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Preface

In the companion book (Continuum Mechanics Using Mathematica R©) to
this volume, we explained the foundations of continuum mechanics and
described some basic applications of fluid dynamics and linear elasticity.
However, deciding on the approach and content of this book, Continuum
Mechanics: Advanced Topics and Research Trends, proved to be a more
difficult task. After a long period of reflection, we made the decision to direct
our efforts into drafting a book that demonstrates the flexibility and great
potential of continuum physics to describe the wide range of macroscopic
phenomena that we can observe. It is the opinion of the authors that this
is the most stimulating way to learn continuum mechanics. However, it is
also quite evident that this aim cannot be fully realized in a single book.
Consequently, in this book we chose to present only the basics of interesting
continuum mechanics models, along with some important applications of
them.

We assume that the reader is familiar with all of the basic principles
of continuum mechanics: the general balance laws, constitutive equations,
isotropy groups for materials, the laws of thermodynamics, ordinary waves,
etc. All of these concepts can be found in Continuum Mechanics Using
Mathematica and many other books.

We believe that this book gives the reader a sufficiently wide view of
the “boundless forest” of continuum mechanics, before focusing his or her
attention on the beauty and complex structure of single trees within it (in-
deed, we could say that Continuum Mechanics Using Mathematica provides
only the fertile humus on which the trees of this forest take root!).

The topics that we have selected for this book in order to show the power
of continuum mechanics to characterize the experimental behavior of real
bodies, and the order in which these topics are discussed here, are described
below.

In Chap. 1, we discuss some interesting aspects of nonlinear elasticity.
We start with the equilibrium equations and their variational formula-
tion and discuss some peculiarities of the boundary value problems of

ix



x Preface

nonlinear elasticity. We then analyze the homogeneous equilibrium solu-
tions of isotropic materials together with the universal equilibrium solutions
of Ericksen for compressible elastic materials. Moreover, some experimental
results for constitutive equations in nonlinear elasticity are briefly explored.
The existence and uniqueness theorems of Van Buren and Stoppelli, as well
as Signorini’s method, are presented with some recent extensions to live
loads. Finally, the chapter concludes with a survey of the propagation of
acceleration waves in an elastic body, and a new perturbation method for
the analysis of these waves is presented.

In Chap. 2, we discuss the theory of continua with directors, which was
proposed at the beginning of the twentieth century by the Cosserat brothers
and was subsequently developed by many other authors. In this model, a
continuous system S is no longer considered a collection of simple points
defined by their coordinates in a frame of reference; instead, S is regarded
as a set of complex particles that also possess a certain number of vectors
that move independently of the particles with which they are associated.
Such a model provides a better description of aggregates of microcrystals,
polarized dielectrics, ferromagnetic substances, and one-dimensional and
two-dimensional bodies. It can also be applied whenever the system contains
a length that: (i) is less than the limit considered in continuum mechanics;
(ii) characterizes the dimensions of microscopic regions that influence the
macroscopic behavior of the body through their internal evolutions.

In Chap. 3, we consider a simplified model of a continuum with a nonma-
terial moving surface across which the bulk fields can exhibit discontinu-
ities. The general balance equations of this model are formulated together
with the associated local field equations and jump conditions. In Chap. 4,
this model is used to describe the phase equilibrium of two different phases.
In particular, Maxwell’s rule and Clapeyron’s equation are derived.

The same model is applied in Chap. 5 to describe dynamical phase
changes like melting and evaporation. The related difficult free-boundary
problems are stated together with some numerical results.

Chapter 6 introduces the principles of mixture theory. This model, which
allows us to describe the evolution of each constituent of a mixture as well
as the whole mixture, is very useful in chemistry, biology, and mineralogy
(alloys). This chapter contains a proof for the Gibbs rule, together with an
analysis of phase equilibrium in a binary mixture.

Chapters 7 and 8 describe the interactions of electric and magnetic fields
with matter using a continuum model with a nonmaterial interface. After
a general discussion of the different properties resulting from a change of
reference frame for the mechanical and electromagnetic equations, the ap-
proximations of quasi-electrostatics and quasi-magnetostatics are discussed.
In particular, by adopting a continuum mechanics approach, we show that
various physical models that have been proposed to explain the behavior of
dielectrics and magnetic bodies are actually equivalent from a macroscopic
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perspective. In other words, different microscopic models can lead to the
same macroscopic behavior.

In Chap. 9, we present the macroscopic approach to micromagnetism
together with the very difficult mathematical problems associated with this
model. Among other things, it is shown that the model of a continuum with
a nonmaterial interface can be used to determine the form of Weiss’ domains
for some crystals and geometries.

Chapter 10 provides an introduction to continua in special relativity. Af-
ter a brief analysis of the historical motivations of this theory, Minkowski’s
geometrical model of spacetime is presented. The relativistic balance equa-
tions are then formulated in terms of the symmetric momentum–energy
four-tensor. After an accurate description of Fermi transport, the intrin-
sic deformation gradient is introduced, in order to define elastic materials
by extending the objectivity principle to special relativity. We then justify
the different transformation formulae adopted in the literature for the to-
tal work, the total energy and the total heat of an homogeneous system
through a wide-ranging discussion of the absolute and relative viewpoints.
At the end of this chapter, the fundamental problem of the interaction
between matter and electromagnetic fields is analyzed, together with the
different models that have been adopted to describe it. Finally, we prove
the equivalence of all of these proposals.

There are only a few notebooks written in Mathematica R© for this book
(which can be downloaded from the publisher’s website at
http:// www.birkhauser.com/978-0-8176-4869-5), since the topics here dis-
cussed are more theoretical in nature than those treated in Continuum Me-
chanics Using Mathematica. However, many of the notebooks associated
with that book can also be applied to the topics covered here.

A. Romano
A. Marasco





Chapter 1

Nonlinear Elasticity

1.1 Preliminary Considerations

In this chapter we focus on the basics of nonlinear elasticity in order
to show its interesting mathematical and physical aspects. Readers who
are interested in delving deeper into this subject should refer to the many
existing books on it (see, for instance, [1]–[15]). We start by listing the main
difficulties associated with this subject:

• The equations governing the equilibrium and the motion of an elastic
body are nonlinear.

• Instead of being expressed by given functions assigned to the bound-
ary of the region occupied by the elastic body, the boundary condi-
tions are generally functions of the unknown deformation.

• Finding the forms of the constitutive equations of an elastic isotropic
material is a very complex experimental task. We must determine un-
known functions instead of the two Lamé constants that characterize
a linearly elastic material.

The nonlinearity of the basic equations of nonlinear elasticity make it
difficult to determine explicit solutions for both the equilibrium equations
and the motion equations, except in simple cases. For the same reason,
it is also an arduous task to prove existence and uniqueness theorems for
boundary value problems that can be applied to equilibrium or dynamical
problems in nonlinear elasticity. In particular, wave propagation analysis
is much more complex than in linear elasticity. In this chapter, we try to
analyze all of the above problems. When the subject requires a deeper
analysis, references will be suggested.

We assume that the reader is familiar with the foundations of contin-
uum mechanics. Therefore, all of the basic concepts (such as the balance
equations) are provided without explanations. If necessary, the reader can

1A. Romano, A. Marasco, Continuum Mechanics, Modeling and Simulation in Science, 
Engineering and Technology, DOI 10.1007/978-0-8176-4870-1_1,  
© Springer Science+Business Media, LLC 2010 



2 Chapter 1. Nonlinear Elasticity

consult other books on this subject (see, for instance, [1]–[15]); in particular,
[16] utilizes the same notation as we have adopted here.

1.2 The Equilibrium Problem

Let S be a homogeneous elastic system in the reference configuration C∗.
From now on, S is assumed to be at a constant and uniform temperature.
The system S adopts an equilibrium configuration C in the presence of
body forces acting on the region C and surface tensions across the whole
boundary ∂C or to a part Σ of ∂C. The task of elastostatics is to determine
the finite deformation x = x(X), where X ∈ C∗, x ∈ C, or, equivalently,
the displacement u(X) = x(X)−X that S undergoes when moving from
C∗ to C under the influence of the applied forces mentioned above. We
denote the deformation gradient by F = (∂xi/∂XL), the displacement gra-
dient by H = (∂ui/∂XL) = F − I, and the right Cauchy–Green tensor by
C = FFT .

The equilibrium equations, the jump conditions across a surface Σ1

separating two different materials, and the boundary conditions are,
respectively:

∇x ·T + ρb = 0, in C − Σ1, (1.1)
[[T · n]] = 0, on Σ1, (1.2)

T ·N = t, on Σ, (1.3)

where ρ is the mass density in C, T is the Cauchy stress tensor , n is the
unit vector normal to Σ1, and N is the unit vector normal to the part
(denoted Σ) of ∂C where surface forces act with a density of t.

It is convenient to use the Lagrangian equilibrium conditions , since the
unknown function x = x(X) depends on the point X in C∗. Another reason
to use these equations is that the forces acting on the part Σ of the boundary
∂C cannot be assigned because ∂C is unknown. The Lagrangian formulation
corresponding to (1.1)–(1.3) is expressed by the following equations:1

∇X ·T∗ + ρ∗b = 0, in C∗ − Σ∗1, (1.4)
[[T∗ · n∗]] = 0, on Σ∗1, (1.5)

T∗ ·N∗ = t∗, on Σ∗, (1.6)

where T∗ is the Piola–Kirchhoff tensor and ρ∗, n∗, σ∗, N∗, Σ∗, Σ∗1, and t∗
are the Lagrangian quantities corresponding to T, ρ, n, σ, N, Σ, Σ1, and t,

1See [16], p. 148.



1.2. The Equilibrium Problem 3

respectively. In this chapter we will frequently use the following relations:2

T∗ = JT(F−1)T , (1.7)

dσ = J
√

N∗ ·C−1N∗ dσ∗, (1.8)

N =
(F−1)T

√
N∗ ·C−1N∗

N∗, (1.9)

t =
1
J

√
N∗ ·C−1N∗ t∗. (1.10)

In a hyperelastic material, the Piola–Kirchhoff stress tensor T∗ is ex-
pressed in terms of the specific elastic potential ψ by the relation (see [16],
p. 161)

T∗ = ρ∗
∂ψ(F)
∂F

= ρ∗
∂ψ̂(H)
∂H

, (1.11)

where we have introduced the notation ψ(F) = ψ(I + H) ≡ ψ̂(H).
Substituting (1.11) into (1.4) and introducing the fourth-order elasticity

tensor

AijLM (H) = ρ∗
∂T∗iL

∂HjM
= ρ∗

∂2ψ̂

∂HiL∂HjM
, (1.12)

we obtain the following second-order quasi-linear partial differential system

AijLM (H)
∂2uj

∂XL∂XM
+ ρ∗bi = 0, (1.13)

whose unknowns are the components ui, i = 1, 2, 3, of the displacement.
One of the main aims of elasticity is to verify that the system (1.13) and

the boundary conditions (1.2)–(1.3) allow us to determine (at least in prin-
ciple) the finite deformation x = x(X); i.e., the equilibrium configuration
of the body S to which a given load is applied. In other words, we need
to establish the conditions for the unknown displacement field that make
it possible to prove existence and uniqueness theorems for the boundary
value problem obtained by associating the boundary conditions (1.2)–(1.3)
with the equilibrium equations (1.13).

In the next section, some specific difficulties of this boundary value prob-
lem will be highlighted.

2See [16], p. 82, p. 148.



4 Chapter 1. Nonlinear Elasticity

1.3 Remarks About Equilibrium Boundary Problems

We assume that the fields that appear in the equilibrium equations and
the boundary conditions are smooth enough to allow us to perform all of the
differentiation operations required. Moreover, the boundary part ∂C∗ −Σ∗
is assumed to be fixed or deformed in a known manner. Formally, we write

x(X) = x0(X) on ∂C∗ − Σ∗. (1.14)

If Σ∗ = ∅, the corresponding boundary value problem (BVP) is said to
be one of place; if ∂C∗ = Σ∗, then the BVP is one of traction. Finally, the
BVP is said to be mixed when Σ∗ ⊂ ∂C∗.

We can make the following remarks about these BVPs.

Remark The boundary data of a BVP are given functions of the bound-
ary of the domain in which the solution must be found. For instance, to
solve the Laplace equation in a domain Ω, we can provide either the values
of the unknown solution u on ∂Ω (Dirichlet’s BVP) or the values of its
normal derivative (Neumann’s BVP). The following examples show that a
different situation occurs in nonlinear elasticity.

• Let S be an elastic body at equilibrium, with a uniform pressure
p0 acting on the boundary ∂C of the equilibrium configuration. The
Eulerian formulation of the corresponding BVP is expressed by the
equations:

∇x · T = 0 in C,
T ·N = −p0N on ∂C.

In this formulation, the pressure p0 is assigned to the unknown bound-
ary ∂C. Using (1.4), (1.6), (1.9), and (1.10), this BVP can be formu-
lated in the following Lagrangian form:

∇X · T∗ = 0 in C∗,
T∗ · N∗ = −p0J(F−1)T N∗ ≡ t∗(X) on ∂C∗.

Consequently, t∗ is not a known function of X ∈ ∂C∗ since it depends
on the gradient of the unknown deformation. In other words, the
function t∗(X) cannot be assigned completely because we only know
how it depends on the deformation.

• Analogously, consider the elastic system S in Fig. 1.1, and suppose
that the specific force t = ks(x)i acts on the part Σ of its boundary.
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In the above expression, s(x) is the lengthening of the spring at the
point x, k is its elastic constant, and i is the unit vector orthogonal
to the wall l.

S �

xs l

Fig. 1.1 A surface live load

In view of (1.10), the boundary condition to assign to the correspond-
ing part Σ∗ of ∂C∗ is

t∗ = −J
√

N∗ · C−1 · N∗ k s(x(X))i,

which again depends on the unknown deformation.

Any load which depends on the deformation in C∗ is called a live load ,
whereas a load that is a known function of X ∈ Σ∗ is said to be a dead
load .

Dead loads have received a great deal of attention in the literature, but
they are actually very difficult to realize. In fact, taking into account the
condition that follows from (1.8) and (1.10)

t∗(X) =
dσ

dσ∗
t(x),

we see that the traction t at the boundary Σ must be given in such a way
that t∗ depends on X but not on the deformation. For instance, we could
apply a specific force to a part of the boundary of the Eulerian equilibrium
configuration given by

t =
dp
dσ
,

where the force dp that acts on the elementary boundary area dσ is con-
stant. Clearly, it is not an easy task to achieve such a load experimentally.
Even in the case of a uniform deformation (F = const) under the action
of a constant traction t, the corresponding Lagrangian traction does not
correspond to a dead load.

Remark A uniqueness theorem cannot hold for a BVP associated with
nonlinear elasticity. Three classic examples illustrate this statement.

• There are deformations that coincide at the boundary but assume
different values inside the body. For instance, John noted that if either
the external or internal boundary of a spherical shell S is rotated by
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a multiple of 2π about an axis passing through its center without
modifying the other boundary, the whole boundary of S will assume
the same position but the internal state will be greatly modified.

• u = 0 is an equilibrium solution of a thin hemispherical shell with zero
surface traction. However, there is a second solution corresponding to
the everted shell.

• Ericksen noted that in a pure traction problem with dead loads, a bar
S that is subjected to equal and opposite axial forces at its ends should
have at least two equilibrium configurations. In one of these, the forces
are tractions; in the other, the bar is subjected to compressions after
a rotation of π. Moreover, let S be at equilibrium in the Eulerian
configuration C under the action of traction forces t acting at its
ends σ1 and σ2 (see Fig. 1.2). If t∗ is the traction per unit area in
the reference configuration C∗, then it is easy to verify that S is
still at equilibrium in the rotated configuration C′ under the action
of the compression t′ = t. Let C′′ denote the Eulerian equilibrium
configuration corresponding to the Lagrangian equilibrium problem
starting from the reference configuration C′.

F

Q

F’

C*
C

C’ C’’

��

��

��

�� ��

��

��

��

t*

t’

t

t’’

Fig. 1.2 Two possible
equilibrium solutions of the

same boundary problem

By applying the objectivity principle, and recalling that the loads
are dead, we can easily prove that C′′ is another possible equilibrium
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configuration corresponding to the Lagrangian boundary problem as-
sociated with C∗.

Remark The local equilibrium of any elementary volume dc of S is de-
scribed by conditions (1.1)–(1.3), which do not imply the global equilibrium
of S. If we denote by Φ and MO, respectively, the total force and torque of
the reactions due to the constraints necessary to satisfy the displacement
datum (1.14), then the following global equilibrium conditions hold:∫

C∗
ρ∗b dc∗ +

∫
Σ∗

t∗ dσ∗ + Φ = 0, (1.15)∫
C∗
ρ∗r × b dc∗ +

∫
Σ∗

r × t∗ dσ∗ + MO = 0. (1.16)

These conditions state that the resultant and the total torque (with respect
to the pole O) of all of the forces acting on S vanish. It is clear that, if
∂C∗−Σ∗ �= ∅, the reaction fields Φ and MO satisfy (1.15)–(1.16). However,
in a traction BVP, conditions (1.15) and (1.16) become∫

C∗
ρ∗b dc∗ +

∫
∂C∗

t∗ dσ∗ = 0, (1.17)∫
C∗
ρ∗r × b dc∗ +

∫
∂C∗

r × t∗ dσ∗ = 0, (1.18)

so that, due to the presence of t∗ and r = x(X) − x0, they depend on the
deformation. Consequently, it is no longer possible to establish whether they
are satisfied a priori. In other words, (1.17) and (1.18) represent equilibrium
compatibility conditions for the data that can only be verified a posteriori.

1.4 Variational Formulation of Equilibrium

The equilibrium BVPs of an elastic system can also be formulated in
variational terms. This means that the equilibrium solutions of the BVPs
minimize suitable functionals. In this section, the deformation functions
are assumed to be of class C2(C∗), since they must satisfy (1.4)–(1.6).
However, if a weak solution is searched for,3 then the deformation functions
are assumed to belong to suitable Sobolev spaces.

3See Appendix A.
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In order to apply this approach to the equilibrium problems, we introduce
the Banach space

W = {u(X) ∈ C2(C∗) : u(X) = 0, on∂C∗ − Σ∗} (1.19)

with the norm

‖u(·)‖ = MaxX∈C∗

{∣∣ui(X)
∣∣ , ∣∣∣∣∂ui(X)

∂XL

∣∣∣∣ , ∣∣∣∣ ∂2ui(X)
∂XL∂XM

∣∣∣∣} . (1.20)

If we denote the elastic energy functional defined on W by

Ψ[u(·)] =
∫

C∗
ρ∗ψ(H) dc∗, (1.21)

then the following theorem holds.

Theorem 1.1
The displacement u0(X) is an equilibrium displacement—i.e., it is a solu-
tion of the BVP (1.4)–(1.6)—if and only if it obeys the variational equality4

DΨ [u0(·)|h(·)] =
∫

C∗
ρ∗b · h(X) dc∗ +

∫
Σ∗

t∗ · h(X) dσ∗, ∀h(·) ∈ W,

(1.22)
where DΨ is the Frechét differential of the functional (1.21).

PROOF We have

Ψ[u(·) + h(·)] − Ψ[u(·)] =
∫

C∗
ρ∗

∂ψ

∂HiL

∂hi

∂XL
dc∗ +O(‖h(·)‖),

so that, considering (1.11) and recalling that h = 0 on C∗ − Σ∗, we find
that

DΨ[u0(·)|h(·)] =
∫

C∗
ρ∗

∂ψ

∂HiL

∂hi

∂XL
dc∗

4The operator F : F −→ F ′ between two Banach spaces F and F ′ is Fréchet differen-

tiable at u ∈ F if
F(u + h) = F(u) + DF(u | h) + O(‖ h ‖)

∀h ∈ F , where

DF(u | ·) : F −→ F ′

is a linear continuous operator called the Fréchet differential of F . The notation

DF(u | ·) = DuF · h,

defines the Fréchet derivative of F at u.
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= −
∫

C∗

∂

∂XL

(
ρ∗

∂ψ

∂HiL

)
hi dc∗ +

∫
Σ∗
ρ∗

∂ψ

∂HiL
hiN∗L dσ∗

= −
∫

C∗
h · ∇X ·T∗ dc∗ +

∫
Σ∗

h · T∗N∗ dσ∗.

It is now straightforward to show that (1.22) is equivalent to the equilibrium
conditions (1.4)–(1.7).

Theorem 1.2
If b = b(X) and t∗ = t∗(X), then a displacement u0(X) ∈ W is an equi-
librium displacement if and only if it is an extremal of the functional

F [u(·)] =
∫

C∗
ρ∗ψ[H] dc∗ −

∫
C∗
ρ∗b(X) · u(X) dc∗ −

∫
Σ∗

t∗(X) · u(X) dσ∗;

(1.23)
i.e., if and only if the following condition holds:

DF [u0(·)|h(·)] = 0, ∀h(X) ∈W. (1.24)

PROOF If we note that

D

(∫
C∗
ρ∗b · u(X) dc∗ +

∫
Σ∗

t∗·u(X) dσ∗

)
=
∫

C∗
ρ∗b · h(X) dc∗ +

∫
Σ∗

t∗ · h(X) dσ∗,

then the proof follows from Theorem 1.1.

Theorem 1.3
If b = −∇xϕ(x) and the body is subjected to a uniform pressure pe, then
u0(X) ∈ W is an equilibrium displacement if and only if it is an extremal
of the functional

F̄ [u(·)] =
∫

C∗
(ρ∗ψ(H) + ρ∗ϕ(u) + peJ) dc∗

=
∫

C

ρ

(
ψ(H) + ϕ(u) +

pe

ρ

)
dc; (1.25)

i.e., if and only if

DF̄ [u0(·)|h(·)] = 0, ∀h(X) ∈W. (1.26)

PROOF First, taking into account the results of Theorem 1.1, we have

D

∫
C∗

(ρ∗ψ(H) + ρ∗ϕ(u)) dc∗
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= −
∫

C∗
h · (∇XT∗ − ρ∗∇xϕ) dc∗ +

∫
Σ∗

h ·T∗Ndσ∗

= −
∫

C∗
h · (∇XT∗ + ρ∗b) dc∗ +

∫
Σ∗

h ·T∗N∗ dσ∗.

If we prove that

D

∫
C∗
peJ dc∗ = −

∫
Σ∗
peJ(F)−1N∗ · h dσ∗,

then the condition DF̄ = 0 supplies the equilibrium equations and bound-
ary conditions in the Lagrangian form. To this end, we note that (see (3.50)
in [16])

D

∫
C∗
peJ dc∗ =

∫
C∗
pedJ dc∗ =

∫
C∗
pe

∂J

∂FiL

∂hi

∂XL
dc∗

=
∫

C∗
peJ(F−1)iL

∂hi

∂XL
dc∗

=
∫

C∗

∂

∂XL

[
peJ(F−1)iLhi

]
dc∗

−
∫

C∗

∂

∂XL

[
peJ(F−1)iL

]
hi dc∗ = −

∫
Σ∗

t∗ · h dσ∗,

since
∂

∂XL

(
J(F−1)iL

)
= 0. (1.27)

In fact, from the identity

0 =
∂

∂XM

[
J

J
FiL(F−1)Mj

]
,

when (3.49) of [16] is taken into account, we derive

0 = J(F−1)Mi
∂

∂XM

[
1
J
FiL

]
+
FiL

J

∂

∂XM
[J(F−1)Mi]

=
1
J
FiL

∂

∂XM
[J(F−1)Mi],

so that

0 = (F−1)LjFiL
∂

∂XM
[J(F−1)Mi]

= δij
∂

∂XM
[J(F−1)Mi] =

∂

∂XM
[J(F−1)Mj ],

and the theorem is proved.



1.5. Isotropic Elastic Materials 11

1.5 Isotropic Elastic Materials

Let S be an elastic body that is homogeneous and isotropic in the ref-
erence configuration C∗. In Sect. 7.2 of [16], it is shown that the elastic
potential ψ of S is a function of the principal invariants I, II, and III of
the left Cauchy–Green tensor B = FFT

ψ = ψ(I, II, III), (1.28)

and that the Cauchy stress tensor T can be written as follows:

T = f0I + f1B + f2B2, (1.29)

where

f0 = 2ρ III
∂ψ

∂III
, (1.30)

f1 = 2ρ
(
∂ψ

∂I
+ I

∂ψ

∂II

)
, (1.31)

f2 = −2ρ
∂ψ

∂II
. (1.32)

On the other hand, from the Cayley–Hamilton theorem,5

B3 − IB2 + IIB− IIII = 0. (1.33)

Multiplying by B−1 yields

B2 = IB − III + IIIB−1.

For this relation, we can write (1.29) in the equivalent form

T = ϕ0I + ϕ1B + ϕ2B−1, (1.34)

where

ϕ0 = f0 − II f2, (1.35)
ϕ1 = f1 + I f2, (1.36)
ϕ2 = III f2, (1.37)

and

ϕ0 = 2ρ
(
II

∂ψ

∂II
+ III

∂ψ

∂III

)
, (1.38)

ϕ1 = 2ρ
∂ψ

∂I
, (1.39)

ϕ2 = −2ρIII
∂ψ

∂II
. (1.40)

5See p. 92 of [16].
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For an incompressible elastic body, we have III = detB = 1, and the above
formulae become (see p. 165 of [16])

ψ = ψ(I, II), (1.41)

T = −pI + 2ρ
∂ψ

∂I
B − 2ρ

∂ψ

∂II
B−1, (1.42)

where p is an undetermined pressure that depends on the point x.
In view of some of the problems that we consider later, it is useful to

introduce the elastic energy per unit volume of the reference configuration

Ψ = ρ∗ψ, (1.43)

through which the relation (1.34) for an elastic compressible material be-
comes

T =
2
J

(
II
∂Ψ
∂II

+ III
∂Ψ
∂III

)
I +

2
J

∂Ψ
∂I

B − 2
∂Ψ
∂II

B−1, (1.44)

since ρJ = ρ
√
III = ρ∗. For an incompressible elastic material (III = 1),

(1.42) can be written as follows:

T = −pI + 2
∂Ψ
∂I

B− 2J
∂Ψ
∂II

B−1. (1.45)

1.6 Homogeneous Deformations

A deformation C∗ → C of the elastic body S is said to be a homogeneous
deformation if it has the form

x = FX + c, (1.46)

where the deformation gradient F and the vector c are constant.
When the material is compressible, the stress tensor T is given by (1.29).

Consequently, it is constant in any homogeneous deformation, and the equi-
librium equation (1.4) is obeyed if and only if there is no body force. In
other words, in the absence of body forces, any homogeneous deformation
obeys the equilibrium equation (1.4) for any isotropic elastic material. How-
ever, the boundary condition (1.6) depends on both the material and the
chosen homogeneous deformation.

When the material is incompressible, a homogeneous deformation obeys
the equilibrium equation (1.4), even in the presence of body forces, due to
the presence of the undetermined function p(x). If, in particular, b = 0,
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then the pressure p is constant. Again, the boundary condition depends on
the material and the homogeneous deformation chosen.

We derive a very important conclusion from these remarks. At least in
principle, it is possible to determine the constitutive relations (1.44) and
(1.45) using homogeneous deformations and surface forces.

In the following sections we describe some important homogeneous de-
formations as well as some famous experiments to determine the forms of
the constitutive equations of the stress tensor for particular isotropic elastic
materials.

1.7 Homothetic Deformation

A homothetic deformation of an elastic system S is expressed by the
equations

xi = λiXi, i = 1, 2, 3, (1.47)

where the constants λi are nonzero. If λi > 1, then the system S exhibits
an extension along the axis Xi; if 0 < λi < 1, then the system S exhibits a
compression along the axis xi. The deformation gradient of (1.47) is given
by the matrix

F =

⎛⎝λ1 0 0
0 λ2 0
0 0 λ3

⎞⎠ (1.48)

so that the coordinate axes are the principal axes of deformation. From
(1.48), we derive

J ≡ detF = λ1λ2λ3; (1.49)

moreover, the left Cauchy–Green tensor B = FFT and its inverse can, re-
spectively, be written as

B =

⎛⎝λ2
1 0
0 λ2

2 0
0 0 λ2

3

⎞⎠ , B−1 =

⎛⎜⎝
1
λ2
1

0
0 1

λ2
2

0
0 0 1

λ2
3

⎞⎟⎠ . (1.50)

Finally, the principal invariants of B are

I = trB = λ2
1 + λ2

2 + λ2
3, (1.51)

II = λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3, (1.52)

III = λ2
1λ

2
2λ

2
3. (1.53)
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Starting from (1.50)–(1.53) and (1.44), we derive the following expressions
for the Cauchy stress tensor components in a compressible elastic material:

T11 = 2λ1

{
1

λ2λ3

[
∂Ψ
∂I

+ (λ2
2 + λ2

3)
∂Ψ
∂II

]
+ λ2λ3

∂Ψ
∂III

}
, (1.54)

T22 = 2λ2

{
1

λ1λ3

[
∂Ψ
∂I

+ (λ2
1 + λ2

3)
∂Ψ
∂II

]
+ λ1λ3

∂Ψ
∂III

}
, (1.55)

T33 = 2λ3

{
1

λ1λ2

[
∂Ψ
∂I

+ (λ2
1 + λ2

2)
∂Ψ
∂II

]
+ λ1λ2

∂Ψ
∂III

}
, (1.56)

Tij = 0, i �= j. (1.57)

These relations prove that the state of tension inside the body S is uniform,
so the equilibrium equations are obeyed.

Let us denote the parametric equations of the boundary of S in the
reference configuration C∗ by

X = X(u1, u2).

The parametric equations of the boundary ∂C in the deformed equilibrium
configuration C are then

x = λiX(u1, u2). (1.58)

It remains to evaluate the surface force

t = T · N (1.59)

that must be applied to the unit surface of ∂C in order to make the defor-
mation (1.47) possible. In the above equation, N denotes the unit vector
normal to the known boundary surface (1.58).

We now apply the above considerations to the parallelepiped S shown in
Fig. 1.3. We note that the faces of S remain parallel to each other under
the deformation (1.47). Therefore, the unit vector N orthogonal to the face
ABCD after the deformation becomes

N = (0, 1, 0),

whereas the unit vector ν tangent to the same face ABCD has the compo-
nents

ν = (α, 0, β),

where
α2 + β2 = 1.
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X1

X2

X3

n

�

A

B

C

D
d

Fig. 1.3 Homothetic
deformation of a
parallelepiped

Consequently, the normal and tangential forces acting on this face are

tn = (n ·Tn)n = T22n, tν = (ν · Tn)ν = 0, (1.60)

respectively. Applying the same considerations to the other faces, we con-
clude that the forces are orthogonal to the faces of the parallelepiped on
which they act.

When S is incompressible J = λ1λ2λ3 = 1, and, in view of (1.45) and
(1.50), we can state that the stress tensor has the following components:

Tii = −p+ 2
∂Ψ
∂I

λ2
i − 2

∂Ψ
∂II

1
λ2

i

, i = 1, 2, 3, (1.61)

Tij = 0, i �= j. (1.62)

In the absence of body force, equilibrium equation (1.1) is verified if the
undetermined pressure p satisfies the equation

∂p

∂xi
= 0; (1.63)

i.e., if it is equal to a constant p0.
Finally, since λ1λ2λ3 = 1, we have the following for an incompressible

material:

Tii = −p0 + 2
∂Ψ
∂I

λ2
i − 2

∂Ψ
∂II

1
λ2

i

, i = 1, 2, (1.64)

T33 = −p0 + 2
∂Ψ
∂I

1
λ2

1λ
2
2

− 2
∂Ψ
∂II

λ2
1λ

2
2, (1.65)

Tij = 0, i �= j, (1.66)
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and the principal invariants of B become:

I = λ2
1 + λ2

2 +
1

λ2
1λ

2
2

, (1.67)

II = λ2
1λ

2
2 +

1
λ2

1

+
1
λ2

2

, (1.68)

III = 1. (1.69)

We conclude this section by noting that, if there is no surface force on the
face X3 = 0 or on the face X3 = d, T33 = 0 and (1.65) gives the following
value for the pressure p0:

p0 = 2
∂Ψ
∂I

1
λ2

1λ
2
2

− 2
∂Ψ
∂II

λ2
1λ

2
2. (1.70)

Introducing this value of p0 into (1.64), we obtain

T11 = 2
(
λ2

1 −
1

λ2
1λ

2
2

)(
∂Ψ
∂I

+ λ2
2

∂Ψ
∂II

)
, (1.71)

T22 = 2
(
λ2

2 −
1

λ2
1λ

2
2

)(
∂Ψ
∂I

+ λ2
1

∂Ψ
∂II

)
. (1.72)

1.8 Simple Extension of a Rectangular Block

The particular homothetic deformation

x1 = αX1, x2 = βX2, x3 = βX3, (1.73)

where α and β are positive real numbers, is termed a simple extension. The
tensors B and B−1 that correspond to this deformation are

B =

⎛⎝α2 0 0
0 β2 0
0 0 β2

⎞⎠ , B−1 =

⎛⎜⎜⎜⎜⎝
1
α2

0 0

0
1
β2

0

0 0
1
β2

⎞⎟⎟⎟⎟⎠ . (1.74)

If S is compressible, the stress tensor is given by (1.54)–(1.57):

T11 = 2α
(

1
β2

∂Ψ
∂I

+ 2
∂Ψ
∂II

+ β2 ∂Ψ
∂III

)
, (1.75)

T22 = T33 = 2
[

1
α

(
∂Ψ
∂I

+ (α2 + β2)
∂Ψ
∂II

)
+ αβ2 ∂Ψ

∂III

]
, (1.76)

Tij = 0, i �= j. (1.77)
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Let S be a rectangular block with edges that are parallel to the coordinate
axes. Also let ui, i = 1, 2, 3, be the unit vectors along these axes. If ∂Si is
the face with ui as its unit normal vector, and ∂S′

i is the face with −ui as
its unit normal vector, then the surface forces ti and t′i that must be applied
to ∂Si and ∂S′

i, respectively, in order to achieve the above deformation are

ti = Tiiui, t′i = −Tiiui. (1.78)

It is quite natural to wonder if a simple extension can be obtained by the
action of normal forces on the faces ∂S1 and ∂S′

1. In order to achieve this,
we first apply the forces t1 and t′1 obtained from (1.78) for i = 1 to these
faces; moreover, due to (1.77), we must satisfy the following condition if
the forces acting on the other faces are to be eliminated:

T22 =
1
αβ

∂Ψ
∂I

+
(
α

β
+
β

α

)
∂Ψ
∂II

+ αβ
∂Ψ
∂III

= 0. (1.79)

For a given α (i.e., for an assigned extension or contraction along u1),
the following three cases are possible:

1. Equation 1.79 allows a unique real positive solution β and the re-
quested extension can be achieved.

2. Equation 1.79 does not permit real solutions, and so the assigned
extension cannot be achieved in this material.

3. Equation 1.79 allows a number of real positive solutions (β1, β2, . . .).
Then, by substituting the pairs (α, β1), (α, β2), . . . into (1.75), we can
derive the different forces that can be applied to ∂S1 and ∂S′

1 to give
the same extension.

The last case could not be verified for linear elasticity. In fact, in this
approximation, when we denote Lamé’s coefficients (see p. 176 of [16]) by
λ and μ, (1.79) reduces to the condition

λα+ 2β(λ+ μ) − 3λ− 2μ = 0,

which is a first-degree equation. Consequently, for a given α, it allows one
positive real solution β at most.

Again, we refer this deformation to an incompressible elastic parallelepiped
S. For a simple extension that preserves the volume, we have β2 = 1/α,
and the matrices F, B, and B−1 (see 1.74) become

F =

⎛⎜⎜⎜⎝
α 0 0

0
1√
α

0

0 0
1√
α

⎞⎟⎟⎟⎠ , B =

⎛⎜⎜⎝
α2 0 0

0
1
α

0

0 0
1
α

⎞⎟⎟⎠ , B−1 =

⎛⎜⎜⎝
1
α2

0 0

0 α 0
0 0 α

⎞⎟⎟⎠ . (1.80)
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From (1.45), which defines the Cauchy stress tensor for such a material,
and from (1.80), we obtain

T11 = −p+ 2
∂Ψ
∂I

α2 − 2
∂Ψ
∂II

1
α2
, (1.81)

T22 = T33 = −p+ 2
∂Ψ
∂I

1
α
− 2

∂Ψ
∂II

α, (1.82)

Tij = 0, i �= j. (1.83)

Now, in the absence of body forces, it is possible to achieve the simple
extension without any surface forces on the faces parallel to the coordinate
planes Ox1x2 and Ox1x3. According to these conditions we have T22 =
T33 = 0, so the uniform pressure is given by the relation

p =
2
α

∂Ψ
∂I

− 2α
∂Ψ
∂II

. (1.84)

Substituting this expression into (1.81), we finally obtain

T11 = 2
(
α2 − 1

α

)
∂Ψ
∂I

+ 2
(
α− 1

α2

)
∂Ψ
∂II

. (1.85)

1.9 Simple Shear of a Rectangular Block

Let S be a rectangular block. The deformation

x1 = X1 +KX2, x2 = X2, x3 = X3 (1.86)

is called a simple shear of S. In this deformation, each plane X2 = const.
slides on itself. Any plane X3 = const. undergoes a similar deformation.
Finally, each plane X1 = const. rotates by the shear angle α, and K =
arctanα (see Fig. 1.4) is said to be the amount of shear .

The deformation gradient F and the left Cauchy–Green tensor are given
by the matrices

F =

⎛⎝1 K 0
0 1 0
0 0 1

⎞⎠ , B =

⎛⎝1 +K2 K 0
K 1 0
0 0 1

⎞⎠ . (1.87)

Since

detF = 1, (1.88)
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the deformation preserves the volume.

O
X1

X2

X
3

S

�
N1

�1

Fig. 1.4 Simple shear of a
parallelepiped

The principal invariants of B are

I = 3 +K2, (1.89)
II = 3 +K2, (1.90)
III = 1, (1.91)

and the matrix B−1 is

B−1 =

⎛⎝ 1 −K 0
−K 1 +K2 0
0 0 1

⎞⎠ . (1.92)

Using the equations of the two bent faces π1 and π2 of S,

x1 +Kx2 = 0, x1 −Kx2 = a, (1.93)

where a is the length of the edge between π1 and π2, we can derive the unit
vectors normal to them:

N1,2 =
(
± 1√

1 +K2
,± K√

1 +K2
, 0
)
. (1.94)

Consequently, the vectors tangent to π1 and π2 and parallel to the plane
Ox1x2 are

ν1,2 =
(
± K√

1 +K2
,± 1√

1 +K2
, 0
)
. (1.95)

Introducing (1.87)–(1.92) into (1.29)–(1.40), we derive

T11 = 2
(

(1 +K2)
∂Ψ
∂I

+ (2 +K2)
∂Ψ
∂II

+
∂Ψ
∂III

)
, (1.96)

T22 = 2
(
∂Ψ
∂I

+ 2
∂Ψ
∂II

+
∂Ψ
∂III

)
, (1.97)
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T33 =
∂Ψ
∂I

+ (2 +K2)
∂Ψ
∂II

+
∂Ψ
∂III

, (1.98)

T12 = 2K
(
∂Ψ
∂I

+
∂Ψ
∂II

)
, (1.99)

T13 = T23 = 0. (1.100)

Since the stress tensor is constant inside S and there is no body force,
equilibrium equation (1.1) is obeyed. It remains to evaluate the surface
forces that must be applied to the faces π1 and π2 of S in order to make
(1.87) an equilibrium deformation.

The normal forces to apply are derived by taking into account (1.60) and
(1.96)–(1.100):

tn1,2 = (±γ,±γK, 0)

⎛⎝T11 T12 0
T12 T22 0
0 0 T33

⎞⎠⎛⎝ ±γ
±γK

0

⎞⎠n1,2,

where γ = 1/
√

1 +K2. Finally, noting that (1.96)–(1.100) imply T11−T22 =
KT12, we have

tn1,2 =
T11 − 2KT12 +K2T22

1 +K2
n1,2 =

(
T22 −K

T12

1 +K2

)
n1,2. (1.101)

The tangential forces to apply to π1 and π2 are again derived from (1.60)
and (1.96)–(1.100):

tν1,2 =
KT11 −K2T12 + T12 −KT22

1 +K2
ν1,2 =

T12

1 +K2
ν1,2. (1.102)

The same procedure can be used to determine the normal and tangential
forces to apply to the other faces of S.

In linear elasticity (K � 0), deformation (1.86) can be realized by ap-
plying only tangential forces to the faces of S. In this approximation, the
stress tensor is T = λIEI + 2μE, where λ and μ are the Lamé coefficients
(see [16]) and E is the infinitesimal deformation tensor.

However, in nonlinear elasticity, (1.86) is an equilibrium deformation if
normal forces are applied to all of the faces of the block S. It is possible
to prove that the volume of the block increases or reduces if these normal
forces are not applied, meaning that the deformation cannot be isochoric.
This behavior of S, which tends to alter in volume under the action of
tangential forces, is called Kelvin’s effect . Moreover, since T11 �= T22, we
can presume that the expansion of the block assumes different values along
the axes if these components are equal (Poynting’s effect).
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1.10 Universal Static Solutions

In the above sections we analyzed some particular homogeneous deforma-
tions. In the absence of body force, equilibrium condition (1.1) is satisfied
in any homogeneous deformation. Furthermore, these deformations can be
realized by applying only the surface forces t = T ·N, where N is the unit
vector normal to the surface ∂C of the equilibrium configuration C. Fi-
nally, these forces obey the global equilibrium conditions (1.17) and (1.18).
In fact, we get ∫

∂C

t dσ =
∫

∂C

T ·N dσ =
∫

C

∇xT dc = 0,

whereas we have the following for the torques:

εijl

∫
∂C

xjtl dσ = εijl

∫
∂C

xjTlkNk dσ = εijlTlk

∫
∂C

xjNk dσ

= εijlTlk

∫
C

∂xj

∂xk
dc = εijlTljvol(C) = 0.

We have already noted that these surface forces depend on both the
homogeneous deformation chosen and the nature of the material. Conse-
quently, we can only hope to determine the stress-deformation relation T(F)
using surface forces and homogeneous deformations. In the following sec-
tions we analyze some experiments based on this idea.

An equilibrium solution x(X) for any material S belonging to a given
isotropy class that can be obtained by applying only surface forces is said
to be a static universal solution.

Ericksen [20] proved the following fundamental theorem.

Theorem 1.4

Any static universal solution of a hyperelastic, compressible, isotropic solid
is a homogeneous deformation.

PROOF First, from (1.7) and (1.11) we have:

T = 2ρB
∂ψ

∂B
;

i.e.,

Tm
k = −2ρ(B−1)kp

∂ψ

∂(B−1)mp
.
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On the other hand, ρJ = ρ∗, J = detF =
√

detC =
√
IIIC =

√
IIIB

= (IIIB−1)−1/2. Consequently, the above relation becomes

Tm
k = −2ρ∗

√
IIIB−1(B−1)kp

∂ψ

∂(B−1)mp
.

Denoting the principal invariants of B−1 by I1, I2, and I3, we have

Tm
k = −2ρ

√
I3
∂ψ

∂Ii

∂Ii
∂(B−1)mp

(B−1)kp, (1.103)

and equilibrium condition (1.1) can be written as follows:

∂ψ

∂Ii

(√
I3

∂Ii
∂(B−1)mp

(B−1)kp

)
,m

+
√
I3

∂2ψ

∂Ii∂Ij
Ij,m

∂Ii
∂(B−1)mp

(B−1)kp = 0, (1.104)

where the comma denotes partial differentiation with respect to the spatial
variables xi. This equation is obeyed for any isotropic material if and only
if the following equations are individually satisfied:(√

I3
∂Ii

∂(B−1)mp
(B−1)kp

)
,m

= 0, (1.105)

(
Ij,m

∂Ii
∂(B−1)mp

+ Ii,m
∂Ij

∂(B−1)mp

)
(B−1)kp = 0. (1.106)

Not all of the solutions (B−1)mp of equations (1.105)-(1.106) are acceptable,
since B−1 is related to a deformation x = x(X) by the relation

(B−1)ij =
∂XL

∂xi

∂XL

∂xj
= δLM

∂XL

∂xi

∂XL

∂xj
. (1.107)

We note that δLM are the components of the metric tensor G∗ along the co-
ordinate (XL) adopted in the reference configuration C∗. Relations (1.107)
then show that (B−1)ij coincide with the corresponding components of G∗
when the coordinates xi are adopted for C∗. Consequently, system (1.105)–
(1.106) is integrable if and only if there is a coordinate transformation
XL(xi) such that the metric coefficients δLM transform into (B−1)ij . This
happens if and only if B−1 is a Euclidean metric tensor, or (equivalently)
if and only if the curvature tensor R associated with B−1 vanishes:

R = 0. (1.108)

For i = 3, (1.105) gives:(√
I3

∂I3
∂(B−1)mp

(B−1)kp

)
,m

= 0.
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Noting that the term inside the parentheses of the above expression coin-
cides with the cofactor, we have

(
√
I3A

mp(B−1)mp),m = 0,

and, recalling Laplace’s rule for evaluating a determinant, we can write

((
√
I3)3),k = 0,

so that
I3 = const. (1.109)

For i = 1, and taking (1.109) into account, Eq. 1.105 gives(
∂I1

∂(B−1)mp
(B−1)kp

)
,m

= 0.

However, I1 = trB−1, and so we have

(B−1)m
k,m = 0. (1.110)

Finally, inserting i = 3 and j = 1 into (1.106), we derive the condition(
I1,m

∂I3
∂(B−1)mp

+ I3,m
∂I1

∂(B−1)mp

)
(B−1)kp = 0,

which can also be written in the form6

I1,mA
mp(B−1)kp = 0.

Equivalently, we have
I3I1,k = 0,

and we conclude that
I1 = const. (1.111)

It remains to analyze condition (1.108), which can be explicitly written
as follows:

(B−1)km,pq + (B−1)qp,km − (B−1)kp,mq − (B−1)qm,kp

+2Brs(ΓqprΓkms − ΓqmrΓkps) = 0, (1.112)

6In Chap. 3 of [16], we proved the following relation for any nonsingular matrix a:

∂a

∂ai
j

= a(a−1)j
i ,

where a = deta.
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where
2Γkmp = (B−1)km,p + (B−1)mp,k − (B−1)pk,m. (1.113)

Putting k = p and m = q into (1.111), we obtain the condition

(B−1)k,p
k,p + (B−1)p,k

p,k − (B−1)kp
,kp − (B−1)kp

,kp

+ 2Brs[(B−1)p
r,p + (B−1)p

r,p − (B−1)p
p,r]

× [(B−1)k
s,k + (B−1)k

s,k − (B−1)k
s,k]

− 2BrsΓpk
r Γkps = 0, (1.114)

from which, taking into account (1.110) and (1.111), we derive

BrsΓpk
r Γkps = 0.

If we put V = B1/2, this last equation can also be written as follows:

(V rsΓkpr)2 = 0.

However, V is positive definite, so

Γkpr = 0, (1.115)

and we conclude that B is a constant tensor, the coordinate transformation
xi = xi(XL) is linear, and that F is constant.

Finally, recall that the universal static solutions of an incompressible,
isotropic and elastic material are not completely known.

1.11 Constitutive Equations in Nonlinear Elasticity

The experimental determination of the elastic potential function is a
very difficult task. It calls for the use of particular devices that allow us
to satisfy very restrictive requests, such as the possibility of realizing a
uniform state of deformation in the specimen. Moreover, even in the case
of an elastic material, its behavior under the action of the applied forces
must be evaluated in many directions.

The constitutive equations (1.44) and (1.45) show that the stress tensor
of an isotropic elastic body S is completely determined by the elastic de-
formation energy Ψ, which depends on the three invariants if the material
is compressible, and only on the invariants I and II when S is incompress-
ible. In this latter case there are fewer experimental difficulties, and this is
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why most experiments on finite elasticity refer to incompressible materials.
Vulcanized rubber exhibits this behavior for a wide range of deformations.

Let S be an incompressible isotropic elastic material. In its reference
configuration C∗, B∗ = I and so I∗ = II∗ = 3. If we accept the hypothesis
that Ψ permits a power expansion close to these values, we can write

Ψ =
∞∑

n,m=1

Anm(I − 3)m(II − 3)n, A00 = 0, (1.116)

where Anm are constants.
The simplest form of Ψ was proposed by Treolar ([17], [18]), and it is

given by the expression
Ψ = A10(I − 3). (1.117)

It is based on a statistical model in which the rubber is described as
a network of long chain molecules. Bodies that obey (1.117) are called
neo-Hookian materials. A more accurate expression of Ψ, as suggested by
Mooney [19], is

Ψ = A10(I − 3) +A01(II − 3). (1.118)

It is possible to proceed experimentally in two different ways:

• Given a certain form for the elastic deformation energy, the surface
forces that are needed to produce an assigned deformation can be
evaluated. An experiment utilizing these forces is then performed,
and the measured deformation is compared with the theoretical one.

• Experimental data can be used to deduce information on the form of
the deformation elastic energy.

In the following sections, we will describe Treolars’ experiments and that
of Rivlin and Saunders as examples of the above procedures.

1.12 Treolar’s Experiments

Treolar carried out many experiments with vulcanized rubber to verify
the reliability of the functions (1.117) and (1.118) (see [17]–[18]). In a first
experiment he subjected a rubber specimen to a simple extension. Using
(1.117) and (1.85) we can derive

∂Ψ
∂I

= A10,
∂Ψ
∂II

= 0, (1.119)

T11 = 2A10

(
α2 − 1

α

)
. (1.120)
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T11 is the force per unit area in the deformed configuration; due to (1.7)
and (1.80), the force per unit area in the reference configuration is

T∗11 =
T11

α
= 2A10

(
α− 1

α2

)
. (1.121)

Treolar obtained the curve in Fig. 1.5 by increasing the loads on the surface
of the specimen and measuring the corresponding extension.

0

1

2

3

4

T(MN/m
2
)

�1 2 3 4 5 6 7

A

B

Fig. 1.5 Treolar’s curve: A,
experimental curve; B,

theoretical curve

The figure shows that the theoretical curve (B in Fig. 1.5) only fits the
experimental curve (A) well for values of α that are less than 1.5. For
1.5 < α � 6, A lies below B, while it quickly increases when α ≥ 6. These
results, which have been confirmed by many other experiments, show that
the neo-Hookean form (1.117) is only acceptable for small extensions.

1.13 Rivlin and Saunders’ Experiment

In this experiment, a thin square sheet of rubber was subjected to ho-
mothetic deformations (1.47) (see [19]). The specimen (see Fig. 1.6) had
five lugs on each side to which loads were applied. Two sets of orthogonal
lines were drawn on the surface of the sheet. The stretched sheet is shown
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in Fig. 1.7.

Fig. 1.6 Rubber sheet
before the deformation

Fig. 1.7 Rubber sheet after
the deformation

From (1.118), we obtain

∂Ψ
∂I

= A10,
∂Ψ
∂II

= A01, (1.122)

so that (1.71) and (1.72) become

T11 = 2
(
λ2

1 −
1

λ2
1λ

2
2

)(
A10 + λ2

2A01

)
, (1.123)

T22 = 2
(
λ2

2 −
1

λ2
1λ

2
2

)(
A10 + λ2

1A01

)
. (1.124)

For a neo-Hookian material (1.117), the above equations assume the form

T11 = 2A10

(
λ2

1 −
1

λ2
1λ

2
2

)
, (1.125)
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T22 = 2A10

(
λ2

2 −
1

λ2
1λ

2
2

)
, (1.126)

so that T11 and T22 are linear functions of the variables

ξ = λ2
1 −

1
λ2

1λ
2
2

, (1.127)

η = λ2
2 −

1
λ2

1λ
2
2

. (1.128)

1.14 Nondimensional Analysis of Equilibrium

In the next section we present Signorini’s method, which is essentially an
application of the regular perturbation method to nonlinear elasticity. In
this section, to introduce it, we write the equations of nonlinear elasticity
in nondimensional form.

First, we suppose that in the absence of acting forces, the elastic system
S assumes an unstressed, homogeneous and isotropic equilibrium configu-
ration C∗. The new equilibrium configuration of S obtained when surface
and body forces act on it will be denoted by C. We also suppose that the
deformation of S does not differ very much from the deformation we would
get if S were a linear elastic material. In other words, the deformed state
is assumed to be close to the state assumed by S if it behaved as a linear
elastic material. Consequently, in order to write the equilibrium equations
of nonlinear elasticity in nondimensional form, we introduce the following
comparison quantities:

T̃ , l, L, b̃, t̃,

where T has the dimensions of stress, L is a length, b̃ has the dimensions
of force per unit mass, and t̃ has the dimensions of force per unit sur-
face. These quantities measure the stress state in C, the magnitude of the
displacement, the size of S, as well as the intensity of the body and sur-
face forces, respectively. If the nondimensional quantities are denoted by
the same symbols used to denote the corresponding dimensional quantities,
then the elasticity equations and the boundary conditions can be written
in the form

T̃

L
∇∗ · T∗ = −b̃b, (1.129)

T̃ T∗N∗ = t̃ t∗. (1.130)

On the other hand, if we adopt the stress tensor of linear elasticity as
a measure of the stress state of S, then from the following constitutive
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relation of linear elasticity:

T = λ trEI + 2μE,

where E is the infinitesimal deformation tensor and λ and μ are the Lamé
coefficients, we obtain

T̃ � Γ
l

L
.

Here, Γ = Max{λ, μ} and l represents a length used to evaluate the dis-
placements. Substituting this value of T̃ into (1.130), we obtain the system

∇∗ ·T∗ = −L
2

lΓ
b̃b, (1.131)

T∗N∗ =
Lt̃

lΓ
t, (1.132)

where all quantities are nondimensional. We recognize that the state C∗ is
unstressed when

ε ≡ L2

lΓ
b̃ � Lt̃

lΓ
= 0.

This parameter allows us to evaluate the magnitude of the body and surface
forces acting on S that we must apply to an elastic body when we know the
nature of S through the coefficient Γ, its dimension L, and the magnitude
l of the required displacements.

1.15 Signorini’s Perturbation Method for Mixed Prob-
lems

In some of the above sections we analyzed some particular solutions for
nonlinear elasticity, showing how it is possible to derive the elastic defor-
mation energy from them. In this section we describe Signorini’s method
[21, 22, 23], which is based on regular perturbation theory and allows us to
obtain approximate solutions for boundary value problems associated with
nonlinear elasticity.

This method can be used when the following conditions are satisfied:

• The elastic system is subjected to dead loads (see Sect. 1.3)

• The Piola–Kirchhoff stress tensor T∗ depends analytically on the dis-
placement gradient H

• The body forces b(ε,X), the surface forces t∗(ε,X), and the solution
u(ε,X) depend analytically on a perturbation parameter ε, which can
be identified as the parameter introduced in the previous section
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• The boundary value problem of linear elasticity permits one and only
one solution.

In the following sections we present some existence and uniqueness the-
orems for the boundary value problems of nonlinear elasticity that clarify
the hypotheses for which the above conditions are obeyed and Signorini’s
method is applicable.

If the function T∗ = A(H) is analytic, then we can write

T∗ = A(H) =
∞∑

n=1

An(H), A(0) = 0, (1.133)

where the functions An(H) are homogeneous polynomials of degree n in
the variable H.7 Similar expansions hold for the body force b(ε,X), the
surface force t∗(ε,X), and the displacement u(ε,X):

b(ε,X) =
∞∑

n=1

εnbn, (1.134)

t∗(ε,X) =
∞∑

n=1

εnt∗n, (1.135)

u(ε,X) =
∞∑

n=1

εnun. (1.136)

From (1.136) we derive

H =
∞∑

i=1

εnHn, (1.137)

where Hn = ∇Xun, and by substituting this expression into (1.133) we
obtain

T∗ =
∞∑

n=1

εn(C(1)Hn + Bn(H1, . . . ,Hn−1)). (1.138)

Here, C1 is a fourth-order tensor which, considering (1.133), can be iden-
tified as the linear elasticity tensor C, B1 = 0, and Bn is a polynomial
of degree n in the variables H1, . . . ,Hn−1. Using this information, (1.138)
becomes:

T∗ =
∞∑

n=1

εn(CEn + Bn(H1, . . . ,Hn−1)), (1.139)

7Note that

T∗iL = AiL(H) = C(1)iLjM HjM + C(2)iLjMhN HjMHhN + · · · .
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with En = (Hn + HT
n )/2.

Now we consider the mixed boundary value problem (1.4)–(1.6). Intro-
ducing the expansions (1.134), (1.135), and (1.139) into (1.4) and (1.6), we
derive the following sequence of linear problems:

∇X · (CEn) + ρ∗b̂n = 0 in C∗, (1.140)
(CEn) · N∗ = t̂∗n on ∂Σ∗, (1.141)

un = 0, on ∂C∗ − Σ∗, (1.142)

where we have used the notations:

ρ∗b̂n ≡ ρ∗bn + ∇X ·Bn(H1, . . . ,Hn−1), (1.143)
t̂∗n ≡ t∗n − Bn(H1, . . . ,Hn−1)N∗. (1.144)

For n = 1, the above system describes a mixed boundary value problem
of linear elasticity with loads of b̂1 = b1 and t̂∗1 = t1. More generally,
suppose that the system (1.144) has been solved for n = 1, . . . ,m − 1.
Then, for n = m, we have a new mixed boundary value problem for the
same material and the same domain with external loads that depend in
a known way on the displacements u1, . . . ,um−1. In other words, the mth
term of the series (1.136) is obtained by solvingm−1 linear mixed boundary
value problems in C∗ with different loads.

1.16 Signorini’s Method for Traction Problems

The application of Signorini’s method to boundary value problems of
pure traction is more complex, since we must satisfy the global equilibrium
conditions (1.17) and (1.18). As we remarked in Sect. 1.3, these conditions
must be interpreted as compatibility conditions; i.e., the solution of the pure
traction problem is acceptable if and only if it verifies (1.17) and (1.18).

First, we denote by r∗ the position vector of X ∈ C∗ with respect to
an arbitrary origin O. The position vector r of the point x = x(X) in the
deformed equilibrium configuration can then be written as r = r∗ + u.
Consequently, (1.17) and (1.18) assume the form∫

C∗
ρ∗b dc∗ +

∫
∂C∗

t∗ dσ∗ = 0, (1.145)∫
C∗
ρ∗(r∗ + u) × b dc∗ +

∫
∂C∗

(r∗ + u) × t∗ dσ∗ = 0, (1.146)

We note that, since the loads are dead, (1.145) is a restriction on the data
b and t∗. Moreover, the following theorem holds.
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Theorem 1.5
(Da Silva) Let F = (ρ∗b, t∗) be a given system of forces acting on a
body S. Then the total momentum of F with respect to an arbitrary pole O
can always be reduced to zero by a convenient rigid rotation of S about O,
without modifying the direction of the forces.

PROOF If the astatic load

A =
∫

C∗
r∗ ⊗ ρ∗b dc∗ +

∫
∂C∗

r∗ ⊗ t∗ dσ∗ (1.147)

is introduced, then the total momentum of F vanishes; i.e.,∫
C∗

r∗ × ρ∗b dc∗ +
∫

∂C∗
r∗ × t∗ dσ∗ = 0, (1.148)

if and only if A = AT . On the other hand, if we denote the orthogonal
matrix that defines a rotation about O by Q, we have∫

C∗
Qr∗ × ρ∗b dc∗ +

∫
∂C∗

Qr∗ × t∗ dσ∗ = QA,

since it is assumed that the forces do not change their directions. Thus, the
total momentum vanishes after the rotation Q if and only if

QA − ATQT = 0. (1.149)

To prove the theorem we must now verify that equation (1.149) has a
solution Q for any given matrix A. However, A can always be represented
as the product of an orthogonal matrix R and a symmetric matrix S, which
is positive semidefinite. Thus, it is sufficient to take Q = RT if Q is a proper
rotation, or Q = −RT in the opposite case, and the theorem is proved.

In conclusion, the compatibility condition (1.146) reduces to the equation∫
C∗
ρ∗u × b dc∗ +

∫
∂C∗

u × t∗ dσ∗ = 0. (1.150)

Using (1.134)–(1.136), this condition becomes

ε2
(∫

C∗
ρ∗u1 × b1 dc∗ +

∫
∂C∗

u1 × t∗1 dσ∗

)
+ ε3

(∫
C∗
ρ∗u2 × b1 dc∗

)
+
∫

∂C∗
u2 × t∗1 dσ∗

+
∫

C∗
ρ∗u1 × b2 dc∗ +

∫
∂C∗

u1 × t∗2 dσ∗

)
+ · · · = 0.
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This can be written in a more compact form as follows:

∞∑
n,m=1

εn+m

(∫
C∗
ρ∗un × bm dc∗ +

∫
∂C∗

un × t∗m dσ∗

)
= 0, (1.151)

and we conclude that if the series (1.136) is a solution of the traction
boundary value problem

∇X ·T∗ + ρ∗b = 0 in C∗, (1.152)
T∗N∗ = t∗ on ∂C∗, (1.153)

then un, . . . ,un must be solutions of the linear boundary problems

∇X ·CnEn + ρ∗b̂n = 0 in C∗, (1.154)
(CEn)N∗ = t̂n on ∂C∗, (1.155)

and they must verify the condition

n−1∑
m=1

(∫
C∗
ρ∗un−m × bm dc∗ +

∫
∂C∗

un−m × t∗m dσ∗

)
= 0. (1.156)

Let u1 be a solution of the first-order boundary value problem of traction
obtained for n = 1 from (1.140)–(1.141):

∇X · (CE1) + ρ∗b̂1 = 0 in C∗, (1.157)
(CE1) · N∗ = t̂∗1 on ∂C∗. (1.158)

Since u1 = u1 + W1r∗ is still a solution of (1.157)–(1.158) for any skew-
symmetric tensor W1, we can try to determine W1 so as to eliminate the
coefficient of ε in (1.151). In other words, we want to determine the skew-
symmetric tensor W1 that satisfies the equation∫

C∗
ρ∗W1r∗ × b1 dc∗ +

∫
∂C∗

W1r∗ × t∗1 dσ∗ = −R1, (1.159)

where
R1 =

∫
C∗
ρ∗u1 × b1 dc∗ +

∫
∂C∗

u1 × t∗1 dσ∗.

Recalling the expression (1.147) for the astatic load, the above equation
becomes

εijkW(1)jhA(1)hk = −R(1)i. (1.160)

If ω(1)i = εijhW(1)jh/2 is the adjoint vector of W(1)jh, we have W(1)jh =
2εjhiωi, and noting that εikjεjhl = δihδkl − δilδkh, (1.160) assumes the form

(A(1)ik −A(1)hhδik)ω(1)k = 2R(1)i,
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which can also be written as

(A1 − (trA1)I)ω1 = 2R1. (1.161)

In conclusion, (1.161) has one and only one solution ω1 if and only if

det(A1 − (trA1)I) �= 0. (1.162)

If this condition is satisfied and ω1 is the solution of (1.161), then the
displacement u1 = u1 + W1r∗ is a solution of the boundary value problem
(1.157)–(1.158) for which the coefficient of ε in (1.151) vanishes.

More generally, let u1, . . . ,up−1 be solutions of the boundary value prob-
lem (1.154)–(1.155) for N = 1, . . . , p − 1 that satisfy (1.151) for n =
2, . . . , p − 1. If up is a solution of (1.154)–(1.155) for n = p, then we can
choose the skew-symmetric tensor Wp in such a way that up + Wpr∗ sat-
isfies (1.151) for n = p. In other words, Wp has to be a solution of the
equation∫

C∗
ρ∗Wpr∗ × bp dc∗ +

∫
∂C∗

Wpr∗ × t∗p dσ∗ = −Rp, (1.163)

where

Rp =
∫

C∗
ρ∗up × bp dc∗ +

∫
∂C∗

up × t∗p dσ∗

+
p−1∑
m=1

(∫
C∗
ρ∗um × bp+1−m dc∗ +

∫
∂C∗

um × t∗p+1−m dσ∗

)
.(1.164)

Proceeding as we did for (1.159), using the hypothesis (1.162) we find
that Wp is a solution of (1.161).

All of the above results prove Signorini’s existence and uniqueness theo-
rem:

Theorem 1.6
If the dead load (ρb1, t∗1) satisfies condition (1.162) and the pure traction
boundary value problem of linear elasticity permits a solution, then the com-
patibility condition allows us to determine one and only one solution un of
(1.154)–(1.155) for any n.

1.17 Loads with an Equilibrium Axis

The dead load (ρb1, t∗1) is said to have an equilibrium axis if

det(A1 − (trA1)I) = 0. (1.165)
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If this condition is obeyed, then Signorini’s procedure cannot be applied.
In this section we analyze the meaning of (1.165).

First, we note that (1.165) is equivalent to saying that trA1 is an eigen-
value of the astatic load A1. Considering this, the following theorem holds.

Theorem 1.7
α ≡ tr(A1) is an eigenvalue of A1 if and only if

A1 = β(e1 ⊗ e1 − e2 ⊗ e2) + αe3 ⊗ e3, (1.166)

where e3 is the eigenvector corresponding to α, and β is a real number.

PROOF Since (ρ∗b, t∗) satisfies the condition (1.148), the corresponding
astatic load A1 is symmetric. Therefore, it permits a basis of eigenvectors
(e1, e2, e3) in which the representative matrix of A1 is diagonal⎛⎝β1 0 0

0 β2 0
0 0 β3

⎞⎠ ,

where β1, β2, β3 are the eigenvalues of A1. If α = trA1 is an eigenvalue,
then we have

β1 + β2 + α = α;

i.e., β1 = −β2 and (1.166) is proved. On the other hand, if (1.166) holds,
α = trA1 is an eigenvalue of A1.

Theorem 1.8
The astatic load A1 permits representation (1.166) if and only if

QA1 − A1QT = 0, (1.167)

for any rotation Q about the axis e3.

PROOF First, in the basis (e1, e2, e3), any rotation about e3 is described
by the matrix ⎛⎝ cos θ sin θ0

− sin θ cos θ0
0 0 1

⎞⎠ , (1.168)

where θ is the angle of rotation about e3 starting from e1. It is then easy
to verify that conditions (1.166) and (1.168) are equivalent to (1.167).

When (1.149) is taken into account, the above theorems show that Sig-
norini’s method fails when there is an axis e3 such that the dead load
(ρ∗b1, t∗1) is equilibrated for any rotation about e3.
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1.18 Second-Order Hyperelasticity

In this section we introduce second-order hyperelasticity in order to an-
alyze a simple but interesting application of Signorini’s method (see [31]–
[37]).

Let S be a hyperelastic isotropic body, and let C∗ be a homogeneous
unstressed reference configuration. The elastic potential ψ is a function of
the three principal invariants IB , IIB , and IIIB of the right Cauchy–Green
tensor B, or, equivalently, a function of the three principal invariants of the
Saint–Venant deformation tensor G (see Chap. 3 of [16]):

ρ∗ψ̃(IB , IIB, IIIB) = ρ∗ψ(IG, IIG, IIIG), (1.169)

where the invariants IG, IIG, IIIG are infinitesimal and are of the same
order of the deformation gradient H. The expansion of ψ at (0, 0, 0), up to
third-order terms in the components of H, is

ρ∗ψ � α1IG + α2IIG + α3IIIG + α4I
2
G + α5IGIIG + α6I

3
G, (1.170)

where α1, . . . , α6 are suitable numeric coefficients. In view of (1.11), we have

T∗ = (I + H)
[
∂ψ

∂IG

∂IG
∂G

+
∂ψ

∂IIG

∂IIG
∂G

+
∂ψ

∂IIIG

∂IIIG
∂G

]
.

If we take into account formulae (3.52) and (3.53) in [16], which give the
derivatives of the principal invariants of a matrix with respect to the matrix
itself, the above equation becomes

T∗ = (I + H)
[
∂ψ

∂IG
I +

∂ψ

∂IIG
(IGI − G)

+
∂ψ

∂IIIG
(G2 − IGG + IIGI)

]
. (1.171)

When we recall the hypothesis that T(0) = 0 in the absence of deforma-
tion, then we obtain α1 = 0 from (1.170) and (1.171). Consequently, since
H = 2E− HT , we can write (1.171) in the following form:

T∗ = (I + 2E− HT )
[
(2α4IG + α5IIG + 3α6I

2
G)I

+ (α2 + α5IG)(IGI− G) + α3(G2 − IGG + IIGG
]
,

so that we have

T∗ = (I + 2E− HT )
{[

(2α4 + α2)IG + (3α6 + α5)I2
G + (α3 + α5)IIG

]
I

− (α2 + (α3 + α5)IG)G + α3G2
}
. (1.172)
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Remembering that

G = E +
1
2
HHT , (1.173)

we can easily prove the following relations with our approximations:

IG = IE +
1
2
IHHT , I2

G = I2
E, (1.174)

IIG = IIE, G2 = E2, (1.175)

The above relations allow us to write the Piola–Kirchhoff stress tensor
in the form

T∗ = λIEI + 2μE +
(
λ

2
IHHT + β1I

2
E + β2IIE

)
I

+ (2λ− β2)IEE + β4E2 − λIEHT − μ(HT )2, (1.176)

where the five coefficients λ, μ, β1, β2, β4 are related to the coefficients
α2, . . . , α6 by the relations

λ = 2α4 + α2, 2μ = −α2, (1.177)
β1 = 3α6 + α5, β2 = α3 + α5, β4 = α3 − 2α2. (1.178)

If we suppose that a nondimensional parameter ε is introduced and we
recall Signorini’s hypotheses (1.134), (1.135) and (1.136) about the dis-
placement and the loads, then we obtain, up to second-order terms in the
parameter ε,

IE = εIE1 + ε2IE2 , E = εE1 + ε2E2, I2
E = ε2I2

E1
, (1.179)

IHHT = ε2IH1HT
1
, IIE = IIE1 , IEE = ε2IE1E1, (1.180)

E2 = ε2E2
1, IEHT = ε2IE1H

T
1 , (HT )2 = ε2(HT

1 )2. (1.181)

When we take into account these relations, the Piola–Kirchhoff stress
tensor (1.176) becomes

T∗ = εCE1 + ε2(CE2 + B1(H1), (1.182)

where C is the linear elasticity stress tensor, so that

CEi = λIEiI + 2μEi, i = 1, 2, (1.183)

and

B1(H1) =
(

1
2
IH1HT

1
+ β1I

2
E1

+ β2IIE1

)
I

+ (2λ− β2)IE1E1 + β4E2
1 − λIE1H

T
1 − μ(HT

1 )2. (1.184)
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We conclude this section by noting that, if the material is elastic but not
hyperelastic, then, instead of (1.176), the approximate expression for the
Piola–Kirchhoff tensor is

T∗ = λIEI + 2μE +
[
λ

2
(
IHHT + 2I2

E

)
+ β1I

2
E + β2IIE

]
I

+ β3IEE + β4E2 − λIEHT − μ(HT )2. (1.185)

By comparing (1.185) and (1.176), we see that a second-order elastic
body is a second-order hyperelastic body if and only if

β3 = 2λ− β2. (1.186)

1.19 A Simple Application of Signorini’s Method

In this section we show a simple application of Signorini’s method. Let
S be a cube of a homogeneous, hyperelastic material in the reference con-
figuration C∗ (see Fig. 1.8). We assume that face a is fixed, whereas face b
is acted upon by a constant force t parallel to b.

