2003).

In addition to using formal methods to assess the relative and actual

performance of models, they need to be evaluated with common sense.

For example, a model of the number of plants in quadrats that permits

negative or fractional numbers of plants, such as a normal distribution,

is inferior, in at least some respects, to a model that only permits

non-negative integers, such as a Poisson or a variant of it. The selection of

models to be assessed should be based on a thorough a priori assessment,

so biologically reasonable models are considered.
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5

Regression and correlation

Regression

In most of the previous chapters it was assumed that all samples had

the same mean. While some of the models permitted the average to vary

randomly among samples (e.g. Box 3.5), in general, explanatory variables

were not used to describe how this mean might vary systematically among

samples. One exception to this is the example in which the mean

productivity of helmeted honeyeater pairs depended on whether the birds

remained intact for the entire six-month breeding season (Box 4.4). In this

case, whether or not the pair remained intact was the explanatory

variable and the productivity was the dependent variable. Essentially, the

model was a form of regression, or more precisely a form of generalized

linear model. This will become clearer in this chapter. For now, it is

sufficient to realize that the model consisted of a dependent variable

and an explanatory variable that influenced the expected value of the

dependent variable. The simplest form of this dependency is a linear

relationship, which leads to simple linear regression.

Simple linear regression

In Box 3.2 it was assumed that the data were drawn from a normal

distribution with a certain mean and precision. This analysis is modified

in simple linear regression by modelling a linear relationship between the

mean and an explanatory variable. Thus, the mean of an observation

is given by an equation such as:

mean ¼ aþ bx,
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where x is the value of the explanatory variable for the observation,

and a and b are known as regression coefficients. The coefficient a is often

referred to as the intercept, because it is the expected value of an obser-

vation when the explanatory variable is zero. The coefficient b controls

the slope of the relationship between the mean and x; larger absolute

values of b reflect stronger relationships between the two variables.

The details of simple linear regression can be most easily seen in

an example. Consider the relationship between the abundance of coarse

woody debris in lakes and the density of trees along the shoreline

(Christensen et al., 1996; Quinn and Keough, 2002). Lakes with greater

numbers of trees would be expected to have more coarse woody debris

(CWD). It turns out that such a relationship is apparent in the data

(Fig. 5.1). The amount of coarse woody debris is predicted to increase by

0.115 m2/km for every increase of one tree per km (Box 5.1). The 95%

credible interval for this increase was 0.065–0.165, suggesting that we

can be reasonably sure that there is a positive relationship between the

two variables.

The resulting regression can use measurements of tree density to

predict abundance of CWD debris. For example, if we had a lake with

a density of 1500 trees per km, we could predict that the mean amount

of CWD would be 95.5 m2/km (–77.0þ 0.115� 1500). However, there is

some uncertainty about the relationship between tree density and CWD,

which is reflected by the credible intervals of the parameter estimates.

Fig. 5.1 Amount of coarse woody debris (CWD) in 16 lakes versus the

density of trees along their shoreline (Christensen et al., 1996). The solid line

is the fitted linear regression, and the dashed lines are 95% credible intervals

for the predicted mean abundance of CWD at different tree densities.

120 Regression and correlation



Box 5.1
Simple linear regression for coarse woody debris

Coarse woody debris (CWD) is an important component of

waterbodies, providing habitat for aquatic invertebrates and

vertebrates. Christensen et al. (1996) examined the relationship

between the abundance of CWD and tree density along the shoreline

of 16 North American lakes. Quinn and Keough (2002) describe the

analysis of these data using frequentist methods. Here I provide

a Bayesian alternative. The model is very similar to the analysis of

a mean (Box 3.2), with a simple modification to account for the linear

relationship between the expected value of each lake (mean[i] in the

code below) and the explanatory variable.

The mean is a function of two regression coefficients, each of

which must be given priors. It is still assumed that the precision is the

same for all the samples. Using uninformative priors for the three

parameters that need to be estimated (the two regression coefficients

and the precision), leads to the following code:

model

{

a ~ dnorm (0, 1.0E-6) # prior for the intercept

b ~ dnorm (0, 1.0E-6) # prior for the slope

prec ~ dgamma(0.001, 0.001) # prior for the

precision

for (i in 1:16) # for each of the

16 lakes

{

mean[i] <- a + b*TreeDens[i] # the mean CWD is a

function of the

tree density

CWD[i] ~ dnorm(mean[i], prec) # amount of CDW,

drawn from a normal dist’n

}

}

The data are given as:

list(TreeDens=c(1270, 1210, 1800, 1875, 1300, 2150,

1330, 964, 961, 1400, 1280, 976, 771, 833, 883, 956),

CWD=c(121, 41, 183, 130, 127, 134, 65, 52, 12, 46, 54,

97, 1, 4, 1, 4))
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This uncertainty needs to be accounted for when calculating the uncer-

tainty associated with a prediction.

Fortunately in Bayesian statistics, the relatively complicated formula

required for calculating the uncertainty of a prediction when using

frequentist methods (Box 5.2) can be ignored. This is because by using

WinBUGS, it is straightforward to calculate the uncertainty of a predic-

tion. It requires only one more line of code to obtain the predicted mean

CWD at a tree density of 1500, for example:

predicted_mean <- a + b*1500

Each sample of a and b from the Markov chain produces a different

value of predicted_mean, so the uncertainty in the parameters a and

b is propagated through to the predicted mean. The distribution of the

parameters and any correlation between them (linear or otherwise) are

taken into account. The variable predicted_mean can be sampled

within WinBUGS just like any other. The 95% credible interval of CWD

per km of shoreline is 73.1–119 m2 when the tree density is 1500.

The above addition to the code predicts the mean amount of CWD at

a given tree density, but does not incorporate the additional uncertainty

associated with a new sample. Each sample is subject to additional vari-

ation around the mean, which can be included in the WinBUGS model

by drawing each observation from a normal distribution with a specified

precision. Therefore, if we wished to predict the tree density of a new

Initial values for the Markov chain (Chapter 1) were:

list(a=0, b=0, prec=100)

A total of 100 000 samples after discarding a burn-in of 10 000

samples led to the following output from WinBUGS:

Node Mean sd 2.5% Median 97.5%

a �77.04 32.97 �142.3 �77.13 �11.6
b 0.1154 0.02524 0.06528 0.1155 0.1652
prec 7.585E-4 2.869E-4 3.056E-4 7.218E-4 0.001418

Because uninformative priors were used, the results are

numerically similar to those obtained by Quinn and Keough (2002).
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sample, we could add one more line of code that draws the observation

from the same distribution that is used in the model:

predicted_obs ~ dnorm(predicted_mean, prec)

WinBUGS takes the predicted mean that was calculated above and

draws the prediction of the new observation from a normal distribution

with that mean and the estimated precision. This precision measures the

variation of each sample around the regression line.

For the model considered in Box 5.1, the 95% credible interval

for a new observation of CWD is 14.8–177 at a site with tree density

of 1500 trees per km, which is considerably wider than the uncertainty

around the mean. Thus, the variable predicted_mean estimates the

Box 5.2
Uncertainty of a prediction in frequentist analysis

In frequentist statistics, the uncertainty in the prediction for a

particular value of the explanatory variable is measured by the

standard error. This standard error of the prediction from the

regression line (sŶ) is estimated by using the formula:

sŶ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
Y�X

1

n
þ
ðXi � �XÞ2P

x2

� 	s
,

where s2
Y�X

is the mean squared error of the residuals (the average

squared deviation of the data from the regression line), n is the sample

size, Xi the value of the explanatory variable for the prediction, �X is

the mean of the explanatory variable in the data used for the

regression and
P

x2 is the sum of squares of the explanatory variable.

The equation for the standard error is more complicated, including

the Gaussian multipliers (obtained by taking the inverse of

the variance-covariance matrix), for regressions that contain more

than one explanatory variable.

The complexity of the formula is required because it is necessary

to account for the uncertainty in the parameter estimates. It also

accounts for the fact that it is easier to make precise estimates

in the middle of the data rather than towards the edge of the

domain. This complex formula can be ignored when using Bayesian

methods.
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uncertainty of the regression line (equivalent to a confidence interval

for a regression) while the variable predicted_obs also accounts for

the extra variation of observations around this (uncertain) regression line

(equivalent to a prediction interval; see Sokal and Rohlf, 1995). This extra

source of uncertainty inflates the credible interval.

As a final note on this example, readers might notice that the

regression predicts negative abundances of CWD at low tree density.

For example, the lower bound of the 95% credible interval is negative

when tree density is less than approximately 900 (Fig 5.1). This is not

ideal, but the example was used to compare the results of an equivalent

frequentist analysis (Quinn and Keough, 2002). One possible interpreta-

tion is that any predictions of negative abundances correspond to

predictions of no CWD debris. This is somewhat of an approximation

that is not necessary when using Bayesian methods. It would be relatively

easy to constrain the predicted mean to non-negative values and use

a probability distribution that is also non-negative (e.g. a lognormal).

Such regression models are described in more detail in the later part of

this chapter.

Multiple linear regression

In simple linear regression, relationships are examined between one

explanatory variable and a response variable. It goes without saying

that more than a single variable might influence the response variable.

For example, the amount of coarse woody debris in a lake might be

influenced by characteristics of the lake (e.g. frequency of floods that

might deposit coarse woody debris from inflowing streams).

Additional variables can be added to linear regressions by simply

adding extra terms. Therefore, the effect of two explanatory variables

(x1 and x2) on the response variable can be expressed as:

y ¼ aþ b1x1 þ b2x2:

An important aspect of this model is that the effect of each vari-

able on y is the same regardless of the value of the other variable. For

example, the response variable y increases by b2 units for an increase of

one unit of the variable x2, regardless of the value of the other parameter

(x1). Graphically, the above model implies that the relationship between

y and x2 is a series of parallel lines for different values of x1 (Box 5.3).
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Box 5.3
Multiple linear regression

Paruelo and Laueroth (1996) examined the relationship between the

distribution of C3 grasses in the western portion of North America

and several geographic variables. Quinn and Keough (2002)

presented a multiple regression analysis of these data using longitude

(LONG) and latitude (LAT) as explanatory variables, which will be

repeated here. This analysis describes linear trends in the geographic

distribution of the relative abundance of C3 grass species at 73 sites.

WinBUGS code for this analysis is given below. Note that the

explanatory variables have been ‘centred’ by subtracting the

means. This is helpful in many WinBUGS analyses for improving

the efficiency of the sampling algorithms and has no effect on the

results (see Box 5.8). Further, the response variable (relative

abundance of grass species) has been transformed prior to

analysis to remove problems of extrapolating to negative relative

abundance scores (see following sections on non-linear models):

model

{

mLONG <- mean(LONG[])

mLAT <- mean(LAT[])

for (i in 1:73)

{

Y[i] <- log(C3[i] + 1)

Y[i] ~ dnorm(mean[i], prec)

mean[i] <- a + b[1]*(LONG[i]-mLONG) + b[2]*

(LAT[i]-mLAT)

}

a ~ dnorm(0, 1.0E-6)

for (i in 1:2)

{

b[i] ~ dnorm(0, 1.0E-6)

}

prec ~ dgamma(0.001, 0.001)

}

The initial values were:

list(a=0, b=c(0,0), prec=100)
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After excluding the initial 10 000 as a burn-in (Box 1.4), 100 000

iterations leads to the following parameter estimates for a, b[1]

and b[2].

Node Mean sd 95% CI

a 0.22 0.017 0.19–0.25
b[1] (longitude) �0.0010 0.0028 �0.0065–0.0044
b[2] (latitude) 0.025 0.0033 0.019–0.032

There is strong evidence for a relationship between latitude and the

relative abundance of grass species, with the relative abundance of C3

grasses increasing with distance from the equator. The predicted

relationship with longitude is relatively weak; the most extreme effect

based on the 95% credible interval is a decline of 0.0065 for each

increase in degree longitude. Such a change results in a reduction of

approximately 0.17 across the range of the data, which is considerably

smaller than the predicted (mean) change with latitude (0.57).

The predicted weak relationship with longitude can be calculated

(with credible intervals) for a given latitude by adding a few lines of

code. The prediction below is based on latitude 35� North, although

any value could be substituted. Predictions are made across a range

of values for longitude at intervals of one degree. The code

propagates uncertainty in the estimation of a, b[1] and b[2]

through to the prediction:

for (i in 93:120)

{

predlat35[i] <- a + b[1]*(i-mLONG) +

b[2]*(35-mLAT)

}

These predicted effects can be sampled in WinBUGS and plotted

in a graphics package. For example, the predicted relationship

between latitude and the relative abundance of C3 grasses is shown

with 95% credible intervals in Fig. 5.2 for two different latitudes

(35� and 45� North). The predicted relationships for the two different

latitudes are parallel because the model only included additive effects.

If the relationship between relative abundance and longitude differs

at different latitudes, then an interaction term would be required and

the lines would not be parallel (see Box 5.4).
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Interaction terms

Instead of assuming a consistent effect of each variable on the relative

abundance of C3 grasses, the effect of each variable could depend on the

value of the other. This dependence is known as an interaction between

the variables. The simplest formulation for an interaction is to assume

that the regression coefficient for each variable is itself a linear function

of the other variable. Thus, b1 could be written as c1þ k1x2 and b2 as

c2þ k2x1. Substituting these expressions into the above regression

equation leads to:

y ¼ aþ ðc1 þ k1x2Þx1 þ ðc2 þ k2x1Þx2,

which gives:

y ¼ aþ c1x1 þ c2x2 þ ðk1 þ k2Þx1x2:

If results were required in the original units (relative abundance)

rather than the logarithmically transformed values, the values

predlat35[i] could be back-transformed with the following line of

code included within the above ‘for loop’:

predrichlat35[i] <- exp(predlat35[i]) � 1

Fig. 5.2 Predicted relationship between longitude and the (transformed)

relative abundance of C3 grasses in North America for different latitudes

(thin lines, 35� North; and thick line, 45� North), ignoring interaction terms.

The dotted lines are the 95% credible intervals of the regression lines.
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Therefore, linear interactions between two variables can be expressed

by generating a new variable that is the product of the two. The regres-

sion coefficient for this new variable is equal to the sum of the regression

coefficients k1 and k2 in the interactions. This implies that these two

values (k1 and k2) cannot be estimated separately from each other, with

the coefficient for the interaction reflecting their combined effect. The

consequence of the interaction term is that the slope of the relation-

ship between y and x2 depends on the value of x1 (and vice versa).

Graphically, the series of lines (at different values of x1) for the

relationship between y and x2 are not parallel if the interaction term is

not equal to zero (Box 5.4).

If there were three explanatory variables, a second-order interaction

term could be generated by multiplying the three variables together.

A second-order interaction implies that the magnitude of one or more of

the pair-wise (first-order) interaction terms depends linearly on a third

variable. This means, for example, that the size of the effect of the first

variable depends on a second variable, but the magnitude of this depen-

dence is linearly related to a third variable.

It is sometimes difficult to interpret higher-order interaction terms.

I prefer to select the interaction terms of interest a priori and then to

ignore the others. The selection is based on the particular research

questions that are being asked and whether the interaction terms are

biologically meaningful. There is little point including an interaction term

in a statistical model if there is no ecological basis for it or its effect

cannot be meaningfully interpreted.

Box 5.4
Linear regression with an interaction term

For the model examined in Box 5.3, it was assumed that the change in

relative abundance of C3 grasses with latitude was the same

regardless of the longitude; the two predicted lines in Fig. 5.2 are

parallel. This need not be the case. For example, the gradient in

relative abundance of C3 grasses versus latitude may depend on

whether the sites are close to the coast (higher longitudes) or inland.

Such a situation would mean that the predicted effect of each variable

(longitude and latitude) depends on the value of the other. If this

dependence is linear, we can model the effect using a new variable
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that is equal to longitude�latitude. This can be included in the above

WinBUGS code by changing how the mean is specified:

mean[i] <- a + b[1]*(LONG[i]-mLONG) + b[2]*(LAT[i]-

mLAT) + b[3]*(LONG[i]-mLONG)*(LAT[i]-mLAT)

This introduces an extra parameter (b[3]¼ k1þ k2) that requires

a prior distribution. After taking 100 000 samples from the posterior

distribution using this model, the parameter estimates for the

regression coefficients are:

Node Mean sd 95% CI

a 0.216 0.017 0.183–0.250
b[1] (longitude) �3.132E-4 0.0027 �0.0056–0.0049
b[2] (latitude) 0.029 0.0035 0.022–0.036
b[3] (interaction) 0.0014 5.387E-4 0.0003–0.0024

The DIC (see Chapter 4) for this model (-72.0) is less than that for

the model without the interaction term (-67.5). The difference in

DIC values is sufficiently large for us to believe that there is likely to

be an interaction between latitude and longitude on their relationship

with the relative abundance of C3 grasses.

The predicted relationship between relative abundance and

longitude illustrates that the interaction is likely to be important, with

a positive relationship at higher latitudes (e.g. 45� North) and a

negative relationship at lower latitudes (e.g. 35� North). The

interaction term means that the predicted effect of latitude is less in

the central part of North America (e.g. 95� West) than in the western

part (e.g. 110� West). This is illustrated by the greater difference

between the two lines (35� and 45� North) at higher longitudes. Thus,

the inclusion of the interaction term influences our understanding of

how longitude is related to the relative abundance of C3 grasses.

Without the interaction term, we would conclude that relative

abundance does not vary substantially with longitude. However, by

including the interaction term, we would conclude that the relative

abundance of C3 grasses does appear to vary with longitude but the

nature of that relationship depends on the latitude. At higher

latitudes the relative abundance declines with distance from the coast,

while at lower latitudes the relative abundance of C3 grasses increases

with distance from the coast. (See Fig. 5.3.)
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Non-linear regression

It is not necessary to assume that there is a perfect linear relation-

ship between the dependent variable and the explanatory variables. The

simplest way to accommodate non-linearity is to transform the dependent

variable to help make the relationship more linear. For example, one

might conduct a regression of annual mortality of different raptor species

versus body mass. However, if we assumed a linear relationship, then it is

possible that extreme body masses would lead to predicted mortality rates

greater than one or less than zero. Such results would be non-sensical.

In contrast, if we transformed mortality, then it might be possible to

account for the required limits for a proportion. A common approach

is to use a logit transformation for proportions, which converts them to

a scale between minus infinity and plus infinity. The logit transformation

is given by:

logitðpÞ ¼ lnðp=½1� p�Þ:

This is also known as the log-odds ratio, being the logarithm of the

odds ratio. The odds ratio is simply the probability of the event happen-

ing divided by the probability of it not happening.

It is important to bear in mind that probability values of zero or one

are not defined under this transformation, because they lead to values of

Fig. 5.3 Predicted relationship between longitude (degrees West) and the

(transformed) relative abundance of C3 grasses in North America for

different latitudes (thin lines, 35� North; and thick line, 45� North),

including a linear interaction term between the two variables. The dotted

lines are the 95% credible intervals.
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minus infinity and plus infinity respectively. Back-transformation gives

the original probability p as a function of logit(p):

p ¼ 1=ð1þ exp½ � logitðpÞ�Þ:

In Box 5.5, a multiple regression model of annual mortality illustrates

how to transform the dependent variable in WinBUGS. Using the means

of the posterior distributions for the regression coefficients leads to the

predicted relationship between body mass and mortality for diurnal and

nocturnal raptors (Fig. 5.4). For diurnal raptors, the predicted relation-

ship for annual mortality is:

m ¼ 1=ð1þ exp½0:217þ 0:9540�Mass�Þ:

For owls it is:

m ¼ 1=ð1þ exp½0:776þ 0:9540�Mass�Þ:

In all the previous models, it was assumed that there was a linear

relationship between the predicted values (or a transformation of the

predicted values) and the explanatory variables. For example, models

of the form:

y ¼ aþ bxþ cx2

y ¼ aþ expð�bxÞ, or

y ¼ aþ sinðxÞ,

have not been analysed.

It is relatively easy to analyse such models in WinBUGS. It is simply

a matter of including the relevant function in the expression for the

model. For example, it would be possible to express the relationship

between tree density and coarse woody debris (Box 5.1) as a logistic

function:

expected CWD ¼ a=ð1þ expð�ðbþ cðTreeDens½i� �mTreeÞÞÞÞ:

This equation is an s-shaped curve, with the parameter a being

the maximum density of CWD, and b and c controlling the minimum

CWD and the rate of change from the minimum to the maximum.

An advantage of this model over the linear model is that the amount of

CWD is constrained to be non-negative. Further, extrapolation at

higher tree densities does not lead to unrealistically large abundances

of CWD.
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Box 5.5
Non-linear transformation of the dependent variable

Larger bodied animals tend to have lower mortality rates than

smaller animals (Peters, 1983; Calder, 1984; Savage et al., 2004). The

relationship is not precise, but the information can help to determine

population parameters for many species, and can be particularly

helpful when data are scarce.

In this example, a regression of raptor mortality against body

mass is conducted. A second explanatory variable is also added to

account for possible differences in mortality rate between diurnal and

nocturnal raptors. Such a difference would be expected given that

persecution by humans is a common source of mortality for

raptors. By being active at night, owls might be less susceptible

to this persecution and have lower mortality rates. Flying and

foraging by night or day may lead to other differences that

might cause owls and diurnal raptors to have different mortality

rates.

Therefore, we have two explanatory variables to describe

variation in the annual mortality of different raptor species: body

mass and whether the species is an owl. The latter variable is coded as

one if the species is an owl and zero otherwise. Body mass is

measured in kilograms. Using the data on 26 species from McCarthy

et al. (1999), the following WinBUGS code can be used for the

analysis:

model

{

for (i in 1:26) # for each of the 26 raptor species

{

lp[i] <- a + b*Mass[i] + c*Owl[i] # linear

predictor

lm[i] <- logit(Mortality[i]) # logit

transformation of Mortality

lm[i] ~ dnorm(lp[i], prec) # assume logit

(Mortality)

is normally

distributed

}

a ~ dnorm(0, 1.0E-6) # intercept term

b ~ dnorm(0, 1.0E-6) # effect of body mass
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c ~ dnorm(0, 1.0E-6) # effect of being an owl

prec ~ dgamma(0.001, 0.001)# precision

}

This is very similar to a basic linear regression of two variables.

The variable b defines the effect of body mass and c defines the

difference in mortality between owls and diurnal raptors. The only

difference is that the dependent variable (Mortality[]) is

transformed using the logit function to become the new variable

lm[]. It is this transformed variable that is assumed to be drawn

from a normal distribution.

The data for the above model are:

list(Mass=c(0.37, 0.28, 0.64, 0.14, 1.2, 0.58, 0.9,

0.3, 1.6, 0.885, 0.53, 1.2, 0.3, 0.56, 0.7, 1.22, 0.94,

0.14, 0.22, 0.865, 0.95, 2.5, 2.3, 3.4, 1.04, 0.565),

Owl=c(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0),

Mortality=c(0.33, 0.15, 0.23, 0.3, 0.12, 0.2, 0.15,

0.31, 0.18, 0.3, 0.3, 0.25, 0.48, 0.39, 0.31, 0.22,

0.2, 0.48, 0.41, 0.25, 0.26, 0.04, 0.035, 0.08, 0.12,

0.25))

Initial values for the Markov chain were:

list(a=0, b=0, c=0, prec=100)

After discarding the first 10 000 samples as a burn-in,

100 000 samples provides the following estimates of the regression

coefficients:

Node Mean sd 95% Bayesian CI

a �0.2167 0.1742 �0.5606–0.128
b �0.9543 0.124 �1.198–�0.709
c �0.559 0.2047 �0.9653–�0.1543

The negative regression coefficients demonstrate that increasing

body mass (b) and being an owl (c) both lead to lower annual

mortality rates of raptors.

Note that using a transformation of the dependent

variable is the only time that a node can be defined twice in

WinBUGS. WinBUGS recognizes that a formulation of this type
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The analysis of this model is described in Box 5.6. The model fits the

data better compared with the linear model (Fig. 5.5), reducing the DIC

value from 164.7 to 155.1. Thus, the non-linear model is a demonstrably

better fit and it is more realistic.

In frequentist analysis, it is difficult to calculate confidence intervals for

predictions of non-linear regression lines. Various approximations are

required. By using Bayesian methods, the intervals around the regres-

sion can be calculated in the same manner as for the linear models by

calculating predicted values across the range of the data.

Logistic regression

Analyses based on normal distributions have been used extensively

in ecology, primarily because of their analytical convenience. However,

in many circumstances, ecologists record the presence or absence of

a species or an event (e.g. the occurrence of fire), and the parameter

to be modelled is the probability of the event occurring. For example,

Fig. 5.4 Annual mortality of raptors versus body mass for diurnal (solid

line) and nocturnal (broken line) raptors. The predicted lines are shown

along with the original data (symbols) that were obtained from McCarthy

et al. (1999).

means that the transformed data are drawn from the specified

distribution. The same results would have been achieved if a

linear regression had been conducted using logit-transformed

mortality (calculated outside of WinBUGS) as the dependent

variable.
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Box 5.6
Non-linear regression for coarse woody debris

The WinBUGS code for estimating the parameters of the non-linear

regression of coarse woody debris (CWD) on tree density is given

below. Uninformative priors are used for the parameters, with the

parameters a and c constrained to be non-negative. Abundance of

CWD is predicted for tree densities of between 800 and 2100 trees/km,

from which credible intervals around the regression line can be

calculated by monitoring the variable pred[] within WinBUGS. It is

assumed that the abundance of coarse woody debris is drawn from a

lognormal distribution to ensure that the values are not negative.

model

{

a ~ dunif (0, 1000) # uninformative prior,

constrained to be

positive

b ~ dnorm (0, 1.0E-6) # uninformative prior

c ~ dunif(0, 10) # uninformative prior,

constrained to be

positive

prec ~ dgamma(0.001, 0.001) # uninformative prior

mTree <- mean(TreeDens[]) # mean of the

explanatory variable

for (i in 1:16) # for each lake sampled

{

pred[i] <- a/(1 + exp(-(b+c*(TreeDens[i]-

mTree)))) # predicted CWD

logpred[i] <- log(pred[i]) # take the logarithm

of the prediction

CWD[i] ~ dlnorm(logpred # CWD drawn from

[i], prec) lognormal

}

for (i in 8:21) # make predictions fro tree

densities 800- 2100

{

pred[i] <- a/(1 + exp(-(b+c*(i*100-mTree))))

}

}
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Parris (2001) examined the habitat of Litoria pearsoniana, a stream-

breeding frog of eastern Australia. Of particular interest was how the

probability of occurrence of the species varied with the size of the stream

and the nature of the vegetation near the stream.

When the data are presences or absences (represented as ones and

zeroes) and the prediction is the probability of occurrence, the deviations

from the predicted regression line would not be even approximately

normally distributed. This makes linear regression inappropriate, but

logistic regression is suitable (McCullagh and Nelder, 1989). In logistic

regression, the prediction is the probability of occurrence (or, more gene-

rally, the probability that the event occurs). The name logistic regression

arises because a logistic function is used to convert a linear combination

of the explanatory variables to the probability of occurrence. This is the

same function as used in the Non-linear regression section, but in logistic

regression it is assumed that the data are binary outcomes with a given

probability.

In other respects, logistic regression proceeds in the same way as

when conducting linear regression. Additional terms such as non-linear

functions, extra explanatory variables and interaction terms can be

included in the model. An example of using logistic regression to model

the occurrence of a rare plant is given in Box 5.7.

Fig. 5.5 Non-linear regression of coarse woody debris in lakes versus the

tree density. The solid line is the prediction for the mean parameter estimates

and the dashed lines are 95% credible intervals on the predictions. The wide

credible interval at high tree densities occurs because the exponential

transformation inflates larger predictions more than small predictions, and

the relative paucity of data.
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Box 5.7
Logistic regression: The occurrence of Leionema ralstonii in rock

outcrops

In her Ph.D. thesis, Jane Elith used logistic regression to model the

distribution of Leionema ralstonii, a plant species associated with

steep rocky outcrops in forests of southeastern New South Wales,

Australia (Elith, 2002). Data were obtained from 325 sites, with the

species found at 73 of those. Two possible sets of explanatory

variables were considered, with the best-fitting set having five

explanatory variables. These variables were:

numrock – the number of rocky outcrops within 400 m of

the site

volcanic – a variable reflecting the mapped geology

rockcell – the number of GIS cells that were coded as outcrop

within a radius of 100 m

nearslope – the maximum slope within a radius of 50 m of

the site

nearsouth – a measure of the extent to which the site faces

south.

The presence or absence of Leionema ralstonii was coded

by using a one or zero. The variable nearslope was included

as both linear and quadratic variables to account for a

possible non-linear relationship. The WinBUGS code for this

analysis is:

model

{

a ~ dnorm(0, 1.0E-6) # the intercept term

for (i in 1:6) # the 6 regression

coefficients

{

b[i] ~ dnorm(0, 1.0E-6)# uninformative priors

}

mnr <- mean(numrock[]) # means of the explanatory

variables

mv <- mean(volcanic[])

mrc <- mean(rockcell[])

msl <- mean(nearslope[])

mso <- mean(nearsouth[])
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for (i in 1:325) # for each of the sites

{

logit(p[i]) <- a + b[1]*(numrock[i]-mnr) +

b[2]*(volcanic[i]-mv) + b[3]*(rockcell[i]-mrc)

+ b[4]*(nearslope[i]-msl) + b[5]*

(nearslope[i]-msl)*

(nearslope[i]-msl) + b[6]*(nearsouth[i]-mso)

#logit(p) is a function of the explanatory

variables and regression coeff’s

lr[i] ~ dbern(p[i]) # observed occurrence drawn

from a Bernoulli dist’n

}

}

In this example, the variables have been ‘centred’ by subtracting

the mean (see Box 5.8). This helps to improve the efficiency of the

MCMC algorithm by generating posterior samples with lower

autocorrelation. The logit of the probability of occurrence of the

species is a linear function of the explanatory variables. It is assumed

that the observed occurrence of the species is determined randomly,

using a Bernoulli distribution (dbern) that generates a one

(presence) with the specified probability and a zero (absence)

otherwise. The following parameter estimates were obtained from

100 000 iterations of the model:

Node Mean 95% Bayesian CI

a �3.18 �4.2–�2.3
b[1] 0.314 0.047–0.59
b[2] 3.30 2.1–4.8
b[3] 0.113 0.067–0.16
b[4] 0.0418 �0.0096–0.097
b[5] 0.00556 0.00054–0.011
b[6] �0.0103 �0.019–�0.0016

The occurrence of Leionema ralstonii is positively associated with

the variables numrock, volcanic and rockcell, and negatively

associated with nearsouth. This reflects its association with

north-facing volcanic outcrops.

