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Introduction

The first purpose of an introduction is to explain what distinguishes the newly
written book from other books that might as well have the same title. This book
deals with quadratic mappings between modules over an arbitrary ring K (com-
mutative, associative, with unit element); therefore it requires an effective mastery
of some little part of commutative algebra. It is especially interested in quadratic
forms and in their Clifford algebras. The most common object under consideration
is a quadratic module (M, q), that is any module M provided with a quadratic form
q : M → K, and the deepest results are obtained when (M, q) is a quadratic space,
in other words, when M is a finitely generated projective module and q induces a
bijection from M onto the dual module M∗. In particular the study of Clifford al-
gebras of quadratic spaces shall (very progressively) lead to sophisticated theories
involving noncommutative algebras over the ring K (Azumaya algebras, Morita
theory, separability).

This book is almost never interested in results that would follow from some
special properties of the basic ring K; therefore much more emphasis has been put
on a serious study of Clifford algebras than on sophisticated properties of quadratic
forms which always depend on subtle hypotheses on the ring K. Here, when K is
not an arbitrary ring, it is a local ring, or even a field; the consideration of such
particular rings is justified by the importance of localization and globalization in
many chapters, and the important role of residue fields at some critical moments.
Besides, many useful applications of Clifford algebras outside mathematics involve
quadratic spaces over fields.

Another essential feature of this book is the narrowness of the set of pre-
requisites, and its constancy from the beginning to the end. These prerequisites
are made precise below, and although they are not elementary, they are much less
difficult and fewer than would be required for a pioneering or scholarly work. All
essential properties of Clifford algebras have been reached by elementary means
in the first five chapters before more difficult theories are presented in Chapter 6.
The concern of the authors about teaching has led them to limit the amount of
prerequisites, and to prove all results in the core of the book (almost the whole
book) on the basis of these prerequisites; for all these results the complete path
leading to their proof (sometimes by new simpler means) is explained.

Of course it has not been possible to impose the above-mentioned features on
the whole book. We thought it sensible to present interesting examples involving
theories outside the scope of the book, and to give information about related topics
which do not appear in the core of the book. Thus for the proof of several state-
ments it has been necessary to refer to other publications. For instance, quadratic
forms over the ring of integers often afford illuminating applications of general
theories; but since this book does not deal with arithmetic, it just mentions which
arithmetical knowledge is indispensable.
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Readers are assumed already to know elementary algebra (rings, fields,
groups, quotients,. . . ), and also linear and multilinear algebra over fields, espe-
cially tensor products and exterior algebras. They are assumed to know the usual
properties of quadratic forms over the usual fields R and C, which should enable a
rapid understanding of the properties of more general quadratic mappings. Even
some knowledge of linear algebra over rings (over commutative, associative rings
with unit) is required: exact sequences, projective and flat modules,. . . . Most of
these prerequisites are briefly recalled, especially in Chapter 1. A self-contained
yet concise exposition of commutative algebra is provided; it only covers the small
part that is needed, essentially localization and globalization, and finitely gener-
ated modules. Homological algebra is never involved, except in isolated allusions.

Many pages are devoted to “exercises”; their purposes are varied. Some of
them are training exercises, in other words, direct applications. Others present
still more results, which have seemed less important to the authors, but which
nevertheless deserve to be stated with indications about how to prove them. Others
present examples enlightening the reader on some particular features or some
unexpected difficulties. There are also developments showing applications in other
domains, and some few extracts from the existing literature. The levels of difficulty
are varied; when an exercise has seemed to be very difficult, or to require some
knowledge that is not treated in the book, an asterisk has been put on its number,
and often a hint has been supplied.

In the opinion of the authors, many applications of Clifford algebras outside
algebra, and even outside mathematics, raise problems that are universally inter-
esting, even for algebraists. It is the duty of algebraists to find clear concepts and
effective treatments, especially in places that are usually obscured by a lot of cum-
bersome calculations. In many applications of Clifford algebras there are interior
multiplications; here (in Chapter 4) it is explained that they can be derived from
the comultiplication that makes every Clifford algebra become a comodule over the
exterior algebra (treated as a coalgebra). In many applications of Clifford algebras
the calculations need two multiplications, a Clifford multiplication and an exterior
one; here (in Chapter 4) this practice is related to the concept of “deformation of
Clifford algebra”, which allows an elaborate presentation of a well-known result
stated for instance in [Chevalley 1954], §2.1, and with more generality in [Bourbaki
1959, Algèbre, Chap. 9] (see Proposition 3 in §9, no3). But the true meaning of
this essential result only appears when it is stated that it gives isomorphisms of
comodules over exterior algebras, and not merely isomorphisms of K-modules.

Spinor spaces in quantum mechanics raise problems for which insightful alge-
braic interpretation and smart proof eschewing tedious calculations are still objects
of discussion. Spinor spaces are often said to be Clifford modules although they
are actually graded Clifford modules (see Example (6.2.2) in this book); the word
“graded” refers to a parity grading which distinguishes even and odd elements.
Whereas the theory of Clifford modules is a long sequence of particular cases,
graded Clifford modules come under a unified and effective theory. The last ex-
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ercises of Chapter 6 propose a smart and effective path to the essential algebraic
properties that are needed in quantum mechanics.

This comment about spinor spaces is just one example of the constant em-
phasis put on parity gradings (from Chapter 3 to the end), in full agreement with
C.T.C. Wall and H. Bass. In many cases the reversion of two odd factors must
be compensated by a multiplication by −1, and here this rule is systematically
enforced in all contexts in which it is relevant; indeed only a systematic treatment
of parity gradings can avoid repeated hesitations about such multiplications by
−1. For instance if f and g are linear forms on M , their exterior product can be
defined as the linear form on

∧2(M) that takes this value on the exterior product
of two elements x and y of M :

(f ∧ g)(x ∧ y) = −f(x) g(y) + f(y) g(x) ;

the sign − before f(x)g(y) comes from the reversion of the odd factors g and x;
but in f(y)g(x) the odd factor y has jumped over two odd factors x and g, whence
the sign +.

Lipschitz, the forgotten pioneer

Rudolf O.S. Lipschitz (1832–1903) discovered Clifford algebras in 1880, two years
after William K. Clifford (1845–1879) and independently of him, and he was the
first to use them in the study of orthogonal transformations. Up to 1950 peo-
ple mentioned “Clifford-Lipschitz numbers” when they referred to this discovery
of Lipschitz. Yet Lipschitz’s name suddenly disappeared from the publications in-
volving Clifford algebras; for instance Claude Chevalley (1909–1984) gave the name
“Clifford group” to an object that is never mentioned in Clifford’s works, but stems
from Lipschitz’s. The oblivion of Lipschitz’s role is corroborated by [Weil], a letter
that A. Weil first published anonymously, probably to protest against authors who
discovered again some of Lipschitz’s results in complete ignorance of his priority.
Pertti Lounesto (1945–2002) contributed greatly to recalling the importance of
Lipschitz’s role: see his historical comment in [Riesz, 1993].

This extraordinary oblivion has generated two different controversies, a his-
torical one and a mathematical one. On one side, some people claimed that the
name “Clifford group” was historically incorrect and should be replaced with “Lip-
schitz group”; their action at least convinced other mathematicians to make correct
references to Lipschitz when they had to invent new terms for objects that still
had no name, even when they were reluctant to forsake the name “Clifford group”.
On the other side, some people were not satisfied with Chevalley’s presentation
of the so-called Clifford group, and completed it with additional developments
that meant a return to Lipschitz’s ideas; this is especially flagrant in [Sato, Miwa,
Jimbo 1978], where the authors discovered again some of Lipschitz’s results and
gave them much more generality and effectiveness; the same might be said about
[Helmstetter 1977, 1982]; but since the Japanese team showed applications of his
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cliffordian ideas to difficult problems involving differential operators (the “holo-
nomic quantum fields”), the necessity of going beyond Chevalley’s ideas became
obvious for external reasons too. The fact that all these authors at that time com-
pletely ignored Lipschitz’s contribution proves that the mathematical controversy
is independent of the historical one.

The part of this book devoted to orthogonal transformations can be under-
stood as a modernization of Lipschitz’s theory. Whereas Lipschitz only considered
real positive definite quadratic forms for which Clifford–Lipschitz groups may look
quite satisfying, with more general quadratic forms it becomes necessary to attach
importance to “Lipschitz monoids” from which “Lipschitz groups” are derived.
Here the historically incorrect “Clifford groups” are still accepted (with the usual
improved definition that pays due attention to the parity grading), but they only
play an incidental role. They coincide with the Lipschitz groups in the classical
case of quadratic spaces; but when beyond this classical case Clifford groups and
Lipschitz groups no longer coincide, the latter prove to be much more interesting.
Thus the mathematical controversy happens to prevail over the historical one.

Contraction and expansion are opposite and equally indispensable stages in
all scientific research. At Chevalley’s time it was opportune to contract the argu-
ments and to exclude developments that no longer looked useful; but in Chevalley’s
works there is at least one part (in [Chevalley 1954], Chapter 3) that should have
led him to reinstate Lipschitz if he had continued developing it. Our Chapter 7 is an
expansion of this part of Chevalley’s work, which for a long time has remained as
he left it. This expansion involves the contributions of both Lipschitz and Cheval-
ley, and should give evidence that it is much better to accept the whole heritage
from all pioneers without prolonging inopportune exclusions. Besides, Lipschitz’s
ideas also proved to be very helpful in the cliffordian treatment of Weyl algebras.

Weyl algebras

Weyl algebras represent for alternate bilinear forms the same structure as Clifford
algebras for quadratic forms, and in some publications they are even called “sym-
plectic Clifford algebras”. In [Dixmier 1968] you can find a concise exposition of
what was known about them before cliffordian mathematicians became interested
in them. Revoy was probably the first to propose a cliffordian treatment of Weyl
algebras; see [Nouazé, Revoy 1972] and [Revoy 1978]. Later and independently,
Crumeyrolle in France and the Japanese team Sato–Miwa–Jimbo produced some
publications developing the cliffordian treatment of Weyl algebras, although they
ignored (at least in their first publications) that these algebras had been already
studied, and had received H. Weyl’s name. Revoy’s isolated work was hardly no-
ticed, the cliffordian ideas of the Japanese team (which the renewal of Lipschitz’s
ideas mentioned above) were inserted in a very long and difficult work devoted to
differential operators, which discouraged many people, and Crumeyrolle’s state-
ments bumped up against severe and serious objections. That is why the cliffordian
treatment of Weyl algebras has not yet won complete acknowledgement.
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There is no systematic presentation of Weyl algebras in this book, which
already deals with a large number of other subjects. But at the end of Chapters 4,
5 and 7, many exercises about them have been proposed; Weyl algebras are defined
in (4.ex.18). These exercises explain the cliffordian treatment of Weyl algebras as
long as it is an imitation, or at least an adaptation, of the analogous treatment of
Clifford algebras. For the most difficult results that require Fourier analysis and
related theories, a short summary has been supplied; it should help readers to
understand the purposes and the achievements of this new theory.
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Chapter 1

Algebraic Preliminaries

This preliminary chapter is devoted to the following three subjects, which to-
gether allows us to review a great part of the prerequisites, and to add some more
specialized knowledge:

(a) a very simple presentation of the notion of universal property, with many
examples; Sections 1.2 to 1.4 are devoted to this subject.

(b) additional information about categories of modules; Sections 1.5 to 1.9 con-
tain reminders about exact sequences, usual functors, projective modules and
changes of basic rings; but in 1.8 finitely presented modules are treated with
more detail.

(c) a self-contained presentation of rings and modules of fractions, localization
and globalization; although this material is already well treated in the existing
literature, a concise exposition of the exact part that is here actually useful
should prevent beginners from wandering in too-specialized topics.

Complete knowledge of all this chapter is not indispensable, because precise refer-
ences will always be given when the most difficult or specialized results are needed
in the following chapters.

1.1 Some general notation and definitions

The following notation and definitions will be used in all chapters.
As usual, N, Z, Q, R, C, H are respectively the set of all integers ≥ 0, the ring

of all integers, the fields of rational, real and complex numbers, and the division
ring of real quaternions.

A ring A is always an associative ring with a unit element 1A unless otherwise
stated; the group of all invertible elements of A is denoted by A×. If a mapping
f : A → B between two rings is called a ring morphism, it must be understood
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that the equality f(1A) = 1B is also required. By definition a subring of A must
contain 1A.

Every module over the ring A is a left module, unless it is stated that it is
a right module; the category of all left A-modules is denoted by Mod(A). Right
A-modules are often treated as left modules over the opposite algebra Ao (defined
in 3.1) or over the twisted opposite algebra Ato (defined in 3.2) and therefore their
category is denoted by Mod(Ao) or Mod(Ato). If M and N are two modules over
A, the set of all A-linear mappings from M into N is denoted by HomA(M, N); the
ring of all A-linear endomorphisms of M is denoted by EndA(M). When A = Z,
Mod(Z) is also the category of all additive groups.

The letter K always refers to a commutative ring, the unit element of which
is denoted by 1; it is silently assumed that K is not reduced to 0 (in other words,
1 �= 0). When gradings (or filtrations) get involved, K is always trivially graded (or
filtered); in other words, all its nonzero elements have degree 0. At some places it
will be assumed that K is a local ring (in which there is only one maximal ideal m)
or even a field. When there is no mention of another ring, all algebraic notions such
as linearity, tensor products,. . . , refer to this ring K; consequently notation like
Hom(M, N), M ⊗N ,

∧
(M),. . . , must be understood as HomK(M, N), M ⊗K N ,∧

K(M),. . . .
Unless otherwise stated, an algebra A over K is a ring provided with a ring

morphism K → A that maps K into the center of A. If this ring morphism is
injective, K can be identified with a subring of A, and thus 1A is identified with
1. Every ring is an algebra over the ring Z of integers. The category of all K-
algebras is denoted by Alg(K); thus the notation HomAlg(K)(A, B) means the set
of all K-linear ring morphisms from A into B. The subcategory of all commutative
algebras in Alg(K) is denoted by Com(K).

Internal references must be understood in this way: the notation 4.2 means
the second section of the fourth chapter; inside each section, all emphasized state-
ments or formulas are numbered in a single file; for instance (4.2.3) means the third
statement (theorem, or definition, or remark, or example, or formula, or anything
else) in 4.2. References to other works (listed in the bibliography at the end of the
book) are indicated by brackets: for instance [Lounesto 1981].

1.2 Universal objects in a category

There are different ways to introduce universal properties, but here the simplest
way, based on the notion of universal object in a category, is already sufficient.
A category C consists of objects and morphisms (also called homomorphisms or
arrows); each morphism relates two objects, called the source and the target; the
set of morphisms relating the objects M and N in the category C is denoted by
HomC(M, N). A morphism f from M to N and a morphism g from N to P can be
linked together to give a morphism from M to P denoted by g ◦ f or gf , and it is



1.2. Universal objects in a category 3

required that the equality h(gf) = (hg)f is true whenever it is meaningful (in other
words, whenever the targets of f and g are respectively the sources of g and h). In
the definition of a category is also mentioned the existence of an identity morphism
idN for each object N , with the requirement that the equalities idN f = f and
g idN = g hold whenever they are meaningful. A morphism f : M → N is called
an isomorphism if there exists g : N → M such that gf = idM and fg = idN ;
this morphism g is unique and is called the reciprocal isomorphism.

An object U in a category C is called an initial universal object (resp. a
final universal object) if for every object M in C the set HomC(U, M) (resp.
HomC(M, U)) contains exactly one element. This definition implies that idU is
the only element in HomC(U, U). Here almost all universal objects under consid-
eration will be initial ones. We must keep in mind the following evident theorem.

(1.2.1) Theorem. If a category contains two initial universal objects (resp. two final
universal objects) U and V , the only morphism from U to V is an isomorphism.

Proof. There is one morphism f from U to V and also one morphism g from V to
U ; since gf (resp. fg) is a morphism from U (resp. V ) to itself, it must be equal
to idU (resp. idV ); therefore f and g are reciprocal isomorphisms. �

The most evident category is the category of all sets in which any mapping
is a morphism; the empty set is the only initial universal object, and any set
containing exactly one element is a final universal object.

In the category Mod(K) of all modules over K, the morphisms are the K-
linear mappings; the notation Hom(M, N) (or HomK(M, N) when more precision
is necessary) is the usual abbreviation for HomMod(K)(M, N). In this category any
module reduced to zero is both an initial universal object and a final one.

Now let us consider the category Alg(K) of all algebras over the ring K, in
which the morphisms are the K-linear ring morphisms. The algebras reduced to
zero are the only ones in which the unit element is equal to 0, and they are final
universal objects. Since the morphisms must respect the unit elements (see 1.1),
the ring K itself is an initial universal object. The category Alg(Z) is the category
of all rings; for any ring A, the only morphism Z → A determines the characteristic
of A : it is the integer n ≥ 0 such that nZ is the kernel of this morphism.

Before more interesting examples are given in the next two sections, it must
be recalled that sometimes the objects of a category are morphisms in another
category. In particular, with each category C is associated a category Chom in
which the objects are all the morphisms of C; if u : M1 → M2 and v : N1 → N2

are two objects of Chom , a morphism from u to v is a couple (f1, f2) of morphisms
f1 : M1 → N1 and f2 : M2 → N2 such that vf1 = f2u. The composition of two
morphisms (f1, f2) and (g1, g2) in Chom is given by the formula (g1, g2) ◦ (f1, f2) =
(g1f1, g2f2) whenever it is meaningful. If U is an initial universal object in C, then
idU is an initial universal object in Chom.

Sometimes it is convenient to associate with a given category C a dual category
C∗ containing the same objects and the same morphisms; but the target (resp. the
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source) of a morphism in C∗ is by definition its source (resp. its target) in C.
If gf : M → N → P is a product of morphisms in C, it must be written as
fg : P → N → M in C∗. Every final universal object in C is an initial one in C∗,
and this explains why both kinds of universal objects are considered as dual to
each other.

1.3 Examples of universal objects

Later in 3.1 Clifford algebras are introduced by means of a universal property,
meaning that they afford an initial universal object in some category; because of
(1.2.1), this property characterizes a Clifford algebra up to isomorphy. To prove
that a universal property can often distinguish an interesting object, we show
several already known objects, the interest of which actually depends on some
universal property.

Quotient modules

Let M be a module over K, and N a submodule of M ; when the quotient module
M/N and the quotient morphism ϕ : M → M/N are involved in an argument,
the following proposition is often referred to.

(1.3.1) Proposition. For every linear mapping f : M → P such that f(N) = 0,
there exists a unique linear mapping f ′ : M/N → P such that f = f ′ϕ. Moreover
if M is a K-algebra and N an ideal of M , then M/N is also a K-algebra and ϕ
is an algebra morphism.

This property of M/N and ϕ is said to be a universal property because it
means that ϕ is an initial universal object in the category of all linear mappings f
from M into any module P such that f(N) = 0. If f : M → P and g : M → Q are
objects in this category, a morphism from f to g is a linear mapping u : P → Q
such that g = uf . When M is a K-algebra and N an ideal, we may require f and u
to be algebra morphisms. The proof of (1.3.1) is based on the fact that the image
and kernel of ϕ are exactly M/N and N ; therefore these properties characterize
M/N and ϕ up to isomorphy.

The null morphism M → 0 with a trivial target is obviously a final uni-
versal object, but quite uninteresting. In the following examples such trivial final
universal objects will not even be mentioned.

Freely generated modules

Let S be a set. The K-module freely generated by S is the set K(S) of all mappings
ε : S → K such that ε(s) vanishes for all s ∈ S except a finite number; it is a
K-module in an evident way; it is reduced to 0 if S is empty. Let ϕ be the mapping
from S to K(S) which maps each s ∈ S to the mapping es : S → K such that
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es(s) = 1 and es(t) = 0 whenever s �= t. It is clear that K(S) is a free K-module
in which the family of all es is a basis; this property explains the name given to
K(S). It also implies that ϕ is an initial universal object in the category of all
mappings f from S into any K-module P ; if f : S → P and g : S → Q are objects
in this category, a morphism from f to g is a linear mapping u : P → Q such
that g = uf . Indeed every mapping f from S into a K-module P determines a
unique linear mapping f ′ from K(S) into P such that f = f ′ϕ, or equivalently,
f ′(es) = f(s) for all s ∈ S.

Let P be any K-module, and S any subset of P ; the universal property of
K(S) implies the existence of a canonical linear mapping K(S) → P which maps
every es to s. It is surjective if and only if P is generated by S; therefore every
generating subset S makes P isomorphic to a quotient of the free module K(S).
If P is finitely generated, it is isomorphic to the quotient of a free module with a
finite basis.

Tensor products of modules

Let M and N be K-modules. The canonical bilinear mapping ϕ from M ×N into
the tensor product M ⊗ N (that is (x, y) �−→ x ⊗ y) is also an initial universal
object because of the following universal property.

(1.3.2) Proposition. For any bilinear mapping f : M × N → P there exists a
unique linear mapping f ′ : M ⊗ N → P such that f = f ′ϕ , or equivalently,
f ′(x ⊗ y) = f(x, y) for all (x, y) ∈ M ×N .

The objects of the category under consideration are the bilinear mappings f
defined on M × N ; if f : M × N → P and g : M × N → Q are two objects, a
morphism from f to g is a linear mapping u : P → Q such that g = uf .

The precise definition of M ⊗N is very seldom needed, since it is character-
ized by (1.3.2) up to isomorphy. For instance (1.3.2) is sufficient to explain that
two linear mappings v : M → M ′ and w : N → N ′ determine a linear mapping
v ⊗ w from M ⊗M ′ into N ⊗ N ′ ; indeed v ⊗ w is the only linear mapping such
that (v ⊗ w)(x ⊗ y) = v(x) ⊗ w(y) for all (x, y) ∈M ×N .

Of course it is possible to state an analogous universal property for a ten-
sor product of several modules. The so-called commutativity property of tensor
products refers to the evident isomorphisms M ⊗N ←→ N ⊗M . There is also an
associativity property:

(M ⊗K N)⊗L P ∼= M ⊗K (N ⊗L P );

it is valid when M is a K-module, P an L-module, and N a module over K and
L such that κ(λy) = λ(κy) for all κ ∈ K, λ ∈ L and y ∈ N .
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Tensor products of algebras

When A and B are K-algebras, the tensor product A⊗B is also an algebra; indeed
the quadrilinear mapping (x, y, x′, y′) �−→ xx′⊗yy′ from A×B×A×B into A⊗B
determines a linear mapping from A⊗B⊗A⊗B into A⊗B; thus A⊗B is provided
with a multiplication such that

(x⊗ y) (x′ ⊗ y′) = xx′ ⊗ yy′;

it is easy to prove that it is associative and that 1A⊗1B is a unit element. Observe
that the mappings x �−→ x⊗1B and y �−→ 1A⊗y are algebra morphisms ϕ1 and ϕ2

from respectively A and B into A⊗B, and that ϕ1(x) and ϕ2(y) always commute
in A⊗B :

(x⊗ 1B)(1A ⊗ y) = x⊗ y = (1A ⊗ y)(x⊗ 1B).

As an algebra, A⊗B has the following universal property.

(1.3.3) Proposition. If f1 : A → P and f2 : B → P are algebra morphisms, and
if f1(x) and f2(y) commute in the algebra P for all (x, y) ∈ A × B, there exists
a unique algebra morphism f ′ : A⊗B → P such that f1 = f ′ϕ1 and f2 = f ′ϕ2 ,
or in other words, f1(x) = f ′(x ⊗ 1B) for all x ∈ A and f2(y) = f ′(1A ⊗ y) for
all y ∈ B.

From (1.3.3) it should be easy to deduce the category in which (ϕ1, ϕ2) is an
initial universal object. Nevertheless it has become usual to say that (1.3.3) is a
universal property of the target A⊗B.

Direct products and direct sums

With every family (Mj)j∈J of modules over K are associated a direct product∏
j Mj and a direct sum

⊕
j Mj which coincide whenever the set J of indices is

finite; the direct product is the ordinary cartesian product consisting of all families
(xj) such that xj ∈ Mj for all j ∈ J , whereas the direct sum is the submodule
of all families (xj) in which all xj vanish except a finite number. Let us realize
that the direct product is the source of a final universal object in some category
C′, whereas the direct sum is the target of an initial universal object in another
category C′′.

The objects of C′ are the families (fj) of linear mappings P → Mj with
the same source P , and a morphism from (fj) to (gj : Q → Mj) is a morphism
u : Q → P such that gj = fju for all j ∈ J . The following proposition means that
the family of all projections ψj :

∏
i∈J Mi →Mj is a final universal object.

(1.3.4) Proposition. Every family of linear mappings fj : P → Mj determines a
unique linear mapping f ′ : P →

∏
j Mj such that fj = ψjf

′ for all j ∈ J ; in other
words there is a canonical (and linear) bijection

Hom(P,
∏
j

Mj) −→
∏
j

Hom(P, Mj), f ′ �−→ (ψjf
′)j∈J .
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The objects of C′′ are the families (fj) of linear mappings Mj → P with
the same target P , and a morphism from (fj) to (gj : Mj → Q) is a morphism
u : P → Q such that gj = ufj for all j ∈ J . The next proposition means that the
family of all natural injections ϕj : Mj →

⊕
i Mi is an initial universal object.

(1.3.5) Proposition. Every family of linear mappings fj : Mj → P determines a
unique linear mapping f ′ :

⊕
j Mj → P such that fj = f ′ϕj for all j ∈ J ; in other

words there is a canonical (and linear) bijection

Hom
(⊕

j
Mj, P

)
−→

∏
j
Hom(Mj , P ), f ′ �−→ (f ′ϕj)j∈J .

For a family of two modules M and N the direct product and the direct sum
coincide; but the notation M ⊕ N is generally preferred when it is the source of
a linear mapping, whereas M ×N is preferred when it is the source of a bilinear
mapping or the target of a mapping of any kind.

Obviously the categories C′ and C′′ have been derived from the category C =
Mod(K) and the family (Mj) in such a way that no special properties ofMod(K)
have been needed; consequently it is possible to repeat the same construction of
C′ and C′′ by starting from any category C and any family (Mj) of objects of C.
If C′ contains a final universal object, its source is called the direct product of the
family (Mj) in C; and if C′′ contains an initial universal object, its target is called
its direct sum in C.

When the objects of C are sets provided with some common structure, and
when its morphisms are the mappings respecting this structure, it often happens
that every cartesian product of objects is still an object, that the canonical pro-
jections from this cartesian product onto its components are morphisms in C, and
that finally this cartesian product is the direct product in C. This is true for the
category of all sets, the category Alg(K) and its subcategory Com(K).

The concepts of direct product and direct sum may be understood as dual
to each other if we remember the dual category C∗ defined in 1.2. Indeed if we
replace C with C∗ in the construction of C′ (without changing the family (Mj)),
we get the dual category of C′′; and conversely. Therefore a direct sum in C is a
direct product in C∗, and conversely.

Despite this duality, the existence of direct sums is often a more difficult prob-
lem than the existence of direct products when the objects of C are sets provided
with some structure as above. Besides the previous example with C = Mod(K),
we will also look for direct sums of two objects in two other categories. First, in the
category of all sets, the direct sum of two sets M and N is the so-called disjoint
union. When M and N are actually disjoint, it is merely M ∪N ; if not, it may be
the union of two disjoints sets M ′ and N ′ respectively isomorphic to M and N .

Secondly the direct sum of two commutative algebras A and B in Com(K)
is their tensor product A ⊗ B ; indeed (1.3.3) implies that there is a canonical
bijection

HomCom(K)(A⊗B, P ) −→ HomCom(K)(A, P )×HomCom(K)(B, P ).
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1.4 Tensor algebras and symmetric algebras

Let M be a K-module. We consider the category of all linear mappings from M
into a K-algebra P ; a morphism from f : M → P to g : M → Q is an algebra
morphism u : P → Q such that g = uf . If there is an initial universal object
ϕ : M → U , its target U (which is thus defined up to isomorphy because of
(1.2.1)) should be called the algebra freely generated by M . Two properties are
understood in this name. First U coincides with the subalgebra U ′ generated by
ϕ(M) in U ; indeed there must be an algebra morphism u : U → U ′ such that
ϕ = uϕ, and then U → U ′ → U must be equal to idU , whence U = U ′ (since
U ′ → U is the natural injection). Secondly, if the algebra P is generated by the
image of f : M → P , the unique algebra morphism f ′ : U → P satisfying f = f ′ϕ
is surjective and makes P become a quotient of U ; in other words, any algebra
P generated by a linear image f(M) of M is determined (up to isomorphy) by
the knowledge of Ker(f ′) (or that of any subset generating it as an ideal). This
is what you must understand when one says that P can be deduced from U by
adding more relations between the generators; and these relations correspond to
the elements of Ker(f ′). This point of view leads to an effective construction of
U , starting with a K-algebra V of noncommutative polynomials in noncommuting
indeterminates ex (indexed by x ∈ M), and then taking the quotient of V by the
ideal W generated by all ex + ey − ex+y and λex − eλx with x, y ∈ M and λ ∈ K,
so that a linear mapping ϕ : M → V/W can be defined.

Nonetheless the above name of U is very seldom used, because there is an-
other construction of U that has become more popular, and that has led to it
being called the tensor algebra of M . Let us set

T0(M) = K , T1(M) = M , T2(M) = M⊗M , T3(M) = M⊗M⊗M, . . . ;

because of the so-called associativity of tensor products, for all (i, j) ∈ N2 there
is a canonical isomorphism from Ti(M) ⊗ Tj(M) onto Ti+j(M), whence a mul-
tiplication mapping Ti(M) × Tj(M) −→ Ti+j(M); this multiplication can be
extended by linearity to the direct sum T(M) of all the tensor powers Tk(M), and
thus T(M) is an associative algebra (even a graded algebra). The next proposition
means that the natural injection ϕ : M → T(M) is the desired universal object.

(1.4.1) Proposition. Any linear mapping f from M into an algebra P extends
in a unique way to an algebra morphism f ′ : T(M) → P . For every sequence
(x1, x2, . . . , xk) of elements of M (of any length k ≥ 1),

f ′(x1 ⊗ x2 ⊗ · · · ⊗ xk) = f(x1)f(x2) · · · f(xk).

Since there is an algebra freely generated by the module M in the category
Alg(K), it is sensible to look for a commutative algebra freely generated by M
in the subcategory Com(K). Since the former can be constructed as a quotient of
an algebra of noncommutative polynomials, the latter can be constructed in the
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same way by means of commutative polynomials. As explained above, we can also
obtain the latter by imposing more relations (relations of commutation) between
the generators of the former; in other words, it suffices to take the quotient of the
tensor algebra T(M) by the ideal R generated by all x⊗ y− y⊗ x with x, y ∈M .
The resulting algebra is called the symmetric algebra of M , and denoted by S(M);
the symbol ∨ is often used to mean the product of two elements of S(M).

This algebra S(M) inherits the grading of T(M), because the ideal R is the
direct sum of the intersections Rk = R∩Tk(M); thus S(M) can be identified with
the direct sum of the quotients Sk(M) = Tk(M)/Rk. Obviously R0 = R1 = 0,
whence S0(M) = K and S1(M) = M . The natural injection M → S(M) is an
initial universal object in the category of all linear mappings M → P with target
a commutative algebra, as stated in the next proposition.

(1.4.2) Proposition. Any linear mapping from M into a commutative algebra P
extends in a unique way to an algebra morphism S(M)→ P .

In the algebra T(M) each component Tk(M) has a universal property, be-
cause it is a tensor power of M : for every k-linear mapping f from Mk = M ×
M×· · ·×M into any module P , there is a unique linear mapping f ′ : Tk(M)→ P
such that

f ′(x1 ⊗ x2 ⊗ · · · ⊗ xk) = f(x1, x2, . . . , xk)

for all x1, x2, . . . , xk ∈ M . The components of S(M) also have their particular
universal property.

(1.4.3) Proposition. For every symmetric k-linear mapping f : Mk → P there is
a unique linear mapping f ′′ : Sk(M)→ P such that

f ′′(x1 ∨ x2 ∨ · · · ∨ xk) = f(x1, x2, . . . , xk)

for all x1, x2, . . . , xk ∈M .

Proof. We suppose k ≥ 2, otherwise the symmetry hypothesis is empty. First f
induces a linear mapping f ′ : Tk(M) → P . As above, we treat Sk(M) as the
quotient Tk(M)/Rk, where Rk is spanned by the products

x1 ⊗ x2 ⊗ · · · ⊗ xj−1 ⊗ (xj ⊗ xj+1 − xj+1 ⊗ xj)⊗ xj+2 ⊗ · · · ⊗ xk

with j ∈ {1, 2, . . . , k − 1} ; if the k-linear mapping f is symmetric, the mapping
f ′ vanishes on all these products, whence a linear mapping f ′′ from Tk(M)/Rk =
Sk(M) into P with the desired property. Since Sk(M) is spanned by the products
x1 ∨ x2 ∨ · · · ∨ xk , the unicity of f ′′ is obvious. �
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1.5 Functors

Let C and D be two categories. A covariant functor F from C to D associates
with each object M of C an object F(M) of D, and with each morphism f of C a
morphism F(f) of D in such a way that the following three conditions are always
fulfilled:

if f ∈ HomC(M, N) , then F(f) ∈ HomD(F(M),F(N)) ;

F(gf) = F(g)F(f) whenever gf exists;

if f is an identity morphism, then so is F(f).

A contravariant functor F from C toD is a covariant functor from the dual category
of C (see 1.2) to the category D; this means that:

if f ∈ HomC(N, M) , then F(f) ∈ HomD(F(M),F(N)) ;

F(fg) = F(g)F(f) whenever fg exists;

if f is an identity morphism, then so is F(f).

Many universal properties give rise to a functor. For instance there is a func-
tor T associated with tensor algebras; it is a covariant functor from Mod(K) to
Alg(K); the tensor algebra T(M) of a module M has been defined in 1.4; if f
is a linear mapping from M into N , then T(f) is the unique algebra morphism
T(M) → T(N) extending the linear mapping M → T(N) defined by x �−→ f(x).
It is easy to verify that a functor has been defined in this way. In the same way we
can define a functor S from Mod(K) to Com(K) by means of symmetric algebras.

The covariant functors between two categories are themselves the objects of
a category. When F and G are covariant functors from C to D, a morphism Φ from
F to G associates with each object M of C a morphism Φ(M) from F(M) to G(M)
in D, in such a way that G(f)◦Φ(M) = Φ(N)◦F(f) for every f ∈ HomC(M, N).
This morphism Φ : F −→ G is an isomorphism if and only if all morphisms Φ(M)
are isomorphisms.

Let F be a covariant functor from C to D, and M and N two objects of C;
we assume that C contains morphisms ϕ1 : M → P and ϕ2 : N → P for which P
is the direct sum of M and N in this category, and that D contains morphisms
ψ1 : F(M) → Q and ψ2 : F(N) → Q for which Q is the direct sum of F(M) and
F(N) in this category. Now F(ϕ1) and F(ϕ2) have the same sources as ψ1 and
ψ2, but their common target is F(P ); since (ψ1, ψ2) is universal, all this results in
a morphism Q → F(P ). In other words, the existence of direct sums in C and in
D implies the existence of canonical morphisms

F(M)⊕D F(N) −→ F(M ⊕C N).

Some functors F have the nice property that these canonical morphisms are iso-
morphisms. For instance the functor S defined by means of symmetric algebras
has this property, as stated in the next theorem; remember that the direct sum of
two objects in Com(K) is their tensor product (see 1.3).
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(1.5.1) Theorem. The symmetric algebra of the module M ⊕ N is canonically
isomorphic to the tensor product S(M)⊗ S(N).

Proof. For every x ∈ M and y ∈ N the canonical algebra morphism S(M) ⊗
S(N) → S(M ⊕ N) resulting from the previous argument maps x ⊗ 1 and 1 ⊗ y
respectively to (x, 0) and (0, y) in M ⊕ N . Conversely, because of the universal
property of S(M ⊕N), the linear mapping (x, y) �−→ x⊗ 1 + 1⊗ y extends to an
algebra morphism S(M ⊕ N) → S(M) ⊗ S(N). Then it is easy to prove that in
this way two reciprocal isomorphisms have been constructed. �

The definition of a functor of several variables can be easily guessed, and we
will present at once the evident example of the functor HomC from C × C to the
category of all sets, which is contravariant in the first variable and covariant in the
second variable. The set HomC(M, N) has been defined in 1.2; now let us consider
two morphisms in C: f1 : M ′ → M and f2 : N → N ′; from them we derive a
mapping denoted by HomC(f1, f2) :

HomC(M, N) −→ HomC(M ′, N ′), u �−→ f2uf1.

Thus we have got a functor because

HomC(f1g1, g2f2) = HomC(g1, g2)◦HomC(f1, f2) whenever f1g1 and g2f2

exist,

HomC(idM , idN ) is the identity mapping of HomC(M, N).

By fixing the object N , we get a contravariant functor HomC(. . . , N) of the first
variable (whence the notation HomC(f1, N) meaning HomC(f1, idN )), and by fixing
M we get a covariant functor HomC(M, . . . ) of the second variable (whence the
notation HomC(M, f2) meaning HomC(idM , f2)). When C is the categoryMod(K),
the functor HomK takes its values in the category Mod(K).

Here we are also interested in the functor ⊗ which is a twice covariant functor
from Mod(K) ×Mod(K) to Mod(K). The notations M ⊗ N and v ⊗ w have
been explained in 1.3, and it is easy to verify that they correspond to a functor;
the notations v ⊗ N and v ⊗ idN are synonymous. This functor has also a nice
behaviour relatively to direct sums, even infinite direct sums; as explained above,
the universal property of direct sums implies the existence of morphisms like this
one: ⊕

j∈J

(M ⊗Nj) −→ M ⊗
(⊕

j∈J
Nj

)
;

to get a reciprocal morphism, it suffices to consider the evident bilinear mapping

M ×
(⊕

j∈J
Nj

)
−→

⊕
j∈J

(M ⊗Nj);

because of the universal property of tensor products, we derive from it the recip-
rocal isomorphism.



12 Chapter 1. Algebraic Preliminaries

If N is a free module, it is a direct sum of submodules all isomorphic to K,
and since M ⊗K is canonically isomorphic to M , the tensor product M ⊗ N is
isomorphic to a direct sum of submodules all isomorphic to M . If M and N are
free modules, M ⊗N is also a free module, and when x runs through a basis of M
and y through a basis of N , the tensor products x⊗y constitute a basis of M⊗N .

1.6 Exact sequences

Let us consider a sequence of two linear mappings u and v:

M ′ u−→ M
v−→ M ′′;

it is called an exact sequence if Im(u) = Ker(v). The inclusion Im(u) ⊂ Ker(v) is
equivalent to the equality vu = 0; when we must prove the exactness of a sequence,
in most cases the equality vu = 0 will be obvious and the converse inclusion
Im(u) ⊃ Ker(v) will be the core of the proof. A sequence of several mappings, or
an infinite sequence of mappings, is said to be exact if all the subsequences of two
consecutive mappings are exact; for instance the sequence

0 −→M ′ u−→M
v−→M ′′ −→ 0 (1.6.1)

is exact if u is injective, v surjective, and Im(u) = Ker(v) .
An exact sequence like (1.6.1) is called a splitting exact sequence if the median

module M is the direct sum of M1 = Im(u) = Ker(v) and some submodule
M2 ; since the injection u determines an isomorphism M ′ → M1 , and since the
surjection v then determines an isomorphism M2 → M ′′, the splitting of the
exact sequence (1.6.1) makes M become isomorphic to M ′ ⊕M ′′. Still under the
assumption that the sequence (1.6.1) is exact and splits, there exist two mappings
u′ : M →M ′ and v′ : M ′′ →M such that

M2 = Ker(u′) = Im(v′), u′u = idM ′ and vv′ = idM ′′ ;

all this implies idM = uu′ + v′v and u′v′ = 0.
Conversely if the sequence (1.6.1) is exact and if there exists u′ : M → M ′

such that u′u = idM ′ , it is easy to prove that M is the direct sum of Im(u) and
Ker(u′), and this means that this exact sequence splits. In an analogous way the
exact sequence (1.6.1) is also splitting if there exists v′ : M ′′ → M such that
vv′ = idM ′′ , because this equality implies M = Im(v′)⊕Ker(v).

Besides, when the sequence (1.6.1) is no longer assumed to be exact, and
when the only hypothesis is the existence of four mappings u, v, u′, v′ satisfying
the five equalities

vu = 0, u′v′ = 0, u′u = idM ′ , vv′ = idM ′′ and uu′ + v′v = idM , (1.6.2)
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then we get two splitting exact sequences:

0 −→M ′ u−→M
v−→M ′′ −→ 0,

0 ←− M ′ u′
←−M

v′
←−M ′′ ←− 0.

Let F be an additive functor from the category Mod(K) into itself; the
additiveness of F means that for every couple of modules (M, N) the mapping
u �−→ F(u) is a group morphism from Hom(M, N) into Hom(F(M),F(N)) if F
is covariant, into Hom(F(N),F(M)) if F is contravariant. With this hypothesis,
any equality vu = 0 implies F(v)F(u) = 0 or F(u)F(v) = 0 ; but this is not
sufficient to conclude that every exact sequence is transformed by F into an exact
sequence; F is called an exact functor if it transforms every exact sequence into
an exact sequence. It is not difficult to prove that F is exact if and only if it
transforms every exact sequence like (1.6.1) into an exact sequence.

Every splitting exact sequence is transformed into a splitting exact sequence,
because four mappings u, v, u′, v′ satisfying the five equalities (1.6.2) are trans-
formed by F into four mappings satisfying the analogous five equalities that prove
the exactness and the splitting of the transformed sequence. Therefore if a functor
is not exact, its lack of exactness can be observed only on exact sequences that do
not split.

Unfortunately the most usual additive functors Hom and ⊗ are not exact for
all rings K; the former is only left exact (for both variables), and the latter is right
exact. This means that for all modules P and all exact sequences

0 −→M ′ −→M −→M ′′,
N ′ −→ N −→ N ′′ −→ 0 ,

we get these exact sequences:

0 −→ Hom(N ′′, P ) −→ Hom(N, P ) −→ Hom(N ′, P ) ,
0 −→ Hom(P, M ′) −→ Hom(P, M) −→ Hom(P, M ′′) ,

P ⊗N ′ −→ P ⊗N −→ P ⊗N ′′ −→ 0.

From the right exactness of the functor ⊗ the following statement can be
immediately derived: the exactness of the two sequences

M ′ −→M −→ M ′′ −→ 0 and N ′ −→ N −→ N ′′ −→ 0

implies the exactness of the sequence

(M ′ ⊗N)⊕ (M ⊗N ′) −→M ⊗N −→M ′′ ⊗N ′′ −→ 0; (1.6.3)

this is proved in Exercise (1.ex.10).
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1.7 Projective modules and flat modules

A K-module P is called injective if the functor Hom(. . . , P ) is exact; it is called
projective if the functor Hom(P, . . . ) is exact; and it is called flat if the functor
P ⊗ · · · is exact. Because of the left exactness of the functor Hom and the right
exactness of the functor ⊗ (see 1.6), we get at once the following statements:
P is injective if and only if the mapping Hom(N, P ) → Hom(N ′, P ) is surjec-
tive whenever N ′ → N is injective; P is projective if and only if the mapping
Hom(P, M) → Hom(P, M ′′) is surjective whenever M → M ′′ is surjective; and P
is flat if and only if the mapping P ⊗N ′ → P ⊗N is injective whenever N ′ → N
is injective.

Here we never need injective modules; therefore only classical properties of
projective or flat modules are recalled in this section.

A (finite or infinite) direct sum of modules is projective if and only if all the
components are projective. Since K itself is projective, this proves that every free
module is projective.

The following four statements are equivalent:

(a) P is projective;
(b) when the morphism M → M ′′ is surjective, every morphism P → M ′′ can

be factorized through M by means of some morphism P →M ;
(c) every exact sequence 0 → M ′ → M → P → 0 is splitting if it contains P at

the fourth place;
(d) there exists a module P ′ such that P ⊕ P ′ is a free module.

Moreover if P is a finitely generated projective module, there exists a module P ′

such that P ⊕ P ′ is a free module with finite bases.
A (finite or infinite) direct sum of modules is flat if and only if all components

are flat. Consequently, since K is flat, every projective module is flat.
Every tensor product of projective modules (resp. flat modules) is projective

(resp. flat). When M is projective, Hom(M, N) is projective (resp. flat) whenever
N is projective (resp. flat).

A module P is called faithfully flat if it is flat and if every equality P⊗M = 0
implies M = 0.

When P is merely flat, every linear mapping f : M → N gives an exact
sequence

0 −→ P ⊗Ker(f) −→ P ⊗M −→ P ⊗N −→ P ⊗ Coker(f) −→ 0

which proves that the kernel and cokernel of P⊗f can be identified with P⊗Ker(f)
and P ⊗ Coker(f). When P is faithfully flat, then f is injective (resp. surjective)
if and only if P ⊗ f is injective (resp. surjective); indeed the vanishing of Ker(f)
is equivalent to the vanishing of P ⊗Ker(f), and the same for Coker(f).

More generally, when P is faithfully flat, a sequence M ′ →M →M ′′ is exact
if and only if the sequence P ⊗M ′ −→ P ⊗M −→ P ⊗M ′′ is exact. Indeed the
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mapping M ′ −→ Ker(M → M ′′) is surjective if and only if its gives a surjective
mapping by the functor P ⊗ · · · .

Let N and N ′ be submodules of M . When P is merely flat, P⊗N and P⊗N ′

can be identified with submodules of P ⊗M , and

(P ⊗N) + (P ⊗N ′) = P ⊗ (N + N ′),
(P ⊗N) ∩ (P ⊗N ′) = P ⊗ (N ∩N ′);

indeed the former equality is obvious, and the latter one follows from it because
of the exact sequence

0 −→ N ∩N ′ −→ N ⊕N ′ −→ N + N ′ −→ 0

in which the second arrow is c �−→ (c,−c) and the third one is (a, b) �−→ a + b.
Obviously every inclusion N ′ ⊂ N in M gives a similar inclusion in P ⊗M . When
P is faithfully flat, the inclusion N ′ ⊂ N is equivalent to P ⊗N ′ ⊂ P ⊗N . Indeed
these inclusions are respectively equivalent to the surjectiveness of the mappings
N → N + N ′ and P ⊗N → P ⊗ (N + N ′).

The finitely generated projective modules afford the most convenient frame to
generalize the classical properties of vector spaces of finite dimension. For instance
we may associate with each module M the dual module M∗ = Hom(M, K), and
there is a canonical mapping from M into the bidual module (M∗)∗; if P is finitely
generated and projective, the mapping P → (P ∗)∗ is an isomorphism; indeed this
is obviously true when P is a free module with a finite basis; when P is not free,
there exists a module P ′ such that P ⊕ P ′ is free with a finite basis; whence an
isomorphism P ⊕ P ′ → ((P ⊕ P ′)∗)∗; but (P ⊕ P ′)∗ is canonically isomorphic to
P ∗ ⊕ P ′∗, and finally we get an isomorphism

P ⊕ P ′ −→ (P ∗)∗ ⊕ (P ′∗)∗;

since this isomorphism maps each of the two components on the left side into
the corresponding component on the right side, it gives two isomorphisms, among
which is the announced isomorphism.

1.8 Finitely presented modules

When M is a K-module, every subset S that spans M , provides a surjective mor-
phism N →M defined on the module N = K(S) freely generated by S (see 1.3); if
M is finitely generated, we can require S to be a finite subset, and N to have finite
bases. Unfortunately in many cases it is not sufficient that N contains finite bases;
we must also consider the kernel of the morphism N → M , which is called the
module of relations between the generators. A finite presentation of M is a finite
subset of generators that gives a finitely generated module of relations between
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these generators. Nonetheless the existence of finite presentations is ensured by a
much weaker definition.

(1.8.1) Definition. A module M is called finitely presented if it is finitely generated
and if there exists a surjective morphism f : P → M such that P is projective
and Ker(f) finitely generated.

According to this definition every finitely generated projective module is
finitely presented. Now the next theorem implies that in a finitely presented mod-
ule every finite subset of generators actually gives a finitely generated module of
relations.

(1.8.2) Theorem. Let M be a finitely presented module, and f : P → M a surjective
morphism from a projective module P onto M ; the kernel of f is finitely generated
if and only if P is finitely generated.

This theorem is a consequence of the following lemma.

(1.8.3) Schanuel’s lemma. Let f : P → M and f ′ : P ′ → M be surjective mor-
phisms from two projective modules P and P ′ onto the same module M ; the mod-
ules P ⊕Ker(f ′) and P ′ ⊕Ker(f) are isomorphic. Consequently if P and Ker(f ′)
are finitely generated, so are P ′ and Ker(f) (and conversely).

Proof of (1.8.3). Since P is projective and f ′ surjective, there exists u : P →
P ′ such that f = f ′u. Let Q be the submodule of P ⊕ P ′ containing all pairs
(x, x′) such that f(x) = f ′(x′). We get reciprocal isomorphisms between Q and
P ⊕ Ker(f ′) if we map every (x, x′) ∈ Q to (x, x′ − u(x)), and conversely every
(x, y′) ∈ P ⊕ Ker(f ′) to (x, y′ + u(x)). In an analogous way we get a pair of
reciprocal isomorphisms between Q and P ′ ⊕Ker(f). �

Proof of (1.8.2). Since M is finitely generated, there exists a surjective mapping
f ′ : P ′ →M defined on a finitely generated projective module P ′; and since M is
finitely presented, there exists a surjective mapping f ′′ : P ′′ → M such that P ′′

is projective and Ker(f ′′) finitely generated. Now if P is finitely generated, since
Ker(f ′′) is also finitely generated, P ′′ and Ker(f) are finitely generated because
of (1.8.3). Conversely if Ker(f) is finitely generated, since P ′ is finitely generated,
P and Ker(f ′) are also finitely generated. �

When the basic ring K is noetherian, every submodule of a finitely generated
module is also finitely generated; therefore every finitely generated module is also
finitely presented.

Suppose that M is finitely presented; every finite subset of generators gives a
surjective morphism f : M0 →M defined on a free module M0 with a finite basis;
every finite subset of generators of Ker(f) gives a surjective morphism M1 →
Ker(f) defined on a free module M1 with a finite basis; we can link together the
exact sequences

M1 −→ Ker(f) −→ 0 and 0 −→ Ker(f) −→M0 −→M −→ 0,
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in order to get the exact sequence that symbolizes the finite presentation of M :

M1 −→M0 −→M −→ 0.

A tensor product of finitely presented modules is a finitely presented module,
because from the two exact sequences

M1 −→M0 −→M −→ 0 and N1 −→ N0 −→ N −→ 0,

by means of (1.6.3) we can derive the exact sequence

(M1 ⊗N0)⊕ (M0 ⊗N1) −→M0 ⊗N0 −→ M ⊗N −→ 0.

Moreover Hom(P, M) is a finitely presented module whenever P is a finitely
generated projective module, and M a finitely presented module; indeed from the
above exact sequence M1 →M0 →M → 0 we can derive the exact sequence

Hom(P, M1) −→ Hom(P, M0) −→ Hom(P, M) −→ 0;

there exists P ′ such that P ⊕P ′ is free with finite bases; thus Hom(P ⊕P ′, M0) is
also free with finite bases, and consequently Hom(P, M0) is finitely generated and
projective; and the same for Hom(P, M1).

1.9 Changes of basic rings

When we meet additive groups that are modules over two commutative rings K
and L, it is necessary to use precise notations like HomL(M, N), M⊗LN , TL(M),
SL(M),. . . indicating which basic ring is referred to. Here we study what happens
when there is a ring morphism f : K → L; in this case every L-module M is also
a K-module: for all κ ∈ K and all x ∈ M the product κx is by definition f(κ)x.
Such a ring morphism f : K → L is called an extension of the ring K, even when
it is not injective. It may even occur that f is surjective; for instance if M is not
a faithful K-module, the ideal containing all κ ∈ K such that κM = 0 is not
reduced to 0, and M becomes a faithful module over the quotient of K by this
ideal.

First let us suppose that M and N are L-modules, and therefore also K-
modules; there is obviously a canonical injection HomL(M, N) → HomK(M, N)
and a canonical surjection M⊗K N →M⊗L N ; the kernel of the latter is spanned
by the elements λx ⊗ y − x⊗ λy with λ running through L and x and y through
M and N ; both mappings are isomorphisms when f is surjective. If we consider
tensor and symmetric algebras, we find canonical morphisms of graded algebras

TK(M) −→ TL(M) and SK(M) −→ SL(M);

in degree 0 we find merely the ring morphism f : K → L ; in degree 1 we find
the identity mapping of M = T1

K(M) = T1
L(M) = S1

K(M) = S1
L(M), and for
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each degree k ≥ 2 the mappings Tk
K(M) → Tk

L(M) and Sk
K(M) → Sk

L(M) are
surjective, and even bijective when f is surjective.

Let us now suppose that M is merely a K-module; we may derive from it
two L-modules, called the extensions of M , which are L⊗K M and HomK(L, M);
an element µ of L multiplies an element λ ⊗ x of L ⊗K M or an element ξ of
HomK(L, M) in this way:

µ(λ⊗ x) = (µλ) ⊗ x and (µξ)(λ) = ξ(µλ).

There are canonical K-linear mappings

M −→ L⊗K M and HomK(L, M) −→M

defined by x �−→ 1L ⊗ x and ξ �−→ ξ(1L) ; the former is not always injective,
and the latter is not always surjective. When L = K, both are bijective and
usually K ⊗K M and HomK(K, M) are identified with M . But in general these
two extensions are different, and isomorphisms can be found between them only
under restrictive hypotheses. The next lemma gives more details in a particular
case.

(1.9.1) Lemma. Let us suppose that f : K → L is surjective; let a be its kernel.
Then L⊗K M is canonically isomorphic to the quotient M/aM , and HomK(L, M)
to the submodule of all elements x ∈M such that ax = 0.

Proof. The right exactness of the functor ⊗ gives the exact sequence

a⊗K M −→ K ⊗K M −→ L⊗K M −→ 0;

when K ⊗K M is identified with M , the image of a⊗K M in M is aM , and thus
L⊗K M = M/aM . The left exactness of the functor Hom allows us to prove the
statement involving HomK(L, M). �

Here we shall only use extensions like L ⊗K M , but the other extension
HomK(L, M) may appear in other contexts. Let us begin with these isomorphisms:

TL(L⊗K M) ∼= L⊗K TK(M), (1.9.2)
SL(L⊗K M) ∼= L⊗K SK(M). (1.9.3)

Most of the here mentioned isomorphisms are easy consequences of the definitions
and universal properties of the objects under consideration, and the following
explanations about (1.9.2) should be a sufficient model for all the others. Observe
that the L-algebras TL(L⊗K M) and L⊗K TK(M) are generated by the elements
which in each algebra are written 1L ⊗ x (with x ∈ M). The mapping which
maps every λ ⊗ x in L ⊗K M to the corresponding λ ⊗ x in L ⊗K TK(M), is
L-linear, and therefore extends to a morphism of L-algebras TL(L ⊗K M) →
L ⊗K TK(M). Conversely the mapping x �−→ 1L ⊗ x extends to a morphism
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of K-algebras TK(M) → TL(L ⊗K M), and by combining it with the canonical
morphism L→ TL(L⊗K M), the image of which lies in the center of TL(L⊗K M),
we get a morphism of K-algebras L ⊗K TK(M) → TL(L ⊗K M). This converse
morphism too is L-linear, and the behaviour of both morphisms on the elements
1L ⊗ x shows that they are reciprocal isomorphisms of L-algebras. �

When M is a K-module as previously, and N an L-module, there are canon-
ical isomorphisms

HomK(M, N) ∼= HomL(L⊗K M, N), (1.9.4)
M ⊗K N ∼= (L ⊗K M)⊗L N. (1.9.5)

To be complete, let us also mention the isomorphisms

HomK(N, M) ∼= HomL(N, HomK(L, M)).

The isomorphisms (1.9.4) and (1.9.5) lead to an easy proof of this statement: the
extension L⊗K M is L-projective (resp. L-flat) whenever M is K-projective (resp.
K-flat). When M is injective, its injectiveness is inherited by the other extension
HomK(L, M).

When both M and N are K-modules, we find the canonical isomorphisms

L⊗K (M ⊗K N) ∼= (L⊗K M)⊗L (L⊗K N). (1.9.6)

To be complete, let us also mention the isomorphisms

HomK(L, HomK(M, N)) ∼= HomL(L ⊗K M, HomK(L, N)).

Sometimes we also need the following morphism which is not always bijective:

L⊗K HomK(M, N) −→ HomL(L⊗K M, L⊗K N),
λ⊗ g �−→ (µ⊗ x �−→ λµ⊗ g(x)).

(1.9.7) Proposition. When M is projective, the above canonical morphism from
L⊗K HomK(M, N) into HomL(L⊗K M, L⊗K N) is an isomorphism.

Proof. When M is a direct sum, this morphism is bijective if and only if it is
bijective when M is successively replaced with each direct summand; consequently
it suffices to prove (1.9.7) when M = K; in this case it is obviously bijective. �

The extension K → L is called flat (resp. faithfully flat) if L is a flat (resp.
faithfully flat) K-module. When the extensions K → L and L→ L′ are flat (resp.
faithfully flat), it is clear that K → L′ is flat (resp. faithfully flat). Let K → K ′

and K → L be two extensions of K, and L′ = K ′ ⊗K L; when the extension
K → L is flat (resp. faithfully flat), then K ′ → L′ is also flat (resp. faithfully flat);
indeed, for every K ′-module M ′,

L′ ⊗K′ M ′ ∼= (K ′ ⊗K L)⊗K′ M ′ ∼= L⊗K K ′ ⊗K′ M ′ ∼= L⊗K M ′.

Other properties of flatness or faithful flatness are stated in 1.7.
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(1.9.8) Proposition. When K → L is a faithfully flat extension and M a K-module,
M is finitely generated (resp. finitely presented) if and only if the L-module L⊗KM
is finitely generated (resp. finitely presented).

Proof. Without any hypothesis on K → L, every exact sequence M1 → M0 →
M → 0 is transformed by the functor L ⊗ · · · into an exact sequence, and this
proves that the mentioned properties of M are inherited by L⊗K M . Conversely
if L ⊗K M is finitely generated, there exist x1, x2, . . . , xn ∈ M such that L ⊗M
is generated by all 1L ⊗ xi with i = 1, 2, . . . , n; let M0 be a free K-module with
basis (e1, e2, . . . , en), and f the K-linear mapping M0 → M such that f(ei) = xi

for i = 1, 2, . . . , n; this mapping f is surjective because L ⊗ f is surjective and L
faithfully flat; therefore M is finitely generated. The kernel of L⊗ f is canonically
isomorphic to L⊗Ker(f) because L is flat; if L⊗M is finitely presented, this kernel
is finitely generated; consequently L ⊗ Ker(f) is finitely generated; by a similar
argument Ker(f) is also finitely generated; thus M is finitely presented. �

(1.9.9) Proposition. When K → L is a flat extension, and M a finitely presented
K-module, then for each K-module N the canonical morphism

L⊗K HomK(M, N) −→ HomL(L⊗K M, L⊗K N)

is an isomorphism.

Proof. It is obviously an isomorphism when M is a free module with a finite basis.
When M is merely finitely presented, there is an exact sequence M1 → M0 →
M → 0 in which M1 and M0 are free modules with finite bases; it leads to the
following diagram:

0→ L⊗Hom(M, N) → L⊗Hom(M0, N) → L⊗Hom(M1, N)
↓ ↓ ↓

0→HomL(L⊗M, L⊗N)→HomL(L⊗M0, L⊗N)→HomL(L⊗M1, L⊗N)

The two lines are exact because of the flatness of L and the left exactness of the
functors HomK and HomL ; the second and third vertical arrows are isomorphisms;
now it is easy to prove that the first vertical arrow too is an isomorphism. �

(1.9.10) Proposition. When K → L is a faithfully flat extension and P a K-
module, P is a finitely generated projective K-module if and only if L ⊗K P is a
finitely generated projective L-module.

Proof. When P is finitely generated and projective over K, so is L ⊗K P over L
because of (1.9.4). The hypothesis about K → L is only needed when we conversely
suppose that L⊗K P is a finitely generated projective L-module; then according to
(1.9.8), P is finitely presented; the projectiveness of P is equivalent to the exactness
of the functor HomK(P, . . . ), and since L is faithfully flat, it is equivalent to the
exactness of the functor L⊗K HomK(P, . . . ); because of (1.9.9) it is also equivalent
to the exactness of the functor HomL(L⊗K P, L⊗K · · · ); now the projectiveness
of L⊗K P implies the projectiveness of P . �
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1.10 Rings and modules of fractions

A multiplicative subset of K (also called a multiplicatively closed subset) is a subset
S that contains 1 and all products of two elements of S. We consider the category
C of all ring morphisms f : K → L such that f(s) is invertible in L for all s ∈ S;
a morphism from f to f ′ : K → L′ is a ring morphism u : L → L′ such that
f ′ = uf . The morphism K → 0 is a final universal object in C; it is its unique
object (up to isomorphy) when S contains 0, and it is preferable also to accept
this quite degenerate case. If C contains an initial universal object f : K → U , it
is unique up to isomorphy (see (1.2.1)), and U is called the ring of fractions of K
with denominator in S and denoted by S−1K.

Let us prove the existence of S−1K. Two elements (λ, s) and (λ′, s′) of K×S
are said to be equivalent if there exists t ∈ S such that t(s′λ− sλ′) = 0 ; it is easy
to prove that an equivalence relation has been defined in this way; let S−1K be
the set of equivalence classes; the image of (λ, s) in S−1K is written as a fraction
λ/s. This set is given a ring structure with the following operations:

λ

s
+

µ

t
=

tλ + sµ

st
and

λ

s

µ

t
=

λµ

st
;

it is easy to prove that this addition and this multiplication are well defined on the
set of equivalence classes and satisfy the required properties for S−1K to be a ring;
the zero and unit elements are respectively the fractions 0/1 and 1/1. Moreover
the mapping f : K −→ S−1K which maps every λ to the fraction λ/1 is a ring
morphism, and it is easy to prove that it is an initial universal object in C, as
stated in the following theorem.

(1.10.1) Theorem. For every ring morphism f : K → L such that f(s) is invertible
for all s ∈ S, there exists a unique ring morphism f ′ : S−1K → L such that
f(λ) = f ′(λ/1) for all λ ∈ K.

It is clear that f ′(λ/s) = f(λ)f(s)−1 for all fractions λ/s. Moreover an element
λ ∈ K belongs to the kernel of the canonical morphism f : K → S−1K if and only
if there exists t ∈ S such that tλ = 0.

If S′ is a multiplicative subset containing S, the universal property of S−1K
implies that the canonical mapping K → S′−1K can be factorized through S−1K,
and thus we get a ring morphism S−1K → S′−1K.

When K is an integral domain (a ring without divisors of zero, and not
reduced to 0), the set of all nonzero elements of K is a multiplicative subset; the
corresponding ring of fractions is a field, which is called the field of fractions of
K; all rings of fractions of K and K itself can be identified with subrings of this
field.

Now let M be any K-module, and D the category in which the objects are
the K-linear mappings g : M → P from M into any (S−1K)-module P ; a mor-
phism from g to g′ : M → P ′ is a (S−1K)-linear mapping u : P → P ′ such that
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g′ = ug. If D contains an initial universal object fM : M −→ V , it is unique up to
isomorphy, V is called the module of fractions of M with denominator in S and
denoted by S−1M .

Let us prove the existence of S−1M . Two elements (x, s) and (x′, s′) of M×S
are said to be equivalent if there exists t ∈ S such that t(s′x−sx′) = 0 ; it is easy to
prove that an equivalence relation has been defined; the set of equivalence classes
is the wanted module S−1M and the image of (x, s) in S−1M is by definition the
fraction x/s. It is easy to prove that the following operations are well defined and
make S−1M become an (S−1K)-module:

x

s
+

y

t
=

tx + sy

st
and

λ

s

y

t
=

λy

st
.

Moreover the mapping fM : M −→ S−1M which maps each x to x/1, is a K-linear
mapping, and it is easy to prove that it is an initial universal object in D, in other
words: for every K-linear mapping g : M → P into an (S−1K)-module P , there
exists a unique (S−1K)-linear mapping g′ : S−1M → P such that g(x) = g′(x/1)
for all x ∈ M .

An element x ∈ M belongs to the kernel of the canonical morphism x �−→ x/1
if and only if there exists t ∈ S such that tx = 0.

The canonical morphism x �−→ x/1 is an isomorphism from M onto S−1M
if and only if the endomorphism x �−→ sx is bijective from M onto M for all
s ∈ S; this condition is necessary and sufficient for M to have a structure of
(S−1K)-module compatible with its structure of K-module.

If S′ is a multiplicative subset of K containing S, the universal property of
S−1M gives a canonical (S−1K)-linear mapping S−1M → S′−1M.

Two kinds of multiplicative subsets will be used later. First from any element
s ∈ K we can derive the multiplicative subset S = {1, s, s2, s3, . . . } of all powers
of s; then the ring S−1K is usually denoted by Ks ; it is reduced to 0 if and only
if s is nilpotent. Similarly Ms is the module of fractions of M with denominator a
power of s.

An ideal p of K is called a prime ideal when the following four equivalent
statements are true:

(a) p �= K, and whenever p contains a product xy of elements of K, it contains
x or y;

(b) p �= K, and whenever p contains a product ab of ideals of K, it contains
a or b;

(c) the quotient K/p is an integral domain (without divisors of zero and not
reduced to 0);

(d) the complementary subset S = K \ p is a multiplicative subset.

The corresponding ring S−1K and modules S−1M are denoted by Kp and Mp ,
and are called the localizations of K and M at the prime ideal p.
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Every ring K (not reduced to 0) contains prime ideals; indeed Zorn’s Lemma
implies the existence of maximal ideals, and maximal ideals are prime, because
the following two assertions are equivalent:

(a) the ideal m is maximal (it is contained in no ideal other than m and K, and
m �= K);

(b) the quotient K/m is a field.

Zorn’s Lemma even implies that every ideal other than K is contained in a maximal
ideal.

Let us also recall that for any ring K the following two statements are equiv-
alent:

(a) K contains exactly one maximal ideal;
(b) K is not reduced to 0, and a sum of noninvertible elements is never invertible.

When these statements are true, K is called a local ring. In a local ring the unique
maximal ideal m is the subset of all noninvertible elements. The quotient K/m is
called the residue field of the local ring K.

When p is a prime ideal of K, the elements of Kp which are not invertible,
are the elements of pKp (this notation is meaningful since Kp is a K-module); this
proves that the localized ring Kp is a local ring.

Here is a first application of these notions.

(1.10.2) Theorem. The radical of K, which is the subset Rad(K) of all its nilpotent
elements, is also the intersection of all its prime ideals.

Proof. It is clear that every prime ideal contains all nilpotent elements. Conversely
we prove that when s is not nilpotent, there exists a prime ideal that does not
contain it. Indeed let us consider the ring Ks of fractions with denominator in
the set of powers of s, and the canonical morphism f : K → Ks . Since s is not
nilpotent, Ks is not reduced to 0. If m is a maximal ideal of Ks , f−1(m) is a prime
ideal p of K because K/p is isomorphic to a subring of the field Ks/m. Since f(s)
is invertible and cannot belong to m, we are sure that s /∈ p. �

Every multiplicative subset S affords a functor from Mod(K) toward
Mod(S−1K); with every K-module M we associate the (S−1K)-module S−1M ,
and with every K-linear mapping f : M −→ N we associate the (S−1K)-linear
mapping S−1f : S−1M → S−1N defined in this way: because of the universal
property of S−1M , the mapping M −→ N → S−1N can be factorized in a unique
way through S−1M .

(1.10.3) Theorem. The functor M �−→ S−1M is exact. Moreover it is equivalent
to the functor M �−→ S−1K ⊗M corresponding to the extension K → S−1K of
the basic ring; in other words, for each K-module M there is a canonical (S−1K)-
linear isomorphism S−1M → S−1K ⊗ M , and for each K-linear mapping f :
M −→ N the canonical isomorphisms S−1M → S−1K⊗M and S−1N → S−1K⊗
N intertwine S−1f and S−1K ⊗ f .
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Proof. Let us consider an exact sequence M ′ u−→ M
v−→ M ′′, and let us prove

the exactness of S−1M ′ → S−1M → S−1M ′′. It is clear that S−1v ◦ S−1u = 0;
therefore we must prove that every fraction x/s ∈ S−1M that belongs to the
kernel of S−1v, must belong to the image of S−1u. Indeed there exists t ∈ S such
that tv(x) = 0, in other words, tx ∈ Ker(v); consequently there exists x′ ∈ M ′

such that u(x′) = tx, whence x/s = S−1u(x′/st) as desired.
The proof of the second part of (1.10.3) is still easier: there is a mapping

S−1M → S−1K ⊗M resulting from the universal property of S−1M , and there
is a converse mapping (λ/s)⊗ x �−→ (λx)/s resulting from the universal property
of the tensor product; obviously they are reciprocal isomorphisms. The statement
about S−1f and S−1K ⊗ f is also evident. �

(1.10.4) Corollary. The ring extension K → S−1K is flat.

Indeed the exactness of the functor M �−→ S−1K⊗M is an immediate consequence
of the exactness of the functor M �−→ S−1M . �

(1.10.5) Corollary. For all K-modules M and M ′ there is a canonical isomorphism

S−1(M ⊗K M ′) ∼= S−1M ⊗S−1K S−1M ′.

Indeed, according to (1.9.6), there is a canonical isomorphism

S−1K ⊗K (M ⊗K M ′) ∼= (S−1K ⊗K M)⊗S−1K (S−1K ⊗K M ′). �

(1.10.6) Corollary. Let a be the ideal of K generated by the elements s1, s2, . . . , sn .
The direct product L of the rings Ksi (where i = 1, 2, . . . , n) is faithfully flat if
and only if a = K. When a = K, this ring L is called a Zariski extension of K.

Proof. Since L is a direct sum of flat modules, it is flat. Let us suppose that
L ⊗ M = 0 ; therefore for each x ∈ M there exists a positive integer k such
that sk

i x = 0 for i = 1, 2, . . . , n. If a = K, there exist λ1, λ2,. . . ,λn such that
1 =

∑n
i=1 λisi ; let us set m = n(k− 1) + 1 ; from the equality 1 = (

∑n
i=1 λisi)m

we can deduce the existence of µ1, µ2, . . . , µn such that 1 =
∑n

i=1 µis
k
i ; this

shows that the equalities sk
i x = 0 imply x = 0 ; therefore M = 0. Conversely if

a �= K, the equality (K/a)⊗ L = 0 (a consequence of (1.9.1)) shows that L is not
faithfully flat. �

Among the consequences of Theorem (1.10.3) there is the fact that S−1N
can be considered as a submodule of S−1M whenever N is a submodule of M ;
indeed the sequence 0 −→ S−1N −→ S−1M is exact. The proof of the following
lemma is left to the reader.

(1.10.7) Lemma. When N and N ′ are submodules of M , then

S−1(N + N ′) = S−1N + S−1N ′ and S−1(N ∩N ′) = S−1N ∩ S−1N ′.
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Whereas the functor M �−→ S−1M has a nice behaviour relatively to tensor
products (see (1.10.5)), it requires more caution when the functor Hom is involved.

(1.10.8) Proposition. For all K-modules M and N there is a canonical morphism

S−1HomK(M, N) −→ HomS−1K(S−1M, S−1N)

which is an isomorphism whenever M is a finitely presented module.

Each element g/s of S−1Hom(M, N) is mapped to x/t �−→ g(x)/st. This proposi-
tion is an immediate corollary of (1.9.9) because the extension K → S−1K is flat,
as stated in (1.10.4). �

Let us come back to the ring extension f : K → S−1K. Later it shall be nec-
essary to know the prime ideals of S−1K. As explained above for the submodules
of any K-module M , to each ideal a of K corresponds an ideal S−1a of S−1K; it
is the ideal generated by f(a). Conversely with every ideal b of S−1K we associate
the ideal f−1(b) of K; it is clear that f−1(b) ∩ S = ∅ whenever b �= S−1K. The
proof of the following lemma is left to the reader.

(1.10.9) Lemma. The mapping q �−→ f−1(q) is a bijection from the set of prime
ideals q of S−1K onto the set of prime ideals p of K such that p∩S is empty; the
converse bijection is p �−→ S−1p.

More generally S−1f−1(b) = b for every ideal b of S−1K, but if a is an ideal of
K, the ideal f−1(S−1a) may be larger than a, since it is the set of all λ ∈ K such
that sλ ∈ a for some s ∈ S.

1.11 Localization and globalization

The spectrum of the ring K, denoted by Spec(K), is the set of all its prime ideals.
With every ideal a of K we associate the subset V(a) of all p ∈ Spec(K) such that
p ⊃ a.

(1.11.1) Lemma. The mapping a �−→ V(a) has the following properties:

(a) V(K) = ∅ and V(0) = Spec(K);
(b) an inclusion a ⊂ b implies V(a) ⊃ V(b);
(c) when (aj)j∈J is any family of ideals of K, then

⋂
j∈J

V(aj) = V(
∑
j∈J

aj);

(d) for all ideals a and b of K, we can write

V(a) ∪ V(b) = V(a ∩ b) = V(ab).
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All these statements are evident except perhaps the last one, a consequence of the
inclusions

V(a) ∪ V(b) ⊂ V(a ∩ b) ⊂ V(ab) ⊂ V(a) ∪ V(b).

Lemma (1.11.1) proves that there is a topology on Spec(K) for which the closed
subsets are the subsets V(a); it is called the Zariski topology of Spec(K). For every
p ∈ Spec(A) the topological closure of {p} is V(p); thus the point {p} is closed if
and only if p is a maximal ideal; this topology is almost never a Hausdorff topology.

As explained in 1.10, with each p ∈ Spec(K) is associated a localized ring Kp

with maximal ideal pKp, and a residue field Kp/pKp. The kernel of the ring mor-
phism K → Kp → Kp/pKp is exactly p. Therefore there is an injective morphism
from the integral domain K/p into the residue field, which extends to a morphism
from the field of fractions of K/p into the residue field. This morphism is surjec-
tive, consequently bijective (since every field morphism is injective). Therefore the
residue field Kp/pKp can be identified with the field of fractions of K/p. At every
maximal ideal m the residue field is K/m.

Every module M gives a localized module Mp at the point p, and a vector
space Fp ⊗K M over the residue field Fp = Kp/pKp. The associativity of tensor
products allows us to write

Fp ⊗K M = Fp ⊗Kp Kp ⊗K M = Fp ⊗Kp Mp;

and then (1.9.1) allows us to identify Fp ⊗M with Mp/pMp. For a maximal ideal
m we can write Fm = K/m and Fm ⊗M = M/mM .

Let f : K → L be any ring morphism. When q is a prime ideal of L, then
f−1(q) is a prime ideal of K, because the quotient K/f−1(q) is isomorphic to a
subring of L/q. This defines a mapping Spec(f) from Spec(L) into Spec(K), and
it is easy to prove that it is continuous. Thus we have constructed a contravariant
functor from the category Com(Z) of all commutative rings to the category of
topological spaces.

(1.11.2) Example. Let F be an algebraically closed field, and K = F [x1, x2, . . . , xn]
a ring of polynomials over F ; K can be identified with the ring of polynomial
functions on Fn and its field of fractions F (x1, x2, . . . , xn) with the field of rational
functions on Fn; every ring of fractions of K is a subring of this field. At every
point a = (a1, a2, . . . , an) ∈ Fn there is a valuation morphism K → F defined
by f �−→ f(a); if ma is its kernel, the quotient K/ma is isomorphic to F and
consequently ma is a maximal ideal; a theorem of Hilbert (Nullstellensatz) proves
that the image of the mapping a �−→ ma is the set of all maximal ideals. We
identify the point a ∈ Fn with the point ma ∈ Spec(K). The localized ring Ka

at the maximal ideal ma is the subring of all rational functions g that are defined
at the point a, and the image of g in the residue field (which is isomorphic to
K/ma = F ) can be identified with the value g(a) of g at the point a. Now let p
be any prime ideal of K, and V ′(p) the subset of all a ∈ Fn such that f(a) = 0
for all f ∈ p; a subset like V ′(p) is called an irreducible algebraic submanifold of
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Fn, and its points are the maximal ideals belonging to V(p). The localized ring
at p is the subring of all rational functions that are defined at least at one point
of V ′(p) (consequently at almost all points of V ′(p)). The ideal p is the kernel of
the ring morphism that maps every polynomial function f ∈ K to its restriction
to the subset V ′(p), and thus K/p is identified with a ring of functions on V ′(p),
the so-called regular functions. The residue field at p is the field of fractions of
K/p and its elements are called the rational functions on V ′(p). If g belongs to the
localized ring Kp, its image in the residue field is its restriction to V ′(p).

Let s be a nonzero element in the previous ring K = F [x1, . . . , xn]. It is (in an
essentially unique way) a product of prime elements (each one generates a prime
ideal in K); with each prime divisor of s is associated an irreducible algebraic
hypersurface in Fn, and V ′(Ks) (which is the subset of all a ∈ Fn such that
s(a) = 0) is the union of all these hypersurfaces. Let U ′

s be the complementary
subset of V ′(Ks) in Fn. The elements of Ks are the rational functions on Fn

that are defined at all points of U ′
s; their restrictions to U ′

s are called the regular
functions on U ′

s. According to Lemma (1.10.9) the mapping Spec(Ks)→ Spec(K)
is a bijection from Spec(Ks) onto the subset Us of all prime ideals of K that do
not contain s; this subset Us is open because the complementary subset is V(Ks).
The elements of Us correspond to the irreducible algebraic submanifolds V ′(p)
contained in U ′

s.

Let us examine what happens when Spec(K) is not a connected topological
space.

(1.11.3) Theorem. When K is a direct sum of ideals K1, K2, . . . , Kn, each
Ki is generated by an idempotent ei and

∑n
i=1 ei = 1 ; moreover the mapping

Spec(Ki) → Spec(K) associated with the projection K → Ki induces a bijection
from Spec(Ki) onto an open subset Ui of Spec(K), and Spec(K) is the disjoint
union of the open subsets U1, U2, . . . ,Un. Conversely when Spec(K) is a dis-
joint union of open subsets U1, U2, . . . , Un, then K is a direct sum of ideals K1,
K2, . . . , Kn in such a way that each open subset Ui is the image of the mapping
Spec(Ki) → Spec(K).

Proof. Let us suppose that K =
⊕n

i=1 Ki and let ei be the component of 1 in Ki

for i = 1, 2, . . . , n. The equality λ =
∑n

i=1 λei holds for every λ ∈ K, and proves
that λei is the projection of λ in Ki; in particular e2

i = ei and Ki = Kei. A prime
ideal cannot contain all the n idempotents ei because their sum is 1; if it does
not contain ei, it must contain all ej such that j �= i, because eiej = 0. Therefore
each prime ideal contains all the n idempotents ei except one, and Spec(K) is the
disjoint union of the n subsets Ui defined in this way: Ui is the set of all prime
ideals containing ej whenever j �= i. Since Ui is equal both to V(K(1 − ei)) and
to the subset complementary to V(Kei), it is open and closed. The continuous
mapping Spec(Ki)→ Spec(K) maps each prime ideal pi of Ki to the prime ideal
of K which is the direct sum of pi and all Kj with j �= i; thus we get a bijection
Spec(Ki) → Ui.
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Conversely let us suppose that Spec(K) is a disjoint union of n open subsets
Ui. For each i let us choose an ideal ai such that Ui is the complementary subset
of V(ai). Since the intersection of all V(ai) is empty, the sum of all the ideals ai is
K, and therefore we can write

1 =
n∑

i=1

εi with εi ∈ ai for i = 1, 2, . . . , n.

Since Spec(K) is the union of V(ai) and V(aj) whenever i �= j, the intersection
ai ∩ aj is contained in all prime ideals, and therefore in Rad(K) (see Theorem
(1.10.2)); consequently there exists a positive integer k such that (εiεj)k = 0
whenever i �= j. Let us set m = n(k − 1) + 1; the equality 1 = (

∑n
i=1 εi)m shows

that we can write

1 =
n∑

i=1

ei with ei ∈ Kεk
i ⊂ ai for i = 1, 2, . . . , n.

Now observe that eiej = 0 whenever i �= j; this proves that every ei is an idem-
potent:

ei = ei

n∑
j=1

ej =
n∑

j=1

eiej = e2
i .

Therefore K is the direct sum of the n ideals Kei as above. It remains to prove
that Ui = V(K(1 − ei)). It is clear that V(ai) ⊂ V(Kei), whence the inclusions
Ui ⊃ V(K(1 − ei)). Since Spec(K) is the disjoint union of the n subsets Ui and
also the disjoint union of the n subsets V(K(1−ei)), all this enforces the equalities
Ui = V(K(1− ei)). �

After having explained the localization process, we must face the converse
problem: which properties of a module (or a morphism) can be derived from an
examination of the corresponding localized modules (or morphisms)?

(1.11.4) Globalization lemma. Let Mmax be the direct product of all the localized
modules Mm at all maximal ideals m of K. By mapping every x ∈ M to the family
of all its images x/1 in all these localized modules, we get an injective mapping
M →Mmax.

Proof. Let x be an element of M such that x/1 vanishes in all the localized modules
Mm; for each maximal ideal m there exists an element tm ∈ K such that tmx = 0
and tm /∈ m. Let a be the ideal generated by all tm; no maximal ideal m can contain
a because a contains an element tm outside m. Therefore a = K, and from the set
of all elements tm we can extract a finite sequence (t1, t2, . . . , tn) such that

1 =
n∑

i=1

λiti for suitable λ1, λ2, . . . , λn ∈ K.

Consequently the equalities tix = 0 for i = 1, 2, . . . , n imply that x = 0. �
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A property involving modules or morphisms (or anything that can be local-
ized) is called a local property when its fulfillment for the object under consid-
eration is equivalent to its fulfillment for all the localizations of this object. The
following corollaries of (1.11.4) show several examples of local properties.

(1.11.5) Corollary. For a K-module M the following assertions are equivalent:

(a) M = 0;
(b) Mp = 0 for every prime ideal p;
(c) Mm = 0 for every maximal ideal m.

(1.11.6) Corollary. When N and N ′ are submodules of M , the following assertions
are equivalent:

(a) N ′ ⊂ N ;
(b) N ′

p ⊂ Np for every prime ideal p;
(c) N ′

m ⊂ Nm for every maximal ideal m.

We get another triplet of equivalent assertions if we replace the inclusions with
equalities.

Proof. It is clear that (a)⇒(b)⇒(c). Let us suppose that N ′
m ⊂ Nm, whence

Nm = Nm +N ′
m = (N +N ′)m (see (1.10.7)), and consequently (N +N ′)m/Nm = 0.

Because of the exactness of the localization functors (see (1.10.3)) this implies
((N + N ′)/N)m = 0. When this equality holds for all maximal ideals, then (N +
N ′)/N = 0, and N ′ ⊂ N . �

Consequently the property that an element x of M belongs to a submodule
N is a local property (indeed x ∈ N if and only if Kx ⊂ N). And the property
that two submodules are supplementary in M is a local property too.

(1.11.7) Corollary. For a K-linear mapping f : M → N the following assertions
are equivalent:

(a) f is injective;
(b) the localized mapping fp : Mp → Np is injective for every prime ideal p;
(c) the localized mapping fm : Mm → Nm is injective for every maximal ideal m.

We get another triplet of equivalent assertions if we replace the word “injective”
with “surjective”.

Proof. It is clear that (a)⇒(b)⇒(c). Let us suppose that all mappings fm are
injective; since all localization functors are exact, from the exact sequence 0 →
Ker(f) → M → N we derive exact sequences 0 → (Ker(f))m → Mm → Nm that
allow us to identify Ker(fm) with (Ker(f))m; consequently (Ker(f))m = 0 for all
maximal ideals m, whence Ker(f) = 0.

When the mappings fm are assumed to be surjective, there is a similar argu-
ment with the exact sequence M → N → Coker(f)→ 0. �
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(1.11.8) Corollary. For a K-module M the following assertions are equivalent:

(a) M is flat;
(b) Mp is a flat Kp-module for every prime ideal p;
(c) Mm is a flat Km-module for every maximal ideal m.

Proof. The module M is flat if and only if the mapping M ⊗ N ′ → M ⊗ N is
injective whenever it comes from an injective mapping N ′ → N . According to
Corollary (1.10.5) there is a canonical isomorphism

(M ⊗K N)p
∼= Mp ⊗Kp Np,

and the same when N is replaced with N ′, or p with m. Thus the implication
(a)⇒(b) follows from the exactness of localization functors and from the fact
that Np = N when N is already a Kp-module (and the same for N ′). Then the
implication (b)⇒(c) is trivial, and the implication (c)⇒(a) is a consequence of
(1.11.7). �

1.12 Finitely generated modules

The localization and globalization process allows us to reduce problems about
modules to problems about modules over local rings, and when the modules under
consideration are finitely generated, the following lemma will be repeatedly used.

(1.12.1) Nakayama’s lemma. Let K be a local ring with maximal ideal m, and M
a finitely generated K-module; when M = mM , then M = 0.

Proof. Let M be generated by the finite family (x1, x2, . . . , xn). If M �= 0, there
exists k ∈ {1, 2, . . . , n} such that M is generated by (xk, xk+1, . . . , xn) but not by
(xk+1, . . . , xn); since M = mM , there exist µk, µk+1, . . . , µn all in m such that

xk = µkxk + µk+1xk+1 + · · ·+ µnxn;

since 1 − µk is invertible, this equality shows that xk belongs to the submodule
generated by (xk+1, . . . , xn); this causes a contradiction. We conclude that M = 0.

�

(1.12.2) Corollary. Let M be a finitely generated module over a local ring K with
maximal ideal m; when N is a submodule such that M = N + mM , then M = N .

Indeed M/N = m(M/N), whence M/N = 0. �

(1.12.3) Corollary. Let M be a finitely generated module over a local ring K with
maximal ideal m, and (x1, x2, . . . , xn) a finite sequence of elements of M ; the
following two assertions are equivalent:

(a) it is a minimal family of generators of M ;
(b) its image in M/mM is a basis of M/mM over the residue field K/m.
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Proof. Since the bases of M/mM are its minimal families of generators, it suffices
to prove that (x1, x2, . . . , xn) generates M if and only if its image in M/mM
generates it. Obviously the image of a family of generators of M is a family of
generators of its quotient. Conversely suppose that the images of x1, x2, . . . , xn

generates M/mM , and let N be the submodule of M generated by x1, x2, . . . , xn

themselves; since M = N + mM , we conclude that M = N . �

The next theorem too follows from Nakayama’s lemma.

(1.12.4) Theorem. Let M be a finitely presented module over a local ring K with
maximal ideal m ; the following four assertions are equivalent:

(a) M is free;
(b) M is projective;
(c) M is flat;
(d) the mapping m⊗M →M defined by µ⊗ x �−→ µx is injective.

Moreover when M is free, every minimal family of generators of M is a basis of M .

Proof. The implications (a)⇒(b)⇒(c) are evident, and (c)⇒(d) follows from the
fact that the tensor product by the flat module M transforms the natural injection
m → K into an injection m⊗M −→ M if K ⊗M is identified with M as usual.
We must prove (d)⇒(a). Let (x1, x2, . . . , xn) be a minimal family of generators
of M ; its image in M/mM is a basis (see (1.12.3)). Let N be a free module with
basis (e1, e2, . . . , en), and f the surjective morphism N → M that maps each ei

to xi; let us consider R = Ker(f). Since the kernel of N → M → M/mM is
exactly mN , we know that R ⊂ mN . Let us prove that the injectiveness of the
morphism m ⊗ M → M implies R = mR, since this immediately leads to the
awaited conclusions: R = 0, therefore f is an isomorphism, M is free, and the
minimal generating family (x1, x2, . . . , xn) is a basis. Indeed since R ⊂ mN , for
every y ∈ R there exist µ1, µ2, . . . , µn all in m such that y =

∑n
i=1 µiei . By

definition of R we can write
∑n

i=1 µixi = 0, and the injectiveness of m⊗M →M
implies that

∑n
i=1 µi ⊗ xi vanishes in m ⊗ M . Now let us consider the exact

sequence
m⊗R −→ m⊗N −→ m⊗M −→ 0;

since
∑n

i=1 µi ⊗ ei belongs to the kernel of the second morphism of this sequence,
it must belong to the image of the first morphism; since y =

∑n
i=1 µiei, this shows

that y belongs to mR, and thus the proof is ended. �

Unlike flatness which is a local property (see (1.11.8)), projectiveness is not
a local property. Nevertheless for finitely presented modules there is a statement
analogous to (1.11.8).

(1.12.5) Proposition. Let P be a finitely presented module over some ring K; the
following three assertions are equivalent:

(a) P is projective;
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(b) Pp is a free Kp-module for all prime ideals p;
(c) Pm is a free Km-module for all maximal ideals m.

Proof. The module P is projective if and only if the mapping Hom(P, M) →
Hom(P, M ′′) is surjective whenever it comes from a surjective mapping M →M ′′.
According to Proposition (1.10.8) there is a canonical isomorphism

(HomK(P, M))p −→ HomKp(Pp, Mp),

and the same when M is replaced with M ′′, or p with m. Since projectiveness and
freedom are equivalent in the case of finitely generated Kp-modules (see (1.12.4)),
the implication (a)⇒(b) follows from the exactness of localization functors, and the
fact that M = Mp when M is already a Kp-module (and the same for M ′′). Then
the implication (b)⇒(c) is trivial, and the implication (c)⇒(a) is a consequence
of (1.11.7). �

At the end of 1.7 it is proved that the canonical mapping M →M∗∗ is an iso-
morphism when M is a finitely generated projective module; the proof starts with
the case of a free module with finite bases. Now there is another proof starting in
the same way but using (1.10.8), (1.11.7) and (1.12.4): indeed for all p ∈ Spec(K)
there are isomorphisms Mp → (Mp)∗∗ ← (M∗∗)p , and consequently all localiza-
tions of the above canonical mapping are bijective.

When M is a finitely generated module over any ring K, and p any prime
ideal of K, Corollary (1.12.3) shows that all minimal families of generators of Mp

have the same length, which is the dimension of Fp ⊗ M = Mp/pMp over the
residue field Fp; this common length is called the rank of M at the prime ideal p
and denoted by rk(p, M). Thus with M is associated a function on Spec(K) with
values in the set of nonnegative integers; it is clear that this function is constant
when M is free.

(1.12.6) Proposition. For all finitely generated modules M and N and for all prime
ideals p of K the following equalities hold:

rk(p, M ⊕N) = rk(p, M) + rk(p, N),
rk(p, M ⊗N) = rk(p, M) rk(p, N);

when M is moreover projective, then HomK(M, N) is also finitely generated and

rk(p, Hom(M, N)) = rk(p, M) rk(p, N).

Proof. Since rk(p, M) is the dimension of Fp ⊗M over the residue field Fp, the
first conclusions follow from the isomorphisms

Fp ⊗K (M ⊕N) ∼= (Fp ⊗K M)⊕ (Fp ⊗K N),
Fp ⊗K (M ⊗K N) ∼= (Fp ⊗K M)⊗Fp (Fp ⊗K N).



1.12. Finitely generated modules 33

When M is a finitely generated projective module, there exists M ′ such that
M ⊕M ′ is free with finite bases, therefore Hom(M ⊕M ′, N) is finitely generated
whenever N is finitely generated, and Hom(M, N) too. Besides, (HomK(M, N))p

is canonically isomorphic to HomKp(Mp, Np) because of (1.10.8); since Mp is free,
it is easy to calculate the rank of HomKp(Mp, Np). �

(1.12.7) Proposition. Let M be a finitely generated module, and p a prime ideal of
K; there exists an open subset U of Spec(K) containing p such that rk(q, M) ≤
rk(p, M) for all q ∈ U . If M is a finitely generated projective module, the function
p �−→ rk(p, M) is locally constant.

Proof. Let us set r = rk(p, M) and let (x1, x2, . . . , xn) be a family of generators of
M . Out of this family we can pick out r elements which give a minimal family of
generators of Mp and we can suppose that they are x1, x2, . . . , xr ; consequently
there exists a family (κi,j) of elements of Kp such that

xj

1
=

r∑
i=1

κi,j
xi

1
for j = r + 1, r + 2, . . . , n;

we can write all the fractions κi,j with a common denominator s (outside p);
consequently there exists a family (λi,j) of elements of K such that the following
equalities hold for a suitable t also lying outside p :

(st)xj =
r∑

i=1

λi,j xi for j = r + 1, r + 2, . . . , n;

if the prime ideal q does not belong to V(Kst), then st is invertible in Kq and
therefore x1, x2, . . . , xr still give a family of generators of Mq (not necessarily
a minimal family); this proves that rk(q, M) ≤ r for all q in the open subset
complementary to V(Kst).

When M is a finitely generated projective module, there exists a finitely
generated projective module M ′ such that M ⊕M ′ is free, of constant rank r + r′

if r and r′ are the ranks of M and M ′ at p. There are also open subsets U and U ′

containing p such that

rk(q, M) ≤ r for all q ∈ U and rk(q, M ′) ≤ r′ for all q ∈ U ′;

since the sum of the ranks of M and M ′ is everywhere equal to r + r′, all this
implies that both ranks remain constant on U ∩ U ′. �

(1.12.8) Corollary. Let us suppose that the rank of the finitely generated projective
module M is not constant and takes different values r1, r2, . . . , rk. There are idem-
potents e1, e2, . . . , ek in K satisfying these properties: first e1 + e2 + · · ·+ ek = 1
and eiej = 0 whenever i �= j; secondly, for each i ∈ {1, 2, . . . , k}, the equality
rk(p, M) = ri holds for all p ∈ V(K(1 − ei)), or equivalently, eiM is a (Kei)-
module of constant rank ri.
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Indeed Spec(K) is a disjoint union of k open subsets Ui such that rk(p, M) = ri

for all p ∈ Ui, and then it suffices to remember (1.11.3). �

The next theorem improves (1.12.5); its proof may be skipped.

(1.12.9) Theorem. For a K-module P the following five assertions are equivalent:

(a) P is a finitely generated projective module;
(b) P is a finitely presented module, and Pm is a free Km-module for each max-

imal ideal m;
(c) P is a finitely generated module, Pp is a free Kp-module for each p ∈ Spec(K),

and the rank function of P is locally constant on Spec(K);
(d) for each maximal ideal m there exists s ∈ K \ m such that Ps is a free Ks-

module of finite rank;
(e) there exists a finite sequence (s1, s2, . . . , sk) generating K as an ideal, such

that Psi is a free Ksi-module of finite rank for i = 1, 2, . . . , k.

Proof. From Propositions (1.12.5) and (1.12.7) we derive (b)⇔(a)⇒(c), and it is
obvious that (d)⇔(e), because for a subset of elements s of K the following three
assertions are equivalent:

– it is contained in no maximal ideal m;
– it generates K as an ideal;
– it contains a finite subset generating K as an ideal.

Therefore it suffices to prove (c)⇒(d) and (e)⇒(a).
Let us prove (c)⇒(d). Let m be a maximal ideal, r the rank of P at m, and

(x1, x2, . . . , xn) a finite family of generators of P such that (x1/1, x2/1, . . . , xr/1)
is a minimal family of generators of Pm. From the proof of (1.12.7) we know that
there exists s′ ∈ K \ m such that (x1/1, x2/1, . . . , xr/1) is a family of generators
of Pq at every prime ideal q not belonging to V(Ks′). The hypothesis (c) implies
the existence of a closed subset V(a) not containing m such that the rank of P
is r at every q not belonging to V(a); let s′′ be any element of a ∩ (K \ m);
we set s = s′s′′. For every prime ideal q not belonging to V(Ks), the image of
(x1, x2, . . . , xr) in Pq is a minimal family of generators, and since Pq is supposed
to be free, it is a basis of Pq (see (1.12.4)). With the ring morphism K −→ Ks is
associated a continuous mapping Spec(Ks) −→ Spec(K); Lemma (1.10.9) shows
that this mapping is injective and that its image is exactly the open subset Us

complementary to V(Ks). Moreover for any K-module M , the localized modules
of the Ks-module Ms can be identified with the localized modules Mq at all points
q ∈ Us. Let N be a free Ks-module with basis (e1, e2, . . . , er), and f the Ks-linear
mapping N −→ Ps such that f(ei) = xi/1 for i = 1, 2, . . . , r; since the image
of (x1, x2, . . . , xr) in Pq is a basis for all q ∈ Us, all the localizations of f are
isomorphisms; consequently f is itself an isomorphism (see (1.11.7)) and Ps is a
free Ks-module.

Let us prove (e)⇒(a). As in Corollary (1.10.6), let us consider the direct
product L of the rings Ksi ; since each Psi is a free Ksi-module, it is easy to prove
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that it is a projective L-module; now L⊗K P is the direct product (or direct sum)
of these Psi ; therefore L ⊗K P is L-projective. Moreover it is finitely generated,
since it is a sum of finitely generated submodules. Because of (1.9.10) P is a finitely
generated projective K-module. �

Invertible modules and Picard groups

A module M is said to be invertible if there exists a module N such that M ⊗N
is isomorphic to K.

(1.12.10) Theorem. A module M is invertible if and only if it is a finitely generated
projective module of constant rank 1. Moreover every isomorphism M ⊗ N → K
induces an isomorphism from N onto M∗ = Hom(M, K).

Proof. Let f be an isomorphism M⊗N → K. There are elements x1, x2, . . . , xn of
M , and elements y1, y2, . . . , yn of N , such that

∑
i f(xi ⊗ yi) = 1. The mapping

x′ �−→
∑

i f(x′, yi)xi is an automorphism of M because the mappings x′ �−→∑
i xi ⊗ yi ⊗ x′ and x⊗ y ⊗ x′ �−→ f(x, y)x′ are reciprocal isomorphisms between

M and M⊗N⊗M , and the mapping x⊗y⊗x′ �−→ x′⊗y⊗x is an automorphism
of M ⊗ N ⊗M . Consequently M is generated by the n elements xi. This set of
generators of M gives a surjective mapping Kn → M and a surjective mapping
Kn⊗N →M⊗N . Since M⊗N is projective, it is isomorphic to a direct summand
of Kn ⊗ N , and therefore M ⊗ N ⊗ M is isomorphic to a direct summand of
Kn ⊗N ⊗M . Now

Kn ⊗N ⊗M ∼= Kn ⊗M ⊗N ∼= Kn and M ⊗N ⊗M ∼= M ;

since M is isomorphic to a direct summand of Kn, it is projective. For the same
reasons N is finitely generated and projective. Since the rank of M ⊗ N is the
product of the ranks of M and N , all these ranks are everywhere equal to 1.

Conversely if M is a finitely generated projective module of constant rank
1, for all prime ideal p we can write (Mp)∗ = (M∗)p because of (1.9.7), and this
allows us to prove by localization the bijectiveness of the mapping M ⊗M∗ → K
defined by x ⊗ h �−→ h(x). Besides, every mapping f : M ⊗ N → K induces a
mapping N →M∗ defined by y �−→ (x �−→ f(x, y)); by localization we can derive
the bijectiveness of N →M∗ from the bijectiveness of f ; indeed when Mp and Np

are respectively generated by x1/1 and y1/1, the bijectiveness of fp means that
f(x1, y1)/1 is invertible in Kp . �

The isomorphy classes of invertible modules constitute a commutative group
with the operation derived from the tensor product; this group is called the Picard
group of K and denoted by Pic(K); its unit element is the isomorphy class of the
module K itself.

The following lemma is sometimes useful when invertible modules are in-
volved; since the localization of tensor products raises no difficulty (see (1.10.5)),
its proof is omitted.
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(1.12.11) Lemma. When at every maximal ideal of K the localization of M is
generated by one element, the equality x⊗ y = y⊗x holds in M ⊗M for all x and
y in M .

Ranks of extensions of modules

(1.12.12) Proposition. Let f : K → L be an extension of a ring as in 1.9, let q
be a prime ideal of L, and p = f−1(q) its image in Spec(K). For every finitely
generated K-module M we can write

rk(q, L⊗M) = rk(p, M).

Proof. Let F = Kp/pKp and G = Lq/qLq be the residue fields; the ring morphism
K → L induces a field morphism F → G. The rank of M at p is the dimension of
F⊗M over F , and the rank of L⊗M is the dimension of G⊗L(L⊗KM) over G. Now

G⊗L (L⊗K M) ∼= (G⊗L L)⊗K M ∼= G⊗K M
∼= (G⊗F F )⊗K M ∼= G⊗F (F ⊗K M);

it suffices to remember that for every finite dimensional vector space V over F ,
the dimension of G⊗F V over G is the dimension of V over F . �

Thus we know the rank of L⊗M at every prime ideal of L when we know the
rank of M at every prime ideal of K. In particular L⊗M is an invertible L-module
whenever M is an invertible K-module, whence a group morphism Pic(K) →
Pic(L) which shows that Pic is a functor from the category Com(Z) to the category
of commutative groups. Conversely does the knowledge of the ranks of L⊗M lead
to the knowledge of the ranks of M? The answer is positive when the extension
K → L is faithfully flat, because of the following lemma.

(1.12.13) Lemma. When f : K → L is a flat extension of K, these three assertions
are equivalent:

(a) L is a faithfully flat K-algebra;
(b) for every prime ideal p of K there exists a prime ideal q of L such that

p = f−1(q);
(c) for every maximal ideal m of K there exists a maximal ideal n of L such that

m = f−1(n).

Proof. First we prove (a)⇒(b). We consider the ring Lp = Kp⊗L and the diagram

f : K −→ L
↓ ↓

fp : Kp −→ Lp
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When L is a faithfully flat extension of K, then Lp is a faithfully flat extension
of Kp (see 1.9); consequently from the strict inclusion pKp �= Kp we can deduce
pLp �= Lp since

Lp/pLp
∼= (Kp/pKp)⊗Kp Lp �= 0.

Consequently there is a maximal ideal n′ in Lp that contains pLp. Let q be the
image of n′ by the mapping Spec(Lp) → Spec(L); thus f−1(q) is the image of
f−1

p (n′) by the mapping Spec(Kp) → Spec(K). Obviously f−1
p (n′) contains pKp,

and since this is the maximal ideal of Kp, we get f−1
p (n′) = pKp . At last it is well

known that the mapping Spec(Kp)→ Spec(K) maps pKp to p.
The implication (b)⇒(c) is easy, and it remains to prove (c)⇒(a). When (c)

is true, then mL �= L for all maximal ideals m of K; consequently aL �= L for
every ideal a other than K itself. Let M be a K-module containing a nonzero
element z ; thus the submodule Kz is isomorphic to K/a where a is the ideal of
all λ ∈ K such that λz = 0 ; since L is flat, L ⊗ (Kz) is a submodule of L ⊗M ;
therefore to prove L ⊗M �= 0, it suffices to prove L ⊗ (K/a) �= 0; this is clear,
since (K/a)⊗ L = L/aL . �

Now let M be a finitely generated L-module, therefore also a K-module
because of the extension f : K → L. We suppose that p = f−1(q) as in (1.12.12),
and that L is a finitely generated K-module. The following formula is suggested
by a statement that is well known when K and L are fields:

rk(p, M) = rk(q, M) rk(p, L);

unfortunately the example (1.12.14) just beneath shows that it is not always true;
in (1.ex.22) it proves to be true when M is a finitely generated projective L-module
of constant rank.

(1.12.14) Example. Let K be a field, and f the ring morphism λ �−→ (λ, λ) from K
into L = K×K. Any couple (r, s) of nonnegative integers determines a projective
module M = Kr ×Ks over L ; you must understand that (λ, µ)(x, y) = (λx, µy)
for all x ∈ Kr and y ∈ Ks. Obviously L and M have dimension (or constant
rank) 2 and r + s over K. Now Spec(L) contains two prime ideals, q = 0×K and
q′ = K × 0 ; we can identify Lq with K × 0, Mq with Kr × 0, Lq′ with 0×K and
Mq′ with 0×Ks ; thus the ranks of M at q and q′ are r and s. In the present case
the above formula would give the two equalities r + s = 2r = 2s ; they are only
true when r = s, in other words, when M has constant rank.

1.13 Some applications

Some properties which are not local properties (see 1.11) can nevertheless be tested
with localizations provided that some suitable hypotheses are fulfilled. Remember
that a submodule N of M is called a direct summand if it admits a supplemen-
tary submodule; the next lemma shows that this property can be tested with
localizations under suitable hypotheses.



38 Chapter 1. Algebraic Preliminaries

(1.13.1) Lemma. When N is a submodule of M , and both M and N are finitely
presented, these assertions are equivalent:

(a) N is a direct summand of M ;
(b) the natural mapping Hom(M, N)→ Hom(N, N) is surjective;
(c) Np is a direct summand of Mp for every prime ideal p;
(d) Nm is a direct summand of Mm for every maximal ideal m.

Proof. When N is a direct summand, it is clear that the injection u : N −→ M
induces a surjection Hom(M, N) → Hom(N, N). Conversely when this mapping
Hom(u, N) is surjective, there exists v ∈ Hom(M, N) such that v ◦ u = idN and
consequently N is a direct summand of M . Thus the equivalence (a)⇔(b) is true
without any assumption on M or N . This mapping Hom(u, N) is surjective if and
only if its localizations are surjective. Since M and N are finitely presented, the
canonical mappings

HomK(M, N)p −→ HomKp(Mp, Np) and HomK(N, N)p −→ HomKp(Np, Np)

are isomorphisms (see (1.9.9)). Consequently the surjectiveness of the localized
mapping Hom(u, N)p means that Np is a direct summand of Mp. �

(1.13.2) Corollary. If the K-algebra A is a finitely generated projective K-module,
the image K1A of the canonical morphism K → A is a direct summand of A.

Proof. We can suppose A �= 0. When K is a local ring with maximal ideal m, then
1A cannot belong to mA because of Nakayama’s lemma; consequently there is a
basis of A/mA containing the image of 1A, and there is a basis of A containing 1A;
this settles this particular case. In the general case, there is an idempotent e ∈ K
such that Ap �= 0 if and only if p ∈ V(K(1− e)) (see (1.12.8)); by localization we
realize that the canonical morphism K → A induces an isomorphism Ke → K1A.
Consequently K1A is projective and the conclusion follows from (1.13.1). �

The module M is said to be faithful if every equality λM = 0 with λ ∈ K
implies λ = 0. This property can also be tested by localization under suitable
hypotheses.

(1.13.3) Lemma. When M is a finitely generated module, these three assertions
are equivalent:

(a) M is a faithful module;
(b) Mp a is faithful Kp-module for every prime ideal p;
(c) Mm is a faithful Km-module for every maximal ideal m.

When M is a finitely generated projective module, they are still equivalent to these
two assertions:

(d) rk(p, M) �= 0 for every prime ideal p;
(e) rk(m, M) �= 0 for every maximal ideal m.
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Proof. If λM = 0 and λ �= 0, there is a localization Km in which λ/1 �= 0 (see
(1.11.4)) and thus Mm is not a faithful Km-module. Consequently (c)⇒(a), and of
course (b)⇒(c). Now let λ/s be an element of Kp that annihilates Mp; this means
that λMp = 0, and if (x1, x2, . . . , xn) is a family of generators of M , this implies
tiλxi = 0 for i = 1, 2, . . . , n and for some ti outside p; it follows that tλM = 0 if
t = t1t2 · · · tn. If M is faithful, we conclude that tλ = 0, whence λ/s = 0. This
proves (a)⇒(b).

When M is finitely generated and projective, all its localizations are free
modules of finite rank; such a module is faithful if and only if its rank is not equal
to 0. �

In (1.13.3) the assertions (d) and (e) mean that under somewhat stronger
hypotheses the faithfulness of M can be tested with extensions K → Kp/pKp to
residue fields; indeed the nonvanishing of rk(p, M) is equivalent to the faithfulness
of the vector space Mp/pMp the dimension of which it is. There are other properties
that can be tested with extensions to residue fields. The next two lemmas show that
the surjectiveness or the bijectiveness of a linear mapping can be tested in this way;
for the sake of briefness only extensions K → K/m have been mentioned. After
these positive statements the example (1.13.6) shows that in general injectiveness
cannot be tested in this way.

(1.13.4) Lemma. If the target of f : M → N is finitely generated, these assertions
are equivalent:

(a) f is surjective;
(b) f induces a surjective mapping M/mM → N/mN for every maximal ideal m

of K.

Proof. The surjectiveness of f is equivalent to the surjectiveness of all localized
mappings fm (see (1.11.7)). Now N/mN is the same thing as Nm/mNm, and be-
cause of (1.12.2) a submodule of Nm (for instance Im(fm)) is equal to Nm if and
only if it is mapped onto Nm/mNm by the quotient mapping. Therefore all fm are
surjective if and only if the assertion (b) is true. �

(1.13.5) Lemma. Let f : M → N be a linear mapping between finitely generated
modules; N is even assumed to be projective. The following three assertions are
equivalent:

(a) f is bijective;
(b) f induces a bijective mapping M/mM → N/mN for every maximal ideal m

of K;
(c) f is surjective, and M and N have the same rank at every maximal ideal.

Proof. It is clear that (a)⇒(b)⇒(c). When the assertion (c) is true, the exact
sequence 0 → Ker(f) → M → N → 0 splits and M is isomorphic to N ⊕ Ker(f);
since M and N everywhere have the same rank, we conclude that Ker(f) = 0. �
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(1.13.6) Example. Let F be a field and K = F [[t]] the ring of formal series; it is
a local ring and its maximal ideal m is the ideal generated by the indeterminate
t; the residue field K/m can be identified with F . The multiplication by t is an
injective mapping K → K; but after the extension K → F it gives the null
morphism F → F . On the contrary, for every integer k ≥ 1, the quotient mapping
K → K/mk is not injective, but after the extension K → F it gives the injective
mapping idF .

Standard involutions of algebras of constant rank 2

The remainder of this section is devoted to involutions of algebras, which some
authors rather call anti-involutions, since they reserve the name “involution” for
what is here called an involutive automorphism.

(1.13.7) Definitions. An involution of an algebra A is an involutive linear mapping
ϕ : A → A such that ϕ(1A) = 1A and ϕ(xy) = ϕ(y)ϕ(x) for all x, y ∈ A. When
the canonical morphism K → A is injective and its image K1A is identified with
K, an involution ϕ of A is called a standard involution if xϕ(x) belongs to K for all
x ∈ A; then xϕ(x) is called the norm of x, often denoted byN (x), whereas x+ϕ(x)
(that is equal to N (x + 1)−N (x)− 1 ) is called its trace, often denoted by tr(x).

The injectiveness of K → A is equivalent to the faithfulness of the module
A. When ϕ is a standard involution, every x ∈ A commutes with ϕ(x) since it
commutes with x + ϕ(x) ∈ K. Easy calculations show that these equalities hold
for all x, y ∈ A :

N (xy) = N (x)N (y) and x2 = tr(x)x −N (x).

Besides, the equality ϕ(x) = tr(x) − x shows that ϕ leaves invariant every subal-
gebra, and induces a standard involution on it by restriction.

(1.13.8) Lemma. We suppose that the algebra A is a faithful and finitely gener-
ated projective module, and that ϕ is an anti-automorphism of A such that xϕ(x)
belongs to K for all x ∈ A. Then ϕ is involutive, it is the only standard invo-
lution of A, and consequently commutes with all automorphisms and anti-auto-
morphisms of A.

Proof. Since all these properties can be tested by localization, we can suppose
that K is a local ring with maximal ideal m. As in the proof of (1.13.2), there is
a basis (1, e1, e2, . . . , en) of A containing 1. From the hypotheses we deduce that
x + ϕ(x) is an element λ of K such that x2 − λx belongs to K; indeed

x + ϕ(x) = (x + 1)ϕ(x + 1)− xϕ(x) − 1 and x2 − (x + ϕ(x))x = −xϕ(x).

This determines ϕ(x) in a unique way when x = ej for j = 1, 2, . . . , n. And since
ϕ(1) = 1, we have proved the unicity of the anti-automorphism ϕ such that xϕ(x)
always belongs to K.
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Now xϕ−1(x) also belongs to K because it is equal to ϕ−1(xϕ(x)); conse-
quently ϕ−1 = ϕ, and ϕ is involutive. At last, if ψ is an automorphism (resp. anti-
automorphism) of A, then ψϕψ−1 is still an anti-automorphism, and xψϕψ−1(x)
always belongs to K because it is equal to ψ(yϕ(y)) if y = ψ−1(x) (resp. y =
ϕψ−1(x)); therefore ψϕψ−1 = ϕ . �

Let us suppose that the algebra A is a free module of rank 2, and contains an
element z such that (1, z) is a basis of A. Then there are β and γ in K such that
z2 = βz − γ, and the algebra morphism K[Z] → A that maps the indeterminate
Z to z determines an isomorphism from the quotient K[Z]/(Z2−βZ +γ) onto A,
since its image is A, and its kernel the ideal generated by Z2−βZ +γ. This proves
that A is a commutative algebra; according to a general definition later stated in
3.4, A is called a quadratic extension if the discriminant β2−4γ of the polynomial
Z2 − βZ + γ is invertible in K.

Since the polynomial (β−Z)2−β(β−Z)+γ is equal to Z2−βZ +γ, there is
an automorphism ϕ of A that maps z to β− z. Since z +ϕ(z) = β and zϕ(z) = γ,
it is easy to verify that xϕ(x) belongs to K for all x ∈ A; consequently ϕ is a
standard involution.

Later in 3.4 it is important to know that a standard involution still exists
when A is merely projective of constant rank 2. An elementary proof of this capital
fact must be provided here; but hurried readers are advised to skip it; it begins
with a preliminary lemma.

(1.13.9) Lemma. Let (s1, s2, . . . , sn) be a sequence of elements of K that generates
it as an ideal, and L =

∏
i Ksi the resulting Zariski extension of K. The canonical

morphism K → L is injective, and an element (λ1, λ2, . . . , λn) of L belongs to the
image of K if and only if for every pair of indices (i, j) the image of λi by the
canonical morphism Ksi → Ksisj is equal to the image of λj by the analogous
morphism Ksj → Ksisj .

Proof. It is clear that the morphism K → L is injective and that every ele-
ment in its image satisfies the announced property. Conversely let us assume that
(λ1, . . . , λn) satisfies this property. There is an exponent m ≥ 0 and there are
elements κ1, . . . , κn ∈ K such that λi = κi/sm

i for i = 1, 2, . . . , n. Since κi/sm
i

and κj/sm
j have the same image in Ksisj , we can write (sisj)r(sm

i κj − sm
j κi) = 0

for some exponent r, and we can still assume that r is suitable for all pairs (i, j).
Since s1, . . . , sn generate K as an ideal, we can write

∑
i siµi = 1 for suitable

coefficients µi ∈ K, and if p is any exponent greater than (m + r − 1)n, from
(
∑

i siµi)p = 1 we deduce that
∑

i sm+r
i νi = 1 for some coefficients νi ∈ K. Now

let us set κ =
∑

i sr
i κiνi , and let us prove that every fraction κj/sm

j is the image
of κ in Ksj ; it suffices to verify that sr

j(s
m
j κ− κj) = 0. As a matter of fact,

sr
j(s

m
j κ− κj) =

∑
i
(sisj)rsm

j κiνi − sr
jκj =

∑
i
(sisj)rsm

i κjνi − sr
jκj

= sr
jκj(

∑
i
sm+r

i νi − 1) = 0. �
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(1.13.10) Theorem. If the algebra A is a projective module of constant rank 2, then
A is a commutative algebra that admits a standard involution.

Proof. Because of (1.12.9) and (1.13.2) there are elements s1, s1, . . . , sn of K,
generating K as an ideal, such that each module of fractions Asi is a free module
of rank 2, with a basis containing the unit element; therefore each algebra Asi

is commutative and admits a standard involution ϕi . Therefore the algebra B =∏
i Asi (which is a free module over the Zariski extension L defined as in (1.13.9))

is also commutative and admits a standard involution ψ = (ϕ1, ϕ2, . . . , ϕn). Since
the denominators si generate K as an ideal, the natural algebra morphism A → B
is also injective, and consequently A too is a commutative algebra. Besides, if we
prove that ψ(z) belongs to the image of A whenever z is an element of B in the
image of A, then we can claim that ψ induces a standard involution ϕ on A. Since
z+ψ(z) belongs to L, it suffices to prove that it belongs to the image of K in L, and
thus we are led to the previous lemma (1.13.9). By the extension Ksi → Ksisj the
standard involution ϕi induces a standard involution ϕi,j of Asisj ; and similarly
ϕj induces a standard involution ϕj,i of Asisj . According to (1.13.9) we must prove
that y + ϕi,j(y) and y + ϕj,i(y) are the same element of Ksisj whenever y is an
element of Asisj in the image of A. This follows from the fact that Asisj admits
at most one standard involution (see (1.13.8)), and that ϕi,j and ϕj,i must be
equal. �

Exercises

Warning: when diagrams are given, they are silently assumed to be “commuta-
tive”; if there are several paths from some module to another one, they give the
same morphism.

(1.ex.1) Let N be a submodule of M , and S(M) ∨N the ideal generated by N
in the symmetric algebra of M ; prove that there is an exact sequence of modules

0 −→ S(M) ∨N −→ S(M) −→ S(M/N) −→ 0.

Hint. Define reciprocal algebra morphisms between S(M/N) and the quotient of
S(M) by S(M) ∨N .

(1.ex.2) Let M and N be vector spaces over the field of complex numbers C =
R ⊕ Ri with i =

√
−1. With N is associated a conjugate space N c which, as a

vector space over R, is isomorphic to N through a canonical bijection y �−→ yc,
and which becomes a vector space over C according to the formula λyc = (λ̄y)c

(where λ̄ means the conjugate complex number). The extension R → C determines
two R-linear mappings from M ⊗R N respectively onto M ⊗C N and M ⊗C N c.
Prove the bijectiveness of the resulting mapping

M ⊗R N −→ (M ⊗C N)⊕ (M ⊗C N c), x⊗R y �−→ (x⊗C y, x⊗C yc).
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(1.ex.3) Let M and N be modules over K2 = K ×K. The ring K2 is provided
with a “swap automorphism” σ such that σ(λ, µ) = (µ, λ), and with N is asso-
ciated a conjugate module N c which, as an additive group, is isomorphic to N
through a canonical bijection y �−→ yc, and which becomes a K2-module accord-
ing to the formula (λ, µ)yc = ((µ, λ)y)c. We define a ring morphism K → K2 and
two ring morphisms K2 → K in this way:

ϕ(λ) = (λ, λ), �(λ, µ) = λ and �′(λ, µ) = µ;

these ring morphisms allow us to define a canonical morphism M⊗KN →M⊗K2N
and two canonical morphisms M⊗K2 N →M⊗K N ; and since ϕ = σϕ, we also get
a morphism M ⊗K N →M ⊗K2 N c and two morphisms M ⊗K2 N c →M ⊗K N .
From these six morphisms derive canonical isomorphisms

M ⊗K N ←→ (M ⊗K2 N)⊕ (M ⊗K2 N c).

(1.ex.4) Prove that the following additive groups are not isomorphic:

Q⊗Z

∏
n∈N

(Z/nZ) and
∏
n∈N

(Q⊗Z (Z/nZ)).

Hint.
∏

n∈N(Z/nZ) contains a subgroup isomorphic to Z, and Q is flat.

(1.ex.5) Prove that the following additive groups are not isomorphic:

Q⊗Z HomZ(Q, Q/Z) and HomQ(Q⊗Z Q, Q⊗Z (Q/Z)).

(1.ex.6)* When a linear mapping f : M −→ N is injective, it is not always true
that f ⊗ f is injective, even when M is a free module; here is a counter-example.
Let K be the quotient of the ring of polynomials Z[X, Y, Z, X ′, Y ′, Z ′] by the ideal
generated by all monomials of degree 3, all monomials of degree 2 in (X, Y ), all
monomials of degree 2 in (X ′, Y ′, Z ′), and also XX ′, Y X ′, Y Y ′, XZ ′ − ZX ′ and
Y Z ′ − ZY ′; let us write x, y, z, x′, y′, z′ for the images of the six indeterminates
in K; thus K is a free Z-module with basis

(1, x, y, z, x′, y′, z′, xz, yz, z2, xy′, zx′, zy′, zz′)

and moreover xz′ = zx′ and yz′ = zy′. Let N be the quotient of K3 by the K-
submodule generated by (x, y, z), and (e1, e2, e3) the image in N of the canonical
basis of K3 (whence xe1 +ye2 +ze3 = 0). Let f : K2 −→ N be the linear mapping
(λ, µ) �−→ λe1 + µe2.
(a) Prove that f is injective.
(b) Prove that f ⊗ f : K2 ⊗K2 −→ N ⊗N is not injective, because

(xe1+ye2+ze3)⊗(x′e1+y′e2+z′e3)−(x′e1+y′e2+z′e3)⊗(xe1+ye2+ze3) = 0.

For more information about tensor powers or exterior powers of injective mappings,
see [Flanders 1967].
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(1.ex.7) In the following diagram f is surjective, and h injective:

M −→ N −→ P
|f |g |h
↓ ↓ ↓
M ′ −→ N ′ −→ P ′

(a) When the first line is exact and g is surjective, then the second line is also
exact.

(b) When the second line is exact and g is injective, then the first line is also
exact.

(1.ex.8) In the following diagram both lines are exact, f is surjective, and j
injective:

M −→ N −→ P −→ Q
|f |g |h |j
↓ ↓ ↓ ↓
M ′ −→ N ′ −→ P ′ −→ Q′

(a) When g is injective, then h too is injective.
(b) When h is surjective, then g too is surjective.

(1.ex.9) Derive an exact sequence 0 → Ker(f) → Ker(g) → Ker(h) from the
following diagram in which both lines are exact:

0 −→ M −→ N −→ P
|f |g |h
↓ ↓ ↓

0 −→ M ′ −→ N ′ −→ P ′

Derive an exact sequence Coker(f) → Coker(g) → Coker(h) → 0 from the
following diagram in which both lines are exact:

M −→ N −→ P −→ 0
|f |g |h
↓ ↓ ↓
M ′ −→ N ′ −→ P ′ −→ 0

(1.ex.10) Each of the following two diagrams contains an exact line with 3 arrows,
and two exact columns with 2 or 3 arrows:

0 0 P
↓ ↓ ↓

0 → P ′ → P → P ′′ Q′ → Q
↓ ↓ ↓ ↓
Q → Q′′ R′ → R → R′′ → 0
↓ ↓ ↓
R 0 0

From the first diagram derive an exact sequence 0→ P ′ → Q → Q′′ ×R.
From the second diagram derive an exact sequence P ⊕Q′ → Q → R′′ → 0.
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Now let F be a twice covariant functor from the categoryMod(K)×Mod(K)
to Mod(K). First we assume that F is left exact in both variables; prove that two
exact sequences 0 → M ′ → M → M ′′ and 0 → N ′ → N → N ′′ give an exact
sequence

0 −→ F(M ′, N ′) −→ F(M, N) −→ F(M ′′, N)×F(M, N ′′).

Then we assume that F is right exact in both variables. Prove that two exact
sequences M ′ →M →M ′′ → 0 and N ′ → N → N ′′ → 0 give an exact sequence

F(M ′, N)⊕F(M, N ′) −→ F(M, N) −→ F(M ′′, N ′′) −→ 0.

Comment. This proves the exactness of the sequence (1.6.3).

(1.ex.11) Let e be an idempotent of K other than 0 or 1, and let M be a K-
module. Prove that M is projective if and only if eM is a projective (Ke)-module,
and (1 − e)M a projective (K(1 − e))-module. Which conditions must fulfil eM
and (1− e)M for M to be a free module?

(1.ex.12) Let P be a finitely generated projective module, and P ′ a module such
that P ⊕ P ′ is free; prove that P ′ contains a submodule P ′′ such that P ⊕ P ′′ is
free with finite bases.

(1.ex.13) Let M be a finitely generated module, N a finitely presented module,
and f : M → N a surjective morphism; prove that Ker(f) is finitely generated.

(1.ex.14) If M ⊗N is a free module of finite nonzero rank r, then both M and
N are faithful and finitely generated projective modules.
Hint. Remember the beginning of the proof of (1.12.10), and prove that M r is
isomorphic to a direct summand of some free module Knr.
Comment. Conversely, when M is a faithful and finitely generated projective mod-
ule, there exists N such that M ⊗N is a free module of finite nonzero rank, but
the proof of this statement is much more difficult.

(1.ex.15) Let f : K → L be a ring morphism, and a an ideal of K. Prove that
the ring L⊗K (K/a) is isomorphic to L/f(a)L. Prove that f(a)L �= L if and only
if there exists a prime ideal q of L such that a ⊂ f−1(q).

Rings of fractions, localizations

(1.ex.16) Let M and N be K-modules, and S a multiplicative subset of K; prove
the bijectiveness of the following three canonical morphisms of (S−1K)-modules:

S−1(M ⊗K N) −→ S−1M ⊗K N −→ S−1M ⊗K S−1N −→ S−1M ⊗S−1K S−1N.
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(1.ex.17)

(a) Let M be a finitely generated K-module. Assume that M/mM = 0 (or
equivalently Mm/mMm = 0 ) for all maximal ideals m of K; prove that M = 0.

(b) Calculate Np/pNp for every prime ideal p when K = Z and N = Q or
N = Q/Z.

(c) Let K be an integral domain that is not a field, and L its field of fractions.
Prove that L/mL = 0 for all maximal ideals m of K, and conclude that L is
not a finitely generated K-module.

(1.ex.18) Let a be an ideal of K.
(a) Prove that rk(p, K/a) is equal to 1 or 0 according as p contains a or not.
(b) The radical r of a is the set of all λ ∈ K such that λk belongs to a for some k

(depending on λ); deduce from (1.10.2) that r is the intersection of all prime
ideals containing a, and consequently K/a and K/r have the same rank at
every p.

(c) Prove that K/a is a projective K-module if and only if a = Ke for some
idempotent e ∈ K.

(1.ex.19) Prove that the following five assertions are equivalent when M is a
finitely generated K-module:

all localizations Mp at all prime ideals are generated by one element;
all localizations Mm at all maximal ideals are generated by one element;
the natural morphism T(M) → S(M) is bijective;
the tensor algebra T(M) is a commutative algebra;
x⊗ y = y ⊗ x in M ⊗M for all x, y ∈M .

(1.ex.20)

(a) Let Reg(K) be the subset of all nonzero elements of K that are not divisors
of zero; prove that Reg(K) is a multiplicative subset of K, and that it is the
largest multiplicative subset S such that the canonical morphism K → S−1K
is injective; the corresponding ring Reg(K)−1K is called the total ring of
fractions of K and denoted by Fr(K).

(b) Now we suppose that p and q are prime ideals of K, and that neither contains
the other; we denote the canonical morphisms from K onto the quotients
K/p, K/q and K/(p ∩ q) by f , g and h. Prove that Reg(K/(p ∩ q)) and
h(p ∪ q) are complementary subsets in K/(p ∩ q). This allows you to define
a canonical morphism Fr(K/(p∩ q)) −→ Fr(K/p)×Fr(K/q); prove that it is
an isomorphism.
Hint. Choose a in p \ (p ∩ q) and b in q \ (p ∩ q), and observe that every
fraction f(x)/f(s) in Fr(K/p) is the image of h(bx)/h(a + bs).

(c)* Generalize the previous result to a finite family of prime ideals p1, p2, . . . , pn

of K, such that no one contains another one.
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Hint. An ideal that is contained in none of the prime ideals p1, p2, . . . , pn, is
not contained in their union; this classical proposition is proved by induction
on n; consequently, for j = 1, 2, . . . , n, there exists an aj that belongs to pj

but not to pi when i �= j.

(1.ex.21) Let P be a K-module; prove that P is a finitely generated projective
module of constant rank if and only if there exists a faithfully flat extension K → L
such that L⊗ P is a free L-module of finite rank.
Hint. If P is a finitely generated projective module, consider the sequence (s1, . . . ,
sk) mentioned in (1.12.9)(e) and the Zariski extension mentioned in (1.10.6). For
the converse argument remember (1.9.10), (1.12.12), (1.12.13).

(1.ex.22) Let f : K → L be a ring extension in which L is a finitely generated
K-module, and let P be a finitely generated projective L-module of constant rank
n. Prove that for every prime ideal p in the image of Spec(L) → Spec(K), the
rank of P at p is n rk(p, L).
Hint. According to (1.ex.21) there is a faithfully flat extension L → L′ such that
L′ ⊗L P is free over L′.

Projective modules of constant rank 1

(1.ex.23) Let K be the ring of all continuous (resp. derivable, resp. infinitely
derivable. . . ) functions f : R → R such that f(t+1) = f(t) for all t ∈ R, and let M
be the set of all continuous (resp. derivable, resp. infinitely derivable. . . ) functions
u : R → R such that u(t + 1) = −u(t) for all t ∈ R. Thus M is a K-module
containing the functions r and s defined by r(t) = cos(πt) and s(t) = sin(πt).
Prove that the mapping K2 → M2 defined by (f, g) �−→ (fr + gs, gr − fs) is an
isomorphism of K-modules. Then prove that M is a projective module of constant
rank 1 generated by r and s, but that it is not free.

Prove that the mapping u⊗ v �−→ uv determines an isomorphism M ⊗M →
K. (Hint: (1.13.5)).
Comment. With each a ∈ R is associated the maximal ideal ma consisting of all
f ∈ K such that f(a) = 0; a classical argument, based on the compactness of the
segment [0, 1], proves that every prime ideal of K is an ideal ma.

(1.ex.24) Let F be a field of characteristic �= 2, and K the quotient of F [X, Y ]
by the ideal generated by X2 + Y 2 − 1 ; this is a prime ideal; the images of the
indeterminates X and Y in K are denoted by x and y (whence x2 + y2 = 1). Let
a be the ideal of K generated by 1 + x and y.
(a) Prove that a2 is the principal ideal generated by 1 + x.
(b) Prove that the mapping (f, g) �−→ ((1 + x)f + yg, (1 + x)g − yf)) is an

isomorphism from K ⊕K onto a ⊕ a. Therefore a is a projective module of
constant rank 1.

(c) Prove that a⊗ a is isomorphic to K.
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Hint. Deduce from (1.13.5) the bijectiveness of the natural mapping
a⊗ a→ a2.

(d) First suppose that F contains a square root i of −1. Prove that a is the
principal ideal generated by 1 + x + iy. Therefore it is a free module.
Prove that every invertible element of K is equal to λ(x + iy)k for some
λ ∈ F× and some k ∈ Z.

(e) Then suppose that F contains no square root of −1. Prove that a is not a
free module.
Hint. If a were generated by an element f , in the algebra K[i] = K ⊕Ki the
equality f = λ(x + iy)k(1 + x + iy) should be true for some λ ∈ F [i]× and
some k ∈ Z.
Comment. It has been proved that the group Pic(K) has order 1 or 2 accord-
ing as K contains a square root of −1 or not.

(1.ex.25) Let S be a multiplicative subset of K that contains no divisors of
zero; thus K can be identified with a subring of S−1K. When M and N are K-
submodules of S−1K, the notation MN means the K-submodule generated by all
products xy with x ∈ M and y ∈ N . Observe that S−1M can be identified with
(S−1K)M .
(a) A K-submodule M of S−1K is said to be nondegenerate if S−1M = S−1K.

Prove that M is nondegenerate if and only if M ∩ S is not empty.
(b) A K-submodule M of S−1K is said to be invertible if there exists a K-

submodule N of S−1K such that MN = K. Prove that the equality MN =
K implies that M is nondegenerate, and that N is equal to (K : M), that is
the subset of all y ∈ S−1K such that yM ⊂ K.

(c)* Prove that every invertible K-submodule M of S−1K is a finitely generated
projective K-module of constant rank 1. Consequently the equality MN = K
implies that the natural morphism M ⊗N −→MN is an isomorphism.
Hint. If MN = K, there exist a1, . . . , an ∈ M and b1, . . . , bn ∈ N such that∑

i aibi = 1 ; this allows you to construct two morphisms M → Kn and
Kn →M giving idM by composition; consequently M is a finitely generated
projective module. Now let p be a prime ideal of K, r the rank of M at p,
and ST the set of all products st with s ∈ S and t ∈ T = K \ p; prove that
(ST )−1K �= 0, and that (ST )−1M is a free module of rank r over (ST )−1K;
then remember that S−1M = S−1K.
More information on this topic in [Bourbaki 1961, Algèbre commutative,
Chap. 2, §5].

(1.ex.26)* Let F be a field in which 2 is invertible, and K the subring of F [t]
containing all polynomials f such that f ′(0) = 0 (in other words, f(t) = a0 +
a2t

2 + a3t
3 + · · · ).

(a) Prove that K and F [t] have the same field of fractions F (t).
(b) With every a ∈ F we associate the ideal M(a) generated by t2 − a2 and

t3 − a3 in K; prove that M(a) is a maximal ideal.
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(c) Prove that M(a)M(−a) is the principal ideal (t2 − a2)K when a �= 0. Then,
with the help of (1.ex.25), prove that M(a) is a projective K-module of
constant rank 1 when a �= 0.
Comment. From the surjective algebra morphism F [X, Y ]→ K that maps X
to t2 and Y to t3, it is possible to deduce that K is isomorphic to the quotient
of F [X, Y ] by the principal and prime ideal generated by Y 2−X3; when F is
algebraically closed, we are in the situation described in (1.11.2): indeed K is
then the ring of regular functions on the curve defined in K2 by the equation
y2 − x3 = 0, the ideals M(a) are all the prime ideals other than 0, and they
are in bijection with the points (a2, a3) of this curve. This allows us to study
M(a) without using (1.ex.25). The ideal M(0) is exceptional because (0, 0)
is a singular point on this curve (see (e) beneath).

(d) Prove that M(a) is not a free module when a �= 0.
(e) Verify that rk(M(0), M(0)) = 2, whereas rk(M(a), M(b)) = 1 whenever a �=

b. Conclude that M(0) is not a projective K-module.

Direct limits and projective limits

(1.ex.27)* Let J be an ordered set, and D the set of all (i, j) ∈ J × J such
that i ≤ j. A family of modules and morphisms over (J, D) is a family

(
(Mj)j∈J ,

(fj,i)(i,j)∈D

)
consisting of modules Mj and linear mappings fj,i : Mi →Mj satis-

fying these two conditions: fj,j is the identity of Mj for all j ∈ J , and fk,jfj,i = fk,i

whenever (i, j) and (j, k) are in D; this family (Mj, fj,i) is denoted by (Mj) when
there is no ambiguity. A morphism from (Mj , fj,i) to (Nj , gj,i) is a family of linear
mappings uj : Mj → Nj such that gj,iui = ujfj,i whenever (i, j) ∈ D. Obviously
a category (depending on J , D and the basic ring K) has been defined. From each
module P is derived a constant family (P ) in which all modules are equal to P
and all mappings to idP ; a morphism between two constant families (P ) and (Q)
is the same thing as a linear mapping P → Q.

From the previous family (Mj) we derive two modules lim←−(Mj) and lim−→(Mj).

The former is the submodule of all (xj) ∈
∏

j Mj such that fj,i(xi) = xj for all
(i, j) ∈ D. The latter is the quotient of

⊕
j Mj by the submodule generated by

all elements x − y defined in this way for all (i, k) ∈ D : x is the natural image
in

⊕
j Mj of some xi ∈ Mi and y is the natural image of fk,i(xi). If (J, D) sat-

isfies some condition stated beneath in (1.ex.29) (resp. (1.ex.28)), lim←−(Mj) (resp.

lim−→(Mj)) is called the projective limit (resp. the direct limit) of the family (Mj). If

the order on J is the equality (in other words, if D is the diagonal of J×J), we get
again the direct product and the direct sum of the family (Mj). Of course all these
definitions also work when D is replaced with the subset D∗ of all (i, j) ∈ J × J
such that i ≥ j. Here and in the following exercises we use these abbreviated
notations:

Mα = lim←−(Mj) and Mω = lim−→(Mj).
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(a) For every j ∈ J construct canonical morphisms fj,α : Mα → Mj and fω,j :
Mj →Mω in such a way that these universal properties are true:

the family (fj,α) is a morphism from the constant family (Mα) to the
given family (Mj), and if (vj) is another morphism from a constant
family (P ) to (Mj), there is a unique morphism v : P → Mα such that
vj = fj,αv for all j ∈ J ;
in a dual way the family (fω,j) is a morphism from (Mj) to the constant
family (Mω), and if (vj) is another morphism from (Mj) to a constant
family (P ), there is a unique morphism v : Mω → P such that vj = vfω,j

for all j ∈ J .
(b) Prove that every morphism (uj) : (Mj) −→ (Nj) induces two linear mappings

uα : Mα → Nα and uω : Mω → Nω, so as to define two functors lim←− and lim−→.

(c) A sequence of morphisms between families over (J, D) is said to be exact if
for every j ∈ J it gives an ordinary exact sequence of modules. Suppose that
the sequences

(0) −→ (M ′
j) −→ (Mj) −→ (M ′′

j ) and (N ′
j) −→ (Nj) −→ (N ′′

j ) −→ (0)

are exact; prove the exactness of the sequences

0 −→M ′
α −→Mα −→M ′′

α and N ′
ω −→ Nω −→ N ′′

ω −→ 0.

Hint. See (1.ex.9). Indeed Mα is the kernel of some morphism from∏
j Mj into

∏
(i,j)∈D Mj whereas Mω is the cokernel of some morphism from⊕

(j,k)∈D Mj into
⊕

j Mj.

(d) Deduce from (a) that there are canonical isomorphisms

Hom(P, lim←−(Mj)) ←→ lim←−(Hom(P, Mj)),

Hom(lim−→(Mj), P ) ←→ lim←−(Hom(Mj , P ));

because of the contravariance of the functor Hom(. . . , P ), the modules
Hom(Mj , P ) constitute a family over (J, D∗). Prove that there are also canon-
ical isomorphisms

lim−→(P ⊗Mj) ←→ P ⊗ lim−→(Mj).

(1.ex.28)* The notations are those of Exercise (1.ex.27). We suppose that for all
(i, j) ∈ J × J there exists k ∈ J such that (i, k) and (j, k) are in D; in this case
the functor lim−→ is called direct limit (or inductive limit); you may understand it as

a limit when j becomes greater and greater. Prove that this assumption on (J, D)
brings the following five improvements (from (a) to (e)).
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(a) Every x in Mω can be written fω,j(xj) for some xj in some Mj. Besides, if
some fω,j(xj) vanishes, there exists k ∈ J such that fk,j(xj) already vanishes.

(b) When all fj,i are injective (resp. surjective), then all fω,j are injective (resp.
surjective).
When all Mj are submodules of a same module, and when for all (i, j) ∈ D
the inclusion Mi ⊂ Mj holds and fj,i is the natural injection, then Mω is the
union of all Mj.

(c) When the sequence (N ′
j) → (Nj) → (N ′′

j ) is exact, so is the sequence N ′
ω →

Nω → N ′′
ω .

(d) A direct limit of flat modules is flat.
(e) Let us assume that all Mj are algebras (associative with units), and all fj,i are

algebra morphisms; there exists a unique algebra structure on Mω such that
all fω,j are algebra morphisms. The morphism uω mentioned in (1.ex.27)(b)
is an algebra morphism if all objects Mj and Nj and all morphisms fi,j , gi,j

and uj belong to the category Alg(K).
(f) Here is an example with J = N and K = Z. Let p be a prime integer; for

every j ∈ N we set Mj = Z/pjZ; then fk,j is the group morphism induced
by the multiplication by pk−j when j ≤ k. Prove that Mω is isomorphic to
(S−1Z)/Z if S is the subset of all powers of p.

(1.ex.29)* The notations are those of Exercise (1.ex.27).
(a) Let us assume that all Mj are algebras (associative with units), and all fj,i are

algebra morphisms; there exists a unique algebra structure on Mα such that
all fj,α are algebra morphisms. The morphism uα mentioned in (1.ex.27)(b)
is an algebra morphism if all objects Mj and Nj and all morphisms between
them belong to the category Alg(K).

(b) We suppose that for all (j, k) ∈ J × J there exists i ∈ J such that (i, j)
and (i, k) belong to D; in this case the functor lim←− is called projective limit

(or inverse limit); you may understand it as a limit when j becomes smaller
and smaller. This assumption on (J, D) does not improve the situation very
much; nonetheless prove that all fj,α are injective when all fj,i are injective.
When all Mj are submodules of a same module, and when for all (i, j) ∈ D
the inclusion Mi ⊂ Mj holds and fj,i is the natural injection, then Mα is the
intersection of all Mj .

(c) Here is an example with J = N. For every j ∈ N let Mj be the quotient
of the ring of polynomials K[t] by the ideal generated by tj . When i ≥
j, let fj,i : Mi → Mj be the canonical algebra morphism induced by the
identity mapping of K[t]. Thus we get a family of K-modules over (J, D∗),
and consequently the projective limit is a limit when j approaches +∞.
Observe that Mj is also the quotient of the ring of formal power series K[[t]]
by the ideal generated by tj , whence algebra morphisms K[[T ]]→Mj which
induce an algebra morphism K[[t]] → Mα because of the universal property
of Mα; prove that it is an isomorphism.
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(d) Here is another classical example with J = N as above, K = Z, p a prime
integer ≥ 2, and Mj = Z/pjZ for all j ∈ N. The ring morphisms fj,i (with
i ≥ j) are induced by idZ. For every j ∈ N there is a ring morphism Z[[t]] →
Mj which maps every formal series

∑+∞
i=0 ait

i to
∑j−1

i=0 aip
i modulo pjZ,

and which induces a ring morphism from Z[[t]]/(t − p) (the quotient by the
ideal generated by t − p) onto Mj; thus we get a natural ring morphism
Z[[t]]/(t− p)→ Mα; prove that it is an isomorphism.
This ring lim←−(Z/pjZ) is called the ring of p-adic integers. A p-adic integer is

usually written as a series
∑+∞

i=0 aip
i; it has a unique canonical expression

with all coefficients ai in the set {0, 1, 2, . . . , p− 1}.



Chapter 2

Quadratic Mappings

This chapter presents quadratic mappings in general, and quadratic forms in par-
ticular. It affords many results that will be useful in the next chapter devoted
to Clifford algebras; for instance the concept of “hyperbolic space” presented in
2.5 and the theorems of orthogonal decomposition expounded in 2.6 will be espe-
cially helpful in 3.7, where their effectiveness also depends on an insightful use of
localization and globalization. Besides, the concept of “hyperbolic space” is also
essential in the last Sections 2.7 and 2.8 devoted to Witt rings.