C*

t

a

b

X1

X2

c

Fig. 1.8 Simple shear of a
parallelepiped

If we denote the small angle that face c forms with axis OX2 after the
deformation by ε, then, up to second-order terms, we have

t = εt1 + ε2t2, H = εH1 + ε2H2. (1.187)

It is very easy to verify that the system of linear elasticity

∇ · (CE1) = 0 inC∗ (1.188)
CE1 = t1 on b, (1.189)
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permits the solution
u1 = (X2, 0, 0), (1.190)

corresponding to a small simple shear. In fact, we have

H1 =

⎛⎝0 1 0
0 0 0
0 0 0

⎞⎠ , (1.191)

E =
1
2

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠ , (1.192)

so that the first-order stress tensor T∗,1 = 2μE1 is constant and (1.188) is
satisfied. Moreover, the first-order traction acting on face b is given by

t1 = (μ, 0, 0). (1.193)

To evaluate the displacement u2, we must consider the system

∇ · (CE2) = −∇ · (B1(H1)) inC∗ (1.194)
CE2 = t2 − B1(H1)N on b. (1.195)

On the other hand, we get

HT
1 =

⎛⎝0 0 0
1 0 0
0 0 0

⎞⎠ , (1.196)

H1HT
1 =

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ , (1.197)

E2
1 =

1
4

⎛⎝ 1 0 0
0 1 0
0 0 0

⎞⎠ , (HT
1 )2 = 0, (1.198)

IH1HT
1

= 1, IIE1 =
1
4
, I2

E1
= 0. (1.199)

Finally, we obtain the expression for the right-hand side of (1.195):

B1(H1) =
1
4
(2λ− β2)

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠+
1
4
β4

⎛⎝1 0 0
0 1 0
0 0 0

⎞⎠ , (1.200)

and the second-order system assumes the form

∇ · (CE2) = 0 inC∗ (1.201)
CE2 = t2 − B1(H1)N on b. (1.202)
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We note that the equilibrium equation in C∗ is identical to (1.188),
whereas the boundary condition on b is different since any face of the cube is
acted upon by a normal force. We will not solve this more complex problem
here; we will simply remark that in order to get a second-order deformation
corresponding to a simple shear, we must apply a normal force that bal-
ances the force B1(H1)N to any face. This result has already been proved
for finite elasticity (see Sect. 1.9).

1.20 Van Buren’s Theorem

In this section, we sketch out the proof of an existence and uniqueness
theorem for a mixed boundary value problem that was developed by Van
Buren (see [24]). At the end of this section we will cite some results obtained
by Stoppelli that refer to the existence and uniqueness of the solutions of
pure traction boundary value problems. All of these theorems have local
character since they only ensure the existence and uniqueness of the solu-
tions for deformations that are not too far from those to which the linear
elasticity approximation can be applied. Moreover, they require that an
existence and uniqueness theorem holds for the corresponding problems of
linear elasticity. All of the theorems cited here are based on the inverse
mapping theorem, (Banach–Caccioppoli) which gives sufficient conditions
for the invertibility of a map between two Banach spaces.

Let F and F ′ be two Banach spaces and f : F −→ F ′ be a Frechét
differentiable function whose differential Df(x, h) is a continuous function
of x ∈ F . Moreover, let us suppose that at the point x0 ∈ F the differential

Df(x0, h) : F −→ F ′

is an isomorphism. In these hypotheses, the inverse mapping theorem states
that it is possible to find a neighborhood I(x0) of x0 and a neighborhood
I(F (x0)) of F (x0) in which F can be inverted.

Let C∗ be a natural reference configuration of an elastic body S (i.e.,
a configuration in which the stress tensor vanishes), and let ε be a nondi-
mensional parameter that is characteristic of the problem (see the above
sections). We suppose that S is acted upon by specific body forces b(X, ε)
and surface forces t∗(X, ε). The functions b(X, ε) and t∗(X, ε), which are
respectively defined on C∗ × I0 and ∂C′

∗ × I0 (where I0 is in the neighbor-
hood of the origin of � and ∂C′∗ is the part of ∂C∗ upon which the surface
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forces act) are assumed to vanish for ε = 0 and to be differentiable with
respect to ε around ε = 0:

b(X, ε) = εb1(X) + B(X, ε), (1.203)
t∗(X, ε) = εt1(X) + T∗(X, ε). (1.204)

We want to prove that, under suitable hypotheses, the nonlinear mixed
boundary value

∇X · T∗(H0) + ρ∗b(X,ε) = 0, ∀X ∈ C∗ (1.205)
T∗(H0) · N∗ = t∗(X, ε) ∀X ∈ ∂C′

∗, (1.206)
u0(X) = 0, ∀X ∈ ∂C∗ − ∂C′

∗. (1.207)

has one and only one solution for any value of ε in the neighborhood of the
origin. To prove this, we make use of the inverse mapping theorem.

Let us introduce the pair of vector functions

h = ∇X · T∗(H) + ρ∗b(X, ε), (1.208)
g = −T∗(H)N∗ + t∗(X, ε), (1.209)

where H = ∇Xu(X) and u(X) is an arbitrary displacement field such that
u(X) = 0 on ∂C∗ − ∂C′

∗.
We denote by F the vector space of the functions u(X), which are suitably

regular in X ∈ C∗ and vanish on ∂C∗ − ∂C′
∗. We also suppose that it is

possible to introduce a norm ‖ u(X) ‖ into F such that F becomes a Banach
space. Similarly, we consider the Banach space F ′ of the pairs (h(X),g(X)),
as equipped with a convenient norm ‖ (h(X),g(X)) ‖. In this way, we can
associate a nonlinear operator with the system (1.205), (1.206) and (1.207):

F : F −→ F ′, (1.210)

such that
F(u(.)) = (h(.),g(.)). (1.211)

We note that to the displacement 0(.) ∈ F corresponds the pair (ρ∗b(., ε),
t∗(., ε)). Moreover, if F is of class C1 in the neighborhood of 0(.), with
respect to the norms of F and F ′, and if the Fréchet derivative D0F :
F −→ F ′ is an isomorphism, then, due to the inverse mapping theorem,
there is a neighborhood N of 0(.) such that the correspondence between N
and F(N) is a diffeomorphism. Consequently, if (0, 0) ∈ F(N), then there
is one and only one displacement u0(X, ε) such that F(u0) = (0, 0). When
we recall how the pair (h,g) has been defined, we conclude that u0(X, ε)
represents the solution of the boundary value problem (1.205)–(1.207).

In conclusion, in order to prove an existence and uniqueness theorem
for the boundary value problem (1.205)–(1.207) by the inverse mapping
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theorem, we need:

• To define the Banach vector spaces F and F ′

• To verify that the functional (1.210) is of class C1

• To prove that D0F is an isomorphism

• To prove that there is a neighborhood N of 0(.) such that F : N →
F(N) is a one-to-one map and (0, 0) ∈ F(N).

To realize all of the above conditions, we suppose that

1. The region C∗ is compact.

2. ∂C∗ is a surface of class C2+λ, λ > 0; i.e., this requires that in the
neighborhood of any of its points it is possible to introduce local coor-
dinates (x1, x2, x3) ∈ �3 such that the transformation functionsXL =
XL(xi) have Hölder-continuous second derivatives with exponent λ;8

moreover, (x1, x2, x3) ∈ C∗ if x3 < 0, whereas (x1, x2, x3) ∈ ∂C∗ if
and only if x3 = 0. In other words, (x1, x2) are local coordinates on
∂C∗.

3. The function T∗(F) is of class C3 in the region defined by the in-
equality ‖ F − I ‖< γ, where γ > 0.

4. b(., ε) is of class C0+λ(C∗) and t∗(., ε) is of class C0+λ(∂C′′∗ ).

5. The linear elasticity tensor C = (∂T∗/∂H)H=0 satisfies all of the
properties that ensure that the corresponding boundary value prob-
lem of linear elasticity has one and only one solution.

When these conditions are obeyed, the Banach space F is the vector
space of all vector fields u(.) of class C2+λ(C∗) equipped with the norm

‖ (h,g) ‖=‖ h ‖C0+λ(C∗) + ‖ g ‖C0+λ(∂C′′∗ ), (1.212)

where

‖ h ‖C0+λ(C∗)=
3∑

i=1

( max
X∈C∗

| hi(X) | +Ai),

‖ g ‖C0+λ(∂C′′∗ )=
3∑

i=1

( max
X∈∂C′′∗

| gi(X) | +Bi).

8In a metric space with metrics d, the function f is Hölder-continuous with exponent

λ > 0 in a region D if
| f(x) − f(x′) |≤ M d(x, x′)λ,

∀x, x′ ∈ D. M is called the Hölder coefficient of f in D.
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Here, Ai and Bi are the Hölder coefficients of hi e gi in C∗ and ∂C′′
∗ ,

respectively.
Finally, let D be the open set F of the vector fields u ∈ F for which

‖ u ‖< γ, where γ is the positive number that appears in condition 3.
We can now sketch the proof. To verify that F is of class C1 together

with its inverse, we put

(Δh,Δg) = F(u + Δu) − F(u).

Consequently, we have

Δh = ∇X · (T∗(F + ΔF) − T∗(F)) inC∗, (1.213)
Δg = −(T∗(F + ΔF) − T∗(F)) · N∗ on∂C′′

∗ , (1.214)

where ΔF = ∇XΔu.
On the other hand,

ΔT∗iL ≡ T∗iL(F + ΔF) − T∗iL(F) =
∂T∗iL

∂FjM
ΔFjM +O(‖ ΔF ‖),

so that, if we introduce the notation

AijLM =
∂T∗iL

∂FjM
, BijkLMN =

∂2T∗iL

∂FjM∂FkN
,

the system (1.213)–(1.214) becomes

Δhi =
(
AijLM

∂2

∂XL∂XM
+BijkLMN

∂2uk

∂XL∂XM

∂

∂XN

)
Δuj

+ O(‖ Δu ‖), (1.215)

Δgi = −AijLM
∂Δuj

∂XM
N∗L +O(‖ Δu ‖). (1.216)

(1.215) and (1.216) show that the nonlinear operator F is Fréchet differen-
tiable ∀u ∈ F , since, due to the norm (1.212) and condition 3, the operator

DuF =
(
AijLM

∂2

∂XL∂XM
+BijkLMN

∂2uk

∂XL∂XM

∂

∂XN
,−AijLM

∂Δuj

∂XM
N∗L

)
(1.217)

is a linear map (F → F ′) that can be regarded as the Fréchet derivative of
F at the point u ∈ F .

In order to verify that F is a diffeomorphism of class C1, we have to
show that DuF is continuous with respect to u ∈ F . Now, if u,u ∈ F , the
difference

(DuF −DuF)Δu
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becomes ((
A

LM

ij −ALM
ij

) ∂2Δuj

∂XL∂XM

+
(
B

LMN

ijk

∂2uk

∂XL∂XM
− BLMN

ijk

∂2uk

∂XL∂XM

)
∂Δuj

∂XN
;

−
(
A

LM

ij −ALM
ij

) ∂Δuj

∂XM
N∗L

)
, (1.218)

and its norm goes to zero when u → u in F . Finally,

D0F =
(

C
LM
ij

∂2

∂XL∂XM
,−C

LM
ij N∗M

)
, (1.219)

where C is the linear elasticity tensor evaluated at the natural configuration
u = 0. This means that the equation

D0F(Δu = (Δh,Δg) (1.220)

coincides with the mixed boundary value problem of linear elasticity. There-
fore, if an existence and uniqueness theorem holds for this problem, then
D0F is an isomorphism. Due to the inverse mapping theorem, the nonlinear
operator (1.211) is a diffeomorphism of class C1 between a neighborhood N
of (0, 0) ∈ F and a neighborhood F(N) of the image (ρ∗b(., ε), t∗(., ε)) ∈ F ′.
If |ε| is sufficiently small, then (0,0) ∈ F(N) and there is only one point
u0 ∈ N such that F(u0) ∈ F(N).

We can state the following theorem (from Van Buren):

Theorem 1.9
Under hypotheses 1–5, it is possible to find two positive numbers ξ and ζ
such that, for any ε > 0 and |ε| < ξ, the boundary value problem (1.205)–
(1.207) permits one and only one solution u0 that satisfies the condition

‖u0‖ < ζ.

It is possible to prove that, if the functions b(X, ε), t∗(X, ε), and T∗(F, ε)
are analytic functions of the variable ε, then (at least for ε| < ξ) the solution
u0 is an analytic function of ε and Signorini’s method remains valid.

In [26]–[58] (see also [2] and [3]), again using the inverse mapping the-
orem, Stoppelli proves an existence and uniqueness theorem for the pure
traction equilibrium boundary value problem. This case is more difficult
than the above case for two reasons. First, we must impose the condition
that the acting forces are equilibrated:∫

C∗
ρ∗b dc∗ +

∫
∂C∗

t∗ dσ∗ = 0, (1.221)
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∫
C∗

r × ρ∗b dc∗ +
∫

∂C∗
r × t∗ dσ∗ = 0, (1.222)

where r is the position vector.
Moreover, the pure traction boundary value problem of linear elastic-

ity does not allow a uniqueness theorem (see Sect. 10.3 of [16]) since the
solution is determined up to an arbitrary infinitesimal rigid displacement.

We conclude this section by mentioning that a wide-ranging and detailed
analysis of equilibrium boundary value problems of nonlinear elasticity can
be found in [30]. In this book, which collects together many results obtained
by the author, theorems of existence and uniqueness and the analytic de-
pendence of the solutions on the nondimensional parameter ε are proven
for many boundary value problems of finite elasticity with dead loads and
some special types of live loads.

1.21 An Extension of Signorini’s Method to Live Loads

At the beginning of this chapter we remarked that the acting force are
almost always described by live loads. However, these loads introduce many
mathematical difficulties into the analysis of elastostatics and elastodynam-
ics (see [28, 29]).

In this section we present an extension of Signorini’s method to traction
boundary value problems of equilibrium with live loads in which the pre-
scribed surface traction is parallel to the vector normal to the boundary of
the elastic body. An existence, uniqueness and analytic dependence on ε was
demonstrated in [30] for this particular type of live load when:

1. The Piola–Kirchooff stress tensor T∗ = JT(F−1)T depends analyti-
cally on the displacement gradient H

2. The loads b(ε,X,u,H) and t∗(ε,X,u,H) are analytic functions of ε.

We now consider the following boundary value problem of pure traction for
an elastic material:

∇X · T∗ = 0 inC∗, (1.223)
T∗N∗ = εt∗ on∂C∗, (1.224)

where the loads must be globally equilibrated; i.e., they must obey the
conditions: ∫

∂C∗
t∗ dσ∗ = 0, (1.225)∫

∂C∗
r × t∗ dσ∗ = 0. (1.226)
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We wish to solve the above problems for the second-order elasticity approx-
imation. We provide the basic results here; they are explored in more detail
in [37].

Since we are interested in the second-order elasticity, we must consider
the approximate expression (1.185) for the Piola–Kirchhoff stress tensor.
Using Signorini’s method, we must assume that u = εu1 + ε2u2. Following
the usual procedure, we obtain

T∗ = εT∗1 + ε2(T∗2 + B∗1) (1.227)

from (1.185), where

T∗i = λIEI + 2μEi, i = 1, 2, (1.228)

B∗1 =
[(

1
2

(
IH1HT

1
+ 2I2

E1

)
+ β1I

2
E1

+ β2IIE1

)]
I

+ β3IE1E1 + β4E2
1 − λIE1H

T
1 − μ(HT

1 )2. (1.229)

Similarly, we assume that the live loads in the actual equilibrium config-
uration can be written in the following way:

εt(X,u,H) = εt1(X) + ε2[(∇ut)0u1 + (∇Ht)0H1]. (1.230)

In order to find an approximate formula for the surface force t∗ acting
on the boundary of the reference configuration, we start by recalling that
t∗ = Jt

√
N∗ · C−1N∗ (see Eq. 1.10), where C is the right Cauchy–Green

tensor. On the other hand, it is straightforward to prove that the following
approximate formula holds for J = detF:

J = 1 + εIH1 + ε2(IH2 + IIH1 ). (1.231)

Moreover, from C = I + 2E + HHT , it is possible to prove (see [37]) that√
N∗ ·C−1N∗ = 1 − ε

a

2
− ε2

1
2

(
a2

4
+ b

)
, (1.232)

where

a = N∗ · E1N∗, (1.233)
b = N∗ · (2E2 − H2

1 − H1HT
1 − (HT

1 )2)N∗. (1.234)

The above results allow us to write the following approximate expressions
for the surface loads:

εt∗ = εt∗1 + ε2t∗2, (1.235)

where

t∗1 = t1, (1.236)
t∗2 = IH1t1 − t1N∗ ·E1N∗ + (∇ut)0u1 + (∇Ht)0H1. (1.237)
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Finally, the approximate formulation of the pure traction boundary value
problem (1.224) and the compatibility conditions is given by the following
equations:

∇X · T∗1 = 0 inC∗, (1.238)
T∗1N∗ = t∗1 on ∂C∗, (1.239)

∇X · (T∗2 + B∗1) = 0 inC∗, (1.240)
(T∗2 + B∗1)N∗ = εt∗2 on∂C∗. (1.241)

∫
∂C∗

t∗1 dσ∗ = 0, (1.242)∫
∂C∗

(X + u1) × t∗1 dσ∗ = 0, (1.243)∫
∂C∗

t∗2 dσ∗ = 0, (1.244)∫
∂C∗

((X + u1) × t∗2 + u2 × t∗1) dσ∗ = 0. (1.245)

We note that only the first of the compatibility conditions listed above is a
restriction on the applied loads that can be controlled a priori.

An interesting example of a live load is given by a constant pressure in
the actual configuration; i.e., t = −p0N. For this particular surface force,
the relations (1.236) and (1.237) reduce to the following ones:

t∗1 = −p0N∗, (1.246)
t∗2 = −p0IH1N∗ − p0(N∗ · E1N∗)N∗. (1.247)

We can see that in the reference configuration we must add a further pres-
sure (that depends on the first-order deformation) to the pressure p0. Also,
in this simple case, the compatibility conditions (except for the first one)
must be verified after the solution to the specific problem has been found.

The above equations are solved in [37] for elastic bodies with a simple
geometry. The corresponding solutions, while referring to particular cases,
are used to propose experiments that allow us to determine the second-order
elastic constants β1, . . . , β4.

1.22 Second-Order Singular Surfaces

One interesting subject in the field of nonlinear elasticity is wave propa-
gation, which is difficult to analyze due to the nonlinearity of the equations
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governing the propagation and evolution of waves. Due to its importance in
geophysics, engineering, nondestructive testing of materials, electronic sig-
nal processing devices, etc., wave propagation in nonlinear elastic, isotropic,
and homogeneous media has been investigated in many papers (see, for in-
stance, [38, 57]).

Important results are known for ordinary principal waves in isotropic elas-
tic materials. We recall that principal waves propagate along the principal
axes of deformation, which, due to the isotropy of the material, are also
the principal axes of stress (see Sects. 1.23 and 1.24). These waves, when
they exist, can only be longitudinal or transverse. Furthermore, Ericksen’s
formulae supply unique values for their speeds provided that the form of
the stress relation is known. Conversely, if these speeds are known functions
of the three principal stretches (obtained experimentally for example), then
the response coefficients are uniquely determined. In spite of the strong rela-
tion between wave propagation and the constitutive equations in nonlinear
elasticity, it is not an easy task to deduce the constitutive equations of an
isotropic elastic material experimentally, since we must determine (using
particular static deformations or wave propagation for example) functions
that depend on the principal invariants of the left Cauchy–Green tensor
B. For these reasons, many authors have analyzed wave propagation in
special classes of materials (Mooney–Rivlin, Blatz–Ko, neo-Hookean, St.
Venant–Kirchhoff materials, etc.) that are described by simple constitutive
relations, and for particular deformations (see, for instance, [44]–[51]). Al-
ternatively, for arbitrary, sufficiently small deformations, it is possible to
analyze the above problem for second-order elasticity. In this case, the con-
stitutive equations are determined by only a few material constants (five for
hyperelastic compressible materials, two for incompressible bodies). On the
other hand, second-order constitutive relations (which are usually proposed
for isotropic materials) yield a good description of the mechanical response
of an elastic body for sufficiently small deformations. Furthermore, again
for second-order elasticity, the speeds of the waves depend on both the di-
rection of the propagation and on the deformation. In the final sections of
this chapter we present some results relating to the propagation of ordinary
waves in nonlinear elastic bodies. The topics discussed here are based on
Sects. 4.5 and 8.9 of [16].

In another approach, wave propagation has been studied by considering
the evolution of waves of small amplitude in prestressed nonlinear elastic
materials. Finally, there are many papers in which the propagation of plane
waves is advantageously considered by reducing the corresponding problem
to one spatial dimension (see, for instance, [53]-[54]).

Let g(x, t) = 0 be the equation of an oriented moving surface Σ(t). We
suppose that Σ(t) divides the region C(t) (which is instantaneously occu-
pied by S) into two parts C−(t) and C+(t), where C+(t) is the region con-
taining the exterior unit normal N to Σ(t). If at least one of the second-order
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derivatives of the displacement field u(X, t) exhibits a finite discontinuity
across Σ(t), then Σ(t) is said to be a second-order singular surface. More-
over, the regions C−(t) and C+(t) are called the perturbed and undisturbed
regions, respectively. The surface Σ(t) is also called the wavefront.

The unit normal N to Σ(t) is given by

Ni =
1

|∇xg|
∂g

∂xi
, (1.248)

whereas the normal speed is

cN = − 1
|∇xg|

∂g

∂t
. (1.249)

Finally, if v is the velocity of the particles of S that occupy the surface Σ(t)
at the instant t, then the local speed of propagation, which is defined by the
relation

UN = cN − v ·N, (1.250)

denotes the relative velocity of Σ(t) along the normal N with respect to
the particles S located on Σ(t) at the instant t.

We shall see that it also is useful to describe the evolution of Σ(t) in the
reference configuration C∗. To this end, let Σ∗(t) be the surface G(X, t) =
g(x(X, t), t) = 0 image in C∗ of g(x, t) = 0. This surface, which moves
within C∗ with a normal speed of

UN∗ = − 1
|∇XG|

∂G

∂t
, (1.251)

has the vector given by

N∗L =
1

|∇XG|
∂G

∂XL
(1.252)

as its unit normal vector N∗.
In order to identify the relations among the quantities (1.248), (1.250) in

C(t) and the quantities (1.251), (1.252) in C∗, we start by noting that

N∗L =
1

|∇XG|
∂g

∂xi
FiL =

|∇xg|
|∇XG|FiLNi ≡ ΓFiLNi. (1.253)

Since N∗ and N are unit vectors, we can use the above relation to evaluate
the function Γ

Γ =
1√

BijNiNj

, (1.254)

1
Γ

=
√
C−1

LMN∗LN∗M , (1.255)
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where B and C denote the left and right Cauchy–Green tensors, respec-
tively.

Moreover, (1.253) indicates that the relation between UN∗ and U is given
by

UN∗ = − 1
|∇XG|

∂G

∂t
= −Γ

1
|∇xg|

(
∂g

∂t
+ vi

∂g

∂xi

)
= ΓUN .

We now summarize the main formulae we derived above:

N∗L = ΓFiLNi, (1.256)

Ni =
1
Γ
F−1

Li N∗L, (1.257)

Γ =
1√

BijNiNj

=
1√

C−1
LMN∗LN∗M

, (1.258)

UN∗ = ΓU, (1.259)

and we conclude this section by recalling (see [16]) that if Σ(t) is a second-
order singular surface, the jumps in the second-order derivatives of the
equations of motion x(X, t) across Σ∗(t) are expressed by the formulae[[

∂2xi

∂XL∂XM

]]
= a∗iN∗LN∗M , (1.260)[[

∂2xi

∂XM∂t

]]
= −a∗iUN∗N∗M , (1.261)[[

∂2xi

∂t2

]]
= a∗iU

2
NN∗, (1.262)

where a∗i is called the amplitude of the discontinuity across Σ∗.
To evaluate the jumps in the second-order derivatives of the equation

of motion across the moving surface Σ(t), we write (1.260)–(1.261) in the
equivalent form: [[

∂FiL

∂XM

]]
= a∗iN∗LN∗M , (1.263)[[

ḞiM

]]
= −a∗iUN∗N∗M , (1.264)

[[ẍi]] = a∗iU
2
N∗ . (1.265)

If the first of the above equations is multiplied by F−1
Mj and (1.256)–

(1.259) are taken into account, then we obtain the following jump conditions
across Σ(t): [[

∂FiL

∂xj

]]
= aiFhLNhNj , (1.266)
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[[
∂vi

∂xj

]]
= −aiUNNj , (1.267)

[[ẍi]] = aiU
2, (1.268)

where
ai = Γ2a∗i. (1.269)

1.23 Singular Waves in Nonlinear Elasticity

Let S be an elastic continuous system that is homogeneous, compressible,
and isotropic in the reference configuration C∗. If we denote the mass den-
sity in the actual configuration C(t) by ρ, the displacement field from C∗ to
C(t) by u(X, t), the Cauchy stress tensor by T, and the specific body force
by b, the Eulerian local momentum balance is expressed by the following
equation:

ρü = ∇ ·T + ρb. (1.270)

If H = ∇u is the displacement gradient, let T(H) be the constitutive
equation of the elastic material S. If we write (1.270) in the region C+(t)
and C−(t), evaluate the limits of the corresponding equations when x ap-
proaches Σ(t) from C−(t) and C+(t), and subtract the obtained results, we
obtain the jump system associated with (1.270):

ρ

[[
∂2ui

∂t2

]]
=

∂Tij

∂HlM

[[
∂HlM

∂xj

]]
. (1.271)

Introducing (1.266) and (1.268) into (1.271), we get the equation

(Qij(H,N) − ρU2
Nδij)aj = 0, (1.272)

where
Qij(H,N) =

∂Tik

∂HjM
FhMNkNh (1.273)

is called the acoustic tensor.
Algebraic condition (1.272) expresses Hadamard’s theorem, described be-

low.

Theorem 1.10
Given an undisturbed state u+(X, t) towards which the ordinary wave Σ(t)
propagates, then, due to the continuity of u(X, t) and its first derivatives
across Σ(t), the matrix Q is a known function of t and r ∈ Σ(t). Fur-
thermore, given a propagation direction N, the local speeds of propagation
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UN are the square roots of the eigenvalues of the acoustic tensor, and the
amplitudes of singularity a are its eigenvectors.

If the amplitude of singularity a satisfies the condition

a ·N = 0, (1.274)

the ordinary wave is said to be transverse. Moreover, when a is parallel to
N, the wave is said to be longitudinal.

For a given material, the acoustic tensor Q depends on both the deforma-
tion gradient H in the undisturbed region and the unit vector N. Therefore,
in general, we cannot say anything about the existence of the eigenvalues
and eigenvectors of Q. In order to derive some properties of the acoustic
tensor, we adopt an equivalent formulation of (1.272) in the reference con-
figuration C∗. This new version of the eigenvalue problem (1.272) will be
very useful for introducing a perturbation method for the analysis of wave
propagation, which will be presented in the following sections. Since the
mass densities in C∗ and C(t) are related by the equation ρ∗ = Jρ, where
J = detF, when we multiply (1.272) by Γ4 and take (1.260)–(1.262) and
(1.269) into account, we obtain

(Q∗ij − ρ∗U2
N∗δij)a∗ij = 0, (1.275)

with
Q∗ij = JΓ2Qij . (1.276)

To understand the meaning of (1.275), we start by proving that

J
∂Til

∂HjM
=
∂T∗iL

∂HjM
FlL, (1.277)

where T∗iL is the Piola–Kirchhoff stress tensor. In fact, from the definition
(1.7) of the tensor T∗, when we recall (1.27), we have the identity

∂T∗iL

∂XN
=

∂

∂XN

(
JTijF

−1
Nj

)
= J

∂Tij

∂XN
F−1

Nj ,

which can also be written as

∂FlM

∂XN

∂T∗iL

∂HlM
= J

∂FlM

∂XN

∂Tij

∂HlM
F−1

Nj .

Since the above relation is identically satisfied for any deformation, we reach
the result

∂T∗iL

∂HlM
= J

∂Tij

∂HlM
F−1

Nj

and (1.277) is proved.
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We now consider the local balance of momentum in the reference config-
uration

ρ∗üi =
∂T∗iL

∂HlM

∂2ul

∂XM∂XL
. (1.278)

The jump system associated with (1.278) on the surface Σ∗(t) is(
∂T∗iL

∂HlM
N∗LN∗M − ρ∗U2

N∗δil

)
a∗l, (1.279)

which, in view of (1.276), (1.277) and (1.256), coincides with (1.275), thus
yielding the formula

Q∗ij ≡ Γ2JQij =
∂T∗iL

∂HlM
N∗lN∗M . (1.280)

We conclude this section by noting that if the material is hyperelastic, we
have (see (1.11)

T∗iL = ρ∗
∂ψ

∂HiL
(1.281)

Q∗ij = ρ∗
∂ψ

∂HiL∂HjM
, (1.282)

so that Q∗ij is symmetric. Bearing (1.276) in mind, the acoustic tensor is
also symmetric.9

If Qij is symmetric and strongly elliptic (i.e., if

Qijξiξj > 0, (1.283)

for any vector ξ, any deformation gradient H, and any unit vector N),
then its eigenvalues are real and positive and there is at least a basis of
orthogonal eigenvectors.

1.24 Principal Waves in Isotropic Compressible Elastic
Materials

The Cauchy stress tensor of a compressible, homogeneous, elastic, and
isotropic body is given by (see (1.29))

T = f0I + f1B + f2B2, (1.284)

9In [3] it is proven that the material is hyperelastic if the acoustic tensor is symmetric.



54 Chapter 1. Nonlinear Elasticity

where the functions fi, i = 0, 1, 2 depend on the principal invariants IB, IIB ,
and IIIB of the left Cauchy–Green tensor B = FFT . Inserting (1.284) into
the momentum balance

ρẍi =
∂Tik

∂xk
+ ρbi, (1.285)

we obtain

ρẍi =
∂Tih

∂Bpq

∂Bpq

∂xh
+ ρbi. (1.286)

If Σ(t) is a wavefront of a second-order singular wave, then the jump
system associated with (1.285) is

ρ [[ẍi]] =
∂Tih

∂Bpq

[[
∂Bpq

∂xh

]]
. (1.287)

In order to evaluate the jump appearing on the right-hand side of (1.287),
we note that (1.266) leads to[[

∂Bpq

∂xh

]]
=
[[
∂FpL

∂xh

]]
FqL + FpL

[[
∂FqL

∂xh

]]
= (apFqLFkL + aqFpLFkL)NkNh

= (apBqk + aqBpk)NkNh. (1.288)

Since ∂Tih/∂Bpq is symmetric with respect to the indices p and q, the
jump system (1.287) assumes the final form

(Qiq − ρU2
Nδiq)aq = 0, (1.289)

where the acoustic tensor Qiq is given by

Qiq = 2
∂Tih

∂Bpq
BpkNkNh. (1.290)

In general, it is impossible to establish if there are second-order ordinary
waves along a given direction N. In order to obtain some concrete results,
we suppose that N is a principal axis of deformation; that is, an eigenvector
of B

BN = v2N. (1.291)

From (1.284) we derive that a principal axis of deformation is also a prin-
cipal axis of stress ; that is, an eigenvector of T corresponding to the eigen-
value

ΛT = f0 + f1v
2 + f2v

4. (1.292)

We define a principal wave as a wave that propagates along a principal axis
of stress (or of strain). The following theorem holds for these waves.
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Theorem 1.11
The principal axes of stress are acoustic axes. Moreover, the principal waves,
when they exist, are longitudinal or transverse.

PROOF In order to prove this result, we must evaluate the acoustic
tensor corresponding to a principal axis of strain. After simple but tedious
calculations, it is possible to prove that (see Eq. 1.290)

∂Tih

∂Bpq
=

1
2

(δipδhq + δhpδiq) (1.293)

+
1
2
f2 (δipBkq + δiqBkp + δkpBiq + δkqBip)

+ δik

[
∂f0
∂IB

δpq +
∂f0
∂IIB

(IBδpq −Bpq) + IIIB
∂f0
∂IIIB

B−1
pq

]
+ Bik

[
∂f1
∂IB

δpq +
∂f1
∂IIB

(IBδpq −Bpq) + IIIB
∂f1
∂IIIB

B−1
pq

]
+ BilBlk

[
∂f2
∂IB

δpq +
∂f2
∂IIB

(IBδpq −Bpq) + IIIB
∂f2
∂IIIB

B−1
pq

]
.

A principal eigenvector of deformation N1 obeys the equations

BpqN1p = v2
1N1q, (B−1)pq = v−2

1 N1q. (1.294)

Substituting (1.294) into (1.290), we obtain the expression for the acoustic
tensor corresponding to the principal axis of strain:

v−2
1 Qkm(N1,B) = (f1 + v2

1f2)δlm + f2Bkm (1.295)

+ 2N1kN1m

{
1
2
f1 + v2

1f2+

2∑
i=0

(v2
1)i

[
∂fi

∂IB
+ (v2

2 + v2
3)

∂fi

∂IIB
+ v2

2v
2
3

∂fi

∂IIIB

]}
,

where v2
2 and v2

3 are the eigenvalues of B corresponding to two eigenvectors
N2 and N2 of B, which are orthogonal to N1. We note that the acoustic
tensor Q is symmetric along the principal axes of strain. It is now evident
that N1, N2 and N3 are eigenvectors of Q, and so the theorem is proved.

It is possible to prove the following results relating to principal waves
(see [4]).

Theorem 1.12
Transverse principal waves. If f−1 = 0, then both of the transverse
principal waves traveling along a given principal axis have the same absolute
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speed of propagation. If f−1 �= 0, then these waves travel at the same speed
if and only if the corresponding principal stretches are equal. In this case
any amplitude is possible and all of these transverse waves have the same
propagation speeds.

Theorem 1.13

Longitudinal principal waves. The propagation speeds of longitudinal
waves in the directions of two equal principal stretches are equal.

Theorem 1.14

Principal wave speed. The squared propagation speeds of principal lon-
gitudinal waves are positive if and only if each principal tension is an in-
creasing function of the corresponding principal stretch (provided that the
other principal stretches are held constant). The squared propagation speeds
of principal transverse waves are positive if and only if the greatest principal
tension occurs always in the direction of greatest principal stretch.

Finally, in [4], C. Truesdell determines the first-order effects due to second-
order elasticity on the speeds of principal waves in isotropic elastic bodies.

We conclude this section with some remarks about the above theorems.

Remark The propagation speeds of principal waves are expressed in
terms of the functions f0, f1, f2 and their derivatives, but it is well known
that it is only possible to determine these functions experimentally for very
simple classes of materials.

Remark In the above theorems there is no information about the prop-
agation speeds along directions that are not principal axes of strain.

1.25 A Perturbation Method for Waves in Compress-
ible Media

In this section we propose a perturbation method for investigating the
propagation of ordinary waves in second-order elastic, isotropic, compress-
ible, and homogeneous materials (see [55, 56]). This method allows us to
determine the first-order terms of the speeds and the amplitudes of the
waves along any arbitrary direction of propagation. In particular, it reduces
the eigenvalue problem for the acoustic tensor to several simpler problems:
the first coincides with the eigenvalue problem for the acoustic tensor of
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linear elasticity; the second supplies the corrective first-order terms of the
speeds and amplitudes.

Since this method is based on the formulation of wave propagation in the
reference configuration, we recall expression (1.185) for the Piola–Kirchhoff
tensor for second-order elasticity:

T∗ = λIEI + 2μE +
[
λ

2
(
IHHT + 2I2

E

)
+ β1I

2
E + β2IIE

]
I

+ β3IEE + β4E2 − λIEHT − μ(HT )2. (1.296)

In [56] it is demonstrated that the Lagrangian acoustic tensor Q∗ (see
Sect. 1.23) in the reference configuration corresponding to the stress tensor
(1.296) is

Qij (H,N∗) = (λ+ μ)N∗iN∗j + μδijN∗LN∗L (1.297)
+ {λHjM + [2 (λ+ β1) + β2] δjMHll}N∗iN∗M

− 1
2
β2 (HMj +HjM )N∗iN∗M

+
[
1
2
β3 (HiL +HLi) − λHLi

]
N∗LN∗j

+
1
2

[
β3δijHll +

1
2
β4 (Hij +Hji)

]
N∗LN∗L

+
1
4
β4δij (HML +HLM )N∗LN∗M

+
[
1
4
β4 (HiM +HMi) − μHMi

]
N∗jN∗M

+
(

1
2
β3 − λ

)
HllN∗jN∗i

+
[
1
4
β4 (HjL +HLj) − μHLj

]
N∗LN∗i

≡ Q
(0)
ij +Q

(1)
ij ,

where Q(0)
ij is the acoustic tensor of linear elasticity corresponding to the di-

rection N∗, and Q(1)
ij is the remaining part of Qij , which is a linear function

of H.
Let ε be a small parameter related to the problem we are considering.

According to Signorini’s method, we can write the displacement u in the
form

u = εu(1) +O (1) , (1.298)

so that we also have
H = εH(1) +O (1) , (1.299)

where H(1) is the nondimensional displacement gradient referred to u(1).
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To apply Signorini’s method to the dynamic compatibility conditions
(1.251), which we now write in the nondimensional form

(Q∗ij − Λδij) a∗j = 0, i = 1, 2, 3, (1.300)

we recall that the quantities Q∗ij (N∗ (ε) ,H (ε)) ,Λ (ε), and a∗j (ε) are in-
tended to be analytic functions of ε.

The expansion of Q∗ij (ε) is obtained by introducing (1.299) into (1.297):

Q∗ij (ε) = Q
(0)
∗ij(N∗ (ε) ,0) + εAijlPH

(1)
lP +O (1) , (1.301)

where AijlP denotes the coefficient of HlP in Q(1)
∗ij .

Moreover, we have

a∗ = a(0)
∗ + εa(1)

∗ +O (1) , Λ = λ(0) + ελ(1) +O (1) . (1.302)

We now consider the expansion of N∗ (ε) up to first-order terms:

N∗ (ε) = N(0)
∗ + εN(1)

∗ . (1.303)

Consequently, (1.301) assumes the form

Q
(0)
∗ij(N∗ (ε) ,0) = (λ+ μ)N (0)

∗i N
(0)
∗j + μδijN

(0)
∗L N

(0)
∗L (1.304)

+ ε
[
(λ+ μ)

(
N

(0)
∗i N

(1)
∗j +N

(1)
∗i N

(0)
∗j

)
+ μδij

(
N

(0)
∗LN

(1)
∗L +N

(1)
∗L N

(0)
∗L

)]
≡ Q

(0,0)
∗ij + εQ

(0,ε)
∗ij .

Finally, due to (1.301)–(1.304), when we neglect terms of a higher order
than 1, the dynamic compatibility equation (1.300) becomes

[
Q

(0,0)
∗ij + εQ

(0,ε)
∗ij + εA

(0)
ijlPH

(1)
lP

] (
a
(0)
∗j + εa

(1)
∗j

)
=
(
λ(0) + ελ(1)

)(
a
(0)
∗j + εa

(1)
∗j

)
, (1.305)

where A(0)
ijlP is the value of AijlP when we substitute N(0)

∗ for N∗. Using
this result, we can derive the following system:

Q
(0,0)
∗ij a

(0)
∗j = λ(0)a

(0)
∗i , (1.306)

Q
(0,0)
∗ij a

(1)
∗j +

(
Q

(0,ε)
∗ij +A

(0)
ijlPH

(1)
lP

)
a
(0)
∗j =

(
λ(0)a

(1)
∗i + λ(1)a

(0)
∗i

)
. (1.307)

We note that (1.306) is the usual eigenvalue equation for the acoustic tensor
of linear elasticity. Consequently, λ(0)/ρ∗ must be the square of the prop-
agation speed and a(0)

∗ =
(
a
(0)
∗j

)
the amplitude of the discontinuity across
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the singular surface in linear elasticity. The three equations (1.307 ) in the
four unknowns a(1)

∗j , j = 1, 2, 3, and λ(1), determine (at least in principle)

the direction of a(1)
∗ and the value of λ(1).

Remark We recall that in linear elasticity the acoustic tensor is always
symmetric. In general, this result does not hold in nonlinear elasticity. In
particular, Q is symmetric if and only if Q∗ is symmetric (see Eq. 1.269).
Moreover, we have seen that Q∗ is symmetric when N∗ is a direction that
corresponds to a principal direction of strain in C∗.

If we identify N∗ as a principal axis of stress, and we denote the eigen-
vector of the tensor Q∗ up to first-order terms belonging to the eigenvalue
λ(0,h) + ελ(1,h), h = 1, 2, 3 as a(0,h)

∗ + εa(1,h)
∗ , then we must satisfy the fol-

lowing orthogonality conditions:(
a(0,h)
∗ + εa(1,h)

∗
)
·
(
a(0,k)
∗ + εa(1,k)

∗
)

= 0, h �= k,

which in turn are equivalent to

a(0,h)
∗ a(0,k)

∗ = 0, (1.308)

a(0,h)
∗ a(1,k)

∗ + a(1,h)
∗ a(0,k)

∗ = 0, h �= k. (1.309)

We start analyzing the principal waves and we prove that the speeds we
obtain with the perturbation method coincide with the speeds obtained by
Truesdell in [4] using a different approach.10 Let Λ1,Λ2,Λ3 be the eigen-
values of the left Cauchy–Green tensor B. In the corresponding basis of
eigenvectors (e1, e2, e3), the tensor B is diagonal and the directions of the
principal axes of strain are

N1 ≡ (1, 0, 0) , N2 ≡ (0, 1, 0) , N3 ≡ (0, 0, 1) . (1.310)

In this new basis, up to first–order terms, Λi = 1 + εΛ(1)
i , i = 1, 2, 3, and,

since B = I + 2εE(1), we have

E(1) =

⎛⎜⎝Λ(1)
1 /2 0 0
0 Λ(1)

2 /2 0
0 0 Λ(1)

3 /2

⎞⎟⎠ ,

10This can be done provided that we relate the constitutive constants λ, μ, β1, . . . β4 to

the constants α1, . . . α6 used in [4] by the formulae α1 = λ/μ, α2 = 1, μα3 = β1, μα4 =
β2, μ (α5 + 2) = β3, μα6 = β4.
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H(1) =

⎛⎜⎝Λ(1)
1 /2 H

(1)
12 H

(1)
13

−H(1)
12 Λ(1)

2 /2 H
(1)
23

−H(1)
13 −H(1)

23 Λ(1)
3 /2

⎞⎟⎠ .

Let N (ε) = N(0) + εN(1) be a unit vector normal to Σ (t). This means that,
in our approximation, N(0) · N(0) = 1 and N(0) · N(1) = 0. Moreover, due
to (1.256) and (1.258), we have

Γ = 1 − εE
(1)
ij N

(0)
i N

(0)
j (1.311)

in the same approximation, and

N∗L = N
(0)
L + ε

(
N

(1)
L +H

(1)
iL N

(0)
i − E

(1)
hk N

(0)
h N

(0)
k N

(0)
L

)
. (1.312)

From (1.25) and (1.25), we obtain the vectors that correspond to (1.310)
in C∗:

N∗1 ≡ (1, 0, 0) + ε
(
H

(1)
12 , H

(1)
13 , 0

)
(1.313)

N∗2 ≡ (0, 1, 0) + ε
(
H

(1)
21 , 0, H

(1)
33

)
, (1.314)

N∗3 ≡ (0, 0, 1) + ε
(
H

(1)
33 , H

(1)
32 , 0

)
. (1.315)

Using the above formulae we can explicitly write the two eigenvalue
problems (1.305) and (1.307). The speeds of the principal waves in C∗
are determined in [55] and [56], as well as the speeds for any direction
of propagation N. Moreover, an analysis of the wave propagation along
any direction is carried out when the undisturbed region is subjected to a
simple extension or a simple shear in [55] and [56]. Note that all of these
results can be derived using the notebook Chapter1.nb, written in the soft-
ware Mathematica R©. This notebook can be downloaded via the internet.
Mathematica R© notebooks from this chapter are available for download
at http://www.birkhauser.com/978-0-8176-4869-5.

1.26 A Perturbation Method for Analyzing Ordinary
Waves in Incompressible Media

In this section we propose a perturbation method for investigating the
propagation of (necessarily) transverse waves in second-order elastic, isotropic,
incompressible, and homogeneous materials (see [57]). As in [55, 56], this
method allows us to reduce the eigenvalue problem for the acoustic tensor
(equipped with the orthogonality conditions between the amplitudes and
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the propagation directions) to two simpler problems: the first of these coin-
cides with the eigenvalue problem for the acoustic tensor in linear elasticity,
whereas the second supplies the first-order terms to add to the speeds and
amplitudes of linear elasticity.

First, we briefly describe the theory of the ordinary waves in incompress-
ible elastic materials and we recall the main results for the propagation of
principal transverse waves.

Let S be an elastic, homogeneous, incompressible, and isotropic contin-
uous system in the reference configuration C∗. In what follows, we neglect
all of the thermal phenomena associated with the evolution of S. If X is
any point in C∗ and x denotes the corresponding position in the actual
configuration C(t), then the finite deformation of S, in going from C∗ to
C(t), can be equivalently expressed by the finite deformation x = x(X, t)
or by the displacement u = u(X, t). It is well known that the constitu-
tive equation of the Cauchy stress tensor T takes the following form (see
(1.42)) for incompressible materials (in which only isochoric deformations
are possible):

T = −pI + f1B + f−1B−1 ≡ −pI + T̃, (1.316)

where T̃ depends on the deformation gradient F, f1, f−1 are functions of
the two principal invariants IB and IIB of B, and p is an indeterminate
pressure.

The local momentum balance is given by the equation

ρ∗ẍ = −∇p+ ∇ · T̃ + ρ∗b inC(t), (1.317)

where ρ = ρ∗ is the constant mass density of S, and b is the specific body
force.

Let Σ(t) be a moving surface with equation g(x, t) = 0 in the actual
configuration and equation G(X, t) = 0 in the reference configuration. If
the solution x(X, t) of the second-order equation (1.317) exhibits a discon-
tinuity in some or all of its second-order derivatives across the surface Σ(t),
then x(X, t) is said to represent an ordinary wave and Σ(t) is called the
wavefront that divides the region C(t) into the perturbed region C(t) and
undisturbed region C+(t). Furthermore, the vector a, which characterizes
the strength of the discontinuity of the second-order derivatives of x(X, t)
across Σ(t), is called the amplitude of the singularity. We denote the normal
speed of propagation of Σ(t) by cN = −∂g/∂t

|∇g| , and the local speed of the
wavefront by UN = cN − ẋN . Finally, since the constraint of incompressibil-
ity rules out longitudinal waves, all the singular waves in an incompressible
material are necessarily transverse; i.e., a · N = 0.

If equation (1.317) is written in both regions (C−(t) and C+(t)), its limits
when x goes to a point r ∈ Σ(t) are considered and the obtained results
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are subtracted, then we obtain the jump system associated with (1.317):

ρ∗[[ẍi]]r = −
[[

∂p

∂xi

]]
r

+
∂T̃ij

∂HlM

[[
∂Hlm

∂xj

]]
r

, i = 1, 2, 3. (1.318)

Recalling the kinematic relations of the second-order singular surfaces (see
p. 119 of [16]),

[[ẍi]]r = U2
Nai,

[[
∂Hlm

∂xj

]]
r

= FhMNjNhal, (1.319)

and the expression for the pressure jump across Σ(t),

−
[[

∂p

∂xi

]]
r

= ANi,

the jump system (1.318) then becomes

ρ∗U2
Nai = ANi + Q̃ilal, i = 1, 2, 3, (1.320)

where

Q̃il =
∂T̃ij

∂HlM
FhMNjNh.

Taking the scalar product of (1.320) with N and recalling that a · N = 0,
we have

A = −NjQ̃jlal.

Finally, we obtain the following equation for the amplitudes and speeds:

(Qil − ρ∗U2
Nδil)al = 0, (1.321)

where
Qil = Q̃il −NiNjQ̃jl (1.322)

is the acoustic tensor .
Algebraic conditions (1.321) express Hadamard’s well-known result (see

Theorem 1.10). For isotropic incompressible materials, the acoustic axes of
principal waves are principal axes of deformation. Moreover, the principal
waves are necessarily transverse, and the classical compatibility conditions
of these waves hold only for stretches where detB = 1. Ericksen’s formu-
lae on the propagation speeds of transverse principal waves are expressed
in terms of the functions f1, f−1 and their derivatives (see p. 293 of [4]).
However, since it is practically impossible to determine these functions ex-
perimentally, Truesdell (see [4]) found the first terms of the expansion of
the exact formulae for the local speed only for transverse principal waves in
a eigenvector basis of B (see p. 293 of [4]). Therefore, even to a first-order
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approximation, there is no information on the speed of propagation along
directions that are not principal axes of strain.

We now propose a perturbation method that is similar to the method
we discussed in the previous section in order to overcome these difficul-
ties, at least for second-order elasticity. This approach allows us to obtain
the first-order speeds along any direction and for all “sufficiently small”
deformations.

We start by recalling the following relations (see Sect. 1.22), which are
rewritten here for the convenience of the reader:

U∗N =
∇g
∇∗G

≡ ΓUN , UN =
∇∗G
∇g

≡ 1
Γ
U∗N , (1.323)

a∗i =
1
Γ2
ai, ai = Γ2a∗i, (1.324)

where U∗N and a∗i denote, respectively, the local speed and the amplitude
of the singularity of the surface Σ∗(t) in the reference configuration C∗. We
also recall that the relations between the two unit normal vectors N and
N∗ are expressed by the formulae

Ni =
1
Γ
F−1

Li N∗L, N∗L = ΓFiLNi. (1.325)

Due to (1.323)–(1.325), instead of analyzing (1.321) it is more convenient
to study the following equation in C∗:

(Q∗il − ρ∗U2
∗Nδil)a∗l = 0, i = 1, 2, 3, (1.326)

where Q∗il = Q̃∗il − Q̂∗il, and

Q̃∗il =
∂T̃ij

∂HlM
F−1

Lj N∗LN∗M , Q̂∗il =
1
Γ2
F−1

Li F
−1
MjN∗LN∗MQ̃∗jl.

It is well known that the Cauchy stress tensor of an elastic, isotropic,
incompressible and homogeneous body, up to second-order terms, takes the
form (see p. 241 of [4])

T(H) = −pI + 2μE + μHHT + β1E2, (1.327)

where μ is a Lamé’s coefficient and β1 is a second-order constitutive con-
stant. In [57], simple but tedious calculations show that the first-order La-
grangian acoustic tensor Q∗ corresponding to the propagation direction N∗
and the small deformation H is

Q∗ij(H,N∗) = −μ(N∗iN∗j − δij)

+
1
2
β1Eij +

1
2
[(4μ+ β1)Eih + 2μHhi]N∗jN∗h

− 1
2
(β1Ejh − 2μHhj)N∗iN∗h

− 1
2
Hhk[2N∗iN∗j(4μ+ β1) − β1δij ]N∗hN∗k. (1.328)
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In order to reduce problem (1.326)—into which we have introduced (1.328)—
to a family of simple problems, we suppose that a suitable nondimensional
analysis of the local momentum balance causes us to introduce a small pa-
rameter ε that depends on the acting forces, the material characteristics,
and the geometry of C∗. We then suppose that the displacement u and the
pressure p can be written in the following form:

u = εu(1) +O(1), p = εp(1) +O(1), (1.329)

so that we also have
H = εH(1) +O(1), (1.330)

where H(1) is the nondimensional displacement gradient relative to u(1).
We suppose that the quantities Q∗ij(H(ε),N∗(ε)), a∗i(ε), λ(ε) and N∗(ε)
are analytic functions of the small parameter ε, so that, up to first-order
terms, we obtain

a∗(ε) = a(0)
∗ + εa(1)

∗ , λ(ε) = λ(0) + ελ(1), N∗(ε) = N(0)
∗ + εN(1)

∗ . (1.331)

Baed on these results, (1.328) assumes the following form:

Q∗ij(H(ε),N∗(ε)) = −μ
(
N

(0)
∗i N

(0)
∗j − δij

)
− εμ

(
N

(0)
∗i N

(1)
∗j +N

(1)
∗i N

(0)
∗j

)
+

1
2
εβ1E

(1)
ij +

1
2
ε
[
(4μ+ β1)E

(1)
ih + 2μH(1)

hi

]
N

(0)
∗j N

(0)
∗h

− 1
2

(
β1E

(1)
jh − 2μH(1)

hj

)
N

(0)
∗i N

(0)
∗h

− 1
2
εH

(1)
hk

[
2(4μ+ β1)N

(0)
∗i N

(0)
∗j − β1δij

]
N

(0)
∗h N

(0)
∗k

≡ Q
(0)
ij + εQ

(1)
ij . (1.332)

We recall that the waves are necessarily transverse in incompressible mate-
rials; i.e., a · N = 0. In view of (1.324) and (1.325), this condition becomes

a∗iF
−1
Li N∗L = 0,

so that, in the first-order approximation, we have

a(0)
∗ ·N(0)

∗ = 0, (1.333)

a(1)
∗ ·N(0)

∗ + a(0)
∗ ·

(
N(1)

∗ − N(0)
∗ H(1)

)
= 0. (1.334)

Finally, when we impose conditions (1.333) and (1.334) and neglect terms
of a higher order than 1, we can derive the following relations from the
dynamical conditions (1.326):

(μ− λ(0))a(0)
∗i = 0, (1.335)
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(μ− λ)a(1)
∗i − λ(1)a

(0)
∗i +

1
2
a
(0)
∗i H

(1)
hk N

(0)
∗h N

(0)
∗k

+
1
2
β1a

(0)
∗j

(
E

(1)
ij + E

(1)
jh N

(0)
∗i N

(0)
∗h

)
= 0. (1.336)

We note that, when we associate the conditions (1.333) with system (1.335),
we obtain the usual eigenvalue equations of linear elasticity. Consequently,
we find that μ/ρ∗ is the square of the propagation speed, and that condition
(1.335) supplies the amplitude of the discontinuity a(0)

∗ . Similarly, when we
identify λ(0) with μ and we consider only first-order isochoric deformations
(i.e., IH(1) = 0), then equations (1.336) determine (at least in principle) the
direction of a(1)

∗ , j = 1, 2, 3 and the value of λ(1).
We recall that in nonlinear elasticity the tensor Q∗ cannot be symmetric

for any direction and any deformation. In particular, in our approximation,
we get

Q∗12 −Q∗21 = ε(2μ+ β1)
[(
E

(1)
11 − E

(1)
22

)
N

(0)
∗1 N

(0)
∗2 − E

(1)
12

(
N

(0)
∗1 2 −N

(0)
∗2 2

)]
+ ε(2μ+ β1)

[
E

(1)
13 N

(0)
∗2 N

(0)
∗3 − E

(1)
23 N

(0)
∗1 N

(0)
∗3
]
,

Q∗13 −Q∗31 = ε(2μ+ β1)
[(
E

(1)
11 − E

(1)
33

)
N

(0)
∗1 N

(0)
∗3 + E

(1)
12 N

(0)
∗2 N

(0)
∗3
]

− ε(2μ+ β1)
[(
N

(0)
∗1 2 −N

(0)
∗3 2

)
E

(1)
13 + E

(1)
23 N

(0)
∗1 N

(0)
∗2
]
,

Q∗23 −Q∗32 = ε(2μ+ β1)
[(
E

(1)
22 − E

(1)
33

)
N

(0)
∗2 N

(0)
∗3 + E

(1)
12 N

(0)
∗1 N

(0)
∗3
]

− ε(2μ+ β1)
[
E

(1)
13 N

(0)
∗1 N

(0)
∗2 +

(
N

(0)
∗2 2 −N

(0)
∗3 2

)
E

(1)
23

]
,

where the components of the infinitesimal strain tensor must satisfy the
condition IE(1) = 0. When Q∗ is symmetric and we denote the eigenvector
of the acoustic tensor belonging to the eigenvalue λ(0,h) + ελ(1,h, h = 1, 2, 3
by a(0,h)

∗ + εa(1,h)
∗ , we must satisfy the following orthogonality conditions:(
a(0,h)
∗ + εa(1,h)

∗
)
·
(
a(0,k)
∗ + εa(1,k)

∗
)

= 0, h �= k,

which are equivalent to the conditions

a(0,h)
∗ · a(0,k)

∗ = 0, (1.337)

a(0,h)
∗ · a(1,k)

∗ + a(1,h)
∗ · a(0,k)

∗ = 0, h �= k. (1.338)

Using (1.335) and (1.336), the first-order terms of the speeds and the ampli-
tudes of the principal waves and of the waves in any propagation direction
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when the undisturbed region is subjected to an arbitrary isochoric defor-
mation are determined in [57]. Another application of this method is also
presented when the undisturbed region is subjected to a simple shear, and
some results are provided for Mooney–Rivlin materials. Finally, we con-
clude by mentioning that all of the results of this section can be derived
using the notebook Chapter1.nb.



Chapter 2

Micropolar Elasticity

2.1 Preliminary Considerations

The model of an elastic body S presented in the previous chapter cannot
always be used to describe the behavior of a real body in a satisfactory way.
In some cases, it can be usefully replaced by a more sophisticated model in
which a set of one or more vectors, called directors, are associated with any
point of S. We will now list some physical situations in which this model
appears to be meaningful.

• Let S be a narrow body; i.e., a body in which two dimensions are
much smaller than the remaining one, or one dimension is negligible
with respect to the others. For instance, we may consider a cylinder
C whose diameter is much smaller than its length or a block B in
which the length δ of one of its edges is negligible with respect to the
others. We are tempted to describe the body with a one-dimensional
continuum in the first case and with a two-dimensional continuum in
the second case. In other words, we could assume that knowledge of
the configuration of the axis of the cylinder C yields an acceptable
localization of C. Similarly, we could obtain a sufficient description of
the position of the block B when the configuration of any surface σ
present within its thickness δ is determined.

Although this assumption leads to a more simplified description of
narrow bodies, we at once understand that it cannot be completely
satisfactory. In fact, by limiting our considerations to the cylinder
C, we will be able to describe its bending or stretching but not its
resistance to torsion, since we have erased the dimensions to which it
is related. In order to retrieve the erased dimensions, we can associate
any point on the axis of C with a pair of vectors whose orientations
can describe the torsion of C. Similarly, in the case of block B, we can
associate any point on the surface σ with a normal vector in order to
preserve a trail to the erased dimension.
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• It may be that the behavior of a three-dimensional body S depends
on an internal structure with a characteristic dimension that is below
the typical length of continuum physics. For instance, if an element of
volume dc of S is filled by a small crystal, we can take the structure
of this crystal into account in the usual three-dimensional model by
simply changing the scale of observation. Alternatively, we can as-
sociate the element dc with three mutually orthogonal vectors that
remember its internal structure.

• In some cases, the behavior of the continuous system is not sufficiently
described by the macroscopic motion since the small variations of ve-
locity inside the volume element dc, although not macroscopically
detectable, influence the evolution of the system. This means that,
together with the macroscopic motion, we must consider a micromo-
tion that describes the internal evolution of the considered volume
element. In particular, if this micromotion is assumed to be rigid, the
continuum is said to be micropolar. The micromotion can then be
equivalently described either by an orthogonal matrix or by three ar-
bitrary unit vectors defined at any point in the continuum. In other
words, we can say that any particle of a micropolar continuum has
three extra degrees of freedom.

• To describe the behavior of a polarized elastic dielectric, we need
to take into account the polarization field (see Chap. 4). A similar
situation occurs in ferromagnetic substances or in liquid crystals.

In this chapter, which is only an introduction to this subject, we consider
micropolar continuous systems .1 As we have seen above, these continuous
systems are defined by one of the following equivalent conditions:

• The micromotion is described by an orthogonal matrix χ

• Any particle x carries three unit orthonormal vectors d(L), L = 1, 2, 3,
which rotate independently of x. These vectors, which can be chosen
arbitrarily, are called directors.

2.2 Kinematics of a Micropolar Continuum

Let S be a micropolar continuous system, and let C∗ and C be the ref-
erence configuration and the actual configuration of S, respectively. We

1Readers interested in this topic should consult references [58]–[70].
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denote a Cartesian frame of reference by Ox1x2x3, and the unit vectors
along the axes of Ox1x2x3 by (ei), i = 1, 2, 3. In order to describe the evo-
lution of S, we need to determine both the equation of motion x = x(X, t),
X ∈ C∗, x ∈ C, and the orthogonal matrix χ(X, t) that describes the mi-
cromotion. With the usual notation, F denotes the deformation gradient
relative to the motion x(X, t). An arbitrary vector V at the point X ∈ C∗
is transformed into the vector

v̂ = FV (v̂i = FiLVL)

of the actual configuration by the motion x(X, t), and into the vector

v = χV (vi = χiLVL) (2.1)

by the micromotion. In particular, we choose three arbitrary unit directors
D(L) at the point X that coincide with the unit vectors along the axes of
a Cartesian frame of reference O∗X1X2X3 in C∗. If we denote the corre-
sponding vectors in the actual configuration by d(L) = χDL, using (2.1) we
get

d(L)i = χiL. (2.2)

Then, from (2.2) we derive that

d(L)jd(L)h = δjh, d(L)hd(M)h = δLM . (2.3)

Equation 2.2 shows that the micromotion can also be described by providing
the vector functions d(L) = d(L)(X, t), i = 1, 2, 3. Note that these functions
are not independent because of the six orthogonality conditions (2.3).

Since the local deformation of any element of volume dc is obtained from
the equation x = x(X, t) in the usual way (see Chap. 3 of [16]), we now
need to describe the behavior of the directors.

There are two ways to realize this objective. First, we can describe the
motion of the directors using the results for the dynamics of rigid bodies,
which allow us to write the evolution equations for the directors in the form

ḋ(L) = ω × d(L),

where the vector function ω(t) is given by the relation

ω =
1
2
d(L) × ḋ(L).

The axial vector ω(t), which is called the microgyration vector or the mi-
cropolar vector, has the components

ωi =
1
2
εijkd(L)j ḋ(L)k ≡ ΛikLḋ(L)k, (2.4)
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and it represents the angular velocity of the triad d(L) with respect to the
reference frame Ox1x2x3.

Alternatively, we can use three new independent variables that com-
pletely define the vectors d(L) and the orthogonal matrix χ (see Eq. 2.1).
In order to introduce these new variables, which were proposed by Eringen
in [58]–[61], we note that the orthogonality of the matrix χ allows us to
write it in the exponential form

χ = eΦ = I + Φ +
1
2!

Φ2 +
1
3!

Φ3 + · · · ,
where Φ is a skew-symmetric matrix. If

ϕi =
1
2
εijlΦjl (2.5)

denotes the adjoint of Φ, then we can write

Φ =

⎛⎝ 0 ϕ3 −ϕ2

−ϕ3 0 ϕ1

ϕ2 −ϕ1 0

⎞⎠ . (2.6)

From the Hamilton–Cayley theorem (see [16])

Φ3 − IΦ2 + IIΦ− III I = 0,

where I, II and III are the principal invariants of Φ:

I = trΦ = 0,

II =
1
2
[(trΦ)2 − trΦ2] = ϕ2

1 + ϕ2
2 + ϕ2

3,

III = detΦ = 0,

we can derive the relation
Φ3 = −IIΦ,

which, in turn, implies the sequence of equations

Φ4 = ΦΦ3 = −IIΦ2,
Φ5 = ΦΦ4 = −IIΦ3 = II2Φ,
Φ6 = ΦΦ5 = ΦII2Φ = II2Φ2,
Φ7 = ΦΦ6 = ΦII2Φ2 = −II3Φ,
...
...

and we can write the matrix χ as follows:

χ = eΦ = I + Φ +
1
2!

Φ2 +
1
3!

Φ3 + · · ·

= I + Φ +
1
2!

Φ2 − 1
3!
IIΦ− 1

4!
IIΦ2

+
1
5!
II2Φ +

1
6!
II2Φ2 + · · · .
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Finally, introducing the notation

α1 = 1 − 1
3!
II +

1
5!
II2 − · · · , (2.7)

α2 =
1
2!

− 1
4!
II +

1
6!
II2 − · · · , (2.8)

we have
χ = I + α1Φ + α2Φ2. (2.9)

Noting (2.6) and (2.9), we can write

χ =

⎛⎜⎜⎝
−α2(ϕ2

2 + ϕ2
3) α2ϕ1ϕ2 + α1ϕ3 −α1ϕ2 + α2ϕ1ϕ3

α2ϕ1ϕ2 − α1ϕ3 −α2(ϕ2
1 + ϕ2

3) α1ϕ1 + α2ϕ2ϕ3

α1ϕ2 + α2ϕ1ϕ3 −α1ϕ1 + α2ϕ2ϕ3 −α2(ϕ2
1 + ϕ2

2)

⎞⎟⎟⎠ .

An orthogonal matrix always permits the eigenvalue λ = 1 and the corre-
sponding eigenvector n obeys the vector equation

(χ− I)n = 0,

which in our case is equivalent to the system

−α2(ϕ2
2 + ϕ2

3)n1 + (α2ϕ1ϕ2 + α1ϕ3)n2 + (−α1ϕ2 + α2ϕ1ϕ3)n3 = 0,

(α2ϕ1ϕ2 − α1ϕ3)n1 − α2(ϕ2
1 + ϕ2

3)n2 + (α1ϕ1 + α2ϕ2ϕ3)n3 = 0,

(α1ϕ2 + α2ϕ1ϕ3)n1 + (−α1ϕ1 + α2ϕ2ϕ3)n2 − α2(ϕ2
1 + ϕ2

2)n3 = 0.

It is well known that these equations are not independent. From the first
two of them, we can easily derive the relations

n1 =
ϕ1

ϕ3
n3, n2 =

ϕ2

ϕ3
n3,

and, by imposing the condition n2
1 + n2

2 + n2
3 = 1, we finally find that

n =
1
θ
ϕ, (2.10)

where
ϕ = (ϕ1, ϕ2, ϕ3), θ =

√
ϕ2

1 + ϕ2
2 + ϕ2

3. (2.11)

In conclusion, the matrix χ defines a rotation about the axis n by an angle
θ. We are now capable of expressing the matrix χ in terms of θ and n. From
(2.9) we have

χlm = δlm + α1Φlm + α2ΦlnΦnm,
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and, taking into account (2.5) and (2.9), we can write

χlm = δlm + α1εlmnϕn − α2εlpnεnmqϕpϕq

= δlm + α1εlmnϕn − α2(δlmδpq − δlqδpm)ϕpϕq

= δlm + α1εlmnθnn − α2δlmθ
2 + α2θ

2nlnm

= (1 − α2θ
2)δlm + α1θεlmnnn + α2θ

2nlnm.

On the other hand, II = ϕ2
1 + ϕ2

2 + ϕ2
3, so we can derive the following

relations from (2.7), (2.8) and (2.11):

1 − α2θ
2 = cos θ, α1θ = sin θ, α2θ

2 = 1 − cos θ,

which allow us to write χ in the final form

χlm = cos θδlm + sin θεlmnnn + (1 − cos θ)nlnm. (2.12)

We define the angular microvelocity tensor as follows:

Ω = χχ̇T , Ωjk = χjLχ̇kL = d(L)j ḋ(L)k. (2.13)

Note that this tensor is skew symmetric, as deriving the orthogonality con-
dition χχT = I leads to the relation

χ̇χT + χχ̇T = 0,

which can also be written

χχ̇T = −(χχ̇T )T .

Due to (2.13), the adjoint vector of Ω

ωi =
1
2
εijkΩjk, Ωjk = εjkiωi, (2.14)

can be written as

ωi = Λijhḋ(L)j , ΛijL =
1
2
εikjd(L)k. (2.15)

A comparison between (2.15) and (2.4) shows that ω is simply the angular
microgyration vector.

Starting from (2.14) and (2.12), it is possible to prove the other formula

ωi = Λ̃ijϕ̇j , (2.16)

where Λ̃ij is a suitable matrix. Note that (2.15) expresses the angular mi-
crovelocity as a function of the director fields, whereas (2.16) uses the vari-
ables ϕ (i.e., the axis and the angle of rotation determined by χ).
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In the next section we will associate an intrinsic angular momentum k
with any point x in the micropolar continuous system S. We will assume
that, as in the mechanics of rigid bodies, this angular momentum depends
linearly on the angular microvelocity. In other words, we assume that there
is a symmetric microinertia tensor density J = (Jij) such that

k = Jω, J = JT . (2.17)

In this section we determine an evolution equation for the microinertia
tensor J. If we denote the value of J in the reference configuration C∗ by
J(0), we have the relation

Jij = χiLχjMJLM (0).

Differentiating this with respect to time and utilizing (2.13) leads to

J̇ij = (χ̇iLχjM + χiLχ̇jM )JLM (0)
= [(χpLΩpi)χjM + χiL(χpMΩpj)]JLM (0)
= χpLχjMJLM (0)Ωpi + χiLχpMJLM (0)Ωpj ;

that is, the conservation of microinertia:

J̇ij = JpjΩpi + JipΩpj = (Jpjεpil + Jipεpjl)ωl, (2.18)

where (2.14) has been taken into account.

Remark Since the quantities ϕi are independent, it is quite natural to
adopt them as fundamental variables to describe the evolution of a mi-
cropolar system, which is exactly the point of view assumed in [59]. This
reduces the unknowns and the equations for the problems, making it eas-
ier to derive the restrictions imposed by the dissipation principle on the
constitutive equations. However, it is much more complex to derive the
consequences of the objectivity principle and to introduce suitable defor-
mation tensors. For this reason, from now on, we will use the dependent
quantities d(L)h and take their dependence into account in the dissipation
principle by introducing suitable Lagrangian multipliers.

2.3 Mechanical Balance Equations

We now state the mechanical balance laws governing the evolution of a
continuous system S with directors (d(L)), L = 1, 2, 3, under the condition
that they form an orthogonal triad. We begin from the general case in
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which the angular microvelocity of any triad (d(L)) differs from the angular
velocity of the point of S located at the origin of (d(L)).

Before all this, we must provide a picture of the acting forces. In doing
this, we generalize the model proposed in Chap. 5 of [16]. We still suppose
that:

• The external actions on any material volume c of S can be divided
into mass forces that are continuously distributed over c, and contact
forces that act on the boundary ∂c of c

• The contact forces have a molecular origin, so they can be represented
by surface vector fields.

However, we now suppose that their action on any material volume c is
described by a force field and a couple field . In particular, the total action
of the mass forces is expressed by a total force

Fm(c) =
∫

c

ρb dc, (2.19)

where b is the specific mass force defined on c, and a total momentum

M0(c) =
∫

c

ρ(r × b + l) dc, (2.20)

where r is the position vector of any point on c with respect to the pole O,
and l is the specific body couple.

Similarly, the action of the contact forces is given by a total force

Fσ(∂c) =
∫

∂c

t dσ, (2.21)

where t is the stress per unit area defined on ∂c, and a resultant momentum

Mσ,0(c) =
∫

σc

(r × t + m) dσ, (2.22)

where m is the surface couple stress.
According to these assumptions, we can still accept the mass conserva-

tion of any material volume c

d

dt

∫
c

ρ dc = 0, (2.23)

where ρ is the mass density of S, and the momentum balance

d

dt

∫
c

ρv dc =
∫

∂c

t dσ +
∫

c

ρb dc, (2.24)

where v is the velocity field.
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For the angular momentum balance, we can postulate the equation

d

dt

∫
c

ρ(r × v + k) dc =
∫

∂c

(r × t + m) dσ +
∫

c

ρ(r × b + l) dc, (2.25)

where
k = Jω (2.26)

is the spin density, J is the microinertia tensor, and ω denotes the angular
microvelocity.

If n is the exterior unit vector normal to ∂c, and Cauchy’s hypothesis
(see Chap. 5 of [16])

t = t(x, t,n)

is accepted, then it is possible to prove (see Theorem 5.1 of [16]) the exis-
tence of Cauchy’s stress tensor T such that

t = Tn. (2.27)

Consequently, due to the arbitrariness of the region c and the continuity
of the functions under the integrals, we can derive the usual local forms of
(2.23) and (2.24):

ρ̇+ ρvi,i = 0, (2.28)

ρv̇i = Tij,j + ρbi. (2.29)

From now on, a subscript comma will denote partial differentiation. In
order to find the local form of balance equation (2.25), we first note that
the transport theorem allows us to write (2.25) as follows:∫

c

ρ
d

dt
(εijkrjvk) dc+

∫
c

ρk̇i dc

=
∫

∂c

εijkrjTkhnh dσ +
∫

∂c

mi dσ

+
∫

c

ρεijkrjbk dc+
∫

c

ρli dc. (2.30)

If we now apply the divergence theorem to the first term on the right-
hand side of (2.30), note that

(εijkrjTkh),h = εijkTkj + εijkrjTkh,h,

and consider (2.29), we change (2.30) into the form∫
c

ρk̇ dc =
∫

∂c

m dσ +
∫

c

(τ + ρl) dc, (2.31)

where τ is the opposite of the adjoint of the skew-symmetric part of the
stress tensor T; i.e.,

τi = εijkTkj = −εikjTkj . (2.32)
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If we extend Cauchy’s hypothesis (2.27) to m; i.e., if we suppose that

m = m(x, t,n),

and if we again apply Theorem 5.1 of [16], we can show the existence of the
stress couple tensor M such that

m = Mn, (2.33)

and (2.31) can be written in the local form

ρk̇i = Mij,j + τi + ρli. (2.34)

2.4 Energy and Entropy

In order to describe the exchanges between mechanical energy and ther-
mal energy, we postulate the following energy balance equation:

d

dt

∫
c

ρ

(
1
2
v2 +

1
2

k · ω + ε

)
dc =

∫
∂c

(v ·Tn + ω · Mn− h · n) dσ

+
∫

c

ρ(b · v + l · ω + r) dc, (2.35)

where ε is the specific internal energy , h is the heat flux vector , and r is
the external power supply per unit volume.