The quadratic effect of nearslope produced a u-shaped

relationship, with the occurrence minimized when the slope was

approximately 20�. The highest rates of occurrence were on the
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steepest slopes (up to approximately 50�). This reflects the species’
strong association with steeper areas, but also its occurrence in

riparian areas and along spurs where the ground is relatively flat. The

nature of the relationship between the occurrence of Leionema and

slope can be seen by plotting the predicted occurrence across the range

of the data (Fig 5.6). The 95% credible intervals on the predictions

illustrate the considerable uncertainty associated with the predictions

in flatter areas, and the high rates of occurrence in steeper areas.

Box 5.8
Centring data for better sampling

In some of the previous models, explanatory variables have been

centred by subtracting the mean. The advantage of this is that the

correlation between successive samples is reduced, which improves

the efficiency of the MCMC sampling. This can be illustrated by

using a simple logistic regression for the presence of lizards on islands

as a function of their perimeter-area ratio. The data were originally

analysed by Polis et al. (1998) and also presented in Quinn and

Keough (2002). The simplest possible model is given below.

model

{

a ~ dnorm(0, 1.0E-6) # uninformative intercept term

b ~ dnorm(0, 1.0E-6) # uninformative effect of PA

for (i in 1:19) # for each island

{

logit(p[i]) <- a + b*PA[i] # logit(p) a function

of PA

Y[i] ~ dbern(p[i]) # observed occurrence

drawn from

Bernoulli dist’n

}

}

The same model with the perimeter-area ratio being centred

would be:

model

{

a ~ dnorm(0, 1.0E-6) # uninformative intercept term
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b ~ dnorm(0, 1.0E-6) # uninformative effect of PA

mPA <- mean(PA[]) # calculate mean perimeter:area

ratio

for (i in 1:19) # for each island

{

# uses centred PA ratio logit(p) a function of

(PA � mean)

logit(p[i]) <- a + b*(PA[i] - mPA)

Y[i] ~ dbern(p[i]) # observed occurrence drawn

from Bernoulli dist’n

}

# re-calculates the original intercept term

Intercept <- a - b*mPA

}

The regression coefficients for the slopes are unaltered by centring

the data, but the intercept term is changed. The variable Intercept

generates what would be the intercept term (a) in the original model.

Sampling from Markov chains can cause successive samples to be

highly correlated. If there is positive correlation between the first and

second samples in a chain and between the second and third, then

there will also be positive correlation between the first and third,

through their common association with the second sample. However,

the correlation between the first and third will be less than the

correlation between the successive samples. The ‘lag’ measures the

number of samples between two samples in a Markov chain

(e.g. successive samples have a lag of one). As the lag between

samples increases, the correlation between samples will continue to

decrease towards zero. A plot of the correlation versus the lag is

known as an auto-correlation plot.

The benefit of centring the data can be seen in the

auto-correlation plot for the variables in the model. For example,

centring reduces the correlation to approximately zero for samples

that are three or more iterations apart, but the correlation is still

greater than zero for samples 20 apart when the data are not centred

(Fig. 5.7). By centring the data, fewer samples are needed to obtain

the same level of precision for the parameter estimates. This is

because when the samples are correlated, the information about the

posterior distribution contained in each new sample is similar to

those values already sampled.
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Imperfect detection

In the example of logistic regression (Box 5.7), it was assumed that the

species was recorded without error. This is reasonable given that the

species is relatively distinctive. It is unlikely to have been confused with

other species and its size means that it is unlikely to have been overlooked

in the surveys. However, the same cannot be said for other species, where

Fig 5.6 Probability of occurrence of Leionema ralstonii versus the slope of

the terrain. The predicted relationship is shown for a volcanic substrate and

while holding the other variables at their mean values. The solid line is the

mean of the posterior predictions and the broken lines represent the 95%

credible interval.

Fig. 5.7 Correlation between successive samples of the regression coefficient

for the presence of lizards on islands versus the lag between samples. The

autocorrelation plot is shown for models with and without centring,

illustrating that centring reduces the correlation close to zero for samples

that are three apart. The correlation is still greater than zero for samples 20

apart when the data are not centred.
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it is possible that a species may inhabit a site but remain undetected

during a single survey.

The possibility of imperfect detection of a species raises the issue of

false negative errors (Wintle et al., 2004). Such errors might occur if

a species uses the area being surveyed but is not present at the time of the

survey or if it is present but has sufficiently cryptic characteristics that

it remains undetected. In these circumstances the observer would record

that the species was absent when it does in fact use the site.

By conducting multiple surveys of the same sites, it is possible to

estimate both the probability of presence and the probability of detec-

tion conditional on the species being present (Mackenzie et al., 2002;

Tyre et al., 2003; Wintle et al., 2004, 2005a). This can be modelled

as a two-stage process. First, the actual presence or absence of the species

is modelled at each site. This may be conducted using the usual approach

to logistic regression. Secondly, the number of times that the species is

recorded at each site is modelled. If the species is present, we can assume

that the species is detected on each visit with probability d. In such cases,

it can be assumed the number of survey visits on which the species is

recorded is drawn from a binomial distribution with parameters d

(the probability of detection per visit) and v (the number of survey visits).

If the species is absent, then the probability of detection would equal

zero. The WinBUGS code for such an analysis is given in Box 5.9.

There are several advantages of accounting for imperfect detection in

the analysis. The first is that not accounting for it would cause the

Box 5.9
Accounting for imperfect detection

Kirsten Parris studied the presence of Litoria pearsoniana, a tree frog

that breeds in streams on the east coast of sub-tropical Australia.

Multiple surveys were conducted at each of 64 sites, using two

different survey methods. These two methods were nocturnal

searches and the use of automated tape recorders from which the

frogs could be identified by the advertisement calls of the males. The

data required for each site are the number of surveys and the number

of detections of the species with each method. The presence of the

species was modelled as a function of the size of the stream

(measured by the logarithm of the average annual volume of

rainfall in the catchment upstream of the site, LnCV below) and the
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presence or absence of palms at the site as an indicator of mesic or

xeric conditions. The WinBUGS code for an analysis of these data is

given below:

model

{

a ~ dnorm(0, 1.0E-6) # uninformative priors for the

variables

b[1] ~ dnorm(0, 1.0E-6)

b[2] ~ dnorm(0, 1.0E-6)

b[3] ~ dnorm(0, 1.0E-6)

d[1] ~ dunif(0, 1) # detection probabilities when

the species is present

d[2] ~ dunif(0, 1)

mLnCV <- mean(LnCV[]) # average catchment volume

for (i in 1:64) # for each of the 64 sites

{

logit(p[i]) <- a + b[1]*(LnCV[i] - mLnCV) +

b[2]*palms[i] + b[3]*(LnCV[i] - mLnCV)*palms[i]

# probability of presence

Lp[i] ~ dbern(p[i]) # actual presence

dd1[i] <- d[1]*Lp[i] # detectability of nocturnal

searches

dd2[i] <- d[2]*Lp[i] # detectability of automatic

tape recorders

Y1[i] ~ dbin(dd1[i], V1[i]) # number of

detections

with searches

Y2[i] ~ dbin(dd2[i], V2[i]) # number of

detections

with tapes

}

}

In the above code, the variable b[1] represents the effect of

stream size on presence of the frog, b[2] represents the effect of

the presence of palms and b[3] is the coefficient for the interaction

term so that the effect of stream size depends on whether palms are

present.

The presence of the species is determined randomly and

recorded as the variable Lp[i] for each site; a value of one indicates
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that the species is present while it is absent if the variable is zero.

The variables d[1] and d[2] are the detection probabilities of the

nocturnal searches and the tape recorder surveys if the species is

present at the site, and dd1 and dd2 are the detection probabilities

that depend on whether the species is present or absent at the site.

The data Y1 and Y2 are the number of surveys during which the

species was recorded by the two survey methods, and V1 and V2 are

number of surveys at each site using the two methods (the identifier 1

refers to nocturnal searches, and 2 refers to tape recorders).

The parameter estimates obtained from 50 000 samples are given

below, indicating the positive association with palms (b[2]) and the

positive effect of stream size when palms are present (b[3]). The

detection rate of nocturnal searches (mean¼ 0.561) is greater than

that of automatic tape recorders (mean¼ 0.353).

Node Mean 95% CI

a �1.54 �2.9–�0.37
b[1] 0.588 �0.88–2.2
b[2] 2.44 0.89–4.3
b[3] 3.18 0.30–7.0
d[1] 0.561 0.47–0.65
d[2] 0.353 0.27–0.44

The predicted probability of occurrence across the range of

stream sizes can be generated for when palms are present and

also when they are absent. The code for this is given below, which

may be inserted into the above model. When palms are present,

the variables for the effect of palms (b[2]) and the interaction term

(b[3]) are included. The predicted relationship is shown in Fig. 5.8.

for (i in 1:20)

{

LVol[i] <- 2 + 3*i/20 # covers the range of stream

sizes

logit(predpalms[i]) <- a + (b[1] + b[3])*

(LVol[i] - mLnCV) + b[2]

logit(prednopalms[i]) <- a + b[1]*(LVol[i] -

mLnCV)

}
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estimated occurrence to be underestimated. Secondly, if the probability of

detection is not considered, it is necessary to assume that survey effort at

all of the sites is identical. For example, in the study of Litoria

pearsoniana, some sites were surveyed only four times, while others were

surveyed up to 18 times. To use the data without accounting for effort

would require, for example, only using the data from the most recent four

surveys. This would mean deleting relevant hard-won field data, which is

never a very satisfactory way to conduct analyses. Finally, different

surveys methods may have different chances of detecting species.

Analyses that consider the probability of detecting a species can accom-

modate these differences (see Box 5.9).

Fig. 5.8 Probability of Litoria pearsoniana being present at forest streams in

eastern Australia as a function of stream size when palms are present (a) or

absent (b). The analysis accounted for the imperfect detection of frogs on

each survey, the two types of surveys and the different number of surveys at

sites (based on data from Parris, 2001).
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Poisson regression

In the previous chapter, the Poisson distribution was suggested as a useful

model for describing counts of organisms or species. This distribution

can also be used when analysing relationships between counts and

explanatory variables. Therefore, rather than assuming that the response

variable is normally distributed, as in linear regression, it would be

possible to assume that the response variable is distributed as a Poisson

random variable. The latter form of analysis is referred to as Poisson

regression.

One feature of the Poisson distribution is that its parameter (which is

equal to the mean and variance) is required to be positive. To achieve this

in the regression, the usual procedure is to assume that the natural

logarithm of the parameter (m) is equal to a linear combination of the

explanatory variables (e.g. x1 and x2):

lnðmÞ ¼ aþ b1x1 þ b2x2

This may be transformed to:

m ¼ expðaþ b1x1 þ b2x2Þ,

which ensures that the value for m is positive.

For example, Ellison (2004) used Poisson regression to analyse ant

species richness as a function of elevation, latitude, and habitat type

(bog versus forest). The analysis is described in Box 5.10.

Box 5.10
Poisson regression: ant species richness

Ellison described a Poisson regression of ant species richness.

The explanatory variables were latitude, elevation, and habitat type.

In the WinBUGS code below, the continuous variables latitude

and elevation have been centred to improve the efficiency of

sampling. Without centring, there is strong autocorrelation in the

samples, which means that more samples are required to achieve

the same precision in the estimates. In fact without centring, the

correlation is so strong that it leads to incorrect inference about

the parameters unless an extremely large number of samples are

taken (Ellison, 2004). The regression coefficients for the

explanatory variables are unaltered by the centring, but the

intercept term (alpha) is modified. However, the intercept term
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for the equivalent model without centring can be calculated

(see code below).

Ellison (2004) used results from previous research (Brühl et al.,

1999; Gotelli and Arnett, 2000) to generate informative priors for the

effect of latitude and elevation on ant species richness. The priors for

the coefficients of these variables were represented as informative

normal distributions. The explanatory variable ‘habitat’ was treated

as a categorical variable with a value of one representing forest

habitats and a zero representing bogs.

model

{

# uses centred data

ml <- mean(lat[]) # calculates averages for

centring

me <- mean(elev[])

for(i in 1: N) # for each of the N data points

{

richness[i] ~ dpois(mu[i]) # ant species richness

drawn from a Poisson

log(mu[i]) <- alpha + beta[1]*(lat[i]-ml) +

beta[2]*(elev[i]-me) + beta[3]*habitat[i]

# a log-linear model for the average

}

intercept <- alpha - beta[1]*ml - beta[2]*me

# recovers the intercept term

# informative priors

preclat <- 1/(0.04 * 0.04) # precision of lat

effect, based on

s.e. of 0.04

precelev <- 1/0.0003/0.0003 # precision of elev

effect

alpha ~ dnorm(0.0,1.0E-6) # uninformative

intercept

beta[1] ~ dnorm(-0.1725,preclat) # informative

effect of

latitude

beta[2] ~ dnorm(-0.0022,precelev) # informative

effect of

elevation

Regression 147



Correlation

In regression, models are built to describe relationships among variables.

However, in some cases, the question is simply what is the strength

of the relationship between variables? In these circumstances, correla-

tion analysis is useful. The most commonly used index of correlation

is Pearson’s product moment correlation coefficient, which will be

considered here. This coefficient measures the strength of the linear

relationship between two variables.

When there is a perfect positive linear relationship, the correlation

coefficient equals 1, with a perfect negative linear relationship indicated

by a value of �1. Intermediate values represent less than perfect linear

relationships, with a value of zero representing no correlation. It is

important to note that a zero correlation does not necessarily mean that

there is no relationship between the variables, just that there is not a

beta[3] ~ dnorm(0.0,1.0E-6) # uninformative effect

of habitat

The posterior distribution of the parameter estimates had the

following values based on 100,000 samples:

Node Mean sd Bayesian 95% CI

alpha 1.507 0.09765 1.311–1.695
beta[1] �0.1848 0.03322 �0.25–�0.1196
beta[2] �0.001811 2.358E-4 �0.002273–�0.0013
beta[3] 0.6365 0.1197 0.4036�0.8732

Credible intervals for the informative priors, the

likelihood function of the data, and the posterior distributions

for the parameters beta[1] and beta[2] are shown in

Fig. 5.9. Without the informative prior distribution, the results

are less precise.

There is a suggestion that the prior for the effect of elevation is not

consistent with the data because their 95% credible intervals only

overlap slightly (Fig. 5.9, see also Belia et al., 2005). A model using

uninformative prior distributions for both parameters did not fit

particularly better (DIC¼ 209.0 using uninformative priors versus

209.7 when using the informative priors).
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linear component to any relationship. For example, a perfect symmetrical

u-shaped relationship between two variables would generate a correlation

coefficient of zero even though there is a well-defined relationship

between the variables.

Pearson’s product moment correlation coefficient is equal to the covari-

ance of the two variables divided by their standard deviations. Details of

how to calculate the covariance can be found elsewhere (e.g. Sokal and

Rohlf, 1995), but these details are not necessary for analysing correlations

in WinBUGS. In WinBUGS, the simplest analysis of the correlation

coefficient is to assume that the two variables are drawn from a bi-variate

normal distribution. Both variables have a mean and standard deviation

that needs to be estimated. The correlation coefficient measures the

strength of the relationship between the variables.

In WinBUGS, a bi-variate normal distribution is defined by the means

of the two variables and the inverse of the variance-covariance matrix

Fig. 5.9 The 95% credible intervals for the parameter estimates of the model

of Ellison (2004) describing the effect of latitude (a) and elevation (b) on ant

species richness. Intervals are shown for the prior, the likelihood (data) and

the posterior. In both case, there is a negative effect, and using the prior has

increased the precision of the effect.

Correlation 149



of the variables (see Box 5.11). This inverse matrix is the bi-variate

equivalent of the precision used in the normal distribution.

WinBUGS code for conducting a correlation analysis is given in

Box 5.11. It is relatively complex given that it is a simple correlation,

but has a considerable advantage over the usual frequentist procedures

Box 5.11
Correlation analysis

Analysing correlations within WinBUGS is most easily achieved

using a bi-variate normal distribution, so it may be necessary to

transform the data to improve conformity to this distribution. Code

for conducting the analysis is given below, in which an uninformative

uniform prior is used for the correlation coefficient, wide positive

uniform priors are used for the standard deviation of the variables,

and uninformative normal distributions are used for the means.

model

{

mean[1] ~ dnorm(0.0, 1.0E-6)

mean[2] ~ dnorm(0.0, 1.0E-6)

sd[1] ~ dunif(0, 100)

sd[2] ~ dunif(0, 100)

correl ~ dunif(-1, 1)

covar[1,1] <- sd[1]*sd[1]

covar[2,2] <- sd[2]*sd[2]

covar[1,2] <- correl*sd[1]*sd[2]

covar[2,1] <- correl*sd[1]*sd[2]

omega[1: 2, 1: 2] <- inverse(covar[,])

for (i in 1:N)

{

Y[i, 1:2] ~ dmnorm(mean[], omega[,])

}

}

The bi-variate distribution is defined in WinBUGS by the means

of the two variables and the inverse of the variance-covariance matrix

(omega[]). The elements of the variance-covariance matrix are

constructed from the standard deviations and the correlation

coefficient. The diagonal elements of the matrix (covar[1,1] and
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by generating precise estimates of the distribution of possible values.

A wide range of frequentist methods has been developed to place

confidence intervals on correlation coefficients and conduct hypothesis

tests (e.g. Sokal and Rohlf, 1995). These methods are based on

transformations and large-sample approximations. The null hypothesis

required for the usual tests is that the correlation coefficient is equal to

zero. Formulae are available for non-zero null hypotheses, with the

approximation used depending on sample size (Sokal and Rohlf, 1995).

In comparison to the number and complexity of the frequentist

approximations available for analysing correlations, the analysis in

WinBUGS is simple (Box 5.11) and does not need to be modified to

account for small sample sizes or non-zero null hypotheses.

Model-based priors for correlations

It is possible in some circumstances to have prior information for

correlation coefficients. For example, McCarthy (1997) examined the

correlation between median natal dispersal distances predicted by models

covar[2,2]) are simply the variances of the two variables, and the

two off-diagonal elements are both equal to the covariance.

Data on the relationship between crab biomass and the number of

crab burrows at two sites on Christmas Island (Green, 1997; see also

Quinn and Keough, 2002) are given below:

list(N=8, Y=structure(.Data=c(2.15, 39, 2.27, 38,

4.31, 61, 2.58, 79, 3.23, 35, 1.83, 39, 1.54, 45,

2.00, 28),.Dim=c(8,2)))

list(N=10, Y=structure(.Data=c(4.36, 38, 4.01,

37, 3.33, 27, 2.63, 18, 4.46, 41, 3.96, 33, 4.18, 40,

4.21, 29, 2.54, 25, 4.29, 38),.Dim=c(10,2)))

The 95% Bayesian credible intervals for the correlation coefficient

between these two variables, based on 100 000 samples, were [–0.45,

0.81] and [0.42, 0.96] for the two sites, with the means of posterior

distributions equal to 0.278 and 0.796. The considerable overlap in

the credible intervals of the correlation coefficients suggests that they

may be similar at both sites despite the relatively large difference

between the means of their posterior distributions.
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and those observed in the field for song sparrows and banner-tailed

kangaroo rats. Two models were examined, one in which the density of

vacancies influenced dispersal distances (exponential model) and one in

which both vacancies and the density of competitors (simultaneous

model) influenced dispersal distances (McCarthy, 1997).

McCarthy (1997) relied on traditional null hypothesis testing to com-

pare the models. There was a positive correlation between the predictions

and observations for the competition model for three different datasets

and negative correlations for the exponential model. Statistically signif-

icant correlations were not obtained, but the results were not entirely

satisfactory because the power of the tests was low. In fact, simulations

conducted by McCarthy suggested that given the expected variation,

large correlations were unlikely to be observed even if the models were

a perfect description of reality.

It would be possible to use the models to generate informative priors

and evaluate these priors with Bayesian methods. The construction of the

informative priors for the correlation accounts for the fact that a perfect

correlation between predictions and observations is very unlikely because

of sampling error in the observed median dispersal distance of the

individuals (Box 5.12).

Box 5.12
Model-based priors for correlations

The following code can be used to generate the expected correlation

between the observed median dispersal distances and the predicted

values if the model were a perfect description of reality. The model

simulates the observed median distance for each year by randomly

generating dispersal distances for each individual and then finding the

median of the distances within each year. Both these steps are

relatively complex, so I will describe them in some detail.

The first step in simulating the median dispersal distances is

achieved by using the inverse of the cumulative distribution function

(see Appendix B). In the code below, the exponential model is

illustrated. For this model, the cumulative distribution function

is given by F(x)¼ 1–e�vx, where v is the density of vacancies and x is

the dispersal distance (see McCarthy, 1997). Re-arranging this

expression leads to the inverse of the cumulative distribution function

x¼ –ln[1–F(x)]/v. This expression allows us to randomly generate
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dispersal distances, by substituting a uniform random number

(between zero and one) for the term (1–F(x)). This is one of the

standard methods for generating a random number when the inverse

of the cumulative distribution function can be obtained. (see also

Press et al., 1992; Knuth, 1997).

The second step takes the randomly generated dispersal distances

and calculates the median for each year. WinBUGS does not have a

function for calculating the median, so a method is given below.

When the sample size (n) is even, the median is the average of the

n/2th and (n/2þ1)th measurement when they are ranked from the

smallest to the largest. When the sample size is odd, the median is

equal to the ((nþ1)/2)th measurement. For example, if n¼ 9, the

median is the fifth measurement when they are ranked.

The following code uses these two steps to calculate the expected

correlation between the observed medians and predictions if the

model were a perfect description of reality. The predicted median

dispersal distance in each year (predmedian[]) is calculated

externally using the formula provided by McCarthy (1997) for that

model. For example, the median dispersal distance is predicted to

equal ln(2)/v for the exponential model, where v is the density of

vacancies.

model

{

for (i in 1:nyears)

{

for (j in 1:N[i])

{

# random number used in the following generation

of dispersal distances

rand[i, j] ~ dunif(0, 1)

# dispersal distance for exponential model

D[i,j] <- -log(rand[i,j])/v[i]

}

# The following calculates the median simulated

dispersal distance in each year

m0[i] <- trunc(N[i]/2)

m1[i] <- m0[i]+1

# use the following for the median if N[i] is odd

median1[i] <- ranked(D[i, 1:N[i]], m1[i])
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# use the following for the median if N[i] is even

median0[i] <- (ranked(D[i, 1:N[i]], m0[i]) +

median1[i])/2

# the expression ‘‘even[i]’’ is equal to 1 if N[i]

is even, and 0 if odd

even[i] <- equals(m0[i], N[i]/2)

simmedian[i] <- even[i]*median0[i] +

(1-even[i])*median1[1]

}

# now calculate correlation between predicted and

observed median dispersal distance

meanpred <- mean(predmedian[])

meansim <- mean(simmedian[])

for (i in 1:nyears)

{

y1[i] <- predmedian[i] - meanpred

y2[i] <- simmedian[i] - meansim

}

covarsim <- inprod(y1[], y2[])/(nyears-1)

correl <- covarsim/sd(predmedian[])/

sd(simmedian[])

}

For example, for male song sparrows and the exponential

model, the correlation between predictions and observations is

unlikely to be greater than approximately 0.5 and may in fact be

negative even when the model is a perfect description of reality

(Fig. 5.10). The data used for this analysis are:

list(nyears=10,

predmedian=c(1.155, 1.333, 1.575, 1.000, 1.998,

2.082, 2.476, 0.788, 0.963, 1.333),

v=c(0.6, 0.52, 0.44, 0.693, 0.347, 0.333, 0.28,

0.88, 0.72, 0.52),

N=c(19, 17, 24, 29, 18, 19, 15, 18, 21, 19)

For the simultaneous dispersal model, the dispersal distance

depends on the density of vacancies (as for the exponential model) but

also the density of dispersers. The code for this more complicated

model is provided on the website, but follows the same pattern as that

above.
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The DIC values for the analyses based on the informative priors can be

compared to the DIC values for an analysis in which the correlation

coefficient is equal to zero and an analysis in which an uninformative

prior is used. The results of these analyses help to indicate whether the

given model of dispersal is a good predictor of natal dispersal distance,

compared with a model that predicts no relationship, or some relation-

ship that is different from that predicted.

The correlation between the predictions of the simultaneous model and

observed median dispersal distance was examined for three datasets (male

and female song sparrows and banner-tailed kangaroo rats; see

McCarthy, 1997). The prior with the lowest DIC value varied between

datasets, with each of the three priors (uninformative, zero, and

informative) being best for one of the datasets (Table 5.1). However,

the DIC values are additive across the three analyses, so it is possible to

obtain an overall measure of the predictive performance of the priors.

In this case, the uninformative prior had the lowest total DIC, with

the informative prior close behind (DIC was 0.68 units greater), and an

analysis with zero correlation being worst. Thus, there was some

support for the simultaneous model because the correlation between

its predictions and observations appeared to be different from zero.

However, the predictions of the simultaneous model were no better than

a model that predicted a non-zero (uninformative) correlation, so it is

possible that an alternative (and as yet unformulated model) might

make better predictions.

For the exponential model, the correlations between its predictions

and the observed data were best described by analyses in which the

Fig. 5.10 Prior distribution for the correlation coefficient between observa-

tions and predictions of the exponential model for male song sparrows.
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correlation was zero, and the exponential dispersal model was consis-

tently poor (the total difference of DIC values was 4.65), suggesting that

it was not a particularly good model of natal dispersal distances.

Thus, the analyses suggest that the simultaneous dispersal model

is a reasonable model, with the correlation between its predictions and

observations being noticeably different from zero. However, the

exponential model appeared to be a poor model, with the correlation

between its predictions and observations being best described as zero.

Therefore, the Bayesian analysis lends support to the simultaneous

dispersal model, especially relative to the exponential dispersal model.

Concluding remarks

Regression analyses in this chapter build on the analyses of means

and frequencies, by using functions to describe how the predicted values

change in response to explanatory variables. Linear regression results

when this function is assumed to be linear and deviations around the

regression line are assumed to be normally distributed. Other forms of

regression arise when non-linear relationships and other probability

Table 5.1. DIC values obtained when examining correlations between the

observed median dispersal distance and the predictions of the simultaneous

dispersal model and the exponential dispersal model. The results are shown

for the three data sets examined and for three different priors

(uninformative, zero and an informative prior based on the dispersal

model).

Prior Male song
sparrow

Female
song
sparrow

Kangaroo
rat

Total �DIC

Simultaneous model
uninformative 115.76 129.10 50.10 294.96 0
zero 115.06 129.00 54.18 298.24 3.28
informative prior 115.44 128.54 51.66 295.65 0.68

Exponential model
uninformative 127.61 145.94 67.31 340.86 0.65
zero 126.9 145.62 67.69 340.21 0.00
informative prior 128.28 146.47 69.71 344.46 4.25
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distributions are used. Logistic, Poisson, and non-linear regression were

described in this chapter.

Correlation analysis is also used to study relationships among vari-

ables. Rather than using one or more explanatory variables to model the

response of a dependent variable, correlation analysis simply describes

association. The most common form of analysis is to assume that the

variables being examined are normally distributed, with the correlation

coefficient measuring the strength of the linear association between them.

Regression analyses examine how variables measured on a continuous

scale influence the expected value of another variable. In the next chapter,

the influence of categorical variables is examined with analysis of

variance (ANOVA).
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6

Analysis of variance

In regression analysis, the explanatory variables are usually continuous

variables. However, in some of the previous analyses, a categorical

variable with two possible values was included. For example, in the

analysis of the ant data (Box 5.10), two different habitat types were

considered by using the variable ‘habitat’, which takes a value of zero

for forests and one for bogs. Similarly, the habitat model for the frog

Litoria pearsoniana used a variable that indicated whether palms were

present or not. These types of explanatory variables are referred to as

factors. The analysis of a variable in response to one or more factors is

known as analysis of variance or ANOVA.

It is not my intention to cover all aspects of ANOVA here, but to

introduce the most basic elements and then to discuss how some of the

more advanced aspects can be included with ease within WinBUGS.

More details about using ANOVA in ecology can be found elsewhere

(Sokal & Rohlf, 1995; Fowler et al., 1998; Underwood, 1997; Quinn and

Keough, 2002). Readers unfamiliar with ANOVA are advised to read

these or similar books. In particular, I will not cover much of the theory

behind the use of fixed or random factors, repeated measures and

interaction terms, but focus on how they can be analysed with Bayesian

methods.

One-way ANOVA

Imagine we are interested in analysing how the masses of starlings vary

between four different locations (Fowler et al., 1998). To study this, an

ecologist would weigh different starlings from each location. In the case

of Fowler et al. (1998), ten starlings were measured from each. A model
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for analysing such data might be that the mass of starlings differs between

the locations. The model would specify the mean mass at each location

and assume that variation in mass between different birds was described

by a particular probability distribution. If a normal distribution was

used, an additional assumption (to help reduce the number of estimated

parameters) might be that the variances of the distributions for the

different habitat were all identical.

A model of this form, with one factor describing differences, is known

as a one-way or one-factor ANOVA. The explanatory variable would be

an index to represent the different locations, and the response variable

would be the mass of the starlings. The model could be coded easily in

WinBUGS (Box 6.1).

Coding of variables

In Box 6.1, the mean for each location was specified directly. This

formulation of the problem worked perfectly well for this simple analysis.

However, other formulations are useful for some analyses, especially

when extra factors are added (Quinn and Keough, 2002). Useful

formulations include specifying how the mean at each location differs

from a global mean or how the mean at each location differs from

a reference location. The reference location might be chosen arbitrarily

(e.g. the first or last location) or depending on the comparisons of

interest (e.g. urban locations might be compared to locations in

natural areas such as grasslands, heathlands, and forests, making

the urban location a useful choice for reference). The actual choice

does not influence the results, but may make interpretation more

straightforward.

The analysis of the starling data conducted in Box 6.1 is repeated in

Box 6.2 by using the fourth location as a reference class. In this case, a

variable is added to represent the mean of the reference location, and

differences between each location and this reference location are

estimated. The difference for the fourth location (i.e. the reference

location) is set to zero. The change does not make a substantive difference

to the results, with the same means and DIC values being generated.