2.1 Generalities

Let M and N be two K-modules. We say that a mapping q : M → N is a
K-quadratic mapping (or a quadratic mapping over K) if q(λx) = λ2q(x) for
all λ in K and all x in M , and if the mapping bq : M × M → N defined by
bq(x, y) = q(x + y) − q(x) − q(y) is K-bilinear; this mapping bq is called the
associated bilinear mapping. When N = K, q is called a quadratic form on M ,
and (M, q) is called a quadratic module.

The associated bilinear mapping bq is symmetric: bq(x, y) = bq(y, x) for all x
and y in M . Besides, the equality q(2x) = 4q(x) implies bq(x, x) = 2q(x) for all x in
M . Consequently, when the mapping y �−→ 2y is surjective from M onto M , then q
is determined by bq because the equality x = 2y implies q(x) = 4q(y) = 2bq(y, y).
Similarly q is determined by bq when the mapping z �−→ 2z is injective from N
into N . When this mapping z �−→ 2z is injective, we can even prove this stronger
statement: if b is a symmetric bilinear mapping M ×M → N such that b(x, x)
is divisible by 2 in N for all x ∈ M , then the mapping q : M → N defined by
2q(x) = b(x, x) is a quadratic mapping such that bq = b.

The set QuadK(M, N) of all K-quadratic mappings M → N is obviously a
K-module, like the set BilK(M, N) of all symmetric K-bilinear mappings M ×
M → N , and the mapping QuadK(M, N) → BilK(M, N) defined by q �−→ bq
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is obviously K-linear. When it is clear that the basic ring must be K, we omit
the repeated mentions of K, and rather write Quad(M, N) and Bil(M, N). The
above mapping Quad(M, N) → Bil(M, N) is bijective if the mapping y �−→ 2y is
bijective from M onto M , or if the mapping z �−→ 2z is bijective from N onto N ;
but often it is neither injective nor surjective.

(2.1.1) Example. Let K be a field of characteristic 2 and M a finite-dimensional
vector space over K; if f is a nonzero linear form on M , its square x �−→ f(x)2 is
a quadratic form on M that vanishes only on a hyperplane of M ; nevertheless the
identity f(x+y)2 = f(x)2+f(y)2 shows that the associated bilinear form vanishes
everywhere. Besides, if q is a quadratic form on M , the identity bq(x, x) = 2q(x) =
0 shows that the symmetric bilinear form bq is alternate; by means of a basis of
M it is easy to prove that the image of Quad(M, K) in Bil(M, K) is the subspace
of all alternate forms.

(2.1.2) Example. Let g be any K-bilinear mapping from M ×M into N , and let us
set q(x) = g(x, x) for all x in M ; it is easy to prove that q is a quadratic mapping
such that bq(x, y) = g(x, y) + g(y, x) . Nevertheless it is not true that every
quadratic mapping q : M → N can always be derived from a bilinear mapping in
this way.

Many arguments will need the following technical lemma.

(2.1.3) Lemma. Let M be a free module with basis (ej)j∈J and N any K-module;
let (yi,j) be a family of elements of N (with indices (i, j) in J × J) such that
yi,j = yj,i for all (i, j) ∈ J × J . There exists a unique q in Quad(M, N) such that
q(ej) = yj,j for all j ∈ J and bq(ei, ej) = yi,j for all (i, j) ∈ J×J such that i �= j.

Proof. If g is any bilinear mapping M × M → N , the mapping x �−→ g(x, x)
is quadratic from M into N , and the associated bilinear mapping is (x, y) �−→
g(x, y) + g(y, x) (see (2.1.2)). Let us put a total order on the set J (this is always
possible) and let g : M×M −→ N be the K-bilinear mapping such that g(ei, ej) =
yi,j for all (i, j) ∈ J × J such that i ≤ j, and g(ei, ej) = 0 for all (i, j) such that
i > j. The quadratic mapping x �−→ g(x, x) satisfies the conditions of the lemma.

To prove the uniqueness of q, it is sufficient to prove that q must vanish
everywhere when all yi,j vanish. Obviously bq is zero (remember that bq(ei, ei) =
2q(ei)); consequently the subset of all x ∈ M such that q(x) = 0 is a submodule
of M , necessarily equal to M since it contains all ei. �

When q1 : M → N1 is a quadratic mapping and v : N1 → N2 a linear
mapping, then q2 = v ◦ q1 is a quadratic mapping M → N2. Therefore it is
sensible to consider the category of all quadratic mappings defined on M , like q1

and q2 above; a morphism between two objects q1 and q2 of this category is a linear
mapping v such that q2 = v ◦ q1. The next proposition means that this category
contains an initial universal object γ : M → Γ2(M) according to the definition
given in 1.2; γ is called the universal quadratic mapping on M .
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(2.1.4) Proposition. For every module M there exist a module Γ2(M) and a quad-
ratic mapping γ : M → Γ2(M) which for every module N determine an isomor-
phism Hom(Γ2(M), N)→ Quad(M, N) in this way: for every quadratic mapping
q : M → N there exists a unique linear mapping q̄ : Γ2(M) → N such that
q = q̄ ◦ γ.

Proof. Let K(M) be the free module with basis (ex)x∈M (see (1.3)), and R the
submodule of P = K(M) ⊕ (M ⊗M) generated by all elements

(ex+y − ex − ey , −x⊗ y) and (eλx − λ2ex , 0)

with x, y in M and λ in K. Then Γ2(M) is the quotient module P/R, and γ is
obtained by composing the mapping x �−→ (ex, 0) from M into P and the quotient
mapping P → Γ2(M). This mapping γ is quadratic, and the associated bilinear
mapping bγ maps every (x, y) ∈ M ×M to the image of (0, x⊗ y) in the quotient
Γ2(M). For every quadratic mapping q : M → N there exists a unique linear
mapping q̄ : Γ2(M) → N such that q̄ ◦ γ = q ; indeed q̄ must be defined in this
way: there is a linear mapping P → N that maps (ex, y ⊗ z) to q(x) + bq(y, z)
for all x, y, z ∈M , and since it vanishes on R, it determines the wanted mapping
q̄ : Γ2(M)→ N . �

Let γ1 and γ2 be the universal quadratic mappings on the modules M1 and
M2, and u a linear mapping from M1 into M2. Since γ2 ◦u is a quadratic mapping
from M1 into Γ2(M2), there exists a unique linear mapping Γ2(u) from Γ2(M1)
into Γ2(M2) such that Γ2(u) ◦ γ1 = γ2 ◦ u . It is clear that a covariant functor Γ2

has been defined in this way.

(2.1.5) Proposition. As a module, Γ2(M) is generated by the subset γ(M). When
M is generated by a subset S, then Γ2(M) is generated by γ(S) and the elements
bγ(x, y) with x and y running through S. If M is free and (ej)j∈J is a basis of
M indexed by a totally ordered set J , then the elements γ(ej) (with j ∈ J) and
bγ(ei, ej) (with i < j) constitute a basis of Γ2(M).

Proof. The first statement is a common property of many initial universal objects
(when the arrows of the category under consideration are mappings satisfying
some properties); indeed let P be the submodule of Γ2(M) generated by γ(M); on
one side there is a natural injection P −→ Γ2(M); on the other side the universal
property of Γ2(M) determines a mapping from Γ2(M) into P ; then the composition
Γ2(M) → P → Γ2(M) must be the identity mapping, whence P = Γ2(M). The
second statement is an immediate consequence of the first one. The third statement
is a consequence of (2.1.3). Indeed a quadratic mapping q from the free module M
into any module N is completely determined by the values q(ej) (with j ∈ J) and
bq(ei, ej) (with i < j), and the family of all these values may be arbitrarily chosen
in N . If every linear mapping defined on a module P is determined by its values
on some subset of P , and if these values can be chosen arbitrarily, this subset is a
basis of P . �
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(2.1.6) Proposition. For any direct sum M1 ⊕ M2 the algebra Γ2(M1 ⊕ M2) is
canonically isomorphic to

Γ2(M1)⊕ Γ2(M2)⊕ (M1 ⊗M2).

Proof. Let γ1, γ2 and γ be the universal quadratic mappings on M1, M2 and
M1⊕M2. We get three quadratic mappings on M1⊕M2 if we map each (x1, x2) first
to γ1(x1) in Γ2(M1), then to γ2(x2) in Γ2(M2), and finally to x1⊗x2 in M1⊗M2.
Together they give a quadratic mapping (x1, x2) �−→ (γ1(x1), γ2(x2), x1⊗x2) from
which the universal property of Γ2(M1⊕M2) allows us to derive a linear mapping
from this module into the direct product (or direct sum) of Γ2(M1), Γ2(M2) and
M1 ⊗M2. Conversely each of these three modules has a universal property that
allows us to define a natural linear mapping from itself into Γ2(M1 ⊕M2); to be
precise, we first map every γ1(x1) to γ(x1, 0), then every γ2(x2) to γ(0, x2), and
finally every x1 ⊗ x2 to bγ((x1, 0), (0, x2)), that is γ(x1, x2) − γ(x1, 0) − γ(0, x2);
thus we get a linear mapping defined on the direct sum of Γ2(M1), Γ2(M2) and
M1 ⊗M2. It is easy to verify that two reciprocal isomorphisms have been defined
in this way. �

Because of the universal property of S2(M) (see (1.4.3)), there is a unique
linear mapping S2(M) → Γ2(M) that maps every x ∨ y (with x and y in M) to
bγ(x, y). Conversely because of the universal property of Γ2(M) there is a unique
linear mapping Γ2(M)→ S2(M) that maps every γ(x) to x∨x. It is easy to verify
that the mappings

S2(M) −→ Γ2(M) −→ S2(M) and Γ2(M) −→ S2(M) −→ Γ2(M)

are the multiplications by 2 respectively in S2(M) and Γ2(M). Let us suppose that
the mapping x �−→ 2x is bijective from M onto M , and let us write x �−→ x/2 for
the reciprocal mapping (even if 2 is not invertible in K); since the functor S2 or
Γ2 transforms the multiplication by 2 in M into the multiplication by 4 in S2(M)
or Γ2(M), the multiplication by 2 in S2(M) or Γ2(M) is also bijective, and con-
sequently we have got two isomorphisms S2(M) → Γ2(M) and Γ2(M) → S2(M).
The former is more interesting, since later in 4.5 it proves to be the restriction of
an algebra isomorphism S(M)→ Γ(M); thus we are led to the next statement.

(2.1.7) Proposition. If the mapping x �−→ 2x is bijective from M onto M , the
canonical morphism S2(M) → Γ2(M) defined by x ∨ y �−→ bγ(x, y) is an iso-
morphism, and the converse isomorphism maps every γ(x) to x ∨ x/2.

As a particular case of (2.1.4), the K-module Quad(M, K) of quadratic
forms over the module M is isomorphic to Γ2(M)∗ = Hom(Γ2(M), K). Nev-
ertheless in general the modules Γ2(M)∗ and Γ2(M∗) are not isomorphic. Ac-
cording to (2.2.7) below, there are canonical linear mappings Γ2(M∗) → S2(M)∗

and Γ2(M) → S2(M∗)∗, which are isomorphisms when M is a finitely generated
projective module.
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2.2 Changes of basic ring and localizations

When ϕ : M × M → N is a symmetric K-bilinear mapping, the kernel of ϕ,
denoted by Ker(ϕ), is the submodule of all x ∈ M such that ϕ(x, y) = 0 for all
y ∈ M . When q : M → N is a K-quadratic mapping, besides Ker(bq) which is the
submodule of all x ∈ M such that bq(x, y) = 0 for all y ∈ M , we also define the
kernel of q, denoted by Ker(q), which is the submodule of all x ∈ Ker(bq) such
that q(x) = 0.

Let R be a submodule of M ; q is constant modulo R (and consequently
determines a K-quadratic mapping M/R → N) if and only if R is a submodule
of Ker(q). Proposition (2.2.1) shows that the inclusion Ker(q) ⊂ Ker(bq) is often
an equality, but Example (2.2.2) shows that this inclusion is sometimes strict.

(2.2.1) Proposition. The equality Ker(q) = Ker(bq) is valid when the mapping
y �−→ 2y is surjective from M onto M ; it is also valid when the mapping z �−→ 2z
is injective from N into N .

Indeed, when x belongs to Ker(bq), the equalities 2q(x) = bq(x, x) = 0 imply
q(x) = 0 if the mapping z �−→ 2z is injective; and if x = 2y for some y ∈M , then
q(x) = 4q(y) = 2bq(y, y) = bq(x, y) = 0. �

(2.2.2) Example. Let K be a field of characteristic 2, M a vector space of finite
dimension over K, and f a linear form on M ; let us consider q(x) = f(x)2 as in
Example (2.1.1); the kernel of q is the kernel of f , whereas the kernel of bq is M .

Here is the main result of this section.

(2.2.3) Theorem. Let f : K → K ′ be a ring morphism, M and N two K-modules
and q : M −→ N a K-quadratic mapping. There exists a unique K ′-quadratic
mapping q′ : K ′⊗K M → K ′⊗K N such that q′(1′⊗x) = 1′⊗ q(x) for all x ∈M
(if 1′ is the unit element of K ′).

This property of q′ implies that bq′(1′⊗x, 1′⊗y) = 1′⊗bq(x, y) for all x, y ∈M .
It can be written q′ ◦ (f ⊗M) = (f ⊗ N) ◦ q if we accept to identify M with
K⊗K M in the left-hand member, and N with K⊗K N in the right-hand member.
Sometimes q′ is denoted by K ′ ⊗ q.

Proof. The uniqueness of q′ is obvious and we have to prove its existence. First we
suppose that M is a free K-module with basis (ej)j∈J , and we set yj,j = q(ej) for
all j in J and yi,j = bq(ei, ej) for all (i, j) in J×J such that i �= j. Since K ′⊗M is
a free K ′-module with basis (1′⊗ ej)j∈J , according to Lemma (2.1.3) there exists
a K ′-quadratic mapping q′ : K ′ ⊗M → K ′ ⊗N such that q′(1′ ⊗ ej) = 1′ ⊗ yj,j

for all j ∈ J and bq′(1′ ⊗ ei, 1′ ⊗ ej) = 1′ ⊗ yi,j for all (i, j) ∈ J × J such that
i �= j. Obviously this q′ satisfies the required conditions.

When M is not free, there is a surjective mapping g : L → M which makes
M become the quotient of a free module L by the submodule R = Ker(g). If we
set q0 = q ◦ g, we get a K-quadratic form q0 on L, and consequently there exists a
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K ′-quadratic mapping q′0 : K ′⊗L→ K ′⊗N such that q′0 ◦(f⊗L) = (f⊗N)◦q0 .
Let R′ be the kernel of K ′⊗ g : K ′⊗L→ K ′⊗M ; since R′ is the image of K ′⊗R
in K ′⊗L, it is clear that R′ ⊂ Ker(q′0); in other words, q′0 is constant modulo R′.
This proves the existence of a K ′-quadratic mapping q′ : K ′ ⊗M → K ′ ⊗N such
that q′0 = q′ ◦ (K ′ ⊗ g) . The desired equality q′ ◦ (f ⊗M) = (f ⊗N) ◦ q now
follows from the surjectiveness of g and these calculations:

q′ ◦ (f ⊗M) ◦ (K ⊗ g) = q′ ◦ (K ′ ⊗ g) ◦ (f ⊗ L) = q′0 ◦ (f ⊗ L)
= (f ⊗N) ◦ q0 = (f ⊗N) ◦ q ◦ g . �

A particular case of change of basic ring will be especially useful later on.
Let S be a multiplicative subset of K (see 1.10), K ′ = S−1K the ring of fractions
of K with denominator in S and f : K → K ′ the canonical ring morphism
λ �−→ λ/1. If q : M −→ N is a K-quadratic mapping, Theorem (2.2.3) implies
that there exists a unique K ′-quadratic mapping q′ : S−1M −→ S−1N such that
(f ⊗N) ◦ q = q′ ◦ (f ⊗M) , or equivalently,

q′
(x

s

)
=

q(s)
s2

for all
x

s
∈ S−1M .

When p is a prime ideal of K and S = K \ p, then q′ is a quadratic mapping from
Mp into Np, it is called the localization of q at the prime ideal p and denoted by
qp ; thus qp(x/s) = q(x)/s2 for all x/s in Mp.

Here are some applications to the functor Γ2.

(2.2.4) Proposition. Let f : K → K ′ be a ring morphism, and M a K-module; the
K ′-module Γ2

K′(K ′ ⊗M) is canonically isomorphic to K ′ ⊗ Γ2
K(M).

Proof. Let γ and γ′ be the universal quadratic mappings on M and K ′ ⊗ M .
Since the mapping x �−→ γ′(1′ ⊗ x) is K-quadratic from M into Γ2

K′(K ′ ⊗M),
it determines a K-linear mapping Γ2

K(M) → Γ2
K′(K ′ ⊗M) and then a K ′-linear

mapping K ′ ⊗ Γ2
K(M) → Γ2

K′(K ′ ⊗M). Conversely, by Theorem (2.2.3) the K-
quadratic mapping γ determines a K ′-quadratic mapping from K ′⊗M into K ′⊗
Γ2

K(M), whence a K ′-linear mapping Γ2
K′(K ′ ⊗M)→ K ′ ⊗ Γ2

K(M). It is easy to
verify that two reciprocal isomorphisms have been defined in this way. �

(2.2.5) Corollary. Let f : K → K ′ be a ring morphism, M a K-module and
N ′ a K ′-module; the K ′-modules QuadK′(K ′ ⊗M, N ′) and QuadK(M, N ′) are
canonically isomorphic.

Proof. Because of (2.2.4) there are canonical isomorphisms

QuadK′(K ′⊗M, N ′) ∼= HomK′(Γ2
K′(K ′⊗M), N ′) ∼= HomK′(K ′⊗Γ2(M), N ′) ;

and because of (1.9.4) there are canonical isomorphisms

HomK′(K ′ ⊗ Γ2(M), N ′) ∼= Hom(Γ2
K(M), N ′) ∼= QuadK(M, N ′) . �
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As an evident corollary of (2.2.4) we mention the isomorphism

(2.2.6) Γ2
S−1K(S−1M) ∼= S−1Γ2

K(M)

which holds for every ring of fractions of K, in particular for every localiza-
tion of K.

(2.2.7) Proposition. For every K-module M there are canonical K-linear mappings

Γ2(M∗) −→ S2(M)∗ and Γ2(M) −→ S2(M∗)∗.

When M is a finitely generated projective module, both mappings are isomor-
phisms, and their sources and targets are finitely generated projective modules.

Proof. Let γ and γ′ be the universal quadratic mappings on M and M∗. The
following equalities (in which x and y belong to M , and u and v to M∗) define
two quadratic mappings q : M∗ → S2(M)∗ and q′ : M → S2(M∗)∗ :

q(u)(x ∨ y) = u(x)u(y) and q′(x)(u ∨ v) = u(x)v(x).

Then q and q′ determine unique linear mappings q̄ : Γ2(M∗) → S2(M)∗ and
q̄′ : Γ2(M)→ S2(M∗)∗ such that q̄ ◦ γ′ = q and q̄′ ◦ γ = q′.

If M is a free module of finite rank, it is easy to prove that both canonical
mappings q̄ and q̄′ are isomorphisms of free modules. If M is a finitely generated
projective module, all its localizations are free modules (see (1.12.4)); from (2.2.6)
and (1.9.3) we deduce that, for all p ∈ Spec(K),

Γ2
Kp

(Mp) ∼= (Γ2
K(M))p and S2

Kp
(Mp) ∼= (S2

K(M))p ,

and the same with M∗; consequently all localizations of both canonical mappings
are isomorphisms; by (1.11.7) they are themselves isomorphisms. Their sources
and targets are obviously finitely generated, and to prove that they are projective,
it suffices to notice that their localizations are free of constant rank whenever the
rank of M is constant (see (1.12.9) and (1.12.8)). �

This proof using localization and globalization is more direct than the other
one that uses a module M ′ such that M ⊕M ′ is free with finite bases, and needs
(2.1.6) to decompose Γ2(M ⊕M ′) and Γ2(M∗ ⊕M ′∗), and (1.5.1) to decompose
S2(M ⊕M ′) and S2(M∗ ⊕M ′∗).

2.3 Nondegenerate quadratic mappings

With every symmetric bilinear mapping ϕ : M ×M → N we associate the lin-
ear mapping dϕ from M into Hom(M, N) defined by dϕ(x)(y) = ϕ(x, y). And
with every quadratic mapping q : M → N we associate dq : M → Hom(M, N)
defined by dq(x)(y) = bq(x, y). We say that q (resp. ϕ) is nondegenerate if dq
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(resp. dϕ) is bijective from M onto Hom(M, N), and we say that q (resp. ϕ) is
weakly nondegenerate if dq (resp. dϕ) is merely injective.

When K is a field, and M a finite-dimensional vector space, every weakly
nondegenerate quadratic form M → K is nondegenerate; but if dim(M) is infinite,
no quadratic form on M is nondegenerate, even if it is weakly nondegenerate. In
the most usual cases q or ϕ may be nondegenerate only if the target N is an
invertible module, as it is now explained.

(2.3.1) Proposition. Let M be a faithful and finitely generated projective module.
When there is a nondegenerate symmetric bilinear mapping M ×M → N , then N
is a finitely generated projective module of constant rank 1.

Proof. The mapping Hom(M, N)⊗M → N defined by f⊗x �−→ f(x) is surjective;
this can be proved by localization, because (1.9.7) allows us to localize Hom(M, N)
without problems, and all localizations of M are free and faithful modules (see
(1.12.4) and (1.13.3)). Since Hom(M, N) is isomorphic to M and therefore finitely
generated, N too is finitely generated. Since the rank of Hom(M, N) is the product
of the ranks of M and N (see (1.12.6)), the isomorphism M → Hom(M, N) forces
the rank of N to be everywhere 1. The faithfulness of M implies the faithfulness
of N , and the faithfulness of all its localizations (again (1.13.3)). Consequently all
localizations of N are free of rank 1, and the conclusion follows from (1.12.9). �

The next two propositions show that the nondegeneracy property can be
tested with faithfully flat extensions and with localizations, provided that the
source is a finitely presented module. Under a stronger hypothesis (both source and
target are finitely generated and projective), it can even be tested with extensions
K → K/m to residue fields, as explained in (2.3.4). For the sake of briefness
only nondegenerate quadratic forms are mentioned, but it is clear that (2.3.2)
and (2.3.3) remain true when the word “nondegenerate” is replaced with “weakly
nondegenerate”.

(2.3.2) Proposition. Let K → K ′ be an extension of the basic ring, q : M → N a
quadratic mapping, and q′ : K ′ ⊗M → K ′ ⊗N the corresponding extension of q.
(a) When q is nondegenerate, and M is finitely generated and projective, then q′

is also nondegenerate.
(b) When the extension K → K ′ is faithfully flat, and M is finitely presented,

then q′ is nondegenerate if and only if q is nondegenerate.

Proof. Let us consider the linear mappings

dq : M −→ Hom(M, N) and dq′ : K ′ ⊗M −→ HomK′(K ′ ⊗M, K ′ ⊗N)

derived from q and q′. When M is finitely generated and projective, or when M
is finitely presented and K ′ flat over K, then the canonical mapping

K ′ ⊗Hom(M, N) −→ HomK′(K ′ ⊗M, K ′ ⊗N)
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is an isomorphism (see (1.9.7) and (1.9.9)); consequently dq′ can be identified with

K ′ ⊗ dq : K ′ ⊗M −→ K ′ ⊗Hom(M, N) .

Consequently if dq is an isomorphism, the same is true for dq′ . Moreover when K ′

is faithfully flat over K, the bijectiveness of dq′ conversely implies the bijectiveness
of dq. �

(2.3.3) Proposition. Let q : M → N be a quadratic mapping defined on a finitely
presented module M . The following three assertions are equivalent:
(a) the K-quadratic mapping q : M → N is nondegenerate;
(b) for every prime ideal p the quadratic mapping qp : Mp → Np is nondegener-

ate;
(c) for every maximal ideal m the quadratic mapping qm : Mm → Nm is nonde-

generate.

Proof. Since the localized rings Kp are flat, the proof of (2.3.2) already shows that
the Kp-linear mapping Mp → HomKp(Mp, Np) induced by qp can be identified
with Kp ⊗ dq = (dq)p. Thus the conclusion follows from (1.11.7). �

Proposition (2.3.2)(a) can be applied to all extensions K → K/a where
a is an ideal of K. In this case, (K/a) ⊗ M and (K/a) ⊗ N can be replaced
with M/aM and N/aN (see (1.9.1)), and thus we get a (K/a)-quadratic mapping
q/a : M/aM → N/aN . In this context we get the following converse statement.

(2.3.4) Proposition. Let M and N be finitely generated projective modules, and
q : M −→ N a quadratic mapping; if the (K/m)-quadratic mappings q/m :
M/mM −→ N/mN are nondegenerate for all maximal ideals m of K, then q
itself is nondegenerate.

Proof. Let us set R = Ker(dq) and C = Coker(dq) to get the exact sequence

0 −→ R −→M −→ Hom(M, N) −→ C −→ 0.

For every maximal ideal m we derive from it the exact sequence

(K/m)⊗M −→ (K/m)⊗Hom(M, N) −→ (K/m)⊗ C −→ 0

in which the first mapping on the left side can be identified with dq/m (as explained
above for dq′ in the proof of (2.3.2)). From the assumption that dq/m is bijective, we
deduce that (K/m)⊗C = 0, whence C = mC and Cm = mCm. Since Hom(M, N)
is finitely generated, so is C, and Nakayama’s lemma implies that Cm = 0 for
every maximal ideal m, whence C = 0. There remains an exact sequence 0 →
R → M → Hom(M, N) → 0 . Since M and N are finitely generated projective
modules, Hom(M, N) is projective, this exact sequence is splitting, R is finitely
generated, and we get exact sequences

0 −→ (K/m)⊗R −→ (K/m)⊗M −→ (K/m)⊗Hom(M, N) −→ 0 ;
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now the assumption that dq/m is bijective, implies that (K/m)⊗R = 0 for every
maximal ideal m; a similar argument leads to R = 0. Thus R = C = 0 and dq is
bijective. �

(2.3.5) Remark. The propositions (2.3.2), (2.3.3) and (2.3.4) are also valid for
symmetric bilinear mappings. By any extension K → K ′ it is clear that every
bilinear mapping ϕ : M ×M → N gives a bilinear mapping ϕ′ from (K ′ ⊗M)×
(K ′ ⊗M) into K ′ ⊗N . Indeed the knowledge of ϕ is equivalent to the knowledge
of a linear mapping M ⊗M → N , and the same for ϕ′; therefore the canonical
isomorphism (K ′⊗M)⊗K′ (K ′⊗M)←→ K ′⊗ (M ⊗M) (see (1.9.6)) shows how
to derive ϕ′ from ϕ.

Orthogonality

If ϕ : M×M → N is a symmetric bilinear mapping, or if q : M → N is a quadratic
mapping, two elements x and y of M are said to be orthogonal (with respect to
ϕ or q) if ϕ(x, y) or bq(x, y) vanishes. With every subset P of M is associated
the submodule P⊥ of all elements of M orthogonal to all elements of P ; it is
called the submodule orthogonal to P , although it is exactly the largest submodule
orthogonal to P . Obviously P⊥ only depends on the submodule generated by P ,
but in most cases P is already assumed to be a submodule. It is clear that P⊥

always contains Ker(ϕ) or Ker(bq). The next lemma gives elementary properties
of orthogonal modules like P⊥ and of orthogonal closures like P⊥⊥ = (P⊥)⊥; the
proof is left to the reader.

(2.3.6) Lemma. The following six assertions are valid for all submodules P or for
all pairs (P, Q) of submodules of M :

P ⊂ Q ⇒ P⊥ ⊃ Q⊥ ; (P + Q)⊥ = P⊥ ∩Q⊥ ;
P⊥⊥ ⊃ P ; (P ∩Q)⊥ ⊃ (P⊥ + Q⊥)⊥⊥ ;

P⊥⊥⊥ = P⊥ ; (P⊥ ∩Q⊥)⊥ = (P + Q)⊥⊥ .

The next two propositions involve a symmetric bilinear mapping ϕ : M×M → N ;
of course they might also involve a quadratic mapping q : M → N .

(2.3.7) Proposition. When ϕ : M ×M → N is nondegenerate, and P is a direct
summand of M , then
(a) P⊥ too is a direct summand, and every equality M = P ⊕ Q implies M =

P⊥ ⊕Q⊥;
(b) P is orthogonally closed: P = P⊥⊥;
(c) these four mappings induced by dϕ are bijective:

P⊥ → Hom(M/P, N) , M/P⊥ → Hom(P, N) ,
P → Hom(M/P⊥, N) , M/P → Hom(P⊥, N) ;

(d) the equality rk(p, M) = rk(p, P ) + rk(p, P⊥) holds for every prime ideal p
provided that M is finitely generated and projective.
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Proof. Let us assume that M = P ⊕ Q. We can identify Hom(M, N) with the
direct sum of Hom(P, N) and Hom(Q, N); this means that Hom(P, N) is identified
with the submodule of all morphisms M → N vanishing on Q, and the same for
Hom(Q, N). Since dϕ : M → Hom(M, N) is bijective, the converse bijection maps
Hom(Q, N) onto P⊥ and Hom(P, N) onto Q⊥. Consequently dϕ induces bijections
P⊥ → Hom(Q, N) and Q⊥ → Hom(P, N), and moreover M = P⊥ ⊕ Q⊥. From
this last equality we could deduce in the same way that M is the direct sum of
P⊥⊥ and Q⊥⊥, and since they contain respectively P and Q, they must be equal
to them. Thus we have proved (a) and (b). The first two morphisms mentioned in
(c) are the above isomorphisms P⊥ → Hom(Q, N) and Q⊥ → Hom(P, N). Since
(a) and (b) show that P and P⊥ can play the same role, all morphisms in (c)
are bijective. Now let M be finitely generated and projective; if it is a faithful
module, N is an invertible module (see (2.3.1)), and (d) follows from (c). If M is
not faithful, there is an idempotent e ∈ K such that eM is a faithful module over
Ke, whereas (1− e)M = 0 (see (1.12.8)); therefore (d) is still true. �

(2.3.8) Proposition. Let P be a submodule of M . If the restriction of ϕ : M×M →
N to P × P is nondegenerate, then M is the direct sum of P and P⊥.

Proof. Let ψ be the restriction of ϕ to P × P , let j : P → M be the natural
injection, and j′ : Hom(M, N) → Hom(P, N) the derived restriction morphism.
Since dψ is bijective, we can consider

w = d−1
ψ ◦ j′ ◦ dϕ : M → Hom(M, N)→ Hom(P, N) → P.

It is easy to realize that w ◦ j = idP ; therefore M = P ⊕Ker(w). Since Ker(w) =
Ker(j′ ◦ dϕ), we conclude that Ker(w) = P⊥. �

2.4 Operations on quadratic mappings and

symmetric bilinear mappings

The K-quadratic mappings are the objects of a category CK ; a morphism from
q : M → N to q′ : M ′ → N ′ is a couple (u, v) of linear mappings u : M →M ′ and
v : N → N ′ such that q′ ◦u = v ◦ q . In this category an object q : M → N is usu-
ally denoted by (M, q, N), although the knowledge of q implies the knowledge of
M and N . Two operations on the objects of CK are especially interesting, and are
expounded below. As a matter of fact, the first operation is defined inside each sub-
category CK(N) of quadratic mappings with a same target N ; in this subcategory
an object q : M → N is usually denoted by (M, q), and a morphism from (M, q) to
(M ′, q′) is a linear mapping u : M →M ′ such that (u, idN ) is a morphism in CK .
Analogous definitions might be stated with symmetric bilinear mappings instead
of quadratic mappings; for instance a morphism from (M, ϕ, N) to (M ′, ϕ′, N ′)
is a couple (u, v) of linear mappings such that v(ϕ(x, y)) = ϕ′(u(x), u(y)) for
all x, y ∈M .
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Orthogonal sums of quadratic mappings

Let (M, q) and (M ′, q′) be two objects of CK(N); their orthogonal sum (M, q) ⊥
(M ′, q′) is the couple (M ⊕M ′, q ⊥ q′), where q ⊥ q′ is the quadratic mapping
on M ⊕M ′ defined in this way: (q ⊥ q′)(x, x′) = q(x) + q′(x′) . It is clear that

bq⊥q′ ((x, x′), (y, y′)) = bq(x, y) + bq′(x′, y′)

for all x, y ∈ M and all x′, y′ ∈ M ′ . The natural injections j : M →M ⊕M ′ and
j′ : M ′ →M ⊕M ′ determine morphisms in the category CK(N), and their images
M⊕0 and 0⊕M ′ are orthogonal for q ⊥ q′. The next proposition states a universal
property of (M, q) ⊥ (M ′, q′) which means that (j, j′) is an initial universal object
in some category.

(2.4.1) Proposition. Let g : (M, q) → (M ′′, q′′) and g′ : (M ′, q′)→ (M ′′, q′′) be two
morphisms in CK(N) that have orthogonal images in M ′′. There exists a unique
morphism g′′ from (M, q) ⊥ (M ′, q′) into (M ′′, q′′) such that g = g′′ ◦ j and
g′ = g′′ ◦ j′ .

Proof. It suffices to set g′′(x, x′) = g(x) + g′(x′) for all x ∈ M and all x′ ∈ M ′;
the orthogonality of g(x) and g′(x′) implies q′′(g′′(x, x′)) = (q ⊥ q′)(x, x′) ;
consequently g′′ is a morphism in CK(N). �

(2.4.2) Proposition. Let (M, q), (M ′, q′) and (M ′′, q′′) be objects of CK(N). The
canonical isomorphisms

M ⊕M ′ ∼= M ′ ⊕M ,
(M ⊕M ′)⊕M ′′ ∼= M ⊕ (M ′ ⊕M ′′) ,

{0} ⊕M ∼= M ,

give isomorphisms in CK(N) when M , M ′, M ′′ and {0} are replaced with (M, q),
(M ′, q′), (M ′′, q′′) and the null quadratic mapping {0} → N .

Of course Proposition (2.4.2) is an obvious statement, but if we treat the operation
⊥ as a functor from CK(N) × CK(N) into CK(N), the three isomorphisms men-
tioned in (2.4.2) afford three isomorphisms between functors, and the existence of
such isomorphisms is the exact meaning of this statement: CK(N) is a monoidal
category with neutral object.

(2.4.3) Proposition. The quadratic mapping q ⊥ q′ is nondegenerate if and only if
both q and q′ are nondegenerate.

Proof. Let w be the canonical isomorphism

Hom(M, N)⊕Hom(M ′, N) −→ Hom(M ⊕M ′, N) ;

it suffices to observe that dq⊥q′ = w ◦ (dq ⊕ dq′) ; if dq and dq′ are isomorphisms,
the same holds for dq⊥q′ ; and conversely. �
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(2.4.4) Remark. We can also define the orthogonal sum of two symmetric bilinear
mappings ϕ : M×M −→ N and ϕ′ : M ′×M ′ −→ N ; it is the symmetric bilinear
mapping ϕ ⊥ ϕ′ from (M⊕M ′)×(M⊕M ′) into N that maps every ((x, x′), (y, y′))
to ϕ(x, y) + ϕ′(x′, y′). When q and q′ are quadratic mappings taking their values
in N , it is clear that bq⊥q′ = bq ⊥ bq′ . There are statements analogous to the
propositions (2.4.1), (2.4.2), (2.4.3), with symmetric bilinear mappings instead of
quadratic mappings.

Tensor products of quadratic mappings and
symmetric bilinear mappings

If ϕ : M × M −→ N and ϕ′ : M ′ × M ′ −→ N ′ are two symmetric bilinear
mappings, the construction of their tensor product ϕ⊗ ϕ′ raises no problem; it is
the unique element of Bil(M ⊗M ′, N ⊗N ′) such that

(ϕ⊗ ϕ′)(x⊗ x′, y ⊗ y′) = ϕ(x, y)⊗ ϕ′(x′, y′)

for all x, y ∈M and all x′, y′ ∈M ′. The next step is the definition of the quadratic
mapping q⊗ϕ′, tensor product of a quadratic mapping q and a symmetric bilinear
mapping ϕ′.

(2.4.5) Proposition. Let q : M → N be a quadratic mapping and ϕ′ : M ′×M ′ −→
N ′ a symmetric bilinear mapping. There exists a unique quadratic mapping q′′ :
M ⊗M ′ → N ⊗N ′ such that bq′′ = bq⊗ϕ′ and, for all x ∈M and all x′ ∈M ′,

q′′(x⊗ x′) = q(x)⊗ ϕ′(x′, x′).

Proof. Since M ⊗M ′ is generated by all elements x ⊗ x′, the unicity of q′′ is a
consequence of (2.1.5). Let us prove its existence first when M and M ′ are free
modules with bases (ei)i∈I and (e′j)j∈J respectively. We define a family (y(i,j),(k,l))
of elements of N⊗N ′, with (i, j) and (k, l) running through I×J , in the following
way:

y(i,j),(k,l) = bq(ei, ek)⊗ ϕ′(e′j, e
′
l) if (i, j) �= (k, l) ,

y(i,j),(i,j) = q(ei)⊗ ϕ′(e′j , e
′
j) .

By Lemma (2.1.3) there exists a unique quadratic mapping q′′ : M⊗M ′ → N⊗N ′

such that

q′′(ei ⊗ e′j) = y(i,j),(i,j) for all (i, j) ∈ I × J ,
bq′′(ei ⊗ e′j , ek ⊗ e′l) = y(i,j),(k,l) whenever (i, j) �= (k, l) ;

this is the wanted mapping q′′ in this case.
When M and M ′ are arbitrary modules, we treat them as quotients of free

modules L and L′; let g : L→M and g′ : L′ →M ′ be the corresponding surjective
mappings. According to the first part of the proof, the quadratic mapping q ◦ g :
L→ N and the symmetric bilinear mapping ϕ′ ◦(g′×g′) : L′×L′ → N ′ determine
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a quadratic mapping q′′′ : L ⊗ L′ → N ⊗ N ′ satisfying analogous conditions.
According to (1.6.3) the kernel R of the surjective mapping L⊗ L′ → M ⊗M ′ is
the image of the linear mapping

(Ker(g)⊗ L′)⊕ (L⊗Ker(g′)) −→ L⊗ L′ ;

obviously R ⊂ Ker(q′′′), whence a quadratic mapping q′′ : M ⊗M ′ → N ⊗ N ′

such that q′′ ◦ (g ⊗ g′) = q′′′ ; this is the wanted mapping q′′. �

By definition the mapping q′′ defined in (2.4.5) is the tensor product of the quad-
ratic mapping q and the symmetric bilinear mapping ϕ′, and we write q′′ = q⊗ϕ′.
In the same way we can construct a tensor product like ϕ⊗ q′, and thus we come
to the last step, the tensor product of two quadratic mappings q and q′. One may
use the detailed notation (M, q, N)⊗K (M ′, q′, N ′) or the abbreviation q ⊗ q′.

(2.4.6) Proposition. When q : M → N and q′ : M ′ → N ′ are two quadratic
mappings, the quadratic mappings q ⊗ bq′ and bq ⊗ q′ are equal; either one is the
tensor product q ⊗ q′. Thus q ⊗ q′ is characterized by these two equalities: first
bq⊗q′ = bq ⊗ bq′ and secondly, for all x ∈ M and all x′ ∈M ′,

(q ⊗ q′)(x ⊗ x′) = 2 q(x) ⊗ q′(x′) .

The proof is just a straightforward verification.

Later in 2.7 we need especially the following statements.

(2.4.7) Proposition. Let q, q′ and q′′ be K-quadratic mappings; in the category CK

there is an isomorphism between q ⊗ q′ and q′ ⊗ q, and an isomorphism between
(q ⊗ q′) ⊗ q′′ and q ⊗ (q′ ⊗ q′′). If 2 is invertible in K, there is a neutral object
q0 (such that q0 ⊗ q is always isomorphic to q), which is the quadratic mapping
K → K defined by λ �−→ λ2/2.

The first statement in (2.4.7) is an immediate consequence of the well-known
properties of commutativity and associativity of tensor products; they make CK

become a monoidal category for this operation. When 2 is invertible in K, the
bilinear mapping associated with q0 : λ �−→ λ2/2 is the multiplication mapping
(λ, µ) �−→ λµ, and thus the canonical isomorphisms K⊗M →M and K⊗N → N
yield a canonical isomorphism between q0 ⊗ q and q. �

Of course the category of all symmetric K-bilinear mappings is also a monoidal
category for the tensor product, and the multiplication mapping K ×K → K is
always a neutral object.

(2.4.8) Proposition. Let q : M → N and q′ : M ′ → N ′ be two quadratic mappings,
and let us assume either that M and M ′ are finitely generated projective modules,
or that M and N are finitely generated projective modules, or that M ′ and N ′ are
finitely generated projective modules. If q and q′ are nondegenerate, their tensor
product q⊗q′ is also nondegenerate. The same conclusion holds when q is replaced
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with a nondegenerate symmetric bilinear mapping ϕ : M ×M → N , and when q′

too is replaced with a nondegenerate symmetric bilinear mapping.

Proof. Let w be the canonical linear mapping

Hom(M, N)⊗Hom(M ′, N ′) −→ Hom(M ⊗M ′, N ⊗N ′) ;

any one of the three assumptions proposed at the beginning of (2.4.8) ensures that
w is bijective; for the first assumption, this can be proved by localization with the
help of (1.10.8); for all three assumptions, this can be proved by embedding the
finitely generated projective modules under consideration as direct summands in
free modules of finite ranks. It is clear that dq⊗q′ = w ◦ (dq ⊗ dq′ ) ; consequently
if dq and dq′ are bijective, the same holds for dq⊗q′ . �

(2.4.9) Proposition. Let (M, q) be an element of CK(N), and (M ′, q′) and (M ′′, q′′)
two elements of CK(N ′). In CK(N ⊗N ′) there are canonical isomorphisms

(M, q)⊗
(
(M ′, q′) ⊥ (M ′′, q′′)

)
←→ (M, q)⊗ (M ′, q′) ⊥ (M, q)⊗ (M ′′, q′′).

These reciprocal isomorphisms are defined in this way: every x⊗(x′, x′′) is mapped
to (x⊗x′, x⊗x′′), and conversely (x1⊗x′, x2⊗x′′) to x1⊗(x′, 0)+x2⊗(0, x′′). �

2.5 Hyperbolic and metabolic spaces

From now on, we are especially interested in quadratic forms, which are objects
of the category CK(K) according to the notation of 2.4. This subcategory CK(K)
is provided with two operations, orthogonal sum and tensor product, because of
the canonical isomorphism K ⊗K → K.

(2.5.1) Definitions. A quadratic module (M, q) is a module M provided with a
quadratic form q : M → K; it is called a quadratic space if M is finitely generated
and projective, and q nondegenerate. A bilinear module (M, ϕ) is a module M
provided with a symmetric bilinear form ϕ : M ×M → K; it is called a bilinear
space if M is finitely generated and projective, and ϕ nondegenerate.

A morphism from (M, q) to (M ′, q′) is a linear mapping u : M → M ′ such
that q′(u(x)) = q(x) for all x ∈ M . A morphism u from (M, ϕ) to (M ′, ϕ′) must
satisfy the condition ϕ′(u(x), u(y)) = ϕ(x, y) for all x and y. Isomorphisms between
quadratic or bilinear modules are often called isometries.

With every K-module P we associate the dual module P ∗ = HomK(P, K),
and the quadratic form qP : P ∗ ⊕ P → K defined by (f, x) �−→ f(x); thus we
obtain a quadratic module (P ∗ ⊕ P, qP ) which is called the hyperbolic module
associated with P and denoted by H[P ]. The bilinear form bP associated with
qP is this one: ((f, x), (g, y)) �−→ f(y) + g(x). The bilinear module (P ∗ ⊕ P, bP )
is called the hyperbolic bilinear module associated with P and denoted by H(P ).
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More generally, from a bilinear module (P, ψ) over K we derive the symmetric
bilinear form

ψP : (P ∗ ⊕ P )× (P ∗ ⊕ P ) −→ K , ((f, x), (g, y)) �−→ f(y) + g(x) + ψ(x, y) ;

the bilinear module (P ∗ ⊕ P, ψP ) is called the metabolic module associated with
(P, ψ) and denoted by M(P, ψ). When ψ = 0, it is clear that we get again the
hyperbolic bilinear module H(P ).

There is a canonical mapping cP : P −→ P ∗∗ defined by x �−→ (f �−→ f(x));
the module P is said to be reflexive when cP is bijective. If P is reflexive, H[P ∗] is
obviously isomorphic to H[P ]. Finitely generated projective modules are reflexive
(see 1.7), and their reflexiveness is the key to the next proposition.

(2.5.2) Proposition. When P is a finitely generated projective module, H(P ) is a
quadratic space, and M(P, ψ) is a bilinear space whatever the symmetric bilinear
form ψ may be.
Therefore we call them respectively the hyperbolic space associated with P and
the metabolic space associated with (P, ψ).

Proof. Obviously P ∗ ⊕ P is a finitely generated projective module. Since bP is
equal to ψP when ψ = 0, it suffices to prove that ψP is always nondegenerate. The
linear mapping P ∗ ⊕ P → (P ∗ ⊕ P )∗ derived from ψP is this one:

P ∗ ⊕ P −→ P ∗∗ ⊕ P ∗ , (f, x) �−→ (cP (x), dψ(x) + f) ;

it is bijective whenever P is reflexive, in particular when P is finitely generated
and projective. �

The next proposition (2.5.5) characterizes hyperbolic spaces and metabolic
spaces by means of very special submodules. An element x of a quadratic module
(M, q) (resp. a bilinear module (M, ϕ)) is said to be isotropic if q(x) = 0 (resp.
ϕ(x, x) = 0), and a submodule N of M is said to be totally isotropic (or totally
singular) if all its elements are isotropic. The inclusion N ⊂ N⊥ holds for every
totally isotropic submodule N . Conversely in a bilinear module (M, ϕ) (and also
in a quadratic module (M, q) when 2 is invertible in K) the inclusion N ⊂ N⊥

means that N is totally isotropic.
For quadratic spaces we get a stronger result than for bilinear spaces because

of the following lemma (which still plays a capital role later in 4.8) and its corollary.

(2.5.3) Lemma. Let q be a K-quadratic form on a projective module M ; there exists
a K-bilinear form β : M ×M → K such that q(x) = β(x, x) for all x in M .

Proof. Let us first suppose that M is a free module with basis (ej)j∈J ; we can
suppose that the set J of indices is totally ordered; we get a suitable bilinear form
β on M by assigning the following values to β(ei, ej) when i and j run through J :

β(ei, ej) = bq(ei, ej) if i < j
= q(ei) if i = j
= 0 if i > j .
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When M is merely a projective module, there exists a module M ′ such that
M ⊕ M ′ is free; then we consider the orthogonal sum (M, q) ⊥ (M ′, 0); there
exists a bilinear form β′′ on M ⊕M ′ such that β′′((x, x′), (x, x′)) = q(x) for all
x ∈ M and all x′ ∈ M ′; by restriction to M ⊕ 0 we get a suitable bilinear form
β on M . �

(2.5.4) Corollary. Let (M, q) be a quadratic space containing a totally isotropic
direct summand N such that N = N⊥. There exists a totally isotropic submodule
P such that M = N ⊕ P .

Proof. Let P be any submodule supplementary to N , not necessarily totally
isotropic; any other submodule supplementary to N is determined by a linear
mapping u : P → N , since it is the subset of all elements y + u(y) with y ∈ P .
We must find a linear mapping u : P −→ N such that q(y + u(y)) = 0 for all
y ∈ P . Let us apply the previous lemma to the restriction of q to P : there exists
a bilinear form β on P such that q(y) = β(y, y) for all y ∈ P ; we also consider
dβ : P → P ∗ defined by dβ(y)(z) = β(y, z). The condition required from u is
equivalent to this one:

∀y ∈ P, β(y, y) + bq(u(y), y) = 0 ;

let us look for a mapping u satisfying this stronger condition:

∀y ∈ P, ∀z ∈ P, β(y, z) + bq(u(y), z) = 0 ;

this stronger condition determines a unique mapping u : P → N ; indeed from
(2.3.7) we deduce an isomorphism d′

q : N → (M/N)∗ → P ∗ which maps every
x ∈ N to the restriction of dq(x) to P ; the stronger condition required from u
means that dβ + d′

q ◦ u = 0, whence u = −d′−1
q ◦ dβ . �

(2.5.5) Proposition.

(a) A quadratic space (M, q) is hyperbolic if and only if there exists a totally
isotropic direct summand N such that N = N⊥. If such a submodule N
exists, (M, q) is isomorphic to H[N ], and also to H[M/N ].

(b) A bilinear space (M, ϕ) is metabolic if and only if there exists a totally
isotropic direct summand N such that N = N⊥. If such a submodule N
exists, if P is any submodule supplementary to N , and ψ the restriction of
ϕ to P × P , then (M, ϕ) is isomorphic to M(P, ψ).

Proof. In a hyperbolic module H[P ], both direct summands 0⊕P and P ∗⊕ 0 are
totally isotropic; the former is equal to its orthogonal submodule, and the latter
too if the canonical mapping P → P ∗∗ is injective. It is actually injective when
H[P ] is a quadratic space, since in this case P is finitely generated and projective,
therefore reflexive. Similarly in a metabolic space M(P, ψ) the direct summand
P ∗ ⊕ 0 is totally isotropic, and equal to its orthogonal submodule; but 0 ⊕ P is
totally isotropic if and only if ψ = 0.
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Conversely we suppose that (M, q) contains a totally isotropic direct sum-
mand N such that N = N⊥. From (2.5.4) we deduce the existence of another
totally isotropic submodule P such that M = N ⊕ P . From (2.3.7) we deduce an
isomorphism d′

q : N → (M/N)∗ → P ∗ which maps every x ∈ N to the restriction
of dq(x) to P ; this proves that N ∩P⊥ = 0, whence P = P⊥. Consequently N and
P play similar roles, and there is another isomorphism d′′

q : P → (M/P )∗ −→ N∗.
The mapping (M, q) → H[N ] defined by x + y �−→ (d′′

q (y), x) (for all x ∈ N and
y ∈ P ) is an isomorphism of quadratic spaces. Of course (M, q) is also isomorphic
to H[P ] by the mapping x + y �−→ (d′

q(x), y).
For a bilinear space (M, ϕ) containing a direct summand N such that N =

N⊥, the proof is still simpler, since any supplementary module P will do. �

(2.5.6) Examples. First K is the field Z/2Z and we consider the nondegenerate
symmetric bilinear form ϕ on (Z/2Z)2 defined by ϕ((x1, x2), (x′

1, x
′
2)) = x1x

′
1 +

x2x
′
2 ; this bilinear space is called G2 later in 2.8. The equality N = N⊥ holds for

the line N generated by (1, 1); yet there is no other totally isotropic line in G2; this
bilinear space is metabolic but not hyperbolic. Now K is the ring Z and we provide
Z2 with the Z-bilinear form ψ defined by ψ((z1, z2), (z′1, z

′
2)) = z1z

′
1 − z2z

′
2 ; thus

we get the Z-bilinear space later denoted by G1,1 . The diagonal submodule ∆ of
all elements (z, z) is totally isotropic, it is supplementary to Z×{0}, and obviously
∆⊥ = ∆. Consequently G1,1 is metabolic. But it is not hyperbolic; indeed if it
were hyperbolic, the ring extension Z → Z/2Z would yield a hyperbolic bilinear
space over Z/2Z, whereas it actually yields the above metabolic space G2 which
is not hyperbolic.

Nevertheless when 2 is invertible in K, every K-bilinear module can also be
studied as a quadratic module, and from (2.5.5) we deduce that every metabolic
space is hyperbolic.

Now we come to the properties that are most useful later in 2.7. The next
proposition is evident, and its proof is omitted.

(2.5.7) Proposition. Let M and N be finitely generated projective K-modules.
(a) The natural bijection from H[M ⊕N ] onto H[M ] ⊥ H[N ] is an isomorphism

of quadratic spaces.
(b) For all symmetric bilinear forms ϕ and ψ respectively on M and N , the

natural bijection from M((M, ϕ) ⊥ (N, ψ)) onto M(M, ϕ) ⊥ M(N, ψ) is an
isomorphism of bilinear spaces.

(2.5.8) Proposition.

(a) For every quadratic space (M, q) there is an isomorphism

(M, q) ⊥ (M,−q) ∼= H[M ] .

(b) For every bilinear space (M, ϕ) there is an isomorphism

(M, ϕ) ⊥ (M,−ϕ) ∼= M(M, ϕ) .
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(c) For every metabolic space M(P, ψ), there is an isomorphism

H(P ) ⊥M(P,−ψ) ∼= M(P, ψ) ⊥M(P,−ψ) .

Proof. In the quadratic space (M, q) ⊥ (M,−q) the submodule ∆ of all elements
(x, x) with x ∈ M is isomorphic to M , it is totally isotropic, and it is a direct
summand, because M ⊕ 0 is a supplementary submodule. Consequently ∆⊥ is
generated by ∆ and all (y, 0) ∈M ⊕0 that are orthogonal to ∆; yet this condition
means that y must belong to Ker(bq), whence y = 0 and ∆⊥ = ∆. Because of
(2.5.5) we have a hyperbolic space.

For a bilinear space (M, ϕ) the proof is similar. When 2 is invertible in K,
instead of the supplementary submodule M ⊕ 0 we might use the other diagonal
∆′ containing all elements (x,−x), which is also totally isotropic; this would prove
again that (M, ϕ) ⊥ (M,−ϕ) is hyperbolic. But in the general case we only get a
metabolic space (see (2.5.6) above).

The bilinear spaces H(P ) ⊥ M(P,−ψ) and M(P, ψ) ⊥ M(P,−ψ) have the
same underlying module P ∗⊕P⊕P ∗⊕P ; the following mapping is an isomorphism
from the former onto the latter:

(f, x, g, y) �−→ ( f − g + dψ(y) , x, g, x + y ) . �

(2.5.9) Proposition. Let P be a finitely generated projective module, sometimes
provided with a symmetric bilinear form ψ, and M a finitely generated projective
module provided either with a nondegenerate symmetric bilinear form ϕ or with
a nondegenerate quadratic form q. There are isomorphisms of the following four
types:

M(P, ψ)⊗ (M, ϕ) ∼= M(P ⊗M, ψ ⊗ ϕ) ,
M(P, ψ)⊗ (M, q) ∼= H[P ⊗M ] ,

H[P ]⊗ (M, ϕ) ∼= H[P ⊗M ] ,
H[P ]⊗ (M, q) ∼= H[P ⊗M ] .

Proof. The bilinear space M(P, ψ)⊗ (M, ϕ) is the module (P ∗ ⊗M)⊕ (P ⊗M)
provided with the bilinear form χ such that

χ
(
(f ⊗ x, z ⊗ y), (f ′ ⊗ x′, z′ ⊗ y′)

)
= f(z′)ϕ(x, y′) + f ′(z)ϕ(y, x′) + ψ(z, z′)ϕ(y, y′) ;

it is clear that (P ∗⊗M)⊕ 0 is a totally isotropic submodule, and that 0⊕(P⊗M)
is a supplementary submodule; if the former submodule were not equal to its
orthogonal submodule, there should exist a nonzero element in 0 ⊕ (P ⊗M) that
would be orthogonal to it; this would mean the existence of a nonzero element
of P ⊗M that should be annihilated by all linear forms f ′ ⊗ dϕ(x′) ; but this is
impossible, because all the modules under consideration are finitely generated and
projective, and the linear mapping

P ∗ ⊗M −→ (P ⊗M)∗ , f ′ ⊗ x′ �−→ f ′ ⊗ dϕ(x′)
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is an isomorphism; we conclude that (P ∗ ⊗ M) ⊕ 0 is equal to its orthogonal
submodule; thus from (2.5.5) we deduce the existence of an isomorphism of the
first type.

For the second and third types a similar argument shows that (P ∗⊗M)⊕ 0
is still a totally isotropic submodule which is equal to its orthogonal submodule;
here it leads to an isomorphism onto H[P ∗⊗M ]. Nevertheless we must remember
that H[P ∗⊗M ] is isomorphic to H[(P ∗⊗M)∗], and that (P ∗⊗M)∗ is isomorphic
to P ⊗M∗, therefore to P ⊗M because of the isomorphism dq or dϕ from M onto
M∗. To treat the fourth type, remember that H[P ]⊗ (M, q) is the same thing as
H[P ]⊗ (M, bq). �

2.6 Orthogonal decompositions of quadratic spaces

A submodule P of a quadratic or bilinear module is called an orthogonal summand
if P⊥ contains a supplementary submodule. When M is said to be the orthogonal
sum of subspaces P and Q, it must be understood that this sum is direct and
that P and Q are orthogonal; in this case the quadratic or bilinear form on M is
nondegenerate if and only if its restrictions to P and Q are both nondegenerate
(see (2.4.3)); thus the next proposition is an immediate consequence of (2.3.8).

(2.6.1) Proposition. Let (M, q) be a quadratic space (see Definition (2.5.1)), M ′

a submodule of M , and q′ the restriction of q to M ′. These two assertions are
equivalent:
(a) (M ′, q′) is a quadratic space;
(b) (M ′, q′) is an orthogonal summand of (M, q).

Besides, the analogous statement for bilinear spaces is also true.

Quadratic spaces over local rings

(2.6.2) Theorem. Let K be a local ring with maximal ideal m, and (M, q) a quad-
ratic space over K.
(a) If 2 is invertible in K, then (M, q) has an orthogonal basis (a basis in which

the elements are pairwise orthogonal).
(b) If 2 belongs to m, the rank of M is even and (M, q) is an orthogonal sum of

submodules of rank 2. In every one of these submodules there is an element
x such that q(x) is invertible.

Proof. Let r be the rank of M ; we can suppose r > 0. Let us first assume that
2 is invertible in K. If q(x) belonged to m for all x ∈ M , then bq(x, y) should
belong to m for all x and y, whence the inclusion Im(dq) ⊂ mM∗ contrary to
the nondegeneracy of q. Consequently there is some e1 in M such that q(e1) is
not in m. Let M ′ be the submodule generated by e1; the restriction of q to M ′ is
nondegenerate because bq(e1, e1) = 2q(e1) is invertible; thus (2.6.1) implies that
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M is the orthogonal sum of M ′ and a submodule M ′′. We complete the proof by
induction on r; when M ′′ �= 0, by the induction hypothesis there is an orthogonal
basis (e2, e3, . . . , er) in M ′′, whence the orthogonal basis (e1, e2, . . . , er) in M .

Now let us assume that 2 belongs to m. Let (e1, e2, . . . , er) be any basis of
M ; it is impossible that all bq(ei, ej) belong to m (for the same reason as above);
consequently there exists (i, j) such that bq(ei, ej) is not in m; and moreover i �= j
because bq(ei, ei) = 2q(ei) belongs to m; consequently the rank of M is not 1, and
we can suppose that i = 1 and j = 2. Let M ′ be the submodule generated by e1

and e2, and q′ the restriction of q to M ′; the matrix of dq′ relatively to (e1, e2)
and the dual basis is made of the four entries bq(ei, ej) with i and j in {1, 2};
consequently its determinant 4q(e1)q(e2) − bq(e1, e2)2 is invertible; this proves
that q′ is nondegenerate. Thus (2.6.1) implies that M is the orthogonal sum of M ′

and a submodule M ′′ of rank r− 2. As above, an induction on r proves that M is
an orthogonal sum of submodules of rank 2. Let us prove that, for instance, the
submodule generated by e1 and e2 contains an element x such that q(x) does not
belong to m; if q(e1) and q(e2) both belong to m, then q(e1 + e2) does not belong
to it, because it is equal to q(e1) + q(e2) + bq(e1, e2) . �

When K is any ring in which 2 is invertible, with every invertible a ∈ K×

we associate the quadratic space 〈a〉 defined in this way: it is the module K pro-
vided with the quadratic form x �−→ ax2/2 ; thus the associated bilinear form
is (x, y) �−→ axy. If a1, a2, . . . , an are invertible elements of K, the notation
〈a1, a2, . . . , an〉 means 〈a1〉 ⊥ 〈a2〉 ⊥ · · · ⊥ 〈an〉 ; it is the quadratic space
Kn with quadratic form (x1, x2, . . . , xn) �−→

∑n
i=1 aix

2
i /2 ; the associated ma-

trix is the diagonal matrix in which the entries on the diagonal are the coeffi-
cients a1, a2, . . . , an. Theorem (2.6.2)(a) says that every quadratic space over a
local ring K in which 2 is invertible, is isomorphic to some 〈a1, a2, . . . , an〉, with
a1, a2, . . . , an all in K×.

But when 2 is not invertible in the local ring K, according to Theorem
(2.6.2)(b) we need quadratic spaces K2 with quadratic forms (x, y) �−→ ax2+bxy+
cy2 such that b is invertible (because 4ac− b2 must be invertible); we can require
that a is invertible; but when the residue field K/m has cardinal 2, we cannot
always require that a and c are both invertible. Yet we can require b = 1; indeed

ax2 + bxy + cy2 = ax2 + xy′ + c′y′2 if y′ = by and c′ = cb−2 .

For bilinear spaces there is a theorem parallel to (2.6.2).

(2.6.3) Theorem. Let (M, ϕ) be a bilinear space over a local ring K with maximal
ideal m.
(a) If ϕ(x, x) belongs to m for all x ∈ M , then 2 is not invertible in K, the

rank of M is even, and (M, ϕ) is an orthogonal sum of bilinear subspaces
of rank 2.

(b) If ϕ(x, x) is invertible for some x ∈ M , then (M, ϕ) admits an orthogonal
basis.
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Proof. If ϕ(x, x) belongs to m for all x ∈M , the equality

2 ϕ(x, y) = ϕ(x + y, x + y)− ϕ(x, x) − ϕ(y, y)

shows that ϕ(x, y) would belong to m for all x, y ∈M if 2 were invertible in K, in
contradiction with the nondegeneracy of ϕ. Therefore 2 cannot be invertible. In
this case the argument presented in the second part of the proof of (2.6.2) shows
that (M, ϕ) is an orthogonal sum of subspaces of rank 2.

If M contains an element e1 such that ϕ(e1, e1) is invertible, we proceed as
in the first part of the proof of (2.6.2), because the hyperplane orthogonal to e1

allows us to make an induction on the rank r of M , provided that it contains an
element e2 such that ϕ(e2, e2) is invertible. Unfortunately if 2 is not invertible in
K (and r > 1), it may happen that ϕ(y, y) is never invertible when y runs through
this hyperplane. Nevertheless this hyperplane certainly contains two elements e2

and e3 such that ϕ(e2, e3) is invertible, whereas ϕ(e2, e2) and ϕ(e3, e3) belong to
m. Let us set e′1 = e1 + e2 and e′2 = ϕ(e2, e3)e1 − ϕ(e1, e1)e3 , so that

ϕ(e′1, e
′
2) = 0 , ϕ(e′1, e

′
1) = ϕ(e1, e1) + ϕ(e2, e2) ∈ K× ,

ϕ(e′2, e
′
2) = ϕ(e2, e3)2ϕ(e1, e1) + ϕ(e1, e1)2ϕ(e3, e3) ∈ K×.

Since ϕ(e′1, e
′
1) is invertible, and since the hyperplane orthogonal to e′1 contains an

element e′2 such that ϕ(e′2, e
′
2) is invertible, the induction on r is still possible. �

Zariski extensions

Let {s1, s2, . . . , sn} be a set of elements of K that generates K as an ideal; remem-
ber that Ksi (for i = 1, 2, . . . , n) is the ring of fractions of K with denominator a
power of si, and that the direct product L =

∏n
i=1 Ksi is a faithfully flat extension

of K (see (1.10.6)), which is called a Zariski extension of K.
If K −→ K ′ is a faithfully flat extension of K, then (M, q) is a K-quadratic

space if and only if K ′ ⊗K (M, q) is a K ′-quadratic space. Indeed M is a finitely
generated projective K-module if and only if K ′ ⊗M is a finitely generated pro-
jective K ′-module (see (1.9.10)); and (2.3.2) states that q is nondegenerate if and
only if its extension q′ to K ′ ⊗M is nondegenerate.

We shall also need the following lemma.

(2.6.4) Lemma. Let (M, q) be a quadratic module, and e1, e2, . . . , er some elements
of M , and let δ be the determinant of the matrix (bq(ej , ek)) (with j and k in
{1, 2, . . . , r}). If δ is not a divisor of zero, then e1, e2, . . . , er are linearly indepen-
dent over K. If δ is invertible in K, the free module generated by e1, . . . , er is an
orthogonal summand of M .

Proof. Let λ1, λ2, . . . , λr be elements of K such that
∑r

j=1 λjej = 0. If in the
matrix (bq(ej , ek)) we multiply the first line by λ1, this line becomes a linear
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combination of the others; consequently its determinant λ1δ vanishes. When δ is
not a divisor of zero, we realize that λ1 = 0. Similarly λj = 0 for j = 2, . . . , r. When
δ is invertible, the restriction of q to the free submodule generated by e1, . . . , er is
nondegenerate, and (2.6.1) implies that it is an orthogonal summand of M . �

The next theorem is a global version of (2.6.2) for a ring K that has no longer
to be a local ring.

(2.6.5) Theorem. Let (M, q) be a quadratic space of constant rank.
(a) If 2 is invertible in K, there exists a Zariski extension L of K such that the

L-quadratic space L⊗ (M, q) has an orthogonal basis.
(b) If 2 is not invertible in K, the rank of M is even, and there exists a Zariski

extension L of K such that the L-quadratic space L⊗ (M, q) is an orthogonal
sum of free submodules of rank 2; moreover, if q′′ means the extension of q
to L ⊗M , in each of these submodules there exists a basis (x, y) such that
q′′(x) is invertible in L.

Proof. Since M has a constant rank r over K, according to (1.12.12) every exten-
sion K ′⊗M has the same constant rank r over K ′. If we find in K ′⊗M a family
of vectors (e′1, e

′
2, . . . , e

′
r) such that the determinant of the matrix bq′(e′j , e

′
k) is in-

vertible, this family generates a free submodule of rank r that it is an orthogonal
summand (see (2.6.4)), therefore equal to K ′ ⊗M ; in other words, this family is
a basis of K ′ ⊗M .

We first suppose that 2 is invertible in K. For every maximal ideal m of K,
Mm has an orthogonal basis made of fractions ej/tj (where j = 1, 2, . . . , r); this
implies that each q(ej) is outside m, and that the equality tj,kbq(ej , ek) = 0 holds
for some tj,k outside m whenever j < k. Let us set

sm =
r∏

j=1

q(ej)
∏
j<k

tj,k ;

we consider the ring Ksm and the module of fractions Msm ; according to the above
explanations, the r fractions ej/1 make up an orthogonal basis of this module. Now
K is generated as an ideal by the family of all factors sm; consequently there exists
a finite subfamily (s1, s2, . . . , sn) that generates K as an ideal; for i = 1, 2, . . . , n
there exists a family (ei,1, ei,2, . . . , ei,r) of elements of M such that the fractions
ei,j/1 constitute an orthogonal basis of Msi . Let us set

L =
n∏

i=1

Ksi , whence L⊗M =
n∏

i=1

Msi ;

for j=1,2,...,r, let e′j be the element of L⊗M equal to (e1,j/1, e2,j/1, . . . , en,j/1);
the r elements e′j constitute an orthogonal basis of L⊗M .
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When 2 is not invertible in K, there is at least one maximal ideal that does
not contain 2, and consequently the constant rank r of M must be even; let us
set r = 2r′. If m is any maximal ideal of K, from Theorem (2.6.2) we deduce the
existence of a family (e1, e2, . . . , er) of elements of M satisfying all the following
properties; first for j′ = 1, 2, . . . , r′, the elements

q(e2j′−1) and 4 q(e2j′−1)q(e2j′ ) − bq(e2j′−1, e2j′)2

are outside m; when 2 is not in m, we can even require that bq(e2j′−1, e2j′) is an-
nihilated by some element of K outside m, and consequently q(e2j′ ) is also outside
m ; but when 2 belongs to m, the previous assertion means that bq(e2j′−1, e2j′) is
outside m ; secondly, whenever j < k and (j, k) is not a pair (2j′ − 1, 2j′) with
j′ = 1, 2, . . . , r′, there exists tj,k outside m such that tj,kbq(ej , ek) = 0 . For
convenience we set tj,k = 1 when (j, k) = (2j′ − 1, 2j′). Let us also set

sm =
r′∏

j′=1

(
q(e2j′−1) (4 q(e2j′−1)q(e2j′ )− bq(e2j′−1, e2j′)2

) ∏
j<k

tj,k ;

the family of all elements sm generates K as an ideal, and contains a finite sub-
family (s1, s2, . . . , sn) that already generates K; the proof ends in the same way
as in the previous case. �

Free quadratic extensions

A free quadratic extension of K is an algebra isomorphic to the quotient of K[Z]
by the ideal generated by some polynomial Z2−βZ +γ the discriminant of which
(that is β2 − 4γ) is invertible in K. It admits a basis (1, z) in which z (the image
of Z) satisfies the equality z2 = βz − γ. It is obviously a faithfully flat extension.
Quadratic extensions (whether free or not) shall be presented in 3.4 with more
generality.

If the polynomial Z2− βZ + γ admits a root κ in K, then κ′ = β− κ is also
a root, and the difference κ−κ′ is invertible because it is a square root of β2−4γ.
By setting ε = (z − κ)(κ′ − κ)−1 and ε′ = (z − κ′)(κ− κ′)−1 we get another basis
(ε, ε′) of K[z] because ε + ε′ = 1 and κ′ε + κε′ = z. Since εε′ = 0, these ε and
ε′ are idempotents, and there is an algebra isomorphism K[z]→ K ×K mapping
ε and ε′ respectively to (1, 0) and (0, 1). Conversely if there is an isomorphism
K[z]→ K×K, this isomorphism maps z to an element (κ, κ′) ∈ K×K such that
(κ, κ′)2 = β(κ, κ′)− (γ, γ) ; thus κ and κ′ are roots of Z2 − βZ + γ.

With free quadratic extensions we can improve the previous results.

(2.6.6) Proposition. Let (M, q) be a quadratic space, with M a finitely generated
projective module of even constant rank. There exists a faithfully flat extension L
of K such that L⊗ (M, q) is isomorphic to the hyperbolic space H[P ] derived from
a free L-module P .
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Proof. According to (2.6.5), after a Zariski extension of K we get an orthogonal
sum of free modules of rank 2. Since successive faithfully flat extensions K → K ′

and K ′ → K ′′ give a faithfully flat extension K → K ′′, and since any extension
of a hyperbolic space is still a hyperbolic space, it suffices to prove (2.6.6) when
M is a free K-module of rank 2 with a basis (e1, e2) such that q(e1) is invertible
in K. Let us set

a = q(e1) , b = bq(e1, e2) , c = q(e2) ;

b2−4ac is invertible in K because q is nondegenerate. Let K[z] be the free quadratic
extension with an element z such that z2 = bz−ac. In the extension M ′ = K[z]⊗M
we consider the two elements

e′1 = z ⊗ e1 − a⊗ e2 and e′2 = (b− z)⊗ e1 − a⊗ e2 ;

let q′ be the extension of q to M ′; it is easy to verify that

q′(e′1) = q′(e′2) = 0 and bq′(e′1, e
′
2) = a(4ac− b2) ;

since a(4ac−b2) is invertible, e′1 and e′2 generate a free submodule of rank 2 which
is an orthogonal summand (see (2.6.4)), and therefore equal to M ′; consequently
(e′1, e

′
2) is a basis of M ′, and M ′ is a hyperbolic plane.
We conclude that the extension L mentioned in (2.6.6) can be constructed

by means of a Zariski extension followed by at most r′ quadratic extensions if 2r′

is the rank of M . �

(2.6.7) Corollary. Let (M, q) be a quadratic space, with M a finitely generated
projective module of odd constant rank. There exists a faithfully flat extension L
of K such that L⊗ (M, q) is the orthogonal sum of a free L-hyperbolic space and
an L-quadratic space of rank 1, generated by a vector on which the quadratic form
takes the value 1.

Proof. As stated in (2.6.5)(a), after a Zariski extension we get a quadratic space
with an orthogonal basis; consequently we can already suppose that (M, q) has
an orthogonal basis. Thus M is the orthogonal sum of a quadratic space M ′ of
constant even rank and a quadratic space M ′′ of rank 1. According to (2.6.6)
there is a faithfully flat extension K → L1 such that L1⊗M ′ is hyperbolic. Then
L1 ⊗M ′′ is generated by a vector e′′ on which the quadratic form takes a value γ
invertible in L1; let L = L1[z] be the quadratic extension of L1 with an element z
such that z2 = γ ; after the extension L1 → L, the extended quadratic form takes
the value 1 on zγ−1 ⊗ e′′, and the conclusion follows. �
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2.7 Witt rings

The quadratic and bilinear Witt rings of K shall be constructed as quotients of
a semiring by an ideal, according to the definitions expounded just beneath. This
construction allows us to avoid the Witt–Grothendieck rings. Contrary to the
general conventions of 1.1, the quadratic Witt ring does not always contain a unit
element.

Quotient of a semiring by an ideal

A nonempty set M is called an additive monoid (or additive semigroup) if it is
provided with an associative and commutative addition M ×M → M . It is an
additive group if it contains a zero element and if every x ∈M admits an opposite
−x. Of course every property of additive monoids is also valid for all commutative
monoids, but here we only mention additive monoids because we are especially
interested in semirings. A semiring is an additive monoid M provided with an
associative and distributive multiplication M ×M →M ; here we will also require
the commutativity of the multiplication, although it is not mentioned in the general
definition of a semiring. By definition a zero element 0 of a semiring M must satisfy
both conditions x + 0 = x and 0x = 0 for all x ∈ M ; the latter condition is not a
consequence of the former.

A submonoid of M is a nonempty subset that is stable by addition. A sub-
monoid N is said to be absorbent if for every a ∈M there exists b ∈M such that
a + b belongs to N . When M is a semiring, a submonoid N is called an ideal if
every product belongs to N whenever at least one factor belongs to it.

Let N be a submonoid of M ; two elements a and a′ ∈ M are said to be
equivalent modulo N if there exist b and b′ ∈ N such that a+ b = a′ + b′; it is easy
to prove that an equivalence has been defined in this way; the set of equivalence
classes is called the quotient of M by N and denoted by M/N .

(2.7.1) Proposition. Let M be an additive monoid, N a submonoid, and f the
canonical mapping M → M/N . There exists a unique addition on M/N such
that f(a) + f(b) = f(a + b) for all a, b in M ; it makes M/N become an additive
monoid with zero element, and f(b) = 0 for all b ∈ N . When N is absorbent,
M/N is even an additive group. When M is a semiring, and N an ideal, there
is a unique multiplication on M/N that makes M/N become a semiring with zero
element, and f a morphism of semirings.

The kernel of the quotient mapping f : M → M/N (that is the submonoid
f−1(0)) is the subset of all a ∈ M such that a + b belongs to N for some b ∈ N ;
it may be larger than N , and it always contains the zero element of M if such an
element exists in M . The quotient M/N admits a universal property, stated in the
next proposition.
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(2.7.2) Proposition. Let g : M →M ′ be a morphism from an additive monoid (resp.
semiring) M into an additive monoid (resp. semiring) M ′ with zero element, and
let N be a submonoid (resp. an ideal) of M such that g(b) = 0 for all b ∈ N . There
exists a unique monoid morphism (resp. semiring morphism) ḡ : M/N →M ′ such
that g = ḡ ◦ f .

(2.7.3) Corollary. Let M and M ′ be additive monoids (resp. semirings), N and
N ′ submonoids (resp. ideals) of M and M ′ respectively, f : M → M/N and
f ′ : M ′ −→ M ′/N ′ the quotient mappings, and let g : M → M ′ be a morphism
such that g(N) ⊂ N ′. There exists a unique morphism ḡ : M/N → M ′/N ′ such
that ḡ ◦ f = f ′ ◦ g.

From every commutative monoid M is derived a universal group G(M) as it
is now explained. When M is a semiring, then G(M) is a ring; but contrary to the
conventions accepted in all other contexts, here the name “ring” does not require
the existence of unit elements, it only means that a more regular object has been
derived from some semiring.

(2.7.4) Proposition. Let M be an additive monoid; there is an additive group G(M)
and a monoid morphism f : M → G(M) (unique up to isomorphism) such that,
whatever the additive group G′ and the monoid morphism g : M → G′ may be,
there exists a unique group morphism ḡ : G(M) → G′ satisfying g = ḡ ◦ f .
Two elements a and b of M have the same image in G(M) if and only if the
equality a + c = b + c holds for some c ∈ M . When M is a semiring, there is a
unique multiplication on G(M) that makes G(M) become a ring, and f a semiring
morphism. When g too is a semiring morphism, then ḡ is a ring morphism.

Proof. It is possible to construct G(M) as the quotient of the free additive group
Z(M) with basis (ea)a∈M (see 1.3) by the subgroup generated by all elements
ea+b−ea−eb with a, b ∈M . But another construction of G(M) has become more
popular because it is more practical. Two elements (a, b) and (a′, b′) of M ×M
are said to be equivalent if a + b′ + x = a′ + b + x for some x ∈ M ; it is easy to
prove that an equivalence has been defined in this way. Let G(M) be the set of
equivalence classes, and ((a, b)) the equivalence class of (a, b). It is easy to prove the
existence of an addition on G(M) such that ((a, b))+ ((c+ d)) = ((a+ c, b+ d)) for
all a, b, c, d ∈ M ; thus G(M) is a group with zero element 0 = ((x, x)) (with any
x ∈M), and moreover −((a, b)) = ((b, a)) for all a and b ∈ M . Then the morphism
f is defined by f(a) = ((a + x, x)) (with any x ∈ M); thus ((a, b)) = f(a) − f(b).
All the remainder of the proof is now a matter of easy verification. Indeed when
the morphism g is given, then ḡ necessarily maps every ((a, b)) to g(a)− g(b). And
when M is a semiring, the equalities ((a, b)) = f(a)−f(b) and ((c, d)) = f(c)−f(d)
imply that the only suitable multiplication on G(M) must be defined in this way:

((a, b)) ((c, d)) = ((ac + bd, ad + bc)). �
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It is also easy to prove that (2.7.4) leads to a functor from the category
of additive monoids (resp. semirings) to the category of additive groups (resp.
commutative rings with or without unit element).

When N is an absorbent submonoid (resp. an absorbent ideal) of M , then
M/N is a group (resp. a ring), and the universal property of G(M) allows us to
factorize the quotient mapping M →M/N through G(M). It is easy to prove that
the morphism G(M) → M/N induces an isomorphism G(M)/NG → M/N if NG

is the subgroup generated by the image of N in G(M).

The Witt rings WQ(K) and WB(K)

Let WIQ(K) (resp. WIB(K)) be the set of isomorphy classes of K-quadratic spaces
(resp. K-bilinear spaces), and H(K) (resp. M(K)) the subset of isomorphy classes
of hyperbolic spaces (resp. metabolic spaces). The construction of orthogonal sums
and tensor products provides WIQ(K) (resp. WIB(K)) with an addition and a
multiplication, and from various statements in 2.3 it follows that it is a semiring
with zero element. The semiring WIB(K) always contains a unit element (the
isomorphy class of the bilinear space K with bilinear form (λ, µ) �−→ λµ) whereas
WIQ(K) contains a unit element only if 2 is invertible in K (the isomorphy class
of the quadratic space K with quadratic form λ �−→ λ2/2). Moreover from various
statements in 2.5 it follows that H(K) is an ideal of WIQ(K), and M(K) an ideal
of WIB(K); these ideals are absorbent because of (2.5.8).

By definition the quadratic Witt ring WQ(K) is the quotient WIQ(K)/H(K),
and the bilinear Witt ring WB(K) is the quotient WIB(K)/M(K). The latter
always contains a unit element, whereas the former does not always.

According to this definition the Witt class of a hyperbolic quadratic space
(resp. a metabolic bilinear space) is zero. If a morphism from WIB(K) into an
additive group maps all isomorphy classes of hyperbolic bilinear spaces to 0, the
statement (c) in (2.5.8) shows that it also maps to 0 all isomorphy classes of
metabolic spaces; consequently if we intend to make the quotient of WIB(K) by
a submonoid so as to get a group in which all images of hyperbolic bilinear spaces
vanish, we must make the quotient by a submonoid at least as large as M(K).

Conversely the following question deserves some attention: when the Witt
class of a quadratic (resp. bilinear) space vanishes, is it hyperbolic (resp. meta-
bolic)? This question is equivalent to this one: when the quadratic (resp. bilinear)
spaces A ⊥ B and B are hyperbolic (resp. metabolic), is A itself hyperbolic (resp.
metabolic)? The answer is not positive for all rings K.

The construction of the Witt rings is functorial with respect to K. Let f :
K −→ K ′ be a ring morphism; it is easy to prove that the corresponding change
of basic rings commutes (up to isomorphy) with the two previous operations on
quadratic or bilinear spaces; for instance for quadratic modules we can write

(K ′ ⊗ (M, q)) ⊥ (K ′ ⊗ (M ′, q′)) ∼= K ′ ⊗ (M ⊕M ′, q ⊥ q′) ,

(K ′ ⊗ (M, q))⊗K′ (K ′ ⊗ (M ′, q′)) ∼= K ′ ⊗ (M ⊗M ′, q ⊗ q′) ;
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moreover a hyberbolic (resp. metabolic) K-space gives a hyperbolic (resp. meta-
bolic) K ′-space. Because of (2.7.3) we get a ring morphism WQ(K) → WQ(K ′)
(resp. WB(K) → WB((K ′)); this morphism may be neither injective nor surjec-
tive. Thus we have defined two functors WQ and WB from the category Com(Z)
of commutative rings (with unit element as in 1.1) to the category of commutative
rings (with or without unit element).

(2.7.5) Proposition. By associating with every quadratic space (M, q) the bilinear
space (M, bq) we get a ring morphism WQ(K) → WB(K) ; it is an isomorphism
when 2 is invertible in K.

Proof. The existence of this morphism results from the fact that bq is hyperbolic
whenever q is hyperbolic, and from the following assertions (see 2.4):

bq⊥q′ = bq ⊥ bq′ and bq⊗q′ = bq ⊗ bq′ .

When 2 is invertible in K, every symmetric bilinear form ϕ is associated with a
unique quadratic form, namely x �−→ ϕ(x, x)/2, because for every quadratic form
q we can write q(x) = bq(x, x)/2. �

When this mapping WQ(K) →WB(K) is an isomorphism of rings, we simply
write W(K) for both WQ(K) and WB(K), and we say that W(K) is the Witt
ring of K.

(2.7.6) Remark. Proposition (2.7.5) implies that WB(K) is a WQ(K)-module.
Nevertheless, since WQ(K) does not always contain a unit element, it is more
interesting to observe that WQ(K) is a module over the ring WB(K) with unit
element. Indeed by Proposition (2.4.5) with each couple (ϕ, q′) combining a sym-
metric bilinear form and a quadratic form is associated a tensor product ϕ ⊗ q′

which is a quadratic form, whence a mapping WB(K)×WQ(K) →WQ(K) which
makes WQ(K) become a WB(K)-module. The equality q⊗q′ = bq⊗q′ means that
the operation of WB(K) in the ring WQ(K) is compatible with the ring morphism
WQ(K)→WB(K).

No construction of a universal group in the sense of (2.7.4) is necessary to ob-
tain the Witt groups. Nevertheless it is sometimes useful to consider the universal
groups G(WIQ(K)) and G(WIQ(K)); they are called the Witt–Grothendieck rings
of K and denoted by WGQ(K) and WGB(K); of course the notation WG(K) can
also be used when 2 is invertible in K. The Witt groups can also be constructed
as quotients of the Witt–Grothendieck groups by the subgroups generated by the
classes of hyperbolic spaces; the fact that hyperbolic bilinear spaces are sufficient
to generate the correct subgroup of WGB(K) follows from the statement (c) in
(2.5.8).

Two quadratic (resp. bilinear) spaces A and B have the same class in
WGQ(K) (resp. WGB(K)) if and only if there is a quadratic (resp. bilinear)
space C such that A ⊥ C and B ⊥ C are isomorphic (see (2.7.4)). Therefore the
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mapping WIQ(K)→WGQ(K) is injective if and only if the following cancellation
property holds for every family (A, B, A′, B′) of quadratic spaces: if A ⊥ B and
A′ ⊥ B′ are isomorphic, and also A and A′, then B and B′ too are isomorphic.

In (2.7.7) below it is stated that this cancellation property holds when K is a
field. But in 2.8 we shall realize that it does not hold when K = Z; only indefinite
quadratic spaces (M, q) over Z (in which q is sometimes positive, sometimes neg-
ative) are determined (up to isomorphy) by their Witt–Grothendieck class. When
2 is not invertible in K, it is hard for the mapping WIB(K) → WGB(K) to be
injective, since every metabolic space has the same class in WGB(K) as some
hyperbolic space; for instance in 2.8 it shall not be injective when K is the field
Z/2Z, and when K = Z.

The quadratic Witt ring of a field

First let us state the cancellation property; it is equivalent to the injectiveness of
the canonical mapping WIQ(K) → WGQ(K). It shall be proved more generally
in (8.1.1) and (8.2.1) when K is a local ring.

(2.7.7) Theorem. Let A, B, A′, B′ be four quadratic spaces over a field K; if
A ⊥ B and A′ ⊥ B′ are isomorphic, and A and A′ too, then B and B′ are also
isomorphic.

The cancellation theorem is also a consequence of this powerful Witt theorem,
a proof of which can be read in [Chevalley 1954] Chapter I, or in [Bourbaki 1959,
Algèbre, Chap. 9] §4, no3.

(2.7.8) Theorem. Let (M, q) be a quadratic space over a field K, N any linear
subspace of M , and g : N → M an injective linear mapping such that q(g(x)) =
q(x) for all x ∈ N . Then g extends to an automorphism of (M, q).

To derive (2.7.7) from (2.7.8), we can assume that A ⊥ B and A′ ⊥ B′ are
equal to the same quadratic space (M, q), and then we extend the isomorphism
A→ A′ to an automorphism of (M, q), which must map B = A⊥ onto B′ = A′⊥.

Like (2.7.7), the next proposition (2.7.9) and its corollary (2.7.10) remain
valid when K is a local ring, provided that the word “dimension” is replaced with
“rank”.

(2.7.9) Proposition. Two hyperbolic spaces are isomorphic if and only if they have
the same dimension. A quadratic space has a neutral Witt class if and only if it
is hyperbolic. When two quadratic spaces A and B have the same Witt class, and
dim(A) ≥ dim(B), there is a hyperbolic space H such that A is isomorphic to
B ⊥ H.

Proof. The isomorphy class of the hyperbolic space H[P ] is determined by the
isomorphy class of the linear space P , which depends on dim(P ). This proves the
first statement in (2.7.9), and the second one follows from the third one when
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B = 0. Let us assume the existence of hyperbolic spaces H1 and H2 such that
A ⊥ H1 and B ⊥ H2 are isomorphic, so that A and B have the same Witt class; if
dim(A) ≥ dim(B), then H2 is the orthogonal sum of two hyperbolic subspaces H
and H ′ such that dim(H ′) = dim(H1); this implies that H1 and H ′ are isomorphic.
From (2.7.7) we deduce that A and B ⊥ H are isomorphic. �

By mapping every quadratic space to its dimension, we get a semiring mor-
phism WIQ(K) → N which induces a ring morphism WGB(K) → Z, the image
of which is Z or 2Z according as 2 is invertible in K or not. The notation dim(a)
is still used when a is an element of WGQ(K) or WGB(K). Since all hyperbolic
spaces have even dimension, we still get a ring morphism WQ(K) → Z/2Z. The
next statement is an evident corollary of (2.7.9); it means that a quadratic space
is determined (up to isomorphy) by its Witt class and its dimension.

(2.7.10) Corollary. The canonical ring morphisms WGQ(K) → WQ(K) and
WGQ(K) → Z determine an injective ring morphism from WGQ(K) into
WQ(K)× Z.

When K is a field, a quadratic form over K is said to be anisotropic if the
equality q(x) = 0 implies x = 0. When 2 is invertible in K, such a quadratic form
is weakly nondegenerate. An anisotropic space is a quadratic space provided with
an anisotropic quadratic form. Because of (2.7.9) two anisotropic spaces have the
same Witt class if and only if they are isomorphic. Proposition (2.7.11) means
that the canonical mapping WIQ(K) → WQ(K) induces a bijection from the set
of isomorphy classes of anisotropic spaces onto WQ(K).

(2.7.11) Proposition. When K is a field, every quadratic space (M, q) is the or-
thogonal sum of an anisotropic subspace and a hyperbolic subspace.

Proof. If M contains a nonzero isotropic x, there exists y ∈M such that bq(x, y) �=
0 because Ker(bq) = 0. The restriction of q to the plane H = Kx⊕Ky is nonde-
generate, even hyperbolic (see (2.5.5)), and M = H ⊕H⊥ (see (2.6.1)). Thus the
proof ends with an induction on dim(M). �

The case of a field K of characteristic �= 2 in which every element has a square
root (for instance C) can be settled at once: two quadratic spaces are isomorphic
if and only if they have the same dimension, and consequently WI(K), WG(K)
and W(K) are respectively isomorphic to N, Z and Z/2Z.

2.8 Examples of Witt rings

Three examples of calculations of Witt rings and Witt–Grothendieck rings are
presented here; they involve the field R of real numbers, the finite field Z/2Z and
the ring Z. Some information about W(Q) is later presented in 8.3, and the Witt
rings of all finite fields are calculated in (8.ex.11).
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First example: W(R)

Let q be a quadratic form on a vector space M of finite dimension over R; it
is said to be positive definite if q(x) > 0 whenever x �= 0; this implies that q
is anisotropic, consequently nondegenerate, and that M contains an orthogonal
basis (e1, e2, . . . , er) such that q(ej) = 1 for j = 1, 2, . . . , r; thus the isomorphy
class of this positive definite space (M, q) is determined by its dimension r. And
the same for a negative definite quadratic form. We say that q is indefinite if it
is nondegenerate and neither positive definite nor negative definite. The existence
of orthogonal bases shows that every quadratic space is the orthogonal sum of a
positive definite subspace and a negative definite subspace (perhaps reduced to
0 when the given quadratic form is definite); the following theorem (Sylvester’s
theorem) shows that the isomorphy class of (M, q) is determined by the dimensions
of these two definite subspaces.

(2.8.1) Theorem. Let (M, q) be a real quadratic space, and m (resp. n) the maximal
dimension of a positive definite (resp. negative definite) subspace; in each orthog-
onal basis of M there are always m vectors (resp. n vectors) on which q is positive
(resp. negative).

Proof. This is a consequence of (2.7.8), but it can also be proved in the following
way. If M+ and M− are respectively a positive definite subspace of maximal
dimension m and a negative definite subspace of maximal dimension n, then M+∩
M− = 0, and consequently m+n ≤ r. Now let m′ and n′ be the numbers of vectors
in an orthogonal basis on which q is respectively positive or negative. The former
m′ vectors span a positive definite subspace, whence m′ ≤ m, and the latter n′

vectors span a negative definite subspace, whence n′ ≤ n. Since m′ + n′ = r, we
conclude that m′ = m and n′ = n. �

Let us denote by Gm,n the vector space Rm+n provided with the quadratic form

(x1, x2, x3, . . . , xm+n) �−→ x2
1 + x2

2 + · · ·+ x2
m − x2

m+1 − x2
m+2 − · · · − x2

m+n ;

Sylvester’s theorem means that every real quadratic space is isomorphic to some
Gm,n for a unique couple (m, n). Consequently the semiring WIQ(R) is isomorphic
to the set N× N provided with the following operations:

(m, n) + (m′, n′) = (m + m′, n + n′),
(m, n) (m′, n′) = (mm′ + nn′, mn′ + nm′),

and WG(R) is isomorphic to Z× Z provided with the same operations.
Since Gn,n is hyperbolic (see (2.5.8)), every hyperbolic space is isomorphic to

Gn,n for some n ∈ N (see (2.7.9)). Therefore W(R) is isomorphic to the quotient
of N × N by the ideal J containing all couples (n, n). By means of (2.7.2) it is
easy to prove that the mapping (m, n) �−→ m − n determines and isomorphism
from (N × N)/J onto the ring Z; consequently W(R) is isomorphic to Z, and the
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Witt class of the previous quadratic space (M, q) is determined by the difference
s = m−n which is called its signature. The integers r and s have the same parity,
and conversely m = (r + s)/2 and n = (r − s)/2.

Second example: WQ(Z/2Z) and WB(Z/2Z)

Now we consider K = Z/2Z. Since 2 is not invertible in K, every quadratic space
over K has even dimension. Every hyperbolic quadratic space of dimension 2m
over K is isomorphic to K2m provided with the quadratic form

(x1, x2, . . . , x2m) �−→
m∑

i=1

x2i−1x2i ;

let us denote by H2m the space K2m provided with this hyperbolic quadratic
form. It is easy to prove that every quadratic plane is either hyperbolic (and
consequently isomorphic to H2) or anisotropic, and consequently isomorphic to
K2 provided with the quadratic form

(x1, x2) �−→ x2
1 + x1x2 + x2

2 ;

let us call A2 the plane K2 provided with this anisotropic quadratic form. Because
of (2.5.8) we know that A2 ⊥ A2 is hyperbolic. Let (M, q) be a quadratic space of
nonzero dimension 2m; since it is an orthogonal sum of planes, we realize that it
is isomorphic either to H2m or to A2 ⊥ H2m−2.

Now we must prove that these two quadratic spaces are not isomorphic; this
is a consequence of (2.7.8), but it can also be proved by comparing the numbers
N(2m) and N ′(2m) of isotropic elements respectively in H2m and A2 ⊥ H2m−2;
the number of the other elements, on which the quadratic form takes the value 1,
is respectively 22m −N(2m) and 22m −N ′(2m) . This leads to these induction
formulas:

N(2m + 2) = N(2) N(2m) + (22 −N(2)) (22m −N(2m)),

N ′(2m + 2) = N ′(2) N(2m) + (22 −N ′(2)) (22m −N(2m));

since N(2) = 3 and N ′(2) = 1, we get after some calculations

N(2m) = 22m−1 + 2m−1 �= N ′(2m) = 22m−1 − 2m−1.

(2.8.2) Proposition. A quadratic space (M, q) of nonzero dimension 2m over Z/2Z

is either hyperbolic and isomorphic to H2m, or isomorphic to A2 ⊥ H2m−2; this
depends on whether the number of isotropic elements is larger or smaller than
22m−1.

This proves that WQ(Z/2Z) has only two elements, the neutral class and the
class of A2. Moreover A2 ⊗A2 is hyperbolic because its quadratic form obviously
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vanishes on the 10 elements that can be written as tensor products u ⊗ v. Con-
sequently WQ(Z/2Z) is isomorphic to the additive group Z/2Z provided with the
null multiplication.

Then the injective ring morphism mentioned in (2.7.10) gives an isomorphism
from WGQ(Z/2Z) onto WQ(Z/2Z)×(2Z). Later we shall need precise information
about H4.

(2.8.3) Proposition. The hyperbolic space H4 contains exactly two anisotropic
planes, and H4 is their orthogonal sum.

Proof. Since H4 is isomorphic to A2 ⊥ A2, it is the orthogonal sum of two
anisotropic planes P and P ′. Since N(4) = 10, the 6 nonzero elements of P ∪P ′ are
the only elements of H4 that are not isotropic; consequently no other anisotropic
plane can exist in H4. �

Now let us consider bilinear spaces over K. For every r and m in N we call
Gr and U2m the spaces Kr and K2m provided with these bilinear forms:

((x1, x2, . . . , xr), (x′
1, x

′
2, . . . , x

′
r)) �−→

r∑
i=1

xix
′
i ,

((x1, x2, . . . , x2m), (x′
1, x

′
2, . . . , x

′
2m)) �−→

m∑
i=1

(x2i−1x
′
2i + x2ix

′
2i−1) .

It is clear that every bilinear space admitting an orthogonal basis is isomorphic to
some Gr , and that every orthogonal sum of bilinear spaces of rank 2 that are all
provided with an alternate form, is isomorphic to some U2m . Thus the following
proposition is an immediate consequence of (2.6.3).

(2.8.4) Proposition. Let (M, ϕ) be a bilinear space of dimension r over Z/2Z. When
ϕ is an alternate bilinear form (in other words, when ϕ(x, x) = 0 for all x ∈M),
then r is even and (M, ϕ) is isomorphic to Ur . But when ϕ is not alternate, (M, ϕ)
is isomorphic to Gr .

It follows from (2.8.4) that U2m ⊥ G1 and G2m ⊥ G1 are isomorphic. There-
fore the Witt–Grothendieck class of a bilinear space is determined by its dimension,
and there is an isomorphism WGB(Z/2Z)→ Z.

It is clear that U2m is hyperbolic, and from (2.5.6) we deduce that G2m is
metabolic. Therefore WB(Z/2Z) is isomorphic to Z/2Z ; its unit element is the
class of G1 .

For every quadratic form q over Z/2Z, the associated bilinear form bq is
alternate; therefore the canonical morphism WQ(Z/2Z) → WB(Z/2Z) is null.
Besides, the action of the ring WB(Z/2Z) (resp. WGB(Z/2Z)) in WQ(Z/2Z) (resp.
WGQ(Z/2Z)) is determined by the fact that the action of the unit element is the
identity.
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Later we shall also need the following lemma.

(2.8.5) Lemma. Let (M, ϕ) be a bilinear space over Z/2Z; there exists a unique
ξ ∈M such that ϕ(x, x) = ϕ(ξ, x) for all x ∈M .

Proof. The bilinear form associated with the quadratic form x �−→ ϕ(x, x) is 2ϕ
which here is null. Consequently this quadratic form is also a linear form. Lemma
(2.8.5) means that this linear form is equal to dϕ(ξ) for a unique ξ ∈ M ; indeed
dϕ is a bijection from M onto Hom(M, K). �

Third example: WQ(Z) and WB(Z)

The Witt rings of Z raise more difficulties and require the two theorems (2.8.6)
and (2.8.7), the proof of which is wildly too long to be given here.

(2.8.6) Theorem. Every projective module over Z (or more generally over any
principal domain) is free. And if it has a finite rank r, all its submodules are free
of rank ≤ r.

Let ϕ be a weakly nondegenerate symmetric bilinear form on a free Z-module
M of finite rank r. By the extension Z → R we get a nondegenerate bilinear
form on R ⊗M ; its class in W(R) is determined by its signature s, and we set
m = (r + s)/2 and n = (r− s)/2 ; the notation (r, s; m, n) will be used up to the
end; ϕ is called definite (resp. indefinite) if mn = 0 (resp. mn �= 0). The words
“definite” and “indefinite” are here only used for weakly nondegenerate forms
(either symmetric bilinear or quadratic forms) on free modules of finite rank.

Besides, let (e1, . . . , er) and (e′1, . . . , e
′
r) be two bases of M , let Λ be the matrix

of the numbers λi,j such that e′j =
∑

i λi,jei, and Φ (resp. Φ′) the matrix of the
numbers ϕ(ei, ej) (resp. ϕ(e′i, e

′
j)). The equality Φ′ = tΛΦΛ is well known (see

(2.ex.3)); since the only invertible elements of Z are ±1, here it implies that Φ and
Φ′ have the same determinant. Consequently det(ϕ), by definition the determinant
of Φ, is a well-defined number, and ϕ is nondegenerate if and only if det(ϕ) = ±1.

Let q be an indefinite quadratic form on M ; does M contain a nonzero
isotropic element x (such that q(x) = 0)? Let us consider the following quadratic
form q on Z3 : q(x1, x2, x3) = x2

1+x2
2−3x2

3 ; by means of the extension Z −→ Z/9Z

it is possible to prove that the answer is negative for this particular quadratic form.
The answer to the general question is given for instance in J.P. Serre’s course in
Arithmetic, referred to as [Serre]. Here we only need the two sufficient conditions
stated in the next theorem; the very long proof is expounded in [Serre], where
several difficult theorems in the beginning chapters lead to a final argument in
Chapter V. §3.1.

(2.8.7) Theorem. Let q be an indefinite quadratic form on the free Z-module M of
rank r. If one of these two conditions is fulfilled, there exists a nonzero x in M
such that q(x) = 0 :
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– if r ≥ 5 (Meyer’s theorem, 1883) ;
– if r ≥ 3 and det(bq) = ±2k for some k ≥ 0.

For a module of rank 2 we use the following easy lemma.

(2.8.8) Lemma. Let q be a quadratic form on a free Z-module M of rank 2. There
exists a nonzero x such that q(x) = 0 if and only if −det(bq) is a square.

Proof. We can suppose that M = Z2 and q(x, y) = ax2 + bxy + cy2 , whence
−det(bq) = b2 − 4ac . If b2 − 4ac is the square of d, then q(−b ± d, 2a) = 0 ; this
gives the desired result when a �= 0 ; but when a = 0, we have trivially q(1, 0) = 0.
Conversely we use the equality 4(b2− 4ac) y2 = (2ax + by)2 − 4a q(x, y) ; it shows
that b2− 4ac is a square when q(x, y) = 0 and y �= 0 ; when q(x, 0) = 0 and x �= 0,
then a = 0 and the conclusion is trivial. �

When q runs through Quad(M, Z), the mapping q �−→ bq is a bijection from
Quad(M, Z) onto the set of all symmetric bilinear forms ϕ such that ϕ(x, x) is
even for all x in M ; such a symmetric bilinear form is said to be of even type, and
the other ones are said to be of odd type. Now we shall almost forget the quadratic
forms and replace them with symmetric bilinear forms of even type. If (e1, . . . , er)
is a basis of M , ϕ has even type if and only if the r numbers ϕ(ei, ei) are even.

After these preliminaries we define some particular bilinear spaces over Z.
First Gm,n and H2m are the modules Zm+n and Z2m provided with these sym-
metric bilinear forms ϕ and ψ :

ϕ(x, x′) = x1x
′
1 + x2x

′
2 + · · ·

+ xmx′
m − xm+1x

′
m+1 − xm+2x

′
m+2 − · · · − xm+nx′

m+n ,

ψ(x, x′) = x1x
′
2 + x2x

′
1 + x3x

′
4 + x4x

′
3 + · · ·+ x2m−1x

′
2m + x2mx′

2m−1 ;

in these equalities x and x′ mean (x1, . . . , xr) and (x′
1, . . . , x

′
r) with r equal to

m + n or 2m. The space Gm,n has odd type; it is metabolic if and only if m = n
(see (2.5.6)). The space H2m has even type and is hyperbolic.

Now let r be a positive integer divisible by 4, (e1, . . . , er) the canonical basis
of Rr, ϕ̃ the R-bilinear form on Rr defined by ϕ̃(x, x′) =

∑r
i=1 xix

′
i, and Pr the

subgroup of all elements (x1, . . . , xr) ∈ Rr satisfying these three conditions: the r
numbers 2xi are integers, they all have the same parity, and

∑r
i=1 xi is an even

integer.

(2.8.9) Lemma. The following r elements b1,. . . ,br constitute a basis of the free
additive group Pr :

b1 =
1
2
(e1 − e2 − e3 − · · · − er−1 + er) , b2 = e1 + e2

and bi = ei−1 − ei−2 for i = 3, 4, . . . , r.
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Moreover ϕ̃ determines by restriction to Pr a Z-bilinear form ϕ : Pr × Pr → Z

which is nondegenerate, positive definite, and which has even type if and only if r
is divisible by 8.

Proof. Let (λi,j) be the matrix defined by bj =
∑

i λi,jei ; an easy calculation
shows that its determinant is −1. Obviously all bj are in Pr. If x is any element of
Pr, then x− (2xr)b1 is another element y such that yr = 0, all yi are integers and
their sum is even; this allows us to prove that y is in the subgroup generated by
(b2, b3, . . . , br). Consequently (b1, . . . , br) is a Z-basis of Pr. Since the r numbers
2xi are integers of the same parity, it is clear that ϕ̃(x, bj) is an integer for j =
2, 3, . . . , r; the same assertion is true when j = 1 because

∑r
i=1 xi = 2(x1 +

xr) − 2ϕ̃(x, b1). This proves that ϕ̃ induces a Z-bilinear form ϕ on Pr, which is
obviously positive definite. It is nondegenerate because det(ϕ) = (det(λi,j))2 = 1.
Since ϕ(b1, b1) = r/4 and ϕ(bi, bi) = 2 for i = 2, 3, . . . , r, we conclude that ϕ has
even type if and only if r is divisible by 8. �

A serious study of the bilinear spaces Pr is proposed in (2.ex.25); except P4

which is isomorphic to G4,0 , no other bilinear space Pr admits orthogonal bases.
Here we are especially interested in P8. The bilinear space Pr can also be defined
by means of the matrix (ϕ(bi, bj)) (often called Milnor’s matrix when r = 8); the
entries ϕ(bi, bi) are calculated just above; and ϕ(bi, bj) with i < j is equal to −1
when (i, j) is equal to (i, i + 2) with i = 1, 2, or equal to (i, i + 1) with i ≥ 3; all
other entries with i < j are 0.

Now we calculate the Witt groups of Z.

(2.8.10) Lemma. Let ϕ be a nondegenerate symmetric bilinear form of odd (resp.
even) type on a free Z-module M containing a nonzero x such that ϕ(x, x) = 0.
This x is contained in a submodule of (M, ϕ) isomorphic to G1,1 (resp. H2).
According to (2.6.1) this submodule is an orthogonal summand.

Proof. After dividing x by a suitable integer, we can suppose that its components
in a basis of M are coprime integers, so that there exists f ∈ Hom(M, Z) such that
f(x) = 1. Since ϕ is nondegenerate, there exists z in M such that ϕ(x, z) = 1. If
ϕ(z, z) is even, we set y = z − ϕ(z, z)x/2 , whence ϕ(x, x) = ϕ(y, y) = 0 and
ϕ(x, y) = 1. Thus x and y generate a submodule isomorphic to H2. If ϕ(z, z) is
odd, we set

u = z − 1
2
(ϕ(z, z)− 1) x and v = z − 1

2
(ϕ(z, z) + 1) x ;

this implies ϕ(u, u) = −ϕ(v, v) = 1 and ϕ(u, v) = 0. Consequently the submodule
generated by u and v (which contains x = u− v) is isomorphic to G1,1.

When ϕ has odd type, it may happen that ϕ(z, z) is even, and then we
still prove that we can replace z with an element z′ such that ϕ(x, z′) = 1 and
ϕ(z′, z′) is odd. Indeed let w be any element such that ϕ(w, w) is odd; if we set
z′ = w + (1− ϕ(x, w))z , all the required conditions are fulfilled. �
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(2.8.11) Theorem. Every indefinite Z-bilinear space A of odd type is isomorphic to
some Gm,n .
Of course m and n are the integers determined by the rank r and the signature s
as above.

Proof. The determinant of the bilinear form on A is ±1, and moreover r ≥ 2 since
A is indefinite; consequently we can apply (2.8.7) or (2.8.8) to A; and in all cases
we deduce from (2.8.10) that A contains a submodule isomorphic to G1,1 . When
r > 2, we make an induction on r. Indeed A is isomorphic to some orthogonal
sum G1,1 ⊥ B which we can view as G1,0 ⊥ B ⊥ G0,1 ; one of the bilinear spaces
G1,0 ⊥ B or B ⊥ G0,1 is still indefinite of odd type, and we can apply to it the
induction hypothesis. �

(2.8.12) Theorem. The natural morphism WB(Z) →W(R) is an isomorphism; in
other words, the Witt class of a bilinear Z-space is determined by its signature.

Proof. The existence of the bilinear spaces Gm,n proves that this morphism is
surjective, and we have just to prove that it is injective. Let A be a bilinear space
of signature 0, not reduced to 0, and therefore indefinite of even rank; from (2.8.7),
(2.8.8) and (2.8.10), and by induction on the rank, we deduce that A is isomorphic
to an orthogonal sum of planes isomorphic to G1,1 or H2; this proves that A is
metabolic. �

From now on, WB(Z) and W(R) are identified with Z.

(2.8.13) Theorem. The natural morphism WQ(Z) → WB(Z) (corresponding to
q �−→ bq) is injective, and its image is 8Z.

Proof. Let (M, q) be a Z-quadratic space of null signature; as explained in the
proof of (2.8.12), (M, bq) is an orthogonal sum of planes isomorphic to H2 (not to
G1,1 since bq has even type); consequently (M, q) is hyperbolic. This proves the
injectiveness of the morphism WQ(Z) → Z. The existence of P8 (see (2.8.9)) proves
that 8Z is contained in its image. Thus it remains to prove that the signature of
a Z-quadratic space (M, q) is always divisible by 8.

Indeed from (2.8.11) we derive that (M,bq)⊥G1,1 is isomorphic to Gm+1,n+1;
we write ϕ′ and ϕ′′ for the symmetric bilinear forms on G1,1 and Gm+1,n+1 . From
(2.8.5) and the extension Z → Z/2Z we derive the existence of an element ξ′′ in
Gm+1,n+1 such that

∀x′′ ∈ Gm+1,n+1 ϕ′′(x′′, x′′) ≡ ϕ′′(ξ′′, x′′) modulo 2Z ;

moreover all the elements that can play the same role as ξ′′ are the elements
ξ′′ + 2x′′ with an arbitrary x′′ ∈ Gm+1,n+1 . Now observe that

ϕ′′(ξ′′ + 2x′′, ξ′′ + 2x′′) = ϕ′′(ξ′′, ξ′′) + 4ϕ′′(ξ′′, x′′) + 4ϕ′′(x′′, x′′)
≡ ϕ′′(ξ′′, ξ′′) + 4ϕ′′(x′′, x′′) + 4ϕ′′(x′′, x′′) modulo 8Z

≡ ϕ′′(ξ′′, ξ′′) modulo 8Z ;
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consequently the image of ϕ′′(ξ′′, ξ′′) in Z/8Z is well determined. And if we find
analogous elements ξ and ξ′ in the bilinear spaces (M, bq) and G1,1, we can write

ϕ′′(ξ′′, ξ′′) ≡ bq(ξ, ξ) + ϕ′(ξ′, ξ′) modulo 8Z.

Since bq has even type, we can choose ξ = 0. In G1,1 we can choose ξ′ = (1, 1),
whence ϕ′(ξ′, ξ′) = 0. Similarly we can choose ξ′′ = (1, 1, . . . , 1, 1, . . . , 1), whence
ϕ′′(ξ′′, ξ′′) = m− n = s . All this proves that s belongs to 8Z. �

Now let us prove that an indefinite bilinear form is determined (up to iso-
morphy) by its rank, its signature and its type (even or odd). For the odd type,
this follows from (2.8.11); for the even type, it follows from the next theorem.

(2.8.14) Theorem. Let A be an indefinite Z-bilinear space of even type, r its rank, s
its signature, m and n as above; we know that s = 8k for some k ∈ Z. When s = 0,
then A is isomorphic to Hr. When s > 0 (resp. s < 0), then A is isomorphic to

H2n ⊥ (P8 ⊗Gk,0) (resp. H2m ⊥ (P8 ⊗G0,−k)).

Proof. The case s = 0 has been settled in the proof of (2.8.13); therefore we
suppose s �= 0. From (2.8.7) and (2.8.10) we deduce that A is isomorphic to some
orthogonal sum H2 ⊥ B, and Theorem (2.8.14) states that it must be isomorphic
to H2 ⊥ C, where C is either H2n−2 ⊥ (P8 ⊗Gk,0) or H2m−2 ⊥ (P8 ⊗G0,−k). It
is easy to check that B and C have the same rank and the same signature; thus
(2.8.11) implies that G1,1 ⊥ B and G1,1 ⊥ C are isomorphic; the proof ends with
the following more difficult lemma.

(2.8.15) Lemma. If B and C are two Z-bilinear spaces of even type such that
G1,1 ⊥ B and G1,1 ⊥ C are isomorphic, then H2 ⊥ B and H2 ⊥ C too are
isomorphic.

Proof. Let 1
2Z be the free additive group of integers and half integers, L a free Z-

module with basis (e′1, e
′
2), and β : L×L→ 1

2Z the symmetric Z-bilinear mapping
such that

β(e′1, e
′
1) = β(e′2, e

′
2) = 0 and β(e′1, e

′
2) = 1/2.

Let us set e1 = e′1 + e′2 and e2 = e′1 − e′2; thus we get:

β(e1, e1) = −β(e2, e2) = 1 and β(e1, e2) = 0 ;

consequently e1 and e2 generate a submodule which we can identify with G1,1.
Secondly it is easy to verify that 2L is the subgroup of all x ∈ G1,1 such that β(x, x)
belongs to 2Z. Thirdly L/2L is isomorphic to (Z/2Z)2, and consequently there are
exactly three groups strictly intermediate between L and 2L; beside G1,1 there
are the subgroup H ′

2 generated by (2e′1, e′2) and the subgroup H ′′
2 generated by

(e′1, 2e′2), both isomorphic to H2. Here is a fourth observation: β(x, x′) is an integer
whenever x belongs to L and x′ to 2L, and thus β determines an isomorphism from
L onto the dual module Hom(2L, Z).
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Now we consider B and C, the orthogonal sums L ⊥ B and L ⊥ C (in the
category of symmetric bilinear mappings with target 1

2Z) and the bilinear map-
pings ϕ and ψ associated with L ⊥ B and L ⊥ C. The previous four observations
remain valid for L ⊥ B and L ⊥ C ; thus L ⊥ B contains a subgroup identified
with G1,1 ⊥ B, whereas (2L) ⊥ B is the subgroup of all y ∈ G1,1 ⊥ B such that
ϕ(y, y) belongs to 2Z (indeed B has even type); there are three subgroups strictly
intermediate between L ⊥ B and 2L ⊥ B, which are all Z-bilinear spaces, and
moreover ϕ determines an isomorphism between L ⊥ B and Hom(2L ⊥ B, Z). Let
us assume that f is an isomorphism from G1,1 ⊥ B onto G1,1 ⊥ C ; consequently

∀y ∈ G1,1 ⊥ B, ∀z ∈ G1,1 ⊥ C, ϕ(y, f−1(z)) = ψ(f(y), z).

Since 2L is the subgroup of all x ∈ G1,1 such that β(x, x) ∈ 2Z, from f we derive
by restriction an isomorphism from 2L ⊥ B onto 2L ⊥ C, whence an isomorphism
from Hom(2L ⊥ C, Z) onto Hom(2L ⊥ B, Z) , and finally an isomorphism g from
L ⊥ C onto L ⊥ B. From the construction of g we deduce that

∀y ∈ 2L ⊥ B, ∀z ∈ L ⊥ C, ϕ(y, g(z)) = ψ(f(y), z) ;

this proves that g extends f−1. Consequently g−1 is an isomorphism intertwining
ϕ and ψ. It must map H ′

2 ⊥ B onto a subgroup strictly intermediate between
L ⊥ C and (2L) ⊥ C, therefore either H ′

2 ⊥ C or H ′′
2 ⊥ C. In both cases H2 ⊥ B

is isomorphic to H2 ⊥ C. �

Let us assume that the bilinear spaces A and B have the same Witt–Grothen-
dieck class; thus A ⊥ C and B ⊥ C are isomorphic for some C, and the ring exten-
sion Z → R shows that A and B have the same rank and the same signature. Con-
sequently a pair of integers (r, s) can be associated with every Witt–Grothendieck
class.

(2.8.16) Proposition. By mapping every Witt–Grothendieck class to the pair (r, s)
we get injective ring morphisms WGB(Z) → Z × Z and WGQ(Z) → Z × Z. The
former gives all pairs (r, s) such that r and s have the same parity, and the latter
gives all (r, s) such that r is even and s divisible by 8.

Proof. If the bilinear spaces A and B have the same rank and the same signature,
then A ⊥ G1,1 and B ⊥ G1,1 are isomorphic because of (2.8.11); consequently A
and B have the same class in WGB(Z). If moreover A and B have even type, we
deduce from (2.8.14) that A ⊥ H2 and B ⊥ H2 are isomorphic, and that A and
B have the same class in WGQ(Z). The previous results show which couples (r, s)
can be obtained in each case. �

It is clear that the canonical mapping WIB(Z) → WGB(Z) is not injective
since G1,1 and H2 have the same image in WGB(Z); this is banal because G1,1

is metabolic but not hyperbolic. It is less banal that G12,0 and P12 (both posi-
tive definite of odd type) have the same class in WGB(Z) although they are not
isomorphic (see (2.ex.25)).
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The analogous mapping WIQ(Z) → WGQ(Z) neither is injective; indeed
P8 ⊥ P8 and P16 are not isomorphic (see (2.ex.25)). For every multiple r of 8, let
Nr be the number of isomorphy classes of positive definite Z-quadratic spaces of
rank r; all these quadratic spaces have the same class in WGQ(Z). Witt already
knew that N8 = 1 and N16 = 2, and in [Nimeier 1973] it is stated that N24 = 24.
The subsequent numbers Nr (still unknown) are discouragingly great; for instance
N32 > 8× 107 (see [Serre]).

Exercises

(2.ex.1) Let M and N be two K-modules; assume that M is a torsion module
(for every x ∈ M there is a nonzero λ ∈ K such that λx = 0) and that N is a
torsionless module (the equality λy = 0 implies λ = 0 if y is a nonzero element of
N). Prove that all linear mappings M → N and all quadratic mappings M → N
are null.

(2.ex.2) Let M and N be K-modules, and q : M → N a K-quadratic mapping;
prove that

∀x, y ∈M , q(x + y) + q(x − y) = 2q(x) + 2q(y).

Conversely let M and N be additive groups, and q : M → N a mapping
satisfying the above equality for all x and y ∈ M ; prove that the mapping x �−→
2q(x) is Z-quadratic.
Hint. Prove that 2q(0) = 0 and that q(nx) = n2q(x) + (1− n)q(0) for all x ∈ M
and all n ∈ Z; then set

b(x, y) = q(x + y)− q(x)− q(y) and t(x, y, z) = b(x, y + z)− b(x, y)− b(x, z) ;

prove that b(2x, y) = b(x, 2y) = 2b(x, y) + q(0) , whence

t(2x, y, z) = t(x, 2y, 2z) = 2t(x, y, z)− q(0) ;

since t(x, y, z) is invariant by all permutations of {x, y, z}, the vanishing of
2t(x, y, z) follows.

(2.ex.3) Let ϕ be a symmetric bilinear form on the K-module M , n an integer
≥ 1, and (a1, a2, . . . , an) and (b1, b2, . . . , bn) two families of n elements of M . By
means of two (n × n)-matrices A = (λi,j) and B = (µi,j) with entries in K we
define two other families (a′

1, . . . , a
′
n) and (b′1, . . . , b

′
n) of n elements of M :

a′
j =

∑
i

λi,jai , and b′j =
∑

i

µi,jbi .

Now let Φ (resp. Φ′) be the (n × n)-matrix (ϕ(ai, bj)) (resp.(ϕ(a′
i, b

′
j))). The no-

tation tA means the matrix derived from A by transposition. Prove that Φ′ =
tAΦ B . Consequently

det(Φ′) = det(A) det(B) det(Φ) .
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(2.ex.4) We use the same notation as in (2.ex.3). Let Jn be the ideal of K gen-
erated by the determinants of all the matrices Φ defined as in (2.ex.3). Prove that
Jn = 0 whenever M is finitely generated of rank < n at every prime ideal of K.
When M is a finitely generated projective module of constant rank n, prove that
ϕ is nondegenerate if and only if Jn = K.

(2.ex.5)* Here is an example of a quadratic module (M, q) that is not a quadratic
space (it is not even finitely generated) although all its localizations are quadratic
spaces. Let F be a field, and K the ring of all functions λ : N → F that remain
constant when the variable n is large enough (larger than some value depending
on λ); the value of λ at the point n is denoted by λn, and its constant value for n
large enough is denoted by λ∞. Let (Mn, qn)n∈N be a family of quadratic spaces
over F such that Mn �= 0 for every n; the direct sum M =

⊕
n Mn is a K-module

in this way:
λ (x0, x1, x2, . . . ) = (λ0x0, λ1x1, λ2x2, . . . );

we get a quadratic form q on M if we set

q(x0, x1, x2, . . . ) =
∑

n

qn(xn);

this equality is meaningful because all xn vanish except a finite number.
(a) Prove that the prime ideals of K are the kernels of the morphisms λ �−→

λn from K to F associated with the points n of N ∪ {∞}. How are the
localizations of K and M?

(b) Prove that all the localizations of (M, q) are quadratic spaces, but that the
mapping dq : M → M∗ is not surjective.

(2.ex.6)* Let K be a ring in which 2 is a divisor of zero. A quadratic module
(M, q) over K is said to be defective if Ker(bq) �= Ker(q), and its defect is rep-
resented by the quotient Def(M, q) = Ker(bq)/Ker(q). It shall be proved that
the defect cannot be arbitrarily large, because there is always an injective linear
mapping from Def(M, q) into some K-module Jsq only depending on K.
(a) Let J be first any module over the ring K/2K (and consequently over K

too); prove the existence of a K-module Jsq satisfying these properties: as
an additive group it is isomorphic to J by means of a canonical isomorphism
j �−→ jsq, and the operation in Jsq of any λ ∈ K is defined according to this
formula: λ jsq = (λ2j)sq.

From now on, J is the kernel of the mapping λ �−→ 2λ from K into itself; this
ideal J is a module over K/2K in a natural way, and gives another K-module Jsq.
(b) Prove that Def(M, q) is a module over K/2K in a natural way, that

q(Ker(bq)) is contained in the ideal J defined above, and that q induces
an injective K-linear mapping Def(M, q) → Jsq.

(c) Application. When K is a field of characteristic 2, then J = K = K/2K and
the subset K2 of all λ2 with λ ∈ K is a subfield of K. Suppose that the
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dimension of K over K2 is finite and equal to d; prove that Def(M, q) has
finite dimension over K, not exceeding d. Observe that d = 1 when K is finite.

(d) Here is an example proving that the image of the injective mapping de-
fined in (b) may be equal to Jsq. Prove that the mapping q′ : Jsq −→ K
defined by q′(jsq) = j is K-quadratic, and calculate the derived mapping
Def(Jsq, q′) → Jsq.

(2.ex.7) Let P and Q be submodules of a module M provided with a quadratic
form or a symmetric bilinear form.
(a) Suppose that P and Q are orthogonally closed (in other words, P = P⊥⊥

and Q=Q⊥⊥); prove that P ∩Q too is orthogonally closed.

In (b) and (c) just below there are counter-examples against the equalities P+Q =
(P + Q)⊥⊥ and P⊥ + Q⊥ = (P ∩Q)⊥ even with P and Q orthogonally closed.
(b) Let F be a field, and K the quotient of F [X, Y ] by the ideal generated by the

polynomial XY ; thus K = F [x, y] with xy = 0. Let P and Q be the ideals
respectively generated by x and y. Consider the nondegenerate K-bilinear
form on K defined by (λ, µ) �−→ λµ, and prove that Q = P⊥, P = Q⊥

and (P + Q)⊥ = 0. Then examine the inclusions P + Q ⊂ (P + Q)⊥⊥ and
P⊥ + Q⊥ ⊂ (P ∩Q)⊥.

(c) Let K be a field, and M an infinite dimensional vector space over K with a
basis (en)n∈Z . Let P (resp. Q) be the subspace spanned by all en such that
n > 0 (resp. n < 0). On M a weakly nondegenerate bilinear form can be
defined in this way:

(∑
n∈Z

λnen ,
∑

n∈Z
µnen

)
�−→

∑
n	=0

(λnµn − λ0µn − λnµ0) ;

remember that all λn and µn vanish except a finite number. Prove that
Q = P⊥, P = Q⊥ and (P + Q)⊥ = 0. Then examine the same inclusions as
in (b).

(2.ex.8) Let M and M ′ be two K-modules provided with alternate bilinear forms
ψ : M×M → K and ψ′ : M ′×M ′ → K. Prove that there exists a unique quadratic
form q′′ : M ⊗M ′ → K such that

bq′′ = ψ ⊗ ψ′ and q′′(x⊗ x′) = 0

for all x ∈ M and x′ ∈ M ′.

(2.ex.9)* Let K be a local ring with maximal ideal m, and ω : m → m the
mapping defined by ω(µ) = µ− µ2.
(a) Prove that ω is injective.

Prove that the bijectiveness of ω is a necessary and sufficient condition for this
assertion to be true: a quadratic space (M, q) of rank 2 over K is hyperbolic
whenever M contains an element x such that q(x) ∈ m but x /∈ mM .
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(b) Suppose that ω is bijective, and let (M, q) be a quadratic space of even rank
2r over K. Prove that (M, q) is hyperbolic if it contains a direct summand
P of rank r such that q(P ) ⊂ m.

(c) Prove that the ring Z[[t]] of formal series with integer coefficients contains
an element f(t) such that f(t)− f(t)2 = t and f(0) = 0.

(d) Consider the ring morphism Z[t] → K that maps t to some given element
µ of m, and prove that µ belongs to the image of ω if this ring morphism
extends to a ring morphism Z[[t]] → K. This extension exists whenever µ is
nilpotent.
Comment. When m is a finitely generated K-module, any equality mk = mk+1

implies mk = 0 (see (1.12.1)); consequently every element of m is nilpotent if
the sequence (mk) is not strictly decreasing.

(e) Let F be a field, and K the localization of the ring F [t] at the maxi-
mal ideal generated by t; prove that K contains no element f(t) such that
f(t)− f(t)2 = t.

Properties of q−1(0)

(2.ex.10) Let (M, q) be a quadratic module over K. Prove that M is generated
by q−1(0) if the following sufficient condition is satisfied: there are two elements
a and b in M such that q(a) = 0 and bq(a, b) is invertible. When K is a field, this
shows that either q−1(0) generates M , or q−1(0) = Ker(q).
Hint. Ka + Kb is a hyperbolic subspace, therefore an orthogonal summand.

(2.ex.11)* Here we assume that K is a field.
(a) Prove the following preliminary lemma. Let a0, a1, a2, a3, b0, b1, b2, b3 be

elements of K with which we define these two functions on K2 :

f(x1, x2) = a0 + a1x1 + a2x2 + a3x1x2 ,

g(x1, x2) = b0 + b1x1 + b2x2 + b3x1x2 ;

if f−1(0) and g−1(0) are equal, there is a nonzero λ ∈ K such that bi = λai

for i = 0, 1, 2, 3.
Comment. When K = Z/2Z, we get a bijection between the 16 functions f
and the 16 subsets of K2.

(b) Let M be a vector space over K, and q and q′ two quadratic forms on M
such that q−1(0) and q′−1(0) are equal and generate M . Prove the existence
of a nonzero λ ∈ K such that q′ = λq.
Hint. Let (ej)j∈J be a basis of M made of elements of q−1(0), ai,j = bq(ei, ej)
and bi,j = bq′ (ei, ej) ; assume q �= 0 and au,v �= 0 for some (u, v) ∈ J2, and
set λ = bu,v/au,v. For which (xu, xv) ∈ K2 does ej + xueu + xvev belong to
q−1(0)? Prove that bu,j = λau,j , . . . and finally bi,j = λai,j for all (i, j) ∈ J2.

(2.ex.12) Let q be the quadratic form on Q4 that maps every (x1, x2, x3, x4) to
x2

1 + x2
2 − 3x2

3 − 3x2
4 . Prove that q−1(0) is reduced to {0}.
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Hint. If q vanished on a nontrivial element of Q4, it would vanish on a nontrivial
element of Z4; reduce modulo 9Z.

Half determinants

(2.ex.13) Let n be an odd integer ≥ 1, and Z[ti,j ] the ring of polynomials in
n(n + 1)/2 indeterminates ti,j such that 0 ≤ i ≤ j ≤ n, and with coefficients in
Z. We set ti,j = 0 when i > j and xi,j = ti,j + tj,i for all (i, j) ∈ {1, 2, . . . , n}2
(whence xi,i = 2ti,i). Prove that there exists a polynomial P (ti,j) ∈ Z[ti,j ] such
that the determinant of the matrix (xi,j) is equal to 2P (ti,j). This polynomial is
denoted by 1

2det(xi,j).
When (a1, a2, . . . , an) is a family of elements in a quadratic module (M, q),

this allows us to define 1
2det(bq(ai, aj)), provided that n is odd.

Now let (λi,j) be an (n×n)-matrix with entries in K, and a′
j =

∑
i λi,jai for

j = 1, 2, . . . , n; prove that

1
2
det(bq(a′

i, a
′
j)) =

1
2
det(bq(ai, aj)) (det(λi,j))2 .

(2.ex.14) If M is a free module of finite odd rank n, and q a quadratic form M →
K, we say that (M, q) is almost nondegenerate if for some basis (a1, a2, . . . , an) of
M the half determinant 1

2det(bq(ai, aj)) (see (2.ex.13)) is invertible in K.
(a) Explain why this property does not depend on the choice of the basis (a1, . . .

. . . , an).
(b) Assume that K is a local ring with maximal ideal m, that M is free of finite

odd rank n, and that q is almost nondegenerate. Prove that (M, q) contains
a nondegenerate quadratic submodule (M ′, q′) of even rank n− 1, and that
the submodule orthogonal to (M ′, q′) is generated by some element e ∈ M
such that q(e) is invertible in K.
Hint. If 2 is invertible in K, this is clear because q is nondegenerate; if 2 ∈ m,
prove that bq induces an alternate bilinear form on M/mM , the kernel of
which has dimension 1 over K/mK.

(c) If M is a finitely generated projective module of constant odd rank n, a
quadratic form q on M is said to be almost nondegenerate if all its local-
izations are almost nondegenerate. Prove the existence of a faithfully flat
extension K → L such that L⊗ (M, q) is the orthogonal sum of a hyperbolic
subspace and a free submodule of rank 1 on which L ⊗ q takes invertible
values.

For other applications of half determinants, see (4.ex.4), (5.ex.15) and (7.ex.17).
In other books (for instance [Knus, 1991]) the words “regular” and “semireg-

ular” are used instead of “nondegenerate” and “almost nondegenerate”.
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Witt rings

(2.ex.15) Here L, L′,. . . are finitely generated projective K-modules of constant
rank 1, and we are interested in nondegenerate quadratic mappings or nondegen-
erate symmetric bilinear mappings with target one of these modules.
(a) Let P be a finitely generated projective module, and

H(P, L) = P ⊕Hom(P, L);

prove that H(P, L) is provided with a natural nondegenerate quadratic map-
ping H(P, L)→ L ; with this quadratic mapping it becomes the L-hyperbolic
space associated with P . State the essential properties of L-hyperbolic spaces,
for instance the proposition analogous to (2.5.5). Let WIB(K, L) be the
additive monoid of all isomorphy classes of nondegenerate quadratic map-
pings M → L in which the source M is a finitely generated projective
K-module; prove that the isomorphy classes of L-hyperbolic spaces con-
stitute an absorbent submonoid, whence a Witt group WQ(K, L). Prove
that there is a natural Z-bilinear mapping from WQ(K, L)×WQ(K, L′) into
WQ(K, L⊗ L′) ; in particular WQ(K, L) is a module over WQ(K).

(b) In an analogous way define L-metabolic spaces and Witt rings WB(K, L);
state their essential properties.

(2.ex.16) Let (M, q) be an anisotropic space over the field Q of rational numbers;
let r be its dimension, and s its signature (that is the signature of R ⊗ (M, q)).
From Meyer’s theorem (see (2.8.7)) deduce the following statements:
(a) If r ≥ 5, then (M, q) is definite positive or negative, whence s = ±r.
(b) If |s| ≥ 3, then r = |s| .
(c) If |s| ≤ 4, then |s| ≤ r ≤ 4 .

Comment. In [Serre] it is proved that the determinant of q is a square when r = 4
(see an example in (2.ex.12)), and consequently |s| is 0 or 4 in this case.

(2.ex.17) Let λ and µ be two positive integers; we are interested in the Q-
quadratic space 〈λ,−µ〉 (with quadratic form (x, y) �−→ (λx2 − µy2)/2) and in
the order of its Witt class w in the additive group W(Q).
(a) Suppose that both λ and µ are sums of two squares in Z, and prove that w

has order 0 or 2.
(b) It is well known that λ and µ are sums of four squares in Z :

λ = a2
1 + a2

2 + a2
3 + a2

4 and µ = b2
1 + b2

2 + b2
3 + b2

4;

prove that w has order 0, 2 or 4.
Hint. Calculate the quadratic form on Q4 that maps every (x1, x2, x3, x4) to

(a1x1 − a2x2 − a3x3 − a4x4)2 + (a2x1 + a1x2 − a4x3 + a3x4)2

+ (a3x1 + a4x2 + a1x3 − a2x4)2 + (a4x1 − a3x2 + a2x3 + a1x4)2.
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(c) Prove that every element in the kernel of the ring morphism W(Q) →W(R)
(derived from the field extension Q → R) has order 0, 2 or 4.

Quadratic spaces over Z/2Z

(2.ex.18) Let (M, q) be a quadratic space of dimension 4 over the field Z/2Z,
x0 a nonzero isotropic element of M , and x1 an element such that q(x1) = 1.
Let G be the group of automorphisms of (M, q), A the set of anisotropic planes
contained in M , H the set of hyperbolic planes, D the set of planes on which q
is degenerate but not null, and T the set of totally isotropic planes. Let g, a, h,
d, t be the cardinals of G, A, H , D, T . For i = 0, 1, let gi be the cardinal of the
subgroup of all γ ∈ G such that γ(xi) = xi, let ai be the cardinal of the subset
of all P ∈ A such that xi ∈ P , and so forth. . . . Calculate all these cardinals. The
answers are given just after (2.ex.26).

(2.ex.19)* Let (M, q) be a quadratic space of dimension 2m over the field Z/2Z.
In (M, q), a plane P (that is a subspace of dimension 2) is said to be nondegenerate
(resp. degenerate) if the restriction of q to P is nondegenerate (resp. degenerate).
Let X(2m) be the number of planes in M , and Z(2m) the number of nondegenerate
planes in (M, q); thus X(2m) − Z(2m) is the number of degenerate planes. This
exercise intends to prove that

X(2m)− Z(2m)
Z(2m)

= 1− 1
4m−1

.

(a) Assume that M is the orthogonal sum of N and N ′, and prove that the plane
P is nondegenerate if and only if its projection in one summand N or N ′ is a
nondegenerate plane, whereas its projection in the other summand is either
a degenerate plane, or a line, or 0.
Hint. P is nondegenerate if and only if

∑
x∈P q(x) = 1.

(b) Calculate X(2m) and Z(2m).
Hint. The calculation of X(2m) is a classical problem: X(2m) = (22m −
1) (22m − 2) / 6; then use (a) to prove this induction formula:

Z(2m + 2) = 4 Z(2m) + 42m.

Bilinear spaces over Z

(2.ex.20) Let (M, ϕ) and (M ′, ϕ′) be two positive definite bilinear spaces over Z,
the former of even type and the latter of odd type; prove that there is no orthogonal
basis in their orthogonal sum. Consequently P8 ⊥ G1,0 is not isomorphic to G9,0.

(2.ex.21) Let (M, ϕ) be an indefinite bilinear space over Z. Prove that the image
of the quadratic form x �−→ ϕ(x, x) is Z or 2Z according to the type of ϕ, except
when (M, ϕ) is isomorphic to G1,1. What happens in this exceptional case?
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(2.ex.22) Let q be a quadratic form (not necessarily nondegenerate) on a free
Z-module M of finite rank r. We are interested in the image q(M) of q.
(a) Suppose that M contains elements x and y such that q(x) = 0 and bq(x, y) �=

0, and denote by δ the greatest common divisor of bq(x, y) and q(y). Prove
that q(M) contains δ−1bq(x, y)2 Z .

(b) Suppose that q is anisotropic and takes a positive (resp. negative) value on
some point of M , and that r ≥ 4. Deduce from Meyer’s theorem (see (2.8.7))
that for every positive integer k there exist x ∈M and a nonzero λ ∈ N such
that q(x) = kλ2 (resp. q(x) = −kλ2).

(2.ex.23) Consider R8 with its canonical basis (e1, e2, . . . , e8) and its usual bilin-
ear form ϕ̃ such that ϕ̃(x, x′) =

∑8
i=1 xix

′
i . Let f be the automorphism of R8 that

maps every (x1, x2, . . . , x8) to

( x1 + x2 , x1 − x2 , x3 + x4 , x3 − x4 , x5 + x6 , x5 − x6 , x7 + x8 , x7 − x8 ) ;

f is even an isomorphism from (R8, ϕ̃) onto (R8, ϕ̃/2). As in (2.8.9) let P be
the subgroup of all x ∈ R8 such that the eight numbers 2xi are integers of the
same parity, and

∑8
i=1 xi is even; we know that the restriction of ϕ̃ to P induces

a nondegenerate Z-bilinear form ϕ of even type. Besides, if z is any element of
Z8 (considered as a subgroup of R8), the “odd support” of z is by definition the
subset of all i such that zi is odd; let Q be the subset of all elements of Z8 with
“odd support” equal either to ∅, or to {1, 2, . . . , 8}, or to one of these 14 subsets:

{1, 2, 3, 4}, {1, 2, 5, 6}, {1, 2, 7, 8}, {1, 3, 5, 7}, {1, 3, 6, 8}, {1, 4, 5, 8}, {1, 4, 6, 7},
{5, 6, 7, 8}, {3, 4, 7, 8}, {3, 4, 5, 6}, {2, 4, 6, 8}, {2, 4, 5, 7}, {2, 3, 6, 7}, {2, 3, 5, 8}.

(a) Prove that Q is a free group of rank 8, and that ϕ̃(z, z)/4 is an integer for
every z ∈ Q. Consequently the restriction of ϕ̃/2 to Q induces a bilinear form
ψ : Q×Q → Z.
Hint. An element z of Z8 belongs to Q if and only if z1 + z2 , z3 + z4 , z5 + z6

and z7 + z8 have the same parity, and moreover z1 + z3 + z5 + z7 is even.
(b) Prove that f induces an isomorphism from (P, ϕ) onto (Q, ψ). Therefore ψ

is nondegenerate.
Hint. Prove that f(P ) ⊂ Q ; then f(P ) is an orthogonal summand of (Q, ψ).

(2.ex.24)* This exercise intends to prove that all positive definite Z-bilinear
spaces of rank 2 are isomorphic to each other, in other words, they all contain
an orthogonal basis. To do this, some special knowledge about the ring Z[i] of
Gauss integers is needed: here i =

√
−1 and Z[i] = Z ⊕ Zi is a subring of the

field C of complex numbers. It is recalled that every nonzero element of Z[i] is a
product of irreducible (or prime) elements in an essentially unique way, and that
every positive prime integer p that is not congruent to −1 modulo 4, admits a
factorization p = (u + iv)(u − iv) in Z[i].
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Here is a symmetric bilinear form on Z2 :

ϕ((x, y), (x′, y′)) = axx′ + b(xy′ + yx′) + cyy′ ;

assume ac− b2 = 1 and a > 0 so that ϕ is positive and nondegenerate.
(a) Explain that there exists an orthogonal basis for ϕ if and only there exist u,

v, u′, v′ in Z such that
(

a b
b c

)
=

(
u v
u′ v′

)(
u u′

v v′

)
.

(b) Write a and c as products of positive prime numbers in Z :

a = pα1
1 pα2

2 · · · pαk

k , and c = pγ1
1 pγ2

2 · · · p
γk

k ;

the exponents αj and γj are ≥ 0 (yet αj + γj > 0), and the primes numbers
pj are pairwise distinct. Note that b2 + 1 ≡ 0 modulo pj for j = 1, 2, . . . , k,
and prove the existence of a decomposition pj = (uj + ivj)(uj − ivj) in Z[i].
Then prove that

b + i = λ (u1 + iv1)β′
1(u1 − iv1)β′′

1 · · · (uk + ivk)β′
k(uk − ivk)β′′

k ,

with some λ equal to ±1 or ±i, and with exponents β′
j and β′′

j such that

β′
j + β′′

j = αj + γj for j = 1, 2, . . . , k.

(c) Choose exponents α′
j and α′′

j such that

α′
j + α′′

j = αj , 0 ≤ α′
j ≤ β′

j and 0 ≤ α′′
j ≤ β′′

j for j = 1, 2, . . . , k;

then set γ′
j = β′

j − α′
j and γ′′

j = β′′
j − α′′

j , and prove that the following
equalities defined a suitable family of integers u, v, u′, v′ :

u + iv = (u1 + iv1)α′
1(u1 − iv1)α′′

1 · · · (uk + ivk)α′
k(uk − ivk)α′′

k ;

u′ − iv′ = (u1 + iv1)γ′
1(u1 − iv1)γ′′

1 · · · (uk + ivk)γ′
k(uk − ivk)γ′′

k .

(2.ex.25)* Let (Pr , ϕ) be the bilinear space of rank r (a multiple of 4) presented
in (2.8.9).
(a) First suppose that r is not divisible by 8, in other words, r = 8s + 4. Prove

that ϕ(x, x) ≥ 2s + 1 whenever ϕ(x, x) is odd, and that Pr contains exactly
2r−1 elements x such that ϕ(x, x) = 2s+1. Prove that P4 contains orthogonal
bases (in other words, it is isomorphic to G4,0), whereas Pr never contains
orthogonal bases when s > 0. Prove that P8(s+t)+4 is never isomorphic to
P8s ⊥ P8t+4 when s > 0.

(b) Now suppose r divisible by 8. Let Ur be the subset of all x ∈ Pr such that
ϕ(x, x) = 2, and let Nr be the subgroup generated by Ur. Prove that the
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cardinal of Ur is 2r(r − 1) when r ≥ 16, whereas the cardinal of U8 is 240.
Prove that Pr/Nr is a group of order 2 when r ≥ 16, whereas N8 = P8.
Prove that Pr ⊥ Pr′ is never isomorphic to Pr+r′ when r and r′ are positive
integers divisible by 8.
Hint. When (r, r′) �= (8, 8), the cardinal of Ur+r′ is not the sum of the cardi-
nals of Ur and Ur′ ; when (r, r′) = (8, 8), you must consider N8 and N16.

(c) According to Theorem (2.8.11), P8 ⊥ G0,1 contains orthogonal bases be-
cause it is isomorphic to G8,1; find such an orthogonal basis. A solution is
given after (2.ex.26).

Quadratic forms in abelian categories

(2.ex.26) A category C is said to be abelian (or additive) if all sets of morphisms
HomC(M, N) are additive groups, and if some other properties are also fulfilled, for
instance the existence of a direct sum M ⊕C N for each couple of objects (see 1.3),
so that C becomes a monoidal category with neutral element (see 2.4). A functor F
between abelian categories is said to be additive if it determines a group morphism
Hom(M, N) → Hom(F(M),F(N)) for every pair of objects. Here we also assume
that there is a contravariant additive functor from C to C, denoted by M �−→M∗

(and f �−→ f∗), the iteration of which is isomorphic to the identity functor of C; in
other words, there are canonical isomorphisms M →M∗∗ intertwining the couples
(f, f∗∗).