Applying the transport theorem to the integral on the left-hand side and
the Gauss theorem to the first integral on the right-hand side, we can write
(2.35) in the form∫

c

(ρv̇i − ρbi − Til,l)vi dc

+
∫

c

[(
1
2
ρk̇i − ρli −Mil,l

)
ωi +

1
2
ρkiω̇i

]
dc+

∫
c

ρε̇ dc

=
∫

c

(ρr + Tilvi,l +Milωi,l − hl,l) dc. (2.36)

The first integral vanishes for (2.29), whereas the function under the second
integral can be transformed as follows, taking into account (2.34):(

1
2
ρk̇i − ρli −Mil,l

)
ωi +

1
2
ρkiω̇i

=
(
ρk̇i − ρli −Mil,l

)
ωi − 1

2
ρk̇iωi +

1
2
ρkiω̇i

= τiωi +
1
2
ρ(kiω̇i − k̇iωi).
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Using conditions (2.17) and (2.18), we derive the result

kiω̇i − k̇iωi = −J̇ijωiωj

= (εiklωlJkj + εjklωlJki)ωiωj = 0,

since εilk is skew symmetric while ωiωl is symmetric. In conclusion, we can
give (2.35) the following local form:

ρε̇ = Tilvi,l +Milωi,l −τlωl − hl,l +ρr. (2.37)

We postulate that the entropy principle takes the form we stated in Sect.
5.6 of [16]:

ρη̇ ≥ −
(
hl

θ

)
, l

+ ρ
r

θ
, (2.38)

where η is the specific entropy and θ is the absolute temperature.
Retrieving the terms −∇ ·h + ρr from (2.38) and substituting the result

into (2.37), we obtain Clausius–Duhem’s inequality

−ρ(ψ̇ + ηθ̇) + Tijvi,j +Mijωi,j − τlωl − hlθ,l
θ

≥ 0, (2.39)

where
ψ = ε− θη

is the specific free energy.
We conclude this section by writing the local equations (2.28), (2.29),

(2.34), (2.37) and (2.39) in the corresponding Lagrangian form. This result
could be obtained by applying the same procedure we used in Sect. 5.7 of
[16]. However, that approach starts with the integral balance laws written
in the reference configuration, meaning that we would repeat all of the
calculations that led us to the Eulerian local balance equations. Therefore,
we will instead place these last equations directly into their corresponding
Lagrangian form using the formula

(JF−1
Lj ),L = 0, (2.40)

where F = (FiL) is the deformation gradient and J = detF.2

2Using (3.50) of [16], we have

∂F−1
Lk

∂FiM
= −F−1

Li F−1
Mk,

∂J

∂FiM
= JF−1

Mi .

Therefore,

(JF−1
Lj

),L = FhN ,L

(
∂J

∂FhN
F−1

Lj
+ J

∂F−1
Lj

∂FhN

)
= J

(
F−1

Nh
F−1

Lj
− F−1

Lh
F−1

Nj

)
,LN = 0.
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Starting from the Lagrangian equation of mass conservation ρ∗ = ρJ
and (2.40), it is easy to verify that (2.29), (2.34), (2.37) and (2.39) can be
written in the form

ρ∗vi = T∗iL,L +ρ∗bi, (2.41)
ρ∗k̇i = τ∗i +M∗iL,L +ρ∗li, (2.42)
ρ∗ε̇ = T∗iLvi,L +M∗iLωi,L −τ∗iωi − h∗L,L +ρ∗r, (2.43)

−ρ∗(ψ̇ + ηθ̇) + T∗iLvi,L +M∗iLωi,L −τ∗iωi − 1
θ
h∗Lθ,L ≥ 0, (2.44)

where we have introduced the Lagrangian fields

T∗iL = JTijF
−1
Lj , (2.45)

M∗iL = JMijF
−1
Lj , (2.46)

τ∗i = εijkFjLT∗kL, (2.47)
h∗L = JhiF

−1
Li . (2.48)

2.5 Elastic Micropolar Systems

We say that the continuum S is an elastic micropolar system if its be-
havior is described by the constitutive equations

T = T(F,d(L),∇Xd(L), θ,∇Xθ), (2.49)
M = M(F,d(L), θ,∇Xd(L),∇Xθ), (2.50)
h = h(F,d(L), θ,∇Xd(L), θ,∇Xθ), (2.51)
ψ = ψ(F,d(L), θ,∇Xd(L), θ,∇Xθ), (2.52)
η = η(F,d(L), θ,∇Xd(L), θ,∇Xθ). (2.53)

It is well known that these constitutive equations cannot be assigned
arbitrarily, since they must satisfy the constitutive axioms. In this section
we derive the restrictions imposed by the dissipation principle (see Chap.
6 of [16]).

If the fields F,d(P ), θ are assumed to depend on the variables X, t, then
we have:

ψ̇ =
∂ψ

∂FiL
FjLvi,j +

∂ψ

∂d(P )j
ḋ(P )j

+
∂ψ

∂d(P )j,L
FhLḋ(P )j,h +

∂ψ

∂θ
θ̇ +

∂ψ

∂θ,L
FjLθ̇,j. (2.54)
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The introduction of this relation into (2.39) leads to the inequality

− ρ

(
∂ψ

∂θ
+ η

)
θ̇ +

(
Tij − ρ

∂ψ

∂FiL
FjL

)
vi,j

− ρ
∂ψ

∂θ,L
FjLθ̇,j +

(
MlhΛlji − ρ

∂ψ

∂(d(P )j ,L )
FhL

)
ḋ(P )j ,h

+
(
−ρ ∂ψ

∂d(P )j
+MlhΛlji,h −εlhkTkhΛlji

)
ḋ(P )j −

h∗i

θ
θ,i ≥ 0. (2.55)

The dissipation principle states that this inequality must be satisfied in
any thermodynamic process F(X, t), di(X, t), and θ(X, t) provided that
conditions (2.1) are verified. In order to account for the consequences of
(2.1), we note that the following can be derived from d(P )jd(P ) = δjk:

ḋ(P )jd(P )k + d(P )j ḋ(P )k = 0,

ḋ(P )j ,h d(P )k + ḋ(P )jd(P )k,h + d(P )j,h ḋ(P )k + d(P )j ḋ(P )k,h = 0,

where the right-hand sides are symmetric with respect to the indices j
and k. Consequently, the quantities d(P )j , ḋ(P )j and ḋ(P )j ,h that appear in
(2.55) can be considered independent if the following terms are added to
(2.55) (see [13]):

λkj(ḋ(P )jd(P )k + d(P )j ḋ(P )k) = 2λkj ḋ(P )jd(P )k,

μkjh(ḋ(P )j ,h d(P )k + ḋ(P )jd(P )k,h + d(P )j ,h ḋ(P )k + d(P )j ḋ(P )k,h )

= 2μkjh(ḋ(P )j ,h d(P )k + ḋ(P )jd(P )k,h ),

where the unknown Lagrangian multipliers λkj and μkjh can be assumed
to be symmetric with respect to the indices j and k.

With the introduction of these terms into (2.55), we have

− ρ

(
∂ψ

∂θ
+ η

)
θ̇ +

(
Tij − ρ

∂ψ

∂FiL
FjL

)
vi,j

− ρ
∂ψ

∂θ,L
FjLθ̇,j +

(
MlhΛlji − ρ

∂ψ

∂(d(P )j ,L )
FhL + 2μkjhd(P )k

)
ḋ(P )j ,h

+
(
−ρ ∂ψ

∂d(P )j
+MlhΛlji,h −εlhkTkhΛlji + 2μkjhd(P )k,h + 2λkjd(P )k

)
ḋ(P )j

− h∗i

θ
θ,i ≥ 0. (2.56)

Consequently (see Chap. 6 of [16]), the constitutive equations
(2.49)–(2.53) must identically obey the relations

ψ = ψ(F,di,∇Xdi), (2.57)
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η = −∂ψ
∂θ
, (2.58)

Tij = ρ
∂ψ

∂FiL
FjL, (2.59)

MlhΛlji = ρ
∂ψ

∂(d(P )j ,L )
FhL − 2μkjhd(P )k, (2.60)

ρ
∂ψ

∂d(P )j
− MlhΛlji,h + εlhkTkhΛlji

− 2μkjhd(P )k,h − 2λkjd(P )k = 0, (2.61)
hiθ,i ≤ 0. (2.62)

When (2.15) is taken into account, relation (2.60) can also be written as

Mlhεlnjd(P )n = 2ρ
∂ψ

∂(d(P )j ,L )
FhL − 4μkjhd(P )k.

Multiplying this equation by d(P )r, and then by εnrj , and noting that (see
Eq. 2.2)

d(P )nd(P )r = δnr, εlrjεnrj = 2δln,

we obtain

Mlh = ρεlrjd(P )r
∂ψ

∂(d(P )j ,L )
FhL, (2.63)

since the term μrjkεnrj vanishes due to the symmetry of μrjk and the skew
symmetry of εnrj with respect to the indices r and j.

Equation 2.61 can be written in a more expressive form that highlights
its meaning. Multiplying (2.61) by d(P )n, we have

ρ
∂ψ

∂d(P )j
d(P )n − 1

2
Mlhεlkj d(P )nd(P )k,h +

1
2
εlhkTkhεlpjd(P )pd(P )n

− 2μkjhd(P )k,h d(P )n − 2λkjd(P )kd(P )n = 0. (2.64)

On the other hand,

d(P )kd(P )n = δkn,

d(P )nd(P )k,h = (d(P )nd(P )k),h −d(P )kd(P )n,h

= −d(P )kd(P )n,h = −(F−1)Mhd(P )kd(P )n,M ,

and so (2.64) becomes

ρ
∂ψ

∂d(P )j
d(P )n +MlhΛljid(P )n,M (F−1)Mh +

1
2
εlhkTkhεlnj

− 2μkjhd(P )nd(P )k,h −2λnj = 0.
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Due to (2.60), we can write this equation as follows:

ρ
∂ψ

∂d(P )j
d(P )n +

(
ρ

∂ψ

∂(d(P )j ,L )
FhL − 2μkjhd(P )k

)
d(P )n,M (F−1)Mh

+
1
2
εlhkTkhεlnj − 2μkjhd(P )nd(P )k,h −2λnj = 0;

i.e.,

ρ
∂ψ

∂d(P )j
d(P )n + ρ

∂ψ

∂(d(P )j ,L )
d(P )n,L −2μkjhd(P )kd(P )n,h

+
1
2
εlhkTkhεlnj − 2μkjhd(P )nd(P )k,h −2λnj = 0.

However, d(P )kd(P )n,h = −d(P )nd(P )k,h. Therefore, multiplying the above
equation by εpnj , noting that εpnjεlnj = 2δpl, and taking (2.59) and (2.60)
into account, we can write the above equation in the form

εpnj

(
∂ψ

∂d(P )j
d(P )n +

∂ψ

∂(d(P ),j,L )
d(P )n,L +

∂ψ

∂FjL
FnL

)
= 0. (2.65)

In the next section we prove that (2.65) is equivalent to the objectivity
principle.

In conclusion, for an elastic micropolar continuous system, the dissipation
principle implies that

ψ = ψ(FiL, d(P )j , d(P )j ,L , θ), (2.66)

η = −∂ψ
∂θ
, (2.67)

Tij = ρ
∂ψ

∂FiL
FjL, (2.68)

Mij = ρεipqd(P )p
∂ψ

∂d(P )q,L
FjL, (2.69)

hi(FiL, d(P )j , d(P )j ,L , θ, θ,L )θ,i ≤ 0. (2.70)

Moreover, condition (2.65) is equivalent to the objectivity principle.

2.6 The Objectivity Principle

In this section we analyze the consequences of the objectivity principle.
This principle requires that the constitutive equations are invariant with
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respect to any change of rigid frame of reference. In particular, the free
energy ψ of an elastic micropolar continuum has to satisfy the condition

ψ(F,d(P ),d(P ),L , θ) = ψ(QF,Qd(P ),Qd(P ),L , θ) (2.71)

for any orthogonal matrix Q.

Theorem 2.1

The free energy ψ(F,d(P ),d(P ),L , θ) satisfies the objectivity principle if and
only if it has the form

ψ = ψ̃(C,FT d(P ),FTd(P ),L , θ), (2.72)

where C = FTF is the left Cauchy–Green tensor.

PROOF Let F = RU be the polar decomposition of the deformation
gradient, where R is orthogonal and U is symmetric (see Chap. 3 of [16]).
If (2.71) is satisfied for any orthogonal matrix Q, then, upon choosing
Q = RT , we have

ψ(F,d(P ),d(P ),L , θ) = ψ(U,RT d(P ),R
Td(P ),L , θ).

However, it follows from F = RU that RT = U−1FT and C = U2, so we
have proved (2.72).

Conversely, under a change of rigid frame of referenceR → R′ determined
by the orthogonal matrix Q, we have F′ = QF, d′

(P ) = Qd(P ), C′
(P ) =

F′T F′ = C, and F′Td′
(P ) = FT d(P ). Then, from (2.72), we derive

ψ(F′,d′
(P ),d

′
(P ),L , θ) = ψ̃(C′,F

′T d′
(P ),F

′T d′
(P ),L , θ)

ψ̃(C,FT d(P ),FTd(P ),L , θ) = ψ(F,d(P ),d(P ),L , θ),

and the theorem is proved.

The objectivity of the constitutive equations of η, T, and M is guaranteed
by the following theorem.

Theorem 2.2

If the constitutive equations of ψ, η, T, and M satisfy the dissipation prin-
ciple and ψ is objective, then the constitutive relations of η, T, and M given
by (2.67)–(2.69) are also objective.
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PROOF We limit ourselves to proving that the constitutive equation of
T is objective. In fact, (2.68) and (2.72) lead us to

T ′
ij ≡ fij(F′,d′

(P ),d
′
(P ),L , θ) = ρF ′

jL

∂ψ̃

∂F ′
iL

(C′,F′T d′
(P ),F

′Td′
(P ),L , θ)

= ρQjhQikFhL
∂ψ̃

∂FkL
(C,FTd(P ),FT d(P ),L , θ)

= QikQjhfij(F,d(P ),d(P ),L , θ),

and we have proved the objectivity.

We now want to prove the following theorem.

Theorem 2.3
Equation (2.65) is equivalent to the objectivity of ψ(F,d(P ),d(P ),L , θ) pro-
vided that the dissipation principle is satisfied.

PROOF Let Q(ε) be an arbitrary family of orthogonal matrices that
depend on the real variable ε such that Q(0) = I, where I is the iden-
tity matrix. The objectivity of ψ(F,d(P ),d(P ),L , θ) is then equivalent to
requiring that the relation

ψ(Q(ε)F,Q(ε)d(P ),Q(ε)d(P ),L , θ) = ψ(F,d(P ),d(P ),L , θ) (2.73)

is satisfied for any value of ε and for any function Q(ε).
Equation (2.73) can also be written as

ψ(Qhj(ε)FjL, Qhj(ε)d(P )j , Qhj(ε)d(P )j ,L , θ) = ψ(FjL, d(P )j , d(P )j ,L , θ).
(2.74)

Differentiating (2.73) with respect to ε and evaluating the result at ε = 0,
we obtain

Whj

(
∂ψ

∂FjL
FhL +

∂ψ

∂d(P )j
d(P )h +

∂ψ

∂d(P )j ,L
d(P )h,L

)
= 0, (2.75)

where Whj = Q′
hj(0). On the other hand, Taylor’s expansion of Q(ε) at

ε = 0 is
Q(ε) = Wε+O(ε),

and from the orthogonality condition QTQ = I we find that W is a skew-
symmetric tensor. If wn = 1

2εhijWij is the adjoint vector of Wij then we
have Whj = εhjpwp, and (2.74) becomes:

εhjpwp

(
∂ψ

∂FjL
FhL +

∂ψ

∂d(P )j
d(P )h +

∂ψ

∂d(P )j ,L
d(P )h,L

)
= 0.
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Finally, we obtain (2.65) from the above relation when the arbitrariness of
wi is taken into account.

Further simplification of the constitutive equations (2.66)–(2.70) is achie-
ved by reducing the number of independent variables. First, we introduce
the material tensor

ΠPL = FhLd(P )h P,L = 1, 2, 3, (2.76)

and the material pseudotensor

ΓPL =
1
2
εPQRd(R)hd(Q)h,L P,L = 1, 2, 3, (2.77)

where εPQR are the components of the Levi–Civita tensor in Cartesian
coordinates. Relation (2.77) implies that

εMNP ΓPL = εMNP εPQRd(R)hd(Q)h,L

=
1
2
(δMQδNR − δMRδNQ)d(R)hd(Q)h,L

=
1
2
(d(N)hd(M)h,L −d(M)hd(N)h,L ).

However, from d(N)hd(M)h = δNM we can derive that d(N)hd(M)h,L =
−d(M)hd(N)h,L, so the above relation assumes the form

εMNP ΓPL = d(N)hd(M)h,L . (2.78)

Now, starting from the condition d(P )hd(P )k = δhk and (2.78), it is easy
to show that all of the independent variables appearing in (2.72) can be
expressed in terms of Π and Γ. In fact,

CLM = FhLFhM = FhLd(P )hd(P )kFkM = ΠPLΠPM ,

FhMd(P )h,L = FhMd(Q)hd(Q)kd(P )k,L = ΠQM εPQRΓRL.

It is worth highlighting the use of the tensor Π to describe the defor-
mation of the micropolar elastic system. First, we recall that a vector dX,
which has its origin at a point X of the reference configuration, is trans-
formed into the vector dx,

dxh = FhLdXL, (2.79)

which is applied at the point x = x(X, t) of the actual configuration.
On the other hand, we also have

ΠMLdXL = FhLd(M)hdXL = dx · d(M),

so that
dx = (dx · d(M))d(M). (2.80)
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We conclude that the tensor Π describes the local deformation with respect
to the directors. Consequently, if the evolutions of both the directors and
the tensor Π are known, the whole deformation of the micropolar system
is obtained.

Finally, we can write (2.72) in the form

ψ = ψ̂(Π,Γ, θ). (2.81)

On the other hand,

∂ΠPL

∂FhM
= δLMd(P )h, (2.82)

ΓPL

∂d(R)h,M
=

1
2
εPRQd(Q)hδLM , (2.83)

so that (2.68) becomes

Tij = ρ
∂ψ

∂FiL
FjL = ρd(R)i

∂ψ̂

∂ΠRL
FjL = ρχiR

∂ψ̂

∂ΠRL
FjL. (2.84)

In order to express (2.69) in terms of Π and Γ, we observe that (2.83)
allows us to write

Mij = ρεipqd(R)p
∂ψ

∂d(R)q,L
FjL

=
1
2
ρεipqεRNKd(N)qd(K)p

∂ψ̂

∂ΓRL
FjL

=
1
2
εRNK(d(N) × d(K))i

∂ψ̂

∂ΓRL
FjL,

where (d(N) × d(K))i denotes the ith component of the cross product
(d(N) × d(K)). On the other hand, it is easy to verify that εRNKd(N) ×
d(K) = 2d(R), R = 1, 2, 3, so that we finally obtain

Mij = ρd(R)i
∂ψ̂

∂Γ(R)L
FjL = ρχiR

∂ψ̂

∂Γ(R)L
FjL. (2.85)

In particular, if we assume that the micropolar system is isotropic, its
free energy ψ(Π,Γ) is an isotropic function of its variables:

ψ(Π,Γ) = ψ(QΠQT ,QΓQT ) (2.86)

for any orthogonal matrix Q. Equivalently, we can say that ψ is a function
(see Appendix A of [59])

ψ = ψ̂(I1, . . . , I15) (2.87)
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of the 15 invariants

I1 = trΠ, I2 =
1
2
trΠ2, I3 =

1
3
trΠ3,

I4 =
1
2
trΠΠT , I5 = trΠ2ΠT , I6 =

1
2
trΠ2(ΠT )2,

I7 = trΠΓ, I8 = trΠΓ2, I9 = trΠ2Γ,

I10 = trΓ, I11 =
1
2
trΓ2, I12 =

1
3
trΓ3,

I13 =
1
2
trΓΓT , I14 = trΓ2ΓT , I15 =

1
2
trΓ2(ΓT )2.

(2.88)

For isotropic microelastic bodies, the relations (2.84) and (2.85) become

Tij = ρd(R)i

15∑
h=1

∂ψ̂

∂Ih

∂Ih
∂Π(R)

FjL, (2.89)

Mij = ρd(R)i

15∑
h=1

∂ψ̂

∂Ih

∂Ih
∂Γ(R)L

FjL. (2.90)

2.7 Some Remarks on Boundary Value Problems

In this section we analyze the mathematical problem posed by the equa-
tions that describe the evolution of a microelastic system. First, it is worth
listing all of the equations involved:

ρ̇+ ρvi,i = 0,

J̇ij = (Jpjεpil+ Jipεpjl)ωl,

ρv̇i = Tij,j + ρbi,

ρk̇i = Mij,j + ρli,

ρε̇ = Tilvi,l +Milωi,l − τlωl − hl,l + ρr.

If the evolution of the microelastic system is described by the variables
xi(X, t), ϕi(X, t), ρ(X, t), Jij(X, t), ωi(X, t), and θ(X, t), and the constitu-
tive relations (2.84), (2.85) are taken into account, then we have to consider
the kinematic relation (2.17) in order to balance the number of equations
and unknowns:

ωi = Λ̃ijϕ̇j .

This is the viewpoint adopted by Eringen and Kafadar in [58]. However,
if the variables ϕi that describe the micromotion are replaced with the
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orthogonal matrix χ = (χiL), we must add the equations (2.3) and (2.4):

χiLχjL = δij ,

ωi = ΛikLḋLk.

We may hope to attain a well-posed boundary value problem by giving
the initial data for the unknown fields as well as suitable boundary condi-
tions for the stress and the stress couple. For instance, we could assign the
conditions

T ·N = t̂,
M ·N = m̂,

where t̂ and m̂ are given functions of the boundary ∂C of the region C
occupied by the continuous system, and N is the outward unit vector normal
to ∂C. It is important to note that the second condition requires a deeper
discussion concerning its physical meaning (see also Sect. 2.8).

2.8 Asymmetric Elasticity

In this section we analyze the asymmetric elasticity case, where

• The directors move with the angular velocity of the macroscopic mo-
tion

ωi =
1
2
εikhvh,k (2.91)

• The intrinsic angular momentum k vanishes.

The analysis developed in the previous sections does not hold for the above
condition, for two main reasons:

• We do not need to determine the motion of the directors

• The quantities vi,j , ωi,j , and ωi are not independent, so the dissipation
principle does not lead us to the same restrictions on the constitutive
equations.

In order to analyze the consequences of these remarks in detail, we start by
noting that the first of them implies that

d(P )(X, t) = Rd(P )(X, 0), (2.92)

where R is the orthogonal matrix in the polar decomposition F = RU.
Since R = F(

√
FTF)−1 (see Chap. 3 of [16]), we conclude that

ψ(F,d(P ),d(P ),L , θ) = ψ̂(F,F,L , θ). (2.93)
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Differentiating the right-hand side of this equation with respect to time, we
derive

˙̂
ψ =

∂ψ̂

∂FiL
ḞiL +

∂ψ̂

∂FiL,M
ḞiL,M +

∂ψ̂

∂θ
θ̇.

On the other hand, we also have

ḞiL,M = (vi,L),M = (vi,hFhL),M
= vi,hFhL,M +vi,hMFhL

= vi,hFhL,M +vi,hjFhLFjM , (2.94)

and consequently ˙̂
ψ can also be written as follows:

˙̂
ψ =

(
∂ψ̂

∂FiL
FjL +

∂ψ̂

∂FiL,M
FjL,M

)
vi,j +

∂ψ̂

∂FiL,M
FhLFjMvi,hj +

∂ψ̂

∂θ
θ̇.

(2.95)
Finally, the dissipation inequality (2.39) becomes

− ρ

(
∂ψ̂

∂θ
+ η

)
θ̇ +

(
Tij − ρ

∂ψ̂

∂FiL
FjL − ρ

∂ψ̂

∂FiL,M
FjL,M

)
vi,j

+ Mijωi,j − ρ
∂ψ̂

∂FkL,M
FhLFjMvk,hj

− εljiTijωl − hi

θ
θ,i ≥ 0. (2.96)

From (2.91), we derive that

εljiωl = v[i,j], (2.97)
v[k,h]j = εkhiωi,j , (2.98)

and the dissipation inequality (2.96) can be written as follows:

− ρ

(
∂ψ̂

∂θ
+ η

)
θ̇ +

(
Tij − ρ

∂ψ̂

∂FiL
FjL − ρ

∂ψ̂

∂FiL,M
FjL,M

)
vi,j

+

(
Mij − ρεkhi

∂ψ̂

∂F[hL,M
Fk]LFjM

)
ωi,j

− T[ij]v[i,j] −
(
ρ

∂ψ̂

∂F(hL,M
Fk)LFjM

)
v(i,h)j − hi

θ
θ,i ≥ 0. (2.99)

In this inequality, the quantities ωi,j cannot be chosen arbitrarily since
ωi,i = (1/2)εihkvk,hi = 0 due to the symmetry of vk,hi with respect to the
indices h, i as well as the skew symmetry of εihk with respect to the same
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indices. Therefore, we can choose the quantities ωi,j arbitrarily if we add the
term λδijωi,j to the inequality (2.99), where λ is a Lagrangian multiplier.

In conclusion, we obtain the final form of the dissipation inequality:

− ρ

(
∂ψ̂

∂θ
+ η

)
θ̇ +

(
T(ij) − ρ

∂ψ̂

∂F(iL
Fj)L − ρ

∂ψ̂

∂F(iL,M
Fj)L,M

)
v(i,j)

−
(
ρ
∂ψ̂

∂F[iL
Fj]L − ρ

∂ψ̂

∂F[iL,M
Fj]L,M

)
v[i,j] (2.100)

+

(
Mij + λδij − ρεkhi

∂ψ̂

∂F[hL,M
Fk]LFjM

)
ωi,j

−
(
ρ

∂ψ̂

∂F(hL,M
Fk)LFjM

)
v(i,h)j −

hi

θ
θ,i ≥ 0, (2.101)

from which we derive

η =
∂ψ̂

∂θ
, (2.102)

T(ij) = ρ
∂ψ̂

∂F(iL
Fj)L + ρ

∂ψ̂

∂F(iL,M
Fj)L,M , (2.103)

Mij = −λδij + ρεkhi
∂ψ̂

∂F[hL,M
Fk]LFjM , (2.104)

∂ψ̂

∂F[iL
Fj]L + ρ

∂ψ̂

∂F[iL,M
Fj]L,M = 0, (2.105)

∂ψ̂

∂F(hL,M
Fk)LFjM = 0, (2.106)

−hi

θ
θ,i ≥ 0. (2.107)

Concerning the above relations, note that:

• The free energy is a potential for the entropy, the symmetric part of
the stress T, and the stress couple tensor M

• The skew-symmetric part of T is not determined

• The symmetric part of the stress couple tensor is not determined
owing to the presence of the Lagrangian multiplier

• Condition (2.105) is equivalent to the objectivity principle (see
Sect. 2.6)
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• Condition (2.106) represents a further restriction on the constitutive
equation of ψ.

It is important to understand that the evolutions of all of the parts of
T and M that are not determined by the free energy ψ are unaffected. In
order to demonstrate the validity of this statement, we first note that the
equation of momentum balance can be written as follows:

ρv̇i = T(ij),j + T[ij],j + ρbi. (2.108)

On the other hand, the angular momentum equation is used to define the
skew-symmetric part of the stress tensor

T[ij],j = −1
2
εhijMhk,k. (2.109)

Consequently, (2.108) becomes

ρv̇i = T(ij),j − 1
2
εhijMhk,k + ρbi. (2.110)

Moreover, the undetermined part λδh,k of Mh,k does not contribute to
(2.110) since

εhij(λδhk),k = εhijλ,hj = 0.

When the constitutive equations (2.102)–(2.104) are given, the mass con-
tinuity equation and (2.11) allow us (at least in principle), together with
suitable boundary and initial data, to determine the unknowns ρ(X, t) and
x(X, t).



Chapter 3

Continuous System with a
Nonmaterial Interface

3.1 Introduction

In this chapter, we propose a macroscopic model of phase transitions. It
is essential to note that any macroscopic model of these phenomena does
not describe why a phase transition takes place nor the modifications it
produces in the matter at a microscopic level. It is only able to describe
how it takes place.

In proposing a macroscopic model of phase transitions in a continuous
system S, it is possible to adopt either of two points of view. We can start
from the experimental evidence that the different phases are separated by
very narrow boundary layers across which the fields associated with S vary
continuously but sharply. Due to the high values assumed by the gradients
of the fields in these layers, the ordinary constitutive equations of the body
undergoing the phase transition are assumed to depend very weakly on the
higher-order gradients of the above fields. Consequently, the higher-order
derivatives in the local equations of balance are multiplied by small coef-
ficients. It is well known that this circumstance implies the existence of
boundary layers whose localization and form depend on both the equations
and the boundary data (see [71, 72]). While this approach describes the
phase transitions in a sufficiently realistic way, it exhibits so many mathe-
matical difficulties that only a few simple problems can be solved.

In the other macroscopic approach, a model of two or more continuous
media separated by interfaces is adopted (see, for instance, [73]–[79]). The
basic idea of this approach is that we can replace the narrow boundary
layers between the phases with surfaces of discontinuity for the volume
fields. However, we must also associate some physical attributes with these
surfaces that, in a certain way, evoke the complex structure of the fields in
the layers used as their substitutes. This is achieved by associating with the
interface some surface fields obtained by suitable averaging of the volume
fields in the boundary layers.
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We adopt this second approach in this chapter. Consequently, we give
the balance equations of a continuous system in which two phases C1 and
C2 are separated by a nonmaterial interface Σ. This characteristic of Σ
results from the fact that, during a phase change, Σ consists of various
different particles at any given instant. Consequently, we must describe the
evolution of a nonmaterial surface at which physical fields are defined at
any instant. Here, we adopt a simplified version of the model proposed in
[75]–[79], which allows us to describe some interesting physical situations
that are analyzed in subsequent chapters.

3.2 Velocity of a Moving Surface

Let
r = r(u1, u2, t), (u1, u2) ∈ Ω ⊂ �2 (3.1)

be the parametric equation of a surface Σ(t) moving in the Euclidean three-
dimensional space �3 (see Appendix B).

It is important to note that, if the moving surface Σ(t) is nonmaterial
(i.e., if it does not consist of the same particles throughout), then the surface
coordinates (u1, u2) only have a geometric meaning. Consequently, there is
nothing to prevent us from adopting new surface coordinates (U1, U2) at
any instant t such that

uα = uα(U1, U2, t), (3.2)

where the functions (3.2) are invertible for any t.
If Σ(t) is a moving surface and (U1, U2) and (u1, u2) are two arbitrary

surface coordinates on Σ(t) related by the transformation (3.2), then we
can write

r = r(u1, u2, t) = r̂(U1, U2, t). (3.3)

It is possible to associate with the points of Σ(t) a velocity that depends on
the parametrization via the definitions

c =
(
∂r
∂t

)
uα

, ĉ =
(
∂r̂
∂t

)
UΔ

. (3.4)

From (3.2)–(3.4), we find that

ĉ = c +
(
∂uα

∂t

)
UΔ

aα, (3.5)

where (aα) = (∂r/∂uα) is the surface basis relative to the coordinate curves
uα (see Appendix B). From (3.5) we derive that the component of the
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velocity along the unit vector n, normal to Σ(t), is independent of the para-
metrization

ĉn = ĉ · n = c · n = cn. (3.6)

Remark Definitions (3.4) are only meaningful for a material surface. In
fact, in this case, two pairs of curvilinear coordinates (uα), (Uα) characterize
the same material particles of Σ if (3.2) does not depend on t. Consequently,
(3.4) supplies a velocity that is independent of the material coordinates
(uα). However, for a nonmaterial moving surface, a physical meaning can
only be attributed to the normal velocity.

If the surface Σ(t) is given by the equation f(r, t) = 0, where r =
r(u1, u2, t), then we have(

∂f

∂t

)
r

+ ∇f ·
(
∂r
∂t

)
uα

=
(
∂f

∂t

)
r

+ |∇f |n · c = 0,

and the normal speed of Σ can be written as follows:

cn = −∂f
∂t

1
|∇f | . (3.7)

Remark Let we suppose that physical considerations lead us to asso-
ciate a velocity V with the particles, which instantaneously occupy the
nonmaterial moving surface Σ(t). Then, it is always possible to choose the
parameter (uα) on the surface in such a way that the component cs of the
velocity c along Σ(t) in this parametrization is equal to the corresponding
component Vs of V. In fact, under a change of parameters given by (3.2),
we have the following identity according to (3.5) and (3.6):

ĉs(UΔ, t) = cs(uα, t) +
(
∂uα

∂t

)
UΔ

aα,

which, in components, becomes

ĉΔs (UΔ, t)âΔ = cαs (uα, t)aα +
(
∂uα

∂t

)
UΔ

aα.

However, we also have âΔ = ∂r
∂UΔ = ∂uα

∂UΔ aα. Therefore, to satisfy the
above condition, it is sufficient for the functions (3.2) to be solutions of the
differential system

∂uα

∂t
= ĉΔs

∂uα

∂UΔ
− V α

s . (3.8)
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In what follows, when we can attribute a physical meaning to the velocity
of the particles that instantaneously lie on the nonmaterial surface Σ(t), the
equation r(uα, t) is referred to these coordinates, so that

cs = Vs. (3.9)

3.3 Velocity of a Moving Curve

Let Γ(t) be a moving nonmaterial curve on Σ(t). If Σ(t) has the paramet-
ric representation r = r̂(UΔ, t), the parametric equation of Γ(t) becomes

r = r̂(UΔ(μ, t), t) = ϕ̂(μ, t). (3.10)

The velocity of Γ(t) in the parametrization we have chosen is given by

Ĉ =
(
∂ϕ̂

∂t

)
μ

=
(
∂r̂
∂t

)
UΔ

+
∂r̂
∂UΔ

(
∂UΔ

∂t

)
μ

,

so that, considering (3.5), we can write

Ĉ = ĉ +
(
∂UΔ

∂t

)
μ

âΔ. (3.11)

If we introduce different parameters for Σ(t) and Γ(t) (i.e., if we use the
new parameters uα = uα(UΔ, t) for Σ(t) and μ = μ(Λ, t) for Γ(t)), then we
have a different equation for Γ(t):

r = r(uα(UΔ(μ(λ, t), t), t) = r̂(UΔ(μ, t), t), (3.12)

and the velocity C of Γ(t) becomes

C =
(
∂r
∂t

)
λ

=
(
∂r
∂t

)
uα

+

∂r
∂uα

[(
∂uα

∂t

)
UΔ

+
∂uα

∂UΔ

((
∂UΔ

∂t

)
μ

+
(
∂UΔ

∂μ

)(
∂μ

∂t

)
λ

)]

= c +
(
∂uα

∂t

)
UΔ

aα +

[(
∂UΔ

∂t

)
μ

+
∂UΔ

∂μ

(
∂μ

∂t

)
λ

]
âΔ.

If we note that (∂UΔ/∂μ)âΔ is a tangent vector τ̂ to the curve Γ(t) in the
parametrization UΔ = UΔ(μ, t), then we obtain the relation

C = c +
(
∂uα

∂t

)
UΔ

aα +
(
∂UΔ

∂t

)
μ

âΔ +
(
∂μ

∂t

)
λ

τ̂ . (3.13)
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By comparing (3.13) and (3.11), and taking into account (3.5) and (3.6),
we deduce that

C − Ĉ =
(
∂μ

∂t

)
λ

τ̂ . (3.14)

This result shows that the projections of C along the unit vector ν (which
is tangent to Σ(t) and orthogonal to Γ(t)) and along the unit normal n to
Σ(t) are independent of the parametrization of Σ(t) and Γ(t):

C · ν = Ĉ · ν, (3.15)

C · n = Ĉ · n. (3.16)

3.4 Thomas’ Derivative and Other Formulae

In this section, we define the Thomas derivative of a field F(r, t) assigned
to the moving surface Σ(t), and prove some useful differentiation formulae.
The Thomas derivative of F(r, t), which is defined by the limit

δF
δt

= lim
Δt→0

F(r + cnnΔt, t+ Δt) − F(r, t)
Δt

, (3.17)

denotes the rate change of the field F with respect to an observer moving
along the unit normal n to Σ(t) with normal speed cn. It is evident that
we can write

δF
δt

=
(
∂F
∂t

)
r

+ cnn · ∇rF. (3.18)

To find the expression for the Thomas derivative when the field F(r, t)
is expressed as a function F̃(uα, t) of the surface parameters, we note that

Ḟ =
(
∂F
∂t

)
r

+ c · ∇rF =

(
∂F̃
∂t

)
uα

.

Consequently, (3.18) becomes

δF
δt

=

(
∂F̃
∂t

)
uα

− cs · ∇rF. (3.19)

On the other hand, if (xi) is any curvilinear system of spatial coordinates,
we have (see (2.28) of [16])

∇rF · aα = (F,i ⊗ ei) · aα

= F,i ei ·
(
∂xj

∂uα
ej

)
= F̃,α , (3.20)
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where (ei) and (ei) denote the natural basis and the dual basis, respectively,
associated with the coordinates (xi). (3.19) can then also be written as
follows (see B.52):

δF
δt

=

(
∂F̃
∂t

)
uα

− cαs F̃,α =

(
∂F̃
∂t

)
uα

− cs · ∇sF̃. (3.21)

We conclude this section by evaluating the time derivatives of the metric
coefficients aαβ(uα,t). First, from the evident relations

ȧα = ṙ,α = c,α ,

we derive that
ȧαβ = c,α · aβ + aα · c,β .

When we take into account (B.42), the above equation assumes the form

ȧαβ = 2(c(α;β) − bαβcn) ≡ 2ηαβ . (3.22)

From this result, we immediately obtain

ȧ =
∂a

∂aαβ
ȧαβ = aaαβȧαβ = 2aηα

α. (3.23)

Finally, if the hypotheses discussed in the second remark at the end of
Sect. 3.2 are satisfied, and we adopt the coordinates that lead to (3.9) on
the moving surface, then (3.19) assumes the form

δF
δt

=

(
∂F̃
∂t

)
uα

− V α
s F̃,α , (3.24)

whereas in (3.22) it is

ηαβ = 2(Vs(α;β) − bαβcn). (3.25)

3.5 Differentiation Formulae

In this section we prove an important differentiation formula which allows
us to formulate the equations of balance for a continuous system with an
interface.

Let f(x, t) be a tensor field defined in a moving region V (t) ⊂ �3 for
any moment in time t ∈ [t0, t1]. Suppose that the region V (t) is divided
into two parts V −(t) and V +(t) by a moving regular surface Σ(t), where
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V +(t) is the part containing the unit vector n normal to Σ(t) (see Fig.
3.1). The field f(x, t) is regular, at any t, in V (t) − Σ(t), but may exhibit
finite discontinuities across Σ(t). We denote the finite limit values of f(x, t)
from V −(t) and V +(t), respectively, at any point r ∈ Σ(t) by f−(x, t) and
f+(x, t). Finally, we assume that these limits are smooth functions of their
arguments.

Let
g(x, t) = 0 (3.26)

and
r = G(uα, t), α = 1, 2, (3.27)

be the implicit and parametric representations of Σ(t), respectively. In the
above section we have already noted that the normal speed (3.7) of Σ(t)
does not depend on the parametrization.

Let V (t) be a moving volume whose boundary ∂V (t) is represented by
one of the following equations:

p(x, t) = 0, (3.28)

r = P(uα, t). (3.29)

If N is the unit normal vector to ∂V (t) and

CN =
(
∂P
∂t

)
uα

· N = − 1
|∇p|

∂p

∂t
(3.30)

n

V( )t

�( )t

V
_
( )t

V+( )t
N

�( )t

Fig. 3.1 A moving
surface Σ(t) that

intersects a moving
volume V (t)
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is the normal speed of ∂V (t), then the following differentiation formula
holds (see Sect. 3.6 of [16]):

d

dt

∫
V (t)

f dv =
∫

V (t)

∂f
∂t
dv +

∫
∂V (t)

fCN dσ −
∫

σ(t)

[[f ]]cn dσ, (3.31)

where [[f ]] = f+ − f− is the jump in f across the singular surface Σ(t), and
σ(t) = Σ(t)

⋂
V (t) is the part of Σ(t) that is instantaneously contained in

∂V (t).
Now we prove another differentiation formula that is related to moving

nonmaterial surfaces (see [77]). Let Σ∗(t) be a moving surface whose points
satisfy one of the following equations:

ϕ(r, t) = 0, r = Φ(uα, t), (3.32)

and let Γ(t) be a closed curve

uα = ψα(s, t) (3.33)

that moves on Σ∗(t) with a velocity (see (3.11))

W =
∂ψα

∂t
aα +

∂Φ
∂t
, (3.34)

where aα = (∂Φ/∂uα) is the holonomic basis associated with the coordi-
nates (uα).

Let γ(t) be a moving curve on Σ(t) along which the surface Σ(t) is not
regular. We suppose that the part Σ(t) of Σ∗(t) that is inside Γ(t) is divided
into two parts (Σ−(t) and Σ+(t)) by the moving curve γ(t) (see Fig. 3.2).
In order to define Σ+(t), we introduce at any point on Γ(t) the unit vector
νΓ, which is orthogonal to Γ(t), tangential to Σ(t) and oriented towards the
exterior of Σ(t). Further, we consider the unit vector N that is orthogonal
to Σ(t), and we choose the unit tangent vector τ to Γ(t) in such a way that
the frame τ, νΓ,N is counterclockwise. This choice introduces an orientation
on Γ(t), which, in turn, determines two opposite orientations along γ(t)
according to whether γ(t) is considered part of the boundary of either of
the two parts into which Σ is divided by γ(t). We can arbitrarily define one
of them as a positive orientation and the other as a negative orientation.
Then we identify Σ+(t) with the part of Σ(t) that contains ν+

γ (see Fig. 3.2).
Let F(x, t) be a field on the surface Σ∗(t), possibly the restriction on

Σ∗(t) of a three-dimensional field f(x, t) assigned in a volume containing
Σ∗(t). The field F(x, t) is assumed to be regular in Σ(t) − γ(t), with finite
discontinuities across γ(t). The notations F−(x, t) and F+(x, t) denote the
finite values of the limit values of F(x, t) upon going from Σ−(t) and Σ+(t),
respectively, to a point r ∈ γ(t).
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We can now prove the following formula:

d

dt

∫
Σ(t)

F(r, t) dσ =
∫

Σ(t)

(
δF
δt

− 2FHCN

)
dσ

+
∫

Γ(t)

FWΓ ds−
∫

γ(t)

[[F]]wγ ds. (3.35)
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Fig. 3.2 A moving
curve γ(t) of singular
points on the moving

surface Σ∗(t)

In (3.35),WΓ = W·νΓ, wγ = w·νγ , where W and w denote the velocities
of the curves Γ(t) and γ(t), respectively. Moreover,H is the mean curvature
of Σ(t) (see Appendix B). We explicitly note that the velocities W and w
depend on the parametrization of Σ(t), Γ(t), and γ(t). However, in Sects.
3.2 and 3.3 we showed that WΓ and wγ , and consequently the right-hand
side of (3.35), do not depend on the parametrization.

In order to prove (3.35), we first suppose that Σ(t)
⋃
γ(t) = ∅. Then

we denote by Σ0(t + Δt) the surface whose points R are defined by the
following equation:

R = r + CNΔtN, ∀r ∈ Σ(t); (3.36)

i.e., the surface obtained by moving the points of Σ(t) along the unit normal
N of the quantity CNΔt. These points obey the equation of the surface
Σ(t+ Δt) to within second-order terms in Δt since, due to (3.32), we have

ϕ(r + CNΔtN, t+ Δt) = CNΔtN · ∇ϕ+
∂ϕ

∂t
Δt+O(Δt), (3.37)

and the sum of the first two terms on the right-hand side of the above
relation vanishes due to the definition of the normal speed of Σ(t):

CN = − 1
|∇ϕ|

∂ϕ

∂t
.
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On the other hand, to within second-order terms, the surface Σ(t + Δt)
is obtained from Σ0(t + Δt) by taking into account the new position of
Γ(t+Δt) on it. All of these remarks and the formula dσ =

√
a(r, t) du1du2

(see Appendix B) lead us to the relation∫
Σ(t+Δt)

F(r(t+ Δt), t+ Δt) dσ =
∫

Γ(t)

FWΓΔt ds (3.38)

+
∫

Σ(t)

F(r(t) + CNΔtN(t), t+ Δt)
√
a(r(t) + CNΔtN(t), t+ Δt) du1du2.

Subtracting the term ∫
Σ(t)

F(r, t)
√
a(r, t) du1du2

from both sides of (3.38) and dividing by Δt in the limit Δt → 0, we obtain

d

dt

∫
Σ(t)

F(r, t) dσ =
∫

Σ(t)

(√
a
δF
δt

+ F
δ

δt

√
a

)
du1du2 +

∫
Γ(t)

FWΓ ds.

(3.39)
On the other hand, if we denote the vectors of the holonomic basis associ-
ated with the coordinates uα by aα = ∂Φ/∂uα, we have

δ

δt

√
a =

1
2
√
a

δa

δt
=

1
2
√
a
aaαβ δaαβ

δt
=

√
aaαβaα · δaα

δt
. (3.40)

It then remains to evaluate the Thomas derivative δaα/δt. From Eq. 3.37
for the surface Σ0(t+ Δt) we obtain the relation

aα(R, t+ Δt) = aα(r, t) + (CNN),α Δt+O(Δt),

which, taking into account the Gauss–Weingarten formulae (see Appendix
B), implies that

δaα

δt
= (CN ),α N− CNb

λ
αaλ, (3.41)

where bλα denote the coefficients of the second quadratic form of the surface
Σ(t) (see Appendix B). In view of (3.41), (3.40) becomes

δ

δt

√
a = −√

aaαβCNbαβ = −2
√
aHCN . (3.42)

This last result allows us to write (3.39) in the following form:

d

dt

∫
Σ(t)

F(r, t) dσ =
∫

Σ(t)

(
δF
δt

− 2FHCN

) √
a du1du2

+
∫

Γ(t)

FWΓ ds. (3.43)

It is now sufficient to apply (3.43) to both of the surfaces Σ−(t) and Σ+(t)
to obtain (3.35).
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3.6 Balance Laws

In this section we consider the general form of a balance law for a contin-
uous system B with a nonmaterial interface Σ(t), which is singular for the
volume fields associated with B. This surface is assumed to carry regular
surface fields that describe the material properties of Σ(t).

A general balance law for B has the form

d

dt

∫
V (t)

f dv +
d

dt

∫
σ(t)

F dσ = −
∫

∂V (t)

[f ⊗ (v − C) + ϕ] · N dσ

−
∫

∂σ(t)

[F ⊗ (Vs − Ws) + Ψ] · νσ ds

+
∫

V (t)

r dv +
∫

σ(t)

R dσ, (3.44)

where σ(t) = V (t)
⋃

Σ(t), νσ is the unit vector that is tangent to σ(t) and
normal to ∂σ(t), v and V are the transport velocities of the fields f and
F, respectively, C is the velocity of the boundary ∂V (t), and W denotes
the speed of the boundary ∂σ(t). The fields ϕ and Ψ are the nonconvective
fluxes of f and F, respectively. Finally, r is the supply per unit volume of
f , and R represents the supply per unit area of the field F.

In the balance law (3.44), the volume V (t) can move in an arbitrary way.
The most familiar choices correspond to a material volume (i.e., to a volume
moving with the velocity v of the particles of B) or to a fixed volume. In
the first case v · N = C ·N, and the balance law becomes

d

dt

∫
V (t)

f dv +
d

dt

∫
σ(t)

F dσ = −
∫

∂V (t)

ϕ · N dσ

−
∫

∂σ(t)

[F ⊗ (Vs − Ws) + Ψ] · νσ ds

+
∫

V (t)

r dv +
∫

σ(t)

R dσ. (3.45)

On the other hand, for a fixed volume (C = 0), we have

d

dt

∫
V

f dv +
d

dt

∫
σ(t)

F dσ = −
∫

∂V

[f ⊗ v + ϕ] ·N dσ

−
∫

∂σ(t)

[F⊗ (Vs − Ws) + Ψ] · νσ ds

+
∫

V

r dv +
∫

σ(t)

R dσ. (3.46)
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n
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�( )t
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Fig. 3.3 A moving
surface Σ(t)

intersecting the
moving volume V (t)

It is important to note that the velocity W of the curve ∂σ(t) depends
on both the velocity C of the boundary ∂V (t) and the velocity c of the
singular surface Σ(t). This dependence can be made explicit by imposing
that the curve ∂σ(t) belongs to ∂V (t) and Σ(t). In fact, from this condition,
we have

W ·N = CN , W · n = cn. (3.47)

Introducing the basis (τ,n, νσ) along the curve ∂σ(t) (see Fig. 3.3), the
velocity W of the points of ∂σ can be written as follows:

W = Wττ +Wννσ +Wnn, (3.48)

and from (3.47) we obtain

Wννσ ·N +Wnn ·N = CN , Wn = cn.

On the other hand, since N = (νσ · N)νσ + (n ·N)n, we have

ν ·N =
√

1 − (n · N)2,

and the vector W permits the following representation:

W = Wτ τ +
CN − cnn ·N√

1 − (n ·N)2
νσ + cnn, (3.49)

where CN = vn for material volumes and CN = 0 for fixed volumes.
In order to localize the general balance laws, we must take into account

the differentiation formulae (3.31) and (3.35), as well as the generalized
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Gauss theorems for the integrals over ∂V (t) and ∂σ(t). Further, when ap-
plying the Gauss theorem to the integral over ∂σ(t), we can use (B.58)
since, without any loss of generality, we can assume that Ψ · n = 0. Fi-
nally, again with the aim of simplifying the model, we suppose that Σ(t) is
regular, together with the fields defined on it. The balance law, expressed
in any of the forms (3.44), (3.45), and (3.46), leads to the following local
equations and jump conditions via a standard method:

∂f
∂t

+ ∇ · (f ⊗ v + ϕ) − r = 0, in C − Σ, (3.50)

δF
δt

+ ∇s · (F ⊗ Vs + Ψ) − 2HcnF− R

= [[f(cn − vn) − ϕ·n]], on Σ. (3.51)

We can write the above equations in a more convenient form. First, we note
that

∇s · (F⊗ Vs) = (F ⊗ Vs),α ·aα = F,α V α
s + F∇s ·Vs. (3.52)

Let us introduce onto the moving nonmaterial interface Σ(t) the coordinates
(uα), which lead to (3.9). Recalling (3.24) and (3.52), and introducing the
notation F̃ = F(uα, t), we transform the above equations into the following:

∂f
∂t

+ ∇ · (f ⊗ v + ϕ) − r = 0, in C − Σ, (3.53)(
∂F̃
∂t

)
uα

+ F̃∇s ·Vs + ∇s ·Ψ − 2HcnF̃ − R

= [[f(cn − vn) − ϕ·n]], on Σ. (3.54)

A balance law, in integral or local form, has no physical meaning if we do
not provide explicit expressions for the quantities that appear in it. Suffi-
ciently general balance equations for a continuous system with an interface
are given by (3.24), (3.27), (3.31), (3.34) and (3.35) in [78] and [79]. We
consider balance equations based on the terms listed in Table 3.1 here.

The columns of Table 3.1 refer to mass conservation, momentum bal-
ance, angular momentum balance, and energy balance, respectively. Conse-
quently, ρ,v, t,b, e, and h denote the mass density, the velocity, the stress
tensor, the body force, and the heat flux in the bulk regions, respectively.
Finally, ρs is the surface mass density, T is the surface stress tensor, E is the
specific energy of the interface Σ, V is the velocity of the particles that lie
instantaneously on Σ, and aα is a vector of the holonomic basis tangent to
Σ (see Appendix B). The term that appears in the last row of the column,
related to the angular momentum balance, is due to the average processes
at the boundary layer that allow us to associate surface quantities with the
interface (see p. 57 of [78]).
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f ρ ρv ρr× v ρ(1
2v

2 + e)
F ρs ρsV ρsr× V ρs(1

2V
2 + E)

ϕ 0 −t −r × t −v · t + h
Ψ 0 −T −r× T −V ·T
r 0 ρb ρr × b ρv · b
R 0 0 ρs(cn − Vn)V × n 0

Table 3.1 Fields included in the balance laws

If we introduce the terms present in the first column of Table 3.1 into
the general equations (3.53) and (3.54), we obtain the local equation and
the jump condition relating to mass conservation:

ρ̇+ ρ∇ · v = 0, in C − Σ, (3.55)(
∂ρs

∂t

)
uα

+ ρs∇s ·Vs − 2Hcnρs = [[ρ(cn − vn)]] , on Σ. (3.56)

Similarly, after introducing the data from the second column into (3.53)
and (3.54) and some simple calculations in which we take (3.55) and (3.56)
into account, we deduce the following form of the momentum balance:

ρv̇ −∇ · t − ρb = 0, in C − Σ, (3.57)

ρs

(
∂V
∂t

)
uα

−∇s ·T = [[ρ(v − V)(cn − vn) + t · n]] , onΣ. (3.58)

Proceeding in the same way with the data in the third column, and again
taking into account (3.55)–(3.58), we derive the local equations and jump
conditions relating to the angular momentum and energy balance:

r × t = 0, in C − Σ, (3.59)
aα × T · aα = 0, on Σ. (3.60)

We note that the proof for the existence of the surface stress tensor
T is similar to the proof for the existence of the Cauchy stress tensor t.
Moreover, the surface stress tensor allows us to write the force tσ acting
along any curve γ on Σ in the following way:∫

γ

T · νσ ds,
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where νσ is the unit normal to γ. From the above relation, it follows that
we can always assume that

T · n = 0. (3.61)

Moreover, it is well known that condition (3.59), which can be written in
components as

εijltjl = 0,

where εijl is the Levi–Civita tensor, is equivalent to the symmetry of the
stress tensor in the bulk regions:

t = tT . (3.62)

On the other hand, in view of (3.61), in the basis (aα,n), where (aα) is
the holonomic basis associated with the curvilinear coordinates (uα) on Σ,
the condition (3.60) can also be written in the form

aα × (T λβaλ ⊗ aβ + T 3λn ⊗ aλ) · aα = 0,

which leads us to the condition

aα × T λαaλ + aα × T 3αn = 0. (3.63)

Since the vectors a1, a2, and n form a counterclockwise basis, the above
equation becomes

(T 12 − T 21)n − T 31a2 + T 32a1 = 0,

so that
T 12 = T 21, T 31 = T 32 = 0. (3.64)

In other words, the stress tensor is symmetric and it only generates forces
that are tangential to Σ.

In view of (3.64) and (B.51), the surface divergence of T is

∇s · T = Tαγ
;α aγ + Tαγbαγn, (3.65)

so that (3.57) is equivalent to the following equations along the plane tan-
gential to Σ and along the unit normal n, respectively:

ρs

(
∂V
∂t

)α

− Tαγ
;α = [[ρ(vγ − V γ)(cn − vn) + (tn)γ ]] , (3.66)

ρs

(
∂V
∂t

)n

− Tαγbαγ = [[ρ(vn − Vn)(cn − vn) − p]] , (3.67)

where we have introduced the pressure

p = −n · tn. (3.68)
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Before moving on, it is convenient to prove that

∇s · (V ·T) = Tαβσαβ + V · ∇s · T. (3.69)

Due to (B.49) and (3.65), we have

∇s · (V ·T) = (V · T),α · aα = V,α ·Taα + V · ∇s ·T. (3.70)

On the other hand, we also have

V,α ·Taα = Tαβ(Vα;β − bαβVn) ≡ Tαβσαβ , (3.71)

and (3.69) is proved.
Finally, if we introduce the data from the fourth column of the table

into (3.53) and (3.54) and take into account the conservation of mass, the
momentum balance and (3.69), we can change the energy balance into
the following form:

ρε̇− tr(t ⊗ v) + ∇ · h = 0, in C − Σ, (3.72)

ρs

(
∂E

∂t

)
uα

− Tαβσαβ

=
[[
ρ

(
1
2
(v − V )2 + e

)
(cn − vn) + (v − V) · tn− h · n

]]
, onΣ.

(3.73)

3.7 Entropy Inequality and Gibbs Potential

Together with the balance equations, we must take into account the sec-
ond law of thermodynamics (see [16]), which leads us to the following local
inequality in the bulk phases:

ρθη̇ + ∇ · h − 1
θ
h · ∇θ ≥ 0, (3.74)

where η is the specific entropy and θ the absolute temperature. Moreover,
at the interface Σ, when θ is continuous across Σ, the second law implies
the following jump conditions:

θρs

(
∂S

∂t

)
uα

− [[ρθ(η − S)(cn − vn) − h · n]] ≥ 0, (3.75)

where S is the surface specific entropy.
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It is well known (see [16]) that the local energy balance (3.72) and the as-
sociated jump condition (3.73) allow us to transform (3.74) into the reduced
dissipation inequality:

−ρ(ψ̇ + ηθ̇) + tr(t ⊗ v) − 1
θ
h · ∇θ ≥ 0, (3.76)

where
ψ = e− θη (3.77)

is the specific free energy in the bulk phases. On the other hand, by elimi-
nating the term [[h · n]] via (3.73) and (3.75), we can derive the following
jump condition:

− ρs

(
Ψ̇ + Sθ̇

)
+ TαβVα;β

+
[[
ρ

(
1
2
(v − V)2 + ψ − Ψ

)
(cn − vn) + (v − V) · tn

]]
≥ 0, (3.78)

where
Ψ = E − θS (3.79)

is the free energy per unit area, and Ȧ = (∂A/∂t)uα .
We now assign the following particular constitutive equations to the sur-

face quantities Ψ, S, and T:

Ψ = Ψ(aαβ , θ), (3.80)
S = S(aαβ , θ), (3.81)
T = T(aαβ , θ), (3.82)

and we impose the condition that they must satisfy the dissipation princi-
ple (i.e., inequality (3.78)) in any process. In order to recognize the conse-
quences of the dissipation principle, we use (3.22) and (3.25) to write the
time derivative of Ψ as follows:

Ψ̇ =
∂Ψ
∂θ

θ̇ +
∂Ψ
∂aαβ

(Vα;β − bαβcn)

=
∂Ψ
∂θ

θ̇ +
∂Ψ
∂aαβ

σαβ +
∂Ψ
∂aαβ

bαβ(Vn − cn). (3.83)

Introducing this expression into (3.78), and requiring that the correspond-
ing inequality is satisfied in any process, we obtain the following results:

S = −∂Ψ
∂θ

, (3.84)

Tαβ =
∂Ψ
∂aαβ

, (3.85)
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[[
ρ

(
1
2
(v − V)2 + ψ − Ψ

)
(cn − vn) + (v − V) · tn

]]
− ∂Ψ
∂aαβ

bαβ(Vn − cn) ≥ 0. (3.86)

We now deduce other interesting consequences of the residual inequality
(3.86). To this end, we decompose the velocities v, V in the components
vs, Vs tangent to Σ(t), and the components vnn, Vnn along the normal n
to Σ(t). Then, in view of (3.68), we have

(v − V) · tn = (vs − Vs) · tn + (vn − Vn)
= (vs − Vs) · tn − p(vn − Vn)
= (vs − Vs) · tn + p(cn − Vn) + p(Vn − cn).

Consequently, (3.86) becomes[[
ρ

(
1
2
(v − V)2 + g − Ψ

)
(cn − vn) − (vs − Vs) · tn

]]
− (Tαβbαβ − [[p]]

)
(Vn − cn) ≥ 0, (3.87)

where

g = ψ +
p

ρ
(3.88)

is the specific Gibbs potential..
If we assume that the constitutive equations for the bulk quantities g and

p are functions of some field variables like the density ρ, the deformation
gradient F, etc., then the jumps that appear in (3.87) will depend on the
limits ρ±, F±, etc. of these fields on Σ(t). Moreover, if we suppose that the
above jumps also depend on the variables (cn − vn)± and (Vn − cn)±, then
we can state that the right-hand side f of (3.88) reaches its minimum when
these variables are equal to zero. Consequently, the first derivatives of f are
equal to zero at equilibrium:

(g − Ψ)−0 = 0, (3.89)
(g − Ψ)+0 = 0, (3.90)

(Tαβbαβ − [[p]])0 = 0. (3.91)

Equation 3.91 coincides with (3.67) at equilibrium, while (3.89) and (3.90)
imply that on the interface, at equilibrium, we have

[[g]]0 = 0. (3.92)
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3.8 Other Balance Equations

If the continuous system S with a moving interface has electromag-
netic fields, then—besides the thermomechanical balance laws of the above
section—we need to consider the Maxwell equations, which are expressed
by integral laws that take one of the two following forms (see [77]):∫

∂V (t)

u · N dσ =
∫

V (t)

r dv +
∫

σ(t)

Rdσ, (3.93)

d

dt

∫
S(t)

u · N dσ =
∫

∂S(t)

a · τs ds

+
∫

S(t)

g ·N dσ +
∫

γ(t)

k · νΣ ds, (3.94)

where u, a, g, k are vector fields, r and R are scalar fields, V (t) is any
material volume, Σ(t) is any open material surface, γ(t) is the intersection
between V (t) and a singular moving surface Σ(t), σ(t) = V (t)

⋃
Σ(t), N

is the unit normal to ∂V (t) or to Σ(t), νΣ is the unit vector orthogonal to
γ(t), and τs is the unit vector tangent to γ(t).

In the local form, the above equations become

∇ · u = r, inV (t) − Σ(t) (3.95)
[[u]] · n = R, onΣ(t) (3.96)

∂u
∂t

+ v∇ · u = ∇× (a + v × u) + g, inV (t) − Σ(t), (3.97)

(n × [[u × (w − v) − a]] − k) · νΣ = 0, onΣ(t). (3.98)

In these formulae, v is the velocity of the particles of S, w is the velocity
of γ(t), and n is the unit vector normal to Σ(t).

It is possible to localize the integral equation (3.94) according to the
following derivation formula, which holds for any material surface Σ(t)
intersecting a singular nonmaterial interface Σ(t):

d

dt

∫
S(t)

u · N dσ =
∫

S(t)

[
∂u
∂t

+ ∇× (u × v) + v∇ · u
]
·N dσ

+
∫

γ(t)

n × [[u× (w − v)]] · νΣ ds. (3.99)

We can prove this formula in two different ways. First, since the surface
Σ(t) is material and F = u · N, we can verify1 that

W = C = v (3.100)

1See p. 37 of [78].
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and

δF
∂t

+ ∇s · (F ⊗ Cs) − 2HCNF =
[
∂u
∂t

+ ∇× (u × v) + v∇ · u
]
·N.

A different proof of (3.99) is given on p. 121 of [77].
We note that (3.98) is a consequence of the application of the Stokes

theorem to a material surface Σ(t) containing the curve γ(t) = S(t)
⋃

Σ(t),
along which the field u and the bulk fields can exhibit finite discontinuities.
Therefore, in the integral balance law there is the integral∫

γ(t)

(n × [[u × (w − v) − a]] − k) · νΣ ds,

which vanishes along the arbitrary curve γ(t) = S(t)
⋃

Σ(t), thus proving
(3.98). However, this result does not allow us to conclude that

n× [[u × (w − v) − a]] − k = 0. (3.101)

In fact, since Σ(t) is material, we have w · N = vN and w · n = cn.
Consequently, (3.98) becomes

([[(cn − vn)u− un(w − v) + n× a]] + k) · νΣ = 0. (3.102)

If the basis (τ,n,N) is introduced, then

w − v = (wτ − vτ )τ +
cn − vn

sin2 α
n− (cn − vn) cosα

sin2 α
N, (3.103)

where cosα = n ·N. This relation allows us to write (3.98) as follows:

([[(cn − vn)u− n × a]] − k) · νΣ + [[n · u(cn − vn)]] cotα = 0. (3.104)

The arbitrariness of the material surface Σ(t) requires that the above equa-
tion must be identically satisfied for every value of the angle α. For α = π/2
we get

[[(cn − vn)u − n× a]] − k = 0, (3.105)
[[un(cn − vn)]] = 0. (3.106)

Finally, we can conclude that (3.98) is equivalent (3.102) if and only if
(3.105) and (3.106) are satisfied.

In particular, from (3.105) and (3.106), we can deduce the following:

1. The condition [[un]] = 0 implies [[v − n]] = 0

2. If the singular surface Σ(t) is material, then cn = vn and (3.106)
reduces to

[[n× a]] + k = 0. (3.107)
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3.9 Integral Form of Maxwell’s Equations

In order to apply the results obtained in this section, we consider a con-
tinuous system S that moves while carrying charges and currents. If we
denote any material volume by V (t), an arbitrary material surface by S(t),
a nonmaterial singular surface by Σ(t), and a material surface that carries
a surface charge with density ωe and a surface current with density K by
Σ∗(t), then the charge conservation takes the integral form

d

dt

(∫
V (t)

ρe dv +
∫

σ∗(t)

ωe dσ

)
= −

∫
∂V (t)

J · N dσ −
∫

∂σ∗(t)

K · νΣ ds,
(3.108)

where σ∗(t) = Σ∗(t)
⋃
V (t), J is the conductive current density in the space,

and νΣ is the unit vector that is tangent to σ∗(t) and normal to ∂σ∗(t).
Moreover, the integral balance laws of electromagnetism are:∫

∂V (t)

D · N dσ =
∫

V (t)

ρe dv +
∫

σ∗(t)

ωe dσ, (3.109)∫
∂V (t)

B · N dσ = 0, (3.110)

d

dt

∫
S(t)

D ·N dσ =
∫

∂S(t)

(H − v × D) · τ ds

−
∫

S(t)

J ·N dσ −
∫

γ(t)

K · νΣ ds, (3.111)

d

dt

∫
S(t)

B · N dσ = −
∫

∂S(t)

(E + v × B) · τ ds, (3.112)

where γ(t) = σ∗(t)
⋂
S(t), and E and H denote the electric field and the

magnetic field, respectively. Finally, D and B are the electric and magnetic
induction fields.

Applying the results of the preceding section to Maxwell’s equations, we
are led to the conditions

∇ ·D = ρe, ∇ · B = 0, inV (t) − Σ(t), (3.113)
[[D]] · n = ωe, [[B]] · n = 0, onΣ(t). (3.114)

∂D
∂t

= ∇× H + J, inV (t) − Σ(t), (3.115)

[[(cn − vn)D − n × (H− v × D)]] − k = 0, (3.116)
[[Dn(cn − vn)]] = ωecn − [[Dnvn]] = 0, onΣ(t). (3.117)

In Chap. 7 we analyze Maxwell’s equations in matter in detail.





Chapter 4

Phase Equilibrium

4.1 Boundary Value Problems in Phase Equilibrium

In this chapter we analyze some phase equilibrium problems using the
model of a continuous system with an interface, which we explored in the
previous chapter. We consider a system S consisting of two phases (that fill
the regions C1 and C2) and an interface Σ. The body force b is assumed to
derive from a potential energy U(x), so that b = −∇U .

Starting from the local balance equations and the jump conditions (3.55)–
(3.72), we obtain the set of phase equilibrium equations

∇ · t − ρ∇U = 0, in C1 ∪ C2 − Σ, (4.1)

Tαβ
;β = [[tαs ]] , (4.2)

Tαβbαβ = [[p]] , (4.3)
[[g]] = 0, on Σ − Γ, (4.4)

where we have introduced the notations p = −n · t · n and ts = t · n + pn
to denote, respectively, the pressure on the interface Σ and the tangential
stress, both of which are due to the bulk phases. Further, T is the surface
stress tensor, bαβ are the coefficients of the second fundamental form of the
interface (see Appendix B), and g is the specific Gibbs potential.

The boundary conditions are given by the prescribed external pressure
pe on a part ∂C′ ⊂ ∂(C1 ∪ ∂C2) ≡ ∂C and by the contact force γ on the
line ∂Σ′ = ∂Σ ∩ ∂C such that (see Fig. 4.1)

t · n = −peN, on ∂C′, T · νΣ = γ, on ∂Σ′. (4.5)

We start by analyzing the phase equilibrium of perfect fluids. To this
end, we recall some results from elementary thermodynamics in the next
section. The case in which one of the phases is filled with an elastic solid
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is then considered. Finally, we describe the equilibrium of a crystal in its
melt or vapor, stating the Gibbs principle and the Wulff law.

C�

C�

		
�

C’

Fig. 4.1 Equilibrium of two
fluid phases

4.2 Some Phenomenological Results of Changes in State

In elementary thermodynamics [80]–[83], the homogeneous equilibrium
states of a pure substance B are described by a state equation of the form

p = p(υ, θ), (4.6)

where p is the pressure, υ = 1/ρ is the specific volume and θ is the absolute
temperature. Since the states are homogeneous, all of these quantities are
uniform and constant in all of the regions occupied by B. Moreover, all
of the transformations that lead the system from an equilibrium state to
another equilibrium state are assumed to be quasi-static.

It can be shown experimentally that (4.6) is not defined for all positive
values of p and θ. More precisely, the qualitative behavior of the surface
(4.6) in the space p, υ, θ is represented in Fig. 4.2, where the forbidden
states are indicated by the darkest shading. The figure shows that the sub-
stance can be solid, liquid or vapor. It can pass from one state to another in
transformations that are represented geometrically by curves on the surface
S. Of particular interest are the isobaric, isovolumic and isothermal trans-
formations. They are obtained by intersecting S with the planes p = const,
υ = const and θ = const, respectively.

It is very interesting to note that (4.6) can only be written in the form
υ = υ(p, θ) in the regions of S that are internal to ΣS , ΣL and Συ. Along the
curves 1

′
-1

′′
, 2

′
-2

′′
, 3

′
-3

′′
, the function υ = υ(p, θ) assumes two values that

represent the specific volumes of two coexisting phases at a given pressure
and temperature. The curves that are obtained by projecting the above
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curves onto the plane p, θ are termed Clapeyron’s curves of sublimation,
melting and vaporization, respectively. In particular, three phases coexist
on the curve b with assigned values of specific volumes.

Another remarkable aspect of (4.6) is represented by the existence of three
values pc, θc and υc: the coordinates of the point A for which the liquid
and vapor phases become indistinguishable (the opalescence phenomenon).
Moreover, when θ > θc, we cannot obtain the liquid phase by increasing
the pressure. The values pc, θc, and υc are called critical values, and the
isotherm θ = θc is the critical isotherm. This curve exhibits a horizontal
inflexion at the point (pc, θc, υc).
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A

Clapeyron’s curve

Fig. 4.2 The surface p = p(υ, θ)

The first theoretical attempt to determine the analytic form of (4.6) was
made by Van der Waals, who derived the following equation by statistical
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considerations:

p =
rθ

υ − b
− a

υ2
, (4.7)

where r = R/M is the ratio between the universal constant R of gases and
the molar mass M , while a and b are two constants that depend on the
substance. b arises due to the finite dimensions of the molecules, whereas
the term a/v2 reflects the molecular forces of cohesion. If a = b = 0, then
the equation of a perfect gas is obtained:

p =
rθ

υ
. (4.8)

Relation 4.7 can be written as a third-degree equation in the unknown
υ:

pv3 − (pb+ rθ)v2 + av − ab = 0. (4.9)

Now, if we suppose that this equation yields a triple root υc for suitable
values pc and θc of p, θ, then it can be written in the form

pc(υ − υc)3 = 0. (4.10)

On the other hand, if we put p = pc, θ = θc, and υ = υc into (4.9) and
compare the resulting equation with (4.10), we find that

υc = 3b, pc =
a

27b2
, θc =

8
27

a

rb
; (4.11)

i.e., we determine the relations between pc, θc, υc and a, b, r.
We can convert (4.7) into a form that is independent of the particular

substance. In this way we can more easily compare the equation with the
experimental results. Upon introducing the nondimensional quantities

P =
p

pc
, τ =

θ

θc
, V =

υ

υc
, (4.12)

(4.7) becomes

P =
8τ

3V − 1
− 3
V 2

. (4.13)

This equation takes a form that does not depend on the particular substance
since it contains only numerical constants (the principle of corresponding
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states). The isotherms we obtain from (4.13) are represented in Fig. 4.3.
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Clapeyron’s curve

Fig. 4.3 Isotherm curves

These curves are in good agreement with the experimental behavior of the
real isotherms, with two exceptions. First, they enter the forbidden region,
which is bounded by Clapeyron’s curve, and there is no criterion to define
this region. We show that this problem can be solved if the Gibbs potential
of the material is known. Moreover, the states defined by the triplets p, θ, υ
when one of the phases consists of very small regions (10−1 − 1 mm) can
belong to the forbidden region. This circumstance will be explained by
supposing that the interface between the phases is able to exert a surface
tension. In this situation, the liquid drops can be at equilibrium with the
vapor, which is at a higher pressure than the pressure p corresponding to
equilibrium with the plane interface (superheated liquid). Similarly, the
vapor bubbles can be at a pressure higher than p without becoming water.