The main difference is that values being estimated (d[1], d[2], and

d[3]) now represent how the mean mass of the first three locations differ

from the fourth, rather than the actual masses of each location.
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Box 6.1
A simple one-way ANOVA

The code below can be used to conduct a one-way ANOVA for data

on the mass of 40 starlings sampled from four different locations. The

variables a[1], a[2], a[3], and a[4] are the means of the masses

at the four different locations.

model

{# simple one-way ANOVA

for (i in 1:4) # the mean for each of

the four locations,

drawn from

uninformative

priors

{

a[i] ~ dnorm(0.0, 1.0E-6)

}

tau ~ dgamma(0.001, 0.001) # uninformative

precision

for (i in 1:40) # for each of the

40 birds sampled

{

mean[i] <- a[location[i]] # the mean depends on

the location

Y[i] ~ dnorm(mean[i], tau) # mass drawn from

a normal

distribution

}

}

The above code has a different mean mass for each of the four

locations. The indicator variable location has values of 1, 2, 3 or 4

in the data (data on website), depending on where each of the 40 birds

was sampled.

For the data provided by Fowler et al. (1998), the DIC

value for this model is 221.2, which is considerably smaller than a

model in which the means did not differ among the locations

(DIC¼ 237.3). Therefore, there is strong evidence to suggest

that the mass of the starlings differs between the four

locations. The mean mass at each of the four locations can
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be obtained from the variables a[1] – a[4], and the means

and standard deviations of their posterior distributions are

given below:

Node Mean (g) sd (g)

a[1] 83.6 1.16
a[2] 79.4 1.16
a[3] 78.6 1.16
a[4] 75.4 1.15

Box 6.2
Simple ANOVA using a reference class

The model developed in Box 6.1 is reproduced here, but using the

fourth location as the reference class.

model

{# one-way ANOVA, using reference class

base ~ dnorm(0, 1.0E-6) # the mean of the reference

class

for (i in 1:3) # the mean for each of the

first 3 locations,

relative to the

reference class

{

d[i] ~ dnorm(0.0, 1.0E-6)

}

d[4] <- 0 # no diff b/t the mean of the 4th location

and the reference class

# because the fourth location is the reference class

tau ~ dgamma(0.001, 0.001) # uninformative

precision

for (i in 1:40) # for each of the 40 bids sampled

{

mean[i] <- base + d[location[i]] # the mean

depends on the

location
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Fixed and random factors

In analysing relationships between variables, there are two types of

explanatory variables that need to be considered. These are known as

fixed factors and random factors. Fixed factors are those where all types

of treatments are included in the analysis. If the study were to be

conducted again, the same treatments or types would be included in the

analysis. Random factors are different because only a selection of the

types or treatments is included in the analysis, and a different selection of

Y[i] ~ dnorm(mean[i], tau)

}

}

DIC values generated from the above code and that in Box 6.1 are

identical. The difference in the results is that the values of d[1],

d[2] and d[3] now represent how the mean mass at the first three

locations differ from that at the fourth location (the reference class),

which is given by the variable base. After taking 100 000 samples

from the posterior distribution, the mean mass at the first three

locations appears to be greater than at the fourth.

Node Mean sd

d[1] 8.2 1.63
d[2] 4.0 1.63
d[3] 3.2 1.63
base 75.4 1.15

The actual means of each of the different locations can be

recovered by incorporating extra variables. For example, the mean

mass of starlings at the first location would be equal to base+d[1].

If these values were recorded, the posteriors for the mean masses of

the four locations would be identical to the values obtained in Box

6.1. Readers may wish to confirm this for themselves, although it is

unnecessary to do this for the mean mass at the fourth location,

which equals base+d[4]. Because d[4] in this analysis is set to

zero, the variable base is equal to the mean mass at the fourth

location; it has the same posterior distribution as a[4] from Box 6.1.
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these could be made if the study was replicated. The distinction between

the two types of variables is important because it influences what can be

inferred from the analysis.

The difference between the two types of variables can be illustrated

by the starling example. The topic of interest was the variation in the

mass of starlings between different locations. Four different locations

were chosen for the analysis. How these were chosen depends on whether

the variable location should be treated as a fixed or random factor. If

the study was conducted because we are particularly interested in these

four locations and no others, then the variable location would be

included in the analysis as a fixed factor. For example, if the four

locations were classified as forest, heathland, grassland and urban, and

we were interested in comparing the mass of starlings at these particular

types of locations, then the variable location would be a fixed factor.

If the study was repeated, starlings would again be sampled from these

four types of locations.

However, if the analysis was motivated by the expectation that all

locations might differ, perhaps regardless of their classification, then the

chosen four would be simply a random (or perhaps haphazard) sample

from all possible locations. In this case, any set of four locations would be

adequate for the study and the variable location would be treated as a

random factor. If the study were replicated, a set of different locations

would be chosen.

Random factors are easily analysed in WinBUGS. The simplest

approach is to assume that the mean of each location (in the starling

example) is drawn from a distribution, with a particular mean and

standard deviation. Then, within each location, each sample is drawn

from a distribution with a mean given by its location and a particular

standard deviation. For analytical convenience, it is usually assumed that

the standard deviation of the samples within each location is the same for

all locations, although this is not a necessary assumption when using

Bayesian methods.

WinBUGS code for analysing the starling data with location as a

random factor is given in Box 6.3. Two standard deviations need to be

estimated, one which measures the variation in mass of starlings among

locations and one that measures the variation between starlings within

locations.

Note that this is another example of a hierarchical model (Box 3.6),

with the global mean and standard deviation among locations being

hyper-parameters.
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Box 6.3
One-way ANOVA with a random factor

The simplest approach to modelling a random factor is to

specify how the mean deviates from a global mean for each

value of the factor. For example, consider the starling data

from Box 6.1. In this case, we would include a global mean

mass, and then specify how the mean of each location

differs from this value. Then, as a second step, we specify

how the actual mass of each starling deviates from the mean of

each location.

Normal distributions are usually used when modelling

random effects, although other distributions could also be used.

In the case of the starling data, two different standard deviations

are required. The first specifies how the mean mass of starlings

varies among locations and the second how the mass varies

between individuals within locations. The code for this analysis

is given below.

model

{# random effects one-way ANOVA

a ~ dnorm(0, 1.0E-6) # a is the global mean mass

for (i in 1:4) # the deviation from the global mean

of the mean mass at each location

# drawn from normal with estimated level of

variation

{

d[i] ~ dnorm(0.0, tau_a)

}

sd_among ~ dunif(0, 100) # uninformative sd -

variation among

locations

tau_a <- 1/(sd_among*sd_among) # convert sd to

precision

sd_within ~ dunif(0, 100) # uninformative sd -

variation between

starlings within

locations

tau_w <- 1/(sd_within*sd_within) # convert sd to

precision
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Two-way ANOVA

ANOVA can be extended to include more than one factor. For example,

data on the mass of starlings could be sampled at the same four locations

a second time. The total variation in the data can then be described by

differences among time periods and differences among locations.

The simplest model in this case is where there are additive effects of

the two factors. Code for analysing this two-factor analysis is given in

Box 6.4.

for (i in 1:40) # for each of the 40 birds sampled

{

mean[i] <- a + d[location[i]] # the mean

depends on the

location

Y[i] ~ dnorm(mean[i], tau_w) # data drawn from

normal dist’n

}

}

The variation among and within locations can be investigated by

analysing the two standard deviations. The means of the posterior

distributions and the 95% credible intervals for these standard

deviations are given below.

Node Mean 95% CI

sd_among 6.46 1.71–22.7
sd_within 3.69 2.93–4.73

It is clear that there is more uncertainty about the level

of variation among locations, with the 95% credible interval

for the standard deviation among locations more than

encompassing that of the standard deviation within locations.

The greater uncertainty arises because there are only four

locations that can be used to estimate the variation among

locations, while there are 40 starlings to estimate the variation

within locations.
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Box 6.4
Two-way ANOVA

In the case where the starling data are obtained from an

additional time period, a second variable is needed, which I

will call ‘period’. For multi-way ANOVAs, it tends to be easiest

to use a reference class to develop the model. Otherwise, it is

difficult to ensure that the correct number of estimated parameters

is included. Code for analysing the two-way ANOVA for the

starling data, using both location and period as fixed factors,

is given below.

model

{# two-way ANOVA, using reference classes

base ~ dnorm(0, 1.0E-6)

for (i in 1:3) # the mean for each of the four

locations, expressed as a difference from the

reference class

{

a[i] ~ dnorm(0.0, 1.0E-6)

}

a[4] <- 0

# the mean for each of the two time periods, expressed

as a difference from the reference class

# the first time period is used as the reference class

b[1] <- 0

b[2] ~ dnorm(0.0, 1.0E-6)

tau ~ dgamma(0.001, 0.001) # uninformative

precision

for (i in 1:80) # for each of the 80 birds sampled

{

mean[i] <- base + a[location[i]] + b[period[i]]

# the mean depends on the location and

period

Y[i] ~ dnorm(mean[i], tau)

}

}

Samples from the posterior distribution of the variables a

(for location) and b (for period) indicate that the first three

locations and second period have higher body masses.
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Interaction terms in ANOVA

The two-way model considered in the previous section included only

additive effects. This means that the effect of each factor does not depend

on the value of the other factor. To relax this assumption, it is possible to

include an interaction term that allows the effect of each factor to depend

on the value of the other factor. This is equivalent to the use of

interaction terms in regression models.

When including interaction terms, it is important to ensure that the

correct number of parameters is included. Only a certain number of

parameters can be uniquely estimated. A more complete discussion of this

topic is provided by Quinn and Keough (2002). The important point is

that when using reference classes in ANOVA, interaction terms are not

estimated for those cases that include the reference class. This ensures

that the model is not over-parameterized (see Quinn and Keough, 2002

for further details). The analysis of a two-way ANOVA with interaction

terms is illustrated in Box 6.5.

Variance partitioning

In the case of the random factor model for the body mass of starlings, the

variation was separated into variation among locations and variation

within locations. This is known as variance partitioning. Examining the

sources of variation is useful, for example, to help decide where effort

should be placed to obtain an improved estimate. If there is greater

variation in body mass among locations than within locations, then to

obtain a more precise estimate of the global mean body mass of starlings,

Node Mean 95% credible interval

a[1] 7.4 4.8–9.9
a[2] 5.0 2.4–7.6
a[3] 3.6 1.0–6.2
b[2] 9.1 7.3–10.9
base 75.3 73.2–77.3

The DIC for this model was 458.7.
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Box 6.5
Including an interaction term in ANOVA

The model in Box 6.4 included only additive effects. It was assumed

that the effect of each location was same in both time periods.

However, it is possible that the effect of each location depends on the

time period (or vice versa). A model that includes this possibility can

be analysed by using interaction terms.
When using interaction terms, the means for the different

combinations of classes are completely independent of each other.

When using reference classes to define the model, the easiest way to

achieve this is to add an extra term for each combination of classes.

However, to ensure that the correct number of parameters is

estimated, it is necessary to set the interaction term to zero for those

cases that involve one or more of the reference classes. In the starling

example, the reference classes were chosen as the fourth location and

the first time period. This choice of reference classes is arbitrary, and

the results would be identical if different reference classes were

chosen. The code for the two-way ANOVA with interaction terms is

given below.

model

{# two-way ANOVA with interaction term, using

reference classes

base ~ dnorm(0, 1.0E-6)

for (i in 1:3) # the mean for each of the four

locations, expressed as a

difference from the

reference class

{

a[i] ~ dnorm(0.0, 1.0E-6)

}

a[4] <- 0

# the mean for each of the two time periods, expressed

as a difference from the reference class

# the first time period is used as the reference class

b[1] <- 0

b[2] ~ dnorm(0.0, 1.0E-6)

# interaction terms - these are set to zero for cases

involving one or more reference classes

for (i in 1:3)
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{

int[i,1] <- 0

int[i, 2] ~ dnorm(0.0, 1.0E-6)

}

int[4,1] <- 0

int[4,2] <- 0

tau ~ dgamma(0.001, 0.001) # uninformative

precision

for (i in 1:80) # for each of the 80 birds sampled

{

mean[i] <- base + a[location[i]] + b[period[i]] +

int[location[i], period[i]] # the mean depends on

the location and

period

Y[i] ~ dnorm(mean[i], tau)

}

}

The parameter estimates for this model, using the starling data,

are given in the following table.

Node Mean 95% CI

a[1] 8.2 4.5–11.9
a[2] 4.0 0.4–7.6
a[3] 3.2 �0.4–6.9
b[2] 8.8 5.1–12.4
base 75.4 72.8–78.0
int[1,2] �1.61 �6.77–3.55
int[2,2] 1.99 �3.14–7.13
int[3,2] 0.78 �4.41–5.93

The credible intervals for the interaction terms encompass zero,

suggesting that their addition to the model may not have made a

substantial improvement. This suggestion is supported by

examining the DIC value, with this model having a value that is 4.1

units greater (462.8) than the model without the interaction terms.

Therefore, the additive model (Box 6.4) would be chosen as the most

parsimonious model. There is little suggestion that the effect of

location on the body mass of starlings differs between the two

sampling periods.
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it may be important to obtain data from more locations rather than more

data from each location. The relative effort that should be expended

depends on the cost of establishing a new location, the cost of measuring

the mass of each starling and the level of variation within and among

locations. Underwood (1997) demonstrates how to determine the number

of locations and samples per location so that the design is optimally

efficient for a given budget.

Variance partitioning can also help when deriving prior distributions

from existing data. Consider the case where we wish to estimate the annual

survival of a bird from its body mass. We may have survival estimates

for several bird species, with perhaps more than one estimate for each

species. There are several sources of variation that need to be considered

in this case. One source of variation is the variation among species that

can be explained by differences in body mass. This is analogous to the

variation among raptor species that was described in Box 5.4.

The variation around the regression line arises from three sources.

Firstly, it is unlikely that the average survival rate of each species will fall

exactly on the regression line. There are several other factors that mean

that a particular species will have a survival rate that is above or below

average for its body mass. Secondly, each study of a given species is

unique. There will be certain local and temporal factors (e.g. food

availability, predator abundance, weather, and biases of the particular

researcher or method) that mean that the survival rate of the birds in each

study will differ even if the same species were being studied. Thirdly,

every study has a finite sample size so there is at least some imprecision

for each individual study. The observed survival rate will differ from the

true survival rate of the birds being studied. These three sources of

variation around the regression line need to be considered explicitly if the

data are used to obtain a realistic prediction of the survival rate of a

species (Box 6.6).

An example of ANOVA: effects of vegetation removal

on a marsupial

In this section, I provide a detailed account of an ANOVA that is used to

investigate the effect of removing vegetation on the capture rate of

mulgara, a small marsupial of arid Australia.1 The study is based on an

1 This example is drawn from a paper by McCarthy and Masters (2005).
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Box 6.6
Partitioning variation in the data

Data on survival rates of European passerines were used to predict

the annual survival of the European dipper based only on its body

mass. The prediction was made using a regression of survival versus

body mass for 27 species of passerine from 47 studies. Data were

obtained from the appendix of Johnston et al. (1997) for annual

survival and Dunning (1993) for body masses. Only survival

estimates in Johnston et al. (1997) that included standard errors

were included in the analysis because the reliability of the others

could not be ascertained. The estimate of annual survival of

European dippers provided in Johnston et al. (1997) was also

excluded.

Multiple studies of annual survival were available for some

species, which were included by treating studies as a random factor

nested within each species. Similarly, the species effect was treated as

a random factor. Therefore, the total variance around the regression

line of annual survival on body weight included variation due to

species, variation among studies, and variation within studies.

This latter source of variation was estimated by the standard error of

the estimate provided in Johnston et al. (1997).

Normal distributions were assumed for the random effects

and body mass was log transformed to improve linearity of the

relationship. The annual survival of European dippers for a

new study was predicted for a bird of the appropriate body mass

(59.8 g) and accounting for the fact that the species and study

effects were random. The WinBUGS code for this analysis is given

below.

model

{

sdst ~ dunif(0,10) # variation among studies

within species

sdspp ~ dunif(0,10) # variation among species

taust <- 1/(sdst * sdst) # precisions

tauspp <- 1/(sdspp * sdspp)

a ~ dnorm(0, 1.0E-6) # intercept term

b ~ dnorm(0, 1.0E-6) # effect of body mass on

survival
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for (i in 2:28) # for each of the 27 species

(numbered 2 to 28)

{

spp[i] ~ dnorm(0, tauspp) # random species effect

}

for (i in 1:47) # for each survival estimate

{

study[i] ~ dnorm(0, taust) # random study effect

p[i] <- a + b*log(weight[i]) + spp[species[i]] +

study[i] # predicted survival based on body

weight and random effects

taub[i] <- 1/(se[i]*se[i]) # within study

variation estimated

from stated s.e.

surv[i] ~ dnorm(p[i], taub[i]) # survival assumed

to be normally

distributed

}

# prediction for European dipper, based on body mass

of 59.8 g

dipspp ~ dnorm(0, tauspp)

dipstudy ~ dnorm(0, taust)

dippred <- a + b*log(59.8) + dipspp + dipstudy

}

The predicted annual survival rate for a new study (dippred,

ignoring the within study variation) had a mean of 0.57 and a

standard deviation of 0.073. Note that many samples in WinBUGS

may be required before they converge on the posterior distribution,

especially if the initial values are not close to the centre of the

posterior distribution.

In Chapter 7, the predicted annual survival rate of European

dippers is used as an informative prior for an analysis of

mark-recapture data. As will be shown, the prediction based on

body mass substantially improves the precision of the estimate

obtained from the mark-recapture study.
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experimental manipulation conducted by Dr Pip Masters (Masters et al.,

2003) and also draws on prior information derived from an earlier

observational study.

Understanding how removal of vegetation affects mulgara is important

because the managers of a resort in arid Australia were harvesting hard

spinifex (Triodia basedowii, a common species of grass) and using the

clippings as mulch on garden beds. There was some concern that the

harvesting of spinifex might reduce abundances of a number of native

species, so an experimental study was undertaken to investigate this

possibility.

Compared to some other scientific disciplines, experiments in ecology

are relatively rare, especially those based in the field. This is because they

are often expensive, involve logistical hurdles and tend to produce data

with considerable variation. In such cases, it would be helpful if useful

prior information could contribute to interpretation of experimental

results. This is particularly so because prior information is often a

motivating factor when conducting experiments. For example, the

experiment conducted by Masters et al. (2003) was partly motivated by

a previous observational study in which mulgara (Dasycercus cristicauda)

were captured more frequently on sites that had last burnt 11 years

previously than on sites that had burnt within the last year (Masters,

1993). The main structural difference in the vegetation between the two

types of sites was a marked reduction in cover, particularly that of hard

spinifex. Masters (1993) had found that higher spinifex cover was

associated with higher capture rates of mulgara.

The previous observational data suggested that the capture rates of

mulgara in the recently burnt area were on average approximately one

quarter of those in the longer unburnt area. Therefore, the experimental

removal of spinifex was expected to cause a similar reduction. Using a

frequentist ANOVA, Masters et al. (2003) did not detect a statistically

significant reduction in the capture rate of mulgara in the experimental

study, although the data were suggestive of an effect (P¼ 0.15) and the

observed difference appeared to be similar to that in the observational

study. How might a Bayesian approach to this analysis help to clarify the

available evidence?

A Bayesian analysis requires the specification of models that may

explain the data that were observed in the experiment. One model that

could be chosen is the same as the null hypothesis used by Masters et al.

(2003), that being of no effect of the experimental manipulation on the

capture rate of mulgara (model A).
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A second group of models is that the experiment causes a change in the

capture rate of mulgara. There are at least two possible ways of specifying

an effect of the experiment. The first of these is that the effect of the

experiment on mulgara is the same as that recorded in the observational

study (model B). The second model with an effect is that we have no prior

information that would allow us to predict the magnitude or even

direction of the experimental effect (model C). Model C is equivalent to

the alternative hypothesis used by Masters et al. (2003) in their null

hypothesis test.

It is somewhat pessimistic to say we have no prior information given

the observational data suggest that there is an effect of spinifex removal.

However, such a point of view could be justified. For example, we might

be uncertain about the possible confounding role of pseudo-replication

in the observational study (as with any unplanned fire, there was spatial

structure in the arrangement of sites; Masters, 1993). Alternatively, the

observed reduction may have been caused by some other effect of the fire

instead of the reduction in spinifex cover.

These three models (A, no effect; B, an effect consistent with the

observational study; and C, some effect that cannot be predicted a

priori) can be considered as three competing points of view. By using

the results of the experiment, we hope to be able to help discriminate

between them to determine which model or models are best supported by

the data.

Repeated measures ANOVAs were used to analyse the experimental

data, with the effect of the treatment being expressed in the interaction

terms for time and treatment (Masters et al., 2003). Essentially, this

means that an effect of the treatment would be detected if the difference

between sites in the two treatments differed between time periods

(particularly between the pre- and post-treatment time periods). There

were multiple observations at each site, and the variable site was treated

as a random factor (see Box 6.7 for the WinBUGS code) to account for

the fact that the capture rate might vary randomly from site to site due to

differences other than their spinifex cover.

To reflect a lack of prior information in model C, an uninformative

prior for the effect of spinifex removal was specified by using a normal

distribution with a mean of zero and large standard deviation (1000) for

the parameter that described the effect. The large standard deviation

means that the parameter can take any value (i.e. positive or negative

effects of the experiment were permitted), with essentially no prior

influence on the actual value.
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Box 6.7
An example of repeated-measures ANOVA

The following code was used to analyse the experimental habitat

manipulation of Masters et al. (2003). The capture rate of mulgara

was ln(xþ1) transformed to help satisfy assumptions of normality.

Mulgara were surveyed in one time period before the experimental

manipulation and twice afterwards. In the absence of an experimental

effect, changes in capture rates from the first to the subsequent time

periods would not depend on whether the plots were treated or kept

as controls. Therefore, any effect of the treatment will be expressed in

the interaction between time and treatment, which are given by the

variables r1 and r2 in the following code.

model

{

# Priors

y ~ dnorm(0, 1.0E-6) # global reference capture rate

# the mean difference between treatment and control

plots prior to the manipulation

r0 ~ dnorm(0, 1.0E-6)

# r1 and r2 are interactions terms for time*treament

# chose either zero (no effect), uninformative

priors, or informative priors

# r1 <- 0 # r1 = 0 means no effect of harvesting in 1st

post-harvest sampling period

# r2 <- 0 # r2 = 0 means no effect of harvesting in 2nd

post-harvest sampling period

# r1 ~ dnorm(0, 1.0E-6) # uninformative priors

# r2 ~ dnorm(0, 1.0E-6)

r1 ~ dnorm(-0.74, 19.389) # informative priors from

Masters 1993 - using se

for prior (~0.227)

r2 ~ dnorm(-0.74, 19.389)

t1 ~ dnorm(0, 1.0E-6) # fixed time effect for first

period after treatment

t2 ~ dnorm(0, 1.0E-6) # fixed time effect for second

period after treatment

tau ~ dgamma(0.001, 0.001) # precision of residual

sdsite ~ dunif(0, 10)
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For the model with an effect consistent with the observational study

(model B), the prior distribution was taken from the posterior

distribution of the effect of spinifex removal in the observational study.

This was obtained by analysing the observational data of Masters (1993)

in the same manner as the experiment (i.e. the data on capture rate were

ln(xþ1) transformed before conducting a repeated measures ANOVA

that included the effect of sites as a random factor). The difference in the

tausite <- 1/sdsite/sdsite # precision of random

site effect

for (i in 1:10) # for each plot

{

re[i] ~ dnorm(0, tausite) # random plot (i.e.,

site) effect

# calculate mean expectation for each plot in each of

the 3 periods

# post-treatment means are calculated as differences

from pre-treament means

# accounts for treatment, site and time effects

# t1 and t2 are the time effects

# r1 and r2 are the post treatment effects

# r1 and r2 are equivalent to the time*treatment

interaction in Masters et al. (2003)

# Treat[] is 0 for control sites and 1 for treatment

sites

mean0[i] <- r0*Treat[i] + y + re[i] # the mean

capture rate in each plot prior to the treatment

mean1[i] <- mean0[i] + r1*Treat[i] + t1 # mean

capture rate in each plot in the first period after

the treatment

mean2[i] <- mean0[i] + r2*Treat[i] + t2 # mean

capture rate in each plot in the second period after

the treatment

# Observed data, ln(x+1) transformed

Before[i] ~ dnorm(mean0[i], tau)

After1[i] ~ dnorm(mean1[i], tau)

After2[i] ~ dnorm(mean2[i], tau)

}

}

176 Analysis of variance



log-transformed capture rate between the sites with different spinifex

cover in the observational study (i.e. between those sites recently burnt

and those long unburnt) was estimated (see Box 6.8 for the WinBUGS

code). The mean difference was a reduction of 0.74 in the more recently

burnt area, with the standard deviation of the estimate being 0.23.

A normal distribution with this mean and standard deviation was used

Box 6.8
An ANOVA to establish an informative prior

The informative prior for the effect of spinifex removal in the

mulgara study was obtained from an observational study where

recently burnt sites had lower spinifex cover than long-unburnt sites.

Each of the six sites was surveyed once in each of 12 time periods.

The model accounts for random differences among sites and

differences in capture rates among time periods. The effect of lower

spinifex cover (recent burning) is represented in the WinBUGS code

below by the variable r. The posterior distribution for this parameter

was used as an informative prior for the effect of spinifex removal in

the experimental study (Box 6.7).

model

{

# Priors - all uninformative

sdsite ~ dunif(0, 10) # std dev of site to site

variation

a ~ dnorm(0, 1.0E-6) # intercept term

r ~ dnorm(0, 1.0E-6) # effect of recent burn

tau ~ dgamma(0.001, 0.001) # precision of residuals

tausite <- 1/(sdsite * sdsite)

for (i in 1:6) # for each site

{

SiteEffect[i] ~ dnorm(0, tausite) # random site

effects

}

for (i in 2:12) # for each time period

{

TimeEffect[i] ~ dnorm(0, 1.0E-6) # fixed time

effects

}

TimeEffect[1] <- 0
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as the informative prior in model B. For model A (no effect of the

experiment), the parameters that specified the reduction in the capture

rate of mulgara were set to zero.

The model in which the observed effect of the experiment was consistent

with the observational data (model B) had the lowest DIC value

(Table 6.1), suggesting that this model is the best explanation of the

data. The next best model was one of an uncertain effect (model C), and

the difference in the DIC value (�3.8) suggested that it had less support

than model B. The difference in the DIC values for the two inferior models

was approximately 1, suggesting that they are largely indistinguishable.

If the prior information were ignored, we would be unable to discriminate

reliably between the hypothesis of no effect (model A) and the alternative

of an effect (model B), with only weak evidence in favour of the latter.

Table 6.1. Deviance information criteria (DIC) for the three competing

models used to describe the observed data in the experimental study of the

effects of habitat manipulation on mulgara conducted by Masters et al.

(2003).

Model DIC

No effect 62.8
Effect consistent with observational study 58.0
Uncertain effect 61.8

for (i in 1:72) # for each of the 12 time periods and 6

sites

{

# calculate the expected recapture rate (ln(x+1))

transformed for each observation

# expectation accounts for differences in fire

history, time period and site

m[i] <- a + r*RecentBurn[i] + TimeEffect[Time[i]]

+ SiteEffect[Site[i]]

# Y[]’s are the observed ln(x+1) transformed

capture rates

Y[i] ~ dnorm(m[i], tau)

}

}
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This is similar to the conclusion of Masters et al. (2003) where the p-value

was 0.15. However, by using the observational data and finding that

the experimental results were consistent with those data, the ability of

the experiment to determine whether there was an effect was increased.

By considering both the observational and experimental studies, we can

be reasonably sure that removal of spinifex reduces the capture rate of

mulgara.

The estimated effect of the removal of spinifex cover, taking into

account the prior information from the observational study, was that the

capture rate of mulgara is reduced by approximately 0.75 in both time

periods when using ln(xþ1) transformed data (0.78 in the first and 0.74 in

the second). With back transformed results (Box 6.9), the posterior

Box 6.9
Back-transforming the predictions of a model

The response variable used for the analysis of the mulgara habitat

manipulation was ln(xþ 1) transformed. The mean capture rate of

mulgara in each of the three time periods and in both control and

treatment plots can be estimated by inserting the following code into

the WinBUGS model given in Box 6.7.

meanC0 <- exp(y) - 1 # mean in control plots before

treatment

meanC1 <- exp(y + t1) - 1 # mean in control plots after

(t=1)

meanC2 <- exp(y + t2) - 1 # mean in control plots after

(t=2)

meanT0 <- exp(r0 + y) - 1 # mean in treatment plots

before treatment

meanT1 <- exp(r0 + y + r1 + t1) - 1 # mean in treatment

plots after (t=1)

meanT2 <- exp(r0 + y + r2 + t2) - 1 # mean in treatment

plots after (t=2)

The variable y is used for the capture rate in the reference class

(control plots prior to manipulation), t1 and t2 and the effects of the

two time periods after manipulation, r0 is the mean difference

between control and treatment plots prior to manipulation, and r1

and r2 are the effects of the manipulation in the treatment plots.
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distribution implies that the removal of spinifex reduced the capture rate of

mulgara to approximately one-quarter of the original rate (Fig. 6.1).

The standard deviation of the posterior distribution for the effect in

both time periods was 0.20. This standard deviation is only slightly less

than that of the prior (0.23), which indicates that the prior had a large

influence on the estimated effect of vegetation removal in the experiment.

Therefore, conclusions about the effects of spinifex removal have

only been clarified to a small extent by the experiment. The observational

data provide the most compelling evidence, with the experimental

data being consistent with this prior evidence. This approach encourages

precautionary management and helps to avoid the misinterpretation

that p-values greater than 0.05 provide evidence in favour of the null

hypothesis (no effect).

Analysis of covariance

So far we have encountered two types of explanatory variables,

continuous and categorical. When continuous variables are analysed

with regression-based methods, the analysis is often referred to as simply

‘regression analysis’. When categorical variables are used, the analysis is

referred to as ‘analysis of variance’ (ANOVA). When both categorical

and continuous variables are used together, it is referred to as ‘analysis of

Fig. 6.1 Posterior distributions of the mean number of mulgara captures in

treatment (open columns) and control (filled columns) plots, using the

informative prior. Samples were taken before the treatment, and both three

months and one year after the treatment. The columns give the means of the

posterior distributions and the bars are the 95% credible intervals.
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covariance’ (ANCOVA). However, all these methods have the same basic

structure and are jointly referred to as linear models.