By definition a “bilinear form” on an object M is a morphism b : M →M∗;
for this b, the notation b∗ means M →M∗∗ →M∗ and not merely M∗∗ →M∗. We
say that b is symmetric if b = b∗, and that it is alternate if there exists c : M →M∗

such that b = c− c∗. The group of “bilinear forms” on M is denoted by F(M), the
subgroups of symmetric and alternate forms are denoted by Bil(M) and A(M), and
the quotient Quad(M) = F(M)/A(M) is called the group of “quadratic forms”
on M ; the “quadratic form” derived from any b ∈ F(M) is denoted by [b]. Finally
any morphism f : M → N in C gives a group morphism F(f) : F(N) → F(M)
defined by b �−→ f∗ ◦ b ◦ f .
(a) Verify that this F(f) induces group morphisms Bil(N)→ Bil(M), A(N) →

A(M) and Quad(N) → Quad(M). Then define a canonical mapping q �−→ bq

from Quad(M) into Bil(M), which gives the multiplication by 2 when it
is composed (on either side) by the mapping b �−→ [b] from Bil(M) into
Quad(M).

(b) Example. What give the previous definitions when C is the category of finitely
generated projective modules over K, and when M∗ means HomK(M, K) as
usual?
Hint. Remember (2.5.3). The isomorphism M −→M∗∗ is here x �−→ (h �−→
h(x)).

(c) By definition a quadratic object of C is a couple (M, q) with q ∈ Quad(M),
and it is said to be nondegenerate if bq : M → M∗ is bijective. Define the
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orthogonal sum of two quadratic objects, so that the Propositions (2.4.1),
(2.4.2) and (2.4.3) are still valid.

Comment. The usefulness of such developments appears for instance in [Quebbe-
mann et al. 1976].

Here are the answers to (2.ex.18).

According as (M, q) is hyperbolic or not, you must find that

(g, a, h, d, t) = (72, 2, 18, 9, 6) or (120, 10, 10, 15, 0) ,
(g0, a0, h0, d0, t0) = (8, 0, 4, 1, 2) or (24, 0, 4, 3, 0) ,
(g1, a1, h1, d1, t1) = (12, 1, 3, 3, 0) or (12, 3, 1, 3, 0) .

Here is a solution to (2.ex.25)(c).

First you get an orthogonal basis (ε1, . . . , ε4) of P4 if you set

εi = ei +
1
2
(−e1 − e2 − e3 + e4) for i = 1, 2, 3,

ε4 =
1
2
(e1 + e2 + e3 + e4).

Then you can identify P8 ⊥ G0,1 with a subgroup of R9 provided with the bilinear
form ψ̃ such that ψ̃(y, y′) =

∑8
i=1 yiy

′
i − y9y

′
9 . You get an orthogonal basis

(η1, η2, . . . , η8, η9) if you set:

ηi = εi +
1
2

⎛
⎝ 8∑

j=5

ej

⎞
⎠ + e9 for i = 1, 2, 3, 4,

ηi = e4 + ei + e9 for i = 5, 6, 7, 8,

η9 = 2e4 +
8∑

j=5

ej + 3e9.



Chapter 3

Clifford Algebras

This chapter begins with elementary properties of Clifford algebras, in particular
their parity grading (presented in 3.2). Exterior algebras are treated as Clifford
algebras of null quadratic forms. More sophisticated properties are expounded in
the next chapter.

The main part of this chapter is devoted to Clifford algebras of quadratic
spaces (see Definitions (2.5.1)). In 3.7 it is explained that they belong to a very
special kind of algebras, namely the graded Azumaya algebras. The general study
of graded Azumaya algebras is undertaken in 3.5, after a section 3.4 devoted to
graded quadratic extensions. Some complements are added in the last section
3.8, but a great amount of more difficult knowledge (including all properties of
separability) is postponed until Chapter 6.

3.1 Definitions and elementary properties

Let M be a module over the ring K, and q : M → K a quadratic form; with (M, q)
we associate the category AK(M, q) : its objects are the linear mappings f from
M into any (associative) algebra A such that f(a)2 = q(a)1A for all a ∈ M ; a
morphism from f : M → A to g : M → B is an algebra morphism u : A → B
such that g = u ◦ f . If this category AK(M, q) contains an initial universal object
ρ (which is then unique up to isomorphism, see (1.2.1)), its target is called the
Clifford algebra associated with (M, q) and denoted by C�K(M, q). This notation,
and the abbreviations like C�(M, q) or C�(q) or C�(M), are quite classical, but
not the notations ρ for the canonical mapping M → C�(M, q), and 1q for the unit
element of C�(M, q); indeed when the canonical algebra morphism K → C�(M, q)
and the canonical mapping ρ : M → C�(M, q) are both injective, usually K and
M are systematically identified with their images in C�(M, q), and the notations
1q and ρ(a) are replaced with 1 and a. But as long as the injectiveness of these
canonical mappings is not sure, notations like 1q and ρ(a) are necessary.
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The universality of ρ means that for every linear mapping f : M → A
such that f(a)2 = q(a)1A for all a ∈ M , there exists a unique algebra morphism
f ′ : C�K(M, q) → A such that f = f ′ ◦ ρ. Since ρ is an object of AK(M, q), the
equality ρ(a)2 = q(a)1q holds for all a ∈M ; it implies, for all a and b ∈M ,

ρ(a)ρ(b) + ρ(b)ρ(a) = bq(a, b) 1q.

Consequently ρ(a) and ρ(b) anticommute if a and b are orthogonal. It is clear that
C�(M, q) = K when M is reduced to 0.

The following lemma states that AK(M, q) always contains an initial univer-
sal object, and constructs it by means of the tensor algebra TK(M) defined in
1.4; as usual the components T0(M) and T1(M) of this graded algebra T(M) are
identified with K and M .

(3.1.1) Lemma. Let J(M, q) be the two-sided ideal of T(M) generated by all ele-
ments a⊗a−q(a) where a runs through M , let C�(M, q) be the quotient of T(M)
by J(M, q); the natural linear mapping

ρ : M −→ T(M) −→ C�(M, q) = T(M)/J(M, q)

is an initial universal object in AK(M, q).

Proof. Let f : M → A be an object of AK(M, q). First it extends to an algebra
morphism f ′′ : T(M)→ A (see (1.4.1)). The equality f(a)2 = q(a)1A implies that
f ′′ vanishes on all elements a⊗ a− q(a), and consequently on J(M, q). Because of
(1.3.1), f ′′ induces an algebra morphism f ′ : C�(M, q) → A. Obviously f = f ′ ◦ ρ,
and f ′ is the only algebra morphism satisfying this equality because C�(M, q) is
generated as an algebra by all elements ρ(a) (and 1q which is always silently joined
with the generators). �

As usual, with the universal property of Clifford algebras is associated a
functor C� (more precisely C�K), which is a covariant functor from the category
of K-quadratic modules (denoted by CK(K) in 2.4) to the category Alg(K). If u :
(M, q)→ (M ′, q′) is a morphism of quadratic modules, in other words, if q′(u(x)) =
q(x) for all x ∈ M , then the algebra morphism C�(u) is defined in this way: the
equality ρ′(u(x))2 = q′(x)1q′ and the universal property of ρ′ : M ′ → C�(M ′, q′)
imply the existence of a unique morphism C�(u) : C�(M, q) → C�(M ′, q′) such
that ρ′ ◦ u = C�(u) ◦ ρ .

(3.1.2) Example. When M is a free module generated by one element e, then T(M)
is isomorphic to the polynomial algebra K[e], and by this isomorphism J(M, q)
becomes the ideal generated by the polynomial e2 − q(e); thus C�(M, q) is a free
module with basis (1, e). If 2 and q(e) are invertible in K, it is a free quadratic
extension according to the definition given in 2.6.

(3.1.3) Example. This is a pathological example in which the canonical mappings
K → C�(M, q) and ρ : M → C�(M, q) are not injective. Although K is here the
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ring Z/4Z, we begin with a quadratic module over Z. Let q̂ be the quadratic form
on Z⊕ Z defined by

q̂(x, y) = x2 + y2 , whence bq̂((x, y), (x′, y′)) = 2xx′ + 2yy′ .

Let N be the submodule 2Z⊕4Z in Z2. For all (x, y) ∈ N , and all (x′, y′) ∈ Z⊕Z,
q̂(x, y) and bq̂((x, y), (x′, y′)) belong to 4Z ; this proves that q̂ induces a quadratic
form q on the quotient group

M = Z2/N ∼= (Z/2Z)⊕ (Z/4Z)

considered as a module over K = Z/4Z. Let a and b be the images of (1, 0) and
(0, 1) in the quotient M ; thus 2a = 4b = 0. Consequently

2× 1q = 2ρ(a)2 = ρ(2a)ρ(a) = 0 whereas 2 �= 0 in K ;
ρ(2b) = (2× 1q)ρ(b) = 0 whereas 2b �= 0 in M .

Thus neither of the canonical mappings is injective. The equality 2×1q = 0 shows
that C�(M, q) is also an algebra over the field F = K/2K, and the orthogonality
of a and b implies that ρ(a) and ρ(b) commute. Let A be the quotient of F [X, Y ]
by the ideal generated by the polynomials X2 − 1F and Y 2 − 1F ; if x and y are
the images of X and Y in A, then (1F , x, y, xy) is a basis of A over F ; but A is
also a K-algebra. There is a K-linear mapping f : M → A that maps a and b to x
and y, and since f is an object of A(M, q), it determines a K-algebra morphism
f ′ : C�(M, q)→ A. Conversely there is an F -algebra morphism f ′′ : A → C�(M, q)
mapping x and y to ρ(a) and ρ(b); obviously f ′ and f ′′ are reciprocal isomorphisms.

Grade automorphism, reversion and conjugation

Let (M, q) be a quadratic module. Obviously −idM is an involutive automorphism
of (M, q), and the functor C� associates with it an involutive automorphism σ of
C�(M, q); it is called the grade automorphism for reasons explained in 3.2.

With every algebra A is associated an opposite algebra Ao which is isomorphic
to A as a K-module by means of a canonical isomorphism x �−→ xo, but in which
the product of two elements xo and yo (canonical images in Ao of two elements of
A) is by definition xoyo = (yx)o. Obviously every algebra morphism u : A → B
gives an algebra morphism uo : Ao → Bo defined by uo(xo) = u(x)o.

Now the mapping a �−→ ρ(a)o from M into C�(M, q)o is also an object of
AK(M, q); consequently it induces an algebra morphism C�(M, q) → C�(M, q)o,
and there is a linear mapping τ from C�(M, q) into itself such that this algebra
morphism is x �−→ τ(x)o. The properties of τ stated in the next proposition explain
why it is called the reversion.
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(3.1.4) Proposition. There is a unique linear mapping τ from Cl(M, q) into itself
such that

τ(1q) = 1q , τ(ρ(a)) = ρ(a) for all a ∈ M ,
and τ(xy) = τ(y)τ(x) for all x and y ∈ C�(M, q).

It is an involution of C�(M, q) (see Definition (1.13.7)).

Proof. The above explanations already prove the properties of τ mentioned in
(3.1.4), except the fact that it is involutive; but since τ2 is an automorphism
of C�(M, q) that induces the identity on ρ(M), it is the identity everywhere on
C�(M, q). �

It is clear that στ and τσ are anti-automorphisms of C�(M, q) that both
induce −id on ρ(M); therefore they are equal, and στ is also an involution of
C�(M, q); it is often called the conjugation.

Let us calculate σ, τ and στ when q is the null quadratic form; in this case
the Clifford algebra is the exterior algebra

∧
(M) for which it is customary to use

a proper symbol ∧ of multiplication.
According to (3.1.1),

∧
(M) is the quotient of T(M) by the ideal J(M) gener-

ated by all a⊗a with a ∈ M ; it is a graded ideal, in other words, it is the direct sum
of the intersections Jn(M) = Tn(M)∩ J(M), and obviously J0(M) = J1(M) = 0;
consequently the algebra

∧
(M) is graded over the semi-group N, and

∧0(M) and∧1(M) can be identified with K and M . A serious study of exterior algebras shall
be undertaken in 4.3; here we just state that, for every x ∈

∧n(M),

(3.1.5) σ(x) = (−1)nx , τ(x) = (−1)n(n−1)/2x , στ(x) = (−1)n(n+1)/2x.

Indeed it suffices to calculate σ(x) and τ(x) when x is an exterior product a1∧a2∧
· · · ∧ an of elements of A; since σ is an algebra automorphism, the first conclusion
follows from σ(ai) = −ai for i = 1, 2, . . . , n. Then τ(x) = an ∧ an−1 ∧ · · · ∧ a1,
and since the elements of M pairwise anticommute in

∧
(M), we must calculate

the signature of the permutation (n, n− 1, . . . , 2, 1); when n is even (resp. odd), it
depends on the parity of n/2 (resp. (n−1)/2); this accounts for (−1)n(n−1)/2. �

The natural filtration of a Clifford algebra

If A is an algebra, a family (A≤k)k∈Z of submodules of A is called an increasing
filtration of A if the following conditions are fulfilled: first every A≤k is contained
in A≤k+1, secondly xy belongs to A≤j+k whenever x belongs to A≤j and y to A≤k;
moreover 1A ∈ A≤0. This filtration is said to be regular if the intersection of all
A≤k is 0, and their union is A.

In Chapter 5 we shall consider various filtrations of Clifford algebras, but
here we only need the natural filtration of C�(M, q), which is inherited from the
natural increasing filtration of T(M), but which can also be defined without the
help of T(M). For every negative integer k we set C�≤k(M, q) = 0, and for every
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integer k ≥ 0 the subset C�≤k(M, q) of elements of degree ≤ k is the submodule
of C�(M, q) generated by all products ρ(a1)ρ(a2) · · · ρ(aj) such that 0 ≤ j ≤ k.
When j = 0, this product means 1q; thus the filtration begins with C�≤0(M, q) =
K1q and C�≤1(M, q) = K1q ⊕ ρ(M). It is clear that the submodules C�≤k(M, q)
constitute a regular increasing filtration of the algebra C�(M, q). More details
about filtrations will be expounded in 5.2; here we especially need the following
lemma.

(3.1.6) Lemma. Let k be a positive integer, s a permutation of the set {1, 2, . . . , k},
and sgn(s) its signature; for all a1,. . . ,ak in M ,

ρ(a1)ρ(a2) · · · ρ(ak) − sgn(s) ρ(as(1))ρ(as(2)) · · ·ρ(as(k)) ∈ C�≤k−2(M, q).

Proof. Since every permutation of factors in a product can be achieved by means
of successive transpositions of two consecutive factors, it suffices to verify the
announced result when s is the transposition of two consecutive indices j and
j + 1. In this case the conclusion follows from the equality

ρ(aj)ρ(aj+1) + ρ(aj+1)ρ(aj) = bq(aj , aj+1) 1q . �

(3.1.7) Corollary. Let (aj)j∈J be a family of generators of M indexed by a totally
ordered set J ; the products

ρ(aj1)ρ(aj2 ) · · · ρ(ajn) with n ≥ 0 and j1 < j2 < · · · < jn

constitute a family of generators of the module C�(M, q).

When n = 0, it must be understood that the above product is 1q.

Proof. It is clear that we get a family of generators of the module C�(M, q) if we
do not require the sequence (j1, j2, . . . , jn) to be strictly increasing; consequently it
suffices to prove by induction on n that such a product with an arbitrary sequence
of indices is a linear combination of similar products with strictly increasing se-
quences of indices. From (3.1.6) we deduce that such a product is congruent modulo
C�≤n−2(M, q) to a similar product with an increasing sequence of indices; when
this sequence is not strictly increasing, there is an integer i ∈ {1, 2, . . . , n − 1}
such that ji = ji+1 ; since ρ(a)2 = q(a)1q for all a ∈ M , the product under con-
sideration belongs to C�≤n−2(M, q). By the induction hypothesis every element of
C�≤n−2(M, q) is a linear combination of products of factors ρ(aj) with a strictly
increasing sequence of indices. �

The products described in (3.1.7) are in bijection with the finite subsets of
J , and when J has a finite cardinal r, their number is 2r. Let us notice and once
for all that C�(M, q) is a finitely generated module when M is finitely generated.
When the module M is free with basis (aj)j∈J , the products described in (3.1.7)
constitute a basis of C�(M, q); this is proved in this chapter in some easy cases,
and in the next chapter in full generality.
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Let B be an algebra graded over Z, in other words, B =
⊕

k∈Z Bk and
BjBk ⊂ Bj+k for all (j, k) ∈ Z2. Automatically B is provided with a regular
increasing filtration if we set B≤k =

⊕
i≤k Bi. Conversely if the filtration of the

algebra A is regular, it is said that its filtration comes from a grading if every
submodule A≤k−1 admits a supplementary submodule Ak in A≤k in such a way
that the submodules Ak constitute a grading of the algebra A.

Let us still assume that the filtration of A is regular; in all cases we can
derive a graded algebra Gr(A) from it, in such a way that, in case the filtration
would come from a grading, the algebra A with this grading should be canonically
isomorphic to Gr(A). Here is the construction of Gr(A) : it is the direct sum of
the quotients Grk(A) = A≤k/A≤k−1 provided with the multiplication induced by
that of A. Indeed let us consider the two mappings

A≤i ⊗A≤j −→ Gri(A)⊗Grj(A) ,

A≤i ⊗A≤j −→ A≤i+j −→ Gri+j(A) ;

the kernel of the former mapping is generated by the images of A≤i−1 ⊗ A≤j

and A≤i ⊗ A≤j−1 (see (1.6.3)); by the latter mapping they are mapped first into
A≤i+j−1 and then to 0 in Gri+j(A); thus we get a mapping Gri(A) ⊗Grj(A) →
Gri+j(A). It is easy to prove that all these mappings together make Gr(A) become
an associative algebra with unit. And when the filtration of A comes from a grading
A =

⊕
k Ak, the natural bijections Ak → Grk(A) together afford an algebra

isomorphism A→ Gr(A).
If we apply this construction to the natural filtration of a Clifford algebra,

we get the following lemma.

(3.1.8) Lemma. The canonical mapping M → C�≤1(M, q) → Gr1(C�(M, q)) in-
duces a surjective algebra morphism from

∧
(M) onto Gr(C�(M, q)).

Proof. Let ã be the image of a (any element of M) in Gr1(C�(M, q)). Since ρ(a)2 =
q(a)1A belongs to C�≤0(M, q), and since ã2 is the image of ρ(a)2 in Gr2(C�(M, q)),
we realize that ã2 = 0. Consequently there is an algebra morphism

∧
(M) →

Gr(C�(M, q)) mapping every a to ã. It is surjective because the target is generated
(as an algebra with unit element) by all elements ã. �

Change of basic ring

Let (M, q) be a quadratic module over K, and f : K → K ′ a ring morphism;
from Theorem (2.2.3) we derive a quadratic module K ′ ⊗ (M, q) over K ′, and
subsequently a Clifford algebra C�K′(K ′⊗ (M, q)) over K ′; let ρ′ be the canonical
mapping from K ′ ⊗M into this algebra.

(3.1.9) Proposition. There is a canonical isomorphism from C�K′(K ′ ⊗ (M, q))
onto K ′ ⊗ C�(M, q) which maps every ρ′(λ ⊗ a) (with λ ∈ K ′ and a ∈ M) to
λ⊗ ρ(a).
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Proof. Let us set (M ′, q′) = K ′ ⊗ (M, q). For every element
∑

j λj ⊗ aj of M ′ =
K ′ ⊗M ,

q′
(∑

j
λj ⊗ aj

)
=

∑
j

λ2
j ⊗ q(aj) +

∑
i<j

λiλj ⊗ bq(ai, aj) ,

and thus the square of
∑

j λj ⊗ ρ(aj) in K ′ ⊗ C�(M, q) is equal to q′(
∑

j λj ⊗
aj) ⊗ 1q . Because of the universal property of C�K′(M ′, q′) there is a K ′-algebra
morphism from C�K′(M ′, q′) into K ′⊗C�(M, q) which maps every ρ′(λ⊗a) (with
λ ∈ K ′ and a ∈ M) to λ ⊗ ρ(a). Conversely, because of the universal property
of C�(M, q), the K-linear mapping a �−→ ρ′(1K′ ⊗ a) determines a K-algebra
morphism C�(M, q) → C�K′(M ′, q′), whence a K ′-algebra morphism from K ′ ⊗
C�(M, q) into C�K′(M ′, q′) which maps every λ⊗ ρ(a) to ρ′(λ⊗ a). Obviously we
have two reciprocal isomorphisms of K ′-algebras. �

(3.1.10) Remark. As a particular case of (3.1.9), we consider the ring extension
K → S−1K determined by a multiplicative subset S of K; it affords an isomor-
phism of (S−1K)-algebras

C�S−1K(S−1M, S−1q) ∼= S−1C�(M, q) ;

the quadratic form S−1q is defined by a/s �−→ q(a)/s2. When S is the subset com-
plementary to a prime ideal p, we get isomorphisms C�Kp(Mp, qp) ∼= C�(M, q)p .

(3.1.11) Remark. If e is an idempotent of K, then M = eM ⊕ (1 − e)M , and
we can treat eM as a module over Ke, on which q induces a quadratic form
qe : eM → Ke. Let ρe be the canonical mapping eM → C�Ke(eM, qe). The
mapping λ �−→ eλ is a ring extension K → Ke, and there is an isomorphism
Ke ⊗ (M, q) → (eM, qe) that maps every e ⊗ a to ea, whence an isomorphism
Ke⊗C�(M, q)→ C�Ke(eM, qe). On the other side C�(M, q) is the direct sum of the
ideals eC�(M, q) and (1−e)C�(M, q), and inAlg(Ke) there is an isomorphism Ke⊗
C�(M, q) → eC�(M, q) mapping every e⊗ x to ex. All this gives an isomorphism
C�Ke(eM, qe)→ eC�(M, q) mapping every ρe(ea) to eρ(a); it allows us to identify
the ideal eC�(M, q) with C�Ke(eM, qe). Such identifications are silently performed
whenever we apply (1.12.8) to reduce the case of a projective and finitely generated
quadratic module to the case of a module of constant rank.

(3.1.12) Remark. The isomorphism mentioned in (3.1.9) results in an isomorphism
between two functors defined on CK(K); indeed for each morphism u : (M1, q1) →
(M2, q2) in CK(K) there is a commutative diagram

C�K′(K ′ ⊗ (M1, q1)) ←→ K ′ ⊗ C�(M1, q1)
|C�(K′⊗u) |K′⊗C�(u)
↓ ↓

C�K′(K ′ ⊗ (M2, q2)) ←→ K ′ ⊗ C�(M2, q2)

in which the left-hand column corresponds to the functor K ′ ⊗ · · · followed by
the functor C�K′ whereas the right-hand column corresponds to the functor C�K
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followed by the functor K ′ ⊗ · · · . The existence of this isomorphism of functors
allows us to say that the Clifford functors C� commute with the ring extensions
up to isomorphy. Besides, in the case of two consecutive ring extensions K →
K ′ → K ′′ there is a transitivity property based on canonical isomorphisms of the
following kind:

K ′′ ⊗K′ (K ′ ⊗K M) ∼= (K ′′ ⊗K′ K ′)⊗K M ∼= K ′′ ⊗K M.

3.2 The parity grading of Clifford algebras

In (3.1.1) the Clifford algebra C�(M, q) has been constructed as a quotient of the
tensor algebra T(M); from T(M) it inherits an increasing filtration, but not a
grading over N unless q is the null quadratic form. Nevertheless C�(M, q) inher-
its from T(M) a parity grading, that is a grading over the group Z/2Z. Indeed
let us set

T0(M) =
⊕
m

T2m(M) and T1(M) =
⊕
m

T2m+1(M) ;

the lower indices 0 or 1 are the elements of Z/2Z and may be called “even” and
“odd”. As a submodule, the ideal J(M, q) defined in (3.1.1) is generated by all
products y ⊗ (a ⊗ a − q(a)) ⊗ z with a in M , y in some Tj(M) and z in some
Tk(M); therefore J(M, q) is graded in the following sense: it is the direct sum
of its intersections J0(M, q) and J1(M, q) with T0(M) and T1(M). Consequently
C�(M, q) is the direct sum of two submodules C�0(M, q) and C�1(M, q) respec-
tively isomorphic to Ti(M)/Ji(M, q) with i = 0, 1. The elements of C�0(M, q) or
C�1(M, q) are said to be respectively even or odd.

From now on, when it is not otherwise specified, every grading will be a parity
grading over the group Z/2Z, and the parities are indicated by lower indices 0 and
1. A parity grading on a module P is merely a decomposition of P into a direct
sum of two submodules P0 and P1, the elements of which are respectively called
even or odd; an element z is said to be homogeneous if it is even or odd, and its
degree ∂z is 0 or 1 according to its parity; when the notation ∂z appears, it is
often silently assumed that z is homogeneous.

Every graded algebra A = A0 ⊕ A1 admits a grade automorphism σ such
that σ(x) = (−1)∂xx for every homogeneous x. For a Clifford algebra, σ has
already been defined in 3.1. If the mapping x �−→ 2x is injective from A into
itself, the grading of A is determined by the grade automorphism. When this
mapping x �−→ 2x is bijective, every involutive automorphism of A determines a
parity grading for which it is the grade automorphism. For instance the algebra
K2 = K ×K is provided with an involutive swap automorphism (λ, µ) �−→ (µ, λ)
for which the diagonals of K2 (the subset of all (λ, λ) and the subset of all (λ,−λ))
are eigenspaces; yet K2 is the direct sum of its diagonals if and only if the map-
ping λ �−→ 2λ is bijective from K onto itself; only in this case does the swap
automorphism determine a parity grading.
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The graded algebras constitute a new category GAlg(K); a graded algebra
morphism f : A −→ B is an algebra morphism such that f(Ai) ⊂ Bi for i = 0, 1.
With each object (M, q) of the category CK(K) we have associated an object
C�(M, q) of GAlg(K), and with each morphism u : (M, q) → (M ′, q′) we have
associated an algebra morphism C�(u) which is graded because it maps the odd
generators ρ(a) of C�(M, q) to odd elements of C�(M ′, q′). Thus the functor C�
is also a functor from the category CK(K) of K-quadratic modules to the category
GAlg(K) of graded K-algebras.

We get a functor C�0 from CK(K) to Alg(K) if we associate with every
quadratic module (M, q) the even Clifford subalgebra C�0(M, q); like C�, this
functor C�0 commutes with the extensions of the basic ring (see (3.1.12). In (3.ex.7)
there is another interesting property of C�0.

Parity grading and natural filtration appear together in this technical lemma.

(3.2.1) Lemma. If M is a finitely generated module of rank ≤ r at every maximal
ideal, then for all homogeneous y, z ∈ C�(M, q),

zy ≡ (−1)∂y∂zyz ≡ (−1)(r−1)∂yyz ≡ (−1)(r−1)∂zyz modulo C�≤r−1(M, q).

Proof. By localization (see (3.1.10)) we reduce the problem to the case of a module
generated by a family (a1, a2, . . . , ar) of r elements. With every subset F of E =
{1, 2, . . . , r} we associate the product eF of all ρ(ai) with i ∈ F in the increasing
order of the indices; thus τ(eF ) is the product of the same factors in the decreasing
order of the indices. As a module, C�(M, q) is generated by all τ(eF ) as well as by
all eF ; therefore it suffices to prove (3.2.1) when y = τ(eF ) and z = eG for some
subsets F and G of E. Let m and n be the cardinals of F and G. From (3.1.6)
it follows immediately that zy − (−1)mnyz belongs to C�≤m+n−2(M, q). If we
manage to prove that both yz and zy belong to C�≤r−1(M, q) unless F and G
are complementary subsets in E, the proof is finished, because ∂y and ∂z are the
parities of m and n, and moreover (r − 1)m and (r − 1)n have the same parity
as mn when m + n = r. It is clear that yz and zy are in C�≤r−1(M, q) when
F ∪G �= E. Let us suppose that F ∩ G is not empty, let k be the lowest element
of F ∩ G, and F ′ the subset of all i ∈ F such that i ≤ k ; thus τ(eF )eG is the
product of τ(eF ′ )eG and other factors ρ(ai) (with i > k) on the left side. In general
the indices of the factors in τ(eF ′ )eG are not arranged in increasing order; yet by
applying the formulas ρ(ai)2 = q(ai)1q and

ρ(ai)ρ(aj) = −ρ(aj)ρ(ai) + bq(ρ(ai), ρ(aj)) 1q

as often as we meet two consecutive factors ρ(ai) and ρ(aj) such that i ≥ j, we can
transform τ(eF ′ )eG into a linear combination of elements eU (with U ⊂ E). Each
subset U is strictly smaller than F ∪G, since it has lost at least one index j such
that j ≤ k. When we complete the multiplication of τ(eF ) and eG by reinserting
the indices that are in F but not in F ′, no factor ρ(ai) with i ≤ k may appear
again since in τ(eF ) the factors are arranged in the decreasing order of the indices.
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Consequently τ(eF )eG is a linear combination of elements eV with V �= E, since
V has lost at least one element ≤ k. In the same way we can prove that eGτ(eF )
too belongs to C�≤r−1(M, q). �

The four algebras A, Ao, At, Ato

In 3.1 an opposite algebra Ao was associated with every algebra A. When A is
graded, then Ao is graded in an obvious way, and besides Ao there are two other
graded algebras At and Ato derived from A. As graded modules, the twisted algebra
At and the twisted opposite algebra Ato (also called the graded opposite algebra)
are isomorphic to A through canonical isomorphisms x �−→ xt and x �−→ xto,
but the product of two homogeneous elements of At or Ato are defined by these
formulas:

xtyt = (−1)∂x∂y(xy)t and xtoyto = (−1)∂x∂y(yx)to.

The associativity of At and Ato follows from the equality ∂x∂y + ∂(xy)∂z =
∂x∂(yz) + ∂y∂z , which is an easy consequence of ∂(xy) = ∂x + ∂y and ∂(yz) =
∂y + ∂z.

Obviously every graded algebra morphism f determines graded algebra mor-
phisms fo, f t and f to. Moreover (xo)o is identified with x, (xt)t is identified with
x, (xt)o and (xo)t are both identified with xto, and so forth. . . ; in other words,
we consider that a group of order 4 is acting on the set {A, Ao, At, Ato}.

Whereas the opposite algebra C�(M, q)o is involved in the definition of the
reversion (see (3.1.4)), the other algebras derived from C�(M, q) are involved in
this proposition.

(3.2.2) Proposition. There is a canonical graded isomorphism from the Clifford
algebra C�(M,−q) onto the twisted (resp. twisted opposite) algebra C�(M, q)t (resp.
C�(M, q)to) which maps ρ(a) to ρ(a)t (resp. ρ(a)to) for every a ∈M .

Proof. Since (ρ(a)to)2 = −q(a)1to
A , the mapping a �−→ ρ(a)to is an object in the

categoryAK(M,−q) (defined like AK(M, q) in 3.1); whence a graded algebra mor-
phism f : C�(M,−q) → C�(M, q)to. There is a similar morphism g : C�(M, q) →
C�(M,−q)to. Obviously f to ◦ g is an algebra morphism from C�(M, q) into itself
that leaves invariant every element ρ(a); consequently f to ◦ g is the identity map-
ping of C�(M, q). Similarly gto ◦ f is the identity mapping of C�(M,−q); all this
implies that f is bijective. With C�(M, q)t the proof is similar. �

The Clifford algebra of an orthogonal sum

When A and B are graded modules (with parity gradings), their tensor product
A⊗B is graded in this way:

(A⊗B)0 = (A0 ⊗B0)⊕ (A1 ⊗B1) ,

(A⊗B)1 = (A0 ⊗B1)⊕ (A1 ⊗B0) .
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When A and B are graded algebras, besides their tensor product A ⊗ B defined
in 1.3 (which obviously is still a graded algebra), there is also the twisted tensor
product (or graded tensor product) A ⊗̂B defined in this way: as a graded module,
it is the same thing as A⊗B, but it is provided with the following multiplication:

(x⊗ y) (x′ ⊗ y′) = (−1)∂x′∂y xx′ ⊗ yy′ .

It is easy to prove that A ⊗̂B is associative with unit element 1A⊗1B . When the
equality 2 = 0 holds in K, then A ⊗̂B coincides with A⊗B ; but in general these
algebras are different; indeed in A ⊗̂B the following equalities hold, and lead to
the universal property stated in the next lemma:

x⊗ y = (x ⊗ 1B)(1A ⊗ y) = (−1)∂x∂y(1A ⊗ y) (x⊗ 1B).

(3.2.3) Lemma. Let A and B be graded algebras, and let f1 : A → D and f2 : B →
D be algebra morphisms such that

∀x ∈ A, ∀y ∈ B, f1(x) f2(y) = (−1)∂x∂y f2(y) f1(x) ;

there exists a unique algebra morphism f ′ : A ⊗̂B → D such that

∀x ∈ A, ∀y ∈ B, f1(x) = f ′(x⊗ 1B) and f2(y) = f ′(1A ⊗ y).

This lemma is similar to (1.3.3) and its proof is omitted. It leads to a theorem
analogous to (1.5.1).

(3.2.4) Theorem. The Clifford algebra of an orthogonal sum

(M ′′, q′′) = (M, q) ⊥ (M ′, q′)

is canonically isomorphic to the twisted tensor product C�(M, q) ⊗̂C�(M ′, q′); if
(a, b) is any element of M ′′ = M ⊕M ′, the image of ρ′′(a, b) in the twisted tensor
product is ρ(a)⊗ 1q′ + 1q ⊗ ρ′(b).

Proof. It is easy to verify the following equality in the twisted tensor product C′′

of C�(M, q) and C�(M ′, q′) :

(ρ(a)⊗ 1q′ + 1q ⊗ ρ′(b))2 = (q(a) + q′(b)) 1q ⊗ 1q′ ;

this proves the existence of an algebra morphism f ′′ from C�(M ′′, q′′) into C′′

which maps every ρ′′(a, b) to ρ(a) ⊗ 1q′ + 1q ⊗ ρ′(b) . Conversely the canonical
injections of (M, q) and (M ′, q′) into (M ′′, q′′) induce algebra morphisms

g : C�(M, q)→ C�(M ′′, q′′) and g′ : C�(M ′, q′) → C�(M ′′, q′′) ;

since (a, 0) and (0, b) are orthogonal in (M ′′, q′′), g(ρ(a)) and g′(ρ′(b)) anticom-
mute, and consequently g and g′ satisfy the property required in (3.2.3) to define
an algebra morphism g′′ : C′′ → C�(M ′′, q′′). The action of f ′′ on the generators
ρ′′(a, b), and the action of g′′ on the generators ρ(a)⊗ 1q′ and 1q ⊗ ρ′(b) show
that f ′′ and g′′ are reciprocal morphisms. �
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The following corollary applies to free quadratic modules provided with an
orthogonal basis, for instance quadratic spaces over a local ring in which 2 is
invertible (see (2.6.2)); it also applies to exterior algebras of free modules of finite
rank, since every basis is orthogonal for the null quadratic form.

(3.2.5) Corollary. If the quadratic module (M, q) admits an orthogonal basis (e1,
e2, . . . , er), the canonical mappings from K and M into C�(M, q) are injective,
C�(M, q) is a free module of rank 2r, and the products ej1ej2 · · · ejn with n ≥ 0
and j1 < j2 < · · · < jn constitute a basis of C�(M, q).

This can be proved by induction on r ; if r = 1, then C�(M) = K ⊕ Ke1 (see
(3.1.2)); and when r > 1, we apply the induction hypothesis to the submodule M ′

spanned by (e1, e2, . . . , er−1) and draw the conclusion from (3.2.4):

C�(M) ∼= C�(M ′) ⊗̂C�(Ker) ∼= C�(M ′)⊕ C�(M ′)er. �

(3.2.6) Corollary. When M is a finitely generated projective module, the exterior
algebra

∧
(M) is a finitely generated projective module; its rank at a prime ideal

p of K is 2r if r = rk(M, p). Moreover the subset of all x ∈
∧

(M) such that
a ∧ x = 0 for all a ∈ M is a direct summand

∧max(M) of constant rank 1; if M
has constant rank r, then

∧max(M) =
∧r(M).

Since all localisations of M are free, this can be proved by localization by means
of (3.1.10) and (3.2.5). The study of

∧max(M) can be reduced to the case of a
module M of constant rank r because of (1.12.8). �

(3.2.7) Remark. The statement (3.2.5) remains valid when (M, q) has an infinite
orthogonal basis (ej)j∈J indexed by a totally ordered set J . Indeed let P be the
set of all finite subsets of J , and K(P) the free module with basis (eF ) indexed by
F ∈ P ; for every E ∈ P let ME be the submodule of M spanned by all ej with
j ∈ E; if E ⊃ F , with eF we associate the product in C�(ME) of all ej such that
j ∈ F , according to the increasing order of the indices. It is easy to define a K-
bilinear multiplication on K(P) in such a way that it becomes the Clifford algebra
of (M, q); to define the product eF eG it suffices to calculate it in any algebra
C�(ME) such that E contains F ∪G, since the result does not depend on E :

eF eG = ±
( ∏

j∈F∩G

q(ej)
)

eS if S = (F ∪G) \ (F ∩G).

To verify the associativity relation (eF eG)eH = eF (eGeG), it suffices to do it in
any algebra C�(ME) such that E contains F ∪ G ∪ H ; thus K(P) becomes an
algebra (with unit element 1 = e∅) in which (e{j})2 = q(ej) for all j ∈ J , and in
which all e{j} pairwise anticommute. Consequently the linear mapping M → K(P)

defined by ej �−→ e{j} induces an algebra morphism C�(M, q) → K(P) which is
an isomorphism because of (3.1.7). The leading idea in this argument is that M
is the direct limit of the submodules ME (see (3.ex.8)).
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In particular the exterior algebra of a free module is a free module. If M
is projective, there exists a module N such that M ⊕ N is free; since

∧
(M) is

isomorphic to a direct summand of the free module
∧

(M ⊕N), it is a projective
module.

When A and B are graded algebras, both algebras A ⊗ B and A ⊗̂B have
the same grading, and consequently the same grade automorphism σ, and it is
clear that σ(x⊗ y) = σ(x)⊗ σ(y) for all x ∈ A and all y ∈ B. When A and B are
Clifford algebras C�(M, q) and C�(M ′, q′), the canonical isomorphism A ⊗̂B ∼=
C�((M, q) ⊥ (M ′, q′)) allows us to define a reversion τ on their twisted tensor
product.

(3.2.8) Lemma. If x and y are homogeneous elements of C�(M, q) and C�(M ′, q′),
then

τ(x⊗ y) = (−1)∂x∂y τ(x) ⊗ τ(y).

Indeed this is true when x = 1q or y = 1q′ ; consequently

τ(x ⊗ y) = τ((x ⊗ 1q′)(1q ⊗ y)) = τ(1q ⊗ y) τ(x ⊗ 1q′)

= (1q ⊗ τ(y)) (τ(x) ⊗ 1q′) = (−1)∂x∂y τ(x) ⊗ τ(y). �

3.3 Clifford algebras of free modules of rank 2

Theorem (2.6.2) emphasizes the importance of orthogonal sums of free quadratic
modules of rank 1 or 2, and Theorem (3.2.4) encourages the study of their Clifford
algebras. The Clifford algebra of a free module of rank 1 has been presented in
(3.1.2). Before more powerful theories are expounded in the next chapter, the case
of a free module of rank 2 can be treated by means of the following proposition,
which presents the Cayley–Dickson extension process; it involves algebras provided
with a unit element and a standard involution (see Definition (1.13.7)), but which
are not necessarily associative.

(3.3.1) Proposition. Let B be an algebra, faithful as a module over K, provided with
a unit element (denoted by 1) and a standard involution ϕ, let α be any element
of K, and let C be the module B ⊕B provided with this multiplication:

(b, c) (b′, c′) = (bb′ + αc′ϕ(c) , ϕ(b)c′ + b′c).

In all cases (1, 0) is a unit element in C and the mapping (b, c) �−→ (ϕ(b),−c) is a
standard involution. When moreover the algebra B is commutative and associative,
then C is an associative algebra.

Proof. Obviously (1, 0) is a unit element. The mapping (b, c) �−→ (ϕ(b),−c) is a
standard involution because

(ϕ(b′),−c′) (ϕ(b),−c) = (ϕ(bb′) + αϕ(c′ϕ(c)), −ϕ(b)c′ − b′c) ,

(b, c) (ϕ(b),−c) = (bϕ(b)− αcϕ(c), 0).
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With the only hypothesis that ϕ is an involution of B, let us test the associativity
of the product of three factors in C; with the usual short notations b̄ = ϕ(b),
b̄′ = ϕ(b′),. . . a straightforward calculation gives

((b, c)(b′, c′))(b′′, c′′)− (b, c)((b′, c′)(b′′, c′′))

=
(
(bb′)b′′ − b(b′b′′) + αc′′(c̄′b)− αb(c′′c̄′)

+ αc′′(c̄b̄′)− α(b̄′c′′)c̄ + α(c′c̄)b′′ − α(b′′c′)c̄ ,

b′′(b′c)− (b′b′′)c + b′′(b̄c′)− b̄(b′′c′) + (b̄′b̄)c′′

− b̄(b̄′c′′) + α(cc̄′)c′′ − α(c′′c̄′)c
)

;

after eight little verifications we realize that the algebra C is associative when B
is commutative and associative. �

When the algebra B is still associative but not commutative, in general C is
not associative. Nevertheless the equality (xy)z = x(yz) is true whenever x = y ;
indeed when b = b′ and c = c′, the above calculation shows that (b, c)2(b′′, c′′) =
(b, c)((b, c)(b′′, c′′)) because b + b̄ and cc̄ commute with all elements of B, and
moreover c and c̄ commute. Since C admits an involution, the equality (xy)z =
x(yz) also holds when y = z. Thus the trilinear mapping (x, y, z) �−→ (xy)z−x(yz)
is alternate; when this mapping is alternate, the algebra C is said to be alternative.

In the algebra C defined in (3.3.1) we can identify (b, 0) with b for every
b ∈ B, and set j = (0, 1) so that (b, c) = b + jc and j2 = α ∈ K. With these
notations,

(b + jc)(b′ + jc′) = bb′ + j2c′ϕ(c) + j(ϕ(b)c′ + b′c) ;

since b + cj = b + jϕ(c), we can also write

(b + cj)(b′ + c′j) = bb′ + ϕ(c′)cj2 + (c′b + cϕ(b′))j.

We can extend ϕ by setting ϕ(b + jc) = ϕ(b)− jc. For the norm N derived from
ϕ we can write N (b + jc) = N (b)− j2N (c).

As it is reported in [Schafer 1966], § III,1, Artin has proved that in an al-
ternative algebra every subalgebra generated by two elements is associative. This
fact ensures that N (xy) = N (x)N (y) for all x and y ; indeed ϕ(x) belongs to the
subalgebra generated by x since ϕ(x) = tr(x) − x (see 1.13).

(3.3.2) Examples. Here K is the field R of real numbers. We apply the process
described in (3.3.1) first to the algebra A0 = R in order to get an algebra A1 of
dimension 2, then we apply it to A1 to get an algebra A2 of dimension 4, and
finally we derive from A2 an algebra A3 of dimension 8. We always set α = −1
so that the norm N remains positive definite; consequently every nonzero x ∈ A3

has an inverse x−1 = ϕ(x)/N (x), and A3 is a division algebra; every equality like
x(x−1y) = y is true since A3 is alternative. In the algebra A1 it is convenient to set
i = (0, 1); since i2 = −1, it is isomorphic to the field C of complex numbers. In A2

we identify 1 and i with (1, 0, 0, 0) and (0, 1, 0, 0) and we set j = (0, 0, 1, 0) whence
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ij = −ji = (0, 0, 0,−1); this associative algebra A2 generated by two elements
i and j such that i2 = j2 = −1 and ij + ji = 0 is the division ring H of real
quaternions (or at least is isomorphic to it if you prefer another definition of H).
Then A3 is an alternative algebra generated by three elements i, j, k such that

i2 = j2 = k2 = −1 and ij + ji = jk + kj = ki + ik = (ij)k + k(ij) = 0 ,

whence
(ij)k = (jk)i = (ki)j = k(ji) = j(ki) = i(kj) ;

the family (1, i, j, k, ij, ik, jk, (ij)k) is a basis of A3 over R, and Ker(ϕ+id) contains
all elements of this basis except 1 (which spans Ker(ϕ − id)); this algebra A3 is
called the Cayley algebra of octonions (or octaves).

Obviously A1 is the Clifford algebra of a negative definite quadratic space of
dimension 1 (see (3.1.2)). In A2 the equality (λi +µj)2 = −λ2−µ2 holds for all λ
and µ ∈ R, and thus Ri⊕Rj is a negative definite quadratic space of dimension 2;
because of (3.1.7), the dimension of its Clifford algebra cannot exceed 4; therefore
the natural injection Ri⊕ Rj → H extends to an isomorphism from this Clifford
algebra onto H.

In 1878 Frobenius proved that every associative division algebra that has
finite dimension over R, is isomorphic either to R or to C or to H, and in 1933
Zorn proved that every alternative division algebra that has finite dimension over
R and that is not associative, is isomorphic to the algebra of octonions. A very
simple proof of these theorems is presented in (3.ex.17).

In (3.3.2) we have found the Clifford algebra of a real quadratic space of
dimension 2; let us generalize this process with an arbitrary ring K.

(3.3.3) Lemma. Let L = K[α, β, γ] be a polynomial ring in three indeterminates,
and (N, q̃) a free quadratic module over L with basis (e, e′) such that q̃(e) = α,
bq̃(e, e′) = β and q̃(e′) = γ. The Clifford algebra C�L(N, q̃) is a free module
over L with basis (1, e, e′, ee′), and the conjugation σ̃τ̃ in C�L(N, q̃) is a standard
involution.

Proof. First we prove that the four elements 1q̃, ρ̃(e), ρ̃(e′) and ρ̃(e)ρ̃(e′) are
linearly independent over L in C�L(N, q̃); this allows us to denote them by 1, e, e′

and ee′, and to claim that they constitute a basis of C�L(N, q̃) because of (3.1.7).
It is easy to verify that the equality

(ρ̃(e)ρ̃(e′))2 = β ρ̃(e)ρ̃(e′) − αγ 1q̃

holds in C�L(N, q̃). Besides, for reasons that shall appear in the last calculations,
we need the extension L→ Lα to the ring of fractions with denominator a power
of α ; since α is not a divisor of zero, we can treat L as a subring of Lα and write
α−1 instead of the fraction 1/α. Let B be the quotient of the polynomial algebra
Lα[Z] by the ideal (Z2 − βZ + αγ); thus B admits a basis (1, z) over Lα such
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that z2 = βz − αγ, and a standard involution ϕ such that ϕ(z) = β − z. Let
C = B ⊕ B be the algebra derived from B as it is explained in (3.3.1). As above
we identify B with a subalgebra of C and we set j = (0, 1) (whence j2 = α).
Obviously the four elements 1, z, j and jzα−1 constitute a basis of C over Lα and
therefore are linearly independent over L. Straightforward calculations show that
for all λ and µ ∈ L,

(λj + µzjα−1)2 = α (λ + µzα−1) ϕ(λ + µzα−1)

= αλ2 + βλµ + γµ2 ;

consequently there is an L-algebra morphism from C�L(N, q̃) into C that maps ρ̃(e)
and ρ̃(e′) respectively to j and jzα−1; since it maps ρ̃(e)ρ̃(e′) to j(jzα−1) = z, the
first conclusion follows from the fact that 1, z, j and jzα−1 are linearly independent
over L.

From (3.3.1) we know that C is provided with a standard involution ϕ that
maps j and zjα−1 respectively to −j and −zjα−1; this agrees with the fact that
the involution σ̃τ̃ extends −idN ; consequently this involution is also a standard
involution. �

(3.3.4) Corollary. When (M, q) is a free quadratic module of rank 2 over K with
basis (b, b′), then C�(M, q) is a free module with basis (1, b, b′, bb′). Moreover the
conjugation στ is a standard involution of C�(M, q).

Proof. The quadratic module (M, q) can be treated as an extension of the L-
quadratic module (N, q̃) mentioned in (3.3.3); indeed there is a K-algebra mor-
phism L → K that maps α, β, γ respectively to q(b), bq(b, b′), q(b′), and thus
(M, q) is isomorphic to K ⊗L (N, q̃); by this isomorphism, the images of b and b′

are 1⊗e and 1⊗e′. Since C�(M, q) is isomorphic to K⊗C�L(N, q̃) (see (3.1.9)), from
the L-basis (1, e, e′, ee′) of C�L(N, q̃) we derive a K-basis (1, b, b′, bb′) of C�(M, q).
The conjugation σ̃τ̃ in C�L(N, q̃) gives the conjugation στ in C�(M, q) by the
extension L→ K, whence the end of the proof. �

Since Clifford algebras of free modules of rank 1 and 2 are now well described,
we can draw more corollaries from Theorem (3.2.4) about orthogonal sums.

(3.3.5) Corollary. When (M, q) is an orthogonal sum of free submodules of rank
1 or 2, then C�(M, q) is a free module of rank 2r if r = rk(M). Consequently,
if (e1, e2, . . . , er) is any basis of M , the products ej1ej2 · · · ejn with n ≥ 0 and
j1 < j2 < · · · < jn constitute a basis of C�(M, q).

The first statement in (3.3.5) can be proved by induction on r. The second state-
ment (that gives a basis of C�(M, q)) means the bijectiveness of some linear map-
ping P → C�(M, q) with source a free module P of rank 2r; from (3.2.8) we know
that it is surjective, and with (1.13.5) we conclude that it is bijective. �
(3.3.6) Corollary. When M is a vector space of finite dimension r over a field K,
the Clifford algebra C�(M, q) is a vector space of dimension 2r on K.
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Proof. It suffices to prove that M is an orthogonal direct sum of lines and planes.
Indeed M is the orthogonal sum of Ker(bq) and any supplementary subspace M ′;
all bases of Ker(bq) are orthogonal; moreover the restriction of q to M ′ is weakly
nondegenerate, and consequently nondegenerate, and because of (2.6.2) M ′ is an
orthogonal sum of lines or planes. �

(3.3.7) Corollary. When (M, q) is a quadratic space, C�(M, q) is a finitely gen-
erated projective module and the canonical mappings K → C�(M, q) and ρ :
M → C�(M, q) are injective. The rank of C�(M, q) at a prime ideal p is 2r if
r = rk(M, p). Besides, the conjugation στ is a standard involution if the rank of
M is everywhere ≤ 2.

Indeed all localizations of (M, q) are orthogonal sums of submodules of rank 1 or
2 (see (2.6.2)), and the conclusions follow from (3.3.5) (already from (3.3.4) when
the rank is ≤ 2), and from (1.12.9). �

Historical comments

The discovery of “geometric algebras” in 1878 by Clifford, and independently
by Lipschitz in 1880, can be understood as a step in the long investigations of
complex and hypercomplex numbers. A premonition of these “geometric algebras”
already appeared in a letter that Leibniz sent to Huygens in 1679 to explain
that it should be possible to calculate with geometrical objects in an algebraic
way (see [Crowe 1985], p. 3). To imagine complex numbers it was first necessary
to learn the property of linear independence over R; some mathematicians of
the Italian Renaissance already were familiar with it, for instance Bombelli who
said that 1 and

√
−1 cannot be added up (see [Bombelli 1579]). Later C. Wessel

achieved one of the first sound works in this topic when he presented an “Essay
on the analytical representation of direction” to the Royal Academy of Denmark
(see [Wessel 1797]). Then came J.R. Argand who published in 1806 an “Essay
on a manner of representing imaginary quantities in geometrical constructions”.
In his Treatise of Algebra published in 1685, Wallis already had a premonition
about a bijection between the complex numbers and the points of a plane; this
idea became quite clear and effective in the Inaugural Dissertation published by
Gauss in 1799. Another milestone was passed when quaternions were discovered by
several mathematicians; Hamilton mentioned them in 1843. The algebras imagined
by the mathematician and logician A. de Morgan (especially in odd dimensions)
were less useful, since he did not worry about their divisors of zero; anyhow his
dreams were ruined by Frobenius’s theorem (see (3.3.2) above). The field C and the
division algebra H probably helped Clifford to imagine the geometric algebras that
now have his name; in [Clifford 1878] he constructed them by means of generators
and relations. Two years later (see [Lipschitz 1880]), Lipschitz sent Hermite a letter
explaining his “Principles of an algebraic calculation containing as particular cases
the calculation of imaginary quantities and that of quaternions”. Some years later
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(see [Lipschitz 1886]), he declared that in 1880 he did not know Clifford’s work.
Yet Lipschitz went much farther than Clifford, since he was the first to imagine
an application of Clifford algebras to the study of orthogonal groups. Almost at
the same time Cayley and Graves (independently of one another) constructed the
algebra of octonions; but since it is no longer associative, it shows another direction
in this field of research.

Clifford algebras of quadratic spaces of dimension 4 were discovered again
by P.A.M. Dirac (see [Dirac]) for his “theory of electron spin”. As a matter of
fact, at that time spinors were already known by Elie Cartan (see [Cartan 1913]),
but the theory of spinors only won acknowledgement after [Brauer, Weyl 1935],
[Cartan 1938], and especially [Chevalley 1954]. Meanwhile important researches
were led on this subject in mathematical physics, for instance by E. Majorana (see
[Amaldi]), who mysteriously disappeared in 1938, and by M. Schenberg (1914–
1990) (see [Schenberg 1941 and 1943]), whose works about Quantum mechanics
remained scarcely noticed probably because they were written in the Portuguese
language; more information about Schenberg can be found in [Rocha Barros] and
[Fernandes].

3.4 Graded quadratic extensions

Let us remember that every algebra A that is a finitely generated projective module
of constant rank 2 is commutative and admits a unique standard involution ϕ
(see (1.13.8) and (1.13.10)). From ϕ we derive a norm and a trace defined by
N (x) = xϕ(x) and tr(x) = x + ϕ(x).

We can identify K with a direct summand of this algebra A (see (1.13.2)); if
we write A = K ⊕P , then A is a free module if and only if P is free. Indeed from
the isomorphism

∧
(K) ⊗̂

∧
(P ) ∼=

∧
(A) (see (3.2.4)) we deduce an isomorphism∧1(K) ⊗

∧1(P ) ∼=
∧2(A) which shows that P is isomorphic to

∧2(A), therefore
free if A is free; and conversely A is free if P is free. Consequently if A is a free
module, there is an element z ∈ A such that (1, z) is a basis of A, and there are
elements β and γ of K such that z2 = βz− γ ; in other words, A is isomorphic to
the quotient of K[Z] by the ideal (Z2 − βZ + γ).

(3.4.1) Definitions. An algebra A is called a quadratic extension of K if A is a
finitely generated projective module of constant rank 2 and if the norm N derived
from its standard involution ϕ is a nondegenerate quadratic form on A. It is called
a graded quadratic extension if it is a quadratic extension and if it is provided with
a parity grading: A = A0 ⊕ A1 . Every nongraded quadratic extension A can be
treated as a trivially graded quadratic extension such that A0 = A. A quadratic
extension A of K is said to be trivial if it is trivially graded (or nongraded) and
isomorphic to K2, that is, the direct product K ×K.

The algebra K2 is actually a quadratic extension because its standard invo-
lution is the swap automorphism (λ, µ) �−→ (µ, λ) and its norm is the hyperbolic
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quadratic form (λ, µ) �−→ λµ. Since K2 is generated by the idempotent (1, 0) as
a K-algebra, it is isomorphic to the quotient K[Z]/(Z2 − Z). In 2.6 it is proved
that, when β2 − 4γ is invertible, the quotient K[Z]/(Z2 − βZ + γ) is isomorphic
to K2 if and only if the polynomial Z2 − βZ + γ has a root in K.

Let us verify that (3.4.1) agrees with the definition of free quadratic exten-
sions given in 2.6.

(3.4.2) Lemma. Let A be an algebra that is a free module with basis (1, z) such that
z2 = βz− γ. It is a quadratic extension if and only if the discriminant β2 − 4γ of
the polynomial Z2 − βZ + γ is invertible in K.

Indeed ϕ(z) = β − z and consequently, for all λ, µ ∈ K,

N (λ + µz) = (λ + µz)(λ + µ(β − z)) = λ2 + βλµ + γµ2;

thus the determinant of the quadratic form N is 4γ − β2. �

As it is explained in (2.3.3) and (2.3.4), the nondegeneracy of N can be
tested by localization and even by extension to residue fields; by such a process,
the finitely generated projective module A of rank 2 becomes a free module to
which (3.4.2) can be applied. Now (2.3.2) suggests studying what happens to the
extension K ′ ⊗ A of a quadratic extension A; of course K ′ ⊗ A inherits a parity
grading from A when A is graded.

(3.4.3) Proposition. Let K → K ′ be an extension of K. If A is a graded quadratic
extension of K, then K ′ ⊗A is a graded quadratic extension of K ′. The converse
statement is also true when the extension is faithfully flat.

Proof. Since A is a finitely generated projective module of constant rank 2 over
K, K ′ ⊗ A is a finitely generated projective module of constant rank 2 over K ′

(see 1.9 and (1.12.12)). Conversely, when K ′ is faithfully flat over K, and K ′ ⊗A
is a finitely generated projective module of constant rank 2 over K ′, then A is a
finitely generated projective module of constant rank 2 over K (see (1.9.10) and
(1.12.13)). Obviously K ′⊗ϕ is the standard involution of K ′⊗A, and K ′⊗N is its
norm; from (2.3.2) we deduce that K ′⊗N is nondegenerate if N is nondegenerate,
and the converse statement is true if K ′ is faithfully flat over K. �

In (3.4.4) there is a faithfully flat extension that deserves special attention;
a first example of its usefulness is presented in (3.4.5).

(3.4.4) Proposition. When A is a nongraded quadratic extension of K, then A⊗A
is isomorphic to the trivial A-quadratic extension A2 through an isomorphism
mapping every x⊗ y to (xy, xϕ(y)).

Proof. Obviously there is an A-algebra morphism F such that F (x ⊗ y) =
(xy, xϕ(y)) for all x, y ∈ A. The bijectiveness of F can be tested by localiza-
tion; therefore we may assume that A is a free module with basis (1, z) such that
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z2 = βz − γ. In A⊗A we consider the A-basis (1⊗ 1, 1⊗ z) and in A2 the basis
((1, 0), (0, 1)); let us look for the matrix of F with respect to these bases, and
calculate its determinant:

det
(

1 z
1 β − z

)
= β − 2z ;

it is invertible because (β − 2z)2 = β2 − 4γ. �

(3.4.5) Lemma. If A and B are quadratic extensions of K such that A ⊂ B, then
A = B.

Proof. The faithfully flat extension K → A⊗B makes both quadratic extensions A
and B (considered without grading) become trivial; consequently we can assume
that they are already trivial over K. By localization we reduce the problem to
the case of a local ring K in which the only idempotents are 0 and 1. Thus the
only idempotents of K2 other than (0, 0) and (1, 1) are (1, 0) and (0, 1); a trivial
quadratic extension contained in K2 is generated as an algebra by an idempotent,
either (1, 0) or (0, 1); consequently it coincides with K2. �

Now we consider Ker(ϕ − id) and Im(ϕ − id); the former is the subalgebra
of elements invariant by ϕ and the latter is called the discriminant module of the
quadratic extension A for reasons explained in (3.4.7). We shall compare them with
Im(ϕ+ id) and Ker(ϕ+ id), the image and the kernel of the mapping x �−→ tr(x).
When A is the trivial quadratic extension K2, then ϕ is the swap automorphism
and Ker(ϕ− id) and Im(ϕ− id) are the diagonals of K2.

(3.4.6) Proposition. When A is a quadratic extension with standard involution ϕ,
then

Ker(ϕ− id) = Im(ϕ + id) = K and Im(ϕ− id) = Ker(ϕ + id) .

Moreover Im(ϕ − id) is a direct summand D of A of constant rank 1, and by
mapping every x⊗ y ∈ D ⊗D to xy we get an isomorphism D ⊗D → K. When
2 is invertible in K, then A = K ⊕D .

Proof. All these statements are evident when A is the trivial quadratic extension
K2, and by means of (3.4.4) we can reduce the problem to this case. The faithfully
flat extension K → A even allows us to prove that D is a direct summand of A,
because this property is equivalent to the surjectiveness of the natural mapping
Hom(A, D) → Hom(D, D) (see (1.13.1)), and its surjectiveness can be tested with
such an extension. �

(3.4.7) Example. Let us assume that A is a free module with basis (1, z) such that
z2 = βz − γ, since by localization we can always reduce the problem to this case.
Then D = Im(ϕ − id) is the submodule generated by ϕ(z) − z = β − 2z. Since
(β− 2z)2 = β2 − 4γ, the bijectiveness of the mapping D⊗D → K is equivalent to
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the invertibility of the discriminant β2− 4γ, and this explains why D is called the
discriminant module. Besides, it is worth noticing that D = K when the equality
2 = 0 holds in K.

In the previous propositions we have ignored that A may have a parity grad-
ing; now we must recognize it.

(3.4.8) Proposition. Let A = A0 ⊕ A1 be a graded quadratic extension, and D =
Im(ϕ − id) its discriminant module. There is an idempotent e in K such that
A1 = eD (whence A1 ⊂ D), and 2e is invertible in Ke. Conversely if e is an
idempotent such that 2e is invertible in Ke, there is a grading A = A0 ⊕A1 such
that A1 = eD and A0 = (1 − e)A⊕Ke.

Proof. Since A0 contains K, the rank of the direct summand A1 is either 0 or 1,
and from (1.12.8) we deduce the existence of an idempotent e such that eA1 is a
Ke-module of constant rank 1, whereas (1− e)A1 = 0. By localization we reduce
the problem to the case of a free module A1 of rank 0 or 1. If its rank is 1, then
A0 = K and A1 is generated by an element z2 such that z2 is even; therefore we
can write z2 = βz − γ with β = 0, and since β = z + ϕ(z), we conclude that z
belongs to D, and moreover the invertibility of β2 − 4γ shows that 2 is invertible.
This proves the first part of (3.4.8). The converse part follows from the fact that
z2 belongs to K for all z ∈ D, and that A = K ⊕D when 2 is invertible. �

From (3.4.8) and (3.4.6) it follows that ϕ is a graded automorphism: ϕ(Ai) =
Ai for i = 0, 1.

(3.4.9) Remark. If A is a graded quadratic extension such that A1 has constant
rank 1, then 2 is invertible in K, the mapping x �−→ x2 induces a nondegenerate
quadratic form on the discriminant module D and the natural injection D → A
extends to an isomorphism C�(D) → A. Conversely if (D, q) is a quadratic space
of constant rank 1, there is a bilinear form γ : D×D → K such that γ(x, x) = q(x)
for all x ∈ D (see (2.5.3)); this allows us to define a multiplication on K ⊕D :

(λ, x)(µ, y) = (λµ + γ(x, y), λy + µx) ;

it is easy to prove by localization that this is a graded quadratic extension in
which D is the submodule of odd elements, and thus K⊕D is the Clifford algebra
of (D, q).

The group Qg(K)

The graded quadratic extensions of K are classified by a group Qg(K) in which
the operation is derived from the following theorem; it involves the twisted tensor
products of graded algebras defined in 3.2.

(3.4.10) Theorem. Let A and A′ be two graded quadratic extensions, ϕ and ϕ′ their
standard involutions, and ϕ⊗ϕ′ the resulting graded automorphism of A ⊗̂A′. The
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subset A � A′ of all elements of A ⊗̂A′ invariant by ϕ ⊗ ϕ′ is a graded quadratic
extension. The standard involution of A � A′ is the common restriction of ϕ⊗A′

and A ⊗ ϕ′ to the subalgebra A � A′, and the natural injection D ⊗D′ → A ⊗̂A′

induces a bijection from D ⊗D′ onto the discriminant module of A � A′.

Proof. First we notice that A�A′ is a graded subalgebra of A ⊗̂A′ because ϕ and
ϕ′ are graded automorphisms of A and A′. Secondly, A�A′ contains D⊗D′ because
D = Ker(ϕ+id) and D′ = Ker(ϕ′+id) (see (3.4.6)). Thirdly, if it is true that A�A′

is a quadratic extension and that its standard involution is the common restriction
ϕ′′ of ϕ⊗A′ and A⊗ϕ′, then its determinant module D′′ = Ker(ϕ′′ +id) contains
D ⊗ D′, whence D′′ = D ⊗ D′ because D′′ and D ⊗ D′ are direct summands of
A � A′ of constant rank 1. Therefore it suffices to prove that A � A′ is a quadratic
extension with standard involution ϕ′′.

We reduce the problem to the case of graded algebras A and A′ with odd
components A1 and A′

1 of constant ranks, either by localization, or by means of
suitable idempotents of K as is suggested by (3.4.8). Thus it suffices to consider
these two cases: either 2 is invertible in K (as it happens when A1 or A′

1 has
constant rank 1), or the algebra A ⊗̂A′ is equal to A⊗A′ (as it happens when A1

or A′
1 has constant rank 0). When 2 is invertible, we can write A = K ⊕D and

A′ = K ⊕D′, and it immediately follows that

A � A′ = (K ⊗K)⊕ (D ⊗D′).

For all c, d ∈ D, and for all c′, d′ ∈ D′, the product (c ⊗ c′)(d ⊗ d′) is equal to
±cd⊗c′d′ (where ± means + if A1 = 0 or A′

1 = 0, but − if A1 = D and A′
1 = D′);

in all cases it belongs to K ⊗ K. Consequently ϕ′′ is the standard involution of
A � A′ and Im(ϕ′′ − id) = D ⊗ D′. From the bijectiveness of D ⊗ D → K and
D′ ⊗D′ → K we deduce the bijectiveness of the mapping

(D ⊗D′)⊗ (D ⊗D′) −→ K , (c⊗ c′)⊗ (d⊗ d′) �−→ ±cdc′d′ ;

this implies that A�A′ is actually a quadratic extension with discriminant module
D ⊗D′.

When A ⊗̂A′ is equal to A⊗A′, we can forget the gradings of A and A′ and
by means of the faithfully flat extension K → A ⊗ A′ we reduce the problem to
the case of two trivial quadratic extensions. Therefore we can assume that A and
A′ are both equal to K2; we identify A⊗A′ with K4 through this isomorphism:

K2 ⊗K2 −→ K4 , (λ, µ)⊗ (λ′, µ′) �−→ (λλ′, λµ′, µλ′, µµ′).

Let ψ and ψ′ be the involutions of K4 corresponding to the involutions ϕ ⊗ A′

and A ⊗ ϕ′ of A ⊗ A′; since ϕ and ϕ′ are swap automorphisms, we realize that
ψ, ψ′ and ψψ′ map every (λ1, λ2, λ3, λ4) ∈ K4 respectively to (λ3, λ4, λ1, λ2),
(λ2, λ1, λ4, λ3) and (λ4, λ3, λ2, λ1). The subalgebra A � A′ corresponds to the sub-
algebra of elements (λ1, λ2, λ2, λ1) invariant by ψψ′, and therefore is isomorphic to
K2; moreover A⊗ϕ′ induces the standard involution on A�A′ because ψ′ induces
the standard involution on Ker(ψψ′ − id). �
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(3.4.11) Example. Let us suppose that A and A′ are free with bases (1, z) and
(1, z′) such that z2 = βz − γ and z′2 = β′z′ − γ′. Obviously we get an element z′′

of A � A′ if we set

z′′ = z ⊗ ϕ′(z′) + ϕ(z)⊗ z′ = z ⊗ β′ + β ⊗ z′ − 2z ⊗ z′.

Let us calculate the coefficients β′′ and γ′′ such that z′′2 = β′′z′′ − γ′′. When
A ⊗̂A′ coincides with A⊗A′, after some calculations we find

β′′ = ββ′ and γ′′ = β2γ′ + γβ′2 − 4γγ′ ;

since β′′2 − 4γ′′ = (β2 − 4γ)(β′2 − 4γ′), the subalgebra K ⊕ Kz′′ is a quadratic
extension because of (3.4.2), and is equal to A � A′ because of (3.4.5). Now let us
assume that A1 = D and A′

1 = D′. Since D is generated by β − 2z, and D′ by
β′−2z′, the discriminant module D′′ of A�A′ is generated by (β−2z)⊗ (β′−2z′)
which is equal to ββ′ − 2z′′; since A � A′ = K ⊕ D′′, it is already sure that
A � A′ = K ⊕Kz′′. From the equality

(ββ′ − 2z′′)2 = −(β − 2z)2 ⊗ (β′ − 2z′)2 = −(β2 − 4γ)⊗ (β′2 − 4γ′)

it is easy to deduce that

β′′ = ββ′ and γ′′ =
1
2
β2β′2 − β2γ′ − γβ′2 + 4γγ′.

In this case β′′2 − 4γ′′ = −(β2 − 4γ)(β′2 − 4γ′).

(3.4.12) Proposition. When A, A′, A′′ are graded quadratic extensions, then
(a) A � A′ and A′ � A are canonically isomorphic;
(b) (A � A′) � A′′ and A � (A′ � A′′) are the same subalgebra of A ⊗̂A′ ⊗̂A′′;
(c) A � K2 (with K2 trivially graded) is isomorphic to A;
(d) A � A is isomorphic to K2 if A is trivially graded;
(e) A � A � A � A is always isomorphic to K2.

Proof. The statement (a) comes from the canonical isomorphism A ⊗̂A′ → A′ ⊗̂A
defined by x⊗x′ �−→ (−1)∂x∂x′

x′⊗x. To prove (b), we identify (A�A′) �A′′ with
a subalgebra of A ⊗̂A′ ⊗̂A′′; first (A � A′) ⊗ A′′ is the subset of all elements of
A ⊗ A′ ⊗ A′′ invariant by ϕ ⊗ ϕ′ ⊗ A′′; then (A � A′) � A′′ is the subset of all
elements of (A � A′) ⊗ A′′ invariant by A ⊗ ϕ′ ⊗ ϕ′′. This proves (b) because
similarly A � (A′ � A′′) is the subset of all elements of A⊗A′ ⊗A′′ invariant both
by A⊗ ϕ′ ⊗ ϕ′′ and ϕ⊗ ϕ′ ⊗A′′.

When A′ = K2 and consequently ϕ′(λ, µ) = (µ, λ), we can identify A ⊗̂A′

with the ordinary direct product A2 = A × A, and thus ϕ ⊗ ϕ′ becomes the
automorphism (x, y) �−→ (ϕ(y), ϕ(x)). Thus the mapping x �−→ (x, ϕ(x)) is an
isomorphism from A onto A � K2, and (c) is proved.
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When A is trivially graded, by the isomorphism A ⊗ A → A × A presented
in (3.4.4) the involution ϕ ⊗ ϕ of A ⊗ A corresponds to the involution (ϕ, ϕ) of
A×A, and therefore A�A corresponds to K×K. This proves (d). And (e) follows
immediately from (d) because A � A is always trivially graded; indeed the odd
component of A � A is contained in its discriminant module D ⊗D, in which all
elements are even. �

Let Qg(K) be the set of isomorphy classes of graded quadratic extensions;
the proposition (3.4.12) shows that the operation � on graded quadratic extensions
provides Qg(K) with a structure of commutative group, in which every element
has order 1, 2 or 4. The set Q(K) of isomorphy classes of trivially graded (or
nongraded) quadratic extensions is a subgroup of Qg(K), in which every element
has order 1 or 2.

Besides, the set Ip(K) of all idempotents of K is a boolean ring for the
“boolean addition” defined by (e, e′) �−→ e +̃ e′ = e + e′ − 2ee′ and the ordinary
multiplication (e, e′) �−→ ee′. This fact can be proved either by a direct verification
or by the following geometrical considerations: there is a canonical bijection from
Ip(K) onto the algebra C(Spec(K), Z/2Z) of continuous functions Spec(K) →
Z/2Z. Indeed on one side the mapping e �−→ V(K(1−e)) is a bijection from Ip(K)
onto the set of subsets of Spec(K) that are both open and closed (see (1.11.3)), and
on the other side the mapping f �−→ f−1(1) is a bijection from C(Spec(K), Z/2Z)
onto the same set of open and closed subsets; thus each e ∈ Ip(K) is mapped to
the function fe : Spec(K) → Z/2Z such that fe(p) = 1 if e /∈ p, and fe(p) = 0 if
e ∈ p. This allows us to verify that the “boolean addition” of idempotents (resp.
the multiplication of idempotents) corresponds exactly to the ordinary addition
(resp. multiplication) of continuous functions Spec(K)→ Z/2Z.

In (3.4.8) an idempotent of K is associated with every graded quadratic
extension; let us study the resulting mapping Qg(K) → Ip(K).

(3.4.13) Proposition. By associating with every graded quadratic extension A of
K the idempotent e such that A1 = eD we obtain a morphism of commutative
groups from Qg(K) into Ip(K); its kernel is the subgroup Q(K), and its image is
the subgroup Ip′(K) of all e ∈ Ip(K) such that 2e is invertible in Ke.

In other words, there is an exact sequence

0 −→ Q(K) −→ Qg(K) −→ Ip′(K) −→ 0.

Proof. Let e and e′ be the idempotents associated with the graded quadratic
extensions A and A′, and let us set e′′ = e + e′ − 2ee′ and A′′ = A � A′; we must
prove that (1 − e′′)A′′

1 = 0 and A′′
1 is faithful over Ke′′. Since this can be done

by localizations, we can reduce the proof to the case of free modules A1 and A′
1 of

ranks 0 or 1, for which the associated idempotents are 0 or 1. If (e, e′) = (0, 0), all
gradings are trivial, and the conclusion is trivial. In all other cases, 2 is invertible
in K, and (e, e′, e′′) is either (1, 0, 1) or (0, 1, 1) or (1, 1, 0); consequently we must
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prove that one (and only one) of the three modules A1 or A′
1 or A′′

1 is reduced
to 0. Let z and z′ be generators of D and D′; thus z′′ = z ⊗ z′ is a generator
of D′′ = D ⊗ D′. When A1 is not reduced to 0, it is equal to D, and the same
for A′

1 and A′′
1 . Since one (and only one) of the three generators z or z′ or z′′ is

even, it is sure that one (and only one) of the three idempotents is 0. Besides, the
kernel of Qg(K)→ Ip(K) is obviously Q(K), and its image is given by the second
statement in (3.4.8). �

When K → K ′ is an extension of the basic ring K, with every graded K-
extension A is associated a graded K ′-quadratic extension K ′ ⊗ A (see (3.4.3)).
By mapping the isomorphy class of A to the class of K ′ ⊗ A we get a mapping
Qg(K)→ Qg(K ′); let us prove that it is a group morphism. If A and A′ are graded
quadratic extensions of K with standard involutions ϕ and ϕ′, from (1.9.6) we
derive

K ′ ⊗ (A ⊗̂A′) ∼= (K ′ ⊗A) ⊗̂K′(K ′ ⊗A′) ;

the elements of the left-hand member that are invariant by K ′⊗(ϕ⊗ϕ′) correspond
exactly to the elements of the right-hand member that are invariant by (K ′⊗ϕ)⊗
(K ′ ⊗ ϕ′) ; thus we get isomorphisms of graded quadratic extensions

K ′ ⊗ (A � A′) ∼= (K ′ ⊗A) �K′ (K ′ ⊗A′).

When A is a nongraded quadratic extension of K, it is worth observing that
the class of A belongs to the kernel of the morphism Qg(K) → Qg(A); this is one
of the many consequences of (3.4.4).

Inside Qg(K) it is sometimes useful to consider the subset Qg
f(K) of isomor-

phy classes of graded quadratic extensions which are free modules provided with
a basis (1, z) such that z2 = z − γ for some γ ∈ K ; similarly inside Q(K) we
consider the subset Qf (K) of isomorphy classes of trivially graded quadratic ex-
tensions satisfying the same condition. From (3.4.11) it immediately follows that
Qg

f(K) (resp. Qf (K)) is a subgroup of Qg(K) (resp. Q(K)).
Often the study of Qg

f (K) is a useful step in the study of Qg(K). Sometimes
Qg

f(K) is even equal to Qg(K); this happens for instance when K is a local ring.
Indeed every quadratic extension A over a local ring K admits a basis (1, z); let us
set z2 = βz − γ, and prove that (1, z) can be replaced by a basis (1, y) such that
y2 − y ∈ K. When 2 is invertible in K, this happens with y = z − (β − 1)/2 ; and
when 2 is not invertible, the invertibility of β2 − 4γ implies that β is invertible,
and we set y = z/β.

There is an exact sequence 0 → Qf (K) → Qg
f (K) → Ip′(K) → 0 (see

(3.4.13)) which shows that the knowledge of Qf (K) leads to the knowledge of
Qg

f(K). To get information about Qf(K), we can use the exact sequences that are
now explained. Let K�2� be the subset of all κ ∈ K such that 1−2κ is invertible,
and K�4� the subset of all γ ∈ K such that 1− 4γ is invertible; we provide K�2�
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and K�4� with the following operations:

κ +̃ κ′ = κ + κ′ − 2κκ′ and γ � γ′ = γ + γ′ − 4γγ′.

It is easy to verify that K�2� and K�4� are commutative groups for these oper-
ations, and that the mapping κ �−→ κ − κ2 is a group morphism from K�2� into
K�4�. Moreover K�2� contains Ip(K); indeed 1− 2e is invertible for all e ∈ Ip(K)
since (1− 2e)2 = 1.

(3.4.14) Lemma. There is an exact sequence

0 −→ Ip(K) −→ K�2� −→ K�4� −→ Qf (K) −→ 0

in which the arrows are defined in this way; the second arrow is the natural injec-
tion, the third arrow maps every κ ∈ K�2� to κ− κ2, and the fourth arrow maps
every γ ∈ K�4� to the isomorphy class of the quadratic extension K ⊕ Kz such
that z2 = z − γ.

When 2 is invertible in K, there is an equivalent exact sequence of multi-
plicative groups:

1 −→ µ2(K) −→ K× −→ K× −→ Qf (K) −→ 1 ;

µ2(K) is the group of square roots of 1 in K, the second arrow is the natural
injection, the third arrow is the morphism λ �−→ λ2, and the fourth arrow maps
every δ ∈ K× to the isomorphy class of the quadratic extension K ⊕Ky such that
y2 = δ.

Proof. The exactness of the first sequence only needs an explanation at the right
end: the extension K ⊕Kz (with z2 = z − γ) is trivial if and only the polynomial
Z2 − Z + γ has a root in K (see 2.6), and this means precisely that γ is in the
image of the morphism κ �−→ κ − κ2. When 2 is invertible in K, the mapping
κ �−→ 1 − 2κ is an isomorphism from K�2� onto K× that maps the subgroup
Ip(K) onto µ2(K); and the mapping γ �−→ 1 − 4γ is an isomorphism from K�4�
onto K×; this allows us to deduce the second exact sequence from the first one.
Indeed the equality γ = κ−κ2 is equivalent to δ = λ2 if λ = 1−2κ and δ = 1−4γ,
and the equality z2 = z−γ is equivalent to y2 = δ if δ = 1−4γ and y = 1−2z. �

Automorphisms of quadratic extensions

Later in 5.5 we shall need the group Aut(A) of all automorphisms of the K-algebra
A when A is a quadratic extension. When A is graded, we can already predict that
every such automorphism f is graded (in other words, f(Ai) = Ai for i = 0, 1);
indeed the grading of A is determined by ϕ and some idempotent of K (see (3.4.8)),
and f commutes with ϕ (see (1.13.8)).

(3.4.15) Proposition. If f is an automorphism of the quadratic extension A, there
exists a unique idempotent e in K such that the restriction of f to (1− e)A is the
identity mapping, whereas its restriction to eA is its standard involution.
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Proof. When K is a local ring, (3.4.15) means that f is either id or ϕ. Indeed let
(1, z) be a basis of A; we can write z2 = βz− γ with β2− 4γ invertible in K, and
ϕ(z) = β − z. It is clear that (1, f(z)) is also a basis of A, and f(z)2 = βf(z)− γ.
If we prove that z and ϕ(z) are the only elements u ∈ A such that (1, u) is a basis
of A and u2 − βu + γ = 0, then it follows that f is either id or ϕ. Since (1, u) is a
basis, we can write u = λ + µz with µ ∈ K×. Now the equality u2 − βu + γ = 0
is equivalent to (u − z)(u − ϕ(z)) = 0, and either u − z or u − ϕ(z) is invertible
because

N (u− z)−N (u − ϕ(z)) = (u− ϕ(u))(z − ϕ(z)) = µ(β2 − 4γ) ;

consequently u is either z or ϕ(z) and the particular case of a local ring K is
settled.

When K is an arbitrary ring, by localization we realize that f(x)−x belongs
to the discriminant module for all x ∈ A, and consequently (f(x) − x)2 ∈ K. Let
a be the ideal of K generated by all (f(x) − x)2, and b the annihilator of a, that
is the subset of all λ ∈ A such that λa = 0. Since a is finitely generated, for every
multiplicative subset S of K the vanishing of S−1a is equivalent to S ∩ b �= ∅.
For every prime ideal p of K, either fp is the standard involution of Ap and then
p contains b but not a since ap = Kp; or fp is the identity mapping and then p
contains a but not b since ap = 0. This proves that Spec(K) is the disjoint union of
the closed subsets V(a) and V(b). From Theorem (1.11.3) we deduce the existence
of an idempotent e ∈ K such that V(a) = V(Ke) and V(b) = V(K(1− e)). Thus
a = Ke and f has the same localizations as eϕ + (1− e)id. �

(3.4.16) Corollary. If we map every f ∈ Aut(A) to the idempotent e mentioned in
(3.4.15) we get a group isomorphism Aut(A) → Ip(K).

Indeed this mapping is bijective, and by localization (as in the proof of (3.4.13))
it is easy to prove that it is a group morphism. �

3.5 Graded Azumaya algebras

As in the previous sections, here we are concerned with parity gradings (over the
group Z/2Z). Let us recall that M ⊗N is graded whenever M and N are graded:

(M ⊗N)0 = (M0⊗N0)⊕ (M1⊗N1) and (M ⊗N)1 = (M1⊗N0)⊕ (M0⊗N1) ;

moreover Hom(M, N) is also graded; Hom0(M, N) is the submodule of all graded
morphisms (the morphisms f such that f(Mi) ⊂ Ni for i = 0, 1), and Hom1(M, N)
is the submodule of all f such that f(Mi) ⊂ N1−i for i = 0, 1. In particular,
End(M) = Hom(M, M) is a graded algebra.

When A is a graded algebra, there is a canonical morphism

A ⊗̂Ato −→ End(A) , a⊗ bto �−→ (x �−→ (−1)∂b∂xaxb) ;
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it is easy to verify that it is a graded algebra morphism; it plays an essential role
in the following definition.

(3.5.1) Definition. A graded algebra A is said to be a graded Azumaya algebra
over K if A is a finitely generated and faithful projective K-module, and if the
canonical morphism A ⊗̂Ato → End(A) is bijective.

To work with this definition, we need some assorted additional definitions.

(3.5.2) Definitions. Let A = A0 ⊕ A1 be a graded module; its grading is said to
be trivial if A1 = 0. Every nongraded module is silently given the trivial grading.
When A is a finitely generated projective module, its grading is said to be balanced
if at every prime ideal of K the ranks of A0 and A1 are equal. When this module A
is a graded algebra, its grading is said to be regular if the multiplication mapping
A1 ⊗ A1 −→ A0 (defined by x⊗ y �−→ xy) is surjective. Moreover we define in A
the following graded subalgebras:

Z(A) = {a | a ∈ A ; ∀b ∈ A, ab = ba }, the center of A,
Z0(A) = {a | a ∈ A0 ; ∀b ∈ A, ab = ba }, the even center of A,
Zg(A) = Zg

0(A) ⊕ Zg
1(A), the graded center of A, with components Zg

i (A) =
{a | a ∈ Ai ; ∀b ∈ A0 ∪A1, ab = (−1)∂a∂bba } for i = 0, 1,

Z(A0) = {a | a ∈ A0 ; ∀b ∈ A0, ab = ba }, the center of A0,

Z(A0, A) = {a | a ∈ A ; ∀b ∈ A0, ab = ba }, the centralizer of A0 in A.

When A is trivially graded, Z0(A), Zg(A), Z(A0, A) and Z(A0) are all equal to
Z(A). In all cases Z(A) and Zg(A) have the same even subalgebra Z0(A) = Zg

0(A),
and Z(A0) is the even subalgebra of Z(A0, A). There are obvious inclusions:

Z0(A) ⊂ Z(A0), Z(A) ⊂ Z(A0, A) and Zg(A) ⊂ Z(A0, A).

When A is moreover a finitely generated projective module, the presence of
invertible elements in A1 (or in each localization of A1) implies that the grading
of A is balanced and regular.

Here are some consequences of the definition (3.5.1).

(3.5.3) Theorem. Let K → K ′ be an extension of the ring K. When A is a graded
Azumaya algebra over K, then K ′⊗A is a graded Azumaya algebra over K ′. The
converse statement is also true if this extension is faithfully flat.

Proof. When A is a finitely generated and faithful projective K-module, then
K ′⊗A is a finitely generated and faithful projective K ′-module for every extension
K → K ′; when faithfulness is involved, remember (1.13.3) and (1.12.12); moreover
(1.9.6) and (1.9.7) ensure the bijectiveness of these algebra morphisms:

K ′ ⊗ (A ⊗̂Ato) −→ (K ′ ⊗A) ⊗̂K′(K ′ ⊗Ato) ,

K ′ ⊗ End(A) −→ EndK′(K ′ ⊗A) ;
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consequently K ′⊗A is a graded Azumaya K ′-algebra when A is a graded Azumaya
K-algebra. When the extension K → K ′ is faithfully flat, this argument also works
in the converse way; indeed a K-linear morphism M → N is injective or surjective
if and only if the same is true for K ′ ⊗M → K ′ ⊗ N ; when projectiveness and
finiteness are involved, remember (1.9.10); and for faithfulness, use (1.12.13). �

(3.5.4) Lemma. Let P and Q be two graded finitely generated and projective mod-
ules; we get a graded algebra isomorphism

End(P ) ⊗̂End(Q) −→ End(P ⊗Q)

if we map every f ⊗ g ∈ End(P ) ⊗̂End(Q) to the endomorphism f ⊗̂ g of P ⊗Q
defined by

(f ⊗̂ g)(x⊗ y) = (−1)∂g∂x f(x)⊗ g(y)

for all (homogeneous) x ∈ P and y ∈ Q.

Proof. Obviously the mapping f ⊗ g �−→ f ⊗̂ g is graded, and it is easy to verify
that

(f ⊗̂ g) ◦ (f ′ ⊗̂ g′) = (−1)∂g∂f ′
(f ◦ f ′) ⊗̂ (g ◦ g′).

To prove the bijectiveness of this mapping, we can use the isomorphism

P ⊗ P ∗ −→ End(P ) , x⊗ u �−→ (x′ �−→ u(x′)x ) ,

and the similar isomorphisms involving Q and P ⊗ Q, and also the isomorphism
P ∗ ⊗ Q∗ → (P ⊗ Q)∗ which maps every u ⊗ v to the linear form x ⊗ y �−→
(−1)∂v∂xu(x)v(y). The bijectiveness of all these isomorphisms appears when they
are localized. They allow us to derive the bijectiveness of the above mapping
f ⊗ g �−→ f ⊗̂ g from the evident bijectiveness of this mapping:

(P ⊗ P ∗)⊗ (Q⊗Q∗) −→ (P ⊗Q)⊗ (P ∗ ⊗Q∗) ,

(x⊗ u)⊗ (y ⊗ v) �−→ (−1)∂u∂y(x ⊗ y)⊗ (u⊗ v) . �

(3.5.5) Theorem. When A and B are graded Azumaya algebras, then A ⊗̂B too is
a graded Azumaya algebra.

Proof. On one side A ⊗̂B is also a finitely generated and faithful projective mod-
ule. 0n the other side there is a canonical isomorphism of graded algebras

(A ⊗̂B) ⊗̂ (A ⊗̂B)to −→ (A ⊗̂Ato) ⊗̂ (B ⊗̂Bto) ,

(x ⊗ y)⊗ (x′ ⊗ y′)to �−→ (−1)∂y∂x′
(x ⊗ x′to)⊗ (y ⊗ y′to) ;

thus (A ⊗̂B) ⊗̂ (A ⊗̂B)to is isomorphic to End(A) ⊗̂End(B), which by the previ-
ous lemma is isomorphic to End(A⊗B). The conclusion follows after some evident
calculations. �
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When we wish to know whether a graded algebra is a graded Azumaya alge-
bra, this property can be tested by localization, and even by means of extensions
to residue fields, as it is now explained.

(3.5.6) Theorem. When a graded algebra A is a finitely generated projective K-
module, the following assertions are equivalent:

(a) A is a graded Azumaya algebra over K;
(b) for every prime ideal p of K, Ap is a graded Azumaya algebra over Kp;
(c) for every maximal ideal m of K, Am is a graded Azumaya algebra over Km;
(d) for every maximal ideal m of K, A/mA is a graded Azumaya algebra over

the field K/m.

Proof. The equivalences (a)⇔(b)⇔(c) are immediate consequences of (1.11.7),
(1.10.5) and (1.10.8), and from (3.5.3) we can derive (a)⇒(d). Conversely, when
the assertion (d) is true, by the argument explained in the proof of (3.5.3) we get
isomorphisms

(K/m)⊗ (A ⊗̂Ato) −→ (K/m)⊗ End(A)

for all maximal ideals m; thus the conclusion follows from (1.13.5). �

(3.5.7) Remark. Let us suppose that in K there is an equality 1 = e1+e2+ · · ·+en

involving idempotents ei such that eiej = 0 if i �= j. It is easy to prove that a
graded algebra A is a graded Azumaya algebra over K if and only if Aei is a
graded Azumaya algebra over Kei for i = 1, 2, . . . , n. When A0 and A1 are finitely
generated projective modules, it follows from (1.12.8) that there are idempotents
e1, e2,. . . ,en in K such that, on one side 1 =

∑
i ei and eiej = 0 if i �= j, and

on the other side eiA0 and eiA1 have constant rank as modules over Kei for
i = 1, 2, . . . , n. Consequently it suffices to study graded Azumaya algebras A such
that A0 and A1 have constant ranks.

Examples of graded Azumaya algebras

Important consequences will follow from our first example.

(3.5.8) Proposition. When P is a graded finitely generated and faithful projective
module, and A = End(P ), then A is a graded Azumaya algebra, and Z(A) =
Zg(A) = K. Moreover A1 is a faithful module if and only if P0 and P1 are both
faithful modules. And when A1 is a faithful module, all these statements are true:

– the grading of A is regular;
– Z(A0) = Z(A0, A), and Z(A0, A) is isomorphic to the trivial quadratic exten-

sion K2;
– if ϕ is the standard involution of Z(A0, A), the equality yz = ϕ(z)y is valid

for all y ∈ A1 and all z ∈ Z(A0, A);
– when its grading is forgotten, A is a nongraded Azumaya algebra over K;
– A0 is a nongraded Azumaya algebra over its center.



3.5. Graded Azumaya algebras 135

Proof. Let us consider this graded K-linear mapping:

End(P )to −→ End(P ∗) , f to �−→ (u �−→ (−1)∂f∂u u ◦ f) ;

a straightforward verification shows that it is an algebra morphism. To prove that
it is bijective, we also consider the bijective mapping P ⊗ P ∗ → End(P ) already
mentioned in the proof of (3.5.4), and the similar bijective mapping P ∗ ⊗ P ∗∗ →
End(P ∗). Because of all the already introduced twisting signs, we identify P with
P ∗∗ by means of the following bijection:

P −→ P ∗∗ , x �−→ (u �−→ (−1)∂u∂xu(x)).

All these bijections allow us to derive the bijectiveness of End(P )to → End(P ∗)
from the bijectiveness of the mapping P ⊗ P ∗ → P ∗ ⊗ P defined by x ⊗ u �−→
(−1)∂u∂xu⊗x. Another straightforward calculation shows that the canonical map-
ping A ⊗̂Ato → End(A) is equal to the following composition of bijections:

End(P ) ⊗̂End(P )to −→ End(P ) ⊗̂End(P ∗) −→ End(P ⊗P ∗) −→ End(End(P )) ;

consequently A is a graded Azumaya algebra.
Later the equality Z(A) = K will be an immediate consequence of Morita

theory (see (6.4.5)), but an elementary proof can be achieved already now. Indeed
by localization we reduce the problem to the case of a free module P with a
basis (e1, e2, . . . , er) such that r > 0 (because P is faithful); let g1 be the parallel
projection onto Ke1 with respect to the submodule spanned by e2,. . . ,er; if f
belongs to Z(A), the equality fg1 = g1f implies that e1 is an eigenvector of f , and
similarly e2,. . . ,er are also eigenvectors; since (e1 + e2, e2, . . . , er) is also a basis,
e1 + e2 is also an eigenvector, and also every ei + ej with i < j ; consequently all
eigenvalues are equal to some λ ∈ K, and f is the canonical image of λ in A.

The even subalgebra A0 and the odd component A1 are respectively isomor-
phic to

End(P0)⊕ End(P1) and Hom(P0, P1)⊕Hom(P1, P0) .

If m and n are the ranks of P0 and P1 at some prime ideal of K, the ranks
of A0 and A1 are respectively m2 + n2 and 2mn. Consequently A1 is a faithful
module if and only if P0 and P1 are both faithful. Let p0 and p1 be the projections
P → P0 and P → P1. Every element f of Z(A0, A) must commute with these even
endomorphisms p0 and p1; consequently f(Pi) ⊂ Pi for i = 0, 1, in other words,
f is even. Thus we have proved that Z(A0, A) = Z(A0) and Zg(A) = Z0(A) =
Z(A) = K. The center of A0 is Kp0 ⊕Kp1 because it is naturally isomorphic to
the direct sum of the centers of End(P0) and End(P1); therefore it is isomorphic
to K2 when P0 and P1 are both faithful.

The image of the multiplication mapping A1 ⊗ A1 → A0 is obviously an
ideal of A0; let us prove that it contains idP when P0 and P1 are both faithful;
by localization we reduce the problem to the case of free modules P0 and P1; let
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(e1, e2, . . . , er) be a basis of P which begins with a basis of P0 and ends with a
basis of P1; it suffices to prove that the above projection g1 onto Ke1 belongs to
the image of A1⊗A1 → A0 since idP = g1 +g2 + · · ·+gr ; as a matter of fact, it is
easy to find two odd endomorphisms f ′ and f ′′ such that g1 = f ′f ′′; for instance
we can require that f ′′(e1) = er , f ′(er) = e1 , and f ′′(ei) = 0 if i > 1.

When P0 and P1 are faithful modules, the standard involution ϕ of Z(A0, A)
permutes p0 and p1. It is easy to verify that hp0 = p1h and hp1 = p0h for every
h ∈ A1, and with slightly different notations this is the same thing as the equality
yz = ϕ(z)y.

At last, the grading of A is forgotten if we give P the trivial grading, and this
does not invalidate the conclusion that A is an Azumaya algebra over K. Let us
suppose that P0 and P1 are both faithful, and let us consider A0 as an algebra over
its center Z = Kp0 ⊕ Kp1; since p0 and p1 are idempotents, A0 is an Azumaya
algebra over Z if and only if piA0 is an Azumaya algebra over Kpi for i = 0, 1, or
in other words, if and only if End(Pi) is an Azumaya algebra over K for i = 0, 1;
actually End(Pi) is an Azumaya algebra like End(P ). �

General consequences are immediately derived from (3.5.8).

(3.5.9) Proposition. The equalities Zg(A) = Z0(A) = K are valid for every graded
Azumaya algebra A over K. Moreover the grading of A is regular if and only if
A1 is a faithful K-module. When K is a field, A contains no graded (two-sided)
ideal other than 0 and A.

Proof. Since A is faithfully flat, the mapping x �−→ x⊗1to is injective from A into
A ⊗̂Ato; if x belongs to Zg(A), then x⊗1to belongs to Zg(A ⊗̂Ato) which is equal
to K⊗1to because of the isomorphism A ⊗̂Ato → End(A); consequently x belongs
to K. Let A1A1 be the image of A1 ⊗A1 in A0, or in other words, the ideal of A0

generated by the products of two odd elements. Since A0 is always faithful (indeed
K ⊂ A0), the equality A1A1 = A0 implies that A1 too is faithful. Conversely if
A1 is faithful, the grading of End(A) is regular, and also that of A ⊗̂Ato; the ideal
of (A ⊗̂Ato)0 generated by the products of two odd elements is the direct sum of
A1 ⊗Ato

1 and the following ideal N of A0 ⊗Ato
0 :

N = (A1A1 ⊗Ato
0 ) + (A0 ⊗ (A1A1)to)

= Ker (A0 ⊗ Ato
0 −→ (A0/A1A1)⊗ (A0/A1A1)to) ;

if A1A1 were not equal to A0, the quotient algebra A0/A1A1 would not be reduced
to 0; when an algebra B is not reduced to 0, the same is true for B ⊗̂Bto, since
the multiplication in B determines a nonzero mapping B⊗B → B; all this would
imply that the ideal N would not be equal to A0 ⊗Ato

0 , contrary to the fact that
the grading of A ⊗̂Ato is regular; consequently the grading of A is also regular.

When K is a field, End(A) contains no ideal other than 0 or itself; later this
will be an immediate consequence of Morita theory (see (6.4.5)), but elementary
proofs are also available: see (3.ex.15). If a is a graded ideal of A (such that
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a = (a ∩ A0) ⊕ (a ∩ A1)), then a ⊗ Ato is also a graded ideal of A ⊗̂Ato, which
must be equal to 0 or the whole algebra; consequently a is 0 or A. �

(3.5.10) Remark. When K is a field, a finite-dimensional and graded K-algebra
A (not reduced to 0) in which Zg(A) = K and every graded ideal is equal to 0
or A, is called a graded central simple algebra. The study of graded central simple
algebras in 6.6 is an important step toward the most difficult theorems about
graded Azumaya algebras, that have been postponed up to 6.7; the importance of
this step comes from the assertion (d) in (3.5.6). In Theorem (6.6.4) it is stated that
conversely every graded central simple algebra over a field is a graded Azumaya
algebra.

Here is another example of a graded Azumaya algebra.

(3.5.11) Proposition. Let A be a graded algebra that is a finitely generated projective
module of constant rank 2. It is a graded Azumaya algebra if and only if A is a
quadratic extension and A1 has constant rank 1. These conditions require 2 to be
invertible in K.

Proof. Since A is commutative, Z0(A) = A0. If A is an Azumaya algebra, then
Z0(A) = K and consequently A0 has constant rank 1, and A1 too. By localization
we can reduce the problem to the case of an algebra A = K ⊕ Kz in which z
generates A1; consequently z2 = −γ for some γ ∈ K. The images of 1 ⊗ 1to,
z ⊗ zto, z ⊗ 1to, 1⊗ zto in End(A) are described by the following matrices:

(
1 0
0 1

)
,

(
−γ 0
0 γ

)
,

(
0 −γ
1 0

)
,

(
0 γ
1 0

)
;

with these matrices we get a basis of End(A) if and only if 2γ is invertible, and
this means exactly that A is a quadratic extension. �

When 2 is invertible in K, with every nongraded algebra B we associate
the graded algebra (B2)g which is the algebra B ×B provided with the following
grading: (B2)g

0 is the subalgebra of all (b, b) with b ∈ B, whereas (B2)g
1 is the

submodule of all (b,−b). Obviously (B2)g is isomorphic to (K2)g ⊗B. Its grading
is always balanced and regular, because (B2)g

1 contains the invertible element
(1B,−1B).

(3.5.12) Proposition. We assume that 2 is invertible in K. Let P be a nongraded
finitely generated and faithful projective module, and A = (End(P )2)g. Then A is
a graded Azumaya algebra, provided with a regular and balanced grading. More-
over Z(A0) = K, Z(A) = Z(A0, A), and Z(A0, A) is a quadratic extension
isomorphic to (K2)g. If ϕ is the standard involution of Z(A0, A), the equality
yz = (−1)∂zϕ(z)y is valid for all y ∈ A1 and all homogeneous z ∈ Z(A0, A) . At
last, A0 is a nongraded Azumaya algebra over K, and when the grading of A is
forgotten, it is a nongraded Azumaya algebra over its center.
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Proof. First A is a graded Azumaya algebra because it is isomorphic to (K2)g ⊗
End(P ); indeed (K2)g is a graded Azumaya algebra (see (3.5.11)), and End(P ) is
a trivially graded Azumaya algebra (see (3.5.8)). Obviously A0 is isomorphic to
End(P ), and therefore is a nongraded Azumaya algebra over K; whence Z(A0) =
K. From (3.5.3) we derive that A without its grading is a nongraded Azumaya
algebra over K2; therefore Z(A) ∼= K2, and with its grading Z(A) is isomorphic to
(K2)g. The natural algebra morphism Z(A)⊗ A0 → A is obviously bijective, and
since Z(A0) = K, we come easily to Z(A0, A) = Z(A). Consequently the equality
yz = zy is true for all y ∈ A1 and all z ∈ Z(A0, A), and since ϕ(z) = (−1)∂zz, it
implies yz = (−1)∂zϕ(z)y. �

Remark. Let A be End(P ) as in (3.5.8), or (End(P )2)g as in (3.5.12), and let z be a
homogeneous element of Z(A0, A); in both cases the equality yz = (−1)∂zϕ(z)y
is valid for all y ∈ A1; remember that ∂z = 0 in the case of (3.5.8). From the
definition of Z(A0, A) it follows that yz = zy if y is even. Both equalities can be
combined in the following one, that is valid for all (homogeneous) y ∈ A and all
(homogeneous) z ∈ Z(A0, A) :

(3.5.13) yz = (−1)∂y∂z ϕ∂y(z) y ;

observe that ϕn is well defined when the exponent n is an element of Z/2Z ,
because ϕ is involutive, and ϕn is equal to id or ϕ according to the parity of n.

Other general theorems

The previous examples lead us to the following theorem, which here is proved
only with an additional hypothesis; anyhow this hypothesis will always be fulfilled
when this theorem is used in this chapter, and in 6.7 it is proved that the theorem
holds true without this hypothesis.

(3.5.14) Theorem. Let A be a graded Azumaya algebra such that A0 and A1 have
constant ranks. Then the rank of A is either a square, or the double of a square;
in the former case we say that A has even type, and in the latter case that it has
odd type. Now three cases can be distinguished:
(a) When A1 = 0, then A has even type and

Zg(A) = Z0(A) = Z(A) = Z(A0) = Z(A0, A) = K .

(b) When A has even type and A1 �= 0, there are two integers m and n such that
the ranks of A0 and A1 are respectively equal to m2 +n2 and 2mn. Moreover

Zg(A) = Z0(A) = Z(A) = K and Z(A0) = Z(A0, A) .

(c) When A has odd type, 2 must be invertible in K and the grading of A is
balanced. Moreover

Zg(A) = Z0(A) = Z(A0) = K and Z(A) = Z(A0, A) ;

in this case, the multiplication mapping Z(A)⊗A0 → A is bijective.
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In both cases (b) and (c), the grading of A is regular and Z(A0, A) is a
graded quadratic extension of K, which is trivially graded in the case (b), whereas
Z1(A0, A) has constant rank 1 in the case (c). If ϕ is the standard involution of
Z(A0, A), in both cases (b) and (c) the equality (3.5.13) is valid for all (homoge-
neous) y ∈ A and z ∈ Z(A0, A). At last A0 is always a nongraded Azumaya algebra
over its center, and when the grading of A is forgotten, it is a nongraded Azumaya
algebra over its center.

Beginning of the proof. Here we prove (3.5.14) only when this additional hypoth-
esis is fulfilled: there exists a faithfully flat extension K → L such that L ⊗ A is
isomorphic either to EndL(P ) or to (EndL(P )2)g with P a finitely generated and
faithful projective L-module, graded in the former case, nongraded in the latter
case. Obviously A has even type in the former case, and odd type in the latter
case; moreover 2 must be invertible in K in the latter case.

When the additional hypothesis is fulfilled, then (3.5.14) is an immediate
consequence of (3.5.8) or (3.5.12), and the various theorems stating that some
properties are true if they prove to be true after a faithfully flat extension. With
the help of (1.12.12) and (1.12.13) we get the statements involving the ranks of
A, A0 and A1. The case (a) occurs when L ⊗ A is isomorphic to End(P ) with P
a trivially graded module over L, the case (b) when it is isomorphic to End(P )
with P0 and P1 both faithful over L, and the case (c) when it is isomorphic to
(End(P )2)g. Since we already know that Zg(A) = Z0(A) = K (see (3.5.9)), we only
consider Z(A), Z(A0) and Z(A0, A); they can be described as finite intersections
of kernels of mappings like a �−→ ab− ba because A and A0 are finitely generated
modules; and since L is faithfully flat, we can write

Z(L⊗A) = L⊗ Z(A) , Z(L⊗A0) = L⊗ Z(A0) ,

Z(L⊗A0, L⊗A) = L⊗ Z(A0, A).

Besides, when M runs through the set of K-submodules of A, the mapping M �−→
L ⊗M is injective into the set of L-submodules of L ⊗ A. Consequently the an-
nounced properties of Z(A), Z(A0) and Z(A0, A) are immediate consequences of
properties of their L-extensions which can be deduced from (3.5.8) and (3.5.12);
in particular Z(A0, A) is a quadratic extension in both cases (b) and (c) because
L⊗Z(A0, A) is isomorphic either to L2 in the case (b), or to (L2)g in the case (c).

The faithful flatness of L also allows us to carry the equality (3.5.13) from
L ⊗ A back to A. The mapping Z(A) ⊗ A0 → A is an isomorphism when A
has odd type, because Z0(A0, A) (that is K) and Z1(A0, A) (the discriminant
module) have constant rank 1, and every localization of Z1(A0, A) is generated
by an invertible element. At last, A0 and A without its grading are nongraded
Azumaya algebras over their centers if some mappings are bijective (see (3.5.1)),
and their bijectiveness can be tested by means of a faithfully flat extension.

When K is a field, later in (6.6.5) it is proved that the above additional
hypothesis is fulfilled for every graded central simple algebra over K, and thus



140 Chapter 3. Clifford Algebras

(3.5.14) becomes valid over a field without more hypotheses. Consequently when
K is not a field, (3.5.14) becomes valid for all the extensions (K/m)⊗A with m a
maximal ideal of K; but more work is required until (3.5.14) is completely proved
in 6.7, since the separability theory presented in 6.5 plays an important role at
this moment. �

The following theorem is only stated for information, since we do not really
need it here; we only need it in (3.6.6), (3.6.7) and (3.6.8) below, and later in
(6.ex.11).

(3.5.15) Theorem. Let A be a graded Azumaya algebra such that A0 and A1 have
constant ranks. If A has even type, there exists a faithfully flat extension K → L
and a graded L-module P = P0⊕P1 such that P0 and P1 are free modules and L⊗A
is isomorphic to EndL(P ). If A has odd type, there exists a faithfully flat extension
K → L and a free L-module P such that L⊗A is isomorphic to (EndL(P )2)g.

In other words, the additional hypothesis with which (3.5.14) has been
proved, is always fulfilled. The fact that (3.5.15) mentions free modules instead
of projective modules is not meaningful, since every finitely generated projective
module of constant rank gives a free module after a suitable Zariski extension (see
(1.ex.21)); free modules are anyhow indispensable in the proof of (3.6.6). Never-
theless it would be an illusion to believe that (3.5.15) might help to prove (3.5.14),
because the proof of (3.5.14) is rather a step toward the proof of (3.5.15). In [Knus
1991] there is a proof of (3.5.15) for (trivially graded) Azumaya algebras which
uses almost all the arguments involved in the proof of (3.5.14), and other argu-
ments still more difficult. Then (3.5.14) is needed to complete the proof of (3.5.15)
with nontrivial gradings.

(3.5.16) Remarks. When A0 and A1 do not have constant rank, A is said to have
even type (resp. odd type) if all its localizations have even type (resp. odd type).
When A and B have constant types, by examining the rank of A ⊗̂B at each
prime ideal we find that it has also a constant type, which is even (resp. odd) if
and only if A and B have the same type (resp. different types); in other words,
the type of A ⊗̂B is the sum of the types of A and B.

When the type of A is not constant, there is an idempotent e in K such that
(1− e)A is a graded Azumaya algebra of even type over K(1− e), whereas eA is
a graded Azumaya algebra of odd type over Ke. Thus eZ1(A0, A) has constant
rank 1 over Ke, whereas (1 − e)Z1(A0, A) = 0. Besides, Z(A0, A) is a quadratic
extension of K whenever A1 is a faithful module.

(3.5.17) Theorem. Let A and B be graded Azumaya algebras such that A1 and B1

are faithful modules, and let us identify Z(A0, A) ⊗̂ Z(B0, B) with a subalgebra of
A ⊗̂B. Then

Z((A ⊗̂B)0 , A ⊗̂B) = Z(A0, A) � Z(B0, B) .
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Proof. The identification advised in (3.5.17) is sensible because Z(A0, A) and B
are faithfully flat modules (indeed they are faithful and projective), and afford
injective morphisms

Z(A0, A) ⊗̂ Z(B0, B) −→ Z(A0, A) ⊗̂B −→ A ⊗̂B.

Let us set C = A ⊗̂B. We first prove that Z(C0, C) is contained in

Z(A0, A) ⊗̂ Z(B0, B).

By localization we reduce the problem to the case of a free module B with a
basis (b′1, . . . , b′n); then every z′′ ∈ Z(C0, C) can be written (in a unique way)
z′′ =

∑
i ai ⊗ b′i for some a1, . . . , an in A; from the fact that z′′ commutes with

x⊗ 1 for every x ∈ A0 , we derive the equality

n∑
i=1

(xai − aix)⊗ b′i = 0 ;

this proves that each ai commutes with all x ∈ A0, and consequently z′′ belongs
to Z(A0, A) ⊗̂B. Then a similar argument using a basis of Z(A0, A) shows that z′′

belongs to Z(A0, A) ⊗̂ Z(B0, B).
Now let ϕ and ϕ′ be the standard involutions of Z(A0, A) and Z(B0, B),

and let y, z, y′, z′ be homogeneous elements respectively in A, Z(A0, A), B and
Z(B0, B). From the equality (3.5.13) (and the similar equality involving ϕ′) we
deduce

(y ⊗ y′) (z ⊗ z′) = (−1)(∂y+∂y′)(∂z+∂z′) (ϕ∂y ⊗ ϕ′∂y′
)(z ⊗ z′) (y ⊗ y′);

this shows that an element z′′ of Z(A0, A) ⊗̂ Z(B0, B) belongs to Z(C0, C) if it is
invariant by ϕ⊗ϕ′; indeed it commutes with every y⊗y′ in A0⊗B0 or in A1⊗B1;
consequently Z(A0, A) � Z(B0, B) is contained in Z(C0, C). This inclusion is an
equality because of (3.4.5). �

In some contexts it is useful to associate a graded quadratic extension QZ(A)
with each graded Azumaya algebra A, even when A1 is not a faithful module; of
course when A1 is faithful, QZ(A) is merely Z(A0, A). When A1 is not faithful,
there is a unique idempotent e in K such that eA1 is faithful over Ke whereas
(1− e)A1 = 0 ; with the trivially graded algebra (1− e)A we associate the trivial
quadratic extension (1− e)K2 of (1− e)K and consequently, by definition,

QZ(A) = (1− e)K2 ⊕ eZ(A0, A) .

(3.5.18) Corollary. When A and B are graded Azumaya algebras, then QZ(A ⊗̂B)
is isomorphic to QZ(A) � QZ(B).
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Proof. As explained in (3.5.7), we can assume that A0, A1, B0, B1 have constant
ranks. When A1 and B1 are faithful modules, (3.5.18) follows from (3.5.17). When
A1 and B1 are both zero, (3.5.18) is a triviality. It remains to consider this case:
A1 is zero whereas B1 is faithful; in this case, (3.5.18) means that Z(C0, C) (with
C = A ⊗̂B as above) is isomorphic to Z(B0, B). As explained in the proof of
(3.5.17), Z(C0, C) is contained in Z(A0, A) ⊗̂ Z(B0, B), which is now the quadratic
extension K ⊗ Z(B0, B). Thus the conclusion follows from (3.4.5). �

The Brauer–Wall group Brg(K)

Proposition (3.5.5) shows that the isomorphy classes of graded Azumaya algebras
over K constitute a monoid, in which the class of K is the unit element. Lemma
(3.5.4) shows that the isomorphy classes of all graded algebras End(P ), with P a
graded finitely generated and faithful projective module, constitute a submonoid;
this submonoid is absorbent (see the definition in the first part of 2.7) because
A ⊗̂Ato is isomorphic to End(A) when A is a graded Azumaya algebra. Despite
the multiplicative notations involved in this monoid, from Proposition (2.7.1) we
deduce that the quotient of this monoid by this absorbent submonoid is a group;
this group is called the Brauer–Wall group (or graded Brauer group) of K, and
denoted by Brg(K). If A and B are graded Azumaya algebras over K, their classes
[A] and [B] in Brg(K) are equal if there exist graded finitely generated and faithful
projective modules P and Q such that A ⊗̂End(P ) is isomorphic to B ⊗̂End(Q).
Observe that the inverse class [A]−1 is the class of Ato.

When A and B are trivially graded, the above condition equivalent to [A] =
[B] now means that the ordinary tensor products A⊗End(P ) and B⊗End(Q) are
isomorphic, and if they are isomorphic as graded algebras, they are still isomorphic
when the gradings are forgotten; consequently Brg(K) contains a subgroup Br(K),
the ordinary Brauer group, which can be defined by means of isomorphy classes
of trivially graded Azumaya algebras. Often Br(K) and Brg(K) are treated as
multiplicative groups, but there are also sensible reasons to treat them rather as
additive groups (see (3.7.9)).

Because of (3.5.3), every extension K −→ K ′ induces a group morphism
Brg(K) → Brg(K ′). Thus we get a functor Brg from the category of commutative
rings to the category of commutative groups.

With each graded Azumaya algebra A is associated a quadratic extension
QZ(A) defined just before (3.5.18); when A is isomorphic to some End(P ), then
QZ(A) is trivial (see (3.5.8)); because of (3.5.18) there is a group morphism
Brg(K) → Qg(K) defined by [A] �−→ [QZ(A)]. In 3.8, the exactness of the fol-
lowing sequence shall be proved:

(3.5.19) 1 −→ Br(K) −→ Brg(K) −→ Qg(K) −→ 1.

This exact sequence allows us to calculate Brg(K) when Br(K) is known, provided
that Qg(K) has been already calculated by means of (3.4.13) and (3.4.14).
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(3.5.20) Examples. When K is a field, a graded algebra B of finite dimension
over K is called a graded division algebra if every nonzero homogeneous element
is invertible; if moreover Zg(B) = K, we say that B is a graded central division
algebra. When the grading of B is trivial, it is a division algebra if every nonzero
element is invertible, a central division algebra if moreover Z(B) = K. It is worth
noticing that (K2)g is a graded central division algebra over K (when 2 is invert-
ible in K), although it is neither a division algebra nor a central algebra when
its grading is forgotten. Obviously every graded central division algebra B is a
graded central simple algebra, consequently a graded Azumaya algebra because of
Theorem (6.6.4). The Brauer–Wall group of a field K classifies the graded central
division algebras over K, because Theorem (6.6.2) implies that every graded Azu-
maya algebra A has the same class as a graded central division algebra B, which
is uniquely determined by A up to isomorphy.

When K is a field, the group Ip(K) has order 2, but the subgroup Ip′(K)
appearing in (3.4.13) has order 2 or 1 according as 2 is invertible or not in K.
Thus the knowledge of Q(K) and Br(K) gives information about Brg(K) with
the help of (3.4.13) and (3.5.19). For instance if K is an algebraically closed field,
then Br(K) = 1, because in each division algebra of finite dimension over K the
subalgebra generated by any nonzero element is a (commutative) field, therefore
equal to K. Then (3.4.14) shows that Q(K) = Qf(K) = 1 for this algebraically
closed field K, and consequently Brg(K) is isomorphic to Qg(K) and to Ip′(K).

Wedderburn’s theorem states that every finite division ring is a (commu-
tative) field; consequently Br(K) = 1 when K is a finite field, and Brg(K) is
isomorphic to Qg(K). Let n be the cardinal of K. When n is odd, Q(K) is isomor-
phic to the quotient of K× (a cyclic group of order n− 1) by the subgroup of all
squares; therefore Q(K) has order 2 and Qg(K) has order 4. If A is a nontrivially
graded quadratic extension over this field, then A � A is isomorphic to K[i] with
i2 = −1 (because of the twisting in A ⊗̂A); if n− 1 is divisible by 4, then −1 has
a square root in K and the class [A] has order 2 in Qg(K); consequently Qg(K) is
isomorphic to (Z/2Z)2; but if n−1 is not divisible by 4, then −1 has no square root
in K and Qg(K) is a cyclic group generated by [A]. When n is even, Qg(K) and
Brg(K) are isomorphic to Q(K) = Qf (K) which has order 2 because of (3.4.14).

When K is the field R of real numbers, it is clear that Q(R) is a group of
order 2. Since the class of (R2)g has order 4 in Qg(R), this group is cyclic of order
4. In (3.ex.17) it is proved that Br(R) is a group of order 2. Consequently Brg(R)
contains eight elements, and in (3.ex.22) Clifford algebras are used to prove that
this group is cyclic and generated by the Brauer class of (R2)g.

When K is the ring Z of integers, it is easy to prove that Qg(Z) is a group of
order 1 (see (3.ex.10)) but much more work is necessary to prove that Br(Z) = 1,
and consequently Brg(Z) = 1.
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3.6 Traces and determinants

This section presents more specialized information about Azumaya algebras, which
hurried readers may omit until they really need it.

When P is a finitely generated projective module, we can define the trace
(resp. the determinant) of every endomorphism f of P . When P is a free module
with finite bases, there is no problem in defining it as the trace (resp. the deter-
minant) of its matrix in any basis of P , since changes of bases involve invertible
matrices. When P is not free, there is a module P ′ such that P ⊕ P ′ is free with
finite bases; we extend f with zero on P ′ (resp. with the identity mapping of P ′)
in order to get an endomorphism f ′ of P ⊕ P ′, and by definition the trace of f
(resp. its determinant) is that of f ′. Of course we must check that the extension
f ′′ of f to another free module P ⊕P ′′ gives the same trace (resp. the same deter-
minant); indeed the module P ⊕ (P ⊕ P ′ ⊕ P ′′) is also free with finite bases, and
gives another extension f ′′′ of f by means of zero (resp. the identity mapping) on
P ⊕ P ′ ⊕ P ′′; it is clear that

tr(f ′) = tr(f ′′′) = tr(f ′′) (resp. det(f ′) = det(f ′′′) = det(f ′′)).

Traces and determinants can be calculated by localization. For instance
let us calculate tr(idP ) when the rank of P takes the values r1, r2, . . . , rk and
e1, e2, . . . , ek are the corresponding idempotents of K as in (1.12.8):

tr(idP ) = r1e1 + r2e2 + · · ·+ rkek ;

consequently tr(idP ) is invertible in K if and only if ri is invertible in Kei for
i = 1, 2, . . . , k.

The usual properties of traces and determinants remain valid in this context;
for instance the following three lemmas can be proved by localization with ordinary
matrix calculus.

(3.6.1) Lemma. Let P be a finitely generated projective module and A = End(P ).
The linear form tr : A → K is surjective and its kernel (which is consequently
a direct summand of A) is the submodule [A, A] generated by all Lie brackets
[f, g] = fg − gf . Moreover the bilinear form (f, g) �−→ tr(fg) is symmetric and
nondegenerate.

(3.6.2) Lemma. Let M be a finitely generated projective module of constant rank
m that contains a direct summand N of constant rank n, and let p : M → N be
a projector onto N with respect to a supplementary submodule. Then the left (or
right) ideal generated by p is a direct summand of End(M) of constant rank mn,
and tr(p) is the image of n in K.

(3.6.3) Lemma. If P is a finitely generated projective module of constant rank 2,
the mapping f �−→ tr(f)idP − f is a standard involution of the algebra End(P ),
and the associated norm is the quadratic form f �−→ det(f).
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The next lemma is more difficult.

(3.6.4) Lemma. If P is a finitely generated projective module, and w an automor-
phism of the algebra End(P ), the equalities tr(w(f)) = tr(f) and det(w(f)) =
det(f) hold for every f ∈ End(P ).

Proof. Both linear forms tr and tr◦w on End(P ) are surjective and have the same
kernel; consequently the latter is the product of the former by some κ ∈ K×. By
localization we reduce the calculation of κ to the case of a free module P ; then
End(P ) contains projectors p such that Im(p) has constant rank 1, and w(p) too
is a projector since it is an idempotent like p; since the left ideals generated by
p and w(p) have the same rank, we conclude that tr(p) = tr(w(p)) = 1, whence
κ = 1. For the determinant we need a stronger argument: in 6.6 it is proved that
w is an inner automorphism when K is a local ring, in other words, there is an
automorphism u of P such that w(f) = ufu−1 for all f ∈ End(P ); the conclusion
follows from the multiplicative property of determinants. �

The existence of traces and determinants is a general property of all Azumaya
algebras, not only a property of the algebras End(P ) with P as above. On every
graded Azumaya algebra A there is a reduced trace tr and a reduced determinant,
rather called reduced norm and denoted by N , satisfying analogous properties.
The word “reduced” probably recalls this property, in which A is assumed to
have constant rank r2 or 2r2: if x is any element of A, and if Lx and Rx are the
endomorphisms of A defined by Lx(y) = xy and Rx(y) = yx, then

tr(Lx) = tr(Rx) = r tr(x) and det(Lx) = det(Rx) = N (x)r .

Reduced characteristic polynomials can be derived from reduced norms in the
usual way, and give the reduced trace as a particular coefficient. The existence of
reduced traces or norms can be proved by Descent Theory; the aim of this theory
is to determine, in case of a faithfully flat extension K → L, whether an object
defined over L is an L-extension of an object defined over K. The next lemma is
the basic trick in this theory; in the subsequent two propositions only (reduced)
traces are mentioned since here we do not need more.

(3.6.5) Lemma. Every faithfully flat extension K → L allows us to identify K with
a subalgebra of L, and an element λ ∈ L belongs to K if and only if the equality
λ⊗ 1 = 1⊗ λ holds in L⊗ L.

Proof. We must prove the exactness of the sequence

0 −→ K −→ L −→ L⊗ L

in which the last arrow is λ �−→ λ⊗1−1⊗λ. Since the extension is faithfully flat,
it suffices to prove the exactness of the sequence derived from the previous one by
the functor L⊗ · · · :

0 −→ L −→ L⊗ L −→ L⊗ L⊗ L.
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The second arrow λ �−→ λ⊗ 1 is injective because we obtain idL if we compose it
with λ⊗µ �−→ λµ. If we compose the third arrow λ⊗µ �−→ λ⊗µ⊗1−λ⊗1⊗µ
with the mapping λ ⊗ µ ⊗ ν �−→ λµ ⊗ ν, we obtain λ ⊗ µ �−→ λµ ⊗ 1 − λ ⊗ µ.
Consequently every element

∑
j λj ⊗ µj in the kernel of the third arrow belongs

to the image L⊗ 1 of the second arrow because

∑
j

λjµj ⊗ 1 −
∑

j

λj ⊗ µj = 0. �

(3.6.6) Proposition. Let us assume that A is a graded Azumaya algebra of constant
rank r2, and that there is an isomorphism L⊗A→ EndL(P ) involving a faithfully
flat extension K → L and a graded L-module P with free even and odd components.
There is a linear form tr : A → K such that tr(x) is equal for all x ∈ A to the trace
of the image of 1⊗ x in EndL(P ). This linear form does not depend on the choice
of the isomorphism L⊗A→ EndL(P ). It is surjective onto K, its kernel is [A, A]
and contains A1. Moreover the bilinear form (x, y) �−→ tr(xy) is symmetric and
nondegenerate. And if r = 2, the mapping x �−→ tr(x)−x is a standard involution
of A.

Proof. The grading of A has no importance here; in the conclusions it only ap-
pears when it is stated that tr(A1) = 0, and (when the other conclusions are
proved) this detail immediately follows from the vanishing of tr(f) whenever f is
an endomorphism of P such that f(P0) ⊂ P1 and f(P1) ⊂ P0. Consequently we
forget the parity gradings. First we must prove that tr(f) belongs to K when f
is the L-endomorphism of P associated with some element x of A; since P is free,
we can replace EndL(P ) with the matrix algebra M(r, L) of square matrices of
order r. Secondly, when L′ ⊗ A → M(r, L′) is another isomorphism of the same
kind, we must prove that tr(f) = tr(f ′) is f ′ is the image of x in M(r, L′). Both
statements can be proved at the same time. Indeed let w be the automorphism of
the (L ⊗ L′)-algebra M(r, L⊗ L′) defined in this way:

M(r, L⊗ L′) −→ M(r, L)⊗ L′ −→ (L⊗A)⊗ L′

↓
M(r, L⊗ L′) ←− L⊗M(r, L′) ←− L⊗ (L′ ⊗A)

This automorphism w maps the image g of f ⊗ 1 in M(r, L ⊗ L′) to the image
g′ of 1 ⊗ f ′, and it is clear that tr(g) = tr(f) ⊗ 1 and tr(g′) = 1 ⊗ tr(f ′). Since
tr(g′) = tr(g) (see (3.6.4)), we realize that tr(f) ⊗ 1 = 1 ⊗ tr(f ′). When the
isomorphism L′⊗A→M(r, L′) is equal to L⊗A →M(r, L), we get the equality
tr(f)⊗ 1 = 1⊗ tr(f) which proves that tr(f) belongs to K (see (3.6.5)). Similarly
tr(f ′) belongs to K, and the above equality involving both tr(f) and tr(f ′) now
proves their equality. The remainder of the proof is evident, since it merely means
that some properties are true when they prove to be true after a faithfully flat
extension. �
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(3.6.7) Proposition. Let us assume that A is a graded Azumaya algebra of constant
rank 2r2, and that there is an isomorphism L ⊗ A → (EndL(P )2)g involving a
faithfully flat extension K → L and a free L-module P . There is a linear form
tr : A → K such that tr(x) is equal for all x ∈ A to tr(f) + tr(g) if (f, g) is the
image of 1 ⊗ x in (EndL(P )2)g. This linear form does not depend on the choice
of the isomorphism L ⊗ A → (EndL(P )2)g. It is surjective onto K, its kernel is
[A0, A0]⊕A1 and contains [A, A]. Moreover the bilinear form (x, y) �−→ tr(xy) is
symmetric and nondegenerate.

Proof. In this case A is isomorphic to Z(A)⊗A0 (see (3.5.14)); thus the isomorphism
L ⊗ A → (EndL(P )2)g gives the same information as the two isomorphisms L ⊗
Z(A) → (L2)g and L ⊗ A0 → EndL(P ), and (3.6.7) is an easy consequence of
(3.6.6). It is worth observing that Z(A) and A0 are both provided with traces,
and that tr(zx) = tr(z)tr(x) for all z ∈ Z(A) and all x ∈ A0; indeed tr(z) = 2 if
z is the unit element of Z(A), and tr(z) = 0 for all z in the discriminant module
Z1(A). �

If we admit that Theorem (3.5.15) is true for all graded Azumaya algebras of
constant rank, and remember what Remark (3.5.7) says about nonconstant ranks,
we realize that every graded Azumaya algebra A is provided with a trace; it is a
surjective linear form A → K, and its kernel is [A, A]+A1. Consequently [A, A]+A1

is a direct summand of A and every supplementary submodule is isomorphic to
K. The canonical image of K in A is supplementary to [A, A] + A1 if and only if
tr(1) is invertible, and tr(1) is invertible if and only if tr(idA) is invertible.

Remark. When the faithfully flat extension K → L is a Zariski extension, it is
an easy exercise to deduce (1.13.9) from (3.6.5), provided that it is known that
for every pair (s, t) of elements of K the natural morphism Ks ⊗ Kt → Kst is
an isomorphism; thus the proof of (1.13.10) was our first application of Descent
Theory. Interested readers may find more information about this important but
difficult theory in [Knus, Ojanguren 1974] or [Knus 1991].

Quaternion algebras

A quaternion algebra is a (nongraded) Azumaya algebra of constant rank 4. Be-
cause of (3.5.15) an equivalent definition may be this one: an algebra A is a quater-
nion algebra if there exists a faithfully flat extension K → L such that L ⊗ A is
isomorphic to the matrix algebra M(2, L). Because of (3.6.6), every quaternion
algebra is provided with a standard involution (also called the quaternionic con-
jugation).

(3.6.8) Proposition. If A is a K-algebra, these assertions are equivalent:
(a) A is a quaternion algebra;
(b) A is a finitely generated projective module of constant rank 4, the algebra

A is provided with a standard involution ϕ, and the derived norm N is a
nondegenerate quadratic form.
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Proof. The Azumaya property can be tested by means of extensions to residue
fields (see (3.5.6)), and the nondegeneracy of the quadratic form N too (see
(2.3.4)); consequently we can assume that K is a field. A quaternion algebra A
over a field contains no ideal other than 0 and A (see (3.5.9)). But if N is the
norm derived from a standard involution ϕ, then Ker(bN ) is an ideal. Indeed, for
all x, y ∈ A,

bN (x, y) = xϕ(y) + yϕ(x) = tr(xϕ(y)) ;

therefore x belongs to Ker(bN ) if and only if tr(xy) = tr(yx) = 0 for all y ∈ A,
and from this property it is easy to deduce that Ker(bN ) is an ideal. Moreover
Ker(bN ) �= A if bN (1, x) = tr(x) �= 0 for some x ∈ A. When A is a quaternion
algebra over a field, all this implies that Ker(bN ) = 0 and thatN is nondegenerate.

Conversely let us assume that N is nondegenerate; we can assume that N is a
hyperbolic quadratic form because a faithfully flat extension reduces the problem
to this case (see (2.6.6)); and then, as above, we can assume that K is a field.
Consequently an element x of A is invertible if and only if N (x) �= 0. Since N
is hyperbolic, A contains noninvertible elements other than 0, and consequently
contains left and right ideals other than 0 and A. Such a left or right ideal is
totally isotropic for N , and its dimension must be 1 or 2; it is always 2 for the
following reasons. Let x be a nonzero element in a left ideal P other than 0 or
A, and let Rx be the multiplication y �−→ yx. Since Im(Rx) and Ker(Rx) are left
ideals different from 0 and A, and since the sum of their dimensions is 4, both
Im(Rx) and Ker(Rx) have dimension 2, and P = Im(Rx). Moreover if P and Q
are left ideals of dimension 2, then either P = Q or A = P ⊕Q; indeed if P ∩Q
contains a nonzero element x, then P and Q are both equal to Im(Rx). Let u be
the algebra morphism A → End(P ) that maps every z to the restriction of the
left multiplication Lz (y �−→ zy) to P ; if we manage to prove that A contains no
ideal other 0 and A, it follows that u is injective, therefore bijective, and that A is
an Azumaya algebra, therefore a quaternion algebra. To prove that A contains no
ideal of dimension 2, it suffices to prove that the above left ideal P cannot be a
two-sided ideal; if we prove that the dimension of P ∩ϕ(P ) is 1, then the right ideal
ϕ(P ) cannot be a left ideal like P , and the conclusion follows. First P ∩ϕ(P ) �= 0,
since the intersection of P and Ker(tr) (subspaces of dimension respectively 2 and
3) is not reduced to 0, and ϕ(x) = −x for every x in this intersection. Secondly
P �= ϕ(P ); indeed, because of (2.5.4), there are noninvertible elements y outside P ,
and the left ideal Q = Im(Ry) is supplementary to P since P �= Q; the projections ε
and ε′ of 1 in P and Q are idempotents, and the general formula x2 = tr(x)x−N (x)
shows that tr(ε) = 1, whence ϕ(ε) = ε′ and ϕ(P ) �= P . �

(3.6.9) Example. Let Z be a quadratic extension, α an invertible element of K
and A the algebra Z ⊕ Z derived from Z and α by the Cayley–Dickson process
explained in 3.3; we set j = (0, 1) and A = Z ⊕ jZ as in 3.3. The standard
involution of Z extends to a standard involution ϕ of A, with a norm N such
that N (b + jc) = N (b) − αN (c) for all b, c ∈ Z. Since N is nondegenerate on
A, this algebra A is a quaternion algebra. The equality (jc)2 = −αN (c) holds for
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all c ∈ Z because tr(jc) = 0. Therefore if we provide jZ with the quadratic form
jc �−→ −αN (c), the natural injection jZ → A extends to an algebra morphism
C�(jZ)→ A, the bijectiveness of which easily follows from (3.3.4) by localization.

3.7 Clifford algebras of quadratic spaces

Remember that a quadratic space over the ring K is a finitely generated projective
K-module provided with a nondegenerate quadratic form. In this section we intend
to prove that the Clifford algebra of a quadratic space is always a graded Azumaya
algebra. When (M, q) is a quadratic space, from (3.3.7) we know that the canonical
mappings K → C�(M, q) and M → C�(M, q) are injective; this allows us to
identify 1q with 1, and ρ(x) with x, so as to get easily readable calculations. We
begin with a preliminary lemma.

(3.7.1) Lemma. Let P be a K-module, and h a linear form on P ; there exists
a unique linear mapping Dh from

∧
(P ) into itself satisfying the following two

conditions:
∀a ∈ P, Dh(a) = h(a) ;
∀x, y ∈

∧
(P ), Dh(x ∧ y) = Dh(x) ∧ y + (−1)∂xx ∧Dh(y).

Besides, Dh ◦Dh = 0.

The second condition means that Dh is a twisted derivation, and implies Dh(1) = 0
when x = y = 1. Both conditions imply, for all a1,. . . ,ak in P ,

Dh(a1 ∧ a2 ∧ · · · ∧ ak) =
k∑

i=1

(−1)i−1 a1 ∧ · · · ∧ h(ai) ∧ · · · ∧ ak .

Proof. The unicity of Dh is obvious. Let D′
h be the linear mapping T(P )→ T(P )

defined by D′
h(1) = 0 and, for every k ≥ 1,

D′
h(a1 ⊗ a2 ⊗ · · · ⊗ ak) =

k∑
i=1

(−1)i−1 a1 ⊗ · · · ⊗ h(ai)⊗ · · · ⊗ ak .

Remember that
∧

(P ) is the quotient of T(P ) by the ideal J(P ) generated by all
a ⊗ a. It is easy to check that D′

h(J(P )) = 0 and (D′
h)2 = 0. This implies the

existence of Dh and the equality (Dh)2 = 0. Anyhow (3.7.1) is also an immediate
consequence of the interior multiplications presented later in 4.4. �

(3.7.2) Theorem. Let P be a finitely generated projective module, and H[P ] the
derived hyperbolic space; the graded algebras C�(H[P ]) and End(

∧
(P )) are iso-

morphic.
The grading of End(

∧
(P )) comes from the grading of

∧
(P ) =

∧
0(P ) ⊕

∧
1(P ) ;

all gradings are balanced when P is a faithful module.
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Proof in three steps. The identity mapping of
∧

(P ) is denoted by id∧ .

First step. We construct an algebra morphism Φ : C�(H[P ]) → End(
∧

(P )). Be-
cause of the universal property of C�(H[P ]), the construction of Φ merely requires
a linear mapping ϕ : P ∗ ⊕ P → End(

∧
(P )) such that

∀h ∈ P ∗, ∀a ∈ P, (ϕ(h, a))2 = h(a) id∧ .

This condition is fulfilled if we set La(y) = a ∧ y for all y ∈
∧

(P ), and then

ϕ(h, a) = Dh + La ;

indeed we know that (Dh)2 = 0 and (La)2 = 0, and the equality

DhLa + LaDh = h(a) id∧

follows from the fact that Dh is a twisted derivation. Since Dh and La both per-
mute

∧
0(P ) and

∧
1(P ), they are odd elements in End(

∧
(P )), and consequently

Φ is a graded algebra morphism.

Second step. We prove that Φ is surjective when P is free. Let (e1, . . . , em) be a
basis of P ; we derive from it a basis B of

∧
(P ), the elements of which are all the

products

ε = ej1 ∧ ej2 ∧ · · · ∧ ejk
with k ≥ 0 and j1 < j2 < · · · < jk ;

we write Bk for the set of all elements of B contained in
∧k(P ), so that B is

the union of B0,B1, . . . ,Bm. Let (e∗1, . . . , e
∗
m) be the dual basis of P ∗; with each

element ε of B (written as above), we associate

ε∗ = e∗jk
∧ · · · ∧ e∗j2 ∧ e∗j1

(take notice of the reversion of the indices).
The functor C� associates two algebra morphisms u and v with the natural

injections from P ∗ ⊕ 0 and 0⊕ P into H[P ] :

u :
∧

(P ∗) −→ C�(H[P ]) and v :
∧

(P ) −→ C�(H[P ]) ;

thus with each ε in B are associated two elements u(ε∗) and v(ε) in C�(H[P ]).
The following properties are easy consequences of the definitions:

∀ε, θ ∈ B , Φ(v(θ))(ε) = θ ∧ ε ;

∀η ∈ Bk , Φ(u(η∗))(
∧j(P )) ⊂

∧j−k(P ) , whence Φ(u(η∗))(
∧<k(P )) = 0;

∀ε, η ∈ Bk , Φ(u(η∗))(ε) = 0 if η �= ε, but Φ(u(η∗))(η) = 1.

There is a basis of End(
∧

(P )) that is constituted of all endomorphisms Eθ,η

defined in this way: for every (η, θ) ∈ B × B, Eθ,η maps all ε ∈ B to 0, except
η which is mapped to θ. By means of a decreasing induction on the degree k
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of η, we prove that every Eθ,η belongs to the image of Φ. The induction begins
with the greatest value k = m ; if η is the unique element in Bm, it is clear
that Eθ,η = Φ(v(θ)u(η∗)). Now let us take η in some Bk and assume that Im(Φ)
contains Eθ′,η′ whenever η′ has degree > k ; in other words, Im(Φ) contains all
endomorphisms of

∧
(P ) vanishing on

∧≤k(P ). We observe that Φ(v(θ)u(η∗))
vanishes on all ε of degree ≤ k, except η which is mapped to θ; the difference
between Φ(v(θ)u(η∗)) and Eθ,η is an endomorphism vanishing on

∧≤k(P ), and by
the induction hypothesis it belongs to Im(Φ). Consequently Eθ,η ∈ Im(Φ).

Third step. We complete the proof without the assumption that P is free. We
already know that Φ is surjective because all its localisations are surjective. If m
is the rank of P at some prime ideal p, the ranks of C�(H[P ]) and End(

∧
(P )) at

p are both equal to 22m; now the bijectiveness of Φ follows from (1.13.5). �

(3.7.3) Theorem. We suppose that 2 is invertible in K, and that the quadratic
space (M, q) is the orthogonal sum of the hyperbolic space H[P ] (associated with
some finitely generated projective module P ) and a free submodule W of rank 1
generated by an element w such that q(w) = 1. The graded algebras C�(M, q) and
(End(

∧
(P ))2)g are isomorphic.

Here the algebra End(
∧

(P )) is trivially graded; the even (resp. odd) elements of
(End(

∧
(P ))2)g are the elements (f, f) (resp. (f,−f)).

Proof. To construct an algebra morphism Ψ from C�(M, q) into

A = (End(
∧

(P ))2)g,

it suffices to construct a linear mapping ψ : P ∗ ⊕ P ⊕W → A such that

∀h ∈ P ∗, ∀a ∈ P, ∀λ ∈ K, (ψ(h, a, λw))2 = (h(a) + λ2) (id∧ , id∧) .

This condition is fulfilled if we set La(y) = a ∧ y and σ(y) = (−1)∂yy for all y
in

∧
(P ), and then

ψ(h, a, λw) = (Dh + La + λσ , −Dh − La − λσ) ;

indeed to the explanations given in the proof of (3.7.2) we have just to add the
following one: Dh and La anticommute with σ because they permute

∧
0(P ) and∧

1(P ). The resulting algebra morphism Ψ is graded because all ψ(h, a, λw) are
odd elements in A.

Now C�(M, q) is the twisted tensor product of C�(H[P ]) and C�(W ) = K ⊕
Kw, and this twisted tensor product is the direct sum of these four submodules:

C0 = C�0(H[P ])⊗ 1 , C1 = C�1(H[P ])⊗ 1 ,

C2 = C�1(H[P ])⊗ w , C3 = C�0(H[P ])⊗ w .

In the following explanations, the notations End0(
∧

(P )) and End1(
∧

(P )) refer
to the nontrivial grading of End(

∧
(P )) used in the proof of (3.7.2), and g0 and
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g1 are variables running respectively through End0(
∧

(P )) and End1(
∧

(P )). From
the proof of (3.7.2) we deduce that Ψ induces a bijection from C0 onto the set of
all elements (g0, g0), a bijection from C1 onto the set of all (g1,−g1), a bijection
from C2 onto the set of all (g1σ, g1σ), which is the same thing as the set of all
(g1, g1), and finally a bijection from C4 onto the set of all (g0σ, −g0σ), which is
also the set of all (g0,−g0). Since 2 is invertible in K, it is now clear that Ψ is
bijective. �

Now remember that in (2.6.6) (resp. (2.6.7)) the following result has been
proved: if (M, q) is a quadratic space of even constant rank (resp. odd constant
rank), there exists a faithfully flat extension K → L such that L ⊗ (M, q) is
a hyperbolic quadratic space over L (resp. the orthogonal sum of a hyperbolic
space and a free space of rank 1 on which the quadratic form takes the value 1);
moreover this hyperbolic space is associated with a free L-module. From (3.7.2)
(resp. (3.7.3)) we derive this immediate corollary.

(3.7.4) Corollary. If (M, q) is a quadratic space of even constant rank r (resp.
odd constant rank r) over K, there exists a faithfully flat extension K → L and a
graded (resp. nongraded) free module P of finite rank over L such that L⊗C�(M, q)
is isomorphic to EndL(P ) (resp. (EndL(P )2)g).

The rank of P is 2r/2 or 2(r−1)/2 according to the parity of r, and this would
enable us to prove that C�(M, q) has constant rank 2r, if it were not yet proved
in (3.3.7).

By means of (3.5.8) and (3.5.12) we deduce from this corollary that L ⊗
C�(M, q) is a graded Azumaya algebra over L. Because of (3.5.3), C�(M, q) is a
graded Azumaya algebra over K, with a regular and balanced grading when r > 0
(whereas C�(M, q) = K if r = 0). When M does not have constant rank, we
remember (1.12.8) and (3.1.11), and thus we come to the next statement.

(3.7.5) Corollary. The Clifford algebra of a quadratic space (M, q) is a graded
Azumaya algebra; when M has everywhere an even rank (resp. an odd rank), it
is a graded Azumaya algebra of even (resp. odd) type. Moreover the following
assertions are equivalent:

– M is a faithful module;
– the odd component C�1(M, q) is a faithful module;
– the grading of C�(M, q) is balanced;
– the grading of C�(M, q) is regular.