4.3 Equilibrium of Fluid Phases with a Planar Inter-
face

In this section we suppose that the bulk phases are filled with perfect
fluids. More precisely, we assume that:

• The stress tensor in the phases C1 and C2 takes the form

t = −p(ρ, θ)I (4.14)

• The surface stress tensor of the interface Σ is

T = γ(a, θs)Is, (4.15)
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where γ is the surface tension and Is is the unit tensor on Σ

• There is no body force

• The interface is planar.

We recall that the pressure p is expressed in terms of the specific free
energy ψ by the relation:

p = ρ2 ∂ψ

∂ρ
= −∂ψ

∂υ
, (4.16)

where p(υ, θ) is assumed to be invertible with respect to υ. Therefore, from
the Gibbs potential g(p, θ) = ψ + p/ρ = ψ(p, θ) + pυ(p, θ) and (4.15), we
obtain

υ(p, θ) =
∂g

∂p
. (4.17)

Finally, the phase equilibrium equations (4.1)–(4.3) become

p = const,⇒ g(p, θ) = const, in C1 ∪ C2, (4.18)
γ = const, on Σ, (4.19)

[[p]] = 0, (4.20)
[[g(p, θ)]] = 0, onΣ − Γ (4.21)

with the boundary conditions

p = pe, on ∂C
′
, γνΣ = γ, on ∂Σ ∩ ∂C. (4.22)

In other words, the pressure is uniform in C1 ∪ C2, together with g(p, θ),
and γ is uniform on Σ. The equilibrium value pe of the external pressure is
determined by the condition that the Gibbs potential must be continuous
across Σ for any value of the temperature that is compatible with the
coexistence of two phases.

We now determine Maxwell’s rule, which supplies a very expressive geo-
metrical formulation of the equilibrium conditions (4.20) and (4.21). Since
the temperature, the specific volume, and the pressure are uniform in any
phase, we do not distinguish between the values of these quantities in the
phases and those at the interface. In particular, p− = p+ = p1 = p2 = pe.
Therefore, we can write (4.21) in the form

ψ2 − ψ1 = −pe(υ2 − υ1),

or, equivalently, ∫ υ2

υ1

∂ψ

∂υ
dυ = −pe(υ2 − υ1).
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This relation, in view of (4.16), becomes∫ υ2

υ1

p(υ, θ) dυ = pe(υ2 − υ1), (4.23)

and it can be read in the following way. At the phase equilibrium, the area
under the curve p = p(υ, θ) is equal to the area of a rectangle with a basis
of υ2 − υ1 and a height of pe, or (equivalently) the shaded areas in Fig. 4.4
between the straight line p = pe and the curve p = p(υ, θ) are equal.

p





� 
�

pe

Fig. 4.4 Graphical
representation of Maxwell’s

rule

4.4 Equilibrium of Fluid Phases with a Spherical In-
terface

Now we will analyze, in the absence of body forces, the phase equilibrium
of fluids whose phases are separated by a spherical interface with the struc-
ture of a membrane. From the phase equilibrium equations (4.1)–(4.3), we
derive

pi = ci, in C1 ∪ C2, (4.24)
2γ
R

= c > 0, (4.25)

[[p]] = c, (4.26)
[[g(p)]] = 0, onΣ − Γ (4.27)

where R is the radius of curvature of the interface, and ci, i = 1, 2, c and γ
are constant. Since the pressure is uniform in each phase, from now on we
will use the notation p1 = pl and p2 = pυ.



120 Chapter 4. Phase Equilibrium

Bearing in mind the behavior of the isothermal curves derived using the
Van der Waals equation (see Fig. 4.3), we assume that the function p(υ, θ)
satisfies the following conditions:

• There is a critical value θc of θ such that, for every θ > θc, the function
p(., θ) ∈ C1(b,∞), where b > 0; moreover, ∂p/∂υ < 0 in (b,∞) and

lim
υ→b

p(υ, θ) = ∞, lim
υ→∞ p(υ, θ) = 0. (4.28)

• For every θ ∈ (0, θc), the function p(., θ) ∈ C1 [(b, υl(θ)) ∪ (υv(θ),∞)],
υl(θ) < υv(θ), and the following relation holds:

lim
θ→θc

υl(θ) = lim
θ→θc

υv(θ). (4.29)

Moreover, ∂p/∂υ < 0 in (b, υl(θ)) ∪ (υv(θ),∞), and

pl = p(υl, θ) < pv = p(υv, θ), (4.30)

lim
υ→υ1

∂p

∂υ
= lim

υ→υv

∂p

∂υ
= 0. (4.31)
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Fig. 4.5 Comparison between the curves g(p) and p(υ) at
phase equilibrium for a bubble

From now on, the temperature will be omitted from all of the formulae
to simplify the notation. The two hypotheses given above imply that the
function p(υ) is invertible on (b,∞) for θ > θc and that the inverse function
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is decreasing. Similarly, when θ < θc, by inverting the decreasing function
p(υ) on (b, υl) and on (υv,∞), respectively, we obtain two functions:

υl(p) : (pl,∞) → (b, vl), υv(p) : (0, pv) → (υv,∞).

Using the relation ∂g/∂p = v, we can derive the Gibbs potentials in the
liquid and the vapor:

gl(p) =
∫
υl(p) dp+ φl(θ), p ∈ (p l,∞), (4.32)

gv(p) =
∫
υv(p) dp+ φv(θ), p ∈ (0, pv), (4.33)

where the functions φl and φv are undetermined. When we take into account
the relations

∂g

∂p
= υ(p) > 0,

∂2g

∂p2
=
∂υ

∂p
=
(
∂p

∂υ

)−1

< 0,

we can conclude that the functions gl(p) and gv(p) are always increasing
and that they exhibit upward convexity. Moreover, since

υl(p′) < υv(p′′), p′ ∈ (pl,∞), p′′ ∈ (0, pv),

the function gl(p) has shallower slopes than those of the function gv(p) (see
Fig. 4.5).

It is not possible to localize the curves gl(p) and gv(p) in the plane (p, g)
due to the presence of the arbitrary functions φl(θ) and φv(θ). In order to
reduce this indetermination, we also assume that:

• For every θ < θc, there is a value p0 ∈ (pl, pv) such that

gl(p0) = gv(p0). (4.34)

It is evident that (4.34) is equivalent to requiring the existence of a solution
of the equation [[g(p)]] = 0 with a planar interface. Moreover, the condition
(4.34) determines the difference φl − φv. Finally, from (4.34) and all of the
other properties we have already deduced, we can say that (see Fig. 4.5)

gv(p) < gl(p), if p ∈ (pl, p0) (4.35)
gv(p) > gl(p), if p ∈ (p0, pv). (4.36)

Now we are in a position to justify the existence of drops of liquid or bub-
bles of vapor at phase equilibrium. First, we note that the surface tension
increases the pressure inside the spherical phase so that, at equilibrium, the
pressure inside the bubble or the drop is greater than the pressure outside
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it. Then (see Fig. 4.5), for any value of the Gibbs potential g in the inter-
val (gl, g0) this is a corresponding pair (pl, pv) of values for the pressure
corresponds in the interval (pl, p0) such that the difference c = pv − pl > 0
belongs in the interval (0, p∗v − pl). Consequently, bubbles of vapor with a
radius R = 2γ/c can exist. The pressure inside the bubbles is less than the
pressure pl < p0 of the liquid phase.

Similarly, a pair (pv, pl) ∈ (p0, pv) corresponds to any value of g ∈ (g0, gv)
such that c = pl −pv > 0 and c ∈ (0, pl −P ∗

l ). Therefore, there are drops of
liquid with a radius R = 2γ/c in the presence of vapor at a pressure that
is higher than p0 but less than the pressure of the liquid.

4.5 Variational Formulation of Phase Equilibrium

In this section we discuss the phase equilibrium from a variational point
of view. This means that we do not use the equilibrium system (4.1) but
instead resort to the Gibbs principle, according to which the equilibrium
configurations are extremals of the total free energy with respect to any
variation at constant mass (see, for instance, [84]–[86]).

Let us consider, in the absence of body forces, the total free energy

Ψ =
∫

CS

ρSψS dv +
∫

CF

ρFψF dv +
∫

Σ

Ψs dσ +
∫

σe

pe dσ, (4.37)

of a system S that consists of a solid phase of volume CS , a fluid phase of
volume CF , and an interface Σ that separates the bulk regions. In (4.37),
ψS denotes the specific free energy of the solid phase, ψF the specific free
energy of the liquid phase, and Ψs the free energy for a unit area of the
interface Σ. Finally, pe is a uniform external pressure acting on the region
σe of the boundary of the fluid phase. For the sake of simplicity, we suppose
that:

• The solid phase is elastic, so that ψS = ψS(F), where F is the de-
formation gradient of the displacement u(X) and X belongs to a
reference configuration C∗ of the solid phase

• The region CF is filled with a perfect fluid, so that ψF = ψF (ρF )

• The surface free energy Ψs of the interface is constant.

Let us consider the following families of functions:

• K = {δk : Σ → �3|δk(Σ) is a regular surface, k(∂Σ) = Σ}; H , whose
elements are all the functions δh : C → C, where C = CS ∪ CF − Σ
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such that:

– δh is regular and exhibits finite discontinuities together with its
derivatives across Σ

– δh(∂C) = 0 on ∂C − σe, where σe is a part of the boundary of
the fluid phase at which a given external pressure pe is applied

– δh|CS
and δh|CF

are diffeomorphisms that locally conserve the
mass.

The Gibbs principle states that (u, ρF , r) is a phase equilibrium configu-
ration if and only if it is an extremal of Ψ with respect to all of the above
variations (δh, δk) for which the total mass M of the system S does not
vary; i.e., for all of the variations (δh, δk) that satisfy the global constraint

ϕ =
∫

CS

ρS dv +
∫

CF

ρF dv −M = 0. (4.38)

It is well known that this is equivalent to searching for the extremal of
the functional

Φ = Ψ + λϕ, (4.39)

where λ is a constant Lagrangian multiplier. In order to evaluate the Fréchet
differential dΦ of Φ, we start by noting that the variations of CS under
(δh, δk) result from the variation due to δh|CS

≡ δhS , where the mass
remains constant, and from the variation due to δk. Then, if n is the unit
normal vector to Σ that points toward CF , we have

dΨS ≡
∫

C′
S

ρ′SψS(F) dv′ −
∫

CS

ρSψS(F) dv

=
∫

CS

[ψS(F′) − ψS(F)] dv −
∫

Σ

ρSψS(δhSn − δKn) dσ

=
∫

CS

ρS
∂ψS

∂FiL
δhSi,j dv −

∫
Σ

ρSψS(δhSn − δkn) dσ, (4.40)

where the meaning of the notation is evident. By applying the Gauss the-
orem and recalling that δh = 0 on ∂CS , we obtain

dΨS = −
∫

CS

(
ρS

∂ψS

∂FiL
FjL

)
,j δhSi dv +

∫
Σ

ρS
∂ψS

∂FiL
FjLNjδhSi dσ

−
∫

Σ

ρSψS(δhSn − δkn) dσ, (4.41)

where N is the unit vector that is normal to ∂CS − Σ.
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Now we introduce the quantities

t = ρS
∂ψS

∂F
FT in CS , (4.42)

pS = −n · t · n on Σ, (4.43)
ts = t · n + pSn on Σ, (4.44)

gS = ψS +
p

ρS
on Σ, (4.45)

which define the stress tensor t in CS , the pressure pS , the tangential stress
ts, and the Gibbs potential gS on Σ, respectively. Equation 4.41 can then
be written in the form

dΨS = −
∫

CS

∇ · t · δh dv −
∫

Σ

ρSgS(δhSn − δkn) dσ

+
∫

Σ

ts · (δhs − δks) dσ −
∫

Σ

pSδkn dσ +
∫

Σ

ts · δks dσ. (4.46)

Similarly, noting that δρF = −ρF (δhF )i,i, it is possible to prove that

dΨF =
∫

CF

∇p · δhF dv −
∫

σe

(p− pe)nδhFn dσ

+
∫

Σ

ρF gF (δhFn − δkn) dσ +
∫

Σ

pδkn dσ, (4.47)

where

p = −ρ2
F

∂ψF

∂ρF
, in CF , (4.48)

gF = ψF +
p

ρF
, on Σ. (4.49)

It remains to evaluate the differential dΨs of the third integral appearing
on the right-hand side of (4.37). First, from (B.17), we have

δ(dσ) =
1
2a
δadσ.

Consequently,

δ(dσ) =
1
2a

∂a

∂aαβ
δaαβ dσ =

1
2
aαβδaαβ dσ. (4.50)

To evaluate the quantities δaαβ , due to the variation δk of the interface Σ,
we note that

δaαβ = δ(aα · aβ) = δaα · aβ + aα · δaβ .
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On the other hand, after the variation δk, the equation of the interface Σ
becomes r + δk, so that δaα = δk,α. Recalling (B.42), we have

δaαβ = δkβ;α + δkα;β − 2bαβδkn, (4.51)

so that, by substituting (4.51) into (4.50), we obtain

δ(dσ) = (aαβ δkα;β − 2Hδkn)dσ. (4.52)

This formula allows us to write

d

∫
Σ

Ψs dσ =
∫

Σ

Ψsa
αβδkα;β dσ −

∫
Σ

2HΨsδkn dσ. (4.53)

Applying the Gauss theorem to the first integral on the right-hand side of
(4.53) and recalling that aαβ

;β = 0, Ψs = const and δk = 0 on ∂Σ, we finally
derive the relation

d

∫
Σ

Ψs dσ = −
∫

Σ

2HΨsδkn dσ. (4.54)

On the other hand, it is very easy to verify that

dϕ = −
∫

Σ

ρS(δhSn − δkn) dσ +
∫

Σ

ρF (δhFn − δkn) dσ. (4.55)

By combining the results (4.46), (4.47), (4.54) and (4.55), we can write
the condition dΦ = 0 as follows:

−
∫

CS

∇ · t · δhS dv +
∫

CF

∇p · hF dv

−
∫

Σ

ρS(gS + λ)(δhSn − δkn) dσ +
∫

Σ

ρF (gF + λ)(δhFn − δkn) dσ

+
∫

Σ

ts · (δhs − δks) dσ −
∫

Σ

(pS − p+ 2HΨs)δkn dσ = 0.

The arbitrariness of the variations δh and δk again lead us to phase equilib-
rium system (4.1), provided that we identify Ψs with the constant surface
tension γ and note that Tαβ = γaαβ (for a more general case, see [78]).

4.6 Phase Equilibrium in Crystals

In this section we present some classical results, obtained by Gibbs and
Wulff (see [86, 87]), regarding the phase equilibrium of a crystal in its melt.
Other important results relating to this subject are obtained in [88]–[97].
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Let C be a polyhedric crystal with a volume V , n faces σi, i = 1, . . . , n,
and m edges. We denote the length of the edge between the faces σi and
σj by lij , and the unit vector that is normal to lij and lies in the face σi by
νij . Finally, a uniform surface energy Ei is associated with the face σi of
C. This means that Ei is assumed to be dependent only on the orientation
of σi with respect to the crystal.

Let [C] be the class of all polyhedrons with the same volume V of C, and
the same number of faces, edges of C and faces that are parallel to the faces
of C. Moreover, we suppose that any polyhedron belonging to [C] is convex
with respect to an internal point. This means that there is an internal point
r0 such that the perpendicular from r0 to any face σi intersects σi at an
internal point. The Gibbs principle postulates that a polyhedron C ∈ [C] is
an equilibrium configuration in the presence of its melt if the total surface
energy

Ψs =
n∑

i=1

Eiσi (4.56)

has an extremum at C in the set [C]. Moreover, this configuration is stable
if it corresponds to a minimum in [C]. To determine the conditions that
characterize the polyhedron C, we start by providing the procedure used
to pass from C to any other polyhedron in the set [C]. To this end, we in-
troduce the normal displacements δhni, i = 1, . . . , n, along the unit normal
ni to the face σi, as well as the displacements δKij of any edge lij of C.
Of course, these displacements will define a new polyhedron in [C] if the
following conditions are satisfied (see Fig. 4.6):

δKij · ni = δkni, δKij · nj = δknj . (4.57)

ni

nj

�kn

�ij

lij

�i

�j

�i

�j

�i

�j

Fig. 4.6 Notation for a
polyhedric crystal

It is evident that the elements of the class [C] are obtained by arbitrarily
varying δkni and δKij provided that these displacements leave the volume
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V constant and obey (4.57). According to the Gibbs principle, we state that
C is an equilibrium configuration for the crystal if the total surface energy

Ψs(δkni, δKij) =
n∑

i=1

Eiσi (4.58)

has an extremum at 0 for any δkni, δKij that satisfies (4.57) and the global
condition

Φ(δkni, δKij) =
∫

C′
dv − V = 0, (4.59)

∀C′ ∈ [C]. This is equivalent to saying that 0 is an extremum for Ψs − λ̂Φ,
where λ̂ is a Lagrangian multiplier. In other words, we must satisfy the
condition

d(Ψs − λ̂Φ) = 0, (4.60)

for any choice of δkni, δKij that obeys (4.57).
From the Gauss theorem, we have

dΦ =
∫

C′
dv −

∫
C

dv

=
1
3

(∫
∂C

(r + δknn) · n dσ −
∫

∂C

r · n dσ
)

=
1
3

∫
∂C

δkn dσ,

where r is the position vector of any point on the crystal surface. By re-
calling that δkn is uniform on any crystal face σi, we can write

dΦ =
1
3

n∑
i=1

δkniσi. (4.61)

In view of (4.61), condition (4.60) becomes∑
p

(Eiνij + Ejνji) · δKij lij − λ

n∑
i=1

δkniσi, (4.62)

for any choice of δkni, δKij that satisfies (4.57). In relation (4.62), λ = λ̂/3
and the first summation is extended over all of the edges of the crystal. If
we introduce the notation cosαij = ni · nj , then it is easily proven that

νij = − cotαijni + cscαijnj . (4.63)

By taking (4.57) and (4.63) into account, we can write (4.63) as follows:∑
p

(Aijδkni + Ajiδknj)lij − λ

n∑
i=1

σiδkni = 0, (4.64)



128 Chapter 4. Phase Equilibrium

where
Aij = Ej cscαij − Ei cotαij . (4.65)

The first summation in (4.64) contains the same number of terms as there
are pairs of adjacent faces, and it becomes

n∑
i=1

(
′∑
j

Aij lij − λσi)δkni = 0. (4.66)

In the above equation,
∑′

j denotes a summation extended only to the edges
that form the boundary of the face σi. From the arbitrariness of δkni, we
finally obtain the Gibbs rule for the equilibrium configuration of a crystal
in its melt (see Eq. 666 of [86])

′∑
j

Aij lij = λσi, i = 1, . . . , n. (4.67)

We aim to recognize the restrictions that lead from (4.67) to the equilib-
rium form of the crystal C in our hypothesis that C is convex with respect
to the internal point r0. To this end, we denote the distances of r0 from the
adjacent faces σi and σj by hi and hj , respectively. It is then easy to verify
that (see Fig. 4.7 and [97])

Fig. 4.7 A complete set of notations in a polyhedric crystal

hini + aijνij − ajiνji − hjnj = 0. (4.68)

This condition implies the relations

aij + aji cosαij = hj sinαij ,

aji + aij cosαij = hi sinαij ,
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from which we derive that

aij = hj cscαij − hi cotαij ≥ 0, (4.69)
aji = hi cscαij − hj cotαij ≥ 0. (4.70)

The above equations tell us that the inequalities

cosαij ≤ hj

hi
, cosαij ≤ hi

hj
(4.71)

must be satisfied if two adjacent faces are formed. The conditions (4.69)
and (4.70) allows us to write the area of the surface σi in the form

σi =
1
2

′∑
j

aij lij =
1
2

′∑
j

(hj cscαij − hi cotαij)lij . (4.72)

Similarly, it can be proven (see [97]) that lij is a linear combination of
hi, hj, hj−1, and hj+1. Introducing these quoted relations and (4.72) into
(4.67), we get a system of n equations in the unknowns hi that, in principle,
yield the equilibrium configuration of a crystal provided that we know the
number of faces n and the angles αij between the normals to any pair of
faces Si and Sj .

Moreover, by introducing (4.72) into (4.67), we obtain

′∑[(
Ej − λ

2
cscαijhj

)
−
(
Ei − λ

2
hi

)
cotαij

]
lij = 0, (4.73)

and we can conclude that, for any crystal, there are possible equilibrium
configurations that obey Wulff’s law

2Ei

hi
= λ, i = 1, . . . , n. (4.74)

The constant λ that appears in (4.74) can easily be determined from
({3.58) and (4.74), which leads us to

Ψ =
λ

2

n∑
i=1

hiσi =
3
2
λV, (4.75)

so that
λ =

2Ψ
3V

has the dimensions of a pressure.
The equilibrium configurations of a crystal can also be obtained by mini-

mizing the total free energy of the crystal and bulk phases at constant mass.
For the sake of simplicity, we suppose that the crystal is completely sur-
rounded by its melt or vapor and that the pressure is uniform everywhere.
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The total free energy Ψ can then be written as (see 4.37)

Ψ =
n∑

i=1

Eiσi +
∫

C

ρψ(F) dv +
∫

CF

ρFψF (ρF ) dv, (4.76)

where C is the region occupied by the crystal, CF is the region of the melt
or vapor, ψ is the free energy of the bulk crystal phase (which depends on
the deformation gradient F), and ψF is the free energy of the fluid phase.
Proceeding as in the above section, it is possible to prove that an equilib-
rium configuration of the whole system is characterized by the following
conditions:

p = const, inC, (4.77)
pF = pe, inCF , (4.78)

ψ + p = ψF + pF , on ∂C (4.79)

1
σi

′∑
j

Aij lij = p− pF , i, j = 1, . . . , n. (4.80)

In particular, the Wulff law becomes

2Ei

hi
= p− pF , i = 1, . . . , n. (4.81)

We conclude this section with the following remarks.

Remark In the formulae found in classical papers or textbooks, the
surface tension γi of the crystal surface σi does not differ from its surface
energy Ei. This is due to the hypothesis that σi is supposed to have the
structure of a soap film.

Remark Due to the very small values of surface energy Ei, appreciable
pressure jumps require very small crystals (see (4.81)).

4.7 Wulff’s Construction

It is important to note that we do not know the number of faces n
of a crystal at equilibrium with its melt or vapor. Moreover, when the
pressure jump is known, there are many possible equilibrium configurations,
depending on n. Wulff suggested that there is only one equilibrium state
that is in accordance with (4.81) and that also corresponds to an absolute
minimum in the surface energy. This configuration can be obtained with
Wulff’s construction, as follows. Consider the function E(n), which gives
the surface energy per unit area of the face σ whose unit normal is n. If
we put f(n) = 2E(n)/(p − pF ), then the equilibrium configuration of the
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crystal is given by the spatial region Ω, which is defined by the intersection
of all of the half-planes that satisfy the following condition:

r · n ≤ f(n), ∀n ∈ S2, (4.82)

where S2 is the unit sphere.
If we consider an ideal planar crystal, this construction is shown in Figs.

4.8–4.9 for f(n) = 4+cos(4θ) and in Figs. 4.10–4.11 for f(n) = 4+cos(8θ).
These figures can be obtained by referring to the notebook Chapter4.nb,

written in the software Mathematica R©. Moreover, this notebook also al-
lows us to derive the Wulff shapes of three-dimensional crystals. The note-
book can be downloaded via the Internet. Mathematica R© notebooks from
this chapter are available for download at http://www.birkhauser.com/
978-0-8176-4869-5.

Note that it has not been proven that Wulff’s construction corresponds
to a global minimum of the surface energy; it is simply a reasonable rule
for obtaining an equilibrium configuration of a crystal.
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Therefore, a more correct formulation of crystal equilibrium involves find-
ing the closed surface Σ that represents a minimum of the functional

Ψ(Σ) =
∫

Σ

E(n) dσ,

under the constraint that the volume V internal to Σ is assigned and the
energy E(n) : S2 → �+ per unit area is a continuous function that is
differentiable almost everywhere (see [88]–[92]). This approach to crystal
equilibrium attributes a dominant role to surface tension in crystallization,
but it does not relate this process to temperature and pressure. A more
complete variational formulation of equilibrium involves requiring that the
displacement u in the elastic crystal C, its boundary Σ, and the density ρ
in the fluid phase CF represent a minimum for the functional

Ψ(u,Σ, ρ) =
∫

C

ψ(∇u) dv +
∫

CF

ψF (ρ) dv +
∫

Σ

e(n) dσ,

under the constraint that the total mass is constant. This formulation
should imply a pressure jump on the surface of the crystal, even if it is pla-
nar. For a different formulation of crystal equilibrium and evolution based
on the nonlocal theories of continua, see [93]–[100].



Chapter 5

Stationary and Time-Dependent
Phase Changes

5.1 The Problem of Continuous Casting

In the preceding chapter we used the model of a continuous system with
a nonmaterial interface to analyze some phase equilibrium problems. In this
chapter we show that it is possible to describe some stationary and time-
dependent phase changes by again adopting suitable models of a continuous
system with a nonmaterial interface.

Let us consider the introduction of liquid metal into a long cylindrical
pipe T , where it is cooled in order to be converted into the solid state be-
fore being extracted from the other side of T . If the liquid is introduced
at a constant velocity, we say that this process is continuous casting if we
can continuously extract the solid metal in such a way that the surface
Σ that separates the two phases remains fixed inside T . This problem in-
volves determining the correct thermal boundary conditions on ∂T when
the entrance velocity is given together with the geometry of T .

We introduce a model that is appropriate to describe stationary continu-
ous casting. More precisely, we consider a system S comprising a solid bulk
phase Cs and a fluid bulk phase Cl that are separated by a nonmaterial
interface Σ (see Fig. 5.1). Bearing in mind that the surface separating the
fluid and solid phases must be at rest in continuous casting, we assume
that:

1. The interface Σ is a fixed surface that does not have mechanical quan-
tities and reduces to a surface of discontinuity for the bulk fields

2. The process is stationary

3. The materials that fill the two regions Cs and Cl are incompressible
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and inviscid1

4. The only specific body force acting is the force of gravity ρg

5. In the bulk phases, the Cauchy stress tensor t reduces to a pressure,
and the specific internal energy e is proportional to the absolute tem-
perature θ:

ti = −piI, ei = ciθ, i = l, s, (5.1)

where ci are the constant specific heats of the two phases

6. The heat current vector is given by

hi = −ki∇θi, i = l, s, (5.2)

where ki is the constant thermal conductivity of the phase Ci;

7. The velocity fields in Cl and Cs are uniform and directed along the
the vertical axis Oz; that is, if u denotes the downward unit vector
along Oz, then

vi = viu, i = l, s (5.3)

8. The absolute temperature θ is continuous across Σ.

O

x

y

z

� ��

���

v�Cl

Cs

Fig. 5.1 Stationary
two-phase system for
continuous casting

1This hypothesis is justified because the velocity of entry is very low.
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If we account for hypotheses 1–7 in the balance equations and the jump
conditions (4.48)–(4.53) and (3.92), we obtain the following equations in
Cl

⋃
Cs − Σ:

∇ · v = 0, (5.4)
v · ∇v = −∇p+ ρg, (5.5)

cρv · ∇θ = kΔθ, (5.6)

and the following jump conditions on Σ:

[[ρvn]] = 0, (5.7)
[[ρvvn − pn]] = 0, (5.8)[[

ρ

(
1
2
v2 + e

)
vn − pvn + k∇θ · n

]]
= 0, (5.9)[[

ψ +
p

ρ

]]
= 0. (5.10)

We note that (5.10) is equivalent to saying that, if the evolution of the
system is close to equilibrium, then inequality (3.92) can be replaced by
Eq. 5.10 (see Sect. 4.7).

If we consider the remaining hypotheses, 8 and 9, then (5.4)–(5.10) as-
sume the following final forms:

in Cl

⋃
Cs − Σ:

vi = v0
i , (5.11)

pi = ρigz + p0
i , (5.12)

ρicivi
∂θi

∂z
= kiΔθi, i = l, s, (5.13)

on Σ:

ρsvsn = ρlvln, (5.14)
[[v]] ρlvlnu = [[p]]n, (5.15)[[

1
2
v2 + e

]]
ρlvln − [[pv]]n · u = − [[k∇θ]] · n, (5.16)

[[ψ]] +
ps

ρs
− pl

ρl
= 0. (5.17)

In (5.11) and (5.12), v0
i and p0

i are constants that can assume different
values in Cl and Cs. In Cl they coincide, respectively, with the velocity of
entry of the melt and the pressure it is subjected to.
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Using nondimensional analysis, it is possible to show that the terms that
appear in the above system have different weights. To this end, let us in-
troduce suitable scaling quantities (L,U, P,Θ) for length, velocity, pres-
sure, and temperature. We use the known velocity of entry vl of the melt
present in Cl as the scaling velocity U , whereas P and Θ will be identified
with the atmospheric pressure and the melting temperature. Moreover, if
c = min{cl, cs}, we assume that

v2
l � P

ρl
� ĉΘ. (5.18)

In other words, the kinetic energy is assumed to be much smaller than
the specific energy associated with the pressure, and the latter, in turn, is
assumed to be much smaller than the specific internal energy.

Finally, we introduce the notation

μ =
ρs

ρl
, α =

kl

ρlvlcl L
, (5.19)

ĉ =
cs
cl
, k̂ =

ks

kl
. (5.20)

After labeling the nondimensional quantities with the same symbols as the
corresponding dimensional quantities and denoting θ,x as the partial deriv-
ative of θ with respect to x, as well as some tedious but simple calculations,
equations (5.13) become

θl,z = αΔθl, (5.21)

θs,z = α
k̂

μĉ
Δθs, (5.22)

whereas (5.14) and (5.15) lead us to the following results at the interface Σ
for the nondimensional velocities and pressures:

vs =
1
μ
, vl = 1, (5.23)

vsn =
1
μ
u · n, vln = u · n, (5.24)

[[p]] = 0. (5.25)

Finally, if we recall that the temperature is continuous across Σ and co-
incides with the melting temperature Θ, (5.16) and (5.17) reduce to the
following conditions on Σ:(

ĉθ+s − θ−l
)
u · n = −α(k̂(∇θs)+ − (∇θl)−) · n, (5.26)
[[ψ]] = 0. (5.27)
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If z = ϕ(x, y) is the unknown equation for the interface, then the vector
(−ϕ,x ,−ϕ,y , 1) is orthogonal to Σ, so we have

u · n =
1

(1 + ϕ2,x +ϕ2,y )1/2
, (5.28)

and (5.26) can also be written as(
ĉθ+s − θ−l

)
= α(k̂(∇θl)+ − (∇θs)−) · (∇ϕ− u). (5.29)

O x,y

z

vs � ��


vs � ���

Fig. 5.2 Interface profiles in
continuous casting

Finally, in this model of continuous casting, we obtain the following
boundary value problems:

in Cs:
θl,z = αΔθl, (5.30)

in Cl,

θs,z = α
k̂

μĉ
Δθs, (5.31)

on Σ: (
ĉθ+s − θ−l

)
= α(k̂(∇θl)+ − (∇θs)−) · (∇ϕ + u), (5.32)

on ∂(Cl

⋃
Cs):

θ(x, y, 0) = θ1, θ(x, y, L) = θ2,

k
dθ

dn
= f(x, y, z). (5.33)
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A variational formulation as well as a weak existence theorem for bound-
ary value problem (5.30)–(5.33) are presented in [101]. In [102], L. Faria
and J. Rodrigues analyze the above problem from a numerical point of
view by assuming rotational symmetry about the z−axis. By supposing
that the heat extracted from the lateral boundary is expressed by the for-
mula f = α[θ − h(z)], they obtain the profiles shown in Fig. 5.2 for the
interface. From these profiles, we can deduce that the maximum depth of
the interface with respect to the plane xy is affected by both the extraction
velocity vs and the lateral cooling.

5.2 On the Evolution of the Solid–Liquid Phase Change

In this section and the next, we analyze the dynamical evolutions of state
changes under the following hypotheses (see [103]):

1. The interface Σ(t) is a moving surface of discontinuity for the bulk
fields

2. The fields depend on only one spatial variable x

3. One of the phases is filled with an incompressible substance at rest,
whose specific energy is expressed by the function

e = c θ, (5.34)

where θ is the absolute temperature and c the constant specific heat

4. The one-dimensional heat flux in both phases takes the form

h = −kθ,x , (5.35)

where the conductivity k is a constant that depends on the phase.

We start with the solid–liquid state change; i.e, with a system S consisting
of two phases Cs and Cl of the same substance in the solid and liquid states,
respectively. These phases fill the layers 0 ≤ x < s(t) and s(t) < x ≤ L(t),
where s(t) denotes the location of the planar interface Σ(t), which, due to
hypothesis 1, does not have material fields. Moreover, in view of hypothesis
2, all of the bulk fields are functions of the spatial variable x and of the
time t. Taking into account conditions 1–4, the balance equations and the
jump conditions (4.48)–(4.53) become:

in the solid phase Cs, i.e., for (x, t) ∈ [0, s(t)) × [0,∞):

ρscsθ,t = ksθ,xx , (5.36)
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in the liquid phase Cl, i.e., for (x, t) ∈ (s(t), L(t)] × [0,∞):

ρ,t +(ρv),x = 0, (5.37)
ρ(v,t +v v,x ) = −p,x , (5.38)
ρ(e,t +ve,x ) = −pv,x +kθ,xx , (5.39)

on the planar interface Σ(t):

ρ(ṡ− v) = ρsṡ, (5.40)
vρ(ṡ− v) − [[p]] = 0, (5.41)[[

1
2
(v − ṡ)2 + e

]]
ρsṡ− pv = − [[kθ,x ]] , (5.42)[[
ψ +

p

ρ

]]
= 0. (5.43)

We note that (5.43) holds at equilibrium, but we suppose here that it also
remains valid under dynamic conditions (see Sect. 4.7). To simplify the
notation, we have not affixed a subscript l to all quantities referring to the
liquid.

The above equations also hold if Cs is filled with a liquid and Cl with
a gas. This case will be analyzed in the next section. For the case we are
considering here, we can further simplify (5.36)–(5.43) by recalling the in-
compressibility of the liquid phase, which is expressed by the condition:

ρ = const. (5.44)

From (5.37) and (5.44), we immediately deduce that v depends only on t.
Consequently, (5.40) leads us to the relation

v = αṡ, (5.45)

where
α =

ρ− ρs

ρ
. (5.46)

It is easy to verify that (5.36)–(5.43) become:

in the solid phase Cs, i.e., for (x, t) ∈ [0, s(t)) × [0,∞):

θ,t =
ks

ρscs
θ,xx ≡ asθ,xx , (5.47)

in the liquid phase Cl, i.e., for (x, t) ∈ (s(t), L(t)] × [0,∞):

αρs̈ = −p,x , (5.48)

θ,t +αṡθ,x =
k

ρc
θ,xx ≡ aθ,xx , (5.49)
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on the planar interface Σ(t):

[[p]] = αρsṡ
2, (5.50)

[[e]] ρsṡ− 1
2
ρsαβṡ

3 − αpṡ = − [[kθ,x ]] , (5.51)

[[ψ]] − 1
2
αμṡ2 − α

ps

ρs
= 0, (5.52)

where
β =

ρ+ ρs

ρ
� 2, μ =

ρ

ρs
� 1. (5.53)

We explicitly remark that the incompressibility of the liquid forces the
boundary L(t) to move with the velocity v of the particles of Cl; i.e.,

L̇(t) = v(t) = αṡ(t), (5.54)

so that the motion of the free boundary of Cl is determined by the evolution
of the interface Σ(t). Usually, the densities of the two phases have almost the
same value, so α� 1 and consequently the linear dimensions of the whole
system almost remain constant during the phase change. The boundary
value problem (5.47)–(5.52), although highly simplified, is still very difficult
to solve. However, a nondimensional analysis shows that not all of the terms
in the above equations have the same weight.

Let X be a length comparable to the dimension of the system S, for
instance X = L(0). As is well known, the quantity T = X2/as denotes a
time that is characteristic of the conduction phenomena. This means that
the velocity of the interface can be assumed to be comparable with the
rate V = X/T . Finally, let us define the initial and boundary data for the
temperature, and let Θ be the melting temperature at the ordinary pressure
P . By introducing the nondimensional variables

x
 =
x

X
, t
 =

t

T
, p
 =

p

P
,

v
 =
v

V
, θ
 =

θ

Θ
,

ṡ
 =
ṡ

V
, e
 =

e

csΘ
, ψ
 =

ψ

csΘ
, (5.55)

we obtain the following nondimensional system in which we have again used
the same symbols for the nondimensional fields:

θ,t = θ,xx , (x, t) ∈ [0, s(t)) × [0,∞), (5.56)

p,x = −αAμs̈, (x, t) ∈ (s(t), L(t)] × [0,∞), (5.57)
θ,t +αṡθ,x = âθ,xx , (5.58)
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[[p]] = αAṡ2, (5.59)

[[e]] ṡ+
1
2
αβBṡ3 − α

B

A
pṡ = −

[[
k̂θ,x

]]
, (5.60)

[[ψ]] − 1
2
μαBṡ2 − α

B

A
ps = 0, (5.61)

where

k̂ =
k

ks
, k̂s = 1,

â =
a

as
, A =

ρsV
2

P
, B =

V 2

csΘ
. (5.62)

Tables 5.1 and 5.2 contain numerical values of the physical quantities we
are considering and show that the values of A, B, and B/A are negligible
with respect to α.

ρ c k θM λ/10
(g/cm3) (106erg/gK) (/106erg/cms K)

Fe
sol.
liq.

7.36
6.9

6.91
8.66

2.91
2.33

1808 2.7

Cu
sol.
liq.

8.62
8.36

4.81
5.44

30.9
30.9

1356 2.1

Al
sol.
liq.

2.55
2.38

11.39
10.47

24.2
24.2

930 3.9

H2O
sol.
liq.

0.91
1

19.26
41.86

0.22
0.05

273 3.35

Table 5.1 Thermodynamic data for some materials

α k̂ â λ A B B/A
Fe −0.067 0.80 0.68 2.18 2.4×10−12 2.6×10−16 1.1×10−4

Cu −0.031 1 0.91 3.27 4.7×10−10 8.5×10−14 1.8×10−4

Al −0.071 1 1.17 3.72 1.7×10−10 5.6×10−14 3.8×10−4

H2O 0.087 0.25 0.11 6.37 1.4×10−14 3×10−17 2.1×10−3

Table 5.2 Numerical values of the nondimensional quantities defined in
(5.62)

In Table 5.2, λ = [[e]]/csΘ denotes the nondimensional latent heat. The
numerical results listed in these tables tell us that we can neglect terms
containing the factors A, B, or A/B, meaning that (5.56)–(5.61) reduce to
the following:

θ,t = θ,xx , (x, t) ∈ [0, s(t)) × [0,∞), (5.63)

p = pe, (x, t) ∈ (s(t), l(t)] × [0,∞), (5.64)

θ,t +αṡθ,x = âθ,xx , (5.65)
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[[p]] = 0, (5.66)

[[e]] ṡ = −
[[
k̂θ,x

]]
, (5.67)

[[ψ]] = 0. (5.68)

where l(t) = L(t)/X .
Equation 5.68 gives the melting temperature for a given pressure. This

is the classical Stefan problem, about which much has been written (see for
instance [104]–[105]).

5.3 On the Evolution of the Liquid–Vapor Phase Change

The liquid–vapor phase change is a very complex phenomenon produced
by a combination of conduction and convection. Vapor bubbles form inside
the liquid, and these bubbles can merge, producing larger ones. These reach
the free surface of the liquid, where they release their vapor. However,
when the external temperature is only a few degrees from the evaporation
temperature, the phenomenon occurs through simpler modalities.

Let us consider a liquid mass inside a rigid container with a freely moving
piston, which is subjected to a pressure that is less than the critical one.
Moreover, let us suppose that the liquid is at rest at the saturation tem-
perature. If the temperature of the piston is increased by a few degrees, a
vaporization process begins across the liquid surface near the piston (see p.
491 of [82]), and a vapor phase forms that has a density much less than the
liquid density. Consequently, the total volume occupied by the system in-
creases in proportion to the quantity of matter supporting the phase change.
There are the following fundamental differences from the solid–liquid phase
change (analyzed in the previous section):

1. The vapor phase is not incompressible

2. The densities of the two phases are so different from each other that
the vapor density is negligible compared to the density of the liquid.

In other words, the two cases differ with respect to the state equations
that describe the system and the approximations we can introduce.

We again limit ourselves to fields that depend on the spatial variable x
and the time t. The interface is still planar and its motion is described by the
function s(t). Finally, the liquid is assumed to be incompressible and at rest.
Under these assumptions, the phenomenon is again described by the system
(5.40)–(5.43), except that the equations that originally referred to the solid
now refer to the liquid, and the equations that originally referred to the
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liquid now refer to the vapor. We now need to find further simplifications
deriving from condition 2.

We find from (5.40) that

v =
ρ− ρl

ρ
ṡ, (5.69)

where the fields without suffixes refer to the vapor phase. On the other
hand, the vapor density is negligible with respect to the liquid density: for
instance, at atmospheric pressure and a temperature of 100◦C, the water
density is 0.958 g/cm3, whereas the vapor density is 0.596 ×10−3 g/cm3.
Therefore, we can replace (5.69) with the approximate equation

v = −ρl

ρ
ṡ. (5.70)

This relation allows us to eliminate v from the jump conditions (5.41)–
(5.43), which become

[[p]] = −ρl
ρl

ρ
ṡ2, (5.71)(

1
2

(
ρl

ρ

)2

ṡ2 + [[e]] +
p

ρ

)
ρlṡ = − [[kθ,x ]] , (5.72)

[[ψ]] +
p

ρ
− ρl

ρ
ṡ2 = 0. (5.73)

Again, we can simplify the problem by resorting to nondimensional analy-
sis. When the scaling quantities are chosen, the large difference between the
densities of the two phases is the determining factor. In fact, condition 2
implies that, when a given quantity of matter passes from one phase to the
other, there are large variations in:

• The volume occupied

• The particle velocity.

These remarks constrain the scaling quantities that can be chosen for the
length, density, and velocity according to the phase. In particular, we choose
the constant value ρl to scale the density of the liquid, and the value ρ of the
vapor density at atmospheric pressure and the vaporization temperature to
scale the vapor density. These choices lead to

μ =
ρ

ρl
� 1. (5.74)

For water (as an example), μ = 0.622× 10−3. Assuming that, when a given
mass of liquid becomes a vapor, its volume increases such that its linear
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dimension increases by about 1/μ times, we introduce a scaling length Xl

in the liquid phase and a scaling length X = Xl/μ in the vapor phase.
If we use the quantity T = X2

l /al as the timescale, where al = kl/ρlcl
is the diffusivity of the liquid, we obtain two velocities Vl = Xl/T and
V = X/T . We refer to the former as the vapor velocity to the latter as the
interface velocity. Finally, we obtain the following nondimensional variables:

t
 =
t

T
, x
 =

x

Xl
, x ∈ [0, s(t)),

x
 =
x

X
, x ∈ (s(t), L(t)], (5.75)

ρ
 =
ρ

ρ
, ṡ
 =

ṡ

Vl
, v
 =

v

V
,

θ
 =
θ

Θ
, p
 =

p

P
, e
 =

e

clΘ
, ψ
 =

ψ

clΘ
, (5.76)

where Θ is, for instance, the highest temperature at the boundary, and cl
is the specific heat of the liquid.

Simple calculations lead us to the following equations (for the sake of
simplicity we have not assigned asterisks to the nondimensional fields):
in the liquid phase, i.e., for (x, t) ∈ [0, s(t)) × [0,∞):

pl = pl(t), (5.77)
θl,t = θl,xx , (5.78)

in the vapor phase, i.e., for (x, t) ∈ (s(t), l(t)] × [0,∞):

ρ,t +(ρv),x = 0, (5.79)
Aρ(v,l +v v,x ) = −p,x , (5.80)

ρ(e,t +ve,x ) = −Bpv,x +k̂μθ,xx , (5.81)

on the interface:

v = − ṡ
ρ
, (5.82)

[[p]] = −Aṡ
2

ρ
, (5.83)

1
2
AB

ṡ2

ρ2
+
(

[[e]] +B
p

ρ

)
ṡ = −

(
μk̂θ,x −θl,x

)
, (5.84)

[[ψ]] +B
p

ρ
−AB

1
ρl

ṡ2

ρ2
= 0, (5.85)
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where l(t) = L(t)/Xl, and

k̂ =
k

kl
, A =

ρV 2

P
, B =

P

ρclΘ
. (5.86)

In order to evaluate the orders of magnitude of the nondimensional quan-
tities A and B, we assume that the vapor phase is a perfect gas. This
hypothesis implies the following constitutive equation for the pressure:

p =
R

M
ρθ, (5.87)

where R = 8.31 × 107 erg/(mol K) is the universal gas constant and M
is the molar mass of the substance undergoing the phase transition. In
particular, for θ = Θ, (5.87) implies the following relation involving the
reference quantities ρ, Θ, and P :

P =
R

M
ρΘ. (5.88)

Consequently,

B =
P

ρclΘ
=

R

Mcl
. (5.89)

For water, M = 18 g and cl � 50 × 106 erg/K, so B � 0.1.
On the other hand, from (5.86) and (5.87), we have

A =
ρV 2

P
=
MV 2

R
. (5.90)

If we take X = 102 cm and recall that ρ � 10−3 g/cm3, then it is easy to
verify that V = 10−1 cm/s and A � 10−9 � 1. It is worth noting that, since
B is on the order of unity, we can use ρclΘ as the reference pressure. If we
do this, the evolution equations are obtained from (5.78)–(5.86) by putting
B = 1. Finally, we note that, although μ � 10−3, this factor multiplies
the higher-order derivatives in (5.81) and (5.84). Therefore, these terms
cannot be neglected as they express the presence of a boundary layer at the
interface.

From (5.80) and (5.83), we derive that the pressure is uniform throughout
the whole system and that it coincides with the external pressure pe. Finally,
the above equations assume the following simplified forms:
in the liquid phase, i.e.,for (x, t) ∈ [0, s(t)) × [0,∞):

θ,t = θ,xx , (5.91)

in the vapor phase, i.e., for (x, t) ∈ (s(t), l(t)] × [0,∞):

ρt + (ρv),x = 0, (5.92)

ρ(e,t +ve,x ) = −pv,x +k̂μθ,xx , (5.93)
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on Σ:

v = − ṡ
ρ
, (5.94)(

[[e]] +B
p

ρ

)
ṡ = −

(
k̂μθ,x −θl,x

)
, (5.95)

[[ψ]] +B
p

ρ
= 0, (5.96)

This system should be supplemented with the appropriate initial data for
the density, velocity and temperature, as well as the boundary data for the
temperature and the need for field continuity across the interface. When
we assign constitutive equations for the liquid and the vapor, we obtain a
boundary value problem in the unknowns ρ(x, t), v(x, t), θ(x, t), and ṡ(x, t).

5.4 The Case of a Perfect Gas

In this section we analyze the system (5.91)–(5.96) assuming that the
vapor phase is a perfect gas. In other words, we suppose that the specific
internal energies and free energies are given by the following constitutive
equations:

el = clθ + e0, ψl = −clθ ln
θ

Θ
+ ψ0, (5.97)

e = c θ, ψ =
R

M
θ ln

ρ

ρ
− cθ ln

θ

Θ
, (5.98)

where e0 and ψ0 are constants, Θ is a reference temperature and ρ is the
corresponding value for the vapor density. The additive constants are omit-
ted from (5.98) since it is always possible to assume that they vanish in one
of the two phases. Moreover, the pressure p in the vapor is given by the
constitutive equation

p =
R

M
ρθ. (5.99)

In nondimensional form, the above equations become

el = θ + e
, ψl = −θ ln θ + ψ
, (5.100)

e = ĉ θ, ψ =
R

M
θ ln ρ− cθ ln θ, (5.101)

where e
 = c0/clΘ, ψ
 = ψ0/clΘ, ĉ = c/cl, and ρ, θ are nondimensional
quantities. Finally, using (5.87) and (5.88), we obtain the nondimensional
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form for the pressure in the vapor:

p = ρθ. (5.102)

Introducing (5.100), (5.101) and (5.102) into (5.96), we obtain the fol-
lowing equation:

Rθ

M
ln ρ− ĉθ ln θ + θ ln θ +B

p

ρ
= 0,

which, in view of (5.102), assumes the form

Rθ

M
ln p− Rθ

M
ln θ − ĉθ ln θ + θ ln θ +Bθ = 0.

This equation gives us the value of the pressure on the interface for any
vaporization temperature θ:

p = e−
BM

R θ
R+(ĉ−1)M

R . (5.103)

The inverse function
θ = e

BM
R p

R
R+M(ĉ−1) , (5.104)

supplies the vaporization temperature for any pressure. Since in our prob-
lem the pressure is uniform in both phases and continuous across the inter-
face, p coincides with the external pressure pe. Consequently, (5.104) gives
the vaporization temperature for any external pressure. Finally, the latent
heat λ = [[e]] +Bp/ρ is given by the relation

λ = (ĉ− 1 +B)θ. (5.105)

Now we suppose that the initial and boundary temperatures in the liq-
uid phase coincide with the vaporization temperature corresponding to the
given external pressure pe. Under these conditions, the temperature field in
the liquid has a constant value throughout the liquid phase. An important
consequence of this remark is obtained from (5.101) and (5.102):

ρe =
p

θ
ĉ θ = peĉ = const. (5.106)

Consequently, (5.93) leads us to the result

(ρe+ pe)v − μk̂θ,x = pe(ĉ+ 1)v − μk̂θ,x = f(t), (5.107)

where f(t) is an arbitrary function of time. Since the expression on the left-
hand side of (5.107) assumes, at a given instant, the same value throughout
the vapor phase, we can determine f(t) by evaluating the left-hand side
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at the interface. Then, taking into account (5.94), (5.95) and (5.105), and
recalling that (θ,x )− = 0, we obtain

pe(ĉ+ 1)v − μk̂θ,x = −(ĉ+ 1)θṡ+ (ĉ− 1 +B)θṡ, (5.108)

so that
v = Cθ,x +Dṡ, (5.109)

where

C =
μk̂

pe(ĉ+ 1)
, D =

B − 2
pe(ĉ+ 1)

θ (5.110)

and θ is a known function of pe (see (5.104)).
It remains to consider mass conservation (5.92), which, in view of (5.102)

and (5.109), can be written as follows:(
1
θ

)
,t

+
(
C

θ
θ,x +

D

θ
ṡ

)
,x

= 0,

or, equivalently, in the form

θ,t +C(θ,x )2 +Dṡθ,x −Cθθ,xx = 0. (5.111)

Finally, the following equation holds at the interface:

λ(pe)ṡ = −μk̂θ,xx . (5.112)

It is important to note that (5.111) and (5.112) must be solved in the
region (s(t), l(t))× [0,∞), where the upper bound l(t) is not known. There-
fore, we need a further condition relating to this function, which can be
obtained by requiring the conservation of the total mass Mt of the whole
system:

ρls(t) +
∫ L(t)

s(t)

ρdx = ρls(t) +
∫ L(t)

s(t)

peM

Rθ
dx = Mt. (5.113)

When this condition is written in nondimensional form, we obtain a new
condition that allows us to complete the formulation of the free boundary
value problem.



Chapter 6

An Introduction to Mixture Theory

We have already remarked that the simplified models of continuum me-
chanics (perfect and viscous fluids, elastic systems, etc.) do not always ac-
curately describe the complex phenomenology exhibited by real materials.
In Chap. 2 we discussed a nonstandard model that includes (along with the
usual elastic properties) microrotation, revealing internal microstructure.
There are other situations in which we must derive more complex models
to recover some phenomenological features related to internal structure that
is erased by the continuous model. For instance, in Chap. 3 the model of
a continuum with an interface was proposed in order to produce a macro-
scopic description of phase transitions in simple materials.

Another more complex model is required to address mixtures, and we will
introduce this model here in order to explain another class of phenomena.

There is no doubt that mixing two or more constituents macroscopically
could lead to a continuum that could be described by a simple continuum
mechanics model. However, recovering its constitution allows us to supply
a unique description for all continua that differ in either their percentages
of constituents or their conditions of motion. On the other hand, the model
that unifies all of these continua is not a simple one, as it requires the
introduction of internal variables like the concentrations and the diffusion
velocities of the constituents inside the mixture.

Furthermore, we would very much like to obtain the answer to the follow-
ing question: is it possible to determine the properties of a mixture when
the properties of each constituent of the mixture are known?

In this chapter we limit ourselves to sketching out the foundations of
this complex and controversial subject, about which many papers have
been written. For the sake of simplicity, we will only present the theory of
nonreacting fluid mixtures . More particularly, we will apply the model of
simple or classical mixtures to the phase change of a constituent in a binary
mixture. Readers interested in delving deeper into this subject should refer
to [108]–[113].
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This brief exposition starts from Truesdell’s approach ([106, 107]), which
is based on the assumption that the balance laws hold for each constituent
and the whole mixture. In this way, it is possible to identify the relationship
between the characteristic quantities of the mixture and those of its con-
stituents. We then analyze the model proposed by Gurtin and Vargas [108]
for fluid mixtures with low diffusion velocities, and that given by Gurtin
[109] for nonreacting fluid mixtures with arbitrary diffusion velocities.

6.1 Balance Laws

Let S be a mixture of m constituents Sa, a = 1, . . . ,m. Concerning the
motion of each constituent, we assume that:

• The equations of motion xa = xa(Xa, t) of each constituent are
smooth functions, where Xa varies in a unique reference configuration
C∗ and t belongs to the time interval [0, T ]

• For any t ∈ [0, T ], the functions xa(Xa, t) define a one-to-one corre-
spondence between C∗ and the actual configuration Ca = xa(C∗, t)

• The region Ca of the actual configuration of each constituent at any
instant coincides with the actual configuration C of the whole mixture

• The balance equations hold during the motions of each constituent
and the whole mixture.

We note that the first three assumptions imply that all of the constituents
are always present at any point of the actual configuration C. In other
words, we are excluding from our scheme any case where a constituent, upon
diffusing into a mixture, occupies regions that change in volume over time.
When this happens, there is a moving surface inside the actual configuration
across which the fields exhibit jumps due to the absence of one or more
constituents on one side of it.

If we denote the equation of motion of S by x = x(X, t), we can define
the velocity va of Sa and the velocity v of S as follows:

va =
∂xa

∂t
, v =

∂x
∂t
. (6.1)

Since we are considering a nonreacting mixture, the local mass balance
of Sa can be written as follows:

∂ρa

∂t
+ ∇ · (ρava) = 0, (6.2)
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where ρa is the mass density of Sa. Moreover, the local balance of mass for
S is

∂ρ

∂t
+ ∇ · (ρv) = 0, (6.3)

where ρ is the mass density of S.
In order to introduce a reasonable relation between the quantities ρa, va

and ρ, v, we note that adding (6.2) for a = 1, . . . ,m, leads to the condition

∂

∂t

m∑
a=1

ρa + ∇ ·
m∑

a=1

ρava = 0,

which, compared with (6.3), leads to the natural (but not unique) quantities

ρ =
m∑

a=1

ρa, v =
1
ρ

m∑
a=1

ρava. (6.4)

The first of these equations is quite obvious, while the second identifies
the velocity of any element of S with the velocity of its center of mass.

The momentum balance for any Sa can be written in the following form:

∂

∂t
(ρava) + ∇ · (ρava ⊗ va) = ∇ ·Ta + ρaba, (6.5)

where Ta and ba denote the stress tensor and the body force density of Sa,
respectively.

Similarly, the momentum balance of S is:

∂

∂t
(ρv) + ∇ · (ρv ⊗ v) = ∇ · T + ρb, (6.6)

where the meanings of T and b are as one would expect considering (6.5).
If we add all of the equations (6.5) and take (6.4) into account, we obtain

∂

∂t
(ρv) + ∇ ·

m∑
a=1

ρava ⊗ va = ∇ ·
m∑

a=1

Ta +
m∑

a=1

ρaba. (6.7)

In order to express the partial velocities va in terms of v, we introduce the
diffusion velocities

ua = va − v, (6.8)

from which, in view of (6.4), we derive the condition

m∑
a=1

ρaua = 0. (6.9)
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Using (6.8) and (6.9), we can now place (6.7) in the form of (6.6), provided
that we set

T =
m∑

a=1

(Ta − ρaua ⊗ ua), ρb =
m∑

a=1

ρaba. (6.10)

We note again that the introduction of quantities (6.4) and (6.10) is spon-
taneous but not unique.

Taking into account the angular momentum balance of any constituent,
we conclude that any stress tensor Ta is symmetric. Finally, due to (6.10),
we can derive the symmetry of the whole stress tensor T.

It remains to consider the energy balance equation for each constituent:

∂

∂t

(
ρaεa +

1
2
ρav

2
a

)
+ ∇ ·

((
ρaεa +

1
2
ρav

2
a

)
va

)
=

∇ · (Ta · va) −∇ · ja + ρaba · va + ρara, (6.11)

where εa is the specific internal energy of Sa, ja is the energy flux vector,
and ra is the specific energy supply. It is worth noting that, in the absence
of any other form of energy, the vector flux ja reduces to the heat flux ha.

On the other hand, the energy balance for the whole mixture is

∂

∂t

(
ρε+

1
2
ρv2

)
+ ∇ ·

((
ρε+

1
2
ρv2

)
v
)

=

∇ · (T · v) −∇ · j + ρb · v + ρr, (6.12)

where the quantities involved here have analogous meanings to those above.
Taking into account (6.8) and (6.9), we easily obtain

1
2

m∑
a=1

ρav
2
a =

1
2
ρv2 +

1
2

m∑
a=1

ρau
2
a. (6.13)

By adding together the equations (6.11) for a = 1, . . . ,m and considering
(6.13), (6.4) and (6.10), we derive (6.12) provided that we put

ρε =
m∑

a=1

(
ρaεa +

1
2
ρau

2
a

)
(6.14)

j =
m∑

a=1

(
ja −

(
ρaεa +

1
2
ρau

2
a

)
ua − Ta · ua

)
, (6.15)

ρr =
m∑

a=1

ρa(ba · ua + ra). (6.16)
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Note that, even if each flux vector ja reduces to the heat flux vector ha,
the total flux vector j does not coincide with the sum of all of the heat flux
vectors ha, a = 1, . . . ,m, in the presence of a convective term.

Finally, the entropy inequality for each constituent Sa is

∂

∂t
ρaηa + ∇ · ρaηava ≥ −∇ ·

(
ha

θa

)
+ ρa

ra
θa
,

while we have
∂

∂t
ρη + ∇ · ρηv ≥ −∇ ·

(
h
θ

)
+ ρ

r∗
θ
, (6.17)

for the whole mixture, where the specific entropy η, the heat flux vector h,
and the specific entropy supply r∗ are given by

ρη =
m∑

a=1

ρaηa, (6.18)

h
θ

=
m∑

a=1

(
ha

θa
+ ρaηaua

)
, (6.19)

ρr∗
θ

=
m∑

a=1

ρara
θa

, (6.20)

where ηa is the specific entropy of Sa, and θ is the temperature of the
mixture, which we will assume to be equal to the temperature θa of each
constituent Sa from now on. We remark that, even in this case, the total
entropy flux vector does not reduce to

∑
a ha/θ in the presence of the

convective term
∑

a ρaηaua. Furthermore, the entropy flux vector does not
coincide with the vector j/θ.

We have used the balance equations in the form

∂F
∂t

+ ∇ · (F⊗ v) = ∇ ·Φ + g,

where the meanings of the quantities involved are evident (see also Sect.
5.1 of [16]) to make it easier to compare the quantities related to each
constituent and the corresponding global quantities. However, it is well
known that, if the mass density is introduced together with the mass balance
and the specific density f = F/ρ, the balance equations can be written in
the equivalent form

ρḟ = ∇ ·Φ + g,

which will be used in the following sections.
In order to write the balance equations in this form, we introduce the

concentration
ca =

ρa

ρ
, (6.21)
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of the constituent Sa. From (6.4), we have

m∑
a=1

ca = 1. (6.22)

Consequently, the mass balance (6.2) becomes

ρ
∂ca
∂t

+ ca
∂ρ

∂t
+ ∇ · ρava = 0.

This equation, taking into account (6.3) and (6.8), assumes the final form

ρċa + ∇ · (ρcaua) = 0, (6.23)

whereas the conservation of mass (6.3) for the whole mixture is

ρ̇+ ρ∇ · v = 0. (6.24)

Moreover, bearing in mind (6.8), and noting that

∂va

∂t
+ va · ∇va = v̇a + ua · ∇va, (6.25)

then we can use (6.5) and (6.6) to derive the new forms of the momentum
balance for Sa:

ρav̇a + ρaua · ∇va = ∇ · Ta + ρaba, (6.26)

and S:
ρv̇ = ∇ · T + ρb, (6.27)

respectively.
Similarly, the local energy balance for S assumes the form

ρε̇ = T : ∇v −∇ · j + ρaba · va + ρara. (6.28)

Finally, by eliminating ρara from (6.17) and (6.28), we obtain the reduced
dissipation inequality for the whole mixture:

−ρ(ψ̇ + ηθ̇) + T : ∇v + ∇ · (j − h) + ρaba · ua − 1
θ
h · ∇θ ≥ 0. (6.29)

Remark We conclude this section by showing a useful relation for com-
paring the local balance equations for each constituent and the correspond-
ing equations for the whole mixture when they are written in the form

∂F
∂t

+ ∇ · (F⊗ v) = ∇ ·Φ + g.
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More precisely, we wish to prove the fundamental formula

ρΨ̇ =
m∑

a=1

ρaΨ′
a −

m∑
a=1

∇ · (ρaua ⊗ Ψa), (6.30)

where

ρΨ =
m∑

a=1

ρaΨa, (6.31)

and

Ψ′
a =

∂Ψa

∂t
+ va · ∇Ψa (6.32)

denotes the material derivative in the direction of the motion of Sa.
In order to prove (6.30), we start by noting that (6.31), (6.23) and (6.32)

imply the equation

Ψ̇ = −1
ρ

m∑
a=1

∇ · (ρcaua)Ψa +
m∑

a=1

caΨ′
a

−
m∑

a=1

cava · ∇Ψa + v ·
m∑

a=1

ca∇Ψa,

from which, bearing in mind relation (6.9) and noting that

m∑
a=1

∇ · (ρcaua)Ψa = ∇ ·
m∑

a=1

(ρcaua ⊗ Ψa) − ρ

m∑
a=1

caua · ∇Ψa,

we can easily derive (6.30).

6.2 Classical Mixtures

In the classical theory of fluid mixtures, the behavior of the mixture S
is described by the fields of mass density ρ, velocity v, and temperature
θ, as well as by the concentrations ca of the constituents. The fields ρ,v,
and θ satisfy the balance laws for momentum, energy and entropy for the
whole mixture. On the other hand, the concentrations ca fulfill the mass
conservation equations (6.23). However, due to the presence of the diffusion
velocities ua, we have more unknowns than equations. This implies that we
need to assign constitutive relations for the diffusion fluxes Φa = ρaua. In
conclusion, the system of equations that governs the evolution of a classical
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mixture S of m constituents is:

ρ̇ = −∇ · ρv, (6.33)
ρv̇ = ∇ · T + ρb, (6.34)
ρε̇ = T : ∇v −∇ · (h + j) + ρr, (6.35)
ρċa = −∇ ·Φa, a = 1, . . . ,m− 1. (6.36)

Note that we consider the balance equations relating to the concentrations
of m − 1 constituents, since

∑
a ca = 1. It should also be noted that the

energy flux vector in (6.35) is written as the sum of the heat flux vector h
and an extra energy flux j (we will clarify the meaning of this later).

Remark In the literature, the local energy balance (6.35) is usually writ-
ten in the form

ρε̇ = T : ∇v −∇ · h′ + ρr,

whereas the entropy flux vector is expressed as follows in the entropy in-
equality:

∇ ·
(

h
θ

+ j′
)
.

It is evident that the formulation adopted for the energy balance equation
and the entropy inequality here is fully equivalent to the formulation usually
adopted in the literature (see [108]).

We assume that the constitutive equations take the form

A = F(B), (6.37)

where

A = (ψ, η,T,h, j,Φa), B = (ρ, ca, θ, ρ,L , ca,L , θ,L ), (6.38)

and they must satisfy the following entropy inequality in every process:

−ρ(ψ̇ + ηθ̇) + Tijvi,j − ji,i − hiθ,i
θ

≥ 0. (6.39)

In (6.38) we used the notation u,L = ∂u/∂XL, where (XL) are the Carte-
sian coordinates in the material configuration C∗.

In order to find the restrictions on the constitutive equations (6.37) de-
rived from the dissipation principle, we write the time derivative of the
specific free energy ψ while taking (6.33) and (6.36) into account:

ψ̇ =
∂ψ

∂θ
θ̇ − ρ

∂ψ

∂ρ
δij

∂vi

∂xj
− 1
ρ

∂ψ

∂ca
Φai ,i

+
∂ψ

∂ρ,L
ρ̇,L +

∂ψ

∂ca,L
ċa,L +

∂ψ

∂θ,L
θ̇,L . (6.40)
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If we substitute (6.40) into (6.39), and note that the quantities θ̇, ρ̇,L, ċa
and θ̇,L do not appear in the list B, so they can be arbitrarily taken at any
point X and at any instant t, we have

ψ = ψ(ρ, θ, ca), (6.41)

η = −∂ψ
∂θ
, (6.42)

Tij = −ρ2 ∂ψ

∂ρ
δij , (6.43)

meaning that inequality (6.39) reduces to the expression(
ji − ∂ψ

∂ca
Φa i

)
,i

+
(
∂ψ

∂ca

)
,i

Φa i +
hiθ,i
θ

≤ 0. (6.44)

Introducing the notation

μa =
∂ψ

∂ca
, (6.45)

ki = ji − μaΦa i, (6.46)

inequality (6.44) becomes

ki,i +μa,i Φa i +
hiθ,i
θ

≤ 0. (6.47)

The quantities μa, a = 1, . . . ,m − 1, are called the chemical potentials of
the m− 1 components.

In the next theorem we prove the result

k = 0, (6.48)

meaning that (6.46) and (6.47) become

j = μaΦa, μa,i Φa i +
hiθ,i
θ

≤ 0. (6.49)

We first note that (6.47) can be written as follows:

∂ki

∂ρ,j
ρ,ji +

∂ki

∂ca,j
ca,ji +

∂ki

∂θ,j
θ,ji +Λ(ρ, ca, θ, ρ,i , ca,i , θ,i ) ≤ 0,

where Λ is a suitable function of its variables. This inequality implies that

∂ki

∂ρ,j
= − ∂kj

∂ρ,i
(6.50)

∂ki

∂ca,j
= − ∂kj

∂ca,i
(6.51)

∂ki

∂θ,j
= − ∂kj

∂θ,i
. (6.52)
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Finally, we remark that the function k(ρ, ca, θ, ρ,i , ca,i , θ,i ) is isotropic,
since the mixture consists of fluids (see Sect. 7.3 of [16]).

The following theorem proves (6.48).

Theorem 6.1
Let f(w(1), . . . ,wn) be an isotropic vector function of the vector variables
w(1), . . . ,w(n). If

∂fi

∂w(h)j
= − ∂fj

∂w(h)i
, h = 1, . . . , n, (6.53)

then f = 0.

PROOF From (6.53) it follows that

∂fi

∂w(h)i
= 0, h = 1, . . . , n. (6.54)

Moreover, by differentiating (6.53) and taking into account (6.54), we obtain
the conditions

∂2fi

∂w(h)j∂w(k)j
=

∂2fj

∂w(h)i∂w(k)j
= 0,

which imply that
∂3fi

∂w(h)j∂w(k)l∂w(m)p
= 0 (6.55)

when two of the indices i, j, l are equal. This result allows us to write the
Taylor expansion of f in the form

f = f(0, . . . ,0) + F(h) · w(h) + G(hk)w(h)w(k), (6.56)

where F(h) and G(hk) are constant tensors. In fact, from (6.55) we can
conclude that the higher-order terms of the expansion vanish, since two
indices relating to the components of the vectors w(h) of the higher-order
derivatives are always equal.

On the other hand, the isotropy condition

f(Qw(1), . . . ,Qw(n)) = Qf(w(1), . . . ,w(n)), (6.57)

where Q is any orthogonal matrix, implies that

f(0, . . . ,0) = 0, G(hk) = 0,

when we put Q = −I, and finally we conclude that

f = F(h) ·w(h).
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Due to hypothesis (6.53), the tensors F(h) are skew symmetric, whereas the
isotropy of f implies that

QF(h) = F(h)Q

for any orthogonal matrix Q, meaning that F(h) = 0 and so the theorem is
proved.

6.3 Nonclassical Mixtures

We call a mixture S whose evolution equations are provided for each
constituent a nonclassical mixture.

The motion of S is governed by the following field equations (see Eqs.
(6.23), (6.26) and (6.28)):

ρ̇a + ρa∇ · va + ua · ∇ρa = 0. (6.58)
ρav̇a + ρaua · ∇va = ∇ · Ta + ρaba, (6.59)
ρε̇− T : ∇v + ∇ · j = ρaba · va + ρara. (6.60)

Note that we only need the energy balance for the whole mixture due to
the hypothesis that the temperature of each constituent is the same.

In order to find the restrictions imposed by the reduced dissipation in-
equality, it is convenient to write (6.29) in an equivalent form. To this end,
we start by noting that (see Eqs. (6.8) and (6.10)):

T : ∇v = Taijvai ,j −
[(
Taij − 1

2
ρau

2
aδij

)
uai

]
,j

+ Taij ,j uai − 1
2
u2

a(ρauaj),j −ρauaiuajvai,j .