Examples of ANCOVA have already been provided. In the case of

habitat modelling for Litoria pearsoniana, stream size (continuous)

and the presence of palms (categorical) were both included (Box 5.9).

For analysing the survival of European passerines, study and species

(both categorical) and body mass (continuous) were included (Box 6.6).

In this section, ANCOVA is explored in more detail.

In the regression of raptor mortality (Box 5.5), owls and diurnal

raptors both shared the same regression coefficient that described the

effect of body mass on mortality. However, it is easy to imagine that the

relationship between mortality and body mass might differ for the two

different groups of raptors. ANCOVA accounts for this possibility by

allowing the regression relationship to vary among two or more types of

individuals.

An analysis of covariance of the owl mortality data can be conducted

by simply substituting a choice of two possible regression coefficients,

depending on whether the species is an owl or not (Box 6.10).

Box 6.10
Analysis of covariance

The code for the owl mortality regression (Box 5.5) is easily modified

to allow the effect of body mass on the mortality to differ between

owls and diurnal raptors.

model

{

for (i in 1:26) # for each of the 26 raptor species

{

lp[i] <- a + b[Owl[i]+1]*Mass[i] + c*Owl[i]

# linear predictor

lm[i] <- logit(Mortality[i]) # logit

transformation

of Mortality

lm[i] ~ dnorm(lp[i], prec) # assume

logit(Mortality) is

norm. dist’d

}
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ANCOVA: a case study

The first experiment

Forrester and Steele (2004) studied the effect of competition and resource

availability on the mortality of gobies. The relationship between goby

mortality and population density was analysed at three levels of resource

availability, which in the case of gobies is the density of refuges that allow

them to hide from potential predators. It is expected that mortality will

increase as population density increases because of intraspecific

competition for refuges. Because each refuge is only used by a single

a ~ dnorm(0, 1.0E-6) # intercept term

b[1] ~ dnorm(0, 1.0E-6) # effect of body mass for

diurnal raptors

b[2] ~ dnorm(0, 1.0E-6) # effect of body mass for

owls

c ~ dnorm(0, 1.0E-6) # effect of being an owl

prec ~ dgamma(0.001, 0.001) # precision

}

There are now two regression coefficients for the effect of body

mass, with b[2] being used for owls and b[1] being used for

diurnal raptors. The posterior distributions for these parameter

estimates are very similar, which can be seen in the following

summary that was obtained from 100 000 samples after excluding the

first 10 000 as a burn-in.

Node Mean sd 95% CI

a -0.22 0.18 -0.58–0.14
b[1] -0.95 0.13 -1.2–0.69
b[2] -1.01 0.49 -1.98–0.03
c -0.52 0.37 -1.25–0.20

Given the similarity of the regression coefficients (b[1] � b[2]),

it is not surprising that the model with a common effect of body mass

(Box 5.5) has a lower DIC value (35.6) than the ANCOVA model

that requires an extra parameter (37.9).
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goby, it is expected that the effect of increasing the population density

would be lower when the availability of refuges is high.

Forrester and Steele (2004) analysed their data using ANCOVA and

assumed that the data were drawn from a normal distribution. As

discussed previously, such an assumption is not well justified for

proportional data, but the same assumption will be used for the

Bayesian re-analysis for the sake of comparison (Box 6.11).

Box 6.11
ANCOVA example for goby mortality

Forrester and Steele (2004) conducted an experiment in which

they manipulated the density of gobies and examined the effect

of con-specific density on the mortality rate at three

different densities of refuges. The original ANCOVA model

analysed by Forrester and Steele (2004) allowed the intercept

term and the slope to vary depending on the refuge density. This

model has seven parameters. Given the relatively small sample

size for the analysis (18 measurements of goby mortality),

simplified models in which the intercept terms are identical are

analysed here instead. This constraint (that the mortality is the same

in the absence of competitors regardless of refuge density) is

reasonable because refuges are unlikely to be limiting when there are

no competitors. Two models were considered; one in which the effect

of con-specifics was the same for all three refuge densities and one in

which the effect differed. This latter model has five estimated

parameters, while the former has three. The more complex model can

be analysed using the code.

model

{

a ~ dnorm(0, 1.0E-6) # intercept

b[1] ~ dnorm(0, 1.0E-6) # effect of density at

resource level 1 (low)

b[2] ~ dnorm(0, 1.0E-6) # effect of density at

resource level 2

(medium)

b[3] ~ dnorm(0, 1.0E-6) # effect of density at

resource level 3 (high)

prec ~ dgamma(0.001, 0.001) # precision
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for (i in 1:18) # for each experimental plot

{

pred[i] <- a + b[Refuge[i]]*Density[i] # linear

predictor

Mortality[i] ~ dnorm(pred[i], prec) # Mort. is

norm.

dist’d

}

}

Initial values for the Markov chain were:

list(a= 0, b=c(0,0,0), prec=100)

The data are given by:

Density[ ] Refuge[ ] Mortality[ ]

1.125 1 0.82
0.75 1 1.25
1.5625 1 1.74
1.625 1 1.97
2.5625 1 2.61
2.875 1 3.41
0.1875 2 0.79
0.5625 2 1.58
1.4375 2 1.88
1.8125 2 2.29
2.8125 2 2.29
4.75 2 3.16
3.6875 3 1.33
1.25 3 1.12
1.1875 3 1.5
2.3125 3 1.5
1 3 1.56
1.75 3 1.64
END

The value of the variable Refuge[] defines whether

the density of refuges is low, medium or high. Mortality[]

is the daily mortality rate expressed as a percentage.

There were six replicate plots for each of the three classes

of refuge density, with goby density varying within each class.
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The second experiment

Forrester and Steele (2004) conducted a second experiment, in which the

manipulation was repeated, but the study was also conducted on plots

that were larger and smaller than those used in the original experiment.

The aim was to determine whether the observed effects of resource

The simpler of the two possible models is given below, with the

same slope coefficient for each of the three refuge densities.

model

{

a ~ dnorm(0, 1.0E-6) # intercept

b[1] ~ dnorm(0, 1.0E-6) # effect of density at

resource level 1 (low)

b[2] <- b[1] # effect at level 2 (medium) same as

level 1

b[3] <- b[1] # effect at level 3 (high) same as

level 1

prec ~ dgamma(0.001, 0.001) # precision

for (i in 1:18) # for each experimental plot

{

pred[i] <- a + b[Refuge[i]]*Density[i] # linear

predictor

Mortality[i] ~ dnorm(pred[i], prec) # Mort. is

norm. dist’d

}

}

Because b[2] and b[3] are now logical nodes, they can no

longer be assigned initial values. Thus, the following were used as

initial values for the Markov chain, with NA symbolizing that these

values are not assigned stochastically.

list(a=0 b=c(0,NA,NA), prec=100)

The model in which the slopes did not differ between the different

refuges had a very much inferior DIC value compared to the more

complex model (33.4 versus 23.8). The difference in DIC values

suggests that the effect of goby density on mortality does indeed

depend on the availability of refuges.
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availability and goby density depended on the spatial scale of the

experiment.

In the second analysis, Forrester and Steele (2004) were not able

to identify a statistically significant effect of resource availability on

goby mortality. However, the results were suggestive of an effect

and appeared to be consistent with those of the first (Box 6.11). In

conducting their analysis, Forrester and Steele (2004) were forced to

ignore the results of the previous experiment because they used

frequentist analysis, despite the fact that some aspects of the second

experiment were identical to the first. By using Bayesian statistics, the

results of the first experiment can be used to help strengthen the

conclusions drawn from the second.

As for the mulgara example (Box 6.7), it is useful to compare the DIC

value of a model with informative priors with an equivalent model with

uninformative priors. This helps to indicate whether the prior is

consistent with the new data. Additionally, for the second goby

experiment, models in which the effect of goby density on mortality

depends on both the spatial scale of the experiment and the resource

availability are compared with models in which only resource availability

matters. The WinBUGS code for these models is presented in Box 6.12.

Box 6.12
ANCOVA using an informative prior

Forrester and Steele (2004) repeated the experiment described in

Box 6.11, but also included plots that were smaller and larger than

those used in the original experiment. If the size of the plots is

important, then the regression coefficients for the effect of density on

mortality will depend not only on resource availability but also the

plot size that was used. This can be expressed in the ANCOVA as a

three-way interaction between the effect of goby density, refuge

density and size of the plot. The presence of a two-way interaction

between goby density and refuge density had already been

supported by the previous experiment, so this was also included

in the analysis. The two-way interaction between goby density

and plot size was excluded from the model to reduce the number

of estimated parameters and because the focus was whether the

plot size influenced the interaction between goby density and refuge

density.
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The variable to specify the size of the plots was included in the

model by using two binary variables to indicate whether the plot was

small or large. If the plot was neither small nor large (in which case

both binary variables were equal to zero), then the plot was the same

size as used in the first experiment. This form of coding for

categorical variables is known as using dummy variables (see Quinn

and Keough, 2002 for details).

The three-way interaction terms are included by modifying the

effect of goby density on mortality, depending on the refuge density

and the plot size. This leads to six additional estimated parameters.

The code is given below, using the results of the first experiment to set

the informative priors for this analysis.

model

{

a ~ dnorm(1.01, 24.826) # intercept

b[1] ~ dnorm(0.628, 56.70) # effect of density at

resource level 1 (low)

b[2] ~ dnorm(0.488, 110.83) # effect of density at

resource level 2

(medium)

b[3] ~ dnorm(0.180, 70.144) # effect of density at

resource level 3

(high)

intnS[1] ~ dnorm(0, 1.0E-6) # interaction terms for

small plots at 3

refuge densities

intnS[2] ~ dnorm(0, 1.0E-6)

intnS[3] ~ dnorm(0, 1.0E-6)

intnL[1] ~ dnorm(0, 1.0E-6) # interaction terms for

large plots at 3

refuge densities

intnL[2] ~ dnorm(0, 1.0E-6)

intnL[3] ~ dnorm(0, 1.0E-6)

prec ~ dgamma(0.001, 0.001) # precision

for (i in 1:25) # for each of the 25 plots

{

pred[i] <- a + b[Refuge[i]]*Density[i] +

intnS[Refuge[i]]*Small[i]*Density[i] +

intnL[Refuge[i]]*Large[i]*Density[i]
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Mortality[i] ~ dnorm(pred[i], prec)

}

}

Models with uninformative priors can be used by changing

the prior distributions for the variables a and the b[]’s to, for

example, dnorm(0.0, 1.0E-6). Models in which there is

not an effect of plot size can be considered by setting all the

interaction terms (intnS[] and intnL[]) to zero (e.g.,

intnS[1] <- 0, etc.).

The parameter estimates for the models with informative and

uninformative priors are given in the tables below. Not surprisingly,

by using informative priors for the parameters, their precision has

improved (the standard deviations of the posterior distributions have

decreased). However, the precision of the interaction terms is also

improved by using informative priors for the other parameters. This

means that by using the prior information, we can be more certain

about the magnitude of the effect that plot size has on the experiment.

The 95% credible intervals for the interaction terms encompass zero

and the means of the posterior distributions are approximately equal

to zero, indicating that there is little evidence that the plot size has

influenced the results.

Parameter estimates for the ANCOVAmodel using uninformative

priors for a and the b[]’s.

Node Mean sd 95% CI

a 0.3651 0.7086 �1.044–1.762
b[1] 1.886 0.6441 0.6099–3.168
b[2] 0.4665 0.3624 �0.2495–1.188
b[3] 0.4905 0.5636 �0.6276–1.6
intnL[1] 0.8001 1.736 �2.651–4.256
intnL[2] 0.4327 1.114 �1.784–2.644
intnL[3] 0.04674 0.5961 �1.136–1.229
intnS[1] 0.2165 0.8902 �1.539–1.983
intnS[2] 0.16 0.3899 �0.6134–0.9301
intnS[3] �0.2155 0.5131 �1.228–0.7992

Parameter estimates for the ANCOVA model using

informative priors for a and the b[]’s derived from the first

experiment.
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Node Mean sd 95% CI

a 1.001 0.1814 0.645–1.357
b[1] 0.6918 0.1302 0.4362–0.9473
b[2] 0.4604 0.0894 0.2855–0.6363
b[3] 0.1834 0.1156 �0.04332–0.4115
intnL[1] 0.9717 1.553 �2.086–4.058
intnL[2] �0.09684 1.053 �2.192–1.988
intnL[3] 0.1056 0.3755 �0.6383–0.8441
intnS[1] 0.8003 0.7307 �0.6279–2.256
intnS[2] �0.09628 0.302 �0.6957–0.494
intnS[3] �0.06704 0.1759 �0.4135–0.2788

The DIC values (see table below) suggest that the two

models without the three-way interaction terms (intnS and intnL)

are the most parsimonious. Thus, there is good support for the

two models in which the plot size does not affect the results. Of

these two, the model with the uninformative prior (DIC¼ 76.7)

has a slightly smaller DIC than the model with the informative

prior (DIC¼ 77.8) but the difference is sufficiently small that the

two are indistinguishable.

Model Prior DIC

with interaction term uninformative 90.4
without interaction term uninformative 76.7
with interaction term informative 87.8
without interaction term informative 77.8

Finally, the model in which there is no effect of plot size can be

compared to one in which there is additionally no interaction between

refuge density and goby density (i.e., in which all b[]’s are the same).

The DIC for the latter model (85.4, using uninformative priors) is

substantially greater than that for the model that includes the

interaction (76.7), confirming the result of the first experiment where

the effect of con-specifics on mortality depended on the density of

refuges.
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The analyses indicate that there is little support for the models that

include the three-way interaction terms. Thus, the effects of competition

and refuge density appear to be consistent for all plot sizes. Further, the

influence of refuge density on the effect of intra-specific competition

appears to be similar in both experiments.

Log-linear models for contingency tables

Contingency tables are commonly used to analyse relationships among

variables, with the frequency of occurrence presented in cells for different

combinations of factors. For example, French and Westoby (1996) pre-

sented a contingency table showing the number of plant species that have

each possible combination of dispersal mechanism and regeneration

strategy (Table 6.2). One of their questions was whether there is an

association between these two factors because plants with seeds that are

dispersed by vertebrates are predicted to be more likely to regenerate

vegetatively compared to ant-dispersed species (French and Westoby,

1996).

These models can be analysed using chi-squared goodness-of-fit

measures (Fowler et al., 1998; Quinn and Keough, 2002). However,

log-linear models represent these relationships with greater flexibility

(Agresti, 1990; Quinn and Keough, 2002). In these models, the logarithm

of the expected frequency is a linear function of the factors, with

the factors treated as explanatory variables analogous to those

of ANOVA (e.g. Box 6.5). Therefore, the expected number of species

of plants (nij) would depend on the effects of the dispersal mechanism

i (di) and regeneration strategy j (rj), and the interaction between the

two (bij):

lnðnijÞ ¼ aþ di þ rj þ bij,

Table 6.2. Number of ant- and vertebrate-dispersed plant species with seed

and vegetative regeneration (French and Westoby, 1996).

Ant Vertebrate Total

Seed only 25 6 31
Vegetative 36 21 57
Total 61 27 88
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where a is the intercept term. This equation can be re-expressed as:

nij ¼ expðaÞ � expðdi þ rj þ bijÞ:

The expected proportion of species with dispersal mechanism i and

regeneration strategy j will equal nij/�nij. The intercept term (exp(a))

cancels out in this expression for the expected proportion, so it is

excluded from the analysis.

An association between the variables is indicated when one or more of

the interaction terms (bij) differ from zero. In contingency tables there are

(R–1)(C–1) estimable interaction terms, where R and C are the number of

rows and columns in the contingency table. Therefore, the contingency

table of French and Westoby (1996) has a maximum of one non-zero

interaction term (R¼ 2, C¼ 2).

Given that the response variable (e.g. the number of species in

Table 6.2) is a non-negative integer, a Poisson distribution might be

appropriate for the analysis. However, the numbers of species in the cells

of the contingency table are not independent, because they are

constrained to equal the total number of species (88 in this example,

Table 6.2). A multinomial model (see Box 3.14 and Appendix B) is able to

accommodate such constraints (Box 6.13). The analysis suggests a

possible positive association as predicted.

Agresti (1990), Sokal and Rolf (1995) and Quinn and Keough (2002)

provide further details of analysing contingency tables. Albert (1997)

provides a Bayesian perspective, including the analysis of models in which

the number of non-zero interaction terms is specified a priori.

Box 6.13
Analysis of contingency tables

French and Westoby (1996) examined the relationship between the

occurrence of vertebrate dispersal and vegetative reproduction in

plants. Often the variable of interest when analysing contingency

tables is how the relative probabilities compare. For example, we can

analyse the plants with seeds that are dispersed by vertebrates to

determine the relative proportion that have vegetative reproduction.

This relative proportion can be expressed as odds, the proportion of

the plants with vegetative regeneration divided by the proportion that

regenerate only by seed. A positive association between vertebrate

dispersal and vegetative reproduction is indicated if the odds for
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vertebrate-dispersed species is greater than the odds for ant-dispersed

species (i.e. if the ratio of these odds is greater than one).

The WinBUGS code for the analysis is:

model

{

for (i in 1:4) # for each of the 4 cells in the table

{

# calculate relative frequency of species

log(p[i]) <- k1[Dispersal[i]] +

k2[Regeneration[i]] + k12[Dispersal[i],

Regeneration[i]]

}

pp <- sum(p[1:4]) # sum of the 4 values of p[]

for (i in 1:4) # for each of the 4 cells in the table

{

pr[i] <- p[i]/pp # re-scale so pr[] are

probabilities

}

odds_vert <- pr[4]/pr[2] # odds for vertebrate-

dispersed species

odds_ant <- pr[3]/pr[1] # odds for ant-dispersed

species

odds_ratio <- odds_vert/odds_ant # odds ratio

N <- sum(f[1:4]) # number of species � 88 in this

example

f[1:4] ~ dmulti(pr[], N) # numbers drawn from a

multinomial distribution

k1[1] <- 0 # parameters for reference classes set to

zero

k2[1] <- 0

k12[1,1] <- 0 # k12[]’s are the interaction terms

k12[1,2] <- 0

k12[2,1] <- 0

k1[2] ~ dnorm(0, 1.0E-6) # effect of dispersal

strategy

k2[2] ~ dnorm(0, 1.0E-6) # effect of regeneration

mechanism

k12[2,2] ~ dnorm(0, 1.0E-6) # interaction term

}
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Concluding remarks

This chapter extended the regression analyses of the previous chapter

to include categorical explanatory variables. The result is statistical

models that include ANOVA, ANCOVA and log-linear models of

contingency tables. Some of the examples demonstrate the use and

evaluation of prior information. Other examples that use uninformative

priors demonstrate the numerical congruence between frequentist and

Bayesian analyses.

Regression analysis, ANOVA and ANCOVA are closely related. They

are based on models of how the expected value of a variable changes

as a function of explanatory variables, and models the deviation of the

data around this expectation by using a specified probability distribution.

Bayesian analyses permit flexibility in which distributions are used and

arbitrarily complex forms for functional relationships. Therefore, typical

assumptions of linearity, equal variances and normal distributions can be

relaxed and modified as required.

The above code models regeneration mechanism and dispersal

mode as explanatory variables using reference classes (data and initial

values are given on the book’s web site). The posterior distribution of

the odds ratio has a 95% credible interval of [0.93, 7.7] and a mean of

3.0. This suggests a possible positive association between vertebrate

dispersal and vegetative reproduction, although the credible interval

encompasses one near its lower bound. This association is also

reflected in the interaction term (k12[2,2]), which has a 95%

credible interval of [–0.08, 2.1] that includes zero near its lower bound.

Quinn and Keough (2002) obtained a 95% confidence interval

[0.86, 6.9] for the odds ratio, which is similar to the 95% credible

interval. Based on a non-significant test of the null hypothesis of

independence (P¼ 0.09), Quinn and Keough (2002, p. 383) concluded

that ‘we have no evidence to reject the [null hypothesis] of

independence’. This is despite the observed association being positive

and consistent with that predicted. Null hypothesis testing can trap

researchers into concluding that a non-significant result means there

is no evidence for an effect.
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Case studies

The previous chapters described some of the main forms of statistical

modelling that ecologists are likely to encounter. The following chapters

build on these by describing more detailed examples and more compli-

cated forms of data analysis. These case studies are examples of the

complexity that can be included in Bayesian analyses with relative ease.





7

Mark-recapture analysis

Obtaining estimates of survival and fecundity rates is a fundamental

aspect of population ecology, because these parameters, along with

dispersal rates, control changes in local population sizes. The usual way

of monitoring fecundity and survival rates is to identify individuals in

some manner and then monitor them over time. If the individuals are

easily monitored, then researchers will know when they die or breed, and

it is easy to calculate the required parameters. For example, one could

estimate survival rates based on the proportion of individuals that survive

a given period.

It is usually difficult to monitor the survival and reproduction of

individuals precisely. It may be possible to know the exact fate of many

plants, but even some plants may not be apparent for several years before

reappearing with above ground parts (e.g. terrestrial orchids). For

animals, individuals routinely go missing, and it is difficult to be sure

whether an unobserved individual is alive or dead. When estimating

annual survival probabilities, we need to also estimate the probability of

detecting an individual given that it is alive.

Methods

Mark-recapturemethods have been developed to accommodate the chance

that an undetected individual is not dead but has simply been overlooked

(Lebreton et al., 1992). These methods are closely related to those used

to address the issue of detectability (Chapter 5; Mackenzie et al., 2002).

Mark-recapture methods work by specifically modelling the probability

of observing each individual as a product of both its survival rate and

the probability of observing the individual given that it has survived.
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For example, consider a study that lasts for three years. An individual

is observed in its first year (when first captured) and then observed in the

second, but not in the third. By observing the individual in the second

year, we know it was alive up to that point, but its subsequent survival is

uncertain. The individual might not be seen because it is dead or because

it is alive and undetected.

Alternatively, consider an individual that is seen in the first year, is not

seen in the second, but is seen again in the third. In this case, we know

that the individual was alive in the second year, but that it was not

detected because of imperfect detection rates. If such re-appearances

occur infrequently, then we have evidence to suggest that detection rates

are relatively high, because individuals are usually being seen when they

are known to be alive. However, if they occur frequently, then we can

be reasonably sure that detection rates are low and that the number of

individuals seen in a given year is substantially less than the number of

individuals that are likely to be alive. In this case, estimates of survival,

for example, would be underestimated unless the chance of detection was

taken into account.

There are two ways that mark-recapture models can be analysed in

WinBUGS. In the first, the process of survival and resighting are

described explicitly. In the second, the likelihood of the string of

observations for each individual is calculated for the given model, and the

string of observations for each individual is treated as a Bernoulli random

variable (using the so-called ‘ones trick’ in WinBUGS). Both produce

the same parameter estimates but have different advantages. The former

is more easily coded in WinBUGS and provides a more intuitive

description of the model. The latter can utilize more compact descriptions

of the data and permit calculation of DIC values within WinBUGS.

Both will be illustrated here, beginning with the more intuitive version

of the code.

First, we consider the observation history of each individual. If

observations in each period are coded as ones and absences as zeroes,

then the observation history can be represented as a series of Bernoulli

events. Given that an individual is alive in one year, its survival to the

next year can be treated as a Bernoulli event with probability equal to the

annual survival rate.

Then, given that it is alive, the probability of it being observed is equal

to its detectability (or resighting rate). However, if an individual is dead,

then the resighting rate for that individual is zero. Therefore, we can

simulate the survival from year to year, recording whether the individual
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is alive or not, and then simulate the resighting of individuals, with the

resighting rate conditional on the animal being alive. The mark-recapture

analysis of this intuitive form of the model is shown in Box 7.1.

One of the disadvantages of the intuitive form of the model is that

WinBUGS does not calculate DIC values for the model. This can be

overcome by specifying the likelihood of the capture history of each

Box 7.1
Mark-recapture analysis

The mark-recapture model below uses the variable alive[i, j] to

record whether individual i is alive in year j. For the year in which

the individual was first recorded, alive[i, j] is equal to 1 because

we know that the individual was alive at that time. Subsequent

survival is determined stochastically.

The probability of an individual being alive in the current year

(palive[i,j]) is equal to the annual survival rate (surv) if it was

alive last year, and zero if it is dead. Thus, palive[i,j] <- surv *

alive[i, j-1]. Then, its status in the current year is determined

by drawing it from a Bernoulli distribution. Similarly, for the

resighting history, the individual can only be observed if it is alive.

Thus, the probability of sighting an individual is equal to the annual

resighting rate if it is alive and zero if it is dead (psight[i,j] <-

resight * alive[i,j]). The actual observation of the individual

is determined stochastically.

The remainder of the code simply specifies the priors for the

survival and resighting rates.

model

{

for (i in 1:N) # for each bird

{

alive[i, First[i]] <- 1 # 1 means it is alive the

first time it was seen

for (j in First[i]+1:Years) # for each year after

the first

{

# palive = prob of remaining alive (=0 if

previously dead, =surv if alive)

palive[i,j] <- surv * alive[i, j-1]

# determine whether it is alive
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individual, and using the ‘ones trick’ in WinBUGS to generate the

required distribution (see Box 7.2).

The likelihood for the mark-recapture model needs to account for the

possibility that individuals are either alive or dead. For the period from

the first until the last sighting, it is known that the individual is alive, so

all absences can be safely assumed to be failures of detection. Thus, for

this period, the likelihood is equal to the probability of survival over the

time period multiplied by the probability of obtaining the given

detections and absences. The former part of this is simply the product

of the survival rates over this time period. If it is assumed that survival is

constant, then this product is equal to the survival rate (s) raised to the

power of t1, where t1 is number of years from the first sighting until the

last.

If, in this time, the individual is sighted d times (not including the first

time it was sighted, so it was not sighted t1�d times), then the likelihood

for the detection component is equal to rdð1� rÞt1�d, with r being the

alive[i,j] ~ dbern(palive[i,j])

# probability of resighting depends on whether it

is alive

psight[i,j] <- resight * alive[i, j]

# actual resighting determined randomly

Y[i, j] ~ dbern(psight[i,j])

}

}

# Uninformative priors for survival and resighting

rates

surv ~ dunif(0, 1) # uninformative

resight ~ dunif(0,1) # resighting rate -

uninformative

}

The above code requires that the data for each individual includes

its resighting history over all years (Y[]) and the year that it was first

observed (First[], see website for code). Further, it is necessary to

specify the initial values for the variable alive manually. To achieve

this, it is simplest to assume that all the individuals are alive in all

years after they were first sighted. The choice of these initial

conditions does not influence the samples from the Markov chain.
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Box 7.2
The ‘ones trick’ in WinBUGS

WinBUGS contains a wide range of in-built probability distributions.

However, it is common that other distributions might also be

required. These can be incorporated in WinBUGS, if their likelihood

function can be calculated, by using the so-called ‘‘ones trick’’

(see also the WinBUGS user manual).

The ‘ones trick’ works by first calculating the likelihood of each

datum explicitly. For example, consider a Poisson random variable.

The likelihood can be calculated from the probability distribution

function for Poisson random variables. All that is required is that the

likelihood is proportional to the probability. Thus, the likelihood of

an observation Y is:

Lð�Þ ¼ e�ll�=�!

For numerical convenience (WinBUGS calculates ln(Y!)

rather than Y!) and better precision, the above likelihood can be

written as:

Lð�Þ ¼ exp½�lþ � lnðlÞ � inð�!Þ�

For discrete distributions, these likelihoods can be

considered as the probability of obtaining the observed data.

For continuous probability functions, these likelihoods are

probability densities and can be greater than one. When using

the ‘ones trick’ in such cases, they need to be re-scaled (multiplied by

a constant) to ensure that they are not greater than one (see the

WinBUGS manual).

The tricky part of the ‘‘ones trick’’ is that each data point is

thought of as the outcome of a Bernoulli trial with the probability

success determined by the likelihood. A dummy variable is

introduced that specifies the outcome of the Bernoulli trial. This

variable takes a value of one for all observations; it specifies that the

observed data did actually occur. The code below illustrates the ‘ones

trick’ for a Poisson distribution, using the same model and data as in

Chapter 3 (Box 3.4).

model

{

for (i in 1:10) # for each of the 10 data points
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annual resighting probability conditional on survival Thus, for the first

period (from the first sighting until the last), the likelihood is equal to:

L1 ¼ st1rdð1� rÞt1�d :

For the period following the last sighting, the individual may be alive

or dead. If it died, it could have died in any one of the periods following

the last sighting up to the final period of observation. If there was a single

year in which the individual was not seen, then the likelihood for this

period of time would be equal to the probability it died within that year

plus the probability that it survived and was not seen. Thus, the

likelihood would equal (1�s)þ s(1�r). If the individual was not seen for

two years, then the likelihood would equal the probability it died in the

first year (1�s), plus the probability it survived the first year and was not

seen but died in the second, plus the probability it survived both years

{

p[i] <- exp(-m + y[i]*log(m) + logfact(y[i]))

# calculate the likelihood of the data (y[i]),

given the mean m

Dummy[i] <- 1 # specify that the data were observed

Dummy[i] ~ dbern(p[i]) # treat this observation

as a Bernoulli outcome

}

# prior for m

m ~ dlnorm(0.0, 1.0E-6) # a broad uninformative

prior for the mean

}

Because Dummy[i] is set equal to 1, WinBUGS tends to

generate values of p[i] that are as large (i.e. as close to 1)

as possible.

A total of 100 000 samples after discarding the first 10 000

produced an estimate of 2.5, with 95% credible intervals of 1.6�3.6.

The original result had the same mean and credible interval (Box 3.4).

Thus, the two approaches produce equivalent results, although the

use of WinBUGS’ in-built functions (e.g. dpois) is usually more

efficient. However, the ‘ones trick’ and the related ‘zeroes trick’ (see

the WinBUGS user manual) are useful when the desired distribution

is not available.
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and was not seen in either. Thus, the likelihood for the second component

is equal to (1�s)þ s(1�r)(1�s)þ s2(1�r)2.

More generally, if the individual has not been seen for t2 years, then the

likelihood is equal to:

L2 ¼ ð1� sÞ
Xt2
i¼1

½sð1� rÞ�i�1
þ ½sð1� rÞ�t2 :

The likelihood for the entire sighting history is equal to the product of

L1 and L2. The WinBUGS code for this analysis is shown in Box 7.3.