It is worth noticing that the regularity of the grading of C�(M, q) already
follows from a much weaker hypothesis: if the ideal of K generated by q(M) is K,
this grading is regular because there exists a finite sequence of elements xj ∈ ρ(M)
and a finite sequence of λj ∈ K such that

∑
j(λjxj)xj = 1 .

Because of (3.7.4), here we are not concerned with a general proof of Theorem
(3.5.15), since anyhow this statement is true for all Clifford algebras of quadratic
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spaces of constant rank. Remember that Theorem (3.5.14) is already proved for
all Azumaya algebras satisfying the property stated in (3.5.15), therefore it can
be applied to the Clifford algebra of any quadratic space, whence the following
corollary.

(3.7.6) Corollary. Let (M, q) be a quadratic space. The graded center Zg(C�(M, q))
is always reduced to K. When M is a faithful module, the centralizer of C�0(M, q)
in C�(M, q) is a quadratic extension denoted by QZ(M, q). When the rank of M is
always even and nonzero, QZ(M, q) is the center of C�0(M, q), whereas the center
of C�(M, q) is reduced to K. But when the rank of M is always odd, then QZ(M, q)
is the center of C�(M, q), its odd component QZ1(M, q) has constant rank 1, and
the center of C�0(M, q) is reduced to K.

The formula (3.5.13) can be used when y and z belong respectively to C�(M, q)
and QZ(M, q). The notation QZ(M, q) is an abbreviation for QZ(C�(M, q)) and
can be used even when M is not a faithful module, according to the explanations
presented just before (3.5.18). This quadratic extension is often called the Arf
subalgebra, and its class in Qg(K) is called the Arf invariant. When K is a field
of characteristic �= 2, the Arf invariant is described by an element of K× modulo
the subgroup of squares (see (3.4.14)), and has been observed long before Arf; but
Arf considered the case of a field of characteristic 2 which did not allow so easy a
description (see (3.ex.25)).

Let (M, q) and (M ′, q′) be two quadratic spaces such that M and M ′ are
faithful modules; let us set (M ′′, q′′) = (M, q) ⊥ (M ′, q′). Because of (3.2.3) we can
identify C�((M ′′, q′′) with C�(M ′, q′) ⊗̂C�(M ′′, q′′), and from (3.5.17) we derive

(3.7.7) QZ((M, q) ⊥ (M ′, q′)) ∼= QZ(M, q) � QZ(M ′, q′) .

Remember that the Witt class of a quadratic space is trivial whenever it
is hyperbolic, whereas the Brauer class of a graded Azumaya algebra is trivial
whenever it is isomorphic to some End(P ), with P a graded finitely generated and
faithful projective module. Theorem (3.7.2) implies that the Brauer class of the
Clifford algebra of a hyperbolic space is trivial, and thus (3.2.4) and (2.7.3) lead
to the following consequence.

(3.7.8) Corollary. The Brauer class of the Clifford algebra of a quadratic space only
depends on the Witt class of this quadratic space, and by mapping this Witt class
to this Brauer class we get a group morphism from the additive group WQ(K) into
Brg(K) .

(3.7.9) Remarks. Often Brg(K) is treated as a multiplicative group; nonetheless
there are many reasons to prefer additive notation for it. Indeed it is conjectured,
and in some cases even proved, that the image H(K) of WQ(K) in Brg(K) inherits
a structure of ring from WQ(K). This image H(K) shall be considered again in
8.6; it may be much smaller than Brg(K); indeed Clifford algebras are provided
with a reversion (see (3.1.4)), and later (see (3.8.15)) this reversion will imply that
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every element in the group H(K) has an order dividing 8; although it is true (yet
not evident) that every element of Brg(K) has a finite order, its order may be any
positive integer.

3.8 Discriminant modules, quadratic extensions

and quaternion algebras

The results of this section will be especially useful in 8.6. Here we show how
Clifford algebras can help the study of various objects mentioned in the previous
sections. When it is written that A is a graded Azumaya algebra such that Z(A0)
is a quadratic extension, you must understand that A has even type and that A1

is a faithful module; we shall be interested in the nongraded (or rather trivially
graded) algebra Ang obtained by forgetting the grading, and in the comparison of
the Brauer classes [A] and [Ang]. The inverse classes [A]−1 and [Ang]−1 are the
classes of Ato and (Ang)o; when A is provided with an involution, Ang is isomorphic
to (Ang)o, and its class in Br(K) has order 1 or 2.

All quaternion algebras involved here are obtained as algebras C�(M, q)ng

derived from a quadratic space (M, q) of constant rank 2; in (3.3.7) it is stated
that the conjugation στ is a standard involution of C�(M, q); besides, the derived
quadratic extension QZ(M, q) is merely C�0(M, q).

(3.8.1) Proposition. When the quadratic space (M, q) of constant rank 2 contains
an element e such that q(e) = 1, there is an isomorphism C�(M, q)ng → End(M).

Proof. Let us map every a ∈ M to the endomorphism x �−→ axe of M ; observe that
axe belongs to M because here C�1(M, q) is equal to M . The equality a(axe)e =
q(a)x shows that this mapping M → End(M) extends to an algebra morphism
C�(M, q)→ End(M). To prove that it is an isomorphism, we can assume that M
is free and contains an element b such that (e, b) is a basis, since localization allows
us to reduce the problem to this case. When (e, b) is a basis, we have to verify
the invertibility of some square matrix of order 4; easy calculations show that its
determinant is ±(bq(e, b)2 − 4q(b)), and it is invertible since q is nondegenerate.

�

(3.8.2) Proposition. When (M, q) is a quadratic space of constant rank 2, the
following three assertions are equivalent:

(a) (M, q) is hyperbolic;
(b) the class of C�(M, q) in Brg(K) is neutral;
(c) C�0(M, q) is a trivial quadratic extension.

Proof. The implications (a) ⇒ (b) ⇒ (c) follow from (3.7.2) and (3.5.8). When
C�0(M, q) is trivial, it contains an idempotent ε such that C�0(M, q) = Kε⊕K(1−
ε). Since C�1(M, q) = M , this implies M = εM+(1−ε)M . The standard involution
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ϕ of C�0(M, q) maps ε to 1 − ε ; thus from (3.5.13) we deduce εa = a(1 − ε) for
all a ∈ M . All this (together with the evident equality ε(1 − ε) = 0) allows us to
prove that εM and (1−ε)M are totally isotropic submodules, and that M is their
direct sum. Now it is easy to prove that (M, q) is hyperbolic (see (2.5.5)). �

Discriminant modules

A discriminant module D is a finitely generated projective module of constant rank
1, provided with an isomorphism D ⊗D −→ K. This name comes from the fact
that every quadratic extension contains such a module D (see (3.4.6)); but when 2
is not invertible in K, it often happens that a discriminant module cannot be the
discriminant module of a quadratic extension. Here the isomorphism D⊗D → K is
always treated as a multiplication d⊗d′ �−→ dd′; because of (1.12.11) the following
equalities hold for all d, d′, d′′ ∈ D :

(3.8.3) dd′ = d′d and (dd′)d′′ = (d′d′′)d = (d′′d)d′.

Consequently a discriminant module is the same thing as a bilinear space of con-
stant rank 1.

The tensor product of two discriminant modules D1 and D2 is still a discrim-
inant module for the evident multiplication

(d1 ⊗ d2) (d′1 ⊗ d′2) = (d1d
′
1) (d2d

′
2) .

The ring K itself is a discriminant module for the natural multiplication mapping
K ⊗K → K, and K ⊗D is isomorphic to D as a discriminant module. It is clear
that (D1⊗D2)⊗D3 and D1⊗(D2⊗D3) are isomorphic discriminant modules, and
(3.8.3) implies that D⊗D is isomorphic to the discriminant module K. Thus the
isomorphy classes of discriminant modules constitute a group Disc(K) in which
every element has order 1 or 2.

If D is a discriminant module over K, and K → L a ring extension, then
L⊗D is a discriminant module over L. This leads to a group morphism Disc(K)→
Disc(L). A functor Disc from the category Com(Z) to the category of commutative
groups has been defined in this way.

If D and D′ are the discriminant modules of the quadratic extensions A and
A′, the discriminant module of A � A′ is D ⊗ D′ (see (3.4.10)), whence a group
morphism Q(K) → Disc(K), and a morphism of functors Q → Disc. When 2 is
invertible in K, the morphism Q(K)→ Disc(K) is bijective; indeed on one side the
equality Z = K⊕D holds for every quadratic extension Z with discriminant mod-
ule D, and conversely if D is a discriminant module, the following multiplication
on Z = K ⊕D turns Z into a quadratic extension with discriminant module D :

(λ, d) (λ′, d′) = (λλ′ + dd′, λd′ + λ′d).

In an evident way we can define graded discriminant modules, and associate a
graded discriminant module with every graded quadratic extension: see (3.ex.27).
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Let (M, q) be a quadratic space. Since a discriminant module D′ is a bilinear
module of constant rank 1, the notation D′ ⊗ (M, q) represents a quadratic space
of the same rank (see (2.4.5)). If D′ is free and generated by an element d such
that d2 = λ, then D′ ⊗ (M, q) is isomorphic to (M, λq).

(3.8.4) Lemma. Let (M, q) be a quadratic space of constant rank 2, and D the
discriminant module of C�0(M, q). The multiplication mapping d⊗ a �−→ da is an
isomorphism from D ⊗ (M, q) onto (M,−q).

Proof. This mapping d⊗a �−→ da takes its values in M because M = C�1(M, q); its
bijectiveness is ensured by the reciprocal mapping M → K⊗M → (D⊗D)⊗M →
D⊗(D⊗M)→ D⊗M ; and the equality q(da) = −d2q(a) follows from ad = ϕ(d)a
(see (3.5.13)) and ϕ(d) = −d. �

Very often the quadratic space under consideration is a quadratic extension
Z provided with its norm N , and the notation Z may be an abbreviation for
(Z,N ). Remember that N (λ + d) = λ2 − d2 for all λ ∈ K and all d ∈ D. For
reasons that shall soon appear, we are especially interested in the quadratic spaces
D′ ⊗ (Z,N ) involved in the next lemma.

(3.8.5) Lemma. When D′ is a discriminant module, and Z a quadratic extension,
the quadratic extension C�0(D′ ⊗ Z) is isomorphic to Z.

Proof. We denote the unit element of Z by 1Z to distinguish it from the unit
element 1 of C�(D′⊗Z). Let (d1, d

′
1, d2, d

′
2, . . . ) be a finite sequence of elements of

D′ such that
∑

i did
′
i = 1, and let us prove that the mapping x �−→

∑
i(di⊗1Z)(d′i⊗

x) is an isomorphism from Z onto C�0(D′ ⊗ Z). Since N (1Z) = 1, it is already
clear that it maps 1Z to 1. By localization we can reduce the problem to this case:
Z admits a basis (1, z) such that z2 = βz − γ and D′ is generated by an element
d. Let d′ be the generator of D′ such that dd′ = 1, so that

∑
i(di ⊗ 1Z)(d′i ⊗ x) =

(d ⊗ 1Z)(d′ ⊗ x). Since d ⊗ 1Z is invertible in C�(D′ ⊗ Z), we get a bijection
Z → C�0(D′ ⊗ Z), and it remains to verify that

((d⊗ 1Z)(d′ ⊗ z))2 = β (d⊗ 1Z)(d′ ⊗ z) − γ ;

this is a particular example of an equality (ab)2 = bq(a, b)ab − q(a)q(b) which
is valid for any pair (a, b) of elements of a quadratic space; indeed N (z) = γ and
bN (z, 1Z) = tr(z) = β. �

The theorem A ⊗̂B ∼= A⊗BD

Let B = B0⊕B1 be a graded algebra, and D a discriminant module; on the direct
sum BD = B0 ⊕ (D ⊗ B1) we define a multiplication in this way (for all b and
b′ ∈ B0, all c and c′ ∈ B1, and all d and d′ ∈ D):

(b + (d⊗ c)) (b′ + (d′ ⊗ c′)) = bb′ + (dd′)cc′ + d⊗ cb′ + d′ ⊗ bc′ ;
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obviously BD is also a graded algebra; the associativity of its multiplication re-
sults from (3.8.3). It is clear that (BD)D′ is canonically isomorphic to BD⊗D′ ; in
particular (BD)D is isomorphic to B.

(3.8.6) Theorem. Let A be a graded Azumaya algebra such that Z(A0) is a quadratic
extension Z, let D be the discriminant module of Z, and B any graded algebra.
There is a graded algebra isomorphism A⊗BD → A ⊗̂B that maps every a⊗ b
to itself for all b ∈ B0, and a⊗ d ⊗ c to ad ⊗ c for all c ∈ B1. Similarly there
is an isomorphism A ⊗̂BD → A⊗B.

Proof. The bijectiveness of the graded mapping A ⊗ BD → A ⊗̂B defined in
(3.8.6) follows from the bijectiveness of D⊗D → K; indeed we can write

∑
i did

′
i =

1 for some finite sequence (d1, d
′
1, d2, d

′
2, . . . ) of elements of D, and thus the

reciprocal mapping from A ⊗̂B1 into A⊗D⊗B1 maps every a⊗c to
∑

i adi⊗d′i⊗c .
Now remember that ϕ(d) = −d for all d ∈ D; consequently from (3.5.13) we
deduce that ad = (−1)∂ada for all homogeneous a ∈ A and all d ∈ D. This
equality implies (after some straightforward calculations) that the above mapping
A⊗BD −→ A ⊗̂B is an algebra morphism. �

Algebras like BD are very useful in the treatment of Clifford algebras for the
following reason.

(3.8.7) Theorem. Let (M ′, q′) be a quadratic module, and D a discriminant mod-
ule, and let ρ′ and ρ′′ be the canonical mappings from (M ′, q′) and D ⊗ (M ′, q′)
into their Clifford algebras. There is an isomorphism from C�(D ⊗ (M ′, q′)) into
C�(M ′, q′)D that maps ρ′′(d⊗ a′) to d⊗ ρ′(a′) for all a′ ∈M ′ and all d ∈ D.

Proof. Let q′′ be the quadratic form on D ⊗ (M ′, q′), let d1, d2,. . . ,dn be ele-
ments of D, and a1, a2,. . . ,an elements of M ′. A direct calculation shows that the
square of

∑
i di ⊗ ρ′(a′

i) in the algebra C�(M ′, q′)D is equal to q′′(
∑

i di ⊗ a′
i) 1q′ .

Consequently the mapping d ⊗ a′ �−→ d ⊗ ρ′(a′) determines a graded algebra
morphism from C�(D⊗ (M ′, q′)) into C�(M ′, q′)D . To construct a reciprocal mor-
phism, we proceed in this way: there is an analogous algebra morphism from
C�(D ⊗ (D ⊗ (M ′, q′))) into C�(D ⊗ (M ′, q′))D; by means of the isomorphisms
D ⊗D ←→ K we get the algebra morphism

C�(M ′, q′)D −→ C�(D ⊗D ⊗ (M ′, q′))D

−→ (C�(D ⊗ (M ′, q′))D)D −→ C�(D ⊗ (M ′, q′)) ;

this is the desired reciprocal algebra morphism, because it maps d ⊗ ρ′(a′) to
ρ′′(d⊗ a′). �

As an immediate corollary of (3.8.7) we can state that the even subalgebra
C�0(D ⊗ (M ′, q′)) is always isomorphic to C�0(M ′, q′). The next statement (the
most usual version of the theorem A ⊗̂B ∼= A⊗BD) is an immediate consequence
of (3.8.6) and (3.8.7).
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(3.8.8) Corollary. Let (M ′, q′) be a quadratic module, and A a graded Azumaya
algebra such that Z(A0) is a quadratic extension Z with discriminant module D.
There are graded algebra isomorphisms

A⊗ C�(D ⊗ (M ′, q′)) −→ A ⊗̂C�(M ′, q′) ,

A ⊗̂C�(D ⊗ (M ′, q′)) −→ A⊗ C�(M ′, q′) .

Since the Clifford algebra of an orthogonal sum is a twisted tensor product
of Clifford algebras (see (3.2.4)), Corollary (3.8.8) will be repeatedly used when
orthogonal sums appear.

(3.8.9) Proposition. Let (M, q) and (M ′, q′) be quadratic spaces with even nonzero
ranks at every prime ideal, let Z and Z ′ be the centers of their even Clifford
subalgebras, and D and D′ their discriminant modules. There are graded algebra
isomorphisms

C�((M, q) ⊥ (M ′, q′))⊗ C�(Z) ∼= C�(M, q)⊗ C�(M ′, q′)⊗ C�(D′ ⊗ Z) ,

C�((M, q) ⊥ (M ′, q′))⊗ C�(Z ′) ∼= C�(M, q)⊗ C�(M ′, q′)⊗ C�(D ⊗ Z ′) ,

C�((M, q) ⊥ (M ′, q′))⊗ C�(Z)⊗ C�(Z ′) ∼= C�(M, q)⊗ C�(M ′, q′)⊗ C�(Z ⊥ Z ′) .

Indeed there are isomorphisms

C�((M, q) ⊥ (M ′, q′)) ←→ C�(M, q) ⊗̂C�(M ′, q′)
←→ C�(M, q)⊗ C�(D ⊗ (M ′, q′)) ,

C�(D ⊗ (M ′, q′))⊗ C�(Z)←→ C�(M ′, q′) ⊗̂C�(Z)
←→ C�(M ′, q′)⊗ C�(D′ ⊗ Z) ,

and so forth. . . . �

The importance of the following example shall appear later in (3.8.15).

(3.8.10) Lemma. If (M, q) is a quadratic space of constant rank 2, the graded
algebra

C�(M, q) ⊗̂C�(M, q) ⊗̂C�(M, q) ⊗̂C�(M, q)

is isomorphic to End(
∧

(M ⊕M)).

Proof. Let D be the discriminant module of C�0(M, q), and X and Y short nota-
tions for (M, q) and D ⊗ (M, q); because of (3.8.4), Y is isomorphic to (M,−q).
With three applications of (3.8.8) we get

C�(X) ⊗̂C�(X) ⊗̂C�(X) ⊗̂C�(X) ∼= C�(X ⊥ X ⊥ X ⊥ X)
∼= C�(X)⊗ C�(Y ⊥ Y ⊥ Y )
∼= C�(X)⊗ C�(Y )⊗ C�(X ⊥ X)
∼= C�(X)⊗ C�(Y )⊗ C�(X)⊗ C�(Y ) .
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In the same way we get

C�(X ⊥ X ⊥ Y ⊥ Y ) ∼= C�(X)⊗ C�(Y )⊗ C�(Y )⊗ C�(X) ,

and therefore all the previous algebras are isomorphic to one another. Because of
(2.5.8), X ⊥ X ⊥ Y ⊥ Y is a hyperbolic space isomorphic to H(M ⊕M), and
because of (3.7.2) its Clifford algebra is isomorphic to End(

∧
(M ⊕M)). �

The Brauer classes of A, Ang and A ng
D′

When Z is a quadratic extension and D′ a discriminant module, on the direct sum
Z[D′] = Z ⊕ (D′ ⊗ Z) we define the following multiplication:

(y + (d⊗ z)) (y′ + (d′ ⊗ z′)) = yy′ + (dd′)ϕ(z)z′ + d⊗ zy′ + d′ ⊗ ϕ(y)z′ ;

in this definition, the standard involution ϕ of Z gets involved in every reversion
of an element of D′ and one of Z; this simple rule allows us easily to verify that
Z[D′] is a (noncommutative) associative algebra of constant rank 4. When D′ is
a free module, it is easy to verify that Z[D′] is isomorphic to a Cayley–Dickson
extension of Z (see (3.3.1)). In Z[D′] the elements of Z are always even, but we
may treat the elements of D′ either as even ones, or as odd ones, and accordingly
Z[D′] receives either a trivial grading or a nontrivial one. If M is a module over
Z, we also consider M [D′] = M ⊕ (D′⊗M) and give it a structure of left module
over Z[D′] in an evident way.

(3.8.11) Lemma. When the elements of D′ are given the odd parity, the graded
algebra Z[D′] is isomorphic to C�(D′ ⊗ Z).

Proof. In Z[D′] the square of every element d ⊗ z is d2N (z); it soon appears
that the natural injection D′ ⊗ Z → Z[D′] extends to an algebra morphism
C�(D′ ⊗ Z) → Z[D′]. This morphism is obviously surjective, therefore bijective
(see (1.13.5)). �

Another technical lemma is still necessary; it is an easy consequence of the
isomorphism Z ⊗ Z → Z × Z described in (3.4.4).

(3.8.12) Lemma. If M is a module over Z, the mapping z⊗ v �−→ (zv, ϕ(z)v) is
a bijection from Z ⊗K M onto M ×M .

Proof. All the arrows in this sequence are bijective:

Z⊗K M −→ Z⊗K (Z⊗Z M) −→ (Z⊗K Z)⊗Z M −→ (Z×Z)⊗Z M −→M×M ;

the second arrow is z ⊗ (y ⊗ v) �−→ (y ⊗ z) ⊗ v, and the third arrow comes from
(3.4.4). �

Now we are ready to compare the algebras A, Ang and A ng
D′ .
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(3.8.13) Theorem. Let A be a graded Azumaya algebra such that Z(A0) is a quad-
ratic extension Z, and let D′ be any discriminant module. In Br(K) the class of
A ng

D′ is the product of the classes of Ang and C�(D′ ⊗ Z)ng.

Proof. Here we give the elements of D′ the even parity, so that Z[D′] is isomorphic
to C�(D′⊗Z)ng; this algebra has a Brauer class of order 1 or 2 because it is provided
with a reversion. We begin with the construction of an algebra morphism

G from B = Z[D′]⊗AD′ ⊗Ao into End(A[D′]) ;

if we manage to prove that it is bijective, the proof is finished. We treat A as a
Z-module, on which Z acts by multiplication on the left side; consequently Z[D′]
acts on A[D′] :

(y + (d⊗ z)) (a′ + (d′ ⊗ b′)) = ya′ + (dd′)ϕ(z)b′ + d⊗ za′ + d′ ⊗ ϕ(y)b′

for all y and z ∈ Z, all d and d′ ∈ D, and all a′ and b′ ∈ A. Then we make AD′

act on A[D′] in this evident way (for all a ∈ A0 and all b ∈ A1):

(a + (d⊗ b)) (a′ + (d′ ⊗ b′)) = aa′ + (dd′)bb′ + d⊗ ba′ + d′ ⊗ ab′ ;

some calculations are needed to verify that the operation in A[D′] of every element
of Z[D′] commutes with the operation of every element of AD′ ; in these calcula-
tions, a (element of A0) commutes with y and z, but not b (element of A1), since
bz = ϕ(z)b (see (3.5.13)). Of course Ao acts by multiplications on the right side,
and the operations of its elements commute with all the previous ones:

co (a′ + (d′ ⊗ b′)) = a′c + (d′ ⊗ b′c) for all c ∈ A.

The algebra morphism G is now well defined. We must deduce its bijectiveness
from the bijectiveness of the canonical morphism F : A ⊗ Ao → End(A) defined
by F (a′⊗ co)(b′) = a′b′c. For this purpose we can assume that D′ is a free module
generated by some element d ; let d′ be the generator such that dd′ = 1 ; in the
following calculations d and d′ are always these generators. There is a bijection
from End(A)4 onto End(A[D′]), which maps every quartet (f, f ′, g, g′) to this
endomorphism of A[D′] :

(f, f ′, g, g′) (a′ + (d′ ⊗ b′)) = f(a′) + f ′(b′) + d′ ⊗ g(b′) + d′ ⊗ g′(a′) .

Consequently the morphism G allows us to associate an element of End(A)4 with
every element of B, and thus to get a mapping H : B → End(A)4. Moreover
End(A) is a Z-module: for instance (zf)(a′) = z(f(a′)).

In B we consider the subalgebra B0 spanned by all elements like z⊗ a⊗ co

or like (d⊗ z)⊗ (d′ ⊗ b)⊗ co. Easy calculations show that

H(z ⊗ a⊗ co) = (zF (a⊗ co), 0, ϕ(z)F (a⊗ co), 0) ,

H((d⊗ ϕ(z))⊗ (d′ ⊗ b)⊗ co) = (zF (b⊗ co), 0, ϕ(z)F (b⊗ co), 0) ;
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because of (3.8.12), the elements of B0 are mapped bijectively to the elements
(f, 0, g, 0) of End(A)4. The submodule B1 spanned by all elements z⊗(d⊗b)⊗co

and (d⊗ z)⊗ a⊗ co is supplementary to B0; other easy calculations show that

H(z ⊗ (d⊗ b)⊗ co) = (0, zF (b⊗ co), 0, ϕ(z)F (b⊗ co)) ,

H((d⊗ ϕ(z))⊗ a⊗ co) = (0, zF (a⊗ co), 0, ϕ(z)F (a⊗ co)) ;

consequently the elements of B1 are mapped bijectively to the elements (0,f ′,0,g′).
�

(3.8.14) Theorem. Let A be a graded Azumaya algebra such that Z(A0) is a quad-
ratic extension Z. In Brg(K), the class of A is the product of the classes of Ang

and C�(Z) (with its usual grading of Clifford algebra).

Proof. The proof is quite similar to that of (3.8.13); but now D′ is a discriminant
module that is isomorphic to K when its grading is forgotten, and that only differs
from K because all its elements are given the odd parity; consequently Z[D′] is
now isomorphic to C�(Z) as a graded algebra, and AD′ is isomorphic to Ang,
because all elements of D′ ⊗ A1 are now even. Since twisted tensor products are
here involved, twisting signs shall be necessary, but they will never come from any
element of AD′ . The multiplications in AD′ and in Z[D′], and their actions on
A[D′], are the same as in the proof of (3.8.13). Now we construct a graded algebra
morphism

G′ from B′ = Z[D′] ⊗̂AD′ ⊗̂Ato into End(A[D′]) ;

we have just to make precise the twisting signs involved in the action of Ato on
A[D′] :

cto (a′ + (d′ ⊗ b′)) = (−1)∂c∂a′
a′c + (−1)∂c(1+∂b′) (d′ ⊗ b′c) ;

this operation of cto in A[D′] commutes with the operation of all elements of
AD′ ; it commutes or anticommutes with the operation of an element of Z[D′]
according to the awaited twisting sign. We must deduce the bijectiveness of G′

from the bijectiveness of F ′ : A ⊗̂Ato → End(A); this is achieved as in the proof
of (3.8.13).

Only one detail deserves a mention: because of many twisting signs (−1)∂c

(see for instance (−1)∂c(1+∂b′) just above), we must slightly modify the bijec-
tion End(A)4 → End(A[D′]). We need the automorphism σto of Ato defined
by σto(cto) = (−1)∂ccto and the corresponding automorphism σE of End(A):
σE = F ′ ◦ (A ⊗ σto) ◦ F ′−1. Now an element of End(A)4 gives an endomorphism
of End(A[D′]) in this way (when dd′ = 1):

(f, f ′, g, g′)(a′ + (d′ ⊗ b′)) = f(a′) + σE(f ′)(b′) + d′ ⊗ σE(g)(b′) + d′ ⊗ g′(a′) . �

Here are two direct applications of (3.8.14).
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Proof of of the exactness of (3.5.19). 1 → Br(K) → Brg(K) → Qg(K) → 1. We
already know that the second arrow is injective. If the class of A belongs to the
kernel of the third arrow, A has even type, and according to the remark (3.5.7)
about nonconstant ranks, we can assume that A is either trivially graded (and
there is nothing to prove), or that Z(A0) is a quadratic extension, therefore a
trivial quadratic extension; in this case Theorem (3.8.14) says that A and Ang

have the same class in Brg(K). It remains to prove the surjectiveness of the third
arrow. It suffices to consider the class of a quadratic extension Z such that Z0

and Z1 have constant ranks; if Z1 has constant rank 1, then Z is already a graded
Azumaya algebra (see (3.5.11)); and when Z is trivially graded, it is isomorphic
to C�0(Z) (see (3.8.5)). �

(3.8.15) Theorem. Let (M, q) be a quadratic space; the order of the Brauer class
of C�(M, q) is a divisor of 8. If the rank of M is even, it is a divisor of 4.

Proof. The former statement is an immediate consequence of the latter; thus we
can assume that the rank of M is even and never vanishes. Because of the reversion
in C�(M, q), the Brauer class of C�(M, q)ng has order 1 or 2. Because of (3.8.14) it
suffices to prove that the order of the class of C�(Z) (if Z = QZ(M, q)) is a divisor
of 4, and this has been done in (3.8.10). �

The bilinear mapping Q : Disc(K)×Q(K) → Br(K)

From (3.8.9), and from the triviality of the Brauer class of C�(Z)ng (see (3.8.1)),
we deduce that the Brauer class of (C�((M, q) ⊥ (M ′, q′)))ng is the product of
the Brauer classes of C�(M, q)ng, C�(M ′, q′)ng and C�(D′⊗Z)ng. This leads us to
consider the mapping Q which maps the isomorphy class of D′ (any discriminant
module) and the isomorphy class of Z (any quadratic extension) to the Brauer class
of the quaternion algebra C�(D′ ⊗ Z)ng. The next theorem shows four properties
of this mapping; the first one is a property of symmetry, and the second and
third properties mean that Q is bilinear; indeed this is ordinary Z-bilinearity if
Disc(K), Q(K) and Br(K) are treated as additive groups, in other words, objects
of Mod(Z).

(3.8.16) Theorem.

(a) If D and D′ are the discriminant modules of the quadratic extensions Z and
Z ′, then C�(D′ ⊗ Z)ng and C�(D ⊗ Z ′)ng have the same Brauer class.

(b) If D and D′ are discriminant modules, and if Z ′′′ is a quadratic extension,
the Brauer class of C�(D ⊗ Z ′′′)ng ⊗ C�(D′ ⊗ Z ′′′)ng is the Brauer class of
C�((D ⊗D′)⊗ Z ′′′)ng.

(c) If D′′′ is a discriminant module, and if Z and Z ′ are quadratic extensions,
the Brauer class of C�(D′′′ ⊗ Z)ng ⊗ C�(D′′′ ⊗ Z ′)ng is the Brauer class of
C�(D′′′ ⊗ (Z � Z ′))ng.
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(d) If Z is a quadratic extension with discriminant module D, and if J is the
free discriminant module generated by an element j such that j2 = −1, then
C�(D ⊗ Z)ng ∼= C�(J ⊗ Z)ng.

Proof. From (3.8.8) we deduce that

C�(Z)⊗ C�(D ⊗ Z ′) ∼= C�(Z ⊥ Z ′) ∼= C�(D′ ⊗ Z)⊗ C�(Z ′) ;

since the Brauer classes of C�(Z)ng and C�(Z ′)ng are trivial (see (3.8.1)), we
have proved (a). From (3.8.7) we deduce that C�((D ⊗D′) ⊗ Z ′′′) is isomorphic
to C�(D′ ⊗ Z ′′′)D ; since C�0(D′ ⊗ Z ′′′) is isomorphic to Z ′′′ (see (3.8.5)), from
(3.8.13) we deduce that the class of C�(D′ ⊗ Z ′′′) ng

D is the product of the classes
of C�(D′ ⊗ Z ′′′)ng and C�(D ⊗ Z ′′′)ng, as stated in (b). Then (d) is an obvious
consequence of (3.8.4) and (3.8.5), and it remains to prove (c). Let D, D′, ϕ, ϕ′

be the discriminant modules and standard involutions of Z and Z ′, and let us set
Z ′′ = Z � Z ′. Since the discriminant module of Z ′′ is D ⊗ D′, from (3.8.4) we
deduce that the quadratic space D ⊗D′ ⊗ Z ′′ is isomorphic to J ⊗ Z ′′; now two
applications of (3.8.8) show that

C�(D′′′ ⊗ Z)⊗ C�(D′′′ ⊗ Z ′)⊗ C�(D′′′ ⊗ Z ′′) ∼= C�(D′′′ ⊗ (M, q))

if (M, q) is the quadratic space

(M, q) = Z ⊥ (D ⊗ Z ′) ⊥ (J ⊗ Z ′′).

If we manage to prove that (M, q) is hyperbolic, the conclusion (c) follows imme-
diately. Let Ψ : Z ⊗ Z ′ →M be the linear mapping defined in this way:

Ψ(z ⊗ z′) = (tr(z′)z, (z − ϕ(z))⊗ z′, j ⊗ (ϕ(z)⊗ z′ + z ⊗ ϕ′(z′)) ;

if we manage to prove that Im(Ψ) is a direct summand of M of constant rank 3, and
that it is totally isotropic, from (2.5.5) we deduce that (M, q) is hyperbolic. Because
of (1.12.9) and (1.13.1) these properties of Im(Ψ) can be tested by localization;
thus we can assume that Z and Z ′ have bases (1, z) and (1, z′) such that z2 = βz−γ
and z′2 = β′z′ − γ′. Let us set z′′ = β ⊗ z′ + z ⊗ β′ − 2z ⊗ z′; in (3.4.11) it is
proved that (1, z′′) is a basis of Z ′′, and the coefficients β′′ and γ′′ such that
z′′2 = β′′z′ − γ′′ are calculated there. Now we get:

Ψ(1⊗ 1) = 2 (1, 0, j ⊗ 1⊗ 1) ,

Ψ(1⊗ z′) = β′ (1, 0, j ⊗ 1⊗ 1) ,

Ψ(z ⊗ 1) = (2z, (2z − β)⊗ 1, j ⊗ β ⊗ 1) ,

Ψ(z ⊗ z′) = (β′z, (2z − β) ⊗ z′, j ⊗ z′′) .

Since β′ and 2 generate K as an ideal (indeed β′2 − 4γ′ is invertible), we realize
that Im(Ψ) is the free module generated by

(1, 0, j ⊗ 1⊗ 1) , (2z − β, (2z − β)⊗ 1, 0) , (β′z, (2z − β)⊗ z′, j ⊗ z′′) ,

and that Im(Ψ) is supplementary to Z ⊥ (D′ ⊗ z′) ⊥ 0. At last the values of β′′

and γ′′ calculated in (3.4.11) allow us to verify that Im(Ψ) is totally isotropic. �
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Exercises

(3.ex.1) Let a, b, c be three elements in a quadratic module (M, q); prove the
following equalities:

ρ(a)ρ(b)ρ(c) − ρ(b)ρ(c)ρ(a) = bq(a, b)ρ(c)− bq(a, c)ρ(b) ;
ρ(a)ρ(b)ρ(c) + ρ(c)ρ(b)ρ(a) = bq(a, b)ρ(c)− bq(a, c)ρ(b) + bq(b, c)ρ(a).

(3.ex.2) Let a, b, c, d be elements in a quadratic module (M, q); prove the equality

ρ(a)ρ(b)ρ(c)ρ(d) + ρ(d)ρ(c)ρ(b)ρ(a) = ρ(b)ρ(a)ρ(d)ρ(c) + ρ(c)ρ(d)ρ(a)ρ(b).

Hint. ρ(a)ρ(b)ρ(c)ρ(d) − ρ(b)ρ(a)ρ(d)ρ(c) belongs to C�≤2(M, q).

(3.ex.3)

(a) Let A and B be graded algebras; justify the existence of the following four
isomorphisms:

A ⊗̂B −→ B ⊗̂A , x⊗ y �−→ (−1)∂x∂y y ⊗ x ;

A ⊗̂B −→ (Ao ⊗̂Bo)o , x⊗ y �−→ (−1)∂x∂y (xo ⊗ yo)o ;

A ⊗̂B −→ (At ⊗̂Bt)t , x⊗ y �−→ (−1)∂x∂y (xt ⊗ yt)t ;

A ⊗̂B −→ (Ato ⊗̂Bto)to, x⊗ y �−→ (xto ⊗ yto)to.

(b) Suppose that f and g are graded anti-morphisms respectively from A to B
and from B to A; in other words, the mappings x �−→ f(x)o and y �−→ g(y)o

are graded algebra morphisms; prove that the mapping

A ⊗̂Bto −→ (A ⊗̂Bto)t , x⊗ yto �−→ (g(y)⊗ f(x)to)t

is an algebra morphism.

(3.ex.4) An increasing filtration of a module M is any increasing family of sub-
modules (M≤j)j∈Z. With such a filtered module M is associated a graded module
Gr(M), which is the direct sum of all quotients Grj(M) = M≤j/M≤j−1. Let
f : M → N be a morphism of filtered modules; this means that f(M≤j) ⊂ N≤j

for all j ∈ Z.

– Prove that f induces a graded mapping Gr(f) : Gr(M)→ Gr(N).

– Suppose that Gr(f) is injective, that M≤−1 = 0 and
⋃

j M≤j = M . Prove
that f is injective.

– Suppose that Gr(f) is surjective, that N≤−1 = 0 and
⋃

j N≤j = N . Prove
that f is surjective.

(3.ex.5) Let M be a finitely generated module; thus there exists an integer r such
that the rank of M at every prime ideal is ≤ r. Prove that C�≤r(M, q) = C�(M, q)
for every quadratic form q on M .
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(3.ex.6) Suppose that 2 is invertible in K, and that the quadratic module (M, q)
contains an element e such that q(e) = −1. Let M ′ be the submodule orthogonal
to e, and q′ the restriction of q to M ′. Prove the existence of a surjective algebra
morphism f : C�(M ′, q′) → C�0(M, q) such that f(ρ′(x)) = ρ(e)ρ(x) for all
x ∈M ′. Prove that it is an isomorphism when M is a quadratic space.

(3.ex.7) Let (M, q) and (M ′, q′) be quadratic modules, ρ and ρ′ the canonical
mappings from M and M ′ into the corresponding Clifford algebras, and (u, λ) an
element of Hom(M, M ′)×K such that

∀a ∈M, q(a) = λ q′(u(a)) ;

when λ is invertible, u is called a similitude of ratio λ−1.

(a) When λ admits a square root κ in K, prove the existence of an algebra
morphism C�(M, q)→ C�(M ′, q′) that maps every ρ(a) to κρ′(u(a)).

(b) Prove the existence of an algebra morphism C�0(u, λ) from C�0(M, q) into
C�0(M ′, q′) that maps every product ρ(a)ρ(b) to λρ′(u(a))ρ′(u(b)).

(c) You can even prove this stronger result: there are two linear mappings

C�i(u, λ) : C�i(M, q) −→ C�i(M ′, q′) for i = 0, 1,

satisfying these properties: first C�1(u, λ) maps every ρ(a) to ρ′(u(a)); sec-
ondly for all (i, j) ∈ (Z/2Z)2, for all x ∈ C�i(M, q) and all y ∈ C�j(M, q),

C�i(u, λ)(x) C�j(u, λ)(y) = C�i+j(u, λ)(xy) if ij = 0,

C�i(u, λ)(x) C�j(u, λ)(y) = λ C�i+j(u, λ)(xy) if ij = 1.

(3.ex.8)* We use the notations of (1.ex.27) and (1.ex.28): J is an ordered set,
D the set of all (i, j) such that i ≤ j, and (J, D) satisfies the condition required
in the definition of direct limits. Let ((Mj), (fj,i)) be a family of modules and
morphisms over (J, D), in which every module Mj is provided with a quadratic
form qj and every fj,i is a morphism of quadratic modules.

(a) Prove the existence of a unique quadratic form lim−→(qj) on lim−→(Mj) such that

all canonical morphisms Mi → lim−→(Mj) are morphisms of quadratic modules.

(b) Prove that the canonical algebra morphism

lim−→(C�(Mj , qj))) −→ C�(lim−→(Mj), lim−→(qj))

is an isomorphism.
(c) Prove that the Clifford algebra of a flat module is flat, by means of the

following three results:

– a direct limit of flat modules is flat (see (1.ex.28));

– the Clifford algebra of a free module is a free module (see (4.8.11));

– every flat module is a direct limit of free modules (see for instance
[Lazard 1964]).
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Graded quadratic extensions and graded Azumaya algebras

(3.ex.9) Let n be an integer ≥ 1, and K the local ring Z/2nZ. It is clear that
the K-algebra A = K ⊕ Kz with z2 = 1 is not a quadratic extension. Let ϕ be
the standard involution of A. Prove that the subalgebra of all elements of A ⊗ A
invariant by ϕ ⊗ ϕ is not a free module, and that its rank (the minimal number
of generators) is 4.

Prove that the order of the group Aut(A) is never 2 (that is the order of
Aut(Z) when Z is a quadratic extension over a local ring); it is 1 (resp. 4, resp.
8) if n = 1 (resp. n = 2, resp. n ≥ 3).
Hint. If n ≥ 3, the group K× is the direct product of two cyclic subgroups which
are respectively generated by −1 and 5.

(3.ex.10) Let K ⊕ Kz be a free and trivially graded quadratic extension: thus
z2 = βz − γ with β2 − 4γ invertible in K. Prove that its isomorphy class belongs
to the classifying group Qf (K) if and only if there exists λ ∈ K such that β + 2λ
is invertible.

When K = Z, prove that Qg(Z) is reduced to one element.
Hint. (2.8.6) and (3.4.14).

(3.ex.11) Suppose that K is the direct product K ′×K ′′ of two rings �= 0. Prove
that Qg(K) is isomorphic to Qg(K ′)×Qg(K ′′), and Brg(K) to Brg(K ′)×Brg(K ′′).

(3.ex.12) Let A and A′ be (nongraded) quadratic extensions of K. Prove that
A⊗A′ is a quadratic extension of A� A′. Which is its standard involution? When
z, z′ and z′′ are defined as in Example (3.4.11), compare tr(z⊗z′) and tr(ϕ(z)⊗z′)
with z′′ and (ϕ⊗A′)(z′′).

Compare A⊗A′, (A � A′)⊗A and (A � A′)⊗A′ as quadratic extensions of
A � A′ .

(3.ex.13) Let P be a finitely generated projective module of constant rank r over
the ring K.

(a) Let f be an endomorphism of P ; prove that, for all a1, a2, . . . , ar ∈ P ,

det(f) a1 ∧ a2 ∧ · · · ∧ ar = f(a1) ∧ f(a2) ∧ · · · ∧ f(ar) ,

tr(f) a1 ∧ a2 ∧ · · · ∧ ar =
r∑

i=1

a1 ∧ · · · ∧ f(ai) ∧ · · · ∧ ar.

(b) Now r = 2 and we set ϕ(f) = tr(f)idP − f for all f ∈ End(P ). Prove that

∀a, b ∈ P, f(a) ∧ b = a ∧ ϕ(f)(b).

Then prove that ϕ is a standard involution of End(P ) and that the associated
norm is the quadratic form f �−→ det(f) (as it is stated in (3.6.3)) by means
of this trick: an element c ∈ P vanishes if and only if a ∧ c vanishes for all
a ∈ P .
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(3.ex.14) Let A and B be graded Azumaya algebras for which traces A → K and
B → K have been defined in accordance with (3.6.6) and (3.6.7); there is also a
trace A ⊗̂B → K. Prove that tr(x⊗ y) = tr(x) tr(y) for all x ∈ A and all y ∈ B.

(3.ex.15) Let P be a finite-dimensional vector space over a field K, and A =
End(P ).

(a) For every f ∈ A, prove that the left ideal Af is the subset of all g ∈ A such
that Ker(g) ⊃ Ker(f), whereas the right ideal fA is the subset of all g such
that Im(g) ⊂ Im(f).

(b) Let f and g be two elements of A. Prove that the left ideal Af +Ag contains
an element the kernel of which is Ker(f) ∩ Ker(g), whereas the right ideal
fA + gA contains an element the image of which is Im(f) + Im(g).

(c) Let J be a left ideal (resp. a right ideal) of A, and f an element of J of
maximal rank among all elements of J . Prove that J = Af (resp. J = fA).

(d) Prove that every two-sided ideal of A is equal to 0 or A.

Comment. If V is an infinite-dimensional vector space, the elements of End(V ) of
finite rank constitute a two-sided ideal different from 0 and End(V ).

(3.ex.16) Prove that the group Qg(R) derived from the field R of real numbers is
a cyclic group of order 4, generated by the class of (R2)g (the quadratic extension
R× R provided with its nontrivial grading).

(3.ex.17) We assume that A is a finite-dimensional algebra over the field R of
real numbers, and that A is also a division ring; we will prove that A is isomorphic
either to R or to C (the field of complex numbers) or to H (the division ring of
real quaternions); this implies that Br(R) is a group of order 2 (see (3.5.20)). Let
V be the subset of all v ∈ A such that v2 ∈ R and v2 ≤ 0.
(a) Let x be a nonzero element of A, and f : R[X ] → A the algebra morphism

that maps every polynomial P (X) to its value P (x) on x. Prove that the ideal
Ker(f) is generated either by a polynomial of degree 1, or by a polynomial
of degree 2 without real roots.

(b) Prove that the mapping R× V → A defined by (r, v) �−→ r + v is bijective.
Consequently if u and v belong to V , and u + v to R, then u + v = 0.

(c) Prove that V is a vector subspace of A.
Hint. For any (u, v) ∈ V 2, set u + v = s + x and u − v = t + y with s and
t in R, and x and y in V ; observe that 2sx + 2ty ∈ R, and consequently
sx + ty = 0 ; this implies (s + t)u + (s− t)v = s2 + t2, and finally s = t = 0.
This trick stems from a personal communication of J. Commeau in 1960.

(d) What happens when dim(V ) ≤ 1?
(e) Suppose that dim(V ) > 1, and consider the quadratic form q : V −→ R

defined by q(v) = −v2, whence bq(u, v) = −uv − vu. Prove that V contains
two elements i and j such that i2 = j2 = −1 and ij = −ji. Then prove that
(i, j, ij) is an orthonormal basis of V , and that A is isomorphic to H.
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Hint. If an element k of V is orthogonal to i and j (in other words, ik + ki =
jk + kj = 0), the associativity of A implies that k commutes with ij, and
consequently belongs to Rij.

Comment. Everything before (e) is valid for a nonassociative R-algebra A (with
unit element) in which every element generates an associative and finite-dimen-
sional subalgebra without divisors of zero. Consequently it is valid when A is a
finite-dimensional alternative algebra without divisors of zero; indeed in this case
every subalgebra generated by two elements is associative. To prove the theorem of
Zorn (see (3.3.2)), it remains to prove that A is isomorphic to the Cayley algebra
of octonions if dim(V ) > 3. Since A is alternative, every equality xy + yx = 0
implies (wx)y+(wy)x = x(yz)+y(xz) = 0 for all w, z ∈ A. Let i, j, k be elements
of V such that (i, j, ij, k) is an orthonormal family in (V, q); then on one side
(ij)k = (jk)i = (ki)j = k(ji) = i(kj) = j(ik) and (i, j, k, ij, ik, jk, (ij)k) is still an
orthonormal family; on the other side every element x ∈ V that is orthogonal to
(i, j, k, ij, ik, jk), commutes with (ij)k and consequently belongs to R(ij)k ; indeed
x((ij)k) = k((ix)j) and ((ij)k)x = (k(ix))j, and by alternativity

(k(ix))j − k((ix)j) = (kj)(ix)− k(j(ix)) = x((kj)i) + x(k(ji)) = 0.

All this proves that dim(V ) = 7 and that A is isomorphic to the Cayley algebra
of octonions.

(3.ex.18)* The following considerations are motivated by the first exact sequence
in (3.4.14). For every integer n let K�n� be the subset of all λ ∈ K such that 1−nλ
is invertible; it is an abelian group for the modified addition (λ, µ) �−→ λ+µ−nλµ.
We are looking for group morphisms K�m� → K�n� when m and n are nonzero
integers. Obviously λ �−→ −λ is an isomorphism from K�n� onto K�−n�. Moreover
in the first exact sequence of (3.4.14) there is a morphism κ �−→ κ−κ2 from K�2�
into K�4�.

Let K0[[t]] be the subset of all formal series x(t) ∈ K[[t]] such that x(0) = 0
(so that 1 − nx is invertible for all n); first we look for formal series f ∈ K0[[t]]
such that the following equality is true in the ring of formal series K[[x, y]] :

(E) f(x + y −mxy) = f(x) + f(y)− nf(x)f(y) .

(a) Let h be another indeterminate; if (x, y) is replaced with (t, h(1 −mt)−1),
the equation (E) becomes

f(t + h)− f(t)
h

=
1− nf(t)
1−mt

f(h(1−mt)−1)
h(1−mt)−1

.

Then, by replacing h with 0, derive from (E) the new equation

(E′)
f ′(t)

1− nf(t)
=

f ′(0)
1−mt

.
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(b) Solve the differential equation (E′) when K is the field Q of rational numbers.
You must find a unique solution f satisfying the conditions f(0) = 0 and
f ′(0) = a (an arbitrary value), namely

f(t) =
1
n

(
1− (1−mt)an/m

)
= at −

∑
k≥2

ωktk

with

ωk = (−1)k a

k!
(an−m)(an− 2m)(an− 3m) · · · (an− (k − 1)m) .

(c) Verify that the above solution of (E′) is also a solution of (E). Let R be the
subring of Q generated by a and the coefficients ωk; conclude that you get a
solution of (E) over the ring K if the canonical morphism Z → K extends to
a morphism R → K, and that you even get a morphism K�m� −→ K�n� if
all the coefficients ωk have a zero image in K except a finite number.

(d) For every integer m ≥ 2 prove that the following equality defines a homo-
morphism fm from K�m� into K�m2� :

fm(λ) = λ −
m∑

k=2

(−1)k m!
k! (m− k)!

mk−2λk .

Comments. The kernel Ipm(K) of fm has been called the group of generalized
m-idempotents of K, and its cokernel Gm(K) the Villamayor group of K. When
m is not a divisor of zero in K, the equality 1 −m2fm(λ) = (1 −mλ)m yields
an easier definition of fm .

Clifford algebras of quadratic spaces

(3.ex.19) Let (M, q) be a quadratic space of constant rank 4.

(a) Prove that M is the submodule of all elements of C�1(M, q) invariant by the
reversion τ .

(b) Let Z = QZ(M, q) be the center of C�0(M, q). Prove that τ(z) = z for all
z ∈ Z. And for every x ∈ C�0(M, q) prove that xτ(x) belongs to Z; in other
words, τ induces a standard involution on the Z-algebra C�0(M, q). Since
C�0(M, q) is an Azumaya algebra over Z (see (3.5.14)), it is a quaternion
algebra over Z; and when Z is isomorphic to K2, it is isomorphic to the
direct product of two quaternion algebras over K.

(c) Prove the bijectiveness of the mapping Z ⊗ M → C�1(M, q) defined by
z ⊗ a �−→ za.

(3.ex.20) Let (M, q) be a quadratic space of constant rank 4, such that the center
Z of C�0(M, q) is isomorphic to the algebra K2; thus there is an idempotent ε such
that Z = Kε⊕K(1− ε).
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(a) Prove that we obtain a trilinear mapping T from M3 into M if we set, for
all a, b, c in M ,

T (a, b, c) = εabc + cbaε ,

and that it satisfies these wonderful properties:
T (a, a, b) = T (b, a, a) = q(a)b , q(T (a, b, c)) = q(a) q(b) q(c) ,

T (T (a, b, c), d, e) = T (a, T (d, c, b), e) = T (a, b, T (c, d, e)).

Hint. Remember that xε = (1 − ε)x for all x ∈ C�1(M, q) (see (3.5.13));
deduce from (3.ex.19)(b) that τ(ε) = ε, and then use (3.ex.19)(a) to prove
that T (a, b, c) belongs to M .

(b) Prove that the mapping a �−→ εa induces a bijection from M onto εC�1(M, q).
Consequently T (a, b, c) is the only element x ∈M such that εx = εabc.
Hint. The mapping (a, b) �−→ εa + (1 − ε)b induces a bijection from M2

onto C�1(M, q); indeed it is surjective because a = εa + (1 − ε)a and
abc = εT (a, b, c) + (1− ε)T (c, b, a); its bijectiveness follows from (1.13.5) .

(c) For all a, b, c, d in M we set Ω(a, b, c, d) = bq

(
a , T (b, c, d) − T (d, c, b)

)
.

Prove that Ω is an alternate quadrilinear form.
Comment. Ω gives a generator of the module

∧∗4(M) = Hom(
∧4(M), K);

to prove it, you can assume that K is a field (see (1.13.5)) and that (M, q)
is hyperbolic (see (2.6.6)). This property of Ω implies the existence of an
isomorphism

∧3(M) →M that maps every b∧ c∧d to T (b, c, d)−T (d, c, b).
(d) Let G be the subset of all a ∈M such that q(a) is invertible in K; we suppose

that G is not empty, and that e is an element of G. For every (a, b) ∈M2 we
set

a ∗ b = q(e)−1T (a, e, b) and ā = q(e)−1T (e, a, e) ;

prove that this multiplication makes M become an associative algebra with
unit element e, and that the mapping a �−→ ā is a standard involution of
M . Moreover G is a ∗-multiplicative group, and the subset of all a such that
q(a) = q(e) is a subgroup.
Conversely T (b, c, d) = q(e) b ∗ c̄ ∗ d .

(e) The even subalgebra C�0(M, q) can be considered as the direct product of the
algebras C′ = εC�0(M, q) and C′′ = (1 − ε)C�0(M, q). Verify that the map-
ping a �−→ q(e)−1εae is an isomorphism from the algebra M defined in (d)
onto C′, and that the mapping a �−→ q(e)−1(1 − ε)ea is an algebra isomor-
phism from M onto C′′. Therefore C′, C′′ and M are isomorphic quaternion
algebras.

(3.ex.21) Let (M, q) be a quadratic space of dimension 4 over a field K. Assume
that the center Z of C�0(M, q) is isomorphic to K2, and that M contains nonzero
elements on which q vanishes. Prove that (M, q) is hyperbolic.
Hint. Let ε be an idempotent of Z as in (3.ex.20), and e an element of M such
that q(e) �= 0; the mapping a �−→ εea is a bijection from M onto εC�0(M, q); this
is a quaternion algebra over K, provided with a norm N ; prove that N (εea) =
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q(e)q(a); then the argument developed at the end of the proof of (3.6.8) shows
that εC�0(M, q) is isomorphic to M(2, K), and consequently is hyperbolic for the
quadratic form N .

(3.ex.22) Since the groups Qg(R) and Br(R) have respectively order 4 and 2 (see
(3.ex.16) and (3.ex.17)), the group Brg(R) has order 8. Prove that Brg(R) is a
cyclic group generated by the class of (R2)g.
Hint. Let [(R2)g]Q and [(R2)g]B be the classes of (R2)g in Qg(R) and Brg(R);
since [(R2)g]Q has order 4, the order of [(R2)g]B is a multiple of 4. Now the fourth
power of [(R2)g]B is the class of C�(M, q) if (M, q) is a positive definite quadratic
space of dimension 4 over R; if (e1, e2, e3, e4) is an orthonormal basis of M , then
(1 − e1e2e3e4)/2 is an idempotent ε in QZ(M, q); verify that εC�0(M, q) is a
division ring (isomorphic to H and not to M(2, R)).

(3.ex.23) Let (M, q) be a quadratic space provided with an orthogonal basis
(e1, e2, . . . , en). Since 2 must be invertible in K, the quadratic extension QZ(M, q)
is the direct sum of K and its discriminant module D. Prove that D is the free
module generated by e1e2 · · · en, and that

(e1e2 · · · en)2 = (−1)n(n−1)/2 q(e1)q(e2) · · · q(en) .

(3.ex.24) Let (M, q) and (M ′, q′) be quadratic spaces of constant ranks r
and r′, and (M ′′, q′′) their orthogonal sum with Clifford algebra C�(M ′′, q′′) =
C�(M, q) ⊗̂C�(M ′, q′). Suppose that QZ(M, q) is free with basis (1, z) such that
z2 = βz−γ, and that QZ(M ′, q′) is free with basis (1, z′) such that z′2 = β′z′−γ′.
Prove that QZ(M ′′, q′′) is free with basis (1⊗ 1, z′′) such that z′′ = z ⊗ β′ + β ⊗
z′ − 2z ⊗ z′ and

z′′2 = ββ′z′′ − (−1)rr′
(β2γ′ + γβ′2 − 4γγ′) − 1− (−1)rr′

4
β2β′2.

(3.ex.25) Let (M, q) be a quadratic space of nonzero dimension over a field K of
characteristic 2. From (3.4.14) we deduce that the class of QZ(M, q) in Q(K) is
given by an element of K�4� modulo the image of K�2� by the group morphism
κ �−→ κ− κ2; here K�2� and K�4� both coincide with the additive group K, and
the image of κ �−→ κ− κ2 is an additive subgroup denoted by ℘(K). The element
of K/℘(K) representing the Arf subalgebra QZ(M, q) is called the Arf invariant
of (M, q); if z is an element of QZ(M, q) such that z /∈ K and z− z2 ∈ K, the Arf
invariant Arf(M, q) is the class of z − z2 modulo ℘(K).
(a) Prove that Arf((M, q) ⊥ (M ′, q′)) = Arf(M, q) + Arf(M ′, q′) .
(b) Let 2m be the dimension of M . Prove that M contains a basis (e1, f1, e2,

f2, . . . , em, fm) such that bq(ei, fi) = 1 for i = 1, 2, . . . , m, but bq(ei, fj) = 0
if i �= j, and bq(ei, ej) = bq(fi, fj) = 0 for all (i, j). Calculate z − z2 when
z =

∑
i eifi and prove that

Arf(M, q) =
m∑

i=1

q(ei)q(fi) modulo ℘(K).
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Discriminant modules and other topics

(3.ex.26) Prove the exactness of the sequence

1→ µ2(K)→ K× → K× → Disc(K)→ Pic(K)→ Pic(K) ;

here µ2(K) is the subgroup of square roots of 1 in the group K× of invertible
elements, the third arrow is the morphism λ �−→ λ2, the fourth arrow maps µ ∈ K×

to the class of K provided with the multiplication (x, y) �−→ µxy, the fifth arrow
is the forgetting morphism that maps the discriminant class of D to the class of D
in the Picard group of K (defined at the end of 1.12), and the sixth arrow maps
the class of D to the class of D ⊗D.

When we consider different basic rings, we get functors µ2, U (defined by
U(K) = K×), Q, Disc and Pic from the category Com(Z) of commutative rings
to the category of abelian groups, and the arrows in the above exact sequence can
be associated with morphisms between these functors.

(3.ex.27) Work out a parallel theory for graded discriminant modules. You must
find a group Discg(K) in which every element has order 1, 2 or 4, a group morphism
Qg(K) → Discg(K), and a group morphism Discg(K) → Picg(K) with target
isomorphic to Pic(K)× Ip(K). There is also an exact sequence

1 −→ Disc(K) −→ Discg(K) −→ Ip(K) −→ 1

which splits when −1 has a square root in K.

(3.ex.28)* By localization we get group morphisms Disc(K) → Disc(Km) and
Q(K)→ Q(Km) for every maximal ideal m of K, whence two group morphisms

Disc(K) −→
∏
m

Disc(Km) and Q(K) −→
∏
m

Q(Km) ;

the targets are direct products over the set of all maximal ideals. When K is
an integral domain, it is proved in [Bass, 1974] (see Proposition (2.6.2)) that the
former morphism is injective; and in [Knus, Paques 1985] (see Theorem (2.10)) it
is proved that the latter is injective too. Here is a counterexample with a ring K
containing divisors of zero; since 2 is invertible in this ring, the canonical group
morphisms Q(K) → Disc(K) and Q(Km) → Disc(Km) are bijective, and thus
this counterexample proves that neither of these group morphisms is injective,
although only the former is considered.

Let F be a field in which 2 is invertible, and K the subring of F [t]2 containing
all pairs of polynomials (f, g) such that f(1) = g(1) and f(−1) = g(−1). Let
D be the subset of F [t]2 containing all pairs (u, v) such that u(1) = v(1) and
u(−1) = −v(−1). There is an evident multiplication K ×D → D that makes D
become a K-module, and there is an evident multiplication D×D → K. Prove that
D is a discriminant module, and that D is not a free module over K. Nevertheless
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for every prime ideal q of K, the discriminant module Dq is isomorphic to Kq

(provided with its natural multiplication).
Hint. With every prime ideal p of F [t] not containing t2 − 1 are associated two
prime ideals p′ and p′′ of K, one containing (t2 − 1, 0), the other one containing
(0, t2−1), and both localized rings Kp′ and Kp′′ are isomorphic to F [t]p. But there
are still two other prime ideals in K, both containing (t2 − 1, 0) and (0, t2 − 1) ;
the localized ring contains all pairs (f, g) of rational functions such that (for one
prime ideal) f(1) and g(1) exist and are equal, or (for the other one) f(−1) and
g(−1) exist and are equal.

(3.ex.29) Let Gm,n be the quadratic space over R defined in 2.8; we suppose
(m, n) �= (0, 0). Prove that C�(Gm,n)ng (Clifford algebra without grading) and
C�0(Gm,n) are respectively isomorphic to matrix algebrasM(k, B) andM(k0, B0)
over rings B and B0 both belonging to the set {R2, R, C, H, H2}, and that B and
B0 only depend on the signature s = m− n modulo 8 according to the following
table:

s mod 8 0 1 2 3 4 5 6 7

B R R2 R C H H2 H C

B0 R2 R C H H2 H C R

Hint. Use (3.7.2) and (3.8.8) to prove that B only depends on s (in accordance
with (3.7.8)); calculate QZ(Gm,n) by means of (3.7.7); calculate B by means of
(3.8.8) when Gm,n is definite (positive or negative) of even dimension; from (3.ex.6)
deduce that the B for (m, n) is the B0 for (m, n+1); the isomorphism Z(A)⊗A0 →
A, valid for every graded Azumaya algebra of odd type, allows you to complete
the table.

(3.ex.30) Let A be a graded Azumaya algebra such that Z(A0) is a quadratic
extension Z, let D be the discriminant module of Z, and J the free discriminant
module generated by an element j such that j2 = −1. Prove that the algebras AD

and AJ are isomorphic.

(3.ex.31) We assume that 2 is invertible in K. With every discriminant module
D is associated the quadratic space D2 that is the module D with the quadratic
form d �−→ d2; here all lower indices 2 must be understood in this way. As above,
J is the free discriminant module in which j2 = −1.

(a) Let D and D′ be discriminant modules. Prove that the discriminant module
of C�0(D2 ⊥ D′

2) is isomorphic to J ⊗ D ⊗ D′. Prove that the quaternion
algebras C�(D2 ⊥ D′

2)
ng and C�(D2 ⊥ (J ⊗D ⊗D′)2)ng are isomorphic.

(b) Deduce from (3.8.8), (3.8.4) and (3.7.2), that

C�(D2 ⊥ D′
2)⊗C�(D2 ⊥ D′′

2 ) ∼= C�(D2 ⊥ (J⊗D⊗D′⊗D′′)2)⊗End(K⊕D′′),

and conclude that the Brauer class of C�(D2 ⊥ (D′⊗D′′)2)ng is the product
of the classes of C�(D2 ⊥ D′

2)
ng and C�(D2 ⊥ D′′

2 )ng.
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(c) Suppose that D is the discriminant module of the quadratic extension Z, and
prove that the quaternion algebras C�(D′ ⊗ Z)ng and C�(D2 ⊥ D′

2)
ng are

isomorphic. From all the previous results, deduce a new (and much easier)
proof of the properties of the mapping Q stated in (3.8.16).

(d) Let A be a graded Azumaya algebra such that Z(A0) is a quadratic extension
Z with discriminant module D, and let D′ be any discriminant module. Prove
that

AD′ ⊗ C�(K2 ⊥ (J ⊗D′)2) ∼= A⊗ C�(D2 ⊥ (J ⊗D ⊗D′)2) ,

and give another proof of (3.8.13).

(3.ex.32) Let A be a graded Azumaya algebra over K such that Z(A0) is a
quadratic extension Z. We wish to compare the Z-algebras A0 and Z ⊗ A. This
comparison is motivated by the fact that the multiplication mapping Z(B)⊗B0 →
B is an isomorphism of graded Z(B)-algebras when B is a graded Azumaya alge-
bra of odd type.

(a) Justify the existence of a graded algebra morphism

A0 ⊗Z (Z ⊗K Ato) −→ EndZ(A),

a⊗ z ⊗ bto �−→ ( x �−→ (−1)∂b∂x azxb ) ,

and prove that it is bijective. Consequently A0 and Z ⊗ A have the same
class in Brg(Z).

(b) Suppose that A1 contains an invertible element w and define a graded algebra
morphism in this way (for all z ∈ Z, all a ∈ A0 and all b ∈ A1):

Z ⊗A −→M(1, 1; A0) , z ⊗ (a + b) �−→
(

za zbw−1

zwb zwaw−1

)
;

the notation M(1, 1; A0) means the matrix algebra M(2, A0) with the grad-
ing that lets the elements of the diagonal be even, and the others odd. Prove
the bijectiveness of this morphism.
Hint. Remember that zw = wϕ(z) and use (3.8.12).

Remark. The exercise (4.ex.18) about Weyl algebras is now feasible.



Chapter 4

Comultiplications. Exponentials.
Deformations

Completely different notions are now expounded: first comultiplications and inte-
rior multiplications; then exponentials (defined without exponential series); finally
deformations of Clifford algebras, which need both exponentials and interior prod-
ucts. Exterior algebras play an important role, because with a weak additional
hypothesis (the existence of scalar products) we shall prove that Clifford algebras
are isomorphic to them as K-modules (and even as comodules). The first two
sections of Chapter 3 are sufficient prerequisites for almost all this chapter.

4.1 Coalgebras and comodules

Coalgebras

The category Alg(K) is a subcategory ofMod(K); let us find out which particular
properties an object A of Alg(K) does possess, with the requirement that these
properties must be understandable inside the categoryMod(K). For this purpose,
instead of defining the multiplication by a bilinear mapping A×A→ A, we define it
by the corresponding linear mapping πA : A⊗A→ A, and instead of mentioning
the unit element 1A, we mention the linear mapping εA : K → A such that
εA(1) = 1A . The associativity of the algebra A and the properties of its unit
element are equivalent to the following properties, which only involve objects and
morphisms of Mod(K) :

πA (πA ⊗ idA) = πA (idA ⊗ πA) ,

πA (idA ⊗ εA) = canonical isomorphism A⊗K −→ A ,

πA (εA ⊗ idA) = canonical isomorphism K ⊗A −→ A.
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By means of the automorphism  of A⊗A such that  (a⊗b) = b⊗a, we can
write the condition that means that the algebra A is commutative: πA = πA .

An object A of Mod(K) is called a coalgebra if it satisfies the previous three
conditions in the dual category of Mod(K); this means the existence of a linear
mapping π′

A : A → A⊗A and a linear mapping ε′A : A → K such that

(π′
A ⊗ idA) π′

A = (idA ⊗ π′
A) π′

A ,

(idA ⊗ ε′A) π′
A = canonical isomorphism A −→ A⊗K ,

(ε′A ⊗ idA) π′
A = canonical isomorphism A −→ K ⊗A.

The mapping π′
A is called the comultiplication (or coproduct) of the coalgebra A,

and ε′A is called its counit. The coalgebra A is said to be cocommutative if moreover
 π′

A = π′
A .

The first motivation of these definitions is the following theorem.

(4.1.1) Theorem. If A is a coalgebra and B an algebra, then HomK(A, B) is an
algebra when it is provided with the following multiplication:

(u, v) �−→ u ∗ v = πB (u⊗ v) π′
A : A→ A⊗A → B ⊗B → B

for all u and v in Hom(A, B); the unit element of this algebra Hom(A, B) is εBε′A .
It is commutative whenever A is cocommutative and B commutative.

Proof. A straightforward calculation shows that

(u ∗ v) ∗ w = πB (πB ⊗ idB) (u ⊗ v ⊗ w) (π′
A ⊗ idA) π′

A ,

and the analogous expression of u∗(v∗w) shows that the associativity of Hom(A, B)
is a consequence of the associativity of B and the coassociativity of A. Another
calculation shows that

u ∗ (εBε′A) = πB (idB ⊗ εB) (u ⊗ idK)(idA ⊗ ε′A)π′
A = u ,

and in the same way (εBε′A) ∗ v = v. The proof of the statement about commuta-
tivity is still easier. �

The basic ring K is both an algebra and a coalgebra; πK is the canonical
isomorphism K ⊗ K → K, and π′

K is the reciprocal isomorphism K → K ⊗ K;
both εK and ε′K are equal to idK . The above theorem will often be used to state
that the dual module A∗ = Hom(A, K) is an algebra whenever A is a coalgebra.

Additional information. For interested readers we present the category of coal-
gebras (but hurried readers may go directly to comodules). When A and B are
algebras, a linear mapping f : A→ B is an algebra morphism if (and only if) the
two following equalities are true:

fπA = πB (f ⊗ f) and f εA = εB ;
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therefore when A and B are coalgebras, we say that f : A → B is a coalgebra
morphism if (by definition)

π′
B f = (f ⊗ f) π′

A and ε′B f = ε′A.

If f1 : A′ → A is a coalgebra morphism and f2 : B → B′ an algebra morphism, then
the mapping Hom(f1, f2) (defined in 1.5) is an algebra morphism from Hom(A, B)
into Hom(A′, B′).

When A and B are algebras, the algebra structure put on C = A ⊗ B (see
1.3) corresponds to

πC = (πA ⊗ πB)  2,3 and εC = (εA ⊗ εB) π′
K ;

here  2,3 means the reversion of the second and third factors, whatever the mod-
ules which they belong to may be:  2,3(a⊗ b⊗a′⊗ b′) = a⊗a′⊗ b⊗ b′. Therefore
when A and B are coalgebras, we make C = A⊗B become a coalgebra by setting

π′
C =  2,3 (π′

A ⊗ π′
B) and ε′C = πK (ε′A ⊗ ε′B).

When A is both an algebra and a coalgebra, it is called a bialgebra when the
four mappings πA, εA, π′

A, ε′A are related together by the four equalities

(a) π′
AπA = (πA ⊗ πA)  2,3 (π′

A ⊗ π′
A) ,

(b) π′
AεA = (εA ⊗ εA) π′

K ,

(c) ε′AπA = πK (ε′A ⊗ ε′A) ,

(d) ε′AεA = idK ;

these four conditions can be interpreted in two different ways; first we can observe
that the conditions (a) and (b) mean that π′

A : A→ A⊗A is an algebra morphism,
and that (c) and (d) mean that ε′A : A → K is also an algebra morphism; but
in a dual way we can also observe that (a) and (c) mean that πA : A ⊗ A → A
is a coalgebra morphism, and that (b) and (d) mean that εA : K → A is also
a coalgebra morphism. The ring K is a trivial example of a bialgebra. Later the
symmetric algebra S(M) of a module M and its exterior algebra

∧
(M) will receive

comultiplications and counits that are algebra morphisms; consequently they will
become bialgebras.

Comodules

The notion of comodule is derived from the notion of module by duality in an
analogous way. First let A be a K-algebra, that is a K-module provided with two
mappings πA and εA as above; instead of describing the properties of a left A-
module M by means of a bilinear mapping A×M →M , we will use the associated
linear mapping; thus when M is a K-module, we can say that a linear mapping



178 Chapter 4. Comultiplications. Exponentials. Deformations

πM : A ⊗M → M makes it become a left A-module if these two conditions are
satisfied:

πM (πA ⊗ idM ) = πM (idA ⊗ πM ) ,

πM (εA ⊗ idM ) = canonical isomorphism K ⊗M −→M.

When M is a right A-module, then πM is a linear mapping from M⊗A into M
satisfying the evident analogous conditions. Later we shall need right comodules,
whence the following definition: when A is a K-coalgebra and M a K-module, we
say that a linear mapping π′

M : M → M ⊗ A makes M become a right comodule
over A if the two following conditions are satisfied:

(idM ⊗ π′
A) π′

M = (π′
M ⊗ idA) π′

M ,

(idM ⊗ ε′A) π′
M = canonical isomorphism M −→M ⊗K.

Comodules are interesting because they naturally become modules over suit-
able algebras. Indeed it is sensible to wonder whether M would be a module over
the algebra Hom(A, B) defined in (4.1.1) when it is a comodule over the coalgebra
A and a module over the algebra B. This statement is actually true provided that
we use together a structure of comodule on one side and a structure of module
on the other side, and require some compatibility between both structures; for
instance we can suppose that M is a right A-comodule and a left B-module, and
then we must require that the comultiplication π′

M and the multiplication πM are
compatible in the following sense:

π′
M πM = (πM ⊗ idA) (idB ⊗ π′

M )
B ⊗M −→ B ⊗M ⊗A
↓ ↓
M −→ M ⊗A

;

this requirement may be interpreted in this way: the comultiplication π′
M must

be B-linear. Before stating the announced theorem, let us recall other statements
in which similar features appear. For instance a change of side also appears in
the following statement: Hom(M, N) is a left B-module when M is a right B-
module (and N merely a K-module); this change of side is easily explained by
the contravariance of the functor Hom(. . . , N). Besides, when we wish to make M
become a left module over an algebra B ⊗ C (assuming that it is already a left
module over B and C), we must also require that the structures of module over B
and C are compatible: the operation in M of any element of B must commute with
the operation of any element of C (see (1.3.3)); this means that the multiplication
C ⊗ M → M must be B-linear. These explanations should make the following
theorem look quite natural.

(4.1.2) Theorem. If M is a right comodule over the coalgebra A and a left mod-
ule over the algebra B, and if the comultiplication π′

M is B-linear, then M is a
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left module over the algebra Hom(A, B); the operation in M of an element u of
Hom(A, B) is this endomorphism of M :

πM (u⊗ idM )  π′
M : M →M ⊗A→ A⊗M → B ⊗M →M.

Here  is the canonical isomorphism M ⊗A→ A⊗M . Yet πM (u⊗ idM ) π′
M is

the same thing as πM (idM ⊗ u)π′
M if  now means the canonical isomorphism

M ⊗B → B ⊗M .

Proof. We must prove that the mapping u �−→ πM (u ⊗ idM ) π′
M is an al-

gebra morphism from Hom(A, B) into End(M). First the unit element εBε′A of
Hom(A, B) is mapped to the endomorphism

M −→M ⊗A −→M ⊗K −→ K ⊗M −→ B ⊗M −→M

which is idM because (idM ⊗ ε′A)π′
M is the canonical isomorphism M →M ⊗K,

and πM (εB ⊗ idM ) is the canonical isomorphism K ⊗ M → M. Now let u
and v be two elements of Hom(A, B); the following diagram contains the proof
of the equality u ∗ (v ∗ x) = (u ∗ v) ∗ x (for all x ∈ M); the endomorphism
x �−→ u ∗ (v ∗ x) appears if you go from M to M through the first column,
whereas the endomorphism x �−→ (u ∗ v) ∗ x appears if you go from M to M
through the third column. The places where u and v are involved, are all indicated;
the double arrows ←→ indicate canonical isomorphisms, that represent either a
“commutativity” property of a tensor product, or an “associativity” property,
according to the parentheses that are displayed; for instance the mapping M ⊗
(A ⊗ A) → (A ⊗ A) ⊗ M that appears in the third column is the canonical
isomorphism x ⊗ a ⊗ a′ �−→ a ⊗ a′ ⊗ x ; in all other arrows a multiplication or a
comultiplication is involved:

M −→ M ⊗A −→ (M ⊗A)⊗A ←→ M ⊗ (A⊗A)
! ! ↑

A⊗M −→ A⊗ (M ⊗A) |
| | |
↓v⊗id ↓v⊗id⊗id |

B ⊗M −→ B ⊗ (M ⊗A) |
↓ ↑ ↓
M | (A⊗A)⊗M
↓ ↓ |

M ⊗A ←− (B ⊗M)⊗A |
! ! |u⊗v⊗id

A⊗M ←− A⊗ (B ⊗M) |
| | |
↓u⊗id ↓u⊗id⊗id ↓

M ←− B ⊗M ←− B ⊗ (B ⊗M) ←→ (B ⊗B)⊗M

The coassociativity hypothesis (idM ⊗ π′
A)π′

M = (π′
M ⊗ idA)π′

M is involved in
the first line, the associativity hypothesis πM (πB ⊗ idM ) = πM (idB ⊗ πM ) is
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involved in the last line, and the compatibility hypothesis relating π′
M and πM is

involved in the middle of the first two columns; all other places of this diagram
only require trivial verifications. �

Of course the compatibility hypothesis is always fulfilled when B = K; thus
every right A-comodule is a left A∗-module, and A itself is a A∗-module.

An example: the coalgebra S(M)

The symmetric algebra S(M) of a K-module M is a cocommutative coalgebra, and
the definition of its comultiplication is now explained because later we shall meet
a similar but slightly more difficult comultiplication that makes every Clifford
algebra become a comodule. The comultiplication π′ : S(M) → S(M) ⊗ S(M) is
the unique algebra morphism extending the linear mapping M → S(M) ⊗ S(M)
defined by a �−→ a⊗1+1⊗a ; and the counit ε′ : S(M)→ K is the unique algebra
morphism extending the linear mapping M → K defined by a �−→ 0. Let us prove
that S(M) is now a coalgebra.

Indeed, if we identify S(M)⊗S(M) with the algebra S(M ⊕M) (see (1.5.1)),
then a ⊗ 1 + 1 ⊗ a is identified with (a, a) ∈ M ⊕M , and thus π′ becomes the
mapping S(δ) associated by the functor S with the linear mapping δ : M →M⊕M
defined by δ(a) = (a, a). And if we identify K with the symmetric algebra S(0)
of a zero module, then ε′ becomes the mapping S(ζ) associated by the functor S
with the zero mapping ζ : M → 0. In the equality (δ ⊕ idM ) δ = (idM ⊕ δ) δ
both members are equal to the mapping a �−→ (a, a, a) from M into M ⊕M ⊕M ,
and it is not more difficult to verify that

(idM ⊕ ζ) δ = canonical isomorphism M →M ⊕ 0 ;
(ζ ⊕ idM ) δ = canonical isomorphism M → 0⊕M ;

if we transform the previous three equalities by means of the functor S, we get the
equalities that mean that S(M) is a coalgebra. Since δ is invariant by the auto-
morphism (a, b) �−→ (b, a) of M ⊕M , we can add that S(M) is a cocommutative
coalgebra.

Therefore the dual module S∗(M) = Hom(S(M), K) is a commutative al-
gebra. Let S∗n(M) be the set of all linear forms on S(M) that vanish on all
Sj(M) such that j �= n. Thus S∗n(M) is naturally isomorphic to Sn(M)∗ =
Hom(Sn(M), K), and S∗(M) is isomorphic to the direct product of its submodules
S∗n(M). Nevertheless the direct sum of the submodules S∗n(M) is a subalgebra of
S∗(M), because f ∨ g belongs to S∗(i+j)(M) for all f ∈ S∗i(M) and g ∈ S∗j(M).

The comultiplication of S(M) is involved in the Leibniz formula which gives
the successive derivatives of a product; it is worth explaining this, because analo-
gous Leibniz formulas will appear in the context of exterior and Clifford algebras.
Let us assume that M is a vector space of finite dimension over R, and let C∞(M)
be the algebra of indefinitely differentiable real functions on M . With each vector
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a ∈ M is associated a derivation ∂a; the value of a derivative ∂af at any point
x ∈M is

∂af(x) = lim
t→0

(f(x + ta)− f(x)) t−1 ;

it is known that the derivations ∂a are pairwise commuting, and because of the
universal property of S(M) the mapping a �−→ ∂a extends to an algebra morphism
from S(M) into End(C∞(M)); it maps every w ∈ S(M) to an operator ∂w on
C∞(M) which is called a partial differential operator with constant coefficients.
The Leibniz formula tells how such an operator ∂w operates on a product fg of
two functions:

(4.1.3) ∂w(fg) = πC (∂π′(w)(f ⊗ g)).

There are two interpretations of this formula: we can consider that each element of
S(M)⊗ S(M) operates in C∞(M)⊗C∞(M), so that π′(w) operates on f ⊗ g, and
then πC is the multiplication mapping associated with the algebra C∞(M); but
we can also identify S(M) ⊗ S(M) with S(M ⊕M), and f ⊗ g with the function
on M ⊕ M defined by (x, y) �−→ f(x)g(y) (as it is usually done in functional
analysis), and then πC is the morphism from C∞(M⊕M) into C∞(M) which maps
each function (x, y) �→ h(x, y) to the function x �→ h(x, x); both interpretations
are legitimate. To show that the above formula is the same thing as the ordinary
Leibniz formula, it suffices to replace w with a symmetric power an of a vector
a ∈ M ; then

π′(an) = (π′(a))n = (a⊗ 1 + 1⊗ a)n =
n∑

k=0

n!
k! (n− k)!

ak ⊗ an−k ,

and thus we get the well-known formula

∂n
a (fg) =

n∑
k=0

n!
k! (n− k)!

(∂k
af) (∂n−k

a g).

4.2 Algebras and coalgebras graded by parities

Let G be an additive monoid with zero element (see 2.7); a K-module M is said to
be graded over G if it is the direct sum of submodules Mj indexed by the elements
j of G. Such a decomposition into a direct sum is called a grading (or gradation)
over G. An element x ∈ M is said to be homogeneous if it belongs to some Mj ,
and j (well defined whenever x �= 0) is called the degree of x and denoted by
∂x. Whenever ∂x is written, it is silently assumed that x is homogeneous. When
γ : G → G′ is a morphism between monoids with zero elements, every module
M graded over G is also graded over G′ : for all j′ ∈ G′, Mj′ is the direct sum
of all Mj such that γ(j) = j′. Here we shall especially use gradings over Z/2Z,
which are called parity gradings. Often they come from gradings over N or Z by
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means of the evident monoid morphisms N → Z → Z/2Z. Nevertheless later in
4.5 we shall also use quite different gradings: when an algebra A is the direct sum
of a subalgebra A0 and an ideal A+, such a decomposition means a grading over
a monoid containing two elements, namely “zero” and “positive”; such a grading
results from any grading over N by means of an evident morphism monoid.

When M and N are graded over G, M⊗N is also graded over it: (M⊗N)j is
the direct sum of all Mj′⊗Nj′′ such that j′+ j′′ = j. An element f of Hom(M, N)
is said to be homogeneous of degree j if f(x) is homogeneous of degree ∂x + j
whenever x is homogeneous in M ; we write j = ∂f . A graded morphism is a
homogeneous morphism of degree 0. In the category of G-graded K-modules we
only accept morphisms which are finite sums of homogeneous morphisms, so that
the module of morphisms between two G-graded modules M and N inherits a
G-grading; when G is a finite monoid, this module coincides with Hom(M, N) if
its grading is forgotten.

When G-gradings are involved, every module P that has not been given a
particular grading, automatically receives the trivial grading such that M0 = M
and Mj = 0 for all j �= 0. The ring K is always trivially graded.

Let A be an algebra (resp. a coalgebra), the structure of which is defined by
the linear mappings π and ε (resp. π′ and ε′); A is said to be an algebra graded
over G (resp. a coalgebra graded over G) when the module A is graded over G and
when π and ε (resp. π′ and ε′) are graded morphisms. When A is an algebra, this
means that the degree of 1A is null, and that the degree of a product is the sum
of the degrees of the factors. Many definitions impose this rule on other kinds of
products too; for instance ∂f(x) = ∂f + ∂x if f is a homogeneous morphism as
above, and consequently ∂(f ′ ◦ f) = ∂f ′ + ∂f . When A is a graded coalgebra, the
coproduct π′(a) of every homogeneous a ∈ A can be written as a sum

∑
i bi⊗ ci

such that ∂bi + ∂ci = ∂a for each term of this sum, and moreover ε′(a) = 0 if
∂a �= 0.

Of course graded modules or comodules are defined in the same way by re-
quiring that the corresponding products or coproducts are determined by graded
morphisms.

For algebras and coalgebras graded over Z/2Z, besides many usual construc-
tions, there are also twisted analogous ones; the twisted tensor products (defined
in 3.2) are typical examples. When we deal with exterior and Clifford algebras,
twisting factors±1 appear very often, and in order to avoid any trouble with them,
it is more convenient to introduce them everywhere according to the following rule.

(4.2.1) Twisting rule. Whenever in a product (of any kind) of homogeneous factors
the order of two letters is reversed, this reversion must be compensated by a
twisting factor that changes the sign if and only if both letters represent odd
factors.

In general the letters represent factors with arbitrary parities; if there are
n letters, there are 2n possible distributions of parities; let us assume that for
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instance the letters �1, �2, . . . , �k are odd factors, and that �k+1, . . . , �n are even;
if the factors �1,. . . ,�k first appear in this order, and after some calculations in a
different order, the product of all the twisting factors is the signature of the permu-
tation inflicted on these k letters; since the signature of a product of permutations
is the product of their signatures, we can forget which reversions of factors have
been committed, and in which order, because at any moment the relative places
of these k letters enable us to determine the exact value of the product of all
twisting factors. Thus we can behave with twisting factors in an unconcerned way,
and replace them with ± all along the calculations, since we are sure easily to find
the value of their product at the end.

The uncompromising observance of the twisting rule is the wonderful rem-
edy that delivers us from wasting an awful lot of energy in the calculation of a
tremendous number of factors all belonging to the set {+1,−1}. We shall observe
this rule even when it causes discrepancies with common use. Anyhow, it is hard
to find a set of rules that accounts for all the fancies of common use, because it
has conceded twisting factors without planning, always under constraint; the use-
fulness of systematic rules has been acknowledged only recently. The discrepancies
with common use will be mentioned here at each occurrence.

When we systematically write a conventional sign ± which we calculate only
at the end according to the permutation inflicted on the letters, we must care-
fully write every sign that is not automatically implied by the twisting rule. For
instance the equality τ(xy) = τ(y)τ(x) involving the reversion τ (see (3.1.4))
may now be written τ(xy) = ±(−1)∂x∂yτ(y)τ(x), because the conventional sign
± automatically involves a twisting sign (−1)∂x∂y that here must be compensated.

When f and g belong respectively to Hom(M, M ′) and Hom(N, N ′), the
ambivalent notation f⊗g means either an element of Hom(M, M ′)⊗Hom(N, N ′)
or an element of Hom(M⊗N, M ′⊗N ′) ; when all the involved modules are graded
by parities, the latter f⊗g is replaced with the element f ⊗̂ g of Hom(M⊗N, M ′⊗
N ′) defined in this way:

(4.2.2) (f ⊗̂ g)(x⊗ y) = (−1)∂g∂x f(x)⊗ g(y) ;

when g is even, f ⊗̂ g coincides with f ⊗ g. This definition implies, for all f ′ ∈
Hom(M ′, M ′′) and all g′ ∈ Hom(N ′, N ′′),

(4.2.3) (f ′ ⊗̂ g′) ◦ (f ⊗̂ g) = (−1)∂g′∂f f ′f ⊗̂ g′g .

A lot of formulas of the same kind might be added, for instance the definition
of the twisted tensor product of three morphisms:

(f ⊗̂ g ⊗̂ h)(x⊗ y ⊗ z) = (−1)∂g∂x+∂h∂x+∂h∂y f(x)⊗ g(y)⊗ h(z) .

When A is a coalgebra and B an algebra, both graded over Z/2Z, besides the
algebra Hom(A, B) defined in (4.1.1), there is the twisted algebra of morphisms
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Hom∧(A, B) in which the product of two elements is defined in the following way:

(4.2.4) u ∗ v = πB (u ⊗̂ v) π′
A .

Theorem (4.1.1) remains valid for this new multiplication (provided that commu-
tativity is replaced with twisted commutativity).

When A is a graded coalgebra, Hom∧(A, K) is a graded algebra which often
is still denoted by A∗. Nevertheless if the parity grading of A comes from a grading
A =

⊕
An over Z, in general A∗ is not graded over Z, because the Z-grading is

only available on the direct sum of all submodules like A∗n (the natural image of
(An)∗ in A∗); this direct sum is a subalgebra. Moreover the elements of A∗n must
be given the degree −n.

When M is a graded right comodule over A and a graded left module over B,
there is a graded version of Theorem (4.1.2) stating that M is a graded left module
over Hom∧(A, B), provided that the operation of u ∈ Hom∧(A, B) on x ∈ M is
defined by means of the twisted reversion  ∧ :

(4.2.5) u ∗x = πM (u⊗ idM )  ∧ π′
M (x) with  ∧(y⊗ a) = (−1)∂y∂aa⊗ y .

When C is the twisted tensor product of the graded algebras A and B, then

πC = (πA ⊗ πB)  ∧
2,3 with  ∧

2,3(a⊗ b ⊗ a′ ⊗ b′) = (−1)∂b∂a′
a⊗ a′ ⊗ b⊗ b′.

The twisted tensor product C′ of two graded coalgebras A′ and B′ is defined in
an analogous way:

(4.2.6) π′
C′ =  ∧

2,3 (π′
A′ ⊗ π′

B′) if C′ = A′ ⊗̂B′.

All these definitions are involved in the following proposition.

(4.2.7) Proposition. Let A and A′ be graded coalgebras, and B and B′ graded
algebras; there is a graded algebra morphism (called canonical morphism) from

Hom∧(A, B) ⊗̂Hom∧(A′, B′) into Hom∧(A ⊗̂A′, B ⊗̂B′)

that maps every f ⊗ f ′ to f ⊗̂ f ′.

Proof. Let us consider homogeneous elements f and g in Hom(A, B), f ′ and g′ in
Hom(A′, B′), a in A and a′ in A′. Let

∑
i bi⊗ci and

∑
j b′j⊗c′j be the coproducts

of a and a′. We must prove that

(f ∗ g) ⊗̂ (f ′ ∗ g′) and (−1)∂f ′∂g (f ⊗̂ f ′) ∗ (g ⊗̂ g′)

both map a ⊗ a′ to the same element of B ⊗ B′. Straightforward applications of
the definitions show that they both map it to the element

∑
i,j

± f(bi)g(ci)⊗ f ′(b′j)g
′(c′j) ;
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as explained above, we need not worry about the sign ±; here it is determined by
the parity of

(∂f ′ + ∂g′)∂a + ∂g∂bi + ∂g′∂b′j . �

Remarks.

(a) The nongraded version of (4.2.7) has not been stated; as a matter of fact, it
is included in the above graded version when A, A′, B, B′ are all trivially
graded.

(b) When A, B, A′, B′ are finitely generated projective modules, all canonical
morphisms like B ⊗ A∗ → Hom(A, B) or A∗ ⊗ A′∗ → (A ⊗ A′)∗ are bi-
jective; consequently the canonical morphism described in (4.2.7) is also an
isomorphism.

(c) The canonical morphism in (4.2.7) explains why the notation f ⊗̂ f ′ is often
replaced with f ⊗ f ′, since the former is the canonical image of the latter.
Anyhow, when the twisting rule (4.2.1) is strictly observed, no ambiguity
may occur.

4.3 Exterior algebras

The study of exterior algebras has already begun in 3.1 and 3.2 where they are
treated as Clifford algebras of null quadratic forms. The exterior algebra of a mod-
ule M is provided with an N-grading:

∧
(M) =

⊕
n

∧n(M). Moreover
∧0(M) = K

and
∧1(M) = M . The even subalgebra

∧
0(M) is the direct sum of all

∧2k(M),
and

∧
1(M) the direct sum of all

∧2k+1(M).
Here is the universal property of the algebra

∧
(M) : every linear mapping

f from M into any algebra P such that f(a)2 = 0 for all a ∈ M , extends in
a unique way to an algebra morphism

∧
(M) → P . Each subspace

∧n(M) has
its own universal property: every alternate n-linear mapping g from Mn into any
K-module P determines a unique linear mapping g′′ :

∧k(M)→ P such that

g(a1, a2, . . . , an) = g′′(a1 ∧ a2 ∧ · · · ∧ an) for all a1, a2, . . . , an ∈M ;

the proof of this statement is analogous to that of (1.4.3).
These universal properties lead to functors

∧
and

∧n (or
∧

K and
∧n

K when
the basic ring must be specified). Indeed any K-linear mapping f : M → N
extends to an algebra morphism

∧
(f) from

∧
(M) into

∧
(N), and determines

linear mappings
∧n(f) :

∧n(M)→
∧n(N) for all n ∈ N.

If M and N are K-modules, the algebra
∧

(M⊕N) is canonically isomorphic
to the twisted tensor product

∧
(M) ⊗̂

∧
(N) ; this is a particular case of (3.2.4).

If K → L is an extension of the basic ring, then
∧

L(L ⊗M) is canonically
isomorphic to L⊗

∧
K(M) ; this is a particular case of (3.1.9).

Like every Clifford algebra,
∧

(M) admits a grade automorphism σ and a
reversion τ , for which (3.1.5) and (3.2.8) give precise information.
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When M is a free module, then
∧

(M) too is a free module; this is stated
in (3.2.5) when the rank is finite, in (3.2.7) when it is infinite, and moreover we
know how to derive a basis of

∧
(M) from every basis of M . The case of a finitely

generated projective module M is treated in (3.2.6). When M is merely projective,
there exists a module M ′ such that M ⊕M ′ is free, consequently

∧
(M) ⊗̂

∧
(M ′)

is a free module, and
∧

(M) is projective because it is a direct summand of this
free module.

In 4.5 we shall need the following lemma.

(4.3.1) Lemma. If N is a submodule of M , the algebra
∧

(M/N) is canonically
isomorphic to the quotient of

∧
(M) by the ideal N ∧

∧
(M) generated by N .

Proof. With the quotient mapping M → M/N the functor
∧

associates an al-
gebra morphism vanishing on the ideal J generated by N in

∧
(M), whence an

algebra morphism
∧

(M)/J →
∧

(M/N). Conversely the mapping M →
∧

(M)→∧
(M)/J vanishes on N , and gives a linear mapping defined on M/N , which ex-

tends to an algebra morphism
∧

(M/N)→
∧

(M)/J . Thus we have got two recip-
rocal morphisms. �

The exterior algebra
∧

(M) becomes a coalgebra in the same way as S(M).
The comultiplication π′ :

∧
(M) →

∧
(M)⊗

∧
(M) is the algebra morphism from∧

(M) into
∧

(M) ⊗̂
∧

(M) such that π′(a) = a⊗ 1 + 1⊗ a for all a ∈M , and the
counit ε′ :

∧
(M)→ K is the algebra morphism such that ε′(a) = 0 for all a ∈M .

If we identify
∧

(M) ⊗̂
∧

(M) with
∧

(M ⊕M) and K with
∧

(0), we recognize
that π′ and ε′ are the algebra morphisms associated by the functor

∧
with the

linear mappings δ : a �−→ (a, a) and ζ : a �−→ 0. This allows us to prove that π′

and ε′ actually give
∧

(M) a structure of coalgebra.
Let us calculate π′(x) when x is the exterior product of n elements a1,

a2, . . . , an of M :

π′(x) =
k∑

j=0

∑
s

sgn(s) (as(1) ∧ · · · ∧ as(j)) ⊗ (as(j+1) ∧ · · · ∧ as(n)) ;

the second summation runs over the subset of all permutations s such that

s(1) < s(2) < · · · < s(j) and s(j + 1) < s(j + 2) < · · · < s(n) ,

and sgn(s) is the signature of s.
The dual space

∧∗(M) = Hom∧(
∧

(M), K) is an algebra for the multiplica-
tion defined by (4.2.4), and the specific symbol ∧ is still used for this multiplication.
Let us observe that

∧∗(M) is naturally isomorphic to the direct product of the
modules

∧n(M)∗ = Hom(
∧n(M), K), and even to their direct sum when M is

finitely generated. The image of
∧n(M)∗ in

∧∗(M) is denoted by
∧∗n(M); its

elements are the linear forms vanishing on all
∧j(M) such that j �= n, and as Z-

homogeneous elements, they have the degree −n. In an analogous way,
∧∗≤n(M)
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(resp.
∧∗≥n(M)) is the set of all linear forms vanishing on all

∧j(M) such that
j > n (resp. j < n).

Let f and g be elements of
∧∗j(M) and

∧∗k(M) respectively; since π′ =
∧

(δ)
is a morphism of N-graded algebras, f ∧g belongs to

∧∗(j+k)(M); here is its value
on the product of j + k elements of M :

(f ∧ g)(a1 ∧ a2 ∧ · · · ∧ aj+k)

=
∑

s

sgn(s) (−1)jk f(as(1) ∧ · · · ∧ as(j)) g(as(j+1) ∧ · · · ∧ as(j+k)) ;

the summation runs on all permutations s satisfying the conditions required above.
Because of the universal property of

∧n(M),
∧n(M)∗ can be identified with

the set of all alternate n-linear forms on M ; thus the above definition of f∧g allows
us to define the exterior product of an alternate j-linear form and an alternate
k-linear form; the definition of the exterior product of two alternate multilinear
forms has been classical long before comultiplications were used to explain it;
nevertheless the twisting factor (−1)jk which appears above as a consequence of
(4.2.2), has not been introduced in this classical definition; consequently a dis-
crepancy with common use appears here: the product here denoted by f ∧ g is
understood elsewhere as the exterior product of g and f in this order.

When the twisting rule (4.2.1) is strictly observed, for all h1,. . . ,hn in
∧∗1(M)

and all a1,. . . ,an in M , the determinant of the matrix
(
hj(ak)

)
(in which j, k =

1, 2, . . . , n) is equal to the value of hn ∧ hn−1 ∧ · · · ∧ h1 on a1 ∧ a2 ∧ · · · ∧ an .
Since h ∧ h = 0 for all h ∈

∧∗1(M), the natural bijection M∗ →
∧∗1(M)

extends to a canonical algebra morphism from
∧

(M∗) into
∧∗(M). It is obviously

an isomorphism when M is a free module of finite rank; consequently it is still an
isomorphism when M is a finitely generated projective module.

Since
∧

(M) is obviously a module over
∧

(M) on the left (resp. right) side,∧∗(M) is a module over
∧

(M) on the right (resp. left) side; thus there are interior
products f #x and x � f for all f ∈

∧∗(M) and all x ∈
∧

(M). Because of the
relation f #x = (−1)∂f∂xx � f , both multiplications are equally useful; but the
interior multiplication by x on the left side involves the canonical mapping M ×
M∗ → K defined by (a, h) �−→ −h(a) according to the twisting rule (4.2.1); to
avoid unpleasant twisting signs, we prefer the interior multiplication by x on the
right side. By definition of f #x the following identity holds for all y ∈

∧
(M) :

(4.3.2) (f # x)(y) = f(x ∧ y) ;

thus
∧∗(M) becomes a right

∧
(M)-module:

(4.3.3) (f #x) # y = f # (x ∧ y).

When f and x belong respectively to
∧∗j(M) and

∧k(M), then f #x belongs to∧∗(j−k)(M); thus the equality ∂(f #x) = ∂f + ∂x is valid for Z-degrees since the
degrees of f , x and f #x are respectively −j, k and −j + k.
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The interior multiplication by an element a of M is a twisted derivation of
degree +1, but since the multiplication in

∧∗(M) has been defined in agreement
with the twisting rule (4.2.1), we get a formula slightly different from the usual
one:

(4.3.4) (f ∧ g) # a = f ∧ (g # a) + (f # a) ∧ σ(g) ;

indeed, if we write π′(y) =
∑

i y′
i ⊗ y′′

i for some y ∈
∧

(M), then

((f ∧ g) # a)(y) = (f ⊗̂ g)
(
(a⊗ 1 + 1⊗ a) ∧ π′(y)

)
=

∑
i

(−1)∂g(1+∂y′
i)f(a ∧ y′

i)g(y′′
i ) +

∑
i

(−1)(1+∂g)∂y′
if(y′

i)g(a ∧ y′′
i ) ;

the former (resp. latter) summation is the value of (f # a)∧ σ(g) (resp. f ∧ (g # a))
on y. �

When f vanishes on
∧>n(M) and x has no component of degree < n, then

f #x belongs to K :

(4.3.5) f #x = f(x) for all f ∈
∧∗≤n

(M) and all x ∈
∧≥n

(M) ;

for instance h # a = h(a) for all a ∈M and all h ∈
∧∗1(M).

We can interpret
∧∗ as a contravariant functor, namely Hom(

∧
(. . . ), K); any

linear mapping w : M → N determines an algebra morphism
∧∗(w) :

∧∗(N) →∧∗(M). Let g be an element of
∧∗(N) and x an element of

∧
(M); straightforward

calculations show that

(4.3.6)
∧∗

(w)(g) # x =
∧∗

(w)
(

g #
∧

(w)(x)
)
.

It is natural to define the interior product of the elements

f ⊗ g ∈
∧∗

(M) ⊗̂
∧∗

(N) and x⊗ y ∈
∧

(M) ⊗̂
∧

(N)

by the following formula:

(4.3.7) (f ⊗ g) # (x⊗ y) = (1)∂g∂x (f #x)⊗ (g # y).

This definition is so much the more sensible as it is compatible with the canonical
morphism f⊗g �−→ f ⊗̂ g that is defined according to (4.2.7), and that maps f⊗g
to a linear form on

∧
(M) ⊗̂

∧
(N). Indeed, because of the canonical isomorphism∧

(M) ⊗̂
∧

(N) ∼=
∧

(M⊕N), we can identify f ⊗̂ g with an element of
∧∗(M⊕N)

and x⊗y with an element of
∧

(M⊕N); therefore the interior product (f ⊗̂ g) # (x⊗
y) is meaningful, and after some calculations it becomes clear that

(f ⊗ g) # (x⊗ y) �−→ (f ⊗̂ g) # (x⊗ y).
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These considerations lead us to the Leibniz formula in exterior algebras,
which implies the derivation formula (4.3.4) as a particular case. There are two
versions of this formula in (4.3.8) below, which correspond to the two possible
interpretations of (4.1.3). With the diagonal mapping δ (that is a �−→ (a, a)) the
contravariant functor

∧∗ associates an algebra morphism
∧∗(δ) :

∧∗(M ⊕M)→∧∗(M), and from the definition of the exterior product of two elements f and g
of

∧
(M) it immediately follows that f ∧ g =

∧∗(δ)(f ⊗̂ g). This shows a close
relation between

∧∗(δ) and the morphism π∗ :
∧∗(M) ⊗̂

∧∗(M) →
∧∗(M) that

represents the multiplication in
∧∗(M). Now we claim that for all f , g ∈

∧∗(M)
and all x ∈

∧
(M),

(4.3.8) (f ∧ g) #x =
∧∗

(δ)
(
(f ⊗̂ g) # π′(x)

)
= π∗

(
(f ⊗ g) # π′(x)

)
.

Indeed the former right-hand member comes from a direct application of (4.3.6),
since π′ =

∧
(δ) and f ∧ g =

∧∗(δ)(f ⊗̂ g). The latter right-hand member involves
the definition (4.3.7) and its compatibility with the canonical morphism f ⊗ g �−→
f ⊗̂ g. �

Because of its parity grading,
∧∗(M) has a grade automorphism σ, and the

equalities (σ(f))(x) = f(σ(x)) and σ(f #x) = σ(f) #σ(x) are obviously true for
all f ∈

∧∗(M) and x ∈
∧

(M).
Let us define the reversion τ in

∧∗(M) by the formula (τ(f))(x) = f(τ(x)) .
This definition immediately implies that there are formulas analogous to (3.1.5)
in

∧∗(M), but more work is necessary to verify that we have got an involution
of

∧∗(M), in other words, τ(f ∧ g) = τ(g) ∧ τ(f) = (−1)∂f∂gτ(f) ∧ τ(g) . After
some calculations this follows from

π′ ◦ τ(x) = (τ ⊗ τ) ◦ π′(x) for all x ∈
∧

1
(M),

= (τ ⊗ στ) ◦ π′(x) for all x ∈
∧

0
(M).

Besides, for all f ∈
∧∗(M) and all x ∈

∧
(M),

(4.3.9) τ(f #x) = (−1)∂x(∂f+∂x) τ(f) # τ(x) ;

indeed from the definitions (in particular (4.3.2)) it follows that

τ(f #x)(y) = (−1)∂x∂y (τ(f) # τ(x))(y) ,

and we can suppose that ∂y = ∂f +∂x since both members of this equality vanish
if y has another parity.

This classical interior multiplication
∧∗(M) ×

∧
(M) →

∧∗(M) will serve
as a model for the interior multiplication presented in the next section.
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4.4 Interior products in Clifford algebras

Let M be a K-module provided with a quadratic form q : M → K, C�(M, q)
the associated Clifford algebra, and ρ : M → C�(M, q) the canonical morphism.
Since the canonical algebra morphism K → C�(M, q) is not always injective, we
must distinguish the unit elements 1 in K and 1q in C�(M, q). To get convenient
notation, we denote the identity mappings of

∧
(M),

∧∗(M) and C�(M, q) by id∧ ,
id∗ and idq , and we denote the linear mappings that determine the algebra and
coalgebra structures of

∧
(M) by π, ε, π′, ε′, whereas π∗ and πq correspond to the

multiplications in
∧∗(M) and C�(M, q).

(4.4.1) Theorem. There exists a unique algebra morphism

π′
q : C�(M, q)→ C�(M, q) ⊗̂

∧
(M)

such that π′
q(ρ(a)) = ρ(a)⊗ 1 + 1q ⊗ a for all a ∈ M ; it makes C�(M, q) become

a right comodule over the coalgebra
∧

(M).

Proof. The unicity of π′
q is evident. Let δ : M → M ⊕M be defined as in 4.1

and 4.3: δ(a) = (a, a). It is clear that δ is a morphism from the quadratic module
(M, q) into the orthogonal sum (M, q) ⊥ (M, 0) ; consequently it induces an algebra
morphism C�(δ) between the associated Clifford algebras; we can identify the
Clifford algebra of this orthogonal sum with the twisted tensor product of C�(M, q)
and

∧
(M), and thus C�(δ) maps ρ(a) to ρ(a)⊗1+1q⊗a ; this proves the existence

of π′
q. The comultiplication π′ of

∧
(M) can also be identified with the algebra

morphism derived from δ when δ is understood as a morphism from the trivial
quadratic module (M, 0) into (M, 0) ⊥ (M, 0), and its counit ε′ is the algebra
morphism associated with the zero morphism ζ : (M, 0) → (0, 0). Consequently
the required equalities

(π′
q ⊗ id∧) π′

q = (idq ⊗ π′) π′
q ,

(idq ⊗ ε′) π′
q = canonical isomorphism C�(M, q)→ C�(M, q)⊗K ,

are consequences of these equalities:

(δ ⊕ idM ) δ = (idM ⊕ δ) δ = mapping a �−→ (a, a, a) ,

(idM ⊕ ζ) δ = canonical isomorphism M →M ⊕ 0. �

Since C�(M, q) is a right comodule over
∧

(M) and a module over K, it
is a left module over the algebra

∧∗(M) = Hom∧(
∧

(M), K) according to the
graded version of Theorem (4.1.2). Consequently there is a multiplication

∧∗(M)×
C�(M, q) → C�(M, q) that we shall call an interior multiplication and denote by
(f, x) �−→ f �x. By definition,

(4.4.2) f � x =
∑

i

(−1)∂x′
i∂x′′

i f(x′′
i ) x′

i if π′
q(x) =

∑
i

x′
i ⊗ x′′

i ;
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the reversion of x′
i and x′′

i with the subsequent twisting sign is due to the presence
of the twisted reversion  ∧ in (4.2.5). We already know that

(4.4.3) f � (g �x) = (f ∧ g) �x.

Let us consider an element x = ρ(a1)ρ(a2) · · · ρ(an) which is the product in
C�(M, q) of n elements of M ; the calculation of π′

q(x) is exactly similar to that of
π′(a1 ∧ a2 ∧ · · · ∧ an) in 4.3, but we write the result in a slightly different way to
compensate the reversion of x′

i and x′′
i in (4.4.2):

π′
q(x) =

n∑
j=0

∑
s

(−1)j(n−j) sgn(s) (ρ(as(j+1)) · · · ρ(as(n))) ⊗ (as(1) ∧ · · · ∧as(j)) ;

the second summation still runs on the permutations s such that

s(1) < s(2) < · · · < s(j) and s(j + 1) < s(j + 2) < · · · < s(n) ;

a straightforward application of the definition (4.4.2) shows that

f � ρ(a1)ρ(a2) · · · ρ(an)

=
n∑

j=0

∑
s

sgn(s) f
(
as(1) ∧ · · · ∧ as(j)

)
ρ(as(j+1)) · · · ρ(as(n)) .

From this calculation we derive:

(4.4.4) h � (xy) = (h �x)y + σ(x)(h � y) for all h ∈
∧∗1

(M) ,

(4.4.5) f �
(
ρ(a1)ρ(a2) · · · ρ(an)

)
= f

(
a1 ∧ a2 ∧ · · · ∧ an

)
1q for all f ∈

∧∗≥n
(M) ;

in Formula (4.4.5), f must vanish on all
∧j(M) with j < n. As for (4.4.4), it

means that interior multiplications by elements of
∧∗1(M) are twisted derivations

of odd degree. It is also clear that f �x belongs to C�≤k−j(M, q) when f belongs
to

∧∗j(M) and x to C�≤k(M, q).
Let w be a morphism from (M, q) into (N, q̃), that is a linear mapping such

that q̃(w(a)) = q(a) for all a ∈ M . The functors C� and
∧∗ associate with w two

algebra morphisms C�(w) : C�(M, q) → C�(N, q̃) and
∧∗(w) :

∧∗(N) →
∧∗(M).

This situation leads to a formula analogous to (4.3.6); for all x ∈ M and all
g ∈

∧∗(N),

(4.4.6) g � C�(w)(x) = C�(w)
( ∧∗

(w)(g) � x
)
.

For the reversion τ there is a formula analogous to (4.3.9):

(4.4.7) τ(f �x) = (−1)∂f(∂f+∂x) τ(f) � τ(x).

Now we come to the Leibniz formulas. Although
∧∗(M) is not always a

coalgebra, we can define a linear mapping π∗ :
∧∗(M) −→ (

∧
(M) ⊗̂

∧
(M))∗
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that looks like a comultiplication; it is the morphism associated with

π :
∧

(M) ⊗̂
∧

(M) −→
∧

(M)

by the contravariant functor Hom(. . . , K) ; consequently

(4.4.8) π∗(f) (x⊗ y) = f(x ∧ y) for all x, y ∈
∧

(M).

It is worth noticing that π is the algebra morphism
∧

(M) ⊗̂
∧

(M) →
∧

(M)
associated by the functor

∧
with the morphism (a, b) �−→ a+ b from M ⊕M onto

M ; consequently π∗ is the algebra morphism associated by the functor
∧∗ with

this mapping (a, b) �−→ a + b.
Besides, from (4.2.7) we derive a canonical morphism from

∧∗(M) ⊗̂
∧∗(M)

into (
∧

(M) ⊗̂
∧

(M))∗; when it is an isomorphism (for instance when M is a
finitely generated projective module), π∗ determines a morphism π′∗ from

∧∗(M)
into

∧∗(M) ⊗̂
∧∗(M) which makes

∧∗(M) actually become a coalgebra.
Here is the first Leibniz formula that shows the effect of the interior multipli-

cation by f ∈
∧∗(M) on the product xy of two elements of C�(M, q); it is meaning-

ful because x⊗y and π∗(f) can be understood as elements of C�((M, q) ⊥ (M, q))
and

∧∗(M ⊕M) :

(4.4.9) f � (xy) = πq

(
π∗(f) � (x⊗ y)

)
.

Proof of (4.4.9). In the diagram just below the morphism that goes from

C�(M, q) ⊗̂C�(M, q) to C�(M, q)

through the left-hand column, is the mapping (x ⊗ y) �−→ f � (xy); but you get
the mapping (x⊗ y) �−→ πq(π∗(f) � (x⊗ y)) if you follow the longer path through
the right-hand column. To prove that both paths give the same result, an oblique
arrow has been added, which divides the diagram into two parts:

C�(M, q) ⊗̂C�(M, q) −→ (C�(M, q) ⊗̂
∧

(M)) ⊗̂ (C�(M, q) ⊗̂
∧

(M))
↓ !

C�(M, q) (C�(M, q) ⊗̂C�(M, q)) ⊗̂ (
∧

(M) ⊗̂
∧

(M))
↓ ↙ !

C�(M, q) ⊗̂
∧

(M) (
∧

(M) ⊗̂
∧

(M)) ⊗̂ (C�(M, q) ⊗̂C�(M, q))
! ↓∧

(M) ⊗̂C�(M, q)
∧

(M) ⊗̂ (C�(M, q) ⊗̂C�(M, q))
↓ ↓

K ⊗ C�(M, q) K ⊗ (C�(M, q) ⊗̂C�(M, q))
! !

C�(M, q) ←− C�(M, q) ⊗̂C�(M, q))

The upper part of this diagram shows two paths from C�(M, q) ⊗̂C�(M, q) into
C�(M, q) ⊗̂

∧
(M); they give equal morphisms because π′

q is an algebra morphism:
π′

q(xy) = π′
q(x)π′

q(y) . The lower part of this diagram only requires a trivial veri-
fication. �
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Unlike the Leibniz formula (4.3.8) which is an immediate consequence of
(4.3.6), here (4.4.9) is not a consequence of (4.4.6); indeed πq is not an algebra
morphism, it is not associated by the functor C� with the mapping (a, b) �−→ a+b
from M ⊕M to M , unless q = 0.

Besides, there is a definition analogous to (4.3.7):

(f ⊗ g) � (x ⊗ y) = (−1)∂g∂x (f �x) ⊗ (g � y)

for f ∈
∧∗(M), g ∈

∧∗(N), x ∈ C�(M, q) and y ∈ C�(N, q̃). This definition too is
compatible with the canonical morphism

∧∗(M) ⊗̂
∧∗(N) → (

∧
(M) ⊗̂

∧
(N))∗.

It can be used in case of an application of (4.4.9) when π∗(f) is the image of some
element

∑
i f ′

i ⊗ f ′′
i ∈

∧∗(M) ⊗̂
∧∗(M) :

f � (xy) =
∑

i

(−1)∂x∂f ′′
i (f ′

i �x) (f ′′
i � y).

For instance every π∗(h) with h ∈
∧∗1(M) is the image of h⊗ 1 + 1⊗ h, and this

allows us to deduce the derivation formula (4.4.4) from the Leibniz formula.
Besides the Leibniz formula (4.4.9), the product f � (xy) gives rise to two

other formulas which involve the coproduct of x or y, and which are called com-
posite Leibniz formulas because they need both interior multiplications # and � .
If π′

q(x) =
∑

i x′
i ⊗ x′′

i and π′
q(y) =

∑
j y′

j ⊗ y′′
j (with homogeneous x′

i and y′
j in

C�(M, q), and homogeneous x′′
i and y′′

j in
∧

(M)), then

(4.4.10) f � (xy) =
∑

i

(−1)∂f∂x′
i x′

i ((f #x′′
i ) � y) ,

f � (xy) =
∑

j

(−1)(∂x+∂y′
j)∂y′′

j ((f # y′′
j ) �x) y′

j .

When x or y is an element ρ(a) with a ∈ M , we get the composite derivation
formulas

(4.4.11) f � (ρ(a)y) = (f # a) � y + ρ(a)(σ(f) � y) ,

f � (xρ(a)) = (f �x)ρ(a) + (f # a) �σ(x).

Proof of (4.4.10). These two formulas are immediate consequences of these easy
calculations:

f � (xy) =
∑

i

∑
j

±f(x′′
i ∧ y′′

j ) x′
iy

′
j ,

(f #x′′
i ) � y =

∑
j

±f(x′′
i ∧ y′′

j ) y′
i ,

(f # y′′
i ) �x =

∑
i

±f(y′′
i ∧ x′′

j ) x′
j .
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The three signs ± are those resulting from the twisting rule (4.2.1); if you wish to
calculate them, remember that in the summations you must pay attention only to
terms such that ∂f = ∂x′′

i + ∂y′′
j . �

When q = 0, we get an interior multiplication
∧∗(M) ×

∧
(M) →

∧
(M)

satisfying all the properties stated here, with the consequent little changes of
notation. The grading of

∧
(M) over Z is involved in the following assertion: when

f belongs to
∧∗j(M) and x to

∧k(M), then f �x belongs to
∧k−j(M). Remember

that this f has degree −j.
This interior multiplication appears in the composite Leibniz formula that

deals with the same product (f ∧g) # x as (4.3.8), but does not involve the coprod-
uct of x. If π∗(f) is the image of

∑
i f ′

i ⊗ f ′′
i (an element of

∧∗(M) ⊗̂
∧∗(M)),

then
(f ∧ g) #x =

∑
i

(−1)∂f ′′
i ∂g f ′

i ∧ (g # (f ′′
i �x)).

Here this composite Leibniz formula is never needed, and its proof is proposed as
an exercise. When f belongs to

∧∗1(M), it gives a composite derivation formula.
Interior multiplications involving two factors respectively in

∧∗(M) (or∧
(M∗)) and

∧
(M) appear very often in the literature, yet with systematic dis-

crepancies in the treatment of the twisting signs, since the twisting rule (4.2.1) is
not always uncompromisingly enforced as it is here. More fundamental discrepan-
cies appear when the factor undergoing the operation belongs to a Clifford algebra
C�(M, q), because the assailing factor does not always belong to

∧∗(M) nor to∧
(M∗); sometimes it belongs to

∧
(M) or even to C�(M, q) (as in (4.ex.8)). All

these versions can be derived from the present one because the operation of an
assailing factor belonging to

∧
(M∗) or to

∧
(M) or to C�(M, q) is always the

operation of its natural image in
∧∗(M) by these natural morphisms:

C�(M, q) −→
∧

(M) −→
∧

(M∗) −→
∧∗

(M).

The first arrow Φ−β : C�(M, q) →
∧

(M) is not an algebra morphism but a
comodule isomorphism; it is associated with the “canonical scalar product” β =
bq/2 as it is later explained at the end of 4.8. The second arrow is the algebra
morphism associated by the functor

∧
with dq : M → M∗; it is an isomorphism

when q is nondegenerate. The third arrow is the algebra morphism that extends
the natural injection M∗ →

∧∗(M); it is an isomorphism when M is projective
and finitely generated.

This section ends with an easy yet very important result. Remember that for
all a ∈ M , dq(a) is the element of M∗ such that dq(a)(b) = bq(a, b); here this
dq(a) is silently identified with its canonical image in

∧∗1(M). For all a ∈M and
all x ∈ C�(M, q), it is stated that

(4.4.12) ρ(a) x − σ(x) ρ(a) = dq(a) � x.
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Proof. We consider a as fixed. Let D1 and D2 be the mappings x �−→ ρ(a)x −
σ(x)ρ(a) and x �−→ dq(a) �x . On one side, for all b ∈M ,

D1(ρ(b)) = ρ(a)ρ(b) + ρ(b)ρ(a) = bq(a, b) 1q = D2(ρ(b)) .

On the other side, for all x, y ∈ C�(M, q), and for i = 1, 2,

Di(xy) = Di(x) y + (−1)∂xx Di(y) ;

indeed, when i = 2, this is a consequence of (4.4.4); and when i = 1, it is easy to
verify that every odd element z in a graded algebra determines a twisted derivation
x �−→ zx−σ(x)z . Since the algebra C�(M, q) is generated by ρ(M), these common
properties of D1 and D2 imply their equality. �

4.5 Exponentials in even exterior subalgebras

Let M be a K-module and
∧

(M) its exterior algebra; the even subalgebra
∧

0(M)
is commutative; it is the direct sum of K =

∧0(M) and the ideal
∧+

0 (M) that is
the direct sum of all

∧2i(M) with i > 0 ; all elements in this ideal are nilpotent.
An element of

∧
(M) is said to be decomposable if it is an element of K =∧0(M) or an element of M =

∧1(M) or an exterior product of elements of M .

(4.5.1) Theorem. There is a unique mapping Exp from
∧+

0 (M) into
∧

0(M) such
that

Exp(x + y) = Exp(x) ∧ Exp(y) for all x and y in
∧+

0 (M),

Exp(x) = 1 + x whenever x is decomposable with even positive degree.

Proof. The unicity of the mapping Exp is evident, since every element of
∧+

0 (M)
is a sum of decomposable elements; every decomposition of x as a sum of decom-
posable elements allows us to calculate Exp(x), and we must prove that they all
give the same value to Exp(x). If x is decomposable, 1−x is the ∧-inverse of 1+x
because x∧x = 0; thus it is easy to realize that the existence of the mapping Exp
is equivalent to the following statement:

(4.5.2) If x1, x2, . . . , xr are decomposable elements in
∧+

0 (M) and if their sum
vanishes, then

(1 + x1) ∧ (1 + x2) ∧ · · · ∧ (1 + xr) = 1 .

The existence of the mapping Exp is evident when K contains a subring isomorphic
to the field Q of rational numbers, because every x ∈

∧+
0 (M) is nilpotent, and

the exponential series gives the value of Exp(x) in such a way that the statement
(4.5.1) is true; this fact suggests a proof in three steps.

First step. If (4.5.2) is true for every module over Z, then it is true for every
module over K. Indeed the K-module M is also a Z-module, and its identity
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mapping extends to a ring morphism from
∧

Z(M) into
∧

(M) =
∧

K(M); the
restricted mapping

∧+
Z (M) →

∧+(M) is surjective, and its kernel is the ideal of∧
Z(M) generated by all elements λa∧b−a∧λb with λ ∈ K and a and b ∈M . The

decomposable elements x1,. . . ,xn in
∧+

0 (M) are images of decomposable elements
y1,. . . ,yn in

∧
Z(M), and since the sum

∑
i xi vanishes, the sum

∑
i yi is equal to

a sum of several terms like u∧ (λa∧ b− a∧ λb)∧ v with arbitrary decomposable
factors u and v in

∧
Z(M), both even or odd. If we have proved that (4.5.2) is

valid in
∧

Z(M), we can assert that the product of the r factors 1 + yi and several
other factors like

(1− u ∧ λa ∧ b ∧ v) ∧ (1 + u ∧ a ∧ λb ∧ v)

is equal to 1. Therefore the product of the images of all these factors in
∧

(M) is
also equal to 1. The n factors 1 + yi give the n factors 1 + xi in

∧
(M), but the

above two factors give a product in
∧

(M) equal to 1. It follows that (4.5.2) is also
valid in

∧
(M).

Second step. (4.5.2) is valid for free additive groups. Indeed if M is a free additive
group, it can be considered as a subgroup of Q⊗Z M whereas

∧
Z(M) is a subring

of Q ⊗Z

∧
Z(M), itself canonically isomorphic to

∧
Q(Q ⊗Z M). The statement

(4.5.2) is true for the Q-module Q ⊗Z M , consequently it is also true for the free
group M .

Third step. (4.5.2) is true for all additive groups. Indeed if M is not free, there
exists a surjective group morphism N → M defined on a free additive group N .
If N0 is the kernel of this morphism, the kernel of the ring morphism

∧
Z(N) →∧

Z(M) is the ideal generated by N0 (see (4.3.1)). Let x1,. . . ,xn be decomposable
elements in

∧+
Z,0(M), the sum of which is 0; they are the images of decomposable

elements y1,. . . ,yn in
∧+

Z,0(N), the sum of which belongs to the ideal generated
by N0; consequently their sum is also a sum of decomposable elements z1,. . . ,zr

all belonging to this ideal. Since the property (4.5.2) is valid for the free group N ,
the product of all factors (1+ y1),. . . ,(1+ yn), (1− z1),. . . ,(1− zr) is equal to 1. If
we transport this result in

∧
(M) by means of the morphism

∧
(N) →

∧
(M), we

get the awaited equality: the product of the factors (1 + x1),. . . ,(1 + xn) is 1. �

(4.5.3) Example. Let M be a free K-module of rank 4 with basis (a, b, c, d), and
x = a ∧ b + c ∧ d ; obviously x ∧ x = 2 a ∧ b ∧ c ∧ d and

Exp(x) = (1 + a ∧ b) ∧ (1 + c ∧ d) = 1 + a ∧ b + c ∧ d + a ∧ b ∧ c ∧ d.

When K is the field Z/2Z, then x ∧ x = 0, but Exp(x) �= 1 + x .

(4.5.4) Corollary. For all x ∈
∧+

0 (M) and all h ∈
∧∗1(M),

h �Exp(x) = (h �x) ∧ Exp(x).



4.5. Exponentials in even exterior subalgebras 197

Proof. Formula (4.4.4) shows that (h �x) ∧ x = 0 when x is decomposable with
degree ≥ 2; consequently the equality in (4.5.4) is true when x is decomposable.
When this equality is true for x and y, it is still true for x + y because (4.4.4)
allows us to write

h �Exp(x + y) = (h �Exp(x)) ∧ Exp(y) + Exp(x) ∧ (h �Exp(y))
= (h �x) ∧ Exp(x) ∧ Exp(y) + Exp(x) ∧ (h � y) ∧ Exp(y)
= (h � (x + y)) ∧ Exp(x + y) ;

the conclusion follows. �

(4.5.5) Corollary. If w : M → N is a linear mapping, for all x ∈
∧+

0 (M),

Exp(
∧

(w)(x)) =
∧

(w)(Exp(x)).

This corollary is evident, and also the following identity involving the reversion in∧
(M):

Exp(τ(x)) = τ(Exp(x)).

Now in the algebra
∧∗(M) we consider the subalgebra

∧∗
0(M) of all elements

vanishing on
∧

1(M), and in this subalgebra, the ideal
∧∗+

0 (M) of all elements also
vanishing on K =

∧0(M). The elements of this ideal are all nilpotent when M

is finitely generated, but nonnilpotent elements exist in
∧∗2(M) when M is free

with infinite bases.

(4.5.6) Theorem. There exists a unique mapping Exp from
∧∗+

0 (M) into
∧∗

0(M)
such that the following equalities hold for all f ∈

∧∗+
0 (M) and all a ∈M :

(Exp(f))(1) = 1 and Exp(f) # a = Exp(f) ∧ (f # a) .

Proof. Let gk be the restriction of Exp(f) to the sum
∧≤k(M) of all components

of degree ≤ k. First g0 must be the identity mapping of K, and the other gk are
determined by induction on k by the following requirement, for all a ∈ M and all
x ∈

∧k(M) (see (4.3.2)):

gk+1(a ∧ x) = (Exp(f) # a)(x) = (gk ∧ (f # a))(x) ;

this proves the unicity of Exp(f). Moreover since f vanishes on
∧

1(M), f # a
vanishes on

∧
0(M), and consequently, by induction on k, gk vanishes on

∧
1(M)∩∧≤k(M) ; thus the induction that determines the restrictions gk, implies that

Exp(f) vanishes on
∧

1(M) as required.
We prove the existence of gk by induction on k. The existence of g0 and g1 is

evident, and g1 vanishes on M =
∧1(M). We assume the existence of gk for some

k ≥ 1, and we consider the following (k + 1)-linear form g′ on Mk+1 :

g′(a1, a2, . . . , ak+1) = (gk ∧ (f # a1))(a2 ∧ a3 ∧ · · · ∧ ak+1) ;
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if g′ is alternate in all variables, it determines a linear form on
∧k+1(M) that allows

us to extend gk to a linear form gk+1 on
∧≤k+1(M). Obviously g′ is alternate in

a2, a3, . . . , ak+1; thus it suffices to prove that it vanishes if a1 = a2 ; in other words
it suffices to prove the following equality for all a ∈M and all x ∈

∧≤k−1(M) :

(gk ∧ (f # a))(a ∧ x) = 0 .

By means of (4.3.2), (4.3.4) and (4.3.3) we obtain

(gk ∧ (f # a))(a ∧ x) =
(
(gk ∧ (f # a)) # a

)
(x) = −

(
(gk # a) ∧ (f # a)

)
(x) ;

because of the induction hypothesis, gk # a is equal to gk−1 ∧ (f # a) ; and since
f # a is odd, its exterior square vanishes; all this proves the desired equality and
completes the proof. �

(4.5.7) Corollary. For all f and g in
∧∗+

0 (M),

Exp(f + g) = Exp(f) ∧ Exp(g) .

Proof. Indeed by (4.3.4) we can write (for all a ∈ M)

(Exp(f) ∧ Exp(g)) # a = Exp(f) ∧ Exp(g) ∧ (g # a) + Exp(f) ∧ (f # a) ∧ Exp(g)
= Exp(f) ∧ Exp(g) ∧ ((f + g) # a). �

(4.5.8) Corollary. If w : M −→ N is a linear mapping, for all g ∈
∧∗+

0 (N)

∧∗
(w)(Exp(g)) = Exp(

∧∗
(w)(g)) .

This is an easy consequence of (4.3.6); and the following equality involving the
reversion in

∧∗(M) is also evident: Exp(τ(g)) = τ(Exp(g)) .

Here is a last technical lemma involving a Clifford algebra.

(4.5.9) Lemma. The equality Exp(f) � x = x holds if x belongs to C�≤k(M, q)
and f(

∧≤k(M)) = 0. The same equality holds if x belongs to the subalgebra of
C�(M, q) generated by a direct summand N of M and f(

∧
(N)) = 0.

Proof. From (4.5.6) it is easy to deduce that Exp(f)(
∧j(M)) = 0 if f(

∧≤k(M)) =
0 and 1 ≤ j ≤ k, or that Exp(f)(

∧+(N)) = 0 if f(
∧

(N)) = 0. Then π′
q(x) can

be written as a sum
∑

i x′
i ⊗ x′′

i in which (x′
1, x

′′
1) = (x, 1) whereas x′′

i ∈
∧+(M)

for all i �= 1 ; moreover each x′′
i belongs to

∧≤k(M) (resp.
∧

(N)) if x belongs
to C�≤k(M, q) (resp. to the subalgebra generated by N). Now the conclusion
Exp(f) �x = x follows from the definition (4.4.2). �
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4.6 Systems of divided powers

Section 4.6 is just an appendix to 4.5 and hurried readers are advised to skip it.
Although the system of divided powers in

∧
0(M) becomes superfluous if we use

the exponentials presented in 4.5, it is worth knowing that divided powers also
account for the existence of these exponentials. Besides, systems of divided powers
appear in many other places and lead to the universal algebras Γ(M) mentioned
below.

Let A be a commutative K-algebra such that the canonical morphism K → A
is injective, and A is the direct sum of the image of K and some ideal A+; we
identify K with its image in A, and write A = K ⊕ A+. This situation may also
be described in this manner: there are two algebra morphisms εA : K → A and
ε′A : A → K such that ε′AεA = idK ; the ideal A+ is then the kernel of ε′A. A system
of divided powers on A is a sequence of mappings x �−→ x[n] from A+ into A, such
that the following six conditions are satisfied whenever x and y are in A+, m and
n in N, and λ in K :

x[0] = 1, x[1] = x and x[n] ∈ A+ for all n > 0 ;(4.6.1)

(λx)[n] = λnx[n] ;(4.6.2)

(x + y)[n] =
n∑

k=0

x[k] y[n−k] ;(4.6.3)

(xy)[n] = xny[n] = x[n]yn ;(4.6.4)

x[m]x[n] =
(m + n)!

m! n!
x[m+n] ;(4.6.5)

if n > 0, then (x[n])[m] =
(mn)!

m! (n!)m
x[mn].(4.6.6)

It is known that the rational number that appears in (4.6.5) is an integer. The
rational number that appears in (4.6.6) is also an integer (provided that n > 0);
this can be proved by induction on m with the help of the equality

(mn)!
m! (n!)m

=
((m− 1)n)!

(m− 1)! (n!)m−1

(mn− 1)!
(mn− n)! (n− 1)!

.

It is possible to prove that (4.6.4) is a consequence of the five other conditions;
the proof begins with the identity xy = (x + y)[2]− x[2]− y[2] which follows from
(4.6.3) and (4.6.1).

By using (4.6.1) and (4.6.5) and by induction on n it is easy to prove, for all
x ∈ A+ and n ∈ N,

(4.6.7) xn = n! x[n] ;

this explains why x[n] is called the nth divided power of x (divided by n!).
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Let us suppose that the canonical morphism Z → K extends to a ring mor-
phism Q → K; then (4.6.7) proves the existence and unicity of a system of divided
powers on every algebra A that is decomposable as A = K⊕A+. Indeed it is easy to
prove that the six conditions (4.6.1) to (4.6.6) are consequences of (4.6.7) when all
integers n! are invertible in K. Therefore a system of divided powers is interesting
only when some integers are not invertible in K.

The even exterior algebra
∧

0(M) is provided with a system of divided powers
that can be deduced from Theorem (4.5.1) in this way: by means of the polynomial
extension K → K[t] it is possible to define Exp(tx) in K[t]⊗

∧
0(M), and then x[m]

is the factor multiplied by tm in the development of Exp(tx). The ideas underlying
the proof of (4.5.1) can also show that a system of divided powers has actually
been defined in this way.

The extension K → K[t] can also serve to define divided powers in
∧∗

0(M).
When M is finitely generated,

∧∗
K[t](K[t]⊗M) can be identified with K[t]⊗

∧∗(M)
which is the direct sum of the submodules tn ⊗

∧∗(M); in all cases
∧∗

K[t](K[t]⊗
M) can be identified with a subalgebra of the direct product of the submodules
tn ⊗

∧∗(M); this fact gives sense to this definition: f [m] is the factor multiplied
by tm in the development of Exp(tf). Consequently

f [m+1] # a = f [m] ∧ (f # a) for all a ∈ M ;

this allows us to prove that a system of divided powers has been obtained.
Here is another nontrivial example of a system of divided powers. Let M

be a K-module. The group Sn of all permutations of {1, 2, 3, . . . , n} acts in the
nth tensor power Tn(M) of M ; for all s ∈ Sn, the action of s−1 in Tn(M) is the
following one:

s−1(a1 ⊗ a2 ⊗ · · · ⊗ an) = as(1) ⊗ as(2) ⊗ · · · ⊗ as(n).

The elements of Tn(M) that are invariant under the action of Sn make up the
submodule STn(M) of all symmetric n-tensors. Of course ST0(M) = K and
ST1(M) = M . The direct sum ST(M) of all STn(M) becomes a commutative
algebra when it is provided with the following multiplication; if y ∈ STj(M) and
z ∈ STk(M), their symmetric product is the symmetrized tensor

y ∨ z =
∑

s

s−1(y ⊗ z) ,

where the summation runs only on those s ∈ Sj+k such that

s(1) < s(2) < s(3) < · · · < s(j) and s(j + 1) < s(j + 2) < · · · < s(j + k).

By induction on n it is easy to prove that the symmetric product of n elements of
M is given by

a1 ∨ a2 ∨ · · · ∨ an =
∑

s

s−1(a1 ⊗ a2 ⊗ · · · ⊗ an) ,
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with a summation running over all s ∈ Sn. In particular the nth symmetric power
of a (element of M) and its nth tensor power are related by the equality

a ∨ a ∨ · · · ∨ a = n! a⊗ a⊗ · · · ⊗ a.

Of course much more work is necessary to prove that ST(M) is a commutative
and associative algebra provided with a system of divided powers such that a[n]

is the nth tensor power of a for all a ∈ M and all n ∈ N . Yet the unicity of this
system of divided power is obvious.

It is known that the algebra S∗(M) dual to the coalgebra S(M) is also pro-
vided with a system of divided powers (see (4.ex.2)). When M is a finitely gen-
erated projective module, each dual space (Sn(M))∗ is canonically isomorphic to
STn(M∗).

The algebras provided with a system of divided powers constitute a subcat-
egory Div(K) of Com(K); a morphism in this category is an algebra morphism
f : K ⊕ A+ −→ K ⊕ B+ such that f(A+) ⊂ B+ and f(x[n]) = f(x)[n] for
all x ∈ A+ and all n ∈ N. It is sensible to ask wether a module M may freely
generate an algebra in this category, in the same way as it generates the algebras
T(M) and S(M) in the categories Alg(K) and Com(K). The answer is positive:
with M is associated a universal algebra Γ(M) provided with a system of di-
vided powers; it is an N-graded algebra such that Γ0(M) = K and Γ1(M) = M .
Its universal property says that every linear mapping f from M into an object
K⊕A+ of Div(K) such that f(M) ⊂ A+, extends in a unique way to a morphism
f ′ : Γ(M)→ K ⊕A+ in the category Div(K).

In particular there is a unique morphism from Γ(M) into the previous algebra
ST(M) that maps every a ∈ M to itself; it is known that it is an isomorphism
whenever M is a projective module. Besides, in the category Com(K) there is a
unique algebra morphism from S(M) into Γ(M) that maps every a ∈M to itself;
it is an isomorphism whenever there is a ring morphism Q → K.

It remains to report that the submodule Γ2(M) of this algebra Γ(M) is
canonically isomorphic to the module defined in 2.1 and already denoted by Γ2(M).
In other words, for every quadratic mapping q : M → N there exists a unique
linear mapping q̃ : Γ2(M)→ N such that q(a) = q̃(a[2]) for all a ∈M .

4.7 Deformations of Clifford algebras

This is the main section in Chapter 4. The notations are those of 4.3 and 4.4; we
still consider the same three algebras, and all the notations referring to each one
are here recalled without comment:

C�(M, q) : ρ , 1q , idq , πq , π′
q ;∧

(M) : id∧ , π , π′ , ε , ε′ ;∧∗(M) : id∗ , π∗ , π∗ .
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Although the unit element of
∧∗(M) is ε′, it is rather denoted by 1 wherever

this notation causes no ambiguity. Each of these three algebras is provided with a
grade automorphism σ and a reversion τ .

Now a new figure β appears; it is any bilinear form β : M ×M → K. All the
notations referring to β are presented here together. With q and β we associate
the quadratic form q′ such that q′(a) = q(a) + β(a, a) for all a ∈M , and ρ′ is the
canonical mapping M → C�(M, q′). According to the twisting rule (4.2.1), with β
we associate the twisted opposite bilinear form βto defined by βto(a, b) = −β(b, a).
The linear mappings M → M∗ determined by β and βto are denoted by dβ

and dto
β :

dβ(a)(b) = β(a, b) and dto
β (a)(b) = −β(b, a) .

The opposite bilinear form (a, b) �−→ β(b, a) appears only later in (4.7.15) when
the reversion τ gets involved; it is denoted by −βto (rather than βo). In

∧∗2(M)
there is an element [β] such that

[β](a ∧ b) = β(a, b)− β(b, a) for all a, b ∈ M.

Moreover, since
∧2(M ⊕M) is canonically isomorphic to the direct sum of∧2(M) ⊗ 1, 1 ⊗

∧2(M) and M ⊗ M , in
∧∗2(M ⊕ M) there is a submodule

canonically isomorphic to (M ⊗M)∗; and since the bilinear forms on M are in
bijection with the elements of (M ⊗M)∗, β has a canonical image β′′ in

∧∗2(M ⊕
M). Thus β′′ is the element of

∧∗2(M ⊕M) such that

β′′((a1, b1) ∧ (a2, b2)) = β(a1, b2)− β(a2, b1) .

Since we can identify (a1, b1) ∧ (a2, b2) ∈
∧

(M ⊕M) with

(a1 ∧ a2)⊗ 1 + 1⊗ (b1 ∧ b2) + (a1 ⊗ b2)− (a2 ⊗ b1) ∈
∧

(M) ⊗̂
∧

(M),

we can also say that β′′ is the linear form on
∧

(M) ⊗̂
∧

(M) that vanishes on∧i(M) ⊗
∧j(M) whenever (i, j) �= (1, 1) , and such that β′′(a ⊗ b) = β(a, b) for

all a, b ∈M .
This is not yet sufficient, since we shall also use the three images of β in∧∗2(M ⊕M ⊕M). A notation like β′′· or β′·′ or β·′′ should clearly enough indicate

which of these three images we consider: β′′· (resp. β′·′) (resp. β·′′) is the linear form
on

∧
(M) ⊗̂

∧
(M) ⊗̂

∧
(M) that vanishes on

∧i(M)⊗
∧j(M)⊗

∧k(M) whenever
(i, j, k) is not equal to (1, 1, 0) (resp. (1, 0, 1)) (resp. (0, 1, 1)) and such that

β′′·(a⊗ b⊗ 1) = β(a, b) , resp. β′·′(a⊗ 1⊗ b) = β(a, b) ,

resp. β·′′(1⊗ a⊗ b) = β(a, b).

Later we shall even use β′·′· which is one of the six images of β in
∧∗2(M ⊕M ⊕

M ⊕M), and we rely on the reader to guess its definition.
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(4.7.1) Definition. The deformation of the algebra C�(M, q) by the bilinear form
β is the K-module C�(M, q) provided with the following multiplication:

(x, y) �−→ x � y = πq

(
Exp(β′′) � (x⊗ y)

)
;

this deformation is denoted by C�(M, q; β).

Usually the word “deformation” (when it does not mean an infinitesimal
deformation) refers to a family of multiplications depending on a parameter t in
such a way that the initial multiplication is obtained for t = 0. Nonetheless there
is no impassable gap between this usual concept of deformation and Definition
(4.7.1); indeed if we consider the polynomial extension K → K[t], the deformation
of K[t]⊗C�(M, q) by the bilinear form t⊗ β gives the initial multiplication when
t is replaced with 0, and the new one when t is replaced with 1.

The notation
∧

(M ; β) means C�(M, 0; β); nonetheless the modified multipli-
cation of

∧
(M ; β) is simply denoted by (x, y) �−→ xy (instead of x � y), since the

initial multiplication in
∧

(M) is already denoted by the proper symbol ∧.
Since Exp(β′′) is even, it is clear that the deformed algebra C�(M, q; β) is

graded by the same subspaces C�0(M, q) and C�1(M, q) as C�(M, q).
More than the half of this section is devoted to the proof of the following five

theorems, and near the end, a sixth theorem shall be added.

(4.7.2) Theorem. The deformation C�(M, q; β) is an associative algebra with the
same unit element 1q.

(4.7.3) Theorem. These two equalities are true for all a ∈M and all x ∈ C�(M, q) :

(a) ρ(a) � x = ρ(a)x + dβ(a) �x ;

(b) x � ρ(a) = x ρ(a) + dto
β (a) �σ(x) .

Here dβ(a) and dto
β (a) must be understood as elements of

∧∗1(M), that are
linear forms on

∧
(M) vanishing on all

∧j(M) such that j �= 1; such identifications
of elements of M∗ with their image in

∧∗1(M) will be silently committed when
the context obviously requires them.

(4.7.4) Theorem. Among all the associative multiplications on the K-module
C�(M, q) that admit 1q as a unit element, the multiplication defined by (4.7.1) is the
only one satisfying the equality (a) in (4.7.3) (for all a ∈M and all x ∈ C�(M, q)).
It is also the only one satisfying the equality (b).

(4.7.5) Theorem. Let us set q′(a) = q(a) + β(a, a). There is a unique algebra
morphism Φβ from C�(M, q′) into C�(M, q; β) such that Φβ(ρ′(a)) = ρ(a) for
all a ∈ M ; it is a morphism of graded algebras. It is also a morphism of right
comodules over

∧
(M), and consequently a morphism of left modules over

∧∗(M).