Taking into account (6.58) and (6.59), the above relation can be written as

T : ∇v = Taijvai ,j −
[(
Taij − 1

2
ρau

2
aδij

)
uai

]
,j

+ ρauaiv̇ai +
1
2
ρu2

aċa − ρabaiuai. (6.61)

Substituting (6.61) into (6.29), we obtain the inequality

−ρ(ψ̇ + ηθ̇) + Taijvai,j −ki,i +ρauaiv̇ai +
1
2
ρu2

aċa − 1
θ
hiθ,i ≥ 0, (6.62)

where

ki = ji − hi +
(
Taji − 1

2
ρau

2
aδij

)
uaj . (6.63)
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Note that from (6.9) we have

1
2
ρ
d

dt
(cau2

a) =
1
2
ρċau

2
a + ρcauai(v̇ai − v̇i)

= ρauaiv̇ai +
1
2
ρu2

aċa, (6.64)

and the inequality (6.62) assumes the final form

−ρ(ψ̇I + ηθ̇) + Ta : ∇va −∇ · k − h
θ
· ∇θ ≥ 0, (6.65)

where
ψI = ψ − 1

2
cau

2
a. (6.66)

Now we assume that the constitutive equations take the form

A = F(B), (6.67)

where
A = (ψI , η,Ta,h,k), B = (ρa,va, θ, ρa,L , θ,L ), (6.68)

and that they must satisfy inequality (6.65) in every process.
In (6.68) we used the notation u,L = ∂u/∂XL, where (XL) are the Carte-

sian coordinates in the material configuration C∗.
In order to find the restrictions on the constitutive equations (6.68) de-

rived from the dissipation principle, we write the time derivative of the
specific free energy ψ while taking into account (6.68):

ψ̇I =
∂ψI

∂θ
θ̇ +

∂ψI

∂vai
v̇ai +

∂ψI

∂ρa
ρ̇a

+
∂ψI

∂ρa,L
ρ̇a,L +

∂ψI

∂θ,L
θ̇,L . (6.69)

In view of (6.58), the above relation can also be written as follows:

ψ̇I =
∂ψI

∂θ
θ̇ +

∂ψI

∂vai
v̇ai

− ∂ψI

∂ρa
(ρaδijvai,j +ρa,j ua,j )

+
∂ψI

∂ρa,L
ρ̇a,L +

∂ψI

∂θ,L
θ̇,L . (6.70)

On the other hand, we have

ki,i =
∂ki

∂ρa
ρa,i +

∂ki

∂va,j
vaj ,i

+
∂ki

∂ρa,L
(F−1)Miρa,LM +

∂ki

∂θ
θ,i

+
∂ki

∂θ,i
(F−1)Miθ,LM , (6.71)
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where (F−1)Mi = ∂XM/∂xi.
If we substitute (6.71) and (6.70) into (6.66) and note that the quantities

θ̇, v̇ai, ρ,LM , θLM , ρ̇a,L can be chosen arbitrarily at any point X and at any
instant t, we have

ψI = ψI(ρa, θ), (6.72)

η = −∂ψI

∂θ
, (6.73)

Taij = −ρρa
∂ψI

∂ρa
δij +

∂k(j

∂vai
, (6.74)

∂ki

∂ρa,(L
(F−1)M)i = 0,

∂ki

∂θ,(L
(F−1)M)i = 0. (6.75)

Moreover, the residual inequality is(
ρ
∂ψI

∂ρa
uaj − ∂kj

∂ρa

)
ρa,j −

(
∂ki

∂θ
+
hi

θ

)
θ,i ≥ 0. (6.76)

6.4 Balance Equations of Binary Fluid Mixtures

In the remaining part of this chapter we propose to extend the results
obtained in Chap. 3 to binary mixtures of fluids. This further generalization
of a continuous system with an interface will permit us to derive the Gibbs
rule for phase equilibrium in a mixture, to describe the evaporation of a
component of a binary mixture into a gas, etc.

We would now like to formulate a model to describe the phase transition
in a binary mixture. This means that our system consists of two phases, C1

and C2, separated by an interface Σ. Moreover, each phase can be occupied
by one or two constituents of the mixture. To formulate an appropriate
model of a continuum with an interface, we must modify the balance equa-
tions we proposed in Chap. 3, since now we are in the presence of a binary
mixture. However, if we limit ourselves to classical mixtures, we need only
add the equation which gives the evolution of the concentration c of one
constituent of the mixture to the equation of mass conservation, the mo-
mentum balance, and the energy balance for the whole system. It is also
important to recall that the total energy balance for classical mixtures dif-
fers from the corresponding energy balance for simple continua, since the
energy flux vector for mixtures is the sum of the heat flux vector and an
extra flux vector μΦ, where μ is the chemical potential of the constituent
considered and Φ is its diffusive flux (see Eqs. (6.35) and (6.49)). We must
also account for the fact that the interface Σ itself is a material system that
can influence the behavior of the mixture. Consequently, we must introduce
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all of the contributions from the interface into the balance equations, as we
did in Chap. 3. Bearing in mind all of the above remarks, we adopt the
following balance equations for a binary classical mixture (see Eqs. (3.55–
3.60) and (3.73)):

mass conservation:

ρ̇+ ρ∇ · v = 0, in C − Σ, (6.77)(
∂ρs

∂t

)
uα

+ ρs∇s · Vs − 2Hcnρs = [[ρU ]] , onΣ. (6.78)

momentum balance:

ρv̇ −∇ · t − ρb = 0, in C − Σ, (6.79)

ρs

(
∂V
∂t

)
uα

−∇s · T = [[ρ(v − V)U + tn]] , on Σ. (6.80)

energy balance:

ρε̇− tr(t ⊗ v) + ∇ · (h + μΦ) = 0, in C − Σ, (6.81)

ρs

(
∂E

∂t

)
uα

− Tαβσαβ + ∇s · (hs + μsΦs)

=
[[
ρ

(
1
2
(v − V)2 + e− E

)
U + (v − V) · tn

]]
− [[(h + μΦ) · n]] on Σ. (6.82)

mass balance for one constituent:

ρċ+ ∇ ·Φ = 0, in Ci − Σ for i = 1, 2, onΣ (6.83)

ρs

(
∂cs
∂t

)
uα

+ ∇s · Φs = [[ρ(c− cs)U − Φ · n]]. (6.84)

Here U = cn − vn, and the rest of the notation used in the above equations
is the same as that used in Chapt. 3. We also note that the interface is con-
sidered a classical mixture, as shown by the presence of the concentration
cs and the conductive flux Φs in the above equations.

The form of the partial mass balance (6.84) presented above requires
justification. Due to the general balance law (3.51), mass conservation for
the first constituent S1 at the interface should be written in the form

δρs1

δt
+ ∇s · (ρs1Vs1) − 2Hcnρs1 = [[ρ1(cn − v1n)]]

= [[ρ1(cn − vn)]] − [[ρ1(v1n − vn)]]
= [[ρ1U ]] − [[Φ · n]] ,
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where ρ1 is the mass density in the bulk phases of S1, v1 is the velocity
of S1, ρs1 is its surface mass density, and Vs1 is its surface velocity. Now,
recall that the concentrations of S1 in the volume and at the interface, c
and cs, are given by ρ1 = cρ and ρs1 = csρs. If we take into account (6.78),
then the above equation can be placed in the form

−cs∇s · (ρsVs) + ∇s · (ρs1Vs1) + ρs
δcs
δt

= [[ρ(c− cs1)U ]] − [[Φ · n]] ,

or in the other equivalent form

ρs
δcs
δt

+ ρsV
α
s cs,α + ∇s · (ρ1s(Vs1 − Vs)) = [[ρ(c− cs1)U ]] − [[Φ · n]] .

It is sufficient to recall that Φs = ρ1s(Vs1 −Vs) and property (3.9) of the
parametrization (uα) to obtain (6.84).

In order to develop the theory of phase changes in binary mixtures, we
need to assign the constitutive equations of the mixture as a whole, as well
as the constitutive equations of the diffusive fluxes of the first constituent
in the volume and at the interface.

6.5 Constitutive Equations

In the theory of classical mixtures, the variables that appear in the con-
stitutive equations are the velocity gradient ∇v, the density ρ, the concen-
tration c, the temperature θ, and the gradients of density, concentration,
and temperature. For the sake of simplicity, we assume that the constitu-
tive relations depend only on the first gradients of density, concentration,
and temperature. Similarly, we suppose that the constitutive equations for
fluid mixtures at the interface depend on σαβ , a = det(aαβ), ρs, cs and θs,
as well as on ∇sρs, ∇scs and ∇sθs. The dependence on a is introduced to
account for any adsorption that takes place at the interface. Moreover, we
distinguish between the equilibrium stress tensor and the dynamic stress
tensor, both in the bulk phases and on the interface, using the notation

t = −pI + td, (6.85)
T = γIs + Td, (6.86)

where Is = (aαβ) is the identity tensor on Σ.
In order to derive the restrictions on the constitutive equations imposed

by the dissipation principle, we must first formulate the reduced dissipation
inequality. By eliminating ∇ · h between (6.81) and the entropy principle

ρθη̇ + ∇ · h − 1
θ
h · ∇θ ≥ 0, (6.87)
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we obtain

−(ψ̇ + ηθ̇) − p∇v + tr(td ⊗∇v) −∇ · (μΦ) − 1
θ
h · ∇θ ≥ 0. (6.88)

On the other hand, using (6.77) and (6.83), we can derive

∇ · v = − ρ̇
ρ
,

∇ · (μΦ) = Φ · ∇μ+ μ∇ ·Φ = Φ · ∇μ− ρμċ,

and (6.88) becomes

− ρ(ψ̇ + ηθ̇ − p

ρ2
ρ̇− μċ) + tr(td ⊗∇v)

− Φ · ∇μ− 1
θ
h · ∇θ ≥ 0. (6.89)

From our constitutive assumptions, it follows that

ψ̇ =
∂ψ

∂θ
θ̇ +

∂ψ

∂ρ
ρ̇+

∂ψ

∂c
ċ+

∂ψ

∂∇v
∇̇v

+
∂ψ

∂∇ρ∇̇ρ+
∂ψ

∂∇c∇̇c+
∂ψ

∂∇θ ∇̇θ, (6.90)

and when we substitute this relation into (6.89) we obtain an inequality
from which it is possible to derive (using a standard procedure) the following
relations:

ψ = ψ(ρ, c, θ), (6.91)

η = η(ρ, c, θ) = −∂ψ
∂θ
, (6.92)

p = p(ρ, c, θ) = ρ2 ∂ψ

∂ρ
, (6.93)

μ = μ(ρ, c, θ) =
∂ψ

∂c
, (6.94)

tr(td ⊗∇v) − Φ · ∇μ− 1
θ
h · ∇θ ≥ 0. (6.95)

We can regard the term on the left-hand side of (6.95) as being a function
f of ∇v, ∇c, ∇ρ, and ∇θ (see Eq. 6.94), which reaches its minimum when
all of the variables vanish. Consequently, all of the partial derivatives with
respect to the above variables vanish for ∇v =∇c =∇ρ =∇θ = 0, and so

(td)0 = Φ0 = h0 = 0. (6.96)

We can conclude that there is no friction, no convective flux, and no heat
conduction when the gradients of the above fields vanish.
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We must now proceed in a similar way with the energy balance (6.82)
and the entropy inequality at the interface (3.75). For the sake of simplicity,
we suppose that Tαβ

d = 0 and hs = 0. By eliminating [[h ·n]] between these
equations, and recalling (6.86), we then obtain

− ρs(Ψ̇ + Sθ̇) + γaαβσαβ −∇s · (μsΦs)

+
[[
ρ

(
1
2
(v − v)2 + ψ − Ψ

)
U + (v − V) · tn

]]
− [[μΦ]] · n ≥ 0, (6.97)

where Ȧ = (∂A/∂t)uα and Ψ = E − θS.
On the other hand, taking (6.84) into account, we have

−∇s(μsΦs) = −Φs · ∇sμs − μs∇s ·Φs

= −Φs · ∇sμs + μsρsċs − μs[[ρ(c− cs)U − Φ · n]].

Moreover,

(v − V) · tn = (vn − cn + cn − Vn)n · tn + (vτ − Vτ ) · tn
= pU − p(cn − Vn) + (vτ − Vτ ) · tn,

where vτ denotes the component along the interface.
Bearing these results in mind, we can write (6.97) in the following way:

− ρs(Ψ̇ + Sθ̇ − μsċs) + γaαβσαβ − Φs · ∇sμs

+
[[
ρ

(
1
2
(v − v)2 + g − Ψ − μs(c− cs)

)
U

]]
+ [[(vτ − Vτ ) · tn + (μs − μ)Φ · n]] − [[p]] (cn − Vn) ≥ 0, (6.98)

where g = ψ + p/ρ is the Gibbs potential in the bulk phases.
Finally, from (6.78) we can deduce the relation

ρ̇s = −ρs∇s ·Vs + 2Hcnρs + [[ρU ]]
= −ρsa

αβVα;β + ρsa
αβbαβcn + [[ρU ]]. (6.99)

Moreover,
γaαβ(Vα;β − bαβVn). (6.100)

Now we adopt the following constitutive equation for Ψ:

Ψ = Ψ(ρs, cs, θ,∇ρs,∇cs). (6.101)

Similar constitutive equations will be adopted for the other surface fields.
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As a consequence of (6.99) and (6.101), we have

−ρsΨ̇ = ρs
∂Ψ
∂ρs

aαβVα;β − ρ2
s

∂Ψ
∂ρs

aαβbαβcn − ρs
∂Ψ
∂ρs

[[ρU ]]

− ρs
∂Ψ
∂cs

ċs − ρs
∂Ψ
∂θ

θ̇ − ρs
∂Ψ
∂∇ρs

˙∇ρs − ρs
∂Ψ
∂∇cs ∇̇cs. (6.102)

Introducing this expression into the inequality (6.98), we obtain

− ρs

(
S +

∂Ψ
∂θ

)
θ̇ + ρs

(
μs − ∂Ψ

∂cs

)
ċs +

(
γ + ρ2

s

∂Ψ
∂ρs

)
aαβVα;β

− ρs
∂Ψ
∂∇ρs

∇̇ρs − ρs
∂Ψ
∂∇cs ∇̇cs −

(
γVn + ρ2

s

∂Ψ
∂ρs

cn

)
aαβbαβ

− ρs
∂Ψ
∂ρs

[[ρU ]] − [[p]](cn − Vn) − Φs · ∇μs

+
[[
ρ

(
1
2
(v − V)2 + g − Ψ − μs(c− cs)

)
U

]]
+ [[(vτ − Vτ ) · tn + (μs − μ)Φ · n]] ≥ 0. (6.103)

Using a standard procedure, we deduce from (6.103) the following prop-
erties of the constitutive equations:

Ψ = Ψ(ρs, cs, θ), (6.104)

S = −∂Ψ
∂θ

= S(ρs, cs, θ), (6.105)

μs =
∂Ψ
∂cs

= μs(ρs, cs, θ), (6.106)

γ = −ρ2
s

∂Ψ
∂ρs

, (6.107)

γ

ρs
[[ρU ]] + [[2γH − p]](cn − Vn) − Φs · ∇μs

+
[[
ρ

(
1
2
(v − V)2 + g − Ψ − μs(c− cs)

)
U

]]
+ [[(vτ − Vτ ) · tn + (μs − μ)Φ · n]] ≥ 0. (6.108)

This last inequality can also be written as follows:

[[2γH − p]](cn − Vn) − Φs · ∇μs

+
[[
ρ

(
1
2
(v − V)2 + g −G− μs(c− cs)

)
U

]]
+ [[(vτ − Vτ ) · tn + (μs − μ)Φ · n]] ≥ 0, (6.109)

where G = Ψ − γ/ρs is the Gibbs potential at the surface.
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Moreover, in view of (6.96), we have

Φ = A · ∇ρ+ B · ∇c+ C,

where C is a higher order than ∇ρ and ∇c. We assume that at least one of
the tensors A and B is different from zero.

In order to derive other significant consequences of the inequality (6.109),
we regard its left-hand side as a function f of (cn − Vn), U∓, (vτ − Vτ )∓,
of the gradients of ρ and c on both sides of the interface, and of the surface
gradients of ρs and cs (see Eqs. 6.96 and 6.106).

The function f reaches its minimum when all of the above variables
vanish. The derivatives of f with respect to these variables also vanish
when they are evaluated at zero. Therefore, in particular, we have

[[p]]0 − 2γH = 0, (6.110)
(g+ −G− μs(c+ − cs))0 = 0, (6.111)
(g− −G− μs(c− − cs))0 = 0, (6.112)

(Φs)0 = 0. (6.113)
μ+ − μs = 0, (6.114)
μ− − μs = 0. (6.115)

Equivalently, we can say that the following conditions hold at the inter-
face:

[[p]]0 − 2γH = 0, (6.116)
[[g −G− μc]] = 0. (6.117)

[[μ]] = 0, (6.118)
(g+ −G− μs(c+ − cs))0 = 0, (6.119)

μ+ − μs = 0, (6.120)

where the index 0 has been omitted. These relations are valid at equilibrium,
but we can also use them for processes that are not too far from equilibrium.

6.6 Phase Equilibrium and Gibbs’ Principle

In this section we analyze a simple case of phase equilibrium in a fluid
binary mixture in order to prove the Gibbs rule for phase equilibrium. We
suppose that there are no body forces, that the temperature is uniform
in both phases, that the other fields are uniform in each phase, that the
stress tensors in the bulk phases reduce to a uniform pressure, and that
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the interface is planar. Using these hypotheses, the equilibrium equations,
which we derive from (6.77)–(6.84),

∇ · t + ρb = 0, (6.121)
−∇s · Ts = [[t · n]] , (6.122)

∇ · Φ = 0, (6.123)
∇s ·Φs = − [[Φ · n]] , (6.124)

in view of the uniformity of the fields p, ρ, c, ρs, cs as well as (6.96) and
(6.113), are identically satisfied. Consequently, in order to determine the
equilibrium conditions, we must find, for a given temperature and assigned
constitutive equations for g, G, μ and μs, the six numerical unknowns ρ±,
c±, ρs and cs that satisfy the five equations (6.116)–(6.120). In other words,
we need assign two variables, for instance c and θ, to determine the equi-
librium state. This result is in full agreement with the Gibbs rule, which
states that the degree of freedom F of the equilibrium configuration of a
compound system is given by the formula

F = C + 2 − π, (6.125)

where C is the number of components in the mixture and π is the number
of phases.

The above considerations relate to a system of two phases separated by
a planar interface. If we assume that the interface Σ is spherical, then we
have a further degree of freedom, i.e., the radius R of Σ in the relation

2
γ

R
= [[p]],

which replaces (6.116).
The analysis of the equilibrium when the fields are not uniform is much

more complex.

6.7 Evaporation of a Fluid into a Gas

In this section we analyze the evaporation of a fluid into a gas (see [114]).
The system we consider consists of a pure liquid phase C1 and a gaseous
phase C2, which is a binary mixture of the vapor arising from the pure
phase C1 and another gas. The evaporation of water into air is an example
of the situation we are considering.

We analyze the process under the following hypotheses:

• The interface, which is planar, has no material characteristics
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• The phase C2 is unbounded

• The fields depend only on the spatial variable x and the time t.

Under these conditions, the phaseC1 is represented by the interval [0, s(t)),
where s(t) is the equation of the planar interface, whereas the phase C2 is
represented by the interval (s(t),∞).

For (x, t) ∈ [0, s(t)) × (0,∞) we have the equations

v = 0, (6.126)
p = const, (6.127)
θ,t = alθ,xx , (6.128)

where al is the thermal diffusivity of the liquid.
In the phase (x, t) ∈ [s(t),∞) × (0,∞), the equations are

ρ,t +(ρv),x = 0, (6.129)
ρ(c,t +vc,x ) = −Φ,x , (6.130)
ρ(v,t +vv,x ) = −p,x , (6.131)
ρ(e, t+ ve,x ) = −pv,x +kθ,xx −(μΦ),x , (6.132)

where the standard notation is used.
At the interface, we have

ρ(ṡ− v) = ρlṡ, (6.133)
ρc(ṡ− v) − ρlṡ = Φ, (6.134)

ρ(ṡ− v) = [[p]] , (6.135)

ρ

(
1
2
v2 + e+

p

ρ

)
(ṡ− v) − ρl

(
e+

p

ρl

)
ṡ = − [[kθ,x ]] + μΦ, (6.136)

1
2
v2 +

[[
ψ +

p

ρ

]]
− μc = 0. (6.137)

Since ρ� ρl, from (6.133) we have

v � −ρl

ρ
ṡ, (6.138)

and (6.134)–(6.137) become

Φ = ρlṡ(c− 1), (6.139)

[[p]] = −ρ
2
l

ρ
ṡ2, (6.140)(

1
2
ρ2

l

ρ2
ṡ2 + [[e+]] +

p

ρ

)
ρlṡ = − [[kθ,x ]] + μρlṡ(c− 1), (6.141)

1
2
ρ2

l

ρ2
ṡ2 + [[ψ]] +

p

ρ
− μc = 0. (6.142)
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This system can be simplified by repeating the same nondimensional
analysis as that found in Sect. 5.4. For a more detailed discussion of the
resulting system and its consequences, see [114].



Chapter 7

Electromagnetism in Matter

7.1 Integral Balance Laws

Let S be a continuous system, and let C(t) be the region occupied by S at
the instant t. Generally, C(t) is the union of the disjoint regions C1(t), . . .,
Cν(t), and S exhibits the same physical properties in each of these regions.
For instance, if S consists of two adjacent dielectrics occupying the regions
C1(t) and C2(t) in the presence of a fixed conductor of volume C3, then we
have C(t) = C1(t)∪C2(t)∪C3 ∪C4(t), where C4(t) is the space around the
dielectrics and the conductor.

We also assume that some fields f associated with S may exhibit finite
discontinuities [[f ]] = f+−f− across the oriented material boundary ∂Ci(t)
of region Ci(t). Here f+ denotes the limit value of f on ∂Ci(t) obtained
when this surface is approached from the region containing the vector n
normal to ∂Ci(t), and f− is the limit obtained when ∂Ci(t) is approached
from the other side.

Moreover, we assume the existence of a nonmaterial surface ±, possibly
consisting of the disjoint parts ±∞(�), . . . ,±\(�), which is a surface of
discontinuity for one or more fields of S (shock wave or phase surface).

Finally, we assume that the electromagnetic field produced by S during
its evolution is described by the following balance equations:

− d

dt

∫
s(t)

B ·Nds =
∫

∂s(t)

(E + v × B) · τdl, (7.1)

d

dt

∫
s(t)

D ·Nds =
∫

∂s(t)

(H − v × D) · τdl − I(s(t)), (7.2)∫
∂c(t)

D ·Nds = Qf (c(t)), (7.3)∫
∂c(t)

B ·Nds = 0. (7.4)

A. Romano, A. Marasco, Continuum Mechanics, Modeling and Simulation in Science, 
Engineering and Technology, DOI 10.1007/978-0-8176-4870-1_7,  

171

© Springer Science+Business Media, LLC 2010 



172 Chapter 7. Electromagnetism in Matter

In (7.1)–(7.4), s(t) and c(t) denote a material surface and a material
volume, respectively. Moreover, N is the external unit vector normal to
s(t) or to ∂c(t), and τ is the unit vector tangent to ∂s(t). Finally,

v = velocity field,
E = electric field,
H = magnetic field,
D = electric induction field,
B = magnetic induction field.

Also, I(s(t)) is the invariant current across the material surface s(t), and
Qf (c(t)) is the free charge present in c(t). It is clear that when matter is
absent or at rest v = 0.

The following considerations lead us to the explicit expressions of I(s(t))
and Qf (c(t)). If the charge is distributed with a volume density ρf in the
regions ĉi, i = 1, 2, . . . , p, and with a surface density ωf on the material
surfaces ŝi, i = 1, 2, . . . q, then we have

Qf (c(t)) =
p∑

i=1

∫
ĉi∩c(t)

ρfdc+
q∑

i=1

∫
ŝi∩c(t)

ωfds. (7.5)

Similarly, if j is the current density in three-dimensional conductors and
k is the current density on material conducting surfaces s̃i, i = 1, 2, . . . , r,
then we have

I(s(t)) =
∫

s(t)

(j − ρfv) · Nds+
q∑

i=1

∫
s̃i∩s(t)

(k − ωfV) · νdl, (7.6)

where V is the velocity of the charge with a surface density ωf , and ν is
the unit vector normal to the curve s̃i ∪ s(t) and tangent to s̃i.

The local equations, which derive from (7.1)–(7.4) when we take into
account (5.12), (5.13) and (5.16) of [16] or Sect. 3.8, are

∇× E = −∂B
∂t
, (7.7)

∇× H = j +
∂D
∂t

, (7.8)

∇ ·D = ρf , (7.9)
∇ · B = 0, (7.10)

where the fields are regular.
On material singular surfaces, where the normal velocity cn along the

normal n is equal to vn, the following jump conditions hold:

[[n× (E + v × B)]] = 0, (7.11)
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[[n × (H− v × D)]] = k − ωfV, (7.12)
[[D · n]] = ωf , (7.13)
[[B · n]] = 0. (7.14)

Finally, on nonmaterial singular surfaces, where cn �= vn, ωf = 0, and
k = 0, we have

[[(cn − vn)B− n × (E + v × B)]] = 0, (7.15)
[[(cn − vn)D + n × (H− v × D)]] = 0, (7.16)

[[vn]] = 0, (7.17)
[[D · n]] = 0, (7.18)
[[B · n]] = 0. (7.19)

If we recall that ∇ · ∇ × a = 0 for any vector field a, and apply the
operator ∇· to (7.7), we can derive (7.10). Moreover, applying the operator
∇· to (7.8) and taking (7.9) into account leads us to the charge conservation
law :

∂ρf

∂t
+ ∇ · j = 0. (7.20)

In conclusion, when the source ρf is given, the fields E(x, t), H(x, t),
D(x, t), B(x, t), and j(x, t) must satisfy the independent equations (7.7),
(7.8), and (7.20). Consequently, these equations are not sufficient to deter-
mine the above fields, even when the initial data and boundary conditions
are given. As is usual in continuum mechanics, we must assign constitutive
equations in order to get the same number of equations as unknowns.

For instance, a linear and isotropic dielectric (e.g., a vacuum) is defined
by the following constitutive relations:

D = εE, (7.21)
B = μH, (7.22)
j = 0, (7.23)

where ε and μ are the electric and magnetic permeabilities, respectively.
For a nonlinear rigid conductor, the constitutive equations assume the

form

D = D(E,H), (7.24)
B = B(E,H), (7.25)
j = j(E,H). (7.26)

As a further example, we consider a nonlinear elastic dielectric that is
defined by the relations

D = D(F,E,H), (7.27)
B = B(F,E,H), (7.28)
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where F is the deformation gradient. In the next section we study the
general theory of constitutive equations for a continuous system in the
presence of an electromagnetic field.

7.2 Electromagnetic Fields in Rigid Bodies at Rest

In this section we analyze the electromagnetic fields in a system S of
rigid bodies that are at rest in a given frame of reference. We note that
Maxwell’s equations maintain the form (7.7)–(7.10), whereas the jump con-
ditions (7.11)–(7.14) become

n× [[E]] = 0, (7.29)
n× [[H ]] = k, (7.30)
[[D]] · n = ωf , (7.31)
[[B]] · n = 0. (7.32)

It is well known that circulating current inside a conductor always pro-
duces heat in the body (the Joule effect). Therefore, to completely describe
the phenomenology of the interaction between electromagnetic fields and
matter, we are also compelled to consider the energy balance and the en-
tropy inequality. The appropriate form of the energy balance of S is (see
[115, 116])

d

dt

∫
C

ε dc = −
∫

∂C

(E × H + h) ·N dσ +
∫

C

r dc, (7.33)

where C is any fixed volume whose boundary is ∂C, N is the external unit
normal to ∂C, ε is the internal energy per unit volume, h is the heat flux
vector, and r is the external energy supply per unit volume. This principle
states that the variations in the internal energy present in a regionC are due
to the flux of thermal and electromagnetic energy across ∂C. The vector
E× H is termed Poynting’s vector. When the fields are regular, (7.33)
implies the following local equation:

ε̇ = −∇ · (E × H + h) + r, (7.34)

whereas the jump condition on a surface of discontinuity σ for the fields is
(see Eq. 5.3 of [16])

[[E× H + h]] · n = 0, (7.35)

where n is the unit vector normal to σ.
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In view of the vector identity

∇(a × b) = b · ∇ × a− a · ∇ × b

and Maxwell’s equations (7.7)–(7.10), (7.34) can also be written as

ε̇ = E · Ḋ + H · Ḃ + E · j −∇h. (7.36)

Moreover, the jump condition (7.35) assumes the explicit form

[[E]] × H+ · n + E− × [[H]] + [[h]] · n = 0,

where a± denote the limit values on the surface of discontinuity for the
quantity a arising from the region containing the unit normal n and in the
other one, respectively. Bearing in mind (7.29) and (7.30) and using the
cyclic property of the mixed product, the above relation becomes

[[h]] · n = −k ·E−. (7.37)

We note that in the absence of surface currents, the heat flux vector and
Poynting’s vector are continuous across σ.

Together with the energy balance, we must consider the entropy inequality1

d

dt

∫
C

ηdc ≥ −
∫

∂C

h
θ
·Ndσ +

∫
C

r

θ
dc, (7.38)

where η is the entropy per unit volume and θ is the absolute temperature.
When the temperature is continuous everywhere, the integral inequality
(7.38) is equivalent to the following local condition:

η̇ ≥ −∇ · h
θ

+
r

θ
. (7.39)

If we eliminate the term −∇h + r between (7.36) and (7.39), then we
obtain the reduced dissipation inequality

−(ψ̇ + ηθ̇) + E · Ḋ + H · Ḃ + E · j− h · ∇θ
θ

≥ 0, (7.40)

where
ψ = ε− θη (7.41)

is the free energy per unit volume. Now we consider the following class of
constitutive equations:

u = F(v), (7.42)

1For a more general principle of entropy, see [117, 134].
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where
u = (ψ, η,E,H, j,h), v = (D,B, θ,∇θ). (7.43)

From (7.43) we have

ψ̇ =
∂ψ

∂θ
θ̇ +

∂ψ

∂∇θ · ∇θ̇ +
∂ψ

∂D
· Ḋ +

∂ψ

∂B
· Ḃ,

so that (7.40) becomes

−
(
∂ψ

∂θ
+ η

)
θ̇ +

∂ψ

∂∇θ · ∇θ̇ +
(
E− ∂ψ

∂D

)
· Ḋ

+
(
H− ∂ψ

∂B

)
· Ḃ + E · j − h · ∇θ

θ
≥ 0. (7.44)

It is easy to verify that the quantities θ, θ̇, ∇θ, D, Ḃ, D and Ḃ can be chosen
arbitrarily at any point and at any instant.2 Therefore, we can derive the
following from (7.44):

ψ = ψ(D,B, θ), (7.45)

η = −∂ψ
∂θ

= η(D,B, θ), (7.46)

E =
∂ψ

∂D
= E(D,B, θ), (7.47)

H =
∂ψ

∂B
= H(D,B, θ), (7.48)

E · j −h · ∇θ
θ

≥ 0. (7.49)

The above relations show that, for a material described by the constitu-
tive equations (7.43), the free energy, which is a function of D, B and θ, is
a potential for η, E and H. Finally, the constitutive relations for j and h
must satisfy inequality (7.49).

We also note that (7.47)–(7.48) lead to the identities

∂Ei

∂Dj
=
∂Ej

∂Di
, (7.50)

2In fact, it is sufficient to consider the thermoelectromagnetic fields

D(x, t) = D0 + F(x − x0) + g(t − t0),

B(x, t) = B0 + G(x − x0) + h(t − t0),

θ(x, t) = θ0 + a · (x − x0) + b(t − t0),

where F, G are constant tensors, D0, B0, g, h and a are constant vectors, and b is

a scalar, and to note that these quantities can be determined such that the Maxwell
equations are satisfied when the constitutive relations (7.42) are assigned.
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∂Hi

∂Bj
=
∂Hj

∂Bi
, (7.51)

∂Ei

∂Bj
=
∂Hi

∂Dj
, (7.52)

as well as the Gibbs relation

dψ = E · dD + H · dB − ηdθ. (7.53)

We finally remark that, if the functions (7.47) and (7.48) can be inverted
with respect to the variables D and B, then we can write the relations

D = D(E,H, θ), (7.54)
B = B(E,H, θ), (7.55)

which imply that E and H can be considered fundamental fields. In this hy-
pothesis, the dissipation inequality (7.40) assumes the following equivalent
form:

−(ζ̇ + ηθ̇) + D · Ė + B · Ḣ + E · j − h · ∇θ
θ

≥ 0, (7.56)

where we have introduced the enthalpy per unit volume

ζ = ψ − D ·E − H ·B. (7.57)

Using (7.56), we can derive the following thermodynamic restrictions:

ζ = ζ(E,H, θ), (7.58)

η = −∂ζ
∂θ

= η(E,H, θ), (7.59)

D = − ∂ζ

∂E
, (7.60)

B = − ∂ζ

∂H
, (7.61)

E · j −h · ∇θ
θ

≥ 0. (7.62)

Finally, the Gibbs relation becomes

dζ = −D · dE− B · dH− ηdθ, (7.63)

and the identities (7.50)–(7.52) assume the form

∂Di

∂Ej
=
∂Dj

∂Ei
, (7.64)

∂Bi

∂Hj
=
∂Bj

∂Hi
, (7.65)

∂Di

∂Hj
=
∂Bi

∂Ej
. (7.66)
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We conclude this section with some remarks. First, we note that the
function f(E,∇θ) = E · J − (h · ∇θ)/θ ≥ 0 reaches its minimum at E =
∇θ = 0, so that (

∂f

∂E

)
0

= j(0,H, θ,0) = 0,(
∂f

∂∇θ
)

0

= h(0,H, θ,0) = 0.

These conditions tell us that there is neither heat flux nor current in the
absence of an electric field and a temperature gradient. Finally, when ∇θ
vanishes, we have the inequality

E · j ≥ 0, (7.67)

which expresses the Joule effect. If E = 0, then we obtain the condition

h · ∇θ ≤ 0, (7.68)

which expresses Fourier’s law.

7.3 Constitutive Equations for Isotropic Rigid Bodies

In this section we analyze the forms of the constitutive equations for
isotropic media in the presence of electromagnetic fields. Since the electric
field E is a polar vector while the magnetic field H is an axial vector (see
Sect. 1.5 of [16]), we are faced with functions that depend on polar and
axial vectors. To simplify our analysis, we note that the axial vector H can
be replaced by the skew-symmetric tensor W, the adjoint of which is H:

Wij = εijhHh, Hi =
1
2
εijhWjh. (7.69)

In view of (7.58)–(7.62), we see that the constitutive equations

ζ = ζ(E,W, θ), (7.70)
h = h(E,W, θ,∇θ), (7.71)
j = j(E,W, θ,∇θ). (7.72)

must be isotropic functions of their variables. By applying the representa-
tion theorem for isotropic scalar functions (see [14]) to ζ, we obtain

ζ = ζ(E2, tr(W)2,E ·W2E). (7.73)
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Also, due to (7.69), we have

tr(W)2 = WlhWhl = εlhiεhljHiHj = δijHiHj ,

so that
tr(W)2 = H2. (7.74)

Moreover,

E ·W2E = EiWihWhkEk

= EiεihlHlεhkmHmEk

= (δimδlk − δikδlm)EiEkHlHm,

and finally we have

E · W2E = (E · H)2 − E2H2. (7.75)

Thus, the constitutive equation for ζ assumes the final form

ζ = ζ(E2, H2, (E · H)2). (7.76)

Again resorting to the representation theorem of a vector isotropic func-
tion, and introducing the notation g = ∇θ, we have

f(E,W, θ,∇θ) = f1(π)E + f2(π)g + f3(π)WE + f4(π)Wg

+ f5(π)W2E + f6(π)W2g, (7.77)

where the functions f1, . . . , f6 are isotropic functions of

π = (E2, g2, trW2,E · g,E · W2E,E ·Wg,E · W2g,g · W2g). (7.78)

Noting that

E ·Wg = EiWihgh = E · g × H, (7.79)
E · W2g = EiWihWhlgl = −(E× H) · (g × H) (7.80)
(WE)i = εihlHlEh = (E× H)i (7.81)

(W2E)i = εihlHlεhjpHpEj = (H× (H × E))i, (7.82)

and taking into account (7.74) and (7.75), we attain the final forms of the
constitutive equations of h and j:

h = F1(π)E + F2(π)g + F3(π)E × H + F4(π)g × H

+ F5(π)H × (H× E) + F6(π)H × (H × g), (7.83)
j = G1(π)E +G2(π)g +G3(π)E × H +G4(π)g × H

+ G5(π)H × (H × E) +G6(π)H × (H× g), (7.84)

where

π = (E2, g2,H2,E ·g,E ·H2,E ·(g×H), (E×H) ·(g×H), (g ·H)2). (7.85)
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7.4 Approximate Constitutive Equations for Isotropic
Bodies

In this section we provide approximate expressions for the constitutive
equations stated in the above section.

Let us consider the linear approximation of (7.60), (7.61), (7.83) and
(7.84). We have

ζ = ζ0(θ) − 1
2
ε(θ)E2 − 1

2
μ(θ)H2, (7.86)

and so

D = ε(θ)E, (7.87)
B = μ(θ)H. (7.88)

Moreover, (7.83) and (7.84) become:

h = β(θ)E − k(θ)g, (7.89)
j = σ(θ)E − α(θ)g, (7.90)

where α, k, β and σ are positive functions of the temperature.
In order to account for nonlinear effects, we consider second-order terms

in the variables that appear in the constitutive equations. We note that
(7.87) is still valid, so (7.87) and (7.88) hold up to third-order terms in E
and H. Moreover, the relations (7.83) and (7.84) assume the form

h = βE − kg + k1(E× H) + k2(g × H), (7.91)
j = σE − αg + α1(E × H) + α2(g × H), (7.92)

where all of the coefficients that appear in the above equations depend on
θ.

These equations show that, beside the linear effects, the electromag-
netic fields influence thermal and electrical conduction through second-
order terms that represent the following physical phenomena:

• The Ettingshausen effect, due to k1(E× H)

• The Leduc–Righi effect, due to k2(g × H)

• The Hall effect, due to α1(E× H)

• The Nernst effect, due to α2(g × H).
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7.5 Maxwell’s Equations and the Principle of
Relativity

In this section we will introduce some relativistic concepts which will be
analyzed in greater detail in Chap. 10.

Before considering a theory for a deformable continuum S in the pres-
ence of electromagnetic fields, it is essential to determine the transformation
group under which all of the equations describing the evolution of S are
covariant. It is easy to verify that Maxwell’s equations are covariant under
Lorentz transformations by resorting to the four-dimensional Minkowski
formulation of spacetime and writing these equations as tensor relations
in this space (see Chap. 10). However, we will instead follow the classi-
cal approach Einstein presented in his famous paper from 1905 on special
relativity.

First, we note that verifying the covariance of a set of equations under a
given transformation group is not an easy and purely formal task. In fact,
we shall see that we can only use the transformation formulae to derive
how the spatial and temporal coordinates change together with the corre-
sponding differentiation operators. In other words, we have no information
about the transformation of any physical quantity that appears in the evo-
lution equations. This implies that we must assume that these quantities
behave in a way that makes the field equations covariant. However, it is
possible that the required mathematical behavior is not compatible with
the experimental evidence.

It is also important to note that the field equations are not sufficient to
determine the evolution of S, since we need to introduce the constitutive
relations into them in order to obtain a closed system in the unknowns
given by the fundamental fields. Consequently, both the field equations and
the constitutive relations must be covariant.

We start by proving that Maxwell’s equations are not covariant under
Galilean transformations.

Consider the Galilean transformation

x′i = xi − uit, i = 1, 2, 3, (7.93)
t′ = t, (7.94)

where (x1, x2, x3, t) are the spacetime coordinates of an event in the inertial
frame I, and (x′1, x′2, x′3, t′) are the spacetime coordinates of the same event
in another inertial frame I ′ that is moving at a constant velocity (u1, u2, u3)
with respect to I. It is easy to verify that (7.93)–(7.94) imply the following
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transformation formulae for the differential operators:

∂

∂xi
=
∂x′j
∂xi

∂

∂x′j
+
∂t′

∂xi

∂

∂t′
=

∂

∂x′i
, (7.95)

∂

∂t
=
∂x′j
∂t

∂

∂x′j
+
∂t′

∂t

∂

∂t′
= −uj

∂

∂x′j
+

∂

∂t′
. (7.96)

By using (7.95) and (7.96) in the first component of (7.7), we obtain

∂E3

∂x′2
− ∂E2

∂x′3
= u1

∂B1

∂x′1
+ u2

∂B1

∂x′2
+ u3

∂B1

∂x′3
− ∂B1

∂t′
,

which, taking into account (4.10), assumes the form

∂

∂x′2
(E3 + (u1B2 − u2B1)) − ∂

∂x′3
(E2 + (u3B1 − u1B3)) = −∂B1

∂t′
.

Using the same approach for the other components of (7.7), we then derive
the vector equation

∇′ × (E + u × B) = −∂B
∂t′

. (7.97)

Relation (7.97) is a mixed equation since it contains derivatives with respect
to the new variables x′i and t′ but the electromagnetic fields still relate to
the old inertial frame I. Therefore, this equation will have the same form
in I ′ if and only if the fields E and B transform according to the rules

E′ = E + u × B, B′ = B. (7.98)

Applying the same arguments to (7.8), we obtain the equation

∇′ × (H− u × D) = j +
∂D
∂t′

, (7.99)

which becomes a Maxwell equation (7.8) in I ′ if and only if

H′ = H− u× D, D′ = D, j′ = j. (7.100)

We note that (7.95), (7.98) and (7.100) imply that the remaining Maxwell
equations (7.9) and (7.10) are still covariant. However, these results do not
allow us to conclude that electrodynamic theory is invariant for Galilean
transformations. In fact, due to the transformation rules (7.98) and (7.100),
the constitutive equations are not invariant. It sufficient to consider the
constitutive equations for a vacuum to verify this statement.
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We now consider the Lorentz transformations3

x′1 = γ(x1 − ut), (7.101)
x′2 = x2, (7.102)
x′3 = x3, (7.103)

t′ = γ(t− u

c2
x1), (7.104)

where
γ =

1√
1 − u2

c2

.

Instead of (7.95) and (7.96) we have

∂

∂x1
=
∂x′j
∂x1

∂

∂x′j
+

∂t′

∂x1

∂

∂t′
= γ

∂

∂x′1
− γ

u

c2
∂

∂t′
, (7.105)

∂

∂x2
=

∂

∂x′2
, (7.106)

∂

∂x3
=

∂

∂x′3
, (7.107)

∂

∂t
=
∂x′j
∂t

∂

∂x′j
+
∂t′

∂t

∂

∂t′
= −γu ∂

∂x′1
+ γ

∂

∂t′
. (7.108)

On the other hand, (7.7) and (7.10) are equivalent to the system

∂E3

∂x2
− ∂E2

∂x3
= −∂B1

∂t
,

∂E1

∂x3
− ∂E3

∂x1
= −∂B2

∂t
,

∂E2

∂x1
− ∂E1

∂x2
= −∂B3

∂t
,

∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3
= 0,

which, due to the transformation rules (7.105)–(7.108), become

∂E3

∂x′2
− ∂E2

∂x′3
= γu

∂B1

∂x′1
− γ

∂B1

∂t′
,

∂E1

∂x′3
− γ

∂E3

∂x′1
+ γ

u

c2
∂E3

∂t′
= γu

∂B2

∂x′1
− γ

∂B2

∂t
,

3For the sake of simplicity, we only consider special transformations here. To explore the
general case, refer to Chap. 10.
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γ
∂E2

∂x′1
− γ

u

c2
∂E2

∂t′
− ∂E1

∂x′2
= γu

∂B3

∂x′1
− γ

∂B3

∂t
,

γ
∂B1

∂x′1
− γ

u

c2
∂B1

∂t′
+
∂B2

∂x′2
+
∂B3

∂x′3
= 0.

Substituting the value of γ ∂B1
∂x′

1
obtained from the fourth equation into

the first one and then substituting the value of γ ∂B1
∂t′ derived from the first

equation into the fourth one, we arrive at the system

∂

∂x′2
γ(E3 + uB2) − ∂

∂x′3
γ(E2 − uB3) = −∂B1

∂t′
,

∂E1

∂x′3
− ∂

∂x′1
(E3 + uB2) = − ∂

∂t′
γ(B2 +

u

c2
E3),

∂

∂x′1
γ(E2 − uB3) − ∂E1

∂x′2
= − ∂

∂t′
γ(B3 − u

c2
E2),

∂B1

∂x′1
+

∂

∂x′2
γ(B2 +

u

c2
E3) +

∂

∂x′3
γ(B3 − u

c2
E2) = 0,

which assumes the form of the Maxwell equations (7.7) and (7.9) in the
inertial frame I ′ if and only if

B′
1 = B1,

B′
2 = γ(B2 +

u

c2
E3),

B′
3 = γ(B3 − u

c2
E2),

E′
1 = E1,

E′
2 = γ(E2 − uB3),

E′
3 = γ(E3 + uB2).

If we introduce the notations a‖ and a⊥ to denote the projections of
the vector a along u and orthogonal to u, respectively, then the above
transformation formulae can be written in the vector forms

B′
‖ = B‖, (7.109)

B′
⊥ = γ

(
B⊥ − 1

c2
u × E⊥

)
, (7.110)

E′
‖ = E‖, (7.111)

E′
⊥ = γ(E⊥ + u × B⊥). (7.112)

Using the same arguments it is possible to verify that the other two
Maxwell equations (7.8 and 7.9) as well as the conservation of charge (7.20)
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lead us to the following transformation rules:

H′
‖ = H‖, (7.113)

H′
⊥ = γ(H⊥ − u × D⊥), (7.114)

D′
‖ = D‖, (7.115)

D′
⊥ = γ

(
D⊥ +

1
c2

u × H⊥

)
, (7.116)

j′‖ = γ(j‖ − ρfu), (7.117)

j′⊥ = j⊥, (7.118)

ρ′f = γ

(
ρf − u · j

c2

)
. (7.119)

It is easy to verify that the transformation rules (7.109)–(7.119) imply
that the constitutive equations are invariant upon Lorentz transformations.
4 For instance, for the electric induction vector D, if D = εE and B = μH,
we have

D′ = D′
‖ + D′

⊥ = D‖ + γ(D′
⊥ +

1
c2

u×H⊥) = εE‖ + γ(εE⊥ +
1
c2

u × H⊥),

so that, using (7.112)–(7.119) and recalling that c2 = 1/εμ, we obtain

D′ = εE′.

7.6 Quasi-electrostatic and Quasi-magnetostatic
Approximations

If we wish to study the evolution of a continuous system that includes
charges and currents, we need to consider both the balance equations from
continuum mechanics and Maxwell’s equations. This approach is mean-
ingful if Maxwell’s equations are form invariant or covariant for the same
transformation group under which the equations of continuum mechanics
are covariant. It is well known that the former equations are covariant with
respect to Lorentz transformations, whereas the latter equations are co-
variant with respect to Galilean transformations. Consequently, in order to
obtain a coherent theory it is necessary to propose a relativistic formulation

4Note that, for the total current density j, we only need to consider the conduction
current density j0 in the proper frame and analyze the behavior of the constitutive

equation j0 = σE0 under a Lorentz transformation. We recall that the proper frame for
a point x ∈ S at the instant t is a reference in which v = 0.
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for continuum mechanics. However, we will prove that, in the presence of
acoustic frequencies (less than 104 Hz) and nonrelativistic velocities (less
than 105 km/s), it is possible to find approximate forms of Maxwell’s equa-
tions that are covariant for Galilean transformations.

We start with the quasi-electrostatic approximation. First, we introduce
the reference quantities

E∗, D∗, H∗, B∗, J∗, L, T

for the electric field, electrical induction, the magnetic field, magnetic induc-
tion, the electric current, the characteristic length, and the characteristic
time, respectively. Consequently, the Maxwell equations in nondimensional
form can be written as follows:

∇× E = −LB
∗

TE∗
∂B
∂t

= −UB
∗

E∗
∂B
∂t
, (7.120)

∇× H =
J∗L
H∗ j +

LD∗

TH∗
∂D
∂t

=
J∗L
H∗ j +

UD∗

H∗
∂D
∂t

, (7.121)

where we have used the same symbols for the nondimensional fields and
operators; moreover, U = L/T is the reference velocity.

The quasi-electrostatic approximation is based on the following assump-
tions:

• The continuum S is a dielectric (j = 0).

• There is no free charge (ρf = 0).

• S is magnetically linear; in other words, in the proper frame I0, the
following constitutive equation holds:

B0 = μH0.

• The magnetic field vanishes in the proper frame I0 (i.e., there is no
magnet). This means that magnetic fields that appear in other frames
are due to the motion of S. Noting that the rules for transforming
from any frame of reference I to the proper frame I0 are obtained by
inserting u = v into (7.109)–(7.119), we have

0 � (B − 1
c2

v × E⊥) =⇒ B∗ � UE∗

c2
. (7.122)

• Points in S have nonrelativistic velocities; i.e.,

U2

c2
� 1. (7.123)
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Conditions (7.122) and (7.123) imply that the right-hand side of (7.12)
can be neglected. Consequently, in Maxwell’s equations (7.7) and (7.9), the
magnetic fields do not appear:

∇× E = 0, (7.124)
∇ · D = 0. (7.125)

On singular material surfaces, the conditions (7.29) and (7.31) become

[[n× E]] = 0, (7.126)
[[D · n]] = 0, (7.127)

whereas conditions (7.16)–(7.18) assume the following form on nonmaterial
singular surfaces:

[[(cn − vn)D + n × (H− v × D)]] = 0, (7.128)
[[vn]] = 0. (7.129)

[[D · n]] = 0. (7.130)

The remaining two Maxwell equations

∇× H =
∂D
∂t

, (7.131)

∇ ·B = 0 (7.132)

can be used to determine the magnetic field H, which, in the present ap-
proximation, is a secondary effect induced by the electric fields.

It is an easy exercise to verify that (7.124) and (7.125), as well as the jump
conditions (7.126) and (7.127), are covariant for Galilean transformations
if and only if

E′ = E, (7.133)
D′ = D, (7.134)
H′ = H− u × D, (7.135)
B′ = B. (7.136)

In other words, the Maxwell equations that describe the evolutions of the
fields E and D are invariant with respect to Galilean transformations
together with the constitutive equation for D. However, the remaining
Maxwell equations, which determine the fields H and B when the electric
fields are known, are covariant under Galilean transformations to within
very small terms. In fact, in the linear case we have

B′ = B = μH = μH′ + μεu × E = μH′ +
1
c2

u× E.
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The quasi-magnetostatic approximation is based on the following assump-
tions:

• The continuum S is a conductor.

• S is electrically and magnetically linear:

D = εE, B = μH. (7.137)

• The electric fields in the proper frame I0 vanish. This implies that
there is no free charge (ρf = 0) and no current in I0. Moreover, the
electric fields are due to the motion of S. Based on this hypothesis
and the transformation formulae (7.111) and (7.112) when u = v, we
obtain

0 � (E + v × B⊥) =⇒ E∗ � UB∗. (7.138)

• The points of S have nonrelativistic velocities:

U2

c2
� 1. (7.139)

Conditions (7.138) and (7.139) imply that the second term on the right-
hand side of (7.121) can be neglected, so the fundamental equations of
quasi-magnetostatics become

∇× H = j, (7.140)
∇ ·B = 0 (7.141)

for all points where the fields involved are regular. On material singular
surfaces, the jump conditions (7.12) can be written as

[[n × H]] = k, (7.142)
[[B · n]] = 0, (7.143)

whereas the corresponding jump conditions on nonmaterial surfaces are

[[(cn − vn)B + n× (D − v × H)]] = 0, (7.144)
[[vn]] = 0, (7.145)

[[D · n]] = 0. (7.146)

The remaining two equations

∇× E = −∂B
∂t
, (7.147)

∇ ·D = 0 (7.148)

can be used to determine the electric field E, which is a secondary effect
induced by the magnetic field in this approximation.
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Moreover, we remark that the magnetic fields are invariant under Galilean
transformations:

H′ = H, B′ = B, (7.149)

whereas the electric fields are invariant to within a very small amount. In
fact,

D′ = D = εE = εE′ − μεu × H = μE′ − 1
c2

u× H.

Finally, charge conservation law (7.20) becomes

∇ · j = 0, (7.150)

and it is invariant with respect to Galilean transformation if and only if

j′ = j. (7.151)

To complete the model of quasi-magnetostatics, we must assign the con-
stitutive equation for the current density j. Limiting our analysis to the
case of a linear isotropic conductor, in the proper frame I0 we have

j0 = σE0. (7.152)

Since the electric field is a secondary effect in quasi-magnetostatics, the
current is only relevant when the conductivity is high. In this case, the
equation E0 = E + v × B leads to the constitutive relation

j = σ(E + v × B). (7.153)

7.7 Balance Equations for Quasi-electrostatics

In order to obtain a model of a moving continuum in the presence of elec-
tromagnetic fields, we need to write the balance equations for momentum,
angular momentum, and energy. Considering what was said in the above
sections, the electromagnetic equations we must associate with these bal-
ance laws are the equations of quasi-magnetostatics or quasi-electrostatics
in order to ensure that the whole set of equations is covariant for the
Galilean group.

We start by analyzing an elastic dielectric. To do this we can adopt one
of the following approaches:

• Specify the body forces and torques in the usual equations of con-
tinuum mechanics based on a model of the interaction between the
matter and the electromagnetic field. This approach, which has been
widely adopted in the literature, requires increasingly sophisticated
models that lead to increasingly involved electromagnetic forces.
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• Adopt a phenomenological approach that does not require a model.

We will adopt the second approach and show that it encompasses any
possible model.

The local forms of the momentum equation and the associated jump
conditions are (see Eqs. (5.30–5.31) of [16])

ρv̇ = ∇ · T + ρb, (7.154)
[[ρv(cn − vn) + Tn]] = 0, (7.155)

where ρ is the mass density, v is the velocity field, T is the symmetric total
stress tensor, b is the external body force, and cn denotes the velocity at
which the discontinuity surface advances.

The local forms of the energy balance and the corresponding jump con-
ditions are (see Eq. (5.46) of [16])

ρε̇ = T : ∇v −∇ · (h + E0 × H0) + ρr, (7.156)

[[ρ(
1
2
v2 + ε)(cn − vn) + v ·Tn − (h + E0 × H0) · n]] = 0, (7.157)

where ε is the specific internal energy and the energy flux vector is obtained
by adding the Poynting vector E0 × H0, which is evaluated in the proper
frame of any particle in the continuum, to the heat current vector. This
approach allows this vector quantity to be invariant under a change of
reference frame.

Finally, for the reduced dissipation inequality, we have the conditions
(see Eqs. (5.61) and (5.63) of [16])

−ρ(ψ̇ + ηθ̇) + T : ∇v − h · ∇θ
θ

≥ 0, (7.158)

[[ρ(
1
2
v2 + ψ)(cn − vn) + v ·Tn]] ≤ 0, (7.159)

where ψ = ε− ηθ is the specific free energy, η is the specific entropy, and θ
is the absolute temperature.

We now use the Maxwell equations of quasi-electrostatics to write the
above relations in an equivalent form. Using the vector identity

∇ · (E0 × H0) = H0 · ∇ × E0 − E0 · ∇ × H0,

and (7.133)–(7.136), we obtain

−∇ · (E0 × H0) = E · ∇ × (H − v × D) − (H− v × D)·∇ × E.

If we take into account (7.124) and (7.125), we can write

−∇ · (E0 × H0) = E · ∂D
∂t

− D · ∇v ·E
+ v · ∇D ·E − E · v(∇ ·D) + D · E(∇ · v),
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which, noting that

E · ∂D
∂t

= E · Ḋ − v · ∇D ·E

=
d

dt

(
ρ
D · E
ρ

)
− D · Ė− v · ∇D · E

= ρ
d

dt

(
D · E
ρ

)
− (D · E)∇·v − D · Ė− v·∇D · E,

becomes

−∇ · (E0 × H0) = ρ
d

dt

(
D · E
ρ

)
− D · Ė− D ⊗ E : ∇v. (7.160)

Introducing this relation into (7.156), we obtain

ρ
d

dt

(
ε− D ·E

ρ

)
= −D · Ė + (T − D ⊗ E) : ∇v −∇ · h + ρr, (7.161)

whereas the reduced dissipation inequality (7.158) assumes the form

−ρ(ζ̇ + ηθ̇) − D · Ė + (T − D ⊗ E) : ∇v − h · ∇θ
θ

≥ 0, (7.162)

where

ζ = ψ − D ·E
ρ

(7.163)

is the specific enthalpy.
A thermoelastic dielectric is defined by the following constitutive equa-

tions:

ζ = ζ(F,E, θ,g), (7.164)
η = η(F,E, θ,g), (7.165)
T = T(F,E, θ,g), (7.166)
D = D(F,E, θ,g), (7.167)
h = h(F,E, θ,g), (7.168)

where g = ∇θ. Substituting these relations into (7.162) and bearing in
mind that ∇v = (F−1)T Ḟ, we obtain the inequality

− ρ
∂ζ

∂g
· g − ρ

(
η +

∂ζ

∂θ

)
θ̇ +

(
D + ρ

∂ζ

∂E

)
Ė

+
(

(T − D ⊗ E)(F−1)T − ρ
∂ζ

∂F

)
Ḟ− h · ∇θ

θ
≥ 0, (7.169)
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from which, based on the usual arguments (see Chap. 6 of [16]), we derive
the thermodynamic restrictions on the constitutive equations

ζ = ζ(F,E, θ), (7.170)

η = −∂ζ
∂θ

= η(F,E, θ), (7.171)

T = D ⊗ E + ρ
∂ζ

∂F
FT = T(F,E, θ), (7.172)

D = −ρ ∂ζ
∂E

= D(F,E, θ), (7.173)

h ·∇θ ≤ 0. (7.174)

In other words, the specific enthalpy is a thermodynamic potential for
the entropy, the stress tensor and the electric induction field, which conse-
quently depend only on F,E and θ. The heat current vector still depends
on the temperature gradient and must satisfy inequality (7.174).

Moreover, the principle of material frame indifference implies that the
constitutive equations assume the following final forms (see Chap. 6 of
[16]):

ζ = ζ(C,FT E, θ), (7.175)

η = −∂ζ
∂θ

= η(C,FTE, θ), (7.176)

T = D ⊗ E + 2ρF
∂ζ

∂C
FT , (7.177)

D = −ρ ∂ζ
∂E

= FD̂(C,FT E, θ), (7.178)

h = Fĥ(C,FT E,FTg). (7.179)

7.8 Isotropic and Anisotropic Constitutive Equations

In this section we start considering isotropic dielectrics. To do this, we
utilize the definitions and theorems given in Sect. 7.2 of [16].

First we introduce the material vectors

E = FT E, Θ = FT g (7.180)

and we omit the nonessential dependence on θ of the constitutive equations
(7.164)–(7.168). A dielectric material S is isotropic if and only if

ζ(FQ,QTE) = ζ(F, E), (7.181)
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η(FQ,QTE) = η(F, E), (7.182)
QT(FQ,QTE)QT = T(F, E), (7.183)

QD̂(FQ,QTE) = D̂(F, E), (7.184)

Qĥ(FQ,QTE ,QTΘ) = ĥ(F, E ,Θ). (7.185)

Recalling that the objectivity principle leads to (7.175)–(7.179), the above
equations can also be written in the form

ζ(QT CQ,QTE) = ζ(C, E), (7.186)
η(QT CQ,QTE) = η(C, E), (7.187)

QT(QT CQ,QTE)QT = T(C, E), (7.188)
QD(QTCQ,QTE) = D(C, E), (7.189)

Qĥ(QT CQ,QTE ,QTΘ) = ĥ(C, E ,Θ). (7.190)

If we replace the arbitrary orthogonal matrix Q with QT , then we conclude
that the constitutive equations are expressed by isotropic functions of their
variables. Using the usual representation theorems of isotropic functions
and limiting our attention to the isothermal case, we get

ζ = ζ(I, II, III, E2, ETCE , ET C2E), (7.191)
η = η(I, II, III, E2, ETCE , ET C2E), (7.192)
T = F(k0I + k1C + k2C2

+ k3E ⊗ E + k4(E ⊗ CE + CE ⊗ E)
+ k5(E ⊗ C2E + C2E ⊗ E))FT , (7.193)

D = F(h0I + h1C + h2C2)E , (7.194)

where I, II and III are the principal invariants of C, and the functions hi

and ki depend on the same variables as ζ.
Bearing in mind (7.180), recalling the definitions of the right and left

Cauchy–Green tensors (see Sect. 3.2 of Vol. I) C = FTF, B = FFT , and
remembering the Cayley–Hamilton theorem and that the principal invari-
ants of C and B coincide, we can easily verify the identities

E2 = ETBE,
ETCE = ETB2E,

ET C2E = ETB3E
= ET (IB2 − IIB + IIII)E.

Consequently, relations (7.191)–(7.194) can also be written in the form

ζ = ζ(I, II, III,E2,ETBE,ETB2E), (7.195)
η = η(I, II, III,E2,ETBE,ETB2E), (7.196)
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T = (K0I +K1B +K2B2

+ K3E⊗ E +K4(E⊗ BE + BE⊗ E)
+ K5(E⊗ B2E + B2E⊗ E)), (7.197)

D = (H0I +H1B +H2B2)E, (7.198)

where Ki and Hi are new functions of the invariants I, II, III,E2,ETBE
and ETB2E.

It is very interesting to note that, in the linear theory of isotropic elastic
dielectrics, the electric field has no influence on the stress and the deforma-
tion has no influence on the electrical induction. These influences, which
appear when second-order terms in the deformation and electric field are
considered in (7.197) and (7.198), are called electrostriction.

The situation is different for anisotropic elastic dielectrics; in such di-
electrics these influences can appear as a first-order effect. In fact, if we
denote the displacement gradient by H = F − I, in the linear approxima-
tion we have C − I � 2S, where S is the infinitesimal strain tensor.

Moreover, the quadratic approximation for the enthalpy ζ can be written
as follows:

ζ =
1

2ρ∗

(
CijklSijSkl + 2χijkSijEk +

1
2
εijEiEj

)
, (7.199)

where the linear elasticity tensor S, the piezoelectric tensor χ and the di-
electric tensor ε verify the symmetry conditions

Cijkl = Cjikl = Cklij , (7.200)
χijk = χjik, εij = εji. (7.201)

Finally, from (7.177) and (7.178) we obtain the linear constitutive equations
for the stress tensor T and the electrical induction D:

Tij = CijklSkl + χijkEk, (7.202)
Di = χjkiSjk + εijEj . (7.203)

7.9 Polarization Fields and the Equations of Quasi-
electrostatics

In the above section we adopted a phenomenological approach in order
to describe the interaction between the electric field and matter. In other
words, no particular physical model was proposed to justify the balance
equations for momentum, angular momentum, and energy. In this section
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we adopt the polarization vector to describe the electric field. We thus
rewrite these balance equations in a new form which is interpreted by re-
sorting to a simple model of dielectrics.

First, we introduce the polarization vector

P = D − ε0E,

as well as the specific polarization vector

p =
P
ρ
.

We then have

ρ
d

dt

(
D ·E
ρ

)
= ρ

d

dt

(
ε0
E2

ρ

)
+ ρṗ · E + ρp · Ė, (7.204)

−D · Ė = −ρp · Ė − 1
2
ε0ρ

(
d

dt

E2

ρ
+ E2∇ · v

)
, (7.205)

−D ⊗ E = −ε0E ⊗ E− ρp⊗ E, (7.206)

and the balance equation for energy (7.156) can be placed in the form

ρėm = ρE · ṗ + tm : ∇v −∇ · h + ρr, (7.207)

where em and tm are defined as follows:

em = ε− ε0
E2

2ρ
, (7.208)

tm = T +
1
2
ε0E

2I− ε0E ⊗ E− ρp⊗ E. (7.209)

On the other hand, Maxwell’s equations (7.124) and (7.125) become

∇× E = 0,

ε0∇ · E = −∇ · P ≡ ρP .

Since the following identity holds:

∇ · (1
2
ε0E

2I− ε0E⊗ E − ρp⊗ E) = −P·∇E, (7.210)

we obtain the balance equations and Maxwell’s equations in the following
final forms:

ρv̇ = ∇ · tm + P · ∇E, (7.211)
ρėm = ρE · ṗ + tm : ∇v −∇ · h + ρr, (7.212)

∇× E = 0, (7.213)
ε0∇ ·E = −∇ ·P ≡ ρP . (7.214)



196 Chapter 7. Electromagnetism in Matter

A simple physical description of these equations can be obtained. It is
known that a continuous distribution of dipoles with a volume density P is
equivalent to a continuous distribution of charges with a density ρP = −∇·
P. Moreover, a force per unit volume given by −P·∇E acts on these dipoles.
Finally, a power ρE · ṗ per unit volume is associated with their motion.
Consequently, the dielectric can be regarded as a continuous distribution
of dipoles, and tm is the mechanical stress tensor.

Together with the above equations we must also consider the reduced
dissipation inequality, which can also be written

−ρ(ψ̇m + ηθ̇) + ρE · ṗ + tm : ∇v − h · ∇θ
θ

≥ 0, (7.215)

where

ψm = em − ηθ. (7.216)

Inequality (7.215) suggests that the form we should choose for the con-
stitutive equations is

A = A(F,p, θ,∇θ), (7.217)

where A denotes one of the fields ψm, η,E,h. Using the usual procedure,
we derive the following restrictions on the constitutive equations from the
dissipation principle:

ψm = ψm(F,p, θ), (7.218)

η = −∂ψm

∂θ
= η(F,p, θ), (7.219)

tm = ρ
∂ψm

∂F
FT = tm(F,p, θ), (7.220)

E = −ρ ∂ζ
∂p

= E(F,p, θ), (7.221)

h · ∇θ ≤ 0. (7.222)

We have provided a physical interpretation of the equations (7.211)–
(7.214) by replacing the dielectric with a continuous dipole distribution.
This model can be regarded as a proper description of the real situation
if the mechanical stress tensor tm depended only on mechanical variables.
However, (7.220) shows that this is not the case. This implies that, if we
suppose that tm = t1(F, θ)+t2(F,p, θ), then ∇·t2(F,p, θ) can be regarded
as a further force produced by the polarization field, which calls for a new
and more complex physical interpretation of the interaction between matter
and electric polarization.
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7.10 More General Constitutive Equations

The theory presented in the above sections is not able to predict all of
the phenomena observed in elastic dielectrics. In particular, the class of
constitutive equations considered does not allow us to explain some exper-
imental features, like the ferroelectricity exhibited by some dielectrics and
the anomalous behavior of capacity for thin condensers (see [130, 131]).

For these reasons, we consider the following wider class of constitutive
equations:

A = A(F,p,∇Xp, θ,∇θ), (7.223)

where A still denotes one of the fields ψm, η, and E,h, and ∇X denotes the
material gradient; i.e., the gradient with respect to the coordinates (XL)
in the reference configuration. In order to derive the restrictions on the
constitutive equations (7.223) due to the dissipation principle, we assume
that equations (7.211), (7.213) and (7.214) still hold, while we introduce
into (7.212) an extra-flux of energy

s = τ · ṗ, (7.224)

where τ = τ(F,p,∇Xp, θ,∇θ). Under these hypotheses, dissipation in-
equality (7.215) becomes

−ρ(ψ̇m + ηθ̇) + ρE · ṗ + tm : ∇v + ∇ · (τ · ṗ) − h · ∇θ
θ

≥ 0. (7.225)

We now note that

ψ̇m =
∂ψm

∂FiL
ḞiL +

∂ψm

∂pi
ṗi +

∂ψm

∂pi,L
ṗi,L +

∂ψm

∂θ
θ̇ +

∂ψm

∂θ,L
θ̇,L. (7.226)

Therefore, substituting (7.226) into (7.225) and applying the dissipation
principle, which requires that the inequality obtained holds for any process,
we find that

ψm = ψm(F,p,∇p, θ), (7.227)

η = −∂ψm

∂θ
, (7.228)

t(m)ij = ρ
∂ψ(m)

∂FiL
FjL, (7.229)

τij = ρ
∂ψ(m)

∂pj,L
FiL, (7.230)

Ej =
∂ψ(m)

∂pj
− 1
ρ

(
ρ
∂ψ(m)

∂pj,L
FiL

)
,i

, (7.231)

h · ∇θ ≤ 0. (7.232)
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It is worth noting that, in the absence of the extra-flux s, the internal free
energy ψm cannot depend on the polarization gradient and so we obtain
the theory presented in the above section.

We conclude by recalling that the results presented in this section can
be applied to describe the behavior of a thin dielectric material placed in a
plane parallel capacitor (see [131]).

7.11 Lagrangian Formulation of Quasi-electrostatics

It is well known that the Lagrangian formulation (see Sect. 5.7 of [16])
is needed to analyze the behavior of an elastic material. Consequently, we
must write all of the equations governing the evolution of an elastic dielec-
tric in the Lagrangian form. In the quasi-static approximation, the Maxwell
equations (7.1)–(7.4) for a dielectric become∫

∂s(t)

E · τdl = 0, (7.233)

d

dt

∫
s(t)

D ·Nds =
∫

∂s(t)

(H − v × D) · τdl, (7.234)∫
∂c(t)

D ·Nds = 0, (7.235)

where s(t) and c(t) are an arbitrary material surface and volume, respec-
tively.

Moreover, the balance equations for momentum and energy in the integral
form are

d

dt

∫
c(t)

ρv dc =
∫

∂c(t)

T · N ds+
∫

c(t)

ρb dc, (7.236)

d

dt

∫
c(t)

ρ

(
1
2
v2 + ε

)
dc =∫

∂c(t)

(T · v − E0 × H0 − h) · N ds+
∫

c(t)

ρb · v dc. (7.237)

Here E0 and H0 denote the electric and magnetic fields in the proper frame,
respectively (see Eqs. 7.133 and 7.135).

Finally, the entropy inequality takes the following form:

d

dt

∫
c(t)

ρη dc =
∫

∂c(t)

h
θ
· N ds. (7.238)
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In order to find the Lagrangian formulation for the above equations,
we must transform them into integral relations over volumes and surfaces
present in the reference configuration C∗. Recalling formulae (3.5) and
(3.19) of [16] (see also Sect. 1.1), we can write (7.233)–(7.235) in the form∫

∂s∗
E · τ∗ dl∗ = 0, (7.239)

d

dt

∫
s∗

D ·N∗ ds =
∫

∂s∗
H · τ∗ dl∗, (7.240)∫

∂c∗
D ·N∗ ds∗ = 0, (7.241)

where we have introduced the Lagrangian electromagnetic fields

EL = FiLEi, (7.242)
HL = FiLH0,i, (7.243)
DL = J(F−1)LiDi, (7.244)

and we have denoted the magnetic field in the proper frame (see Eq. 7.135)
by H0 = H− v × D.

We can now write (7.239)–(7.241) in the following local form:

∇XE = 0, (7.245)
∇XH = Ḋ, (7.246)

∇X · D = 0. (7.247)

In order to obtain the Lagrangian form of the energy balance, we prove
that ∫

∂c(t)

E0 × H0 ·N ds =
∫

∂c∗
E ×H · N∗ ds∗, (7.248)

where N∗ is the outward unit vector normal to ∂C∗. From (7.245), (7.246)
and the formula proved in Sect. 3.3 of [16],

Nidσ = J(F−1)KiN∗kdσ∗k,

we find that the right-hand side of (7.248) can also be written as∫
∂c�

εijl(F−1)Lj(F−1)MlELHMJ(F−1)KiN∗K dσ∗K .

Therefore, we can prove (7.248) if we consider the definition of the deter-
minant of the matrix A:

detAεKLM = εijhAiKAjLAhM .
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Taking into account this result, and applying the procedure described
in Sect. 5.7 of [16], we obtain the local forms for the balance equations of
momentum and energy:

ρ∗v̇ = ∇X · T∗ + ρ∗b, (7.249)
ρ∗ė = T∗ · ḞT −D · Ė − ∇X · h∗, (7.250)

as well as the entropy inequality

ρ∗θη̇ ≥ −∇X · h∗ +
h∗ · ∇Xθ

θ
, (7.251)

where ρ∗ = Jρ is the mass density in the reference configuration, and

e = ε− D · E
ρ∗

. (7.252)

Eliminating ∇X · h∗ between (7.250) and (7.251) leads to the Lagrangian
form of the reduced dissipation inequality:

−ρ∗(ζ̇ + ηθ̇) + T∗ · ḞT −D · Ė − h∗ · ∇Xθ

θ
≥ 0, (7.253)

where
ζ = e− θη, (7.254)

is the specific enthalpy.
In order to make the number of equations the same as the number of

unknowns, we have to assign the set of fields A = (T∗,D,h∗, ζ) in terms
of the displacement field u(X, t) and the temperature field θ(X, t), (X, t) ∈
C∗ ×�. For an elastic dielectric we have

A = A(S, E , θ,∇θ), (7.255)

where SiL = ui,L. Substituting (7.255) into (7.253) and applying the dis-
sipation principle, the following restrictions on the constitutive equations
can be obtained:

ζ = ζ(S, E , θ), (7.256)

T∗ = ρ∗
∂ζ

∂S
, (7.257)

D = −ρ∗ ∂ζ
∂E , (7.258)

η = −∂ζ
∂θ
, (7.259)

h∗ · ∇Xθ ≤ 0. (7.260)
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7.12 Variational Formulation for Equilibrium in Quasi-
electrostatics

In this section, extending the results obtained in Sect. 1.4, we give the
variational formulation for the equilibrium problem of an elastic dielectric
in the absence of thermal phenomena. This means that the solutions of the
equilibrium boundary value problem are extremals of a suitable functional
(see also Appendix A).