Box 7.3
Explicit calculation of the likelihood

for mark-recapture models

The code is given below for analysing a mark-recapture model with

constant resighting and survival rates. This uses the ‘‘ones trick’’ by

explicitly calculating the likelihood of the data. Although less

intuitive than the code in Box 7.1, it produces equivalent parameter

estimates and permits the calculation of the DIC value within

WinBUGS. An additional advantage is that the data can be

condensed by counting the number of individuals with each of the

different resighting histories. In the case of female European dippers,

this reduced the data file for the resightings from 130 lines for

individuals to 28 lines for the different observed resighting histories.

The main advantages of this reduction are the reduced scope for

errors when entering the data and the faster evaluation of the model

in WinBUGS. Additionally, it is no longer necessary to provide the

relatively cumbersome initial values for the variable alive.

model

{

for (i in 1:N)

{

# number of years in which there were resightings

resightings[i] <- sum(Y[i, First[i]:Last[i]])-1

# likelihood up to last resighting

L1[i] <- pow(surv, Last[i]-First[i]) * pow

(resight, resightings[i]) * pow(1-resight,

Last[i]-First[i]-resightings[i])
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The mark-recapture model is applied in Box 7.4 to data on European

dippers, an aquatic passerine for which there is a data set that is

used extensively for illustrating and teaching mark-recapture analysis.

A model with an uninformative prior is compared to one with an

informative prior based on the regression of survival of passerines versus

body weight (Box 6.6).

# L2a’s are for the likelihoods for contingency of

death in each year since last resighting

L2a[i, Last[i]] <- 0 # this term is necessary in

case Last[i]=Years

for (j in Last[i]+1: Years)

{

L2a[i,j] <- pow(surv*(1-resight), j-Last[i]-1)

}

# L2b’s are the likelihoods for survival since

last resighting

L2b[i] <- pow(surv*(1-resight), Years-Last[i])

# L’s are the overall likelihood - prob of surv up

to last sighting times the sum of all possible

contingencies (death or survival over the next

years)

L[i] <- L1[i] * ((1-surv)*sum(L2a[i, Last[i]:

Years]) + L2b[i])

# uses a dummy variable of ones as the ‘‘data’’ -

‘‘the ones trick’’ - see WinBUGS manual

Dummy[i] <- 1

phi[i] <- pow(L[i], n[i]) # likelihood for n[i]

individuals

with this

sighting history

Dummy[i] ~ dbern(phi[i])

}

# Priors

surv ~ dunif(0, 1) # annual survival - uninformative

resight~dunif(0, 1) # resighting rate -

uninformative

}
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Box 7.4
Mark-recapture analysis of female

European dippers

Here we analyse the annual survival of European dippers (Cinclus

cinclus), using data from Marzolin (1988) obtained over seven years

for 130 individuals (McCarthy and Masters, 2005). With an

uninformative prior, the posterior distribution for survival rate has a

mean of 0.55 with 95% credible interval of 0.48�0.62.
However, in the previous chapter, by using information on body

mass and annual survival for other European passerines, we were

able to predict the annual survival of European dippers using only

body mass (Box 6.6). This prediction can be used as an informative

prior, by using a normal distribution with mean of 0.57 and standard

deviation of 0.073 (precision¼ 187). With this prior, the posterior

distribution for annual survival is 0.56 with 95% credible interval of

0.49�0.62. The information on body weight barely improved the

estimate because the data are much more informative than the prior.

The DIC values for these two models are very similar (344.3 and

343.9 for the uninformative and informative priors) because the data

dominates the posterior distribution and both priors are consistent

with the data.

The potential value of the prior can be examined by repeating

analysis but only using the first 3 to 6 years of data. This illustrates

how the prior can contribute to the estimate when fewer data are

available. If only 3 years of data were available, the 95% credible

interval when prior information is ignored had a width of 0.59.

This is more than double that obtained when body mass is used

(0.26), illustrating the increased precision provided by the prior.

If prior information is ignored, 5 years of data collection would be

required to obtain a more precise estimate than the one based on

body mass alone (Fig. 7.1). Therefore, at the start of the

mark-recapture study, the information on body mass is equivalent

to 4 or 5 years of field data. In contrast, the width of the credible

interval is 0.138 after 6 years when using prior information and is

0.141 after 7 years without prior information. By the end of the 7 year

study, the improvement in precision by using the prior information is

equivalent to adding one year of data in the mark-recapture analysis.

Thus, using prior information derived from body mass is a very

inexpensive way of adding precision to the study. In this example, the
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It is relatively easy to modify these models to permit annual variation

in the resighting or survival rate. In this case, rather than raising survival,

for example, to the power of t to provide the probability of survival over

t years, it would be necessary to calculate the product of all values of si
over the relevant years, where si is the survival rate in year i.

Fig. 7.1 Estimated annual survival of female European dippers using 7 years

of data and an uninformative (open symbols) and informative (closed

symbols) prior. The informative prior was based on a regression of annual

survival of European passerines versus body weight. The circle is the mean

of the posterior distribution and the bars are 95% credible intervals

(modified from McCarthy and Masters, 2005).

prior information was worth between one and five years of field data

at the cost of reviewing and analysing data in the literature.
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8

Effects of marking frogs

The analysis in Chapter 7 used data from individually identified animals

to determine annual survival rates. Individual identification is usually

achieved by marking the animals in some way. Birds are often marked by

placing colour bands around their legs, with different colour combina-

tions used for each individual. In this way, individuals may be recognized

without the need for recapture.

An assumption of the analyses is that the marking method does not

influence the animals. If the marking method does influence the animal,

it can have consequences for both the conclusions drawn from the study

and perhaps ethical implications. Some marking methods can have

remarkable influences. For example, red colour bands in birds can influ-

ence reproductive performance (Burley et al., 1982; Hunt et al., 1997).

Other impacts may be more severe. For example, penguins with flipper

tags tend to have lower breeding probabilities and reproductive rates

(Gauthier-Clerc et al., 2004).

The most common method of marking amphibians is to remove a

unique combination of toes (or part thereof ) to identify each individual.

A total of eight toes from a full complement of 18 have been removed

from some individuals in some studies, but almost 1000 individuals can

be marked by removing up to only three toes (Hero, 1989; Waichman,

1992).

Not surprisingly, there has been some concern that the removal of

toes could have adverse effects on the individuals (May, 2004). Various

impacts have been reported from inflammation and infection of the

wounded digits, to apparent reductions in the chance of recapturing

the marked individuals. However, results are somewhat variable, with

some authors reporting adverse effects while others did not find

such effects.

207



One of the most uncertain and important aspects to the question

of possible adverse impacts is that toe clipping may influence the return

rate. The return rate is the product of the survival rate and the recapture

rate (conditional on survival). If the return rate declines with increase

in the number of toes clipped, then parameter estimates from mark-

recapture studies are likely to be biased. Furthermore, there would be the

distinct possibility that toe clipping increases the mortality rate of

individuals.

A reduction in the return rates of toe-clipped frogs and toads have been

reported in some cases (e.g. Clarke, 1972; Humphries, 1979; Williamson

and Bull, 1996), but not in others (e.g. Lemckert, 1996; Williamson and

Bull, 1996). Parris and McCarthy (2001) helped to resolve this apparent

inconsistency by demonstrating that absences of statistically significant

effects in some previously published studies could be attributed to a lack

of statistical power rather than absences of actual effects. Based on fitted

regression lines, return rates were estimated to decline by 6�18% for each

toe removed after the first (Parris and McCarthy, 2001). However, this

analysis did not provide meaningful confidence intervals for the estimate,

or analyse how the impact of toe clipping might change with the number

of toes removed.

Here, a Bayesian re-analysis of the data used by Parris and McCarthy

(2001) is presented, illustrating a case study conducted by McCarthy and

Parris (2004). The Bayesian analysis provides a relatively easy way to

include more biologically relevant statistical models that actually esti-

mate the effect of toe clipping on a per toe basis. The analysis permits the

influence of toe clipping to increase or decrease with the number of toes

removed, thereby demonstrating a relatively consistent effect of toe

clipping on frogs and toads.

The data were obtained from four previously published studies of

the influence of toe clipping on the return rate of frogs (see Parris and

McCarthy, 2001). Williamson and Bull (1996) studied 1333 individuals

of Crinia signifera with up to seven toes removed from each individ-

ual. Crinia signifera is a small, ground-dwelling frog from eastern

Australia that grows up to 30 mm snout-vent length (SVL). Lemckert

(1996) also studied C. signifera, with 306 individuals and between two

and four toes removed from each individual. Clarke (1972) reported

the effect of removing up to eight toes from 733 individuals of Bufo

fowleri, and Lüddecke and Amézquita (1999) reported effects of toe-disk

clipping on the return rate of 1307 individuals of Hyla labialis, with

up to seven toe-disks removed from each individual. Bufo fowleri is a
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relatively large, ground-dwelling frog from the eastern United States

(up to 80 mm SVL), while H. labialis is a medium-sized tree frog from the

Colombian Andes (up to 55 mm SVL). Extra information was available

in some of the studies, such as the return rate for different sexes and

years, and different size and age classes. This extra information was used

in the statistical analysis to account for some of the variation in the data.

The statistical models investigated are described below.

Logistic regression

The original statistical model used by Parris and McCarthy (2001) was

based on logistic regression. This had the advantage over previous

analyses (such as correlation analysis and linear regression) of accounting

for the binomial nature of the data; each individual either returned or

it did not, and the differences in sample sizes for different numbers of

toes clipped could be accommodated. Logistic regression (Chapter 5)

relates the return rate of frogs to the number of toes clipped using the

formula:

lnðRðnÞ=½1� RðnÞ�Þ ¼ Aþ Bn,

where R(n) is the expected return rate of frogs that have had n toes

removed, B is the regression coefficient for the effect of toe clipping and

A is a value that may include terms for other covariates (such as yearly

differences in return rate). When B<0, the return rate decreases with the

number of toes removed.

The logistic equation illustrates one of the disadvantages of using

logistic regression, because the variable of most interest (the change in the

return rate for each toe removed) is not included explicitly in the

equation. The change in return rate can be estimated by examining how

the predicted return rate changes with each additional toe that is removed

beyond the first. However, in the analysis of Parris and McCarthy (2001)

this procedure would lead to 87 different estimates of the effect of toe

clipping, which would be difficult to interpret. Parris and McCarthy

(2001) determined the change in return rate with each toe removed by

inspecting the fitted regression lines. This provided useful information on

the effect of toe clipping, but there was some subjectivity in estimating the

magnitude of the effect, making it impossible to place meaningful

confidence intervals on the estimate.
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Model A

An alternative model can be developed by assuming that the return rate

changes by a constant proportion for each toe removed. If the removal of

a toe causes a constant change in the return rate (m), then the return rate

will equal R(0)� (1þm) following the removal of one toe. If a second toe

is removed, this return rate (R(0)� (1þm)) will be further changed

and the return rate will equal R(0)� (1þm)2. It follows that the return

rate following the removal of some number of toes (n) will equal

R(0)� (1þm)n. If there is a reduction in return rate due to mortality,

m will be negative, �m will equal the proportion of frogs that die

following the removal of each toe, and 1þm will be the chance of

surviving the removal of a toe. If toe clipping causes a behavioural

response such as aversion to recapture, or migration away from the site of

initial capture, then m would be interpreted as the change in the

probability of recapture (for each toe) given that the frog is alive. Positive

values of m would indicate that removing toes increases the return rate,

perhaps by making the individuals less mobile and more likely to remain

in the study area. A value of zero for m represents no effect of toe

clipping. Thus, the first model used in the re-analysis (Model A) was:

RðnÞ ¼ Rð0Þ � ð1þmÞ
n:

To account for different return rates for different types of frogs,

different values of R(0) were estimated for frogs of different sizes,

sexes, or ages where such data were provided by the original authors. The

analysis also distinguished between individuals caught in different years

to account for annual variation in return rates. For the data of

Williamson and Bull (1996), differences between juveniles, adult males

and adult females in each of three years were considered. For the data of

Clarke (1972), the analysis distinguished between large and small individ-

uals. Differences among years and sex were examined for the data of

Lüddecke and Amézquita (1999). Lemckert (1996) did not distinguish

among different classes of C. signifera.

In addition to defining the return rate, it was assumed that the fate of

each individual in the same class (i.e. individuals with the same number of

toes clipped, of the same age, etc.) was determined independently of the

other individuals. As a result, the number of frogs recaptured was drawn

from a binomial distribution (Appendix B), with variance equal to

NR(1�R), where N is the number of frogs in the class that were marked

and released, and R is their return rate.
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Models B and C

Model A assumed that the influence of toe clipping was the same for each

toe removed. However, the effect of removing a toe may be greatest for

the first toe removed (diminishing impact), or the effect per toe may

increase with each toe removed (increasing impact). It is possible to

incorporate such a modification to the preceding equation. In this case,

the effect of toe clipping may be expressed as:

RðnÞ ¼ Rð0Þ � ð1þm1Þ � ð1þm2Þ � . . .� ð1þmnÞ,

where mn is the change in return rate when removing the nth toe. A linear

function modelled the change in m, so mn¼ aþ bn. More complex

functions could be used, but this choice has the advantages of simplicity

and ease of interpretation. The estimated parameters for the chosen

function were used to determine if there was an increasing or diminishing

impact. In addition to analysing the data sets separately (Model B), the

data were also pooled from the four studies and the values of mn

estimated under the assumption that the parameters a and b were the

same for all studies (Model C).

The WinBUGS code for conducting the analysis of Model B is given in

Box 8.1. A total of 100 000 samples from the posterior distributions for

each of the models was generated after discarding the initial 10 000

samples as a ‘burn in’. The mean of each of the parameters was

calculated, as was the 2.5th and 97.5th percentiles of the distribution to

represent a 95% credible interval.

For the analysis assuming a constant effect of toe clipping for each

toe removed (Model A), the results were broadly consistent with those

of Parris and McCarthy (2001), with return rates reduced by approxi-

mately 4�11% for each toe removed (shown previously in Fig. 2.3).

There was strong evidence for a negative effect of toe clipping in the

studies of Williamson and Bull (1996), Lüddecke and Amézquita

(1999) and Clarke (1972), because the upper limit of the 95% credible

intervals were less than zero. This was equivalent to the conclusion

of Parris and McCarthy (2001), who determined that the observed

decline (or a larger decline) was unlikely to have occurred if the

number of toes removed did not affect the return rate. For the study of

Lemckert (1996), the negative mean provided some evidence that

toe clipping reduces return rates (Fig. 2.3), although it is possible

that there is no effect or that toe clipping increases return rates

(the credible interval encompassed zero). The wide credible interval for
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Box 8.1
Analysing return rates with a non-linear model

The models of the effect of toe clipping on frogs were analysed using

uninformative priors. It would be possible to incorporate reports of

infection, anecdotal accounts, and intuition that suggest that toe

clipping does not increase return rates. In most cases, the results were

not sensitive to this choice because the data did not indicate a

possible positive effect of toe clipping on return rates. The upper

bound on the change in return rate (m) was set to ensure that the

return rate for the maximum number of toes clipped was not greater

than 1; the lower bound on m was �1. The prior distribution was

uniform between �1 and 1 for a, and between � 0.2 and 0.2 for b.

These limits for the prior distributions did not constrain the posterior

distributions.

In addition to the models described in the text (Models A, B,

and C), the logistic regression models used by Parris and McCarthy

(2001) were analysed, using uninformative normal priors (mean of 0

and standard deviation of 1000) for the regression coefficients. The fit

of the various models was compared using DIC (Spiegelhalter et al.,

2002; Chapter 4).

The following is the WinBUGS code used to analyse Model B.

The variable change is modelled as a linear function of the number

of toes clipped. The analysis is ‘centred’ around three toes clipped

(change¼aþb�(Toes-3)) to reduce autocorrelation of the para-

meter estimates and correlation among the parameters, particularly a

and b (Box 5.8). A model using change¼aþb�Toes produces

identical results, but the sampling is less efficient.

model

{

for(i in 1: NGROUPS) # a group is a collection of

individuals with the same

characteristics (same

study, sex, number of toes

clipped, etc.)

{

y[i] ~ dbin(RR[i], n[i]) # no. returning is a

binomial sample

RR[i] <- RR0[classID[i]]*relRR[study[i],

Toes[i]]
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# return rate depends on the class and no. of toes

removed

# RR0[i] is return rate of class i if no toes

removed

# relRR[i, j] is return rate of study i with j toes

removed, relative to return rate if no toes

removed RR0

}

for (j in 1:NSTUDIES) # the relationship between

toes clipped and change in

return rate is allowed to

vary among studies in

Model B

{

change[j, 1] <- a[j] + b[j]*(1-3) # change in RR

with 1 toe

removed

relRR[j, 1] <- 1 + change[j, 1]

# relative return rate if one toe removed

for (i in 2:MAXTOES)

{

change[j, i] <- a[j] + b[j]*(i-3) # change in RR

with i toes

removed

relRR[j, i] <- relRR[j, i-1]*(1+change[j, i])

# relative return rate if i toes removed

}

}

# PRIORS - uninformative

for (i in 1: NSTUDIES)

{

a[i] ~ dunif(-1, 1)

b[i] ~ dunif(-0.2, 0.2)

}

for(i in 1: NCLASSES)

{

RR0[i] ~ dunif(0, 1)

}

}
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this study was consistent with its low statistical power (Parris and

McCarthy, 2001).

As discussed in Chapter 2, by using credible intervals to present the

results, the predicted impacts of toe clipping can be compared to values

that might be considered biologically important, not just statistically

significant (Fig. 2.3). For example, we can be confident that the reduction

in return rate was greater than 0.03 (equivalent to one frog not returning

due to toe clipping for every 33 toes removed) for three of the four

studies. In the other study (Lemckert, 1996), the results were also

consistent with an impact of at least 1 in 33.

The analysis in which the effects of toe clipping were permitted to

change with each toe removed (Model B) provided evidence for increas-

ingly negative effects with each toe removed in the studies of Williamson

and Bull (1996) and Lüddecke and Amézquita (1999) (Fig. 8.1). The

study of Clarke (1972) suggested an increasing impact, although the

possibilities of no impact or a declining impact could not be eliminated

given the width of the credible intervals. The data from Lemckert (1996)

Fig. 8.1 Change in return rate for each toe removed assuming Model B for

each of the four studies. The circles are the mean of the posterior distribution

and the crosses are the limits of the 95% credible intervals (from McCarthy

and Parris, 2004).
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provided little insight into this particular question, with few data to

indicate a trend and relatively wide credible intervals.

The influence of toe clipping on return rates appeared to be relatively

consistent across the different studies, because the credible intervals for

the different studies largely overlapped (Fig. 8.1). Thus, Model C seemed

to be appropriate for the data. Removing the second toe was estimated

to reduce return rates by approximately 3.5% (m2¼�0.035), with the

impact increasing to approximately 30% for the eighth toe (m8¼�0.3)

(Model C). These impacts were in addition to the effect of removing

previous toes. Because the 95% credible interval for toe number two had

an upper bound of approximately zero, it is possible that removing a

second toe could have a negligible effect on the return rate. There are no

animals in the data sets without toes removed, so it is not possible to

estimate the impact of removing the first toe. Extrapolation suggests this

impact may be small (Fig. 8.2), although this should be regarded as

speculative because we cannot be sure that the relationship is even

approximately linear beyond the range of the data.

Models B and C, in which the effect of toe clipping increased with each

toe removed, fit the data better than Model A, based on the calculated

DIC values (Table 8.1). These two models were largely indistinguishable

on the basis of DIC, with a difference of one unit. Model A in turn

provided a better fit than the original logistic regression model of Parris

and McCarthy (2001).

Fig. 8.2 Change in return rate for each toe removed assuming Model C.

The circles are the mean of the posterior distribution and the crosses are

the limits of the 95% credible intervals (from McCarthy and Parris, 2004).

Models B and C 215



The results of the re-analysis of published data on the effects of toe

clipping on the return rate of frogs are consistent with those of Parris and

McCarthy (2001). However, the re-analysis also suggests that apparent

differences among previous studies in the effect of toe clipping on return

rates may be due to the different number of toes that were removed from

individual animals. The model with a consistent, linear change in the

effect of toe clipping with each toe removed (Model C) demonstrated that

the impact of clipping each toe increases as more toes are removed,

corresponding to a rapidly compounding effect on the behaviour and/or

survival of the marked frogs. Frogs have 18 toes in total, four on each of

the fore feet and five on the hind feet. As well as assisting with balance

and locomotion, the enlarged, adhesive disks on the toes of many tree

frogs enable them to climb steep or vertical surfaces. It is perhaps not

surprising that the fewer the toes a frog still possesses, the greater the

effect of removing one more could have on its probability of return.

Table 8.1. Values for the deviance information criterion (DIC) indicating

the goodness of fit of the original logistic regression of Parris and

McCarthy (2001) and the three new models (Models A, B and C).

Model DIC

Logistic regression 532.6
A � constant effect of toe clipping 522.9
B � changing effect varying among studies 506.2
C � changing effect consistent across studies 507.2
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9

Population dynamics

WinBUGS is essentially a programming language that is particularly

useful for generating a range of probability distributions. As such, it can

be used to simulate a range of stochastic models. In ecology, some of the

most common forms of stochastic models are those for predicting the

viability of species (Shaffer, 1981; Gilpin and Soulé, 1986; Burgman et al.,

1993).

There are several advantages of using WinBUGS to simulate

population dynamics. One is the broad range of probability distributions

that is available. Another is that it is relatively easy to extend the

simulation to consider how uncertainty in the parameter estimates for the

model influences uncertainty in its predictions. This use of WinBUGS

is illustrated here with a model of the dynamics of mountain pygmy

possums.

Mountain pygmy possums

Mountain pygmy possums are small (adult body weight of 40�45 g)

terrestrial possums inhabiting alpine regions of southeastern Australia.

The species occurs in the Snowy Mountains in New South Wales,

the Hotham/Bogong region in Victoria, and in the vicinity of Mt Buller in

Victoria. Populations in these regions are variously fragmented. Typical

breeding areas are boulder fields above the snowline (approximately

1500m above sea level). The species is omnivorous, eating a range of

invertebrates (Bogong moths in particular) and plant matter (Mansergh

et al., 1990; Smith and Broome, 1992). Breeding occurs in spring, with a

single litter of four offspring being produced. Males migrate from the

breeding areas by the end of summer, and typically over-winter in areas
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up to several kilometres away. Females are comparatively sedentary

(Mansergh and Broome, 1994). Males and females hibernate over winter

in crevices below the snow (Broome and Geiser, 1995; Körtner and

Geiser, 1998).

The model developed here only considered females, because they

appear to be the sex that limits population growth. Further, the actual

age of individuals was ignored. This is partly because animals born in the

previous summer are able to breed in the next breeding season and partly

because changes in survival and fecundity rates with age are not known.

One of the most important aspects of a population model is to

determine how population growth rates change with population size. For

the mountain pygmy possum, females tend to be territorial, and there is

likely to be competition for sites suitable for over-wintering. Therefore,

density dependence was modelled using a Ricker function, in which the

population growth rates decline as an exponential function with

increasing population size.

The second aspect of the dynamics of the species to consider is that

mountain pygmy possums typically have small population sizes.

Consequently, there can be considerable variation in the population

growth rate that only arises because of the chance birth and death of

individuals. When population size is small, the population growth rate

can vary even when the underlying chances of raising offspring and

surviving do not change. This phenomenon is known as demographic

stochasticity. The Poisson distribution is useful for incorporating

demographic stochasticity (Akçakaya, 1990) and is used in this model.

Finally, environmental variation is included in the model by allow-

ing the growth rate to vary annually. Such variation may occur, for

example, because the level of snow cover fluctuates from year to year,

as does the timing of its melting. This variation is likely to affect the

ability of the mountain pygmy possum to hibernate over winter and

conserve its fat stores. Additionally, the abundance of its food is also

likely to vary annually. Environmental variation was included in the

model by adding a normal random deviate to the expression for

population growth rate. Thus, the expected population growth rate was

given by:

lt ¼ expð�½1�Nt=K � þ "tÞ,

where a is the maximum exponential growth rate, K is the equilibrium

population size (the population size such that lt¼ 1 when et¼ 0), Nt is the
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population size at time t, and et is a normal random variable with mean

zero and standard deviation s.
The above model has three parameters that need to be estimated (a, K

and s). The data used to estimate these parameters and the associated

WinBUGS code is given in Box 9.1.

Box 9.1
Estimating parameters of a population model

The data used to estimate the parameters of the model were obtained

by Linda Broome and her various colleagues and assistants in the

Snowy Mountains of New South Wales. Details of the data collection

and the actual values are given in McCarthy and Broome (2000).

Data were available from four sites for 12 or 11 years at each (giving

data on 11 or 10 growth rates for each site). The data in this example

are compact, so they are also provided here.

The priors for the model are relatively uninformative. The

equilibrium population sizes were chosen to be uniform between

1 and 50, with a different equilibrium for each population. The

maximum exponential population growth rate (alpha in the

code below) was chosen to be uniform between zero and ln(3).

The upper limit was chosen because females produce up to four

young per year. Assuming the sex ratio is unity means that up to two

female offspring are born. If all the mothers and female offspring

survive (which is very unlikely), then the population size could at

most triple each year. Therefore, alpha cannot conceivably be

greater than ln(3). The code in other respects is straightforward. The

model loops through the four populations and the years of data for

each population.

model

{

for (j in 1:4) # for each population

{

for(i in 1:T[j]) # for each year

{

# env stoch in population growth rate, drawn from

normal

ev[j, i] ~ dnorm(0, tau)
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# per capita growth rate is dens dep - Ricker

Er[j, i] <- exp(alpha*(1 - N[j, i]/KB[j]) +

ev[j, i])

# lambda equal to number this year times per capita

rate

lambda[j, i] <- N[j, i] * Er[j, i]

# number next year drawn from Poisson with mean

lambda � demo. stoch.

N[j, i+1] ~ dpois(lambda[j, i])

}

}

#PRIORS

# alpha is maximum exponential growth rate

alpha ~ dunif(0, 1.0986)

# K’s are carrying capacities of the 4 sites

for (i in 1:4)

{

K[i] ~ dunif(1, 50)

}

# st. dev. in growth rate due to env. stoch.

sd ~ dunif(0, 0.5)

tau <- 1/(sd * sd)

}

list(N = structure(.Data = c(

32, 28, 29, 39, 20, 24, 22, 35, 20, 36, 34, 40,

25, 25, 24, 24, 28, 15, 30, 36, 27, 31, 20, NA,

7, 11, 8, 14, 11, 5, 12, 6, 10, 12, 19, NA,

12, 16, 8, 8, 16, 11, 10, 6, 4, 10, 12, NA),

Dim = c(4, 11)),

T = c(11, 10, 10, 10))

The posterior distributions of the maximum growth rate

(alpha), the standard deviation and a representative equilibrium

population size (population 1) are shown in Fig. 9.1. The effect

of limiting alpha to be no more than ln(3) is seen by the sharp

cut-off at this value. The other parameters were not constrained

by their priors.
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The code in Box 9.1 provides parameter estimates for the population

model. The parameters could be exported from WinBUGS and used

as input for a population model written in a separate package to predict

future population sizes. However, it is also possible to do these predic-

tions in WinBUGS. For illustration, predictions were made over a

20-year period and for a population with an equilibrium population

Fig. 9.1 Posterior distributions for the mountain pygmy possum model. The

panels are for the maximum population growth rate, standard deviation of

the growth rate and the equilibrium population size of population 1.
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size of 80 individuals. Of particular interest are the risk of declining to

half the original population size (40 individuals or smaller) and the

expected minimum population size (McCarthy, 1996; McCarthy and

Thompson, 2001) within the 20-year period. The WinBUGS code for the

analysis is given in Box 9.2.

Box 9.2
Posterior distributions for predictions of a population model

The following code predicts the risk of falling to 40 individuals or

fewer (qe40) at some time within the next 20 years and the expected

minimum population size (EMP). The first half of the code is

identical to that in Box 9.1, and is used to estimate the parameters for

the predictions. The second half of the code runs a specified number

of iterations (e.g. ITS=1000) of the stochastic model to predict the

risks of decline. The smallest population size within a 20-year period

(i¼ 1 corresponds to time zero) is recorded using the ranked()

function. A quasi-extinction (Ginzburg et al., 1982) event is recorded

if this minimum is less than or equal to 40. The minimum values

averaged over the ITS iterations provide the expected minimum

population size.

model

{

for (j in 1:4) # for each population

{

for(i in 1:T[j]) # for each year

{

# env stoch in population growth rate, drawn from

normal

ev[j, i] ~ dnorm(0, tau)

# per capita growth rate is dens dep - Ricker

Er[j, i] <- exp(alpha*(1 - N[j, i]/K[j]) +

ev[j, i])

# lambda equal to number this year times per capita

rate

lambda[j, i] <- N[j, i] * Er[j, i]

# number next year drawn from Poisson with mean

lambda - demo stoch

N[j, i+1] ~ dpois(lambda[j, i])

}
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}

#PRIORS

# alpha is maximum exponential growth rate

alpha ~ dunif(0, 1.0986)

# K’s are carrying capacities of the 4 sites

for (i in 1:4)

{

K[i] ~ dunif(1, 50)

}

# st. dev. in growth rate due to env. stoch.

sd ~ dunif(0, 0.5)

tau <- 1/sd/sd

# the code above is identical to that in Box 9.1

# the following code is used to predict risks of

decline

Kpred <- 80 # equilibrium population size

for (its in 1:ITS) # for each of the ITS iterations

{

fem[its, 1] <- Kpred # initial pop size

for (i in 2:21) # for a 20 year period

{

# environmental stochasticity

envstoch[its, i] ~ dnorm(0.0, tau)

# predicted population size

pred[its, i] <- fem[its, i-1] * exp(alpha*

(1 - fem[its, i-1]/Kpred) + envstoch[its, i])

# demographic stochasticity - actual number

drawn from Poisson

fem[its, i] ~ dpois(pred[its, i])

}

# minimum pop size over 20 years

mini[its] <- ranked(fem[its, 1:21], 1)

# smallest pop recorded

q40[its] <- step(40-mini[its]) # =1 if the minimum

<= 40, 0 otherwise

}

EMP <- mean(mini[])/Kpred # EMP as a fraction of the

initial

qe40 <- mean(q40[]) # quasi-extinction risk

}
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The posterior distribution for the risk of decline to 40 individuals (or

fewer) was very wide, indicating considerable uncertainty in this estimate

(Fig. 9.2). This is typical of efforts to assess risks (e.g. Ludwig, 1996).