(4.7.6) Theorem. The algebra morphisms Φβ : C�(M, q′) → C�(M, q; β) and
Φ−β : C�(M, q)→ C�(M, q′;−β) are reciprocal bijections.
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Proof of the five theorems, and corollaries

Proof of (4.7.2). Since β′′ vanishes on
∧

(M) ⊗ 1 and 1 ⊗
∧

(M), the equalities
Exp(β′′) � (x ⊗ 1q) = x⊗ 1q and Exp(β′′) � (1q ⊗ x) = 1q ⊗ x follow from (4.5.9)
and imply x � 1q = 1q � x = x for all x ∈ C�(M, q). The associativity of the
�-multiplication is the most difficult stage in this section because it involves two
Leibniz formulas slightly more sophisticated than the simple formula (4.4.9). Let
C be a graded right comodule over a graded coalgebra A; later C and A will be
C�(M, q) and

∧
(M). Thus C ⊗ C�(M, q) (resp. C�(M, q) ⊗ C) is a left module

over the algebra A∗ ⊗̂
∧∗(M) (resp.

∧∗(M) ⊗̂A∗). If f (resp. g) is an element of
this algebra, if x, y, z are elements of C�(M, q), and ξ, ζ elements of C, then

f � (ξ ⊗ yz) = (idC ⊗ πq)
(
(idA ⊗ π)∗(f) � (ξ ⊗ y ⊗ z)

)
,

g � (xy ⊗ ζ) = (πq ⊗ idC)
(
(π ⊗ idA)∗(g) � (x ⊗ y ⊗ ζ)

)
;

these formulas are proved exactly like (4.4.9); the mappings (idA ⊗ π)∗ and (π ⊗
idA)∗ are associated by the functor Hom(. . . , K) with idA ⊗ π and π ⊗ idA .

Now let us calculate x � (y � z). By means of Definition (4.7.1), the Leibniz
formula devoted to f � (ξ ⊗ yz), and also (4.4.3), (4.5.7) and (4.5.8), we obtain

x � (y � z) = πq

(
Exp(β′′) �

(
(idq ⊗ πq) ((1 ⊗ Exp(β′′)) � (x⊗ y ⊗ z))

))
= πq (idq ⊗ πq)

(
Exp

(
(id∧ ⊗ π)∗(β′′) + 1⊗ β′′

)
� (x⊗ y ⊗ z)

)
.

Obviously 1⊗ β′′ = β·′′ . Let us verify that (id∧ ⊗ π)∗(β′′) = β′′· + β′·′ ; indeed

(id∧ ⊗ π)∗(β′′) (a1 ⊗ b1 ⊗ 1 + a2 ⊗ 1⊗ b2 + 1⊗ a3 ⊗ b3)
= β′′(a1 ⊗ b1 + a2 ⊗ b2 + 1⊗ (a3 ∧ b3)) = β(a1, b1) + β(a2, b2).

All this shows that

x � (y � z) = πq (idq ⊗ πq)
(
Exp

(
β′′· + β′·′ + β·′′

)
� (x⊗ y ⊗ z)

)
.

In the same way we can calculate that

(x � y) � z = πq (πq ⊗ idq)
(
Exp

(
β′′· + β′·′ + β·′′

)
� (x⊗ y ⊗ z)

)
.

We remember that πq(πq ⊗ idq) = πq(idq ⊗ πq) because the algebra C�(M, q) is
associative, and the proof is complete. �

If we calculated the product of four factors in the algebra C�(M, q; β), we
should find a similar result involving the six images of β in

∧∗2(M⊕M⊕M⊕M) ,
and so forth. . . .

Proof of (4.7.3). By means of (4.3.2) we get (for all a ∈ M)

β′′ # (a⊗ 1) = 1⊗ dβ(a) and β′′ # (1⊗ a) = dto
β (a)⊗ 1 ;
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here dβ(a) and dto
β (a) must be understood as elements of

∧∗1(M). Now the for-
mulas (a) and (b) are immediate consequences of the equalities

Exp(β′′) � (ρ(a)⊗ x) = ρ(a)⊗ x + 1q ⊗ (dβ(a) �x) ,

Exp(β′′) � (x⊗ ρ(a)) = x⊗ ρ(a) + (dto
β (a) �σ(x)) ⊗ 1q ,

which themselves can be easily proved by means of the composite derivations
formulas (4.4.11). Indeed ρ(a) ⊗ x (for instance) is the product of ρ(a) ⊗ 1q and
1q ⊗ x, and in the proof of (4.7.2) we have already noticed that the second factor
is invariant by the interior multiplication by Exp(β′′); thus (4.4.11) implies

Exp(β′′) � (ρ(a)⊗ x) = ρ(a)⊗ x +
(
Exp(β′′) # (a⊗ 1)

)
� (1q ⊗ x) ;

then (4.5.6) implies

Exp(β′′) # (a⊗ 1) = Exp(β′′) ∧ (1⊗ dβ(a)) ;

this allows us to complete the proof of (a) with the help of (4.3.7) and (4.5.9):
(
Exp(β′′) # (ρ(a)⊗ 1)

)
� (1q ⊗ x) = Exp(β′′) �

(
(1⊗ dβ(a)) � (1q ⊗ x)

)
= 1q ⊗ (dβ(a) �x).

The proof of the formula (b) is similar. �

(4.7.7) Examples of applications of (4.7.3). For all a, b, c ∈M we can write

ρ(a) � ρ(b) = ρ(a) ρ(b) + β(a, b) 1q ,

ρ(a) � ρ(a) = (q(a) + β(a, a)) 1q ,

ρ(a) � ρ(b) � ρ(c) = ρ(a) ρ(b) ρ(c) + β(b, c) ρ(a)− β(a, c) ρ(b) + β(a, b) ρ(c) .

In the proof of (4.7.4) we shall use the filtration of the algebra C�(M, q) by
the submodules C�≤k(M, q) defined in 3.1; when x belongs to C�≤k(M, q), then
f �x also belongs to it for all f ∈

∧∗(M).

Proof of (4.7.4). Let us forget the algebra C�(M, q; β) and assume that there is
an associative multiplication on the K-module C�(M, q) admitting 1q as a unit
element and satisfying (4.7.3)(b) (for instance) for all a ∈ M and all x ∈ C�(M, q);
we denote it by (x, y) �−→ x�y. Obviously the product x�y is uniquely determined
for all y in C�≤1(M, q). Let us assume that it is uniquely determined for all y
in C�≤k(M, q), and let us prove that it is still uniquely determined for all y in
C�≤k+1(M, q). We can suppose that y = z ρ(a) for some z in C�≤k(M, q). The
condition (b) still determines the value of x � y :

x � (z ρ(a)) = x � (z � ρ(a)− dto
β (a) �σ(z)) = (x � z) � ρ(a) − x � (dto

β (a) �σ(z)) ;

it suffices to remember that f �σ(z) belongs to C�≤k(M, q) for all f ∈
∧∗(M).

With the condition (4.7.3)(a) the proof is similar. �
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Here is a corollary of (4.7.4); it involves the twisted opposite algebra C�(M, q)to

provided with the multiplication xtoyto = (−1)∂x∂y(yx)to (see 3.2).

(4.7.8) Corollary. The mapping x �−→ xto is an algebra isomorphism from

C�(M, q;−bq) onto C�(M, q)to.

Proof. For all a ∈ M and all x ∈ C�(M, q), the product of ρ(a)to and xto in
C�(M, q)to is equal to (σ(x)ρ(a))to ; from (4.4.12) we deduce that

σ(x)ρ(a) = ρ(a)x− dq(a) �x ;

the right-hand member is the product of ρ(a) and x in C�(M, q;−bq), and this
suffices to conclude. �

Proof of (4.7.5). The equality ρ(a) � ρ(a) = q′(a, a)1q (see (4.7.7)) proves the ex-
istence of the algebra morphism Φβ from C�(M, q′) into C�(M, q; β). Since the
algebra C�(M, q; β) admits the same parity grading as C�(M, q), Φβ is a graded
morphism. The main assertion in (4.7.5) is that Φβ is a morphism of right comod-
ules over

∧
(M), in other words,

π′
q ◦ Φβ = (Φβ ⊗ id∧) ◦ π′

q′ .

The right-hand member of this equality is the algebra morphism from C�(M, q′)
into C�(M, q; β) ⊗̂

∧
(M) that maps every ρ′(a) to ρ(a) ⊗ 1 + 1q ⊗ a ; there-

fore it suffices to prove that π′
q is also an algebra morphism from C�(M, q; β)

into C�(M, q; β) ⊗̂
∧

(M). Let us denote by Π the linear mapping representing
the multiplication in C�(M, q) ⊗̂

∧
(M); the product of two elements ξ and ζ in

C�(M, q; β) ⊗̂
∧

(M) is

ξ � ζ = Π (Exp(β′·′·) � (ξ ⊗ ζ)) ;

consequently it suffices to prove the following equality for x, y ∈ C�(M, q) :

Π
(

Exp(β′·′·) � (π′
q(x)⊗ π′

q(y))
)

= π′
q ◦ πq

(
Exp(β′′) � (x⊗ y)

)
.

Since π′
q is an algebra morphism, π′

q ◦ πq = Π ◦ (π′
q ⊗ π′

q) , and thus it suffices to
prove that

Exp(β′·′·) � (π′
q(x)⊗ π′

q(y)) = (π′
q ⊗ π′

q)
(
Exp(β′′) � (x⊗ y)

)
.

This last equality is an immediate consequence of (4.4.6), when the morphism
w : (M, q) → (N, q̃) appearing there is here replaced with the morphism

∆ : (M, q) ⊥ (M, q) −→ (M, q) ⊥ (M, 0) ⊥ (M, q) ⊥ (M, 0)

defined by ∆(a, b) = (a, a, b, b) ; indeed all this implies that

C�(∆) = π′
q ⊗ π′

q and
∧∗

(∆)(β′·′·) = β′′ . �
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Since Φβ is a morphism of comodules, the equality Φβ(f �x) = f �Φβ(x)
holds for all x ∈ C�(M, q′) and all f ∈

∧∗(M). Besides, it is clear that the objects
presented here behave nicely in the case of a direct sum; if (M, q) is the direct sum
of two orthogonal submodules (M1, q1) and (M2, q2), and if β is the direct sum
of two bilinear forms β1 and β2 respectively on M1 and M2, then C�(M, q; β)
is canonically isomorphic to the twisted tensor product of C�(M1, q1; β1) and
C�(M2, q2; β2), and by this isomorphism Φβ becomes Φβ1 ⊗ Φβ2 . Whence the
following consequence of (4.7.5).

(4.7.9) Corollary. For every bilinear form β′ : M ×M → K, the algebra morphism
Φβ from C�(M, q′) into C�(M, q; β) is also an algebra morphism from C�(M, q′; β′)
into C�(M, q; β + β′).

Proof. We must prove this equality for all ξ ∈ C�(M, q′)⊗ C�(M, q′) :

Φβ ◦ πq′ ( Exp(β′
′′) � ξ ) = πq ◦ ( Exp(β′′ + β′

′′) � (Φβ ⊗ Φβ)(ξ) ) ;

since Φβ is a morphism from C�(M, q′) into C�(M, q; β), we know that

Φβ ◦ πq′ ( Exp(β′
′′) � ξ ) = πq ◦ ( Exp(β′′) � (Φβ ⊗ Φβ)(Exp(β′

′′) � ξ) ) ;

since the interior multiplication by Exp(β′′+β′′′) is equivalent to successive interior
multiplications by Exp(β′

′′) and Exp(β′′), it suffices to verify that

(Φβ ⊗ Φβ)(Exp(β′
′′) � ξ) = Exp(β′

′′) � (Φβ ⊗ Φβ)(ξ) ;

since Φβ ⊗ Φβ can be identified with the algebra morphism

Φβ⊥β : C�((M, q′) ⊥ (M, q′)) −→ C�((M, q) ⊥ (M, q) ; β ⊥ β) ,

the conclusion follows from the fact that Φβ⊥β is a morphism of comodules. �

Proof of (4.7.6). Because of (4.7.9), Φβ is also an algebra morphism from

C�(M, q′;−β) into C�(M, q).

Consequently Φβ ◦ Φ−β is an algebra morphism from C�(M, q) into itself which
maps every ρ(a) to itself; this proves that Φβ ◦Φ−β is the identity mapping. And
the same for Φ−β ◦ Φβ . �

More generally, if we set q′′(a) = q′(a)+β′(a, a) and consider the isomorphism
Φβ′ from C�(M, q′′) onto C�(M, q′; β′), we can deduce from (4.7.9) that

(4.7.10) Φβ ◦ Φβ′ = Φβ+β′ .

Here are other corollaries of the previous results.

(4.7.11) Corollary. For all k ∈ N, Φβ(C�≤k(M, q′)) = C�≤k(M, q) ; moreover
Φβ induces an algebra isomorphism between the graded algebras Gr(C�(M, q′)) and
Gr(C�(M, q)) defined in 3.1.
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Proof. Since the interior multiplication by dβ(a) maps C�≤k(M, q) into itself, the
equality (4.7.3)(a) shows (by induction on k) that Φβ(C�≤k(M, q′)) ⊂ C�≤k(M, q).
The opposite inclusion is proved by means of Φ−β . Thus it is clear that Φβ induces
bijections

C�≤k(M, q′) / C�≤k−1(M, q′) −→ C�≤k(M, q) / C�≤k−1(M, q) ,

resulting in a bijection Gr(Φβ) : Gr(C�(M, q′))→ Gr(C�(M, q)).

For every x ∈ C�≤k(M, q), ρ(a) � x and ρ(a)x are congruent modulo C�≤k(M, q);
consequently, for all b ∈ Gr1(C�(M, q′)) and all y ∈ Grk(C�(M, q′)),

Gr(Φβ)(by) = Gr(Φβ)(b) Gr(Φβ)(y) in Grk+1(C�(M, q′)) ;

since the algebra Gr(C�(M, q′)) is generated by Gr1(C�(M, q′)), this suffices to
conclude that Gr(Φβ) is an algebra morphism. �

(4.7.12) Corollary. The mapping x �−→ xto is an algebra isomorphism from

C�(M, q; βto − bq) onto C�(M, q; β)to.

Proof. Let F be this mapping, and F ′ the analogous mapping C�(M, q′) →
C�(M, q′)to. Since Φβ and Φ−β are reciprocal bijections, we can write F = Φto

β ◦
F ′◦Φ−β . Moreover an easy calculation shows that βto−bq and β−bq′ are the same
thing. Now Φ−β is an isomorphism from C�(M, q; β−bq′) onto C�(M, q′;−bq′) be-
cause of (4.7.9); then F ′ is an isomorphism from C�(M, q′;−bq′) onto C�(M ; q′)to

because of (4.7.8); and finally Φto
β is an isomorphism C�(M ; q′)to → C�(M, q; β)to.

�

Additional information

A sixth theorem is now added to the five previous ones.

(4.7.13) Theorem. Let β and β′ be two bilinear forms M × M → K such that
β(a, a) = β′(a, a) for all a ∈ M , and let f be the element of

∧∗2(M) such that
f(a∧b) = β′(a, b)−β(a, b) for all a, b ∈M . Then Φβ′−β (that is the unique algebra
isomorphism C�(M, q; β) → C�(M, q; β′) leaving all elements of ρ(M) invariant)
is the mapping x �−→ Exp(f) �x .

Proof. The bilinear form (a, b) �−→ β′(a, b)− β(a, b) is alternate and defines an el-
ement f ∈

∧∗2(M). From (4.7.9) we deduce that Φβ′−β is an algebra isomorphism
C�(M, q; β)→ C�(M, q; β′). As a linear endomorphism of C�(M, q) it is character-
ized by these two properties: it leaves invariant all elements of C�≤1(M, q), and
for every a ∈ M and x ∈ C�(M, q) it maps ρ(a) � x (product in C�(M, q; β)) to
the product of ρ(a) and Φβ′−β(x) in C�(M, q; β′). Let us verify that the mapping
x �−→ Exp(f) �x satisfies these two properties. First it leaves invariant all elements
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of C�≤1(M, q) because of (4.5.9). Secondly we must verify that, for every a ∈ M
and x ∈ C�(M, q),

Exp(f) � (ρ(a)x)+(Exp(f)∧dβ(a)) �x = ρ(a)(Exp(f) �x)+(dβ′(a)∧Exp(f)) �x.

From the definitions (in particular (4.3.2)) it follows immediately that dβ′(a) −
dβ(a) = f # a ; consequently the previous equality is equivalent to

Exp(f) � (ρ(a)x) = (Exp(f) ∧ (f # a)) �x + ρ(a)(Exp(f) �x) ;

since Exp(f) ∧ (f # a) is the same thing as Exp(f) # a (see (4.5.6)), this is an
example of a composite derivation formula like (4.4.11). �

Like C�(M, q′), the algebra C�(M, q; β) admits a reversion that we shall now
calculate as a corollary of (4.7.13); the definition of [β] ∈

∧∗2(M) has been given
at the beginning.

(4.7.14) Proposition. The reversion τβ in C�(M, q; β) maps every x ∈ C�(M, q; β)
to

τβ(x) = Exp([β]) � τ(x) = τ( Exp(−[β]) � x) .

Proof. Because of (4.7.13), the mapping x �−→ Exp([β]) �x is the isomorphism of
C�(M, q;−βto) onto C�(M, q; β) that leaves invariant all elements of ρ(M). Thus
the proof of (4.7.14) is completed by the following lemma.

(4.7.15) Lemma. The mapping x �−→ τ(x)o is an isomorphism from C�(M, q; β)
onto the opposite algebra C�(M, q;−βto)o.

Proof. We must prove that

τ
(

Exp(β′′) � (τ(x) ⊗ τ(y))
)

= Exp(−βto
′′ ) � (y ⊗ x) ;

we observe that τ(β′′) = −β′′ (see (3.1.5)), and because of (3.2.8) and (4.4.7) the
previous equality is equivalent to

(−1)∂x∂y Exp(−β′′) � (x⊗ y) = Exp(−βto
′′ ) � (y ⊗ x) ;

this is an immediate consequence of (4.4.6) when w is the reversion mapping
M ⊕M →M ⊕M defined by w(a, b) = (b, a); indeed

C�(w)(x ⊗ y) = (−1)∂x∂yy ⊗ x , and
∧∗

(w)(β′′) = βto
′′ . �

Examples. It is clear that [β] = 0 if and only if β is symmetric. When 2 is invertible
in K, for every pair (q, q′) of quadratic forms on M , there exists a unique symmetric
bilinear form β such that q′(a) = q(a) + β(a, a) for all a ∈ M . On the contrary,
when the equality 2 = 0 holds in K, then [β] is strictly determined by q′ − q
because

[β](a ∧ b) = β(a, b) + β(b, a) = bq′(a, b)− bq(a, b).
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This sections ends with some routine information.

(4.7.16) Proposition. Let (M, q) and (M ′, q′) be two quadratic modules, β and β′

bilinear forms respectively on M and M ′, and f : M →M ′ a linear mapping such
that

∀a, b ∈ M, q(a) = q′(f(a)) and β(a, b) = β′(f(a), f(b)) ;

then the algebra morphism C�(f) : C�(M, q)→ C�(M ′, q′) is also an algebra mor-
phism from C�(M, q; β) into C�(M ′, q′; β′).

Proof. For every x, y ∈ C�(M, q) we must verify that

C�(f) ◦ πq

(
Exp(β′′) � (x⊗ y)

)
= πq′

(
Exp(β′

′′) � (C�(f)(x)⊗ C�(f)(y))
)
.

If f2 is the morphism from (M, q) ⊥ (M, q) into (M ′, q′) ⊥ (M ′, q′) such that
f2(a, b) = (f(a), f(b)), it is obvious that

C�(f)(x)⊗ C�(f)(y) = C�(f2)(x⊗ y) and C�(f) ◦ πq = πq′ ◦ C�(f2) ,

and it is easy to verify that β′′ =
∧∗(f2)(β′

′′). Thus the conclusion follows from
(4.4.6). �

Interior products and exponentials have been presented in 4.4 and 4.5 without
mentioning their behaviour in case of an extension K → K ′ of the basic ring;
indeed it is clear that they behave as expected. Since later we shall again use
localizations in a systematic way, we just add the following evident statement.

(4.7.17) Lemma. Let K → K ′ be a ring morphism, q′ and β′ the quadratic form and
the bilinear form on K ′⊗M derived from q and β. The algebra C�K′(K ′⊗M, q′; β′)
is canonically isomorphic to K ′ ⊗ C�(M, q; β).

4.8 Applications of deformations

A Clifford algebra C�(M, q) is not at all convenient when the canonical mappings
K → C�0(M, q) and ρ : M → C�1(M, q) are not both injective; whence the
following definition.

(4.8.1) Definition. A quadratic module (M, q), or the quadratic form q itself, is
said to be cliffordian if the canonical morphisms from K and M into C�(M, q) are
both injective, and allow us to identify K and M with submodules of C�(M, q). It
is said to be strongly cliffordian if moreover K is a direct summand of C�0(M, q),
and M a direct summand of C�1(M, q).

When (M, q) is cliffordian, K and M are silently identified with their canon-
ical images in C�(M, q) unless it is otherwise specified (for instance when M itself
is an algebra already containing K as a subalgebra). Almost everywhere in the
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literature additional hypotheses ensure the quadratic modules to be strongly clif-
fordian, and let the definition (4.8.1) become useless; nevertheless an example of
a non-cliffordian quadratic form has been given in (3.1.3).

(4.8.2) Proposition. Let us suppose that (M, q) is not a cliffordian quadratic mod-
ule; let K ′ be the image of K in C�(M, q), and M ′ = ρ(M) the image of M ,
considered as a module over K ′. We get a cliffordian quadratic form q′ on M ′ if
we set q′(a′) = a′2 for all a′ ∈ M ′. Moreover the identity mapping of M ′ extends
to an isomorphism C�K′(M ′, q′)→ C�K(M, q) of algebras over K or K ′.

Proof. It is clear that q′ is a K ′-quadratic form M ′ → K ′; since C�(M, q) is also a
K ′-algebra, the universal property of C�K′(M ′, q′) associates with idM ′ an algebra
morphism from C�K′(M ′, q′) into C�K(M, q). This already proves that K ′ and M ′

are mapped injectively into C�K′(M ′, q′). Conversely for all a′ = ρ(a) ∈ M ′ we
can write q′(a′)1q′ = (q(a)1q)1q′ = q(a)1q′ and consequently with ρ : M →
M ′ the universal property of C�K(M, q) associates an algebra morphism from
C�K(M, q) into C�K′(M ′, q′). Obviously these algebra morphisms are reciprocal
isomorphisms. �

Proposition (4.8.2) shows that the Clifford algebra of a non-cliffordian quad-
ratic module (M, q) is also the Clifford algebra of a cliffordian one (M ′, q′) canoni-
cally derived from it, and that the properties of (M, q) are observable in its Clifford
algebra only as far as they are inherited by (M ′, q′). Up to now, nothing seems to
be known about what is inherited and what is lost.

Here is an immediate consequence of the definition (4.8.1).

(4.8.3) Proposition. Let q : M → K be a cliffordian quadratic form; for every
λ ∈ K, λq is also a cliffordian quadratic form. When λ is invertible, and q
strongly cliffordian, then λq too is strongly cliffordian.

Proof. On the module C�(M, q) we define the following multiplication:

(x, y) �−→ x ∗ y = xy if x or y is even,

= λxy if x and y are odd.

It is easy to prove that this new multiplication is still associative, with the same
unit element 1q. Since ρ(a) ∗ ρ(a) = λq(a) for all a ∈ M , the mapping ρ induces
an algebra morphism g from C�(M, λq) into the new algebra C�(M, q). Since K
and M are mapped injectively into the module C�(M, q), they are already mapped
injectively into C�(M, λq).

When λ is invertible, the stronger conclusion follows from the bijectiveness of
g. It is bijective because similarly there is an algebra morphism g′ from C�(M, q)
into C�(M, λq) provided with a new multiplication such that x∗y = λ−1xy when x
and y are odd; thus gg′ and g′g are algebra endomorphisms of respectively C�(M, q)
and C�(M, λq). Since gg′ and g′g leave invariant the elements of M , they are the
identity automorphisms. There is another proof using (3.8.7), because (M, λq)
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is isomorphic to the tensor product of (M, q) and the free discriminant module
generated by an element d such that d2 = λ. �

The following statement is an immediate corollary of the five theorems at the
beginning of 4.7.

(4.8.4) Proposition. Let q and q′ be two quadratic forms on M ; if there exists a
bilinear form β : M ×M → K such that q′(a) = q(a) + β(a, a) for all a ∈ M ,
then q′ is cliffordian (resp. strongly cliffordian) if and only if q is cliffordian (resp.
strongly cliffordian).

Here is a less trivial application of the results of 4.7.

(4.8.5) Theorem. Let us suppose that M is the direct sum of the submodules M ′

and M ′′; let q be a quadratic form on M , and q′ and q′′ its restrictions to M ′ and
M ′′; and let f ′ : C�(M ′, q′) → C�(M, q) and f ′′ : C�(M ′′, q′′) → C�(M, q) be the
algebra morphisms derived from the canonical injections M ′ →M and M ′′ →M .

(a) The following multiplication mapping is bijective:

C�(M ′, q′)⊗ C�(M ′′, q′′) −→ C�(M, q) , x′ ⊗ x′′ �−→ f ′(x′) f ′′(x′′).

(b) When q′′ is strongly cliffordian, then f ′ is injective and allows us to identify
C�(M ′, q′) with a subalgebra of C�(M, q).

(c) When q′ and q′′ are both strongly cliffordian, then q too is strongly cliffordian.

Proof. Let β be the bilinear form on M such that β(a, b) vanishes whenever a
belongs to M ′, and also whenever b belongs to M ′′, but is equal to −bq(a, b) when
a and b belong respectively to M ′′ and M ′; in other words, β is the bilinear form
such that β(M ′, M) = β(M, M ′′) = 0 and such that M ′ and M ′′ are orthogonal
for the quadratic form a �−→ q(a) + β(a, a). Therefore the isomorphism Φβ can be
identified with an isomorphism from C�(M ′, q′) ⊗̂C�(M ′′, q′′) onto C�(M, q; β).
Since the restrictions of β to M ′ and M ′′ vanish, f ′ and f ′′ are also algebra
morphisms into C�(M, q; β). Since β(M ′, M ′′) = 0, for all x′ ∈ M ′ and all x′′ ∈
M ′′ the product of f ′(x′) and f ′′(x′′) in Cl(M, q; β) is equal to their product in
C�(M, q); indeed this can be proved with the help of the formula (4.7.3)(a) and by
induction on k for every x′ ∈ C�≤k(M ′, q′). Consequently Φβ maps every x′ ⊗ x′′

to f ′(x′)f ′′(x′′). This proves the statement (a).
When q′′ is strongly cliffordian, K is a direct summand of C�(M ′′, q′′), and

C�(M ′, q′) is isomorphic to a direct summand of C�(M ′, q′) ⊗̂C�(M ′′, q′′) by the
mapping x′ �−→ x′ ⊗ 1q′′ ; thus the injectiveness of f ′ follows from that of Φβ .
When q′ and q′′ are both strongly cliffordian, then K ⊗ K is a direct summand
of C�(M ′, q′) ⊗̂C�(M ′′, q′′), and M ′ ⊗ K and K ⊗M ′′ too; consequently K and
M ′ ⊕M ′′ are direct summands of C�(M, q). �
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Admissible scalar products

The null quadratic form on M is obviously strongly cliffordian because C�(M, 0) =∧
(M); this observation leads to the following definition.

(4.8.6) Definition. A bilinear form β : M ×M → K is called an admissible scalar
product (or simply a scalar product) for the quadratic form q : M → K if q(a) =
β(a, a) for all a ∈M .

When β is an admissible scalar product for q, then bq = β − βto.
Here is an immediate consequence of several results of 4.7, especially (4.7.11).

(4.8.7) Theorem. When q admits a scalar product β, then q is strongly cliffordian
and there is a comodule isomorphism Φ−β :

∧
(M) → C�(M, q) such that

C�≤k(M, q) = C�≤k−1(M, q)⊕ Φ−β

(∧k
(M)

)
for all k > 0 .

Besides, the canonical morphism
∧

(M) → Gr(C�(M, q)) defined in (3.1.8) is an
isomorphism.

Now we state sufficient conditions ensuring the existence of scalar products.

(4.8.8) Theorem. Let (M, q) be a quadratic module.
(a) When M is a projective module, there are always admissible scalar products

for q, and C�(M, q) too is a projective module.
(b) When the mapping a �−→ 2a is bijective from M onto M , there is a unique

symmetric scalar product β admissible for q, which is defined by the equality
β(a, b) = 2 bq(a/2, b/2) ; this symmetric scalar product is called the canonical
scalar product derived from q.

Proof. When M is projective, the existence of admissible scalar products has al-
ready been proved for a quite different purpose: see Lemma (2.5.3). It is already
known that

∧
(M) too is a projective module (see (3.2.6), and (3.2.7) if M is

not finitely generated); because of the comodule isomorphism Φ−β :
∧

(M) →
C�(M, q), the same is true for C�(M, q).

When the mapping a �−→ 2a is bijective, there is a reciprocal mapping
a �−→ a/2. If β is an admissible symmetric scalar product, then bq = 2β and
consequently 2 bq(a/2, b/2) = β(a, b). Conversely if β is defined by this equality,
it is an admissible scalar product because bq(a, a) = 2q(a) for all a ∈M . �

When an admissible scalar product β has been chosen, the algebra C�(M, q)
is often replaced with

∧
(M ; β) which is then treated as a module provided with

two multiplications: the Clifford multiplication (x, y) �−→ xy and the exterior
multiplication (x, y) �−→ x ∧ y. The equalities (a) and (b) in (4.7.3) are now
written in this way (for all a ∈M and x ∈

∧
(M)):

(4.8.9) ax = a ∧ x + dβ(a) �x and xa = x ∧ a + dto
β (a) �σ(x) ;

here is more information about the relations between both multiplications.
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(4.8.10) Proposition. Let x and y be elements of
∧j(M) and

∧k(M) respectively,
and xy their product in the Clifford algebra

∧
(M ; β). If j ≤ k (resp. j ≥ k), xy

belongs to

∧j+k
(M)⊕

∧j+k−2
(M)⊕

∧j+k−4
(M)⊕· · ·⊕

∧k−j
(M)

(
resp. · · ·⊕

∧j−k
(M)

)
.

Its component of degree j + k is always x ∧ y. Its component of degree |j − k| is
∧

(dβ)(x) � y (resp. (−1)∂x∂y
∧

(dto
β )(y) �x ).

Here the notation
∧

(dβ) means the algebra morphism
∧

(M) →
∧

(M∗) associ-
ated by the functor

∧
with the mapping dβ ; because of the canonical morphism∧

(M∗) →
∧∗(M), the interior multiplication by

∧
(dβ)(x) is meaningful. The

strict observance of the twisting rule (4.2.1) gives immediately the correct sign for
the component in

∧j−k(M) when j ≥ k; nevertheless we must remember that this
rule has given

∧∗(M) a multiplication that for some people is that of (
∧∗(M))o.

Proof of (4.8.10). Everything is trivial when j = 0 or k = 0; and when j = 1 or
k = 1, we have just to use the equalities (4.8.9), that here can be written in this
way (for a and b in M):

ay = a ∧ y + dβ(a) � y , and xb = x ∧ b + (−1)∂x dto
β (b) � x .

Then we proceed by induction. Let us treat for instance the case j ≥ k which
requires an induction on k. Our induction hypothesis is that (4.8.10) is true for
(j, k) and (j, k − 1), and we want to prove that it is true for (j, k + 1) if j > k.
Consequently we replace (x, y) with (x, y ∧ b) :

x (y ∧ b) = xyb − x (dto
β (b) �σ(y))

= (xy) ∧ b + dto
β (b) �σ(xy) − x (dto

β (b) �σ(y))

= (xy) ∧ b + (dto
β (b) �σ(x)) σ(y);

the component of x(y ∧ b) in
∧j+k+1(M) comes from the first term (xy) ∧ b and

is equal to x ∧ y ∧ b; its component in
∧j−k−1(M) comes from the second term

and is equal to

(−1)(1+∂x)∂y
∧

(dto
β )(σ(y)) � (dto

β (b) � σ(x)) = (−1)∂x(1+∂y)
∧

(dto
β )(y ∧ b) �x.

�

Now we prove that the Clifford algebra of a free module is a free module.
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(4.8.11) Proposition. Let M be a free module with a basis (ej)j∈J indexed by a
totally ordered set J . The linear mapping Φ :

∧
(M)→ C�(M, q) such that

Φ(ej1 ∧ ej2 ∧ · · · ∧ ejk
) = ej1 ej2 · · · ejk

whenever j1 < j2 < · · · < jk ,

is an isomorphism of K-modules, and even an isomorphism of comodules over∧
(M).

Proof. Let β be the bilinear form on M defined in this way: β(ei, ej) is equal to
0 when i < j, equal to q(ej) when i = j, and equal to bq(ei, ej) when i > j. In∧

(M ; β) the following equality can be proved by induction on k:

ej1ej2 · · · ejk
= ej1 ∧ ej2 ∧ · · · ∧ ejk

whenever j1 < j2 < · · · < jk;

this proves that Φ = Φβ. �

In the situation of (4.8.5) the identification of C�(M ′, q′) with a subalgebra
of C�(M, q) is legitimate whenever M is a projective module (and M ′ a direct
summand of M); this result must now be improved.

(4.8.12) Lemma. Let M be a finitely generated projective module, M ′ a direct sum-
mand of M , q a quadratic form on M , and q′ its restriction to M ′. Thus C�(M ′, q′)
can be identified with a subalgebra of C�(M, q). An element x ∈ C�(M, q) belongs
to C�(M ′, q′) if and only if h �x = 0 for every linear form h ∈ M∗ such that
h(M ′) = 0. If q is nondegenerate, or more generally if dq induces a surjective
mapping M ′⊥ → (M/M ′)∗, this condition is equivalent to dq(a) �x = 0 for every
a ∈ M ′⊥.

Proof. It is clear that h �x = 0 if x ∈ C�(M ′, q′) and h(M ′) = 0. Conversely let
us suppose that h �x = 0 whenever h(M ′) = 0. By means of localizations we can
reduce the problem to the case of free modules M and M ′; let (e1, e2, . . . , em)
be a basis of M such that (e1, e2, . . . , en) is a basis of M ′; thus the products
ej1ej2 · · · ejk

with j1 < j2 < · · · < jk constitute a basis of C�(M, q), and if we
moreover require jk ≤ n, we get a basis of C�(M ′, q′). Suppose that x does not
belong to C�(M ′, q′); by writing x in the above basis of C�(M, q), we would find
some k ∈ {n+1, n+2, . . . , m} such that x = yek+z with some y and z both in the
subalgebra generated by (e1, e2, . . . , ek−1), and with y �= 0 ; let h be the linear form
such that h(ej) = 0 whenever j �= k, but h(ek) = 1 ; now h �x = (−1)∂yy �= 0 ;
this contradicts the assumption that h �x = 0 whenever h(M ′) = 0.

If the mapping M ′⊥ → (M/M ′)∗ induced by dq is surjective, the submod-
ule of all h ∈ M∗ such that h(M ′) = 0 is equal to the submodule of all dq(a)
with a ∈ M ′⊥. And from (2.3.7) we know that this mapping is bijective if q is
nondegenerate. �
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Canonical scalar products

Canonical scalar products, which exist when the mapping a �−→ 2a is bijective
(see (4.8.8)), have special properties that deserve a separate exposition. The bi-
jectiveness of this mapping does not require 2 to be invertible in K; but when M
is finitely generated, it implies that Mp = 0 for every prime ideal p containing
the image of 2 in K; indeed, because of Nakayama’s lemma (1.12.1), the equality
Mp = 2Mp implies Mp = 0 if the image of 2 falls in p. The notation bq/2 means
the canonical scalar product even if 2 is not invertible in K.

When β is a symmetric scalar product, from (4.7.14) we deduce that the
Clifford algebra

∧
(M ; β) and the exterior algebra

∧
(M) have the same reversion

τ , which is described by (3.1.5). The equalities (4.8.9) now look like this:

ax = a ∧ x + dβ(a) �x and xa = a ∧ σ(x) − dβ(a) �σ(x) ;

they are equivalent to the following equalities (with a ∈ M), sometimes attributed
to Riesz:

(4.8.13) 2 a ∧ x = ax + σ(x)a and dq(a) �x = ax − σ(x)a.

Whereas the latter equality in (4.8.13) is the same thing as (4.4.12), the former
equality is a new result; it leads to paying some attention to formulas of the
following kind, in which E is some subset of the group Sn of permutations of
{1, 2, . . . , n} :

(4.8.14) card(E) a1 ∧ a2 ∧ · · · ∧ an =
∑
s∈E

sgn(s) as(1)as(2) · · ·as(n) ;

indeed from (4.8.13) we can derive by induction on n the existence of a subset E
of cardinal 2n−1 for which the equality (4.8.14) holds. Nevertheless when n > 2,
it is well known that this equality already holds with a smaller subset, because of
the following equality which is an easy consequence of (4.7.7):

2 a1 ∧ a2 ∧ a3 = a1a2a3 − a3a2a1.

It is still an open question to know whether (4.8.14) holds with a subset E of
cardinal 2k if k is the greatest integer such that 2k ≤ n. For n = 5 the answer is
already known since

4 a1 ∧ a2 ∧ a3 ∧ a4 ∧ a5

= a1a2a3a4a5 + a1a5a4a3a2 − a2a5a4a3a1 − a3a4a5a2a1 .

It is worth adding that (4.8.14) also holds when E is the whole group Sn; often
this assertion has been proved with the assumption of an orthogonal basis in M ;
for a quite general proof see (4.ex.14).

The bijection Φ−β (with β = bq/2) allows us to carry onto C�(M, q) the N-
grading of

∧
(M); therefore we set C�n(M, q) = Φ−β(

∧n(M)) for every n ∈ N. The
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notation C�n(M, q) can also be understood as an abbreviation of C�n(M, q;−β)
since the algebra C�(M, q;−β) is canonically isomorphic to the N-graded algebra∧

(M). The subspaces C�n(M, q) determine a grading of the module C�(M, q)
that is compatible with the natural filtration of the algebra C�(M, q) (see (4.8.7)).
Besides, every automorphism g of (M, q) determines an automorphism C�(g) of the
algebra C�(M, q) which leaves every subspace C�n(M, q) invariant; indeed (4.8.13)
implies that C�(g) is also an automorphism of the exterior algebra C�(M, q;−β).

The usefulness of these subspaces C�n(M, q) appears for instance in the re-
search of the quadratic extension QZ(M, q) mentioned in (3.7.6).

(4.8.15) Proposition. When 2 is invertible in K and (M, q) is a quadratic space
of constant rank r, then QZ(M, q) is equal to C�0(M, q)⊕ C�r(M, q), and its dis-
criminant module is C�r(M, q). Besides, for k = 0, 1, 2, . . . , r, the multiplication
mapping πq induces an isomorphism

C�r(M, q)⊗ C�k(M, q) −→ C�r−k(M, q) , z ⊗ x �−→ zx = (−1)k(r−1)xz.

Proof. We know that QZ(M, q) is the direct sum of K = C�0(M, q) and its dis-
criminant module, which is the submodule of all z ∈ QZ(M, q) mapped to −z by
its standard involution ϕ. Because of (3.5.13), this means that az = −σ(z)a for
all a ∈ M ; because of (4.8.13), this is equivalent to the equality a ∧ z = 0 which
characterizes the elements z of

∧r(M) in
∧

(M) (see (3.2.6)), and the elements of
C�r(M, q) in C�(M, q).

To prove the last assertion of (4.8.15), we can suppose that M admits an
orthogonal basis (e1, e2, . . . , er) such that q(e1), q(e2),. . . ,q(er) are all invertible,
since localizations allow us to reduce the general case to that one. For every subset
F of B = {1, 2, . . . , r}, we denote by eF the product of all elements ej such that
j ∈ F , when the order of the factors is the order of their indices; their product
in C�(M, q) is also their exterior product in C�(M, q;−β) since every β(ei, ej)
vanishes if i �= j. Moreover C�r(M, q) is the submodule generated by eB . Now it
suffices to observe that

eBeF = ± (
∏
j∈F

q(ej)) eB\F ,

and that the products eF (resp. eB\F ), with F a subset of cardinal k, constitute
a basis of C�k(M, q) (resp. C�r−k(M, q)). �

For all x ∈ C�(M, q), the parallel projection of x in C�0(M, q) = K with
respect to C�>0(M, q) is called the scalar component of x and denoted by Scal(x).

(4.8.16) Proposition. The bilinear form (x, y) �−→ Scal(xy) is symmetric and the
submodules C�n(M, q) are pairwise orthogonal for it. It is nondegenerate whenever
(M, q) is a quadratic space.

Proof. Let x and y be elements of C�j(M, q) and C�k(M, q) respectively; from
(4.8.10) we deduce that Scal(xy) = 0 whenever j �= k. Consequently we only have
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to compare Scal(xy) and Scal(yx) when j = k. Since the formulas (3.1.5) are also
valid for the reversion τ of C�(M, q), we can write (when j = k)

Scal(xy) = Scal(τ(xy)) = Scal(τ(y)τ(x)) = Scal(yx).

When (M, q) is a quadratic space, we can suppose that (M, q) admits an or-
thogonal basis (e1, e2, . . . , er) as in the last part of the proof of (4.8.15); then
the products eF defined above constitute a basis of C�(M, q). Since e1,. . . ,er

are pairwise anticommuting, it is easy to prove that it is an orthogonal basis
of (C�(M, q), Scal) . The nondegeneracy of Scal follows from the fact that (eF )2

is always an invertible element of K, since it is ±
∏

j∈F q(ej) . �

When M is a finitely generated projective module, more precise properties
of the linear form Scal : C�(M, q)→ K are stated in (4.8.17); they imply that it is
invariant by all automorphisms of C�(M, q), and not only by the automorphisms
C�(g) derived from an automorphism g of (M, q). The trace of an endomorphism
of a finitely generated projective module has been defined by elementary means at
the beginning of 3.6; for instance if M is a finitely generated projective module, if
its rank takes the values r1, r2, . . . , rk and if e1, e2, . . . , ek are the correspond-
ing idempotents of K (see (1.12.8)), than the trace of the identity mapping of
C�(M, q) is

tr(idq) = 2r1e1 + 2r2e2 + · · ·+ 2rnen ;

the bijectiveness of the mapping a �−→ 2a implies that ri = 0 whenever 2ei is not
invertible in Kei; therefore tr(idq) is invertible in K.

(4.8.17) Proposition. When M is a finitely generated projective module (such that
the mapping a �−→ 2a is bijective), for all x ∈ C�(M, q) the traces of the multipli-
cations y �−→ xy and y �−→ yx are both equal to tr(idq) Scal(x) .

Proof. This is obviously true when x belongs to K = C�0(M, q); therefore it
suffices to prove that the traces of the multiplications by x both vanish when x
belongs to C�>0(M, q). This is clear when x is odd, because these multiplications
permute C�0(M, q) and C�1(M, q). When x is even, it is a sum of elements like
2a∧ z with a ∈M and z ∈ C�1(M, q); because of (4.8.13), 2a∧ z is a Lie bracket
az− za (in the ordinary nongraded sense); the multiplication by a Lie bracket (on
either side) is a Lie bracket of multiplications, and the trace of a Lie bracket of
endomorphisms is always 0. �

Comment. The invertibility of tr(idq) ensures the interest of the property of Scal(x)
stated in (4.8.17), and allows us to compare it with the reduced trace tr(x) when
C�(M, q) is a graded Azumaya algebra. Reduced traces are defined in (3.6.6) and
(3.6.7); when A is a graded Azumaya algebra of constant rank n2 or 2n2, the
traces of the multiplications by an element x ∈ A are both equal to n tr(x).
Therefore if (M, q) is a quadratic space of constant rank 2k or 2k−1, the equality
tr(x) = 2kScal(x) holds for all x ∈ C�(M, q).
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Exercises

(4.ex.1) Let A be an algebra (associative with unit 1A); suppose that the under-
lying K-module A is graded over an additive group G (therefore A =

⊕
j∈G Aj)

in such a way that AiAj ⊂ Ai+j for all (i, j) ∈ G2. Prove that 1A belongs to A0

(and consequently A is a graded algebra).
Give a counterexample when G is merely an additive monoid (for instance

G = {“zero”,“positive”}).
(4.ex.2)* Let M be a module. Since S(M) is a coalgebra, the dual module S∗(M)
is an algebra; it is the direct sum of S∗0(M) which is isomorphic to K, and the
ideal S∗+(M) of all linear forms vanishing on S0(M) = K.

(a) Define an interior multiplication S∗(M)×S(M)→ S∗(M) that makes S∗(M)
become a module over S(M), and give its elementary properties. The notation
f #x is still suitable, but the twisting rule (4.2.1) is not relevant for symmetric
algebras.

(b) Prove that there exists a unique mapping Exp from S∗+(M) into S∗(M) such
that the following equalities hold for all f ∈ S∗+(M) and all a ∈M :

Exp(f)(1) = 1 and Exp(f) # a = Exp(f) ∨ (f # a) .

(c) Let STk(M∗) be the submodule of symmetric tensors in Tk(M∗). Define a
canonical mapping STk(M∗)→ S∗k(M) and prove that it is bijective when
M is a finitely generated projective module.

(4.ex.3) Consider the exterior algebra
∧

(M), and prove that the four mappings
π, ε, π′, ε′ (defined in 4.3) let

∧
(M) become a bialgebra according to the definition

in 4.1, provided that this definition is adapted to the twisting rule (4.2.1). Prove
that the automorphism σ (that is x �−→ (−1)∂xx) is the inverse of id∧ in the
algebra Hom∧(

∧
(M),

∧
(M)) defined by (4.2.4):

π ◦ (id∧ ⊗ σ) ◦ π′ = ε ◦ ε′ = π ◦ (σ ⊗ id∧) ◦ π′ .

Such an inverse of the identity mapping is called an antipode, and a bialgebra with
an antipode is called a Hopf algebra.

(4.ex.4) Let (M, q) be a quadratic module; is it possible to make the exterior
powers

∧k(M) become quadratic modules in a natural way?

(a) First suppose that 2 is invertible in K. By means of the algebra morphism∧
(dq) :

∧
(M) −→

∧
(M∗), prove the existence of a unique quadratic form

q̂ on
∧

(M) such that the submodules
∧k(M) are pairwise orthogonal, and

such that this equality holds for every sequence (a1, b1, a2, b2, . . . , ak, bk) of
elements of M :

bq̂(a1 ∧ a2 ∧ · · · ∧ ak , bk ∧ · · · b2 ∧ b1) = det(bq(ai, bj))1≤i,j≤k.

Prove that (
∧

(M), q̂) is a quadratic space whenever (M, q) is one.
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(b)* Without any hypothesis on K, deduce from the concept of “half-determinant”
(see (2.ex.13)) that

∧k(M) is still a quadratic module at least for every odd
exponent k.
Hint. First consider free modules.

(4.ex.5) Assume that q and q′ are strongly cliffordian quadratic forms on the
module M , according to Definition (4.8.1); prove that q + q′ is still strongly clif-
fordian.
Hint. Use the morphism a �−→ (a, a) from (M, q + q′) into (M, q) ⊥ (M, q′) ;
observe that M⊕M is the direct sum of M⊕0 and the image ∆ of this morphism;
deduce from (4.8.5) that the subalgebra generated by ∆ in C�((M, q) ⊥ (M, q′))
is isomorphic to C�(M, q + q′).

(4.ex.6) Let (M, q) be a quadratic module such that M is a finitely generated
projective module of nonzero constant rank r. Because of (4.8.7) there is a surjec-
tive mapping p : C�(M, q)→

∧r(M) with kernel C�<r(M, q). We also consider the
dual module C�∗(M, q) = Hom(C�(M, q), K) and its parity grading: for i = 0, 1,
C�∗i (M, q) is the submodule of all linear forms vanishing on C�1−i(M, q).
(a) For every ω∗ ∈

∧∗r(M), let Fω∗ be the linear form on C�(M, q) defined
by Fω∗(x) = ω∗(p(x)). Prove that the linear forms Fω∗ make up a direct
summand of C�∗(M, q) of constant rank 1, that they have the same parity
as r, and deduce from (3.2.1) the equality

∀x, y ∈ C�(M, q), Fω∗(xy) = (−1)∂x∂y Fω∗(yx) .

(b) Suppose that (M, q) is a quadratic space, and consider the discriminant mod-
ule D of QZ(M, q) (the centralizer of C�0(M, q) in C�(M, q)). With every
w ∈

∧∗r(M)⊗D we associate a linear form Gw on C�(M, q) in this way:

∀ω∗ ∈
∧∗r

(M) , ∀d ∈ D , ∀x ∈ C�(M, q) , Gω∗⊗d(x) = ω∗(p(dx)).

Prove that the linear forms Gw make up a direct summand of C�∗(M, q) of
constant rank 1, that they are all even, and satisfy the equality

∀x, y ∈ C�(M, q), Gw(xy) = Gw(yx) .

Comment. When A is a graded Azumaya algebra, in (6.ex.11) it is proved
that the submodule of all h ∈ A∗

0 such that h(xy) = h(yx) for all x, y ∈ A,
is a free direct summand of constant rank 1, and that it is generated by the
reduced trace x �−→ tr(x) defined in 3.6; consequently when A = C�(M, q),
it is the submodule just found above; since it is free, D⊗

∧r(M) too is free,
whence D ∼=

∧r(M).
(c) Suppose that (M, q) is a quadratic space such that the mapping a �−→ 2a is

bijective from M onto M ; in this case D is equal to C�r(M, q) (see (4.8.15)),
which p maps bijectively onto

∧r(M). Verify that

Gω∗⊗d(x) = ω∗(p(d)) Scal(x) .
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Scalar products β and algebras
∧

(M ; β)

(4.ex.7) Let (M, q) be a quadratic module with M a finitely generated projective
module, and β an admissible scalar product for q (see (4.8.6)). Here we shall prove
the existence of an associative multiplication on

∧
(M) admitting 1 as a unit

element and satisfying the conditions (4.8.9), without the help of (4.7.1) and the
subsequent theorems.

(a) From the universal properties of C�(M, q) and C�(M,−q) deduce the exis-
tence of an algebra morphism Ψ from C�(M, q) ⊗̂C�(M, q)to into End(

∧
(M))

such that, for all a ∈M and all x ∈
∧

(M),

Ψ(ρ(a)⊗ 1to
q )(x) = a ∧ x + dβ(a) �x

and Ψ(1q ⊗ ρ(a)to)(x) = a ∧ x + dto
β (a) �x.

(b) For every z ∈ C�(M, q) we set f(z) = Ψ(z ⊗ 1to
q )(1) and g(z) = Ψ(1q ⊗

zto)(1) ; prove that f and g are bijections from C�(M, q) onto
∧

(M) such
that f(1q) = g(1q) = 1 and f(ρ(a)) = g(ρ(a)) = a for all a ∈M .
Hint. Localizations, (3.1.7) and perhaps (3.ex.4).

(c) Let
∧

(M ; β) be the module
∧

(M) provided with the following multiplication:

(x, y) �−→ xy = Ψ(f−1(x)⊗ g−1(y)to)(1)

= Ψ(f−1(x)⊗ 1to
q )(y) = (−1)∂x∂y Ψ(1q ⊗ g−1(y)to)(x) .

Verify that xy = f(f−1(x) f−1(y)) = g(g−1(x) g−1(y)) . Prove that
∧

(M ; β)
is an associative algebra with unit element 1, in which both equalities (4.8.9)
are valid. Moreover f = g.
Comment. This construction of

∧
(M ; β) comes from [Chevalley 1954] ; there

is no doubt that Chevalley knew both equalities (4.8.9); but he thought
(in accordance with (4.7.4)) that the first one was sufficient to characterize
the multiplication in

∧
(M ; β), and consequently he only defined the algebra

morphism z �−→ Ψ(z ⊗ 1to
q ) from C�(M, q) into End(

∧
(M)).

(d) Verify (without (4.7.5)) that the interior multiplication by any h ∈ M∗ is
also a twisted derivation of

∧
(M ; β); it suffices to verify that h � (ax) =

h(a)x − a(h �x) for all a ∈M .

(4.ex.8) Let (M, q) be a quadratic module, β an admissible scalar product for
q, and

∧
(M ; β) the derived algebra. When x and y are elements of respectively∧j(M) and

∧k(M), by definition the interior product x � y (resp. x # y) is the
component of the Clifford product xy in

∧k−j(M) (resp.
∧j−k(M)). Consequently

x � y vanishes whenever j > k, whereas x # y vanishes whenever j < k (see (4.8.10)).
Moreover x � y and x # y are the same element of K when j = k; for instance
a � b = a # b = β(a, b) for all a and b ∈M . By bilinearity the interior products x � y
and x # y are defined for all x and y in

∧
(M).
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(a) Prove these equalities for all x, y, z in
∧

(M) :

(x ∧ y) � z = x � (y � z) and (x # y) # z = x # (y ∧ z) .

(b) Prove these equalities for all x, y ∈
∧

(M) and all a ∈M :

a � (x ∧ y) = (a �x) ∧ y + σ(x) ∧ (a � y) ,

a � (xy) = (a �x) y + σ(x) (a � y) ,

(x ∧ y) # a = (x # a)σ(y) + x ∧ (y # a) ,

(xy) # a = (x # a) σ(y) + x (y # a) .

(c) Suppose that β is symmetric and that x and y are homogeneous for the parity
grading of

∧
(M); prove that y # x = (−1)∂x(1+∂y) x � y .

Comment. Such a concept of interior multiplication is only advisable in elementary
presentations of Clifford algebras, when K is a field of characteristic �= 2, and β
is nondegenerate and symmetric; thus the algebra

∧
(M ; β) can be constructed in

an elementary way (without quotient of T(M)) by means of an orthogonal basis
of M . For many applications of Clifford algebras, this may be sufficient.

(4.ex.9) Let (M, q) be a quadratic module, β an admissible scalar product for
q, and

∧
(M ; β) the derived algebra; besides, let g be an automorphism of (M, q).

The functors
∧

and C� associate with g an automorphism
∧

(g) of
∧

(M) and an
automorphism C�(g) of C�(M, q). If we replace C�(M, q) with

∧
(M ; β), we get

an automorphism of
∧

(M ; β) also denoted by C�(g); here we are interested in a
comparison between

∧
(g) and C�(g), both considered as linear automorphisms of

the module
∧

(M).

(a) Prove the existence of δ ∈
∧∗2(M) such that

∀a, b ∈ M, δ(a ∧ b) = β(g(a), g(b))− β(a, b).

(b) Prove the following equalities, for all x ∈
∧

(M) :

C�(g)(x) =
∧

(g)( Exp(δ) � x ) = Exp
(∧∗

(g−1)(δ)
)
�

∧
(g)(x).

Hint. Let us set θ(x) =
∧

(g)(Exp(δ) �x) ; the main difficulty is to prove that
θ(xy) = θ(x)θ(y) ; here is the beginning of the calculations:

θ(xy) =
∧

(g)( Exp(δ) � π(Exp(β′′) � (x⊗ y)))

=
∧

(g) ◦ π( Exp(π∗(δ) + β′′) � (x⊗ y)) ;

θ(x) θ(y) = π
(

Exp(β′′) �
∧

(g, g)
(
(Exp(δ) �x)⊗ (Exp(δ) � y)

))

=
∧

(g) ◦ π
(

Exp
(∧∗

(g, g)(β′′) + δ ⊗ 1 + 1⊗ δ
)
� (x⊗ y)

)
.
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(c) Suppose that 2 is invertible in K, and prove that the above equalities are
equivalent to this one, in which [β] is defined as in 4.7:

C�(g)(x) = Exp
(

1
2
[β]

)
�

∧
(g)

(
Exp

(
−1
2

[β]
)
� x

)
.

(4.ex.10)* With every bilinear form β on the module M is associated an algebra∧
(M ; β) that is isomorphic to the Clifford algebra of the quadratic form a �−→

β(a, a). In a dual way some people have associated a “Clifford coalgebra” with
any element γ of M ⊗M . Let γ′′ be the natural image of γ in

∧
(M) ⊗̂

∧
(M) ;

the comultiplication π′
γ :

∧
(M)→

∧
(M)⊗

∧
(M) is defined by

π′
γ(x) = Exp(γ′′) ∧ π′(x) .

Prove that π′
γ and ε′ (that is the projection

∧
(M) −→

∧0(M) = K) make
∧

(M)
become a coalgebra.

Now suppose that M is a finitely generated projective module, so that the
algebras

∧
(M∗) and

∧∗(M) can be identified; since γ induces a bilinear form on
M∗, a deformation

∧
(M∗; γ) can be defined; let πγ :

∧
(M∗)⊗

∧
(M∗)→

∧
(M∗)

be the corresponding multiplication mapping. Prove the following equality for all
x ∈

∧
(M) and all f and g ∈

∧
(M∗) :

(πγ(f ⊗ g))(x) = (f ⊗̂ g)(π′
γ(x)) .

Canonical scalar products

(4.ex.11) Let (M, q) be a quadratic module with M a finitely generated module
of rank ≤ 4 at every prime ideal, and such that the mapping a �−→ 2a is bijective
from M onto M .

(a) Prove that C�0(M, q) ⊕ C�4(M, q) is a subalgebra contained in the center
of C�0(M, q), and that it is the submodule of all x ∈ C�0(M, q) such that
τ(x) = x.

(b) Prove that M is the submodule of all x ∈ C�1(M, q) such that τ(x) = x. This
has been proved in (3.ex.19) with less hypotheses but with more difficulty.

(c) When (M, q) is a quadratic space of constant rank 4, prove that C�2(M, q) is a
projective module of constant rank 3 over QZ(M, q) = C�0(M, q)⊕C�4(M, q)
(see (4.8.15)).

(4.ex.12) Let (M, q) be again a quadratic module with M a finitely generated
module of rank ≤ 4, and such that the mapping a �−→ 2a is bijective from M onto
M . The main purpose of this exercise is to prove that the square of every element
of C�3(M, q) or C�4(M, q) belongs to K = C�0(M, q).

(a) Prove this when (M, q) is a quadratic space of constant rank 4, by means of
(4.8.15) or (2.6.2).
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In the following parts, where (M, q) is merely a quadratic module of rank ≤ 4,
the proofs are not so simple, and C�(M, q) is replaced with the algebra

∧
(M ; β)

(where β = bq/2) provided with a Clifford multiplication and an exterior one.

(b) Take y and y′ in
∧3(M) and prove that the Clifford product yy′ has no

component in
∧4(M); consequently yy′ + y′y belongs to K. Besides, when h

is an element of M∗, verify that (h � y) (h � y′) has no component in
∧4(M).

Hint. After localization, you can suppose that M is generated by (a, b, c, d),
and that y = a ∧ b ∧ c and y′ = a ∧ b ∧ d ; deduce from (4.7.7) that

a ∧ b ∧ c = −cba + β(b, c)a− β(a, c)b + β(a, b)c ,

a ∧ b ∧ d = abd− β(b, d)a + β(a, d)b − β(a, b)d ,

and remember (4.8.10); finally observe that yy′ + y′y is invariant by τ . A
direct calculation proves that

(h � (a ∧ b ∧ c)) ∧ (h � (a ∧ b ∧ d)) = 0.

(c) Prove that zz′ belongs to K for all z and z′ in
∧4(M).

Hint. After localization, you can suppose that z = z′ = a∧y for some a ∈M
and some y ∈

∧3(M); from (b) above you know that y2 ∈ K; set h = dq(a)
and use (4.8.13) in this way:

4 (a ∧ y)2 = (ay − ya)2 = h � (yay) − ay2a− ya2y

with yay = (h � y) y − ay2 .

For another point of view, see (4.ex.16).

(4.ex.13) Let (M, q) be a quadratic space of constant rank r, such that the map-
ping a �−→ 2a is bijective from M onto M , and let N be a direct summand of M
of constant rank s. The restrictions of q to N and N⊥ are denoted by q′ and q′′,
and C�(N, q′) and C�(N⊥, q′′) are treated as subalgebras of C�(M, q). Prove that
the multiplication

C�r(M, q)⊗ C�s(M, q) −→ C�r−s(M, q) (see (4.8.15))

induces a bijection

C�r(M, q)⊗ C�s(N, q′) −→ C�r−s(N⊥, q′′).

Hint. By means of (4.8.13) calculate 2b∧ (zx) when b, z and x belong respectively
to N⊥, C�r(M, q) and C�s(N, q′); you must discover that b∧(zx) = 0 ; this implies
that zx lies in C�r−s(N⊥, q′′).

(4.ex.14)* We suppose that 2 is invertible in K and we look for a method allowing
us to prove formulas like (4.8.14) for suitable subsets E of the group Sn of permu-
tations of {1, 2, . . . , n}. Such formulas involve algebras

∧
(M ; β) with β = bq/2,



Exercises 225

which are provided with exterior and Clifford multiplications. First, for any subset
E, we define the following n-multilinear mapping PE from Mn into

∧
(M ; β) :

PE(a1, a2, . . . , an) =
∑
s∈E

sgn(s) as(1)as(2) · · · as(n) .

Besides let Πn be the set of all sets {B1, B2, . . . , Bk} such that 0 ≤ 2k ≤ n and
B1, B2, . . . , Bk are pairwise disjoint subsets of {1, 2, . . . , n} all of cardinal 2.
When k > 0, they constitute a partition of a subset of even cardinal 2k. With
every � ∈ Πn we associate another n-multilinear mapping P defined in this way:
P(a1, a2, . . . , an) is the exterior product of all elements ai such that i does not
belong to B1 ∪ B2 ∪ · · · ∪ Bk, still multiplied by all β(ai, aj) such that {i, j} is
one of the sets B1, B2, . . . , Bk; of course the order of the factors in the exterior
product is the order of their indices.

(a) Explain that there exist integers N independent of K, M and q, which allow
you to write

PE(a1, a2, . . . , an) =
∑


N P(a1, a2, . . . , an).

Moreover N = card(E) when � is the element of Πn such that k = 0.
(b) Suppose that for all quadratic modules (M, q) over the field Q the n-linear

mapping PE vanishes whenever the variables ai and aj (with i �= j) are equal.
Prove that N = 0 if i or j or both belong to B1 ∪B2 ∪ · · · ∪Bk.
What happens when PE is always an alternate n-multilinear mapping?

(c) Example. Prove that the 5-linear mapping

(a1, a2, a3, a4, a5) �−→ a1a2a3a4a5 + a1a5a4a3a2 − a2a5a4a3a1 − a3a4a5a2a1

is always alternate.

(4.ex.15) We suppose that (M, q) is a quadratic module such that the mapping
a �−→ 2a is bijective from M onto M . Let J be the kernel of the symmetric
bilinear form (x, y) �−→ Scal(xy) mentioned in (4.8.16). Prove that J is an ideal
of C�(M, q), that it is the direct sum of all the intersections J ∩ C�k(M, q), and
that J ∩ C�0(M, q) = 0.
Comment. When (M, q) is a quadratic space, C�(M, q) is a graded Azumaya alge-
bra, and Proposition (6.7.4) implies J = 0 when J is a graded ideal of C�(M, q)
such that J ∩ K = 0 ; the equality J = 0 only means that the bilinear form
(x, y) �−→ Scal(xy) is weakly nondegenerate; compare with (4.8.16).

(4.ex.16) Let (M, q) be a quadratic module such that the mapping a �−→ 2a is
bijective from M onto M . We suppose that M is a finitely generated module, and
consequently there exists an integer r such that the rank of M at every prime ideal
is ≤ r. Let x and y be elements of C�j(M, q) and C�k(M, q) respectively; for every
integer m between 0 and r, let Γm(x, y) be the component of xy in C�m(M, q).
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Prove that Γm(y, x) vanishes when these two conditions are not both satisfied:
first |j − k| ≤ m ≤ inf(j + k, 2r − j − k) , secondly the parity of m must be
that of j + k . Moreover, the number of values of m satisfying both conditions is
1 + inf (j, k, r − j, r − k) .

Hint. The first result follows from yx = τ(τ(x)τ(y)) ; then the inequalities |j−k| ≤
m ≤ j + k follow from (4.8.10); but the inequality m ≤ 2r − j − k (only valid
for a symmetric β) requires more work. By localizations reduce the problem to
the case of a module M generated by r elements a1, a2, . . . , ar; you can suppose
that x and y are exterior products of some of these r elements; thus xy is a sum
of terms of this kind: exterior products of elements ai multiplied by some factors
β(ah, ai) and some universal integers (independent of M , q and K); to prove that
these integers vanish when m > 2r − j − k, you can assume that K = Q, and use
an orthogonal basis (b1, b2, . . . , br) of M besides the basis (a1, a2, . . . , ar).

A characterization of Clifford algebras

(4.ex.17) According to Theorem (4.8.7) the canonical morphism
∧

(M) →
Gr(C�(M, q)) is often an isomorphism. Conversely, if the graded algebra Gr(A)
derived from some filtered algebra A is isomorphic to an exterior algebra, in some
cases A must be isomorphic to a Clifford algebra. Observe that a graded algebra
isomorphism

∧
(N)→ Gr(A) already implies A≤−1 = 0 and A≤0 = K. Following

[Roy 1964], we will prove the following statement: if 2 is invertible in K, and if
Gr(A) is isomorphic (as a graded algebra) to the exterior algebra of a free module
N , then there exists a unique submodule M of A such that A≤1 = K ⊕M and
a2 belongs to K for all a ∈ M ; moreover the mapping a �−→ a2 is a quadratic form
q on M , and idM extends to an algebra isomorphism from C�(M, q) onto A .

For every k ∈ N the notation gk means the canonical mapping A≤k →
Grk(A). The proof will be achieved in four steps.

(a) Since N is free, there is a family (bj)j∈J constituting a basis of a submodule
of A≤1 supplementary to K. Since g1(bj)2 vanishes, b2

j belongs to A≤1; and
since bj and b2

j commute, there are scalars λj and µj such that b2
j = λjbj+µj .

Replace bj with ej = bj − λj/2, so that e2
j ∈ K. Let M be the submodule

generated by all the ej.
(b) If i and j are distinct elements of J , for the same reasons (ei + ej)2 can

be written λi,j(ei + ej) + µi,j for some scalars λi,j and µi,j . Observe that
(ei + ej)2 commutes with ej, whence λi,j = 0. Conclude that a2 ∈ K for
every a ∈M .

(c) Prove that M is the only submodule satisfying the above stated properties.
(d) Prove the bijectiveness of C�(M, q)→ A .
(e) The assumption about the invertibility of 2 has been used several times above;

the following counter-example shows that it is probably indispensable. Let
K be the field Z/2Z, and A the quotient of the polynomial ring K[x] by the
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ideal generated by x2− x− 1, which inherits the natural increasing filtration
of K[x]. Let b be the image of x in A; since g1(b)2 = g2(b2) = 0, Gr(A)
is isomorphic to an exterior algebra. Prove that A is not isomorphic to a
Clifford algebra.

Weyl algebras (for interested readers)

(4.ex.18) Let M be a K-module, and ψ an alternate bilinear form on M ; the
Weyl algebra W(M, ψ) (or WK(M, ψ)) is the quotient of the tensor algebra T(M)
by the ideal generated by all elements

a⊗ b− b ⊗ a− ψ(a, b) with a, b ∈M.

The natural morphism M → T(M) → W(M, ψ) is denoted by ρ, and 1ψ is the
unit element of W(M, ψ). This first exercise about W(M, ψ) only requires the
knowledge expounded in 3.1 and 3.2.

State the universal property directly derived from this definition. Develop
an elementary theory for this algebra W(M, ψ) by following the ideas presented
in 3.1 and 3.2. In particular, you must explain that W(M, ψ) is provided with
a twisted reversion τ , such that τ(ρ(a)) = ρ(a) for all a ∈ M , and τ(xy) =
(−1)∂x∂yτ(y)τ(x) for all (homogeneous) x and y ∈W(M, ψ).

Prove the theorem analogous to (3.2.4): the Weyl algebra of (M, ψ) ⊥ (M ′, ψ′) is
isomorphic to the ordinary tensor product W(M, ψ)⊗W(M ′, ψ′).

(4.ex.19) The notation is the same as in (4.ex.18). Explain why W(M, ψ) is a
comodule over the coalgebra S(M). Define the interior product f �x of an ele-
ment f of S∗(M) = Hom(S(M), K) and an element x of W(M, ψ), and state the
elementary properties of this operation.

(4.ex.20) The notation is the same as in (4.ex.18); we also consider the symmetric
algebra S(M). An admissible scalar product for ψ is a bilinear form β on M
such that ψ(a, b) = β(a, b) − β(b, a) for all a and b ∈ M . Of course, when 2 is
invertible in K, there is a canonical scalar product β = ψ/2. Assuming that M
is a finitely generated projective module, prove the existence of scalar products β
for any alternate bilinear form ψ on M . Then, following (4.ex.7), define an algebra
morphism Ψ from W(M, ψ)⊗W(M, ψ)o into End(S(M)), and bijections f and g
from W(M, ψ) onto S(M) that enable you to define an algebra S(M ; β) isomorphic
to W(M, ψ). Besides, K and M can be identified with their images in W(M, ψ),
and the notations 1ψ and ρ(a) can be replaced with 1 and a.

(4.ex.21) The notation is the same as in (4.ex.18) and (4.ex.19). Let β be any
bilinear form on M , and ψ′ the alternate bilinear form defined by ψ′(a, b) =
ψ(a, b)+β(a, b)−β(b, a). Here β′′ is the element of S∗2(M ⊕M) naturally derived
from β. To define Exp(β′′) in S∗(M ⊕M), you may either assume that the natural
ring morphism Z → K extends to a ring morphism Q → K, or use the results
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of (4.ex.2) if you are more courageous. On W(M, ψ) a new multiplication is defined
in this way:

(x, y) �−→ x � y = πψ

(
Exp(β′′) � (x ⊗ y)

)
.

Prove that this multiplication admits 1ψ as a unit element, that it satisfies equali-
ties analogous to (a) and (b) in (4.7.3), that it is associative, and that the resulting
algebra W(M, ψ; β) is isomorphic to W(M, ψ′) through a bijection Φβ that is also
an isomorphism of comodules over S(M).

(4.ex.22)* Let β be a bilinear form on M , and ψ the alternate bilinear form
defined by ψ(a, b) = β(a, b)−β(b, a). Moreover let L = K[[t]] be the ring of formal
series with coefficients in K. We identify SL(L ⊗ M) with L ⊗ S(M), and we
embed it into the algebra S̄L(L ⊗ M) which is by definition the direct product
of all submodules tj ⊗ Sk(M). For every n ∈ N let F≥n be the direct product of
all submodules tj ⊗ Sk(M) such that 2j + k ≥ n ; these ideals F≥n determine a
decreasing filtration of S̄L(L ⊗M) : F≥m ∨ F≥n ⊂ F≥m+n; mind that t⊗ 1 has
degree 2. We provide S̄L(L ⊗M) with the topology for which these ideals F≥n

constitute a basic family of neighbourhoods of 0; thus the subalgebra K[t]⊗S(M)
is dense in S̄L(L⊗M).

According to (4.ex.21), or to (4.ex.20) (when M is finitely generated and
projective), we can define an algebra SL(L ⊗M ; t ⊗ β), that is the module L ⊗
S(M) provided with a new multiplication which lets it become isomorphic to
WL(L⊗M, t⊗ ψ) :

∀a, b ∈ M, (1⊗ a)(1⊗ b)− (1⊗ b)(1⊗ a) = t ψ(a, b).

Prove that this new multiplication extends by continuity to S̄L(L ⊗ M). More-
over the submodules F≥n also determine a filtration for this new multiplication:
F≥m F≥n ⊂ F≥m+n.
Comment. Thus we get a “formal enlargement” S̄L(L ⊗M ; t⊗ β) of the algebra
WL(L⊗M, t⊗ ψ). When x is any element of L⊗ S≥1(M), any power series in x
is formally convergent in this enlargement.

(4.ex.23)* Let M be a vector space of finite dimension r over R, β an element of
M ⊗M , and ψ the element of M ⊗M derived from β by the skew symmetrization
a⊗ b �−→ a⊗ b− b⊗ a. We treat ψ as an alternate bilinear form on the dual space
M∗, and β as an admissible scalar product. From ψ we can derive a Weyl algebra
W(M∗, ψ), but here we are rather concerned with the Weyl algebra WC(C ⊗
M∗, i ⊗ ψ) (where i =

√
−1), and we are going to construct an “enlargement”

of this complex Weyl algebra. We use Fourier transformation according to this
definition: the letters x and y represent variables running respectively through M
and M∗, and the Fourier transform of a regular enough function f on M is defined
in this way:

F(f)(y) = (2π)−r/2

∫
M

exp(iy(x)) f(x) dx ;
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let A(M) be the space of functions f : M → C such that F(f) is a distribution
on M∗ with compact support; A(M) contains the algebra S(M∗) identified with
the algebra of polynomial functions on M . If f and g are elements of A(M), it
is known that their ordinary product fg satisfies this equality, in which ϕ is any
“test function” on M∗ (that is an infinitely derivable function, the derivatives of
which are all “rapidly vanishing” at infinity):
∫

M∗
ϕ(y) F(fg)(y) dy = (2π)−r/2

∫
M∗⊕M∗

ϕ(y1 + y2) F(f)(y1)F(g)(y2) dy1dy2.

Their �-product is the element f � g of A(M) defined by this equality, which,
according to the principles of Fourier analysis, is the natural translation of the
definition proposed in (4.ex.21):

∫
M∗

ϕ(y) F(f � g)(y) dy

= (2π)−r/2

∫
M∗⊕M∗

ϕ(y1 + y2) exp(−iβ(y1, y2)) F(f)(y1)F(g)(y2) dy1dy2.

Prove that this multiplication on A(M) is associative, admits the constant function
1 as a unit element, and satisfies this equality:

∀f, g ∈M∗, f � g − g � f = i ψ(f, g) .

You can even write formulas analogous to (4.8.9) for a �-product f � g in which
f or g belongs to M∗; for instance if f belongs to M∗, and if ∂a is the partial
derivation along the vector a ∈ M such that h(a) = β(f, h) for all h ∈ M∗, then
f � g = fg + i∂a(g) .
Comment. Unfortunately when neither F(f) nor F(g) has a compact support in
M∗, the above definition in general fails to define a �-product f �g ; existence theo-
rems for this �-product (with various additional hypotheses) require sophisticated
functional analysis, and are outside the scope of this book. Of course when the
supports of F(f) and F(g) are not compact, it becomes important that ϕ and all
its derivatives rapidly vanish at infinity; and above all, the factor i always present
beside β plays a capital role, because the function exp(−iβ(y1, y2)) is bounded on
M∗ ⊕M∗.



Chapter 5

Orthogonal Groups and
Lipschitz Groups

In this chapter, M is a K-module provided with a cliffordian quadratic form q;
according to Definition (4.8.1), this means that the canonical mappings K →
C�(M, q) and M → C�(M, q) are injective; thus the unit element 1q of C�(M, q)
is identified with the unit element 1 of K, and every a ∈ M is identified with
its image ρ(a) in C�(M, q); from now on, these identifications are done without
warning. The existence of an admissible scalar product β (see (4.8.6)) is still the
only available general criterion allowing us to recognize whether a quadratic form
is cliffordian (see (4.8.7)).

Since Chapter 5 is long and eventful, a short summary might be helpful. In
Section 5.1 it is explained that some automorphisms of (M, q) have been privileged
and called “orthogonal transformations”; an automorphism g of (M, q) is an or-
thogonal transformation if (by definition) its extension C�(g) to an automorphism
of C�(M, q) is a “generalized twisted inner automorphism”.

Moreover it is conjectured that these orthogonal transformations are some-
how related to a “Lipschitz monoid” Lip(M, q), which is some multiplicative subset
of C�(M, q), and that the Lie algebra naturally derived from Lip(M, q) should be
C�≤2

0 (M, q). The definition of the Lipschitz monoid requires particular filtrations of
Clifford algebras that are explained in 5.2. Their first properties and the derived
Lipschitz groups are presented in 5.3, and the especially important “invariance
property” in 5.4. Then in 5.5 the relations between Lip(M, q) and the Lie algebra
C�≤2

0 (M, q) are explored.
The following three sections are devoted to the conjecture according to which

all orthogonal transformations can be derived from Lip(M, q). This proves to be
true for all nondegenerate or tamely degenerate quadratic forms, and even for
some quadratic forms on modules that are not finitely generated (in particular for
all quadratic modules over fields).
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In 5.10 precise results involving Lipschitz monoids over fields are presented;
they require some additional knowledge about exterior algebras which is expound-
ed in 5.9. They show that Lipschitz monoids over fields coincide with the objects
that Lipschitz’s own works actually suggest.

5.1 Twisted inner automorphisms and

orthogonal groups

The automorphisms of the quadratic module (M, q) are of course the isomorphisms
(M, q) → (M, q) in the category CK(K) defined in 2.4; in other words, they are
the K-linear bijections g : M → M such that q(g(a)) = q(a) for all a ∈ M . These
automorphisms are sometimes called “linear isometries”. They constitute a group
Aut(M, q). Since the functor C� (see 3.1) transforms every such automorphism g
into a graded automorphism C�(g) of C�(M, q), the group Aut(M, q) is naturally
isomorphic to a subgroup of graded automorphisms of C�(M, q), and the follow-
ing lemma shows that it is exactly the subgroup of all automorphisms θ leaving
invariant the subspace M . If θ(M) = M , it is clear that the automorphism θ is
graded: it leaves C�0(M, q) and C�1(M, q) invariant.

(5.1.1) Lemma. If θ is an automorphism of C�(M, q) such that θ(M) = M , the
restriction of θ to M is an automorphism of (M, q).

Proof. For every a ∈M , q(θ(a)) = θ(a)2 = θ(a2) = θ(q(a)) = q(a) . �

Whereas this group Aut(M, q) is quite satisfactory for a quadratic space
(M, q) (in other words, when M is projective and finitely generated, and dq :
M → M∗ is bijective), in other cases it has been noticed that some automor-
phisms of (M, q), called “orthogonal transformations”, should be privileged; they
constitute a privileged subgroup GO(M, q) called the “orthogonal group”. The
names “orthogonal group” and “orthogonal transformation” have been imposed
by common use, although their meanings do not fit the usual meaning of the word
“orthogonal”. The distinction between Aut(M, q) and GO(M, q) corresponds to
the following idea: an automorphism g of (M, q) is called an orthogonal trans-
formation if C�(g) is a “generalized twisted inner automorphism” of C�(M, q)
according to Definition (5.1.5) beneath. When (M, q) is a quadratic space, the
groups Aut(M, q) and GO(M, q) will prove to be equal (see (5.8.1)), and in all
other cases in which it has been possible to calculate both groups, the eventual
discrepancy between them seems sensible. For instance when K is a field, it shall
be proved (in 5.8) that GO(M, q) is the subgroup of all g ∈ Aut(M, q) such that
Ker(g− id) = P⊥ for some subspace P of finite dimension in M ; when Ker(q) = 0,
because of (5.6.1) this is equivalent to Im(g−id) having a finite dimension, a condi-
tion generally admitted by people studying weakly nondegenerate quadratic forms
on infinite dimensional vector spaces (see for instance [Zassenhaus 1962]); when
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Ker(bq) has finite codimension in M , this is equivalent to Ker(g − id) ⊃ Ker(bq),
and the relevance of this condition is corroborated by the following example.

(5.1.2) Example. Let E be an affine euclidean space; this means that there is a
vector space Ev of finite dimension m over R that operates on E in a simply
transitive way (by “translations”), and that is provided with a positive definite
quadratic form q. For more than 2000 years, mathematicians have studied the
group Aut(E, Ev, q) of isometries of E; they are the affine transformations g :
E → E with a vectorial part gv in Aut(Ev, q). To reduce its study to the study
of a group of linear transformations, we introduce the space E′ of all affine forms
E → R; it is a vector space of dimension m + 1, containing the space N of all
constant functions E → R. Since the quotient E′/N is naturally isomorphic to
E∗

v = Hom(Ev, R), and since q induces on E∗
v a dual positive definite quadratic

form, the space E′ is naturally provided with a degenerate quadratic form q′,
the kernel of which is N . Every affine transformation g of E induces a linear
transformation g′ of E′ in a contravariant way, and g′ obviously leaves invariant
every element of N . It is easy to verify that the group morphism g �−→ g′−1

induces by restriction an isomorphism from Aut(E, Ev, q) onto the group of all
automorphisms g′ of (E′, q′) such that Ker(g′ − id′) ⊃ N .

Generalized twisted inner automorphisms

Let A = A0 ⊕ A1 be a graded algebra (associative with unit) containing K as a
central subalgebra, and let Autg(A) be the group of its graded automorphisms. If
x is an invertible homogeneous element of A, its inverse has the same parity as x,
and with x and x−1 is associated a twisted inner automorphism Θx defined in this
way for all homogeneous a ∈ A :

(5.1.3) Θx(a) = (−1)∂x∂a xax−1 ;

it is easy to verify that Θx is a graded automorphism of A such that Θx(x) = σ(x).
Instead of a homogeneous factor x we can also use a locally homogeneous one.

(5.1.4) Lemma. Let x be an element of the graded algebra A; the following three
assertions are equivalent, and when they are true, x is said to be locally homoge-
neous:

(a) there exists λ ∈ K such that (1 − λ)x is even and λx is odd;
(b) for every prime ideal p of K, x/1 is homogeneous in the localized algebra Ap;
(c) for every maximal ideal m of K, x/1 is homogeneous in Am.

Moreover (1− λ)λx = 0 when the assertion (a) is true.

Proof. If (1−λ)x and λx are respectively even and odd, (1−λ)λx vanishes because
it is both even and odd. Moreover if p is a prime ideal, (1− λ)/1 and λ/1 cannot
be both non-invertible in Kp; if (1−λ)/1 is invertible, x/1 is even like (1−λ)x/1,
and if λ/1 is invertible, x/1 is odd like λx/1. Since obviously (b)⇒(c), it remains
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to prove (c)⇒(a). Let x0 and x1 be the even and odd components of x, let a (resp.
b) be the ideal of all λ ∈ K such that λx1 = 0 (resp. λx0 = 0); if m is any maximal
ideal, the image of x in Am is even (resp. odd) if and only if a (resp. b) is not
contained in m; the assumption that this image is homogeneous implies that a+ b
is never contained in m; consequently a + b = K and there is an element λ in b
such that 1− λ belongs to a. �

When x is invertible and locally homogeneous, the vanishing of (1 − λ)λx
implies that λ is an idempotent, and that A is the direct sum of the ideals (1−λ)A
and λA; moreover (1−λ)x−1 and λx−1 are respectively even and odd. It is natural
to apply (5.1.3) in each ideal (1 − λ)A and λA and to define the twisted inner
automorphism Θx in this way:

Θx(a) = (1− λ)xax−1 + λxσ(a)x−1.

This definition still implies Θx(x) = σ(x).
The product of two locally homogeneous elements is still locally homoge-

neous, since all its localizations are homogeneous. Therefore the invertible locally
homogeneous elements of A constitute a group, and the mapping x �−→ Θx is a
group morphism from this group into Autg(A).

Nevertheless this concept of twisted inner automorphism is much too restric-
tive. The choice of a suitable generalization of this concept is still a subject of
discussions; yet the following definition is manageable enough, and well suitable
to the quadratic modules later under consideration.

(5.1.5) Definition. If θ is a graded automorphism of A, we denote by Zg(θ) the
graded submodule generated by all homogeneous x ∈ A such that θ(a)x =
(−1)∂x∂axa for all homogeneous a ∈ A. Thus Zg(θ−1) is the submodule generated
by all homogeneous x′ ∈ A such that x′θ(a) = (−1)∂x∂aax′ for all homogeneous
a ∈ A. We say that θ is a generalized twisted inner automorphism of A if there is
a finite sequence (x1, x2, . . . , xn) of homogeneous elements of Zg(θ) (of any length
n > 0) and a sequence (x′

1, x
′
2, . . . , x

′
n) of homogeneous elements of Zg(θ−1) such

that xix
′
i ∈ K for i = 1, 2, . . . , n, and K is generated as an ideal by the n ele-

ments xix
′
i. Below in (5.1.6) it shall appear that we get an equivalent definition if

we replace Zg(θ) (resp. Zg(θ−1)) with the submodule Zr(θ) (resp. Zr(θ−1)) of all
x ∈ Zg(θ) (resp. x′ ∈ Zg(θ−1)) such that θ(x) = σ(x) (resp. θ(x′) = σ(x′)).

It is clear that the graded center Zg(A) defined in (3.5.2) is equal to Zg(idA).
By definition the reduced center Zr(A) is the same thing as Zr(idA). Its even
component is Zr

0(A) = Zg
0(A) = Z0(A), and its odd component Zr

1(A) is the subset
of all x ∈ Zg

1(A) such that 2x = 0, and also the subset of all x ∈ Z1(A) such that
2x = 0. It is an easy exercise to prove that Zr(A) is the intersection of Z(A) and
Zg(A) when the grading of A is regular (see Definitions (3.5.2)).

The following properties of the submodules Zg(θ) and Zr(θ) should be evi-
dent. If θ = Θx for some invertible locally homogeneous x, it is clear that x ∈ Zr(θ)
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and x−1 ∈ Zr(θ−1). Conversely if Zg(θ) contains an invertible locally homogeneous
element x, then Θx = θ. If x and y belong respectively to Zg(θ1) and Zg(θ2), it is
easy to verify that xy belongs to Zg(θ1θ2). If x and y belong respectively to Zr(θ1)
and Zr(θ2), then xy belongs to Zr(θ1θ2); indeed the equality θ1θ2(xy) = σ(xy)
follows from this calculation:

θ1θ2(xy) = θ1(θ2(x)θ2(y)) = (−1)∂yθ1(θ2(x) y) = (−1)∂y+∂x∂yθ1(yx)

= (−1)∂y+∂x∂yθ1(y)θ1(x) = (−1)∂x+∂y+∂x∂yθ1(y)x = (−1)∂x+∂yxy .

Consequently every submodule Zg(θ) (resp. Zr(θ)) is a module (on the left or right
side) over the algebra Zg(A) (resp. Zr(A)). And the products xx′ and x′x belong
to Zg(A) (resp. Zr(A)) whenever x belongs to Zg(θ) (resp. Zr(θ)) and x′ to Zg(θ−1)
(resp. Zr(θ−1)). In particular all products xix

′
j and x′

jxi belong to Zg(A) when
(x1, . . . , xn) and (x′

1, . . . , x
′
n) are the sequences mentioned in Definition (5.1.5).

If K ′ is an extension of K, and K ′⊗ θ the derived automorphism of K ′⊗A,
there is a natural mapping K ′⊗Zg(θ) → Zg(K ′⊗θ); therefore if θ is a generalized
twisted inner automorphism, the same is true for K ′ ⊗ θ. When A is finitely
generated as an algebra, Zg(θ) can be presented as a finite intersection of kernels of
mappings x �−→ θ(a)x−(−1)∂x∂axa , and thus for a flat extension K → K ′ there is
an equality K ′⊗Zg(θ) = Zg(K ′⊗θ) . For the same reasons K ′⊗Zr(θ) = Zr(K ′⊗θ).
When K ′ is a ring of fractions of K, this equality means that every element of
Zr(K ′ ⊗ θ) is a fraction with numerator in Zr(θ).

The next proposition explains why Zr(θ) is more convenient than Zg(θ), and
proves that θ−1 too is a generalized twisted inner automorphism if θ is such an
automorphism.

(5.1.6) Proposition. If θ is a generalized twisted inner automorphism, every element
of Zr(θ) commutes with every element of Zr(θ−1). Moreover there is a sequence
(u1, u2, . . . , un) of homogeneous elements of Zr(θ) and a sequence (u′

1, u
′
2, . . . , u

′
n)

of homogeneous elements of Zr(θ−1) such that uiu
′
i = u′

iui ∈ K for i = 1, 2, . . . , n,
and K is generated by the n products uiu

′
i as an ideal.

Proof. If x is a homogeneous element of Zg(θ), and x′ a homogeneous element
of Zg(θ−1), then θ(x)x = (−1)∂xx2 and x′θ(x′) = (−1)∂x′

x′2. If their product
s = xx′ belongs to K, it follows that sx ∈ Zr(θ) and sx′ ∈ Zr(θ−1); indeed:

θ(sx) = θ(x)xx′ = (−1)∂xx2x′ = σ(sx) ,

θ(sx′) = xx′θ(x′) = (−1)∂x′
xx′2 = σ(sx′) .

If s = 0, it is clear that sx′ commutes with x. If s �= 0, then ∂x = ∂x′, thus x′x
belongs to Zg

0(A) = Z0(A), and it is still true that sx′ commutes with x :

(sx′)x = xx′(x′x) = x(x′x)x′ = sxx′ = x(sx′).

Consequently sx and sx′ commute and their product is s3. We can derive the
sequences (ui) and (u′

i) mentioned in (5.1.6) from the sequences (xi) and (x′
i)
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given in (5.1.5) in this way: we set si = xix
′
i, ui = sixi and u′

i = six
′
i for i = 1,

2, . . . , n. If K is generated by the elements si as an ideal, it is generated by the
elements s3

i too. Of course we can remove all pairs (xi, x
′
i) such that ∂xi �= ∂x′

i

(whence si = 0).
Let us prove that every homogeneous x ∈ Zr(θ) commutes with every homo-

geneous x′ ∈ Zr(θ−1). There are elements λi ∈ K such that 1 =
∑n

i=1 λiuiu
′
i ;

since u′
jx and xx′ belong to Zr(A), therefore to Z(A), we can write

x′x =
∑

i

∑
j

x′λiuiu
′
iλjuj(u′

jx) =
∑

i

∑
j

λiλj(u′
jx)x′uiu

′
iuj

=
∑

i

∑
j

λiλju
′
j(xx′)uiu

′
iuj =

∑
i

∑
j

(xx′)λju
′
j(λiuiu

′
i)uj ;

since u′
juj = uju

′
j , the final result is x′x = xx′. �

It is not true that every x ∈ Zg(θ) commutes with every x′ ∈ Zg(θ−1) for
every generalized twisted inner automorphism θ. Indeed there are graded algebras
(for instance exterior algebras) such that Zg(A) is not a commutative algebra.
Now it is explained how to construct generalized twisted inner automorphisms.

(5.1.7) Theorem. Let (x1, x2, . . . , xn) and (x′
1, x

′
2, . . . , x

′
n) be two sequences of ho-

mogeneous elements of A (of the same length n > 0) such that

– xix
′
i ∈ K for i = 1, 2, . . . , n, and K is generated as an ideal by the n elements

xix
′
i,

– xix
′
j and x′

jxi belong to Zg(A) for all i and j.

There exists a generalized twisted inner automorphism θ satisfying all these prop-
erties:

(a) θ is the only graded automorphism of A such that Zg(θ) contains xi for
i = 1, 2, . . . , n, and also the only one such that Zg(θ−1) contains all x′

i.
(b) Zg(θ) (resp. Zg(θ−1)) is the submodule over Zg(A) generated by the n ele-

ments xi (resp. x′
i).

(c) an element x (resp. x′) of A belongs to Zg(θ) (resp. Zg(θ−1)) if and only if
xx′

i (resp. x′xi) belongs to Zg(A) for i = 1, 2, . . . , n, or equivalently, if and
only if x′

ix (resp. xix
′) belongs to Zg(A) for all i.

Besides, this theorem still holds if we replace Zg(A), Zg(θ) and Zg(θ−1) with Zr(A),
Zr(θ) and Zr(θ−1).

Proof. We can assume that ∂xi = ∂x′
i for i = 1, 2, . . . , n, and we can write

1 =
∑

i λixix
′
i for some family (λ1, λ2, . . . , λn) of elements of K. If θ is a graded

automorphism such that Zg(θ) contains xi for i = 1, 2, . . . , n, then for every ho-
mogeneous a ∈ A,

θ(a) =
∑

i

λiθ(a)xix
′
i =

∑
i

(−1)∂a∂xiλixiax′
i ;
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this proves the unicity of θ. The same conclusion holds if Zg(θ−1) contains all x′
i :

θ(a) =
∑

i

λixix
′
iθ(a) =

∑
i

(−1)∂a∂xiλixiax′
i.

Conversely let us set

θ(a) =
∑

i

(−1)∂a∂xiλixiax′
i and θ′(a) =

∑
i

(−1)∂a∂xiλix
′
iaxi ,

and let us prove that θ′ = θ−1 and that θ satisfies all the announced properties.
We first achieve the proof with the supplementary hypothesis xix

′
i = x′

ixi for
i = 1, 2, . . . , n. Since all xjx

′
i belong to Zg(A), we get for all homogeneous a ∈ A,

θθ′(a) =
∑

i

∑
j

(−1)∂a(∂xi+∂xj)λixi(λjx
′
jaxj)x′

i

=
∑

i

∑
j

(λixi(λjx
′
jxj)x′

i)a = a ,

whence θθ′ = idA. And similarly θ′θ = idA because all x′
jxi are in Zg(A). Let us

prove that θ is an algebra morphism. It is clear that θ(1) = 1. Moreover, since all
x′

ixj belong to Zg(A),

θ(a)θ(b) =
∑

i

∑
j

(−1)∂a∂xi(λixiax′
i)(−1)∂b∂xj (λjxjbx

′
j)

=
∑

i

∑
j

(−1)(∂a+∂b)∂xi(λixiabx′
i)(λjxjx

′
j) = θ(ab).

Let x be a homogeneous element such that x′
ix ∈ Zg(A) for i = 1, 2, . . . , n, and let

us prove that x ∈ Zg(θ); indeed for all homogeneous a ∈ A we get

θ(a)x =
∑

i

(−1)∂a∂xi(λixiax′
i)x =

∑
i

(−1)∂a∂x(λixix
′
i)xa = (−1)∂a∂xxa ;

if all x′
ix belong to Zr(A), then x ∈ Zr(θ) because

θ−1(x) =
∑

i

(−1)∂xi∂xλix
′
ixxi =

∑
i

(−1)∂xiλixix
′
ix =

∑
i

λiσ(xix
′
ix) = σ(x).

If we suppose that all xx′
i are in Zg(A), then we write

θ(a)x =
∑

i

θ(a)x(λix
′
ixi) =

∑
i

(−1)∂a(∂x+∂xi)x(λix
′
iθ(a)xi) = (−1)∂a∂xxa ,

whence x ∈ Zg(θ); and if all xx′
i belong to Zr(A), we verify the equality θ(x) = σ(x)

as above and still conclude that x ∈ Zr(θ).
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In the remainder of the proof only submodules Zg(. . . ) are mentioned, but the
argument is still valid if we replace them with Zr(. . . ). From the previous results
it follows that the n elements xi belong to Zg(θ) (indeed all xix

′
j are in Zg(A));

therefore Zg(θ) contains the submodule over Zg(A) that they generate. Similarly
Zg(θ−1) contains the submodule over Zg(A) generated by the n elements x′

i. Now
it is clear that all xx′

i and x′
ix belong to Zg(A) for every x ∈ Zg(θ). This allows us

to prove that every x ∈ Zg(θ) is in the Zg(A)-module generated by all xi :

x =
∑

i

x(λix
′
ixi) =

∑
i

(λixx′
i)xi.

Since the equalities xix
′
i = x′

ixi let the sequences (xi) and (x′
i) play symmetrical

roles, we can claim that the three statements (a), (b), (c) have been proved.
Now we must get rid of the supplementary hypothesis xix

′
i = x′

ixi. Let us
set x′′

i = (xix
′
i)x

′
i for all i. From the calculations at the beginning of the proof of

(5.1.6) we know that xix
′′
i = x′′

i xi = (xx′
i)

2 for all i. Since K is also generated as an
ideal by all (xix

′
i)

2, we can apply the previous results to the pair of sequences (xi)
and (x′′

i ), and thus we prove again the three statements (a), (b), (c). In particular
each xi belongs to Zg(θ) because xix

′′
j belongs to Zg(A) for j = 1, 2, . . . , n, and

each x′
i belongs to Zg(θ−1) because x′

ixj belongs to Zg(A) for j = 1, 2, . . . , n. �

The first corollary is evident. In the subsequent two corollaries there are
tensor products over the commutative ring Zr(A); in such tensor products the
parity gradings must be forgotten.

(5.1.8) Corollary. If Zg(A) = Zr(A), then Zg(θ) = Zr(θ) whenever θ is a general-
ized twisted inner automorphism.

(5.1.9) Corollary. If θ is a generalized twisted inner automorphism, the mapping
x ⊗ x′ �−→ xx′ = x′x induces an isomorphism from Zr(θ) ⊗Zr(A) Zr(θ−1) onto
Zr(A).

Proof. The bijectiveness of this mapping can be proved by localization at every
prime ideal p of K; because of (1.10.5) it is equivalent to prove the bijectiveness of

Zr(θ)p ⊗Zr(A)p
Zr(θ−1)p −→ Zr(A)p.

From (5.1.5) we deduce the existence of x ∈ Zr(θ) and x′ ∈ Zr(θ−1) such that
xx′ is an element s ∈ K outside p, and we first observe that (x/s) ⊗ (x′/1) is
mapped to 1/1 in Zr(A)p. If we prove that Zr(θ)p and Zr(θ−1)p are free modules
over Zr(A)p respectively generated by x/1 and x′/1, the conclusion follows. Since
x/1 and x′/1 are invertible, they generate free modules. Moreover every y/t with
y ∈ Zr(θ) is in the submodule generated by x/1 because

y

t
=

yx′

st

x

1
with yx′ ∈ Zr(A).

Similarly Zr(θ−1)p is generated by x′/1. �
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(5.1.10) Corollary. If θ1 and θ2 are generalized twisted inner automorphisms, then
θ1θ2 too is such an automorphism, and the mapping x ⊗ y �−→ xy induces an
isomorphism from Zr(θ1)⊗Zr(A) Zr(θ2) onto Zr(θ1θ2).

Proof. If θ1 is determined by two sequences of n elements (xi) and (x′
i) as in (5.1.7),

and θ2 by two sequences of p elements (yj) and (y′
j), then the np products xiyj

(resp. y′
jx

′
i) belong to Zr(θ1θ2) (resp. Zr((θ1θ2)−1)). Moreover from two equalities

1 =
∑

i λixix
′
i =

∑
j µjyjy

′
j we easily deduce 1 =

∑
i

∑
j(λiµj)(xiyj)(y′

jx
′
i).

Consequently θ1θ2 is the generalized twisted inner automorphism determined by
the two families (xiyj) and (y′

jx
′
i), and Zr(θ1θ2) is the Zr(A)-module generated

by all xiyj . This shows the surjectiveness of the mapping Zr(θ1)⊗Zr(A) Zr(θ2) →
Zr(θ1θ2). It is even bijective because of (1.13.5); indeed (5.1.9) shows that the
source and the target are invertible modules over Zr(A). �

The previous corollary shows that the generalized twisted inner automor-
phisms constitute a group. Now we consider again rings of fractions of K; the
Zariski extensions mentioned beneath in (5.1.11) are defined in (1.10.6), and you
may understand the localizations of K as localizations at prime or maximal ideals
at your convenience.

(5.1.11) Theorem. The following three assertions are equivalent for every θ ∈
Autg(A) :

(a) θ is a generalized twisted inner automorphism;
(b) there is a Zariski extension L =

∏n
i=1 Ksi such that L ⊗ θ = Θz for some

invertible z = (z1, z2, . . . , zn) in which the numerators of all fractions zi (resp.
z−1

i ) are homogeneous elements of Zr(θ) (resp. Zr(θ−1));
(c) every localization of θ is the twisted inner automorphism determined by an

invertible homogeneous fraction ξ such that the numerators of ξ and ξ−1 are
respectively in Zr(θ) and Zr(θ−1).

If A is finitely generated as an algebra, or more generally if Zr(K ′⊗θ) = K ′⊗Zr(θ)
(and the same with θ−1) for every ring of fractions K ′, these assertions are also
equivalent to the following ones:

(d) there is a Zariski extension L =
∏n

i=1 Ksi such that L ⊗ θ = Θz for some
invertible z = (z1, z2, . . . , zn) with n homogeneous components zi;

(e) every localization of θ is a twisted inner automorphism derived from some
invertible homogeneous element.

Proof. It is clear that (a)⇒(b) and (a)⇒(c). Conversely let K ′ = S−1K be a ring
of fractions of K such that K ′⊗ θ = Θξ for some invertible homogeneous fraction
ξ such that ξ = x/t with x ∈ Zr(θ) and ξ−1 = x′/t′ with x′ ∈ Zr(θ−1); of course
t and t′ are in S. Since these fractions are inverse to each other, uxx′ = utt′ for
some u ∈ S, and thus we have elements x ∈ Zr(θ) and x′′ = ux′ ∈ Zr(θ−1) with
a product xx′′ in S. When K ′ is a component Ksi of a Zariski extension L, then
xx′′ is a power of si; now if K is generated as an ideal by some elements s1,
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s2, . . . , sn, it is also generated by any sequence of powers of these elements, and
this proves (b)⇒(a). To prove (c)⇒(a), it suffices to remember that, from any
subset of K that is not contained in any maximal ideal, we can extract a finite
sequence that generates K as an ideal. At last it is evident that (b)⇔(d) and
(c)⇔(e) when the additional hypothesis is true. �

(5.1.12) Remarks.

(a) When Zg
1(A) contains an invertible element x, then 1 = xx−1 = −x−1x =

−1 ; thus the equality 2 = 0 holds in K, and Zr(A) = Zg(A) = Z(A).
(b) The reduced odd component Zr

1(A) plays a capital role when we try to assign
a parity to a generalized twisted inner automorphism θ at some prime ideal p
of K. Indeed Zr(θ)p is a free module over Zr(A)p generated by some invertible
homogeneous element ξ (look at the proof of (5.1.9)), and each element of
Zr(θ)p is equal to ζξ for some ζ ∈ Zr(A)p. If the odd component Zr

1(A)p

contains no invertible elements, all homogeneous invertible elements of Zr(θ)p

have the same parity as ξ, and thus θ has a parity (that is the parity of ξ)
at the point p. Because of the previous remark, it has a parity at this point
whenever the image of 2 in Kp does not vanish.

Some of the generalized twisted inner automorphisms are especially conve-
nient and manageable, and shall now be presented.

A graded submodule X of A is called a graded invertible submodule of A
(and is said to be invertible inside A) if there exists a graded submodule X ′ of A
such that the multiplication mapping πA : A⊗ A→ A induces two isomorphisms
X ⊗X ′ → K and X ′ ⊗X → K. This implies that X and X ′ are finitely gener-
ated projective modules of constant rank 1 (see (1.12.10)). It is clear that every
localization Xp at a prime ideal of K is generated by an invertible homogeneous
element ξ ∈ Ap, and that X ′

p is generated by ξ−1; consequently X ′ is determined
by X , it is called the inverse submodule of X and denoted by X−1. It is clear that
every x ∈ X commutes with every x′ ∈ X−1.

If X and Y are graded invertible submodules of A, it is clear that XY (the
submodule generated by all products xy with x ∈ X and y ∈ Y ) is still invertible
inside A. Thus the graded invertible submodules of A constitute a group. Among
them the free submodules are exactly the submodules generated by an invertible
locally homogeneous element of A.

If K is a direct summand of A (therefore of A0), every graded invertible
submodule of A is a graded direct summand; indeed the multiplication mapping
πA induces a bijection X⊗A→ A which maps the graded direct summand X⊗K
onto X . This property is always true when A is a finitely generated projective
module (see (1.13.2)).

If X is a graded invertible submodule of A, there are homogeneous x1, . . . ,
xn ∈ X and homogeneous x′

1,. . . ,x
′
n ∈ X−1 such that

∑
i xix

′
i = 1 ; since moreover

all products xix
′
j = x′

jxi belong to K, from (5.1.7) it immediately follows that
there exists a unique graded automorphism ΘX such that Zr(ΘX) contains X ; it
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is called the (generalized) twisted inner automorphism derived from X . It is clear
that the mapping X �−→ ΘX is a group morphism.

Let θ be a graded automorphism of A such that Zg(θ) contains a graded
invertible submodule X of A. Then from (5.1.7) we deduce that ΘX coincides
with θ, that X ⊂ Zr(θ) and X−1 ⊂ Zr(θ−1).

In Autg(A) we can distinguish the subgroup G of all automorphisms Θx

derived from an invertible locally homogeneous x, the larger subgroup G′ of all
ΘX derived from a graded invertible submodule X , and the still larger subgroup
G′′ of all generalized twisted inner automorphisms. These subgroups of Autg(A)
are normal subgroups because Zr(fgf−1) = f(Zr(g)) for all f , g ∈ Autg(A). When
Zr(A) = K, then G′ = G′′ (see (5.1.9)); when Pic(K) is trivial, then G = G′.

Orthogonal transformations

The orthogonal transformations of (M, q) are by definition the automorphisms g
of (M, q) such that C�(g) is a generalized twisted inner automorphism of C�(M, q)
according to Definition (5.1.5). All localizations of orthogonal transformations are
orthogonal transformations, and when M is finitely generated, an automorphism
of (M, q) is an orthogonal transformation if and only if its localizations are or-
thogonal transformations (see (5.1.11)). In the orthogonal group GO(M, q) we
can distinguish the subgroup of all g such that C�(g) = ΘX for some graded in-
vertible submodule X of C�(M, q), and the subgroup of all g such that C�(g) = Θx

for some invertible locally homogeneous x ∈ C�(M, q); the group GO(M, q) and
these two subgroups are normal subgroups of Aut(M, q).

The reversion τ (see (3.1.4)) plays an important role in the study of an
automorphism g of (M, q), because

(5.1.13) Zr(C�(g)−1) = τ( Zr(C�(g)) ).

Indeed, since the algebra C�(M, q) is generated by M , x belongs to Zg(C�(g)) if and
only if g(a)x = σ(x)a for all a ∈M , and this is equivalent to τ(x) g(a) = a στ(x)
which means that τ(x) belongs to Zg(C�(g)−1). And since C�(g) commutes with
τ , the equality C�(g)(x) = σ(x) is equivalent to C�(g)(τ(x)) = στ(x). �

Since we distinguish a subgroup GO(M, q) in Aut(M, q), we must face this
important question: which geometrical properties (not involving C�(M, q)) char-
acterize the elements of GO(M, q) inside Aut(M, q)? The next proposition reveals
an important property of every orthogonal transformation g : there exists a finitely
generated submodule P of M such that Ker(g− id) contains P⊥. For all quadratic
modules under consideration in 5.8, this property suffices to distinguish orthogonal
transformations from other automorphisms of (M, q).

(5.1.14) Proposition. Let g be an orthogonal transformation of (M, q) and let
(x1, . . . , xn) and (x′

1, . . . , x
′
n) be sequences of homogeneous elements of Zr(C�(g))

and Zr(C�(g)−1) satisfying the properties required in (5.1.5). If all these xi and x′
i
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belong to the subalgebra generated by some submodule P of M , then g(a) = a for
all a ∈ P⊥, and g(a)− a ∈ P for all a ∈M .

Proof. This is a consequence of (4.4.12): ax − σ(x)a = dq(a) �x . If we write
1 =

∑
i λixix

′
i as in the proof of (5.1.7), then, for all a ∈M ,

g(a)− a =
∑

i

λi(σ(xi)a− axi) x′
i = −

∑
i

λi(dq(a) �xi) x′
i.

By induction on k it is easy to prove that dq(a) �x belongs to the subalgebra
generated by P if x is the product of k elements of P , and even that it vanishes
if moreover a belongs to P⊥. The same can be said about all factors dq(a) �xi

above, whence the conclusions. �

Now it seems natural to consider the group GC�(M, q) of all invertible lo-
cally homogeneous x ∈ C�(M, q) such that Θx(M) = M , the group G′C�(M, q) of
all graded invertible submodules X ⊂ C�(M, q) such that ΘX(M) = M , and the
group G′′C�(M, q) of all submodules Zr(C�(g)) derived from orthogonal transfor-
mations. Therefore G′′C�(M, q) is canonically isomorphic to GO(M, q). Elements
x such that Θx(M) = M were still called “Clifford–Lipschitz numbers” by E.
Cartan and M. Schenberg, but after 1950, for obscure reasons, GC�(M, q) became
known as the “Clifford group”. Here we accept this name although it is historically
incorrect; indeed Clifford died too soon to concern himself with automorphisms
of quadratic spaces, and Lipschitz studied automorphisms of real positive definite
quadratic spaces before he became aware that he used the algebras that Clifford
had just discovered two years before him.

For quadratic spaces over fields or local rings, GC�(M, q) is perhaps suffi-
cient. For quadratic spaces over arbitrary rings, G′C�(M, q) may still help us ef-
fectively. But for more general quadratic modules (even over fields), GC�(M, q) and
G′C�(M, q) are misleading. All invertible locally homogeneous x ∈ Zr(C�(M, q))
belong to GC�(M, q), all graded invertible X⊂Zr(C�(M,q)) belong to G′C�(M, q),
but since Θx or ΘX is the identity automorphism of C�(M, q), they are superfluous
elements with a trivial image idM in GO(M, q). When Zr(C�(M, q)) is very large,
they are not only superfluous, but most of them are even harmful because they
raise impassable obstructions to the generalization of traditional theorems beyond
the traditional nondegenerate case. The disorder becomes obvious when we exam-
ine the derived Lie algebras (see (5.5.5) farther). Indeed this examination suggests
that all orthogonal transformations should be derived from groups associated with
the Lie algebra C�≤2

0 (M, q).
We get groups associated with C�≤2

0 (M, q) if we derive them from some mul-
tiplicative subset Lip(M, q) of C�(M, q) which we propose to call the “Lipschitz
monoid”. A historically correct name is better when no name has yet become
usual; moreover Lipschitz’s original ideas and methods are more recognizable in
Lipschitz monoids than in Clifford groups. Whereas Lipschitz only studied real pos-
itive definite quadratic forms, more general Lipschitz monoids appeared in [Sato,
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Miwa, Jimbo 1978,. . . ] (yet without reference to Lipschitz), and also in [Helmstet-
ter 1977,. . . ] (although this author formerly called them “Clifford monoids” before
being gently rebuked by P. Lounesto for his ignorance of Lipschitz’s contribution).
The relevance of Lipschitz monoids is confirmed by several stability properties, in
particular the stability by interior multiplications (see (5.3.13)), their functorial
property (see (5.3.8)) and the invariance property (see (5.4.1)), and by their im-
portant role in the study of hyperbolic spaces (see Chapter 7). The Japanese team
Sato-Miwa-Jimbo also proved their relevance in applications to remote topics.

Instead of the three Clifford groups GC�(M, q), G′C�(M, q) and G′′C�(M, q),
we shall use three subgroups GLip(M, q), G′Lip(M, q) and G′′Lip(M, q) derived
from the Lipschitz monoid Lip(M, q). For all quadratic modules here under con-
sideration we shall realize that G′′Lip(M, q) = G′′C�(M, q); for the other quadratic
modules this equality can be proposed as a main conjecture. Another less
important conjecture has been confirmed as far as the study has reached:
when GC�(M, q) (resp. G′C�(M, q)) is strictly larger than GLip(M, q) (resp.
G′Lip(M, q)), its non-lipschitzian elements are actually superfluous.

5.2 Filtrations of Clifford algebras

Here we only consider increasing filtrations; therefore the word “increasing” will
be omitted. A filtration on a K-module A is a family of submodules (A≤k)k∈Z

such that A≤k ⊂ A≤k+1 for all k ∈ Z. It is said that the filtration begins with
the degree j if A≤j−1 = 0 and A≤j �= 0; it is said that it ends with the degree k
if A≤k−1 �= A and A≤k = A. When no precise filtration has been given to a K-
module B, it is automatically provided with the trivial filtration that begins and
ends with the degree 0; in particular, this convention holds for K itself. We set

A−∞ =
⋂
k∈Z

A≤k and A<+∞ =
⋃
k∈Z

A≤k

and we say that the filtration is regular at −∞ (resp. at +∞) if A−∞ = 0 (resp.
A<+∞ = A). There are two ludicrous filtrations which should be avoided (when
A �= 0): for the former one all A≤k are 0 (this is the maximal irregularity at +∞);
for the latter one, all A≤k are A itself (this is the maximal irregularity at −∞).

The filtered modules constitute a category; a filtered morphism f : A → B
is a linear mapping f such that f(A≤k) ⊂ B≤k for all k. Moreover A ⊗ B and
Hom(A, B) are filtered in this way: (A⊗B)≤k is the sum of the images in A⊗B of
all modules A≤j⊗B≤k−j (with an arbitrary j), and Hom≤k(A, B) is the submodule
of all f ∈ Hom(A, B) such that f(A≤j) ⊂ B≤j+k for all j.

An algebra A (associative with unit 1) is a filtered algebra if it is a filtered
module and if the linear mappings π : A ⊗ A → A and ε : K → A (see 4.1) are
filtered; in other words, if 1 belongs to A≤0 and A≤jA≤k ⊂ A≤j+k for all j and k;
this implies that A≤0 is a subalgebra. Of course the filtered algebras (together with
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the filtered algebra morphisms) constitute a new category. If a filtered K-module
M is a left module over a filtered algebra A, it is said to be a filtered left A-module
if the mapping A⊗M →M is filtered, in other words if A≤jM≤k ⊂ M≤j+k for all
j and k. Filtered coalgebras and filtered comodules are defined in an analogous way.

The filtering degree (or degree) of an element x of A is the smallest k such that
x belongs to A≤k. When the notation ∂x refers to a filtration, we only impose the
condition ∂xy ≤ ∂x+∂y, and in all new definitions we shall require this condition
to hold for all kinds of products.

It is clear that the tensor product of two filtered algebras (resp. coalgebras)
is a filtered algebra (resp. coalgebra); the following statement deserves more at-
tention.

(5.2.1) Lemma. Let A be a filtered coalgebra, and B a filtered algebra.

(a) The algebra Hom(A, B) defined in (4.1.1) is a filtered algebra.
(b) When B is provided with the trivial filtration, (for instance when B = K and

Hom(A, B) = A∗), then Hom≤k(A, B) is the subset of all f ∈ Hom(A, B)
vanishing on A≤−k−1.

(c) When P is a filtered right comodule over A and a filtered left module over B,
and when the comultiplication P → P ⊗ A is B-linear (see (4.1.2)), then P
is a filtered left module over Hom(A, B).

Proof. These statements are direct consequences of the definitions; only the first
one will be justified here. When f belongs to Hom≤j(A, B), g to Hom≤k(A, B) and
x to A≤i, then π′

A(x) is a sum of tensor products x′
n⊗x′′

n satisfying this condition:
there exists h (depending on n) such that x′

n ∈ A≤h and x′′
n ∈ A≤i−h. Now (f∗g)(x)

is the sum of all f(x′
n)g(x′′

n), and we know that f(x′
n) ∈ B≤h+j and g(x′′

n) ∈
B≤i−h+k. Consequently (f ∗ g)(x) ∈ B≤i+j+k and f ∗ g ∈ Hom≤j+k(A, B). �

When we consider modules provided both with a filtration and a grading,
it is often necessary to require some compatibility between them. The grading of
M =

⊕
j∈G Mj and its filtration are said to be compatible if each submodule M≤k

is graded, in other words, if it is the direct sum of its intersections M≤k
j with the

grading submodules Mj. When we use algebras, coalgebras, modules or comodules
which are all provided with a parity grading and a compatible filtration, there is
no difficulty in generalizing the previous statements to the algebra A ⊗̂B when A
and B are algebras, or to the coalgebra A ⊗̂B when A and B are coalgebras, or
to the algebra Hom∧(A, B) (see (4.2.4)) when A is a coalgebra and B an algebra;
and there is a graded version of Lemma (5.2.1).



5.2. Filtrations of Clifford algebras 245

The filtering submodules C�(M, q; V )≤k

The definition of Lipschitz monoids requires other filtrations of Clifford algebras
than the natural one presented in 3.1; we need filtrations of C�(M, q) for which
the elements of M have a degree ≤ 1, yet exceptionally ≤ −1 if they belong to
some submodule V .

(5.2.2) Theorem. Let V be a totally isotropic submodule of M (in other words,
q(V ) = 0). For all k ∈ Z let C�(M, q; V )≤k be the submodule of C�(M, q) gener-
ated by all products a1a2 · · · ai+jb1b2 · · · bi in which all factors belong to M , the
last ones b1,. . . ,bi to V , and j ≤ k. The submodules C�(M, q; V )≤k constitute a
filtration of the algebra C�(M, q) for which all elements of V have a degree ≤ −1.
This filtration is always regular at +∞; it is regular at −∞ whenever V is a direct
summand of M . It begins with a finite degree ≤ 0 whenever V is finitely generated,
and it ends with a finite degree ≥ 0 whenever M/V is finitely generated. Besides,
it is compatible with the parity grading of C�(M, q), and it is invariant by the
reversion:

τ(C�(M, q; V )≤k) = C�(M, q; V )≤k for all k.

Proof. It is clear that 1 belongs to C�(M, q; V )≤0 since a product of zero factor
is 1 by definition. Now we must prove that x′x belongs to C�(M, q; V )≤k′+k when
x′ and x belong respectively to C�(M, q; V )≤k′

and C�(M, q; V )≤k. Since we can
assume x′ to be some product a′

1a
′
2 · · · a′

i′+j′b
′
1b

′
2 · · · b′i′ (with b′1,. . . ,b

′
i′ in V , and

j′ ≤ k′), it suffices to prove that a′x belongs to C�(M, q; V )≤k+1 for all a′ ∈ M ,
and that b′x belongs to C�(M, q; V )≤k−1 for all b′ ∈ V ; since the former statement
is evident, we focus our attention on the latter. We can assume that x = yb1b2 · · · bi

with a first factor y in C�≤i+k(M, q), and all the following ones in V ; from (4.4.12)
we deduce that

b′y = σ(y)b′ + dq(b′) � y ;

it is clear that σ(y)b′b1b2 · · · bi falls into C�(M, q; V )≤k−1; moreover the inte-
rior multiplication by dq(b′) maps C�≤i+k(M, q) into C�≤i+k−1(M, q), and conse-
quently the same conclusion holds for (dq(b′) � y)b1b2 · · · bi. Thus we have proved
that the submodules C�(M, q; V )≤k constitute an algebra filtration.

Since the submodules C�(M, q; V )≤k are generated by homogeneous elements,
the filtration is compatible with the parity grading. Besides, it is clear that the
reversion τ is a filtered mapping; since it is involutive, it leaves the filtration
invariant.

The filtration by the submodules C�(M, q; V )≤k is regular at +∞ because
C�(M, q; V )≤k contains C�≤k(M, q). Let us assume that M is the direct sum of V
and a supplementary module U , and let u and v be the evident algebra morphisms
from C�(U, q|U) and

∧
(V ) into C�(M, q). From (4.8.5) we deduce the bijectiveness

of this mapping:

C�(U, q|U ) ⊗̂
∧

(V ) −→ C�(M, q) , y ⊗ z �−→ u(y) v(z).
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Let Ci be the submodule generated by all u(y)v(z) with z ∈
∧i(V ); thus C�(M, q)

is the direct sum of all submodules Ci. If a nonzero x belongs to C�(M, q; V )≤k

(with k < 0), it is easy to prove that x may have a nonzero component in some Ci

only if k ≥ −i ; this inequality shows that x cannot belong to all C�(M, q; V )≤k,
and that the filtration is regular at −∞.

If V is generated by n elements, then
∧n+1(V ) = 0; therefore in C�(M, q)

every product of n+1 or more elements of V vanishes, and C�(M, q; V )≤−n−1 = 0.
Now let us assume that M/V is finitely generated, and that a1,. . . ,am are elements
of M , the images of which generate M/V ; consequently M is generated by these
m elements and some family of generators of V ; from (3.1.7) we derive that every
element of C�(M, q) is a sum of products in which the first factors are distinct
elements in the set {a1, a2, . . . , am} and the following factors all belong to the set
of generators of V ; this proves that C�(M, q) is equal to C�(M, q; V )≤m. �

Comments. Perhaps you have been astonished because the hypothesis q(V ) = 0 has
not been used to prove that the submodules C�(M, q; V )≤k constitute an algebra
filtration; we do not need this hypothesis to prove the existence of the filtration,
but to prove that it is sensible. Indeed let us assume on the contrary that the ideal
of K generated by q(V ) is K; this would imply that 1 belongs to C�(M, q; V )≤−2,
and since x = 1kx for all x in C�(M, q) and all exponents k, we would have got
the ludicrous filtration which assigns the degree −∞ to all elements.

When V = 0, then C�(M, q; 0)≤k = C�≤k(M, q). And when V = M , then
q = 0 and C�(M, q; M)≤k =

∧≥−k(M); in other words, the exterior algebra
admits a decreasing filtration by submodules

∧≥k(M), and the decreasing group
morphism k �−→ −k transforms this decreasing filtration into an increasing one.

The proof of the following lemmas is evident and will be omitted.

(5.2.3) Lemma. Let V and V ′ be totally isotropic submodules of (M, q) and (M ′, q′)
respectively, and g : M →M ′ a morphism of quadratic modules such that g(V ) ⊂
V ′. The resulting algebra morphism C�(g) : C�(M, q) → C�(M ′, q′) is filtered for
the filtrations determined by V and V ′.

(5.2.4) Lemma. Let V and V ′ be totally isotropic submodules of (M, q) and (M ′, q′)
respectively, and let us filter C�((M, q) ⊥ (M ′, q′)) by means of V ⊕V ′. This filtered
algebra is canonically isomorphic to C�(M, q) ⊗̂C�(M ′, q′) provided with the tensor
product filtration.

(5.2.5) Corollary. For the filtrations of C�(M, q) and
∧

(M) determined by the
totally isotropic submodule V , the comultiplication

π′
q : C�(M, q)→ C�(M, q) ⊗̂

∧
(M)

is a filtered morphism, and thus C�(M, q) is a filtered comodule over
∧

(M).
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(5.2.6) Lemma. Let K → K ′ be a ring extension. With the totally isotropic subspace
V of (M, q) is associated a totally isotropic subspace V ′, image of K ′ ⊗ V in
(M ′, q′) = K ′ ⊗ (M, q); and for all k ∈ Z, C�K′(M ′, q′; V ′)≤k is the image of
K ′ ⊗ C�(M, q; V )≤k.

Consequently the filtrations presented here have a nice behaviour with respect to
localizations.

The grading submodules C�(M, q; U, V )k

Sometimes the filtration under consideration comes from a grading.

(5.2.7) Proposition. Let us suppose that (M, q) is the direct sum of two totally
isotropic submodules U and V . For every k ∈ Z let C�(M, q; U, V )k be the sub-
module of C�(M, q) generated by all products a1a2 · · · ai+kb1b2 · · · bi such that
a1,. . . ,ai+k belong to U , and b1,. . . ,bi to V . Then C�(M, q) is the direct sum of
the submodules C�(M, q; U, V )k which provide it with an algebra grading over Z.
The elements of U (resp. V ) have degree 1 (resp. −1). Moreover the filtration deter-
mined by V comes from this grading, whereas the filtration determined by U comes
from the grading by the submodules C�(M, q; V, U)k = C�(M, q; U, V )−k. Con-
versely C�(M, q; U, V )k is the intersection of C�(M, q; V )≤k and C�(M, q; U)≤−k.

Proof. We use the same notation as in the proof of (5.2.2); since U and V are both
totally isotropic, now we get a bijection

∧
(U) ⊗̂

∧
(V ) −→ C�(M, q) , y ⊗ z �−→ u(y) v(z).

It proves that C�(M, q) is the direct sum of the images of all submodules
∧i+k(U)⊗∧i(V ), and consequently it is the direct sum of the submodules C�(M, q; U, V )k.

A slight modification of the proof of (5.2.2) allows us here to prove that we get an
algebra grading. Here x = yb1b2 · · · bi with y in u(

∧i+k(U)) and b1,. . . ,bi in V , so
that x belongs to C�(M, q; U, V )k; we use the equality b′y = σ(y)b′ + dq(b′) � y

when b′ belongs to V ; since dq(b′) � y belongs to u(
∧i+k−1(U)), we realize that

b′x ∈ C�(M, q; U, V )k−1. The last statements in (5.2.7) still follow from the fact
that C�(M, q) is the direct sum of the images of all

∧i+k(U)⊗
∧i(V ). �

Remark. Hyperbolic quadratic spaces are particular examples of direct sums of
two totally isotropic submodules. In Theorem (3.7.2) it is stated that C�(H[P ]) is
isomorphic to End(

∧
(P )), which inherits from

∧
(P ) a grading over Z; this grading

corresponds exactly to the one defined in (5.2.7): the elements of P ∗ have degree
−1 whereas the elements of P have degree 1.
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Interior products and exponentials

Let us consider the algebra
∧∗(M) dual to the coalgebra

∧
(M). If V is any

submodule of M , the filtration of the coalgebra
∧

(M) by the submodules∧
(M ; V )≤k determines a filtration of the algebra

∧∗(M) by submodules denoted
by

∧∗(M ; V )≤k; as explained in (5.2.1),
∧∗(M ; V )≤k is the set of all f ∈

∧∗(M)
such that f(

∧
(M ; V )≤−k−1) = 0.

When V = 0, then
∧∗(M ; 0)≤k is the submodule

∧∗≥−k(M) canonically
isomorphic to (

∧≥−k(M))∗. When V = M , then
∧∗(M ; M)≤k is the submodule∧∗≤k(M) canonically isomorphic to (

∧≤k(M))∗.
Since

∧
(M) is a filtered coalgebra, and C�(M, q) a filtered comodule over it

(see (5.2.5)), the following statement is evident.

(5.2.8) Lemma. When V is a totally isotropic submodule in the quadratic module
(M, q), then

f #x ∈
∧∗

(M ; V )≤i+k and f � y ∈ C�(M, q; V )≤j+k

for every x ∈
∧

(M ; V )≤i, every y ∈ C�(M, q; V )≤j and every f ∈
∧∗(M ; V )≤k.

Of course when M is a direct sum of two totally isotropic subspaces, there is
an analogous lemma involving the gradings determined by them.

We need a last lemma about exponentials.

(5.2.9) Lemma. Let x and f be elements of
∧+

0 (M) and
∧∗+

0 (M) respectively,
so that their exponentials exist. When x belongs to

∧
(M ; V )≤0, then Exp(x) too

belongs to it. And when f belongs to
∧∗(M ; V )≤0, then Exp(f) too belongs to it.

Proof. The assertion about Exp(x) is an immediate consequence of the definitions,
but there is more work with Exp(f). It suffices to prove by induction on k that
Exp(f)(x) vanishes for all x ∈

∧≤k(M)∩
∧

(M ; V )≤−1. Since Exp(f) is even, the
induction begins trivially when k = 1. In order to go from k to k +1, we replace x
with b∧x such that b is in V and x in

∧k(M)∩
∧

(M ; V )≤0. Let
∑

n x′
n⊗ x′′

n be
the coproduct π′(x); since the comultiplication is filtered, there exists i (depending
on n) such that x′

n and x′′
n belong respectively to

∧
(M ; V )≤i and

∧
(M ; V )≤−i.

Let us write

Exp(f)(b ∧ x) = (Exp(f) ∧ (f # b))(x) =
∑

n

Exp(f)(x′
n) f(b ∧ x′′

n) ;

when i ≥ 0, then f(b ∧ x′′
n) = 0, and when i < 0, then Exp(f)(x′

n) = 0 because
of the induction hypothesis which assumes that Exp(f) vanishes on

∧≤k(M) ∩∧
(M ; V )≤−1. �
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5.3 Lipschitz monoids and derived groups

Let (M, q) be a quadratic module. We consider the orthogonal sum (M, q) ⊥
(M,−q) in which there are two conspicuous totally isotropic submodules, namely
the first diagonal ∆ which is the subset of all (a, a) with a ∈ M , and the second
diagonal ∆′ which is the subset of all (a,−a). Both are direct summands of M⊕M .
Each one leads to a filtration of the Clifford algebra under consideration, and
determines a subalgebra of elements of degree ≤ 0. From (3.2.4) and (3.2.2) we
deduce that the mapping (a, b) �−→ a⊗ 1to + 1⊗ bto extends to an isomorphism

C�((M, q) ⊥ (M,−q)) −→ C�(M, q) ⊗̂C�(M, q)to ;

consequently the filtration determined by ∆ or ∆′ can be carried onto

C�(M, q) ⊗̂C�(M, q)to,

and thus we get submodules

(C�(M, q) ⊗̂C�(M, q)to; ∆)≤k or (C�(M, q) ⊗̂C�(M, q)to; ∆′)≤k.

The next proposition contains the definition of the Lipschitz monoid, the elements
of which are called lipschitzian elements, and the following two propositions give
its elementary properties; in particular Lip(M, q) is actually a monoid (or multi-
plicative subset) in C�(M, q).

(5.3.1) Proposition and definition. For every locally homogeneous element x ∈
C�(M, q) these two assertions are equivalent:

x⊗ τ(x)to belongs to (C�(M, q) ⊗̂C�(M, q)to; ∆)≤0 ;
x⊗ τ(x)to belongs to (C�(M, q) ⊗̂C�(M, q)to; ∆′)≤0 ;

moreover x satisfies these properties if and only if its homogeneous components
satisfy them.

By definition the Lipschitz monoid Lip(M, q) is the set of all locally homogeneous
elements satisfying these properties.

Proof. Let us write x = (1 − λ)x + λx as in (5.1.4); the following equalities show
that each assertion in (5.3.1) is true for x if and only if it is true for its homogeneous
components (1− λ)x and λx :

(1 − λ)x⊗ τ((1 − λ)x)to = (1− λ) (x⊗ τ(x)to) ,

λx ⊗ τ(λx)to = λ (x⊗ τ(x)to) ,

x⊗ τ(x)to = (1− λ)x ⊗ τ((1 − λ)x)to + λx ⊗ τ(λx)to.

Therefore it suffices to consider a homogeneous x. The mapping (a, b) �−→ (a,−b)
is an automorphism of (M, q) ⊥ (M,−q) which permutes ∆ and ∆′; it induces an
automorphism of C�(M, q) ⊗̂C�(M, q)to, exactly this one: x⊗ yto �−→ x⊗ σ(y)to.
It suffices to observe that x⊗ τ(x)to is invariant by this automorphism when x is
even, and mapped to the opposite element when x is odd. �
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(5.3.2) Proposition. When x and y belong to Lip(M, q), then xy and τ(x) too belong
to it. Moreover Lip(M, q) contains all elements of M and all elements λ+ ab with
λ in K and a and b in M .

Proof. When x and y are homogeneous, then

(x ⊗ τ(x)to) (y ⊗ τ(y)to) = xy ⊗ τ(xy)to ;

the validity of this equality obviously extends to the case of locally homogeneous x
and y. Since the submodule of all elements of filtering degree ≤ 0 is a subalgebra,
it proves that xy belongs to Lip(M, q) whenever x and y belong to it. All filtrations
defined in (5.2.2) are invariant by the reversion; from (3.2.8) we derive that τ(x⊗
τ(x)to) is equal to (−1)∂xτ(x)⊗xto; consequently τ(x) belongs to Lip(M, q) if (and
only if) x belongs to it. The following equality proves that Lip(M, q) contains every
element a of M :

a⊗ ato = (a⊗ 1to)(a⊗ 1to + 1⊗ ato)− q(a)⊗ 1to .

Let us notice that the filtering degree of ab⊗ 1to + 1⊗ (ba)to is ≤ 0 :

ab⊗ 1to + 1⊗ (ba)to

= (a⊗ 1to)(b ⊗ 1to + 1⊗ bto) − (a⊗ 1to + 1⊗ ato)(1⊗ bto) ;

it follows that λ + ab belongs to Lip(M, q) :

(λ + ab)⊗ (λ + ba)to

= λ2 ⊗ 1to + λ(ab⊗ 1to + 1⊗ (ba)to) + (a⊗ ato)(b ⊗ bto). �

(5.3.3) Proposition. When x belongs to Lip(M, q) and y to C�≤k(M, q) for some
k, then xyτ(x) too belongs to C�≤k(M, q). In particular xτ(x) belongs to K, and
xaτ(x) belongs to M for every a ∈ M . Moreover the equality xτ(x) = τ(x)x is
true for every lipschitzian x such that xτ(x) or τ(x)x is not a divisor of zero in
K; and if the mapping a �−→ 2a is bijective from M onto M , it is true for every
lipschitzian x.

Proof. We can suppose that x is homogeneous (because it is locally homogeneous)
and that y is homogeneous (because xyτ(x) depends linearly on it). We consider
again the linear mapping πq from C�(M, q) ⊗ C�(M, q) onto C�(M, q) such that
πq(x1 ⊗ x2) = x1x2, and we observe that xyτ(x) = πq(xy ⊗ τ(x)). This equality
is interesting because xy ⊗ τ(x)to has a filtering degree ≤ k for the filtration
determined by ∆′; indeed

xy ⊗ τ(x)to = ±(x⊗ τ(x)to) (y ⊗ 1to).

Consequently we can decompose it into a sum of terms of the following two kinds.
First there are terms x1 ⊗ xto

2 which have a filtering degree ≤ k for the natural
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filtration that ignores ∆′; their contributions πq(x1 ⊗ x2) to the calculation of
xyτ(x) obviously belong to C�≤k(M, q). And there are terms that can be written
as the product of some factor x1 ⊗ xto

2 by some a⊗ 1to − 1 ⊗ ato that has degree
−1 for the filtration determined by ∆′. The following equalities show that their
contributions to xyτ(x) all vanish:

(x1 ⊗ xto
2 ) (a⊗ 1to − 1⊗ ato) = x1a⊗ σ(x2)to − x1 ⊗ (aσ(x2))to,

πq( x1a⊗ σ(x2)− x1 ⊗ aσ(x2)) = 0.

When k = 0, it follows that xτ(x) belongs to K, and also τ(x)x, since τ(x)
too is lipschitzian. When k = 1, we observe that xaτ(x) belongs to M because it
is an odd element of C�≤1(M, q).

Since xτ(x) and τ(x)x both belong to the even center Z0(C�(M, q)), it is easy
to verify that

(xτ(x))2 = (xτ(x)) (τ(x)x) = (τ(x)x)2 ;

the equality xτ(x) = τ(x)x follows when either member is not a divisor of zero
in K. When the mapping a �−→ 2a is bijective, this equality is a consequence of
(4.8.16):

xτ(x) = Scal(xτ(x)) = Scal(τ(x)x) = τ(x)x. �

Remarks.

(a) When q = 0, the Lipschitz monoid lies in
∧

(M); it is denoted by Lip(M)
and called the neutral Lipschitz monoid. From (5.3.2) and (4.5.1) we deduce
that Lip(M) contains Exp(u) for every u ∈

∧2(M).
(b) The general validity of the equality xτ(x) = τ(x)x in (5.3.3) is still an open

question; although the failure of all attempts to answer it is a vexation,
it does not raise any serious hindrance. From (5.3.3) it follows that this
equality is valid for all lipschitzian elements if K is an integral domain. Be-
sides, if x belongs to the submodule Zr(C�(g)) determined by an orthogonal
transformation g, then τ(x) belongs to Zr(C�(g)−1) (see (5.1.13)), therefore
commutes with x (see (5.1.6)).

(c) Instead of the isomorphism C�(M,−q) → C�(M, q)to we could use the iso-
morphism C�(M,−q) → C�(M, q)t also mentioned in (3.2.2); a locally ho-
mogeneous x is lipschitzian if and only if x ⊗ xt has filtering degree ≤ 0 in
C�(M, q) ⊗̂C�(M, q)t for the filtration determined by ∆ or ∆′.

(d) When K → L is an extension of K, every lipschitzian element x in C�(M, q)
gives a lipschitzian element in L⊗C�(M, q), the Clifford algebra of L⊗(M, q).
If this ring extension is faithfully flat, the converse statement is also true. The
next lemmas give more precise results for rings of fractions of K.

(5.3.4) Lemma. If S is a multiplicative subset of K, every homogeneous lipschitzian
element of S−1C�(M, q) (the Clifford algebra of S−1(M, q)) can be written as a
fraction in which the numerator is a lipschitzian homogeneous element of C�(M, q).
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Proof. A homogeneous x ∈ C�(M, q) is lipschitzian if (by definition) x ⊗ τ(x)to

can be written as a sum of terms like (u ⊗ vto)
∏m

i=1 (ai ⊗ 1to + 1 ⊗ ato
i ) , with

u ∈ C�≤j(M, q) and v ∈ C�≤k(M, q) such that j +k ≤ m. A homogeneous fraction
x/s in S−1C�(M, q) is lipschitzian if and only if (x⊗ τ(x)to)/s2 can be written as
a fraction in which the numerator is a sum of terms like the previous ones. This
means that tx is lipschitzian in C�(M, q) for some t ∈ S. It suffices to replace the
fraction x/s with (tx)/(st). �

(5.3.5) Lemma. For every locally homogeneous x ∈ C�(M, q) these three assertions
are equivalent:

x is lipschitzian;

for every prime ideal p its image in C�(Mp, qp) is lipschitzian;

for every maximal ideal m its image in C�(Mm, qm) is lipschitzian.

Proof. Because of (5.2.6), there is no problem in localizing the filtrations of
C�(M, q) ⊗̂C�(M, q)to. The fact that x ⊗ τ(x)to belongs to some submodule of
C�(M, q) ⊗̂C�(M, q)to is a local property because it is equivalent to an inclusion
between two submodules (see (1.11.6)); consequently for a locally homogeneous
element to be lipschitzian it is also a local property. �

Derived Lipschitz groups

From (5.3.3) we deduce that a lipschitzian element x is invertible in C�(M, q) if and
only if xτ(x) is invertible in K; indeed τ(x) is invertible whenever x is invertible,
and conversely the invertibility of xτ(x) implies xτ(x) = τ(x)x ∈ K (see (5.3.3)),
whence x−1 = µ−1τ(x) if µ = xτ(x). It follows from (5.3.3) that the twisted inner
automorphism Θx leaves M invariant; indeed for every a ∈ M ,

Θx(a) = µ−1xaστ(x) ∈M and Θ−1
x (a) = µ−1τ(x)aσ(x) ∈M ;

the presence of σ in these calculations is not a hindrance since the homogeneous
components of x are lipschitzian. Consequently x determines an orthogonal trans-
formation Gx of (M, q). The following proposition is now evident; it leads to the
Lipschitz group GLip(M, q) of invertible elements.

(5.3.6) Proposition. The subset GLip(M, q) of all invertible lipschitzian elements
is a group; there is a canonical morphism from GLip(M, q) into the orthogonal
group GO(M, q) which maps every x to the orthogonal transformation Gx defined
by Gx(a) = xa σ(x)−1. The kernel of this morphism is the group of invertible
lipschitzian elements in Zr(C�(M, q)). Besides, the mapping x �−→ xτ(x) is a
group morphism from GLip(M, q) into K×.

An invertible lipschitzian submodule of C�(M, q) is a graded invertible sub-
module contained in Lip(M, q). Every localization of such a submodule X is gener-
ated by an invertible lipschitzian element, and consequently the inverse module is
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τ(X). Conversely if X is a submodule such that every localization at any maximal
ideal is generated by an invertible lipschitzian element, then by localization we
can prove the bijectiveness of the multiplication mappings X ⊗ τ(X) → K and
τ(X)⊗X → K; from (5.3.5) we deduce that all elements of X are lipschitzian, and
thus X is an invertible lipschitzian submodule. Since Lip(M, q) is stable by mul-
tiplication, the invertible lipschitzian submodules constitute a group G′Lip(M, q),
in which the unit element is the submodule K; it is called the Lipschitz group of
invertible submodules.

An element of G′Lip(M, q) is a free module if and only if it is generated by
an invertible lipschitzian element, whence the exact sequence

(5.3.7) 1 −→ K× −→ GLip(M, q) −→ G′Lip(M, q) −→ Pic(K) ;

the Picard group Pic(K) is defined in 1.12. When Pic(K) = {1} (for instance when
K is a local ring), then G′Lip(M, q) is isomorphic to the quotient GLip(M, q)/K×.

By localization it is easy to verify that the twisted inner automorphism ΘX

associated with each X ∈ G′Lip(M, q) leaves M invariant; whence an orthogonal
transformation GX of (M, q) and a group morphism G′Lip(M, q) → GO(M, q).
Its kernel is the subgroup of all invertible submodules of Zr(C�(M, q)); it is injec-
tive when Zr(C�(M, q)) = K. Later we shall prove that the canonical morphisms
G′Lip(M, q) → GO(M, q) → Aut(M, q) are bijective when (M, q) is a quadratic
space.

Unfortunately this morphism G′Lip(M, q) → GO(M, q) is not always sur-
jective (see (5.ex.14)); therefore we must still contemplate a group G′′Lip(M, q)
called the Lipschitz group of Zr-submodules. Its elements are the submodules over
Zr(C�(M, q)) generated by a finite sequence of homogeneous lipschitzian elements
(x1, . . . , xn) satisfying these properties: K is generated as an ideal by the n el-
ements xiτ(xi), and the n2 products xiτ(xj) and the n2 products τ(xj)xi all
belong to Zr(C�(M, q)). Because of Theorem (5.1.7), such a sequence (x1, . . . , xn)
determines a graded automorphism θ of C�(M, q), and even an orthogonal trans-
formation of (M, q) if we manage to prove that θ(M) = M . This can be proved
either by localization with the help of (5.3.6), or by a direct calculation: θ(a) =∑

i λixia στ(xi) for every a ∈M (and with suitable λi ∈ K), whence θ(M) ⊂M
because of (5.3.3), and similarly θ−1(M) ⊂ M . Conversely from (5.1.7) we know
that Zr(θ) is the Zr(C�(M, q))-submodule under consideration.

Since Lip(M, q) is stable by multiplication and invariant by the reversion
τ , from (5.1.10) we deduce that G′′Lip(M, q) is a group with unit element
Zr(C�(M, q)), and that there is a group morphism G′′Lip(M, q) → GO(M, q).
This morphism is obviously injective, and its surjectiveness is equivalent to the
equality G′′Lip(M, q) = G′′C�(M, q) which is the main conjecture in this chapter.
As long as it is not proved in all cases, the image of G′′Lip(M, q) in GO(M, q) is
denoted by GOLip(M, q).
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(5.3.8) Proposition. Let w be a morphism from (M, q) into (M ′, q′); the result-
ing algebra morphisms C�(w) maps Lip(M, q) into Lip(M ′, q′) and determines
group morphisms GLip(M, q) → GLip(M ′, q′) and G′Lip(M, q) → G′Lip(M ′, q′).
If C�(w) maps Zr(C�(M, q)) into Zr(C�(M ′, q′)), it determines group morphisms
G′′Lip(M, q) → G′′Lip(M ′, q′) and GOLip(M, q) → GOLip(M ′, q′).