In this hypothesis, (7.245), (7.247) and (7.249) become

∇X × E = 0, (7.261)
∇X · D = 0, (7.262)

∇X ·T∗ + ρ∗b = 0. (7.263)

Since (7.261) implies the existence of an electric potential ϕ(X) such that

E = −∇Xϕ, (7.264)

the constitutive equation (7.256) assumes the form

ζ = ζ(ui,L, ϕ,L ), (7.265)

whereas the equilibrium equations (7.262) and (7.263), taking into account
(7.257), (7.258), become(

ρ∗
∂ζ

∂ui,L

)
,L

+ ρ∗bi = 0, (7.266)(
ρ∗

∂ζ

∂ϕ,L

)
,L

= 0. (7.267)

In order to avoid nonessential problems with convergence at infinity, we
assume that the dielectric is in contact with a rigid conductor across the
whole boundary ∂C∗ of the reference configuration of the material. In this
case, the mechanical boundary data are

ρ∗
∂ζ

∂ui,L
N∗L = t∗i, ∂C′

∗ ⊂ ∂C∗, (7.268)

ui = 0, ∂C∗ − ∂C′
∗, (7.269)

while the electric boundary conditions can be written as∫
∂C′′∗

ρ∗
∂ζ

∂ϕ,L
N∗L ds∗ = Q0, ∂C′′

∗ ⊂ ∂C∗, (7.270)

ϕ = 0, ∂C∗ − ∂C′′
∗ . (7.271)
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In other words, we assign the value of the potential ϕ on ∂C∗− ∂C′′
∗ and

the total charge Q0 on the other conductors.
We now denote by W 1

0 (C∗) the Sobolev space (see Appendix A) whose
elements are the functions k = (vi(X), λ(X)) : C∗ → �4 that belong to
L2(C∗) together with their generalized derivatives, and verify the conditions

vi = 0 on ∂C∗ − ∂C′
∗, λ = 0 on ∂C∗ − ∂C′′

∗ . (7.272)

Moreover, we recall that W 1
0 is complete with respect to the ordinary

Sobolev norm

||k||1W 0(C∗) =
4∑

α=1

(∫
C∗

(kα)2 dc∗ +
3∑

L=1

∫
C∗

(kα,L)2 dc∗

)
. (7.273)

Finally, let K = (ui, ϕ) ∈ W 1
0 be an equilibrium solution of the boundary

value problem (7.266)–(7.271).
If we multiply (7.266) by vi and (7.267) by λ and add the relations

obtained, we get the following scalar relation after integrating over C∗:∫
C∗

[(
ρ∗

∂ζ

∂kα,L

)
,L

kα + ρ∗bivi

]
dc∗. (7.274)

By applying Gauss’ theorem, the above equation assumes the equivalent
form

−
∫

C∗
ρ∗

∂ζ

∂kα,L
kα,L dc∗ +

∫
C∗
ρ∗bivi dc∗

+
∫

∂C∗
ρ∗

∂ζ

∂kα,L
kαN∗L ds∗. (7.275)

Taking into account the boundary conditions (7.270) and (7.271), we obtain
the weak formulation for the equilibrium problem (7.266)–(7.269):∫

C∗
ρ∗

∂ζ

∂kα,L
kα,L dc∗ =

∫
C∗
ρ∗bivi dc∗

+
∫

∂C∗
t∗ivi ds∗ +Q0λ, (7.276)

where λ is the constant value of k4 on ∂C′′
∗ .

It is a simple exercise to verify that (7.276) coincides with Frechèt’s
differential of the functional

F [kα] =
∫

C∗
ρ∗ζ(ui,L, ϕL) dc∗

−
∫

C∗
ρ∗biui dc∗ −

∫
∂C∗

t∗iui ds∗ −Q0ϕ∂C′′∗ , (7.277)
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where ϕ∂C′′∗ is the unknown constant value of the potential on those con-
ductors to which the total charge has been assigned.

If the potential on the conductors has a nonzero value ϕ0, it will be
sufficient to search for the extremals of the functional (7.277) in the affine
space k1 +W 1

0 (C∗), where k1 = (0, λ) and λ is a square-summable function
with first derivatives such that

λ =
{
ϕ0 on ∂C∗ − ∂C′′

∗
undetermined constant value on ∂C′′∗ .

(7.278)

In the above variational formulation we used the displacement u and the
electric field E. However, we could choose the pair (u,D) as independent
variables. To do this, it is sufficient to recall (7.252) and write the functional
(7.277) in the equivalent form

Ψ[u,D] =
∫

C∗
ρ∗e(∇u,D) dc∗ −

∫
C∗

ELDL dc∗

−
∫

C∗
ρ∗biui dc∗ −

∫
∂C∗

t∗iui ds∗ −Q0ϕ∂C′′∗ . (7.279)

Taking into account (7.252) and (7.262), we have

−
∫

C∗
ELDL dc∗ =

∫
C∗
ϕ,L DL dc∗

=
∫

C∗
(ϕDL),L dc∗ −

∫
C∗
ϕDL,L dc∗

=
∫

∂C∗
ϕDLn∗L ds∗ = ϕ∂C′′∗Q0.

Consequently, (7.279) becomes

Ψ[u,D] =
∫

C∗
ρ∗e(∇u,D) dc∗ −

∫
C∗
ρ∗biui dc∗ −

∫
∂C′∗

t∗iui ds∗. (7.280)

In order to verify that the extremals of the functional (7.280) are solutions
of the right equilibrium equations and boundary conditions, we recall that
the field D must verify the local condition

DL,L = 0, (7.281)

as well as the global condition∫
∂C′′∗

DLn∗L ds∗ = Q0. (7.282)



204 Chapter 7. Electromagnetism in Matter

In other words, we have to find the conditioned extremals of the functional
(7.280); i.e., the extremals of the functional

Ψ[u,D] =
∫

C∗
ρ∗e(∇u,D) dc∗ −

∫
C∗
ρ∗biui dc∗ −

∫
∂C′∗

t∗iui ds∗

+
∫

C∗
λDL,L dc∗ + μ

(∫
∂C′′∗

DLn∗L ds∗ −Q0

)
, (7.283)

where λ is a Lagrangian multiplier that depends on X ∈ C∗ and μ is a
constant Lagrangian multiplier.

It is again a simple exercise to verify that the extremals of (7.283) satisfy
the conditions (

ρ∗
∂ζ

∂ui,L

)
,L

+ ρ∗bi = 0, (7.284)

λ,L = ρ∗
∂e

∂DL
, (7.285)

λ∂C′′∗ = μ. (7.286)

Identifying the Lagrangian multiplier with the electric potential ϕ and con-
sequently λL with the Lagrangian electric field EL, we obtain the right
equilibrium and boundary conditions. After this identification, we note that
(7.285) implies the equation ∇XE = 0.



Chapter 8

Introduction to Magnetofluid
Dynamics

8.1 An Evolution Equation for the Magnetic Field

In this section we consider the equations of quasi-magnetostatics for a
fluid S that is a perfect conductor.

In Sect. 7.6 we saw that in quasi-magnetostatics the Maxwell equations
for the fundamental fields B, H and j assume the forms

∇× H = j, (8.1)
∇ ·B = 0, (8.2)
∇ · j = 0, (8.3)

where

B = μH, (8.4)
j = σ(E + v × B) = σE0. (8.5)

Moreover, the electric field E satisfies the equation

∇× E = −∂B
∂t
. (8.6)

Finally, the fields B, H, and j verify the following transformation rules
under the Galilean group:

B′ = B, (8.7)
H′ = H, (8.8)
j′ = j. (8.9)

We note that, when (8.4) and (8.5) are taken into account, (8.1) becomes

∇× B = μσ(E + v × B).

A. Romano, A. Marasco, Continuum Mechanics, Modeling and Simulation in Science, 
Engineering and Technology, DOI 10.1007/978-0-8176-4870-1_8,  
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Due to (8.6), the above equation can also be written as follows:

∇×∇× B = −μσ∂B
∂t

+ μσ∇× (v × B). (8.10)

From a known vector identity and (8.2) we obtain

∇×∇× B = ∇(∇ · B) −�B = −�B.

Consequently, from (8.10), we can derive the second-order partial differ-
ential equation

∂B
∂t

= ∇× (v × B) +
1
μσ

�B (8.11)

in the unknown B when the velocity field v is given. In Sect. 8.3 we associate
the mechanical balance equations needed to obtain a closed system with
(8.11).

We conclude this section with a nondimensional analysis of (8.11). Intro-
ducing the reference quantities L and T , which were defined in Sect. 7.3,
and denoting the nondimensional quantities with the same symbols, (8.11)
assumes the form

∂B
∂t

= ∇× (v × B) +
1
Rm

�B, (8.12)

where

Rm =
μσL2

T
(8.13)

is the magnetic Reynolds number .
It is interesting to evaluate the contributions of the different terms in

(8.13). To do this, we note that, in a good conductor with σ = 108 ohm−1/m
and μ = 10−6 henry/m,

Rm � 102L2

T
.

Therefore, as long as the quantities L and T (which are strongly related to
the nature of the problem considered) assume values such that Rm � 1,
then (8.12) reduces to the equation

∂B
∂t

=
1
μσ

�B. (8.14)

In the opposite case (i.e., when Rm � 1), (8.12) becomes

∂B
∂t

= ∇× (v × B). (8.15)

Equation 8.14 describes the diffusion of the magnetic field inside a con-
ductor, and this process is accompanied by a decay in B. Dimensional
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analysis shows that the decay time is on the order of L2μσ, where L is a
reference length comparable with the size of the conductor. For ordinary
conductors the decay time is short, but for celestial bodies, because of their
much larger sizes, the decay time is very large. For instance, it has been
shown that for the magnetic field of a sun spot, the time of decay is at least
300 years. In this chapter we will analyze some consequences of (8.14) and
(8.15).

8.2 Balance Equations in Magnetofluid Dynamics

Equation 8.12, when equipped with suitable boundary and initial condi-
tions, allows us to evaluate the magnetic field provided that the velocity
field is known. To obtain a closed system of field equations, we need to
introduce the dynamical balance equations for a moving fluid conductor.
As we saw in the preceding chapter, coupling Maxwell’s equations with the
classical balance equations does not lead to contradictions for low velocities
and low frequencies (the quasi-static approximation).

Also, in this new situation, we prefer not to start with a particular model
for the interaction between the conductor S and the magnetic field. In other
words, again we postulate that both mass conservation and momentum
balance hold in the standard form

ρ̇+ ρ∇ · v = 0, (8.16)
ρv̇ −∇ ·T + ρb = 0, (8.17)

where ρ is the mass density, T is the total symmetric stress tensor, and b
is the specific nonmagnetic external body force acting on S.

The set of equations (8.12), (8.16) and (8.17) form a closed system in
the unknown fields ρ, v and B, provided that the constitutive equation
for T is given as a function of these fields. However, this model is not
satisfactory, since the electric current in the conductor S produces heat
inside S (the Joule effect). Therefore, we must consider the temperature
as a new unknown field. In order to determine this field we introduce the
energy balance in the form

d

dt

∫
c(t)

ρ

(
1
2
v2 + ε

)
dc =

∫
∂c(t)

(
v ·T − h − E0 × H0

) ·N dσ

+
∫

c(t)

ρ(b · v + r) dc. (8.18)
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In (8.18), ε is the specific internal energy, h is the heat flux vector, E0×H0

is the Poynting vector, evaluated in the proper frame of a generic particle
of S, and r is the external supply of energy.

As is usual in continuum mechanics, the intention is for (8.18) to be valid
for any material volume c(t). Therefore, if the fields under the integrals are
regular, then (8.18) is equivalent to the following local energy balance:

ρε̇ = T : ∇v −∇ · h −∇ · (E0 × H0) + ρr. (8.19)

8.3 Equivalent Form of the Balance Equations

In this section, we will place the balance equations stated in the above
section into a new form, since this formulation enables an interesting phys-
ical interpretation. This result is obtained by manipulating the divergence
of Poynting’s vector.

From (8.5) and (8.7), we have

E0 × H0 = (E + v × B) × B
μ

= E× B
μ

+ (B · v)
B
μ

− B2

μ
v,

so that

∇ · (E0 × H0) = ∇ · (E× B
μ

) + ∇ ·
[
(B · v)B

μ
− B2

μ
v
]

=
B
μ

· ∇ × E− E · ∇ × B
μ

+
B
μ

· ∇(B · v)

+ B · v∇ ·B − B2

μ
∇ · v − v · ∇

(
B2

μ

)
.

Taking into account (8.6) and (8.1), the above relation becomes

∇ · (E0 × H0) = −∂B
∂t

· B
μ

− E · J +
B
μ

· (B×∇× v)

+ B · v × J + v · ∇B · B
μ

+ B · ∇v · B
μ

− B2

μ
∇ · v − v · ∇B2

μ
.

The third term on the right-hand side of the above relation vanishes since
the two vectors are parallel. Moreover, B·(v × J) = −J·(v × B), so, taking
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into account (8.5), we finally get

∇ · (E0 × H0) = −∂B
∂t

· B
μ

− E0 · J + v · ∇B · B
μ

+ B · ∇v · B
μ

− B2

μ
∇ · v − v · ∇B2

μ
. (8.20)

On the other hand, we also have

B
μ

· ∂B
∂t

=
B
μ

· Ḃ − v · ∇B · B
μ

=
1
2
d

dt

(
B2

μ

)
− v · ∇B · B

μ

=
ρ

2ρ
d

dt

(
B2

μ

)
− v · ∇B · B

μ

=
ρ

2
d

dt

B2

μρ
− ρ

2
B2

μ

d

dt

(
1
ρ

)
− v · ∇B · B

μ
,

and taking into account the equation of mass conservation, we have the
relation

−B
μ

· ∂B
∂t

= −1
2
ρ
d

dt

(
B2

μρ

)
+

1
2
B2

μ
∇ · v + v · ∇B · B

μ
. (8.21)

Inserting (8.21) into (8.20), we obtain the following expression of the
divergence of Poynting’s vector

∇ · (E0 × H0) = −ρ d
dt

(
B2

2μρ

)
+

1
2
B2

μ
∇ · v + 2v · ∇B · B

μ

− E0 · J + B · ∇v · B
μ

− B2

μ
∇ · v − v · ∇B2

μ
. (8.22)

Since

2v · ∇B · B
μ

− v · ∇B2

μ
=

2
μ
vi
∂Hj

∂xi
Hj − vi

μ

∂

∂xi
HiHj = 0, (8.23)

we can convert (8.22) into the following significant form:

−∇ · (E0 × H0) = ρ
d

dt

(
B2

2μρ

)
+

1
2
B2

μ
∇ · v

− (B ⊗ B
μ

) : ∇v + E0 · J. (8.24)

If we introduce this expression into the local energy balance (8.19) and
recall (8.5), then we obtain

ρė = t : ∇v −∇ · h +
J2

σ
+ ρr, (8.25)
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where

e = ε− 1
2μρ

B2 ≡ ε− e(m), (8.26)

t = T −
[
− 1

2μ
B2I +

1
μ
B⊗ B

]
≡ T − t(m). (8.27)

Since e(m) and t(m) coincide with the magnetic energy and the Maxwell
magnetic stress tensor of a pure magnetic field, (8.25) suggests that e and
t should be regarded as the mechanical energy and the mechanical stress
tensor, respectively. In this way, the total specific energy is obtained by
adding the mechanical energy and the magnetic energy, and the total stress
tensor is the sum of the mechanical and magnetic stress tensors. It is evident
that such an interpretation is reasonable if and only if e and t depend only
on mechanical variables. In the next section we prove, via the dissipation
principle, that this statement is not always valid.

We now determine the form assumed by the momentum balance (8.17).
Taking into account the decomposition (8.27), Eq. 8.17 becomes

ρv̇ = ∇ · t + ∇ ·
[
− 1

2μ
B2I +

1
μ
B ⊗ B

]
+ ρb. (8.28)

On the other hand,

− 1
2μ

∂

∂xi
(BjBj) +

1
μ

∂

∂xj
(BiBj)

= − 1
μ
Bj
∂Bj

∂xi
+

1
μ
Bj
∂Bi

∂xj
+

1
μ
Bi
∂Bj

∂xj

= Bj

(
∂Hi

∂xj
− ∂Hj

∂xi

)
= (∇× H) × B (8.29)

since ∇ · B = 0.
Finally, the momentum balance assumes the form

ρv̇ = ∇ · t + J × B + ρb. (8.30)

This equation can be interpreted by stating that the motion of the fluid
conductor is determined by both the external force ρb and the Lorentz force
J × B. For this interpretation, the remarks relating to (8.25) also hold.

Collecting together (8.15), (8.25) and (8.30), we can say that the motion
of a liquid that is a good conductor is governed by the following equations:

∂B
∂t

= ∇× (v × B), (8.31)

ρv̇ = ∇ · t +
1
μ
∇× B × B + ρb, (8.32)

ρė = t : ∇v −∇ · h +
1
μ2σ

(∇× B)2 + ρr, (8.33)
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where the unknowns are the fundamental fields v, B and θ, provided that
the constitutive equations of e, t and h are given. It is evident that we must
also consider mass conservation since ρ is an unknown when the conductor
is a fluid.

8.4 Constitutive Equations

We will omit the standard proof that the second law of thermodynamics,
together with the energy balance (8.33), leads to the following dissipation
inequality:

−ρ(ψ̇ + ηθ̇) + t : ∇v +
1
μ2σ

(∇× B)2 − h · ∇θ
θ

≥ 0, (8.34)

where ψ is the specific free energy and η is the specific entropy.
It is well known that the dissipation principle requires that the consti-

tutive equations for ψ, η, t and h must satisfy the inequality (8.34) in any
thermodynamical process v(x, t), B(x, t), θ(x, t). Denoting one of the fields
ψ, η, t and h by A, we assume that the constitutive equations for these
variables take the form

A = A(ρ,∇v,B, θ,∇θ). (8.35)

Before applying the dissipation principle to these constitutive equations,
we note from (8.31) that

∂B
∂t

= B · ∇v − v · ∇B − B∇ · v + v · ∇ · B.

Since ∇ · B = 0, the above relation can also be written as

Ḃ = B · ∇v − B∇ · v. (8.36)

Moreover, we introduce the notation

td = t − t(ρ,0,B,0) ≡ t − te, (8.37)

which defines the dynamic stress td and the stress at equilibrium te.
Taking into account (8.36) and mass conservation, we have

ψ̇ = −ρ∂ψ
∂ρ

I : ∇v +
∂ψ

∂θ
θ̇ +

(
∂ψ

∂B
⊗ B − ∂ψ

∂B
·BI

)
: ∇v

+
∂ψ

∂∇v
∇̇v +

∂ψ

∂∇θ ∇̇θ. (8.38)
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If this expression is inserted into (8.34), we obtain the following inequality:

− ρ

(
η +

∂ψ

∂θ

)
θ̇ +

(
te − ρ2 ∂ψ

∂ρ
I − ∂ψ

∂B
⊗ B +

∂ψ

∂B
·BI

)
: ∇v

+
∂ψ

∂∇v
∇̇v +

∂ψ

∂∇θ ∇̇θ

+ td : ∇v +
1
μ2σ

(∇× B)2 − h · ∇θ
θ

≥ 0, (8.39)

which is satisfied in any process if and only if

ψ = ψ(ρ,B, θ), (8.40)

η = −∂ψ
∂θ

= η(ρ,B, θ), (8.41)

te = ρ2 ∂ψ

∂ρ
I + ρ

∂ψ

∂B
⊗ B− ρ

∂ψ

∂B
·BI, (8.42)

td : ∇v +
1
μ2σ

(∇× B)2 +
h · ∇θ
θ

≥ 0. (8.43)

These relations show that, in general, decomposing the system into a
mechanical part and a magnetic part is not a valid approach. The only
way to achieve this is to take ψ(ρ, θ), td(ρ, θ,∇v), and h(ρ, θ,∇v). This
hypothesis, which is not natural, does not satisfy the principle of equipres-
ence and implies that there is no influence of the magnetic field on thermal
phenomena. However, under these conditions, the above relations become

ψ = ψ(ρ, θ), (8.44)

η = −∂ψ
∂θ

= η(ρ, θ), (8.45)

te = ρ2 ∂ψ

∂ρ
I, (8.46)

td : ∇v − h · ∇θ
θ

≥ 0. (8.47)

8.5 Ordinary Waves in Magnetofluid Dynamics

In this section we analyze the existence of ordinary waves in a moving
good conductor S carrying a magnetic field. We recall that an ordinary wave
is a moving surface Σ(t) across which the highest derivatives that appear in
the partial differential equations we are analyzing have finite discontinuities
(see [16] and Sect. 1.22).
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First, we consider the case of an incompressible conducting liquid S. For
this system, (8.31)–(8.33) become

∇ · v = 0, (8.48)

ρv̇ = −∇p+
1
μ
∇× B × B, (8.49)

∂B
∂t

= ∇× (v × B). (8.50)

Before considering the jump system associated with the above equations,
we transform (8.50) into a more convenient form. Due to (8.48) and the
condition ∇ · B = 0, we have

∇× (v × B) = B · ∇v − v · ∇B,

so (8.50) can equivalently be written as follows:

Ḃ = B · ∇v. (8.51)

Then we recall the fundamental formulae expressing the jumps in the
first derivatives that appear in Eqs. 8.48, 8.49, and 8.51:[[

∂vi

∂xj

]]
= λinj, (8.52)

[[v̇i]] = −λiU, (8.53)[[
∂Bi

∂xj

]]
= binj , (8.54)[[

Ḃi

]]
= −biU, (8.55)[[

∂p

∂xj

]]
= Pnj , (8.56)

where n is the unit vector normal to the wavefront Σ(t), λi are the compo-
nents of the amplitude of the discontinuity of ∇v, bi are the components
of the amplitude of the discontinuity of ∇B, and P is the amplitude of the
discontinuity of ∇p. Finally, U = cn − vn is the local speed of propagation
of Σ(t).

Finally, the jump system in relation to (8.48), (8.49), and (8.51) is

λ · n = 0, (8.57)

−ρλU = −Pn − 1
μ

(b × n) × B, (8.58)

−bU = (B · n)λ. (8.59)

From (8.57) and (8.59), we have

b · n = 0. (8.60)
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Therefore, upon expanding the double vector product that appears in (8.58)
according to the formula

(b × n) × B = (b · B)n− (B · n)b,

taking the scalar product of (8.58) by n, and considering (8.57) and (8.60),
we obtain

P = − 1
μ
b · B. (8.61)

This result leads us to the system

ρUλ = −B · n
μ

b,

b = −B · n
U

λ, (8.62)

from which we derive

U = ∓|B · n|√
μρ

. (8.63)

We conclude that transverse ordinary waves that propagate with a speed
given by (8.63) are possible in a highly conducting liquid.

We now consider the case of a compressible conducting fluid. In this case,
the equations to consider are (see Eqs. (8.31)–(8.33)):

ρ̇ = −ρ∇ · v, (8.64)

ρv̇ = −p′∇ρ+
1
μ
∇× B × B, (8.65)

Ḃ = B · ∇v − B∇v, (8.66)

and the related jump system is:

−σU = −ρλ · n, (8.67)

−ρUλ = −p′σn − 1
μ

[(b ·B)n − (·B · n)b], (8.68)

−Ub = (B · n)λ− B(λ · n), (8.69)

where the notation used has the same meaning as that used above, and σ
is the amplitude of discontinuity in the mass density.

From (8.67) and (8.69) we have

σ = ρ
λ · n
U

, b = − 1
U

[(B · n)λ− B(λ · B)], (8.70)

and so, after some calculation, we deduce the following result from (8.67):

(Q− U2I)λ = 0, (8.71)
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which shows that λ must be eigenvector of the symmetric acoustic tensor

Q =
(
p′ +

B2

μρ

)
n ⊗ n +

(B · n)2

μρ
I − B · n

μρ
(B⊗ n + n⊗ B). (8.72)

If we denote the unit vector along B by u and put

U2
s = p′, U2

a =
B2

μρ
, (8.73)

then the acoustic tensor assumes the form

Q =
(
U2

s + U2
a

)
n⊗ n + U2

a cos2 θI − U2
a cos θ(n ⊗ u + u ⊗ n). (8.74)

We note that Us is the usual speed of ordinary waves in compressible
fluids in the absence of magnetic fields. The symmetry of Q implies that its
eigenvalues are real; however, they must also be positive in order to have
a real speed of propagation. We recall that n is a unit vector that assigns
the direction of propagation of the ordinary wave. In order to simplify the
analysis of the eigenvalue equation (8.71), we introduce a frame of reference
Ox1x2x3 such that Ox1 is along n and the coordinate plane Ox1x2 contains
the vector B. In the above frame of reference we have n = (1, 0, 0) and
u = (cos θ, sin θ, 0), where θ is the angle between B and the Ox2−axis.

Using this notation, the characteristic equation of the matrix Q assumes
the following coordinate form:

det

⎛⎝U2
s + U2

a sin2 θ − U2 −U2
a sin θ cos θ 0

−U2
a sin θ cos θ U2

a cos2 θ − U2 0
0 0 U2

a cos2 θ − U2

⎞⎠ = 0. (8.75)

Developing the determinant on the left-hand side of the above equation, we
obtain the algebraic equation

(U2
a cos2 θ − U2)(U4 − (U2

s + U2
a )U2 + U2

aU
2
s cos2 θ) = 0, (8.76)

whose solutions are

U = ±Ua cos θ, (8.77)

U = ± 1√
2

√
U2

s + U2
a ±

√
U4

s + U4
a + 2(1 − 2 cos2 θ. (8.78)

The eigenvectors corresponding to the above eigenvalues are

(0, 0, 1), (a+ b, 1, 0), (a− b, 1, 0), (8.79)

where

a =
1
U2

a

csc 2θ(U2
a cos 2θ − U2

s ), (8.80)

b =
1
U2

a

csc 2θ
√
U2

s + U2
a − 2U2

sU
2
a cos 2θ. (8.81)
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Waves traveling at a speed of Ua are called Alfven waves . In view of
(8.79), such a wave is transverse, whereas the other two waves are oblique.
Figures 8.1 and 8.2 show polar plots of the speeds given by (8.77) and
(8.78) when Ua < Us and Ua > Us, respectively, and when the value of Us

is normalized to 1.
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Fig. 8.1 Polar plot of speed
for Ua < Us
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Fig. 8.2 Polar plot of speed
for Ua > Us

8.6 Alfven’s Theorems

Equation 8.15 has significant consequences that are represented by two
theorems, known as Alfven’s theorems . Before we define and prove these
theorems, we first define a magnetic line of force as a curve whose tangent
at any point has the same direction as the vector B at that point.

Theorem 8.1

The magnetic flux across any material surface is constant.

PROOF From Eq. (4.48) in [16], we conclude that the vector identity

d

dt

∫
S(t)

B · N dσ =
∫

S(t)

[
∂B
∂t

+ ∇× (B × v) + v∇ ·B
]
· N dσ (8.82)

holds for an arbitrary material surface S(t). Then, from (8.2) and (8.15),



8.7. Laminar Motion Between Two Parallel Plates 217

we derive that
d

dt

∫
S(t)

B ·N dσ = 0. (8.83)

Theorem 8.2
The magnetic lines of force are material lines.

PROOF Let T0 be a magnetic tube formed from magnetic lines of force
starting from the point of a curve γ0 in configuration C0 of the conducting
fluid S at the instant t (see Fig. 8.3). σ0 denotes any surface lying on T0. It
is evident that the flux of B across σ0 is zero. Let Tt and σt be the images
at the instant t, according to the equations of motion, of the surfaces T0

and σ0, respectively. Since Tt and σt are material surfaces, then, due to the
above theorem, the flux of B at the instant t across σt is still zero. However,
σt is arbitrary, so B is orthogonal to the surface Tt, which is therefore a
tube of magnetic lines of force.

Essentially, this theorem states that magnetic lines of force are carried
during the motion.

T�
Tt

B��

�t

	
�

Fig. 8.3 Evolution of a
magnetic tube

8.7 Laminar Motion Between Two Parallel Plates

In this section we analyze the stationary laminar motion of a conducting
viscous liquid S that flows between two parallel fixed plates π1 and π2
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under the influence of a uniform magnetic field B0/μ which is orthogonal
to the plates (see Fig. 8.4). S is incompressible and the motion is stationary.
Therefore, if we neglect the action of external forces, then (8.31) and (8.32)
become

0 = ∇× (v × B) +
1
μσ

ΔB, (8.84)

ρv · ∇v = −∇p+
1
μ
∇× B× B + ρνΔv, (8.85)

where ρ is the constant mass density and ν the viscosity coefficient of S
(see p. 272 of [16]).

We must add the following other equations to those given above:

∇ · v = 0, ∇ ·B = 0. (8.86)

These state the incompressibility of the liquid S and the solenoidal character
of B.

Physical evidence suggests that we should search for a solution with the
following form:

v = v(z)i, B = b(x)i +B0k, p = p(x, z). (8.87)

First, we note that these fields satisfy both of the equations in (8.86).
Further, it is staightforward to verify that

∇× (v × B = B0
∂v

∂z
i, ΔB =

∂2b

∂z2
i, (8.88)

(∇× B) × B =
∂b

∂z
i− b

∂b

∂z
k, (8.89)

v · ∇v = 0, Δv =
∂2v

∂z2
k. (8.90)

Fig. 8.4 Flow between
parallel plates
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Consequently, the components of the above equations along the axis Ox
are

μσB0
∂v

∂z
+
∂2b

∂z2
= 0, (8.91)

− ∂p

∂x
+
B0

μ

∂b

∂z
+ ρν

∂2v

∂z2
= 0, (8.92)

whereas their projections along the axis Oz give the following condition:

∂p

∂z
+

1
2μ

∂b2

∂z
. (8.93)

We are now faced with a system of three differential equations in the three
unknowns v(z), b(z) and p(x, z). Since the second and the third terms on
the left-hand side of (8.92) depend only on the variable z, and the first term
is a function of x and z, we deduce that

∂p

∂z
= −P, (8.94)

where P is a constant. Integrating (8.93), we obtain the following expression
for p:

p(x, z) = −Px+ p0 − 1
2μ
b2(z), (8.95)

where p0 is constant. We can say that p(x, z) will be known when b(z) is
given together with two values of p(x, z) along the axis Ox.

In view of (8.94), Eqs. (8.91) and (8.92) lead us to the system

μσB0
dv

dz
+
d2b

dz2
= 0, (8.96)

B0

μ

db

dz
+ ρν

d2v

dz2
= −P (8.97)

in the unknowns v(z) and b(z). First integration of (8.96) yields

db

dz
= A − μσB0v, (8.98)

where A is a constant. Introducing this result into (8.97), we derive a second-
order linear equation with constant coefficients:

d2v

dz2
− L2

M2
v +

1
ρν

(
P +

B0

μ
A

)
= 0, (8.99)

where L is the distance between the plates and

M = B0L

√
σ

ρν
(8.100)
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is the nondimensional Hartmann number. Since the fluid S is assumed to
be viscous, the natural boundary conditions to associate with (8.99) are

v(−L) = 0, v(L) = 0. (8.101)

We can easily verify that the solution of the boundary value problem cor-
responding to (8.99) and (8.101) is given by the function

v(z) =
(

P +
AB0

μ

)
cosh(M) − cosh

(
Mz
L

)
σB2

0 cosh(M)
, (8.102)

which still contains the constant A. Integrating (8.98) and taking into ac-
count (8.102), we obtain the result

b(z) = c+ Az −
(

P +
AB0

μ

)
μL

z
L cosh(M) − 1

M sinh
(

Mz
L

)
B0 cosh(M)

. (8.103)

It now remains to determine the constants A and c in the expressions
(8.102) and (8.103). To this end, we must assign suitable boundary con-
ditions for the function b(z). The starting equation (8.84) is more general
than (8.50), which describes the evolution of the magnetic field for con-
ductors with very high conductivities. Consequently, Alfen’s theorems do
not hold for the problem we are considering. However, due to the presence
of the term ∇ × (v × B), we can assume that the magnetic lines of force
are partially transported by the flow and that there is no transport when
the velocity vanishes. Based on this hypothesis, we can derive the following
boundary conditions:

b(−L) = 0, b(L) = 0, (8.104)

which allow us to place (8.102) and (8.103) in the following final forms:

v(z) = MP
cosh(M) − cosh

(
Mz
L

)
B2

0σ sinh(M)
(8.105)

b(z) = PμL
sinh

(
Mz
L

)− z
L sinh(M)

B0 sinh(M)
. (8.106)
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Fig. 8.5 Flow plot for
0.1 ≤M ≤ 0.5

�L L
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Fig. 8.6 Flow plot for
1 ≤M ≤ 10

Figures 8.6 and 8.7 show flow plots for various Hartmann numbers. We can
see that, for low Hartmann numbers, the velocity tends to the parabolic
profile given by the formula

v(z) =
M2P(L2 − z2)

2B2
0L

2σ
, (8.107)

which coincides with the first term in the Taylor series for (8.105). For large
values of M , the profile of v(z) shows the presence of boundary layers next
to the plates.
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8.8 Law of Isorotation

A common problem encountered in astrophysics involves analyzing a fluid
mass S that has a high electrical conductivity, carries a magnetic field, and
rotates about a fixed axis a with an angular velocity ω that does not change
over time. To investigate this problem, we denote a system of cylindrical
coordinates about the axis a by (r, ϕ, z), and we assume that the angular
velocity ω is a function of r and z:

ω = ω(r, z), (8.108)

i.e., we suppose that the velocity field displays cylindrical symmetry about
the axis a. If we denote the velocity components along the axes of a unit
holonomic basis (er, eϕ, ez) relative to the cylindrical coordinates by (vr, vϕ,
vz), then it follows that the velocity v of the point (r, ϕ, z) ∈ S can be writ-
ten as follows:

v = r2ω(r, z)eϕ ≡ vϕ(r, z)eϕ, (8.109)

and the flow will exhibit cylindrical symmetry about a. Further, we have1

∇ · v =
1
r

∂(rvr)
∂r

+
1
r

∂vϕ

∂ϕ
+
∂vz

∂z
= 0. (8.110)

Finally, due to the stationarity hypothesis and (8.110), the continuity equa-
tion for mass becomes

v · ∇ρ = rω
∂ρ

∂ϕ
= 0, (8.111)

so that ρ = ρ(r, z). If we assign the pressure p using the state equation
p = p(ρ), then we can conclude that the pressure field also exhibits cylin-
drical symmetry about the axis of rotation a.

It now remains to analyze the Maxwell equations (8.50), which in our
hypotheses reduce to

∇× (v × B) = 0. (8.112)

If the region occupied by S is simply connected, then the above equation
implies the existence of a smooth function Φ(r, ϕ, z) such that

v × B = ∇Φ. (8.113)

This condition can be explicitly written in the form

rωeϕ × (Brer +Bϕeϕ +Bzez) =
∂Φ
∂r

er +
1
r

∂Φ
∂ϕ

eϕ +
∂Φ
∂z

ez,

1For the expression for the divergence of a vector field in cylindrical coordinates, see
p. 65 of [16].
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which is equivalent to the equation

rω(Bzer −Brez) =
∂Φ
∂r

er +
1
r

∂Φ
∂ϕ

eϕ +
∂Φ
∂z

ez,

from which we derive

Φ = Φ(r, z), (8.114)

Br = − 1
rω

∂Φ
∂z

= Br(r, z), (8.115)

Bz =
1
rω

∂Φ
∂r

= Bz(r, z). (8.116)

We conclude that the components Br and Bz of the induced magnetic field
do not depend on the angular variable ϕ. Moreover, due to (8.113), we
obtain the relations

∇Φ ·B = 0, ∇Φ · v = 0, (8.117)

which allow us to state that both the current and the magnetic lines lie on
the surfaces of revolution Φ(r, z) = const. Writing (8.115) and (8.116) in
the forms rωBr = −∂Φ/∂z and rωBz = ∂Φ/∂r, differentiating the former
with respect to r and the latter with respect to z, and adding the results
obtained, we derive the condition

∂

∂r
(rωBr) +

∂

∂z
(rωBz) = 0. (8.118)

On the other hand, the equation ∇ ·B = 0 gives us

∂

∂r
(rBr) +

∂

∂z
(rBz) +

∂Bϕ

∂ϕ
= 0. (8.119)

Multiplying both the sides of this equation by ω and subtracting (8.118)
from the result, we obtain

rBr
∂ω

∂r
+ rBz

∂ω

∂z
− ω

∂Bϕ

∂ϕ
= 0. (8.120)

Since the first two terms of this equation and ω do not depend on ϕ, we can
say that Bϕ does not depend on ϕ. Therefore, (8.119) and (8.120) reduce
to

∂

∂r
(rBr) +

∂

∂z
(rBz) = 0, (8.121)

rBr
∂ω

∂r
+ rBz

∂ω

∂z
= 0. (8.122)

The first of the above equations implies the existence of a function V (r, z)
such that

Br = −1
r

∂V

∂z
, Bz =

1
r

∂V

∂r
. (8.123)
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Consequently, (8.122) becomes

∂V

∂r

∂ω

∂z
− ∂V

∂z

∂ω

∂r
= 0, (8.124)

and the angular velocity ω is a function of V :

ω = ω(V ). (8.125)

Due to (8.124), we can introduce the meridian magnetic induction field

Bm =
1
r

(
−∂V
∂z

er +
∂V

∂r
ez

)
. (8.126)

An integral curve (r(λ), ϕ(λ), z(λ)) of this field, containing a point P , obeys
the equations

dr

dλ
= −1

r

∂V

∂z
,

dϕ

dλ
= 0,

dz

dλ
=

1
r

∂V

∂r
, (8.127)

meaning that it lies in a meridian plane containing P and its tangent vector
is orthogonal to ∇V at any point. In other words, it is a meridian curve of
the surface of revolution V = const that contains P .

Finally, due to (8.125), we can state that the angular velocity ω is constant
on any surface V = const obtained by rotating a meridian integral curve of
Bm about the rotation axis of S. This result is known as Ferraro’s law of
isorotation (1937).



Chapter 9

Continua with an Interface and
Micromagnetism

9.1 Ferromagnetism and Micromagnetism

In the presence of an external magnetic field, a ferromagnetic substance1

exhibits a behavior that is quite different from the behavior of a para-
magnetic body. Under the same conditions, the former shows an induced
magnetization that is much greater than the corresponding magnetization
exhibited by the the latter. Moreover, the functional relation between the
magnetic field and the magnetization is nonlinear in a ferromagnetic body
and linear in a paramagnetic one. Finally, in a ferromagnetic body the mag-
netization depends not only on the actual value of the magnetic field but
its history (i.e., hysteresis).

Weiss [136] explained the anomalous behavior of ferromagnetic bodies
by supposing that, even in the absence of an external magnetic field, the
magnetic state of a ferromagnetic crystal C is described by a vector field
M = M0m, where M0 is a constant scalar that is characteristic of C and
denotes the magnetization per unit volume, and m is a smooth unit mag-
netic field. The latter is piecewise constant in almost all of the volume D
of the crystal, except in thin layers, across which it varies between one con-
stant direction and another. The regions Da, a = 1, . . . ,m, in which M
is constant are called Weiss domains.2 A Weiss domain has at least one
microscopic dimension (a few hundred microns), whereas its other dimen-
sions are comparable to those of the crystal. On the other hand, transition
layers, which are called domain walls or Bloch walls [139], have a thickness

1What is said in this chapter about ferromagnetic crystals also holds for ferroelectric
crystals; see, for instance, [140, 141].
2Experimental proof of the existence of Weiss domains was found by Barkhauser [137],
whereas the physical explaination for ferromagnetism was provided by Heisenberg [138].
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of a few microns. The theoretical justification for this complex distribu-
tion derives from the combined effects of three factors: the magnetic energy
related to the anisotropy of the crystal, dipole–dipole exchange quantum
forces, and the form of the crystal. The presence of an external magnetic
field modifies the weights of the effects of these three factors on the domain
distribution. In particular, for a weak external magnetic field H, domains
in which M · H > 0 increase in volume whereas domains that obey the
opposite condition reduce in volume. For a strong external magnetic field,
the magnetization in any domain tends to become parallel to H.

Micromagnetism is the most natural attempt to describe the above situ-
ation by adopting a continuum physics perspective (see, for instance, [144]–
[154]). Since we are interested in demonstrating the difficulties of this theory
here, we will limit ourselves to the case of a rigid ferromagnetic crystal.

Micromagnetism is based on the following assumptions:

• The energy per unit volume of the crystal is a function e(m,∇m) of
the unit vector m and its gradient. In particular, in uniaxial crystals,
it usually takes the form

e = M0
1
2
α

3∑
i=1

(∇mi)2 +
1
2
β

2∑
i=1

m2
i , (9.1)

where α and β are constants that depend on the crystal.

• Denoting the magnetic potential by φ, the possible equilibrium con-
figurations of the crystal correspond to minima of the total energy

F (m, φ) =
∫

D

M0e(m,∇m) dv − 1
2

∫

3

|∇φ|2 dv +M0

∫
D

m · ∇φdv,
(9.2)

under the constraint
m ·m = 1. (9.3)

It is not difficult to verify that the Lagrange equations of the functional
(9.2) under the constraint (9.3) are

e,mi −(e,mi,j ),j −φ,i +λmi = 0, (9.4)
μ0φ,i −M0mi,i = 0,

where μ0 denotes the permeability of a vacuum, λ is a Lagrangian multiplier
arising from condition (9.3), and we have used the notation f,a = ∂f/∂a.

In order to see that (9.4), in principle, provides for the presence of Bloch
walls, it is sufficient to recall that the coefficients that multiply the second-
order derivatives in (9.4) are very small. For instance, the coefficient α in
(9.1) is on the order of 10−13. In other words, the equations (9.4) make
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it possible to have boundary layers inside the volume D of the crystal.
However, it is very difficult to find their locations inD, even for the simplest
geometry of D. Information about the domains can only be obtained by
resorting to rather drastic approximations (see [142, 143, 153, 155]).3

In the next few sections we show that the model of a continuum with an
interface allows us to determine the form and the magnitude of the Weiss
domains, at least when the volume D of the crystal has a simple geometry.

9.2 A Ferromagnetic Crystal as a Continuum with an
Interface

In order to obtain a sufficiently accurate description of the domains and
to simplify the task of determining them, we replace the domain walls
with surfaces of discontinuity Sb, b = 1, . . . , q for m, and take into ac-
count the energy contained in a transition layer with a surface energy of
eσ(n,m−,m+), which depends a priori on the orientation of the unit nor-
mal n of Sb with respect to the crystallographic axes and on the constant
vectors m in two domains adjacent to the domain wall under consideration.
However, in addition to this surface energy, we will still consider an energy
per unit magnetization and per unit volume of the crystal that depends on
∇m as well as m. Actually, except for very particular forms of D associated
with the symmetry class of the crystal, satisfying the boundary conditions
on ∂D may require the formation of small regions that adhere to the exter-
nal walls of the ferromagnetic crystal where the magnetization field m is
not uniform. The equilibrium configuration of a rigid ferromagnetic crystal
in the presence of an external magnetic field is then derived by imposing
the requirement that the total energy becomes stationary with respect to
variations in the magnetization, the external magnetic field and the sur-
faces Sb, which engender the Weiss domains under the constraints that m
is a unit vector and that the volume of D remains constant (see [156]).

Starting from these equations, we prove in the next sections that:

• The domain walls inside D are necessarily planar

• The resulting magnetic field H in each domain is uniform

• In some cases, p and H are parallel in each domain.

3It would be interesting to analyze this problem using numerical methods.
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9.3 Variations in Surfaces of Discontinuity

We consider a domain D in which there is a given field f(ξ) where
ξ = ξ(x) denotes a collection of variables that depend on the Cartesian
coordinates x. We assume that D is the union of m disjoint open subdo-
mains Da, a = 1, . . . ,m, i.e., D =

⋃m
a=1Da, Da

⋂
Db = ∅. The subdomains

are separated by q surfaces Sb, b = 1, . . . , q (see Fig. 9.1). In what follows,
S =

⋃q
b=1 Sb and we assume that f exhibits a discontinuity at S.

Da

Sb

D

Fig. 9.1 Weiss domains and
Bloch walls

We now evaluate the variation in the integral

I =
∫

D

f(ξ) dv, (9.5)

due to the variations δ in the field variables and the variations δr in the
surfaces of discontinuity Sb, while the shape of D is retained. To simplify
the analysis, we start with a single surface of discontinuity S.

From (9.5), we have

δI = δ

∫
D−

f(ξ) dv + δ

∫
D+

f(ξ) dv,

where
δ

∫
D−

f(ξ) dv =
∫

D−+δD−
f(ξ + dξ) dv +

∫
D−

f(ξ) dv,

and an analogous formula holds for D+. On the other hand, ∂D is fixed
and D− only changes with variations in S, so that

δ

∫
D−

f(ξ) dv =
∫

D−
f,ξ ·δξ dv +

∫
S

f−δrn da, (9.6)

where δrn denote the displacement of S along the unit normal n, which is
assumed to belong to D+. Finally, we obtain

δ

∫
D

f(ξ) dv =
∫

D

f,ξ ·δξ dv −
∫

S

[[f ]]δrn da. (9.7)
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More generally, if S is the union of some surfaces, we have the requested
formula

δ

∫
D

f(ξ) dv =
∫

D

f,ξ ·δξ dv −
q∑

q=1

∫
S

[[f ]]δrn da. (9.8)

It now remains to evaluate the variation in the integral

F =
∫

S

φ(ξ) da,

when the surfaces of discontinuity Sb are modified. The following formula
is proved in [156]:

q∑
b=1

∫
Sb

φ(ξ) da =
q∑

b=1

∫
Sb

(φ,ξ ·δξ − φbααδrn − φ;αδr
α) da

−
r∑

c=1

∫
Γc

[[φn]] × t · δr ds, (9.9)

where bαα is the trace of the second fundamental form on S (see Appendix
B), δrα are the components of the variation δr in the surface S along the
natural basis aα, Γc, c = 1, . . . , r are the curves along which the surfaces
Sb intersect each other, and t is the unit tangent vector to the curves Γc.

9.4 Variational Formulation of Weiss Domains

Let us consider a rigid ferromagnetic crystal C that occupies a fixed re-
gion D of the space �3. We assume that C is in an external static magnetic
field, and we denote the sum of the external magnetic field and the intrinsic
magnetic field generated by the crystal by H. Since ∇×H = 0, we denote
the total magnetic potential by φ. We are essentially interested in the for-
mation of Weiss domains in which the polarization is uniform. The walls of
Weiss domains are in essence boundary layers across which there are large
magnetization gradients. We approximate the boundary layers by surfaces,
but we take into account the effect of the boundary layers by introduc-
ing appropriate surface energies on the walls of the Weiss domains. As a
consequence, the magnetization field in D is only piecewise differentiable.

We will first consider a more general case in which the magnetization
vector M0m has a constant magnitude but may change in direction. We
now state a variational principle which allows us to derive all of the field
equations and the jump and boundary conditions. Then we will show that
the Weiss domains actually exist almost throughout D, except in a very



230 Chapter 9. Continua with an Interface and Micromagnetism

thin layer adjacent to the exterior boundary ∂D, which may or may not
form depending on the shape of ∂D.

We will consider the following functional to give the total energy of the
crystal C in the external magnetic field:

F =
∫

D

M0e(m,∇m) dv +
1
2
μ0

∫

3
φ,i φ,i dv −M0

∫
D

φ,i mi dv

+
q∑

b=1

M0

∫
Sb

eσ(n,m−,m+) da, (9.10)

where e(m,∇m) is the magnetic energy per unit volume of the crystal, the
second integral denotes the magnetic energy in �3, the third integral is the
interaction energy in D between the magnetic field and magnetization, and
eσ is the energy per unit area of Sb, which depends on the orientation of
Sb and on the values taken by m when it approaches Sb from either side.

We postulate that the following variational principle holds: the equilib-
rium configurations m, φ, Sb of the ferromagnetic crystal C are extremals
of the functional (9.10) with respect to all of the variations in m, φ, Sb for
which D is constant and m is a unit vector field.

Applying (9.8) and (9.9) to (9.10), we obtain the following local condi-
tions after tedious calculations:

• In Da, a = 1, . . . ,m,

e,mi −(e,mi,j ),j −φ,i +λmi = 0, (9.11)
μ0φ,ii −M0mi,i = 0, (9.12)

• In �3,
φ,ii = 0, (9.13)

• On ∂D,

μ0[[φ,i ]]ni +M0mini = 0, (9.14)
e,pi,j nj = 0, (9.15)

• On Sb, b = 1, . . . , q,[[
M0e+

1
2
μ0φ,i φ,i −M0φ,i mi

]]
+M0(V α

;α + bααeσ) = 0, (9.16)
[[μ0φ,i −M0mi]]ni = 0, (9.17)

eσ,m+
i
m+

i;α + eσ,m−
i
m−

i;α = 0 (9.18)

eσ,m+
i
− e+,mi,j nj = 0, (9.19)

eσ,m−
i

+ e+,mi,j nj = 0, (9.20)
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• On Γc, c = 1, . . . , r,

[[(V × n · t)n − eσn× t]] = 0. (9.21)

In the above equations, λ and Λ are the two Lagrangian multipliers re-
lated, respectively, to the condition m ·m = 1 and the invariance of the
total volume ofD. Finally, V is the projection onto Sb of the vector ∂eσ/∂n.

9.5 Weiss Domain Structure

We now assume that m is a constant vector field. Equations 9.11–9.14
then become:

• In Da, a = 1, . . . ,m,

e,mi −φ,i +λmi = 0, (9.22)
μ0φ,ii = 0, (9.23)

• On Sb, b = 1, . . . , q,

μ0[[φ,i ]]ni +M0mini = 0. (9.24)

It might be wise to remark here that the Lagrange multiplier λ(x is generally
different for each domain. Since pi is assumed to be constant, e,pi is also
constant, and from (9.22) we have

φ,i = λ(x)mi + e,mi . (9.25)

From (9.23) and (9.25), we see that

λ,i mi = 0. (9.26)

On the other hand, the integrability conditions of (9.25) are

λ,i mj = λ,j mi.

Multiplying this relation by mi, recalling that m is a unit vector, and
recalling (9.26), we then find that

λ,j = λimimj = 0.

Hence, the Lagrangian multiplier λ(x) can only be a constant λa in each
domain Da, where the magnetic potential can now be written as

φa =

[
λam

(a)
i +

∂e

∂m
(a)
i

]
xi + da, (9.27)
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and the magnetic field in Da is constant:

H
(a)
i = λam

(a)
i +

∂e

∂m
(a)
i

. (9.28)

We note that the direction of this field is generally different from that of
the magnetization, depending on the isotropic class of the crystal.

It now remains to consider relation (9.26), which holds on one of the
Weiss walls between two adjacent Weiss domains. Due to (9.28), this can
be written as

[[(μ0λ−M0)mi + μ0e,mi ]]ni = 0. (9.29)

If we introduce the constant vector

bi = [[(μ0λ−M0)mi + μ0e,mi ]], (9.30)

(9.29) becomes
bini = 0. (9.31)

This relation implies that the unit normal vector to a wall separating two
Weiss domains should remain perpendicular to a constant vector deter-
mined by the magnetization vectors and Lagrangian multipliers in those
domains. If the equation of the domain wall is given by

f(x) = 0, (9.32)

then (9.31) requires that f must satisfy the following first-order linear par-
tial differential equation:

bif,i = 0, (9.33)

whose general solution is

f(x) = b1x3 − b3x1 − b1g(b2x1 − b1x2) = 0, (9.34)

where g is an arbitrary function of its argument. It is clear that (9.34)
defines a ruled surface with generating lines that are parallel to the vector
b. The principal curvature of this surface is

k1 = 0, k2 = |b|2g′′
[
1 +

(
b3
b1

+ b2g
′
)2

+ b21g
′2
]−3/2

, (9.35)

where the primes denote differentiation with respect to the argument on
which g depends.

We now impose the continuity of magnetic potential across the domain
wall. To simplify the notation, we introduce new constants

ci = λmi + e,mi (9.36)
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for each Weiss domain and denote the values of these constants in the two
Weiss domains adjacent to the domain wall Sb by c+i and c−i . Hence, the
continuity of φ across Sb is expressed as (see Eq. (9.27)):

c+i xi|Sb
+ d+ = c−i xi|Sb

+ d−,

or, employing (9.34),

c+1 x1 + c+2 x2 + c+3

[
b3
b1
x1 + g(b2x1 − b1x2)

]
+ d+

= c−1 x1 + c−2 x2 + c−3

[
b3
b1
x1 + g(b2x1 − b1x2)

]
+ d−,

which leads us to

(c−3 − c+3 )g(b2x1 − b1x2)

=
[
c+1 − c−1 +

b3
b1

(c+3 − c−3 )
]
x1 + (c+2 − c−2 )x2 + d+ − d−. (9.37)

This relation implies that g can only be a linear function of its argument,
such as

g = A(b2x1 − b1x2) +B, (9.38)

where A and B are constants. This in turn implies via (9.33) that only
planar domain walls are admissible. Introducing (9.36) and (9.37), we also
find that

c+1 − c−1 +
b3
b1

(c+3 − c−3 ) = −Ab2(c+3 − c−3 ), (9.39)

c+2 − c−2 = −Ab1(c+3 − c−3 ), (9.40)
d+ − d− = −B(c+3 − c−3 ), (9.41)

which impose certain restrictions on the position of the domain wall. The
relations (9.39) and (9.40) clearly imply that

bi[[ci]] = 0 (9.42)

on Sb. Introducing (9.30) into the above relation and rearranging the terms,
we find that it can be expressed as

μ0|[[λm]]|2 −M0(λ+ + λ−)(1 − m+ ·m−)
− M0[[m]] · [[e,p ]] − μ0|[[e,p ]]|2 = 0 (9.43)

on Sb, b = 1, . . . , q.
Let us consider the conditions (9.18)–(9.20). If we suppose that

eσ(n,m+,m−) = eσ(n, [[m]]), (9.44)
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then
eσ,m+

i
+ eσ,m−

i
= 0

and (9.19) and (9.20) lead to the condition

e,+mi,j
nj = e,−mi,j

nj. (9.45)

When we recall that m is constant in each domain, that the domain walls
are planes, and (9.44), we find that

eσ,α = 0, (9.46)

i.e., the surface energy is constant on each domain wall.
Finally, taking into account (9.46) and the definition of V = ∂eσ/∂n,

condition (9.18) becomes[[
M0e+ (μ0λ−M0)mie,mi +

1
2
μ0e,mi e,mi +

1
2
μ0λ

2 −M0λ

]]
= 0 (9.47)

on Sb, b = 1, . . . , q.
We now observe that, in each Weiss domain Da, a = 1, . . . ,m, we have

the set of unknown constants λa,m(a), da that determine the magnetization
field and the magnetic potential in each domain, the Lagrangian multiplier
Λ and the parameters Ab and Bb that characterize the bth domain wall Sb,
b = 1, . . . , q. Of course, since m(a) is a unit vector, it gives rise to only two
unknowns in each domain. Moreover, the magnetic potential is determined
up to an arbitrary constant, meaning that the unknowns ba are essentially
m−1. In any case, we have many more unknowns than equations. Therefore,
a solution to this problem should not be expected. Moreover, the equations
at hand are nonlinear, so real values for the unknowns may not exist at
all in certain cases. It is clear that this depends heavily on the symmetry
group of the crystal under consideration. If a crystal class does not permit
a real solution to be obtained for the above problem, then we must infer
that such a crystal class cannot exhibit ferromagnetic properties.

9.6 Weiss Domains in the Absence of a Magnetic Field

In this section we will analyze the case in which the magnetic field van-
ishes identically throughout the space and the magnetization field m is
piecewise constant. According to these hypotheses, (9.22) and (9.24) be-
come

e,mi = −λmi, (9.48)
[[mi]]ni = 0. (9.49)
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Finally, in view of (9.48), relation (9.47) can be written as

[[M0e]] = 0. (9.50)

Condition (9.49), which must be obeyed at the domain walls Sb, again
implies that each Sb is a ruled surface. Since we cannot use the continuity
of the magnetic field across domain walls, we cannot prove that Sb is a
planar surface. However, if we note that the walls remain planar provided
that even a very weak magnetic field is present, then for continuity reasons
we can assume that they remain planar in the absence of a magnetic field.

The boundary condition (9.14) on ∂D requires that

mini = 0; (9.51)

that is, the magnetization vector should be in the plane tangent to the
boundary of the ferromagnetic crystal. If ∂D does not consist of the union
of planar surfaces that can carry the admissible magnetization vector, then
it is obvious that the internal Weiss domains cannot be extended to the
boundary. Therefore, for any arbitrary form of the crystal, we are com-
pelled to assume the existence of a thin layer adjacent to the boundary
of the crystal in which the magnetization vector cannot be assumed to
be piecewise uniform. We expect that the solution for m in this layer DL

approaches the constant values that prevail inside the crystal at points suf-
ficiently far from the boundary ∂D. Therefore, we assume that there is a
piecewise uniform magnetization field that is again the solution of (9.48) in
the neighborhoods of Weiss domains that are close to the boundary. How-
ever, the field m must vary very rapidly from these constant states to the
field tangent to the boundary. Hence, we must assume that the magnetiza-
tion gradients in a very thin boundary layer adjacent to ∂D are very large,
but that they asymptotically approach a piecewise constant state in the
rest of DL. Thus, in this layer we must consider the general equations

e,mi −(e,mi,j ),j +λmi = 0, (9.52)
mi,i = 0. (9.53)

By resorting to appropriate nondimensional analysis, we expect to trans-
form (9.52) into equations that have a small parameter in front of the
second-order derivatives of mi. Hence, we are faced with a singular per-
turbation problem. We only remark here that the approximate boundary
layer equations that can be obtained by the usual singular perturbation
technique should be solved by satisfying the boundary conditions

mini = 0, e,mi,j nj = 0, on ∂D, (9.54)

and the resulting equations should be matched with the constant states
that satisfy the following jump conditions on the wall domains:

[[mi]]ni = 0 (9.55)



236 Chapter 9. Continua with an Interface and Micromagnetism

using the usual matching techniques.
We conclude by noting that such an approach would produce several

admissible configurations for Weiss domains. The only way to obtain the
actual configuration is to resort to the energy functional and to determine
which one of the admissible configurations leads to an absolute minimum
in this functional.

9.7 Weiss Domains in Uniaxial Crystals

In order to illustrate the approach presented in the above sections, we
now treat a very simple case. We consider a uniaxial crystal C whose axis
z corresponds to the axis of easiest magnetization. In the reference frame
Oxyz, where z is the crystal axis, the energy per unit volume is

e =
M0

2
{
α
[
(∇mx)2 + (∇my)2 + (∇mz)2

]
+ β(m2

x +m2
y)
}
. (9.56)

We further consider a rectangular specimen of such a crystal, as shown in
Fig. 9.2. Since we would like to investigate the case in which there is only a
pure magnetization field, we must consider equations (9.48)–(9.49) in order
to construct Weiss domains in the examined crystal. We then have

M0βmx = −λmx, M0βmx = −λmx, 0 = λmz. (9.57)

We now assume that my = 0. We then have the following admissible
directions for the magnetization vector:

λ = 0, mz = ∓1, mx = 0; (9.58)
λ = −M0β, mx = ∓1, mz = 0. (9.59)

When we take into account the boundary conditions

mx = 0 on x = 0, l1 and mz = 0 on z = 0, l, (9.60)

we immediately see that the boundary layer vanishes in this case and that
the Weiss domains have the form shown in Fig. 9.2. We can verify that
all of the jump conditions at the domain walls are satisfied. Of course,
the parameter d, which defines individual Weiss domains, still cannot be
determined. If there are m domains, then we can only state that

dm = l1. (9.61)

We note that, essentially, we have two different Weiss domains, labeled 1
and 2. For piecewise constant fields, (9.56) yields

e = 0 in D1 and e =
1
2
M0β in D2. (9.62)
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Fig. 9.2 Distribution of
Weiss domains in a uniaxial

crystal

The surface energies at the domains walls are of course constant, and they
are given by

eσ = e1 on vertical walls; eσ = e2 on slanted walls. (9.63)

In order to determine d, we take into account the energy functional (9.10),
which, due to (9.56) and the above results, can be written as

F (1) =
[
M0

2
β
d2

4
+ e2

√
2 d2m+ e1(l − d)m+ e1l(m− 1)

]
l2. (9.64)

If we use (9.61) to eliminate m in the above expression, we find that

F (1) =
[
M0

4
βl1d+

2e1
d
ll1 + 2

√
2e2l1 − e1(l1 + l)

]
l2. (9.65)

The minimum of this function corresponds to

M0

4
β = 2

e1
d2
l;

that is, to

d1 = 2
√

2l
√

e1
M0β

. (9.66)

Of course, we cannot expect that the expression (9.66) for d satisfies
(9.61) for an integer value of m. However, in common crystals, d is very
small and m is quite a large number, so (9.66) can be interpreted without
any great error as the integer number closest to the ratio l/d1.

We wish to underline that the configuration shown in Fig. 9.2 is not the
unique solution to the problem posed. Indeed, the configuration shown in
Fig. 9.3 also satisfies all of the boundary and jump conditions. In this case,
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the broken lines are not domain walls, since there is no discontinuity in m
across them.

l�

l�

d

� � � � �

�

�

� � �

l

Fig. 9.3 More favorable
distribution of Weiss

domains in a uniaxial crystal

Hence, the total energy does not have the last term in (9.64), and instead
of (9.65) we obtain the expression

F (2) =
[
1
4
M0βl1d+

e1
d
ll1 + 2

√
2e2l1 − e1l1

]
l2, (9.67)

which is minimized for

d2 = 2
√
l

√
e1
M0β

=
1√
2
d1. (9.68)

If we evaluate the difference between the minimum values of F for the two
different Weiss domain configurations, we find that

F (2) < F (1). (9.69)

Therefore, the configuration shown in Fig. 9.2 is more favorable.
We note that we could perform our calculations so as to include a different

size for each Weiss domain, such as d1, . . . , dm, subject to the condition
d1+· · ·+dm = l1. It is a simple exercise to show that the absolute minimum
of F corresponds to the case in which all di are equal to each other.

In [142], the value of the parameter d in ferromagnetic uniaxial crystals is
determined by considering the energy in the very thin layers corresponding
to domain walls. The value obtained is

d = 2
√

2l 4

√
α

β
. (9.70)

Comparing (9.70) with (9.68), we see that the surface energy density is
given by

e1 = 2M0

√
αβ. (9.71)
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We conclude this section by recalling some extensions of the above results
(see [157]). We have already shown that the approach used to solve the
problem of Weiss domains greatly depends on whether a magnetic field
is present or not. In the paper cited, it is proven that the configuration
proposed by Landau and Lifshitz in [142] in the absence of magnetic fields
is impossible, even in the presence of an external magnetic field. Moreover,
a new configuration is shown to be admissible in the presence of a particular
magnetic field. The crystals considered are still uniaxial but their geometries
differ. Instead of a parallelepiped, the case where the upper and lower planar
boundaries are not perpendicular to the z-axis is investigated. Finally, some
approximate expressions for the surface energy of the Weiss walls and the
surface of the crystal are proposed in [158], based on a numerical analysis
of the equations of micromagnetism.

9.8 A Variational Principle for Elastic Ferromagnetic
Crystals

Up to now, our analysis has focused on rigid ferromagnetic crystals. In
this section we include the possibility of elastic deformations. To this end,
we replace the variational principle (9.10) with the following (see [159]):

F =
∫

D

ρM0e(m,∇m,F) dv +
1
2
μ0

∫

3
φ,i φ,i dv −M0

∫
D

φ,i mi dv

+
q∑

b=1

M0

∫
Sb

eσ(n,m−,m+) da, (9.72)

where ρ is the mass density, e is the specific internal energy, and F is
the deformation gradient. We define the equilibrium configurations as the
solutions of the following variational equation:

δF =
∫

D

ρfkδk dv +
∫

∂D

t(n)kδxk da, (9.73)

with the constraints

p · p = 1,
m∑

a=1

∫
Da

ρ dv −M = const, (9.74)

which express, respectively, that p has unit magnitude and that the total
mass M is conserved under all admissible variations. Equivalently, we must
find the extremals of the functional

F1 = F +
1
2
ρM0λ

∫
D

(pipi − 1) dv + μM0

(
m∑

a=1

∫
D

ρ dv −M

)
dv. (9.75)
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Here, ρM0λ and μM0 are the Lagrangian multipliers related to the con-
straints (9.74), and the factors M0 and ρ are introduced for convenience.

Again using (9.8) and (9.9), and the same notation as that used in
Sect. 9.4, it is possible to prove after tedious calculations (see [159]) that
the extremals of (9.75) are the solutions of the following local and jump
equations:

• In D

ρe,mi −πji,j − ρφi + ρλpi = 0, (9.76)

Ltlk,l − M tlk,l + ρfk = 0, (9.77)
μ0φ,ii −M0(ρmi),i = 0, (9.78)

• In �3 −D
φ,ii = 0, (9.79)

• On ∂D

(Ltlk,l − M tlk,l)ni = 0, (9.80)
[[φ]] = 0, (9.81)
πijni = 0, (9.82)

([[μ0φ,i ]] + ρM0mi)ni = 0, (9.83)

• On Sb

[[μ0φ,i −ρM0mi]]ni = 0, (9.84)
[[φ]] = 0, (9.85)

eσ,m+
i
− π+

jinj = 0, (9.86)

eσ,m−
i
− π−

jinj = 0, (9.87)

• On Sb

eσ,m+
i
m+

i;α + eσ,m−
i
m−

i;α = 0, (9.88)[[
ρM0e+

1
2
μ0φ,k φ,k −ρM0φ,k mk +M0μρ

]]
+M0(V α

;α + bααeσ) = 0 (9.89)[
ρM0e+

1
2
μ0φ,k φ,k −ρM0φ,k mk +M0μρ

]+,−

+ [(Ltlk − M tlk)nknl]
+,− = 0, (9.90)

[(Ltlk − M tlk)nlxkα]+,− = 0, (9.91)
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• On Γc

[[V × n · t)n− eσn× t]] = 0. (9.92)

In the above equations we have introduced the following notation:

πji = ρ
∂e

∂mi,j
, (9.93)

Ltki = ρM0
∂e

∂FlK
FlK , (9.94)

M tji = μ0

(
φ,i φ,j −1

2
φ,k φkδij

)
− ρM0mjφi +M0πjkmk,i. (9.95)

In the literature, Mt and Lt are called, respectively, the generalized Maxwell
stress tensor and the local stress tensor. Finally, if aα, α = 1, 2, are the
vectors of the natural basis associated with the coordinates uα on Sb, then
xiα denote the components of aα with respect to the Cartesian basis ui.

9.9 Weiss Domains in Elastic Uniaxial Crystals

We are interested in studying Weiss domains with planar walls. In rigid
ferroelectric crystals, we have proved that this situation is realized when
m is uniform in each domain Da and the magnetic potential is continuous
across the domain walls. In an elastic ferromagnetic crystal the internal
energy e also depends on the deformation gradient F, meaning that, if we
wish to retain planar domain walls, we must assume that:

• There is no body force fi

• The deformation gradient is constant in each domain Da:

F = Fa in Da. (9.96)

Since the mass density ρ in Da is

ρ =
ρ


| detF| , (9.97)

where ρ0 is the constant mass density in the unstressed reference configu-
ration, we see that ρ is constant in each Da. However, m is also constant
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in Da, so the governing equations reduce to

• In Da

e,mi −φ,i +λmi = 0, (9.98)
φ,ii = 0, (9.99)

• On Sb

[[μ0φ,i −ρM0mi]]ni = 0. (9.100)

As shown in Sect. 9.5, this set of equations leads to a magnetic potential
given by

φa =

[
λam

(a)
i +

∂e

∂p
(a)
i

]
xi + ba, (9.101)

where λa is the Lagrangian multiplier related to Da and ba is an arbitrary
constant. Again, by employing the continuity of φ across the domain walls,
we can prove that the domain walls remain planar in the presence of a ho-
mogeneous deformation. Since a Weiss domain has at least one microscopic
dimension, and the deformation experienced by the crystal is usually very
small, we can reasonably approximate a nonhomogeneous deformation in
the crystal by a piecewise one. In this way, the results obtained will hold
for nonhomogeneous deformations.

As we saw in Sect. 9.5, we can prove that eσ is constant on any domain
wall for which

[[μ0φ,i −ρM0mi]] = 0, (9.102)
[[φ]] = 0, (9.103)[[

ρM0e+
1
2
μ0φ,k φ,k −ρM0φ,k mk +M0μρ

]]
= 0, (9.104)[

ρM0e+
1
2
φ,k φ,k mk +M0μρ

]+,−

− [(Ltlk − M tlk)nknl]
+,− = 0, (9.105)

[(Ltlk − M tlk)nlxkα]+,− = 0. (9.106)

Moreover, the boundary conditions on ∂D become

(Ltij − M tij)nj = t(n)i, (9.107)
[[φ]] = 0, (9.108)

([[μ0φ,i ]] + ρμ0mi)ni = 0. (9.109)

By taking the difference between of (9.106) and using (9.105), we arrive
at the following equivalent conditions on Sb:

[[μ0φ,i −ρM0mi]] = 0, (9.110)



9.10. APossibleWeissDomain Distribution inElasticUniaxialCrystals 243

[[φ]] = 0, (9.111)[[
ρM0e+

1
2
μ0φ,k φ,k −ρM0φ,k mk +M0μρ

]]
= 0, (9.112)

[[Ltlk − M tlk]]nlnk = 0 (9.113)
(Ltlk − M tlk)+,−nlxk,α = 0, (9.114)

−M0ρ
+e+ + ρ+M0φ,

+
k m

+
k + (Lt

+
lk − M t+lk)nknl

−1
2
μ0φ,

+
k φ

+
k −M0ρ

+μ+ = 0. (9.115)

Also, in this new situation, all of the equations we will use to determine
a solution are nonlinear. Consequently, a solution may not exist, or many
solutions may exist and we need to choose the most energetically favor-
able. In the absence of deformation, we have already remarked that if the
boundary ∂D is not planar we are compelled to introduce a boundary layer
adjacent to ∂D.

9.10 A Possible Weiss Domain Distribution in Elastic
Uniaxial Crystals

To illustrate the general approach we have developed so far, we consider
a uniaxial, transversally isotropic ferromagnetic crystal that is rectangular
in shape and extends to infinity in the y-direction. The crystal is assumed
to be subjected to uniform tractions along its boundaries. The energy of
the crystal is assumed to be given by the relation

ρ0M0e =
1
2
M0

{
α
[
(px,x)2 + (px,z)2 + (pz,x)2 + (pz,z)2

]
+ βp2

x

}
+

1
2
(c1e2xx + c2e

2
zz + 2c3e2xz + 2c4exxezz) (9.116)

for small deformations. Here eij are the components of the infinitesimal
strain tensor, and we have assumed that the deformation is planar (eyy =
eyz = eyx = 0) and the magnetization vector m is in the xz-plane. The
form of the strain energy for transversely isotropic bodies can be found,
for instance, in [141]. Finally, ρ0 denotes the constant mass density in the
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unstressed reference configuration.

Fig. 9.4 Changes in the
Weiss domains in a loaded

uniaxial crystal

Now we intend to analyze the change in the Weiss domain distribution,
analyzed in Sect. 9.6, due to a homogeneous deformation and the induced
magnetic field. If the crystal is rigid, we have shown that the distribution
shown in Fig. 9.3 and (by dashed lines) in Fig. 9.4 is possible. We now
assume that the crystal undergoes a small deformation due to suitable uni-
form tractions on its boundaries. Because of the symmetry of the Weiss
domain distribution, it is sufficient to consider only the domains D1, D2

and D3 (see Fig. 9.4) in order to elucidate basic properties of the fields. Af-
ter many involved calculations, it is shown in [159] that all of the equations
and jump and boundary conditions in the previous section are satisfied by
the configuration shown in Fig. 9.4. In other words, in any domain Da,
a = 1, 2, 3, the magnetization rotates in the Oxy-plane by a small angle
φa. Moreover, a magnetic field is produced that is parallel to the Ox-axis.
Surfaces like S13 undergo a small translation along the Ox-axis, whereas
surfaces S12 and S23 rotate by small angles, so that α, δ < π/4. Finally,
the whole configuration requires the application of suitable uniform trac-
tions at the boundary. It is this particular choice of applied tractions which,
once again, forces us to conjecture the existence of a boundary layer at the
boundary.