In this case, the risk of decline has a mode of almost zero, but the actual

risk could be more than 0.75.

The expected minimum population size (EMP) can be predicted much

more reliably than risks of decline. In this case, the posterior distribution

for EMP (as a proportion of the initial population size) had a mean of

0.6, with the actual value almost certainly between 0.4 and 0.8 (Fig. 9.3).

Fig. 9.2 Posterior distribution for the risk of a population of mountain

pygmy possums falling to 40 individuals or fewer at some time within the

next 20 years.

Fig. 9.3 Posterior distribution for the expected minimum population size of

mountain pygmy possums within the next 20 years.
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Subjective priors

Because priors can have an important influence on the posterior

distributions, their construction needs to be logical and repeatable.

Subjectively generated priors, when combined with new data using

Bayes’ rule, indicate how a person’s belief in parameter values should be

updated to accommodate the new data. It is not surprising that such

subjective treatments of knowledge raise concerns among scientists (e.g.

Dennis, 1996). Is one person’s subjective judgement a particularly valid

basis for making scientific inferences?

Subjective judgement is useful for science in several circumstances.

These include using subjective judgement to help interpret data, under-

standing how data can turn differences of opinion into agreement, and

using subjective judgements coherently and explicitly in cases where time,

resources and data are limited. Bayesian methods in these cases provide

a more transparent treatment of that subjective judgement than either

pretending it does not exist or considering the judgements qualitatively.

An advantage of a Bayesian approach is that the subjective judgement can

be combined logically with data. However, the use of subjective judgement

is not inherently Bayesian; other approaches are available (Ayyub, 2001).

The process of eliciting subjective judgements should be documented and

repeatable. Individual elicitation case studies differ in how questions

are asked, how differences of opinion are handled, and how elicited

information is used and combinedwith other sources of data (Ayuub, 2001;

Burgman, 2005).

Eliciting probabilities

Elicited probabilities represent a person’s beliefs in an event occurr-

ing. The simplest method of eliciting probabilities is to simply ask
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someone: ‘What is the probability of an event occurring?’ (Morgan and

Henrion, 1990). Such questions can be difficult for people to answer,

so various procedures have been developed to help that process. One

procedure for eliciting a probability is to use an analogy to betting (Jaynes,

2003; Burgman, 2005). For example, if we wished to estimate the chance of

an algal bloom, we could give a person a ticket that is worth a $100 reward

if the algal bloom occurs. However, we also offer the person the chance of

swapping the ticket for a reward that is payable regardless of the outcome

but before knowing whether the bloom occurred or not. We begin by

offering a small reward and increase it until the person is willing to sell

their ticket. This point of indifference is the selling price (XS) and the

person’s estimate of the probability of the algal bloom would equal:

pS ¼ XS=100:

Of course, the scenario could be reversed by telling the person that we

have a ticket that is worth $100 if the algal bloom occurs, and then ask

if she would be willing to buy the ticket for a small value. This value is

increased gradually until they are no longer willing to buy it. This buying

price, XB, can also be used to estimate the probability of the algal bloom

pB ¼ XB=100:

Interestingly, pB is usually less than pS, which is just one example of how

the format of the question can influence the answers (Burgman, 2005).

Handling differences of opinion

In eliciting probabilities it is common to ask the opinion of more than one

person, and only rarely will they agree completely. At a very basic level,

the result of elicitation depends on whom one asks, so the process of

choosing subjects is important. People honestly perceive probabilities

differently for several reasons, including their different experiences and

level of expertise, their stake in the outcome, the magnitude of the event,

and different tendencies towards overconfidence (Burgman, 2005). For

example, someone concerned about adverse effects of an algal bloom

might believe that the probability of a bloom is higher than someone

whose management actions contribute to its occurrence.

Behavioural and numerical methods can help to resolve differences

of opinion. Behavioural methods involve sharing of answers followed by
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clarification, re-evaluation and another round of elicitation. Numerical

aggregation weights the different responses in some way to arrive at an

average or bounded result. The weights assigned to different experts can

be based on their ability to correctly assess probabilities that have been

measured (Burgman, 2005). Regardless of the method used to aggregate

results, differences of opinion may be real and should not be ignored.

In some cases the diversity of views may be more instructive than the

average view (Crome et al., 1996).

Using subjective judgements

There are many different quantitative methods that use subjective

judgement (Ayuub, 2001; Burgman, 2005). These include fuzzy arithmetic

(Kaufmann and Gupta, 1985); information-gap theory (Ben-Haim,

2001); interval analysis (Alefeld and Herzberger, 1983); p-bounds

(Ferson, 2002), and Bayesian methods. Ferson (2002); Ayuub (2001);

Ben-Haim (2001); and Burgman (2005) introduce these other methods,

while this chapter describes three examples of capturing and using

subjective judgement with Bayesian methods. The first captures and

uses expert knowledge to infer effects of livestock grazing on bird species.

The second represents differences of opinion as different priors and

examines how well data leads to agreement. The third represents expert

knowledge as a Bayesian network.

However, in using subjective judgement it is important to remember

that experts are often wrong and nearly always overconfident (Burgman,

2005). The answers obtained from elicitation exercises will be clouded by

the format of the questions, the personal attributes and experiences of

the people being asked, and what is being asked. However, the same

is also true of the data that we might collect in our scientific endeavours.

In collecting data, we aim to minimize biases or at least make the biases

consistent so that the results can be calibrated. The same is true when

eliciting subjective judgements.

Using the consensus of experts

Martin et al. (2005) examined the abundance of birds under three

different levels of grazing (low, medium, and high) with eight replicate

sites for each grazing level. Twenty experts provided judgements about
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the relative impacts of grazing on a list of 31 bird species, indicating

whether the mean abundance of a species would decline, remain stable or

increase under a particular grazing level. The experts only provided

responses where they were confident of the effect. The opinions of the

experts are a sample of the collective scientific knowledge about the

impacts of grazing on birds.

To account for the large number of zeroes in their bird survey data,

Martin et al. (2005) analysed their data using a two-component model

that first predicted whether a species was present at a site and then the

abundance of the species conditional on it being present. The first

component was based on a logistic regression model while the second was

based on a truncated Poisson regression model.

The probability of presence (pij) of species i at site j was modelled using

the logistic regression (Chapter 5) equation:

logitðpijÞ ¼ s0i þ g0j þ t0ij;

where s0 is the species effect, g0 is the site effect and t0ij is the interaction

between site and species. These effects were treated as random, and when

using uninformative priors (see Chapter 1) the random effects were drawn

from normal distributions with a mean of zero and precision that had

a gamma(0.1, 0.1) prior.

Similarly, the mean density (lij) of each species (i) at each site (j) was

modelled with random effects for species, site and the interaction but

used a log link function:

logðlijÞ ¼ s1i þ g1j þ t1ij:

The responses of the experts provided prior information about the

random effects in the above models. The expert responses were coded

as �1 (decrease), 0 (stable) or 1 (increase). The mean and variance

of these responses was used to construct the prior for the effect of each

grazing level and species. The prior was narrower when the experts

tended to agree about the impact on a species and was wider when they

disagreed. The precision of the prior was equal to the inverse of the

variance of the experts’ responses. When all experts agreed, the sample

variance was equal to zero, making the precision infinity (1/1). To avoid

this numerical difficulty, perfect agreement among all experts was

assigned a large precision of 30. The precision was considerably less

than 30 in cases where there was at least some disagreement among

experts.
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Using the means and precisions of the experts’ responses as the

means and precisions of the priors would imply that the experts’

responses and the data were on the same scale, which is not the case.

Therefore, the experts’ responses were re-scaled by adding a parameter

to the mean and multiplying the precision by a second parameter.

The required degree of re-scaling was unknown a priori, so uninforma-

tive prior distributions were used for these two extra parameters. The

parameter for re-scaling the mean could either be positive or negative,

so an uninformative normal distribution was used. The parameter for

re-scaling the precision must be positive so an uninformative gamma

distribution was used.

The WinBUGS code and data for this analysis is provided on the

book’s website courtesy of Dr Tara Martin. The analysis uses the ‘zeroes

trick’ (similar to the ‘ones trick’, see Box 7.2 and WinBUGS user manual)

to construct the two-component model, accounting for the combination

of the logistic regression for presence and the truncate Poisson model for

abundance. The rest of the code is straightforward (but long, hence

its exclusion from the printed book, see the website) in which the many

priors are constructed and the predictions are made for each of the

31 species at the three grazing levels.

A total of 50 000 samples from the posterior distribution after

discarding the first 10 000 samples provided the posterior distribution

of the mean abundance of the birds under the different levels of grazing.

A selection of the results is presented here; further details are provided by

Martin et al. (2005). For the white-browed scrubwren, the 18 experts who

predicted effects of heavy grazing all agreed that it would adversely affect

the species. The informative prior improved the precision of the

prediction of abundance in this case (Fig. 10.1).

In contrast, the priors for the effects of medium and heavy grazing

on rufous songlarks were broad. Therefore, the predictions were driven

by the data, with the posterior distributions of abundance being similar

for both the informative and uninformative priors (Fig. 10.2).

Experts are subject to a range of biases, so prior information based

on only a small sample of experts is likely to lead to biased inference. By

eliciting responses from a broad range of experts, the prior information is

a sample of the view of the scientific community about the effects of

grazing. Martin et al. (2005) were able to determine the level of agreement

among experts, with close agreement producing precise priors and

disagreement producing uninformative priors. In the latter case, the

inference was driven largely by the data.
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Representing differences of opinion with subjective priors

Subjective priors are particularly useful when differences of opinion

are an important component of applied ecological problems. Many

environmental conflicts exist because people disagree about the impacts

of a particular activity. For example, while there is little or no dis-

agreement that the Earth is warming, there is some scientific disagree-

ment about the contribution of humans to the warming through our

production of carbon dioxide and other greenhouse gases. The differences

Fig. 10.1 Predicted abundance of white-browed scrubwrens at different

levels of grazing, when using uninformative and informative priors (based

on models and data by Martin et al., 2005). The dots are the means of the

posterior distributions and the bars are the 95% credible intervals.

Fig. 10.2 Predicted abundance of rufous songlarks at different levels of

grazing, when using uninformative and informative priors (based on models

and data by Martin et al., 2005). The dots are the means of the posterior

distributions and the bars are the 95% credible intervals.
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of opinion could be reflected in different priors for parameters that

link increased production of greenhouse gases to the global energy

balance.

Crome et al. (1996) used Bayesian methods to examine impacts of

logging on birds and mammals. Rather than obtaining a consensus

among experts as done by Martin et al. (2005), Crome et al. (1996) were

particularly interested in examining actual differences of opinion, which

were elicited from 15 interviewees including foresters, conservation

activists, and members of the public. A particularly interesting aspect of

the work by Crome et al. (1996) was examining how effectively results of

experimental logging were able to help the different lobby groups reach

consensus about the impacts.

Crome et al. (1996) measured the capture rate of mammals and birds

at 18 rainforest sites. After multiple surveys at each of the sites, nine

were logged, and then all 18 sites continued to be surveyed. In the absence

of an effect of logging, differences in the capture rate between the logged

and unlogged sites prior to logging would be the same as differences

after logging. If logging had a negative effect then the capture rate in the

logged sites would be reduced relative to the capture rate in the unlogged

sites. To help improve normality, the capture rates were log-transformed

prior to analysis.

Interviews were used to establish subjective priors for the impacts

of logging using a technique developed by Hampton et al. (1973).

Interviewees were asked to choose levels of impact (expressed as a

percentage increase or decrease) that corresponded to different per-

centiles of the prior distribution. The questions were (Crome et al.,

1996):

1. Choose a level of impact so that there is a 50% chance that the

effect will be below this level and therefore a 50% chance that the

effect will be above this level.

2. Suppose I now tell you that the effect is below this level; tell me

your new 50% level: this represents the level at which you think there

is a 25% chance that the effect will be below it.

3. Suppose I now tell you that the effect is above your original 50%

level; tell me your new 50% level: this represents the level at which you

think there is a 75% chance that the effect will be below it.

4. What is the smallest credible level for the effect? By this, I mean what

level do you think it is one hundred to one against the effect being

below this level?
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5. What is the highest credible level for the effect? By this, I mean what

level do you think it is one hundred to one against the effect being

above this level?

6. Can you be certain that the effect will not be below any level

(you would bet your life on it)? If so, what is this level?

7. Can you be certain that the effect will not be above any level

(you would bet your life on it)? If so, what is this level?

Crome et al. (1996) represented the range of opinions of the

15 interviewees by two polarized points of view (a conservation activist

and a forester), and a third point of view that took the middle ground

(a lay person):

1. Logging has a strong negative effect (pessimistic prior).

2. Logging has little or no effect (optimistic prior).

3. The impact of logging is related to the amount of canopy removed,

which is �25% reduction in the experimental logging (disinterested

prior).

Prior distributions were generated to reflect these three points of view

using a parameter (d) that was the multiplicative effect on the capture rate

of the species of birds and mammals in the study. Therefore, d¼ 1

represented no change in response to logging, d¼ 0.75 represented a 25%

decline in capture rate, and d¼ 1.25 represented a 25% increase.

The priors were established by fitting a mixed two-component lognor-

mal distribution to the percentile responses (Fig. 10.3). The probability

Fig. 10.3 Prior distributions used to represent three opinions about the

effect of logging; a strong negative effect (pessimistic), little or no effect

(optimistic), and an effect proportional to amount of canopy reduction

(disinterested) (re-drawn from Crome et al., 1996.).
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density function was equal to:

gðxÞ ¼ wf1ðxÞ þ ð1� wÞf2ðxÞ

where f1(x) and f2(x) are the probability density functions of regular

lognormal distributions and w is a weighing factor that mixes these two

distributions in proportion. This distribution was chosen because it

permitted only positive values and was sufficiently flexible to accom-

modate the range of responses.

In addition to inspecting the probability density functions (Fig. 10.3),

the priors can be compared by calculating the probability that the logging

effect is within particular intervals. For example, the pessimistic prior has

82% of its probability (the area under the probability density function)

less than 0.75. Therefore, a priori there is an 82% probability that logging

causes at least a 25% reduction in recapture rates. The corresponding

probability is 22% for the optimistic prior, and 41% for the disinte-

rested prior. In contrast, the pessimistic prior implies little belief

(probability¼ 4%) that the logging would cause a 25% or greater

increase, while the corresponding probability is 31% for the optimistic

prior and 15% for the disinterested prior.

The WinBUGS code used to generate the posterior distributions

for the effect of logging on grey fantails and white-tailed rats is given

below using the pessimistic prior as an example.

model

{

# pess. prior

f1 ~ dlnorm(-0.848163783, 14.78669534) # 1st log-norm

dist

f2 ~ dlnorm(-0.405898802, 4.067580628) # 2nd log-norm

dist

w ~ dbern(0.588969127) prob 1st is used = 0.589,

2nd is used otherwise

delta <- w * f1 + (1 - w) * f2 # delta = f1 or f2

d <- log(delta) # effect of logging on a log scale to

conform to data

pre ~ dnorm(0, 1.0E-6) # diff. in mean ln(capture rate

before logging)

post <- pre + d # diff. in mean ln(capture rate after

logging)

# multiplicative effects are additive on a log scale
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tau ~ dgamma(0.001, 0.001) # precision of capture

rates

for (i in 1:n_pre) # for each pre-logging survey

{

diff[i] <- logged[i] - unlogged[i] # calculate diff.

between logged

and unlogged

sites

diff[i] ~ dnorm(pre, tau) # assume this diff. is

normally distributed

}

for (i in start_post:finish_post) # for each post-

logging survey

{

diff[i] <- logged[i] - unlogged[i] # calculate diff.

between logged

and unlogged

sites

diff[i] ~ dnorm(post, tau) # assume this diff. is

normally distributed

}

}

The optimistic prior was used by replacing the above specification of

f1, f2 and w by:

f1 ~ dlnorm(0.064917859, 7.513236858)

f2 ~ dlnorm(-0.721319814, 13.72305343)

w ~ dbern(0.9269)

The disinterested prior was given by:

f1 ~ dlnorm(-0.214411583, 4.498261575)

f2 ~ dlnorm(-0.178172325, 10.41757345)

w ~ dbern(0.6750)

In the absence of expectations about the effect of logging, an

uninformative prior could be used for delta. One possibility would be

a lognormal distribution with a low precision (high variance). This would

be achieved in the above WinBUGS code by replacing the specification of

delta by a lognormal distribution with a precision of 10�6, which would

mean the log-transformed values would have a variance of one million.
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This large variance permits the possibility that logging has a large positive

or negative effect, or the effect is anywhere in between.

The mean and 95% credible intervals of the posterior distributions

generated for the data on the white-tailed rat indicate that the priors had

only a relatively small influence on the results, with the 95% credible

intervals being similar (Fig. 10.4). The three informative priors lead to

similar conclusions: that there may be only a small effect of logging

because the distributions are centred on a value of 1 representing no

multiplicative effect. However, the effect is uncertain for all priors with an

increase or decrease of � 50% being possible. The conclusion is

qualitatively similar when using an uninformative (vague) prior.

The informative priors have a noticeable effect for the grey fantail data

(Fig. 10.5). A large increase in capture rates of grey fantails was observed

after the logging, so the vague prior suggests that the effect is likely to be

positive and large, with the 95% credible interval spanning the range

1.3� 20.4. However, such large increases are very unlikely under the three

informative priors, leading to much narrower posterior distributions and

upper bounds of the 95% credible intervals 	 3.

The posterior probability of d being less than a particular value can

be calculated in WinBUGS. For example, to calculate the probability that

d<0.75 (corresponding to a decline of 25% or more), the following can

be inserted into the above code.

P1 <- step(0.75 - delta) # reduction is 425%

The step function takes a value of zero when its argument (the term in

brackets) is negative and a value of one otherwise. Therefore, the mean of

P1 is the probability that delta (d) is less than 0.75.

Fig. 10.4 The mean (dot) and 95% credible interval (bars) of the posterior

distribution calculated for the effect of logging on white-tailed rats using

four different priors.
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The probability that the capture rate of grey fantail declines by more

than 25% in response to logging is small for both the disinterested (10%)

and optimistic (3%) priors. However, the relatively vague data mean that

the pessimistic prior leads to a much greater posterior probability of

decline (31%). While the data led to reasonably good consensus about the

effect of logging on white-tailed rats, there is relatively poor consensus

about the effect on grey fantails. This result is instructive. In some cases

the experimental data can lead people to reach similar conclusions about

the effect of logging. In others cases they honestly disagree about the

impacts of logging because of their divergent prior (subjective) beliefs and

because the data were not sufficiently informative. More data would be

required to reach consensus.

Using Bayesian networks to represent expert opinion

While it might be desirable to minimize the use of subjective judgement in

science, pressing environmental problems often require that decisions be

made with little if any data. In these circumstances, experts are required

to make judgements about ecological relationships and parameters. In

making these judgements, experts use conceptual models of the system

being considered.

For example, we might be interested in the probability that

Pfiesteria, a toxic alga will be present in a river (Stow and Borsuk,

Fig. 10.5 The mean (dot) and 95% credible interval (bars) of the posterior

distribution calculated for the effect of logging on grey fantails using four

different priors. The upper limit of the 95% credible interval under the vague

prior (20.4) is not shown on this graph.
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2003; Burgman, 2005). One conceptual model for the occurrence of

Pfiesteria is that it occurs whenever a large number of fish die (a ‘fish

kill’) in the presence Pfiesteria-like organisms (PLOs) (Fig. 10.6).

The diagram in Fig. 10.6 is a network that defines the inter-

relationships between the components of the system. Each of these

components (fish kill, PLOs and Pfiesteria) is a node. If the state of each

node is treated probabilistically, and the relationships are defined by

conditional probability, then the network is known as a Bayesian

network. In this example, each node can be in one of two states; the entity

is either present or absent. Pfiesteria is present whenever fish kills occur in

the presence of PLOs, and is absent in all other circumstances.

Therefore, the conditional probability for the occurrence of Pfiesteria,

given that a fish kill has occurred and PLOs are present is equal to one,

and is zero in all other circumstances. Thus:

Pr(Pfiesteria | kill and PLO)¼ 1,

Pr(Pfiesteria | kill and no PLO)¼ 0,

Pr(Pfiesteria | no kill and PLO)¼ 0,

Pr(Pfiesteria | no kill and no PLO)¼ 0.

Based on data for relevant river systems, the independent probability

for the occurrence of fish kills is 0.073 and for the occurrence of PLOs is

0.35 (Stow and Borsuk, 2003). Therefore, the probability that PLOs and

a fish kill will occur simultaneously equals 0.35�0.073¼ 0.026. Given

that Pfiesteria outbreaks always occur whenever both PLOs are present

and fish kills occur, and under no other circumstances, the probability of

Pfiesteria outbreaks is simply equal to 0.026.

We now have some numbers to add to the Bayesian network in

Fig. 10.6. These describe the probability of being in particular states

(Fig. 10.7).

Fig. 10.6 A diagrammatic representation of the occurrence of outbreaks of

Pfiesteria, a toxic alga believed to occur when fish kills occur in the presence

of Pfiesteria-like organisms (from Stow and Borsuk, 2003; Burgman, 2005).
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This simple example of a Bayesian network can illustrate how such

networks can be analysed. Software packages other than WinBUGS

(e.g. Nettica) are useful for analysing Bayesian networks. However, they

can also be analysed in WinBUGS, which also permits continuous states

and uncertainty in probability estimates to be included. WinBUGS

code for the Bayesian network in Fig. 10.6 is given below:

model # (Fig. 8.10b from Burgman, p. 221)

{

PLO ~ dbern(0.35) # PLOs occur randomly with prob 0.35

Kill ~ dbern(0.073) # fish kills occur randomly with

prob 0.073

PrPf[1,1] <- 0 # Pr(Pfiesteria outbreak) given PLO and

kill absent

PrPf[1,2] <- 0 # Pr(Pfiesteria outbreak) given PLO

absent and kill present

PrPf[2,1] <- 0 # Pr(Pfiesteria outbreak) given PLO

present and kill absent

PrPf[2,2] <- 1 # Pr(Pfiesteria outbreak) given PLO and

kill present

PLOi <- PLO + 1 # PLO index

Killi <- Kill + 1 # Kill index

Pf ~ dbern(PrPf[PLOi,Killi]) # the actual occurrence

of a Pfiesteria

outbreak

}

This model simply treats the occurrence of PLOs and fish kills

as Bernoulli events. The probability of Pfiesteria being present (PrPf) is

Fig. 10.7 The same model as in Fig. 10.6 but with the probability specified

for the presence (P) and absence (A) of PLOs and fish kills.
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equal to one if both PLOs are present and a fish kill occurs, and is zero

otherwise. The mean of the WinBUGS samples of Pf estimates the

probability of Pfiesteria outbreaks. The estimate is 0.025 after 100 000

samples, which is close to the expected value of 0.026. It is easy to

calculate this probability without using WinBUGS (0.35�0.073), but

Bayesian networks make such calculations easier when there are a large

number of dependencies.

This Bayesian network can also be analysed in the opposite direction.

For example, given that we do not observe a Pfiesteria outbreak (Pf=0),

what is the probability that a fish kill has occurred and what is the

probability that PLOs are present? By including the data:

list(Pf=0)

and compiling this with the above model, the posterior distributions for

Kill and PLO can be determined. These have a mean of 0.049 and 0.33,

which are both less than their independent (prior) probabilities. The

absence of Pfiesteria means that PLOs and a fish kill are less likely to be

present.

The above probabilities can be calculated using Bayes’ rule. For

example, the prior probability of PLOs being present is 0.35. The

probability of observing Pfiesteria given that PLOs are present is equal

to 0.073 (the probability of a fish kill), so the probability of not observing

Pfiesteria is 0.927. The other possible hypothesis is that PLOs are not

present, which has a prior probability of 0.65 (1�0.035). The probability

of not observing Pfiesteria in this case is 1. Thus, the posterior probability

of PLOs being absent given that Pfiesteria is not observed is:

PrðPLOabsentÞ ¼ 0:35� 0:927=ð0:35� 0:927þ 0:65� 1:0Þ ¼ 0:33:

Note that the probabilities of PLOs and a fish kill being present

both equal one when Pfiesteria is observed. This is because both must be

present if Pfiesteria is observed. This can be analysed in WinBUGS by

using the data list(Pf=1) instead of Pf=0.

Bayesian networks help to document the subjective judgements of

experts and make the opinions more transparent. These networks can be

interrogated with data and compared to other possible representations.

For example, Stow and Borsuk (2003) constructed a second model of

Pfiesteria outbreaks in which PLOs lead to the presence of Pfiesteria,

which then caused fish kills (Fig. 10.7). Despite being the dominant

Using Bayesian networks to represent expert opinion 239



paradigm at the time, this alternative model had less support from the

available data (Stow and Borsuk, 2003).

By analysing complex relationships with Bayesian networks, probabi-

lities are combined in a logical and coherent manner. This is important

because humans are bad at estimating probabilities, especially condi-

tional probabilities. For example, few people can determine intuitively

the probability of PLOs being present given that Pfiesteria is not

observed; most people need to do the maths. An analysis with Bayesian

networks would be necessary for everyone when analysing more complex

networks of relationships.

A final benefit of Bayesian networks is that they can be updated as new

data become available. This is especially true if uncertainty in parameters

(e.g. probabilities) is treated by representing them as probability distri-

butions. In this case, the probability distributions become the priors that

are updated with the addition of data.

Bayesian networks are models; as for all models they are meant to be a

simplification. While Bayesian networks are useful for representing and

calculating risks using subjective judgement, they encompass only a

fraction of the full range of uncertainty. Uncertainty in the probabilities

can be considered by treating them as probability distributions. For

example, if the standard error for the probability of PLOs being present

was 0.1, then we could construct a probability distribution with a mean of

0.35 and standard deviation of 0.1 to represent uncertainty around the

estimate.

Beta distributions are useful for describing uncertainty about

estimates of probabilities because they are constrained to be between

Fig. 10.8 An alternative model for the relationship between Pfiesteria-like

organisms (PLOs), Pfiesteria and fish kills (from Stow and Borsuk, 2003;

Burgman, 2005), with fish kills being the result of Pfiesteria outbreaks,

which in turn occur when PLOs are present.
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zero and one. A beta distribution with parameters 7.61 and 14.1 has the

required mean and standard deviation for the probability of PLOs being

present (see Appendix B for information about determining the

parameters of beta distributions). Similarly if the probability of a fish

kill had a standard error of 0.05 and mean of 0.073, we could represent

uncertainty about its estimate as a beta distribution with parameters 1.90

and 24.2.

Because the probabilities of PLOs being present and a fish kill

occurring are uncertain, the probability of a Pfisteria outbreak, which is

the product of these two values, will also be uncertain (Fig. 10.9).

The density function for the probability of a Pfisteria outbreak can be

calculated using WinBUGS. The probabilities of PLOs being present and

a fish kill occurring are generated using beta distributions and these are

then multiplied to give the probability of a Pfisteria outbreak, using

the following code.

model

{

pPLO ~ dbeta(7.61, 14.1) # beta with mean 0.35 and

sd 0.1

pKill ~ dbeta(1.90, 24.2) # beta with mean 0.073 and

sd 0.05

PrPf <- pPLO*pKill # Pfisteria prob. = pPLO*pKill

}

The variable PrPf has a mean of 0.025 and a 95% credible interval of

[0.0026, 0.076]. If we can characterize our uncertainty about parameters

as probability distributions, we can also propagate uncertainty about

those parameters when calculating functions of those parameters such as

PrPf. In this example, our 95% credible interval for the probability of

a Pfisteria outbreak (PrPf) spans more than an order of magnitude.

In calculating the credible interval for a Pfisteria outbreak, we assumed

that we could represent the two probabilities used in the calculation as

probability distributions. However, our subjective judgement may be

such that we can only place bounds on the probabilities. For example, we

might be sure that the probability of a fish kill is between 0.01 and 0.25

(given the particular hydrological conditions), but unable to specify

a probability distribution. Similarly, we may be only able to place bounds

of [0.2, 0.5] on the probability of PLOs being present. In this case, the

probability of a Pfisteria outbreak is also bounded. Assuming that the
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occurrence of PLOs and fish kills are independent events, interval

arithmetic provides the bounds (Ferson, 2002; Burgman, 2005). The

lower bound is 0.01�0.2 and the upper bound is 0.25�0.5, producing

an interval of [0.002, 0.125].

In all the previous calculations it was assumed that the two events

(PLOs present and a fish kill) occurred independently. This is not neces-

sarily the case, and dependencies between the probabilities might need to

be considered. For example, if PLOs were never present when a fish kill

occurred (a perfect negative association), the lower bound on the proba-

bility of a Pfisteria outbreak would equal 0.01�0.0¼ 0.0. Conversely, if

PLOs were always present when fish kills occurred (a perfect positive

association), the upper bound would equal 0.25�1.0¼ 0.25. Consi-

deration of the possible dependencies leads to a much wider interval for

the probability of a Pfisteria outbreak [0.0, 0.25].

The above dependency bound was calculated assuming any form of

dependency was possible. Different assumptions about the form of the

dependence between the variables (e.g. only permitting positive depen-

dencies) would lead to narrower intervals; for further details see Ferson

(2002; 2005) and references therein. The important point is that

probabilities in Bayesian networks are usually combined by assuming

Fig. 10.9 Distributions for the probability of occurrence of PLOs (beta

distribution with mean 0.35 and standard deviation 0.1) and fish kills (beta

distribution with mean 0.073 and standard deviation 0.05) lead to a

distribution for probability of a Pfisteria outbreak (mean 0.025 and standard

deviation 0.02).
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that events are independent. However, dependencies between events

should be considered or outcomes of the calculations may not be reliable.

Concluding remarks

Bayesian methods provide a means of analysing subjective judgement

in scientific studies. Bayes’ rule permits this subjective judgement to

be updated logically and coherently when data become available. The

explicit inclusion of subjective judgement in science makes some people

uneasy (Fisher, 1930; Dennis, 1996). However, subjectivity can be used

beneficially to enhance science. The first example in this chapter

demonstrates that experts can be interrogated to represent the current

state of knowledge regarding impacts of grazing on birds. The state of

knowledge is highly uncertain where the experts disagree, which leads

to imprecise priors and the conclusions are dominated by the data.

The priors are more precise when they agree and the data have a smaller

effect on the conclusions.