Proof. It suffices to consider this morphism of quadratic modules:

(M, q) ⊥ (M,−q) −→ (M ′, q′) ⊥ (M ′,−q′) , (a, b) �−→ (w(a), w(b)) ;

since it maps ∆ into the diagonal of M ′ ⊕ M ′, it follows from (5.2.3) that the
algebra morphism C�(w)⊗C�(w)to is filtered for the filtrations determined by the
diagonals; consequently C�(w) maps Lip(M, q) into Lip(M ′, q′). The subsequent
statements in (5.3.8) are now evident. �

It sometimes occurs that a morphism w : (M, q) → (M ′, q′) induces a mor-
phism GO(M, q) → GO(M ′, q′) in a canonical way; this occurs for instance if
(M, q) is a quadratic space, because in this case w is injective and M ′ is the direct
sum of w(M) and w(M)⊥ (see (2.3.8)), and thus every automorphism of (M, q)
gives an automorphism of (M ′, q′) that leaves invariant all elements of w(M)⊥.
The existence of the morphism GOLip(M, q) → GOLip(M ′, q′) is ensured by a
weaker hypothesis involving the reduced centers.

It remains to find methods allowing us to recognize whether an automorphism
g of (M, q) belongs to GOLip(M, q). If we read again the proof of (5.1.11) and take
(5.3.4) and (5.1.13) into account, we come to the following conclusions.

(5.3.9) Theorem. The following three assertions are equivalent for every g ∈
Aut(M, q) :

(a) g is in GOLip(M, q) (the image of G′′Lip(M, q) → GO(M, q));
(b) there is a Zariski extension L =

∏n
i=1 Ksi and a family of homogeneous xi ∈

Lip(M, q)∩Zr(C�(g)) (with i = 1, 2, . . . , n) such that z = (x1/1, . . . , xn/1) is
invertible in L, and �L ⊗ g = Gz ;

(c) every localization of g is the orthogonal transformation determined by an
invertible lipschitzian element that belongs to the localization of Zr(C�(g)).

If M is finitely generated, or more generally if Zr(K ′ ⊗ C�(g)) = K ′ ⊗ Zr(C�(g))
for every ring of fractions K ′, these assertions are also equivalent to the following
ones:

(d) there is a Zariski extension L =
∏n

i=1 Ksi and a family of homogeneous xi ∈
Lip(M, q) (with i = 1, 2, . . . , n) such that z = (x1/1, . . . , xn/1) is invertible
in L, and L⊗ g = Gz ;

(e) every localization of g is the orthogonal transformation determined by some
invertible lipschitzian element.
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Improvements when 2 is invertible

When the mapping a �−→ 2a is bijective from M onto M , then M ⊕ M is the
direct sum of the diagonals ∆ and ∆′, and instead of the filtration determined by
either diagonal we can use the grading determined by both diagonals (see (5.2.7)).

(5.3.10) Proposition. Let us consider the grading of C�(M, q) ⊗̂C�(M, q)to deter-
mined by the diagonals ∆ and ∆′. For every locally homogeneous element x of
C�(M, q) these four assertions are equivalent:

– x is lipschitzian;

– x⊗ τ(x)to belongs to (C�(M, q) ⊗̂C�(M, q)to; ∆, ∆′)0;

– for every j > 0 the component of x⊗ τ(x)to of degree 4j vanishes;

– for every j > 0 the component of x⊗ τ(x)to of degree −4j vanishes.

Proof. The equivalence of the first two assertions follows from the fact that the
subalgebra of elements of degree 0 (for the grading determined by ∆ and ∆′) is
the intersection of the subalgebras

(C�(M, q) ⊗̂C�(M, q)to; ∆)≤0 and (C�(M, q) ⊗̂C�(M, q)to; ∆′)≤0.

By means of the automorphism y ⊗ z �−→ y ⊗ σ(z) (already used in the proof of
(5.3.1)) we can prove that the component of x⊗ τ(x)to of degree k vanishes if and
only if its component of degree −k vanishes; consequently the last two assertions
are also equivalent. The proof ends with the next lemma.

(5.3.11) Lemma. For every locally homogeneous element x we can write

x⊗ τ(x)to ∈
⊕
j∈Z

(C�(M, q) ⊗̂C�(M, q)to; ∆, ∆′)4j .

Proof. Since x⊗ τ(x)to is even, all its components of odd degree vanish; we must
prove that moreover its component of degree k vanishes whenever k is even but not
divisible by 4. It is easy to verify (see (3.ex.3)) that we get an algebra isomorphism

Ω : C�(M, q) ⊗̂C�(M, q)to −→ (C�(M, q) ⊗̂C�(M, q)to)t

if we set Ω(y ⊗ zto) = (τ(z) ⊗ τ(y)to)t ; the target of this isomorphism is a
twisted algebra according to the definition in 3.2 (twisted multiplication without
reversion). The following equalities are evident:

Ω(x⊗ τ(x)to) = (x⊗ τ(x)to)t ,

∀a ∈M, Ω(a⊗ 1to + 1⊗ ato) = (a⊗ 1to + 1⊗ ato)t ,

∀b ∈M, Ω(b⊗ 1to − 1⊗ bto) = −(b⊗ 1to − 1⊗ bto)t ;
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from the second and third equalities we shall soon deduce that

∀ ζ ∈ (C�(M, q) ⊗̂C�(M, q)to; ∆, ∆′)k , Ω(ζ) = (−1)k(k−1)/2 ζt ;

remember that k(k − 1)/2 is even if and only if k or k − 1 is divisible by 4;
consequently, when the above equality is proved, we will claim that every ξ such
that Ω(ξ) = ξt has a zero component in every degree k that is even but not
divisible by 4, and this will be valid when ξ = x⊗ τ(x)to.

To prove it, we need a little piece of information about twisted algebras:
when a1,. . . ,ap are odd elements in a graded algebra A, then (by induction on p)

at
1a

t
2 · · · at

p = (−1)p(p−1)/2 (a1a2 · · ·ap)t .

Now let us suppose that the previous ζ is the product of m elements ui = ai ⊗
1to + 1 ⊗ ato

i and n elements vi = bi ⊗ 1to − 1 ⊗ bto
i ; for the grading determined

by ∆ and ∆′ its degree is k = m − n. Since Ω(ui) = ut
i for i = 1, 2, . . . , m and

Ω(vi) = −vt
i for i = 1, 2, . . . , n, we can write

Ω(u1 · · ·umv1 · · · vn) = (−1)(m+n)(m+n−1)/2 (−1)n (u1 · · ·umv1 · · · vn)t ;

the proof ends with this banal equality:

1
2
(m + n)(m + n− 1) + n =

1
2
(m− n)(m− n− 1) + 2mn. �

When M is finitely generated, there exists r such that the rank of M is ≤ r at
every prime ideal, and then for the grading determined by ∆ and ∆′ all nonzero
homogeneous elements of C�(M, q) ⊗̂C�(M, q)to have a degree between −r and
+r (see (5.ex.2)); therefore in the last two assertions of (5.3.10) we may require
0 < 4j ≤ r. This proves that every locally homogeneous element is lipschitzian
when r ≤ 3 ; in the next section this fact is proved with weaker hypotheses: see
(5.4.3).

Dual Lipschitz monoids

The dual Lipschitz monoid Lip∗(M) still deserves a mention; it is the subset of
all locally homogeneous elements f of

∧∗(M) satisfying the following equivalent
properties:

f ⊗ τ(f) belongs to
∧∗(M ⊕M ; ∆)≤0 ;

f ⊗ τ(f) belongs to
∧∗(M ⊕M ; ∆′)≤0.

Remember that f ⊗ τ(f) has filtering degree ≤ 0 if it vanishes on all elements
of filtering degree ≤ −1 (see (5.2.1)), and since it is even, here this condition is
already fulfilled when it vanishes on all elements of filtering degree ≤ −2.
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(5.3.12) Proposition. When Lip∗(M) contains f1 and f2, it contains f1 ∧ f2 too.
When it contains f , it contains τ(f) too, and moreover f ∧ τ(f) belongs to K =∧∗0(M). Besides, Lip∗(M) contains all elements of

∧∗1(M), all elements like
λ + h1 ∧ h2 with λ ∈ K and h1, h2 ∈

∧∗1(M), and also all exponentials of
elements of

∧∗2(M) .

Proof. The beginning of (5.3.12) is proved like (5.3.2). Let us consider f ∧ τ(f);
by definition, for all x in

∧
(M) and all a ∈M ,

(f ∧ τ(f))(x) = (f ⊗̂ τ(f)) ◦ π′(x) and π′(a) = a⊗ 1 + 1⊗ a for all a ∈M ;

all π′(a) have degree ≤ −1 for the filtration determined by ∆; consequently when
f is lipschitzian, f ∧τ(f) vanishes on every x in

∧+(M), in other words, it belongs
to

∧∗0(M). To prove that Lip∗(M) contains all elements h and λ + h1 ∧ h2, the
calculations presented in the proof of (5.3.2) are still valid, because the elements
of the first (resp. second) diagonal of

∧∗1(M ⊕ M) have degree ≤ −1 for the
filtration determined by the second diagonal ∆′ (resp. the first one ∆). The last
assertion deserves more attention; if w belongs to

∧∗2(M), then

Exp(w)⊗ τ(Exp(w)) = Exp(w ⊗ 1− 1⊗ w) because τ(w) = −w ;

because of (5.2.9), it suffices to prove that (w ⊗ 1 − 1 ⊗ w) has a filtering degree
≤ 0, in other words, that it vanishes on all products

(a⊗ 1 + 1⊗ a) (b⊗ 1 + 1⊗ b) = (a ∧ b)⊗ 1 + 1⊗ (a ∧ b) + a⊗ b− b⊗ a ;

but this is obvious. �

Remarks. When f is even, the assertion f ∧ τ(f) ∈ K means that f ∧ τ(f) =
λ2 if λ is the component of f in K =

∧∗0(M); when f is odd, it means that
f ∧ τ(f) = 0. All generalized twisted inner automorphisms of

∧∗(M) are trivial
because f ∧ g = (−1)∂f∂gg ∧ f for all homogeneous f , g ∈

∧∗(M); and the same
remark is valid for

∧
(M); consequently the usefulness of Lip∗(M) and Lip(M)

does not come from automorphisms that might be derived from their elements.
The usefulness of Lip(M) comes only from the invariance property stated in the
next section, and the usefulness of Lip∗(M) from the following proposition.

(5.3.13) Proposition. If x, y and f are elements of Lip(M), Lip(M, q) and Lip∗(M)
respectively, then f #x ∈ Lip∗(M) and f � y ∈ Lip(M, q).

Proof. By means of (4.3.7), (4.3.9) and (4.4.7) we get

(f ⊗ τ(f)) # (x⊗ τ(x)) = (−1)∂x (f #x)⊗ τ(f #x) ,

(f ⊗ τ(f)) � (y ⊗ τ(y)) = (−1)∂f (f � y)⊗ τ(f � y) ;

the conclusions follow from (5.2.8) since the even and odd components of x or f
are lipschitzian. �
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The following evident property too deserves to be stated.

(5.3.14) Lemma. For every linear mapping w : M → M ′, the algebra morphism∧
(w) maps Lip(M) into Lip(M ′), whereas

∧∗(w) maps Lip∗(M ′) into Lip∗(M).

5.4 The invariance property

The invariance property is a quite superb property of Lipschitz monoids, and a
very convincing motivation to use them rather than the traditional Clifford groups.

We use the notation of 4.7: β is any bilinear form on M , q′ is defined
by q′(a) = q(a) + β(a, a), and Φβ is the resulting isomorphism C�(M, q′) →
C�(M, q; β).

(5.4.1) Invariance theorem. Φβ(Lip(M, q′)) = Lip(M, q).

The invariance theorem states that Φβ induces a bijection between the sets
Lip(M, q′) and Lip(M, q); of course it is not in general a monoid morphism. The
proof requires a preliminary lemma. When V is a totally isotropic submodule for
the quadratic form q′, for every n ∈ Z we set

C�(M, q; β; V )≤n = Φβ(C�(M, q′; V )≤n).

(5.4.2) Lemma. Let β and β′ be two bilinear forms on M , and V a submodule
of M that is totally isotropic for both quadratic forms a �−→ q(a) + β(a, a) and
a �−→ q(a) + β′(a, a). We even suppose that β′ − β vanishes on V × V . Then for
every n ∈ Z,

C�(M, q; β; V )≤n = C�(M, q; β′; V )≤n.

Proof. Let us denote the multiplications in C�(M, q; β) and C�(M, q; β′) respec-
tively by � and �′. It follows immediately from (4.7.11) that the natural filtration
of C�(M, q; β) or C�(M, q; β′) coincides with that of C�(M, q). Let us prove that
C�(M, q; β′; V )≤n is contained in C�(M, q; β; V )≤n for every n. We shall prove pre-
cisely that for every (j, k) ∈ N×N, for every x ∈ C�≤k(M, q) and for every sequence
(b1, b2, . . . , bj) of elements of V , the product of x, b1, b2, . . . , bj in C�(M, q; β′) is
a sum of terms like y � c1 � · · · � cj−i with i ≤ j, y in C�≤k−i(M, q) and c1, . . . ,
cj−i all in {b1, b2, . . . , bj}. This is trivial if j = 0. Then, proceeding by induction
on j, we consider (y � c1 � c2 � · · · � cj−i) �′ bj+1 ; the following equality shows that
it is a sum of two terms of the predicted type:

(y � c1 � · · · � cj−i) �′ bj+1

= y � c1 � · · · � bj+1 + (−1)j−i(dto
β′−β(bj+1) �σ(y)) � c1 � · · · � cj−i;

the justification of this equality involves the formula (b) in (4.7.3) (applied both
to β and β′), the formula (4.4.4) which explains how the interior multiplication by
dto

β′−β(bj+1) operates on a product, the theorem (4.7.5) which shows that (4.4.4)
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is also valid for �-products, and finally the vanishing of (β′ − β)(cm, bj+1) for
m = 1, 2, . . . , j − i. �

Proof of (5.4.1). Let x be a locally homogeneous element of C�(M, q); we treat x⊗
τ(x) as an element of C�(M⊕M, q ⊥ q). In (4.7.8) it is stated that C�(M, q;−bq) is
isomorphic to C�(M, q)to by the mapping y �−→ yto; consequently x is in Lip(M, q)
if and only if

x⊗ τ(x) ∈ C�(M ⊕M, q ⊥ q; 0 ⊥ (−bq); ∆)≤0 .

Now let us consider Lip(M, q; β) = Φβ(Lip(M, q′)), and the reversion τβ in
C�(M, q; β); in (4.7.12) it is stated that C�(M, q; βto − bq) is isomorphic to
C�(M, q; β)to by the mapping y �−→ yto; consequently x belongs to Lip(M, q; β) if
and only if

x⊗ τβ(x) ∈ C�(M ⊕M, q ⊥ q; β ⊥ (βto − bq); ∆)≤0 .

We must prove that the latter condition is equivalent to the former; the local
homogeneousness of x is not here involved. From (4.7.14) we deduce that

x⊗ τβ(x) = Exp(1⊗ [β]) � (x⊗ τ(x)) .

From (4.7.13) we deduce that the interior multiplication by Exp(1 ⊗ [β]) is the
isomorphism

C�(M ⊕M, q ⊥ q; β ⊥ (−β − bq)) −→ C�(M ⊕M, q ⊥ q; β ⊥ (βto − bq))

that leaves invariant all the elements of M⊕M . Consequently the latter condition
is equivalent to this one:

x⊗ τ(x) ∈ C�(M ⊕M, q ⊥ q; β ⊥ (−β − bq); ∆)≤0 .

It suffices to observe that the bilinear form β ⊥ (−β) vanishes on ∆×∆, and to
apply (5.4.2); thus we come to the conclusion that the latter condition is equivalent
to the former. �

The invariance property allows the involvement of the neutral Lipschitz
monoid Lip(M) whenever the quadratic form under consideration admits scalar
products. The proof of the following proposition explains the important role it
may play, and how it is advisable to use it.

(5.4.3) Proposition. When M is a finitely generated module of rank ≤ 3 at each
prime ideal of K, and q a quadratic form on M admitting a scalar product, then
Lip(M, q) is the set of all locally homogeneous elements of C�(M, q).

Proof. Because of the invariance property, we can suppose q = 0. Then we replace∧
(M)to with

∧
(M), since x �−→ xto is an isomorphism from the latter onto

the former. Besides, we may use an automorphism of M ⊕ M which maps ∆′
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to M ⊕ 0, for instance (a, b) �−→ (a, a + b); the corresponding automorphism of∧
(M) ⊗̂

∧
(M) maps every x⊗y to π′(x)∧(1⊗y) where π′ is the comultiplication

of
∧

(M). Consequently a locally homogeneous element x belongs to Lip(M) if and
only if

π′(x) ∧ (1⊗ τ(x)) ∈ (
∧

(M) ⊗̂
∧

(M) ; M ⊕ 0)≤0 .

The subalgebra of
∧

(M) ⊗̂
∧

(M) appearing just above is the direct sum of all
submodules

∧i(M)⊗
∧j(M) with i ≥ j. Consequently this condition is satisfied if

and only if the component of π′(x)∧(1⊗τ(x)) in every
∧i(M)⊗

∧j(M) with i < j
vanishes. Besides, we can suppose that x is homogeneous and that M is generated
by three elements a, b, c, since by localization we can reduce the problem to
this case (remember (5.3.5)). The detailed calculations (only using elementary
properties of

∧
(M)) do not deserve to be written up here; we consider an even or

odd element like

x = κ + λb ∧ c + µc ∧ a + νa ∧ b or x = κa ∧ b ∧ c + λa + µb + νc .

Truly π′(x)∧ (1⊗ τ(x)) is an enormous sum of 52 or 56 terms, since for instance
π′(a ∧ b) alone brings four terms into the first factor π′(x) :

π′(a ∧ b) = (a ∧ b)⊗ 1 + 1⊗ (a ∧ b) + a⊗ b− b⊗ a ;

nevertheless, since a, b, c play symmetrical roles, and since all 52 or 56 terms are
even, it suffices to verify that among them there are exactly two terms containing
a⊗ (a∧ b∧ c) (multiplied by an element of K) which are opposite to one another,
and two terms containing 1 ⊗ (b ∧ c) which are also opposite to one another.
It does take a long time to find out these four terms in this big sum. �

Here is another consequence of the invariance property; in the traditional
theory of Clifford groups nothing similar can be obtained without much stronger
hypotheses.

(5.4.4) Proposition. Let (M, q) be a quadratic module, M ′ and M ′′ two supplemen-
tary submodules of M , and q′ and q′′ the restrictions of q to M ′ and M ′′. Let us
suppose that q′′ admits scalar products, so that C�(M ′, q′) can be identified with a
subalgebra of C�(M, q) (see (4.8.5)). Then

Lip(M ′, q′) = C�(M ′, q′) ∩ Lip(M, q).

Proof. To prove that every element of Lip(M ′, q′) belongs to Lip(M, q) it suf-
fices to consider the natural injection (M ′, q′) → (M, q) and to apply (5.3.8).
Conversely let us prove that every element of C�(M ′, q′) that is lipschitzian in
C�(M, q) is already lipschitzian in C�(M ′, q′). When q′′ vanishes, and M ′ and M ′′

are orthogonal, the projection M →M ′ is a morphism of quadratic modules, and
the resulting morphism C�(M, q)→ C�(M ′, q′) leaves invariant all elements of the
subalgebra C�(M ′, q′); thus the conclusion still follows from (5.3.8). Now we reduce
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the general case to this very particular case by means of a suitable deformation
of C�(M, q). Let β be a bilinear form M ×M → K satisfying these properties: its
restriction to M ′′ ×M ′′ is an admissible scalar product for q′′, its restriction to
M ′×M ′′ coincides with that of bq, and its restrictions to M ′′×M ′ and M ′×M ′

both vanish. Thus the quadratic form a �−→ q(a) − β(a, a) vanishes on M ′′, and
M ′ and M ′′ are orthogonal to each other for it; moreover C�(M ′, q′) is a subal-
gebra of C�(M, q;−β) since β(M ′, M ′) = 0. Because of the invariance property,
every element of C�(M ′, q′) that is lipschitzian in C�(M, q), is also lipschitzian in
C�(M, q;−β), and consequently is already lipschitzian in C�(M ′, q′). �

The conclusion of (5.4.4) is valid whenever M is a projective module, and
M ′ a direct summand of M . In some cases we can still improve it.

(5.4.5) Proposition. Let M ′ be a direct summand of a finitely generated projective
module M provided with a quadratic form q. We suppose that q is nondegenerate,
or at least that dq induces a surjective mapping M ′⊥ → (M/M ′)∗. For every
X ∈ G′Lip(M, q) these two assertions are equivalent:

– X belongs to the subgroup G′Lip(M ′, q′);
– GX(a) = a for every a ∈ M ′⊥.

Proof. According to (4.8.12), X is contained in C�(M ′, q′) if and only if dq(a) �x =
0 for all x ∈ X and all a ∈M ′⊥. Now let a be any element of M ; because of (4.4.12)
the equality dq(a) �x = 0 is equivalent to ax = σ(x)a. This last equality is true
for all x ∈ X if and only if GX(a) = a. �

5.5 Associated Lie algebras

A Lie bracket on a module A is an alternate bilinear mapping A×A→ A usually
denoted by (x, y) �−→ [x, y] that satisfies the Jacobi equality

(5.5.1) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 .

When A is an associative algebra, it is also a Lie algebra for the bracket [x, y] =
xy − yx. When A is an associative algebra with unit, and G a multiplicative
group in A, it often occurs that a Lie subalgebra is associated with G. Here is an
example of sufficient conditions ensuring the existence of this Lie algebra. Suppose
that there is a polynomial mapping Ψ from A into some module such that G is
the subset of all invertible x ∈ A satisfying the equation Ψ(x) = 0. Like all
polynomial mappings, Ψ has a differential dΨ in the algebraical sense: dΨ is a
mapping defined on A×A, it is linear with respect to the second variable, and it
satisfies the following equality, which shall be explained at once:

Ψ(x + ty) ≡ Ψ(x) + t dΨ(x; y) modulo (t2) ;



262 Chapter 5. Orthogonal Groups and Lipschitz Groups

the words “modulo (t2)” mean that we have inflicted the ring extension K →
K[t]/t2K[t] to all modules under consideration; in other words we use “devel-
opments limited to the order 1”. Let g be the subset of all y ∈ A such that
Ψ(1 + ty) ≡ 0 modulo (t2), or equivalently, dΨ(1; y) = 0. It often occurs that
g is a Lie subalgebra; it occurs if for every y ∈ g there exists z such that
Ψ(1 + ty + t2z) ≡ 0 modulo (t3), and if the equation Ψ(x + ty + t2z) ≡ 0 modulo
(t3) also determines a multiplicative group in (K[t]/t3K[t]) ⊗ A. Such hypothe-
ses are quite natural, especially in the theory of algebraic groups. If 1 + ty + t2z
and 1 + ty′ + t2z′ belong to this group, their inverses 1 − ty + t2(y2 − z) and
1− ty′ + t2(y′2 − z′) also belong to it, and also the product

(1 + ty + t2z)(1 + ty′ + t2z′)(1 − ty + t2(y2 − z))(1− ty′ + t2(y′2 − z′))

≡ 1 + t2(yy′ − y′y) modulo (t3) ;

consequently dΨ(1; [y, y′]) = 0, and it follows that g is a Lie subalgebra.

Let us come back to the quadratic module (M, q). We have defined two groups
in End(M), namely Aut(M, q) and GO(M, q) (see 5.1); we have also defined two
groups in C�(M, q), namely GC�(M, q) and GLip(M, q), which are relevant at
least when K is a local ring (whereas with more general rings we need groups like
G′Lip(M, q) and even G′′Lip(M, q)). With each of this four groups is associated
a Lie algebra, which is a submodule of End(M) or C�(M) defined in accordance
with the above ideas; yet a direct and easy verification (independent of the above
speculative argument) shall show that it is actually a Lie subalgebra (stable by
bracket).

An endomorphism f of M is called an infinitesimal automorphism of (M, q)
if idM +tf is an automorphism modulo (t2), in other words if bq(a, f(a)) = 0 for
all a ∈ M . It is easy to verify that these infinitesimal automorphisms constitute a
Lie subalgebra of End(M). When the mapping λ �−→ 2λ is injective from K into
K, they are also called skew symmetric operators, because the above condition
means that the bilinear mapping (a, b) �−→ bq(a, f(b)) is skew symmetric.

If y belongs to C�(M, q), let us first observe that 1+ty is locally homogeneous
if and only if y is even. Consequently we say that an even element y of C�(M, q)
determines an infinitesimal orthogonal transformation if the inner automorphism
x �−→ (1+ ty)x(1− ty) induces a bijection from (K[t]/t2K[t])⊗M onto itself. This
occurs if and only if [y, a] belongs to M for every a ∈ M . If it does, the mapping
Fy defined by a �−→ [y, a] is an infinitesimal automorphism of (M, q); anyhow the
equality bq(a, [y, a]) = 0 can be corroborated by a direct verification. We call Fy

the infinitesimal orthogonal transformation derived from y. By means of (5.5.1) it
is easy to verify these two facts: first if y and z determine infinitesimal orthogonal
transformations (in other words, [y, M ] ⊂ M and [z, M ] ⊂ M), then so does [y, z] ;
secondly the mapping y �−→ Fy is a morphism of Lie algebras (in other words,
F[y,z] = FyFz−FzFy). This morphism y �−→ Fy is the infinitesimal counterpart of
the group morphism GC�(M, q) → GO(M, q). Since the group GC�(M, q) is here
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considered as less important than its subgroup GLip(M, q), nothing more will be
said about its Lie algebra.

An even element y of C�(M, q) is said to be an infinitesimal lipschitzian
element if 1 + ty is lipschitzian modulo (t2), or equivalently,

y ⊗ 1to + 1⊗ τ(y)to ∈ (C�(M, q) ⊗̂C�(M, q]to; ∆)≤0 ;

of course ∆ may be replaced with ∆′. The infinitesimal lipschitzian elements y
make up a Lie algebra because

[ y ⊗ 1to + 1⊗ τ(y)to, z ⊗ 1to + 1⊗ τ(z)to] = [y, z]⊗ 1to + 1⊗ τ([y, z])to.

From (5.3.3) we deduce that each infinitesimal lipschitzian element determines an
infinitesimal orthogonal transformation a �−→ [y, a]. Indeed, since (1+ty)(1+tτ(y))
and (1 + ty)a(1 + tτ(y)) belong respectively to K ⊕ tK and M ⊕ tM modulo (t2),
it follows that y + τ(y) and ya + aτ(y) belong respectively to K and M , and
this implies that [y, a] belongs to M . Besides, from (5.4.1) we deduce the following
invariance property of the set of infinitesimal lipschitzian elements.

(5.5.2) Proposition. With the same hypotheses as in (5.4.1), an even element y
of C�(M, q′) is an infinitesimal lipschitzian element if and only if Φβ(y) is an
infinitesimal lipschitzian element in C�(M, q).

Although the Lie algebra of infinitesimal lipschitzian elements is here consid-
ered as an essential thing, no special notation will be proposed for it, because, at
least in all somewhat regular cases, it coincides with the following Lie subalgebra
of C�(M, q), to which we shall at once pay much attention:

C�≤2
0 (M, q) = C�0(M, q) ∩ C�≤2(M, q) .

(5.5.3) Theorem. The submodule C�≤2
0 (M, q) is a Lie subalgebra of C�(M, q), in

which each element y is an infinitesimal lipschitzian element and determines an
infinitesimal automorphism Fy as explained above: Fy(a) = [y, a] = ya − ay.
When (M, q) is a quadratic space, we get in this way a surjective morphism from
C�≤2

0 (M, q) onto the Lie algebra of all infinitesimal automorphisms of (M, q); its
kernel is K.

Proof. Let y be an element of C�≤2
0 (M, q). From (4.4.12) we deduce that, for all

a ∈ M ,
[y, a] = −ay + ya = −dq(a) � y ∈ C�≤1

1 (M, q) = M .

Since [y, M ] ⊂ M , y determines an infinitesimal orthogonal transformation Fy .
Now remember that the mapping x �−→ [y, x] is a derivation of C�(M, q), in other
words, [y, xx′] = [y, x] x′ + x [y, x′] ; since it leaves M stable, it leaves stable all
submodules C�≤k(M, q); since moreover it respects the parity grading, it leaves
C�≤2

0 (M, q) stable; this proves that C�≤2
0 (M, q) is a Lie subalgebra.
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At the end of the proof of (5.3.2) it is proved that ab ⊗ 1to + 1 ⊗ (ba)to

has degree ≤ 0 for the filtration determined by ∆. This means that ab is an
infinitesimal lipschitzian element, and by linearity this is true for all elements of
C�≤2

0 (M, q).
When (M, q) is a quadratic space, we can use an admissible scalar product β

and replace C�(M, q) with
∧

(M ; β). Thus C�≤2
0 (M, q) is replaced with K⊕

∧2(M).
It is clear that Fy = 0 for all y ∈ K. Consequently we must prove that the
mapping y �−→ Fy is a bijection from

∧2(M) onto the module of infinitesimal
automorphisms. Let us calculate Fy when y = b ∧ c :

Fb∧c(a) = [b ∧ c, a] = −dq(a) � (b ∧ c) = bq(a, c)b− bq(a, b)c ;

this result suggests the following diagram, in which all arrows are isomorphisms,
except two which are injections:

∧2(M) −→ M ⊗M ←→ M ⊗M∗ ←→ End(M)
! ↑∧2(M∗) |
! ↓∧∗2(M) −→ (M ⊗M)∗ ←→ M∗ ⊗M∗

In this diagram three arrows come from the isomorphism dq : M →M∗; they are:

∧2
(M)←→

∧2
(M∗) and M ⊗M ←→M ⊗M∗ ←→M∗ ⊗M∗.

The morphism
∧2(M) → M ⊗ M is defined by b ∧ c �−→ b ⊗ c − c ⊗ b ; it is

injective because all its localizations are injective. The other injection
∧∗2(M)→

(M ⊗ M)∗ merely means that every alternate bilinear form is a bilinear form.
All the other arrows come from canonical morphisms which here are bijective
because M is projective and finitely generated; let us just remember that the
canonical morphism M ⊗ M∗ → End(M) is defined in this way: every b ⊗ h is
mapped to the endomorphism a �−→ h(a)b. The calculation of Fb∧c shows that
the mapping y �−→ Fy is the mapping

∧2(M) → End(M) appearing in the first
line of the diagram; it is injective. Besides, if f is an endomorphism of M , its
image in (M ⊗M)∗ is the mapping a ⊗ b �−→ bq(a, f(b)). Consequently f is an
infinitesimal automorphism of (M, q) if and only if its image in (M ⊗M)∗ is an
alternate bilinear form; this means that it comes from an element of

∧∗2(M) and
consequently f = Fy for some y ∈

∧2(M). �

(5.5.4) Remark. In the previous proof,
∧2(M) is not in general a Lie subalgebra.

Nevertheless it is actually a Lie subalgebra when the mapping a �−→ 2a is bijective,
and β is the canonical scalar product. Indeed (4.8.13) shows that every derivation
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of the Clifford algebra
∧

(M ; bq/2) that leaves M stable, is also a derivation of the
exterior algebra

∧
(M); consequently, for every degree k,

[ C�2(M, q), C�k(M, q) ] ⊂ C�k(M, q).

Among all the reasons that lead to the conclusion that GC�(M, q) is not an
interesting group, the following theorem is an important one. It means that its
associated Lie algebra is the direct sum of C�≤2

0 (M, q) and some superfluous Lie
subalgebra contained in the kernel of the morphism y �−→ Fy.

(5.5.5) Theorem. When q admits a scalar product β, the Lie subalgebra of all
y ∈ C�0(M, q) such that [y, M ] ⊂ M , is the direct sum of C�≤2

0 (M, q) and some
submodule of Z0(C�(M, q)).

Proof. We can replace C�(M, q) with
∧

(M ; β). At the beginning of the proof of
(5.5.3) there is the equality [y, a] = −dq(a) � y. It shows that the Lie subalgebra
mentioned in (5.5.5) is the subset of all y ∈

∧
(M ; β) such that dq(a) � y belongs

to M for all a ∈ M . Since Φβ is an isomorphism of comodules (see (4.7.5)), this
interior product is the same in

∧
(M ; β) as in

∧
(M). But in

∧
(M) there is a

grading over N, and the interior multiplication by dq(a) maps each
∧k(M) into∧k−1(M). The condition dq(a) � y ∈M is satisfied by y if and only if it is satisfied

by all its homogeneous components y0, y2, y4,. . . for the N-grading. It is always
satisfied by y0 and y2. But for an even degree k ≥ 4, it is satisfied if and only if
dq(a) � (yk) = 0, or equivalently [a, yk] = 0. When this condition is required from
yk for all a ∈M , it means that yk belongs to the center of C�(M, q). �

Theorem (5.5.5) implies that the Lie algebra C�≤2
0 (M, q) gives as many in-

finitesimal orthogonal transformations as the Lie algebra associated with the group
GC�(M, q). When the ring K allows an effective Lie theory showing close relations
between algebraic groups and their Lie algebras, this suggests that we should for-
sake the group GC�(M, q) and prefer a smaller group with Lie algebra C�≤2

0 (M, q).
The fact that every morphism (M, q) → (M ′, q′) of quadratic modules induces a
morphism C�≤2

0 (M, q) → C�≤2
0 (M ′, q′) of Lie algebras also pleads for these Lie

algebras. This functorial property of these Lie algebras recalls the functorial prop-
erty of Lipschitz monoids mentioned in (5.3.8). We already know that the Lie
algebra of all infinitesimal lipschitzian elements contains C�≤2

0 (M, q) (see (5.5.3);
if these Lie algebras prove to be equal, at least in the most useful cases, this
fact will still support the preference for both the Lie algebra C�≤2

0 (M, q) and the
monoid Lip(M, q). The following theorem cannot yet be applied to all quadratic
forms admitting scalar products, but already to many of them.

(5.5.6) Theorem. The Lie algebra of all infinitesimal lipschitzian elements is equal
to C�≤2

0 (M, q) whenever M is a projective module. The same conclusion holds when
all these hypotheses are satisfied: q admits a scalar product, the multiplication by 2
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is injective on
∧2j(M) for every j ≥ 2, and the multiplication by j is injective on∧2j(M) for every odd integer j ≥ 3.

The proof of (5.5.6) begins with the following lemma.

(5.5.7) Lemma. For every j ≥ 2 let W2j be the submodule of all y ∈
∧2j(M) such

that

π′(y) + 1⊗ τ(y) ∈
2j⊕

i=j

∧i
(M)⊗

∧2j−i
(M).

If the quadratic form q : M → K admits scalar products, the following assertions
are equivalent:

(a) every infinitesimal lipschitzian element belongs to C�≤2
0 (M, q) ;

(b) W2j = 0 for all j ≥ 2.

Proof. Because of the invariance property (5.5.2), it suffices to prove (5.5.7) when
q = 0. As in the proof of (5.4.3), we use the automorphism (a, b) �−→ (a, a + b) of
M ⊕M that maps ∆′ to M ⊕ 0 ; thus an element y ∈

∧
0(M) is an infinitesimal

lipschitzian element if and only if

π′(y) + 1⊗ τ(y) ∈ (
∧

(M) ⊗̂
∧

(M); M ⊕ 0)≤0.

The comultiplication π′ and the reversion τ are graded mappings for the N- grading
of

∧
(M); consequently y satisfies this condition if and only if all the components

of y in the submodules
∧2j(M) satisfy it. When j ≥ 2 and y belongs to

∧2j(M),
the above condition is satisfied if and only if y belongs to W2j ; consequently the
vanishing of W2j means that no infinitesimal lipschitzian element may have a
nonzero component of degree 2j. �

Proof of (5.5.6). We already know that every y ∈ C�≤2
0 (M, q) is an infinitesimal

lipschitzian element, and we must prove the converse statement, at least in the
two cases mentioned in (5.5.6). For every y ∈

∧
(M) and every i ≥ 0, let π′

i(y) be
the component of π′(y) in

∧i(M)⊗
∧

(M). When y has degree 2j and 0 ≤ i < 2j,
the component of π′(y) + 1 ⊗ τ(y) in

∧i(M) ⊗
∧2j−i(M) is equal to π′

i(y); but
since τ(y) = (−1)jy, its component in 1 ⊗

∧2j(M) is 1 ⊗ 2y when j is even, and
always 0 when j is odd. This already shows that W2j = 0 when j is even ≥ 2 and
the multiplication by 2 is injective from

∧2j(M) into itself. When j is odd ≥ 3,
we consider the component in M ⊗

∧2j−1(M) and observe that W2j = 0 if π′
1 is

injective on
∧2j(M). Now let us consider this mapping:

∧2j
(M) −→M ⊗

∧2j−1
(M) −→

∧2j
(M) , y �−→ π(π′

1(y)) ;

it is easy to verify that it is the multiplication by 2j in
∧2j(M). Consequently

W2j = 0 if both multiplications by 2 and j in
∧2j(M) are injective.
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Admissible scalar products always exist for quadratic forms on projective
modules (see (2.5.3)). The case of a projective module M can be reduced to the
case of a free module, either by localization if it is finitely generated, or by using
another module M ′ such that M ⊕M ′ is free. Let us prove that the restriction of
π′

1 to
∧2j(M) is injective for all j ≥ 2; this implies W2j = 0 as above. Let (es)s∈S

be a basis of M indexed by a totally ordered set S. From it we derive a basis of∧2j(M) and a basis of M ⊗
∧2j−1(M) in the usual way; both bases are totally

ordered if we use the lexicographic order on the set of all sequences of 2j elements
of S. An element of the basis of

∧2j(M) looks like

es1 ∧ es2 ∧ · · · ∧ es2j with s1 < s2 < · · · < s2j ;

π′
1 maps it to the sum of es1 ⊗ (es2 ∧ · · · ∧ es2j ) and something in the submodule

generated by other elements of the basis of M⊗
∧2j−1(M) standing above this one

in the lexicographic order; this is sufficient to conclude that π′
1 is injective. �

In the proof of (5.5.6) it is clear that the best way of using the lemma (5.5.7)
has not yet been found. If somebody finds more effective methods, perhaps the
conclusion of (5.5.6) will follow from the only hypothesis that q admits a scalar
product.

5.6 First results about orthogonal transformations

Let us come back to the three Lipschitz groups defined in 5.3, and to these group
morphisms:

GLip(M, q) −→ G′Lip(M, q) −→ G′′Lip(M, q) −→ GO(M, q) −→ Aut(M, q).

The first morphism is surjective when Pic(K) is a trivial group (see (5.3.7)),
in particular when K is a local ring. The second morphism maps every X ∈
G′Lip(M, q) to the submodule it generates over Zr(C�(M, q)); it is bijective when
Zr(C�(M, q)) = K (see (5.1.9)). The third morphism is injective; its bijectiveness
is equivalent to the equality G′′Lip(M, q) = G′′C�(M, q) which here is the main
conjecture. The fourth morphism is a natural injection, and the determination of
its image is also a main problem.

When g is an automorphism of (M, q) and N a submodule of M , it is well
known that g maps N⊥ onto g(N)⊥; in particular g leaves N⊥ invariant if it leaves
N invariant. Here is a less evident property.

(5.6.1) Proposition. When g is an automorphism of (M, q), the kernel and the
image of g − id are orthogonal submodules. When moreover Ker(q) = 0, then
Ker(g − id) is the submodule of all elements orthogonal to Im(g − id).

Proof. For all a and b in M we can write

bq(g(a)− a, b) = −bq(g(a), g(b)− b) ;
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when g(b) = b, then b is orthogonal to all g(a) − a. Conversely if b is orthogonal
to all g(a)− a, then g(b)− b obviously belongs to Ker(bq); the following equalities
show that it even belongs to Ker(q) :

q(g(b)− b) = q(g(b)) + q(b)− bq(g(b), b)
= bq(b, b)− bq(g(b), b) = −bq(g(b)− b, b) = 0 ;

therefore g(b)− b must vanish if Ker(q) = 0. �

Proposition (5.1.14) states other properties of Ker(g−id) and Im(g−id) when
g is an orthogonal transformation; they imply that Ker(g − id) contains Ker(bq),
and that idM is the only orthogonal transformation when bq is the null bilinear
form. Unless otherwise specified, it is always assumed that Ker(bq) �= M . Here are
other properties which are not true for all automorphisms of quadratic modules;
they involve determinants which are defined in the very beginning of 3.6.

(5.6.2) Proposition. Let q be a quadratic form on a finitely generated projective
module M , and g an orthogonal transformation of (M, q). If Zg(C�(g)) contains
an invertible even (resp. odd) element, then det(g) = 1 (resp. det(g) = −1).

Proof. Because of (1.12.8) we can assume that M has a constant rank r. By
localization it is easy to verify that

∧
(g)(z) = det(g)z for every z ∈

∧r(M); since∧r(M) is a projective module of constant rank 1, this property determines det(g).
Since the canonical morphism

∧
(M) → Gr(C�(M, q)) is bijective (see (4.8.7)),

we get an isomorphism from C�(M, q)/C�<r(M, q) onto
∧r(M) if we map every

product b1b2 · · · br (modulo C�<r(M, q)) to b1 ∧ b2 ∧ · · · ∧ br. If x is an invertible
homogeneous element of Zg(C�(g)), then g(bi) = (−1)∂xxbix

−1 for i = 1, 2, . . . , r,
whence

xb1b2 · · · brx
−1 ≡ (−1)r∂xdet(g) b1b2 · · · br modulo C�<r(M, q).

In (3.2.1) it is stated that yz and (−1)(r−1)∂yzy are congruent modulo C�<r(M, q)
for all homogeneous y, z ∈ C�(M, q); when y = xb1 · · · br and z = x−1, we obtain

xb1b2 · · · brx
−1 ≡ (−1)(r−1)∂x b1b2 · · · br modulo C�<r(M, q).

The conclusion follows. �

(5.6.3) Corollary. If g is an orthogonal transformation of (M, q), and if M is
finitely generated and projective, then det(g) is a square root of 1, and the fraction
det(g)/1 is equal to 1/1 or −1/1 in every localization Kp of K.

Indeed since C�(g) is a generalized twisted inner automorphism, from (5.1.5) we
know that every localization of Zg(C�(g)) contains an invertible homogeneous el-
ement. �

A great part of the results shall be proved by localizations with the help of
(5.3.9), especially the assertion (e). Several times we shall have to prove that an
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automorphism of (M, q) can be derived from some invertible lipschitzian element.
This problem will be reduced by successive steps to a simpler question involving
two elements of M : if q(a) = q(a′), is there an invertible lipschitzian x such that
Gx(a) = a′? Two kinds of transformations Gx will help us, and the simplest ones
are the reflections. A reflection in (M, q) is the transformation Gd derived from
an invertible element d of M :

Gd(b) = −dbd−1 = b − bq(d, b) d−1 ;

Gd maps d to −d, and leaves invariant every b orthogonal to d. When 2 is invertible
in K, then M is the direct sum of Kd and the orthogonal submodule, and thus
Gd may remind us of the reflection of a ray of light on a mirror; but when 2 is not
invertible, Gd may look quite differently. In all cases a reflection is involutive.

(5.6.4) Proposition. Let a and a′ be elements of M such that q(a) = q(a′). If a′−a
is invertible, the reflection Ga′−a maps a to a′.

Proof. Indeed a′(a′ − a) = −(a′ − a)a . �

When a′−a is not invertible as in (5.6.4), we may try an element x = a′d+da
with some suitable d ∈ M ; such an element is always lipschitzian, since

x = a′d + da = bq(a, d) + (a′ − a)d = bq(a′, d) + d(a− a′) ;

its invertibility depends on the invertibility of

xτ(x) = (a′d + da)(ad + da′) = q(a′ − a)q(d) + bq(a, d)bq(a′, d).

(5.6.5) Proposition. Let a, a′ and d be elements of M such that q(a) = q(a′),
and let us set x = a′d + da. If x is invertible, then Gx(a) = a′. Besides, if d is
invertible, then x is a product of two elements of M .

Proof. Indeed a′(a′d + da) = (a′d + da)a . Besides, since x = bq(a, d) + (a′ − a)d,
it is easy to verify that xd belongs to M ; consequently if d is invertible, x is the
product of two elements of M . Of course the same conclusion holds when a′ − a
is invertible, but in this case it is wiser to apply (5.6.4). �

Let us add this more technical lemma.

(5.6.6) Lemma. The projective quadratic module (M, q) is assumed to be the or-
thogonal sum of the submodules N and N ′′, and q̃ is the restriction of q to N . If
g is an automorphism of (M, q) such that g(N) = N and Ker(g − id) ⊃ N ′′, and
if g̃ is its restriction to N , then Zr(g̃) = Zr(g) ∩ C�(N, q̃).

Indeed Zr(g̃) ⊃ Zr(g)∩C�(N, q̃), and conversely every x ∈ Zr(g̃) belongs to Zr(g)
because (4.4.12) implies ax = σ(x)a for all a ∈ N ′′ and all x ∈ C�(N, q̃). �
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Tamely degenerate quadratic forms

It seems very hard to obtain effective results for all quadratic modules. Here we are
especially interested in quadratic spaces (over any ring) and in quadratic modules
(of any kind) over fields. The methods that are suitable for them, will also enable
us to treat many other quadratic modules without getting any more tired. It looks
sensible to define a type of quadratic modules for which these methods are effective,
and to forsake the other modules until we meet some good reasons to tackle them
too. Quadratic forms that are either nondegenerate or tamely degenerate, are
convenient objects for the methods that shall be elaborated here. In 5.8 some other
quadratic modules will still be mentioned, especially some projective modules that
are not finitely generated.

When M is a finitely generated projective module, a quadratic form q on M
(and the quadratic module (M, q) too) is said to be tamely degenerate if Ker(bq)
is a direct summand of M other than 0 and M , and if bq induces a nondegenerate
symmetric bilinear form on the quotient M/Ker(bq). Other authors characterize
them by the equivalent property stated hereafter.

(5.6.7) Lemma. Let q be a quadratic form on a finitely generated projective module
M . It is tamely degenerate if and only if the image of dq : M → M∗ is a direct
summand of M∗ other than 0 and M∗.

Proof. If q is tamely degenerate, any submodule M ′ supplementary to Ker(bq) is
a quadratic space, and the restriction of dq to M ′ induces a bijection M ′ →M ′∗.
Moreover M∗ can be identified with Ker(bq)∗ ⊕ M ′∗, and thus we realize that
Im(dq) is the direct summand M ′∗. Conversely let us suppose that Im(dq) is a
direct summand of M∗. Since the canonical mapping M → (M∗)∗ is bijective, M
is the direct sum of two submodules M ′ and N such that M ′∗ and N∗ can be
identified respectively with Im(dq) and a supplementary submodule in M∗. Now
N is the submodule of all a ∈ M such that h(a) = 0 for all h ∈ Im(dq); therefore
N = Ker(dq) = Ker(bq). Consequently dq induces a bijection M ′ →M ′∗. �

The next lemma might be an easy consequence of (6.7.7), but a more ele-
mentary proof can be given already now.

(5.6.8) Lemma. If q is a tamely degenerate quadratic form on a finitely generated
projective module M , the graded center of C�(M, q) is the subalgebra generated
by Ker(bq)), and the natural injection Ker(bq) → M extends to an isomorphism
C�(Ker(bq)) → Zg(C�(M, q)).

Proof. Since every a ∈ Ker(bq) anticommutes with every b ∈ M , it is clear that
Zg(C�(M, q)) contains Ker(bq) and the subalgebra it generates. The injective-
ness of the algebra morphism C�(Ker(bq)) → Zg(C�(M, q)) follows from (4.8.5),
and it remains to prove its surjectiveness. Let M ′ be a submodule supplemen-
tary to Ker(bq); thus C�(M, q) (or shortly C�(M)) is canonically isomorphic to
C�(Ker(bq)) ⊗̂C�(M ′). If we prove that Zg(C�(M)) is contained in C�(Ker(bq)) ⊗̂
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Zg(C�(M ′)), we have finished, because C�(M ′) is a graded Azumaya algebra and
Zg(C�(M ′)) = K. We can suppose that C�(Ker(bq)) is a free module, since by
localization we can reduce the problem to this case; let (x1, x2, . . . ) be a basis
of C�(Ker(bq)). Every z ∈ Zg(C�(M)) can be written in a unique way as a sum∑

i xi ⊗ yi for suitable yi ∈ C�(M ′), and from the equalities a′z = σ(z)a′ (with
a′ ∈M ′) it is easy to deduce that all y1, y2, . . . must belong to Zg(C�(M ′)). �

Local parities

If g is an orthogonal transformation of (M, q), every localization gp is equal to Gξ

for some invertible homogeneous ξ ∈ Zr(C�(g))p (see (5.1.5)), and Zr(C�(g))p is
the submodule over Zr(C�(M, q))p generated by ξ (see (5.1.7)). If Zr

1(C�(M, q))p

contains no invertible elements, then every homogeneous invertible element of
Zr(C�(g))p has the same parity as ξ, and a parity can be assigned to g at the
prime ideal p. As it has been observed in (5.1.12), there is a parity at p whenever
the image of 2 in Kp does not vanish.

For each idempotent e ∈ Ip(K) let GOe(M, q) be the subset of all g ∈
GO(M, q) such that (1 − e)Zr(C�(g)) is contained in C�0(M, q), and eZr(C�(g))
in C�1(M, q); this implies that g has an even parity at every prime ideal p that
contains e, yet an odd parity at every p that does not contain e. Because of (5.6.2)
it also implies det(g) = 1 − 2e. There is a canonical morphism e �−→ 1 − 2e
from Ip(K) into the group µ2(K) of square roots of 1, which is bijective when
2 is invertible in K; it already appeared in (3.4.14). Nevertheless when 2 is not
invertible, there are orthogonal transformations g such that det(g) does not belong
to the image of this morphism; there is a counterexample in (5.ex.14).

The subset GO0(M, q) is a subgroup often denoted by SO(M, q), and called
the special orthogonal group. In the notation GO0(M, q) or GO1(M, q) the lower
index 0 or 1 can be read as an idempotent of K, or as an element of Z/2Z indicating
that Zr(C�(g)) is entirely contained in C�0(M, q) or C�1(M, q). If g and g′ belong
respectively to GOe(M, q) and GOe′(M, q), it is easy to prove that gg′ belongs to
GOe′′ (M, q) with e′′ = e+̃e′ = e + e′ − 2ee′.

It may occur that GO(M, q) is the union of all subsets GOe(M, q) with
e ∈ Ip(K); this occurs in the two cases described in the following propositions.

(5.6.9) Proposition. If g is an orthogonal transformation of a quadratic space
(M, q), there exists e ∈ Ip(K) such that g belongs to GOe(M, q); moreover C�(g)
induces the identity automorphism on (1−e)QZ(M, q) and the standard involution
on eQZ(M, q).
When M is a faithful module, QZ(M, q) is the centralizer of C�0(M, q) in C�(M, q)
(see (3.7.6)), and every automorphism of this quadratic extension is determined
by an idempotent e (see (3.4.15)).

Proof. Because of (5.1.9), Zr(C�(g)) is a graded invertible module; consequently
there exists e ∈ Ip(K) such that (1 − e)Zr(C�(g)) and eZr(C�(g)) are contained
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respectively in C�0(M, q) and C�1(M, q). If z is an element of QZ(M, q), then
from (3.5.13) we deduce that xz = zx for all x ∈ C�0(M, q) (in particular for
all x ∈ (1 − e)Zr(C�(g))), and that xz = (−1)∂zϕ(z)x for all x ∈ C�1(M, q) (in
particular for all x ∈ eZr(C�(g))) if ϕ is the standard involution of QZ(M, q). The
conclusion follows immediately. �

(5.6.10) Proposition. If M is a finitely generated projective module such that the
mapping a �−→ 2a is bijective from M onto M , the group GO(M, q) is the union
of the subsets GOe(M, q) with e ∈ Ip(K).

Proof. There is an idempotent e0 such that e0M is a faithful module over Ke0

whereas (1− e0)M = 0; the bijectiveness of a �−→ 2a implies that 2e0 is invertible
in Ke0. Consequently we can reduce the proof to the case of a ring K in which
2 is invertible; thus Zr

1(C�(M, q)) = 0. Let g be an orthogonal transformation of
(M, q); since Zr(C�(g)) is an invertible module over Zr(C�(M, q)) (see (5.1.9)),
every localization of Zr(C�(g)) is entirely even or entirely odd. Since det(g) is
a square root of 1 (see (5.6.3)), and since 2 is invertible in K, there is a unique
idempotent e ∈ Ip(K) such that det(g) = 1−2e. Because of (5.6.2) this means that
Zr(C�(p)) has an even (resp. odd) localization at every prime ideal that contains
e (resp. (1− e)); therefore (1− e)Zr(C�(g)) is even, and eZr(C�(g)) odd. �

5.7 Products of reflections when K is a local ring

When g is an automorphism of a quadratic space (M, q) over a field, the problem of
decomposing g into a product of reflections was tackled first by E. Cartan, and later
by J. Dieudonné who accepted even fields of characteristic 2, and thus discovered
that such decompositions did not always exist when (M, q) was a hyperbolic space
of dimension 4 over Z/2Z. In all other cases g is a product of reflections with a
number of factors ≤ dim(M). Still later R. Baeza considered quadratic spaces over
semilocal rings (with a finite number of maximal ideals).

Here we treat this problem when M is a free module of finite rank r over a
local ring K with maximal ideal m, and q a nondegenerate or tamely degenerate
quadratic form on M . Hereafter are the main results of this section.

(5.7.1) Theorem. With the above hypotheses, GO(M, q) is the subgroup of all g ∈
Aut(M, q) such that Ker(g−id) ⊃ Ker(bq), and the group morphism GLip(M, q) →
GO(M, q) is surjective.

(5.7.2) Theorem. If the residue field K/m contains more than 2 elements, every
g ∈ GO(M, q) is a product of reflections with a number of factors ≤ 2r′ if r′ is the
rank of M/Ker(bq).

The upper bound 2r′ in (5.7.2) is probably not the best one, but we are not
interested in improving it. Let M ′ be a submodule supplementary to Ker(bq) in M ,
and q′ the nondegenerate restriction of q to M ′. Besides, let q/m be the quadratic
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form on the extension (K/m)⊗(M, q) over the residue field. When q(Ker(bq)) ⊂ m,
then Ker(q/m) = Ker(bq/m), and the quadratic space (K/m) ⊗ (M ′, q′) over the
residue field can be identified with the quotient of (K/m)⊗ (M, q) by Ker(q/m).

(5.7.3) Theorem. If the residue field K/m has only two elements, every g ∈
GO(M, q) is a product of reflections (with a number of factors ≤ 3r′) except when
these three conditions are all satisfied: first the rank r of M is ≥ 3, secondly
q(Ker(bq)) ⊂ m, and thirdly (K/m)⊗ (M ′, q′) is a hyperbolic space of dimension
r′ equal to 2 or 4.

It is sensible to distinguish two exceptional cases in (5.7.3). The exceptional
case with r′ = 4 is called Dieudonné’s exceptional case, since its existence is
directly predictable from Dieudonné’s contribution. The other exceptional case
with r′ = 2 and r ≥ 3 does not allow q to be nondegenerate.

It is worth looking at Zr(C�(M, q)) since the kernel of the morphism
GLip(M, q) → GO(M, q) is the group of invertible lipschitzian elements in this
subalgebra. When q is nondegenerate, then Zg(C�(M, q)) = K. When q is tamely
degenerate, Zg(C�(M, q)) is the subalgebra generated by Ker(bq) (see (5.6.8)),
and we know that Zr

0(C�(M, q)) = Zg
0(C�(M, q)), whereas Zr

1(C�(M, q)) is the
subset of all x ∈ Zg

1(C�(M, q)) such that 2x = 0. When 2 is invertible in K,
then Ker(bq) = Ker(q) and we can identify Zg(C�(M, q)) with

∧
(Ker(q)),

and Zr(C�(M, q)) with
∧

0(Ker(q)). When the equality 2 = 0 holds in K, then
Zr(C�(M, q)) = Zg(C�(M, q)). When Ker(bq) contains an invertible element a, the
equality 2 = 0 must hold in K since 2q(a) = bq(a, a) = 0; this a is an invertible
element of Zr

1(C�(M, q)) which prevents us from assigning a parity to any element
of GO(M, q). When Ker(bq) contains no invertible element (in other words, when
q(Ker(bq)) ⊂ m), it is sure that Zr

1(C�(M, q)) cannot contain invertible elements;
indeed we can replace C�(M, q) with an isomorphic algebra

∧
(M ; β) as in 4.8, we

can require that β(a, b) ∈ m for all a, b ∈ Ker(bq), and by means of (4.8.9) we can
easily prove, for all x, y ∈ Zr

1(C�(M, q)), that the component of the product xy in∧0(M) = K belongs to m.

Proof of (5.7.1) and (5.7.2)

We prove them by induction on r′. When r′ = 0, then M = Ker(bq) and there is
nothing to prove since GO(M, q) is reduced to one element. Now we assume that
r′ > 0, and that g is an automorphism of (M, q) such that Ker(bq) ⊂ Ker(g− id).

When 2 is invertible in K, there is an orthogonal basis (a1, a2, . . . , ar′) in
M ′ (see (2.6.2)). If there exists an invertible lipschitzian x such that Gx(ar′) =
g(ar′), then G−1

x g leaves ar′ invariant, therefore leaves invariant the submodule N
orthogonal to ar′ . Because of the induction hypothesis, the restriction of G−1

x g to
N is equal to Gy for some product y of elements of N with a number of factors
≤ 2(r′−1). As an element of GLip(M, q), y gives an orthogonal transformation Gy

that leaves invariant every element of N⊥, in particular ar′ (see (5.1.14)); thus the
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equality g = GxGy can be extended from N to M . If x is a product of one or two
elements of M , we have actually proved both (5.7.1) and (5.7.2) by induction on
r′. Thus we reduce the demonstration of these theorems to the following lemma.

(5.7.4) Lemma. Let (M, q) be a quadratic module over a local ring K in which 2 is
invertible, and let a and a′ be elements of M such that q(a) = q(a′) ∈ K×. Then
Gx(a) = a′ for some x ∈ GLip(M, q) that is an element of M or a product of two
elements of M .

Proof. If q(a′ − a) is invertible, we can choose x = a′ − a (see (5.6.4)). If q(a′ + a)
is invertible, we can choose x = (a′ + a)a, because Ga maps a to −a, and Ga′+a

maps −a to a′. Either q(a′−a) or q(a′+a) is invertible since q(a′−a)+q(a′+a) =
4q(a) ∈ K×. �

When 2 is not invertible in K, then r′ is even, and in (2.6.2) it is stated
that M ′ is an orthogonal sum of submodules of rank 2. Each of these submodules
contains a basis (ai, bi) (with i = 1, 2, . . . , r′/2) such that q(ai) and bq(ai, bi) are
invertible. Thus the induction that allows us to prove (5.7.1) and (5.7.2) is based
on the following lemma.

(5.7.5) Lemma. Let (M, q) be a quadratic module over a local ring K in which 2
is not invertible, and let a, a′, b, b′ be elements of M such that

q(a) = q(a′) ∈ K×, bq(a, b) = bq(a′, b′) ∈ K×, q(b) = q(b′).

There exists an invertible lipschitzian element x such that Gx(a) = a′ and Gx(b) =
b′. Moreover this x is a product of elements of M with at most four factors if at
least one of these hypotheses is true:

(a) if a′ − a is either null or invertible;
(b) if q(b) too is invertible, and bq(a, a′), bq(a, b′), bq(b, a′), bq(b, b′) are not all

in m;
(c) if K/m contains more than two elements.

Proof. For the first part of (5.7.5) it suffices to prove these two statements: first
there exists an invertible lipschitzian x such that Gx(a) = a′; secondly when a′ = a,
there exists an invertible lipschitzian y such that Gy(a) = a and Gy(b) = b′. For
the second part of (5.7.5) it suffices to prove that x is a product of one or two
elements of M , and y too. Since this is true for y without any additional hypothesis
(a) or (b) or (c), we begin with the construction of y.

Let us suppose that a = a′, and find a suitable y. When b′ − b is invertible,
we take y = b′−b because b′−b is orthogonal to a (remember bq(a, b) = bq(a, b′)),
whence Gy(a) = a. When b′ − b is not invertible, we choose an invertible e ∈ M
that is orthogonal to a, for instance e = bq(a, b)a−2q(a)b, and we set y = b′e+eb.
The invertibility of y depends on the invertibility of

(b′e + eb)(be + eb′) = q(b′ − b)q(e) + bq(b, e)bq(b′, e) ;
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y is invertible because bq(b, e) and bq(b′, e) are both invertible; moreover y is a
product of two elements of M because e is invertible (see (5.6.5)). At last Gy maps
b to b′ (again (5.6.5)), and leaves a invariant because a is orthogonal to b′− b and
e, and y = bq(b, e) + (b′ − b)e.

Now we prove the existence of x such that Gx(a) = a′ when a �= a′. When
a′ − a is invertible, we take x = a′ − a. By the way, we have already proved the
second part of (5.7.5) with the hypothesis (a). When a′ − a is not invertible, we
take x = a′d + da with some d ∈ M such that bq(a, d) and bq(a′, d) are both
invertible, because this is the condition for x to be invertible. When bq(a′, b) is
invertible, we can choose d = b. When bq(a, b′) is invertible, we can choose d = b′.
When neither bq(a′, b) nor bq(a, b′) is invertible, we can choose d = b′ − b.

Now let us prove the second part of (5.7.5) with the hypothesis (b); this
hypothesis has nothing to do with the proof of (5.7.2), but anticipates later dis-
cussions. A problem may occur only when a′ − a is neither null nor invertible;
then bq(a, a′) belongs to m; consequently bq(a, b′), bq(b, a′), bq(b, b′) are not all
in m. If bq(a, b′) or bq(b, a′) is invertible, then x = a′d + da with d equal to b
or b′, consequently invertible; thus x is a product of two elements of M . When
bq(a, a′), bq(a, b′), bq(b, a′) are all in m, then bq(b, b′) is invertible, and q(b′ − b)
too; therefore the problem is settled since we have chosen d = b′ − b in this case.

Now let us consider the hypothesis (c), the only one that is involved in the
proof of (5.7.2). Since K/m has more than two elements, K contains an element
κ such that κ(κ− 1) is invertible. If q(b) is not invertible, we replace b with b− a
or κb − a, and similarly b′ with b′ − a′ or κb′ − a′. Since q(b − a) or q(κb − a) is
invertible, it suffices to settle the problem with the extra hypothesis q(b) ∈ K×.
As with the hypothesis (b), it remains to examine what happens when bq(a, a′),
bq(a, b′), bq(b, a′) are all in m. If bq(b′, b) is invertible, we still choose d = b′ − b ;
but if it is not, we choose d = κb′ − b. �

This corollary of (5.7.1) shows that there cannot be exceptional cases with
r < 3 in (5.7.3).

(5.7.6) Corollary. If (M, q) is a quadratic space of rank 2 over a local ring, every
automorphism g of (M, q) is a reflection or a product of two reflections.

Indeed on one side g = Gx for some homogeneous x ∈ GLip(M, q), on the
other side C�1(M, q) = M , and M contains an invertible a. Therefore every
x ∈ C�0(M, q) is equal to ab for some b ∈ M . �

Proof of (5.7.3)

After the proof of (5.7.1) it appears that every g ∈ GO(M, q) (with the hypotheses
mentioned just before (5.7.1)) is equal to Gx for some x that is a product of factors
that belong to M , or can be written λ + ab with λ ∈ K and a, b ∈ M . When is
λ+ ab itself a product of elements of M? When the submodule Ka + Kb contains
an invertible c, then it is easy to verify that c(λ + ab) belongs to M , and that
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λ + ab = cd for some d ∈ M . This argument has been used to prove that a′d + da
in (5.6.5) is a product of two elements of M when d is invertible. Consequently
it remains to look for a factorization of λ + ab into a product of elements of M
when q(Ka + Kb) ⊂ m. The upper bound 3r′ in (5.7.3) comes from the fact that
its factorization needs four factors in M . Besides, this λ + ab is invertible if and
only if λ is invertible.

(5.7.7) Factorization lemma. Let (M, q) be a quadratic module over a local ring K,
λ an invertible element of K, and a, b two elements of M such that q(a), q(b),
bq(a, b) all belong to m. Then λ + ab is a product of four elements of M if there
exists an invertible c ∈ M such that both bq(a, c) and bq(b, c) belong to m. When
K/m contains more than two elements, the same conclusion holds if there exists
an invertible c ∈ M such that only bq(a, c) belongs to m.

Proof. Let c be an invertible element of M such that bq(a, c) ∈ m, and let µ and
ν be two still unknown elements of K. A routine calculation shows that

(λ + ab)(c + µa)(c + νb) =
(
λq(c)− λνbq(b, c)− µνq(a)q(b)

)
+ κab + dc

with κ = q(c) + λµν + µνbq(a, b) + νbq(b, c)
and d = (λµ + µbq(a, b)− νq(b)) a − (λν + µq(a)) b.

The equality κ = 0 is equivalent to µν(λ+bq(a, b)) = −q(c)− νbq(b, c) ; it always
allows us to calculate µ when ν is an invertible element. Besides, (c+µa) is always
invertible, and (c+νb) is invertible if and only if q(c)+νbq(b, c) is not in m. When
κ = 0, it is clear that (λ + ab)(c + µa)(c + νb)c belongs to M , and if ν has been
chosen so that (c + νb) is invertible, it follows that λ + ab is a product of four
elements of M .

When bq(b, c) too belongs to m, then (c + νb) is invertible for all ν ∈ K×,
and the calculation of µ is always possible. Now let us suppose that bq(b, c) is
invertible and that K/m contains more than two elements, although this case is
not involved in the proof of (5.7.3). When (c+b) is invertible, we choose ν = 1 and
the calculation of µ follows. When (c + b) is not invertible, we look for an element
ν ∈ K such that ν(ν − 1) is invertible, and then (c + νb) is invertible. �

Proof of (5.7.3). We already know that there is no problem when r < 3. If Ker(bq)
contains an invertible element c, with c we can factorize all elements λ + ab such
that q(Ka+Kb) ⊂ m. Consequently we suppose r ≥ 3 and q(Ker(bq)) ⊂ m. We also
suppose that (K/m)⊗ (M ′, q′) is not a hyperbolic space of dimension 2 or 4, and
we prove this statement: if a and b are elements of M such that q(Ka + Kb) ⊂ m,
there is an invertible c ∈M such that bq(a, c) and bq(b, c) are in m. If ã and b̃ are
the images of a and b in M/mM , it is equivalent to say that the submodule N of
M/mM orthogonal to ã and b̃ is not totally isotropic; this submodule of M/mM
has codimension ≤ 2. A totally isotropic submodule of M ′/mM ′ has dimension
≤ r′/2 ; therefore a totally isotropic submodule of M/mM has codimension≥ r′/2 ;
this prove that the above N cannot be totally isotropic when r′ ≥ 6. When r′ = 4
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and M ′ is not hyperbolic, a totally isotropic submodule of M ′/mM ′ has dimension
≤ 1, a totally isotropic submodule of M/mM has codimension ≥ 3, and the same
conclusion follows. When r′ = 2 and M ′/mM ′ is not hyperbolic, then M ′/mM ′ is
anisotropic; therefore ã and b̃ are orthogonal to all elements of M/mM . �

Dieudonné’s exceptional case

In (2.8.3) it is stated that a hyperbolic space of dimension 4 over the field Z/2Z is
in a unique way the orthogonal sum P1 ⊥ P2 of two anisotropic planes. Let (aj , bj)
be a basis of Pj for j = 1, 2. There are six invertible elements in P1 ⊥ P2, the
elements of the basis (a1, b1, a2, b2), and the other nonzero elements a1 + b1 and
a2+b2 in P1 and P2. The reflection determined by a1 (for instance) permutes b1 and
a1 + b1 and leaves invariant a1 and all elements of P2. Obviously every reflection
leaves P1 and P2 invariant, and every product of reflections too. Nevertheless they
are orthogonal transformations permuting P1 and P2. For instance if we set

z = a2(b1 + b2) + (b1 + b2)a1 = a1(b1 + b2) + (b1 + b2)a2

= b2(a1 + a2) + (a1 + a2)b1 = b1(a1 + a2) + (a1 + a2)b2 ,

we get an invertible lipschitzian z such that Gz maps

(a1, b1, a2, b2) to (a2, b2, a1, b1) (see (5.6.5)).

Now let (M, q) be a quadratic module belonging to Dieudonné’s exceptional
case. This means first that it is a nondegenerate or tamely degenerate quadratic
module of finite rank over a local ring K such that K/m is isomorphic to Z/2Z,
secondly that q(Ker(bq)) ⊂ m, and thirdly that (K/m) ⊗ (M ′, q′) is hyperbolic
of rank 4 over K/m. Every automorphism g of (M, q) induces an automorphism
g̃ of (K/m) ⊗ (M ′, q′) (because it is canonically isomorphic to the quotient of
(K/m) ⊗ (M, q) by Ker(q/m)). If g is a product of reflections, then g̃ too is a
product of reflections, but this is impossible if g̃ permutes the two anisotropic
planes in (K/m) ⊗ (M ′, q′). Yet it is easy to find an invertible lipschitzian z in
C�(M, q) such that Gz permutes the anisotropic planes of (K/m) ⊗ (M ′, q′); we
can even require z2 ∈ K, so that Gz is involutive. Indeed let (a1, b1, a2, b2) be a
basis of M ′ such that Ka1 +Kb1 and Ka2 +Kb2 are mapped onto the anisotropic
planes of (K/m) ⊗ (M ′, q′), and λ a still unknown element of K×; if we set z =
λa2(b1 +b2)+(b1 +b2)a1, it is sure that z is an invertible lipschitzian element such
that Gz permutes the anisotropic planes in (K/m)⊗ (M ′, q′). Moreover a routine
calculation shows that

z2 − bq(λa2 + a1, b1 + b2) (λa2 − a1)(b1 + b2) ∈ K ;

therefore z2 belongs to K if and only if bq(λa2+a1, b1+b2) = 0 ; since bq(aj , b1+
b2) is invertible for j = 1, 2, this equation has a unique and invertible solution λ.
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(5.7.8) Proposition. Let (M, q) be a quadratic module that belongs to Dieudonné’s
exceptional case. An orthogonal transformation of (M, q) is a product of reflections
if and only if it leaves invariant the two anisotropic planes in (K/m) ⊗ (M ′, q′).
Besides, there are elements c, d ∈ M such that q(Kc + Kd) ⊂ m, and G1+cd is an
involutive orthogonal transformation that permutes these anisotropic planes.

Proof. The proof of the second part is almost complete; it suffices to observe that
the above z can be written bq(a1, b1 + b2) + (λa2 − a1)(b1 + b2) ; if we set
c = λa2 − a1 and d = bq(a1, b1 + b2)−1(b1 + b2), we get a suitable element 1 + cd.
In the first part of (5.7.8) it remains to prove that an orthogonal transformation
g that does not permute the anisotropic planes of (K/m)⊗ (M ′, q′), is a product
of reflections. Let (a′

1, b
′
1, a

′
2, b

′
2) be the image of (a1, b1, a2, b2) by g. It suffices to

prove the existence of a product x of elements of M (at most four factors) such
that Gx maps a1 and b1 to a′

1 and b′1, because after this first step we meet a
subsequent problem in the quadratic module Ka2 ⊕Kb2 ⊕ Ker(bq) which is not
exceptional (see (5.7.3)). Since g does not permute the anisotropic planes, a′

1 is
congruent either to a1 or to b1 or to a1 + b1 modulo mM + Ker(bq); consequently
either bq(a1, a

′
1) or bq(b1, a

′
1) is invertible, and the existence of x follows from the

second part of (5.7.5) with the hypothesis (b). �

The subgroup Γ(M, q) generated by the reflections is a normal subgroup of
Aut(M, q) because gGdg

−1 = Gg(d) for all invertible d ∈M and all g ∈ Aut(M, q).
When GO(M, q) �= Γ(M, q), it may be interesting to know a subgroup supplemen-
tary to Γ(M, q) in GO(M, q), in other words, a subgroup that is mapped bijectively
onto the quotient GO(M, q)/Γ(M, q). When (M, q) is the quadratic module men-
tioned in (5.7.8), then {id, G1+cd} is a supplementary subgroup.

The other exceptional case

Now let us suppose that (M, q) belongs to the other exceptional case. This means
first that it is a tamely degenerate quadratic module of finite rank ≥ 3 over a local
ring K such that K/m is isomorphic to Z/2Z, secondly that q(Ker(bq)) ⊂ m, and
thirdly that (K/m)⊗ (M ′, q′) is hyperbolic of rank 2 over K/m.

There is a basis (a, b) of M ′ such that both q(a) and bq(a, b) are invertible,
whereas q(b) and q(a + b) fall into m. Every invertible element of M is congruent
to a modulo mM + Ker(bq). Consequently g(a) − a is in mM + Ker(bq) for all
g ∈ Aut(M, q). If g is an orthogonal transformation, in other words if g leaves
invariant every element of Ker(bq), a short calculation shows that g(a) − a and
g(a′′) − a′′ are congruent modulo mM if a′′ is another invertible element of M .
This suggests to consider the mapping D : GO(M, q)→ Ker(bq)/mKer(bq) which
maps every g ∈ GO(M, q) to the class of g(a) − a modulo mM . It is a group
morphism because, for all g, g′ ∈ GO(M, q),

gg′(a)− a = g(g′(a)− a) + g(a)− a ≡ (g′(a)− a) + (g(a)− a)
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modulo mM . This group morphism maps every reflection Gd to 0 ; indeed Gd(a)−
a = −bq(a, d)d−1 and bq(a, d) belongs to m.

(5.7.9) Proposition. When (M, q) belongs to the other exceptional case, there is
a canonical group morphism D from the multiplicative group GO(M, q) onto the
additive group Ker(bq)/mKer(bq). It is surjective and all products of reflections
belong to its kernel. Conversely every orthogonal transformation in Ker(D) is a
product of reflections if at least one of these extra hypotheses is true:

– if Ker(q) = Ker(bq) ;
– if there is a hyperbolic plane M ′ among the submodules supplementary to

Ker(bq).

Proof. For every c ∈ Ker(bq) the lipschitzian element 1 + bc is invertible and

G1+bc(a)− a = −(1 + q(b)q(c))−1bq(a, b) (c + q(c)b) ,

whence D(G1+bc) ≡ c modulo mKer(bq). This proves the surjectiveness of D, and
implies that some orthogonal transformations are not products of reflections, since
we already know that all reflections are mapped to 0.

Conversely let g be an element of Ker(D). If we manage to prove that g1g(a)
belongs to M ′ for some g1 ∈ GO(M, q) that is a product of reflections, then it is
easy to prove that g is a product of reflections. Indeed let us set x = ab+ bg1g(a) ;
since g1g(a) − a ∈ mM ′, we are sure that both bq(a, b) and bq(g1g(a), b) are
invertible, whereas q(g1g(a)−a) ∈ m, whence the invertibility of x, and Gxg1g(a) =
a. Moreover x is a product of two elements of M ′ since it belongs to C�0(M ′, q′) (see
(5.7.6)). Then (5.7.5) (with the hypothesis (a)) proves the existence of a product
g2 of reflections such that g2Gxg1g maps a to a, and b to b, whence g2Gxg1g = id
since all orthogonal transformations leave invariant all elements of Ker(bq). Let
us prove the existence of g1 with each of the extra hypotheses. When there exists
a hyperbolic plane M ′ supplementary to Ker(bq) we can assume that q(b) = 0.
When Ker(q) = Ker(bq), then q(c) = 0 for all c ∈ Ker(bq). Let (c1, c2, . . . , cs) be
a basis of Ker(bq), and let us write

g(a) = (1 + κ)a + λb +
s∑

i=1

µici with κ, λ, µ1, . . . , µs ∈ m.

The hypothesis D(g) = 0 means precisely that all µi belong to m. Let us prove
the existence of some invertible y that is a product of elements of M , and that
allows us to write

Gyg(a) = (1 + κ)a + λsb +
s−1∑
i=1

µici for some λs ∈ m ;

if we manage to prove it, the existence of g1 follows from an induction on s. Let
us set y = 1 + νsbcs for some still unknown νs ∈ m. This y is invertible because

(1 + νsbcs)(1 + νscsb) = 1 + ν2
sq(b)q(cs) = 1 ;
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indeed either q(b) or q(cs) vanishes. Then easy calculations show that

(1 + νsbcs) a (1 + νscsb) = a − νsbq(a, b) (cs + νsq(cs)b) ,

(1 + νsbcs) b (1 + νscsb) = b − 2νsq(b) (cs + νsq(cs)b).

Consequently we must choose

νs = µs ((1 + κ)bq(a, b) + 2λq(b))−1

to get the above equality with

λs = λ − ν2
s q(cs) ((1 + κ)bq(a, b) + 2λq(b)) .

It remains to realize that y is a product of four elements of M because the factor-
ization Lemma (5.7.7) can be applied to the invertible a such that bq(a, cs) = 0
and bq(a, νsb) ∈ m. Consequently the wanted g1 is the orthogonal transformation
derived from a lipschitzian element looking like

(1 + ν1bc1) (1 + ν2bc2) · · · (1 + νsbcs) .

When q(b) = 0, it is worth observing that the s factors (1 + νibci) pairwise
commute, and that their product is 1 + bc with c =

∑
i νici. When Ker(q) =

Ker(bq), it is worth observing that λ = λs = λs−1 = · · · ; but it is still more
interesting to notice that, instead of the above y, it is preferable to use y′ =
1+(a+ ν′

sb)cs with a suitable ν′
s ∈ m, because the invertibility of (a+ ν′

sb) implies
that y′ is a product of only two elements of M . The calculations with y′ lead to

ν′
s = (µs − 2(1 + κ)q(a)− λbq(a, b)) ((1 + κ)bq(a, b) + 2λq(b))−1. �

When the subgroup Γ(M, q) generated by the reflections is equal to Ker(D),
a subgroup of GO(M, q) is supplementary to Γ(M, q) if and only if D maps it
bijectively onto Ker(bq)/mKer(bq). Here it is more difficult to find such a supple-
mentary subgroup than in Dieudonné’s exceptional case. When q(b) = 0, the map-
ping c �−→ G1+bc is a group morphism from Ker(bq) into GO(M, q), and moreover
D(G1+bc) ≡ c modulo mKer(bq). Consequently the transformations G1+bc consti-
tute a supplementary subgroup when K = Z/2Z. When K contains a subgroup
supplementary to m (in the category Mod(Z) of additive groups), then Ker(bq)
contains a subgroup supplementary to mKer(bq), which gives in GO(M, q) a sub-
group supplementary to Γ(M, q). Such a subgroup of K supplementary to m exists
for instance when K is the ring (Z/2Z)[[t]] of formal series, but does not exist when
K = Z/2nZ with n ≥ 2.
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5.8 Further results about orthogonal transformations

When (M, q) is a finitely generated quadratic module, Theorem (5.3.9) allows us
to recognize by localization whether an automorphism of (M, q) belongs to the
image of the morphism G′′Lip(M, q) → GO(M, q), and in the previous section
we have obtained precise information about a great amount of quadratic modules
over local rings. Here are the immediate consequences.

(5.8.1) Theorem. When (M, q) is a quadratic space, all these canonical group mor-
phisms are bijective:

G′Lip(M, q) −→ G′′Lip(M, q) −→ GO(M, q) −→ Aut(M, q).

(5.8.2) Theorem. When M is a finitely generated projective module provided
with a tamely degenerate quadratic form q, then GO(M, q) is the subgroup of
all g ∈ Aut(M, q) such that Ker(g − id) ⊃ Ker(bq) and the group morphism
G′′Lip(M, q) → GO(M, q) is bijective.

The group morphism GLip(M, q) → G′Lip(M, q) is already well described
by the exact sequence (5.3.7), but it is a pity that (5.8.2) says nothing about
G′Lip(M, q). There is more information about G′Lip(M, q) only in the nondefec-
tive case that shall be soon presented. Although nondegenerate and tamely de-
generate quadratic forms already represent a great amount of various cases, their
study does not yet enable us to guess what might occur with orthogonal groups
of other interesting quadratic forms.

For instance look at the quadratic form q : K → K defined by λ �−→ λ2 when
K = Z/8Z. All the four elements µ of K× are square roots of 1, and consequently
every linear transformation λ �−→ µλ is an automorphism of (K, q); nevertheless
GO(K, q) contains only two elements, id and the reflection −id. This quadratic
form q is neither nondegenerate nor tamely degenerate, but it is “almost nonde-
generate”: see (2.ex.14); in the “almost nondegenerate” case an automorphism is
an orthogonal transformation if and only if its determinant satisfies the property
stated in (5.6.3): see (5.ex.15).

The surjectiveness of G′′Lip(M, q)→ GO(M, q) in (5.8.1) and (5.8.2) proves
(for the quadratic modules here under consideration) the equality G′′Lip(M, q) =
G′′C�(M, q) which has been considered as a main conjecture. Besides, the elements
of G′′C�(M, q) are modules over the subalgebra Zr(C�(M, q)); this is a subalgebra
of Zg(C�(M, q)), which here is the subalgebra generated by Ker(bq) (see (5.6.8)).
If the rank of Ker(bq) is everywhere ≤ 3, then all elements of Zg(Ker(bq)) are
lipschitzian (see (5.4.3)), and the equality G′′Lip(M, q) = G′′C�(M, q) implies
G′Lip(M, q) = G′C�(M, q) and GLip(M, q) = GC�(M, q). But it is easy to con-
struct examples for which these last two equalities are false: see (5.8.5) below.
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The nondefective case

Let q be a tamely degenerate quadratic form on a finitely generated projective
module; we say that q is nondefective if Ker(q) = Ker(bq). In (2.2.1) there are
two sufficient conditions for this equality to be true. When q is nondefective,
GO(M, q) is in a natural way a semidirect product of two subgroups; in other
words, it contains a remarkable normal subgroup and easily noticeable supple-
mentary subgroups.

(5.8.3) Proposition. Let (M, q) be a tamely degenerate quadratic space such that
Ker(q) = Ker(bq), and (M ′, q′) a submodule supplementary to Ker(bq) as above.
Let us map every h ∈ Hom(M ′, Ker(q)) to the endomorphism F0(h) of M defined
in this way:

∀c ∈ Ker(q), ∀a′ ∈ M ′, F0(h)(c + a′) = c + h(a′) + a′.

Thus we get an injective morphism F0 from the additive group Hom(M ′, Ker(q))
into the multiplicative group GO(M, q); its image GOn(M, q) is the subgroup of all
g ∈ GO(M, q) such that Im(g− id) ⊂ Ker(q); it is a normal subgroup of GO(M, q).

Moreover let us map every g′ ∈ GO(M ′, q′) to the endomorphism F1(g′) of
M defined in this way:

∀c ∈ Ker(q), ∀a′ ∈M ′, F1(g′)(c + a′) = c + g′(a′).

Thus we get an injective group morphism F1 : GO(M ′, q′) → GO(M, q); its image
GO′(M, q) is the subgroup of all g ∈ GO(M, q) such that g(M ′) = M ′; it is a
subgroup of GO(M, q) supplementary to the normal subgroup GOn(M, q).

Proof. It is easy to verify that F0(h) and F1(g′) are automorphisms of (M, q) leav-
ing invariant all c ∈ Ker(q), therefore orthogonal transformations. The elements of
GOn(M, q) are all the linear transformations g of M such that Ker(q) ⊂ Ker(g−id)
and Im(g − id) ⊂ Ker(q); consequently GOn(M, q) is actually a normal subgroup
in the group of all linear transformations leaving Ker(q) invariant. The descrip-
tion of GO′(M, q) in (5.8.3) is an evidence because GO(M ′, q′) = Aut(M ′, q′), and
GO(M, q) is the group of all g ∈ Aut(M, q) leaving invariant all c ∈ Ker(q). It re-
mains to prove that every g ∈ GO(M, q) can be written as a product F1(g′)F0(h)
for a unique couple (h, g′). On one side F1(g′)F0(h)(a′) = h(a′) + g′(a′) for all
a′ ∈ M ′. On the other side, for every g ∈ GO(M, q) there is a unique h ∈
Hom(M ′, Ker(q)) and a unique g′ ∈ End(M ′) such that g(a′) = h(a′) + g′(a′)
for all a′ ∈ M ′, and it is clear that g′ must belong to GO(M ′, q′). �

(5.8.4) Corollary. If (M, q) is a tamely degenerate and nondefective quadratic mod-
ule, the group morphism G′Lip(M, q) → GO(M, q) is surjective.

Proof. Because of (5.8.1) the morphism G′Lip(M ′, q′) → GO(M ′, q′) is bijective,
and from F1 in (5.8.3) we deduce a bijective morphism GO(M ′, q′)→ GO′(M, q).
Consequently it suffices to prove that the normal subgroup GOn(M, q) is contained
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in the image of G′Lip(M, q) → GO(M, q). As a matter of fact it lies even in the
image of GLip(M, q) → GO(M, q). Indeed there is a bijection Ker(q) ⊗ M ′∗ →
Hom(M ′, Ker(q)) because M ′ is finitely generated and projective; and there is a
bijection M ′ → M ′∗ because q′ is nondegenerate; whence a bijection Ker(q) ⊗
M ′ → Hom(M ′, Ker(q)), which is exactly this one:

c⊗ b′ �−→ ( a′ �−→ bq(b′, a′)c ) .

It is easy to verify that

(1 + cb′)(1 + b′c) = 1 and (1 + cb′)a′(1 + b′c) = a′ + bq(b′, a′)c .

This means that, when h is the mapping a′ �−→ bq(b′, a′)c, then G1+cb′ = F1(h).
It follows that for every h ∈ Hom(M ′, Ker(q)) there exists x ∈ GLip(M, q) such
that F1(h) = Gx. �

(5.8.5) Remark. At least in the nondefective case we know that the group
G′Lip(M, q) gives all orthogonal transformations, and consequently the non-lip-
schitzian elements of G′C�(M, q) are superfluous. But might the Clifford group
GC�(M, q) give more orthogonal transformations than GLip(M, q)? In other
words, if GX = GY for some X ∈ G′Lip(M, q) and some Y ∈ G′C�(M, q), is
it possible for Y to be free and X not free? The equality GX = GY implies that
Xτ(Y ) is contained in Zr(C�(M, q)), a subalgebra of

∧
(Ker(q)) since (M, q) is

assumed to be nondefective. By localization it is possible to prove that the pro-
jection

∧
(Ker(q)) →

∧0(Ker(q)) = K induces a bijection Xτ(Y ) → K because
Xτ(Y ) is invertible inside

∧
(Ker(q)); consequently Xτ(Y ) is free and X and Y

have the same image in Pic(K).
Other investigations have confirmed that no advantages may be awaited

from GC�(M, q) or G′C�(M, q). But they may bring disadvantages. For instance
in the traditional nondegenerate case the equality X−1 = τ(X) holds for every
X ∈ G′C�(M, q); this is always true for all X ∈ G′Lip(M, q) (see 5.3); but with a
tamely degenerate and nondefective (M, q) over a local ring in which 2 is invert-
ible, it is easy to construct a counterexample with some X ∈ G′C�(M, q). Indeed
let us suppose that the rank of Ker(q) is ≥ 4 (since it is explained above that
G′C�(M, q) = G′Lip(M, q) when this rank is ≤ 3), and let (e1, e2, . . . ) be a basis
of Ker(q); every invertible x ∈ Z0(C�(M, q)) belongs to GC�(M, q), for instance
x = 1 + e1e2e3e4 ; on one side τ(x) = x, on the other side x2 is not in K; con-
sequently this x is not lipschitzian and the equality X−1 = τ(X) is false when
X = Kx.

The infinite case

It is not difficult to study quadratic modules of infinite dimension over a field with
the same methods. Several facts help us to reduce the infinite case to the finite
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case, for instance the fact that every element of C�(M, q) belongs to the subalgebra
generated by a finite subset of M , and also the following fact.

(5.8.6) Lemma. Let q be a weakly nondegenerate quadratic form on a infinite di-
mensional vector space M over a field K. If P is any finite dimensional subspace
of M , there exists a finite dimensional subspace N containing P on which the
restriction of q is nondegenerate.

Proof. Let us set P0 = P ∩ P⊥ and let P1 be a subspace supplementary to P0

in P ; the restriction of q to P1 is weakly nondegenerate, therefore nondegenerate,
and M = P1 ⊕ P⊥

1 . Let us map every a ∈ P⊥
1 to the restriction of dq(a) to P0;

thus we obtain a mapping P⊥
1 → P ∗

0 . If it were not surjective, there would be an
element b ∈ P0 such that dq(a)(b) = 0 for all a ∈ P⊥

1 , and consequently for all
a ∈ M , contrary to the hypothesis that q is weakly nondegenerate. Therefore this
mapping is surjective, and there is a subspace P ′

0 that is mapped bijectively onto
P ∗

0 . Obviously P ′
0 ∩ P = 0 and the restriction of q to P0 ⊕ P ′

0 is nondegenerate,
even hyperbolic. Now we can set N = P ⊕ P ′

0 = (P0 ⊕ P ′
0) ⊥ P1. �

In the remainder of this section M is a projective module over some ring K,
M is not finitely generated, and M is provided with a quadratic form q for which
these two hypotheses are true:

(i) Ker(bq) is a direct summand of M , and every finitely generated submodule
of Ker(bq) is contained in a finitely generated direct summand.

(ii) if M ′ is any submodule supplementary to Ker(bq), and q′ the restriction of
q to M ′, then every finitely generated submodule of M ′ is contained in a
finitely generated submodule on which the restriction of q′ is nondegenerate.

It may happen that Ker(bq) or M ′ (but not both) is finitely generated. If Ker(bq)
is finitely generated, the hypothesis (i) only means that Ker(bq) is a direct sum-
mand. When M ′ is finitely generated, the hypothesis (ii) means that (M ′, q′) is a
quadratic space. In all cases every submodule of M ′ on which the restriction of q′

is nondegenerate, is an orthogonal summand (see (2.3.8)).

(5.8.7) Lemma. If the hypotheses (i) and (ii) are true, Zg(C�(M, q)) is the subal-
gebra generated by Ker(bq).

Proof. Obviously every element of Ker(bq) is in Zg(C�(M, q)). Conversely every
x ∈ Zg(C�(M, q)) belongs to the subalgebra generated by a finitely generated
submodule N , and we can suppose that N is the direct sum of a submodule N0

of Ker(bq) and a submodule N1 of M ′; because of the hypotheses (i) and (ii) we
can suppose that N0 is a direct summand of Ker(bq), and that the restriction
of q′ to N1 is nondegenerate; thus the Clifford algebra C�(N) can be identified
with the subalgebra generated by N in C�(M, q) (see (4.8.5)). The restriction
of q to N is tamely degenerate (even nondegenerate if N0 = 0), and since x
belongs to Zg(C�(N)), from (5.6.8) we deduce that x belongs to the subalgebra
generated by N0. �
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If g is an orthogonal transformation of (M, q), we know that Ker(g−id) ⊃ P⊥

for some finitely generated submodule P (see (5.1.14)). Let us prove that this
property characterizes the orthogonal transformations inside Aut(M, q).

(5.8.8) Lemma. Let (M, q) be a quadratic space satisfying the above hypotheses
(i) and (ii), and g an automorphism of (M, q) such that Ker(g − id) ⊃ P⊥ for
some finitely generated submodule P . In M there are orthogonal supplementary
submodules N and N ′′ such that

– P ⊂ N , g(N) = N and Ker(g − id) ⊃ N ′′,
– N is finitely generated and N = (N ∩Ker(bq))⊕ (N ∩M ′),
– the restriction of q′ to (N ∩M ′) is nondegenerate.

Proof. Let P0 and P1 be finitely generated submodules of respectively Ker(bq)
and M ′ such that P ⊂ P0 ⊕ P1. Thus Ker(g − id) ⊃ P⊥ ⊃ P⊥

1 . Because of the
hypothesis (ii) we can suppose that the restriction of q′ to P1 is nondegenerate, so
that M = P1 ⊕ P⊥

1 . It follows that Im(g − id) = (g − id)(P1) and that Im(g − id)
is finitely generated. Let N0 and N1 be finitely generated submodules of Ker(bq)
and M ′ such that P0 + P1 + Im(g − id) ⊂ N0 ⊕ N1. Because of the hypotheses
(i) and (ii) we can suppose that N0 is a direct summand of Ker(bq) (whence
Ker(bq) = N0⊕N ′′

0 for a suitable submodule N ′′
0 ), and that the restriction of q′ to

N1 is nondegenerate. Now we can set N = N0⊕N1 and N ′′ = N ′′
0 ⊕(M ′∩N⊥

1 ). �

(5.8.9) Corollary. Let (M, q) and g be the same as in (5.8.8). If K → K ′ is a flat
extension of K, then Zr(K ′ ⊗ C�(g)) = K ′ ⊗ Zr(C�(g)).

Proof. It suffices to prove that every x ∈ Zr(K ′⊗C�(g)) belongs to K ′⊗Zr(C�(g)).
Since the inclusion Ker(g − id) ⊃ P⊥ remains true when we increase P , we can
suppose that x belongs to the subalgebra generated by K ′ ⊗ P . Let N and N ′′

be the submodules constructed in (5.8.8), and let g̃ be the restriction of g to N .
It is clear that x is in Zr(K ′ ⊗ C�(g̃)). Since N is finitely generated, x is in K ′ ⊗
Zr(C�(g̃)), and it suffices to remember Zr(C�(g̃)) ⊂ Zr(C�(g)) (see (5.6.6)). �

Corollary (5.8.9) shows that we can apply to g all the conclusions of Theorem
(5.3.9). When K is a local ring we can also apply all the results of the previous
section. Indeed let g, N and N ′′ satisfy the properties stated in (5.8.8), and g̃ the
restriction of g to N . If there is some x ∈ GLip(N, q̃) such that g and Gx coincide
on N , then they coincide everywhere on M because Gx leaves invariant every
element of N ′′ (see (5.1.14)); therefore every decomposition of g̃ into a product of
reflections gives a decomposition of g into a product of reflections. Thus we have
proved these two theorems.

(5.8.10) Theorem. If (M, q) is a quadratic module satisfying the hypotheses (i) and
(ii), the orthogonal transformations of (M, q) are the automorphisms q of (M, q)
such that Ker(g − id) ⊃ P⊥ for some finitely generated submodule P of M . The
group morphism G′′Lip(M, q)→ GO(M, q) is bijective. When moreover Ker(bq) =
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Ker(q) (resp. Ker(bq) = 0), the group morphism G′Lip(M, q) → GO(M, q) is
surjective (resp. bijective).

(5.8.11) Theorem. If (M, q) is a quadratic module satisfying the hypotheses (i) and
(ii) over a local ring K with maximal ideal m, the group morphism GLip(M, q) →
GO(M, q) is surjective and every orthogonal transformation is a product of reflec-
tions, except when the residue field has only two elements and these two conditions
are satisfied: q(Ker(bq)) ⊂ m and (K/m)⊗ (M ′, q′) is a hyperbolic space of dimen-
sion 2 or 4.

The exceptional cases in (5.8.11) can be explained as in (5.7.8) and (5.7.9).

(5.8.12) Corollary. Let (M, q) be as in (5.8.10). If Ker(q) = 0, GO(M, q) is the
subgroup of all g ∈ Aut(M, q) such that Im(g − id) is a finitely generated module.

Indeed during the proof of (5.8.8) we realized that Im(g− id) is finitely generated
for every g ∈ GO(M, q). Conversely in (5.6.1) it is stated that Ker(g − id) =
(Im(g − id))⊥ when Ker(q) = 0. �

(5.8.13) Corollary. Let (M, q) be as in (5.8.10). If M ′ is finitely generated,
GO(M, q) is the subgroup of all g ∈ Aut(M, q) such that Ker(g − id) ⊃ Ker(bq).

Indeed Ker(bq) = M ′⊥. �

When K is a field, the next lemma improves the characterization of orthogo-
nal transformations inside Aut(M, q), and leads to an example of an automorphism
g that is not an orthogonal transformation although it satisfies all conditions re-
quired both in (5.8.12) and (5.8.13).

(5.8.14) Lemma. Let (M, q) be an infinite dimensional quadratic module over a
field, and let V be any submodule of M . The following assertions are equivalent:

(a) there is a finite dimensional submodule P such that V ⊃ P⊥;
(b) there is a finite dimensional submodule P such that V = P⊥;
(c) the codimension of V is finite and V = V ⊥⊥.

Proof. When dim(P ) is finite, it is clear that the codimension of P⊥ is ≤ dim(P ).
When P ∩ Ker(bq) �= 0, we do not change P⊥ if we replace P with a submodule
supplementary to P ∩Ker(bq) in P ; therefore we can require P∩Ker(bq) = 0. With
this assumption, dq : M →M∗ induces an injective mapping P → (M/P⊥)∗, and
since dim(M/P⊥) ≤ dim(P ), this injective mapping is bijective. It determines a
duality between P and M/P⊥, and consequently a bijection between the subspaces
of P and the subspaces of M/P⊥. In particular if V ⊃ P⊥, with the subspace
V/P⊥ of M/P⊥ this bijection associates a subspace Q of P such that V = Q⊥.
Thus we have proved (a)⇒(b).

Now let us suppose that V = P⊥ as in (b); it is clear that V has finite
codimension ≤ dim(P ), and the equality V = V ⊥⊥ announced in (c) follows from
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P⊥⊥⊥ = P⊥ (see (2.3.6)). Conversely if V = V ⊥⊥, then V = P⊥ for every sub-
module P supplementary to Ker(bq) in V ⊥; and since the mapping P → (M/P⊥)∗

is injective, P has finite dimension if V has finite codimension. �

(5.8.15) Example. Let K be a field of characteristic other than 2, and M a vector
space over K with an infinite basis (e0, e1, e2, · · · ). Let us set

q(
∑
i≥0

λiei) =
∑
i≥1

λ2
i and h(

∑
i≥0

λiei) =
∑
i≥1

λi ;

these definitions are meaningful since all λi ∈ K vanish except a finite number.
Thus q is a quadratic form such that Ker(q) = Ke0, and h is a linear form such
that e0 ∈ Ker(h). But h is not in the image of dq : M −→ M∗. Since Ker(h)
contains all ej − ek with 0 < j < k, the equalities λj = λk hold for every element∑

i λiei orthogonal to Ker(h), whence λi = 0 for all i > 0, since anyhow all λi

vanish except a finite number; consequently Ker(h)⊥ = Ke0 and Ker(h)⊥⊥ = M .
We get an automorphism g of (M, q) if we set g(a) = a + h(a)e0 for all a ∈ M .
Obviously Ker(g − id) = Ker(h); thus the equality V = V ⊥⊥ (see (5.8.14)(c)) is
not true when V = Ker(g − id). Therefore g is not an orthogonal transformation,
although Im(g − id) has finite dimension and Ker(g − id) contains Ker(bq). The
calculation of Zg(C�(g)) shows that it is the submodule generated by e0, which
contains no invertible element.

5.9 More information about exterior algebras

The invariance property (5.4.1) confers a great importance on the Lipschitz monoid
Lip(M) in the exterior algebra

∧
(M), although this neutral Lipschitz monoid does

not give any transformation of M other than idM . In all cases Lip(M) contains all
elements of K and M and all exponentials of elements of

∧2(M), in accordance
with Lipschitz’s works about 1880. When K is a field, then Lip(M) is the monoid
generated in

∧
(M) by these elements; before this is proved in the next section,

some additional information about exterior algebras must be expounded.
Let K be a field, and M a vector space of finite nonzero dimension r over

K. The dual space M∗ can be identified with the subspace
∧∗1(M) of

∧∗(M),
and the injection M∗ −→

∧∗(M) extends to an isomorphism
∧

(M∗) →
∧∗(M)

which allows us to identify
∧∗(M) with

∧
(M∗); the purpose of this identification

is to let M and M∗ play symmetric roles. The symmetry that opposes M∗ and
M , also opposes the left side (the side of M∗) to the right side (the side of M).
The same letter σ is used for the grade automorphism x �−→ (−1)∂xx in

∧
(M)

and the grade automorphism in
∧

(M∗).
With every subspace P of M is associated its annihilator P an in M∗, which is

the subspace of all h ∈M∗ such that h(P ) = 0, and it is known that codim(P an) =
dim(P ). Conversely with every subspace Q of M∗ is associated its annihilator Qan
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in M , which the subspace of all a ∈ M such that h(a) = 0 for all h ∈ Q. It is
known that P = (P an)an and Q = (Qan)an.

Let ω and ω∗ be nonzero elements of
∧r(M) and

∧r(M∗) such that ω∗(ω) =
1. There is a basis (e1, e2, . . . , er) of M such that ω = e1 ∧ e2 ∧ · · · ∧ er ; if
(e∗1, e

∗
2, . . . , e

∗
r) is the dual basis of M∗, then ω∗ = e∗r ∧ e∗r−1 ∧ · · · ∧ e∗1 . We define

two linear mappings

F :
∧

(M) −→
∧

(M∗) , x �−→ ω∗ #x ,

and F∗ :
∧

(M∗) −→
∧

(M) , z �−→ z �ω .

Here are immediate consequences of these definitions:

F(1) = ω∗ , F(ω) = 1 , F ◦ σ = (−1)r σ ◦ F ,

F∗(1) = ω , F∗(ω∗) = 1 , F∗ ◦ σ = (−1)r σ ◦ F∗ .

Although F and F∗ somewhat recall the star-Hodge operators, they were
used in algebra long before Hodge elaborated his great machinery for Kählerian
manifolds. Here they interest us because they turn exterior multiplications into
interior ones, and conversely; this property is stated at the end of the next theorem,
and is closely related to a well-known property of Fourier transformation.

(5.9.1) Theorem. The transformations F and F∗ are bijections such that

F∗ ◦ F = σr−1 and F ◦ F∗ = σr−1.

Moreover, for every k ∈ {0, 1, 2, . . . , r} we can write

F(
∧k

(M)) =
∧r−k

(M∗) and F∗(
∧k

(M∗)) =
∧r−k

(M).

At last, for all x and x′ in
∧

(M), and all z and z′ in
∧

(M∗), we can write

F(x ∧ x′) = F(x) # x′ , F(z �x) = σr−1(z) ∧ F(x) ,

F∗(z ∧ z′) = z � F∗(z′) , F∗(z #x) = F∗(z) ∧ σr−1(x) .

Proof. We must prove eight equalities appearing in four pairs; since M and M∗

play symmetric roles, it suffices to prove one equality in each pair. Moreover the
restrictions of F to

∧0(M) and
∧r(M) are already known, and the same for F∗;

this allows us to begin with an element x ∈
∧k(M) of degree k such that 0 < k < r.

We suppose that x is an exterior product e1∧e2∧· · ·∧ek of k linearly independent
vectors; there are vectors ek+1, . . . , er such that ω = e1∧e2∧· · ·∧er. From (4.3.3)
we deduce

F(x) = (· · · (((e∗r ∧ · · · ∧ e∗k+1 ∧ e∗k ∧ · · · ∧ e∗1) # e1) # e2) # · · · ) # ek ;
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we must remember that e∗i # ei = 1 for i = 1, 2, . . . , r, whereas e∗i # ej = 0
if i �= j; the successive interior multiplications by e1, e2,. . . ,ek are calculated by
means of (4.3.4), and lead to this first result:

F(x) = e∗r ∧ e∗r−1 ∧ · · · ∧ e∗k+1 ;

this already proves that F(
∧k(M)) =

∧r−k(M∗). We continue in this way:

F∗(F(x))=(−1)(r−k)k(e∗r∧···∧e∗k+1) � (ek+1∧ek+2∧···∧er)∧(e1∧···∧ek)

=(−1)(r−k)k e1∧e2∧···∧ek ;

since (r − k)k has the same parity as (r − 1)k, the first equality in (5.9.1) is now
proved.

The equality applying to F(x ∧ x′) is a trivial consequence of (4.3.3):

F(x ∧ x′) = ω∗ # (x ∧ x′) = (ω∗ #x) #x′ = F(x) #x′.

The same argument proves the symmetric equality with F∗(z ∧ z′). To prove the
equality applying to F(z �x), we verify that F∗ transforms both members into the
same element of

∧
(M); on the left side

F∗(F(z �x)) = σr−1(z �x) = σr−1(z) �σr−1(x) ;

on the right side we use the previous result about F∗(z ∧ z′) :

F∗(σr−1(z) ∧ F(x)) = σr−1(z) �F∗(F(x)) = σr−1(z) �σr−1(x).

The proof is now complete. �

We also need more information about the elements u of
∧2(M) and the ele-

ments w of
∧2(M∗). Since w is determined by the alternate bilinear form (a, b) �−→

w(a ∧ b), it is natural to associate with w the linear mapping dw : M →M∗ such
that dw(a)(b) = w(a ∧ b) for all a, b ∈ M . This implies that dw(a) = w # a
(see (4.3.2)). Similarly with u we associate the mapping du : M∗ → M defined
by du(h) = h � u and the alternate bilinear form M∗ × M∗ → K defined by
(h, h′) �−→ (h ∧ h′)(u) = h(du(h′)). The image of du (resp. dw) is called the sup-
port of u (resp. w) for reasons appearing in the next lemma, and the dimension of
the support is called the rank of u (resp. w).

(5.9.2) Lemma. For each u ∈
∧2(M), the image of du is the annihilator of Ker(du),

the dimension of Im(du) is always even, and there is a basis (e1, e2, . . . , e2k) of
Im(du) such that

u = e1 ∧ e2 + e3 ∧ e4 + · · ·+ e2k−1 ∧ e2k.

There is an analogous statement for each w ∈
∧2(M∗).
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Proof. It is more convenient to prove (5.9.2) for w ∈
∧2(M∗). The bilinear form

(a, b) �−→ w(a∧ b) is alternate, whence the inclusion Im(dw) ⊂ (Ker(dw))an which
is an equality because the subspaces on both sides have the same dimension.
Consequently Im(dw) can be identified with the dual space of any subspace M ′

supplementary to Ker(dw) in M . Since dw induces a bijection M ′ → Im(dw),
the restriction to M ′ of the bilinear form (a, b) �−→ w(a ∧ b) is nondegenerate;
this allows us to prove that M ′ is an orthogonal sum of planes, with almost the
same argument as in the proof of (2.6.2)(b). Let (e1, e2, . . . , er) be a basis of M
such that (e1, e2, . . . , e2k) is a basis of M ′ and the k planes Ke2i−1 ⊕Ke2i (with
i = 1, 2, . . . , k) are orthogonal for the bilinear form (a, b) �−→ w(a ∧ b). We can
even require w(e2i−1 ∧ e2i) = 1 for i = 1, 2, . . . , k. All this determines w, and if
(e∗1, e

∗
2, . . . , e

∗
r) is the dual basis in M∗, it is easy to verify that

w = e∗2 ∧ e∗1 + e∗4 ∧ e∗3 + · · ·+ e∗2k ∧ e∗2k−1 ,

whence dw(e2i−1) = e∗2i and dw(e2i) = −e∗2i−1 for i = 1, 2, . . . , k. The conclusions
follow. �

By definition �ip(M) is the multiplicative monoid generated in
∧

(M) by
the elements of K and M and the exponentials of elements of

∧2(M); we define
�ip(M∗) in an analogous way. From now on, we shall search useful properties
of �ip(M) and �ip(M∗), until they enable us to prove that �ip(M) = Lip(M)
and to make effective calculations with elements of Lip(M). If w is any linear
mapping M → N , it is already clear that its extension

∧
(w) to the exterior

algebras maps �ip(M) into �ip(N), and that
∧∗(w) maps �ip(N∗) into �ip(M∗);

this statement agrees with (5.3.14). It is also clear that �ip(M) is invariant by the
grade automorphism σ and by the reversion τ , and the same for �ip(M∗).

Let us precisely describe a nonzero element x ∈ �ip(M). We can directly
apply (5.9.2) when x = λExp(u) with λ ∈ K× and u ∈

∧2(M). But when x is the
exterior product of Exp(u) and some vectors d1, d2, . . . , dn (linearly independent in
M), we must consider the subspace N spanned by these n vectors, and remember
that any equality like d1 ∧ · · · ∧ dn ∧ y = d1 ∧ · · · ∧ dn ∧ y′ means that y and y′

have the same image in
∧

(M/N); consequently we can replace u with any element
of

∧2(M) that has the same image as u in
∧

(M/N); thus we can assume that
the support of u is a subspace P of M such that N ∩ P = 0. Let (e1, . . . , e2k) be
a basis of P that enables us to write u as in (5.9.2); the vectors d1, d2, . . . , dn,
e1, e2, . . . , e2k are linearly independent and

x = d1 ∧ d2 ∧ · · · ∧ dn ∧ (1 + e1 ∧ e2) ∧ · · · ∧ (1 + e2k−1 ∧ e2k).

It is worth observing that the nonzero components of x of lowest and highest
degrees are always decomposable elements (either scalars or vectors or exterior
products of vectors).

The property similar to (5.4.3) is also evident: when r ≤ 3, every homoge-
neous element of

∧
(M) belongs to �ip(M), and the same for

∧
(M∗). Indeed every



5.9. More information about exterior algebras 291

even element λ + a ∧ b is equal to λExp(λ−1a ∧ b) when λ �= 0, and every odd
element of

∧
(M) is the product of an element of M and an even element.

(5.9.3) Theorem. F(�ip(M)) = �ip(M∗) and F∗(�ip(M∗)) = �ip(M) .

Proof. When r ≤ 3, this is an immediate consequence of the fact that all homo-
geneous elements fall into �ip(M) or �ip(M∗). Let us assume that r > 3 and that
x is a nonzero element x ∈ �ip(M). We can still assume that the component of x

in K =
∧0(M) is either 1 or 0. From the above description of x we deduce the

existence of a linearly independent family of vectors (d1, . . . , dn, e1, . . . , e2k) (with
n ≥ 0 and k ≥ 0) such that x is the exterior product of the n factors xi = di and the
k factors xn+i = 1+e2i−1∧e2i. Let us complete (d1, . . . , dn, e1, . . . , e2k) into a basis
(d1, . . . , dn, e1, . . . , e2k, c1, . . . , cm) of M , and set xn+k+i = 1 for i = 1, 2, . . . , m.
Thus we come to this first result: M is the direct sum of some subspaces M1,
M2,. . . ,Ms of dimension 1 or 2 (the number of which is s = n + k + m = r− k) in
such a way that x is the exterior product of even or odd factors x1, x2,. . . ,xs each
of which belongs to the corresponding subalgebra

∧
(M1),

∧
(M2), . . . ,

∧
(Ms).

The dual space M∗ can be identified with the direct sum of the dual spaces M∗
1 ,

. . . , M∗
s . We also identify

∧
(M) with the twisted tensor product of the subalge-

bras
∧

(M1), . . . ,
∧

(Ms), and the same for
∧

(M∗). With these identifications we
can write x = x1 ⊗ x2 ⊗ · · · ⊗ xs. Similarly ω = ω1 ⊗ ω2 ⊗ · · · ⊗ ωs for suitable
ωi ∈

∧max(Mi), and with evident notation, ω∗ = ±ω∗
1 ⊗ ω∗

2 ⊗ · · · ⊗ ω∗
s . Because

of (4.3.7) we can also write

F(x) = ± (ω∗
1 #x1)⊗ (ω∗

2 #x2)⊗ · · · ⊗ (ω∗
s #xs).

In other words, by means of partial F -transformations, we have reduced the prob-
lem to the case of spaces of dimension 1 or 2, for which the theorem is a trivial-
ity. �

(5.9.4) Corollary. If x and z belong respectively to �ip(M) and �ip(M∗), then z �x
and z #x belong respectively to �ip(M) and �ip(M∗).

This statement corresponds exactly to (5.3.13).

Proof. Because of (5.9.3), it suffices to prove that F(z �x) and F∗(z #x) belong
respectively to �ip(M∗) and �ip(M). From (5.9.1) we derive

F(z �x) = σr−1(z) ∧ F(x) and F∗(z #x) = F∗(z) ∧ σr−1(x) ;

and the conclusion follows from another application of (5.9.3). �

With (5.9.4) it is already possible to prove (in the next section) that �ip(M) =
Lip(M). The subsequent propositions only aim to give effective tools for precise
calculations.
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(5.9.5) Proposition. When the dimension of M is even, and the support of u ∈∧2(M) is exactly M , then there exist κ ∈ K and w ∈
∧2(M∗) such that

F(Exp(u)) = κ Exp(w) , κ2 = det(du) and dw = −d−1
u ;

the second equality is valid if the determinant of du is calculated with a basis
(e1, e2, . . . , er) of M such that ω = e1 ∧ e2 ∧ · · · ∧ er , and with the dual basis in
M∗.

Proof. There exists a basis (e1, . . . , er) of M and a nonzero λ ∈ K such that
simultaneously

ω = e1 ∧ e2 ∧ · · · ∧ er and u = λe1 ∧ e2 + e3 ∧ e4 + · · ·+ er−1 ∧ er ;

as explained in the proof of (5.9.3), we decompose M into the direct sum of
r/2 subspaces Mi with basis (e2i−1, e2i), and we set ωi = e2i−1 ∧ e2i and ω∗

i =
e∗2i ∧ e∗2i−1 . Since all factors ω∗

i are even, there is no problem about twisting signs
and F(Exp(u)) is obtained as a product of r/2 factors, among which we consider
the first one, the only one involving λ :

(e∗2 ∧ e∗1) # Exp(λe1 ∧ e2) = e∗2 ∧ e∗1 + λ = λ Exp(λ−1e∗2 ∧ e∗1) ;

thus we realize that F(Exp(u)) = λ Exp(w) if

w = λ−1e∗2 ∧ e∗1 + e∗4 ∧ e∗3 + · · ·+ e∗r ∧ e∗r−1 .

Let us calculate du and dw; here are their values on e∗1 and e∗2, respectively e1

and e2 :

du(e∗1) = λe2 , dw(e1) = λ−1e∗2 ,

du(e∗2) = −λe1 , dw(e2) = −λ−1e∗1 ;

their values on e∗2i−1 and e∗2i , respectively e2i−1 and e2i , are given by analogous
equalities in which λ is replaced with 1. All this shows that det(du) = λ2 and
that dw ◦ du = −id. �

In the next proposition the dimension r of M may be even or odd.

(5.9.6) Proposition. Let u be an element of
∧2(M), and w an element of

∧2(M∗).
If Exp(w) is treated as a linear form on

∧
(M), its value on Exp(u) is a scalar κ

such that
κ2 = det(idM − du ◦ dw) = det(idM∗ − dw ◦ du) .

When κ �= 0, there exists v ∈
∧2(M) such that Exp(w) �Exp(u) = κ Exp(v) , and

then
dv = (idM − du ◦ dw)−1 ◦ du = du ◦ (idM∗ − dw ◦ du)−1 .

Of course there is an analogous statement involving Exp(w) #Exp(u) .
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Proof. If (5.9.6) is true for a space M of dimension r, it is true for all its subspaces,
and consequently for all spaces of dimension ≤ r; therefore it suffices to prove
(5.9.6) when r is even. It also suffices to prove it when the field K is infinite,
because every finite field K has an infinite field extension (for instance the field
K(t) of rational functions). When V is a vector space of finite dimension over an
infinite field K, the algebra of polynomial functions V → K contains no divisors
of zero. Consequently if F and G are polynomial functions on V , if G does not
vanish everywhere, and if F (ξ) = 0 for all ξ ∈ V such that G(ξ) �= 0, then FG = 0,
whence F = 0 since G �= 0. Here V is the vector space

∧2(M)×
∧2(M∗); the first

statement in (5.9.6) means the vanishing of some polynomial function F : V → K,
and the second statement means the vanishing of 2r−1 rational functions (because
dim(

∧
0(M)) = 2r−1); but the vanishing of a rational function is equivalent to

the vanishing of its numerator. Besides, the second statement implies the first
one, since the value of the linear form Exp(w) on Exp(u) is the component in
K =

∧0(M) of their interior product. We shall prove the vanishing of these 2r−1

rational functions at every point (u, w) that does not annihilate the polynomial
function G defined in this way:

G(u, w) = det(du) det(idM − du ◦ dw) ;

since r is assumed to be even,
∧2(M) contains an element u with support equal to

M , whence G(u, 0) �= 0 ; since G does not vanish everywhere, it suffices to consider
points (u, w) such that G(u, w) �= 0.

After these preliminaries we begin the calculation:

Exp(w) �Exp(u) = F∗ ◦ F(Exp(w) �Exp(u)) = F∗(Exp(w) ∧ F(Exp(u))) ,

and we apply (5.9.5) twice. First there exist κ′ ∈ K and w′ ∈
∧2(M∗) such that

F(Exp(u)) = κ′Exp(w′) , κ′2 = det(du) and dw′ = −d−1
u ;

whence Exp(w) ∧ F(Exp(u) = κ′ Exp(w + w′) . Secondly there exist λ ∈ K and
v ∈

∧2(M) such that

F∗(Exp(w+w′)) = λExp(v) , λ2 = det(dw−d−1
u ) and dv = (−dw +d−1

u )−1 ;

now we observe that

(−dw + d−1
u )−1 = (idM − du ◦ dw)−1 ◦ du = du ◦ (idM∗ − dw ◦ du)−1 ;

all this gives the announced value of dv, and also the announced value of κ2 if we
set κ = λκ′; indeed, since r is even, du ◦ (dw − d−1

u ) has the same determinant as
idM − du ◦ dw. �
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Two digressions

By using exponentials of bivectors (elements of
∧2(M) or

∧2(M∗)), we avoid using
pfaffians of skew symmetric matrices; the existence of pfaffians can be deduced
from the equality κ2 = det(du) in (5.9.5), but from (5.9.6) we can deduce a still
stronger result.

Let (ui,j) and (wi,j), with 1 ≤ i < j ≤ r, be two families of r(r − 1)/2 inde-
terminates, and t one more indeterminate; we consider the ring Z[t, (ui,j), (wi,j)]
of polynomials in these 1 + r(r − 1) indeterminates with integer coefficients. Let
U be the skew symmetric matrix of order r in which the entries above the diag-
onal are the indeterminates ui,j , and W the analogous skew symmetric matrix
containing all wi,j . At last let I be the unit matrix of order r. We are interested
in the determinant of t2I − UW .

(5.9.7) Proposition. The determinant of the above matrix t2I − UW has a square
root in the ring of polynomials Z[t, (ui,j), (wi,j)] ; this square root ∆(t, (ui,j), (wi,j))
is uniquely determined if we require it to be equal to tr when U and W are replaced
with 0. It is a homogeneous polynomial of degree r, and it contains only powers of
t with an exponent of the same parity as r :

∆(t, (ui,j), (wi,j)) =
∑

0≤k≤r/2

tr−2k∆k((ui,j), (wi,j)) ;

each polynomial ∆k((ui,j), (wi,j)) has degree k separately in (ui,j) and in (wi,j).

Besides, when t is replaced with 0 and (wi,j) with (ui,j), then ∆(0, (ui,j), (ui,j)) =
det(U). When r is odd, this means that det(U) = 0. When r is even, this means
that det(U) = ∆r/2((ui,j), (ui,j)).

Proof. Let B be the field of fractions of A = Z[t, (ui,j), (wi,j)], and let M be the
vector space Br over B, provided with its usual basis. In

∧2
B(M) and

∧2
B(M∗) we

can find elements u and w such that the matrices of du and dw are respectively
t−1U and t−1W , whence

det(t2I − UW ) = t2r det(idM − du ◦ dw).

From (5.9.6) we deduce that det(t2I − UW ) is the square of trκ if κ is the
value of the linear form Exp(w) on Exp(u). When an element det(t2I − UW ) of
A has a square root trκ in B, its square root is also in A; this can be proved
by decompositions into products of irreducible elements, like the analogous the-
orem stating that every square root in Q of an element of Z belongs to Z. Thus
∆(t, (ui,j), (wi,j)) is this polynomial trκ. The above description of this polyno-
mial is a matter of routine argument; only the last statement in (5.9.7) deserves
an explanation, and only when r is even. It is clear that ∆r/2((ui,j), (ui,j)) is a
square root of det(−U2) = det(U)2; consequently it is equal either to det(U) or
to −det(U). To find out which is true, it suffices to make an experiment, and to
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replace U with a particular invertible skew symmetric matrix with integer coeffi-
cients; this experiment is a straightforward calculation. �

By replacing the indeterminates (wi,j) with suitable integers, we can get a
skew symmetric matrix W0 such that det(W0) = 1; the polynomial ∆r/2(U, W0)
in the r(r−1)/2 indeterminates (ui,j) is the square root of det(U) which takes the
value 1 when U is replaced with W0; this square root (determined up to a factor
±1 depending on W0) is called the pfaffian.

The proposition (5.9.5) invites another digression in a quite different direc-
tion. Here K = R, and i is a square root of −1 in C. It is worth knowing that
with most calculations in the sections 5.9 and 5.10 are associated parallel calcu-
lations in which the transformations F and F∗ are replaced with Fourier trans-
formation, the interior multiplications with generalized differential operators, and
the exponentials of bivectors with functions exp(iu) and exp(iw) determined by
quadratic forms u : M → R and w : M∗ → R. The mappings du : M → M∗ and
dw : M∗ →M are defined as dq in 2.3. The Fourier transformation F maps every
regular enough function f : M → C to F(f) : M∗ → C defined by

F(f)(y) = (2π)−r/2

∫
M

eiy(x) f(x) dx.

The following proposition is well known in functional analysis.

(5.9.8) Proposition. If u is a nondegenerate quadratic form on M , there exist a
nonzero κ ∈ C and a nondegenerate quadratic form w on M∗ such that

F(exp(iu)) = κ−1 exp(iw) , κ2 = (−i)r det(du) and dw = −d−1
u .

Besides the presence of i =
√
−1 (which allows F(exp(iu)) to exist for

all quadratic forms u) there are two essential discrepancies between (5.9.5) and
(5.9.8). First, although both results lead to the calculation of the square root of a
determinant (a skew symmetric determinant in (5.9.5), a symmetric one in (5.9.8)),
in the former case this square root is given by a pfaffian, whereas in the latter case
it is given by a formula involving the signature s of the quadratic form u:

κ = exp(−isπ/4)
√
|det(du)| ;

it is worth observing that κ depends on the image of s in Z/8Z, like the Brauer–
Wall class of C�(M, u). Secondly there is an “inversion rule” that suggests writing
κ−1 (instead of κ) in the final result κ−1exp(iw). This “inversion rule” is corrob-
orated by (5.ex.39), and (with another point of view) by [Sato, Miwa, Jimbo IV
1979]. The comment written just after (5.ex.41) summarizes the results that may
be reached by means of Fourier transformation, and (5.9.8) in particular, in the
cliffordian treatment of Weyl algebras.
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5.10 The Lipschitz monoid Lip(M) when K is a field

The description of the Lie algebra associated with the Lipschitz monoid Lip(M)
was achieved in (5.5.6); it was successful in many cases, in particular when M was
a projective module. On the contrary, up to now a precise description of Lip(M)
itself has been obtained only when K is a field; in this case it proves to be equal to
the monoid �ip(M) defined just before (5.9.3). Here and later in 7.2 the following
lemma plays an important role.

(5.10.1) Lemma. When M is a finite dimensional vector space over the field K,
and x a nonzero element of

∧
(M), there exists a bilinear form β : M ×M → K

such that x is invertible in the algebra
∧

(M ; β).

Proof. If the component of x in K =
∧0(M) does not vanish, we can choose β = 0.

Otherwise let k be the smallest degree such that the component of x in
∧k(M)

does not vanish; there exists a basis (a1, a2, . . . , ar) of M such that x is a sum
x′+x′′ in which x′ = a1∧a2∧· · ·∧ak, whereas x′′ involves other exterior products
of vectors of this basis. We choose β such that β(ai, ai) = 1 for i = 1, 2, . . . , k, and
β(ai, aj) = 0 for all other couples (i, j); thus x′2 = ±1 in

∧
(M ; β), whereas x′′x′

can be written as
∑

j>k ajyj for suitable elements yj ∈
∧

(M). All aj with j > k
belong to Zg(

∧
(M ; β)), and their squares vanish; consequently (x′′x′)n vanishes

as soon as n > r − k. This proves the invertibility of xx′ = ±1 + x′′x′ and the
invertibility of x itself. �

(5.10.2) Theorem. When M is a vector space over a field K, then Lip(M) is the
multiplicative monoid �ip(M) generated in

∧
(M) by the elements of K and M ,

and the exponentials of elements of
∧2(M).

Proof. We already know that Lip(M) contains �ip(M), and we must prove that
every nonzero element x of Lip(M) belongs to �ip(M). It suffices to prove this
when M has finite dimension, because x belongs to the subalgebra generated by
a finite dimensional subspace of M . There exists a bilinear form β on M such
that x is invertible in

∧
(M ; β), and we can extend β to a bilinear form β′ on the

larger space P = M∗ ⊕M in such a way that the quadratic form b �−→ β′(b, b) is
nondegenerate; for instance we can set

β′((h1, a1), (h2, a2)) = h1(a2) + β(a1, a2)
for all h1, h2 ∈M∗ and all a1, a2 ∈ M ;

thus we get a hyperbolic quadratic form b �−→ β′(b, b) on P . If it belongs to
Dieudonné’s exceptional case (defined in 5.7), we can still enlarge P so as to avoid
this exceptional case. Since x belongs to Lip(M), it belongs to Lip(P ) too, and if
this implies that it belongs to �ip(P ), there is no difficulty in reaching the awaited
conclusion: x ∈ �ip(M). In other words, we can assume that the quadratic form
a �−→ β(a, a) is nondegenerate on M , and that the theorem (5.7.2) or (5.7.3) holds
true for it.



5.10. The Lipschitz monoid Lip(M) when K is a field 297

If the lipschitzian element x is invertible in
∧

(M ; β), it belongs to the Lip-
schitz group GLip(M ; β) because of the invariance property (5.4.1). The corre-
sponding orthogonal transformation Gx is a product of reflections. Since the non-
degeneracy of the quadratic form a �−→ β(a, a) implies that the kernel of the
morphism GLip(M ; β) → GO(M ; β) is reduced to K×, we know that x is a prod-
uct in

∧
(M ; β) of elements of M , therefore a product of elements of �ip(M).

Now comes the decisive moment of the proof: because of (5.9.4) in the previ-
ous section, �ip(M) is also a monoid in the algebra

∧
(M ; β). Indeed let us prove

that π(Exp(β′′) � (y ⊗ z)) belongs to �ip(M) whenever y and z belong to it. If
we identify

∧
(M) ⊗̂

∧
(M) with

∧
(M ⊕M), we can claim that y ⊗ z belongs to

�ip(M ⊕M). Then from (5.9.4) we deduce that Exp(β′′) � (y ⊗ z) also belongs
to it. At last, π is the algebra morphism associated by the functor

∧
with the

following mapping:

M ⊕M −→ M , (a, b) �−→ a + b ;

consequently π maps every element of �ip(M ⊕M) to an element of �ip(M). Since
the above x is a product of elements of �ip(M) in the algebra

∧
(M ; β), it also

belongs to �ip(M). �

(5.10.3) Corollary. If q is a nonzero quadratic form on the vector space M , every
element in the kernel of the surjective morphism GLip(M, q) → GO(M, q) is a
product of elements of M . Consequently when GO(M, q) is generated by reflections
(as it always is, except in the very few cases mentioned in (5.7.3) or (5.8.11)), then
the group GLip(M, q) is generated by the elements a ∈M such that q(a) �= 0.

Proof. From (5.6.8) or (5.8.7) we know that Zg(C�(M, q)) is the subalgebra gen-
erated by M0 = Ker(bq). Consequently the kernel of GLip(M, q) → GO(M, q) is
equal to GLip(M0, q0) if q0 is the restriction of q to M0.

We consider two cases.

First case: Ker(bq) = Ker(q) ; this assumption is always true when K does not
have characteristic 2. In this case C�(M0, q0) is the exterior algebra

∧
(M0). An

invertible element of �ip(M0) is the product of an element of K× and some other
factors like 1 + ab with a and b in M0. From the factorization lemma (5.7.7) we
deduce that each factor 1+ab is a product of four elements of M , since M contains
elements c such that q(c) is invertible.

Second case: Ker(bq) �= Ker(q) ; thus every element of M0 is invertible if it is
not in Ker(q). If x belongs to the subalgebra

∧
(Ker(q)), the previous argument

still proves that x is a product of vectors. If x does not belong to
∧

(Ker(q)), we
consider the smallest integer p such that x ∈ C�≤p(M, q), and we prove that there
is an invertible a1 ∈M0 such that a1x ∈ C�≤p−1(M, q); if a1x is not in

∧
(Ker(q)),

then a2a1x ∈ C�≤p−2(M, q) for some invertible a2 ∈M0; and so forth. . . until we
get a product aj · · · a2a1x that falls into

∧
(Ker(q)), and that allows us to conclude.

To prove the existence of an invertible a1x ∈ M0 such that a1x ∈ C�≤p−1(M, q),
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we replace C�(M, q) with
∧

(M ; β), where β is any admissible scalar product, and
from (5.4.1) and (5.10.2) we deduce that

x = λd1 ∧ · · · ∧ dn ∧ (1 + e1 ∧ e2) ∧ · · · ∧ (1 + e2k−1 ∧ e2k)

for some scalar λ (only indispensable if n = 0) and some linearly independent
vectors d1,. . . ,dn, e1,. . . ,e2k . It is clear that p = n+2k. Since x is not in

∧
(Ker(q)),

in the subspace spanned by (d1, . . . , dn, e1, . . . , e2k) there is an invertible vector
a1, and from (4.8.9) we deduce that a1x ∈ C�≤p−1(M0, q0).

It remains to prove that the group GLip(M, q) is generated by the invertible
elements of M , provided that GO(M, q) is generated by reflections. When x be-
longs to GLip(M, q), then Gx is a product of reflections and consequently Gx = Gy

for some product y of invertible elements of M ; thus xy−1 belongs to the kernel of
GLip(M, q)→ GO(M, q) and is itself a product of invertible elements of M . �

All important results of this chapter have been reached. The end of this sec-
tion is devoted to a rather specialized topic: we replace a Clifford algebra C�(M, q)
with an isomorphic algebra

∧
(M ; β), and we look for precise formulas describing

some products in the monoid Lip(M ; β). If τβ is the reversion in
∧

(M ; β), an
element x of Lip(M) belongs to GLip(M ; β) (the Lipschitz group isomorphic to
GLip(M, q)) if and only if x τβ(x) �= 0 .

We shall only consider a space M of finite dimension, since infinite dimensions
do not raise serious difficulties here; indeed every element of

∧
(M ; β) belongs to

the subalgebra generated by a finite dimensional subspace of M . We begin with a
technical lemma.

(5.10.4) Lemma. Let M and N be finite dimensional vector spaces over the field K,
f ∈ Hom(M, N) and g ∈ Hom(N, M). Endomorphisms of M ⊕ N are described
by square matrices of order 2 in the usual way. First

det
(

idM g
f idN

)
= det(idM − gf) = det(idN − fg) .

Secondly, when det(idM − gf) is invertible,

(
idM g
f idN

)−1

=
(

idM − gf)−1 −g(idN − fg)−1

−f(idM − gf)−1 (idN − fg)−1

)
;

and moreover

f(idM − gf)−1 = (idN − fg)−1f ,

g(idN − fg)−1 = (idM − gf)−1g .

Proof. The last two equalities are trivial. To prove the first three, we can assume
that K is infinite; this assumption implies that the algebra of polynomial functions
on Hom(M, N) × Hom(N, M) contains no divisors of zero. We begin with the
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second equality; if it is true for some couple of spaces (M, N), it remains true
when M and N are replaced with subspaces; therefore we can assume that M
and N have the same dimension. In this case f may be bijective, and when it
is bijective, then idN − fg = f(idM − gf)f−1, and consequently idN − fg and
idM − gf have the same determinant. Since the product

det(f)
(
det(idM − gf)− det(idN − fg)

)
vanishes everywhere, the second factor must vanish everywhere. Then we observe
that

det
(

idM g
f idN

)
= det

(
idM −g
−f idN

)
;

indeed these matrices represent the following endomorphisms of M ⊕N :

(a, b) �−→ (a + g(b), f(a) + b) and (a, b) �−→ (a− g(b), −f(a) + b) ,

and they are conjugate by means of the transformation (a, b) �−→ (a,−b). Now the
first and third equalities in (5.10.4) are consequences of this one:

(
idM g
f idN

) (
idM −g
−f idN

)
=

(
idM − gf 0

0 idN − fg

)
;

indeed all the previous results prove that the determinants in the first equality
of (5.10.4) have the same square, and consequently are equal because they are
polynomial functions that take the same value 1 when (f, g) = (0, 0). At last in
the above equality it is easy to find the inverse of the matrix in the right-hand
member; the third equality in (5.10.4) follows immediately. �

(5.10.5) Proposition. For every element u of
∧2(M),

Exp(u) τβ(Exp(u)) = det(idM + dudβ) = det(idM + dudto
β ).

When Exp(u) belongs to GLip(M ; β), the corresponding orthogonal transforma-
tion is

GExp(u) = (idM + dudβ)−1 (idM + dudto
β ).

Proof. Let us set x = Exp(u), whence

τ(x) = Exp(−u) and τβ(x) = Exp([β]) �Exp(−u)

(see (4.7.14)), and consequently

x τβ(x) = π
(
Exp(β′′ + 1⊗ [β]) � Exp(u⊗ 1− 1⊗ u)

)
.

Remember that x τβ(x) belongs to K and that π is the algebra morphism associ-
ated by the functor

∧
with some morphism M ⊕M →M ; thus x τβ(x) is merely

the value of the linear form Exp(β′′ + 1 ⊗ [β]) on Exp(u ⊗ 1 − 1 ⊗ u). According
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to (5.9.6), its square is equal to the determinant of idM⊕M − du′dw′ if we set
w′ = β′′ + 1⊗ [β] and u′ = u⊗ 1− 1⊗ u. From the definitions (4.3.2) and (4.4.2)
we derive:

dw′(a, b) = w′ # (a, b) = (dto
β (b) , dβ(a) + (dβ + dto

β )(b)) ,

du′(g, h) = (g, h) �u′ = (du(g) , −du(h)) ,

whence

(x τβ(x))2 = det(Φ) with Φ =
(

idM −dudto
β

dudβ idM + du(dβ + dto
β )

)
.

The calculation of det(Φ) is very easy because

Φ(a,−a) = ((idM + dudto
β )(a) , −(idM + dudto

β )(a)) ,

Φ(a, 0) = ((idM + dudβ)(a) , 0) + (−dudβ(a) , dudβ(a)) ,

whence det(Φ) = det(idM + dudβ) det(idM + dudto
β ).

Now we must explain why the two determinants in the right-hand member
are equal. The determinant of idM + dudβ is equal to that of the endomorphism
(idM + dudβ)∗ derived from it by the functor Hom(. . . , K); if the definition of d∗

β

takes the twisting rule (4.2.1) into account, we must write d∗
β(a)(b) = −dβ(b)(a) ,

whence d∗
β = dto

β ; and similarly d∗
u = dto

u = du because u induces an alternate
bilinear form on M∗. From this argument and the beginning of (5.10.4) we deduce

det(idM + dudβ) = det(id∗
M + d∗

βd∗
u)

= det(idM∗ + dto
β du) = det(idM + dudto

β ).

Thus xτβ(x) and det(idM + dudβ) are polynomial functions on
∧2(M) that have

the same square, and that take the same value 1 when u = 0. When K is infinite,
this implies that they are equal; and when K is finite, we reach the same conclusion
by means of an infinite field extension.

When xτβ(x) is invertible, x belongs to GLip(M ; β), and there is an orthog-
onal transformation Gx such that Gx(a)x = xa for all a ∈ M . The following
calculation of Gx is merely a generalization of Lipschitz’s own argument. We set
b = Gx(a) and we calculate bx and xa by means of (4.8.9) and (4.5.4):

bx = b ∧ x + dβ(b) �x = b ∧ x + (dβ(b) �u) ∧ x = (b + dudβ(b)) ∧ x ,

xa = x ∧ a + dto
β (a) �x = a ∧ x + (dto

β (a) �u) ∧ x = (a + dudto
β (a)) ∧ x ;

since x is ∧-invertible, the equality bx = xa implies

(idM + dudβ)(b) = (idM + dudto
β )(a) ;

since b = Gx(a), we get the announced value of Gx. �
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(5.10.6) Proposition. When u and v are elements of
∧2(M), and when κ is the

component in K =
∧0(M) of the product of Exp(u) and Exp(v) in

∧
(M ; β), then

κ2 = det(idM − dvdβdudto
β ) = det(idM − dudto

β dvdβ) .

When κ is invertible, there exists w ∈
∧2(M) such that Exp(u) Exp(v) =

κ Exp(w) and

dw = (idM+dvdβ)(idM−dudto
β dvdβ)−1du + (idM+dudto

β )(idM−dvdβdudto
β )−1dv.

Proof. First Exp(u)Exp(v) = π
(
Exp(β′′) �Exp(u ⊗ 1 + 1 ⊗ v)). Since π =

∧
(f)

for some morphism f : M ⊕M → M , we realize that κ is the value of the linear
form Exp(β′′) on Exp(u⊗ 1 + 1⊗ v)), whence κ2 = det(Ψ) with

Ψ = idM⊕M −
(

du 0
0 dv

) (
0 dto

β

dβ 0

)
=

(
idM −dudto

β

−dvdβ idM

)
.

From (5.10.4) we deduce at once the first two equalities in (5.10.6). When κ is
invertible, the interior product of Exp(β′′) and Exp(u ⊗ 1 + 1 ⊗ v) is equal to
κ Exp(w′′), where w′′ is the element of

∧2(M ⊕M) such that dw′′ is equal to

Ψ−1

(
du 0
0 dv

)
=

(
(idM −dudto

β dvdβ)−1du dudto
β (idM −dvdβdudto

β )−1dv

dvdβ(idM −dudto
β dvdβ)−1du (idM −dvdβdudto

β )−1dv

)
.

We know that π =
∧

(f) with f(a, b) = a + b, whence π(Exp(w′′)) = Exp(π(w′′))
(see (4.5.5)); thus the element w mentioned in (5.10.6) is π(w′′). The transposed
mapping f∗ : M∗ → M∗ ⊕M∗ is the diagonal mapping h �−→ (h, h); therefore
from (4.4.6) we deduce (for all h ∈ M∗)

dw(h) = h �π(w′′) = π((h, h) �w′′) = f ◦ dw′′(h, h) ;

this shows that dw is the sum of the four entries in the matrix representing dw′′

above. �

Remark. The expression of dw in (5.10.6) may look complicated; nevertheless it
plays an important and effective role in [Sato, Miwa, Jimbo II 1979] through its
expansion as a series. Suppose that K is R or C and that u and v belong to a small
enough neighbourhood of 0 in

∧2(M); then the expansion (1− ξ)−1 =
∑

k ξk can
be used when ξ is dudto

β dvdβ or dvdβdudto
β . Here is the expansion of dw up to the

order 4 in (u, v) :

dw = du + dv + dudto
β dv + dvdβdu + dudto

β dvdβdu + dvdβdudto
β dv

+ dudto
β dvdβdudto

β dv + dvdβdudto
β dvdβdu + · · · ;

the expansion of dw is the sum of all products beginning with du or dv and obeying
this very simple rule: when a factor du (resp. dv) is not the last one, it is followed
(on the right side) by dto

β dv (resp. dβdu).
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Let us apply (5.10.5) and (5.10.6) to the most classical case of a quadratic
space (M, q) over a field K that does not have characteristic 2, when it is equipped
with the canonical scalar product β = bq/2. Then τβ = τ ,

∧2(M) is a Lie algebra
in

∧
(M, bq/2) (see (5.5.4)), and there is an isomorphism u �−→ Fu from

∧2(M)
onto the Lie algebra of all infinitesimal automorphisms of (M, q) (see (5.5.3)); from
the definition of Fu and from (4.4.12) we deduce (for all a ∈ M):

Fu(a) = ua− au = −dq(a) �u = −dudq(a) = −2dudβ(a) = 2dudto
β (a) ;

since q is nondegenerate, u is determined by Fu as well as by du. If we prefer
Fu to du, we transform (5.10.5) and (5.10.6) into the following two corollaries.
The first one (5.10.7) belongs to the earliest history of Clifford algebras, because
it was already known by Lipschitz; nevertheless the lipschitzian elements Exp(u)
that here are described as exponentials of bivectors, were defined in Lipschitz’s
works by means of pfaffians of skew symmetric matrices; the version presented
in [Porteous 2000] under the name “pfaffian chart” or “Lipschitz chart” and the
version presented in [Weil 1979] are closer to the historical truth. The subsequent
corollary (5.10.8) can be derived either from (5.10.6) or from (5.10.7).

(5.10.7) Corollary. We assume that the field K does not have characteristic 2 and
that the bilinear form β is symmetric and nondegenerate. For every element u of∧2(M),

Exp(u) τ(Exp(u)) = det
(

idM − 1
2
Fu

)
= det

(
idM +

1
2
Fu

)
.

When Exp(u) belongs to GLip((M ; β), the corresponding orthogonal transforma-
tion is

GExp(u) =
(

idM − 1
2
Fu

)−1 (
idM +

1
2
Fu

)
=

(
idM +

1
2
Fu

) (
idM − 1

2
Fu

)−1

.

(5.10.8) Corollary. With the same assumptions as in (5.10.7), let u and v be ele-
ments of

∧2(M), and κ the component in K =
∧0(M) of the product of Exp(u)

and Exp(v) in
∧

(M ; β). Then

κ2 = det
(

idM +
1
4
FuFv

)
= det

(
idM +

1
4
FvFu

)
.

When κ is invertible, there exists w ∈
∧2(M) such that Exp(u)Exp(v) = κ Exp(w)

and

idM +
1
2
Fw =

(
idM +

1
2
Fu

) (
idM +

1
4
FvFu

)−1 (
idM +

1
2
Fv

)
, or equivalently

idM − 1
2
Fw =

(
idM − 1

2
Fv

) (
idM +

1
4
FuFv

)−1 (
idM − 1

2
Fu

)
.
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Exercises

(5.ex.1) Let (M, q) be a quadratic module such that Ker(q) = 0 and Ker(bq) �= 0.
Prove that g(a) = a for all g ∈ Aut(M, q) and all a ∈ Ker(bq).

(5.ex.2) Let V be a totally isotropic submodule of (M, q); assume that M and
V are finitely generated, and that the ranks of M/V and V at every prime ideal
are respectively ≤ m and ≤ n. Prove that

C�(M, q; V )≤m = C�(M, q) and C�(M, q; V )≤−n−1 = 0 .

(5.ex.3) Let (M, q) be a quadratic module, with M a finitely generated projective
module, and V a totally isotropic direct summand of M . Let n be the rank of V
at some prime ideal p of K. Prove that C�(M, q; V )≤k is a direct summand of
C�(M, q) which has the same rank as C�≤n+k(M, q) at p.