9.11 A More General Variational Principle

We have reiterated many times that the volume of a rigid ferromagnetic
crystal C is the union of a number of subregions (the Weiss domains) in
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which the magnetization M = M0m is constant. Two adjacent domains
are separated by a very thin layer, the domain wall, across which the unit
vector m undergoes sharp variations. A similar but generally thicker layer
appears near the crystal boundary. We have already noted in Sect. 9.1 that,
in order to justify this complex structure inside the crystal, the micromag-
netism assumes that the equilibrium configurations are extremals of the
energy functional (9.2). In principle, this approach leads to the existence
of boundary layers due to the presence of the second derivatives in (9.3),
which are multiplied by the very small parameter α. However, the boundary
value problem we are faced with is very difficult to solve.

In the model of a continuum with an interface presented in the above
sections, the domain walls are replaced with interfaces across which the
magnetic potential is continuous but the magnetization exhibits finite dis-
continuities. However, the magnetization gradient still appears in the con-
stitutive equations in order to describe the behavior of the fields φ and m
near the surface of the crystal. It is evident that this circumstance does not
agree with the main goal of the model of a continuum with an interface,
which involves replacing the layers with surfaces of discontinuity. There-
fore, we will analyze the consequences of replacing both the domain walls
and the boundary layer on the crystal boundary ∂D with interfaces across
which φ can also be discontinuous (see [160]). Moreover, we assume differ-
ent constitutive equations for the surface energy of the domain walls and
the boundary ∂D in order to take into account the physical differences be-
tween these two types of layers. This new model is then applied to analyze
Kittel’s structure [144].

As usual, we assume that the ferromagnetic crystal D is the union of
the regions Dn, n = 1, . . . ,m, representing the Weiss domains. The mag-
netization field takes the form M = M0m, where M0 is constant and the
unit vector m exhibits discontinuities across both the domain walls Sb,
b = 1, . . . , q, and the boundary ∂D of the crystal. Finally, we denote the
union of all of the domain walls by

Σ =
q⋃

b=1

Sb.

For a rigid crystal, we assume that the functional of the total energy, in
a Gaussian CGS system, has the form

F (m, φ,k) =
∫

D

e(m) dv − 1
8π

∫

3
φ,i φ,i dv

+ M0

∫
D

m,i φ,i dv +
q∑

b=1

∫
Sb

eσ(m+,m−, τ,n) da

+
∫

∂D

êσ(m+,m−, τ,N,∇σφ
+,∇σφ

+) da, (9.117)
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where êσ is the energy per unit area of ∂D, ∇σφ is the surface gradient of
φ, n is the unit vector orthogonal to Sb, N is the unit vector orthogonal to
∂D, and τ = [[φ]]. Moreover, k(uα), α = 1, 2, is the equation of the surface
Σ ∪ ∂D in terms of the surface parameters uα. The rest of the notation is
the same as that we used in Sect. 9.8.

The fields φ, m and k, which characterize the equilibrium configurations
of the crystal, are extremals of the functional (9.17) under the constraints

m · m = 1 inD, (9.118)
k(uα) is assigned on∂D. (9.119)

The calculations needed to evaluate the first variation of the functional
(9.117) are very tedious, and we refer the reader to [160] for further details.
Here, we limit ourselves to quoting the final results, which are collected
together in the following equations:

In Dn, n = 1, . . . ,m,

e,mi +λmi +M0φ,i = 0, (9.120)
−φ,ii +4πM0mi,i = 0. (9.121)

In �3 −D,
φ,ii = 0. (9.122)

On ∂D,

4π[êσ,τ − (êσ,φ,+α
);α] = (−φ,i )+Ni, (9.123)

4π[êσ,τ − (êσ,φ,−α
);α] = (−φ,i +4πM0mi)−Ni, (9.124)

êσ,m−
i

+ λ−m−
i = 0. (9.125)

On Σ,

4πσ,τ = (−φ,i +4πM0mi)+ni, (9.126)
4πσ,τ = (−φ,i +4πM0mi)−ni, (9.127)

eσ,m∓
i

+ λ∓m∓
i = 0, (9.128)

[[
e− 1

8π
φ,i φ,i +M0miφi

]]
+ eσbαα − Πα

;α = 0. (9.129)

On Γp, p = 1, . . . , r,

s(p)∑
b=1

[eσb
νb − (Πb · νb)nb] = 0. (9.130)
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In (9.129) and (9.130), Γp is the edge formed by s(p) domain walls Sb

that intersect with each other, ν is the unit vector tangent to the wall Sb

along Γp, bαα is the mean curvature of Σ, and

Πα = aαβki,βeσ,ni , (9.131)

where aαβ are the reciprocal metric coefficients on the surface Σ in the
coordinates (uα). Finally, using (9.123), (9.124), (9.123) and (9.124), we
have

[[−φ,i +4πM0mi]]ni = 0 on Σ, (9.132)
[[−φ,i +4πM0mi]]Ni = −4π[(êσ,φ,+α

);α + (êσ,φ,−α
);α, on ∂D. (9.133)

Now we wish to apply the above equations to a planar slab S (of thick-
ness L) of a uniaxial crystal that has the z-axis of easiest magnetization
orthogonal to the faces of S (see Fig. 9.5).

z

O l �l x

L k

i

m

Fig. 9.5 Kittel’s structure

Kittel proved (see [144, 145, 152]) that the distribution shown in Fig. 9.5 is
possible if the crystal is highly anisotropic and no external magnetic field
is applied. This result is derived by assuming that:

• The magnetization is uniform up to the crystal boundary ∂S

• The magnetic potential φ satisfies the Laplace equation

• φ is continuous across ∂S, but its normal derivatives on ∂S are dis-
continuous and differ in sign.

These hypotheses are not derived from micromagnetism; they are justified
by assuming that the magnetic field near ∂S is equivalent to the magnetic
field produced by an alternating magnetic mass distribution with a surface
density ∓M0.

In the reference frame of Fig. 9.5, the magnetic anisotropy energy of a
uniaxial ferromagnetic crystal can be written as

e(m) =
1
2
βM2

0 (m2
x +m2

y), (9.134)
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where β is the anisotropy constant. On the other hand, in our configuration,
we have mx = my = 0 and then e(m) = 0. From (9.120) we obtain the
following potential in each domain Dn:

φ(n) = −λ
(n)

M0
m(n)

z z + c(n), (9.135)

where λ(n), c(n) are constants and mz = ∓1. By imposing potential conti-
nuity across the domain walls, we find that

λ(1) = −λ(2) = . . . ≡ λ, c(1) = c(2) = . . . ≡ c,

so that

φ(n) = − λ

M0
z + c. (9.136)

Due to the symmetries of the configuration, all of the fields that charac-
terize the equilibrium configuration must be invariant under the coordinate
transformations x′ = −x, z′ = −z+L, so that λ = 0. However, the potential
is defined up to an arbitrary constant, and then

φ(n) = 0, inDn, φ− = 0 on∂D. (9.137)

Moreover, from (9.124) and (9.137) it follows that

êσ = ±M0φ
+ + ẽσ(m−,N, φ,+x ).

Based on the analysis performed in [158], we assume that the above relation
can be written in the form

êσ = ±M0φ
+ +

l

16π
(φ,+x )2, on∂D. (9.138)

In [160] it is proven that, if we take into account all of the above results,
the total energy functional (9.117) assumes the form

F (m, φ,k) =
∫

Σ

eσ(m+,m−,m) dσ ± 1
2
M0

∫
∂D

φ+ dσ. (9.139)

Therefore, to evaluate the total energy of Kittel’s configuration, we must
determine the magnetic potential outside the crystal S. The solution φ(x, z)
we are looking for is periodic with respect to x (period: 2l), and, because
of (9.133), it must obey the boundary condition

−(N · ∇φ)+ = 4πM0(m · N)− − 4π(êσ,φ,+x
),x , on∂D.
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In conclusion, taking into account (9.138), the magnetic potential φ must
be a solution of the following boundary value problem:

φ,xx +φ,zz = 0, in�3 −D, (9.140)

φ,z (x, L) +
l

2
φ,xx (x, L) =

{−4πM0, 0 ≤ x ≤ l,
4πM0, l ≤ x ≤ 2l, (9.141)

φ,z (x, 0) − l

2
φ,xx (x, 0) =

{−4πM0, 0 ≤ x ≤ l,
4πM0, l ≤ x ≤ 2l, (9.142)

lim
z→∓∞φ(x, z) = 0. (9.143)

In [160], using elementary methods, the solution φ of the above boundary
value problem is determined for z > L and z < 0. In particular, we have:

φ(x, L) =
32M0l

π

∞∑
n=0

1
(2n+ 1)2(2 + (2n+ 1)π)

sin
(2n+ 1)π

l
x,

φ(x, 0) = −32M0l

π

∞∑
n=0

1
(2n+ 1)2(2 + (2n+ 1)π)

sin
(2n+ 1)π

l
x.

Substituting these expressions into (9.139), we determine the total energy
of the configuration as a function of l:

F (l) = eσ
L

l
+ 12.7

M2
0 l

π2
. (9.144)

In order to determine the equilibrium configuration, we find the value of l
that minimizes the total energy (9.144)

l =
π

M0

√
L
eσ

12.7
. (9.145)

Finally, we need to derive the value of the surface energy on the domain
walls if we want to compare the value of (9.145) with that determined by
Kittel. To do this, it is sufficient to use the expression for eσ we found in
[158]:

eσ = 2γM2
0

√
αβ, (9.146)

where α is the inhomogeneity constant and γ = 1.18. Finally, introducing
(9.146) into (9.145), we obtain the requested Weiss domain width:

l = 0.9
√

2L
√
αβ, (9.147)

which is in good agreement with Kittel’s result (see [144])

l = 0.8
√

2L
√
αβ.
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9.12 Weiss Domain Branching

In this section we analyze an interesting phenomenon that occurs in fer-
romagnetic crystals: the branching of Weiss domains (see [144, 145, 152]).

Let D be a planar unbounded slab of a uniaxial crystal where the easy
magnetization axis is orthogonal to the face of S (see Fig. 9.6). In the ab-
sence of external magnetic fields, and when the crystal is strongly anisotropic,
different equilibrium configurations can occur. An equilibrium configuration
with a single domain in which the magnetization field is parallel to the axis
of easy magnetization is possible provided that the thickness L of S is very
small. In this case, the energy Fs present in the length L is given by the
formula

Fs = 2πM2
0L. (9.148)

As L increases, the Kittel configuration (see Fig. 9.6) with alternating
domains becomes more favorable. The magnetic energy present in the length
L is (see [144])

Fk = 3.5M2
0

√
L
√
αβ, (9.149)

where α is the inhomogeneity constant. In fact, for larger values of L, the
values of Fs are greater than the corresponding values of Fk. By comparing
(9.148) and (9.149), we obtain the critical value Lc of L, which marks the
passage from one configuration to the other:

Lc = 0.3
√
αβ. (9.150)

Nevertheless, at sufficiently large values of L, this configuration also be-
comes unstable, and a branching phenomenon occurs in the crystal: large
wedges that penetrate deep into the crystal appear and are accompanied
by many other smaller wedges (see Fig. 9.6). In [161] it is proven that the
following expression for the energy present in the length L holds for this
more complex domain distribution:

Fb = 3 3
√
M2

0μβ
2
σL, (9.151)

where the energy per unit area eσ of the slanted walls of the wedges is (see
9.146)

eσ = 2M2
0γ
√
αβ, (9.152)

and γ is a constant that depends on the crystal. By comparing (9.150) and
(9.151), we obtain the second critical value Lb of the thickness of S, which
corresponds to the branching

Lb = 100γ4μ2β2
√
αβ. (9.153)
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Fig. 9.6 Branching

We only sketch out the procedure followed in [161] to prove (9.153) here.
Starting from the variational principle, which we explored in the above
section, the authors assume that:

• The magnetization is uniform in the largest wedges

• The effect of the smallest wedges is described by the structural prop-
erties of ∂D.
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l
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��
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Fig. 9.7 Simplified
branching in a slab of

uniaxial crystal

Let w be the union of the wedge-shaped domains, Σα be the union of
the planar oblique interfaces between w and the Kittel domains, and Σ0

be the union of the planar interfaces that separate the Kittel domains (see
Fig. 9.7). The first assumption made above simplifies the description of the
largest domains, but it also introduces a new difficulty. Since the magne-
tization inside w is directed along the Oz-axis, M0m · n �= 0, so fictitious
magnetic poles appear on Σα, and the energy associated with these poles
must be considered.

After some calculations, the energy F (h, l, L) of the configuration is de-
termined as a function of the height of the wedges, the thickness of the
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Kittel domains, and the thickness L of the slab S. The values of l and h
corresponding to a stable configuration for a given L are then obtained by
minimizing the energy F (h, l, L) with respect to these variables. For mag-
netoplumbite, the critical value of L is found to be about 1 cm, which is in
good agreement with experimental results.

9.13 Weiss Domains in an Applied Magnetic Field

In this section, the variational principle proposed in Sect. 9.11 is applied
to describe how a uniform external magnetic field H modifies the Weiss
domains of a Kittel configuration (see Fig. 9.5) in a uniaxial crystal D.
Considering the results presented in the above section, the thickness L of
the slab must lie between the values given by (9.150) and (9.153). In [162] it
is proven that the variational principle and the uniformity of the magnetic
field in each Weiss domain imply that the following jump conditions hold
at each domain wall:

[[φ]] = 0, [[H]] = 0. (9.154)

Consequently, the magnetic potential φ and the total magnetic field H are
uniform across the whole volume of the crystal D. While the application of
an external magnetic field could vary the thickness of the Weiss domains, it
is clear that the distribution will remain periodic and that the period will
be still represented by two adjacent domains that could now have different
thicknesses, l1 and l2.

For the reasons we described in the above sections, the authors then chose
the following constitutive equations:

e(m) =
1
2
βM2

0 (m2
x +m2

y), (9.155)

eσ(m+,m−,n, φ+, φ−) = ẽσ(m+,m−,n), (9.156)
êσ(m+,m−,n, φ+, φ−, φ+,x ) = M0m− ·N [[φ]]

− l1 + l2
16π

(φ+,x )2. (9.157)

Starting from these constitutive equations as well as (9.154) and the
variational principle, the following relations are proven in [162]:

m(1)
x = m(2)

x = sin θ, (9.158)
m(1)

z = m(2)
z = cos θ, (9.159)

H(1)
x = H(2)

x = Hx = βM0 sin θ, (9.160)
H(1)

z = H(2)
z = Hz = 0, (9.161)
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where θ is the angle between m and the Oz-axis, and the index (i) refers
to two adjacent domains. Moreover, the magnetic potential φ in the region
�3 −D is a solution of the Laplace equation

φ,xx +φ,yy = 0, (9.162)

which satisfies the following boundary conditions at the faces of the slab:

• 0 ≤ x ≤ l1

−φ,z (x, L) − l1 + l2
2π

φ,xx (x, L) = 4πM0 cos θ, (9.163)

• l1 ≤ x ≤ l1 + l2

−φ,z (x, L) − l1 + l2
2π

φ,xx (x, L) = −4πM0 cos θ, (9.164)

• 0 ≤ x ≤ l1

φ,z (x, 0) − l1 + l2
2π

φ,xx (x, 0) = −4πM0 cos θ, (9.165)

• l1 ≤ x ≤ l1 + l2

−φ,z (x, L) − l1 + l2
2π

φ,xx (x, L) = 4πM0 cos θ; (9.166)

the asymptotic conditions

lim
z→∓∞(−φ,z ) = Hz, (9.167)

lim
z→∓∞(−φ,x ) = Hx; (9.168)

as well as the periodic conditions

φ(0, z) − (l1 + l2)Hs = φ(l1 + l2, z), (9.169)
φ(0, 0) = 0, φ(0, L) = −HzL. (9.170)

The solution to this boundary value problem is found in [162], where, in
particular, it is proven that

l1 =
1 + γ

1 − γ
l2, (9.171)

where
γ =

Hz

4πM0 cos θ
. (9.172)
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To complete the analysis, all of the above results are inserted into (9.155)–
(9.157). The resulting expressions would then be substituted into the vari-
ational principle to determine the total energy of the configuration, which,
in view of (9.171) and (9.172), is a function of l2 and θ. The values of these
quantities could be determined by requiring that the first derivatives of the
total energy with respect to these variables vanish. Unfortunately, these
calculations are too difficult to carry out. Therefore, a shortcut is adopted.
It is assumed that the average values of φ, H and B = μ0H +M0m in the
part 0 ≤ l1 + l2, z = L, of the boundary ∂D obey the standard condition

N× [[H]] = 0.

It is then easily proven that (see [162])

sin θ =
Hx

βM0
. (9.173)

This relation, together with (9.171) and (9.172), lead to the following re-
sults:

• If Hx = 0 then θ = 0 and l1 > l2 (see Fig. 9.8)

• If Hz = 0 then θ �= 0 and l1 = l2 (see Fig. 9.9).

The total energies of both configurations are determined in [162] as
functions of l1, as well as the magnetization curves for the slab.

We conclude this chapter by recalling another application (see [163])
of the general variational principle presented in Sect. 9.11 and applied
in subsequent sections.

In [144] and [152] it is proven that the configuration shown in Fig. 9.5
is also possible in the absence of magnetic fields in a cubic crystal,
since all of the boundary conditions and field equations that derive
from the variational principle (9.10) are obeyed. Moreover, if a, b and
L are the dimensions of the parallelepiped, the total energy ET of the
crystal is given by the formula

ET

ab
=
(
L

l
− 1
)
e(π)

σ + 2
√

2e(π/2)
σ , (9.174)

where l is the width of the vertical domains, and e
(π)
σ and e

(π/2)
σ are

the energies per unit area of the vertical and slanted walls, respec-
tively. However, this configuration cannot be accepted even though it
is observed experimentally, since there is no value of l for which the
total energy has a minimum. In [163] it is proven that this configura-
tion becomes possible when it is assumed that the crystal is not rigid.
The boundary equations and boundary conditions that follow from
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the variational principle when crystal deformability is introduced are
too complex to analyze. For this reason, a perturbation method is
proposed in [163] that allows us to perform an approximate analysis
of these equations. This makes it possible to verify that the pyramidal
domains are slightly deformed and that the total energy is minimized
at equilibrium.
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Fig. 9.8 Kittel’s domains in
the presence of a magnetic
field orthogonal to the faces

of the slab
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Fig. 9.9 Kittel’s domains in
the presence of a magnetic
field parallel to the faces of

the slab





Chapter 10

Relativistic Continuous Systems

10.1 Lorentz Transformations

In this section, for the reader’s convenience, we briefly recall the physical
foundations upon which special relativity is built. This introduction will be
useful when we present relativistic continuum mechanics.

The wave character of the propagation of light was established during
the eighteenth century, when scientists were convinced that all physical
phenomena could be described by mechanical models. Consequently, it ap-
peared natural to the researchers of that time to assume that empty space
is filled with an isotropic and transparent medium, the ether , which sup-
ports light waves. This hypothesis seemed to be confirmed by the fact that
forces acting on charges and currents could be evaluated by assuming that
electromagnetic fields generate a deformation state in the ether, which is
described by the Maxwell stress tensor. However, this description was found
to be unacceptable for the following reasons:

• The high value of the speed of light required a very high ether density

• Such a high density implied the existence of both longitudinal and
transverse waves, whereas Maxwell’s equations only showed the trans-
verse character of electromagnetic waves.

Another problem with the hypothesis that the ether was a material
medium was the fact that the Maxwell equations were not covariant (i.e., in-
variant in form) under Galilean transformations. Consequently, electromag-
netic phenomena did not obey the principle of relativity: they were assumed
to hold only in one frame of reference, the optically isotropic frame. All at-
tempts to localize this frame of reference (by Michelson, Morley, Kennedy,
Fitzgerald, etc.) had failed, so researchers were faced with a significant
physical inconsistency.

Einstein provided a brilliant and revolutionary solution to the above
problem by accepting the existence of the optically isotropic system and
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exploiting the consequences of this assumption. More precisely, he postu-
lated that

There is at least one optically isotropic reference frame.

Using the above postulate, it is possible to find a reference frame I in
which light propagates in empty space at a constant speed and in a straight
line in any direction. In particular, in this frame I, it is possible to define
a global time t by choosing an arbitrary value c for the speed of light in
empty space. In fact, the time measured by a clock located at a point O ∈ I
will be accepted if a light signal sent from O at t = t0 to an arbitrary point
P , where it is reflected by a mirror back toward O, returns to O at the
instant t = t0 + 2OP/c for any t0. Let us suppose that a set of identical
clocks are distributed at different points in space. A clock at any point P
can be synchronized with the clock located at the fixed point O by sending
a light signal from O at the instant t0 and imposing that it arrives at P at
the instant t = t0 +OP/c. (We will not prove that the time variable defined
by the above procedure is independent of the initial point O here.)

If we accept Galilean transformations in passing from one reference frame
I to another, I ′, which is moving at a constant velocity u with respect to I,
then there is, at most, one isotropic optical frame. On the other hand, if we
drop the assumptions upon which Galilean transformations are based, then
it is possible to prove (see p. 403 of [164]) that there are an infinite number
of optically isotropic reference frames. More precisely, if (x1, x2, x3, t) and
(x′1, x′2, x′3, t′) are the spatial and temporal coordinates associated with
the same event by two observers I and I ′, then the finite relations between
these coordinates are expressed by the following Lorentz transformations :

x′i = x′iO +Qi
j

(
δj
h + (γ − 1)

uj

u2
uh

)
xh −Qi

jγu
jt, (10.1)

t′ = t0 − γ
uhx

h

c2
+ γt, (10.2)

where xi
O, t0, and ui are constant, Qi

j are the coefficients of a constant
orthogonal matrix, u = |u|, and

γ =
1√

1 −
(u
c

)2
≡ 1√

1 − β2
. (10.3)

Remark It is not an easy task to prove (10.1) and (10.2) starting from
the above postulate. However, if we add the hypothesis that the required
transformation is linear, then it becomes very simple to derive these Lorentz
transformations, as shown in most books on special relativity. This assump-
tion is equivalent to requiring that the optically isotropic frames are also
inertial frames.
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Remark Let us consider any event which has constant spacetime coor-
dinates in the frame I ′. Then, differentiating (10.1), we obtain(

δi
j + (γ − 1)

ui

u2
uj

)
dxj

dt
= γui. (10.4)

It is an easy exercise to verify that the above system allows the following
solution:

dxi

dt
= ui, (10.5)

so we can say that any point in I ′ moves with a constant velocity (ui) with
respect to I. Therefore, the relative motion of I ′ with respect to I is a
uniform translatory motion with velocity (ui). Similarly, we can prove that
any point in I moves with a constant velocity −u with respect to I ′. In
particular, x′iO denotes the coordinates of the origin of I with respect to I ′

when t = 0.

Remark In the limit c→ ∞, the Lorentz transformations reduce to the
Galilean ones.

We will not discuss the well-known consequences of the Lorentz trans-
formations here (such the contraction of moving lengths, the retardation of
moving clocks, stellar aberration, Fizeau’s formula for the velocity of light
in an optical medium, the transverse Doppler effect, etc.). We will limit
ourselves to recalling an important result about the cause–effect relation
that derives from Lorentz transformations. Let us suppose that an event
that occurs at point P1 at the instant t1 in an optically isotropic frame I
produces an effect at the distant point P2 at the instant t2 > t1. The tem-
poral order between the two events is not modified in any optically isotropic
frame if and only if the signal originating from P1 at the instant t1 travels
from P1 to P2 at a speed that is less than that of light in a vacuum.

We now introduce some particular Lorentz transformations. We define
a Lorentz transformation without rotation as any Lorentz transformation
obtained from (10.1) by assuming that the 3 × 3 orthogonal matrix (Qi

j)
reduces to the identity matrix:

x′i = x′iO +
(
δi
h + (γ − 1)

ui

u2
uh

)
xh − γuit, (10.6)

t′ = t0 − γ
uhx

h

c2
+ γt. (10.7)

In order to understand the meaning of the above definition, we denote by
(Si

j) the constant 3 × 3 orthogonal matrix defining the rotation xi = Si
jx

j
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of the spatial axes of I, in which the uniform velocity u of I ′ with respect
to I becomes parallel to the axis Ox1:⎛⎝u1

0
0

⎞⎠ = (Si
j)(u

j). (10.8)

If we note that u2 = uhu
h and uhx

h are invariant with respect to a change
in spatial axes, then, if we apply the rotation (Si

j) to both sides of (10.6)
(by performing the same rotation on the spatial axes of I ′ and I), we obtain

x′i = x′iO +
(
δi
h + (γ − 1)

ui

u2 uh

)
xh − γuit, (10.9)

t′ = t0 − γ
uhx

h

c2
+ γt. (10.10)

If we recall (10.8), assume that x′iO = t0 = 0, and (for the sake of simplicity)
omit the overline, these formulae lead us to the special Lorentz transforma-
tions

x′i = γ
(
x1 − ut

)
, (10.11)

x′2 = x2, (10.12)
x′3 = x3, (10.13)

t′ = γ(t− u

c2
x1). (10.14)

These transformations include all significant relativistic aspects, since the
most general Lorentz transformations can be obtained by arbitrary rota-
tions of the spatial axes of the frames I and I ′.

Remark From (10.2) we obtain that

dt

dt′
=
[
γ
(
1 − u · v

c2

)]−1

. (10.15)

Using the above relation, simple but tedious calculations allow us to
derive the transformation formulae for the velocity and the acceleration
under a Lorentz transformation from (10.1). For instance, starting from the
special Lorentz transformations, we obtain the following special formulae
for the velocities:

v′1 =
v1 − u

1 − uv1

c2

, (10.16)

v′2 =
1
γ

v2

1 − uv1

c2

, (10.17)
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v′3 =
1
γ

v3

1 − uv1

c2

. (10.18)

Remark We conclude this section by noting that the linearity of the
Lorentz transformations does not modify the rectilinear and uniform char-
acter of any motion. Consequently, if the principle of inertia is accepted in
special relativity, the optically isotropic frames are also inertial frames.

10.2 The Principle of Relativity

In classical mechanics, a relativity principle holds for the class of iner-
tial frames that are related to each other by the Galilean transformations.
Einstein extended this principle to any field of physics. More precisely, he
assumed that

The fundamental equations of physics take the same form for all inertial
frames. Analytically, the fundamental equations of physics must be covari-
ant under Lorentz transformations.

To clarify the meaning of this important principle, let us consider a phys-
ical law that is expressed by the following differential relation in the inertial
frame I:

F

(
A,B, . . . ,

∂A

∂xi
,
∂B

∂xi
, . . . ,

∂A

∂t
,
∂B

∂t
, . . .

)
= 0, (10.19)

where A, B, . . . are physical fields that depend on the spatial coordinates
and on time. If we denote the corresponding fields evaluated by the inertial
observer I ′ by A′, B′, . . ., then this law satisfies the principle of relativity
if it assumes the form

F

(
A′, B′, . . . ,

∂A′

∂x′i
,
∂B′

∂x′i
, . . . ,

∂A′

∂t′
,
∂B′

∂t′
, . . .

)
= 0, (10.20)

in the new frame I ′, where A′, B′, . . ., are the quantities A, B, . . . evaluated
by the inertial observer I ′.

It is important to understand that the principle of relativity does not
state that the evolution of a physical phenomenon does not differ between
inertial frames. It only states that the fundamental physical laws, which are
expressed as differential equations, take the same form in any inertial frame.
As a consequence, two inertial observers who perform an experiment under
the same initial and boundary conditions will obtain the same results.

We note that our ability to verify the covariance of physical law (10.19)
is related to our knowledge of the transformation law for the quantities A,
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B, . . . in going from the inertial frame I to the inertial frame I ′. In other
words, from a mathematical viewpoint, a physical law could be covariant
with respect to more transformation groups, provided that the transformed
quantities A′, B′, . . . are suitable defined. Therefore, we can only establish
the covariance of a physical law by verifying that the assumed transforma-
tion laws for the quantities A, B, . . . are valid experimentally.

In order to clarify this aspect of the theory, we consider the continuity
equation for electric charge in empty space,

∂ρ

∂t
+ ∇ · J = 0, (10.21)

where ρ is the charge density and J is the current vector. If, for the sake of
simplicity, we consider the special Galilean transformation

x′ = x − ut, (10.22)
t′ = t, (10.23)

then we obtain the following relations between the primed and unprimed
derivatives:

∇ = ∇′,
∂

∂t
=

∂

∂t′
− u · ∇. (10.24)

Consequently, (10.21) can also be written in the form

∂ρ

∂t′
+ ∇′ · (J − ρu) = 0. (10.25)

We can conclude that, in empty space, the continuity equation for electric
charge is invariant under Galilean transformations if and only if

ρ′ = ρ, J′ = J− ρu. (10.26)

However, if we start from the special Lorentz transformations (10.12)–
(10.14) instead of (10.24), we derive the formulae

∂

∂x1
= γ

(
∂

∂x′1
− u

c2
∂

∂t′

)
, (10.27)

∂

∂x2
=

∂

∂x′2
, (10.28)

∂

∂x3
=

∂

∂x′3
, (10.29)

∂

∂t
= γ

(
∂

∂t′1
− u

∂

∂x′1

)
. (10.30)
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Then, under a Lorentz transformation, (10.21) becomes

∂

∂t′
[
γ
(
ρ− u

c2
J1
)]

+
∂

∂x′1
[
γ
(
J1 − ρu

)]
+

∂

∂x′2
J2 +

∂

∂x′3
J3 = 0. (10.31)

We see that the continuity equation is covariant under Lorentz transforma-
tions if and only if

ρ′ = γ
(
ρ− u

c2
J1
)
, J ′1 = γ(J1 − ρu), J ′2 = J2, J ′3 = J3. (10.32)

We conclude that, a priori (i.e., from a mathematical point of view), the
continuity equation for charge could be covariant under both Galilean and
Lorentz transformations provided that we assume different transformation
properties for the charge density and the current vector. However, experi-
ence will compel us to decide which of (10.26) and (10.32) should be chosen.
We emphasize that it is possible that (again from a mathematical point of
view) the equations considered could be covariant under only one of the two
transformation groups. For instance, the Maxwell equations in a vacuum

∇× H = ε0
∂E
∂t
, (10.33)

∇× E = −μ0
∂H
∂t

(10.34)

are not covariant under Galilean transformations. In fact, due to (10.24),
the above equations can also be written as follows:

∇′ × H = ε0
∂E
∂t′

− ε0u · ∇′E, (10.35)

∇′ × E = μ0
∂H
∂t′

+ μ0u · ∇′H. (10.36)

If we recall the vector identity

∇× (a × b) = a · ∇v − b · ∇a, (10.37)

(10.35)–(10.36) become

∇′ × (H + ε0u× E) = ε0
∂E
∂t′

, (10.38)

∇′ × (E− μ0u× H) = −μ0
∂H
∂t′

. (10.39)

It is evident that covariance of the first equation under Galilean transfor-
mations requires that

H′ = H + ε0u× E, E′ = E, (10.40)
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whereas covariance of the second equation leads to the condition

E′ = E− μ0u× H, H′ = H, (10.41)

which contradicts (10.40).

10.3 Minkowski Spacetime

It is well known that Minkowski supplied an elegant and useful geometric
formulation of the special theory of relativity. This formulation represents
the bridge that Einstein crossed to reach the geometric formulation of grav-
itation.

We start by analyzing the geometric structure of the four-dimensional
space underlying this model. We denote by V4 a generalized Euclidean four-
dimensional space in which an orthonormal reference frame (O, eα), α =
1, . . . , 4, can be found such that the coefficients ηαβ of the scalar product,
which is defined by a symmetric covariant 2-tensor g, are given by the
following matrix:

(ηαβ) =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠ . (10.42)

The space V4 is called Minkowski spacetime, and any point P ∈ V4 is an
event . Moreover, any vector v in the vector space associated with V4 is said
to be a four-vector or 4-vector .

Any reference frame V4 in which the coefficients ηαβ of the scalar prod-
uct assume the form (10.41) is called a Lorentz frame. Finally, a Lorentz
transformation is any (linear) coordinate transformation

x′α = x′α0 +Aα
βx

β , (10.43)

relating the coordinates (xα) of any event in the Lorentz frame (O, eα) to
the coordinates (O′, e′α) of the same event in the Lorentz frame (O′, e′α).
The definition of the Lorentz frame requires that the matrix Aα

β has to
satisfy the condition

ηαβ = Aλ
αA

μ
βηλμ. (10.44)

Since, in any Lorentz frame, the square of the distance s between two
events (xα

(1)) and (xα
(2)) assumes the form

s2 = ηαβ(xα
(2)−xα

(1))(x
β
(2)−xβ

(1)) =
3∑

i=1

(xi
(2)−xi

(1))
2−(x4

(2)−x4
(1))

2, (10.45)
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we can say that Lorentz transformations are orthogonal transformations
of V4, provided that the orthogonality is evaluated by the scalar product
ηαβ . From (10.44) or (10.45), we can conclude that the set of all of these
transformations is a group.

The square v · v = g(v,v) of the norm of a 4-vector v of V4 can be
positive, negative or zero. In the first case, we say that v is a space-like
4-vector. In the second case, v is said to be a time-like 4-vector. Finally,
if v · v = 0, then v is a null 4-vector. At any point O ∈ V4, the set of
events P ∈ V4 such that the 4-vectors −−→

OP = v are null, i.e., the set of the
4-vectors for which −−→

OP · −−→OP = 0, (10.46)

is a cone CO that has its vertex at O. This is called the light cone at O. The
condition (10.46) defines a cone since, if −−→OP ∈ CO, then λ−−→OP ∈ CO. In the
Lorentz frame (O, eα), the cone (10.46) is represented by the equation

3∑
i=1

(xi)2 − (x4)2 = 0. (10.47)

The 4-vectors v = −−→
OP which correspond to the events P that are internal

to CO are time-like 4-vectors, whereas those which correspond to the events
P that are external to CO are space-like 4-vectors.

Let us assign an arbitrary time-like 4-vector ê, and let (O, ê) be a uniform
vector field of V4. We say that, at any O ∈ V4, the 4-vector ê defines the
direction of the future at O. Moreover, the internal region C+

O of CO, which
ê belongs to, is said to be the future of O, whereas the remaining internal
region C−

O of CO is the past of O. Finally, the set of events external to CO

is defined as the present of O.
We note that the first three axes of a Lorentz frame (O, e) are space-

like 4-vectors, whereas the fourth axis e4 is a time-like 4-vector. Moreover,
let ΣO,e4 be the three-dimensional space formed by all of the 4-vectors
generated by linear combinations of the three 4-vectors e1, e2, e3. It is easy
to verify that ΣO,e4 is a properly Euclidean space with respect to the scalar
product g, and that its elements are space-like 4-vectors.

Before we can clarify the physical meanings of the all of the definitions
provided above, we must prove the following propositions.

PROPOSITION 10.1
Let u be any time-like 4-vector, and let us denote the three-dimensional

space of all 4-vectors that are orthogonal to u by ΣO,u. Then, any v ∈ ΣO,u

is a space-like 4-vector.

PROOF Let (O, eα) be a Lorentz frame, and let u = uiei + u4e4 ≡
u⊥ + u4e4 be the decomposition of the 4-vector u in the basis (eα). Since
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u⊥ ·u⊥ =
∑3

1(u
i)2, the 4-vector u⊥ is space-like. Using the same notation,

we put v = v⊥ + v4e4, so that the following relations hold:

u · u = u⊥ · u⊥ − (u4)2 < 0,
u · v = u⊥ · v⊥ − u4v4 = 0,
v · v = v⊥ · v⊥ − (v4)2.

Consequently,

v · v = v⊥ · v⊥ − (u⊥ · v⊥)2

(u4)2
,

so that, by applying Schwartz’s inequality to u⊥ · v⊥, we obtain

v · v ≥ v⊥ · v⊥ − (u⊥ · u⊥)(v⊥ · v⊥)
(u4)2

.

Finally, this inequality implies that

v · v ≥ −v⊥ · v⊥
(u4)2

[u⊥ · u⊥ − (u4)2] > 0,

and the proposition is proved.

Remark Based on the above proposition, we can say that any time-
like 4-vector u defines infinite Lorentz frames at the event O. In fact, it is
sufficient to consider the frame (O, e1, e2, e3,u/(|u|)) where the mutually
orthogonal unit vectors ei, i = 1, 2, 3, belong to ΣO,u.

PROPOSITION 10.2
If v is a space-like 4-vector at O ∈ V4, then it is possible to find at least a
time-like 4-vector such that u · v = 0.

PROOF Let (O, eα) be a Lorentz frame at O. Then, by adopting the
same notation used in the above proposition, we have

v⊥ · v⊥ − (v4)2 > 0. (10.48)

Now we must prove that there is at least a 4-vector u such that

u · u = u⊥ · u⊥ − (u4)2 < 0, (10.49)
u · v = u⊥ · v⊥ − u4v4 = 0. (10.50)

From (10.49), we derive that the 4-vector u is orthogonal to v if we arbi-
trarily choose the components u1, u2, u3 (i.e., the space-like 4-vector u⊥),
provided that the component u4 is given by

u4 =
u⊥ · v⊥
v4

.
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For this choice of v4, condition (10.49) becomes

u · u = u⊥ · u⊥ − (u⊥ · v⊥)2

(v4)2
.

Again by applying Schwartz’s inequality, we can write the above equation
as follows:

u · u = u⊥ · u⊥

(
1 − v⊥ · v⊥

(v4)2

)
. (10.51)

Finally, since u⊥ ·u⊥ > 0, (10.49) and (10.51) indicate that u ·u < 0.

Remark For any space-like vector v at the event O, we can find infinite
Lorentz frames (O, eα) for which e1 = v/|v|. In fact, it is sufficient to
take one of the existing time-like 4-vectors e4 orthogonal to v and choose
another two unit vectors that are orthogonal to each other and to v in the
three-dimensional space ΣO,e4 to which v belongs.

Let us suppose that we have introduced a direction of the future using
the uniform 4-vector û, so it is possible to define the cones C−

O and C+
O at

any event O.

PROPOSITION 10.3
Let u ∈ C+

O . Then v ∈ C+
O if and only if

u · v < 0. (10.52)

PROOF In fact, u · u < 0 since u ∈ C+
O . However, u ·w is a continuous

function of w ∈ C+
O , which is a connected set. Consequently, if u · v > 0

for a 4-vector v ∈ C+
O , a time-like 4-vector u
 ∈ C+

O would exist such that
u · u
 = 0. However, this is impossible for Proposition 10.1.

On the other hand, because of the remark about Proposition 10.1, we
can find a Lorentz frame at O that has e4 = u/|u| as a time-like axis. In
this frame, u · u = −u4v4. On the other hand, since u,u ∈ C+

O , we have
u4 > 0, v4 > 0 and the proposition is proved.

We denote the set of Lorentz frames (O, eα) at O whose axes e4 belong
to the positive cone C+

O by L+
O. The Lorentz transformation between two

Lorentz frames in L+
O is said to be orthochronous . It is evident that the

totality of these transformations is a group.

PROPOSITION 10.4
Let (O, eα) ∈ L+

O be a Lorentz frame. Then the Lorentz frame (O, e′α)
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belongs to L+
O if and only if

A4
4 > 0. (10.53)

PROOF Since e′4 = Aα
4 eα, we have e′4 · e4 = A4

4. The proposition is
proved if we consider Proposition 10.3.

10.4 Physical Meaning of Minkowski Spacetime

In order to attribute physical meanings to some of the geometrical objects
associated with Minkowski spacetime, we begin with the following remark.
Let I and I ′ be two inertial reference frames. We have already said that the
relation between the coordinates (xi

A, tA) and (x′iA, t
′
A), which the observers

I and I ′ associate with the same event A, is a Lorentz transformation. It
is a very simple exercise to verify that the following quadratic form:

s2 ≡
3∑

i=1

(xi
A−xi

B)2−c2(tA− tB)2 =
3∑

i=1

(x′iA−x′iB)2−c2(t′A− t′B)2, (10.54)

is invariant under any Lorentz transformation relating the spacetime coor-
dinates (xi

A, tA), (xi
B , tB) of the event A in the Lorentz frame I and the

corresponding coordinates (xi′
A, t

′
A), (xi′

B, t
′
B) of the same event in I ′.

Moreover, from (10.1) or (10.7), we find that

dt′

dt
= γ > 0. (10.55)

Furthermore, if we introduce the notation x4 = ct, then the quadratic
form (10.54) becomes identical to (10.45).

Let us introduce a direction of the future at any point of V4 via the uni-
form time-like field e4. Due to Proposition 10.2 and its associated remark,
we can define a Lorentz frame (O, eα) ∈ L+

O at any point in V4. Let us intro-
duce a one-to-one correspondence among the inertial frames I in physical
space and the orthogonal or Lorentz frames in L+

O in the following way.
First, we associate a fixed inertial frame I with the Lorentz frame (O, eα)
in L+

O. Let I ′ be any inertial frame whose relation with I is expressed by
(10.1) and (10.2). With I ′ we then associate the Lorentz frame (O′, e′α),
whose transformation formulae (10.43) with respect to (O, eα) are given by
(see Eqs. 10.1, 10.2 and 10.43)

(xα
O′ ) = (xi

O′ , ct0), (10.56)



10.4. Physical Meaning of Minkowski Spacetime 269

(Aα
β ) =

⎛⎜⎝Qi
j

(
δj
h + (γ − 1)

ujuh

u2

)
− γQi

j

uj

c

−γ ui

c
γ

⎞⎟⎠ . (10.57)

Since
A4

4 = γ > 0, (10.58)

the Lorentz frame (O′, e′α) belongs to L+
O.

On the other hand, let us assign the Lorentz frame (O′, e′α) ∈ L+
O by

(10.43), where A4
4 > 0. In order to determine the corresponding inertial

frame I ′, we must determine the right-hand sides of (10.56) and (10.57);
i.e., the quantities t0, ui, Qi

j , and xi
O′ . Due to the orthogonality of the matrix

(Qi
j), we must evaluate ten quantities starting from the four coordinates

(xα
O′ ) and the six independent coefficients Aα

β (see (10.44)).
In particular, if I and I ′ are related by a special Lorentz transformation,

then (10.56) and (10.57) reduce to the following formulae:

(xα
O′ ) = (0, 0), (10.59)

(Aα
β ) =

⎛⎜⎜⎜⎜⎝
γ 0 0 −γ u

c
0 1 0 0
0 0 1 0

−γ u
c

0 0 γ

⎞⎟⎟⎟⎟⎠ . (10.60)

The above considerations allow us to clarify the physical meanings of the
definitions we provided in the preceding section. For any point P ∈ V4 with
coordinates (xα) in a Lorentz frame (O, eα) ∈ L+

O, there is a corresponding
event with coordinates (xi, x4/c) in the inertial frame I. In particular, all
of the events belonging to the light cone CO have coordinates that obey
(10.47). These points in V4 correspond to all of the events with coordinates
in the inertial frame I that satisfy the equation

3∑
i=1

(xi)2 − c2t2 ≡ r2 − c2t2 = 0 (10.61)

or, equivalently, the two equations r − ct = 0 and r + ct = 0, which rep-
resent a spherical light wave expanding from O and a spherical light wave
contracting toward O, respectively.

Moreover, due to Proposition 10.1 and its related remark, for any point
P ∈ C+

O it is possible to find a Lorentz frame in L+
O and then an inertial

frame I such that the event P has the coordinates (0, 0, 0, t) (t > 0) in I,
meaning that it appears to happen after the event at the origin. However, if
P ∈ C−

O , then the corresponding event appears to happen before the event
at O for the observer I. In other words, any event belonging to C+

O happens
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after the event at O for some inertial frames, and any event in C−
O happens

before the event at O for some inertial frames.
Also, due to Proposition 10.2 and its related remark, an event that be-

longs to the present of O appears to happen at the same time to some
inertial observer I.

We conclude this section with a very important remark that is a conse-
quence of the correspondence between the inertial frames and the Lorentz
frames in V4. If we succeed in formulating the physical laws by tensor rela-
tions in V4, they will be covariant with respect to Lorentz transformations;
in other words, they will satisfy the principle of relativity.

10.5 Four-Dimensional Equation of Motion

The way in which Einstein arrived at a new formulation for the dynamics
of a single particle P moving in an inertial frame I is well known. The
Newtonian equations were replaced with the following:

d

dt
(mv) = F, (10.62)

d

dt
(mc2) = F · v, (10.63)

where
m =

m0√
1 − v2

c2

(10.64)

is the relativistic mass of P andm0 is its rest mass . It is also well known that
(10.63) states the equivalence of mass and energy. In this section we review
the four-dimensional formulation of (10.62) and (10.63) in the spacetime
V4.

Let
xi = xi(t) (10.65)

be the equation of motion of a particle with respect to an inertial frame
I. With this trajectory we can associate a curve σ of V4, which has the
following equations in the Lorentz frame T ≡ (O, eα) corresponding to I:

xi = xi(t), x4 = ct. (10.66)

The curve σ is called world trajectory or world line of P . It defines a curve
of V4 that does not depend on the Lorentz frame adopted. The square norm
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of the vector t = (ẋi, c) tangent to σ is

3∑
i=1

(ẋi)2 − c2 < 0, (10.67)

and it is negative since the velocity of P in any inertial frame is less than
the velocity c of light in a vacuum. In other words, the curve σ is time-like
and its tangent vector at any point P lies within the nap C+

O of the light
cone at P .

Let xi(t) be the position of P at the instant t in the inertial frame I. We
call the inertial frame that has its origin at xi(t) and moves with a velocity
v with respect to I the rest frame or proper frame I of P at the instant
t. The corresponding Lorentz frame ((xi(t), ct), e0) ≡ T has a time axis e4

that is tangent to σ at the point xi(t), since the vector e4 in T must have
the components (0, 0, 0, 1). In going from T to T , the infinitesimal distance
between two events on σ is invariant, so that

ds2 =

(
3∑

i=1

(ẋi)2 − c2

)
dt2 = −c2dτ2, (10.68)

where τ is the proper time; i.e., the time evaluated by the observer I(t).
Using (10.68), we derive the relation

dt

dτ
= γ. (10.69)

If we adopt this time along σ, the parametric equations (10.66) become

xα = xα(τ). (10.70)

We define the world velocity or 4-velocity as the 4-vector

Uα =
dxα

dτ
, (10.71)

which, in view of (10.69), has the following components in the Lorentz frame
T :

Uα = (γv, γc). (10.72)

Moreover,
UαUα = γ2(v2 − c2) = −c2 < 0. (10.73)

We must now verify that we can write the equations (10.62) and (10.63)
in the covariant form

m0
dUα

dτ
= Φα, (10.74)

where the 4-force is given by

(Φα) = γ

(
F,

F · v
c

)
. (10.75)



272 Chapter 10. Relativistic Continuous Systems

10.6 Integral Balance Laws

In this section we formulate the relativistic balance laws of continuum
thermomechanics. These equations:

• Are covariant under Lorenz transformations

• Extend the equivalence of mass and energy to any field carried by S

• Associate a momentum with any moving energy.

Many ways have been proposed to formulate these equations in the lit-
erature (see, for instance, [165]). Here, we prefer to follow the approach
proposed in [166]–[170], since it represents the most natural extension of
the ideas of classical continua to special relativity.

Let S be a continuous system that is moving with respect to the inertial
reference frame I, and let C(t) be the actual configuration of S in I. We
make the following three assumptions:

• In any inertial frame there exist

g(x, t), t(x, t), h(x, t),p(x, t), (10.76)

where g(x, t) is the momentum density, t(x, t) is the momentum cur-
rent tensor, h(x, t) is the energy density, and p(x, t) is the energy
current vector, which satisfy the classical balance laws

d

dt

∫
c(t)

g(x, t) dv =
∫

∂c(t)

t(x, t) · n dσ, (10.77)

d

dt

∫
c(t)

h(x, t) dv = −
∫

∂c(t)

p(x, t) · n dσ, (10.78)

d

dt

∫
c(t)

x × g(x, t) dv =
∫

∂c(t)

x × t(x, t) · n dσ, (10.79)

where c(t) ⊂ C(t) is an arbitrary material volume, n is the exterior
unit vector normal to ∂c(t), and x is the position vector of any particle
with respect to the origin of the spatial axes of I.

• If we denote one of the fields in (10.76) by ψi, i = 1, . . . , 4, then the
following is obtained upon moving from the inertial frame I to any
inertial frame I ′:

ψ′i = f i(ψ1, . . . , ψ4), (10.80)

where the functions f i satisfy the condition

f i(0,0, 0,0) = 0. (10.81)
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That is, if the continuous system does not contain matter or energy in
a given inertial frame, then this is also observed by any other inertial
observer.

• The amount of energy present in an elementary volume in the proper
frame is independent of the observer.

The arbitrariness of the material volume c(t) and the regularity of the
fields under the integrals allow us to write the balance equations (10.77)–
(10.79) in the following local forms:

∂gi

∂t
+

∂

∂xj
(givj − tij) = 0, (10.82)

∂h

∂t
+

∂

∂xj
(hvj + pj) = 0, (10.83)

εijl(vjgl − tlj) = 0. (10.84)

If we introduce the notation x4 = ct and the matrix

(Tαβ) =

(
givj − tij cgi

1
c
(hvi + pi) h

)
, (10.85)

where α, β = 1, . . . , 4, then (10.82)–(10.84) assume the forms

∂Tαβ

∂xβ
= 0, (10.86)

T [ij] = 0. (10.87)

Let us denote the Lorentz frame of the spacetime V4 associated with the
arbitrary inertial frame I by T . We can now prove the following theorem.

Theorem 10.1
Under the three assumptions made above, the quantities (10.85) are the
components of a symmetric tensor of V4.

PROOF The tensor character of (Tαβ) is proven in Appendix D. In
order to prove the symmetry of Tαβ, we show that the symmetry of Tαβ

with respect to spatial indices implies that it is symmetric with respect
to all indices. Let I be the proper inertial frame for the particle x at the
instant t. If we denote the coefficient of Lorentz transformation I → I by
A

α

β , then

T ij = A
i

lA
j

mT
lm

+A
i

4A
j

lT
4l

+A
i

lA
j

4T
l4
A

i

4 +A
j

4T
44
, (10.88)
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where T
αβ

are the components of Tαβ in I. Subtracting from (10.88) the
relation obtained by exchanging i with j in (10.88), we obtain

0 = (A
i

4A
j

l −A
j

lA
i

4)μ
l, (10.89)

where μl = T
4l − T

l4
. From (10.57), if Qi

j = δi
j and we identify the relative

velocity (ui) with the opposite of the velocity (vi) of the particle, we get[
vi

c

(
δi
j +

vjvl

v2
(γ − 1)

)
− vj

c

(
δi
l +

vv
l

v2
(γ − 1)

)]
μl = 0;

that is,
viμj − vjμi = 0. (10.90)

Since these equations must be satisfied for any choice of (vi), we have μi = 0
and the theorem is proved.

We can therefore conclude that:

• The balance equations (10.82)–(10.84) are valid in any inertial frame
if and only if the quantities Tαβ are the components of a symmetric
tensor

• The global symmetry of Tαβ implies that

givj − tij = gjvi − tji, (10.91)

gi =
h

c2
vi +

pi

c2
. (10.92)

The second of the above equations shows that a momentum gi is asso-
ciated with the energy hvi carried during the motion and with any energy
current pi. This result is the most general form of the equivalence of mo-
mentum and energy.

10.7 The Momentum–Energy Tensor

The symmetric tensor Tαβ upon which the final forms of the balance
equations depend is called the momentum–energy tensor . In this section
we determine its general form in the absence of electromagnetic fields.

In the inertial frame I, let us consider an arbitrary particle x in the
continuous system S at the instant t. Using our notation, we denote the
proper frame of x at the instant t by I, and the corresponding Lorentz



10.7. The Momentum–Energy Tensor 275

frame in V4 by T . In this frame, the components of (Tαβ) are given by the
following matrix: ⎛⎝−tij cgi

pi

c
h

⎞⎠ , (10.93)

and they obey the symmetry conditions

t
ij = t

ji
, gi =

pi

c2
. (10.94)

Let (vi) be the velocity of the particle x with respect to I, and let (A
α

β ) be
the coefficients of the matrix relative to the transformation I → I. Then,
from (10.57), in which we put Qi

j = δi
j , u

i = −vi, and from (10.72), we
derive that

A
α

4 =
Uα

c
. (10.95)

Now we define the three symmetric tensors Θαβ , Παβ and Qαβ, which
have the following components in the rest frame I:

(Θ
αβ

) =
(

0 0
0 h

)
, (10.96)

(Π
αβ

) =
(
−tij 0

0 0

)
, (10.97)

(Q
αβ

) =

⎛⎜⎝ 0 −p
i

c
pi

c
0

⎞⎟⎠ . (10.98)

It is evident that
T

αβ
= Θ

αβ
+ Π

αβ
+Q

αβ
. (10.99)

On the other hand, the components of the above tensors in any Lorentz
frame are

Θ
αβ

= A
α

4A
β

4h =
h

c2
UαUβ , (10.100)

Π
αβ

= A
α

i A
β

j t
ij
, (10.101)

Q
αβ

= −UαA
β

i

pi

c2
−A

α

i U
β p

i

c2
. (10.102)

If we introduce the 4-vector (qα), the components of which in the rest
frame are

(qα) =
(
−p

i

c2

)
, (10.103)
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then the momentum–energy tensor assumes the form

Tαβ = ρ0U
αUβ + Παβ + Uαqβ + qαUβ , (10.104)

where ρ0 = h/c2 is the rest density mass.
The momentum–energy tensor describes the physical nature of the con-

tinuous system. In this section we consider three simple examples of con-
tinuous relativistic systems that correspond to three different choices of the
momentum–energy tensor:

1. When Παβ = qα = 0, we have

Tαβ = ρ0U
αUβ, (10.105)

and the continuous system is said to be made of incoherent matter.

2. If qα = 0 and we get

(Π
αβ

) =
(
p0δ

ij 0
0 0

)
=
(
p0δ

ij 0
0 −p0

)
+
(

0 0
0 p0

)
(10.106)

in the proper frame, then, from (10.101) and (10.95), we have

Παβ = p0η
αβ +

p0

c2
UαUβ. (10.107)

Finally, the momentum–energy tensor assumes the form

Tαβ =
(
ρ0 +

p0

c2

)
Uαβ + p0η

αβ , (10.108)

and the continuous system described by this momentum–energy ten-
sor is said to be a perfect fluid. Usually, the rest pressure p0 is given
as a function of the rest mass ρ0:

p0 = p0(ρ0). (10.109)

3. Finally, if pi is identified with the heat current vector in the rest frame,
then momentum–energy tensor (10.104) defines a heat-conducting per-
fect fluid.

It is worth noting that it is possible to postulate balance equations that
are more general than (10.77)–(10.79) (see [165] and [168]). Such balance
laws assume the existence of an internal angular momentum k and an in-
ternal mass momentum n per unit volume. Because of these assumptions,
(10.79) is replaced with the following new equation for the angular momen-
tum balance:

d

dt

∫
c(t)

(x × g(x, t) + k) dv =
∫

∂c(t)

x × t(x, t) · n dσ. (10.110)
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Moreover, a mew balance equation must be added, which takes the form

d

dt

∫
c(t)

(
h(x)
c2

+ n(x, t)
)
dv = − 1

c2

∫
∂c(t)

xp(x, t) · n dσ

+
∫

c(t)

g(x, t) dv.

The physical motivation for the presence of a mass momentum together
with an internal angular momentum is given in [165]. In this more general
theory, the momentum–energy tensor is no longer symmetric.

10.8 Fermi and Fermi–Walker Transport

In order to determine the expressions for the momentum–energy tensors
of more general materials in special relativity, we must introduce some more
kinematic ideas.

In view of (10.57), a Lorentz transformation without rotation is deter-
mined by the following transformation matrix:

(Aα
β ) =

⎛⎜⎝
(
δi
j + (γ − 1)

uiuj

u2

)
− γ

ui

c

−γ ui

c
γ

⎞⎟⎠ . (10.111)

Let us suppose that the components ui of the uniform velocity u of
the inertial frame I ′ with respect to the inertial frame I are infinitesimal
quantities εi. To within second-order terms in the variables μi, we have

γ = 1 +O(μ), μ =

√√√√ 3∑
i=1

(μi)2.

Consequently, in the same approximation, and using the notation εi = μi/c,
(10.111) can be written as follows:

(Aα
β ) =

(
δα
β

)
+
(

0 −εi
−εi 0

)
. (10.112)

A Lorentz transformation defined by matrix (10.112) is said to be an infin-
itesimal Lorentz transformation without rotation.

Let us consider a field of unit time-like vectors γ(x) in an open set of V4,
and let Γ be the congruence of the time-like integral curves of γ(x). We de-
note the three-dimensional space of the spatial 4-vectors that are orthogonal
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to γ(x) at the point x ∈W by Σx (see Propositions 10.1 and 10.2 in Sect.
10.3). If (ei(x)), i = 1, 2, 3, is an orthonormal basis in Σx, then (x, ei(x, γ(x)
is a Lorentz frame at x, and the following conditions are satisfied:

ei · ej = δij , (10.113)
ei · γ = 0, (10.114)
γ · γ = −1. (10.115)

We now consider a point x + dx ∈ W that is next to x, and the vector
γ(x) + dγ at x + dx. Since γ + dγ must be a time-like 4-vector, we have
(γ + dγ) · (γ + dγ) = −1, so

γ · dγ = 0. (10.116)

We want to determine a spatial orthonormal basis ei(x)+dei in Σx+dx (see
Fig. 10.1) in such a way that the Lorentz transformation between the two
frames (x, ei(x), γ(x)) and (x+dx, ei(x)+dei, γ(x)+dγ) is an infinitesimal
Lorentz transformation without rotation. To achieve this aim, we start by
noting that the inverse matrix of (10.112) is

((A−1)α
β) = (δα

β ) +
(

0 εi

εi 0

)
≡ (δα

β ) + (εαβ). (10.117)

Therefore, if we make e4 = γ, we have

eα + deα = (A−1)β
αeβ = eα + εβαeβ ; (10.118)

i.e.,
dei = ε4i e4. (10.119)

From (10.119), it follows that

ε4i = εi4 = de4 · ei, (10.120)

and finally we have

dei = (ei · de4)e4 = (ei · dγ)γ. (10.121)

x
x x	 d

�

�	 �d

� x � x x	d

Fig. 10.1 Two Lorentz frames
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These relations supply the vectors (ei +dei) that we must associate with
γ + dγ, where dγ satisfies (10.116), in order to obtain the requested frame
(x + dx, ei + dei, γ + dγ), which is related to (x, ei, γ) by an infinitesimal
Lorentz transformation without rotation. Finally, it is very simple to verify
that

(ei + dei) · (ei + dei) = δij , (10.122)
(ei + dei) · (γ + dγ) = 0, (10.123)
(γ + dγ) · (γ + dγ) = −1. (10.124)

Let x(λ) be a curve ρ of V4 in the region W for which the time-like
congruence Γ is given. We consider a Lorentz frame (x(0), e0,i, γ0), where
γ is the time-like 4-vector that is tangent to the curve ρ ∈ Γ at the point
x(0), and the 4-vectors (ei) belong to Σx(0) (see Fig. 10.2).

x���

x���

�
�

� x � x(� �

�

���
���

Fig. 10.2 Fermi–Walker
transport of a Lorentz frame

Let γ denote the unit time-like vector that is tangent to the curve σ of
Γ at the point where ρ intersects σ. Now consider the system of ordinary
differential equations

dei

dλ
=
(
ei · dγ

dλ

)
γ, (10.125)

with the initial data

ei(0) = e0,i, e0,i · e0,j = δij , e0,i · γ0 = 0. (10.126)

Due to (10.126), we can easily verify that

d

dλ
(ei · γ) =

d

dλ
(ei · ej) = 0. (10.127)
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Consequently, the solution (ei(λ)) of system (10.125) that obeys the ini-
tial data comprises unit vectors that are orthogonal to each other and to
γ. Moreover, they satisfy (10.121); thus, at any point of x(λ) ∈ ρ, the
frame (x(λ), ei(λ), γ(λ)) is a Lorentz frame that is related to the frame
(x(λ+dλ), ei(λ+dλ), γ(λ+dλ)) by an infinitesimal Lorentz transformation
without rotation. The above solution is called the Fermi–Walker transport
of the vectors (ei(0)) along ρ and the congruence Γ. In particular, if ρ be-
longs to Γ, then the solution (ei(λ)) of (10.125)–(10.126) is said to be the
Fermi transport of (ei(0)) along ρ.

We conclude this section with the following theorem:

Theorem 10.2
Let X(λ) be a time-like curve. We denote its time-like unit tangent vector by
γ(λ) and the three-dimensional space of the space-like vectors orthogonal to
γ(λ) at X(λ) by ΣX(λ). A 4-vector ũ(λ) ∈ ΣX(λ) undergoes Fermi–Walker
transport along ρ if and only if the spatial basis (ei) in ΣX(λ) is obtained
by Fermi–Walker transport along ρ of the spatial basis (ei(0)) in ΣX(0) and
the components ũi of ũ with respect to the basis (ei) are constant.

PROOF If ũ = ũi(λ)ei undergoes Fermi–Walker transport along ρ, we
have

dũ
dλ

=
(
ũ · dγ

dλ

)
γ;

i.e.,
dũi

dλ
ei + ũi dei

dλ
= ũi

(
ei · dγ

dλ

)
γ.

Since the vectors ei(λ) are unit vectors that are orthogonal to γ and to
each other, we have γ · ei = 0 and ei · dei/dλ = 0. Therefore, the scalar
product of the above relation with ei gives

dũi

dλ
= 0.

Consequently, we also have

dei

dλ
= (ei · γ)γ,

and the basis ei(λ) undergoes Fermi transport along ρ.
It is evident that the last two relations imply the Fermi transport of ũ(λ)

along the curve ρ.

In the next section we show the fundamental role of Fermi transport in
relativistic continuum mechanics.
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10.9 The Space Projector

Let

xi = xi(XL, t) (10.128)

be the equations of motion of a continuous system S with respect to an
inertial frame I. The Lagrangian coordinates can be identified with the
coordinates of the points of S at the instant t = 0 in I. Starting from
(10.128), we can define the usual kinematic quantities of continuum me-
chanics, such as deformation gradient, velocity gradient, angular velocity,
and so on. However, it is evident that the transformation properties of
these quantities under a Lorentz transformation differ from those of the
corresponding classical quantities. For instance, let us suppose that in the
inertial frame I the spatial velocity deformation gradient D vanishes. The
motion is then rigid with respect to I. However, upon shifting to another
inertial frame I ′, the corresponding spatial velocity deformation gradient
does not vanish, so the motion is no longer rigid.

Instead of considering this approach to relativistic kinematics, which de-
pends on the observer in a complex way, we will analyze a different approach
that involves observers located in the rest frames of the different points of
S. To this end, we make use of the geometrical representation of the mo-
tion of S in the Lorentz frame T , which corresponds to I in V4. We first
note that the world trajectories of the points of S define a congruence Γ of
time-like curves1 in a region W of V4 that will be called the universe tube
of S. The vector field of the 4-velocity (Uα) of the different particles of S
is defined in W .

Let us consider a particle x ∈ S at the instant t for the inertial observer I,
and let I0 be the rest frame of x at the instant t. The event X ≡ (x, t) ∈ V4

belongs to the world trajectory ρ ∈ Γ of the particle x, and the Lorentz
frame T0, with the time-axis tangent to ρ at X, is the four-dimensional
representation of I0 (see Fig. 10.3). In this frame, the 4-velocity U has
components of (0, 0, 0, c).

We now determine the infinitesimal space vector δ̃x, which connects (at
the same instant for the rest observer T0) two adjacent particles in the
continuum S. This vector belongs to the three-dimensional space ΣX of
the space-like vectors orthogonal to the unit 4-vector γ = U/c, which is

1Actually, the velocity of any particle is less than c.
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tangent to the world trajectory of the particle x ∈ S at X.

X

dx

�x �X

�

T�

�

Fig. 10.3 Space and time
decomposition of a 4-vector

It is evident that
dx = δ̃x + λγ, (10.129)

where the component λ of dx along γ is given by

λ = −(dx · γ)γ = − 1
c2

(dx ·U)U. (10.130)

Finally, the requested space-like 4-vector δ̃x is

δ̃x = (I +
1
c2

U ⊗ U)dx, (10.131)

where I = (δα
β ) is the identity tensor. In any Lorentz frame, the components

of δ̃x are

δ̃x
α

= (δα
β +

1
c2
UαUβ)dxβ , (10.132)

δ̃xα = (ηαβ +
1
c2
UαUβ)dxβ , (10.133)

and the double 4-tensor

Pαβ = (ηαβ +
1
c2
UαUβ), (10.134)

is called the space projector in the three-dimensional space ΣX. It is possible
to extend the projection on ΣX to any tensor. For instance, if tαβ is a 4-
tensor in V4, we define its space projection t̃αβ by the formula

t̃αβ = PαμPβνt
μν . (10.135)
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10.10 Intrinsic Deformation Gradient

We now derive some useful consequences of (10.131). First, we introduce
in the region W (which is formed by the world trajectories of the particles
of S) a system of coordinates (yi, τ) that is adapted to the congruence Γ.
This means that any curve ρ ∈ Γ is determined by the triad (yi), whereas τ
is a parameter along ρ which, from now on, we will identify with the proper
time. The variables (yi) will be called material coordinates since they define
a particle in S. Then, in any Lorentz frame, the equations for the world
trajectories of the particles in S can be written as follows:

xα = xα(yi, τ), det

(
∂xi

∂yj

)
> 0, (10.136)

so that

Uα =
∂xα

∂τ
. (10.137)

We explicitly note that the variable τ assumes the meaning of the proper
time provided that events belonging to the same curve of Γ are considered.
Along such a curve we have

dτ = −1
c
Uαdx

α. (10.138)

However, the proper time τ can be defined for the whole region W if and
only if the differential form (10.138) is exact.

Let us consider an event X0 on the world line ρ ∈ Γ, and let T0(0) be the
rest frame at this event. Since dxα = (∂xα/∂yi)dyi +Uαdτ due to (10.136),
we can use (10.133) to obtain

δ̃x
α

= Pαβ
∂xβ

∂yi
dyi ≡ F̃α

i dy
i, (10.139)

where (F̃α
i ) is called the intrinsic deformation gradient .

In order to interpret the physical meaning of (10.139), we consider the
spatial vector dy ∈ ΣX0 . If e0,i(0) is an orthonormal basis in ΣX0 , we have
dy = dyie0,i(0).

At the event X(τ) ∈ ρ, corresponding to the value τ for the proper
time, we consider the triad of the spatial vectors e0,i(τ) obtained by e0,i(0)
through Fermi transport along ρ (see Fig. 10.4). Due to the properties of
this transport, the three vectors e0,i(τ) form an orthonormal basis in the
three-dimensional space ΣX(τ) formed by the vectors orthogonal to the
unit vector e0,4(τ) tangent to ρ at X(τ). Moreover, the components dyi of



284 Chapter 10. Relativistic Continuous Systems

dy remain constant during the transport (see Theorem 10.2), and dyie0,i

is the transported vector.
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X�
�

T�
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e� �
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���

�x�

�X

�
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�
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Fig. 10.4 Fermi transport of
a Lorentz frame

If we refer (10.37) to the basis e0,i of ΣX, then we have

δ̃x
i
e0,i(τ) = F̃ i

jdy
je0,i(τ), (10.140)

which, considering (10.34), defines an isomorphism in the three-dimensional
space ΣX.

If we introduce the notation

(F̃−1)i
α =

∂yi

∂xα
, (10.141)

it is easy to verify that the following relations hold:

F̃α
j Uα = 0, (10.142)

(F̃−1)i
αU

α = 0, (10.143)

(F̃−1)i
αF̃

α
j = δi

j , (10.144)

(F̃−1)i
αF̃

β
i = Pα

β . (10.145)

In fact, from (10.135) and (10.140) we have

F̃α
i Uα =

(
∂xα

∂yi
+

1
c2
UαUβ

∂xβ

∂yi

)
Uα = 0,

since UαUα = −c2. Moreover,

(F̃−1)i
αU

α =
∂yi

∂xα
Uα =

∂yi

∂τ
= 0,
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since yi and τ are independent variables. It is then very simple to verify
(10.144) and (10.145).

In what follows, we use the notation (10.135) to denote the projection
onto ΣX of any 4-tensor t.

We now prove the following theorem.

Theorem 10.3
The following identities hold:

d̃F̃ ρ
i

dτ
= F̃λ

i

∂̃Uρ

∂xλ
, (10.146)

∂̃Uρ

∂xμ
= (F̃−1)i

μ

d̃F̃ ρ
i

dτ
. (10.147)

PROOF From (10.139) and (10.134), we have

dF̃α
i

dτ
=

∂

∂τ

(
∂xα

∂yi
+

1
c2
UαUβ

∂xβ

∂yi

)
=
∂Uα

∂yi
+
Aα

c2
Uβ

∂xβ

∂yi
+
Uα

c2
Aβ

∂xβ

∂yi
+
Uα

c2
Uβ

∂Uβ

∂yi

=
∂xμ

∂yi
Pα

β

∂Uβ

∂xμ
+

1
c2

(AαUβ + UαAβ)
∂xβ

∂yi
, (10.148)

where Aα = dUα/dτ is the 4-acceleration. On the other hand, from (10.139)
we obtain

∂xμ

∂yi
= F̃μ

i − 1
c2
UμUν

∂xν

∂yi
,

so that (10.148) becomes

dF̃α
i

dτ
= F̃μ

i P
α
β

∂Uβ

∂xμ
+

1
c2

(AαUβ + UαAβ)
∂xβ

∂yi

− Pα
β

Uμ

c2
Uν
∂xν

∂yi

∂Uβ

∂xμ
.

However, we also have

Uμ ∂U
β

∂xμ
= Aβ , AαUα = 0, Pα

β A
β = Aα, F̃μ

i = Pμ
λ F̃

λ
i ,

so the above relation can be written as follows:

dF̃α
i

dτ
= F̃λ

i P
α
β P

μ
λ

∂Uβ

∂xμ
+

1
c2
UαAβ

∂xβ

∂yi
. (10.149)
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Applying the projector P ρ
α to both sides of (10.149), and noting that P ρ

αP
α
β =

P ρ
β , P ρ

αU
α = 0, we finally obtain

P ρ
α

dF̃α
i

dτ
= F̃λ

i P
ρ
βP

μ
λ

∂Uβ

∂xμ
,

and (10.146) is proved. Identity (10.147) follows from (10.146) and (10.145).

Remark Equation 10.146 describes the evolution of the intrinsic defor-
mation gradient with respect to any Lorentz frame T . If we denote the
reference frame in T by (O, eα), and the family of frames that are obtained
by Fermi transport along the world trajectory ρ of a particle in the contin-
uum system S by (X(λ), e′i,U/c), then, due to the spatial character of F̃α

i ,
we have

F ′j
i e′j = Fα

i eα. (10.150)

On the other hand, since e′i is obtained by Fermi transport along ρ, we also
have

d

dτ
(F̃ ′j

i e′j) =
F̃ ′j

i

dτ
e′j + F̃ ′j

i

1
c2

(
e′j ·

dU
dτ

)
U, (10.151)

and the projection of (10.151) onto ΣX(λ) coincides with (10.146). In con-
clusion, (10.146) gives the spatial evolution of the intrinsic deformation gra-
dient with respect to proper observers that assume spatial axes in ΣX(λ)

which satisfy Fermi transport along the world trajectory ρ.

We conclude this section by defining the intrinsic Cauchy–Green tensor :

C̃ij = ηαβF̃
α
i F̃

β
j . (10.152)

10.11 Relativistic Dissipation Inequality

From the results of Sect. 10.7, we know that the relativistic balance equa-
tions for momentum and energy can be written as follows:

∂Tαβ

∂xβ
= fα, (10.153)

where
Tαβ = ρ0U

αUβ + Παβ + Uαqβ + qαUβ (10.154)
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is the symmetric momentum–energy 4-tensor, and

(fα) =
(
f ,

1
c
(f · v + r)

)
, fαUα = 0 (10.155)

is the 4-force acting per unit volume of the continuous system S. In (10.155),
f is the force per unit volume with respect to an inertial frame, v is the
velocity field of S, and r is the energy supplied per unit volume.