Embracing subjectivity is important in many environmental manage-

ment problems because many environmental conflicts arise owing to

differences of opinion rather than differences of fact. In the example by

Crome et al. (1996), the differences of opinion were reflected in the

different priors for the impact of logging on birds and mammals. By

collecting and analysing data on logged and unlogged sites, Crome et al.

(1996) demonstrated that these differences of opinion could reach con-

sensus for many species, with large negative or positive impacts being

unlikely regardless of the prior.

The final example in this chapter represented expert opinion as a

network of relationships linked by probabilistic rules. Construction and

analysis of these Bayesian networks helps to make the subjective

judgement that underlies many management decisions more transparent.

In these three examples, the value of Bayesian methods is recognizing that

subjectivity exists, making it transparent and permitting the subjective

judgements to be updated objectively with data.
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Conclusion

While this book argues that there are clear advantages of using Bayesian

methods, it is unlikely that they will be used to the total exclusion of all

others. However, there are four important benefits that mean Bayesian

methods should be considered by ecologists.

Prior information

Bayesian methods use prior information when available, and the

contribution of prior information is transparent. In the absence of

prior information, parameter estimates are equivalent to those obtained

by maximum likelihood estimation. Those uncomfortable with using

prior information often ask: ‘What if my prior information is

misleading?’ Such a question is analogous to: ‘What if my data are

misleading?’ Ecologists do all we can to ensure our data are not

misleading. The same needs to apply to prior information.

In the example of measuring the mean diameter of trees in a remnant

(Box 3.2), it is unrealistic to assume that we do not have relevant

information about the mean diameter of trees when we have measured

every tree in 43 other similar remnants. Similarly, when determining

whether a species is present at a site or not, it makes sense to use prior

information about habitat quality to contribute to the data that are

collected (Box 1.5). Prior information can be very cost effective,

sometimes representing the equivalent of years of data collection

(Box 7.4). So in addition to asking whether the prior is representa-

tive, we should also ask whether we can afford to ignore the prior

information.
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Flexible statistical models

Bayesian statistical models are made to conform to the data, rather than

requiring that the data conform to the statistical model. Bayesian

methods have great flexibility, so they can easily handle complex analysis,

such as those using non-linear or hierarchical random effects models.

Other statistical methods can be used for these analyses, but Bayesian

methods are easiest (Clark, 2005). Bayesian methods also do not require

a collection of different approaches (e.g. null hypothesis testing, like-

lihood, quasi-likelihood, confidence intervals, permutation tests, etc.) �

all Bayesian analyses can be conducted with the one statistical framework

based on probability.

Thus, Bayesian non-linear models have the same basic structure as

non-linear models (Box 5.6). Hierarchical models can be compared to

equivalent non-hierarchical models (Box 3.5). Essentially any functional

relationship can be examined using Bayesian methods (Chapter 8), and

uncertainty in the resulting parameter estimates can be propagate

through to predictions (Box 3.15; Chapter 9).

Intuitive results

The results of Bayesian analyses are intuitive to most ecologists by

providing the probability that the parameter estimate is within a partic-

ular range, or the probability that the hypothesis is true. Rather than

determining, for example, the probability that the data would be obtained

if the hypothesis is true, Bayesian methods calculate the probability of the

hypothesis being true, which is normally a more useful outcome for

ecologists. For example, we can determine the probability that a species

is absent from a site when it has not been recorded (Box 1.5), or the

probability that a parameter is within a particular range of values by

calculating credible intervals (Chapter 1).

Bayesian methods make us think

Bayesian methods require us to think about the appropriate statis-

tical model, and the relevance of our results in relation to previous

research. A Bayesian analysis requires answers to questions about
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the appropriate functional relationships and probability distributions for

the statistical models. So rather than using the particular statistical model

with its associated assumptions that is contained within our favourite

software, we are able to modify the assumptions if necessary.

Perhaps more importantly, Bayesian methods force researchers to

consider previous research results explicitly. So rather than obtaining

a non-significant result and making the common mistake of concluding

that the null hypothesis of no impact is true (Fidler et al., 2006), we might

actually conclude that the data are entirely consistent with the impact

that was predicted a priori (e.g. the mulgara example in Chapter 6). An

explicit consideration of prior information forces us to demonstrate the

contribution of the new data to the current state of knowledge. And

importantly, we can use multiple lines of evidence to make inference

rather than only focusing on the data from the most recent study.

A Bayesian future for ecology

This book has not covered some statistical approaches that are used by

ecologists. These include survival analysis, spatial correlation, and multi-

variate analysis. Survival analysis and spatial correlation were excluded

for the sake of space. There are examples of these in the WinBUGS

program and also in the literature (e.g. Wintle and Bardos, in press).

Bayesian multi-variate analysis is in its infancy, and is difficult to conduct

in WinBUGS. However, the required quantitative routines (e.g. eigen

analysis) are being developed in WinBUGS, so Bayesian multi-variate

methods are not far off.

The list of topics covered is not exhaustive because this book aims

to introduce ecologists to Bayesian methods. As more ecologists use

Bayesian methods, the range of examples will grow. Further, useful

informative prior distributions for important ecological parameters will

also become more available because the posterior distribution for one

study can be used as the prior distribution for the next.
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A

A tutorial for running WinBUGS

Before running WinBUGS, you will need to download it from the

WinBUGS website. The latest version of WinBUGS is OpenBUGS, using

open source software, which can be obtained at:

http://mathstat.helsinki.fi/openbugs/

Older versions of WinBUGS can be obtained from

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml

The older versions of WinBUGS require a key for full functionality,

which requires that you register (for free). The newer OpenBUGS version

does not require a key. Once you have downloaded and installed the

software, you are ready to run WinBUGS. The following tutorial is based

on the one provided with the program.

A summary of steps for running WinBUGS

1. Select the term ‘model’ and then ‘check model’.

2. Select the data and load.

3. Compile the model.

4. Set initial values for the Markov chain.

5. Set variables to be sampled.

6. Take samples.

7. Check samples.

The steps in more detail

This tutorial steps through how to analyse a mean in WinBUGS, using

the example of estimating the average tree diameter in a park (Box 1.8).

It is based on the online User Manual in the WinBUGS program.
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Run WinBUGS and open a new window (Menu: File/New). Type the

following code into the window

model

{

mean ~ dnorm(53, 0.04) # prior for mean

prec <- 1/184.9 # precision of the data

for (i in 1:10) # for each of the ten trees. . .

{

Y[i] ~ dnorm(mean, prec) # diameter drawn from a

normal distribution

}

}

list(Y=c(42, 43, 58, 70, 47, 51, 85, 63, 58, 46))

The BUGS language allows a concise expression of the model, with

the model contained within the curly brackets following the word model.

The parameter to be estimated is the mean diameter of trees (mean). The

first line specifies the prior for the mean; in this case it is derived from

surveys of other sites in the study area. The second line defines the

precision of the data. Precision is the inverse of the variance. In this

case, the precision is specified although it could be estimated in addition

to the mean. The for loop is a concise way of writing that the diameters

of each of the ten trees that are in the sample are drawn from the same

normal distribution.

The data are listed in the final line, with each number representing one

of the measured tree diameters. For example, Y[1] is equal to 42, the

diameter of the first measured tree.

To obtain samples from the model, first bring down the Model menu,

and open the Specification Tool. It is necessary to check that the model

description fully defines a probability model. Highlight the key word

model at the beginning of the model description, say, by double clicking

on it with the mouse. Then execute the check model command from the

Specification Tool by clicking on the button � ‘model is syntactically

correct’ should appear in the status line at the bottom left corner of the

screen.

Next load the data. To check and load the data, highlight the key word

list at the start of the data description, and then click the ‘load data’

button in the Specification Tool � ‘data loaded’ should appear in the

status line.
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Next execute the Compile command from the Specification Tool to set

up the data structures used by the Gibbs sampler � ‘model compiled’

should appear in the status line.

Finally the MCMC sampler must be given some initial values. One

way to initialize the model is to allow WinBUGS to generate values

by drawing samples from the prior distributions. Click ‘gen inits’ to do

this � ‘initial values generated: model initialized’ should appear in the

status line.

A second method is to assign particular initial values to some or all

of the stochastic nodes. The only stochastic node in this example is the

variable mean. This can be set by using a statement such as

list(mean=50).

To use an initial value of 50, type this line in the same window as the

model, highlight the key word list and then execute the ‘load inits’

command from the Specification Tool � ‘model is initialized’ should

appear in the status line.

Generating initial values randomly works perfectly well in this

example. In others, the values that are generated may lead to numerical

errors. It is often best to specify reasonable initial values yourself,

especially for more complicated statistical models.

Note that you have been led through the various steps needed to check

the model, load the data, compile the model, and load initial values.

A menu option will be greyed out until it is available.

WinBUGS is now able to generate samples. From the Model

menu, open the Update . . . Tool, and from the Inference menu

open the Samples . . . Tool. You may wish to reposition these

windows.

Type the name of each node (variable) you wish to monitor in the node

box of the Sample Monitor Tool (in this example mean) clicking on ‘set’

after typing each name. The names are retained in a pull down list. Take

1000 samples of the monitored nodes by clicking ‘update’ in the Update

Tool.

To view traces of all monitored nodes, type � in the node box and click

on trace: a Dynamic trace window will open to display the monitored

values. Now click on the update button of the Update Tool. The

simulated values should be displayed. Simulate through, say, 5000

iterations by changing the number of updates to 5000 and clicking the
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‘update’ button. Then try clicking in turn on stats, history, density,

autoC, quantiles buttons of the Sample Monitor Tool, to see summary

statistics, traces, kernel density plots, autocorrelation functions, and

running quantile estimates. All these plots can be selected by clicking on

them, and their size changed by dragging the corners of the bounding

box. Clicking on coda generates two files in a format suitable for reading

into the program CODA or other software for MCMC convergence

diagnostics.

To dispose of some early iterations as a ‘burn-in’, change the ‘beg’

(begin) field of the Sample Monitor Tool to, say, 1001 before requesting

the analyses. Clicking the stats button of the Sample Monitor Tool will

display the statistics of the selected values (nodes) being monitored. The

mean or median can be used as the ‘best estimate’ and the s.d. is

equivalent to the standard error in that it measures the uncertainty of the

estimate.

For models that include continuous variables (such as mean), the

posterior samples are used to construct the density kernels and statistics

for the posteriors (e.g. mean and standard deviation). Bayesian

confidence intervals (credible intervals) can be constructed by recording

the percentiles of the posterior samples. For example, the lower bound of

the 95% credible interval for mean is obtained by recording the value

below which 2.5% of the samples occur. The upper bound is the value

above which 2.5% of the posterior samples occur. These bounds are

obtained by clicking the stats button.

There are various ways that the results should be assessed.

1. Do the density plots appear to be truncated? If so, it may indicate

that the limits of the prior distribution are having an appreciable

influence on the results.

2. Are the density plots smooth or bumpy? Bumpy density plots

suggest that too few samples may have been taken. As with any

Monte Carlo procedure, the precision of the estimate will increase

with more samples. For example, the density kernel based on 1000

samples of mean is bumpy, while 100 000 samples generate a

smooth plot.

3. Examine the ‘history’ of the results. Ideally, the graph will appear like

white noise. If there is relatively strong autocorrelation, there may be

some discernible pattern, but there should certainly be no suggestion

of trend if the samples are to be a reasonable representation of the
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posterior distribution. In the tree diameter example, WinBUGS

samples directly from the posterior distribution, so the samples have

no correlation.

4. Use different initial values to ensure that results are not sensitive to the

choice. This can be assessed subjectively, or the Gelman-Rubin

convergence statistic can be used. See the WinBUGS online User

Manual and associated references for details of the Gelman-Rubin

statistic.

Note that in WinBUGS, each variable can only be assigned a value

once. With only a small number of specific exceptions, a variable name

can only appear once on the left-hand side of the equations in the code.

This means that the order of the statements in the WinBUGS code does

not matter (e.g. the prior for mean could be specified on the lines before

or after it is used in the code). This feature is at first a little odd to users

familiar with other programming languages, where the order of

statements matters.

How to write WinBUGS code

Writing WinBUGS code gets easier with experience. It is also useful to

examine similarmodels that others havewritten such as the examples in this

book (code available at http://arcue.botony.unimelb.edu.au/bayes.html),

online examples in WinBUGS, and those in Congdon (2003). The

important attributes of a WinBUGS model are the same attributes of

any Bayesian analysis: priors for the parameters being estimated, data, a

model that relates the parameters to the data and the posteriors for the

parameters. WinBUGS code includes the prior for the parameters, but

most of the code is usually the description of how the data are related to the

parameters. The posterior is then generated by WinBUGS with Monte

Carlo sampling.

When estimating the tree diameter, we are interested in the variable

mean. This is the variable that needs to be recorded by WinBUGS. The

variable mean is influenced by both the prior, which is specified directly,

and through the influence of the model in which the data are drawn from

a distribution that uses mean as a parameter. WinBUGS then samples

randomly from the posterior distribution of the variable mean by

accounting for the prior and the data. All WinBUGS models have a

similar format. The priors for the various parameters are specified, and
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then the code describes a model of how the data were generated. Based on

the description of the model, WinBUGS then obtains samples from the

posterior by determining the likelihood of obtaining the data given the

parameters (the likelihood) and the prior probability of the parameters.

Any parameter that is not related to the data in any way will be sampled

from its prior distribution � the prior and posterior are the same in the

absence of data.
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Probability distributions

There are many excellent texts on probability and probability distribu-

tions. My favourite ones are the collection on all manner of distributions

by Johnson, Kotz and others (e.g. Johnson et al., 1992; Johnson et al.,

1994; Johnson et al., 1995; Johnson et al., 1997; Kotz et al., 2000;

Balakrishnan and Nevzorov, 2003). There is no point trying to replicate

these texts here. This appendix describes the probability distributions that

are used within this book, plus a few additional distributions that are

likely to prove useful for ecologists. There are additional distributions

available within WinBUGS, and other distributions can be constructed

using the ‘ones trick’ (see Box 7.2).

The distributions are classified according to whether they are

univariate (returning a single random number) or multivariate (returning

two or more, possibly related random numbers), and whether they are

discrete (returning integers) or continuous (return floating point

numbers). The presentation of each distribution concentrates on their

possible implementation in Bayesian models. Prior to presenting each

distribution, a basic background of discrete and continuous random

variables is provided.

Discrete random variables

Discrete random variables are defined by probability distributions that

describe the probability of the random variable achieving outcomes.

Discrete random variables are the most simple to understand, so we begin

with them. The simplest random variable is achieved by tossing a coin,

with the outcomes being a head or a tail. For a fair coin, the probability

of each outcome is 0.5.
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For many random variables, the outcomes can be most easily

represented as numbers. In some cases, the identifying numbers are

natural, such as when counting the number of individuals of a species,

or the number of species. For example, the number of plants seen in

a quadrat could be represented as a random variable.

In other cases, the different outcomes are represented by identifying

numbers for mathematical convenience. For example, the result of a coin

toss could be represented as a zero (representing a head) or one

(representing a tail). In this case, the assignation of a head as one is

arbitrary; the outcome of a head could just as well be represented as zero.

Ecological classes could be assigned an identifying number (class ‘zebra’

is a one, class ‘giraffe’ is a two, class ‘lion’ is a three, etc.). Again,

the allocation of outcomes to identifying numbers is arbitrary.

Probability distributions for discrete random variables are usually

described by using symbols. For the example of tossing a fair coin, with

the outcome given by X, and a head represented by zero and a tail by one,

the probability distribution is given as:

PrðX ¼ xÞ ¼ 0:5, for x ¼ 0 or 1:

For the ‘African mammal example’, the probability distribution might

be given as:

PrðX ¼ xÞ ¼ px, for x ¼ 0, 1, 2, . . .N,

where N is the number of mammal species being considered.

A requirement of discrete random variables is that the probabilities for

all possible outcomes sum to one:X
i

PrðX ¼ i Þ ¼ 1:

The mean of the probability distribution (m) is equal to:

m ¼
X
i

i � PrðX ¼ iÞ,

and the variance (s2), which measures the spread of the distribution,

is equal to:

s2 ¼
X
i

ði� mÞ2 � PrðX ¼ iÞ:

Other parameters are used to describe the characteristics of a

probability distribution. These are based on what are known as the
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moments of the distribution. The nth central moment (mn) for discrete

probability distributions is given by the expected value of the deviation

from the mean raised to the power of n:

mn ¼
X
i

ði� mÞn � PrðX ¼ iÞ:

Note that the first central moment is equal to zero, and the second

central moment is equal to the variance. Higher order central moments

are useful for describing the shape of probability distributions. Two

important measures (Balakrishnan and Nevzorov, 2003) include skew-

ness, which measures asymmetry, and kurtosis, which measures the

‘fatness’ of the tails of a distribution.

Skewness is equal to m3=m
3=2
2 and kurtosis is m4=m

2
2. By using central

moments, skewness and kurtosis are measured only by deviations from

the mean, not by the mean itself. Further, they are scale-free, since the

powers in the numerator (3 and 4, respectively) are balanced by the

powers in the denominator (2� 3/2 and 2� 2, respectively).

Positive skewness (m3=m
3=2
2 4 0) means that the right-hand tail of the

probability distribution is longer than the left. Positive skewness (or right

skewness) occurs when the mean is greater than the median. The opposite

is true for negative skewness.

Kurtosis is often expressed relative to that of a normal distribution

(described below). If the distribution has a measure of kurtosis greater

than the normal (i.e. 43), then it is referred to as being leptokurtic

(‘fat-tailed’). The term platykurtic is used to describe ‘thin-tailed’

distributions for which the measure of kurtosis is less than 3.

Continuous random variables

Continuous random variables can take non-integer (real) numbers rather

than being restricted to discrete values. Continuous random variables are

defined by a cumulative distribution function F(x) that defines the

probability that the random variable (X ) is less than some value (x) over

some range of real numbers:

PrðX 	 xÞ ¼ FðxÞ:

F(x) is the cumulative distribution function and by definition,

F(�1)¼ 0 and F(1)¼ 1.
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It is possible to determine the probability that a random variable is

within the range between x and xþdx, where dx is an incremental value:

Prðx 	 X 	 xþ dxÞ ¼ Fðxþ dxÞ � FðxÞ:

Calculus provides us with the limit of Pr(x	X	 xþ dx) as dx

approaches zero, which is equal to f (x)dx, where f (x)¼ dF(x)/dx. The

function f (x) is referred to as the probability density function. The actual

value of f (x) is not a probability, and can take values greater than one

(but not less than zero). However, f(x) does indicate the relative

likelihood of different values of the random variable X.

Note that by definition, the cumulative distribution function is:

FðxÞ ¼

Z x

�1

f ðuÞdu:

For a continuous random variable with probability density function

f(x), the mean (m) is given by:

m ¼

Z 1

�1

xfðxÞdx,

and the variance (s2) is:

s2 ¼

Z 1

�1

ðx� mÞ2fðxÞdx:

The nth central moment is given by:

mn ¼

Z 1

�1

ðx� mÞnfðxÞdx:

Skewness (m3=m
3=2
2 ) and kurtosis (m4=m

2
2) are measured in the same

manner as for discrete distributions.

A range of univariate probability distributions that are used commonly

in WinBUGS are summarized in Table A.1. For each distribution,

the WinBUGS syntax is provided, along with the parameter/s expressed

as a function of the mean and variance of the distribution. Additionally,

the mean, variance, skewness and kurtosis are given in terms of the

WinBUGS parameters. These formulae permit users to calculate

the required WinBUGS parameters if the mean and variance of the

distribution is known, or conversely to determine the statistics of

the distribution if the WinBUGS parameters are provided. Each of

these distributions and a selection of multivariate distributions are

described in more detail in the remainder of the appendix.
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Table A.1.. A range of univariate probability distributions that are used

commonly in WinBUGS. For each distribution, the WinBUGS syntax is

provided, along with the WinBUGS parameter/s expressed as a function

of the mean (m) and variance (s2) of the distribution. Additionally, the

mean, variance, skewness (g1) kurtosis (g2) are given in terms of the

WinBUGS parameters.

Probability
distribution

WinBUGS
syntax

Parameters Mean, variance,
skewness and kurtosis

Bernoulli dbern(p) p¼ m m¼p

s2
¼p(1�p)

g1 ¼
1� 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ

p
g2 ¼

1

p
þ

1

1� p
� 3

Binomial dbin(p,n) p¼ 1�s2/m m¼np

n¼ m2/(m�s2) s2
¼np(1�p)

g1 ¼
1� 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
g2 ¼ 3þ

6p2� 6pþ 1

npð1� pÞ

Poisson dpois(m) m¼s2
¼ m m¼m

s2
¼m

g1 ¼ 1
ffiffiffi
m

p

g2¼ 3þ 1/m

Negative
Binomial

dnegbin(p,r) p¼ m/s2 m¼r(1�p)/p

r¼ m/(s2
� m) s2

¼r(1�p)/p2

g1 ¼
2� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð1� pÞ

p
g2 ¼ 3þ

6� pð6� pÞ

rð1� pÞ

Categorical dcat(p[]) m ¼
P
i

i� p½i�Þ

s2 ¼
P
i

ði� mÞ2 � p½i�

g1 ¼
P
i

ði� mÞ3 � p½i�

� �
=s3

g2 ¼
P
i

ði� mÞ4 � p½i�

� �
=s4
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Table A.1. (cont.)

Probability
distribution

WinBUGS
syntax

Parameters Mean, variance,
skewness and kurtosis

Uniform dunif(a,b) a ¼ m� s
ffiffiffi
3

p
m¼ (a þb)/2

b ¼ mþ s
ffiffiffi
3

p
s2

¼ (b �a)2/12

g1¼ 0

g2¼ 9/5

Beta dbeta(a,b) a¼ m(m(1� m)/
s2

� 1)
m¼a/(aþb)

b¼ (1� m)
(m(1� m)/
s2

� 1)

s2 ¼
ab

ðaþ bÞ2ðaþ bþ 1Þ

g1 ¼
2ðb� aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ aþ b

pffiffiffiffiffiffi
ab

p
ð2þ aþ bÞ

g2 ¼ 3þ

6½a3 þa2ð1� 2bÞ
þb2ð1þbÞ
�2abð2þbÞ�

0
@

1
A

abð2þaþbÞð3þaþbÞ

Normal dnorm(m,t) m¼ m m¼m

t¼ 1/s2 s2
¼ 1/t

g1¼ 0

g2¼ 3

Student-t dt(m,t,k) m¼ m m¼m

t¼ (2g23)/(g2s
2) s2

¼ (k/(k� 2))/t

k¼ 4þ 6/(g2� 3) g1¼ 0

g2¼ 3þ 6/(k� 4)

Lognormal dlnorm(a,t) a¼ lnm� 0.5lnc m¼ eaþ 1/2t

t¼ 1/lnc s2
¼ e2aþ 1/t (e1/t� 1)

c¼s2/m2þ 1. g1 ¼
ffiffiffiffiffiffiffiffi
e1=t

p
� 1

� �
2þ e1=t
� �

g2¼ e4/tþ 2e3/tþ 3e2/t� 3

Exponential dexp(m) m¼ 1/m¼ 1/s m¼ 1/m

s2
¼ 1/m2

g1¼ 2

g2¼ 9

Weibull dweib(v,m) Closed-form
solutions
for v and m
with respect
to m and s2

are not
available.

m¼m�1/v� (1þ 1/v))

s2 ¼ �
vþ 2

2

� �


� �
vþ 2

2

� �� 	2)
m�2=v

See description of the
Weibull distribution
for skewness and kurtosis.



Univariate discrete distributions

Bernoulli

The Bernoulli distribution is defined for two possible outcomes (X¼ 0

or 1). The probability that X¼ 1 is equal to p and the probability that

X¼ 0 is equal to 1� p¼ q:

PrðX ¼ 1Þ ¼ p,

PrðX ¼ 0Þ ¼ 1� p:

The mean (m) of a Bernoulli random variable is equal to p and the

variance (s2) is equal to p(1� p).

The Bernoulli distribution can be used to represent the outcome of

single random events or trials, with a value of one indicating that the

event occurred (the trial succeeded) and a value of zero indicating that the

event did not occur (or the trial failed).

In WinBUGS, the Bernoulli distribution is expressed as:

dbern(p),

where p is the probability of the event occurring, and it returns a value of

one (the event occurred) or zero.

Binomial

The binomial distribution is generated as the sum of n independent and

identically distributed Bernoulli random variables. It can be viewed as the

Table A.1. (cont.)

Probability
distribution

WinBUGS
syntax

Parameters Mean, variance,
skewness and kurtosis

Gamma dgamma(r,n) r¼ m2/s2 m¼r/n

n¼ m/s2 s2
¼r/n2

g1 ¼ 2=
ffiffiffi
r

p

g2¼ 3þ6/r

Chi-squared dchisqr(k) k¼ m¼s2/2 m¼k

s2
¼ 2k

g1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
ð2=kÞ

p
g2¼ 3þ 12/k
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number of successes out of n independent Bernoulli trials that each have

a probability of success equal to p. For the binomial distribution:

PrðX ¼ xÞ ¼
n!

ðn� xÞ!x!
pxð1� pÞ, x ¼ 0,1, 2, . . . , n,

where x is the number of ‘successes’ and n�x is the number of ‘failures’.

The mean (m) is equal to np and the variance (s2) is equal to np(1� p).

The binomial distribution is a useful model for describing, for example,

the number of survivors or number of encounters of a finite number

of individuals or species where the chance of survival or encounter of

those individuals or species can be considered identical and the actual

outcomes for each individual are independent.

In most circumstances, the value of n is known, while the probability

of ‘success’ p is uncertain. Consider the case in which p has a beta

distribution for the prior with parameters a and b (see the beta

distribution in the next section), and we collect data for which there

are x ‘successes’ and n�x ‘failures’. In this case, the posterior distribution

for p under a binomial model will also have a beta distribution, but with

parameters aþx and bþn�x. Conjugacy occurs in such circumstances

when the prior and posterior distributions have the same distributional

form (see later section on conjugacy). Thus, the beta distribution is

conjugate to the binomial model of observations.

In WinBUGS, the binomial distribution is expressed as:

dbin(p, n),

where p is the probability of success and n is the number of trials.

It returns integers between zero and n.

Poisson

Consider the case in which the parameter n of the binomial model

increases towards infinity while at the same time the parameter

p decreases towards zero such that the product of the two is equal to

a constant (l¼ np). Under this model, there are an enormous number of

events that could occur, but each one has a small chance such that on

average only l will occur. In this case, the limit of the binomial

distribution as n approaches infinity subject to the constraint l¼ np, is

given by the Poisson distribution:

PrðX ¼ xÞ ¼ e�llx=x!, x ¼ 0,1, 2, . . .
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Both the mean (m) and variance (s2) of the Poisson distribution are

equal to l.
The Poisson distribution is a useful model of counts, because it defines

the distribution of the number of events within a time or space when

the events are distributed entirely at random (hence the term ‘Poisson

process’ for defining randomly occurring events).

The conjugate distribution for the Poisson model is the gamma

distribution. If the prior for the average density of events (l) has

a gamma distribution with parameters a and b, and there is a total of

x observations from a sample size of n, then the posterior distribution

for l will have a gamma distribution with parameters aþx and bþn.

In WinBUGS, the Poisson distribution is expressed as:

dpois(m),

where m is the parameter of the Poisson distribution that is equal

to both the mean and variance. It returns non-negative integer values

(0, 1, 2, 3, . . .).

Negative binomial

If the outcomes of Bernoulli events are occurring randomly, then we

could count the number of failures until a certain number of successes.

Under such a model, the number of failures would have a negative

binomial distribution.

Under the negative binomial distribution:

PrðX ¼ xÞ ¼
ðxþ r� 1Þ!

x!ðr� 1Þ!
prð1� pÞr, x ¼ 0,1, 2, . . .

where p is the probability of success and r is the number of successes

before x failures.

The mean (m) is equal to r(1�p)/p and the variance (s2) is equal to

r(1�p)/p2.

If r¼ 1, then we are modelling the number of failures until the first

success. This special case of the negative binomial is known as the

geometric distribution.

In WinBUGS, the negative binomial distribution is expressed as:

dnegbin(p, r),

where p is the probability of success p and r is the number of successes r.
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The negative binomial distribution is also useful when modelling

counts that are clumped. While the Poisson distribution is useful for

counts when events or individuals are distributed at random, clumping

will occur in many circumstances. For example, if examining the density

of individuals, there are likely to be some areas or time periods that are

likely to have higher densities that others. In these circumstances, the

variance among counts would be greater than assumed under the

Poisson distribution. If it is assumed that the average density varies as

a gamma distribution (see continuous distributions below) among

replicates while the actual count of a replicate is drawn from a Poisson

distribution, then counts will follow a negative binomial distribution.

This is a more general form of the negative binomial in which the

parameter r can take non-integer positive values.1 This is most easily

represented in WinBUGS by modelling the mixture of the gamma and

Poisson explicitly as a hierarchical model (see Boxes 3.5 and 3.6).

Categorical

The categorical distribution can be used to define an arbitrary probability

distribution with a finite number of classes. The probability distribution

is defined by specifying the probability that the replicate is obtained from

class 1 to k, where k is the number of possible classes. The only constraint

is the probabilities sum to one (i.e. it is a probability distribution):

Xk
i¼1

PrðX ¼ iÞ ¼ 1:

In WinBUGS, the first class is indexed by the number one, so values of

zero cannot be returned.

In WinBUGS, the categorical distribution is expressed as:

dcat(p[]),

where p[] is a vector of k probabilities that sum to one, and p[i]

is the probability that the random variable takes a value of i (i ¼ 1, 2,

. . ., k).

Because categorical distributions in WinBUGS can return only positive

integers, it may be necessary to transform the data to conform to the

distribution. For example, if Bernoulli successes in the data are coded as
1 Negative binomial distributions in which the parameter r is an integer (as implemented in
WinBUGS) are often referred to as Pascal distributions to distinguish them from the more
general form of the negative binomial.
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ones and failures as zero, an implementation of the Bernoulli distribution

with WinBUGS could be coded as:

model

{

p[1] ~ dunif(0, 1)

p[2] <- 1 - p[1]

Y1 <- Y+1

Y1 <- dcat(p[])

}

This code is the equivalent of:

model

{

p ~ dunif(0, 1)

Y <- dbern(p[])

}

In this code, the single piece of data is represented by the variable Y,

which would have a value of zero or one.