Hint. Assume that K is a local ring, and that (a1, . . . , am, b1, . . . , bn) is a basis of
M in which the last n elements generate V ; with every subset F of {1, 2, . . . , m}
associate the product aF of all ai with i ∈ F , and define similarly bG for every sub-
set G of {1, 2, . . . , n}; then consider the linear automorphism of C�(M, q) mapping
every aF bG to aF bG′ where G′ is the subset complementary to G.

(5.ex.4) Let V be any submodule of M , and V an the annihilator of V in M∗,
that is the submodule of all linear forms vanishing on V . The algebra

∧
(M∗)

is filtered by the submodules
∧

(M∗; V an)≤k whereas
∧∗(M) is filtered by the

submodules
∧∗(M ; V )≤k. Prove that the canonical morphism

∧
(M∗) →

∧∗(M)
is a morphism of filtered algebras; it is even an isomorphism of filtered algebras
when M is a finitely generated projective module, and V a direct summand.

(5.ex.5) Prove that the canonical morphism
∧

(M∗) →
∧∗(M) maps Lip(M∗)

into Lip∗(M); it induces an isomorphism of monoids when M is finitely generated
and projective.

(5.ex.6) This exercise investigates the group GLip(M) of all invertible lipschitz-
ian elements in

∧
(M) when M is a projective module.

(a) Prove that an element of
∧

(M) is invertible if and only if its component in∧0(M) = K is invertible.
(b) Let x be an element of GLip(M) that has components 1 and 0 respectively

in
∧0(M) and

∧2(M); prove that x = 1 by means of the trick presented in
the proof of (5.4.3).

(c) Prove that every element of GLip(M) can be written λExp(u) for some
invertible λ ∈ K and some u ∈

∧2(M).

(5.ex.7) The notation is the same as in (4.ex.8) where the interior products x � y
and x # y of two elements of

∧
(M ; β) have been defined. Prove that these inte-

rior products are lipschitzian whenever x and y are lipschitzian. (Hint: (4.8.10),
(5.3.13),. . . ).
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(5.ex.8)* Let M be a finitely generated module, the rank of which is everywhere
≤ 4. If x is any element of

∧
(M), its component in

∧k(M) (for k = 0, 1, 2, 3, 4)
is denoted by xk. For every u ∈

∧2(M) let u[2] be the component of Exp(u) in∧4(M); thus u ∧ u = 2u[2]. Besides, let π′ :
∧

(M) →
∧

(M) ⊗̂
∧

(M) be the
comultiplication of

∧
(M), and π′

i,j the component of π′ in
∧i(M) ⊗

∧j(M) for
each (i, j) ∈ N2.

(a) Consider an even element x ∈
∧

0(M), and set ω = x0x4 − x
[2]

2 . Prove that
x belongs to Lip(M) if and only if both 2ω and π′

1,3(ω) vanish.
Hint. Consider y = π′(x) ∧ (1 ⊗ τ(x)) as in the proof of (5.4.3), and prove
that its components in

∧0(M)⊗
∧4(M) and

∧1(M)⊗
∧3(M) are 2⊗ω and

π′
1,3(ω).

(b) Now consider an odd element x ∈
∧

1(M), and ω = x1 ∧ x3. Prove that x
belongs to Lip(M) if and only if 2ω and π′

1,3(ω) both vanish.

(c) Let ω be an element of
∧4(M). Prove that the vanishing of π′

1,3(ω) implies
ω = 0 when M is a projective module.

(5.ex.9) Let (M, q) be a quadratic module, with M a finitely generated module
of rank ≤ 4 at every prime ideal, and such that the mapping a �−→ 2a is bijective
from M onto M . Let x be a locally homogeneous element of C�(M, q). This exer-
cise intends to prove that xτ(x) belongs to C�0(M, q) ⊕ C�4(M, q), and that x is
lipschitzian if and only if xτ(x) belongs to C�0(M, q) = K.

(a) Prove that x ∧ τ(x) and xτ(x) belong to C�0(M, q)⊕ C�4(M, q) .
Hint. See (4.ex.11)(a).

(b) Prove that x ∧ τ(x) and xτ(x) have the same component in
∧4(M).

Hint. For k = 0, 1, 2, 3, 4, let xk be the component of x in C�k(M, q); after
localization, you can suppose x homogeneous and write either x = x0+x2+x4

or x = x1 +x3 ; deduce from (4.8.10) that the component of xτ(x) in
∧4(M)

is 2x0x4 + x2 ∧ x2 or −2x1 ∧ x3 ; you need to know that x 2
4 or x 2

3 belongs
to K: see (4.ex.12).

(c) Prove that x is lipschitzian if and only if xτ(x) belongs to K.
Hint. Because of (a) and (b) above, this is equivalent to x ∧ τ(x) ∈ K; and
according to (5.4.1), we can replace q with 0; use the automorphism of M⊕M
defined by (a, b) �−→ (a + b, a − b), which maps ∆ and ∆′ respectively to
M⊕0 and 0⊕M ; its extension as an automorphism of

∧
(M) ⊗̂

∧
(M) maps

x⊗ τ(x) to π′(x) ∧ π′′(x) with π′′ = (id∧⊗ σ) ◦ π′ ◦ τ ; according to (5.3.10),
x is lipschitzian if and only if the component of π′(x) ∧ π′′(x) in

∧4(M)⊗ 1
vanishes.

(5.ex.10)* Let p be a prime integer ≥ 2, r an exponent ≥ 2, and K the local
ring Z/prZ. Let M be a free module of rank 4 over K. This exercise intends to
give a precise description of the lipschitzian elements of

∧
(M); it needs the results

of (5.ex.8) (or (5.ex.9) if p �= 2).
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(a) Let x be a nonzero odd element of
∧

(M), x1 and x3 its components in M and∧3(M), i and j the greatest integers such that pr−ix1 = 0 and pr−jx3 = 0.
Prove that x is lipschitzian if and only if one of these two conditions is
fulfilled: either i + j ≥ r, or i + j < r and there is a basis (a, b, c, d) of M
such that x1 = pia and x3 = pj(a + pkd) ∧ b ∧ c with i + j + k ≥ r.

(b) Let x be a nonzero even element of
∧

(M), and x0, x2, x4 its components in
K,

∧2(M),
∧4(M). Prove the existence of a basis (a, b, c, d) of M and the

existence of two exponents i and j both ≤ r such that x2 = pia∧ b + pjc∧ d.
Let h and k be the greatest integers such that pr−hx0 = 0 and pr−kx4 = 0.
Prove that x is lipschitzian if and only if one of these two conditions is
fulfilled: either i + j and h + k are both ≥ r, or i + j = h + k < r and
x0x4 = pi+ja ∧ b ∧ c ∧ d.

(5.ex.11) Let M be a finitely generated projective module such that the mapping
a �−→ 2a is bijective from M onto M , and q a quadratic form on M . Prove that
xyτ(x) belongs to C�k(M, q) for all y ∈ C�k(M, q) and all x ∈ Lip(M, q).
Hint. (5.3.2) states that xyτ(x) is in C�≤k(M, q), and it remains to prove that
it is in C�≥k(M, q); when (M, q) is a quadratic space of constant rank r, use the
bijection C�r(M, q)⊗C�≥k(M, q) → C�≤r−k(M, q) resulting from (4.8.15); in the
general case, extend q to a nondegenerate quadratic form on M∗ ⊕M .

Orthogonal transformations
(and their infinitesimal transformations)

(5.ex.12) Let (M, q) be a tamely degenerate quadratic module as in 5.6; it is the
direct sum of Ker(bq) and a quadratic space (M ′, q′). Let f be an endomorphism
of M , and f ′ the endomorphism of M ′ mapping every a ∈ M ′ to the component
of f(a) in M ′. Prove that f is an infinitesimal automorphism of (M, q) if and only
if f(a) ∈ Ker(bq) for all a ∈ Ker(bq), and f ′ is an infinitesimal automorphism of
(M ′, q′).

Prove that an infinitesimal automorphism f of (M, q) is an infinitesimal or-
thogonal transformation if and only if f(a) = 0 for all a ∈ Ker(bq).
Comment. This shows that the infinitesimal version of (5.8.3) is true even without
the hypothesis Ker(q) = Ker(bq).

(5.ex.13) Let (M, q) be a quadratic space, M ′ a direct summand of M , and
q′ the restriction of q to M ′. The subalgebra of C�(M, q) generated by M ′ is
identified with C�(M ′, q′). With each y ∈ C�≤2

0 (M, q) is associated the infinitesimal
orthogonal transformation Fy defined by Fy(a) = [y, a]. Prove that

Im(Fy) ⊂ M ′ ⇐⇒ y ∈ C�≤2
0 (M ′, q′) ⇐⇒ Ker(Fy) ⊃ M ′⊥ .

(5.ex.14) Let K be the quotient of the polynomial ring (Z/8Z)[T ] by the ideal
generated by 2T (T − 1) and let t be the image of T in K. Thus every element
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of K can be written ξ + ζt + t(t − 1)ψ(t) with ξ, ζ ∈ Z/8Z and ψ a polynomial
with coefficients in Z/2Z. Let (M, q) be a free quadratic module of rank 1 over K
generated by an element b such that q(b) = 1.

(a) Prove that the only idempotents in K are 0 and 1, but that the group µ2(K)
of square roots of 1 is the group of order 16 generated by −1, 3, 1− 2t and
1 + 4t. Consequently the group Aut(M, q) contains 16 elements.

(b) The sequence (1 − t, tb) satisfies the conditions that allow it to define an
element of G′′Lip(M, q) and an orthogonal transformation g; indeed (1 −
t)2 + (tb)2 = 1, and (1− t)tb ∈ Zr

1(C�(M, q)). Therefore

g(b) = (1− t)b(1− t)− (tb)b(tb) = (1 − 2t)b.

Prove that g does not belong to the image of G′Lip(M, q) → GO(M, q), and
that there is no e ∈ Ip(K) such that det(g) = 1− 2e.

(c) Let µ′
2(K) be the subgroup of all s ∈ µ2(K) such that the fraction s/1 is

equal to 1/1 or −1/1 in every localization Kp. Prove that µ′
2(K) is the group

of order 4 generated by −1 and 1− 2t. Consequently GO(M, q) is the group
of order 4 generated by −id and g.
Hint. Let m (resp. m′) be the kernel of the ring morphism K → Z/2Z that
maps t to 0 (resp. 1); the fractions 3/1 and 3(1+4t)/1 are not equal to ±1/1
in Km; the fractions 3/1 and (1 + 4t)/1 are not equal to ±1/1 in Km′ .

(5.ex.15)* The quadratic module under consideration in (5.ex.14) is “almost non-
degenerate” according to the definition given in (2.ex.14). Now let (M, q) be any
almost nondegenerate quadratic module of constant odd rank over some ring K.

(a) When K is a local ring, it is known that (M, q) is the orthogonal sum of
a quadratic space and a free quadratic module generated by an element e
such that q(e) is invertible. Prove that every g ∈ GO(M, q) is a product of
reflections, and that GO(M, q) is the subgroup of all g ∈ Aut(M, q) such that
det(g) = ±1.

(b) When K is an arbitrary ring, prove that the morphism G′′Lip(M, q) →
GO(M, q) is bijective, and that GO(M, q) is the subgroup of all g ∈ Aut(M, q)
such that an equality det(g)/1 = ±1/1 holds in every localization of K.

(c) Now the mapping λ �−→ 2λ is assumed to be injective from K into itself.
Prove that Zr(C�(M, q)) is reduced to K, that the mapping G′Lip(M, q) →
GO(M, q) is bijective, and that GO(M, q) is the union of the subsets
GOe(M, q) with e ∈ Ip(K).

(5.ex.16) Here is an alternative proof of the surjectiveness of the morphism
GLip(M, q) → GO(M, q) when M is a vector space of finite dimension over a
field K; it ignores Lemmas (5.7.4) and (5.7.5), but uses (5.6.4) and the results
of (5.ex.13) and (5.ex.12); it may also use (5.7.7) if decompositions into prod-
ucts of reflections are aimed at. Let g be an automorphism of (M, q) such that
Ker(g − id) ⊃ Ker(bq).
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(a) When Im(g− id) is not totally isotropic, prove the existence of a product g′ of
reflections such that Im(g′g− id) is a totally isotropic subspace of Im(g− id).
Hint. If g(a) − a is not isotropic, Ker(Gg(a)−ag − id) is strictly larger than
Ker(g − id).

(b) Prove that Im(g− id) is totally isotropic if and only if g− id is an infinitesimal
orthogonal transformation. Thus the initial problem is reduced to this one:
if f is an infinitesimal orthogonal transformation such that Im(f) is totally
isotropic, then id + f = Gx for some x ∈ GLip(M, q).

(c) When Ker(bq) = 0, it follows from (5.ex.13) that f = Fy for some y =
∑

i bici

with all bi and ci in Im(f). Prove that id + f = Gx if x =
∏

i(1 + bici).
(d) When Ker(bq) �= 0, prove that f = Fy for some y ∈ C�≤2

0 (M, q) like this:

y =
∑

i

bici +
∑

j

djej

with all bi, ci ∈ Im(f) and all dj ∈ Im(f) ∩ Ker(bq); then id + f = Gx if x
is the product of all 1 + bici (on the left side) and all 1 + djej (on the right
side).

Lipschitz monoids and orthogonal groups of quadratic spaces

(5.ex.17) Let (M, q) be a quadratic space of constant rank r, f an infinitesimal
automorphism of (M, q), and g an automorphism of (M, q). We are interested in
the characteristic polynomials of f and g, that are the determinants of λ id − f
and λ id− g (with λ an indeterminate). We forget (5.6.3) and we use localizations
and matrix calculus.

(a) Prove that det(λ id− f) = det(λ id + f) .
(b) Prove that det(g) is a square root of 1, and that

det(λ id − g) = det(g) (−λ)r det(λ−1id− g) .

(c) Assume that r is odd (and consequently 2 is invertible in K). Prove that M
contains nonzero elements a such that g(a) = det(g) a .
Hint. An endomorphism of M cannot be injective when its determinant van-
ishes.

(d) Assume that r is even, that 2 is not a divisor of zero in K, and that det(g) =
−1. Prove that M contains nonzero elements a such that g(a) = a, and
nonzero elements b such that g(b) = −b.

(5.ex.18) Let (M, q) be a quadratic space, M ′ a direct summand as in (5.4.5),
and g′ an automorphism of (M ′, q′). Prove that g′ belongs to the image of
G′Lip(M ′, q′) → GO(M ′, q′) if and only if g′ can be extended to an automor-
phism g of (M, q) such that g(a) = a for all a ∈ M ′⊥.
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(5.ex.19) Let K be a ring containing two elements x and y such that x2 +y2 = 1,
and in which 2 is invertible. Let (M, q) be the module K2 provided with the
quadratic form (λ, µ) �−→ λ2 +µ2, and g the orthogonal transformation defined in
the canonical basis (e1, e2) of K2 in this way:

g(e1) = xe1 + ye2 and g(e2) = −ye1 + xe2 .

(a) Prove that Zr(C�(g)) is the submodule generated by

z1 = (1 + x)− ye1e2 and z2 = y − (1− x)e1e2 .

Hint. z1τ(z1) + z2τ(z2) = 4 ∈ K×.
Prove that the mapping z �−→ z + τ(z) induces an isomorphism from
Zr(C�(g)) onto the ideal of K generated by 1 + x and y provided that y
is not a divisor of zero in K.

(b) Here K is the ring F [X, Y ]/(X2 + Y 2 − 1) derived from a field F of charac-
teristic �= 2 as it is explained in (1.ex.24). When is Zr(C�(g)) a free module?

(c) Here K is the ring of all continuous functions f : R → R such that f(t+1) =
f(t) for all t ∈ R (as in (1.ex.23)), and x and y are the functions defined by
x(t) = cos(2πt) and y(t) = sin(2πt). Thus g represents a group morphism
from the additive group R into GO(R2, q0) if q0 is the usual quadratic form
on R2. Prove that Zr(C�(g)) is not a free module.

(d) Here K is the ring of all continuous functions R → R, and x and y are defined
as in (c). Prove that Zr(C�(g)) is the free module generated by z = cos(πt)−
e1e2sin(πt). The mapping t �−→ z(t) is a group morphism R → GLip(R2, q0),
but z(t + 1) = −z(t) for all t ∈ R.

(5.ex.20) If g is an automorphism of a quadratic space (M, q), it follows from
(5.8.1) that every element of Zg(C�(g)) is lipschitzian. This exercise presents a
short proof of this fact with these additional hypotheses: the mapping a �−→ 2a
is bijective from M onto M , and the mappings a �−→ na are injective for all
integers n ≥ 3. Thus the algebra C�(M, q) ⊗̂C�(M, q)to is graded by submodules
(C�(M, q) ⊗̂C�(M, q)to; ∆, ∆′)k with k ∈ Z.

(a) Let B(M, K) be the module of all bilinear forms M × M → K. Consider
these two bijective arrows: M ⊗M → M∗ ⊗M∗ → B(M, K) ; the former
arrow is dq ⊗ dq , the latter is a natural mapping which here is bijective
since M is projective and finitely generated. Let Γ be the reciprocal image
of bq in M ⊗M , and let b1, c1, b2, c2, . . . , bm, cm be elements of M such that
Γ =

∑m
i=1 bi ⊗ ci . Prove that

∀a ∈M, a =
m∑

i=1

bq(a, bi)ci =
m∑

i=1

bq(a, ci)bi.
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(b) Let Γ′′ be the natural image of Γ in C�(M, q) ⊗̂C�(M, q)to. Prove the follow-
ing equalities:

∀a ∈M, (a⊗ 1to) Γ′′ − Γ′′ (a⊗ 1to) = 1⊗ ato ,

∀a ∈M, (1⊗ ato) Γ′′ − Γ′′ (1⊗ ato) = a⊗ 1to.

Deduce from these equalities that an element ζ of C�(M, q) ⊗̂C�(M, q)to has
degree k for the grading determined by ∆ and ∆′ if and only if ζ Γ′′ −
Γ′′ ζ = kζ .

(c) Let x be a homogeneous element of Zg(C�(g)). Prove this equality for all b
and c ∈M :

(x ⊗ τ(x)to) (b ⊗ cto) = (g(b)⊗ g(c)to) (x⊗ τ(x)to).

Besides, let b1, c1, . . . , bm, cm be as above, and prove that

Γ′′ =
m∑

i=1

bi ⊗ cto
i =

m∑
i=1

g(bi)⊗ g(ci)to.

Conclude that x belongs to Lip(M, q).

(5.ex.21) Consider a quadratic space over K, and the group morphism x �−→
xτ(x) from GLip(M, q) into K× defined in (5.6.3).

(a) When the morphism GLip(M, q) → G′Lip(M, q) is surjective, prove that
the morphism x �−→ xτ(x) induces a morphism from G′Lip(M, q) into the
quotient of K× by the subgroup K×2 of squares.
Comment. Because of the isomorphism G′Lip(M, q) → GO(M, q), we also get
a group morphism GO(M, q) → K×/K×2; it is called the spinorial norm.

(b) Let K be a ring such that the group K×/K×2 is infinite (for instance K = Q),
let (M, q) be a quadratic space over K such that GLip(M, q) → GO(M, q)
is surjective, and the image of the spinorial norm GO(M, q) → K×/K×2 is
infinite; for instance (M, q) may be any Q-quadratic space of dimension ≥ 2.
Prove that GO(M, q) contains infinitely many normal subgroups.

(5.ex.22) Let (M, q) be a quadratic space of rank everywhere ≤ 4, and x a locally
homogeneous element of C�(M, q). Prove that x belongs to GLip(M, q) if and only
if xτ(x) belongs to K×.
Hint. Since q is nondegenerate, GLip(M, q) is the group of all locally homogeneous
and invertible x such that xax−1 ∈ M for all a ∈ M ; and since the rank of M is
≤ 4, M is the submodule of all a ∈ C�1(M, q) such that τ(a) = a (see (3.ex.19)).

Lipschitz groups and orthogonal groups of real quadratic spaces

In the next five exercises (M, q) is a quadratic space over R. The first two exercises
determine the number of connected components of GLip(M, q) and GO(M, q) for
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the topologies induced by the usual topologies of the real vector spaces C�(M, q) and
End(M). The following three exercises describe the even subgroup G0Lip(M, q)
when (M, q) is a real quadratic space of dimension 3 or 4. The most important
results are summed up just after (5.ex.27). Only very elementary knowledge in
topology is required.

(5.ex.23) Let (M, q) be a quadratic space over the field R of real numbers. As
in 2.7, m (resp. n) is the maximal dimension of a positive definite (resp. negative
definite) subspace, and we suppose m+n > 0. Here we are interested in the number
of connected components of the group GLip(M, q), that is the group generated by
the invertible elements of M (see (5.10.3)). The mappings x �−→ ∂x and x �−→
xτ(x) are group morphisms from GLip(M, q) into Z/2Z and R× (see (5.3.6)),
from which we can deduce a lower bound (2 or 4) for the number of connected
components, and we shall prove that this lower bound is the exact number when
m or n is ≥ 2. Let M+ (resp. M−) be the subset of all a ∈ M such that q(a) > 0
(resp. q(a) < 0).

(a) Prove that M+ (resp. M−) is pathwise connected if and only if m ≥ 2 (resp.
n ≥ 2). How many connected components has it when m = 1 (resp. n = 1)?

(b) Verify that −1 is in the neutral connected component of GLip(M, q) when
m or n is ≥ 2.

(c) Explain that every product ab with a ∈M+ and b ∈M− is equal to a product
b′a′ with a′ ∈M+ and b′ ∈M− (and conversely).

(d) Prove that GLip(M, q) has always four pathwise connected components ex-
cept in these cases:

– it has eight connected components when m = n = 1 ;
– it has two connected components when q is positive or negative definite,

and dim(M) ≥ 2 .

(5.ex.24) The notation is that of (5.ex.23). Besides the group GLip(M, q) we
also consider the spinorial group Spin±(M, q), that is the subgroup of all x ∈
GLip(M, q) such that xτ(x) = ±1 ; this subgroup has as many connected compo-
nents as GLip(M, q) since it is isomorphic to its quotient by the subgroup of real
positive numbers. From (5.3.7) we can derive the exact sequence

1 −→ { 1,−1} −→ Spin±(M, q) −→ GO(M, q) −→ 1.

Here we are interested in the number of connected components of GO(M, q). Ex-
plain briefly what happens when (m, n) is (1, 0) or (0, 1) or (1, 1). In the other cases
the neutral connected component of Spin±(M, q) contains { 1,−1} ; prove that the
groups Spin±(M, q) and GO(M, q) have the same number of connected compo-
nents; consequently Spin±(M, q) is a “two-sheet covering group” over GO(M, q).
Hint. The main difficulty is to prove that GO(M, q) has at least four connected
components when mn �= 0; decompose M into an orthogonal sum M1 ⊥ M2 with
q positive definite on M1 and negative definite on M2; if g is an automorphism of
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(M, q), let gj (for j = 1, 2) be the endomorphism of Mj defined in this way: gj(a)
is the orthogonal projection of g(a) onto Mj ; prove that gj is always bijective, and
that the sign of its determinant is arbitrary. It is even true that |det(gj)| ≥ 1.

(5.ex.25) Let (M, q) be a quadratic space of dimension 3 over R.
(a) When q is (positive or negative) definite, prove the existence of an iso-

morphism Φ from C�0(M, q) onto the division ring of quaternions H =
R ⊕ Ri ⊕ Rj ⊕ Rij (where i2 = j2 = −1 and ji = −ij ). By this isomor-
phism, the restriction τ0 of τ to C�0(M, q) corresponds to the quaternionic
conjugation that maps every y = κ + λi + µj + νij to ȳ = κ−λi−µj− νij
(whence yȳ = κ2 + λ2 + µ2 + ν2).
Hint. Standard involutions are unique (see (1.13.8)).

(b) When q is not definite, prove the existence of an isomorphism Φ from
C�0(M, q) onto the matrix algebra M(2, R). By this isomorphism, τ0 cor-
responds to the involution y �−→ y† = tr(y)I − y where tr(y) is the trace of
y, and I the unit matrix (whence yy† = det(y)I ).

(c) In both cases describe the images by Φ of the groups GLip0(M, q) and
Spin±

0 (M, q); remember (5.4.3).
(d) Let ω be a nonzero element of C�3(M, q), and f : M → C�2(M, q) the

bijection defined by f(a) = aω (see (4.8.15)). For all x ∈ GLip0(M, q) prove
that the orthogonal transformation Gx corresponds through f to the inner
automorphism of C�0(M, q) determined by x : Gx(a) = f−1(x f(a)x−1) .

(5.ex.26) Let (M, q) be a quadratic space of dimension 4 over R that is either
(positive or negative) definite, or hyperbolic; thus the center Z of C�0(M, q) is
isomorphic to R2 and contains an idempotent ε such that Z = Rε ⊕ R(1 − ε).
Consequently C�0(M, q) is the direct sum of the ideals C′ and C′′ respectively
generated by ε and 1− ε, and both invariant by τ since τ(ε) = ε.

(a) When q is definite, prove the existence of isomorphisms Φ′ : C′ → H and
Φ′′ : C′′ → H ; by these isomorphisms the restrictions of τ to C′ and C′′

correspond to the quaternionic conjugation in H.
(b) When q is hyperbolic, prove the existence of isomorphisms Φ′ and Φ′′ from

C′ and C′′ onto M(2, R). By these isomorphisms the restrictions of τ to C′

and C′′ correspond to the involution y �−→ y† defined in (5.ex.25)(b).
(c) Let x be an element of C�0(M, q), with components x′ = εx and x′′ = (1−ε)x

in C′ and C′′. Deduce from (5.ex.22) which property x′ and x′′ must satisfy
for x to belong to GLip0(M, q). Let us set Φ(x) = (Φ′(x′), Φ′′(x′′)) ; thus Φ
is an isomorphism from C�0(M, q) onto H2 orM(2, R)2. Describe the images
by Φ of the groups GLip0(M, q) and Spin±

0 (M, q).
(d) Let e be an element of M such that q(e) �= 0. Explain why the twisted inner

automorphism Θe extending the reflection Ge permutes the ideals C′ and C′′

of C�0(M, q). For every a ∈ M we set f(a) = εae−1 and g(a) = (1− ε)e−1a
(as in (3.ex.20)(e)). Prove that f (resp. g) is a bijection from M onto C′ (resp.
C′′), and that g ◦ f−1 and f ◦ g−1 are the bijections C′ ←→ C′′ induced by
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Θe. Let x be an element of GLip0(M, q) with components x′ and x′′ in C′

and C′′; thus the components of Θe(x) are y′ = ex′′e−1 and y′′ = ex′e−1.
Prove the following equalities:

Gx(a) = f−1
(
x′ f(a) y′−1

)
= g−1

(
y′′ g(a)x′′−1

)
.

(5.ex.27) Let (M, q) be a quadratic space of dimension 4 over R that is neither
(positive or negative) definite, nor hyperbolic; in other words, its signature is
±2. In the center Z of C�0(M, q) there is an element ω such that ω2 = −1,
and consequently Z is isomorphic to the field C of complex numbers. We extend
the standard involution ϕ of Z to automorphisms of C�0(M, q) and M(2, Z) still
denoted by ϕ and defined in this way: first we choose e ∈M such that q(e) has the
same sign as the signature of q, and we set ϕ(x) = exe−1 for all x ∈ C�0(M, q);
secondly ϕ operates on an element ofM(2, Z) just by operating on the four entries
of this matrix.

(a) Prove the existence of a Z-linear isomorphism Φ from C�0(M,q) ontoM(2,Z)
such that Φ(ϕ(x)) = ϕ(Φ(x)) for all x ∈ C�0(M, q); by this isomorphism, the
restriction of τ to C�0(M, q) (which is Z-linear) corresponds to the involution
y �−→ y† defined in (5.ex.25)(b).
Hint. Let (e0, e1, e2, e) be an orthogonal basis of M such that q(e) = q(e2) =
q(e1) = −q(e0) and e0e1e2e = q(e)2ω ; you may define Φ in such a way that

Φ(e0e
−1) =

(
0 ω
−ω 0

)
, Φ(e1e

−1) =
(

0 ω
ω 0

)
,

Φ(e2e
−1) =

(
ω 0
0 −ω

)
.

(b) Describe the images by Φ of the groups GLip0(M, q) and Spin±
0 (M, q).

Hint. (5.ex.22).
(c) Let us set f(a) = ae for all a ∈ M . Prove that f is a bijection from M onto

the subspace M ′ of all y ∈ C�0(M, q) that are invariant by the involution
τ ◦ ϕ = ϕ ◦ τ . Moreover the mapping y �−→ det(Φ(y)) is a real quadratic
form of signature 2 on M ′. For every x ∈ GLip0(M, q) prove that Gx(a) =
f−1(x f(a)ϕ(x)−1) .

Selected results from the five previous exercises

Some important results can be reformulated in another way. When dim(M) ≥ 3,
Spin±(M, q) and GO(M, q) both have two or four connected components according
as q is definite or not. The neutral connected component of Spin±(M, q) is the
subgroup Spin0(M, q) of all x ∈ GLip0(M, q) such that xτ(x) = 1 ; it contains the
kernel {1,−1} of the canonical surjective morphism Spin±(M, q) → GO(M, q). Let
SL(2, R) (resp. SL(2, C)) be the group of real (resp. complex) square matrices of
order 2 with determinant 1, and SL(1, H) the group of all y ∈ H such that yȳ = 1.
When dim(M) = 3, Spin0(M, q) is isomorphic either to SL(1, H) or to SL(2, R)
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according as q is definite or not. When dim(M) = 4, this group is isomorphic to
SL(1, H) × SL(1, H), or to SL(2, R) × SL(2, R), or to SL(2, C) according as q is
definite, or hyperbolic, or otherwise.

Instead of SL(1, H) = GL(1, H)∩SL(4, R), many people prefer the isomorphic
group SU(2) = SL(2, C) ∩ GO(4, R) ; the latter is the image of the former by the
algebra morphism

H −→M(2, C) , κ + λi + µj + νij �−→
(

κ + λi −µ− νi
µ− νi κ− λi

)
.

About the Sections 5.9. and 5.10.

(5.ex.28) Here M is a finite dimensional vector space over a field K. This exercise
proposes another proof of (5.9.4) that ignores the transformations F and F∗. It
must be proved that z �x is in �ip(M) when z and x are respectively in �ip(M∗)
and �ip(M). In all the calculations x is written in this way:

x = a1 ∧ a2 ∧ · · · ∧ ak ∧Exp(u) with k ≥ 0, a1, . . . , ak ∈M and u ∈
∧2

(M) .

As for z, explain why it suffices to consider two cases, either z = h with h ∈ M∗,
or z = 1 + h1 ∧ h2 with h1 and h2 ∈M∗.

When z = h, explain why it suffices to consider the following two cases:

– either k ≥ 0 and h(aj) = 0 for j = 1, 2, . . . , k ;
– or k ≥ 1, h(a1) = 1 and h(aj) = 0 for j = 2, 3, . . . , k .

When z = 1+h1∧h2, explain why it suffices to consider the following three cases:

– either k ≥ 0 and hi(aj) = 0 for i = 1, 2 and j = 1, 2, . . . , k ;
– or k ≥ 1, h(a1) = 1 and hi(aj) = 0 if (i, j) �= (1, 1) ;
– or k ≥ 2, hi(ai) = 1 for i = 1, 2 and hi(aj) = 0 if i �= j .

Then achieve the five required verifications.

(5.ex.29) Here M is a finite dimensional vector space over a field K. This exercise
proposes another proof of (5.9.6) that ignores the transformations F and F∗.

(a) Reduce the problem to the case of an infinite field K.
(b) Let W be the subset of all w ∈

∧2(M∗) such that (5.9.6) is true for (u, w)
with all u ∈

∧2(M). Prove that w + w′ belongs to W whenever w and w′

belong to it.
Hint. Since K is infinite, it suffices to consider all u ∈

∧2(M) such that
idM − du ◦ dw is bijective; thus the exact calculation of Exp(w) �Exp(u) is
possible.

(c) Verify that (5.9.6) is true whenever w is decomposable (in other words, w =
h ∧ h′ for some h and h′ ∈ M∗), and conclude.
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(5.ex.30) This exercise is devoted to the calculation of the polynomials ∆k men-
tioned in (5.9.7). Here B is still the field of fractions of the polynomial ring
A = Z[t, (ui,j), (wi,j)] ; the vector spaces M = Br and M∗ are provided with
their natural dual bases (b1, b2, . . . , br) and (b∗1, . . . , b

∗
r), but the definition of u and

w give them a meaning somewhat different from that in the proof of (5.9.7), since
here we set

u =
∑
i<j

ui,j bi ∧ bj and w =
∑
i<j

wi,j b∗j ∧ b∗i .

(a) Verify that the matrices of du and dw are respectively −U and −W .
(b) For every integer k such that 0 ≤ 2k ≤ r, let u[k] and w[k] be the components

of Exp(u) and Exp(w) respectively in
∧2k(M) and

∧2k(M∗). Prove that

∆k((ui,j), (wi,j)) = w[k](u[k]) .

(c) Prove for instance that

∆1((ui,j), (wi,j)) =
∑
i<j

ui,jwi,j ,

∆2((ui,j), (wi,j))

=
∑

i<j<k<l

(ui,juk,l − ui,kuj,l + ui,luj,k) (wi,jwk,l − wi,kwj,l + wi,lwj,k) ,

and so forth. . . .

Remark. Equivalent results can be derived from (5.10.8); consider the quadratic
form q on M = Br such that (b1, b2, . . . , br) is an orthogonal basis and q(bi) = 1 for
i = 1, 2, . . . , r; then the matrix of Fu/2 is also −U ; let (vi,j) (with 1 ≤ i < j ≤ r)
be another family of indeterminates, from which an element v of

∧2(M) is derived
in the same way; it follows from (5.10.8) and (4.8.16) that

∆k((ui,j), (vi,j)) = (−1)k Scal(u[k]v[k]).

(5.ex.31)* Let K be an infinite field, and M a finite dimensional vector space
over K. Here

∧
(M) is provided with the Zariski topology, for which the closed

subsets are the closed algebraic submanifolds (defined by means of polynomial
equations). From the definition (5.3.1) it is clear that Lip(M) is a closed algebraic
submanifold of

∧
(M). Here it is proved that its even and odd components Lip0(M)

and Lip1(M) are irreducible; in other words, neither is the union of two closed
submanifolds in a nontrivial way.

(a) Prove that Lip0(M) is an irreducible algebraic manifold.
Hint. It is clear that GLip(M) is irreducible, since it is the group of all
λExp(u) with λ ∈ K× and u ∈

∧2(M) (see either (5.10.2) or (5.ex.6)); its
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closure in
∧

0(M) is a multiplicative monoid which contains all products a∧b
because of the equality λ + a ∧ b = λ Exp(λ−1a ∧ b) (valid for all λ ∈ K×

and all a, b ∈M); therefore its closure is Lip0(M).
(b) Prove that Lip1(M) is an algebraic manifold isomorphic to Lip0(M).

Hint. Use the multiplication by a in some algebra
∧

(M ; β) such that
β(a, a) �= 0.

(5.ex.32)* As a corollary of (5.ex.31) and (5.4.1), prove the following statement:
for every finite dimensional vector space M over an infinite field K, and for every
nonzero quadratic form q on M , the Lipschitz monoid Lip(M, q) is the topological
closure of the Lipschitz group GLip(M, q). But the closure of GLip(M) (with
q = 0) is the even component Lip0(M).

(5.ex.33) Let M be a finite dimensional vector space over a field K of character-
istic �= 2. Let U be the subset of all f ∈ End(M) without eigenvalue equal to 1 or
−1, and V the subset of all g ∈ End(M) without eigenvalue equal to 0 or −1. For
every f ∈ U (resp. g ∈ V) we set:

g =
(

id− 1
2
f

)−1 (
id +

1
2
f

)
(resp. f = 2 (g − id) (g + id)−1).

(a) Verify that two reciprocal bijections U ←→ V are defined in this way.
(b) Let q be a nondegenerate quadratic form on M ; suppose that f ∈ U and

g ∈ V are associated with each other by the above relations, and prove that g
is an automorphism of (M, q) if and only if f is an infinitesimal automorphism
of (M, q).
Comment. This result, attributed to Cayley, plays an important role in Lip-
schitz’s works about orthogonal transformations; the factors 1/2 and 2 in
the above formulas are not usual, but they ensure that the differential of the
mapping f �−→ g at the point 0 is the identity mapping of End(M).

(c)* Let ψ be a symplectic form on M (a nondegenerate alternate bilinear form);
prove that g is an automorphism of (M, ψ) if and only if f is an infinitesimal
automorphism of (M, ψ).

(5.ex.34) Let g be an automorphism of a quadratic space (M, q) over a field of
characteristic �= 2. As explained in (5.ex.21), the “spinorial norm” maps g to the
element of K×/K×2 defined in this way: it is xτ(x) modulo K×2 if g = Gx.

(a) Suppose that −1 is not an eigenvalue of g, and deduce from (5.10.7) and
(5.ex.33) that the spinorial norm of g is equal to the determinant of 2(g+id)
modulo K×2.

(b) When −1 is an eigenvalue of g, prove that M is the orthogonal sum M ′ ⊥ M ′′

of two subspaces invariant by g and satisfying these properties: the restriction
of g+id to M ′ is bijective, whereas its restriction to M ′′ is nilpotent. Let g′ be
the restriction of g to M ′, and q′′ the restriction of q to M ′′; the determinant
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of q′′ is independent modulo K×2 of the basis of M ′′ in which it is calculated
(this is a classical consequence of (2.ex.3)); prove that the spinorial norm of
g is det(2(g′ + idM ′)) det(q′′) modulo K×2.

Comment. In [Zassenhaus 1962] the same results about spinorial norms are reached
without Clifford algebras.

(5.ex.35) Let M be a finite dimensional vector space over a field K of char-
acteristic �= 2, and q an anisotropic quadratic form on M (such that q never
vanishes on any nonzero element of M); consequently q is nondegenerate. Prove
that GLip(M, q) is the subset of all nonzero elements of Lip(M, q).
Hint. Consider a nonzero lipschitzian element x in the algebra

∧
(M ; bq/2) :

x = a1 ∧ a2 ∧ · · · ∧ ak ∧ Exp(u)
with k ≥ 0, a1, . . . , ak ∈ M and u ∈

∧2
(M) ;

you can suppose that (a1, a2, . . . , ak) is an orthogonal basis in the subspace N it
spans; since M = N ⊕N⊥, you can suppose u ∈

∧2(N⊥); thus x is the Clifford
product a1a2 · · · akExp(u) ; to prove that Exp(u) is invertible, it suffices to prove
that id− Fu/2 is bijective (see (5.10.7)).

(5.ex.36)* Let (M, q) be a quadratic space over a field K of characteristic 0, let L
be the ring K[[t]] of formal series, and L′ = K((t)) its field of fractions. On L′⊗M
we consider the nondegenerate L′-quadratic form t⊗q defined by λ⊗a �−→ tλ2q(a)
(for all λ ∈ L′ and a ∈ M); its restriction to L⊗M (treated as a L-quadratic form)
is also denoted by t ⊗ q. Besides the exterior algebra

∧
L(L ⊗M) = L ⊗

∧
(M),

we also consider the Clifford algebra
∧

L(L⊗M ; t⊗ bq/2), and we treat it as an
L-subalgebra of

∧
L′(L′ ⊗M ; t⊗ bq/2). Let u be any element of L⊗

∧2(M).

(a) For every n ∈ N, let F≥n be the L-submodule of
∧

L(L ⊗ M) containing
all tj ⊗

∧≥k(M) such that 2j + k ≥ n. Prove that these submodules F≥n

determine a decreasing filtration both for the exterior multiplication and the
Clifford multiplication of

∧
L(L ⊗M ; t ⊗ bq/2). Consequently, besides the

exterior exponential Exp(u), there is also a Clifford exponential exp(u) .
Remember that Fu is the endomorphism of L′⊗M defined by Fu(a) = [u, a]
for all a ∈ L′ ⊗M (see (5.5.3)). It is the image of an element of t⊗ End(M)
by the canonical isomorphism L′⊗End(M) → EndL′(L′⊗M). Consequently,
for every formal series P (t) ∈ K[[t]], it is possible to define P (Fu/2). In (b)
just beneath we shall meet these three formal series: sinh(t) and cosh(t) (the
odd and even parts of exp(t)) and their quotient tanh(t).

(b) Prove that exp(u) is a lipschitzian element of
∧

L(L ⊗M), that there exist
κ ∈ L and v ∈ L⊗

∧2(M) such that exp(u) = κ Exp(v), and that moreover

κ2 = det
(

cosh
(

1
2
Fu

))
and

1
2
Fv = tanh

(
1
2
Fu

)
.
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Hint. When x = exp(u), classical results of Lie theory say that the inner
automorphism y �−→ xyx−1 is the exponential of the derivation y �−→ [u, y] ;
since this inner automorphism leaves M invariant, x is lipschitzian; therefore
you can write x = κ Exp(v) and deduce from (5.10.7) that

1 = κ2 det
(

id− 1
2
Fv

)
and exp(Fu) =

(
id− 1

2
Fv

)−1 (
id +

1
2
Fv

)
.

Comments. When K is the field R or C, routine arguments with power series
show that the above equalities remain true when t is replaced with 1, and
when exp, cosh, tanh are understood as analytical functions on C�(M, q) or
End(M), provided that Fu/2 has no eigenvalue λ such that cosh(λ) = 0.
Besides, the eigenvalues of cosh(Fu/2) other than 1 have even multiplicities
because of (5.ex.17)(a).

(5.ex.37) Let β be any bilinear form on a module M , and q the quadratic form
such that q(a) = β(a, a) for all a ∈ M . Let M † be a submodule of M∗ satisfying
these two conditions: M † contains Im(dβ) and Im(dto

β ), and Hom(M, M †) contains
bijective elements. Of course M † = M∗ when (M, q) is a quadratic space. We treat
dβ and dto

β as elements of Hom(M, M †), and for every u ∈
∧2(M) the notation du

means the element of Hom(M †, M) defined by du(h) = h �u. Let Hom∧(M †, M)
be the submodule of all δ ∈ Hom(M †, M) such that h(δ(h)) = 0 for all h ∈ M †;
it is clear that du belongs to Hom∧(M †, M) for all u ∈

∧2(M). The notations id
and id† mean the identity mappings of M and M †.

Let U be the subset of all δ ∈ Hom(M †, M) such that id + δdβ and id + δdto
β

are bijective, and V the subset of all bijective g ∈ End(M) such that dβg −
dto

β is bijective from M onto M †. The proposition (5.10.5) suggests studying the
mappings Φ : U → End(M) and Ψ : V → Hom(M †, M) defined in this way:

Φ(δ) = (id + δdβ)−1(id + δdto
β ) and Ψ(g) = (id− g) (dβg − dto

β )−1.

(a) Verify that for all (δ, g) ∈ Hom(M †, M)× End(M) :

(id + δdβ) g = id + δdto
β ⇐⇒ δ (dβg − dto

β ) = id− g ;

consequently, if (δ, g) belongs to U ×V , the equalities g = Φ(δ) and δ = Ψ(g)
are equivalent.
Nonetheless the equality g = Φ(δ) never holds for any (δ, g) ∈ U × V when
Ker(dq) �= 0. Indeed it is easy to verify that Ker(id− Φ(δ)) always contains
Ker(dq); unfortunately when Ker(id − g) contains Ker(dq), then dβg − dto

β

annihilates Ker(dq), and cannot be bijective.
(b) Suppose that g = Φ(δ) and prove that

∀a ∈M , q(a)− q(g(a)) = h(δ(h)) if h = (dβg − dto
β )(a) ;

conclude that Φ maps U ∩Hom∧(M †, M) into Aut(M, q).
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Conversely suppose that δ = Ψ(g) and prove that

∀h ∈M † , h(δ(h)) = q(a)− q(g(a)) if a = (dβg − dto
β )−1(h) ;

thus Ψ maps V ∩Aut(M, q) into Hom∧(M †, M).
(c) Here M is a finitely generated projective module and M † = M∗; thus the

mapping u �−→ du is bijective from
∧2(M) onto Hom∧(M †, M). Let δ be an

element of Hom∧(M †, M), and consider

id + δdβ and id + δdto
β in End(M), id† + dβδ and id† + dto

β δ in End(M †).

Prove that all these four endomorphisms are bijective when one of them is
bijective.

(d) Verify that these two equalities are consequences of the equalities at the
beginning of (a):

(id† + dβδ) (dβg − dto
β ) = dβ − dto

β = dq ,

(id† + dto
β δ) (dβg − dto

β ) = (dβ − dto
β ) g .

Conclude that, when (M, q) is a quadratic space, Φ and Ψ are reciprocal
bijections between U ∩Hom∧(M †, M) and V ∩Aut(M, q) .

(e) Suppose that δ = du for some u ∈
∧2(M) and that δ belongs to U ; therefore

g = Φ(δ) belongs to Aut(M, q). Set x = Exp(u) and prove that, for every
a ∈ M , g(a) (resp. g−1(a)) is the only b ∈M such that bx = xa (resp. ax =
xb). This implies that x belongs to Zg(C�(g)). When (M, q) is a quadratic
space, prove that x belongs to GLip(M ; β).

Weyl algebras (for interested readers)

(5.ex.38) Consider the Weyl algebra W(M, ψ) defined in (4.ex.18), and prove
the theorem analogous to (5.5.3) involving the Lie subalgebra W≤2

0 (M, ψ) and
the Lie algebra of infinitesimal automorphisms f of (M, ψ); the latter contains
all f ∈ End(M) such that ψ(f(a), b) + ψ(a, f(b)) = 0 for all a and b ∈ M (or
equivalently, the bilinear form (a, b) �−→ ψ(f(a), b) is symmetric). When M is
finitely generated and projective, and ψ nondegenerate, you can use an admissible
scalar product β and the associated deformation S(M ; β) of the symmetric algebra
(see (4.ex.20) or (4.ex.21)).

When β = ψ/2, the subspace S2(M) is a Lie subalgebra of S(M ; ψ/2), and
[S2(M), Sk(M)] ⊂ Sk(M) for every degree k (compare with (5.5.4)).

(5.ex.39)* Here M is a vector space of finite dimension over a field K of charac-
teristic 0. Yet the case of a field K of characteristic ≥ 3 is treated in [Helmstetter
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1982]. Let L = K[[t]] be the ring of formal series derived from K. Besides the sym-
metric algebra SL(L ⊗M) = L ⊗ S(M) we also consider the algebra S̄L(L ⊗M)
that is the direct product of all subspaces L⊗ Sk(M); and similarly S̄L(L⊗M∗).
If f is any element of S̄L(L ⊗ M∗), and x any element of S̄L(L ⊗M), it is not
always possible to define the interior product f �x ; nevertheless, if u and w belong
respectively to L ⊗ S2(M) and to tL ⊗ S2(M∗), and if Exp(u) and Exp(w) are
their exponential in S̄L(L⊗M) and S̄L(L⊗M∗), it is possible to define the interior
product of Exp(w) and Exp(u) as a formally convergent infinite sum, because each
symmetric power wk belongs to tkL ⊗ S2k(M∗). Prove the existence of κ ∈ L×

and v ∈ L ⊗ S2(M) such that this interior product is equal to κ−1Exp(v), and
prove that

dv = (id − du ◦ dw)−1 ◦ du and κ2 = det(id − du ◦ dw) .

Hint. This is the formal counterpart of (5.9.6) for symmetric algebras, with the
intervention of the “inversion rule” already met in (5.9.8); to prove it, try an
adaptation of (5.ex.29); there is no problem to adapt (5.ex.29)(b); then it suffices
to consider the particular case w = tλ⊗ h2 with λ ∈ L and h ∈M∗; let us set

a = (1⊗ h) �u ∈ L⊗M and µ =
(1
2
⊗ h2

)
�u ∈ L ;

first prove by induction on m that
(

1
m!
⊗ hm

)
� Exp(u) = Exp(u) ∨

∑
0≤2j≤m

µj

j!
am−2j

(m− 2j)!
;

when w = tλ⊗ h2, this leads to

Exp(w) � Exp(u) = Exp(u) ∨
∑
k≥0

Pk(t)
(tλa2)k

k!

with

Pk(t) =
∑
j≥0

(2k + 2j)! k!
(k + j)! (2k)!

(tλµ)j

j!
=

1
(1− 4tλµ)k

√
1− 4tλµ

.

(5.ex.40)* Let M be a vector space of finite even dimension over a field K of
characteristic 0, ψ a nondegenerate alternate bilinear form on M , and β = ψ/2
the canonical scalar product. As in (5.ex.36) we use L = K[[t]] and L′ = K((t)),
and we consider the algebra S̄L(L ⊗M ; t⊗ β) defined in (4.ex.22), that must be
understood as a “formal enlargement” of WL(L⊗M, t⊗ψ). Every u ∈ L⊗S2(M)
has an exponential Exp(u) in S̄L(L⊗M), that must be distinguished from exp(u),
its exponential in S̄L(L⊗M ; t⊗ β) (to which a treatment analogous to the one
in (5.ex.36) can later be applied).
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(a) Prove that an element of S̄L(L⊗M ; t⊗β) is invertible if and only if it has a
nonzero component in 1⊗K (that is the subspace tj ⊗Sk(M) corresponding
to (j, k) = (0, 0)). Consequently Exp(u) has an inverse Exp(u)−1 for the Weyl
multiplication.

(b) Prove that the inner automorphism of S̄L(L ⊗ M ; t ⊗ β) determined by
x = Exp(u) leaves L ⊗M invariant, and determines by restriction an auto-
morphism Gx of (L⊗M, 1⊗ψ); moreover, if we derive from u the infinitesimal
automorphism Fu defined as usually by Fu(a) = [u, a], we can still write

Gx =
(

id− 1
2
Fu

)−1 (
id +

1
2
Fu

)
.

(c) Prove that the mapping u �−→ Gx (with x = Exp(u)) is a bijection from
L ⊗ S2(M) onto the group Autid(L ⊗ M, 1 ⊗ ψ) of all automorphisms g
that have a component in 1 ⊗ End(M) equal to idM (in other words, all
automorphisms g that shrink to idM when t is replaced with 0).
Hint. See (5.ex.33)(c) and (5.ex.38).

(d) Let GLip∨(L⊗M, t⊗β) be the subset of all products λExp(u) with λ ∈ L×

and u ∈ L⊗S2(M). Prove that GLip∨(L⊗M, t⊗β) is a group for the Weyl
multiplication of S̄(L⊗M, t⊗ β), that the mapping x �−→ Gx is a surjective
morphism from this group onto the group Autid((L ⊗M, 1 ⊗ ψ), and that
its kernel is L×.

(e) With the help of (5.ex.39) prove that, for every u ∈ L⊗ S2(M),

Exp(u)Exp(−u) = det
(

id− 1
2
Fu

)−1

= det
(

id +
1
2
Fu

)−1

.

(f) From (b) and (e), derive a corollary analogous to (5.10.8) for the product of
Exp(u) and Exp(v) in S̄L(L⊗M ; t⊗ β).

(5.ex.41) As in (4.ex.23), M is a finite dimensional vector space over R, β is
an element of M ⊗ M , and ψ is derived from β by skew symmetrization. All
this determines the Weyl algebra WC(C ⊗M∗, i ⊗ ψ) (with i =

√
−1), and the

isomorphic algebra SC(C⊗M∗; i⊗β). Let L be the direct sum of i⊗S2(M∗) and R

identified with 1⊗S0(M∗). Prove that L is a Lie subalgebra of SC(C⊗M∗; i⊗β),
and that with each w ∈ L is associated an infinitesimal automorphism Fw of
(M∗, ψ) in this way:

∀h ∈M∗, 1⊗ Fw(h) = [ w, 1⊗ h ].

When ψ determines a nondegenerate bilinear form on M∗ (and consequently on
M too, because of the isomorphism dψ : M∗ →M), prove that we get an isomor-
phism from the quotient Lie algebra L/R onto the Lie algebra of all infinitesimal
automorphisms of (M∗, ψ). Besides, when β = ψ/2, then i ⊗ S2(M∗) is a Lie
subalgebra supplementary to R in L.
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Comment. In (4.ex.23) a �-multiplication has been defined at least for the func-
tions M → C that have a Fourier transform with compact support in M∗; this
�-multiplication does not work so easily when more general functions or distribu-
tions are involved; anyhow the ordinary multiplication of distributions is already a
difficult theory. This explains why it is so difficult to find a Lie group GLip∨(M∗; β)
involving this �-multiplication and lying over the Lie algebra L defined in (5.ex.41),
in the same way as the Lie group GLip(M, q) lies over the Lie algebra C�≤2

0 (M, q).
Here is a short report about the construction of GLip∨(M∗; β). Although it is
devoted to a real Lie group, it cannot succeed if only real things are involved; it
needs purely imaginary things in a C-extension. Another noticeable feature (im-
posed by (5.9.8)) is the intervention of the group (R×)1/4 of all λ ∈ C such that
λ4 ∈ R×; it is the direct product of the group R×2 of real positive numbers and the
group µ8(C) of eighth roots of 1. The group µ8(C) is involved in various domains
where an 8-periodicity appears (for instance in 6.8), and it is probable that all
these domains are somewhat related to one another.

First we must define the symplectic Lipschitz monoid Lip∨(M∗). By anal-
ogy with (5.9.3) we may guess that Fourier transformation must map Lip∨(M∗)
onto Lip∨(M). Because of the “inversion rule” (see (5.9.8) and (5.ex.39)), it must
contain an exceptional element ∞ that is the counterpart of the zero element of
Lip(M). The other elements of Lip∨(M∗) are all the distributions f on M that can
be written in this way, for some vector subspace N of M , for some Lebesgue mea-
sure dxN on N , for some quadratic form w : M → R and for some µ ∈ (R×)1/4 :

∫
M

ϕ(x) f(x) dx = µ

∫
N

ϕ(x) exp(iw(x)) dxN .

With this f is associated τ(f) that is obtained by replacing µ with its conjugate
µ̄, and w by −w.

It is worth explaining how much this set Lip∨(M∗) looks like Lip(M∗). Ac-
cording to (5.10.2) every nonzero element of Lip(M∗) can be written

λh1 ∧ h2 ∧ · · · ∧ hr ∧ Exp(w′)

with λ ∈ K×, r ≥ 0, h1, h2, . . . , hr ∈M∗ and w′ ∈
∧2

(M∗) ;

let H be the subspace of M∗ spanned by h1, . . . , hr, and Han its annihilator in M ;
on one side w′ determines an alternate bilinear form on M , on the other side the
above exterior product only depends on the image of w′ in

∧2(M∗/H); therefore
this element of Lip(M∗) only depends on the restriction to Han of the bilinear
form determined by w′. Exactly like the above element f of Lip∨(M∗) which only
depends on the restriction to N of the quadratic form w.

Now Lip∨(M∗) must become a monoid for some �-multiplication that must
be the ordinary multiplication (or ∨-multiplication) when β = 0. Of course the
�-product of two elements of Lip∨(M∗) is ∞ whenever a factor is ∞. When f
and g are elements of Lip∨(M∗) other than ∞, their �-product is defined by the
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equality written in (4.ex.23), when it is possible to give it a meaning; when it
is possible, f � g still belongs to Lip∨(M∗); when it is impossible, by definition
f �g =∞. Thus Lip∨(M∗) becomes a �-monoid Lip∨(M∗; β). In this monoid there
is an anti-automorphism τβ (such that τβ(f � g) = τβ(g) � τβ(f)) which coincides
with τ if β = ψ/2. Let GLip∨(M ; β) be the subset of all f ∈ Lip∨(M∗) such that
f �τβ(f) �=∞; this implies that f �τβ(f) is a constant positive function on M ; thus
GLip∨(M∗; β) is a �-group, and we get a group morphism GLip∨(M∗; β) → R×2

if we map every f to the constant value of f � τβ(f). When β = 0, the group
GLip∨(M∗) is the subset of all f ∈ Lip∨(M∗) that are ordinary functions on M ,
in other words such that N = M (if f and N are related as above); this group has
eight connected components (because of the factor µ ∈ (R×)1/4).

Then it appears that f � h � τβ(f) is a linear form on M for all h ∈ M∗

and all f ∈ GLip∨(M∗; β). This leads to a group morphism GLip∨(M∗; β) →
Aut(M∗; ψ). When ψ determines a nondegenerate bilinear form on M∗, the kernel
of this morphism is (R×)1/4. In all cases its image is the subgroup of all elements
of Aut(M∗, ψ) leaving invariant all elements of Ker(dψ).

Now it is important to know the number of connected components of
GLip∨(M∗; β) when ψ �= 0. The set Lip∨(M∗) \ {∞} has already two connected
components; the component which the above f belongs to depends on the sign
of the real number µ4(−1)dim(N). Besides, there is a path between 1 and −1 in-
side GLip∨(M∗; β). Consequently the number of connected components is 2 or 4,
and it requires more work to prove that it is exactly 4. Let GLip∨

con(M ; β) be the
neutral connected component; the other connected components are obtained by
multiplying this one by (1+i)/

√
2 or i or (−1+i)/

√
2 ; consequently all connected

components have the same image in Aut(M∗, ψ).
When ψ is nondegenerate, we get an exact sequence

1 −→ R× −→ GLip∨
con(M ; β) −→ Aut(M∗, ψ) −→ 1.

Thus the group of all f ∈ GLip∨
con(M ; β) such that fτβ(f) = 1, is a two-sheet

covering group over the “symplectic group” Aut(M∗, ψ), in the same way as the
spinorial group (see (5.ex.24)) is a two-sheet covering group over the orthogonal
group. It is worth recalling that the complex symplectic group Aut(C⊗M∗, 1⊗ψ)
is simply connected and does not admit nontrivial coverings.

Here it is impossible to define a “symplectic Clifford group” GC�∨(M, ψ)
that should be the group of all even �-invertible f such that f � h � f−1 ∈ M∗

for all h ∈ M∗, because the �-product of two distributions (like the ordinary
product) in general does not exist. The preliminary definition of a Lipschitz monoid
Lip∨(M ; β) is an indispensable step before the construction of the wanted group.
This fact has been a strong encouragement to begin Chapter 5 with Lipschitz
monoids rather than with traditional Clifford groups.



Chapter 6

Further Algebraic
Developments

The main purpose of this chapter is to give more information about the graded
Azumaya algebras which have been presented in Chapter 3. Since Clifford algebras
of quadratic spaces are graded Azumaya algebras (see (3.7.5)), it is necessary
to know an honourable part of the classical theory about these algebras. This
theory requires preliminary developments through other subjects: graded modules
over noncommutative graded algebras (in 6.2), graded semi-simple modules (in
6.3), graded Morita theory (in 6.4), graded separable algebras (in 6.5) and graded
central simple algebras (in 6.6). A great part of the information expounded here
comes from works by H. Bass and Ch. Small, but several modifications have been
achieved, sometimes suggested by N. Jacobson’s books on algebra.

6.1 Modules over a noncommutative algebra

As in the previous chapters, K is a commutative ring with unit 1. Let A be a
noncommutative algebra over K, that is an object in the category Alg(K). Let
us make precise the sense of the word “noncommutative”: A may be commutative
or not commutative. Since A is assumed to contain a unit element 1A, there is a
canonical morphism K → A; it is injective if and only if A is a faithful K-module;
in this case 1A is identified with 1 and K becomes a subalgebra of A.

Let us remember that a K-module M is a left module (resp. right module)
over A if there is a K-bilinear multiplication A ×M → M (resp. M × A → M)
such that a(bx) = (ab)x (resp. (xa)b = x(ab)) for all a and b in A, and all x in
M . When it is not otherwise specified, every module is a left module; indeed every
right module over A shall be treated as a left module over the opposite algebra
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Ao (already defined in 3.1) in which the equality aobo = (ba)o holds. In a right
module M over A, the notation aox means xa for all a ∈ A and all x ∈M .

When M is a left module over A and a right module over B, we say that
M is a bimodule over A and B if (ax)b = a(xb) for all a ∈ A, all b ∈ B and all
x ∈M . Because of the universal property of the algebra A⊗Bo (see (1.3.3)), it is
equivalent to say that M is a left module over A⊗Bo; the notation (a⊗bo)x means
axb. When A = B, a module over A⊗Ao is merely called a bimodule over A.

When M and N are modules over A, then HomA(M, N) is the subset of all
f ∈ Hom(M, N) intertwining the operations in M and N of all a ∈ A. When M
is a module over A ⊗ Bo and N a module over A ⊗ Co, then HomA(M, N) is a
module over B⊗Co; indeed, if f , b, c belong respectively to HomA(M, N), B and
C, then bfc (synonymous with (b⊗ co)f) is the A-linear mapping M → N defined
in this way: (bfc)(x) = (f(xb)))c. An element of the center Z(A) may operate on
the right side as well as on the left side, in such a way that the notations ax and
xa are synonymous for each a ∈ Z(A); therefore the previous considerations are
relevant if we replace B or C with Z(A), and thus we can turn HomA(M, N) into
a module over Z(A) in two different ways which anyhow give the same structure
of module over Z(A).

The functor HomA(. . . , . . . ) is left exact relative to both variables; this
leads to the definition of projective modules P over A, for which the functor
HomA(P, . . . ) is exact. The statements in 1.7 about projectiveness are still true.

When M is a right module over A and N a left module over A, the tensor
product M ⊗A N is the quotient of M ⊗N (that is M ⊗K N) by the submodule
generated by all elements xa⊗ y− x⊗ ay , so that the equality xa⊗ y = x⊗ ay
holds in M ⊗A N for all a ∈ A, all x ∈ M and all y ∈ N . When M is a module
over B⊗Ao and N a module over A⊗Co, then M ⊗A N is a module over B⊗Co;
indeed b(x⊗ y)c (synonymous with (b⊗ co)(x ⊗ y)) is by definition (bx)⊗ (yc).
This allows us (in two different but equivalent ways) to give M ⊗A N a structure
of module over the center Z(A).

The functor · · · ⊗A · · · is still right exact. There is still an associativity
property for such tensor products; if M , N , P are respectively modules over Ao,
A⊗Bo and B, there are canonical isomorphisms

(M ⊗A N)⊗B P ←→M ⊗A (N ⊗B P ).

The commutativity property affords canonical isomorphisms between M⊗AN and
N ⊗Ao M .

A module G over A is called a generator of modules over A (or shortly a
generator) if for every module M over A there exists a set J and a surjective A-
linear mapping from

⊕
j∈J G (a direct sum of modules all isomorphic to G) onto

M . Obviously A (considered as a module over itself) is a generator, since every
subset J of M generating it as a module over A allows us to construct a surjective
A-linear mapping from

⊕
j∈J A onto M .



6.1. Modules over a noncommutative algebra 325

The following lemma shows that G is a generator if and only if the functor
HomA(G, . . . ) is faithful in the following sense: for every pair (M, N) of modules
over A, the following mapping is injective:

HomA(M, N) −→ HomK(HomA(G, M), HomA(G, N)),
f �−→ HomA(G, f) = (u �−→ f ◦ u).

(6.1.1) Lemma. Let G and M be modules over A. The following four assertions
are equivalent:

(a) there exists a set J and a surjective A-linear mapping from
⊕

j∈J G onto M ;
(b) there exists a K-module Q and a surjective A-linear mapping from G ⊗ Q

onto M ;
(c) the following canonical mapping is surjective:

G⊗K HomA(G, M) −→M , g ⊗ u �−→ u(g) ;

(d) the vanishing of any A-linear mapping f : M → N (with any target N) is
equivalent to the vanishing of the K-linear mapping

HomA(G, f) : HomA(G, M) → HomA(G, N).

Proof. The assertion (a) means the existence of a surjective mapping G⊗Q′ →M
involving a free K-module Q′ with a basis indexed by J ; thus the equivalence
(a)⇔(b) follows from the following fact: for every K-module Q there exists a
surjective morphism Q′ → Q with Q′ a free K-module.

The equivalence (b)⇔(c) follows from the following fact: for every v ∈
HomA(G ⊗ Q, M) and every q ∈ Q, the mapping g �−→ v(g ⊗ q) belongs to
HomA(G, M), and consequently the images of all mappings like v are contained
in the image of the canonical mapping obtained with Q = HomA(G, M).

Let us prove (b)⇒(d). Let v : G⊗Q →M be a surjective A-linear mapping,
and f : M → N an A-linear mapping such that HomA(G, f) vanishes. This implies
the vanishing of all morphisms G→M → N involving f ; this implies the vanishing
of f ◦v : G⊗Q→ M → N , because for every q ∈ Q, the mapping g �−→ f(v(g⊗q))
vanishes. Since v is surjective, the vanishing of f ◦ v implies f = 0.

Let us prove (d)⇒(c). We set Q = HomA(G, M) and consider the image
N of the canonical mapping G ⊗ Q → M . If f is the quotient mapping M →
M/N , it is clear that HomA(G, f) is the null mapping from HomA(G, M) into
HomA(G, M/N); now (d) implies f = 0 and M = N . �

The following lemma is especially useful when M = A.

(6.1.2) Lemma. If the four assertions in (6.1.1) are true, and if M is a generator
(for instance if M = A), then G too is a generator.
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Proof. Let M ′ be any A-module; from two surjective A-linear mappings G⊗Q →
M and M ⊗Q′ →M ′ we derive the following surjective A-linear mapping:

G⊗ (Q⊗Q′)←→ (G⊗Q)⊗Q′ −→M ⊗Q′ −→M ′ . �

(6.1.3) Remark. When M is a finitely generated A-module, the set J in the
assertion (a) of (6.1.1) can be required to be finite, and the module Q in (b)
can be required to be finitely generated. Indeed in case of a surjective mapping⊕

j∈J G → M , each element x ∈ M is the image of some (gj)j∈J in which the
nonzero components gj only involve a finite subset of J .

(6.1.4) Example. Let P be a finitely generated projective K-module, P ∗ =
Hom(P, K) and B = End(P ). Thus P is a module over B in a natural way, P ∗

is a module over Bo, and the canonical mapping P ⊗ P ∗ → B is an isomorphism
of bimodules over B, since all localisations show that it is bijective. Here P is a
generator of modules over B, whereas P ∗ is a generator of modules over Bo.

For a module over A, the property of being a generator may be understood
as being somewhat stronger than the property of being faithful. Indeed every
generator is obviously a faithful module over A, and in some cases, both properties
are equivalent, as stated in the following proposition.

(6.1.5) Proposition. When A is a commutative K-algebra, a finitely generated pro-
jective module over A is a generator if and only if it is faithful.

Proof. We already know that every generator is faithful. Conversely let P be
a finitely generated and faithful projective module over A. By localisations at
the prime ideals of A we can prove the surjectiveness of the canonical mapping
P ⊗A HomA(P, A) → A. It suffices to remember that P ⊗A HomA(P, A) is a
quotient of P ⊗HomA(P, A), and to apply (6.1.2). �

When M is a projective module over A, any surjective A-linear mapping⊕
j∈J G → M makes M become a direct summand of

⊕
j∈J G. When the gener-

ator G itself is projective, then the projective modules over A are all the modules
that are isomorphic to a direct summand of

⊕
j∈J G for some set J . Of course A

itself is a projective generator.
As preparation to the Morita theory later expounded in 6.4, we add the

following results.

(6.1.6) Proposition. Let P be a module over A, and let us set Q = HomA(P, A)
and B = EndA(P ); thus P is a left module over A⊗B, and Q a right module over
it. Let us consider these two canonical mappings:

P ⊗Q −→ A , z ⊗ h �−→ h(z) ,

Q⊗ P −→ B , h⊗ z �−→ (x �−→ h(x) z).
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The first mapping is (A⊗Ao)-linear, and factorizes through P ⊗Bo Q, whereas the
second mapping is (Bo ⊗ B)-linear and factorizes through Q⊗A P . Besides, P is
a generator of A-modules if and only if the first mapping is surjective, whereas P
is a a finitely generated projective module over A if and only if the second one is
surjective.

Proof. Let us recall that Q is a right module over A⊗B in this way: (h(a⊗b))(x) =
h(b(x))a for all x ∈ P . It is clear that the images of (ha) ⊗ z and h ⊗ (az) in
B are equal, whence the factorization of the second canonical mapping through
Q⊗A P . The factorization of the first one is obtained in the same way, provided
that we remember that zbo means b(z), and boh means h ◦ b ; thus (zbo) ⊗ h and
z⊗ (boh) have the same image in A. The first mapping is (A⊗Ao)-linear because
the image of (az)⊗ (ha′) in A is ah(z)a′. Consequently the image of this mapping
is an ideal of A. The second mapping is (Bo ⊗ B)-linear because the image of
(h ◦ b) ⊗ b′(z) in B is the endomorphism x �−→ b′(h(b(x)) z). Consequently the
image of this mapping is an ideal of B.

From (6.1.2) and (6.1.1) we know that P is a generator if and only if the
first mapping is surjective. Now P is a finitely generated projective module over
A if and only if it is isomorphic to a direct summand of An for some integer n.
This means that idP can be factorized as P → An → P . The mapping P → An

is defined by n elements h1,. . . , hn of Q, whereas the mapping An → P is defined
by n elements z1,. . . ,zn of P . The composition of these two mappings is idP if
and only if the image of

∑n
i=0 zi ⊗ hi in B is idP . This means that the second

canonical mapping is surjective, since its image is an ideal of B. �

6.2 Graded modules over a graded algebra

Here all gradings are parity gradings over the group Z/2Z. As in the previous
chapters, parities are indicated by lower indices 0 or 1. In 3.2 it has been explained
that every graded algebra A gives rise to a family (A, Ao, Ato, At) of four graded
algebras.

Let M be a graded left module over A; this means that M is an A-module,
that A is graded as a K-module (M = M0 ⊕ M1) and that ∂(ax) = ∂a + ∂x
for all homogeneous a ∈ A and x ∈ M . When it is not otherwise specified, all
modules are left modules; graded right modules over A are treated as graded left
modules either over Ao as in 6.1, or over Ato when the twisting rule (4.2.1) must
be respected; by definition atox = (−1)∂a∂xxa .

Every graded module M over A gives rise to a family of eight graded modules:

(M, M c, M s, M cs, M t, M ct, M st, M cst) ;

as modules over K, they are all isomorphic to M by means of canonical iso-
morphisms x �−→ xc, x �−→ xs, and so forth. . . ; the first four objects are
modules over A, and the last four are modules over At. Let us begin with the
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conjugate module M c, which exists even when M is not graded; it comes from
the grade automorphism a �−→ (−1)∂aa in the algebra A; by definition axc =
(−1)∂a(ax)c. The module M s only differs from M by a shifted grading: (M s)0 =
(M1)s and (M s)1 = (M0)s; in other words, ∂xs = 1 − ∂x ; this notwithstand-
ing, axs = (ax)s. The twisted module M t involves the twisted algebra At in this
way: atxt = (−1)∂a∂x(ax)t. The other four modules result from various com-
binations of these three operations; for instance M st means (M s)t, and thus
atxst = (−1)∂a(1−∂x)(ax)st. Of course there is a group of order 8 acting on the
above family of eight modules, but this group is not commutative; it is generated
by two elements s and t of order 2 such that st has order 4; the center of this group
is generated by the element c = stst = tsts of order 2. Consequently M ts = M cst.

When M is a graded module over A, the mapping x �−→ (−1)∂xxc is an
isomorphism from M onto M c. Nonetheless when M is a nongraded module over
A, it may happen that M and M c are not isomorphic modules: see (6.ex.1).

(6.2.1) Remark. When A is a Clifford algebra C�(M, q), it is stated in (3.2.2) that
the mapping a �−→ at (with a ∈ M) extends to an isomorphism from C�(M,−q)
onto C�(M, q)t. Here we had rather identify C�(M,−q) with C�(M, q)t by means
of this canonical isomorphism; this identification has two advantages. First the
mapping x �−→ xt induces an algebra isomorphism C�0(M, q) → C�0(M, q)t and
demonstrates that C�0(M, q) and C�0(M,−q) are isomorphic algebras. Secondly to
every graded module S over C�(M, q) there corresponds a graded module St over
C�(M,−q), and conversely. In general (and in particular in the following example
suggested by quantum mechanics) there is no such bijective correspondence (up
to isomorphy) between modules over C�(M, q) and modules over C�(M,−q) when
gradings are not imposed.

(6.2.2) Example. Let (M, q) be a quadratic space of dimension 4 and signature
−2 over the field R of real numbers; when an “orthonormal” basis is chosen, the
quadratic form q is often written t2 − x2 − y2 − z2 if t is the “time coordinate”,
and x, y, z the “space coordinates”. It is possible to prove that C�(M, q) (as a
nongraded algebra) is isomorphic to the matrix algebra M(2, H) with coefficients
in the division ring H of real quaternions (see (3.ex.29)); consequently all irre-
ducible modules S over C�(M, q) are isomorphic to each other (see (6.6.3)), they
have dimension 8 over R, and the centralizer of C�(M, q) in End(S) is isomorphic
to H. In this centralizer we can choose an element i such that i2 = −idS . If we
set C = R⊕ Ri, then S becomes a module over C⊗C�(M, q). It is often believed
that this structure of module over this C-algebra is necessary for S to become
a genuine “spinor space”, because the “Dirac equation” absolutely requires the
presence of an endomorphism of S like this i. Nonetheless this opinion may be
seriously questioned.

Indeed, if ω is the product of the elements of an “orthonormal” basis of M ,
it is easy to verify that ω2 = −1 and ωa = −aω for all a ∈ M (in accordance
with (4.8.15) and (3.5.13)). Let σ be the endomorphism of S defined by σ(s) =
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−i(ωs) = −ω(is). It is easy to verify that σ2 = idS and σ(as) = −aσ(s) for
all a ∈ M ; consequently S becomes a graded module over C�(M, q) if we set
S0 = Ker(σ− id) and S1 = Ker(σ + id). The elements of S0 or S1 are called “Weyl
spinors” in the specialized literature. Conversely if S is a graded C�(M, q)-module,
we set σ(s) = (−1)∂ss, and i(s) = σ(ωs) = ωσ(s); this implies (after some easy
calculations) that i2 = −idS and that i belongs to the centralizer of C�(M, q) in
End(S). Thus we can claim that a complex spinor space is the same thing as a real
graded spinor space. Yet it may be preferable to explain the intrusion of imaginary
numbers by means of an algebraic structure defined on R.

It is usually admitted as evident that the opposite quadratic form −t2 +
x2 + y2 + z2 leads to an equivalent physical theory. This is often explained by
means of an isomorphism C ⊗ C�(M, q) → C ⊗ C�(M,−q) mapping every 1⊗ a
(with a ∈ M) to i⊗ a. Nevertheless if S is treated as a real graded module, there
is a better explanation that uses the twisted module St which is a module over
C�(M, q)t = C�(M,−q), and that avoids the imaginary vectors i ⊗ a. Here there
is no natural correspondence between modules over C�(M, q) and modules over
C�(M,−q) because C�(M,−q) is isomorphic to the matrix algebra M(4, R), and
its irreducible modules have dimension 4 over R. As a module over C�(M, q)t, St

is not irreducible, because it contains plenty of submodules of dimension 4 over R;
but St is irreducible as a graded module.

This example also shows how natural it is to associate with every graded
Clifford module S two modules St and Ss. Indeed St appears when we replace q
with −q, and Ss appears in this example when we replace i with −i, or ω with −ω.
As explained above, the operations denoted by the exponents s and t generate a
group of order 8.

Remember that the grading of A is said to be regular if the multiplication
mapping A1 ⊗ A1 → A0 is surjective (see Definitions (3.5.2)). This property is
equivalent to the existence of a sequence of odd elements (a1, b1, a2, b2, . . . , am, bm)
of arbitrary even length 2m ≥ 2 such that

∑m
i=1 aibi = 1A . Such a sequence is

called a complete system of odd elements.

(6.2.3) Extension lemma. Let M and N be two graded modules over a regularly
graded algebra A. Every A0-linear mapping f0 : M0 → N0 extends in a unique
way to a graded A-linear mapping f : M → N . The extension f is injective (resp.
surjective) if and only if f0 is injective (resp. surjective).

Proof. Let (a1, b1, . . . , am, bm) be a complete system of odd elements. If the ex-
tension f exists, for every x ∈ M1 we can write

f(x) =
m∑

i=1

aibi f(x) =
m∑

i=1

ai f0(bix) ;

this proves the unicity of the extension f . Now let us set f(x) =
∑

i aif0(bix)
for all odd x ∈ M1; thus we get a K-linear mapping f : M → N , and we must
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prove that it is A-linear. In other words we must prove that cf(y) = f(cy) for
all homogeneous c ∈ A and all homogeneous y ∈ M . This is evident when y is
even; the verification is easy when c and y are odd; the only difficulty appears
when c is even and y is odd. In this case the complete system of odd elements
(a1, b1, . . . , am, bm) must be used twice:

f(cy) =
∑

i

aif0(bicy) =
∑

i

∑
j

ai f0(bicajbjx)

=
∑

i

∑
j

aibicaj f0(bjx) =
∑

j

cajf0(bjx) = cf(y).

It is clear that f0 is injective (resp. surjective) whenever f is injective (resp.
surjective). Conversely if f0 is injective, every equality f(x) = 0 with an odd
x implies f0(bix) = bif(x) = 0 for i = 1, 2, . . . , m, whence bix = 0 and finally
x =

∑
i aibix = 0. If f0 is surjective, for every odd y in N and for i = 1, 2, . . . , m,

there exists xi ∈ M0 such that biy = f0(xi), whence y = f(
∑

i aixi). �

Whatever the module M0 over A0 may be, there always exists a graded
module M over A that has this M0 as its even component; indeed the tensor
product A ⊗A0 M0 inherits from A a structure of graded module over A, and its
even component A0 ⊗A0 M0 is canonically isomorphic to M0 as a module over
A0. When the grading of A is regular, the above extension lemma says that two
graded modules over A are isomorphic if and only if their even components are
isomorphic as modules over A0; consequently there is, up to isomorphy, a bijective
correspondence between the modules over A0 and the graded modules over A.
This agrees with the bijective correspondence between the graded modules over A
and At (see above), because the even subalgebras A0 and At

0 are isomorphic. Here
is another consequence of (6.2.3).

(6.2.4) Corollary. When M is a graded module over a regularly graded algebra A,
the mapping

A⊗A0 M0 −→M , a⊗ x �−→ ax ,

is an isomorphism of graded modules over A.

(6.2.5) Remark. Many graded algebras A satisfy this much stronger regularity
property: A is a faithful K-module and A1 contains a submodule X invertible
inside A according to the definition given just after (5.1.12). When such a sub-
module X exists, the evident K-linear mapping X⊗A0 → A1 is an isomorphism of
K-modules; consequently, when A is a finitely generated module, the grading of A
is balanced. If M is a graded module over A, the evident mapping X ⊗M0 →M1

is also an isomorphism of K-modules, and consequently, when M is finitely gen-
erated, its grading too is balanced.
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(6.2.6) Examples.

(a) When P is a graded finitely generated and faithful projective K-module,
the grading of A = End(P ) has already been considered in (3.5.8). It is
regular if and only if P0 and P1 are both faithful. It is balanced if and only
if the grading of P is balanced. When there exists a K-linear isomorphism
f : P0 → P1, we can derive from f an odd invertible element g ∈ A1 :
g(z0 +z1) = f−1(z1)+f(z0) ; obviously g generates a free K-submodule X of
A1 which is invertible inside A, and the grading of A is regular in the sense
of (6.2.5).

(b) Let us now consider a Clifford algebra C�(M, q). When the ideal of K gener-
ated by the image of q is K itself, the grading of C�(M, q) is regular, because
there are elements x1,. . . ,xm of M , and elements λ1, . . . , λm of K such that
(x1, λ1x1, . . . , xm, λmxm) is a complete system of odd elements of C�(M, q).
If (M, q) is a quadratic space, and if the subset GO1(M, q) of the orthogonal
group is not empty (see 5.6), then C�1(M, q) contains submodules invertible
inside C�(M, q), and the grading satisfies the stronger regularity property
presented in (6.2.5).

(c) Of course the grading of A = A0 ⊕ A1 is not regular when A1A1 = 0 ; this
means that A0 is any trivially graded algebra, and A1 any bimodule over A0.
In this case, no graded A-linear mapping

⊕
j∈J A → As can be surjective,

because its image is contained in (A1)s = (As)0.
(d) If the algebra A =

⊕
n∈N An is graded over N, as an algebra graded over

Z/2Z it is never regularly graded; indeed A1A1 is contained in
⊕

n≥2 An.

It must be emphasized that there are three categories of graded modules
over A. Whereas the objects are always the graded left modules over A, there
are three choices of morphisms. When no precision is given, the morphisms are
only the graded A-linear mappings. But we may also accept all the A-linear map-
pings as morphisms; in this case, the module HomA(M, N) of all A-linear mor-
phisms from M to N is a graded K-module; its even component HomA,0(M, N)
is the module of all graded A-linear mappings M → N , which formerly were
the only accepted morphisms; besides, there is an evident bijection from the odd
component HomA,1(M, N) onto HomA,0(M, Ns). Nonetheless when the twisting
rule (4.2.1) must be respected, we must used the graded K-module Homg

A(M, N)
of A-g-linear mappings defined in this way: Homg

A,0(M, N) is the same thing as
HomA,0(M, N), but Homg

A,1(M, N) is the set of all K-linear mappings f : M → N

such that f(Mi) ⊂ N1−i (for i = 0, 1) and f(ax) = (−1)∂aaf(x) (for all homoge-
neous a ∈ A and x ∈ M); there is an evident bijection from Homg

A,1(M, N) onto
HomA,0(M, N cs).

The proof of the following lemma is straightforward.

(6.2.7) Lemma. Let M and N be graded modules over A. With every f ∈
HomK(M, N) we associate f t ∈ Hom(M t, N t) defined by f t(xt) = f(x)t. This
mapping f �−→ f t induces a bijection from Homg

A(M, N) onto HomAt(M t, N t).
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Let us suppose that M is a graded bimodule over A and B. When the twisting
rule (4.2.1) is not relevant for the objects under consideration, we treat M as a
graded module over A⊗Bo and we get graded algebra morphisms A→ EndBo(M)
and B → EndA(M)o. But when the twisting rule must be respected, we treat M as
a graded module over A ⊗̂Bto (twisted tensor-product) and we get graded algebra
morphisms A → Endg

Bto(M) and B → Endg
A(M)to.

With every graded module P over A are now associated these three covariant
functors with variables in the category of graded modules over A : HomA,0(P, . . . ),
Homg

A(P, . . . ) and HomA(P, . . . ); besides, there is also the functor HomA(P, . . . )
with variables in the category of nongraded modules over A. These four functors
are all left exact and lead to four concepts of projectiveness; fortunately these four
concepts coincide, and thus we can say that a module is projective over A without
more precision.

(6.2.8) Proposition. Let P be a graded module over a graded algebra A. The fol-
lowing four assertions are equivalent:

(a) the functor HomA,0(P, . . . ) is exact;
(b) the functor Homg

A(P, . . . ) is exact;
(c) the functor HomA(P, . . . ) with a graded variable module is exact;
(d) the functor HomA(P, . . . ) with a nongraded variable module is exact.

When A is regularly graded, these four assertions are also equivalent to this one:

(e) the functor HomA0(P0, . . . ) is exact.

Proof in two steps. First step. We prove that (a)⇒(d). In all cases P is projective
if for every surjective mapping v : M → N and every mapping g : P → N there
exists f : P → M such that g = vf . But the precise meaning of the projectiveness
of P depends on the category which M , N , v, g and f must belong to. Here M and
N are nongraded modules over A, and the surjective v is merely A-linear. From M
we derive a graded module M ⊕M over K, with even component M ⊕ 0 and odd
component 0⊕M , which becomes a graded A-module if we set a(x, y) = (ax, ay)
whenever a is an even element of A, but a(x, y) = (ay, ax) whenever a is odd. We
get an A-linear mapping s : M⊕M → M by setting s(x, y) = x+y. In the same way
we derive from N a graded module N ⊕N over A, and a mapping t : N⊕N → N .
From v we derive a graded surjective A-linear mapping v′ : M ⊕M → N ⊕N in
this way: v′(x, y) = (v(x), v(y)). Obviously vs = tv′. From g : P → N we derive a
graded A-linear mapping g′ : P → N ⊕ N in this way: g′(z) is equal to (g(z), 0)
or (0, g(z)) according to the parity of z in P . Obviously g = tg′. If the assertion
(a) is true, there exists f ′ : P → M ⊕M such that g′ = v′f ′, and it suffices to set
f = sf ′ to get the desired conclusion:

vf = vsf ′ = tv′f ′ = tg′ = g.

Second step. Now everything is more or less evident. Every one of the assertions
(b), (c), (d) implies (a). Indeed when graded mappings v and g are given as above,



6.2. Graded modules over a graded algebra 333

every one of these assertions ensures the existence of some f such that g = vf ,
but this f may be not graded; let f0 and f1 be the homogeneous components of
f ; since v and g are graded, vf0 = g and vf1 = 0, and thus the case is settled.
Conversely from the first step we know that (a)⇒(d), and since the implication
(d)⇒(c) is trivial, we have also got (a)⇒(c). When P is projective in the sense
of (a), then P t is also projective in the sense of (a) (after replacing A with At);
consequently P t is projective in the sense of (c), and because of Lemma (6.2.7)
this implies that A is projective in the sense of (b). Now the first four assertions
have become equivalent, and the equivalence (a)⇔(e) is a direct consequence of
the extension lemma (6.2.3). �

The same reasons which have just led us to contemplate three graded concepts
of “projective module” besides the nongraded one, now lead us to contemplate
three graded concepts of “generator” besides the nongraded one. Indeed there are
three graded versions of Lemmas (6.1.1) and (6.1.2), which involve respectively the
functors HomA,0(G, . . . ), Homg

A(G, . . . ) and HomA(G, . . . ); in each graded version
of (6.1.1), Q is merely a trivially graded K-module. Each concept of “graded
generator” means that the corresponding functor is faithful. From the example
(c) in (6.2.6) we already know that A is not always a generator with respect to
HomA,0(A, . . . ); this explains the presence of G⊕Gs in the next proposition.

(6.2.9) Proposition. Let G be a graded module over a graded algebra A. The fol-
lowing four assertions are equivalent:

(a) the functor HomA,0(G⊕Gs, . . . ) is faithful;
(b) the functor Homg

A(G, . . . ) is faithful;
(c) the functor HomA(G, . . . ) with a graded variable module is faithful;
(d) the functor HomA(G, . . . ) with a nongraded variable module is faithful.

When A is regularly graded, these four assertions are also equivalent to these:

(e) the functor HomA,0(G, . . . ) is faithful;
(f) the functor HomA0(G0, . . . ) is faithful.

When these assertions are true for G, we still say that G is a generator of modules
over A without more precision.

Proof. Obviously A is a generator with respect to both functors HomA(. . . , . . . )
(with graded or nongraded variables); this proves (c)⇔(d), because, as stated in
(6.1.2) or (6.1.6), (c) and (d) are both equivalent to the surjectiveness of G ⊗
HomA(G, A) → A. Now there are evident bijections

HomA(G, M)←→ HomA,0(G⊕Gs, M) and
Homg

A(G, M)←→ HomA,0(G⊕Gcs, M) ;

since Gs and Gcs are isomorphic modules (by gs �−→ (−1)∂ggcs), the assertions
(a), (b), (c) are equivalent.
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It is clear that (e)⇒(a) without any additional hypothesis. Conversely, if
A contains a complete system of odd elements (a1, b1, . . . , am, bm), there is a
graded surjective A-linear mapping from

⊕m
i=0 G onto G ⊕ Gs, which maps ev-

ery (x0, x1, . . . , xm) to (x0 ,
∑m

i=1(aixi)s) ; it is surjective because every (x, ys) ∈
G⊕Gs is the image of (x, b1y, . . . , bmy). Because of (6.1.2), G is already a gener-
ator with respect to HomA,0(. . . , . . . ) when G⊕Gs is a generator; in other words
(a)⇒(e). At last the equivalence of (e) and (f) is a consequence of the extension
lemma (6.2.3). �

It is clear that A ⊕ As is always a projective generator with respect to the
functor HomA,0(. . . , . . . ); consequently a graded module over A is projective if and
only if it is isomorphic to a graded direct summand of some

⊕
j∈J (A⊕As). When

A is regularly graded, direct sums
⊕

j∈J A are already sufficient.
Besides, there are graded versions of (6.1.6) in which the words “projective”

and “generator” refer no longer to the functor HomA(. . . , . . . ), but to

Homg
A(. . . , . . . ), or even to HomA,0(. . . , . . . )

if A is regularly graded.

6.3 Graded semi-simple modules

Semi-simplicity is well treated in the literature, and the graded versions of the
usual theorems do not raise serious difficulties; therefore this section only contains
what here is strictly necessary.

Let M be a graded module over a graded algebra A. A graded submodule of
M is a submodule N such that N = (N ∩M0) ⊕ (N ∩M1). We say that M is a
graded irreducible module (or a graded simple module) over A if it contains exactly
two graded submodules, namely 0 and M (whence M �= 0). Every module that
is irreducible and graded, is a graded irreducible module; but conversely a graded
irreducible module is not necessarily irreducible, since it may contain nontrivial
submodules that are not graded; at the end of (6.2.2) there is a graded irreducible
module St that is not irreducible.

The module M is said to be semi-simple if it is generated by all the graded
irreducible submodules it contains. Consequently every sum of semi-simple sub-
modules is semi-simple. The module 0 is semi-simple. The next proposition (when
N is replaced by 0) proves that a graded semi-simple module is the direct sum of
a number of the graded irreducible submodules it contains.

(6.3.1) Proposition. If N is a graded submodule of a semi-simple module M , there
is a subset J of the set S of all graded irreducible submodules of M such that M
is the direct sum of N and all elements of J .

Proof. We suppose that N �= M since J = ∅ if N = M . If M ′ is any graded
submodule of M , and P any graded irreducible submodule of M , then M ′∩P is a
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graded submodule of P , therefore either 0 or P ; consequently if the sum M ′ +P is
not direct, then P ⊂ M ′. Let E be the set of all subsets J ⊂ S such that the sum
of N and all elements of J is direct. Since every totally ordered subset of E has
an upper bound in E, from Zorn’s Lemma we deduce the existence of a maximal
element J in E. Let M ′ be the direct sum of N and all elements of J . If P is a
graded irreducible submodule of M , the sum M ′ + P cannot be direct since J is
maximal; therefore M ′ contains all graded irreducible submodules of M , whence
M ′ = M . �

The next proposition states a characteristic property of graded semi-simple
modules which is often used as an alternative definition of graded semi-simplicity.
Since this property is obviously inherited by all graded submodules, it implies
(after the proof of (6.3.2)) that every graded submodule of a graded semi-simple
module is still graded semi-simple.

(6.3.2) Proposition. A graded module M is semi-simple if and only if every graded
submodule N admits a graded supplementary submodule.

Proof. From (6.3.1) we deduce that this condition is necessary. Conversely let
us suppose that every graded submodule of M admits a graded supplementary
submodule; we can still suppose M �= 0. Every graded submodule M ′ of M inherits
this property; indeed if N ⊂ M ′ and M = N ⊕ P , then M ′ = N ⊕ (M ′ ∩ P ).
Consequently, if M ′ �= 0 and if M ′ is not graded irreducible, it is a direct sum
of two graded nonzero submodules. Let us first prove that M contains graded
irreducible submodules. Indeed if x is a nonzero element of M , by Zorn’s Lemma
there is a maximal element N in the set of all graded submodules not containing x,
and if P is a graded submodule supplementary to N in M , it is clear that P �= 0.
If P were not graded irreducible, it should be a direct sum P1 ⊕ P2 of nonzero
graded submodules, and x could not belong both to N ⊕ P1 and N ⊕ P2 since
x is not in N ; this would contradict the maximality of N ; therefore P is graded
irreducible. Now let M ′ be the sum of all graded irreducible submodules of M , and
M ′′ a graded supplementary submodule; since M ′′ inherits the property of M , it
should contain a graded irreducible submodule if it were not reduced to 0; but this
would contradict the definition of M ′; consequently M ′′ = 0 and M ′ = M . �

Here is the graded version of Jacobson’s density theorem for situations re-
quiring the respect of the twisting rule (4.2.1).

(6.3.3) Theorem. Let M be a graded semi-simple module over a graded algebra
C, and B = Endg

C(M). Thus Endg
B(M) contains the image CM of the natural

algebra morphism C → End(M). The subalgebra CM is “dense” in Endg
B(M) in

the following sense: if (x1, x2, . . . , xm) is any finite sequence of elements of M0, and
(xm+1, . . . , xm+n) any finite sequence of elements of M1, for every f ∈ Endg

B(M)
there exists c ∈ C such that f(xi) = cxi for i = 1, 2, . . . , m + n.
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Proof. Let ξ be this even element of N = Mm ⊕ (M s)n :

ξ = (x1, x2, . . . , xm, xs
m+1, . . . , x

s
m+n) ,

and let g be the element of End(N) defined in this way, for all y1, . . . , ym+n ∈M :

g(y1, . . . , ym, ys
m+1, . . . , y

s
m+n) = (f(y1), . . . , f(ym), f(ym+1)s, . . . , f(ym+n)s).

We must prove that g(ξ) belongs to the submodule Cξ generated by ξ over C.
Since M is graded semi-simple, N is also graded semi-simple, and there is a graded
submodule over C supplementary to Cξ. Consequently in EndC,0(N) there is a
projector p from N onto Cξ. If we manage to prove that g commutes with p (in
fact, with every element of EndC,0(N)), we can reach the conclusion within one
line:

g(ξ) = g(p(ξ)) = p(g(ξ)) ∈ Cξ.

Thus it only remains to prove that gp = pg. For all pairs (i, j) of indices between
1 and m + n there are endomorphisms pi,j ∈ EndC(M) that allow us to write, for
all y1, . . . , ym+n ∈ M :

p(y1, . . . , y
s
m+n) = (z1, . . . , z

s
m+n) with zj =

m+n∑
i=1

pi,j(yi).

Let us denote briefly by σ the grade automorphism of M (that is y �−→ (−1)∂yy)
since here we need no other grade automorphism, and let ∂(i, j) be the parity of
pi,j; it is even if i and j are both ≤ m, or both > m, it is odd if i and j are on both
sides of m. If pi,j is even, it belongs to B0. But if it is odd, it belongs to EndC,1(M)
which is not in general the same thing as B1 = Endg

C,1(M); yet an easy verification
shows that pi,jσ is in B1 in this case. Consequently pi,jσ

∂(i,j) ∈ B for all (i, j).
Moreover we can assume that f is homogeneous, whence σf = (−1)∂ffσ. The
equality pg = gp is equivalent to pi,jf = fpi,j for all (i, j); as a matter of fact,

pi,jf = (pi,jσ
∂(i,j)) σ∂(i,j)f = (−1)∂f∂(i,j)(pi,jσ

∂(i,j)) f σ∂(i,j)

= f (pi,jσ
∂(i,j)) σ∂(i,j) = fpi,j . �

We say that A is a graded semi-simple algebra if every graded module over
A is semi-simple. In (6.ex.6) there is a precise description of graded semi-simple
algebras.

(6.3.4) Proposition. A graded algebra A is a graded semi-simple algebra if and only
if every graded A-module is projective.

Indeed every graded submodule M ′ of every graded A-module M admits a supple-
mentary submodule if and only if every exact sequence 0→M ′ →M →M ′′ → 0
splits in Mod0(A), or equivalently, if and only if every graded A-module M ′′ is
projective. �
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6.4 Graded Morita theory

Besides the classical Morita theory involving merely modules over noncommutative
algebras, there are other kinds of Morita theories involving special subcategories.
The here expounded theory is devoted to graded algebras (with a grading over
Z/2Z ) and graded modules over them, in situations that require the respect of
the twisting rule (4.2.1). For every graded K-algebra A we denote by Mod0(A)
the subcategory ofMod(A) containing the graded modules over A and the graded
A-linear mappings. Because of the twisting rule, we shall also use the A-g-linear
mappings defined just before (6.2.7), which determine a category Modg(A) with
the same objects but with more morphisms than Mod0(A).

The graded right modules over A are treated as objects of the category
Mod0(Ato), and the notation atox (with a ∈ A and x in a right module) is
synonymous with (−1)∂a∂xxa. Moreover a graded bimodule over the algebras
A and B is treated as an object of Mod0(A ⊗̂Bto); indeed the associativity
equality a(xb) = (ax)b is equivalent to the commutation equality a(btox) =
(−1)∂a∂bbto(ax). As an object of Mod0(A ⊗̂Ato), Ato is the same thing as A :
(a1 ⊗ ato

2 ) ato = (−1)∂a2∂a(a1aa2)to.

(6.4.1) Definition. We say that (A, B; P, Q) is a graded Morita context over K if
the following five conditions are fulfilled:

(a) A and B are graded K-algebras;
(b) P is an object of Mod0(A ⊗̂Bto), and Q an object of Mod0(B ⊗̂Ato);
(c) there are two pairing mappings P ⊗B Q → A and Q⊗A P → B which are

merely treated as multiplications p ⊗ q �−→ pq and q ⊗ p �−→ qp ; thus the
following associativity equalities hold (for all a ∈ A, b ∈ B, p ∈ P , q ∈ Q):

(pb)q = p(bq) and (qa)p = q(ap).

(d) the pairing mappings are graded and respectively (A ⊗̂Ato)-linear and
(B ⊗̂Bto)-linear, so that the following associativity equalities also hold:

a(pq)a′ = (ap)(qa′) and b(qp)b′ = (bq)(pb′).

(e) at last the pairing mappings themselves respect the following associativity
equalities:

(pq)p′ = p(qp′) and (qp)q′ = q(pq′).

In a first theorem we shall learn what happens when one pairing mapping is
surjective; in a second theorem we shall learn which new facts appear when both
pairing mappings are surjective; in a third theorem we shall learn how to construct
a graded Morita context when one algebra (A or B) and one module (P or Q) are
given. A fourth and last theorem will make precise the relations between graded
Morita contexts and some equivalences of categories. In these theorems, when it is
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stated that some morphism is an isomorphism, the description of this morphism
is followed by the mention of the category which it belongs to.

(6.4.2) Theorem. Let (A, B; P, Q) be a graded Morita context in which the pairing
mapping P ⊗B Q → A is surjective; then

(a) this pairing mapping is bijective;
(b) these two algebra-morphisms are isomorphisms:

Ato −→ Endg
B(Q), ato �−→ (q �−→ (−1)∂a∂qqa) in Mod0(A ⊗̂Ato);

A −→ Endg
Bto(P ), a �−→ (p �−→ ap), in Mod0(A ⊗̂Ato);

(c) these two morphisms are isomorphisms:

P −→ Homg
B(Q, B), p �−→ (q �−→ (−1)∂p∂qqp)), in Mod0(A ⊗̂Bto);

Q −→ Homg
Bto(P, B), q �−→ (p �−→ qp)), in Mod0(B ⊗̂Ato);

(d) P and Q are generators respectively inMod(A) and Mod(Ato); and they are
finitely generated projective modules respectively in Mod(Bto) and Mod(B);

(e) for every N and N ′ respectively in Mod0(B) and Mod0(Bto) there are iso-
morphisms

P ⊗B N −→ Homg
B(Q, N), p⊗ y �−→ (q �−→ (−1)∂q(∂p+∂y)(qp)y),

in Mod0(A);
N ′ ⊗B Q −→ Homg

Bto(P, N ′), y′ ⊗ q �−→ (p �−→ y′(qp)),
in Mod0(Ato).

Proof. The reader is assumed to be able to verify by himself that the six mor-
phisms described in (6.4.2) are well defined and belong to the announced cat-
egories and should also observe that the twisting rule has been carefully re-
spected. The surjectiveness of P ⊗B Q → A implies the existence of a sequence
(p1, p2, . . . , pm) of homogeneous elements of P , and a sequence (q1, q2, . . . , qm) of
homogeneous elements of Q such that

∑m
i=1 piqi = 1A ; we can assume ∂pi = ∂qi

for i = 1, 2, . . . , m. To prove (a) (the injectiveness of this pairing mapping), we
suppose that

∑n
j=1 p′jq

′
j = 0 for some homogeneous p′1,. . . ,p

′
n in P and some ho-

mogeneous q′1,. . . ,q′n in Q; then the various associativity hypotheses allow us to
write

∑
j

p′j ⊗ q′j =
∑

j

∑
i

p′j ⊗ (q′jpi)qi =
∑

i

(
∑

j

p′jq
′
j)pi ⊗ qi = 0 .

Now let us consider the first algebra morphism in (b); if the image in Endg
B(Q)

of some a ∈ A vanishes, then qia = 0 for i = 1, 2, . . . , m, and consequently
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a =
∑

i piqia = 0. And if f is any homogeneous element of Endg
B(Q), then for all

q′ ∈ Q,

f(q′) =
∑

i

f(q′piqi) =
∑

i

(−1)∂f(∂q′+∂pi)q′pi f(qi) = (−1)∂q′∂aq′a

if we set a =
∑

i(−1)∂f∂pipif(qi), whence ∂a = ∂f . For the first morphism in (c)
the proof is exactly the same (the source Ato is replaced with P , and the target
Q with B).

For the second morphism in (b) or in (c), the proof requires merely symmet-
rically presented calculations. For instance let us consider the second morphism in
(c); if the image in Homg

Bto(P, B) of some q′ ∈ Q vanishes, then q′ =
∑

i q′piqi = 0
since all q′pi vanish. And for every g ∈ Homg

Bto(P, B) we have:

g(p′) =
∑

i

g(piqip
′) =

∑
i

g(pi) qip
′ = q′p′ with q′ =

∑
i

g(pi)qi .

Since the pairing mapping P ⊗B Q → A is surjective, there is a surjective
mapping P ⊗Q → A which proves that P and Q are generators as modules over
A or Ato (see (6.1.2)). From (6.1.6) we deduce that they are finitely generated
and projective as modules over B or Bto; indeed all the following morphisms are
surjective (and even bijective, except the second one):

P ⊗Homg
Bto(P, B) ←→ P ⊗Q −→ P ⊗A Q −→ A −→ Endg

Bto(P ) ;

truly these surjective mappings involve the functor Homg
Bto(P, . . . ) whereas (6.1.6)

would here require HomBto(P, . . . ), but because of (6.2.8) we do not have to worry
about this detail.

At last we observe that all the following arrows are bijective:

P ⊗B N −→ Homg
B(Q, B)⊗B N −→ Homg

B(Q, B ⊗B N) −→ Homg
B(Q, N) ;

only the bijectiveness of the second arrow needs a justification; since Q is projective
inMod0(B), it is isomorphic to a graded direct summand in some

⊕
j∈J (B⊕Bs),

and this allows us to prove the bijectiveness of all morphisms like this one for every
graded bimodule N ′′ over B :

Homg
B(Q, N ′′)⊗B N −→ Homg

B(Q, N ′′ ⊗B N).

For the second morphism in (e), the proof is similar. �

Of course one could state a theorem parallel to (6.4.2) when the other pair-
ing mapping is surjective. When both pairing mappings are surjective (and conse-
quently bijective), as an immediate corollary we get the bijectiveness of all these
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eight morphisms:

Endg
Bto(P ) ←− A −→ (Endg

B(Q))to ,

(Endg
A(P ))to ←− B −→ Endg

Ato(Q) ,

Homg
Ato(Q, A) ←− P −→ Homg

B(Q, B) ,

Homg
A(P, A) ←− Q −→ Homg

Bto(P, B).

Moreover P (resp. Q) is a finitely generated projective generator both as a module
over A (resp. Ato) and as a module over Bto (resp. B).

Besides, it is time to explain that the first purpose of Morita theory is the
research into equivalences between two categories; here we are interested in graded
K-linear equivalences between Modg(A) and Modg(B). An equivalence of cate-
gories between these categories is given by a functor F from the former to the
latter, and a functor G from the latter to the former, such that G ◦F and F ◦G are
isomorphic to the identity functors; in other words, there are functor morphisms
that systematically give isomorphisms

M ←→ G(F(M)) in Mod0(A) and N ←→ F(G(N)) in Mod0(B) .

Here F and G will be graded K-linear functors in the following sense: for
each couple of objects (M1, M2), F determines a graded K-linear mapping from
Homg

A(M1, M2) into Homg
B(F(M1), F(M2)), and the same for G. When F and

G satisfy these conditions, we say that we have a graded K-linear equivalence of
categories.

It is worth noticing that such a graded functor F induces a functor F0 from
Mod0(A) to Mod0(B); and the same for G; consequently a graded equivalence
between Modg(A) and Modg(B) affords an equivalence between Mod0(A) and
Mod0(B). Conversely a functor F0 from Mod0(A) to Mod0(B), together with
an isomorphism between the functors M �−→ F0(M cs) and M �−→ (F0(M))cs,
extends to a graded functor F fromModg(A) toModg(B); indeed Homg

A(M1, M2)
is canonically isomorphic to HomA,0(M1, M2 ⊕M cs

2 ).
A graded Morita context (A, B; P, Q) allows us to define four functors:

F : Modg(A) −→ Modg(B) , M �−→ Q ⊗A M ,

G : Modg(B) −→ Modg(A) , N �−→ P ⊗B N ,

F ′ : Modg(Ato) −→Modg(Bto) , M ′ �−→M ′ ⊗A P ,

G′ : Modg(Bto) −→Modg(Ato) , N ′ �−→ N ′ ⊗B Q.

Of course the twisting rule (4.2.1) must be respected in the definition of F and G;
for instance for a homogeneous f ∈ Homg

A(M1, M2) we must write F(f)(q⊗x) =
(−1)∂f∂qq ⊗ f(x) .
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When both pairing mappings are bijective, F and G determine a graded K-
linear equivalence between Modg(A) and Modg(B), and F ′ and G′ determine a
graded K-linear equivalence between Modg(Ato) and Modg(Bto). Indeed for left
modules (for instance) we have the following canonical isomorphisms:

P ⊗B (Q⊗A M)←→ (P ⊗B Q)⊗A M −→ A⊗A M ←→M.

This equivalence is the first result mentioned in the next theorem. Besides, it is
worth mentioning that the assertion (e) in (6.4.2) affords an alternative definition
for each of the above four functors.

(6.4.3) Theorem. When both pairing mappings are surjective, then

(a) the above defined functors F and G determine a graded K-linear equivalence
between the categories Modg(A) andModg(B), whereas F ′ and G′ determine
a graded K-linear equivalence between Modg(Ato) and Modg(Bto);

(b) the graded centers of A and B are isomorphic; more precisely, all these four
canonical algebra morphisms are isomorphisms:

Zg(A) −→ Endg
A⊗Bto(P ) ←− Zg(B) −→ Endg

B⊗Ato(Q)←− Zg(A) ;

(c) when a (resp. a′) runs through the sets of graded left (resp. right) ideals of A,
and b (resp. b′) through the sets of graded left (resp. right) ideals of B, the
four mappings

a �−→ Qa (resp. a′ �−→ a′P ), b �−→ Pb (resp. b′ �−→ b′Q),

determine bijections onto the following four targets: the set of graded B-
submodules of Q (resp. the set of graded Bto-submodules of P ), the set of
graded A-submodules of P (resp. the set of graded Ato-submodules of Q). By
restriction, each of these four mappings gives a bijection from the subset of
graded two-sided ideals of A or B onto the subset of graded subbimodules of
P or Q. Consequently A and B have isomorphic lattices of graded two-sided
ideals, which are also isomorphic to the lattices of graded subbimodules of P
and Q.

Proof. The evident assertion (a) has already been explained. To prove (b), it
is sufficient to prove the bijectiveness of Zg(B) → Endg

A⊗Bto(P ) (for instance).
Since Zg(B) is isomorphic to Zg(Bto) (by b �−→ bto), we consider the isomorphism
Bto → Endg

A(P ) and observe that by restriction it gives an injective morphism
from Zg(Bto) into Endg

A(P ). Let us suppose that some f ∈ Endg
A(P ) is the image

of bto ∈ Bto, in other words, f(p) = (−1)∂b∂ppb for all p; then f belongs to
the subalgebra Endg

A⊗Bto(P ) if and only if for every b′ ∈ B the mapping p �−→
f(pb′) − f(p)b′ vanishes; now this mapping also belongs to Endg

A(P ) and is the
image of the element of Bto that can be deduced from the following calculation:

f(pb′)− f(p)b′ = (−1)∂b∂p p ((−1)∂b∂b′b′b− bb′) ;

now it is clear that f belongs to Endg
A⊗Bto(P ) if and only if b belongs to Zg(B).
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To prove (c), it is sufficient to consider the mapping a �−→ Qa (for instance);
obviously Qa is a B-submodule of Q for every K-submodule a of A, and is graded
if a is graded. Conversely if Q′ is a K-submodule of Q, let (Q′ : Q)A be the subset
of all a ∈ A such that Qa ⊂ Q′ ; obviously (Q′ : Q)A is a left ideal of A, and is
graded if Q′ is graded. It is also obvious that (Qa : Q)A ⊃ a and Q(Q : Q′)A ⊂ Q′ ;
we shall prove that these inclusions are equalities when a is a left ideal and Q′ a
B-submodule. Let us suppose that Qa′ ⊂ Qa for some a′ ∈ A, and let us prove
that a′ ∈ a if a is a left ideal; since the pairing mapping P ⊗B Q → A is surjective,
we can write 1A =

∑
i piqi as in the proof of (6.4.2), and thus

a′ =
∑

i

pi(qia
′) ∈

∑
i

piQa ⊂ a .

Since the other pairing mapping Q⊗A P → B is also surjective, we can also write
1B =

∑
j qjpj for some qj ∈ Q and some pj ∈ P . When Q′ is a B-submodule, for

every q′ ∈ Q′ all pjq
′ belong to (Q′ : Q)A since qpjq

′ belongs to Q′ for all q ∈ Q;
consequently

q′ =
∑

j

qj(pjq
′) ∈ Q (Q′ : Q)A .

All this settles the discussion about the bijection a �−→ Qa. It is an isomorphism
of lattices because every inclusion a1 ⊂ a2 implies Qa1 ⊂ Qa2. Obviously Qa is
a subbimodule when a is a two-sided ideal; and conversely a is a two-sided ideal
when Qa is a subbimodule, because a = (Qa : Q)A . �

Remark. The assertion (c) in (6.4.3) could have been treated as a particular case
of (a). Indeed when the functor F is a graded equivalence of categories, it must be
exact and faithful, and for every object M in Modg(A) it determines a bijection
between the graded A-submodules of M and the graded B-submodules of Q⊗AM .
When M = A, this is precisely a bijection between the graded left ideals a of A
and the graded B-submodules of Q ⊗A A. If we identify this last object with
Q itself, Q ⊗A a is identified with the submodule Qa; since Q is projective and
consequently flat over Ato, there is no objection to this identification. Nonetheless
the bijections like a �−→ Qa deserve a very precise treatment, revealing the converse
bijection Q′ �−→ (Q′ : Q)A (described in the above proof), and precisely showing
the correspondence between the graded two-sided ideals of A and B. If a and b are
graded two-sided ideals of respectively A and B, they correspond to each other if
and only if Qa = bQ, or equivalently aP = Pb.

Now it will be explained how to construct a Morita context (A, B; P, Q)
when only one algebra and one module are given; the next theorem starts with
the couple (A, P ), but there are three parallel theorems starting with (B, Q) or
(B, P ) or (A, Q), which might be derived from (6.4.4) and this evident assertion: if
(A, B; P, Q) is a Morita context, the same is true for (B, A; Q, P ), (Bto, Ato; P, Q),
and (Ato, Bto; Q, P ).
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(6.4.4) Theorem. Let A be a graded algebra, P a graded module over A, and let us
set

B = (Endg
A(P ))to and Q = Homg

A(P, A) ;

thus P is a graded module over A ⊗̂Bto, and Q a graded module over B ⊗̂Ato. If
p is a homogeneous element of P , and q a homogeneous element of Q, we define
two products pq ∈ A and qp ∈ B in this way:

pq = (−1)∂p∂qq(p) and (qp)to maps every p′ ∈ P to (−1)∂p∂p′
q(p′) p ;

thus we get K-bilinear multiplications P × Q → A and Q × P → B. It is stated
that:

(a) these multiplications induce two pairing mappings P⊗BQ→ A and Q⊗AP →
B which make (A, B; P, Q) become a graded Morita context;

(b) the pairing mapping P ⊗B Q → A is surjective if and only if P is a generator
of modules over A, whereas the pairing mapping Q ⊗A P → B is surjective
if and only if P is a finitely generated projective module over A.

Proof. This is almost the same thing as (6.1.6), since this proposition remains
valid when gradings and twistings are involved as is explained at the end of 6.2.
Nonetheless there is a little discrepancy in the definition of B, since B = EndA(P )
in (6.1.6) whereas here B = Endg

A(P )to, but the subsequent modifications raise no
difficulty. The associativity properties (pq)p′ = p(qp′) and (qp)q′ = q(pq′) are not
yet mentioned in (6.1.6), but they only require a straightforward verification. �

Of course when P is a finitely generated projective generator over A, we can
add to (6.4.4) all the conclusions of (6.4.2) and (6.4.3). Here is an evident example.

(6.4.5) Corollary. When P is a graded, finitely generated and faithful projective
K-module, then Zg(End(P )) = K and the mapping a �−→ a End(P ) is a bijection
from the set of ideals of K onto the set of graded (two-sided) ideals of End(P ).

Proof. From K and P we derive a graded Morita context (End(P ), K; P, P ∗), and
P satisfies the conditions that ensure the pairing mappings to be bijective (see
(6.1.5)). The conclusions follow from (6.4.3). �

It remains to prove that graded Morita theory yields all the graded K-linear
equivalences of categories of graded modules.

(6.4.6) Theorem. Let A and B be graded algebras, and F and G two graded and
K-linear functors defining an equivalence between the categories Modg(A) and
Modg(B). If we set Q = F(A) and P = G(B), then (A, B; P, Q) with suitable
pairing mappings is a graded Morita context; moreover the pairing mappings are
surjective and the functors F and G are respectively isomorphic to Q⊗A · · · and
P ⊗B · · · .
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Proof. Since G ◦ F and F ◦ G are isomorphic to the identity functors, F de-
termines an isomorphism from each Homg

A(M1, M2) onto the corresponding
Homg

B(F(M1), F(M2)), and the same for G. Consequently F and G map injective
(resp. surjective) morphisms to injective (resp. surjective) ones, they map pro-
jective objects to projective ones, and generators to generators. They also map
finitely generated objects to finitely generated ones, because finitely generated
objects are characterized by this property: they are not the union of a strictly
ascending sequence of graded submodules. All this proves that P (resp. Q) is a
finitely generated projective generator in Mod(A) (resp. Mod(B)). Besides, if M
is a graded module over A ⊗̂Cto (for some graded algebra C), then F(M) is a
graded module over B ⊗̂Cto because of these algebra morphisms:

Cto −→ Endg
A(M) −→ Endg

B(F(M)) ;

this shows that Q (resp. P ) is a module over B ⊗̂Ato (resp. A ⊗̂Bto).
For every object N of Mod0(B) there is an isomorphism N → Homg

B(B, N)
defined by y �−→ (b �−→ (−1)∂b∂y by) . Such an isomorphism is involved at the
beginning of this chain of isomorphisms in the category Mod0(B ⊗̂Ato) :

Q→ Homg
B(B, Q)→ Homg

A(G(B),G(Q)) → Homg
A(P,G(F(A))) → Homg

A(P, A).

Let us also consider this chain of algebra isomorphisms:

Bto −→ Endg
B(B) −→ Endg

A(G(B)) −→ Endg
A(P ) ;

because of Theorem (6.4.4), the two previous chains of isomorphisms prove that
(A, B; P, Q) is a graded Morita context. Moreover P satisfies the conditions that
ensure the surjectivity of the pairing mappings. At last for every object M in
Mod0(A) we have the following isomorphisms in Mod0(B) :

F(M) −→ Homg
B(B,F(M)) −→ Homg

A(G(B), G ◦ F(M)) −→ Homg
A(P, M) ;

from the statement (e) in (6.4.2) we deduce the existence of an isomorphism Q⊗A

M → Homg
A(P, M) and we conclude that F is isomorphic to the functor M �−→

Q⊗A M . For G the proof is similar. �

6.5 Graded separable algebras

We begin at once with graded separability, since nongraded separability is auto-
matically obtained when nongraded algebras are treated as trivially graded ones.
If A is a graded algebra over K, it is said to be a graded separable algebra over K
if it is a projective module over A ⊗̂Ato (tensor product over K when no other
ring is specified).

With every graded bimodule M over A we associate the graded centralizer
of A in M , that is the K-submodule Zg(A, M) generated by the homogeneous
x ∈ M such that (a ⊗ 1to

A − 1A ⊗ ato)x = 0, or equivalently ax = (−1)∂a∂xxa
for all homogeneous a ∈ A. Thus Zg(A) (defined in (3.5.2)) is the same thing as
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Zg(A, A). There are canonical bijections

(6.5.1) Homg

A ⊗̂ Ato(A, M)←→ Zg(A, M) in Mod(K);

the arrow from the left side to the right side is defined by f �−→ f(1A); the converse
arrow is defined by x �−→ (a �−→ xa). It is easy to verify that the above definition of
Zg(A, M) leads to a graded functor Zg(A, . . . ) from the category Modg(A ⊗̂Ato)
toward the categoryModg(K). Thus (6.5.1) means that this functor is isomorphic
to Homg

A ⊗̂ Ato(A, . . . ).
Previously the multiplication in A was represented by a linear mapping π :

A⊗A→ A ; but now π shall be treated as a mapping A ⊗̂Ato → A. Now ab = π(a⊗
bto), and thus π is (A ⊗̂Ato)-linear because, for all homogeneous a, b, x, y in A,

π((a⊗ bto)(x⊗ yto)) = ± π(ax⊗ (yb)to) = ± axyb = (a⊗ bto) π(x⊗ yto).

(6.5.2) Theorem. The following assertions are equivalent:

(a) A is a graded separable algebra over K;
(b) the functor Zg(A, . . . ) is exact;
(c) the functor Zg(A, . . . ) transforms the surjective mapping π : A ⊗̂Ato → A

into a surjective mapping Zg(A, A ⊗̂Ato)→ Zg(A).

When A is finitely generated as a K-algebra, they are also equivalent to these two
assertions:

(d) for every prime ideal p of K, Ap is graded separable over Kp;
(e) for every maximal ideal m of K, Am is graded separable over Km.

Proof. The equivalence (a)⇔(b) and the implication (b)⇒(c) are immediate con-
sequences of (6.5.1) and the definition of separability. Let us prove (c)⇒(a). If w
is an even element of A ⊗̂Ato such that π(w) = 1A, we set ψ(a) = (a⊗ 1to

A )w for
all a ∈ A, whence π ◦ ψ = idA, which implies that A is isomorphic to a direct
summand of A ⊗̂Ato in the category Mod0(A), since ψ is A-linear. Nonethe-
less if Zg(A, π) is surjective, we can require w to be in Zg(A, A ⊗̂Ato), so that
(a⊗ 1to

A )w = (1A ⊗ ato)w. Thus ψ is (A ⊗̂Ato)-linear, A is isomorphic to a direct
summand of A ⊗̂Ato in Mod0(A ⊗̂Ato), and A is projective in this category.

Let us assume that A is generated as a K-algebra by the homogeneous ele-
ments a1, a2, . . . , ar; then Zg(A, M) is the intersection of the kernels of these r
mappings:

M −→M , x �−→ aix − (−1)∂ai∂xxai ;

indeed for every homogeneous x ∈ M the subset of all a ∈ A such that ax =
(−1)∂a∂xxa is a graded subalgebra of A. Since there is no problem in localizing a
finite intersection of kernels, it is sure that

(Zg(A, M))p = Zg(Ap, Mp) for every prime ideal of K.

Since the separability of A depends on the surjectivity of some K-linear mapping,
it is a local property, at least when A is a finitely generated algebra. �
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(6.5.3) Corollary. If f : A → B is a surjective morphism of graded K-algebras,
and if A is a graded separable algebra, then B too is a graded separable algebra,
and Zg(B) = f(Zg(A)).

Proof. For every graded bimodule M over B, Zg(B, M) is the same thing as
Zg(A, M). Therefore the graded separability of B follows from that of A. Moreover
f induces a surjective morphism from Zg(A, A) = Zg(A) onto Zg(A, B) = Zg(B).

�

(6.5.4) Corollary. Let K → K ′ be an extension of K (as in 1.9). If A is graded
separable over K, then K ′ ⊗A is graded separable over K ′, and the natural mor-
phism K ′ ⊗ Zg(A) → Zg(K ′ ⊗A) is an isomorphism. Conversely, if the extension
K → K ′ is faithfully flat, and if A is finitely generated as a K-algebra, the graded
separability of K ′ ⊗A over K ′ implies the graded separability of A.

Proof. If P is a graded projective module over some graded K-algebra B, then for
every graded module M over B the natural morphism

K ′ ⊗Homg
B(P, M) −→ Homg

K′⊗B(K ′ ⊗ P, K ′ ⊗M)

is bijective; as in the proof of (1.9.7), it suffices to verify its bijectiveness when
P is B or Bs, and then to remember that Homg

B(B, M) and Homg
B(Bs, M) are

respectively isomorphic to M and M cs. When B and P are replaced with A ⊗̂Ato

and A (assumed to be separable), then we get this result: the natural mapping
K ′⊗Zg(A, M) → Zg(K ′⊗A, K ′⊗M) is an isomorphism. The conclusion follows
from the assertion (c) in (6.5.2) and the right exactness of the functor K ′ ⊗ . . . .
The converse assertion is proved like (e)⇒(c) in (6.5.2): indeed a faithfully flat ex-
tension behaves nicely with respect to finite intersections of kernels and surjective
mappings. �

(6.5.5) Corollary. If A1 and A2 are graded separable algebras over K, then A1 ⊗̂A2

is also graded separable, and the natural morphism from Zg(A1) ⊗̂ Zg(A2) into
Zg(A1 ⊗̂A2) is an isomorphism.

Proof. For i = 1, 2, let Pi be a graded projective module over some graded K-
algebra Bi, and Mi a graded module over Bi. The natural morphism

Homg
B1

(P1, M1)⊗Homg
B2

(P2, M2) −→ Homg

B1 ⊗̂ B2
(P1 ⊗ P2, M1 ⊗M2)

is an isomorphism; this is proved as in the proof of (1.9.7). Now replace Bi with
Ai ⊗̂Ato

i , and Pi with Ai for i = 1, 2. Observe that B1 ⊗̂B2 is canonically isomor-
phic to (A1 ⊗̂A2) ⊗̂ (A1 ⊗̂A2)to. All this proves the bijectiveness of the natural
morphism

Zg(A1, M1)⊗ Zg(A2, M2) −→ Zg(A1 ⊗̂A2, M1 ⊗M2) ;

the proof ends with the assertion (c) in (6.4.2) and the right exactness of tensor
products. �
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Examples

As a first example we consider the graded quadratic extensions defined in 3.4.

(6.5.6) Proposition. When A is a graded K-algebra that is finitely generated, pro-
jective of constant rank 2 as a K-module, the following assertions are equivalent:

(a) A is a graded quadratic extension of K;
(b) A is a graded separable algebra over K.

Proof. For such an algebra, separability is a local property; since by localization
A0 and A1 give free modules, it is sufficient to prove (6.5.6) when A0 and A1

are free modules; the rank of A1 is either 0 or 1. Let (1, z) be a basis of A, and
let us set z2 = βz − γ. We already know that A is a quadratic extension if and
only if β2 − 4γ is invertible in K. Let us first suppose that A1 = 0 ; thus we can
replace A ⊗̂Ato with A ⊗ Ao. Easy calculations show that Z(A, A ⊗ Ao) is the
free submodule of A⊗Ao generated by the two elements

z ⊗ 1o + 1⊗ zo − β ⊗ 1o and z ⊗ zo − γ ⊗ 1o ;

their images by π are 2z− β and βz− 2γ. Thus A is separable if and only if these
two elements generate Z(A) = A, and Lemma (1.13.5) shows that they generate
A if and only if they constitute a basis of A. This property is equivalent to the
invertibility of some determinant, which is precisely β2 − 4γ.

When A1 �= 0, we can choose z in A1 and set β = 0. Analogous calcula-
tions, taking into account the twisting caused by the odd element z, show that
Zg(A, A ⊗̂Ato) is now the free submodule of A ⊗̂Ato generated by

z ⊗ 1to − 1⊗ zto and z ⊗ zto − γ ⊗ 1to ;

their images by π are 0 and 2γ. Thus A is separable if and only if 2γ generates
Zg(A) = K. This means the invertibility of 2 and γ, as desired. �

(6.5.7) Remark. Let K be a field, F an element of K[t], and (F ) the ideal generated
by this polynomial F . It has been proved that the quotient K[t]/(F ) is separable
if and only if F has no multiple root in any field extension of K, in other words, if
and only if F and its derivative are coprime. When F is an irreducible polynomial,
K[t]/(F ) is also a field, and the here presented concept of separability coincides
with the usual one in Galois theory. Besides, when K is a field, it has been proved
that a finite dimensional K-algebra is graded separable if and only if it is isomor-
phic to a direct product of simple algebras, the centers of which are separable field
extensions of K; as in (6.5.6) this condition ignores the grading of A.

The algebras End(P ) already present in 3.5 are our second example.

(6.5.8) Proposition. If P is a graded finitely generated projective K-module,
End(P ) is a graded separable algebra over K.
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Proof. Let us set A = End(P ), and let e be the idempotent of K such that
(1− e)P = 0 whereas P is a faithful module over Ke. From (3.5.8) we know that
the natural morphism Ke → Zg(A) is an isomorphism; this is also a consequence
of (6.4.3)(b), since (Ke, Ato; P, P ∗) is a graded Morita context (see (6.4.4)). We
can prove the separability of A by localization, and it suffices to localize at prime
ideals not containing e. Thus we reduce the problem to the case of free modules P0

and P1 that are not both reduced to 0. Let (b1, b2, . . . , br) be a basis of P made of
homogeneous elements, and let (h1, h2, . . . , hr) be the dual basis of P ∗. We get a
bijection f : P ⊗P ∗ → A if we map every b⊗h to the endomorphism x �−→ h(x)b.
Let us set

w =
∑
i,j

f(xi ⊗ hj)⊗ f(xj ⊗ hi)to ∈ (A ⊗̂Ato)0.

An easy calculation shows that π(w) = idP . Moreover w belongs to Zg(A, A ⊗̂Ato)
because the products f(xm⊗hn) w and w f(xm⊗hn) are both equal to

∑
j f(xm⊗

hj) ⊗ f(xj ⊗ hn) for all m, n ∈ {1, 2, . . . , r}. This proves the surjectiveness of
Zg(A, A ⊗̂Ato) → Z(A). �

Graded derivations of graded algebras in graded bimodules

Now we explore the relations between graded separability and graded derivations.
Take notice that the “graded derivations” are not “graded morphisms” according
to the definition at the beginning of 4.2, because graded derivations may have even
and odd components.

(6.5.9) Definitions. Let M be a graded bimodule over A. A homogeneous d ∈
Hom(A, M) is called a graded K-derivation of A in M (of degree 0 or 1) if

d(ab) = d(a)b + (−1)∂a∂dad(b) for all homogeneous a and b in A.

The K-modules of even and odd graded derivations of A in M are respectively
denoted by Derg

0(A, M) and Derg
1(A, M), and their direct sum by Derg(A, M).

With every homogeneous x ∈ M is associated a graded inner derivation Dx of A
in M defined by

Dx : a �−→ (−1)∂x∂a(a⊗ 1to
A − 1A ⊗ ato) x = (−1)∂x∂aax− xa .

The quotient of Derg(A, M) by the submodule Ing(A, M) generated by the inner
derivations is denoted by (Der/In)g(A, M). Moreover let J(A) be the kernel of the
multiplication π : A ⊗̂Ato → A. The mapping δ defined by a �−→ a⊗1to

A −1A⊗ato

is an even derivation of A in J(A), called the canonical derivation of A.

Of course the validity of these definitions depends on two verifications: the
inner derivations and the canonical derivation are actually graded derivations; but
these verifications are done by straightforward calculations. In a context that does
not require the respect of the twisting rule (4.2.1), we would have defined a module
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Der(A, M) with an even component equal to Derg
0(A, M), but an odd component

in general different from Derg
1(A, M).

The definition of J(A) gives the exact sequence

(6.5.10) 0 −→ J(A) −→ A ⊗̂Ato −→ A −→ 0 in Mod0(A ⊗̂Ato);

the importance of this exact sequence lies in the fact that the graded separability
of A is equivalent to its splitting. Indeed if A is separable, its projectiveness makes
(6.5.10) split; and if it splits, A is projective as a direct summand of A ⊗̂Ato.

Another immediate consequence of (6.5.9) is the following exact sequence in
Modg(K), which is valid for every graded bimodule M over A :

(6.5.11) 0 −→ Zg(A, M) −→M −→ Derg(A, M) −→ (Der/In)g(A, M) −→ 0 ;

the third arrow maps every x ∈M to the associated inner derivation Dx.

(6.5.12) Theorem. The following assertions are equivalent:

(a) A is a graded separable algebra;
(b) for every graded bimodule M over A, the first three arrows of (6.5.11) give a

splitting exact sequence

0 −→ Zg(A, M) −→M −→ Derg(A, M) −→ 0 ;

(c) all derivations of A in any graded bimodule M are inner derivations;
(d) the canonical derivation δ : A→ J(A) is an inner derivation.

When A is actually a graded separable algebra, every bimodule M contains
Zg(A, M) as a direct summand; in particular, Zg(A) is a direct summand of A.

The proof of (6.5.12) requires two preliminary lemmas.

(6.5.13) Lemma. As a left ideal of A ⊗̂Ato, J(A) is generated by the image of δ.

Indeed J(A) is even generated by Im(δ) as an A-module, because, for every element∑
i ai ⊗ bto

i of J(A), the equality
∑

i aibi = 0 implies
∑

i

ai ⊗ bto
i = −

∑
i

(ai ⊗ 1to
A ) (bi ⊗ 1to

A − 1A ⊗ bto
i ). �

(6.5.14) Lemma. For every bimodule M over A, the mapping

Hom(δ, M) : Hom(J(A), M) −→ Hom(A, M) , f �−→ f ◦ δ ,

induces by restriction an isomorphism

from Homg

A ⊗̂ Ato(J(A), M) onto Derg(A, M).

The inner derivations correspond to the mappings J(A) →M that can be extended
to an (A ⊗̂Ato)-g-linear mapping from A ⊗̂Ato into M .
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Proof. If δ′ : A → J ′ is a graded derivation of A in some bimodule J ′, and if
f ′ : J ′ → M is an (A ⊗̂Ato)-g-linear mapping, it is easy to verify that f ′ ◦ δ′ is
a graded derivation. In particular this is true when J ′ = J(A) and δ′ = δ. The
vanishing of f ◦ δ implies the vanishing of f when f is (A ⊗̂Ato)-g-linear, because
J(A) is generated by Im(δ) as a left ideal of A ⊗̂Ato; thus the mapping f �−→ f ◦ δ
(with an (A ⊗̂Ato)-g-linear f) is injective. It is also easy to prove the assertion
involving inner derivations. Indeed the inner derivation Dx is equal to f◦δ if f is the
(A ⊗̂Ato)-g-linear mapping A ⊗̂Ato →M such that f(1A ⊗ 1to

A ) = x. Conversely,
for every (A ⊗̂Ato)-g-linear mapping f : A ⊗̂Ato →M , it soon appears that f ◦ δ
is the inner derivation determined by f(1A ⊗ 1to

A ).
Now let us prove that the above mapping f �−→ f ◦ δ is surjective onto

Derg(A, M). Let d : A → M be any graded derivation; with it we associate the
K-linear mapping f : A ⊗̂Ato → M such that f(a⊗ bto) = −(−1)∂a∂dad(b) for
all a and b in A. First we verify that d = f ◦ δ ; this is done by an easy calculation,
involving the equality d(1A) = 0, an immediate consequence of (6.5.9). Secondly
we verify that the restriction of f to J(A) is (A ⊗̂Ato)-g-linear; for this purpose
we take u = a ⊗ bto in A ⊗̂Ato, and v =

∑
i ai ⊗ bto

i in J(A), and we verify that
f(uv) = (−1)∂f∂uuf(v). Indeed on one side,

f(uv) = −
∑

i

(−1)∂b∂v+(∂a+∂ai)∂daai d(bi)b −
∑

i

(−1)∂b∂v+(∂a+∂v)∂daaibi d(b) ;

the equality
∑

i aibi = 0 implies the vanishing of the second sum; on the other
side,

uf(v) = −
∑

i

(−1)∂b∂v+(∂b+∂ai)∂d aai d(bi)b ;

since ∂f = ∂d and ∂u = ∂a + ∂b, the verification has been successful. �

Proof of (6.5.12). The only exactness of the sequence mentioned in (b) already
implies the vanishing of (Der/In)g(A, M) by comparison with (6.5.11); conse-
quently (b)⇒(c). Obviously (c)⇒(d). Now we prove (d)⇒(a)⇒(b) by means of
the exact sequence (6.5.10), the splitting of which is equivalent to (a). When δ is
an inner derivation, according to (6.5.14) there is an (A ⊗̂Ato)-g-linear mapping
f : A ⊗̂Ato → A such that δ = f ◦δ ; since J(A) is generated by the image of δ as a
left ideal of A ⊗̂Ato, the restriction of f to J(A) is the identity mapping; since the
identity mapping of J(A) factorizes through A ⊗̂Ato, J(A) is a direct summand
of A ⊗̂Ato in the category Mod0(A ⊗̂Ato), and (6.5.10) splits. In other words,
(d)⇒(a). Now if (6.5.10) splits, for every bimodule M it gives another splitting
exact sequence:

0 −→ Homg

A ⊗̂ Ato(A, M) −→ Homg

A ⊗̂ Ato(A ⊗̂Ato, M)

−→ Homg

A ⊗̂ Ato(J(A), M) −→ 0 ;

in this sequence, the nontrivial objects are respectively isomorphic to Zg(A, M)
(see (6.5.1)), to M (classical isomorphism) and to Derg(A, M) (see (6.5.14)). Thus
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we have obtained a splitting exact sequence equivalent to the one mentioned in (b);
in other words, (a)⇒(b). At last, the final statement in (6.5.12) is an immediate
consequence of (b). �

Remark. The readers that are acquainted with homological algebra, would easily
deduce from the exact sequence (6.5.11), and from the isomorphisms revealed by
(6.5.1) and (6.5.14), that (Der/In)g(A, M) is isomorphic to a cohomology mod-
ule that might be denoted by (Extg)1

A ⊗̂ Ato(A, M). For them it is consequently
evident that the assertions (a) and (c) in (6.5.12) are equivalent. It is worth re-
calling that the more classical K-modules Extk

A⊗Ao(A, M) (which do not take the
gradings into account) make up the Hochschild cohomology of the algebra A with
coefficients in M .

(6.5.15) Corollary. The direct product of two graded separable algebras is still a
graded separable algebra.

Proof. Instead of a direct product, we can consider a graded algebra A such that
Z0(A) contains a nontrivial idempotent e′; we set e′′ = 1A− e′, and we prove that
A is graded separable if (and only if) the ideals e′A and e′′A are both graded
separable. Let d be a (graded) derivation of A in a graded bimodule M . Since
M is the direct sum of the graded bimodules e′Me′, e′Me′′, e′′Me′ and e′′Me′′,
this derivation is an inner derivation if (and only if) its four components e′de′,
e′de′′, e′′de′ and e′′de′′ are inner derivations. Since e′de′ vanishes on e′′A (indeed
e′d(e′′ae′′)e′ = 0 for all a ∈ A), it is a derivation of e′A in e′Me′ extended by 0
on e′′A. Similarly e′′de′′ is a derivation of e′′A in e′′Me′′ extended by 0 on e′A.
Just below it is proved that e′de′′ is the inner derivation associated with d(e′)e′′;
similarly e′′de′ too is an inner derivation. Consequently d is an inner derivation of
A if and only if e′de′ is an inner derivation of e′A, and e′′de′′ an inner derivation
of e′′A ; the conclusion follows.

It remains to verify that e′d(a)e′′ = (−1)∂a∂dad(e′)e′′−d(e′)e′′a for all a ∈ A.
The following facts allow us to verify it: first e′ and e′′ commute with all elements
of A (but not necessarily with the elements of M); secondly the equality e′e′′ = 0
implies d(e′)e′′ = −e′d(e′′) (and by the way d(e′′) = −d(e′) since d(1A) = 0);
finally the equality e′ae′′ = 0 implies e′d(a)e′′ = −d(e′)ae′′ − (−1)∂a∂de′ad(e′′).

There is an alternative proof based on (6.5.2)(c), in which the conclusion
follows from Zg(A, A ⊗̂Ato) = Zg(e′A, e′A ⊗̂ (e′A)to)⊕ Zg(e′′A, e′′A ⊗̂ (e′′A)to).

�

(6.5.16) Corollary. Let A be a graded algebra over a local ring K with maximal
ideal m. If A is a free K-module of finite rank, these two assertions are equivalent:

(a) A is graded separable over the local ring K;
(b) A/mA is graded separable over the field K/m.

Proof. The notations K ′, A′,. . . mean K/m, A/mA,. . . . Since the canonical mor-
phism K → K ′ is surjective, for A′ to be separable over K or K ′ it is the same
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thing; thus (6.5.3) shows that (a)⇒(b). Conversely if A′ is separable, its canonical
derivation δ′ : A′ → J(A′) is an inner derivation associated with some even ele-
ment x′ ∈ J(A′), which comes from some even element x ∈ J(A), because (6.5.13)
implies the surjectiveness of J(A) → J(A′). Consequently

∀a ∈ A, δ(a) ≡ δ(a)x modulo mJ(A);

whence J(A) = J(A)x + mJ(A), still because of (6.5.13). The projectiveness of A
implies the splitting inMod(K) of the exact sequence (6.5.10); thus J(A) is a direct
summand of A ⊗̂Ato, and is also a finitely generated projective K-module. Now
Nakayama’s Lemma implies J(A) = J(A)x. The graded (A ⊗̂Ato)-linear mapping
J(A)→ A ⊗̂Ato → J(A) defined by u �−→ u �−→ ux is surjective, and consequently
bijective (see (1.13.5)); this proves that the identity mapping of J(A) factorizes
through A ⊗̂Ato in Mod0(A ⊗̂Ato). All this results in the splitting of (6.5.10) in
Mod0(A ⊗̂Ato), and leads to the conclusion. �

(6.5.17) Comment. If the algebra A is a finitely generated projective K-module,
from (6.5.2) and (6.5.16) we deduce that A is separable over K if and only if
the extension (K/m)⊗A is separable over the field K/m for every maximal ideal
m of K.

This section ends with the so-called transitivity of separability.

(6.5.18) Proposition. Let K → L be an extension of K by a trivially graded com-
mutative ring L that is separable over K. Every graded separable algebra A over
L is also graded separable over K.

Proof. Since L is separable over K, the exact sequence 0 → J(L) → L ⊗ L →
L→ 0 splits in Mod(L⊗ L). Thus we get a splitting exact sequence

0 −→ (A ⊗̂Ato)⊗L⊗L J(L) −→ (A ⊗̂Ato)⊗L⊗L L⊗ L

−→ (A ⊗̂Ato)⊗L⊗L L −→ 0

in Mod(A ⊗̂Ato). The third object in this sequence is canonically isomorphic to
A ⊗̂Ato. In the fourth object the following equality holds (for all a, b ∈ A and all
λ, µ ∈ L):

λa⊗ bto ⊗ µ = a⊗ bto ⊗ λµ = a⊗ bto ⊗ µλ = a⊗ (λb)to ⊗ µ ;

from this fact it is easy to deduce that this fourth object is isomorphic to A ⊗̂LAto.
Consequently the canonical mapping A ⊗̂Ato → A ⊗̂LAto makes A ⊗̂LAto become
a direct summand of A ⊗̂Ato in Mod(A ⊗̂Ato). Because of the separability of
A over L, the multiplication mapping A ⊗̂LAto → A makes A become a direct
summand of A ⊗̂LAto in this category. Therefore A is a direct summand of A ⊗̂Ato

in this category, whence the separability of A over K. �
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6.6 Graded central simple algebras over a field

In all this section K is a field, and all spaces and algebras have finite dimensions
over K. A graded algebra A of finite dimension over K is said to be a graded
simple algebra if it contains exactly two graded (two-sided) ideals, namely 0 and
A. It is a graded central simple algebra if moreover Zg(A) = K. When A is trivially
graded, there are similar definitions without the word “graded”.

When K does not have characteristic 2 and A is graded simple, then Zg
1 (A) =

0 and the requirement Zg(A) = K is equivalent to Z0(A) = K. Indeed the equality
xy = −yx is valid for each couple (x, y) of elements of Zg

1 (A), whence x2 = −x2

and x2 = 0; consequently the left ideal generated by x, which is even a two-sided
ideal, cannot be A, therefore must be 0, whence x = 0.

(6.6.1) Proposition. If A ⊗̂B is a graded central simple algebra over K, then A
and B are both graded central simple over K.

Proof. Obviously A and B have finite nonzero dimensions. If Zg(A) (for instance)
contained an element x that would not be in K, then x⊗ 1 should be an element
of Zg(A ⊗̂B) outside K, contrary to the hypothesis in (6.6.1). And if A contained
a nontrivial graded ideal a (other than 0 and A), then a⊗B should be a nontrivial
graded ideal of A ⊗̂B, also contrary to the hypothesis. �

Now several examples are presented. When A is a graded algebra of finite
dimension over K, we say that A is a graded division algebra if every homogeneous
element is invertible except 0; this implies that A is graded simple. If moreover
Zg(A) = K, we say that A is a graded central division algebra. When the grading
of A is trivial, there are similar definitions without the word “graded”.

For instance when K does not have characteristic 2, every graded quadratic
extension A of K is a graded central division algebra if A1 �= 0; indeed Zg(A) =
A0 = K and A1 is generated by an invertible element. In particular this is true
for A = (K2)g, that is K ×K with its only nontrivial grading for which (1, 1) is
even and (1,−1) odd; it is a graded division algebra although it contains plenty
of nonhomogeneous elements (λ, 0) and (0, λ) that are not invertible.

Now let r be a positive integer, m and n two nonnegative integers such that
m+n = r. The matrix algebraM(r, K) is naturally isomorphic to End(Kr). If we
provide Kr with the grading for which the first m elements of its canonical basis
are even, whereas the last n ones are odd, and if M(r, K) is provided with the
corresponding grading, then it is denoted byM(m, n; K). Here are the dimensions
of the even and odd components of M(m, n; K) :

dim(M0(m, n; K)) = m2 + n2 , dim(M1(m, n; K)) = 2mn ;

the dimensions of the even and odd components of M(m, n; K) determine (m, n)
up to the order (in other words, only (n, m) gives them the same dimensions as
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(m, n)) because

(m± n)2 = dim(M0(m, n; K))± dim(M1(m, n; K)) ;

the grading is trivial if and only if m or n vanishes; in all other cases the grading
is regular (see (3.5.8)); the grading is balanced if and only if m = n. All these
algebras M(m, n; K) are graded central simple: see (6.4.5). Moreover from (3.5.4)
we deduce that there exists an isomorphism

M(m, n; K) ⊗̂M(m′, n′; K) −→M(mm′ + nn′, mn′ + nm′; K).