It is well known that the position

ρ0 = μ0

(
1 +

ε0
c2

)
≡ μ0χ (10.156)

defines the proper density of matter as well as the proper internal energy ε0
per unit proper mass.. Moreover, in the absence of proper mass variation,
μ0 satisfies the equation

∂

∂xα
(μ0U

α) = 0. (10.157)

We also assume the following local form for the entropy inequality (see
[171]):

∂

∂xα
(s0Uα) ≥ −c2 ∂

∂xα

(
qα

θ0

)
+
r0
θ0
, (10.158)

where s0 is the proper entropy per unit volume and θ0 is the proper absolute
temperature. If we define the proper specific entropy η0 is introduced as
follows:

s0 = μ0η0, (10.159)

the above inequality assumes the form

μ0η̇0 ≥ −c2 ∂

∂xα

(
qα

θ0

)
+
r0
θ0
, (10.160)

where the dot denotes the derivative with respect to the proper time τ
along a world line of any particle of S.

In order to derive an important inequality from (10.153) and (10.160),
we start by noting that (10.156) and (10.157) lead to

∂

∂xα
(ρ0U

αUβ) =
∂

∂xα
(μ0χU

αUβ)

= χUα ∂

∂xβ
(μ0U

β) + μ0U
β ∂

∂xα
(χUα)

= μ0
d

dτ
(χUα) =

ε̇0
c2
Uα + μ0χA

α, (10.161)

where Aα = dUα/dτ is the 4-acceleration. In view of (10.161), we can derive
the following from the balance equations (10.153): derive that

μ0
ε̇0
c2
Uα + μ0χA

α +
∂Παβ

∂xβ
+

∂

∂xβ
(qαUβ + qβUα) = fα. (10.162)
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On the other hand, it is easy to verify that (10.97) and (10.103) imply that

ΠαβUβ = ΠβαUβ = 0, (10.163)
qαUα = 0. (10.164)

Moreover, from UαUα = −c2, we obtain

UαA
α = 0, (10.165)

Uα
∂Uα

∂xβ
= 0. (10.166)

Finally, if we multiply (10.162) by Uα and consider (10.163)–(10.166), the
condition UαU

α = −c2, and (10.155), we get

−μ0ε̇0 + Uα
∂Παβ

∂xβ
+ UαU

β ∂q
α

∂xβ
− c2

∂qα

∂xα
= r0. (10.167)

Again taking into account (10.163) and (10.164), we can write the above
equation in the following form:

μ0ε̇0 = Πβ
α

∂̃Uα

∂xβ
− qαAα − c2

∂qα

∂xα
+ r0, (10.168)

which, due to (10.148), becomes

μ0ε̇0 = Si
α

d̃F̃α
i

dτ
− qαAα − c2

∂qα

∂xα
+ r0, (10.169)

where
Si

α = Πβ
α(F̃−1)i

β . (10.170)

By eliminating r0 between (10.160) and (10.169), and noting that
qαUα = 0 (see (10.103)), we obtain the inequality

−μ0(ψ̇0 + η0θ̇0) − Si
α

d̃F̃α
i

dτ
− qαAα − c2

θ0
qαgα, (10.171)

where
ψ0 = ε0 − θ0η0 (10.172)

is the specific free energy and

g̃α =
∂̃θ0
∂xα

= P β
α

∂θ0
∂xβ

. (10.173)

On the other hand, if we recall (10.141), we also find that

g̃α = P β
α

[
(F̃−1)i

β

∂θ0
∂yi

+
∂τ

∂xβ
θ̇0

]
≡ P β

α

[
(F̃−1)i

βGi + ταθ̇0

]
. (10.174)
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Consequently qαP β
α = qβ since qα lies in the three-dimensional space or-

thogonal to Uα, and so we have

qαg̃α = qα(F̃−1)i
αGi + ταθ̇0. (10.175)

Finally, the inequality (10.171), or its equivalent form

−μ0

[
[̇ψ]0 +

(
η0 + c2

qατα
θ0

)
θ̇0

]

−Si
α

d̃F̃α
i

dτ
− qαAα − 1

θ0
qα(F̃−1)i

αGi ≥ 0, (10.176)

is called the relativistic reduced dissipation inequality.

10.12 Thermoelastic Materials in Relativity

Just as in the classical theory of continua, we call the pair of functions
xα(yi, τ), θ0(yi, τ) a thermokinetic process, while a thermodynamic process
is a thermokinetic process together with the following other functions:

ψ0 = ψ0(yi, τ), (10.177)
η0 = η0(yi, τ), (10.178)

Παβ = Παβ(yi, τ), (10.179)
qα = qα(yi, τ). (10.180)

In this section we analyze relativistic thermoelastic materials; i.e., materials
that are described by the following constitutive equations:

ψ0 = ψ0(F̃α
i , A

α, θ0, Gi), (10.181)

η0 = η0(F̃α
i , A

α, θ0, Gi), (10.182)

Παβ = Παβ(F̃α
i , A

α, θ0, Gi), (10.183)

qα = qα(F̃α
i , A

α, θ0, Gi). (10.184)

It is reasonable to extend the dissipation principle (see Chap. 6 of [16]) to
special relativity while requiring that the constitutive equations (10.181)–
(10.184) must satisfy the reduced dissipation inequality (10.176) in any
thermokinetic process.

In order to derive the restrictions on the constitutive equations (10.181)–
(10.184) resulting from this principle, we first prove the following statement:
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Theorem 10.4
Let X = (yi, τ) be an event on the world line of the particle (yi) in the
continuous system S. It is always possible to find, at least in the neighbor-
hood of X in V4, a motion xα(yi, τ) such that the following quantities have
arbitrary values at X:

F̃α
i ,
d̃F̃α

i

dτ
,Aα, θ0, θ̇0, Gi, Ġi. (10.185)

PROOF The equations

xi(yj , t) = ai(t) + F i
j (t)y

j (10.186)

represent a motion of a continuous system S with respect to the inertial
frame I if and only if the 3× 3 matrix (F i

j ) is not singular and the velocity
of any point is less than c. The velocity ui(t) of the particle (yi) = 0 is
less than c provided that the arbitrary functions ai(t) are chosen in such a
way that

∑3
i=1[(ȧ

i(t))2] < c2. When this condition is satisfied, the squared
modulus of the velocity (vi) of the other particles of S,

v2 = u2 + 2uiḞ
i
j y

j + Ḟ i
j Ḟ

i
hy

jyh, (10.187)

will be less than c2, at least when the point (yi) belongs to a suitable
neighborhood I of 0. Under this condition, we can define the congruence

xi(yj , t) = ai(t) + F i
j (t)yj , (10.188)

x4 = ct (10.189)

of the world trajectories of the particles of S in the neighborhood I × �
of V4. In this way, it is possible to arbitrarily define the 4-velocity and the
4-acceleration of any particle 0 of S. Now we prove that, starting from

(10.188), we can also arbitrarily assign the quantities F̃α
i ,

d̃F̃ α
i

dτ . Let

dx̂i =
∂xi

∂yj
dyi = F i

j (t)dyj (10.190)

be the infinitesimal vector between the two events (0, t) and (dyi, t), which
are simultaneous with respect to the observer I. In the Lorentz frame cor-
responding to I, we can define the 4-vector (dx̂α) = (dx̂i, 0). Moreover,
for the event X = (0, t), we consider the 4-velocity Uα and the associated
three-dimensional space ΣX of the vectors that are orthogonal to Uα. In
this case,

dx̃α = Pα
β dx̂

β ,
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so that
F̃α

i = Pα
β F̂

β
i . (10.191)

This relation shows that an arbitrary choice of F̂ i
j (t) corresponds to an

arbitrary choice of F̃α
β . By differentiating with respect to time, we can also

verify that d̃F̃ α
i

dτ can be chosen in an arbitrary way starting from F i
j (t). A

similar line of reasoning can be applied to the proper field of temperature,

θ0(yi, t) = a(t) + bj(t)yi.

In order to derive the restrictions on the constitutive equations due to the
reduced dissipation inequality, we assume that this inequality is evaluated
at an event X ∈ V4, and we denote the 4-velocity of the particle of the
continuous system S at X by Uα and the three-dimensional space of the
4-vectors that are orthogonal to Uα by ΣX.

If we differentiate (10.181) with respect to the proper time τ ,

ψ̇0 =
∂ψ0

∂F̃α
i

dF̃α
i

dτ
+
∂ψ0

∂θ0
θ̇0 +

∂ψ0

∂Gi
Ġi +

∂ψ0

∂Aα
Ȧα +

∂ψ0

∂θ̇0
θ̈0, (10.192)

and we denote the projection of ∂ψ0/∂F̃
α
i on ΣX and Uα by˜(

∂ψ0

∂F̃α
i

)
= P β

α

(
∂ψ0

∂F̃α
i

)
, (10.193)

(
∂ψ0

∂F̃α
i

)‖
= − 1

c2
UαU

β

(
∂ψ0

∂F̃α
i

)
, (10.194)

then the inequality (10.184) can also be written as follows:

−μ0

[(
η0 + c2

qατα
θ0

)]
θ̇0 −

⎡⎣Si
α + μ0

˜(
∂ψ0

∂F̃α
i

)⎤⎦ d̃F̃α
i

dτ

−μ0

(
∂ψ0

∂F̃α
i

)‖
( ˙̃
F

α

i )‖ − μ0
∂ψ0

∂Gi
Ġi − μ0

∂ψ0

∂θ̇0
θ̈0 − μ0

∂ψ0

∂Aα
Ȧα

−qαAα − c2
qα(F̃−1)i

α

θ0
Gi ≥ 0. (10.195)

Since this inequality must be satisfied for any choice of the quantities in
(10.185), we necessarily find that

ψ0 = ψ0(F̃α
i , θ0), (10.196)
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η
(e)
0 = − ∂0

∂θ0
, (10.197)

Si
α = −μ0

˜(
∂ψ0

∂F̃α
i

)
= Si

α(F̃α
i , θ0), (10.198)

(
∂ψ0

∂F̃α
i

)‖
= 0, (10.199)

μ0η
(d)
0 θ̇ − qαAα − c2

qα(F̃−1)i
α

θ0
Gi ≥ 0, (10.200)

where

η
(e)
0 (F̃α

i , θ0) ≡ η0(F̃α
i , θ0, θ̇0, Gi, A

α) − η0(F̃α
i , θ0, 0, 0, 0) (10.201)

is the specific entropy at equilibrium and

η
(d)
0 (F̃α

i , θ0, θ̇0, Gi, A
α) = η0(F̃α

i , θ0, θ̇0, Gi, A
α) − η

(e)
0 (F̃α

i , θ0) (10.202)

is the remaining part of the specific entropy. In particular, (10.200) leads
to the following inequalities:

η
(d)
0 (F̃α

i , θ0, θ̇0, Gi, 0)θ̇0 − c2
qα(F̃−1)i

α

θ0
Gi ≥ 0, (10.203)

qα(F̃α
i , θ0, 0, 0, A

α)Aα ≤ 0. (10.204)

The following remarks hold.

Remark The dependence on Aα in the constitutive equations is essential.
Indeed, if we omitted it, then (10.204) would lead to qα = 0. Moreover, it
implies the presence of heat conduction even in the absence of a temperature
gradient.

Remark The inequality (10.122) is a relativistic extension of a result
obtained by Bogy and Naghdi [172] which implies that thermal waves have
a finite propagation velocity.

Remark Condition (10.199) is a consequence of the objectivity principle
in special relativity, as formulated in [173, 174, 175, 176].2 It is possible to

2For a deeper analysis of the objectivity principle in special and general relativity, see
[177, 178, 179].
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prove that this form of the objectivity principle in special relativity leads
to

ψ0 = ψ0(C̃ij , θ0). (10.205)

Consequently,
∂ψ0

∂F̃α
i

=
∂ψ0

∂C̃lm

∂C̃lm

∂F̃α
i

= 2ηαβF̃
β
l

∂ψ0

∂C̃li

,

and (10.199) is proved if we take into account (10.142).

10.13 About the Physical Meanings of Relative Quan-
tities

In the above sections we started from the assumption that the balance
equations for momentum, energy and angular momentum also hold during
the evolution of a continuous system S in special relativity. However, we
did not accept the classical expressions for the quantities that appear in the
balance laws a priori; instead, we imposed the covariance of these equations
under Lorentz transformations, proving that the above balance equations
can be written as the divergence of the symmetric momentum–energy tensor
Tαβ of the spacetime V4. As a consequence, the description of a continuous
system in special relativity requires that we are able to express its compo-
nents in terms of the thermodynamic process. Some examples of this tensor
have been supplied together with the nature of the continua which they
describe. In any case, the proposed momentum–energy tensors Tαβ were
defined by giving their components T

αβ
in the proper frame I, where their

physical meanings were more evident. In this way, the whole description
of S is realized in spacetime; i.e., it is a geometrical description in V4 of
the evolution of S. It is evident that, by resorting to the transformation
formulae

Tαβ = Aα
λA

β
μT

λμ
, (10.206)

it is possible to express the components Tαβ in terms of the physical quan-
tities T

λμ
and then, using (10.85), to obtain the relative quantities g, t, h,p

(that appear in the balance equations) as functions of the proper compo-
nents of Tαβ. These formulae, which are proved in [180], take the following
forms:

g =
[
γ2h− γ(γ − 1)

v · tv
v2

+
(

2γ2 v
2

c2
− γ + 1

)
v · p
v2

]
v
c2

− γ
v · t
c2

+ γ
p
c2
, (10.207)
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h = γ2

(
h− v · tv

c2
+ 2

v · p
c2

)
, (10.208)

t = t − (γ − 1)
v ⊗ (v · t)

v2
+
γ − 1
γ

t · v
v2

+
(γ − 1)2

γ

v · tv
v4

v ⊗ v +
γ

c2
v ⊗

[
p− γ − 1

γ

v · pv
v2

]
, (10.209)

p = −γv · t + (γ − 1)
v · tv
v2

+ γ

[
p − γ − 1

γ

v(v · p)
v2

]
. (10.210)

If the above expressions are introduced into the balance equations, and
the constitutive equations of the overlined quantities in the rest frame are
provided, then we obtain a set of partial differential equations that, at least
in principle, allow us to determine the evolution of the continuous system
when they are equipped with suitable initial and boundary conditions.

However, the balance equations in relation to the inertial observer I only
involve quantities that refer to the rest frame instead of quantities that re-
late to the observer I. In other words, it is not yet clear how we can define
the stress, the specific energy, the heat current vector, etc. relative to I.
It is evident that there are many possible ways to define these quantities
by reasonable definitions supported by suitable experimental procedures
to measure them. In the literature there are many different proposals for
defining the relative stress, the heat current vector, etc. In [180], the follow-
ing definitions for the relative stress tensor T and the relative heat current
vector s are considered:

t = T − α

c2
v ⊗ s, (10.211)

p = v ·T − s, (10.212)

where α is an unknown real number. Then, still in [180], homogeneous ther-
modynamic processes are considered in order to define the global energy U ,
the total work L, and the total heat Q that the system exchanges with the
external world. Further, it is proved that, for α = 0, the transformation for-
mulae for U,L,Q that should be applied when shifting from the rest frame
to any inertial frame coincide with the transformation formulae proposed
by Einstein, Planck and von Laue (see [181, 182]). For α = 1, the trans-
formation formulae reduce to the formulae proposed by Kibble and Møller.
Finally, for α = c2(γ − 1)/(γv2), it is possible to derive the transformation
formulae proposed by Landsberg.

In conclusion, all of the above options and many others are acceptable,
since each is associated with a particular arbitrary definition of the relative
quantities, together with a corresponding measuring process.
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10.14 Maxwell’s Equation in Matter

In the above sections we presented a relativistic theory of thermodynamic
continua. We now wish to account for the case of a continuum that con-
tains charges and currents, since the Maxwell equations are covariant under
Lorentz transformations. However, there is an important question to solve.
Electrodynamics in a vacuum in the presence of charges and currents is a
well-established theory, and there is only one formulation for it. In contrast,
in terms of electrodynamics in matter, many formulations have been pro-
posed for the interaction between electromagnetic fields and moving matter.
The first of them, which is due to Minkowski, is purely phenomenological,
and it assumes that Maxwell’s equations take the same form in moving
bodies as in bodies at rest. In all other formulations, matter is replaced
by fictitious distributions of charges and currents that are derived using a
model of magnetization and polarization. In this way, it is possible to derive
the Maxwell equations in moving media from the well-established equations
in vacuum using the charges and currents supplied by the adopted model.
Each model corresponds to a different expression for the 4-force fα

(e) acting

on the matter, and thus a different momentum–energy tensor Tαβ
(e) for the

electromagnetic field defined by the condition

fα
(e) = −

∂Tαβ
(e)

∂xβ
. (10.213)

In any case, the balance equations assume the form

∂Tαβ

∂xβ
= 0, (10.214)

where
Tαβ = Tαβ

(m) + Tαβ
(e) (10.215)

is the total momentum–energy tensor, whereas Tαβ
(m) and Tαβ

(e) denote its me-
chanical part and its electromagnetic part, respectively. In some cases, the
choice of fα

(e) leads to an electromagnetic tensor Tαβ
(e) , which is not symmet-

ric, together with the total momentum energy tensor. For a review of the
many proposals for the interaction between matter and an electromagnetic
field, together with their physical motivations, see [183]– [193] for instance.

Choosing one of the proposed models is a difficult task, and it appears to
be largely a matter of preference. In [191] it is suggested that all of these
models could be equivalent. In line with this suggestion, the following result
is proved in [193].

Let S be a charged continuous system, and let x be a particle of S that is
moving with respect to the inertial observer I at the instant t. We, denote
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the 4-velocity at the point X = (x, t) ∈ V4 and the three-dimensional space
of the spatial vectors that are orthogonal to Uα at X by Uα and ΣX,
respectively. The electromagnetic field in matter is then described by six
fields, dα, eα, bα, hα, pα and mα, that belong to ΣX, which represent the
electric induction, the electric field, the magnetic induction, the magnetic
field, the polarization, and the magnetization in the rest frame T of V4 at
X. The following relations hold between these fields:

pα = dα − χ0e
α, (10.216)

mα = bα − ω0h
α, (10.217)

where χ0 is the dielectric constant and ω0 the magnetic permeability of vac-
uum. In other words, only four of the above fields are independent. On the
other hand, there are only two independent Maxwell equations. Therefore,
taking into account (10.216) and (10.217), we must give the constitutive
equations for two of the above fields in terms of the remaining two fields.
It is then possible to prove that, whichever of the four fields we decide to
use to describe the electromagnetic fields in matter, there is a particular
corresponding model. Consequently, all of the proposed interaction mod-
els are fully equivalent, and they correspond to particular selections of the
fundamental variables adopted in order to describe the interaction between
matter and fields.

In this section we will only sketch out the proof of the above statement;
it is fully proved in [193].

In a mechanical theory, the 4-vector c2qα in (10.104) is defined by the
condition that its components in the rest frame must coincide with the heat
current vector. In the presence of electromagnetic fields, we assume that the
vector c2qα must be replaced by the 4-vector c2(qα +σα

(e)) ∈ ΣX, where the
components of c2σα

(e) in the rest frame are

c2σα
(e) = (E × H, 0). (10.218)

In other words, the energy current vector in the rest frame is obtained by
adding the heat current vector and Poynting’s vector. In any Lorentz frame
we have3

c2σα
(e) = −1

c
εαβλμeβhμUλ, (10.219)

where εαβλμ is the Levi–Civita symbol, and (10.168) becomes

μ0ε̇0 = Πβ
α

∂̃Uα

∂xβ
− (qα + σα

(e))Aα − c2
∂qα

∂xα
− c2

∂σα
(e)

∂xα
+ r0. (10.220)

3It is sufficient to verify that (10.219) reduces to (10.218) in the rest frame.
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We must now evaluate the 4-divergence ∂σα
(e)/∂x

α. All that we have
said so far is based on assumption (10.218), and we have not used either
Maxwell’s equations or any model for the interaction between matter and
electromagnetic fields yet.

10.15 Minkowski’s Description

In order to evaluate the 4-divergence of σe, we must adopt a description
of the interaction between matter and electromagnetic fields. We start from
the phenomenological model of Minkowski, in which the basic variables are
eα and hα, whereas dα and bα are expressed as functions of eα and hα. In
this description, we replace the notation σα

(e) with σα
M .

The Maxwell equations (see Sects. 3.9 and 7.5)

∇× HM = J +
∂DM

∂t
, (10.221)

∇ · DM = ρf , (10.222)

∇× EM = −∂BM

∂t
, (10.223)

∇ ·BM = 0, (10.224)

where the subscript M refers to the Minkowski approach, can be written
in the following four-dimensional forms:

∂Hαβ
M

∂xβ
= Jα

M , (10.225)

∂E∗αβ
M

∂xβ
= 0. (10.226)

In the above equations, the components of the skew-symmetric tensors Hαβ
M

and E∗αβ
M of V4 are given by the matrices⎛⎜⎜⎝

0 H3
M −H2

M −cD1
m

−H3
M 0 H1

M −cD2
M

H2
M −H1

M 0 −cD3
M

cD1
M cD2

M cD3
M 0

⎞⎟⎟⎠ , (10.227)

⎛⎜⎜⎝
0 E3

M −E2
M −cB1

m

−E3
M 0 E1

M −cB2
M

E2
M −E1

M 0 −cB3
M

cB1
M cB2

M cB3
M 0

⎞⎟⎟⎠ , (10.228)
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and
Jα

M = (J, cρf ). (10.229)

In [193] it is proved that

Hαβ
M =

1
c
εαβλμUμhλ + (Uαdβ − Uβdα), (10.230)

E∗αβ
M =

1
c
εαβλμUμeλ + (Uαbβ − Uβbα), (10.231)

−c2 ∂σ
α
M

∂xα
= eαḋ

α + hαḃ
α + Παβ

M

∂̃Uα

∂xβ
+ σα

MAα + eαc
α, (10.232)

where

Παβ = (eλd
λ + hλb

λ)ηαβ − (eαdβ + hαbβ), (10.233)

σα
M = −1

c
εαβλμeβhμUλ, (10.234)

cα = Pα
β J

β
M . (10.235)

When expression (10.232) is introduced into (10.220), and the Minkowski
electromagnetic specific energy ξM in the rest frame is defined by the con-
dition

μ0
dξM
dτ

= eαḋ
α + hαḃ

α, (10.236)

we obtain the expression for the electromagnetic momentum–energy tensor
in the Minkowski description:

Tαβ
M = μ0ξMUαUβ + Παβ

M + σα
MUβ + σβ

MUα. (10.237)

10.16 Ampere’s Model

We conclude this chapter by describing Ampere’s model.4 In view of what
we proved in the above sections, this model can be obtained by choosing
suitable fundamental variables to describe the electromagnetic field. To
derive this model, we use the fundamental variables bα, eα, pα and mα,
where the last two variables are given by constitutive equations that depend
on at least bα and eα.

The first step involves expressing the electromagnetic current vector σα
(e),

which now we denote by σα
A, in terms of the fields bα, eα, pα and mα. Then,

4For the models of Chu and Boffi, see [193].
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from (10.219), we obtain

σα
A = σα

M = − 1
c3
εαβλμeβ

(
bμ
ω0

−mμ

)
Uλ. (10.238)

On the other hand, when we introduce the 4-tensors (see Eqs. 10.230 and
10.231)

Hαβ
A =

1
c
εαβλμUμ

bλ
ω0

+ (Uαeβ − Uβeα), (10.239)

E∗αβ
A = E∗αβ

M =
1
c
εαβλμUμeλ + (Uαbβ − Uβbα), (10.240)

Maxwell’s equations assume the following forms:

∂Hαβ

∂xβ
= Jα

A, (10.241)

∂E∗αβ

∂xβ
= 0, (10.242)

where the current vector Jα
A is given by

Jα
A = Jα +

1
c
εαβλμ ∂

∂xβ
(Uμmλ) − ∂

∂xβ
(Uαpβ − Uβpα). (10.243)

In [193] it is proved that, in any Lorentz frame, the Maxwell equations
(10.241) and (10.242) take the following spatial forms:

∇× BA

μ0
− χ0

∂EA

∂t
=
∂PA

∂t
+ ∇× (PA × v)

+ ∇× MA − 1
c2
∂

∂t
(MA × v) + J, (10.244)

χ0∇ ·EA = −∇ · PA +
1
c2
∇ · (MA × v) + ρf , (10.245)

∇× EA = −∂BA

∂t
, (10.246)

∇ ·BA = 0. (10.247)

In [193], all of the terms that appear in the above equations are justified
by replacing the matter with a suitable distribution of charges and currents
and accounting for relativistic effects. Then, starting from these Maxwell
equations, the divergence of σα

A is evaluated with the corresponding elec-
tromagnetic momentum–energy tensor.





Appendix A

Brief Introduction to Weak
Solutions

A.1 Weak Derivative and Sobolev Spaces

Let Ω be a bounded and open subset of �n. Let D(Ω) be the vector space
of C∞(Ω)-functions with a compact support Sϕ present in Ω:1

D(Ω) = {ϕ ∈ C∞(Ω), Sϕ ⊂ Ω} .

If f ∈ C1(Ω), then it is always possible to write∫
Ω

∂f

∂xi
ϕdΩ =

∫
Ω

∂

∂xi
(fϕ) dΩ −

∫
Ω

f
∂ϕ

∂xi
dΩ. (A.1)

If the first integral on the right-hand side is transformed into an integral
over the boundary ∂Ω by Gauss’s theorem, and the hypothesis ϕ ∈ D(Ω)
is taken into account, then the previous identity becomes∫

Ω

∂f

∂xi
ϕdΩ = −

∫
Ω

f
∂ϕ

∂xi
dΩ. (A.2)

Conversely, if a function χ ∈ C0(Ω) exists for any f ∈ C1(Ω) such that∫
Ω

χϕdΩ = −
∫

Ω

f
∂ϕ

∂xi
dΩ ∀ϕ ∈ D(Ω), (A.3)

then, subtracting (A.2) and (A.3), we obtain the condition∫
Ω

(
χ− ∂f

∂xi

)
ϕdΩ = 0 ∀ϕ ∈ D(Ω), (A.4)

1The support of ϕ is the subset of Ω in which ϕ �= 0.
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which implies that χ = ∂f/∂xi because of the continuity of both of these
functions. All of the above considerations lead us to introduce the follow-
ing definition, which relates to the Hilbert space L2(Ω) of all the square-
summable functions in the set Ω with finite Lebesgue measure.

Definition Any f ∈ L2(Ω) is said to have a weak or generalized deriv-
ative if there is a function χ ∈ L2(Ω) that satisfies condition (A.3).

It is possible to prove that the generalized derivative has the following
properties:

• If f ∈ C1(Ω), then its weak derivative coincides with the ordinary
one

• The weak derivative of f ∈ L2(Ω) is defined almost everywhere by
condition (A.3); i.e., it belongs to L2(Ω), and is uniquely determined

• Under certain auxiliary restrictions,2 if χ is the weak derivative of the
product f1f2, where f1, f2 ∈ L2(Ω), then∫

Ω

χϕdΩ =
∫

Ω

(χ1f2 + f1χ2)ϕdΩ,

where χi is the generalized derivative of fi, i = 1, 2.

From now on, the weak derivative of f(x1, . . . xn) ∈ L2(Ω) with respect to
xi will be denoted by ∂f/∂xi.

Example A.1
The weak derivative of the function f(x) = |x|, x ∈ [−1, 1], is given by the
following function of L2([−1, 1]):

df

dx
=

{
−1, x ∈ [−1, 0),

1, x ∈ (0, 1].

This is proven by the following chain of identities:∫ 1

−1

df

dx
ϕdx = −

∫ 1

−1

|x|dϕ
dx

dx =
∫ 0

−1

x
dϕ

dx
dx −

∫ 1

0

x
dϕ

dx
dx

= [xϕ]0−1 −
∫ 0

−1

ϕdx− [xϕ]10 +
∫ 1

0

ϕdx

= −
∫ 0

−1

ϕdx +
∫ 1

0

ϕdx.

2See Sect. 109 of [194].
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Example A.2

The function

f(x) =

{
0, x ∈ [−1, 0),
1, x ∈ [0, 1]

does not have a weak derivative. In fact, we have∫ 1

−1

df

dx
ϕdx = −

∫ 1

−1

f
dϕ

dx
dx = −[ϕ]10 = ϕ(0),

and no function can satisfy this equality for any ϕ.

Definition The vector space

W 1
2 (Ω) =

{
f : f ∈ L2(Ω),

∂f

∂xi
∈ L2(Ω), i = 1, . . . , n

}
(A.5)

of the functions that belong to L2(Ω), together with their first weak deriva-
tives, is called a Sobolev space.

It becomes a normed space if the following norm is introduced:

‖f‖1,2 =

(∫
Ω

f2 dΩ +
n∑

i=1

∫
Ω

(
∂f

∂xi

)2

dΩ

)1/2

. (A.6)

Recalling that in L2(Ω) we usually adopt the norm

‖f‖L2(Ω) =
(∫

Ω

f2 dΩ
)1/2

,

we see that (A.6) can also be written as

‖f‖2
1,2 = ‖f‖2

L2(Ω) +
n∑

i=1

∥∥∥∥ ∂f∂xi

∥∥∥∥2

L2(Ω)

. (A.7)

The following theorem is given without proof.

Theorem A.1

The space W 1
2 (Ω), equipped with the Sobolev norm (A.6), is a Banach space

(i.e., it is complete). More precisely, it coincides with the completion H1
2 (Ω)

of the space
{f ∈ C1(Ω), ‖f‖1,2 <∞}.
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This theorem states that, for all f ∈W 1
2 (Ω), there is a sequence {fk} of

functions fk ∈ C1(Ω) with a finite norm (A.7) such that

lim
k→∞

‖f − fk‖1,2 = 0. (A.8)

In turn, in view of (A.6), this condition can be written as

lim
k→∞

{∫
Ω

(f − fk)2 dΩ +
n∑

i=1

∫
Ω

(
∂f

∂xi
− ∂fk

∂xi

)2

dΩ

}
= 0,

or equivalently

lim
k→∞

∫
Ω

(f − fk)2dΩ = 0,

lim
k→∞

∫
Ω

(
∂f

∂xi
− ∂fk

∂xi

)2

dΩ = 0, i = 1, . . . , n.

In other words, each element f ∈W 1
2 (Ω) is the limit in L2(Ω) of a sequence

{fk} of C1(Ω)-functions, and its weak derivatives are also the limits in
L2(Ω) of the sequences of ordinary derivatives {∂fk/∂xi}.

The preceding theorem makes it possible to define the weak derivatives
of a function as the limits in L2(Ω) of sequences of derivatives of func-
tions belonging to C1(Ω), as well as to introduce the Sobolev space as the
completion H1

2 (Ω) of {f ∈ C1(Ω), ||f ||1,2 <∞}.
Let C1

0 (Ω) denote the space of all the C1-functions that have both a
compact support present in Ω and a finite norm (A.6). Another important
functional space is Ĥ1

2 , which is the completion of C1
0 (Ω). In such a space,

if the boundary ∂Ω is regular in a suitable way, the following Poincaré
inequality holds:∫

Ω

f2 dΩ ≤ c
n∑

i=1

∫
Ω

(
∂f

∂xi

)2

dΩ, ∀f ∈ Ĥ1
2 (Ω), (A.9)

where c denotes a positive constant that depends on the domain Ω. If we
consider the other norm

||f ||Ĥ1
2 (Ω) =

(
n∑

i=1

∫
Ω

(
∂f

∂xi

)2

dΩ

)1/2

, (A.10)

then it is easy to verify the existence of a constant c1 such that

||f ||Ĥ1
2 (Ω) ≤ ||f ||1,2 ≤ c1||f ||Ĥ1

2 (Ω),

so that the norms (A.6) and (A.9) are equivalent.
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We conclude this section by introducing the concept of the trace. If
f ∈ C1(Ω), then it is possible to consider the restriction of f over ∂Ω.
Conversely, if f ∈ H1

2 (Ω), it is not possible to consider the restriction of
f over ∂Ω, since the measure of ∂Ω is zero and f is defined almost every-
where; i.e., up to a set with a vanishing measure. In order to attribute a
meaning to the trace of f , it is sufficient to remember that, if f ∈ H1

2 , then
there is a sequence of C1(Ω)-functions fk such that

lim
k→∞

||f − fk||1,2 = 0. (A.11)

Next, consider the sequence {fk} of restrictions on ∂Ω of the functions fk,
and assume that, as a consequence of (A.11), this converges to the function
f ∈ L2(Ω). In this case, it would be quite natural to call f the trace of f
on ∂Ω.

More precisely, the following theorem can be proven.

Theorem A.2
A unique linear and continuous mapping

γ : H1
2 (Ω) → L2(Ω) (A.12)

exists such that γ(f) coincides with the restriction on ∂Ω of any function
f ∈ C1(Ω). Moreover,

Ĥ1
2 (Ω) = {f ∈ H1

2 (Ω), γ(f) = 0}. (A.13)

A.2 A Weak Solution of a PDE

Consider the following classical boundary value problems related to Pois-
son’s equation in the bounded domain Ω ⊂ � that has a regular boundary
∂Ω:

n∑
i=1

∂2u

∂x2
i

= f in Ω,

u = 0 on ∂Ω; (A.14)

n∑
i=1

∂2u

∂x2
i

= f in Ω,

du

dn
=

n∑
i=1

∂u

∂xi
ni = 0 on ∂Ω; (A.15)
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where f is a given C0(Ω)-function. The previous boundary problems are
called the Dirichlet boundary value problem and the Neumann boundary
value problem, respectively.

Both of these problems allow a solution in the set C2(Ω)
⋂
C0(Ω); this

is unique for the first problem, whereas it is defined up to an arbitrary
constant for the second boundary value problem.

By multiplying (A.14)1 for any v ∈ H1
2 (Ω) and integrating over Ω, we

obtain ∫
Ω

v

n∑
i=1

∂2u

∂x2
i

dΩ =
∫

Ω

fv dΩ. (A.16)

Recalling the identity

v
∂2u

∂x2
i

=
∂

∂xi

(
v
∂u

∂xi

)
− ∂v

∂xi

∂u

∂xi
,

and using Gauss’s theorem, boundary value problem (A.16) can be placed
in the following form:

n∑
i=1

∫
∂Ω

v
∂u

∂xi
ni dσ −

n∑
i=1

∫
Ω

∂v

∂xi

∂u

∂xi
dΩ =

∫
Ω

fv dΩ, (A.17)

where (ni) is the unit vector normal to ∂Ω.
In conclusion:

• If u is a smooth solution of Dirichlet’s boundary value problem (A.14)
and v is any function in Ĥ(Ω)12, then the integral relation (A.17)
becomes

−
n∑

i=1

∫
Ω

∂v

∂xi

∂u

∂xi
dΩ =

∫
Ω

fv dΩ ∀v ∈ Ĥ1
2 (Ω). (A.18)

• If u is a smooth solution of Neumann’s boundary value problem (A.15)
and v is any function in H(Ω)12, then from (A.17) we can derive

−
n∑

i=1

∫
Ω

∂v

∂xi

∂u

∂xi
dΩ =

∫
Ω

fv dΩ ∀v ∈ H1
2 (Ω). (A.19)

Conversely, it is easy to verify that if u is a smooth function, the inte-
gral relations (A.18) and (A.19) imply that u is a regular solution of the
boundary value problems (A.14) and (A.15), respectively. All of the above
considerations suggest the following definitions:

• A function u ∈ Ĥ1
2 (Ω) is a weak solution of the boundary value prob-

lem (A.14) if it satisfies the integral relation (A.18)
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• A function u ∈ H1
2 (Ω) is a weak solution of the boundary value prob-

lem (A.15) if it satisfies the integral relation (A.19).

Of course, a weak solution is not necessarily a smooth (or strong) solu-
tion to the above boundary value problems, but it is possible to prove its
existence under very general hypotheses. Moreover, by resorting to regular-
ization procedures that can be applied when the boundary data are suitably
regular, a weak solution can be proven to be smooth.

More generally, instead of (A.14) and (A.15), let us consider the following
mixed boundary value problem:

n∑
i=1

∂

∂xi
ALi(x,u,∇u) = fL ∀x ∈ Ω,

u = 0 ∀x ∈ ∂Ω′ ⊂ ∂Ω,
ALi(x,u,∇u) = gL(x) ∀x ∈ ∂Ω − ∂Ω′, (A.20)

where u(x) is a p-dimensional vector field that depends on x = (x1, . . . , xn),
L = 1, . . . , p, Ω ⊂ �n, and n is the unit vector normal to ∂Ω.

By proceeding as before, it is easy to verify that the weak formulation of
the boundary value problem (A.20) can be written as

−
∫

Ω

A(x,u,∇u) · ∇v dΩ =
∫

Ω

f · v dΩ −
∫

∂Ω

g · v dσ ∀v ∈ U, (A.21)

where U = (Ĥ1
2 (Ω))L is the Banach space of all the vector functions that

vanish on ∂Ω′.

Remark It is very important to note that if the assigned value of the
unknown at the boundary is not zero in one of the problems (A.14) or
(A.21), then the weak solution cannot belong toH1

2 (Ω) or to U, respectively.
This difficulty can be overcome by introducing any auxiliary function ĝ(x)
that extends the values of the boundary value g to Ω. The usual weak
formulation can then be applied to the new unknown û− ĝ. However, it is
not easy to find the function ĝ(x), especially when g or the boundary ∂Ω
is not regular.

A.3 The Lax–Milgram Theorem

Let us suppose that the vector function A that appears under the integral
on the left-hand side of (A.21) depends linearly on u and ∇u. It is then
convenient to formulate the boundary value problem (A.21) in an abstract
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way. In the above linearity hypothesis, the left-hand side of (A.21) is a
bilinear form of u and v on the Hilbert space U:

B : U × U → �.

On the other hand, the right-hand side of (A.21) defines a linear form F
on U:

F : U → �.
Consequently, the weak formulation (A.21) of the boundary value problem
(A.20) can be written as

B(u,v) = F (v) ∀v ∈ U. (A.22)

There is a remarkable theorem from Lax and Milgram for this kind of
equation. Before stating it, some definitions are necessary.

Definition A bilinear form B : U × U → � is U-elliptic with respect to
the norm induced by the scalar product of the Hilbert space U if

B(u,u) ≥ α||u||U, (A.23)

where α is a positive real number.

Definition A bilinear form B : U × U → � is U-continuous if there is
a positive constant M such that

|B(u,v)| ≤M ||u||U||v||U. (A.24)

Definition If F : U → � is a linear form on the Hilbert space U, the
U-norm of F is defined by the relation

||F ||U =
|F (u)|
||u||U

∀u ∈ U. (A.25)

Theorem A.3
Let B : U × U → � be a continuous and U-elliptic bilinear form on the
Hilbert space U. There is then one and only one solution u of (A.22) that
depends continuously on the boundary data; i.e, such that

||u||U ≤ 1
α
||F ||U. (A.26)



Appendix B

Elements of Surface Geometry

B.1 Regular Surfaces

Let �3 be Euclidean three-dimensional space and (O, ei), i = 1, 2, 3, be
an orthonormal frame of reference in �3. If r = xiei denotes the position
vector of any point in �3, then a regular surface S is defined by a vector
equation

r = r(u1, u2) (B.1)

such that its components
xi = xi(u1, u2) (B.2)

are functions of class C2, the Jacobian matrix of which has a rank equal to
2.

The relations

aα ≡ r,α =
∂r
∂uα

=
∂xi

∂uα
ei, (B.3)

α = 1, 2, define two vectors that are tangent to the coordinate curves on S.
These vectors are linearly independent at any point on S, since the above
hypotheses imply that

|a1 × a2| �= 0. (B.4)

Consequently, at any point r ∈ S, they form a basis for the space Tr tangent
to S at r. This basis is called a coordinate basis or holonomic basis at r
associated with the curvilinear coordinates uα.

From (B.1) and (B.3) we derive the square of the line element ds that
connects the points r and r + dr:

ds2 ≡ (dr)2 = aαβdu
αduβ , (B.5)

where

aαβ = aα · aβ =
3∑

i=1

∂xi

∂uα

∂xi

∂uβ
= aαβ (B.6)
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are the metric coefficients .
Since

|a1 × a2| =
√

(a1 × a2) · (a1 × a2)

=
√

(a1 · a1)(a2 · a2) − (a1 · a2)2

=
√
a11a22 − a2

12,

we have
|a1 × a2| =

√
a, (B.7)

where
a = det aαβ > 0. (B.8)

If we introduce the reciprocal metric coefficients via the relations

aαβ =
Aαβ

a
, (Aαβ = cofactor of aαβ), (B.9)

then
aαλaλβ = δα

β . (B.10)

We note that the vectors aα are neither unit vectors nor mutually orthog-
onal; when they form an orthonormal basis at a point, the coordinates uα

are said to be orthogonal at that point.
It is often useful to consider, besides the basis (aα), the reciprocal basis

formed by the independent vectors

aα = aαβaβ , (B.11)

which satisfy the conditions

aα · aβ = δα
β . (B.12)

Due to (B.12), if v is a vector that is tangent to S, then we can write

v = vαaα = vαaα, (B.13)

where
vα = aαβv

β , vα = aαβvβ . (B.14)

We can conclude that the contravariant components of v with respect to
the reciprocal basis aα coincide with the covariant components of v with
respect to the basis aα.

Starting from the quadratic form (B.5), which represents the metric on S
or the first fundamental form of S, we can deduce all of the metric properties
of the surface S. Thus, if a curve γ is given on S by the parametric equations

uα = uα(t), t ∈ [a, b], (B.15)
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its length l(γ) is given by

l(γ) =
∫ b

a

√
aαβ

duα

dt

duβ

dt
dt. (B.16)

Similarly, consider a region σ ⊂ S obtained by varying the curvilinear
coordinates over the set Ω = [a1, b1]× [a2, b2] ⊂ �2. The area of the surface
element dσ is defined by the relation

dσ = |du1a1 × du2a2| =
√
adu1du2,

so we have
σ =

∫
Ω

√
a du1du2. (B.17)

B.2 The Second Fundamental Form

On a regular surface S, the position

n =
a1 × a2

|a1 × a2| (B.18)

defines (at least locally) a unit vector field that is orthogonal to S. We say
that S is locally oriented when it is equipped with this vector field. Since the
functions (B.2) are of class C2 and aα · n = 0, we can define the following
quantities (see B.3):

bαβ = −aα · n,β = aα,β · n = bβα, (B.19)
Γαβγ = aα · aβ ,γ = Γαγβ , (B.20)
Γα

βγ = aαλΓλβγ . (B.21)

The quadratic form bαβdu
αduβ is called the second fundamental form of

S, whereas Γαβγ and Γα
βγ represent the Christoffel symbols of the first and

second kind , respectively. It is now possible to prove the Gauss–Weingarten
equations

aβ ,α = Γγ
βαaγ + bαβn, (B.22)

n,α = −bγαaγ , (B.23)

where
Γγ

βα =
1
2
aγλ(aλβ ,α +aαλ,β −aαβ,λ ). (B.24)

In fact, we can write
n,α = cβαaβ + dαn, (B.25)
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since (aα,n) is a basis of the three-dimensional space �3. Using (B.25) and
the condition n · n = 1, we at once derive (B.23) by noting that aβ · n = 0
and n · nα = 0. Similarly, due to (B.19) and (B.20), we only have to prove
(B.24). To this end, we differentiate the relations aαβ = aα ·aβ with respect
to uλ and use (B.20) to obtain

Γβαλ + Γαβλ = aαβ,λ . (B.26)

Cyclic permutations of the indices lead to the equations

Γλβα + Γβλα = aβλ,α , (B.27)
Γαλβ + Γλαβ = aλα,β . (B.28)

By adding (B.27) to (B.26) and subtracting (B.28) from the result, we
derive (B.24) when the symmetry properties of the Christoffel symbols are
taken into account.

Let γ be a curve on the surface S, and let r = r(uα(s)) be its equation (s
is the arc length on γ). If ξ is the curvature of γ and μ is its principal normal
unit vector, the curvature vector k is expressed by the Frenet formula

k = ξμ =
dλ

ds
, (B.29)

where λ = λαaα is the unit vector tangent to γ. Using (B.22), the above
relation becomes

k =
(
dλα

ds
+ Γα

νβλ
νλβ

)
aα + bαβλ

αλβn. (B.30)

Let us define the normal curvature of γ at (uα) as the quantity

ξn(λ) = k · n = bαβλ
αλβ . (B.31)

S
!

�
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� 1/"
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c
cn

Fig. B.1 Normal curvature



Appendix B 313

This formula shows that all of the surface curves that pass through a point
r(uα) have the same normal curvature. If γn is a curve whose osculating
plane is determined by λ and n, then we have

ξn ≡ k · n = χμ · n = χ, (B.32)

and therefore the normal curvature of γn coincides with the normal curva-
ture. Moreover, from the obvious inequality

|ξn| = |χμ · n| ≤ |χ|, (B.33)

we can conclude that, among all of the curves on S with the same unit
tangent vector λ, the curve γn has the least curvature; moreover, the center
of curvature cn for γn coincides with the projection onto its osculating plane
of the centers of curvature c of all of the curves tangent to λ (see Fig. B.1).

Let S be a regular surface of class C2 and T2(r) be its tangent plane at
the point r. The first fundamental form, which is positive definite, allows
us to regard T2(r) as a Euclidean two-dimensional vector space. A basis
for it is given by (a1, a2), and the scalar product is defined by the metric
coefficients aαβ at r. The tensor bαβ is symmetric, and so there are two
real eigenvalues, ϕ1 and ϕ2 (which could also be equal), together with
an orthonormal basis comprising two eigenvectors v1 and v2 belonging to
the above eigenvalues. These eigenvectors v1 and v2 are solutions of the
homogeneous linear system

(bαβ − ϕaαβ)vβ = 0, (B.34)

whereas the eigenvalues ϕ1 and ϕ2 satisfy the characteristic equation

det(bαβ − ϕaαβ) = 0, (B.35)

which can also be put into the form

ϕ2 − 2Hϕ+K = 0, (B.36)

where H and K are the two principal invariants of (bαβ):

H =
1
2
bαα, K =

1
a

det(bαβ) =
b

a
. (B.37)

In the basis (v1,v2), the tensor bαβ is represented by the diagonal matrix(
ϕ1 0
0 ϕ2

)
, (B.38)

and the quadratic form (B.31) can be written as

χn(λ) = ϕ1(λ1)2 + ϕ2(λ2)2, (B.39)

where (λ1, λ2) are the components of the tangent vector λ with respect to
the basis (v1,v2). If χn(λ) does not vanish identically, then three cases can
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be distinguished:

1. ϕ1, ϕ2 �= 0 have the same sign. The quadratic form χn(λ) then has
a definite sign at r and so the normal curvature always has the same
sign upon varying λ. All of the points of S lie on the same side of
the plane T2(r). In this case, r is said to be an elliptic point (see Fig.
B.2).

2. ϕ1, ϕ2 �= 0 have opposite signs. This means that the curvatures along
the two orthogonal lines, defined by v1 and v2, have opposite signs.
Therefore, the tangent plane T2(r) intersects S in a neighborhood of r
known as a hyperbolic point . Moreover, there are two directions λ1 and
λ2 along which the curvature vanishes. These lines, called asymptotic
lines, divide T2(r) into four regions where the curvature is positive or
negative in turn (see Fig. B.3).

3. ϕ1 �= 0, ϕ2 = 0. In this case, χn(λ) = ϕ1(λ1)2. Therefore, the normal
curvature has the same sign along any direction that differs from v2,
and it vanishes when λ is parallel to v2. The point r is said to be a
parabolic point. (see Fig. B.4).

Fig. B.2 Elliptic point

Fig. B.3 Hyperbolic point
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Fig. B.4 Parabolic point

The eigenvalues of bαβ, which we will henceforth denote by χ(1) and χ(2),
are called the principal curvatures of S at r, whereas the eigenvectors of
bαβ are the principal directions of S at r. From Cartesio’s rule, we obtain
the following relations:

χ(1) + χ(2) = 2H, χ(1)χ(2) = K. (B.40)

By definition, the scalar quantity H is the mean curvature of S and K is
the Gaussian curvature.

A curve γ on S is said to be a line of curvature if its tangent vector
at any point is a principal direction. In particular, if χ(1) = χ(2) at each
point, then all of the coordinate curves are lines of curvature (planes and
spheres). It is possible to prove that, in the neighborhood of any point r
on a surface of class Ck, k ≥ 2, there is a local system of coordinates such
that the corresponding coordinate curves at r are principal lines. It is also
evident that the coordinate curves are principal lines if and only if

a12 = b12 = 0. (B.41)

In such a system of coordinates, the following relations hold:

ds2 = a11(du1)2 + a22(du2)2,

(aαβ) =

⎛⎜⎝
1
a11

0

0
1
a22

⎞⎟⎠ , (bαβ) =
(
b11 0
0 b22

)
,

χ(1) =
b11
a11

, χ(2) =
b22
a22

,

H =
1
2

(
b11
a11

+
b22
a22

)
, K =

b11b22
a11a22

.
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B.3 Surface Gradient and the Gauss Theorem

Let u = uαaα + u3n be a vector field on the surface S that is not neces-
sarily tangent to S. From (B.22) and (B.23), we derive the relation

u,α = (uγ
;α − bγαu

3)aγ + (u,3α + bαβu
β)n, (B.42)

where
uγ

;α = u,γα + Γγ
αβu

β (B.43)

are the components of the covariant derivative of the tangent field vs =
uαaα obtained by projecting u onto the tangent plane T2(r) at any point
r ∈ S. In particular, if u is tangent to S, then u3 = 0 and (B.42) reduces
to the following formula:

u,α = uγ
;αaγ + bαβu

βn. (B.44)

Similarly, if we denote a double tensor that obeys the condition T · n = 0
by

T = Tαβaα ⊗ aβ + T 3αn ⊗ aα,

then, instead of (B.44), we have

T,α = (T βγ
;α − T 3βbγα)aβ ⊗ aγ + (T 3β

;α + T βγbγα) ⊗ naβ

+ T βγbγαaβ ⊗ n + T 3βbαβn ⊗ n, (B.45)

where
T βγ

;α = T,βγ
α + Γβ

αδT
δγ + Γγ

αδT
βδ, (B.46)

T β3
;α = T,β3

α +Γβ
αγT

γ3. (B.47)

Let us define the surface gradient of T as follows:

∇sT = T,α ⊗aα, (B.48)

and the surface divergence as

∇s · T = T,α · aα. (B.49)

From (B.42) and (B.37), we have

∇s · u = uγ
;γ − 2Hu3, (B.50)

whereas, when n ·T = 0, (B.45) yields

∇s · T = (Tαγ
;α − Tα3bγα)aγ + (Tα3

;α + Tαγbγα)n. (B.51)
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Consider a rectilinear system of coordinates (xi) in �3 and the associated
frame of reference (O, ei). Since we have

T,α = (T ijei ⊗ ej),α = (T ijei ⊗ ej),h xh,α

= (T ij ,h ei ⊗ ej)(eh · aα) = aα · ∇T (B.52)

for any double tensor T from (B.3), we can conclude that u,α denotes the
gradient of u along the vector aα. We also note that, if u is a constant
vector field in the coordinates (xi), then ∇u = 0, u,α = 0 and ∇s · u = 0.

We want to verify that the definition (B.50) leads us to a generalization of
the Gauss theorem. In fact, if u is a vector field on S that is not necessarily
tangent to S, we have ∫

S

uα
;α dσ =

∫
∂S

u · ν dl, (B.53)

where ν is a unit vector that is tangent to S and orthogonal to the boundary
∂S. Using (B.50), we obtain∫

S

(∇s · u + 2Hu · n) dσ =
∫

∂S

u · ν dl. (B.54)

By applying this result to the vector v ·T, where T is a double tensor field
and v an arbitrary constant vector field, we get∫

S

[∇s · (v ·T) + 2Hv ·T · n] dσ =
∫

∂S

v · T · ν dl. (B.55)

Taking into account the arbitrariness of the constant vector field v, we
obtain the formula∫

S

[∇s · T + 2HT · n] dσ =
∫

∂S

T · ν dl, (B.56)

which reduces to the following:∫
S

∇s · T dσ =
∫

∂S

T · ν dl, (B.57)

since we have supposed that

T · n = 0. (B.58)

We need to generalize the above formulae to the case in which the surface
S is not regular along a curve Γ and the vector or tensor fields undergo a
jump across Γ. We assume that S is divided by Γ into two parts S− and
S+ (see Fig. B.5). By applying (B.54) separately to each of the two parts
S− and S+ and adding the results, we find that∫

S

[∇s · u + 2Hn · u] dσ =
∫

∂S

ν · u dl+
∫

Γ

{ν · u} dl, (B.59)
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where
{ν · u} = ν+ · u+ − ν− · u− (B.60)

and the rest of the notation is self-explanatory.

S-

S
	

S
�

�

�+

� � n	

n�

��

�	

Fig. B.5 The Gauss theorem
for a singular surface

If we denote the unit vector that is tangent to Γ and which determines the
orientation of Γ by τ = n×ν, then we have ν = τ×n. Consequently, (B.60)
becomes

{ν · u} = τ+ · n+ × u+ + τ− · n− × u− = −τ · [[n × u]], (B.61)

since τ+ = τ− ≡ τ , provided that the sense of τ is the same as that of the
second term in the jump. Finally, we can put (B.56) into the form below:∫

S

[∇s · u + 2Hn · u] dσ =
∫

∂S

ν · u dl −
∫

Γ

τ · [[n× u]] dl. (B.62)

Similarly, if T is a double tensor that obeys the condition n · T = 0, then
it can be proven that∫

S

∇s ·T dσ =
∫

∂S

ν ·T dl −
∫

Γ

τ · [[n× T]] dl. (B.63)
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First-Order PDE

C.1 Monge’s Cone

In Chap. 9 of [16] and Chap. 1 of this volume, it was shown that the evolu-
tion of the wavefront of an ordinary wave is governed by a first-order PDE
called the eikonal equation. This coincides with the characteristic equa-
tion associated with the hyperbolic first-order PDE that describes the phe-
nomenon under examination. In this Appendix we sketch out the method
proposed by Monge, Ampere and Cauchy to reduce the integration of a
first-order PDE to the integration of a system of ordinary equations.

Let F (x, u,p) be a function of class C2(�2n+1) that obeys the following
conditions:

1. The set F = {(x, u,p) ∈ �2n+1, F (x, u,p) = 0} is not empty

2.
∑n

i=1 F
2
pi

�= 0, ∀(x, u,p) ∈ F.

Under these hypotheses, we consider the following general first-order PDE

F (x, u,∇u) = 0 (C.1)

in the unknown u = u(x) ∈ C2(D), with D ⊂ �n.
We first note that any solution u = u(x) of (C.1) defines a surface Σ that

is called an integral surface of the equation (C.1). Moreover, the vector
N ≡ (∇u,−1) ≡ (p,−1) of �n+1 is normal to the integral surface Σ.
Consequently, the equation (C.1) expresses the relation between the vectors
normal to all of the integral surfaces at any point (x, u).

To understand the geometrical meaning of this relation, we start by not-
ing that the quantities (x0, u0,p0) completely define a plane that contains
the point (x0, u0) and has a normal vector with components (p0,−1). Then,
for a fixed point (x0, u0), the equation

F (x0, u0,p0) = 0, (C.2)

319
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defines a set Π0 of planes that contain (x0, u0) and are tangent to the
integral surfaces of (C.1) to which (x0, u0) belongs. Due to conditions 1
and 2, Π0 is not empty, and we can assume that Fpn(x0, u0,p0) �= 0. In
turn, this result implies that the equation (C.2), at least locally, can be
written in the form

pn = pn(x0, u0, p1, . . . , pn−1).

Consequently, the set Π0 consists of a family of planes that depend on the
parameters (p1, . . . , pn−1). Any plane π ∈ Π0 contains the point (x0, u0)
and has (p1, . . . , pn−1, pn(p1, . . . , pn−1),−1) as a normal vector; i.e., it is
represented by the equation

f(X, U, p1, . . . , pn−1) ≡
n−1∑
α=1

pα(Xα − x0α) + pn(pα)(U − u0) = 0, (C.3)

where (X, U) are the coordinates of any point on π.
The envelope of all of these planes is defined by the system comprising

the equation (C.3) and the following other equation:

(Xα − x0α) +
∂pn

∂pα
(Xn − x0n) = 0, α = 1, . . . , n− 1, (C.4)

which is obtained by differentiating (C.3) with respect to pα, α = 1, . . . , n−
1. Using Dini’s theorem, ∂pn/∂pα = −Fpα/Fpn and (C.4) becomes

Fpn(Xα − x0α) − Fpα(Xn − x0n) = 0, α = 1, . . . , n− 1. (C.5)

Equations (C.3) and (C.5) constitute a linear system of n equations in
the unknowns ((Xα − x0α), (Xn − x0n)). The determinant of the matrix of
the coefficients of this system is

Δ =

⎛⎜⎜⎜⎜⎝
p1 p2 . . . pn−1 pn

Fpn 0 . . . 0 −Fp1

0 Fpn . . . 0 −Fp2

. . . . . . . . . . . . . . .
0 0 . . . Fpn −Fpn−1

⎞⎟⎟⎟⎟⎠ = (−1)n−1Fn−2
pn

(p ·Fp) �= 0.

Consequently, the parametric equations of the envelope of Π0 become

Xi − x0i =
Fpi

p · Fp
(U − u0), i = 1, . . . , n. (C.6)

These equations define a cone C0, since, if the vector V = (X − x0, U −u0)
is a solution of (C.6), the vector λV (where λ ∈ �) is also a solution. This



Appendix C 321

cone C0 is called Monge’s cone at (x0, u0).

( )x ,u0 0

( , 1)u �

x�

xn

u

�

charact. direction

Fig. C.1 Monge’s cone

C.2 Characteristic Strips

The above considerations allow us to state that, if u = u(x) is an integral
surface Σ of (C.1), then the plane tangent to Σ at the point (x0, u0) belongs
to Π0; i.e., it is tangent to Monge’s cone at that point (see Fig. C.1).
Moreover, the characteristic directions of Monge’s cone, which are tangent
to Σ, define a field of tangent vectors on Σ whose integral curves are called
characteristic curves.

x�

xn

u

�
charact. curve

charact. strip

Fig. C.2 Characteristic
curve and strip
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We can associate a plane tangent to Σ that has director cosines (p,−1) ≡
(∇u(x(s)),−1) with any point on this curve (x(s), u(s)). The one-parameter
family of these planes along a characteristic curve is said to be a character-
istic strip (see Fig. C.2).

We now write the system of ordinary differential equations in the un-
knowns (x(s), u(s),p(s)) that define a characteristic strip on the integral
surface Σ. Since the tangent to a characteristic curve at a point belongs to
Monge’s cone at that point, from (C.6) we have

dx
ds

= Fp, (C.7)

du

ds
= p · Fp. (C.8)

Moreover, p(s) = ∇u(x(s)) along a characteristic curve (x(s), u(s)), and so
we get

dpi

ds
= uxixjFpj .

On the other hand, the differentiation of (C.1) with respect to xi gives

Fxi + uxiFu + uxixjFpj = 0.

Comparing the latter two relations, we obtain the following system of 2n+1
equations:

dx
ds

= Fp, (C.9)

dp
ds

= −(Fx + Fup), (C.10)

du

ds
= p · Fp (C.11)

in the 2n+ 1 unknowns (x(s), u(s),p(s)), which is called the characteristic
system of (C.1).

We have proven that, if u(x) is an integral surface of (C.1), then its
characteristic strips satisfy system (C.9)–(C.11). Moreover, any solution
of (C.9)–(C.11) is a characteristic strip of an integral surface of (C.1), as
proven by the following theorem.

Theorem C.1
Let (x0, u0,p0 = ∇u(x0)) be the plane tangent to an integral surface Σ at
the point (x0, u0). The solution of (C.9)–(C.11) corresponding to the initial
datum (x0, u0,p0) is then a characteristic strip of Σ.

PROOF It is sufficient to recall what we have already proven and
to remark that the characteristic strip determined by the initial datum
(x0, u0,p0) is unique for the uniqueness theorem.
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Taking into account the function F (x(s), u(s),p(s)), and recalling (C.9)–
(C.11), we verify that

Theorem C.2
F (x(s), u(s),p(s)) = const. (C.12)

Remark If (C.1) is quasi-linear,

F (x, u,∇u) = a(x, u) · ∇u− b(x, u) = 0, (C.13)

then the system (C.9) and (C.11) becomes

dx
ds

= a(x, u), (C.14)

du

ds
= b(x, u). (C.15)

This is a system of n+1 equations in the unknowns (x(s), u(s)), which can
be solved without the help of (C.10). More particularly, if (C.13) is linear,
then a and b depend only on x. Therefore, the equations (C.14) supply the
projection of the characteristic curves in �n, and (C.15) gives the remaining
unknown u(s).

Remark Let us suppose that (C.1) takes the form

F (x,∇u) = 0. (C.16)

Denoting the variable xn by t, the derivative Fut by p, the vector (x1, . . . , xn−1)
by x, and the vector (p1, . . . , pn−1) by p, the above equation becomes

F (x, t,p, p) = 0, (C.17)

If Fp �= 0, then (C.17) can be written as the Hamilton–Jacobi equation

p+H(x, t,p) = 0, (C.18)

the characteristic system of which is

dx
ds

= Hp, (C.19)

dp
ds

= −Hx, (C.20)

du

ds
= p ·Hp + p, (C.21)

dt

ds
= 1, (C.22)

dp

ds
= −Ht. (C.23)
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Due to (C.22), we can identify s with t, and the above system becomes

dx
dt

= Hp, (C.24)

dp
dt

= −Hx, (C.25)

du

dt
= p ·Hp −H, (C.26)

dp

ds
= −Ht. (C.27)

We note that (C.24) and (C.25) are Hamiltonian equations that can be
solved without needing to solve the other equations.

C.3 Cauchy’s Problem

The Cauchy problem relating to (C.1) can be formulated as follows.
Let Γ be a (n − 1)-dimensional manifold present in a region D of �n,

and let u0(x) ∈ C2(Γ) be an assigned function on Γ. Determine a solution
u(x) of (C.1) whose restriction to Γ coincides with u0(x).

In other words, if

x0 = x0(vα), (vα) ∈ V ⊂ �n−1, (C.28)

is a parametric representation of Γ, Cauchy’s problem consists of finding a
solution u(x) of (C.1) such that

u(x0(vα)) = u0(x0(vα)). (C.29)

Geometrically, we can say that we want to determine an n−dimensional
manifold u(x) that satisfies (C.1) and contains the initial (n−1)-dimensional
manifold Γ.

We prove that the requested solution can be obtained as the envelope
of a suitable family of characteristic strips. To this end, we first note that
the points of Γ given by the initial datum (C.29) supply the initial data
for the unknowns x(s), u(s) of (C.9) and (C.11). However, so far we have
no initial data for the unknown p(s). We show that these data can also
be obtained by (C.29). In fact, we recall that the variable p, together with
−1, defines the vector normal to the plane tangent to the integral surface
Σ at the point (x, u(x)) ∈ Σ. Moreover, Σ must be tangent to the Monge
cone along a characteristic direction at any point, and, in particular, at any
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point of Γ (see Fig. C.3).

x�

xn

u

�

charact. strip

�

Fig. C.3 Cauchy data for
(C.9)–(C.11)

Consequently, we take p0 in such a way that, at any point on Γ, (p0,−1)
is orthogonal to the vector (∂x/∂vα, ∂u/∂vα), which is tangent to Γ. In
formulae, we have

∂x0

∂vα
· p0 − ∂u0

∂vα
= 0, (C.30)

F (x0(vα), u0(vα),p0(vα)) = 0, (C.31)

α = 1, . . . , n− 1.
If (x0(vα), u(vα),p0(vα0) ∈ Γ verifies the above system and the following

condition is satisfied at this point:

J = det
(

∂x0
∂vα

Fp

)
�= 0, (C.32)

the system (C.30) and (C.31) can be solved with respect p0(vα) in a neigh-
borhood of the point (x0(vα), u(vα),p0(vα0)). In this way, we obtain the
initial data for (C.9)–(C.11).

The proof of the following theorem can be found in any book on PDEs:

Theorem C.3
If it is possible to complete the initial datum (C.29) by solving the system
(C.30) and (C.31) with respect to p0(vα), then there is one and only one
solution of the Cauchy problem.
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The Tensor Character of Some
Physical Quantities

In this Appendix we complete the proof of the theorem stated in Sect. 10.6.

PROPOSITION D.1
Let S be a continuous system, and let (Uα) be the 4-velocity field of its

particles. We denote fields associated with S that satisfy the conditions

∂Tαβ

∂xβ
= 0 (D.1)

in any Lorentz frame (O, eα) by Tαβ, α, β = 1, . . . , 4. Moreover, if T ′αβ are
the corresponding fields in the other Lorentz frame (O′, e′α), we have

T ′αβ = T ′αβ(T λμ), (D.2)

T λμUλUμ = c2T
44
, (D.3)

where T
44

is evaluated in the proper frame of a particle of S. If T ′αβ(0) = 0
and T

44
is invariant, then

T ′αβ = Aα
λA

β
μT

λμ, (D.4)

where (Aα
β ) is the matrix of the frame change (O, eα) → (O′, e′α).

PROOF We first prove that the functions (D.2) are linear. From (D.1)
and (D.2), we derive the condition

∂T ′αβ

∂T λμ
(A−1)ν

β

∂T λμ

∂xν
= 0, (D.5)

which must be satisfied for all of the quantities ∂T λμ/∂xν such that

∂T λμ/∂xμ = 0. (D.6)
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Since the above relation can equivalently be written as

δν
μ

∂T λμ

∂xν
= 0, (D.7)

we conclude that the relation(
∂T ′αβ

∂T λμ
(A−1)ν

β − Γα
λδ

ν
μ

)
∂T λμ

∂xν
= 0, (D.8)

where Γα
λ are suitable Lagrangian multipliers, must be satisfied for any

choice of the quantities ∂T λμ/∂xν . Consequently, we have

∂T ′αβ

∂T λμ
= Γα

λA
ρ
μ. (D.9)

We now prove that the multipliers Γα
λ do not depend on T λμ. We have

∂2T ′αρ

∂T τν∂T λμ
=

∂Γα
λ

∂T τν
Aρ

μ,

and by changing the derivation order we get

∂Γα
λ

∂T τν
Aρ

μ =
∂Γα

τ

∂T λμ
Aρ

ν .

Multiplying the above relation for (A−1)β
ρ leads to

∂Γα
λ

∂T τν
δβ
μ =

∂Γα
τ

∂T λμ
δβ
ν .

For β = μ �= ν, this relation implies that

∂Γα
λ

∂T τν
= 0. (D.10)

Finally, taking into account the condition T ′αβ(0) = 0, we can write

T ′αβ = Γα
λA

ρ
μT

λμ. (D.11)

Let Wα denote any 4-vector field of spacetime. If we introduce the quan-
tities

Sβ = WαT
αβ, (D.12)

then, from (D.11) and (D.1), we obtain

S′β = S′β(Sλ), (D.13)
∂Sβ

∂xβ
= 0 (D.14)
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in every Lorentz frame. Proceeding as above, we prove that

S′β = λAβ
αS

α. (D.15)

Taking into account (D.15), (D.12) and (D.11), we reach the conclusion
that

T ′αβ = λAα
λA

β
μT

λμ, (D.16)

where λ is constant. From the invariance of T
44

, it follows that λ = 1.
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4-force, 271
4-vector, 264
4-velocity, 271

proper density of matter, 287

acoustic tensor, 51, 62, 215
Alfven wave, 216
Alfven’s theorems, 216
angular microvelocity tensor, 72
astatic load, 32

balance law, 101
Bloch walls, 225
boundary value problem of place, 4
boundary value problem of traction,

4
boundary value problem, mixed, 4
branching, 250

Cauchy stress tensor, 2
Cauchy–Green tensor, 2
characteristic curves, 321
characteristic strip, 322
charge conservation law, 173
chemical potentials, 157
Christoffel symbols, 311
Clausius–Duhem’s inequality, 77
compatibility conditions, 7
concentration, 153
conservation of microinertia, 73
contact forces, 74

continuous casting, 133
coordinate basis, 309
covariant derivative, 316

Da Silva’s theorem, 32
dead load, 5
deformation gradient, 2
derivative, weak or generalized, 302
direction of the future, 265
directors, 67, 68
Dirichlet boundary value problem, 306
displacement, 2
displacement gradient, 2
domain walls, 225

elastic energy functional, 8
elastic energy per unit volume, 12
elastic micropolar system, 78
elastic potential, 3
elasticity tensor, 3
elastostatics, 2
electric field, 172
electric induction field, 172
electrostriction, 194
elliptic point, 314
energy balance equation, 76
enthalpy, 177
entropy, specific, 77
ether, 257
Ettingshausen effect, 180
event, 264
external power supply, 76
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Fermi transport, 280
Fermi–Walker transport, 280
finite deformation, 2
first fundamental form, 310
force field, 74
four-vector, 264
Fréchet derivative, 8
Fréchet differentiable, 8
Fréchet differential, 8
free energy, specific, 77
future, 265

Gauss–Weingarten equations, 311
Gaussian curvature, 315
generalized Maxwell stress tensor, 241
Gibbs potential, 108
Gibbs principle, 122
Gibbs relation, 177
Gibbs rule, 128, 168

Hadamard’s theorem, 51
Hall effect, 180
Hartmann number, 220
heat flux vector, 76
heat-conducting perfect fluid, 276
homogeneous deformation, 12
homothetic deformation, 13
hyperbolic point, 314

incoherent matter, 276
infinitesimal Lorentz transformation

without rotation, 277
internal energy, specific, 76
intrinsic Cauchy–Green tensor, 286
intrinsic deformation gradient, 283
inverse mapping theorem, 40

Joule effect, 174
jump system, 51

Kelvin’s effect, 20

Lagrangian electromagnetic fields, 199
Lagrangian equilibrium conditions, 2
law of isorotation, 224

Leduc–Righi effect, 180
light cone, 265
live load, 5
local speed, 49
local stress tensor, 241
locally oriented, 311
longitudinal wave, 52
Lorentz frame, 264
Lorentz transformation, 264
Lorentz transformations, 183
Lorentz transformations without ro-

tation, 259

magnetic field, 172
magnetic induction field, 172
magnetic line of force, 216
magnetic Reynolds number, 206
mass conservation, 74
mass forces, 74
Maxwell’s rule, 118
mean curvature, 315
metric coefficients, 310
microgyration vector , 69
microinertia tensor density, 73
micromagnetism, 226
micropolar continuous systems, 68
micropolar velocity, 69
micropolar, elastic system, 78
mixture, 149
mixture, nonclassical, 159
mixture, nonreacting fluid, 149
mixtures, classical, 149
mixtures, simple, 149
momentum–energy tensor, 274
Monge’s cone, 321

neo-Hookian materials, 25
Nernst effect, 180
Neumann boundary value problem,

306
nonmaterial surface, 92
normal curvature, 312
normal speed, 49
null 4-vector, 265
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optically isotropic frame, 257
orthochronous, 267
orthogonal coordinates, 310

parabolic point, 314
past, 265
perfect fluid, 276
Piola–Kirchhoff tensor, 2
Poincaré inequality, 304
polarization vector, 195
Poynting’s effect, 20
Poynting’s vector, 174
principal curvatures, 315
principal directions, 315
proper frame, 271
proper internal energy, 287
proper time, 271

quasi-electrostatic approximation, 186
quasi-magnetostatic approximation,

188

reduced dissipation inequality, 289
regular surface, 309
relativistic mass, 270
relativistic thermoelastic materials,

289
rest frame, 271
rest mass, 270

second fundamental form, 311
shear, amount, 18
shear, angle, 18
shear, simple, 18
Signorini’s method, 29
Signorini’s theorem, existence and

uniqueness, 34
simple extension, 16
singular surface, 49
Sobolev space, 303
space projector, 282
space-like 4-vector, 265
spacetime, 264
special Lorentz transformations, 260
specific body couple, 74

specific enthalpy, 200
specific free energy, 288
specific mass force, 74
specific polarization vector, 195
specific volume, 114
spin density, 75
Stefan problem, 142
stress couple tensor, 76
stress per unit area, 74
surface couple stress, 74
surface divergence, 316
surface gradient, 316

tensor, Cauchy stress, 2
tensor, Cauchy–Green, 2
tensor, elasticity, 3
tensor, Piola–Kirchhoff, 2
tensor, stress couple, 76
thermodynamic process, 289
thermoelastic dielectric, 191
thermokinetic process, 289
Thomas derivative, 95
time-like 4-vector, 265
torque field, 74
trace, 305
transverse wave, 52

universal solution, static, 21
universe tube, 281

Van Buren theorem, 40

wavefront, 49
weak solution, 306, 307
Weiss domains, 225
world line, 270
world trajectory, 270
world velocity, 271
Wulff’s law, 129
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