As a second example of dcat(), we can formulate the analysis of a

Poisson model. For example, when analysing the helmeted honeyeater

productivity data (Box 4.1), it is necessary to calculate the probabilities of

there being 0, 1, 2, 3, 4 or 5 offspring. The Poisson model can return

values up to infinity, so this can be accommodated in WinBUGS by

pooling all values for the random variable that are greater than the

largest observed value. Additionally, because the smallest index for

dcat() is one, it is necessary to represent the probability of there being

x offspring as p[x+1].

The code for the model would be:

model

{

lambda ~ dgamma(0.001, 0.001)

for (i in 1:6) # generate probabilities for 0 to 5

{

x[i] <- i-1

p[i] <- exp(-lambda + x[i]*log(lambda) -

logfact(x[i]))

# p = exp(-m)*m^x/x! = exp(-m + x*ln(m) - logfact(x))

}
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p[7] <- 1 - sum(p[1:6]) # this is the probability of 6

or more offspring

for (i in 1:35)

{

OClass[i] <- Offspring[i] + 1

# class id needs to be incremented by 1 to accommodate

zero offspring

OClass[i] ~ dcat(p[1:7])

}

}

This code generates the same posterior distribution for lambda as that

used in Box 4.1.

Univariate continuous distributions

Uniform

The standard uniform distribution is the simplest continuous distribu-

tion, but is particularly useful as an uninformative prior distribution

for proportions. The probability density function is defined as f(x)¼ 1

for values of x between zero and one, and f(x)¼ 0 otherwise. The

cumulative distribution function on the interval 0	x	1 is F(x)¼x.

The uniform distribution can be generalized from the interval [0, 1] to

any interval [a, b], where b4a. In this case, the probability density

function is f(x)¼ 1/(b�a) for values of x between a and b. The cumulative

distribution function on the interval a	x	b is F(x)¼(x�a)/(b�a).

This generalized form of the uniform distribution has a mean (m) of
(aþb)/2 and variance (s2) of (b�a)2/12.

In particular, the standard uniform distribution (a¼ 0 and b¼ 1) has a

mean (m) of 0.5 and variance (s2) of 1/12.

In WinBUGS, the uniform distribution is expressed as:

dunif(a,b),

where a is the lower limit and b is the upper limit.

Beta

The beta distribution is useful for modelling proportions as it is the

conjugate distribution for binomial sampling. If p has a beta distribution
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for the prior with parameters (a and b), the data are x ‘successes’ and

f ‘failures’, then the posterior distribution for p under a binomial model

will also have a beta distribution, but with parameters aþx and bþf.

The standard uniform distribution is a special case of the beta

distribution, for which a¼ b¼ 1. If there are x successes and f failures

from xþf trials, and if the prior is an ‘uninformative’ uniform

distribution then the posterior will be a beta distribution with parameters

xþ1 and fþ1. Therefore, the parameter a can be thought of as the

‘number of previous successes plus one’ and b as the ‘number of previous

failures plus one’.

The beta distribution is defined on the interval [0, 1]. The probability

density function is:

fðxÞ ¼
1

Bða,bÞ
xa�1ð1� xÞb�1,

where B(a,b) is the beta function, and a40 and b40. The beta function is

expressed as an integral:

Bða,bÞ ¼

Z 1

0

ta�1ð1� tÞb�1dt ¼
�ðaÞ�ðbÞ

�ðaþ bÞ
:

For integer values of x, �(x)¼ (x�1)!, but more generally for any

value of x:

�ðxÞ ¼

Z 1

0

tx�1e�tdt:

The expression for the beta function that uses the gamma function (�())

is useful because the gamma function (or ln(�()) is more commonly

available in quantitative packages (e.g. Microsoft Excel has the function

GAMMALN()) than the beta function.

The beta distribution has a mean (m) of a/(aþb) and variance (s2) of

ab/(aþb)2(aþbþ1).

Given a particular mean (m) and variance (s2), it is possible to

determine the appropriate parameters (a and b) for the beta distribution:

a ¼ m½mð1� mÞ=s2 � 1�

b ¼ ð1� mÞ½mð1� mÞ=s2 � 1�

Note that if the random variable X has a beta distribution with

parameters a and b, then 1�X has a beta distribution with parameters

b and a (the two distributions are simply reflections of each other).
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In WinBUGS, the beta distribution is expressed as:

dbeta(a,b),

where a and b are the parameters a and b of the beta distribution.

Normal

The sum of random numbers will approach a normal distribution as

the number of random numbers in the sum approaches infinity. This

is a particularly useful property because, for example, the mean is

simply the sum of random numbers that has been rescaled by dividing

by the sample size. The rate at which a sum of random variables

converges towards a normal distribution depends on how closely the

original random variables resemble a normal. If the original random

variables are normal, then the sum will be a normal. However, if the

original random variables are, for example, highly skewed, then the sum

will only approximate a normal when a sufficient number of variables

are summed.

The probability density function of a normal distribution is:

fðxÞ ¼

ffiffiffiffiffiffi
�

2�

r
exp �

ðx� aÞ2�

2

� �
,

with the location parameter a and scale parameter t40. It turns out

the mean (m) of the normal distribution is equal to the location para-

meter (a) and the variance (s2) is equal to 1/t. The parameter t can be

referred to as the precision, with larger values of t leading to smaller

variances.

The normal distribution is conjugate to the normal model. If the prior

for the mean has a normal distribution (with mean m and precision p),

and the data are drawn form a normal distribution (such that the

likelihood has mean n and precision q), then the posterior for the

mean has a normal distribution (with mean (m/qþn/p)/(1/pþ1/q) and

precision pþq).

In WinBUGS, the normal distribution is expressed as:

dnorm(mean, tau),

where mean is equal to m and tau is equal to the precision t (¼1/s2).
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Student-t

If a sample of size n is obtained from a normal distribution, then the

quantity:

t ¼
�x� m
s=

ffiffiffi
n

p ,

will follow Student’s standard t-distribution, where �x is the sample

mean, s is the sample standard deviation and m is the population mean.

The standard t-distribution can be generalized by including a location

(m) and scale parameter 1=
ffiffi
t

p� �
that change the mean and variance

respectively.

The probability density function is:

fðxÞ ¼
�ðkþ1

2 Þ

�ðk2Þ

ffiffiffiffi
t
kp

q
½1þ t

kðx�mÞ
2
�
�ðkþ1Þ=2,

where k ¼ n�1 (the degrees of freedom), which takes values ¸2.

The mean of the t-distribution is equal to m and the variance is equal

to k/[t(k�2)]. The t-distribution approaches a normal distribution

with mean m and variance 1/t as k increases towards infinity.

The main difference between the two distributions is that the

t-distribution has ‘fatter tails’ (greater kurtosis) than the normal

distribution.

The t-distribution is expressed in WinBUGS as:

dt(m, t, k)

where m¼m, t¼ t and k¼ k.

Lognormal

Just as the normal distribution is the limiting distribution for the sum of

random variables, the lognormal distribution is the limiting distribution

for the product of positive random variables. A lognormal distribution

(Y ) is produced on transforming a normal distribution (X ) with the

exponential function, and a normal distribution is produced when taking

the natural logarithm of a lognormal distribution:

Y � expðX Þ, and

lnðY Þ � X:
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The probability density function of the lognormal distribution is:

fðxÞ ¼

ffiffiffiffiffiffi
�

2�

r
1

x
exp �

ðln x� aÞ2�

2

� �
,

where a and t are the mean and precision respectively of the corresponding

normal distribution. The mean of the lognormal distribution (m) is equal
to ea

ffiffiffiffi
w

p
and the variance (s2) is equal to e2awðw� 1Þ, where w¼e1/t.

Given the mean and variance of the lognormal distribution (m and s2),

it is possible to calculate the parameters a and t:

a ¼ ln m� 0:5 ln c

� ¼ 1= ln c,

where c¼s2/m2þ 1.

In WinBUGS, the lognormal distribution is expressed as:

dlnorm(mean, tau),

where mean is equal to a and tau is equal to the precision t of the

corresponding normal distribution.

Exponential

Given that events occur completely at random throughout time or along

a transect, the time or distance between events will follow an exponential

distribution. Because the rate at which events occur is constant with the

time or distance since the last event, the time or distance from a random

point until the next event also follows an exponential distribution.

The probability density function for the exponential distribution is:

fðxÞ ¼ l expð � lxÞ, for x 
 0, and zero otherwise,

where l is the average density of events.

The cumulative distribution function is:

FðxÞ ¼ 1�expð�lxÞ, for x 
 0, and zero otherwise:

The mean of the exponential distribution is equal to 1/l, and the

variance is equal to 1/l2.
In WinBUGS, the exponential distribution is expressed as:

dexp(lambda),

where lambda is equal to l.
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Weibull

Under the exponential model, the rate at which events occur does not

change with the time since the event. The Weibull model provides

a generalization such that the rate at which events occur (h) is a power

function of time since the last event (h¼ lvxv�1). The probability density

function in this case is given as:

fðxÞ ¼ lvxv�1expð � lxvÞ, for x 
 0, and zero otherwise:

The cumulative distribution function is:

FðxÞ ¼ 1� expð � lxvÞ, forx 
 0, and zero otherwise:

The rate at which events occur increases with time or distance since the

last event when v41, and decreases when v<1. The exponential model

is a special case of the Weibull with v¼1.

The mean and variance of the Weibull distribution are expressed in

terms of the gamma function:

m ¼ l�1=v�ð1=vþ 1Þ, and s2 ¼ l�2=v
½�ð2=vþ 1Þ � �ð1=vþ 1Þ2�:

The skewness is equal to:

g1 ¼ 3þ
2�3ð1þ 1=vÞ � 3�ð1þ 1=vÞ�ð1þ 2=vÞ þ �ð1þ 3=vÞ

½�ð1þ 2=vÞ � �2ð1þ 1=vÞ�3=2

And the kurtosis is equal to:

g2 ¼

�6�4ð1þ 1=vÞ þ 12�2ð1þ 1=vÞ�ð1þ 2=vÞ�
3�2ð1þ 2=vÞ � 4�ð1þ 1=vÞ�ð1þ 3=vÞ þ �ð1þ 4=vÞ

� �
½�ð1þ 2=vÞ � �2ð1þ 1=vÞ�2

In WinBUGS, the Weibull distribution is expressed as:

dweib(v,lambda),

where lambda is equal to l and v is equal to v.

Gamma

The gamma distribution plays important and varied roles in Bayesian

statistics. It is the conjugate of the parameter of the Poisson model, it is

the conjugate for the precision of the normal model, and if the parameter

of the Poisson distribution is mixed by a gamma distribution, the result is

a negative binomial distribution.
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The gamma distribution is defined for positive real numbers and has

the probability density function:

fðxÞ ¼
�rxr�1e��x

�ðrÞ
; x> 0:

The mean (m) is equal to r/v and the variance (s2) is equal to r/v2. Thus,

given the mean and variance of a gamma distribution, it is straight-

forward to determine the appropriate values for the parameters r and v:

r¼ m2/s2 and v¼m/s2.

In WinBUGS, the gamma distribution is expressed as:

dgamma(r,nu),

where r is equal to r and nu is equal to v.

Chi-squared

The special case of the gamma distribution in which v¼ 1/2 and r¼ k/2,

where k is a positive integer, is known as the chi-squared distribution with

k degrees of freedom.

In WinBUGS, the chi-squared distribution is expressed as:

dchisqr(k),

where k is equal to k.

Multivariate discrete distributions

Multinomial

The binomial distribution provides an n sample generalization of the

Bernoulli distribution. Similarly, the multinomial distribution provides

an n sample generalization of the categorical distribution. Consider N

independent and identical trials that each can result in one of k different

events or classes. If xi is the number of the N trials that result in

event or class i, then the probability of obtaining the vector of outcomes

(x1, x2, . . ., xk) is equal to:

PrðX1 ¼ x1,X2 ¼ x2, . . . ,Xk ¼ xkÞ ¼
NQk

i¼1

xi!

Yk
i¼1

pxii ; 0<pi< 1 and
Xn
i¼1

pi ¼ 1,
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where pi is the probability of a trial resulting in event or class i.

The mean number of trials resulting in event i is equal to Npi and the

variance is equal to Npi(1�pi).

The uniform distribution is often used as an uninformative prior for

the probability of the binomial model. The uniform distribution is a

special case of the beta distribution with both its parameters equal to one,

and the beta distribution is the conjugate of the binomial. Just as

the multinomial model is the multivariate analogue of the binomial, the

Dirichlet is the multivariate analogue of the beta distribution. Thus,

the Dirichlet is the conjugate for the probabilities of the multinomial

model and an uninformative Dirichlet distribution is commonly

expressed by setting its parameters equal to one.

In WinBUGS, the multinomial distribution is expressed as:

dmulti(p[], N),

where p[] is a vector of k probabilities that sum to one, p[i] is the

probability that the random variable takes a value of i (i ¼ 1, 2, . . ., k),

and N is the total number of trials (N ).

Multivariate continuous distributions

Multivariate normal

The multivariate normal distribution permits generation of correlated

normal random numbers. The probability density function is:

fðx1, x2, . . . ,xdÞ ¼ ð2�Þ�d=2
jTj1=2exp½ �Qðx1, x2, . . . ,xdÞ=2�,

where Q(t)¼ tTt’, t¼(x1�m1, x2�m2, . . ., xd�md) is a vector of random

numbers from which their mean is subtracted, T is the inverse of the

variance-covariance matrix, |T| is its determinant and d is the number of

correlated normal random numbers being returned.

In WinBUGS, the multivariate normal distribution is expressed as:

dmnorm(mu[], T[,]),

where mu [] is a vector that contains the means of the normal random

variates (m1, m2, . . ., md) and T[,] is the inverse of the variance-covariance

matrix of the variates (T ).
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Dirichlet

Just as the beta distribution is the conjugate of the probabilities of

the binomial model, the Dirichlet distribution is the conjugate of the

probabilities of the multinomial model.

The probability density of the Dirichlet distribution is:

fðpÞ ¼

�ð
Pn
i¼1

�iÞ

Qn
i¼1

�ð�iÞ

Yn
i¼1

p�i�1
i ; for 0 < pi < 1 and

Xn
i¼1

pi ¼ 1:

The parameters ai determine the probability of obtaining the n random

variables pi. The beta distribution is a special case of the Dirichlet

distribution, with n¼2, a1¼a and a2¼b. Just as the parameters a and b in

the beta distribution can be considered as the ‘number of previous

successes and failures plus one’ in binomial sampling, each of the ai
parameters can be considered as the ‘number of previous occurrences

of outcome i plus one’ in multinomial sampling.

The mean of the variable pi is equal to ai/A where A ¼
Pn
j¼1

�j and the

variance is equal to � iðA� �iÞ=A
2ðAþ 1Þ.

In WinBUGS, the Dirichlet distribution is expressed as:

ddirch(alpha[]),

where alpha[] is a vector containing the parameters ai (a1, a2, . . ., an).

Wishart

The Wishart distribution is the multivariate analogue of the gamma

distribution, and therefore the chi-squared distribution. In the same way

that the gamma distribution is the conjugate prior for the inverse of the

variance for a normal model, the Wishart distribution is the conjugate for

the inverse of the variance-covariance matrix of a multivariate normal

model. The probability density function is relatively complex and its

equation provides little insight (Bilodeau and Brenner, 1999). Its

important features are represented in the WinBUGS expression of the

distribution:

dwish(R[,], k),
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where R[,] is a square matrix with the same dimensions as the

variance-covariance matrix (p�p), and k is the degrees of freedom of the

matrix. The matrix R/k represents an estimate of the variance-covariance

matrix, with the estimate based on k degrees of freedom (check by

simulation).

An uninformative Wishart distributions can be specified by using

as small a value of k as possible (for a variance-covariance matrix,

k¸ p), and where the elements of R represent an assessment of

the order of magnitude of the variance-covariance matrix (WinBUGS

manual).

Conjugacy

We know that the mean density of trees could conceivably be any positive

value. The lognormal distribution is useful as a prior distribution for the

mean because it is constrained to be greater than zero, but is unbounded

(Box 3.4). I chose the lognormal distribution in this example because it

is familiar to ecologists, but any continuous distribution that is

constrained to positive values could have been used. For example,

a uniform distribution between zero and some large number would also

be suitable. If the upper limit on this uniform prior distribution is

assumed to be infinity, then the posterior will have a gamma distribution

(Hilborn and Mangel, 1997). Additionally, if the prior has a gamma

distribution, and we assume the data are drawn from a Poisson

distribution, then the posterior will again have a gamma distribution.

Therefore, an uninformative gamma distribution would have been

another possible choice.

When the prior and the posterior have the same distributional form

(although different parameters) for a given model, as in the case of the

gamma and the Poisson, then the distribution is said to be conjugate to

the model. I introduced a conjugate pair in Chapter 1, where the normal

distribution for the mean is the conjugate for the normal model. There

are numerous other conjugate pairs. For example, the gamma distribu-

tion for the precision parameter is the conjugate for the normal model.

Therefore, the gamma distribution occurs quite commonly in Bayesian

statistics.
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An uninformative gamma distribution can be specified instead of

a lognormal distribution by replacing the prior for the mean in Box 3.4

by the following line of code:

m ~ dgamma(0.001, 0.001) # gamma prior for mean trees

per quadrat

This prior has a mean of 1 but a large variance (1000), so it can take a

broad range of values. This uninformative prior leads to the same

credible interval as the lognormal prior. Therefore, the choice between

these two priors is not particularly important. Choosing conjugate priors

can help the WinBUGS algorithms operate more efficiently when

sampling from the posteriors.
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C

MCMC algorithms

The Metropolis algorithm (Metropolis et al., 1953) is one of the

simplest MCMC algorithms used for Bayesian analysis. The following

describes how the Metropolis algorithm obtains samples from a posterior

distribution. An example of sampling from the posterior distribution

of a single parameter is described, but MCMC methods are easily

extended to consider multiple parameters simultaneously (Gilks et al.,

1996).

The Metropolis algorithm works by starting with an initial

arbitrary value for the parameter X0, which is the first value of the

Markov chain. We are interested in obtaining subsequent values of Xt

such that they are samples of a random variable with probability density

function p( ).

A new possible value (Y ) is generated by drawing it from an arbitrary

symmetric probability distribution. This proposal distribution is

defined by its probability density function; given the current value Xt,

the probability of drawing the value of Y as the possible next value of the

Markov chain is equal to q(Y | Xt).

Next, the acceptance probability is calculated, which is

RðYjXtÞ ¼ min ½1,pðY Þ=pðXtÞ�:

Therefore, if the ratio of the posterior probabilities is greater than or

equal to 1 (i.e. p(Y)¸ p(Xt)), then Y is chosen as the next value of the

Markov chain (Xtþ1¼Y). If on the other hand p(Y)< p(Xt), then Y is

chosen as the next value of the Markov chain with probability p(Y)/p(Xt),

and Xt is chosen otherwise.
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The important point to note is that the algorithm depends on the

ratio of the probability density function at two different points (p(Y)

and p(Xt)). Based on Bayes’ rule, these two values are equal to:

pðYÞ ¼
fðYÞ‘ðYÞR1

�1
fðxÞ‘ðxÞdx

, and

pðXtÞ ¼
fðXtÞ‘ðXtÞR1

�1
fðxÞ‘ðxÞdx

,

where f() is the prior probability density function and ‘ðÞ is the likelihood

function. Because both expressions have the same denominator (i.e. the

same scaling constant), the ratio of the two values is simply equal to the

ratio of the prior probabilities and likelihoods; the integral is not

calculated.

Hastings (1970) modified the Metropolis algorithm to permit non-

symmetric distributions to be used for generating the new possible value.

For the Metropolis-Hastings algorithm the acceptance probability is

equal to min[1, p(Y )q(Xt |Y ) / p(Xt)q(Y |Xt)]. This reduces to the

original Metropolis algorithm when the proposal distribution is

symmetric, q(Y |Xt)¼ q(Xt |Y ). The Gibbs algorithm (after which

WinBUGS is named) is a special case in which q() is chosen such that

R is always equal to 1.

The Metropolis algorithm is illustrated below using results of three

successes from 12 independent Bernoulli trials. Let s be the probability of

success. The probability of observing the data (i.e. the likelihood) is

proportional to ‘ðsÞ¼ s3(1�s)9, which is obtained from the probability of

three successes and nine failures in 12 trials.

A uniform prior will be assumed for s, so f(s)¼ 1 for all possible values

of s between zero and one.

The simplest proposal distribution with which to generate possible

values of the Markov chain is the uniform. Note that this need not be the

same distribution as the prior; it is simply a coincidence in this example.

We can initiate the Markov chain with an arbitrary value X0¼ 0.5, and

generate the next possible value by making a random draw from a

uniform distribution. Assume that this next possible value is 0.45. To

decide whether to accept 0.45 as the next value of the Markov chain we

evaluate f(X0)‘ðX0Þ and f(Y)‘ðYÞ, which are equal to 0.512 (0.000244)

and 0.4530.559 (0.000420) respectively. Because the ratio of these two

numbers is greater than one, Y (0.45) is accepted as the next value of the

Markov chain.
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The process is repeated with a new value of Y being generated by

drawing it randomly from a uniform distribution. Assume that this next

value is 0.6. Then f(X1)‘ðX1Þ and f(Y)‘ðYÞ are calculated with values

0.4530.559 (0.000420) and 0.630.49 (0.000057) respectively. The ratio of

these two numbers is 0.135, so Y is accepted as the next value of the

Markov chain with probability 0.135. The decision about whether to

accept Y is achieved by generating another uniform random. If that

number is less than 0.135, then Y is accepted as X2, but if not then X1 is

accepted as X2. This process continues to be repeated until a sufficiently

large sample is obtained. The posterior probability density function of

s can be estimated from the values of Xt.

The Metropolis algorithm always accepts the value Y if the probability

density at Y is greater than at Xt. If it is less, the probability of moving

to that value is proportional to its density. Hence, the algorithm is

more likely to generate samples from parts of the posterior distribution

that have high density.

Using this style of algorithm has two main consequences. Firstly, Xtþ1

typically depends on Xt. Any dependence means that each new sample

provides a fraction of the information about the posterior distribution

compared to an uncorrelated sample. An extremely large number of

samples will be needed to obtain a good estimate of the posterior

distribution if the correlation is particularly strong.

The second main consequence is that the initial part of the Markov

chain is influenced by the arbitrary starting value, so the first part of the

chain needs to be discarded as a ‘burn-in’ until the influence of the initial

value is no longer apparent.

The proposal distribution can be chosen to optimize the performance

of the Markov chain. For example, if the values of Y are very similar to

Xt, then the value of R will be close to one and new values will be chosen

in most iterations of the algorithm. However, the correlation of those

samples will be high because Xtþ1 � Xt. In contrast, if the proposal allows

large moves, then many of the new possible values will be far from the

middle of the posterior distribution, leading to low values of R and very

few instances in which Y is accepted as the new values of the chain.

Therefore, when there are changes Xtþ1 and Xt will be very different but

in most cases Xtþ1¼Xt. This also leads to strong correlation between

successive samples of the chain. A happy medium is obtained when the

possible values Y are not too far from Xt, which can be determined

from trials runs of the algorithm during which it is adapted for optimal

performance.
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Why does it work?

Given a current value Xt, define the conditional probability of sampling

Xtþ1 from Metropolis’s Markov chain as Pr(Xtþ1 | Xt), and g(Xtþ1) as the

independent probability of sampling Xtþ1. Proving that the samples from

the Markov chain are samples from the posterior density p() amounts

to proving that g() and p() are equivalent probability density functions.

Bayes’ rule provides:

PrðXt jXtþ1Þ � gðXtþ1Þ ¼ PrðXtþ1 jXtÞ � gðXtÞ, so

gðXtÞ ¼ PrðXt jXtþ1Þ � gðXtþ1Þ=PrðXtþ1 jXtÞ:

The conditional probability Pr(Xtþ1 | Xt) is equal to the probability

of the proposal being equal to Xtþ1 (given by q(Xtþ1, Xt)) multiplied by

the probability of the proposal being accepted. Assume that

p(Xtþ1)< p(Xt), so the probability of acceptance is p(Xtþ1)/p(Xt). Thus,

Pr(Xtþ1 |Xt)¼ q(Xtþ1, Xt)� p(Xtþ1)/p(Xt).

The other conditional probability Pr(Xt |Xtþ1) is equal to the

probability of the proposal moving from Xtþ1 to Xt (q(Xt, Xtþ1))

multiplied by the probability of the proposal being accepted. Because

p(Xtþ1)< p(Xt), the acceptance probability is equal to one, so

Pr(Xt |Xtþ1)¼ q(Xt, Xtþ1). Thus,

gðXtÞ ¼ qðXt,Xtþ1Þ � gðXtþ1Þ= ½qðXtþ1,XtÞ � pðXtþ1Þ=pðXtÞ�:

Because q(Xt,Xtþ1)¼ q(Xtþ1,Xt) for the Metropolis algorithm

(due to the symmetry of the proposal distribution), the terms for q()

cancel and

gðXtÞ ¼ gðXtþ1Þ=½pðXtþ1Þ=pðXtÞ�, which leads to

pðXtþ1Þ=pðXtÞ ¼ gðXtþ1Þ=gðXtÞ

This equation demonstrates that the ratio of any two values of the

probability density function g() is the same as p(). Therefore, p() and g()

are exactly proportional to each other. Also, because they are both

probability density functions, p() and g() have the same area under the

curve (which is equal to one), meaning that they must be identical

functions not just in the same proportion.

The above proof used the assumption that p(Xtþ1)< p(Xt). One

can reverse this assumption to give p(Xtþ1)4 p(Xt), which leads to
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Pr(Xtþ1 | Xt)¼ q(Xtþ1, Xt) and Pr(Xt | Xtþ1)¼ q(Xt, Xtþ1)� p(Xt)/p(Xtþ1).

This then leads to:

gðXtÞ ¼ ½pðXtÞ=pðXtþ1Þ� � gðXtþ1Þ, and again

pðXtþ1Þ=pðXtÞ ¼ gðXtþ1Þ=gðXtÞ:

So the proof that p()¼ g() does not depend on the assumption about

the relative magnitude of p(Xtþ1) and p(Xt). Chib and Greenberg (1995)

provide a more detailed discussion of the Metropolis-Hastings algorithm.
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Akçakaya, H.R. (1990). A method for simulating demographic stochasticity.
Ecological Modelling, 54, 133�36.

Albert, J.H. (1997). Bayesian testing and estimation of association in a two-way

contingency table. Journal of the American Statistical Association,
92, 685�93.

Alefeld, G. and Herzberger, J. (1983). Introduction to Interval Computations.

New York, USA: Academic Press.
Anderson, D.R., Burnham, K. P. and Thompson, W.L. (2000). Null hypothesis

testing: problems, prevalence and an alternative. Journal of Wildlife
Management, 64, 912�23.

Anderson, J. L., (1998). Embracing uncertainty: the interface of Bayesian
statistics and cognitive psychology. Conservation Ecology 2, http://www.
ecologyandsociety.org/vol2/iss1/art2/

Arnquist, G. and Wooster, D. (1995). Meta-analysis: synthesizing research
findings in ecology and evolution. Trends in Ecology and Evolution,
10, 236�40.

Attiwill, P.M. and Leeper, G.W. (1987). Forest Soils and Nutrient Cycles.
Carlton, Australia: Melbourne University Press.

Ayton, P. and Wright, G. (1994). Subjective probability: what should we

believe? In Subjective Probability, ed. G. Wright and P. Ayton. New York,
USA: Wiley, pp. 163�84.

Ayyub, B.M. (2001). Elicitation of Expert Opinions for Uncertainty and Risks.
Boca Raton, USA: CRC Press.

Bakan, D. (1966). The test of significance in psychological research. Psychological
Bulletin, 66, 423�37.

282

http://www.�ecologyandsociety.org/vol2/iss1/art2/
http://www.�ecologyandsociety.org/vol2/iss1/art2/


Balakrishnan, N. and Nevzorov, V. B. (2003). A Primer on Statistical
Distributions. Hoboken, NJ, USA: Wiley.

Bayes, T.R. (1763). An essay towards solving a problem in the doctrine of

chances. Philosophical Transactions, 53, 370�418.
Begon, M., Townsend, C. and Harper, J. (2005). Ecology: From Individuals

to Ecosystems, 4th edn. Malden, MA, USA: Blackwell.

Belia, S., Fidler, F., Williams, F. and Cumming G. (2005). Researchers
misunderstand confidence intervals and standard error bars. Psychological
Methods, 10, 389�96.

Be l lhouse , D. R. (2004) . The Reverend Thomas Bayes , FRS:
A Biography to Celebrate the Tercentenary of His Birth. Statistical Science,
19, 3�43.

Ben-Haim, Y. (2001). Information-gap Decision Theory: Decisions Under Severe
Uncertainty. San Diego, USA: Academic Press.

Berger, J. O. (1985). Statistical Decision Theory and Bayesian Analysis. New York,
USA: Springer-Verlag.

Berger, J. O. and Sellke, T. (1987). Testing a point null hypothesis:
the irreconcilability of P values and evidence. Journal of the American
Statistical Association, 82, 112�22.

Berger, J. O. and Berry, D.A. (1988). Statistical analysis and the illusion
of objectivity. American Scientist, 76, 159�65.

Bilodeau, M. and Brenner, D. (1999). Theory of Multivariate Statistics.

New York: Springer-Verlag.
Bondi, H. (2004). Correspondence: Statistics don’t support cot-death murder

theory: Misunderstanding of statistics is widespread and has led to
miscarriages of justice. Nature, 428, 799.

Bormann, F.H. and Likens, G. E. (1979). Pattern and Process in a Forested
Ecosystem. New York, USA: Springer-Verlag.

Brack, C. L. (2002). Pollution mitigation and carbon sequestration by an urban

forest. Environmental Pollution, 116, S195�S200.
Brereton, R., Mallick, S.A. and Kennedy, S. J. (2004). Foraging preferences of

swift parrots on Tasmanian blue-gum: tree size, flowering frequency and

flowering intensity. Emu, 104, 377�83.
Brooks, S. P. and Gelman, A. (1998). General methods for monitoring

convergence of iterative simulations. Journal of Computational and Graphical

Statistics, 7, 434�55.
Broome, L. S. and Geiser, F. (1995). Hibernation in free-living Mountain

Pygmy-possums, Burramys parvus (Marsupialia: Burramyidae). Australian
Journal of Zoology, 43, 373�79.
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