When A is any K-algebra, we can also define M(r, A) which is canonically
isomorphic to A⊗M(r, K) and to EndAo(Ar). Let us precisely describe the latter
isomorphism; we treat Ar as a free right module of rank r over A; every element
(ai,j) of M(r, A) is mapped to the endomorphism (x1, . . . , xr) �−→ (y1, . . . , yr)
such that yi =

∑r
j=1 ai,jxj for i = 1, 2, . . . , r. If A is graded, there is an obvious

grading onM(r, A) for whichM0(r, A) =M(r, A0). With this grading,M(r, A) is
isomorphic both to EndAo(Ar) and Endg

Ato(Ar), since aox and (−1)∂a∂xatox (with
a ∈ A and x ∈ Ar) are by definition equal to xa. Very soon (after (6.6.4)) it shall
become clear that a twisted tensor product of graded central simple algebras is still
graded central simple; therefore when A is graded central simple, this property is
inherited by M(r, A).

When A is trivially graded, the definition of M(m, n; A) is quite evident;
after (6.6.4) it will prove to be graded central simple if A is central simple. When
A is not trivially graded, it is possible to define an algebra M(m, n; A) naturally
isomorphic to A ⊗ M(m, n; K) and to EndAo(Ar), and also a twisted algebra
Mg(m, n; A) naturally isomorphic to A ⊗̂M(m, n; K) and to Endg

Ato(Ar). But
when A1 contains invertible elements, M(m, n; A) and Mg(m, n; A) are both iso-
morphic to M(m + n, A) (see (6.ex.3)), and this explains why we will never use
them here.

(6.6.2) Theorem. When A is a graded central simple algebra over the field K, one
(and only one) of the following two assertions is true:

either there exists a (trivially graded) central division algebra B and two
integers m and n such that A is isomorphic to M(m, n; B);
or there exists a graded central division algebra B (such that B1 �= 0) and an
integer r such that A is isomorphic to M(r, B).

In the former case, B is determined by A up to isomorphy, and the couple (m, n)
is unique up to the order; when mn = 0, then A1 = 0; but when mn �= 0, then
A1 �= 0 and Z(A0) is isomorphic to K2. In the latter case, B is determined by A
up to isomorphy, and r is unique; moreover the gradings of A and B are balanced
and Z(A0) is a field.

Proof. If A is actually isomorphic to some M(m, n; B) or M(r, B) as stated in
(6.6.2), there is a graded Morita context (A, B; P, Q) in which P is Bm⊕Bn or Br

treated as a right module over B (see (6.4.4)); obviously P satisfies the conditions
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inModg(Bto) that ensure the pairing mappings to be bijective; their bijectiveness
requires Zg(B) = Zg(A) = K (see (6.4.3)(b)). Moreover the categories Modg(A)
and Modg(B) are equivalent. Let us describe the objects of Modg(B). When
B1 = 0 and B is a division ring, the homogeneous components of any object of
Modg(B) are free modules over B; consequently it is a direct sum of graded irre-
ducible submodules isomorphic either to B (trivially graded) or to Bs (in which
all elements are odd). When B1 �= 0 and all nonzero elements of B1 are invertible,
then the grading of B is regular, and every graded module over B is determined
by its even component (see (6.2.4)) which is a free module over the division ring
B0; therefore the whole module is a direct sum of graded irreducible submodules
isomorphic to B. Because of the above-mentioned equivalence of categories, every
object in Modg(A) is a direct sum of irreducible objects, all isomorphic to P or
to P s when B1 = 0, all isomorphic to P when B1 �= 0. This proves the unicity
of B up to isomorphy, since Bto is isomorphic to Endg

A(P ) for every graded irre-
ducible module P over A. Then the couple (m, n) is determined up to order by
the dimensions of A0 and A1 when B1 = 0, and r is determined by the dimension
of A when B1 �= 0. Moreover when B1 �= 0, then B1 contains invertible elements,
the grading of B is balanced, and the grading of A too.

When A is isomorphic to M(r, B) with B1 �= 0, then A0 is isomorphic to
M(r, B0) and the equality Z(A0) = Z(B0) follows from a suitable Morita con-
text (A0, B0; Br

0 , . . . ); this proves that Z(A0) is a field. When A is isomorphic
to M(m, n; B) with B1 = 0 and mn �= 0, then A0 is isomorphic to M(m, B) ×
M(n, B), the center of which is isomorphic to the center of B×B, that is K ×K.
When mn = 0, then A1 = 0 and Z(A) = Zg(A) = K. All this shows that it is easy
to foresee whether B must be trivially graded or not.

Now we prove the existence of B and (m, n) or r. If every homogeneous
nonzero element of A is invertible, there is nothing to prove. If some nonzero
homogeneous elements are not invertible, A contains nontrivial graded left ideals;
let P be a minimal graded left ideal; since A has finite dimension, such an ideal P
does exist; it is generated by one homogeneous element. We set B = (Endg

A(P ))to

and we prove that conversely A = Endg
Bto(P ) by means of Morita theory. First

(A, B; P, Q) is a graded Morita context for a suitable Q. Secondly we prove that P
is projective over A because it is a direct summand of A in Mod0(A). Indeed the
ideal PA is graded and must be equal to A (since A is graded simple); since P is
irreducible as a graded module over A, each left ideal Pa (with a homogeneous in
A) is either 0 or isomorphic to P ; consequently A is semi-simple in Mod0(A) and
from (6.3.1) or (6.3.2) we deduce the existence of a graded left ideal supplementary
to P . Thirdly, since P is projective over A, the pairing mapping P ⊗Q→ A is not
zero, and since its image is a graded ideal of A, it must be A; thus P is a generator
of modules over A, and from (6.4.4) and (6.4.2) we deduce A = Endg

Bto(P ).

Since P is a graded minimal left ideal of A, every nonzero homogeneous
element b of B is invertible; indeed Ker(bto) (resp. Im(bto)) is a graded left ideal
contained in P , and consequently equal to 0 (resp. P ).
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When B1 = 0, we choose a basis of P over the division ring B, made of
homogeneous elements, let us say m even ones and n odd ones; this leads to an
isomorphism M(m, n; B) → EndBo(P ). When B1 �= 0, P0 is a free module over
the division ring B0 and every basis of P0 over B0 is a basis of P over B, because
of (6.2.4); thus we get an isomorphism M(r, B) → Endg

Bto(P ). In both cases A is
isomorphic to the announced matrix algebra. �

The beginning of the proof of (6.6.2) deserves to be emphasized in a corollary.

(6.6.3) Corollary. Let B be a graded central division algebra over K. When B1 �= 0,
every graded module over M(r, B) is a direct sum of graded irreducible submod-
ules, which are all isomorphic to Br. When B1 = 0, every graded module over
M(m, n; B) is also a direct sum of graded irreducible submodules; there is a graded
irreducible module P such that P0 = Bm and P1 = Bn, and all other ones are
isomorphic either to P or to P s (the module P with shifted grading).

It is also worth remembering that Endg
A(P ) is isomorphic to Bto when P is

a graded irreducible module over a graded algebra A isomorphic to M(r, B) or
M(m, n; B) as in (6.6.3). See (6.ex.4) for the calculation of Endg

A(M) when M is
any finitely generated module over A; it is isomorphic to M(j, Bto) when B1 �= 0
and M = P j ; it is isomorphic to M(j, k; Bo) when B1 = 0 and M = P j ⊕ (P s)k.

In (3.5.10) it has been observed that every graded Azumaya algebra over a
field is a graded central simple algebra; now we shall prove the converse statement.

(6.6.4) Theorem. A finite dimensional algebra over K is a graded central simple
algebra if and only if it is a graded Azumaya algebra.

Proof. Since we already know that a graded Azumaya algebra is graded central
simple, it suffices to prove the surjectiveness of the mapping A ⊗̂Ato → End(A)
when A is a graded central simple algebra. This is a consequence of the density
theorem (6.3.3). Indeed, since A is a graded simple algebra, it is a graded irre-
ducible module over C = A ⊗̂Ato; moreover Endg

C(A) = K since Zg(A) = K (see
(6.5.1)). Consequently, if (x1, . . . , xm+n) is a basis of A over K in which the first
m elements are even and the last n ones are odd, for every f ∈ End(A) there
exists c ∈ C such that cxi = f(xi) for i = 1, 2, . . . , m + n. �

Now we can apply to graded central simple algebras all the results of 3.5 ob-
tained for graded Azumaya algebras, except (3.5.14) (not yet proved in all cases)
and (3.5.15) (for which no general proof is provided in this book). The next theo-
rem implies that (3.5.15) is true when K is a field.

(6.6.5) Theorem. If A is a graded central simple algebra over K, there exists a
(finite-dimensional) field extension K → L such that one of the following asser-
tions is true:
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– either there exists a couple (m,n) such that L⊗A is isomorphic toM(m,n;L);

– or there exists r such that L⊗A is isomorphic to M(r, (L2)g).

In the latter case K cannot have characteristic 2.

Proof. Let B be a graded K-algebra such that B0 contains an element z outside
K. The morphism from K[Z] (algebra of polynomials) into B0 defined by Z �−→ z
shows that the subalgebra K[z] generated by z is isomorphic to the quotient of
K[Z] by the ideal (F ) generated by some polynomial F of degree > 1; it is a field
if and only if F is irreducible on K. Let us assume that B0 is a division ring.
If K → K ′ is a field extension with K ′ isomorphic to the field K[z], then F is
no longer irreducible on K ′ since K ′ contains a root of F (the image of z by the
isomorphism K[z] → K ′), and K ′[Z]/(F ) is no longer a field; consequently the
subalgebra generated by 1⊗z in K ′⊗B is not a field, and K ′⊗B0 is not a division
ring.

After this preliminary remark we come back to the algebra B obtained in
(6.6.2); when B0 �= K, there is a field extension K → K ′ such that K ′ ⊗ B0 is
not a division ring; nevertheless, because of (6.6.4), K ′ ⊗B is a graded Azumaya
algebra over K ′, consequently graded central simple, and isomorphic either to some
M(m1, n1; B′) with B′

1 = 0 (and even n1 = 0 if B1 = 0), or to some M(r1, B
′)

with B′
1 �= 0 ; in both cases B′ is a graded Azumaya algebra over K ′ and all

its nonzero homogeneous elements are invertible; moreover dimK′(B′
0) is strictly

smaller than dimK(B0). As for K ′⊗A, in all cases it is isomorphic to some algebra
M(m′, n′; B′) or M(r′, B′). If B′

0 �= K ′, we make a new suitable field extension
K ′ → K ′′ that will show that K ′′⊗A is isomorphic to some algebraM(m′′, n′′; B′′)
or M(r′′, B′′) such that dimK′′(B′′

0 ) is still strictly smaller than dimK′(B′
0). This

process must end with a field extension K → L such that L ⊗A is isomorphic to
some M(p, q; C) or M(s, C) with C0 = L.

When C1 = 0, the proof is ended. Otherwise C1 contains invertible elements,
and has the same dimension as C0; consequently C has dimension 2 over L and is
commutative. This cannot happen if K has characteristic 2, because the equalities
Zg(C) = Z(C) = C contradict the fact that C is a graded Azumaya algebra over
L. Consequently C is a graded quadratic extension of L, generated (as an algebra)
by some invertible z ∈ C1 such that z2 ∈ L. If z2 has a square root in L, C is
isomorphic to (L2)g and the proof is ended. Otherwise we use a last field extension
L→ L′ where L′ is a quadratic extension of L, isomorphic to C without grading;
at last L′ ⊗ C is isomorphic to (L′2)g, and the proof is definitively ended. �

(6.6.6) Remark. Remember that the great theorem (3.5.14) has been already
proved in 3.5 for every graded Azumaya algebra A for which (3.5.15) is true.
Because of (6.6.5) this theorem is now proved for every graded central simple
algebra over a field.

The general proof of (3.5.14) needs many results about graded separability,
in particular the next one.
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(6.6.7) Proposition. Let A be a graded algebra of finite dimension over K, such that
Zg(A) = K. It is graded central simple over K if and only if it is graded separable
over K. Besides, if it is actually graded central simple, the even subalgebra A0 and
the whole algebra A without grading are both separable over K.

Proof. When A is graded central simple, then its graded separability is a conse-
quence of (6.6.5), with the help of the following results of the previous section:
(6.5.8), (6.5.6), (6.5.5), (6.5.4). Since in (6.6.5) the algebras L⊗A0 and L⊗A with-
out grading are isomorphic either to some M(r, L) or to some M0(m, n; L) or to
someM(r, L)2, the separability of A0 and A without grading is also a consequence
of these results of 6.5, and yet (6.5.15) when a direct product appears.

Conversely let us assume that A is graded separable. We first prove that
A is a graded semi-simple algebra; in other words, every graded A-module M is
projective (see (6.3.4)). If M and N are graded modules over A, then HomK(M, N)
is a graded module over C = A ⊗̂Ato, because for all f ∈ HomK(M, N) and all
a, b ∈ A we can define afb in this way: (afb)(x) = a f(bx) . It is easy to verify that
Homg

A(M, N) is equal to Zg(A, HomK(M, N)). Now the functor HomK(M, . . . )
is exact because K is a field; and then the functor Zg(A, HomK(M, . . . )) is exact
because A is graded separable; consequently the functor Homg

A(M, . . . ) is exact
and M is projective over A.

When A is graded separable over K, then Ato and C = A ⊗̂Ato too are
graded separable over K; therefore C too is a graded semi-simple algebra. Let us
treat A as a module over C. If A contained a nontrivial graded (two-sided) ideal
a, then A should be the direct sum of a and another nontrivial graded ideal b,
and the projections of 1 in a and b should be two linearly independent elements
of Z0(A); but this is impossible when Z0(A) = K. �

6.7 More information about graded Azumaya algebras

Let A be a graded algebra over K, that is projective and finitely generated as
a K-module. In (3.5.6) it is stated that A is a graded Azumaya algebra if and
only if A/mA is a graded Azumaya over the field K/m for every maximal ideal m
of K. Because of (6.6.4), this condition precisely means that A/mA is a graded
central simple algebra over K/m. This fact and the results of 6.5 about graded
separability allow us to complete the proof of the great theorem (3.5.14) devoted
especially to Z(A0, A), Z(A) and Z(A0).

End of the proof of (3.5.14). In (6.6.6) it has been observed that (3.5.14) is now
proved for all graded central simple algebras over fields. Let us come back to our
previous ring K, and let A be a graded Azumaya algebra over K such that A0

and A1 have constant ranks. The statements in (3.5.14) about the ranks of A0 and
A1 are already obtained by means of one maximal ideal m and the corresponding
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extension (K/m)⊗A = A/mA. When A has odd type, the invertibility of 2 in K
follows from its invertibility in K/m for every maximal ideal m.

From (6.6.7) we know that all the extensions A/mA are separable with and
without their gradings, and the even subalgebras A0/mA0 too; because of (6.5.17)
we can assert that A is separable with and without its grading, and A0 too.
From the last assertion in (6.5.12) we deduce that Zg(A), Z(A) and Z(A0, A)
are direct summands of A, whereas Z0(A) and Z(A0) are direct summands of A0.
Consequently they are projective submodules, the ranks of which appear in the
extensions A/mA. All this agrees with what is announced in (3.5.14); in particular
Zg(A) = Z0(A) = K whereas Z(A0, A) has constant rank 2 if A1 �= 0. Since
Z(A0) and Z(A) are direct summands of Z(A0, A), their ranks show that they are
respectively equal to Z(A0, A) and K when A has even type and A1 �= 0, and that
they are equal to K and Z(A0, A) when A has odd type.

To prove that Z(A0, A) is a graded quadratic extension of K, we can either
put forward (2.3.4) if we argue as in 3.4, or put forward (6.5.6) and again (6.5.17).

It remains to prove (3.5.13); it is a triviality when A has odd type, because in
this case ϕ(z) = (−1)∂zz, and consequently (3.5.13) is the same thing as yz = zy,
which agrees with the equality Z(A0, A) = Z(A). When A has even type and A1 �=
0, then Z(A0, A) = Z(A0), and (3.5.13) means yz = zy if y is even, and yz = ϕ(z)y
if y is odd. A proof is only necessary when y is odd; let us treat A1 as a bimodule
over the commutative algebra Z(A0); the action of z on A1 is the multiplication
by z on one side, and the multiplication by ϕ(z) on the other side; thus we must
prove that Z(Z(A0), A1) is equal to A1; now it is a direct summand of A1 (see
(6.5.12)) because Z(A0) is separable (see (6.5.6)); consequently this assertion about
Z(Z(A0), A1) is true in A because it is true in all algebras A/mA. �

Our first study of graded Azumaya algebras was based on Definition (3.5.1),
the most convenient at that moment; but there are other possible definitions which
might be chosen in the following theorem.

(6.7.1) Theorem. Let A be a graded algebra over K. The following assertions are
equivalent, and mean that A is a graded Azumaya algebra over K :
(a) A is a finitely generated and faithful projective K-module and the canonical

morphism A ⊗̂Ato → End(A) is bijective;
(b) A is a finitely generated projective K-module, and for each maximal ideal m

of K, A/mA is a graded central simple algebra over K/m ;
(c) A is a finitely generated K-module, it is a graded separable algebra over K,

and Zg(A) = K;
(d) Zg(A) = K and A is a generator of modules over A ⊗̂Ato;
(e) these two functors determine an equivalence between the categories Modg(K)

and Modg(A ⊗̂Ato) :

Modg(K) −→Modg(A ⊗̂Ato) , M �−→ A⊗K M ,

Modg(A ⊗̂Ato) −→Modg(K) , N �−→ Zg(A, N).
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Proof. As explained above, the equivalence (a)⇔(b) is a consequence of (3.5.6)
and (6.6.4). When the assertion (b) is true, every A/mA is graded separable over
K/m (see (6.6.7)); consequently A is graded separable over K (see (6.5.17)) and
Zg(A) is a direct summand of A; since Zg(A) has constant rank 1, it is equal to
K, as stated in (c).

To prove (c)⇒(d), more work is necessary. Let M be a graded maximal (two-
sided) ideal of A, and m = M ∩K. Since Zg(A/M) = K/m (see (6.5.3)), and since
every homogeneous nonzero element in Zg(A/M) is invertible (because it generates
a graded ideal that must be equal to A/M), K/m is a field, and m is a maximal
ideal of K. Since A/mA is graded separable over K/m (see again (6.5.3)), it is a
graded central simple algebra over K/m. Consequently the kernel of the graded
algebra morphism A/mA→ A/M must be 0, and this proves that M = mA. From
(6.5.5) we deduce that A ⊗̂Ato too is a graded separable algebra, the graded center
of which is K. Therefore every graded maximal ideal of A ⊗̂Ato too is generated
by a maximal ideal of K. Now let us consider this mapping:

A⊗ Zg(A, A ⊗̂Ato) −→ A ⊗̂Ato , a⊗ z �−→ az = (−1)∂a∂zza ;

its image is a graded ideal of A ⊗̂Ato. If this mapping is surjective, A is a generator
in Modg(A ⊗̂Ato) and (d) is proved. If it were not surjective, its image should be
contained in some graded maximal ideal generated by some maximal ideal m of
K; this would imply Zg(A, A ⊗̂Ato) ⊂ mA ⊗̂Ato, contrary to the surjectiveness
of the mapping Zg(A, A ⊗̂Ato)→ Zg(A) = K (see (6.5.2)).

When Zg(A) = K as in the assertion (d), then Endg

A ⊗̂ Ato(A) = K. With
the help of (6.4.4) we get a graded Morita context (A ⊗̂Ato, K; A, Q) in which
Q = Zg(A, A ⊗̂Ato) because of (6.5.1). When A is a generator inModg(A ⊗̂Ato),
the pairing mapping A ⊗̂KQ → A ⊗̂Ato is bijective. From (6.4.2)(d) we deduce
that A is finitely generated and projective in Modg(K), and from (6.4.2)(b) we
deduce that A ⊗̂Ato is isomorphic to EndK(A). Therefore (d)⇒(a).

When (a) is true, by using (6.4.4) in another way we get a graded Morita
context (A ⊗̂Ato, K; A, A∗), in which A ⊗̂Ato has taken the place of EndK(A),
and A∗ means HomK(A, K). Since A is a finitely generated projective generator in
Modg(K), the pairing mappings are bijective. By means of (6.4.2) and (6.4.3) we
can prove again that (a) implies (c) and (d); but now we want to prove (a)⇒(e),
and we deduce from (6.4.3) an equivalence of categories between Modg(A ⊗̂Ato)
andModg(K). This equivalence requires two functors, one involving A⊗K M , and
the other one involving Zg(A, N) because of the following isomorphisms coming
from (6.4.2)(e) and (6.5.1):

A∗ ⊗A ⊗̂ Ato N −→ HomA ⊗̂ Ato(A, N) −→ Zg(A, N) .

Conversely when the assertion (e) is true, we can put forward (6.4.6) because
the equivalence under consideration is determined by graded K-linear functors;
thus we know that there is a graded Morita context (A ⊗̂Ato, K; A, Q) with
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bijective pairing mappings; this implies that A is a faithful finitely generated
projective K-module, and that A ⊗̂Ato is isomorphic to EndK(A) (see (6.4.2)(b));
thus (e)⇒(a) and the proof is complete. �

Here are other consequences of the previous three sections.

(6.7.2) Proposition. If A ⊗̂B is a graded Azumaya algebra, and if A is a finitely
generated projective module, then A is a graded Azumaya algebra.

Indeed from (6.6.1) we deduce that A/mA is a graded central simple algebra over
K/m for each maximal ideal m of K. �
Remark. In (6.7.2) the assumption that A is a finitely generated projective module
is not necessary. Indeed when M is a finitely generated faithful projective module,
there exists N such that M ⊗N is a free module of finite nonzero rank; applying
this to M = A ⊗ B, we get a free module A ⊗ (B ⊗ N) of finite nonzero rank,
which allows us to prove that A is a finitely generated faithful projective module:
see (1.ex.14).

(6.7.3) Proposition. A graded Azumaya algebra A is separable with and without
its grading, and its even subalgebra A0 too. Consequently if N is a bimodule over
A, Z(A, N) and Z(A0, N) are direct summands of N , and also Zg(A, N) if N is
a graded bimodule over A.

Indeed this is a consequence of (6.6.7), (6.5.17) and (6.5.12). �
(6.7.4) Proposition. If A is a graded Azumaya algebra over K, the mapping a �−→
aA is a bijection from the set of ideals a of K onto the set of graded (two-sided)
ideals of A.

This is a consequence of (6.4.3)(c), because (A ⊗̂Ato, K; A, A∗) is a graded Morita
context with bijective pairing mappings (as observed in the proof of (6.7.1)), and
the graded submodules of A in the category Modg(A ⊗̂Ato) are its graded ideals.

�
(6.7.5) Proposition. If M is a graded K-module, and A a graded Azumaya algebra,
the mapping x �−→ 1⊗ x is a bijection from M onto Zg(A, A⊗K M).

Proof. From the assertion (e) in (6.7.1) we deduce that Zg(A, A⊗K M) must be
isomorphic to M ; a precise examination of the arguments yields this sequence of
isomorphisms:

M −→ K ⊗K M −→ (A∗ ⊗A ⊗̂ Ato A)⊗K M −→ A∗ ⊗A ⊗̂ Ato (A⊗K M)
−→ Homg

A ⊗̂ Ato(A, A⊗K M) −→ Zg(A, A⊗K M).

Because of (1.13.2) there exists a linear form f ∈ A∗ such that f(1) = 1. The
image in A∗ ⊗A ⊗̂ Ato A ⊗K M of any element x of M is f ⊗ 1 ⊗ x ; now the
image in Zg(A, A⊗K M) of any g⊗a⊗x (with g ∈ A∗ and a ∈ A) is g(1)a⊗x ;
thus the image of f ⊗ 1⊗ x is 1⊗ x. �
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(6.7.6) Proposition. If N is a graded bimodule over A, the mapping x⊗ z �−→ xz
is a bijection from A⊗K Zg(A, N) onto N .

Proof. Because of the equivalence of categories announced in (6.7.1)(e), N is
isomorphic to A ⊗M with M = Zg(A, N). Consequently it suffices to verify the
bijectiveness of the mapping

A⊗K Zg(A, A⊗K M) −→ A⊗K M .

its bijectiveness is an immediate consequence of (6.7.5). �

(6.7.7) Corollary. Let C be a graded algebra that contains a graded Azumaya algebra
A as a graded subalgebra; thus C is a bimodule over A, and we can consider the
graded subalgebra B = Zg(A, C). The natural algebra morphism A ⊗̂B → C is an
isomorphism. If moreover C is a graded Azumaya algebra, then B too is a graded
Azumaya algebra, and conversely A = Zg(B, C).

Proof. It is clear that Zg(A, C) is a graded subalgebra and that we get an algebra
morphism A ⊗̂B → C. Its bijectiveness follows from (6.7.6). Since K is a direct
summand of A (see (1.13.2)), B is a direct summand of C, therefore a finitely
generated projective K-module if C too is a graded Azumaya algebra; thus (6.7.2)
implies that B is a graded Azumaya algebra. The evident inclusion A ⊂ Zg(B, C)
is an equality because C is also isomorphic to B ⊗̂ Zg(B, C). �

Graded automorphisms of a graded Azumaya algebra

In (5.8.1) there is an isomorphism G′Lip(M, q) → Aut(M, q) when (M, q) is
a quadratic space, and C�(M, q) a graded Azumaya algebra. The fact that all
automorphisms of (M, q) extend to generalized twisted inner automorphisms of
C�(M, q) is also a consequence of the next theorem. See (5.1.5) for the definition
of Zg(θ); here Zr(θ) = Zg(θ) because Zr(A) = Zg(A) = K (see (5.1.8)).

(6.7.8) Theorem. If θ is a graded automorphism of a graded Azumaya algebra A,
then θ is a generalized twisted inner automorphism and the graded submodule Zg(θ)
is invertible inside A.

Proof. The automorphism θ allows us to give to A another structure of bimodule
over A; now an element a ⊗ bto of A ⊗̂Ato operates in A in this way: x �−→
(−1)∂b∂xθ(a)xb. The graded centralizer for this new structure of bimodule is pre-
cisely the submodule Zg(θ) defined in (5.1.5). We know that Zg(θ) is a direct
summand of A (see (6.5.12)), and that the natural mapping A ⊗ Zg(θ) → A is
bijective (see (6.7.6)); therefore Zg(θ) is a projective module of constant rank 1.
The same assertions are true for Zg(θ−1). The bijectiveness of the natural mapping
Zg(θ) ⊗ Zg(θ−1) → K (that is x ⊗ x′ �−→ xx′) follows from the bijectiveness of
A⊗ Zg(θ)⊗ Zg(θ−1)→ A . �
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As an immediate consequence of (6.7.8) we get the exact sequence of multi-
plicative groups

(6.7.9) 1 −→ K× −→ Autg
in(A) −→ Autg(A) −→ Pic(K) ;

Autg
in(A) is the subgroup of twisted inner automorphisms Θx determined by locally

homogeneous invertible elements x (see 5.1); remember that Θx = idA if and
only if x belongs to the multiplicative group of Zr(A), that is K× in the present
case. The last morphism in (6.7.9) maps every θ to the isomorphy class of Z(θ)
in the Picard group of K; it is the neutral class if and only if Zr(θ) is a free
submodule generated by an invertible locally homogeneous element. When K is a
local ring, Pic(K) is a trivial group and thus we find again the graded version of
the Skolem–Noether theorem, stating that every graded automorphism is a twisted
inner automorphism.

To find the image of the last morphism in (6.7.9) a preliminary lemma is
necessary.

(6.7.10) Lemma. Every graded algebra morphism θ : A → B between graded Azu-
maya algebras is injective, and it is bijective if and only if A and B have the same
rank at every maximal ideal.

Proof. Since graded Azumaya algebras are faithful modules, the restriction of
θ to K is injective; since Ker(θ) is a graded ideal of A, from (6.7.4) we de-
duce that Ker(θ) = 0 and θ is injective. Consequently θ(A) is also a graded
Azumaya algebra, and from (6.7.7) we deduce that the multiplication morphism
θ(A) ⊗̂ Zg(θ(A), B) → B is bijective. Consequently θ is bijective if and only if A
and B have everywhere the same rank; indeed Zg(θ(A), B) = K if they have the
same rank. �

(6.7.11) Proposition. When P is an invertible module over K, and A a graded
Azumaya algebra, the following assertions are equivalent:

(a) there exists θ ∈ Autg(A) such that P and Zg(θ) are isomorphic in Mod0(K);
(b) A and A⊗ P are isomorphic in Mod0(Ato);
(c) A and A⊗ P are isomorphic in Mod0(A).

Proof. The isomorphism of right A-modules A ⊗ Zr(θ) → A has already been
observed in the proof of (6.7.8). Conversely if f : A⊗P → A is an isomorphism of
graded right modules over A, by means of f we carry onto A the structure of left
A-module of A⊗ P . In other words we get an algebra morphism A→ EndAto(A)
if we map every y ∈ A to x �−→ f(yf−1(x)). Yet we already get an isomorphism
A → EndAto(A) by mapping y to x �−→ yx. Consequently there is an algebra
morphism θ : A → A such that f(yf−1(x)) = θ(y)x for all x and y in A. Because
of (6.7.10), θ is an automorphism of A. From the equalities f−1(θ(y)x) = yf−1(x)
and f−1(xy) = f−1(x)y, it is easy to deduce that Zg(θ) is the image of Zg(A, A⊗P )
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by f . Since Zg(A, A ⊗ P ) is isomorphic to P (see (6.7.5)), we have proved that
Zg(θ) is isomorphic to P , and that conversely (b)⇒(a).

Now the equivalence (a)⇔(c) follows from these two facts: the canonical
mapping A → Ato, that is a �−→ ato, is an isomorphism in Mod0(A ⊗̂Ato), and
every graded automorphism of Ato is equal to θto (that is ato �−→ θ(a)to) for some
θ ∈ Autg(A). �

More information about Brauer–Wall groups

With every graded Azumaya algebra A over K is associated a class in the group
Brg(K); in 3.5 this group has been defined as a quotient of a monoid by a sub-
monoid, and this definition corresponds to the property (a) in the next theorem;
yet other properties may allow us to recognize whether two graded Azumaya al-
gebras have the same class in Brg(K).

(6.7.12) Proposition. Let A and B be graded Azumaya algebras over K. The fol-
lowing assertions are equivalent (and mean that A and B have the same class in
Brg(K)):

(a) there exist graded finitely generated and faithful projective K-modules P and
Q such that A ⊗̂End(P ) is isomorphic to B ⊗̂End(Q);

(b) there is a graded K-linear equivalence of categories between Modg(A) and
Modg(B);

(c) in Modg(Bto) there exists a graded finitely generated projective generator P
such that A is isomorphic to EndBto(P );

(d) A ⊗̂Bto is isomorphic to End(P ) for some graded finitely generated projec-
tive module P .

Proof. To prove (a)⇒(b), we construct a graded Morita context with bijective
pairing mappings in which the algebras are A and A ⊗̂ End(P ), whence a graded
K-linear equivalence of categories between Modg(A) and Modg(A ⊗̂End(P )).
Similarly there is a graded K-linear equivalence of categories between Modg(B)
and Modg(B ⊗̂End(Q)), and thus (b) is a consequence of (a). Because of (6.4.4)
such a graded Morita context exists if there is a finitely generated projective gen-
erator P ′ in Modg(A) such that (A ⊗̂End(P ))to, or equivalently Ato ⊗̂ End(P )to,
is isomorphic to Endg

A(P ′). We can choose P ′ = A ⊗ P ∗ with P ∗ = Hom(P, K),
because Ato is isomorphic to EndA(A), and End(P )to is isomorphic to End(P ∗);
thus there is an algebra morphism Ato ⊗̂End(P )to → Endg

A(A ⊗ P ∗), and its bi-
jectiveness follows from the projectiveness of P by the same argument as in the
proof of (1.9.7).

The implication (b)⇒(c) is a consequence of (6.4.6) which affords a graded
Morita context (A, B; P, Q) with surjective pairing mappings, and (6.4.2) which
affords an isomorphism A→ EndBto(P ).
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Now we prove (c)⇒(d). When (c) is true, we get the following chain of iso-
morphisms, the end of which shall be explained at once:

A ⊗̂Bto −→ Bto ⊗̂A −→ Bto ⊗̂Endg
Bto(P ) −→ Endg

B ⊗̂ Bto(B⊗P ) −→ EndK(P ).

Here B ⊗ P is a module over B ⊗̂Bto in the following way:

(b′ ⊗ (b′′)to) (b′′′ ⊗ x) = (−1)∂b′′(∂b′′′+∂x) b′b′′′ ⊗ xb′′ ;

and the third algebra morphism above is defined in this way:

bto ⊗ f �−→ (b′′′ ⊗ x �−→ (−1)∂b′′′(∂f+∂b) b′′′b⊗ f(x)) ;

it is an isomorphism because P is projective over Bto (for reasons similar to those in
the proof of (1.9.7)). The fourth algebra isomorphism comes from the equivalence
between the categoriesModg(B ⊗̂Bto) andModg(K). It remains to notice that P
is faithful inModg(K) because it is a generator inModg(Bto), that it is projective
in Modg(K) because it is projective in Modg(Bto) and B is projective over K,
and that it is finitely generated over K because B⊗P is finitely generated in the
equivalent category Modg(B ⊗̂Bto).

At last we prove (d)⇒(a). When (d) is true, we get the following isomor-
phisms:

B ⊗̂End(P ) −→ B ⊗̂A ⊗̂Bto −→ A ⊗̂B ⊗̂Bto −→ A ⊗̂End(B). �

6.8 Involutions on graded central simple algebras

The following developments are motivated by the fact that Clifford algebras are
not just graded algebras, they are also provided with a reversion τ that often plays
an important role. The definition of involutions (which other authors rather call
“anti-involutions”) is given in (1.13.7); when τ is said to be an involution of a
graded algebra A, it must be understood that τ too is graded: τ(Ai) = Ai for
i = 0, 1.

(6.8.1) Proposition. Let A and A′ be graded algebras provided with involutions τ
and τ ′. There is a unique involution τ ′′ on A ⊗̂A′ such that (for all x ∈ A and all
x′ ∈ A′)

τ ′′(x⊗ 1) = τ(x) ⊗ 1 and τ ′′(1⊗ x′) = 1⊗ τ ′(x′) ;

this involution τ ′′ is denoted by τ ⊗̃ τ ′ and is defined in this way:

(τ ⊗̃ τ ′)(x⊗ x′) = (−1)∂x∂x′
τ(x) ⊗ τ ′(x′).

This statement can be proved like the particular case presented in (3.2.8).
Observe that τ ⊗̃ τ ′ is not the same thing as τ ⊗̂ τ ′ defined in 4.2; the definition
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of τ ⊗̃ τ ′ cannot be explained by the twisting rule (4.2.1); as a matter of fact, this
rule is already violated by the equality τ(xy) = τ(y)τ(x) where the reversion of
the letters x and y raises no twisting sign.

The involutions of graded central simple algebras over a field K are classified
by a cyclic group of order 8 when K does not have characteristic 2. But when K
has characteristic 2, this group shrinks and becomes a group of order 2. In the
following definition and lemmas we forget the algebra structure of A, and treat it
momentarily as a space of finite dimension over K.

(6.8.2) Definition. Let τ be an involutive endomorphism of a finite-dimensional
space A. The dimensional trace of τ is

dtr(τ) = dim(Ker(τ − id))− dim(Im(τ − id))
= 2dim(Ker(τ − id))− dim(A) = dim(A)− 2dim(Im(τ − id)).

The image of dtr(τ) by the canonical morphism Z → K is actually the trace
of τ . Indeed when K does not have characteristic 2, then A is the direct sum of
Ker(τ − id) and Ker(τ + id) = Im(τ − id); and when K has characteristic 2, all
eigenvalues of τ are equal to 1 since (τ − id)2 = 0. Moreover when K does not
have characteristic 2, then dtr(−τ) = −dtr(τ) and dtr(τ) may be any element of
Z. But when K has characteristic 2, then dtr(−τ) = dtr(τ) and dtr(τ) is always
nonnegative.

(6.8.3) Lemma. Let A and A′ be spaces of finite dimensions over K. If τ and τ ′ are
involutive endomorphisms of respectively A and A′, then dtr(τ ⊗ τ ′) is the product
of dtr(τ) and dtr(τ ′).

Proof. When K does not have characteristic 2, this can be verified by easy calcu-
lations of dimensions, because A is the direct sum of Ker(τ − id) and Ker(τ + id),
and the same for (A′, τ ′). When K has characteristic 2, and m and n are the
dimensions of Ker(τ − id) and Ker(τ ′ − id), there is a basis (b1, b2, . . . ) of A such
that τ(bj) = bj if j ≤ m, and τ(bj) = bj + bj−m if j > m, and similarly a basis
(b′1, b

′
2, . . . ) of M ′ such that τ ′(b′k) = b′k if k ≤ n, and τ ′(b′k) = b′k + b′k−n if k > n.

Thus we realize that Ker(τ ⊗ τ ′ − id) is the subspace spanned by all bj ⊗ b′k with
j ≤ m and k ≤ n, and all bj⊗ b′k−n− bj−m⊗ b′k with j > m and k > n. Therefore
the dimension of Ker(τ ⊗ τ ′− id) is again mn+(dim(A)−m)(dim(A′)−n) . �

Now we introduce gradings, and tackle the difficulty raised by the unusual
twisting in τ ⊗̃ τ ′. This difficulty requires embedding of Z into the field C of
complex numbers; here i means

√
−1.

(6.8.4) Definition. Let τ be a graded involutive endomorphism of a graded space
A of finite dimension over K; let τ0 and τ1 be its restrictions to A0 and A1. When
K does not have characteristic 2, the complex divided trace of τ is the complex
number

cp.dv.tr(τ) =
dtr(τ0) + i dtr(τ1)√

dim(A)
.
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When K has characteristic 2, its divided trace and twisted divided trace are the
real numbers

dv.tr(τ) =
dtr(τ)√
dim(A)

and tw.dv.tr(τ) =
dtr(τ0) − dtr(τ1)√

dim(A)
.

When K does not have characteristic 2, the grading of A is determined by
the involutive endomorphism σ defined by σ(x) = (−1)∂xx, and since τ commutes
with σ, we actually obtain a pair (τ, στ) of graded involutive endomorphisms;
obviously the complex divided traces of τ and στ are conjugate complex numbers.
Such pairs do not appear when K has characteristic 2 since σ = idA.

In the following two examples we can observe that the division by the square
root of dim(A) gives complex numbers of module 1 (precisely, eighth roots of 1 in
C) and this will prove to be true for all the complex or twisted divided traces that
shall be calculated later.

(6.8.5) Example. Let S be a graded space of finite dimension over K, and B′′ the
space of all bilinear forms β : S×S → K. It is graded in this way: B′′

i (for i = 0, 1)
in the subspace of all β that vanish on Sj×Sk if i �= j+k (in Z/2Z). Let ρ′′ be the
graded involutive endomorphism of B′′ that maps every β to the symmetrically
opposite bilinear form βo defined by βo(s, t) = β(t, s) for all s and t ∈ S. When
K does not have characteristic 2, the complex divided trace of ρ′′ is always equal
to 1, and when K has characteristic 2, then dv.tr(ρ′′) = tw.dv.tr(ρ′′) = 1.

Indeed let m and n be the dimensions of S0 and S1, and for every (j, k) ∈
(Z/2Z)2 let B′′

j,k be the subspace of all β vanishing on Sj′ × Sk′ if (j′, k′) �= (j, k).
Since the odd component ρ′′1 induces bijections between B′′

0,1 and B′′
1,0, we realize

that dtr(ρ′′1 ) = 0. The even component ρ′′0 leaves B′′
0,0 and B′′

1,1 invariant, whence

2 dim(Ker(ρ′′0 − id)) = m(m + 1) + n(n + 1) .

Since dim(B′′
0 ) = m2 + n2, we realize that dtr(ρ′′0 ) = m + n. And since dim(B′′) =

(m + n)2, all the announced conclusions follow. �

(6.8.6) Example. Now K does not have characteristic 2, and A is a graded quadratic
extension of A with a nontrivial grading. The only automorphisms of A are idA

and the standard involution ϕ, and both are (graded) involutions of A; obviously

cp.dv.tr(id) =
1 + i√

2
and cp.dv.tr(ϕ) =

1− i√
2

.

The very justification of the definition (6.8.4) lies in the next theorem, which
is the first step toward the classification of involutions of graded central simple
algebras. This classification can be achieved immediately after (6.8.7) by means of
(6.6.5) and (6.7.8) (as is explained in (6.ex.17)), or by means of a graded module
S over A as in (6.8.14) and (6.8.15) below.
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(6.8.7) Theorem. Let the pair (A, τ) be as above in (6.8.4), and let (A′, τ ′) be a
similar pair. When K does not have characteristic 2, the complex divided trace
of τ ⊗̃ τ ′ is the product in C of the complex divided traces of τ and τ ′. When K
has characteristic 2, the same property is true for their divided traces and twisted
divided traces.

Proof. Let t0 , t1 , t′0 , t′1 be the dimensional traces of τ0 , τ1 , τ ′
0 , τ ′

1 , and let t′′0
and t′′1 be the dimensional traces of the homogeneous components of τ ⊗̃ τ ′. We
calculate t′′0 and t′′1 with the help of (6.8.3). When K does not have characteristic
2, there is actually a twisting in τ ⊗̃ τ ′ :

t′′0 = t0t
′
0 − t1t

′
1 , t′′1 = t0t

′
1 + t1t

′
0 , whence t′′0 + it′′1 = (t0 + it1)(t′0 + it′1) .

When K has characteristic 2, the twisting in τ ⊗̃ τ ′ disappears:

t′′0 = t0t
′
0 + t1t

′
1 , t′′1 = t0t

′
1 + t1t

′
0 , whence t′′0 ± t′′1 = (t0 ± t1)(t′0 ± t′1) .

In both cases we have discovered a multiplicative property, and it is respected
by the divisions by the square roots of the dimensions, since dim(A ⊗ A′) is the
product of dim(A) and dim(A′). �

(6.8.8) Example. Let (M, q) be a quadratic space of dimension r over the field K,
and τ the reversion in C�(M, q). When K does not have characteristic 2, then

cp.dv.tr(τ) = κr and cp.dv.tr(στ) = κ−r if κ = (1 + i)/
√

2.

Indeed, if we identify the Clifford algebra of the orthogonal sum of (M, q) and
some other quadratic space (M ′, q′) with C�(M, q) ⊗̂C�(M ′, q′), then its reversion
is identified with τ ⊗̃ τ ′ (in accordance with (3.2.8)); therefore the multiplicative
property stated in (6.8.7) allows us to deduce the general formulas from the partic-
ular case r = 1. In this case, τ is the identity mapping, στ the standard involution,
and the result can be read in (6.8.6). �

When K has characteristic 2, then r is even,

dv.tr(τ) = 1 and tw.dv.tr(τ) = (−1)r/2.

Indeed it suffices to verify these general formulas in the case r = 2, when τ0 is the
standard involution on C�0(M, q) (whence dtr(τ0) = 0), whereas τ1 is the identity
mapping of M (whence dtr(τ1) = 2). �

Scalar products on graded modules

Let A be a graded central simple algebra provided with a (graded) involution τ ,
and S a graded module over A that has finite nonzero dimension over K. Since A
is graded simple, S is a faithful module over A, and A is isomorphic to its image
in End(S) (see (6.7.10)). If we set

A′′ = End(S) and A′ = Endg
A(S),
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from (6.7.7) we deduce that the natural algebra morphism A ⊗̂A′ → A′′ is bijec-
tive, that A′ too is a graded central simple algebra, and that A ∼= Endg

A′(S). Now
let us define B′′ and ρ′′ as in the example (6.8.5). It is clear that B′′ is a right
module over A′′ in this way:

∀f ∈ A′′, ∀β ∈ B′′, ∀s, t ∈ S, (βf)(s, t) = β(f(s), t).

If βn is a nondegenerate homogeneous element of B′′, for every f ∈ A′′ there exists
a unique τ ′′(f) ∈ A′′ such that, for all s, t ∈ S,

(6.8.9) βn(f(s), t) = (−1)∂f∂βn βn(s, τ ′′(f)(t)) ;

it is easy to prove that τ ′′ is a graded anti-automorphism of A′′, and even an
involution of A′′ if βn is symmetric or skew symmetric.

Now we turn B′′ into a graded bimodule over A. For all a, b ∈ A, for all s,
t ∈ S and for all β ∈ B′′,

(6.8.10) (aβb)(s, t) = β(bs, τ(a)t).

As a matter of fact, we can turn B′′ into a bimodule over A in different ways,
but the discussion about the other actions of A ⊗̂Ato in B′′ can wait till the
next chapter. Let us set B′ = Zg(A,B′′); by definition the elements of B′ are the
scalar products on S associated with τ for the action defined in (6.8.10). Since the
natural mapping A⊗Zg(A,B′′) → B′′ is bijective (see (6.7.6)), and since B′′ and A′′

have the same dimension, we realize that B′ and A′ too have the same dimension.
Because of (6.8.10), the homogeneous elements of B′ are the homogeneous elements
of B′′ such that, for all a ∈ A and all s, t ∈ S,

(6.8.11) β(as, t) = (−1)∂a∂β β(s, τ(a)t).

Obviously ρ′′ leaves B′ invariant; let ρ′ be the restriction of ρ′′ to B′. When the
characteristic of K is �= 2, our first main purpose is cp.dv.tr(ρ′) which allows us
to calculate the dimensions of the kernels of ρ′0 ± id and ρ′1 ± id, in other words,
the dimensions of the spaces of homogeneous scalar products that are symmetric
or skew symmetric. When K has characteristic 2, only tw.dv.tr(ρ′) is meaningful
since later dv.tr(ρ′) proves to be always equal to 1. From (6.8.11) we also deduce
that βf belongs to B′ whenever β belongs to B′ and f to A′; in other words, B′

is a right module over A′; the structure of bimodule defined in (6.8.10) has been
chosen precisely for this property to be true.

(6.8.12) Lemma. At least one of the components B′
0 or B′

1 contains a nondegenerate
bilinear form βn that is symmetric or skew symmetric.

Proof. From (6.6.3) we know that S is a direct sum of graded submodules all
isomorphic to some graded irreducible module P or (in some cases) to P s. There
is a natural bijection between the scalar products on P (associated with τ) and
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the scalar products on P s and by this bijection symmetric (resp. skew symmetric)
scalar products correspond to symmetric (resp. skew symmetric) ones. Therefore
it suffices to prove (6.8.12) when S = P . If β is a nonzero homogeneous scalar
product on P (associated with τ), from (6.8.11) we deduce that the kernel of
dβ : P → P ∗ is a graded submodule of P ; since P is graded irreducible, it is
reduced to 0, and β is nondegenerate. Consequently any nonzero eigenvector of ρ′

in B′
0 or B′

1 can become the wanted βn. �

Up to the end, βn is a nondegenerate homogeneous scalar product on S
associated with τ that is symmetric or skew symmetric. It induces an involution
τ ′′ on A′′ as is explained in (6.8.9); from (6.8.9) and (6.8.11) it follows that τ ′′ leaves
A′ invariant; in other words, βn induces an involution τ ′ in A′. The calculation
of cp.dv.tr(τ ′) (or tw.dv.tr(τ ′)) is another main purpose. If we compare (6.8.9)
and (6.8.11), we realize that τ ′′ corresponds to τ ⊗̃ τ ′ by the natural isomorphism
A ⊗̂A′ → A′′; this allows us to apply (6.8.7) and to reach the next theorem. For
every integer n ≥ 2, we denote by µn(C) the group of nth roots of 1 in C; for
instance µ4(C) = {1, i,−1,−i}.

(6.8.13) Theorem. When K does not have characteristic 2, then

cp.dv.tr(τ) cp.dv.tr(ρ′) = 1.

Moreover there exists k ∈ µ4(C) such that

cp.dv.tr(ρ′) = k cp.dv.tr(τ ′) ,

and the value of k is given by these equalities in which ± means + or − according
as βn is symmetric or skew symmetric: k = ±1 if βn is even, and k = ±i if βn

is odd.

Proof. From (6.8.7) we deduce

cp.dv.tr(τ) cp.dv.tr(τ ′) = cp.dv.tr(τ ′′).

Let us momentarily admit that cp.dv.tr(ρ′) = k cp.dv.tr(τ ′) for some k ∈ C×

that only depends on βn; if we replace A with K, then A′ is replaced with A′′,
and ρ′ and τ ′ with ρ′′ and τ ′′; consequently cp.dv.tr(ρ′′) = k cp.dv.tr(τ ′′) with
the same k since k depends only on βn. It follows that

cp.dv.tr(τ) cp.dv.tr(ρ′) = cp.dv.tr(ρ′′) ,

and thus we have proved the first statement in (6.8.13) since cp.dv.tr(ρ′′) = 1
(see (6.8.5)). Now let us prove that cp.dv.tr(ρ′) and cp.dv.tr(τ ′) are related as
announced. Since βn is nondegenerate, the mapping f �−→ βnf is injective from
A′ into B′; it is even bijective since A′ and B′ have the same dimension; it respects
or changes the parities according as βn is even or odd. Because of (6.8.9), βnf
is symmetric or skew symmetric if and only if f is an eigenvector of τ ′. All this
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allows us to derive cp.dv.tr(ρ′) from cp.dv.tr(τ ′). Let us treat in detail the case
of an odd and skew symmetric βn. In this case the mapping f �−→ βnf induces
bijections from Ker(τ ′

0 − id) onto Ker(ρ′1 + id), from Ker(τ ′
0 + id) onto Ker(ρ′1 −

id), from Ker(τ ′
1 − id) onto Ker(ρ′0 − id) (mind the twisting exponent ∂f∂βn in

(6.8.9)), and from Ker(τ ′
1 + id) onto Ker(ρ′0 + id); it follows that cp.dv.tr(ρ′) =

−i cp.dv.tr(τ ′). �

The next step in the classification of involutions of graded central simple
algebras is to prove that cp.dv.tr(τ) ∈ µ8(C); this can be deduced from (6.8.13).

(6.8.14) Theorem. When K does not have characteristic 2, then cp.dv.tr(τ) ∈
µ8(C) for every involution τ of a graded central simple algebra A. Moreover
(cp.dv.tr(τ))4 is equal to 1 or −1 according as A has even or odd type, and
(cp.dv.tr(τ))2 belongs to {1, i} or to {−1,−i} according as τ operates trivially
or nontrivially on Z(A0, A).

Proof. When A is isomorphic to some M(r, B) or M(m, n; B) as in (6.6.2), and
S is the graded irreducible module Br or Bm ⊕ Bn over A, then the graded
Morita context (A, B, S, . . . ) shows that Endg

A(S) ∼= Bto. When A has a trivial
class in Brg(K), in other words when B ∼= K, then A′ = Endg

A(S) = K, whence
cp.dv.tr(τ ′) = 1, and consequently cp.dv.tr(ρ′) and cp.dv.tr(τ) both belong to
µ4(C). When A does not have a trivial class, anyhow A ⊗̂Ato has a trivial class
since it is isomorphic to End(A); with τ is associated an involution τ to of Ato

defined by τ to(ato) = τ(a)to, which has the same complex divided trace as τ .
Therefore cp.dv.tr(τ ⊗̃ τ to) = (cp.dv.tr(τ))2 belongs to µ4(C), and cp.dv.tr(τ) to
µ8(C). When A has even type, then dim(A) is a square and cp.dv.tr(τ) belongs
to Q⊕Qi, whence cp.dv.tr(τ) ∈ µ4(C). But when A has odd type, then 2 dim(A)
is a square and

√
2 cp.dv.tr(τ) belongs to Q⊕Qi, with the result that cp.dv.tr(τ)

is a primitive eighth root of 1.
It is clear that τ leaves Z(A0, A) invariant. When A is trivially graded, then

Z(A0, A) = K and cp.dv.tr(τ) is real, therefore equal to 1 or −1; thus τ acts
trivially on Z(A0, A) and (cp.dv.tr(τ))2 = 1. When A1 �= 0, then Z(A0, A) is a
quadratic extension K ⊕Kd with d2 ∈ K×, and the restriction of τ to Z(A0, A)
may be the identity mapping or the standard involution according as it maps d to
itself or to −d. The type of A is the parity of d, and moreover ad = da for all a ∈ A
if d is odd, whereas ad = dσ(a) if d is even (see (3.5.13)). With τ is associated
another involution στ , another space B′

σ of scalar products and another mapping
ρ′σ : β �−→ βo. Since the complex divided traces of τ and στ are conjugate, the
same is true for the complex divided traces of ρ′ and ρ′σ. The mapping β �−→ βd
(defined by (βd)(s, t) = β(ds, t)) is a bijection from B′ onto B′

σ because an easy
calculation shows that

(βd)(as, t) = (−1)∂a∂(βd) (βd)(s, στ(a)t) ;

it is funny to observe that the emergence of σ in the right-hand member is due
to quite different reasons according as d is even or odd; when d is even, then
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da = σ(a)d, but when d is odd, then (−1)∂a∂βa = (−1)∂a∂(βd)σ(a). This bijection
β �−→ βd respects or changes the symmetry property of β according to the next
equality, in which ± means + or − according as β is symmetric or skew symmetric:

(βd)(s, t) = ±(−1)∂β∂d (βτ(d))(t, s).

All this allows us to prove that cp.dv.tr(ρ′σ) = k′ cp.dv.tr(ρ′) for some k′ ∈ µ4(C),
and the calculation of k′ gives precisely the value of (cp.dv.tr(τ))2 because

(cp.dv.tr(τ))2 = (cp.dv.tr(ρ′))−2 = (cp.dv.tr(ρ′))−1cp.dv.tr(ρ′σ) = k′.

Let us treat in detail the case of an odd d when τ(d) = −d. In this case the
mapping β �−→ βd induces bijections from Ker(ρ′0 − id) onto Ker(ρ′σ,1 + id), from
Ker(ρ′0 + id) onto Ker(ρ′σ,1 − id), from Ker(ρ′1 − id) onto Ker(ρ′σ,0 − id), and from
Ker(ρ′1 + id) onto Ker(ρ′σ,0 + id). Thus cp.dv.tr(ρ′σ) = −i cp.dv.tr(ρ′), and we
conclude that (cp.dv.tr(τ))2 = −i in accordance with (6.8.14). �

Thus the involutions of graded central simple algebras are classified by the
group µ8(C) through the complex divided traces, and the product in the classifying
group µ8(C) corresponds to the special tensor product ⊗̃ defined in (6.8.1).

When K has characteristic 2, the results are much poorer and can be collected
in a single theorem. Now the involutions of graded central simple algebras are
classified by the group µ2(C) through the twisted divided traces.

(6.8.15) Theorem. When K has characteristic 2, then dv.tr(τ), dv.tr(ρ′) and
dv.tr(τ ′) are all equal to 1, whereas tw.dv.tr(τ), tw.dv.tr(ρ′) and tw.dv.tr(τ ′) be-
long to µ2(C). Moreover

tw.dv.tr(τ) tw.dv.tr(ρ′) = 1 ,

tw.dv.tr(ρ′) = tw.dv.tr(τ ′) if βn is even,
tw.dv.tr(ρ′) = −tw.dv.tr(τ ′) if βn is odd,
tw.dv.tr(τ) = 1 if τ operates trivially on Z(A0),
tw.dv.tr(τ) = −1 if τ operates nontrivially on Z(A0).

Proof. By means of the bijection f �−→ βnf from A′ onto B′ it is easy to prove
that dv.tr(ρ′) = dv.tr(τ ′), whereas tw.dv.tr(ρ′) is equal to tw.dv.tr(τ ′) or to
−tw.dv.tr(τ ′) according to the parity of βn. When we know this, from (6.8.7)
and (6.8.5) we deduce that

dv.tr(τ) dv.tr(ρ′) = dv.tr(ρ′′) = 1 ,

tw.dv.tr(τ) tw.dv.tr(ρ′) = tw.dv.tr(ρ′′) = 1.

Then we prove that dv.tr(τ) = 1 and tw.dv.tr(τ) ∈ µ2(C) by the argument pre-
sented in the beginning of the proof of (6.8.14): when A has a trivial class in
Brg(K), and when S is a graded irreducible module P , then A′ = K whence
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dv.tr(τ ′) = tw.dv.tr(τ ′) = 1, and the general case follows from the fact that
A ⊗̂Ato has a trivial class; in this way we prove that dv.tr(τ) ∈ µ2(C) and
tw.dv.tr(τ) ∈ µ4(C), but we also know that dv.tr(τ) ≥ 0 and tw.dv.tr(τ) ∈ R.

When A is trivially graded, then tw.dv.tr(τ) = dv.tr(τ) = 1, and τ operates
trivially on Z(A0) = K. Consequently it remains to prove this assertion: when
A1 �= 0, the value of tw.dv.tr(τ) depends on the restriction of τ to the quadratic
extension Z(A0, A) = Z(A0); unfortunately the argument presented in the proof
of (6.8.14) for the analogous assertion is no longer suitable. Since we already know
that tw.dv.tr(τ) ∈ µ2(C) and dv.tr(τ) = 1, we must prove that dtr(τ0) �= 0 (resp.
dtr(τ0) = 0) if the restriction of τ to Z(A0) is the identity mapping (resp. the
standard involution). By means of a field extension of K (as in (6.6.5)) we reduce
the problem to the case of an algebra A = M(m, n; K). In this case A0 is the
direct sum of two ideals respectively isomorphic to M(m, K) and M(n, K). If τ
operates nontrivially on Z(A0), it permutes these two ideals, whence dtr(τ0) = 0
(and by the way, m = n). If τ operates trivially on Z(A0), it leaves invariant these
two ideals of A0, and dtr(τ0) �= 0 because we know that the divided traces of the
restrictions of τ0 to these ideals are equal to 1. �

Extensions of scalar products

When A is a graded central simple algebra, there exists a linear form h : A → K
(unique up to an invertible factor in K) such that h(A1) = 0 and the bilinear
form (a, b) �−→ h(ab) is symmetric and nondegenerate. Of course the existence of
h follows from (3.6.6) and (3.6.7); but when K is a field, we do not need these
difficult propositions. Indeed by means of a suitable field extension K → L (see
(6.6.5)) we can prove that A1 + [A, A] (where [A, A] is the subspace generated by
all Lie brackets [a, b] = ab− ba) is a hyperplane of A; this hyperplane determines
a linear form h which is unique modulo K×; the announced properties of h follow
from similar properties of L⊗h which are proved by means of well-known theorems
about traces of matrices. In particular the equality h ◦ w = h holds for every
automorphism w of A (see (3.6.4)), and for every anti-automorphism w too, since
the transposition of matrices does not modify the traces. When dim(A) is invertible
in K, then A is the direct sum of K and A1 + [A, A], and we can normalize h so
that h(1) = 1; after this normalization h(a) (with a ∈ A) is called the scalar
component of a and denoted by Scal(a); the title ”Extensions of scalar products”
is especially justified when h = Scal.

Let β : S × S → K be a homogeneous element of B′′. The extension of β
with values in A is the bilinear mapping EA : S × S → A defined in this way:

(6.8.16) ∀s, t ∈ S, ∀c ∈ A, h(c EA(s, t)) = (−1)∂c∂β β(cs, t).

It is easy to prove that EA is the only bilinear mapping S × S → A that has the
same parity as β (in other words, ∂EA(s, t) = ∂s+∂t+∂β), that is A-g-linear with
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respect to the left side variable (in other words, EA(as, t) = (−1)∂a∂βa EA(s, t)),
and such that h ◦ EA = β (whence the name “extension of β ” when h = Scal).

(6.8.17) Proposition. If β is a homogeneous scalar product associated with τ , then

∀a, b ∈ A, ∀s, t ∈ S, EA(as, bt) = (−1)∂a∂βa EA(s, t) τ(b) ,

and the linear mapping S ⊗ S → A defined by s ⊗ t �−→ EA(s, t) is surjective if
β �= 0. If this scalar product β is symmetric or skew symmetric, then

∀s, t ∈ S, EA(t, s)) = ± τ(EA(s, t)) ,

where ± means + or − according as β is symmetric or skew symmetric.

Indeed the equalities written in (6.8.17) mean that, for every c ∈ A,

h(c EA(as, bt)) = (−1)∂a∂βh(ca EA(s, t) τ(b)) ,

h(c EA(s, t)) = h(c τ(EA(t, s))) ;

their validity follows from straightforward verifications using (6.8.11), h([A, A]) =
0 and h ◦ τ = h. Only the surjectiveness of the mapping S ⊗ S → A needs an
explanation: its image is a graded ideal of A, consequently 0 or A. �

We can turn S ⊗ S into a bimodule over A if we set

(6.8.18) ∀a, b ∈ A, ∀s, t ∈ S, a(s⊗ t)b = as⊗ τ(b)t.

The first statement in (6.8.17) can be interpreted in this way: the mapping s⊗t �−→
EA(s, t) is (A ⊗̂Ato)-g-linear from S ⊗ S onto A. The precise meaning of this
statement requires that the actions of A ⊗̂Ato in S ⊗ S and A are defined in
accordance with the twisting rule (4.2.1); for instance (a⊗bto)(s⊗t) is synonymous
with (−1)∂b(∂s+∂t)a(s⊗ t)b, which is now defined by (6.8.18).

Let us suppose that β is the above nondegenerate scalar product βn associ-
ated with τ , which has been assumed to be symmetric or skew symmetric, and let
us remember that βn induces an involution τ ′ in A′. Since S is a module over A′

too, we can treat βn as a scalar product associated with τ ′, and thus we get an
extension EA′ with values in A′. Many authors forget the parity grading of A and
consider a nongraded module M , which they treat as a right module over the op-
posite algebra EndA(M)o; then they define scalar products M ×M → EndA(M)o

with special properties that actually mean that they are in some way extensions
of scalar products M ×M → K associated with τ or στ .

We can even treat βn as a scalar product associated with the involution τ ⊗̃ τ ′

of A ⊗̂A′; thus we get an extension E : S × S → A ⊗̂A′ in which the properties
of EA and EA′ appear together. It determines a surjective linear mapping S ⊗
S → A ⊗̂A′, in which the source and the target have the same dimension as
A′′ = End(S); consequently it is bijective and we have proved what follows.
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(6.8.19) Proposition. If E is the extension of βn with values in A ⊗̂A′, the lin-
ear mapping S ⊗ S → A ⊗̂A′ induced by E is an isomorphism in the category
Modg(A ⊗̂A′ ⊗̂Ato ⊗̂A′to).

Often people are interested in the action on S of some multiplicative group G
made of homogeneous elements of A. This group may be for instance the Clifford–
Lipschitz group in the Clifford algebra of a quadratic space; then the elements of
S are called spinors, and the elements of S⊗S bispinors. The action of G on S⊗S
is actually easier to analyse than its action on S since its action on S ⊗ S looks
like its action on A ⊗̂A′, all the more because G acts trivially on A′.

In our study of scalar products on S it is clear that the parity grading of
S plays an important role; it has enabled us to present a unified theory in which
the essential results are independent of the type of A (even or odd) and of the
nature of Z(A0, A)ng (that is Z(A0, A) without grading, either K if A1 = 0, or
K2, or a quadratic field extension of K). Since A is a graded algebra, the natural
modules over A are the graded modules; even the usual spinor spaces in quantum
mechanics are graded modules (see (6.2.2)), although their parity grading is often
overlooked. In (6.ex.21) and (6.ex.22) you can discover how this unified theory of
scalar products can be applied to the usual spinor spaces of quantum mechanics;
no calculations with “Dirac matrices” are necessary.

If really the study of scalar products on a nongraded module M is ever
necessary, it is always possible to use the trick that has been successful in the
first step of the proof of (6.2.8): we use the graded module S = M ⊕ M with
homogeneous components M ⊕ 0 and 0⊕M , in which a(x, y) means (ax, ay) for
all a ∈ A0, but (ay, ax) for all a ∈ A1, and we derive the scalar products on M
from the scalar products on S. See (6.ex.20) for more details.

The classification of the couples (A, τ)

Here A is a graded central simple algebra over a field K of characteristic �= 2, and
τ is a (graded) involution of A. The classification of such couples (A, τ) was first
imagined in the noteworthy article [Wall 1968]. Here we get the same results by
different ideas: with every couple (A, τ) we associate the class ([A], cp.dv.tr(τ)) in
the group Brg(A)×µ8(C). This raises only one question: which is the subgroup of
Brg(A)×µ8(C) made of all these classes? There is a canonical morphism Brg(K)→
Z/2Z mapping [A] to the type of A, there is also a canonical morphism µ8(C) →
Z/2Z with kernel µ4(C), and (6.8.14) says that [A] and cp.dv.tr(τ) have the same
image in Z/2Z. We actually get the subgroup of all elements of Brg(K) × µ8(C)
in which both components have the same image in Z/2Z. To prove this, it suffices
to find a couple (A, τ) such that [A] is trivial whereas cp.dv.tr(τ) is a primitive
fourth root of 1. Actually the complex divided trace of the standard involution of
M(1, 1; K) is equal to −i.

Complex divided traces allow us to define a canonical isomorphism Brg(R) →
µ8(C). Indeed every graded central simple algebra over R admits a positive involu-
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tion τ+ satisfying this property: Scal(a τ+(a)) ≥ 0 for all a ∈ A, if Scal is defined as
above before (6.8.16). This is proved in (6.ex.16), and the following statements too:
if A admits several positive involutions, they all have the same complex divided
trace, which only depends on the class of A in Brg(R); moreover τ ⊗̃ τ ′ is positive
if both τ and τ ′ are positive. All this gives a group morphism Brg(R) → µ8(C)
defined by [A] �−→ cp.dv.tr(τ+). It is bijective because Brg(R) is a cyclic group of
order 8, and [A] and cp.dv.tr(τ+) have the same image in Z/2Z.

Consequently the couples (A, τ) over R are classified by the couples (t+, t) ∈
µ8(C)× µ8(C) such that t4+ = t4 ; of course t = cp.dv.tr(τ) and t+ = cp.dv.tr(τ+)
if τ+ is any positive involution on A. Let us calculate (t+, t) when A is the Clif-
ford algebra of a quadratic space (M, q), and τ the reversion in C�(M, q); let us
assume that the maximal positive definite (resp. negative definite) subspaces have
dimension m (resp. n) as in (2.8.1). If we set κ = (1 + i)/

√
2, then

(6.8.20) (t+, t) = (κm−n, κm+n) .

Indeed, because of the multiplicative property stated in (6.8.7), it suffices to verify
(6.8.20) when m+n = 1. In such a case, τ is the identity mapping. If (m, n) = (1, 0),
then C�(M, q) is isomorphic to (R2)g which admits the identity mapping as a
positive involution, whence (t+, t) = (κ, κ) (see (6.8.6)). If (m, n) = (0, 1), then
C�(M, q) is isomorphic to Cg which admits the standard involution (or complex
conjugation) as a positive involution, whence (t+, t) = (κ−1, κ). �

The property described by (6.8.20) is often called the 32-periodicity of real
Clifford algebras; of course this periodicity does not refer to a cyclic group of order
32, but to a subgroup of µ8(C) × µ8(C). This subgroup is sometimes compared
to the set of the 32 white squares in a chess-board of dimension 8 × 8, and this
explains the name “cliffordian chess-board” given to various tables that display
some detail of the information concentrated in the short formula (6.8.20).

When K has characteristic 2, the couples (A, τ) are classified by the whole
group Brg(K) × µ2(K). It is probably impossible to refine this classification by
means of a larger group, although refinements (without classifying groups) have
been proposed (see [Knus 1991] or [Knus et al. 1998]).

Exercises

(6.ex.1) Let K be a field that does not have characteristic 2, and let A = K ×
K be provided with its unique nontrivial parity grading; this means that A1 is
spanned by (1,−1). As explained in 6.2, with each module M over A is associated
a conjugate module M c. Prove that the following assertions are equivalent:

(a) M is a free module over A.
(b) (1, 0)M and (0, 1)M are isomorphic vector spaces over K.
(c) M and M c are isomorphic modules over A.
(d) There is a parity grading on M for which M is a graded module over A.
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(6.ex.2) Let M and N be graded modules over A. Assume that M is a direct sum
of m graded submodules M1,. . . ,Mm, whereas N is a direct sum of n graded sub-
modules N1,. . . ,Nn. Prove that there is a natural bijection between Homg

A(M, N)
(resp. HomA,0(M, N)) and the set of matrices (fj,i) with n lines and m columns,
in which every entry fj,i belongs to Homg

A(Mi, Nj) (resp. HomA,0(Mi, Nj)).

(6.ex.3) Let B be a graded K-algebra, σ the automorphism of B defined by
b �−→ (−1)∂bb, m and n nonnegative integers, M(m, n; B) the usual graded
matrix algebra isomorphic to B⊗M(m, n; K), andMg(m, n; B) the twisted tensor
product B ⊗̂M(m, n; K).

(a) Identify Mg(m, n; B) and M(m, n; B) as graded modules, and prove that
the former is provided with this twisted multiplication:

(
a c
b d

) (
a′ c′

b′ d′

)
=

(
aa′ + cσ(b′) ac′ + cσ(d′)
bσ(a′) + db′ bσ(c′) + dd′

)
;

here a and a′ (resp. d and d′) are square matrices of order m (resp. n), whereas
b and b′ (resp. c and c′) are rectangular matrices of dimensions n×m (resp.
m× n), and σ operates on a matrix by operating on all its entries.

(b) Prove that Mg(m, n; B) is isomorphic to M(m, n; B) through this mapping:

(
a c
b d

)
�−→

(
a c

σ(b) σ(d)

)
.

(c) Prove that M(m, n; B) is isomorphic to M(m + n, B) through the following
graded mapping when there is an odd invertible element w in B1:

(
a c
b d

)
�−→

(
a cw−1

wb wdw−1

)
.

Therefore it is not sensible to use Mg(m, n; B) or M(m, n; B) when B1

contains invertible elements.

(6.ex.4) Let P be a graded module over A, and σ′ the automorphism of P defined
by x �−→ (−1)∂xx. We set B = Endg

A(P ).

(a) Prove that we get bijections B → Homg
A(P, P s) and B → Homg

A(P s, P ) if we
map every f ∈ B to the morphisms x �−→ (f ◦ σ′(x))s and xs �−→ f ◦ σ′(x).

(b) Let (m, n) be a couple of nonnegative integers, and M = Pm⊕ (P s)n. Prove
that Endg

A(M) is isomorphic to the algebra Mg(m, n; B) defined in (6.ex.3).
Hint. Map every matrix (fj,i) ∈Mg(m, n; B) to the endomorphism

(x1, . . . , x
s
m+n) �−→ (y1, . . . , y

s
m+n)
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of M determined by

yj =
m∑

i=1

fj,i(xi) +
m+n∑

i=m+1

fj,iσ
′(xi) if j ≤ m,

yj =
m∑

i=1

fj,iσ
′(xi) +

m+n∑
i=m+1

fj,i(xi) if j > m.

Comment. If B1 contains an invertible element, P s is isomorphic to P , M to
Pm+n, and Endg(M) to M(m + n, B), in accordance with (6.ex.3).

(6.ex.5) This exercise contains the graded version of Schur’s lemma. Let M and
N be two graded modules over A.

(a) Prove that every nonzero homogeneous element of Homg
A(M, N) is injective

(resp. surjective) if M (resp. N) is graded irreducible.
(b) Assume that M is graded irreducible. Prove that Endg

A(M) is a graded di-
vision ring (that is a ring in which every nonzero homogeneous element is
invertible, as in 6.6); its grading is nontrivial or trivial according as M is or
is not isomorphic to M s.

(c) Now assume that M and N are both graded irreducible. Determine in which
cases HomA,0(M, N) or Homg

A,1(M, N) or both are not reduced to 0.

(6.ex.6)* Here every graded semi-simple algebra is proved to be isomorphic to a
finite direct product of algebras that are each one isomorphic to some M(m, n; B)
or M(r, B) with B a graded division algebra (with a trivial grading in the former
case, a nontrivial one in the latter case). Obviously Zg

1(B) = 0 when the field
Z0(B) does not have characteristic 2, and consequently M(m, n; B) or M(r, B) is
a graded central simple algebra over Z0(B) (which is an extension of the basic ring
K). But when the field Z0(B) has characteristic 2, it may happen that Zg

1(B) �= 0.

(a) Prove that a finite direct product of graded semi-simple algebras is still semi-
simple. Prove that the algebra M(m, n; B) or M(r, B) is semi-simple when
B is a graded division algebra (in which every nonzero homogeneous element
is invertible).

(b) Assume that M is a graded semi-simple and finitely generated module over a
graded algebra A. Decompose M into a finite direct sum of graded irreducible
submodules Pi,j in such a way that the first index i gives the isomorphy
classes of Pi,j and P s

i,j ; in other words, Ph,k is isomorphic to Pi,j or P s
i,j if

and only if h = i. Consider C = Endg
A(M) and deduce from (6.ex.4) and

(6.ex.5) that C is isomorphic to a finite direct product of algebras Ci which
are each one isomorphic to some M(m, n; B) or M(r, B) with B a graded
division algebra over K. Consequently C is a graded semi-simple algebra.
Let AM be the image of A → EndK(M). Deduce from the density theorem
(6.3.3) that conversely AM = Endg

C(M). Consequently, if M is a faithful
A-module, A too is a graded semi-simple algebra.
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(c) Assume that A is a graded semi-simple module over itself (for the natural ac-
tion of A on itself by multiplications on the left side). Thus Ato = Endg

A(A).
Prove that A and Ato are graded semi-simple algebras, and that A is iso-
morphic to a finite direct product of graded algebras Ai that are each one
isomorphic to someM(m, n; B) orM(r, B) with B a graded division algebra.

Graded Azumaya algebras. Graded central simple algebras

(6.ex.7) Let A be a graded algebra of finite dimension over a field K, such that
A0 is a division ring, and Z0(A) = K. When K does not have characteristic
2, prove that A is a graded central simple algebra over K if and only if every
nonzero element of A1 is invertible. When K has characteristic 2, you must add
the hypothesis Zg

1(A) = 0.

(6.ex.8) Let A be a graded Azumaya algebra over a local ring K. Prove that its
grading is balanced if and only if A1 contains invertible elements.
Hint. First suppose that K is a field, and remember (6.6.2).

(6.ex.9) Let N be a graded bimodule over a graded Azumaya algebra A; for each
y ∈ N , we wish to construct its inverse image by the isomorphism A⊗Zg(A, N) →
N .

(a) For each linear form f ∈ A∗ prove the existence of w =
∑

j bj⊗cto
j ∈ A ⊗̂Ato

such that
∀x ∈ A, f(x) = wx =

∑
j

(−1)∂cj∂x bjxcj .

Prove that wy belongs to Zg(A, N) for all y ∈ N .
(b) There exist a1, a2,. . . . in A and f1, f2,. . . in A∗ such that x =

∑
i aifi(x)

for all x ∈ A; and for each i we can write fi(x) = wix for some wi ∈ A ⊗̂Ato;
prove that

∑
i ai ⊗ wiy is the inverse image of y in A⊗ Zg(A, N).

(6.ex.10) Let A be a graded Azumaya algebra such that Z(A0, A) is a quadratic
extension, and let D be its discriminant module.

Remember that da = (−1)∂a(1+∂d)ad when a and d are homogeneous el-
ements of respectively A and D. With every graded bimodule M over A we can
associate the graded bimodule D⊗M and the graded bimodule M c· conjugate on
the left side:

a(d⊗ x)b = (−1)∂a∂d d⊗ axb ,

a xc·b = (−1)∂a (axb)c·.

Prove that the mapping d ⊗ x �−→ (dx)c· is an isomorphism of graded bimodules
from D ⊗ M onto M c·. Consequently it determines an isomorphism of graded
K-modules D ⊗ Zg(A, M) → Zg(A, M c·).
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In the same way there is an isomorphism from M ⊗ D onto the bimodule
M ·c conjugate on the right side. Anyhow M c· and M ·c are isomorphic through
the mapping xc· �−→ (−1)∂xx·c.

(6.ex.11) The dual module A∗ of a graded Azumaya algebra A is a bimodule
over A in this way:

∀h ∈ A∗, ∀a, b, c ∈ A, (ahb)(c) = (−1)∂a h(bca) ;

the twisting exponent ∂a is equal to the awaited exponent ∂a(∂h + ∂b + ∂c) if
∂h = ∂b + ∂c + ∂a. As explained in (6.ex.10) there is also a bimodule (A∗)c· :

∀h ∈ A∗, ∀a, b, c ∈ A, (ahc·b)(c) = h(bca).

We are interested in H = Zg(A, A∗) and in the submodule H ′ of A∗ such that
(H ′)c· = Zg(A, (A∗)c·). From (6.7.3) and (6.7.6) we deduce that H and H ′ are
direct summands of A∗ of constant rank 1.

(a) Verify that a homogeneous h ∈ A∗ belongs to H (resp. H ′) if and only if

∀a, c ∈ A, h(ac) = (−1)∂a∂ch(ca) (resp. h(ac) = (−1)∂a∂hh(ca)).

(b) Assume that H ′ contains an even element h0 such that the symmetric bilin-
ear form (a, c) �−→ h0(ac) is nondegenerate, and prove that H ′ is the free
submodule generated by h0.

(c) Assume that Z(A0, A) is a quadratic extension, and let D be its discriminant
module. Deduce from (6.ex.10) that H ′ is isomorphic to D ⊗ H (whence
H ∼= D if H ′ is free and even as in (b)).

Comments. From (3.6.6) and (3.6.7) we know that H ′ contains an element h0

satisfying the hypotheses of (b); the validity of these propositions is ensured by
(3.5.15) in general, and by (3.7.4) if A is the Clifford algebra of a quadratic space
(M, q); when 2 is invertible in K we can also refer to (4.8.16). From the construc-
tions presented in (4.ex.6) with A = C�(M, q), we can deduce that the graded
modules H and D are isomorphic to

∧max(M).

(6.ex.12) We know that Brg(R) is a cyclic group of order 8 generated by the class
of (R2)g (see (3.ex.22)). From (6.6.2) we deduce that, up to isomorphism, there
are eight graded central division algebras B of finite dimension over R. Give the
list of these eight algebras B according to the cyclic order of Brg(R).

Suggestion. If the Gm,n are defined as in 2.7, the answer may be

R, C�(G1,0), C�(G2,0), C�(G3,0), H, C�(G0,3), C�(G0,2), C�(G0,1), again R, . . . ;

up to isomorphy, it is the same thing as

R, (R2)g, EndR(C), Cg ⊗H, H, (R2)g ⊗H, Hg, Cg, again R, . . . ;
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an exponent g means a nontrivial grading; the even (resp. odd) elements of
EndR(C) are the C-linear (resp. C-semilinear) endomorphisms.

(6.ex.13)* Here is an example of a division ring B that has dimension 9 over its
center which is the field Q of rational numbers; it comes from [Blanchard 1972].
Let Q[a] be the field generated over Q by a root a of the polynomial t3 − 2, and
Q[b] the field generated by a root b of P (t) = t3 + t2 − 2t− 1. It is easy to verify
that the polynomial P (t2 − 2) is divisible by P (t).

(a) Prove that P (t) has three roots b, b′ and b′′ in Q[b], such that b′ = b2 − 2,
b′′ = b′2 − 2 and b = b′′2 − 2. Prove that (b, b′, b′′) is a basis of Q[b] over Q,
and that Q[b] admits an automorphism ϕ that maps b, b′, b′′ respectively to
b′, b′′, b.
Remark. If r is a root of t7 − 1 other than 1, it is easy to prove that r + r6,
r2 + r5 and r3 + r4 are the roots of P (t).

(b) The norm of an element x = λb + µb′ + νb′′ of Q[b] is by definition

N (x) = x ϕ(x) ϕ2(x)

= λ3 + µ3 + ν3 − λµν + 3(λ2µ + µ2ν + ν2λ)− 4(λ2ν + µ2λ + ν2µ).

Verify that N (x) is an odd integer whenever the components λ, µ, ν of x are
three integers not all even.

(c) On the vector space B = Q[a]⊗Q[b] we define a new Q-bilinear multiplication
such that

(ai ⊗ x) (aj ⊗ y) = ai+j ⊗ ϕj(x)y

for all exponents i and j in Z, and for all elements x and y of Q[b]. Prove
that B is an associative algebra, and even a division ring. Besides, every
commutative subalgebra of B other than Q is a field of dimension 3 over Q;
consequently Z(B) = Q.
Hint. B is a vector space over Q[b] when this field acts on B by multiplications
on the right side; if 1⊗ x + a⊗ y + a2 ⊗ z is a nonzero element of B, prove
the invertibility of the multiplication by this element on the left side; since
this multiplication is Q[b]-linear, it suffices to verify the invertibility of its
determinant

∆ = det

⎛
⎝x 2ϕ(z) 2ϕ2(y)

y ϕ(x) 2ϕ2(z)
z ϕ(y) ϕ2(x)

⎞
⎠ ∈ Q[b] (actually ∆ ∈ Q ) ;

after multiplications by suitable factors (among them perhaps a−1 or a−2)
reduce the problem to this case: the components of x, y, z in the basis
(b, b′, b′′) are integers, and the components of x are not all even; then ∆ is
an odd integer.
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(d) Let us set M = Q[a]⊗Q[a]⊗Q[b]. Prove the existence of an algebra isomor-
phism from B ⊗B ⊗B onto EndQ(M) mapping every (ai ⊗ x)⊗ (aj ⊗ y)⊗
(ak ⊗ z) to

am ⊗ an ⊗ w �−→ am+i−k ⊗ an+j+2k ⊗ ϕ−k
(
ϕm(x)ϕn(y) zw

)
;

conclude that the Brauer class of B has order 3 in Br(Q).

(6.ex.14)* Let A be a graded Azumaya algebra over K, and L a graded subal-
gebra of A; when L acts on A by multiplications on the left side (resp. on both
sides), A is an L-module (resp. a bimodule over L).

(a) Assume that L is graded separable over K, and prove that A is projective
over L.
Hint. From (6.5.10) deduce a splitting exact sequence

0 −→ J(L)⊗L A −→ L⊗K A −→ A −→ 0 in Mod0(L).

(b) Prove that A ⊗̂ Zg(L, A) is isomorphic to Endg
L(A).

Hint. EndK(A) is a bimodule over A ⊗̂A in this way:

((a⊗ b) f (a′ ⊗ b′))(x) = ± a f(a′xb) b′ for all f ∈ EndK(A) ;

thus Endg
L(A) = Zg(L ⊗ 1, End(A)) ; and there is an isomorphism

Zg(L, A) −→ Zg(L ⊗̂A, End(A)) = Zg(1 ⊗A, Endg
L(A)).

(c) Prove the existence of graded subalgebras L such that Zg(L, A) = L.
(d) Let L be a subalgebra of A0 such that Z(L, A) = L ; thus L is a commutative

extension of K. Suppose moreover that A is a projective L-module. Prove
that the class of A in Brg(K) belongs to the kernel of the group morphism
Brg(K) → Brg(L).
Let q be a prime ideal of L, and p = K ∩ q its image in Spec(K). Prove that
rk(p, A) = rk(q, A)2.

(e) To the hypotheses of (d) we add this one: L is a finitely generated projective
K-module. Prove that rk(p, L) = rk(q, A).
Hint. Reduce the problem to the case of constant ranks, and remember
(1.ex.22).

Involutions of graded central simple algebras

(6.ex.15) Let τ be an involution of a graded Azumaya algebra A over a ring K
that is not a field. Let V(2) be the closed subset of Spec(K) made of all prime
ideals p containing 2. On the open subset Spec(K) \ V(2) we define a function
cp.dv.tr with values in µ8(C); if τ̂p is the involution of (Kp/pKp) ⊗ A induced
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by τ , then cp.dv.tr(p, τ) is cp.dv.tr(τ̂p). On Spec(K) itself we define a function
(cp.dv.tr)2 with values in µ4(C); on Spec(K)\V(2) it is actually the square of the
previous function; and on V(2) it is by definition tw.dv.tr(τ̂p). Prove that both
functions are locally constant on their domains of definition.

(6.ex.16) Here K is the field R of real numbers. Every graded central simple
algebra A over R is provided with a graded projection Scal : A→ K such that the
bilinear form (a, b) �−→ Scal(ab) is symmetric and nondegenerate. An involution
τ of A is said to be positive if the bilinear form (a, b) �−→ Scal(aτ(b)) is positive
definite; this bilinear form too is symmetric because every involution leaves Scal
invariant.

(a) Prove that the transposition of matrices in M(m, n; R) is a positive involu-
tion, and that its complex divided trace is 1.

(b) Let τ and τ ′ be involutions of A and A′, and τ ′′ = τ ⊗̃ τ ′ as in (6.8.1). Prove
that τ ′′ is positive whenever τ and τ ′ are positive.
Hint. Let Scal′ and Scal′′ be the natural projections A′ → R and A ⊗̂A′ → R;
the bilinear form (x, y) �−→ Scal′′(xτ ′′(y)) is the tensor product of the bilinear
forms (a, b) �−→ Scal(aτ(b)) and (a′, b′) �−→ Scal′(a′τ ′(b′)).

(c) Prove that every graded central simple algebra A over R admits a positive
involution.
Remark. The positive involution is unique only when A is a graded central
division algebra; in (6.ex.12) you find the eight isomorphy classes of graded
central division algebras over R.

(d) Let τ be a positive involution of A, and τ0 and τ1 its restrictions to A0 and
A1. Prove that the traces of τ0 and τ1 are equal to the signatures of the re-
strictions to A0 and A1 of the bilinear form (a, b) �−→ Scal(ab). Consequently
cp.dv.tr(τ) is determined by A.

(e) Deduce from (a) that the complex divided trace of all positive involutions of
A only depends on the class of A in Brg(R). This leads to an isomorphism
Brg(R) → µ8(C).

(6.ex.17) There is an alternative proof of (6.8.14) that is based on the general-
ized Skolem–Noether Theorem (6.7.8) and not on (6.8.13). Because of (6.6.5) you
can assume that τ is an involution on an algebra M(m, n; K) or (M(r, K)2)g.
The transposition of matrices gives a fundamental involution τ̂ on this algebra,
and because of (6.7.8) there is an invertible homogeneous x such that τ(a) =
(−1)∂x∂ax τ̂ (a)x−1 for every homogeneous a. Moreover τ̂ (x) = ±x because τ2 =
id. According to the type of A, according to the parity of x, and according to the
sign ± in the previous equality, cp.dv.tr(τ) is one of the elements of µ8(C).

When K has characteristic 2, similar methods should allow you to prove the
part of (6.8.15) that deals with dv.tr(τ) and tw.dv.tr(τ).

(6.ex.18) Suppose that A is isomorphic toM(m, n; B) or toM(r, B) as in (6.6.2),
and prove this theorem (attributed to Albert in the nongraded case): if A admits
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involutions, then the graded central division algebra B and all algebras with the
same class in Brg(K) admit involutions.
Hint. Bto is isomorphic to A′ = Endg

A(S) if S is a graded irreducible module over A.

(6.ex.19) Let K be a field that does not have characteristic 2, A a graded central
simple algebra over K provided with an involution τ , and M a module over Ang

(that is A without grading). The grading of A is assumed to be nontrivial, (whence
a pair of involutions (τ, στ) on A), and M is assumed to have finite nonzero
dimension over K. We consider C′′ = End(M), C′ = EndA0(M), the space P ′′ of
all bilinear forms � : M ×M → K and the subspace P ′ of all � ∈ P ′′ such that
�(ax, y) = �(x, τ(a)y) for all a ∈ A0 and all x, y ∈M . If d is a nonzero element
of the discriminant module D of Z(A0, A), its image dM in C′′ belongs to C′.

(a) Prove that M is a semi-simple module over Ang. If Z(A) is a field (either
K or a quadratic field extension), then all irreducible modules over Ang are
isomorphic. But if Z(A) ∼= (K2)g, and if N is an irreducible module over Ang,
then every irreducible module is isomorphic to N or to the conjugate module
N c; in this case M is a faithful Ang-module if and only if HomA(M, M c) �= 0;
and when it is not faithful, there is some d ∈ D such that dM = idM .

(b) Let (b1, b
′
1, b2, b

′
2, . . . ) be a family of elements of A1 such that

∑
i bib

′
i = 1.

With every g ∈ C′ (resp. � ∈ P ′) we associate g† ∈ C′′ (resp. �† ∈ P ′′)
defined in this way:

g†(x) =
∑

i

big(b′ix) (resp. �†(x, y) =
∑

i

�(b′ix, τ(bi)y)).

Prove that g†† = g and (gh)† = g†h† for all g, h ∈ C′, that �†† = � for all
� ∈ P ′, and that, for all b ∈ A1 and all x, y ∈ M ,

g†(bx) = bg(x) and �†(bx, y) = �(x, τ(b)y) ;

therefore g† ∈ C′ and �† ∈ P ′. Thus C′ becomes a graded algebra if C′
0

(resp. C′
1) is the subset of all g ∈ C′ such that g† = g (resp. g† = −g), and

C′
0 = EndA(M) whereas C′

1
∼= HomA(M, M c). Similarly we define P ′

0 and
P ′

1; thus P ′
0 (resp. P ′

1) is the space of scalar products on M associated with
τ (resp. with στ).
Let ρ′′M be the involutive endomorphism of P ′′ that maps every � to �o

defined by �o(x, y) = �(y, x); obviously ρ′′M leaves P ′
0 and P ′

1 invariant; the
calculation of the complex divided trace of the restriction ρ′M of ρ′′M to P ′ is
the main purpose of (6.ex.20).

(c) Prove that C′ is a graded central simple algebra, that A0
∼= EndC′(M) and

that dim(A) dim(C′) = 2 dim(M)2. Moreover P ′ is a right module over C′

that has the same dimension as C′ over K. When M is a faithful Ang-module,
the quadratic extension Z(C′

0, C
′) is the intersection KidM⊕KdM of C′ with

the image of A in C′′; moreover A ∼= EndC′
0
(M). When M is not a faithful
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Ang-module, then C′
1 = 0, and P ′

0 (resp. P ′
1) is reduced to 0 if τ(d) = −d

(resp. if τ(d) = d).
Hint. When A has even type, deduce from (6.7.6) and (6.7.7) that A⊗P ′

0
∼=

P ′′ ∼= A⊗ P ′
1, that A⊗ C′

0
∼= C′′ and that C′

0 is central simple; when A has
odd type, then A0 ⊗ P ′ ∼= P ′′, A0 ⊗ C′ ∼= C′′ and (C′)ng is central simple.
Take notice that ∂dM = 1− ∂d.

(d) Prove that P ′ contains a homogeneous nondegenerate element �n that is
symmetric or skew symmetric. It induces an involution τ ′

M on C′ in this way:

∀g ∈ C′, ∀x, y ∈M, �n(g(x), y) = (−1)∂g∂n�n(x, τ ′
M (g)(y)).

Prove that cp.dv.tr(ρ′M ) = k cp.dv.tr(τ ′
M ) for some k ∈ µ4(C).

(6.ex.20) This is the continuation of (6.ex.19). To calculate cp.dv.tr(ρ′M ) we con-
sider the graded module S = M ⊕M in which S0 = M ⊕ 0, S1 = 0 ⊕M and
a(x, y) = (ax, ay) for all a ∈ A0 whereas b(x, y) = (by, bx) for all b ∈ A1. With
S we also use all the notation explained in 6.8. Now A′′ = End(S) can be identi-
fied with M(2, C′′) where C′′ = End(M), and similarly B′′ can be identified with
M(2,P ′′). We distinguish two families of parity gradings: the gradings mentioned
in 6.8 are called main gradings; by definition the main gradings of C′ and P ′ are
trivial, and the gradings of C′ and P ′ defined in (6.ex.19) are called auxiliary
gradings. Besides its main grading, S receives an auxiliary grading for which the
homogeneous components are the diagonals of M ⊕M . Each grading of S deter-
mines a grading of A′′ (resp. B′′), but on A′′ (resp. B′′) we get two compatible
gradings which make it split into a direct sum of four subspaces A′′

i,j (resp. B′′
i,j)

with (i, j) ∈ (Z/2Z)2. Every g ∈ C′′ has an image gi,j in each A′′
i,j :

g0,0 =
(

g 0
0 g

)
, g0,1 =

(
g 0
0 −g

)
, g1,0 =

(
0 g
g 0

)
, g1,1 =

(
0 −g
g 0

)
.

Similarly every � ∈ P ′′ has an image �i,j in each B′′
i,j . The image of idM in

A′′
1,1 is denoted by θ, in other words, θ(x, y) = (−y, x). It is easy to verify that

θ ∈ A′. Since θ2 = −idS , we get a graded Azumaya algebra Θ = KidS ⊕ Kθ
contained in A′.

(a) Prove that we get an algebra isomorphism from Θ ⊗̂C′ onto A′ in this way:

idS ⊗ g + θ ⊗ h �−→
(

g −h†

h g†

)
;

the twisting of the tensor product refers to the auxiliary gradings since the
main grading is trivial on C′. This isomorphism Θ ⊗̂C′ → A′ is graded over
the double group (Z/2Z)2.
Hint. The extension lemma (6.2.3) reveals a bijection C′ → A′

0 ; and
A′

1 = θA′
0.
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(b) Similarly there is a bijection from Θ⊗ P ′ onto B′ :

idS ⊗�1 + θ ⊗�2 �−→
(

�1 −�†
2

�2 �†
1

)
.

(c) From this bijection deduce that

cp.dv.tr(ρ′) =
1− i√

2
cp.dv.tr(ρ′M ).

The spinor spaces used in quantum mechanics

(6.ex.21) As in (6.2.2) let (M, q) be a quadratic space over R of dimension 4 and
signature −2, and S a graded irreducible module over A = C�(M, q); this is an
algebra provided with a reversion τ and a conjugation στ as in (6.8.8). All other
notation like A′, B′,. . . has been explained in 6.8.

(a) Prove that A has the same class in Brg(R) as Hg. Consequently A′ ∼= (Hg)to.
The choice of an element i ∈ A′

0 such that i2 = −idS allows us to identify
A′

0 with C. Then A′
1 is the subspace of all elements of A′ that anticommute

with i. Let j be any element of A′
1 such that j2 = idS .

(b) For every (u, v, w) ∈ (Z/2Z)3 let B′
u,v,w be the space of scalar products on S

associated with σvτ , with the parity u and the symmetry corresponding to
w; its elements β : S × S → R are characterized by these properties (for all
s and t ∈ S and all a ∈ A):

β(s, t) = 0 if ∂s + ∂t �= u, β(as, t) = β(s, σu+vτ(a)t) ,

and β(t, s) = (−1)wβ(s, t) .

Prove that B′
u,v,w has dimension 1 if u = 1, dimension 0 if (u, w) = (0, 0),

dimension 2 if (u, w) = (0, 1).
Let βn be a nonzero (therefore nondegenerate) element of B′

1,1,0. It induces
an involution τ ′ on A′; prove that τ ′(i) = −i and τ ′(j) = j.

(c) Let J : S ⊗ S → A ⊗̂A′ be the isomorphism mentioned in (6.8.19). To
calculate J we use an orthogonal basis (e0, e1, e2, e3) of M such that q(e0) = 1
and q(ek) = −1 for k = 1, 2, 3, and we derive from it a basis (eF ) of A
indexed by the set P of all subsets F ⊂ {0, 1, 2, 3}. In A′ we use the basis
(ε0, ε1, ε2, ε3) = (1, i, j, ij). Verify that

J(s⊗ t) =
∑
F∈P

3∑
k=0

(eF στ(eF )) βn(s, eF (εkt)) eF ⊗ εk .

Hint. eF στ(eF ) = ±1 for all F ∈ P , and εkτ ′(εk) = 1 for k = 0, 1, 2, 3.
Comment. It is worth explaining how J allows us to study the action of
the Clifford–Lipschitz group on the space S ⊗ S of bispinors. With every
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x ∈ GLip(M, q) is associated a scalar xστ(x) ∈ R× and an orthogonal trans-
formation g defined by g(a) = xaσ(x)−1 for all a ∈ M ; from (6.8.17) and
(5.1.3) (which defines C�(g) = Θx) it is easy to deduce that

J(xs ⊗ xt) = (xστ(x)) (σ ⊗ σ′)∂x ◦ (C�(g)⊗ idA′) ◦ J(s, t).

(d) The mapping s ⊗ t �−→ is ⊗ it is an involutive endomorphism of S ⊗ S;
the eigenspace of the eigenvalue −1 is identified with the tensor product
S ⊗C S over C = A′

0, whereas the other eigenspace is denoted by S ⊗̄ CS.
Thus s ⊗C t and s ⊗̄ t are identified respectively with (s ⊗ t − is ⊗ it)/2
and (s⊗ t + is⊗ it)/2. Since physicists are interested only in C-sesquilinear
mappings defined on S×S, with a symmetric real part and a skew symmetric
imaginary part, here we are interested especially in symmetric tensors that
belong to S ⊗̄ CS. Prove that an element of S ⊗ S belongs to S ⊗̄ CS (resp.
S ⊗C S) if and only if it is mapped by J to an element of A ⊗ A′

0 (resp.
A⊗A′

1).
Let us set Ak = C�k(M, q) for k = 0, 1, 2, 3, 4 (according to definitions in 4.8);
this means that Ak is spanned by all eF such that F is a subset of cardinal k.
Now A⊗A′

0 becomes a direct sum of 10 subspaces Ak ⊗ 1 and Ak ⊗ i. Prove
that an element of S ⊗̄ CS is a symmetric (resp. skew symmetric) tensor in
S ⊗ S if and only if it is mapped by J to an element of

((A0 ⊕A1 ⊕A4)⊗ 1)⊕ ((A2 ⊕A3)⊗ i)(
resp. ((A0 ⊕A1 ⊕A4)⊗ i)⊕ ((A2 ⊕A3)⊗ 1)

)
.

(e) For physicists, all the physical information given by an isolated spinor s ∈ S
comes from the five elements ξk ∈ Ak (with k = 0, 1, 2, 3, 4) such that the
component of J(s⊗ s) in A⊗A′

0 is

ξ0 ⊗ 1 − ξ1 ⊗ 1 + ξ2 ⊗ i − ξ3 ⊗ i + ξ4 ⊗ 1 ;

if we set αk = 1 for k = 0, 1, 4 and αk = i for k = 2, 3, then

∀c ∈ Ak, Scal(cξk) = βn(cs, αks) .

Consider the sequence (ξ′k) derived from another spinor s′, and prove that
ξk = ξ′k for k = 0, 1, 2, 3, 4 if and only if there exists θ ∈ R such that s′ =
(cos θ + i sin θ) s .
Hint. The five equalities ξk = ξ′k are equivalent to the equality s ⊗̄ s = s′ ⊗̄ s′

in S ⊗̄ CS ; now if s, t, s′, t′ are nonzero elements of S, the equality s ⊗̄ t =
s′ ⊗̄ t′ is equivalent to the existence of ν ∈ C such that s′ = νs and t = ν̄t′.

(6.ex.22) In order to get more information about the sequence (ξk) of “observable
quantities” derived from a spinor s in (6.ex.21)(e), we use a particular spinor
space S. It is a space Asp

0 that is canonically isomorphic to A0 through a bijection
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x �−→ xsp; the notation xsp means “x treated as a spinor”. Let (e0, e1, e2, e3) be an
orthonormal basis of M as in (6.ex.21)(c); the discriminant module C�4(M, q) of
QZ(M, q) is spanned by ω = e0e1e2e3. Since e 2

0 = 1, the notation e n
0 is meaningful

when n ∈ Z/2Z.

(a) A spinor xsp is said to be even (resp. odd) if ωx = xe2e1 (resp. ωx = −xe2e1);
moreover if a is any (homogeneous) element of A, we set axsp = (ax e ∂a

0 )sp.
Prove that Asp

0 is now a graded irreducible module S over A, and that we
get an element i ∈ A′

0 such that i2 = −1 if we set ixsp = (xe2e1)sp.
(b) Prove that xτ(y) + yτ(x) and τ(x)y + τ(y)x are equal and belong to

QZ(M, q) for all x, y ∈ A0. Consequently there are two bilinear forms βn and
β′ on S = Asp

0 such that

xτ(y) + yτ(x) = 2 βn(xsp, ysp) + 2ω β′(xsp, ysp) .

The factor 2 in this definition ensures that βn(1sp, 1sp) = 1. Prove that
βn and β′ belong respectively to B′

1,1,0 and B′
1,0,0. Moreover β′(xsp, ysp) =

−βn(ωxsp, ysp).
Hint. Since the algebra C�(M, q) is generated by M , it suffices to prove that

∀a ∈M, 2(βn + ωβ′)(axsp, ysp) = 2(βn − ωβ′)(xsp, aysp) ;

remember (4.8.16) and aω = −ωa for all a ∈M .
(c) The above βn enables us to associate a sequence (ξk) of five elements ξk ∈ Ak

with every spinor s = xsp ∈ Asp
0 as is explained in (6.ex.21)(e). Prove the

following equalities (discovered by Hestenes in a quite different way):

ξ0 + ξ4 = x τ(x) = τ(x)x ,

ξ1 = x e0 τ(x) ,

ξ2 = x e1e2 τ(x) ,

ξ3 = x e0e1e2 τ(x).

Prove that ξ1 �= 0 if x �= 0. (Hint: prove that bq(e0, ξ1) > 0 .)
(d) Prove the following relations:

ξ 2
1 = −ξ 2

3 = (ξ0 + ξ4)(ξ0 − ξ4) ,

ξ1ξ3 = ξ3ξ1 = (ξ0 − ξ4)ξ2 ,

ξ1ξ2 = (ξ0 − ξ4)ξ3 or equivalently ξ2ξ1 = (ξ0 + ξ4)ξ3 ,

ξ3ξ2 = −(ξ0 − ξ4)ξ1 or equivalently ξ2ξ3 = −(ξ0 + ξ4)ξ1 ,

ξ 2
2 = −(ξ0 + ξ4)2 .

Comments. The four relations in the first two lines are called the Fierz identities.
When (ξ1, ξ4) �= (0, 0), all other relations are consequences of the Fierz identities.
In the usual version of the Fierz identities, ξ3 is replaced with ωξ3 ∈ M , and
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ξ4 with −ωξ4 ∈ R. The third equality implies that ξ1 and ωξ3 are orthogonal
vectors in M , and the first one shows that q(ξ1) = −q(ωξ3). Observe that ξ0 + ξ4

and ξ0 − ξ4 are conjugate elements in QZ(M, q) (isomorphic to C), and that their
product is a nonnegative real number; consequently ξ1 belongs to the subset of all
a ∈ M such that q(a) ≥ 0. When 0 is removed from this subset, there remain two
connected components called “past” and “future”. Since ξ1 never vanishes when
x �= 0, it remains in the same connected component.

In the general setting of (6.ex.21), J depends on the choice of a nonzero
βn ∈ B′

1,1,0; replacing βn with −βn would change J into −J , and ξ1 into −ξ1; con-
sequently the two connected components of B′

1,1,0 \ {0} correspond respectively to
“past” and “future”; in other words, the orientation of the line B′

1,1,0 is equivalent
to the orientation of time. It is always assumed that e0 is oriented toward “future”,
and that βn is chosen so that ξ1 too is oriented toward “future”; this assumption
is compatible with the choice of βn in (6.ex.22) because ξ1 = e0 when x = 1. Since
the orientations of e0 and βn determine each other, and since B′

1,0,0 is generated by
the scalar product (xsp, ysp) �−→ βn(ωxsp, ysp), the orientation of the line B′

1,0,0

depends on e0ω = e1e2e3; therefore it is equivalent to the orientation of space.
Unlike the orientation of space which is a pure convention, the orientation of time
has a physical meaning; this explains why S becomes a genuine spinor space only
after the choice of a nonzero element βn in B′

1,1,0 as above.



Chapter 7

Hyperbolic Spaces

The main object in this chapter (from Section 7.2 onwards) is a quadratic space
(M, q) that is decomposed into a direct sum of a totally isotropic submodule U such
that U = U⊥, and any supplementary submodule V . Thus (M, q) is hyperbolic (see
(2.5.5)) even if V is not totally isotropic, and dq induces canonical isomorphisms
U → (M/U⊥)∗ → V ∗ and V → M/U⊥ → U∗ (see (2.3.7)). As a quadratic
module, V will also interest us, and the short notation (V, q) (instead of (V, q|V ))
will be preferred; it is clear that the quadratic form q on M is determined by its
restriction to V and by the above isomorphism U → V ∗.

Most of this chapter is devoted to a generalization of Chevalley’s theory
of hyperbolic spaces (see [Chevalley 1954], Chap. III). Nonetheless it must be
recalled that Chevalley’s results involve only hyperbolic spaces over fields, and
decompositions M = U⊕V in which both U and V are totally isotropic. Therefore
the large part of the section 7.5 that is devoted to an arbitrary quadratic module
(V, q) (with V a finitely generated projective K-module and q(V ) in general �= 0)
is completely foreign to Chevalley’s ideas.

The main result is the existence of a canonical bijection between all totally
isotropic direct summands T of (M, q) such that T⊥ = T and all direct summands
of C�(V, q) of constant rank 1 contained in Lip(V, q). Therefore the concept of
“simple spinor” in [Cartan 1938], which turned into “pure spinor” in [Chevalley
1954], becomes here superfluous, since the simple or pure spinors will prove to be
the lipschitzian elements in C�(V, q). Here we use the ideas of both Lipschitz and
Chevalley, and we are happy to demonstrate how advantageous it is to respect the
whole cliffordian tradition without exclusion.

7.1 Some representations of Clifford algebras

Let (M, q) be a quadratic module over the ring K. We assume that M is the direct
sum U⊕V of two submodules satisfying these properties: U is totally isotropic (in
other words, q(U) = 0) and the restriction of q to V admits a scalar product (see
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(4.8.6)). Here are immediate consequences of these hypotheses; first the canonical
injections U → M and V → M extend to injective algebra morphisms

∧
(U) →

C�(M, q) and C�(V, q)→ C�(M, q) because of (4.8.5); the notation C�(V, q) means
the Clifford algebra associated with the restriction of q to V . The algebras

∧
(U)

and C�(V, q) are identified with their images in C�(M, q). Moreover q itself admits
scalar products; we can find scalar products β : M×M → K such that β(M, U) =
0 (or equivalently β(b, a) = bq(b, a) whenever b ∈ U), and scalar products β such
that β(U, M) = 0 (or equivalently β(a, b) = bq(a, b) whenever b ∈ U). Whatever
β may be, we always require β(U, U) = 0.

(7.1.1) Theorem. The algebra C�(M, q) is the direct sum of the subalgebra C�(V, q)
and the left ideal C�(M, q)U generated by U . Thus C�(V, q) is canonically iso-
morphic to the quotient C�(M, q)/C�(M, q)U . If we transport into C�(V, q) the
action of C�(M, q) in this quotient, then C�(M, q) acts in C�(V, q) in this way:
every z ∈ C�(V, q) operates in C�(V, q) by the Clifford multiplication v �−→ zv,
and every y ∈

∧
(U) operates by the interior multiplication v �−→

∧
(dq)(y) � v ;

here
∧

(dq) means the algebra morphism
∧

(U)→
∧

(M∗)→
∧∗(M) extending the

restriction of dq to U .

Proof. Let β be an admissible scalar product for q such that β(M, U) = 0 ; we can
replace C�(M, q) with the isomorphic algebra

∧
(M ; β). Since xb = x∧ b for every

x ∈
∧

(M ; β) and every b ∈ U , the left ideal
∧

(M ; β)U is also the ideal generated
by U in the exterior algebra

∧
(M); this algebra is isomorphic to

∧
(V ) ⊗̂

∧
(U),

and is obviously the direct sum of
∧

(V ) and the ideal generated by U . As a
submodule of

∧
(M), the subalgebra of

∧
(M ; β) generated by V is the same thing

as
∧

(V ); consequently C�(M, q) is the direct sum of C�(V, q) and C�(M, q)U .
The operations of every x ∈ C�(M, q) in C�(V, q) maps every v ∈ C�(V, q)

to the unique v′ ∈ C�(V, q) such that v′ − xv belongs to C�(M, q)U . If x is in
C�(V, q), it is clear that v′ = xv. When b is in U , from (4.4.12) we derive bv =
dq(b) � v + σ(v)b ; this shows that the operation of b maps v to v′ = dq(b) � v ; for
a general element y ∈

∧
(U), the conclusion follows from (4.4.3). �

The next lemma and its corollary corroborate the stability of the lipschitzian
property by a large number of natural operations (for instance interior multipli-
cations as in (5.3.13)).

(7.1.2) Lemma. If x is a lipschitzian element of C�(M, q), its projection in C�(V, q)
with respect to the left ideal C�(M, q)U is also lipschitzian.

Proof. When β(M, U) = 0 as in the proof of (7.1.1), the left ideal generated
by U in

∧
(M, β) is the ideal generated by U in

∧
(M); therefore the projection

from
∧

(M ; β) onto
∧

(V ; β) with respect to this ideal coincides with the algebra
morphisms

∧
(M) →

∧
(V ) associated by the functor

∧
to the projection M → V .

Since x is also lipschitzian in
∧

(M) (by the invariance property (5.4.1)), the
conclusion follows from the stability of the lipschitzian property stated in (5.3.14).

�
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(7.1.3) Corollary. If x and z are lipschitzian elements respectively in C�(M, q) and
C�(V, q), the representation of C�(M, q) in C�(V, q) defined in (7.1.1) maps (x, z)
to a lipschitzian element of C�(V, q) .

Proof. The product xz is still lipschitzian (see (5.3.2)), and also its projection
onto C�(V, q) with respect to C�(M, q)U (see (7.1.2)). This projection is exactly
the image of (x, z) in C�(V, q). �

To the previous hypotheses we add this one: U is a finitely generated pro-
jective module; then the representation of C�(M, q) in its quotient by the left
ideal C�(M, q)U is equivalent to its representation in the left ideal generated by∧max(U); this is the submodule of all ω ∈

∧
(U) such that b ∧ ω = 0 for all b ∈ U

(see(3.2.6)); it is a direct summand of
∧

(U) of constant rank 1.

(7.1.4) Proposition. The multiplication mapping z ⊗ ω �−→ zω induces a bijection
from C�(V, q) ⊗

∧max(U) onto the left ideal of C�(M, q) generated by
∧max(U).

Thus there is a representation of C�(M, q) in C�(V, q) for which the operation of
every x ∈ C�(M, q) maps every v to v′ such that v′ω = xvω for all ω ∈

∧max(U);
this representation is the same as the one defined in (7.1.1).

Proof. Since C�(M, q) is the direct sum of C�(V, q) and C�(M, q)U , and since
every multiplication by an element of U annihilates

∧max(U), the left ideal
C�(M, q)

∧max(U) is generated by the products zω with z ∈ C�(V, q). Let us use
the same scalar product β as in the proof of (7.1.1), so that zω = z ∧ω. From the
canonical isomorphism

∧
(V ) ⊗̂

∧
(U)→

∧
(M) we deduce that C�(V, q)⊗

∧max(U)
is mapped bijectively onto the left ideal generated by

∧max(U).
The action of the algebra C�(M, q) in its left ideal C�(M, q)

∧max(U) gives
an action of C�(M, q) in C�(V, q) because this left ideal is isomorphic to C�(V, q)⊗∧max(U), and the module

∧max(U) is invertible. This new action of C�(M, q) in
C�(V, q) coincides with the previous action defined in (7.1.1). Indeed for every
x ∈ C�(M, q), the previous operation of x in C�(V, q) maps every v to the element
v′ such that v′ − xv belongs to C�(M, q)U , and this implies (v′ − xv)ω = 0 . �

Hurried readers may skip the end of this section which is devoted to precise
calculations involving the representation of C�(M, q) in C�(V, q) defined in (7.1.1).
We choose an admissible scalar product β for q, and we replace C�(M, q) with∧

(M ; β); we require β(U, U) = 0, so that two elements of
∧

(U) have the same
product in

∧
(M ; β) as in

∧
(M). An element of M is now written b + c, with

b and c its components in U and V . The exterior multiplication mapping π :∧
(M) ⊗̂

∧
(M) →

∧
(M) is the algebra morphism associated by the functor

∧
with the mapping M ⊕M →M defined by (b + c, b′ + c′) �−→ b + b′ + c + c′.

We also use the algebra morphism � :
∧

(M) →
∧

(M) associated by the
functor

∧
with the parallel projection from M onto V with respect to U , that is

b + c �−→ c. It already appeared in the proof of (7.1.2).
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At last from β we derive an element β† of
∧∗2(M) :

β†((b + c) ∧ (b′ + c′)) = β(c′, b)− β(c, b′) ;

obviously β† only depends on the restriction of β to V × U ; if we choose β such
that β(M, U) = 0 (as in the proof of (7.1.1)), then β† = 0. But β† �= 0 when (for
instance) 2 is invertible in K and β = bq/2 (the canonical scalar product).

(7.1.5) Proposition. For every x ∈
∧

(M ; β), the projection of x onto
∧

(V ; β) with
respect to the left ideal

∧
(M ; β)U is equal to �(Exp(β†) �x).

Proof. We identify
∧

(M) with
∧

(U) ⊗̂
∧

(V ), and we write u ⊗ 1 and 1 ⊗ v for
elements that are respectively in

∧
(U) and

∧
(V ). Thus the left ideal C�(M, q)U

is generated by the products (1⊗v)(u⊗1) with u ∈
∧>0(U), and � is the parallel

projection from
∧

(U) ⊗̂
∧

(V ) onto 1 ⊗
∧

(V ) with respect to
∧>0(U) ⊗

∧
(V ).

We must prove that, for all u and v respectively in
∧>0(U) and

∧
(V );

�( Exp(β†) � (1 ⊗ v)) = 1⊗ v,

�( Exp(β†) � (1 ⊗ v)(u⊗ 1)) = 0 .

The first equality comes from the fact that the interior multiplication by Exp(β†)
leaves 1 ⊗ v invariant: this follows from (4.5.9) since β† is a linear form on∧

(U) ⊗̂
∧

(V ) vanishing on all
∧i(U) ⊗

∧j(V ) except U ⊗ V . Now we calculate
(1⊗ v)(u ⊗ 1) in

∧
(M ; β) according to (4.7.1):

(1 ⊗ v)(u⊗ 1) = π( Exp(β′′) � (1⊗ v)⊗ (u ⊗ 1))

= (−1)∂u∂v π( Exp(βto
′′ ) � (u⊗ 1)⊗ (1⊗ v)).

We shall use (4.4.6) with the following morphism:

w : U ⊕ V ⊕ U ⊕ V −→ U ⊕ V , (b, c, b′, c′) �−→ (b, c′) ;

on one side, π and
∧

(w) have the same restriction to
∧

(U)⊗ 1⊗ 1⊗
∧

(V ) since
they map (u⊗ 1)⊗ (1⊗ v) to u⊗ v ; on the other side, it is easy to verify that βto

′′
and

∧∗(w)(−β†) have the same restriction to
∧

(U) ⊗ 1 ⊗ 1 ⊗
∧

(V ) ; thus from
(4.4.6) we derive

(1⊗ v)(u ⊗ 1) = (−1)∂u∂v
∧

(w) (Exp(
∧∗

(w)(−β†)) � (u⊗ 1)⊗ (1⊗ v))

= (−1)∂u∂v Exp(−β†) � (u ⊗ v) .

The calculation ends in this way:

�( Exp(β†) � (1⊗ v)(u ⊗ 1)) = ± �( Exp(β†) � (Exp(−β†) � (u⊗ v)))
= ± �(u⊗ v)

= 0 because u ∈
∧>0

(U). �
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(7.1.6) Corollary. For every x ∈ C�(M, q) let Rx be the endomorphism of C�(M, q)
defined in this way: it maps the left ideal C�(M, q)U to 0, and its restriction
to C�(V, q) is the operation of x in C�(V, q) corresponding to the representation
defined in (7.1.1). It maps every z ∈ C�(M, q) to

Rx(z) = �π
(

Exp(β′′ + π∗(β†)) � (x⊗ z)
)
.

Proof. Since Rx(z) is the projection of xz onto
∧

(V ; β) with respect to
∧

(M ; β)U ,
we begin the calculation by means of (7.1.5) and pursue it with the help of (4.4.6):

Rx(z) = �( Exp(β†) � xz)

= �( Exp(β†) � π(Exp(β′′) � (x⊗ z)))

= �π( Exp(π∗(β†)) � (Exp(β′′) � (x⊗ z)))

= �π( Exp(β′′ + π∗(β†)) � (x⊗ z)). �

It is worth giving the precise expression of the element of
∧∗2(M ⊕M) that

appears in (7.1.6):

(β′′ + π∗(β†)) ((b1 + c1, b2 + c2) ∧ (b′1 + c′1, b′2 + c′2))
= β(b1 + c1, b′2 + c′2)− β(b′1 + c′1, b2 + c2)

+ β(c′1 + c′2, b1 + b2)− β(c1 + c2, b′1 + b′2)
= bq(b1, c

′
2)− bq(b′1, c2) + β(c1, c

′
2)− β(c′1, c2)

− β(c1, b
′
1) + β(c′1, b1) − β(c2, b

′
2) + β(c′2, b2) ;

thus β′′ + π∗(β†) is decomposed into a sum of four terms; the first term (which
gives bq(b1, c

′
2)−bq(b′1, c2)) does not depend on the choice of β; when later (M, q)

is a hyperbolic space and U ∼= V ∗, this term represents the duality between U
and V . The second term (which gives β(c1, c

′
2) − β(c′1, c2)) only depends on the

multiplication inside the subalgebra
∧

(V, β). The third and fourth terms are β†⊗1
and 1 ⊗ β†, and they vanish when β is chosen in such a way that β(M, U) = 0.
But even when β† �= 0, the last term 1 ⊗ β† can be dropped when we calculate
Rx(z) with z already in

∧
(V, β); indeed the interior multiplication by Exp(1⊗β†)

leaves x⊗ z invariant for all z ∈
∧

(V, β) (again (4.5.9)). Only the first three terms
are involved in the restriction of Rx to C�(V, q).

7.2 The Cartan–Chevalley mapping

In this section and in all the following ones, we assume that (M, q) is a quadratic
space, that M is a direct sum U⊕V of two submodules, that U is totally isotropic,
and that U⊥ = U ; according to (2.5.5), (M, q) is a hyperbolic space isomorphic to
H(U), and also to H(V ). Although the definition of H(V ) ignores the restriction of
q to V , this must not suggest that this restriction should vanish. On the contrary,
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since the purpose of this chapter is double: first the study of a hyperbolic space like
(M, q), and secondly the study of any quadratic module (V, q) (with V a finitely
generated projective module) by means of an embedding into a hyperbolic space
(U ⊕ V ; q) with U ∼= V ∗.

According to (7.1.1) there is a representation of the algebra C�(M, q) in the
module C�(V, q); the operation in C�(V, q) of any x ∈ C�(M, q) is denoted by
Rx. This Rx is not exactly the same as the one defined in (7.1.6), because the
latter has been extended by 0 on the supplementary left ideal C�(M, q)U ; but this
discrepancy is tiny enough to be overlooked.

(7.2.1) Theorem. When (M, q) is a hyperbolic space as above, the mapping x �−→
Rx is a graded algebra isomorphism from C�(M, q) onto End(C�(V, q)).

Proof. When V is totally isomorphic, (7.2.1) is the same thing as (3.7.2), because
the isomorphism C�(M, q) → End(

∧
(V )) constructed in the proof of (3.7.2) is

exactly the present mapping x �−→ Rx. When V is not totally isotropic, (2.5.4)
will still state the existence of a totally isotropic submodule V ′ supplementary
to U . As modules over C�(M, q), both C�(V, q) and

∧
(V ′) are isomorphic to the

quotient of C�(M, q) by the left ideal C�(M, q)U . Since we get an isomorphism
C�(M, q) → End(

∧
(V ′)) for the module

∧
(V ′) over C�(M, q), we also get an

isomorphism C�(M, q)→ End(C�(V, q)) for the isomorphic module C�(V, q). �

Now we must prove that C�(M, q) is the direct sum of the left ideal C�(M, q)U
and some other left ideal; this follows immediately from the next lemma when V
is totally isotropic; but it is true even when V is not totally isotropic, since M
is the direct sum of U and some other totally isotropic submodule (see (2.5.4)).
When V is totally isotropic,

∧max(V ) is defined according to (3.2.6).

(7.2.2) Lemma. When the hyperbolic space (M, q) is the direct sum of two totally
isotropic submodules U and V , then C�(M, q) is the direct sum of the left ideals
generated by U and

∧max(V ). The left ideal C�(M, q)
∧max(V ) has the same rank

as
∧

(U) at any prime ideal of K.

Proof. By inverting the roles of U and V , from (7.1.4) we deduce that the left
ideal generated by

∧max(V ) is the image of the multiplication mapping
∧

(U) ⊗∧max(V ) → C�(M, q), and that it has everywhere the same rank as
∧

(U). From
(7.1.1) we know that

∧
(V ) is supplementary to the left ideal C�(M, q)U ; to prove

that the left ideal
∧

(U)
∧max(V ) also is supplementary to C�(M, q)U , it suffices

to find a bijection f :
∧

(U)
∧max(V ) →

∧
(V ) such that f(x) − x belongs to

C�(M, q)U for all x ∈
∧

(U)
∧max(V ). Since yω′ − Ry(ω′) belongs to C�(M, q)U

(by definition of Ry) for all y ∈
∧

(U) and ω′ ∈
∧max(V ), it suffices to prove the

bijectiveness of the mapping

f ′ :
∧

(U)⊗
∧max

(V ) −→
∧

(V ) , y ⊗ ω′ �−→ Ry(ω′).
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Because of (1.13.5) it suffices to prove that f ′ is surjective; besides, we can suppose
that K is a local ring, and that

∧max(V ) is generated by one element ω′. For every
z ∈

∧
(V ), there exists x ∈ C�(M, q) such that Rx(ω′) = z, since the mapping

x �−→ Rx is bijective onto End(
∧

(V )). This x is the sum of some y ∈
∧

(U)
and some element of C�(M, q)V (see (7.1.1)), whence Ry(ω′) = Rx(ω′) = z. This
proves the surjectiveness of f ′. �

Now we define the two objects that are the source and the target of the
Cartan–Chevalley mapping χ involved in the next theorem. First T (M, q) is the
set of all totally isotropic direct summands T of M such that T = T⊥. For every
direct summand T of M , the sum of the ranks of T and T⊥ is the rank of M (see
(2.3.7)); consequently a totally isotropic direct summand T satisfies the equality
T = T⊥ if and only if its rank at every prime ideal of K (or equivalently at every
maximal ideal) is equal to the rank of U or V ; the elements of T (M, q) are called
totally isotropic direct summands of maximal rank. When K is a field, they are
also called maximal totally isotropic subspaces.

Secondly BLip(V, q) is the set of all lipschitzian direct summands of constant
rank 1, in other words, all graded direct summands of C�(V, q) of constant rank
1 that are contained in Lip(V, q). The letter B in the notation BLip(V, q) recalls
that it is the base of the bundle in which the total space is the subset of all
(z, Z) ∈ C�(V, q) × BLip(V, q) such that z ∈ Z. Of course T (M, q) may also be
considered as the base of the bundle in which the total space is the subset of
all (a, T ) ∈ M × T (M, q) such that a ∈ T . It must be observed that the group
G′Lip(V, q) is a subset of BLip(V, q), in other words, every Z ∈ G′Lip(V, q) is a
graded direct summand of C�(V, q). Indeed K is a direct summand of C�(V, q)
(see (1.13.2)), and since Z is invertible inside C�(V, q), the multiplication mapping
Z ⊗C�(V, q)→ C�(V, q) is a bijection that maps the direct summand Z ⊗K onto
the direct summand Z.

(7.2.3) Theorem. For every T ∈ T (M, q), let χ(T ) be the submodule of all z ∈
C�(V, q) such that Ra(z) = 0 for all a ∈ T . For instance χ(U) = K. This mapping
χ is a bijection from T (M, q) onto BLip(V, q). Conversely every Z ∈ BLip(V, q)
is the image of the submodule χ−1(Z) of all a ∈ M such that Ra(z) = 0 for all
z ∈ Z.

Beginning of the proof. Everything in (7.2.3) can be settled at once, except the
fact that the image of χ is precisely BLip(V, q); this fact shall be proved later
with the help of the next four propositions. For every T ∈ T (M, q), the graded
left ideal C�(M, q)T admits a supplementary graded left ideal J ′; indeed this is
asserted in (7.2.2) for C�(M, q)U , but is also valid for C�(M, q)T . Let ε and ε′

be the projections of 1 in the supplementary graded left ideals C�(M, q)T and J ′;
thus Rε and Rε′ are even idempotent elements of End(C�(V, q)), the images of
which are supplementary graded submodules of C�(V, q), and Rε and Rε′ are the
projections onto these submodules. We can write Im(Rε′) = Ker(Rε) = χ(T )
because the left ideal generated by ε is precisely the left ideal generated by T .
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The rank of the left ideal J ′ is equal to the rank of
∧

(T ) (see (7.2.2)), that is also
the rank of C�(V, q). The images of the elements of J ′ in End(C�(M, q)) are all
linear mappings χ(T )→ C�(V, q)) extended by 0 on the supplementary submodule
Im(Rε); this allows us to calculate the rank of χ(T ) and to prove that it is equal
to 1. It is clear that χ(U) contains K, and is equal to K because K too is a direct
summand of C�(V, q).

Conversely let Z be a graded direct summand of C�(V, q) of rank 1, and N the
submodule of all a ∈M such that Ra(Z) = 0. This N is totally isotropic because
q(a)z = Ra(Ra(z)) = 0 for all a ∈ N and all z ∈ Z, and Z is a faithful module.
If Z belongs to the image of χ, then N contains a submodule T that belongs to
T (M, q), whence N = T because T = T⊥. This implies the injectiveness of χ. �

(7.2.4) Historical comment. Chevalley’s definition of the Cartan–Chevalley map-
ping was somewhat different (see (7.ex.4)(a)), but he showed that his definition
was equivalent to (7.2.3); he called “spinors” all the elements of C�(V, q), and
“pure spinors” those belonging to some line χ(T ) with T ∈ T (M, q). He always
assumed V to be totally isotropic like U . He could not describe the image of the
Cartan–Chevalley mapping with reference to a Lipschitz monoid (as we are soon
going to do) since Lipschitz’s ideas were foreign to his own comprehension. But he
discovered two properties characterizing the image of this mapping: first a prop-
erty equivalent to Theorem (5.10.2), which is only valid when K is a field and V
is totally isotropic, and secondly the Cartan–Chevalley criterion suggested by Elie
Cartan’s pioneering work. Later, when the existence of Lipschitz monoids began
to be contemplated, it was conjectured that the image of the Cartan–Chevalley
mapping should be closely related to Lip(V, q), and that the Cartan–Chevalley
criterion should characterize the lipschitzian elements of C�(V, q) even when V
was not totally isotropic and when K was not a field. Under this conjecture the
definition (5.3.1) of the Lipschitz monoid was derived from the Cartan–Chevalley
criterion under the hypothesis that 2 was invertible in K, as is explained in (7.ex.7),
and the relevance of the definition (5.3.1) was confirmed by the developments here
expounded in Chapter 5. Still later the Cartan–Chevalley criterion proved to be
equivalent to the definition (5.3.1) even when 2 was not invertible, as is explained
farther in Section 7.4.

Lipschitz monoids appeared at several places and under various definitions,
but always without reference to Lipschitz; indeed Lipschitz’s work had meanwhile
fallen into oblivion, and probably Chevalley much contributed to this oblivion. The
renewal of Lipschitz’s ideas was first due to the solving of new problems which
needed them; only later did historical researches (for instance those of Lounesto)
show that the solving of these problems should be understood as a continuation
of Lipschitz’s work.

To complete the proof of (7.2.3) we need the group G′Lip(M, q). By means
of the representation x �−→ Rx it acts on the set of all graded direct summands
of C�(V, q) of constant rank 1, and because of (7.1.3) it leaves invariant the sub-
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set BLip(V, q). Moreover G′Lip(M, q) acts in T (M, q) through the isomorphism
G′Lip(M, q) → GO(M, q) (see (5.8.1)).

(7.2.5) Proposition. The Cartan–Chevalley mapping is equivariant when the group
G′Lip(M, q) acts on one side on T (M, q), on the other side on the set of all direct
summands of C�(V, q) of constant rank 1.

Proof. Let X be an element of G′Lip(M, q), GX its image in GO(M, q), T an
element of T (M, q), and Z a direct summand of C�(V, q) of constant rank 1. By
definition of GX every a ∈ T has an image a′ ∈ GX(T ) such that a′x = (−1)∂xxa
for all x ∈ X . The following six assertions are equivalent:

Z = χ(T ) ;
∀z ∈ Z, ∀a ∈ T, Ra(z) = 0 ;

∀x ∈ X, ∀z ∈ Z, ∀a ∈ T, Rx(Ra(z)) = Rxa(z) = 0 ;
∀x ∈ X, ∀z ∈ Z, ∀a′ ∈ GX(T ), Ra′(Rx(z)) = Ra′x(z) = 0 ;
∀x ∈ X, ∀z ∈ Z, Rx(z) ∈ χ(GX(T )) ;

RX(Z) = χ(GX(T )) . �

(7.2.6) Proposition. When K is a local ring, the group G′Lip(M, q) acts transitively
in T (M, q).

Proof. Let T be an element of T (M, q). It suffices to prove the existence of some
g ∈ GO(M, q) such that g(U) = T . Because of (2.5.4) we know that (M, q) contains
totally isotropic submodules U ′ and T ′ respectively supplementary to U and T .
Since K is a local ring, U and T are free modules of the same rank; therefore
there exists an isomorphism f : U → T . The functor Hom(. . . , K) associates with
f a morphism f∗ between the dual spaces, and since bq makes U ′ and T ′ become
canonically isomorphic to the dual spaces U∗ and T ∗, we can consider f∗ as an
isomorphism T ′ → U ′. Let g be the endomorphism of M defined in this way for
all (b, b′) ∈ U × U ′ : g(b + b′) = f(b) + f∗−1(b′). It is easy to prove that g is an
automorphism of (M, q), and consequently an element of GO(M, q) mapping U
onto T . �

(7.2.7) Proposition. When K is a local ring, the group G′Lip(M, q) acts transitively
in BLip(V, q).

Proof. Let Z be an element of BLip(V, q) generated by some element z. We must
prove the existence of some x ∈ GLip(M, q) such that Rx(1) = z. For this purpose
we use a scalar product β on M that is admissible for q, we replace C�(M, q) with∧

(M ; β), and we first prove that there exists a bilinear form β′ : V ×V → K such
that z is invertible in

∧
(V, β′), or in other words, such that z ∈ GLip(V ; β′). Since

anyhow z belongs to Lip(V ; β′), the product of z and τβ′(z) in
∧

(V, β′) belongs
to K, and we must choose β′ in such a way that this product is invertible in K.
But its invertibility in K is equivalent to the invertibility of its image in K/m,
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if m is the maximal ideal of K. Besides, since V is a free module, every bilinear
form V/mV × V/mV → K/m comes from a bilinear form V × V → K . Thus it
suffices to prove the existence of β′ when K is a field. When K is a field, it has
been proved in (5.10.1) that z is actually invertible in some algebra

∧
(V ; β′).

Since we get a bijection U → V ∗ if we map every a ∈ U to the restriction of
dq(a) to V , there exists a mapping f : V → U such that

∀c, c′ ∈ V , β′(c, c′) = β(c, c′) + bq(f(c), c′) ;

according to (4.8.9), this means that the left multiplication by c in
∧

(V ; β′) is
equal to Rc+f(c) . Let V ′ be the submodule of all c + f(c) with c ∈ V . Since
q(c + f(c)) = β′(c, c) for all c ∈ V , the bijection c �−→ c + f(c) from V onto V ′

extends to an algebra isomorphism F :
∧

(V ; β′)→
∧

(V ′; β). For every v ∈
∧

(V ),
the left multiplication by v in

∧
(V ; β′) is equal to RF (v). Moreover F maps z to

some element of GLip(V ′; β), which is a subgroup of GLip(M ; β). Since the left
multiplication by z in

∧
(V ; β′) maps 1 to z, we conclude that RF (z)(1) = z. �

(7.2.8) Proposition. When T belongs to T (M, q), a submodule of T that generates
the same left ideal in C�(M, q) as T , is equal to T .

Proof. It suffices to prove (7.2.8) when K is a local ring, and even when K is a
field, because of Nakayama’s Lemma (see (1.12.2)). Besides, it suffices to prove it
when T = U . Let us suppose that K is a field and that U1 is a subspace of U
strictly smaller than U . Since bq determines a duality between U and V , there
exists a nonzero c ∈ V such that bq(b, c) = 0 for all b ∈ U1. This means that the
subspace of all z ∈ C�(V, q) such that Rb(z) = 0 for all b ∈ U1 is strictly larger
than χ(U) = K, since it contains c. Consequently U1 cannot generate the same
left ideal as U . �

End of the proof of (7.2.3). We must still prove that the image of χ is BLip(V, q).
When K is a local ring, this is an immediate consequence of Propositions (7.2.5),
(7.2.6), (7.2.7). When K is not a local ring, we already know that all localizations
of χ(T ) are contained in the corresponding Lipschitz monoid, and consequently
χ(T ) is contained in Lip(V, q) (see (5.3.5)); it follows that χ is an injective mapping
from T (M, q) into BLip(V, q), and only its surjectiveness remains in question.

Let Z be an element of BLip(V, q), and T the submodule of all a ∈ C�(M, q)
such that Ra(Z) = 0. As explained above, T is a totally isotropic submodule; we
already know that, for every prime ideal p of K, the localization Tp belongs to
T (Mp, qp). If we manage to prove that T is finitely generated, we can conclude
that T is a projective module (see (1.12.9)), that T is a direct summand of M (see
(1.13.1)), that its rank is that of U and V , and finally that T belongs to T (M, q),
and χ(T ) = Z.

Let us prove that T is finitely generated. Since Z is a direct summand of
C�(V, q), the left ideal J of all x ∈ C�(M, q) such that Rx(Z) = 0 is a direct
summand of C�(M, q), and consequently is finitely generated. By localization it is



7.2. The Cartan–Chevalley mapping 401

easy to proved that the multiplication mapping C�(M, q) ⊗ T → J is surjective.
Since J is finitely generated, this mapping is already surjective when we replace
T with some finitely generated submodule T1. Every localization of T1 generates
the same left ideal as the corresponding localization of T . Because of (7.2.8), T
and T1 have the same localizations, and are equal. �

The other Cartan–Chevalley mapping χ⊥ : T (M, q)→ BLip(V ⊥, q)

The equality M = U ⊕ V implies M = U ⊕ V ⊥ (see (2.3.7)); consequently we can
do with V ⊥ all we have done with V . There is an algebra isomorphism x �−→ R⊥

x

from C�(M, q) onto End(C�(V ⊥, q)) and there is a Cartan–Chevalley bijection χ⊥

from T (M, q) onto BLip(V ⊥, q). First we shall compare Rx and R⊥
x .

Since V and V ⊥ are both supplementary to U , there exists a unique isomor-
phism p : V → V ⊥ such that p(c)−c belongs to U for all c ∈ V . Since q(p(c)−c) and
bq(c, p(c)) both vanish, we realize that q(p(c)) = −q(c) for all c ∈ V . Consequently
p extends to an algebra isomorphism C�(V,−q) → C�(V ⊥, q). Since C�(V,−q) is
isomorphic to C�(V, q)to (see (3.2.2)), the mapping cto �−→ p(c) extends to an
isomorphism C�(V, q)to → C�(V ⊥, q).

(7.2.9) Proposition. There is a unique bijection ψ : Cl(V, q) → C�(V ⊥, q) such
that ψ(z) − z belongs to the left ideal C�(M, q)U for all z ∈ C�(V, q) (whence
ψ(c) = p(c) if c ∈ V ). It is an isomorphism of C�(M, q)-modules:

∀x ∈ C�(M, q), ∀z ∈ C�(V, q), ψ(Rx(z)) = R⊥
x (ψ(z)).

Besides, the mapping zto �−→ ψ(z) is an algebra isomorphism from C�(V, q)to onto
C�(V ⊥, q).
This last property of ψ shows that it commutes with the reversion τ , and that
consequently ψ(z)− z belongs to the right ideal U C�(M, q) too.

Proof. The beginning of (7.2.9) follows from the fact that C�(V, q) and C�(V ⊥, q)
are both supplementary to C�(M, q)U , and consequently isomorphic to C�(M, q)/
C�(M, q)U as modules over C�(M, q). To prove the last assertion in (7.2.9), it
suffices to prove that p(c)ψ(z) = (−1)∂zψ(zc) for all c ∈ V and z ∈ C�(V, q). This
follows from dq(p(c)) � z = 0 and dq(c) � z = cz − (−1)∂zzc (see (4.4.12)):

p(c)ψ(z) = R⊥
p(c)(ψ(z)) = ψ(Rp(c)(z)) = ψ(cz + dq(p(c)− c) � z)

= ψ(cz − dq(c) � z) = (−1)∂zψ(zc). �

As an immediate corollary of (7.2.9) we can state

(7.2.10) ∀T ∈ T (M, q), χ⊥(T ) = ψ(χ(T )) .
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A first application of (7.2.10) occurs in the description of the submodules
T ∈ T (M, q) such that T = (T ∩ U) ⊕ (T ∩ V ); they are in bijection with the
totally isotropic direct summands N of V .

(7.2.11) Proposition. If N is a totally isotropic direct summand of V , the submodule
(N⊥∩U)⊕N belongs to T (M, q), and for every T ∈ T (M, q) these assertions are
equivalent:

(a) T = (T ∩ U)⊕ (T ∩ V ) and T ∩ V = N .
(b) T = (N⊥ ∩ U)⊕N .
(c) χ(T ) =

∧max(N).
(d) χ⊥(T ) =

∧max(p(N)).
(e) T = (N⊥ ∩ U)⊕ p(N).
(f) T = (T ∩ U)⊕ (T ∩ V ⊥) and T ∩ V ⊥ = p(N).

Proof. Since V is the direct sum of N and some other submodule, V ∗ is the direct
sum of the annihilator of N (the submodule of all linear forms vanishing on N) and
some other submodule that is isomorphic to N∗. Since dq induces an isomorphism
between U and V ∗, U is the direct sum of N⊥ ∩ U (isomorphic to (V/N)∗) and
some submodule isomorphic to N∗. Since (N⊥∩U)⊕N is a totally isotropic direct
summand that has the same rank as V , it belongs to T (M, q). Now it is clear that
(b)⇒(a). Conversely (a) implies the inclusion T ⊂ (N⊥∩U)⊕N which must be an
equality because it involves two direct summands that have the same rank. Now
(b) implies the inclusion χ(T ) ⊃

∧max(N) which must be an equality for the same
reason, and conversely (c)⇒(b) because of the bijectiveness of χ. The equivalence
of (c) and (d) follows from (7.2.10) because ψ(

∧max(N)) =
∧max(p(N)). Since V

and V ⊥ can play the same role, and since the equality N⊥ ∩ U = p(N)⊥ ∩ U is
clear, the end of the proof is evident. �

When V is totally isotropic, then V = V ⊥ and moreover χ(V ) =
∧max(V ).

It has been noticed that G′Lip(V, q) is a subset of BLip(V, q); with the help
of V ⊥ we can determine which subset of T (M, q) is mapped onto G′Lip(V, q).

(7.2.12) Proposition. For every T ∈ T (M, q), the following assertions are equiva-
lent:

(a) M = T ⊕ V .
(b) M = T ⊕ V ⊥.
(c) χ(T ) ∈ G′Lip(V, q).

Proof. The equivalence (a)⇔(b) follows from (2.3.7). Let us set Z = χ(T ) and
suppose that Z ∈ G′Lip(V, q). From the equality Z = RZ(K) we derive T =
GZ(U) (see (7.2.5)). And from (5.4.5) we deduce that GZ(d) = d for all d ∈ V ⊥.
Consequently GZ maps U and V ⊥ respectively to T and V ⊥, and the equality
M = T⊕V ⊥ follows from M = U⊕V ⊥. Thus we have proved (c)⇒(b). Conversely
let us suppose that U and T are both supplementary to V ⊥. By means of bq they
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become both canonically isomorphic to (V ⊥)∗, whence a bijection f : U → T . If
we set g(b + d) = f(b) + d for all (b, d) ∈ U × V ⊥, we get an automorphism g of
(M, q), and there exists Z ∈ G′Lip(M, q) such that g = GZ . Since T = g(U), from
(7.2.5) we derive χ(T ) = RZ(K). Now from (5.4.5) we deduce that Z belongs to
G′Lip(V, q). Consequently χ(T ) = Z ∈ G′Lip(V, q). �

7.3 The bijection C�(V )⊗
∧max(U)⊗ C�(V ) → C�(M)

The hypotheses are the same as in the previous section; the submodule
∧max(U)

(already mentioned in (7.1.4)) here plays an essential role. We also use the re-
versions in the algebras C�(M, q) and C�(V, q) (see (3.1.4)); both reversions are
denoted by τ since the latter is the restriction of the former; it is clear that∧max(U) is invariant by τ . Following Chevalley, we are interested in the mapping
Ω defined in this way:

Ω : C�(V, q)⊗
∧max

(U)⊗ C�(V, q) −→ C�(M, q) , z ⊗ ω ⊗ z′ �−→ z ω τ(z′).

Let us prove at once this equality for all x and x′ ∈ C�(M, q) :

(7.3.1) Rx(z) ω τ(Rx′(z′)) = x
(
z ω τ(z′)

)
τ(x′) ;

indeed Rx(z) is the sum of xz and some element of the left ideal C�(M, q)U that
annihilates

∧max(U) by multiplication on the left side, whereas τ(Rx′ (z′)) is the
sum of τ(z′)τ(x′) and some element in the right ideal UC�(M, q) that annihilates∧max(U) by multiplication on the right side. �

(7.3.2) Theorem. The mapping Ω is bijective.

Proof. Because of (7.3.1) the image of Ω is a graded ideal of C�(M, q). Since
C�(M, q) is a graded Azumaya algebra, its graded ideals are determined by the
ideals of K in a bijective way (see (6.7.4)). The image of Ω contains

∧max(U)
that is a graded direct summand of constant rank 1. Therefore the corresponding
ideal of K is K itself, and we have proved the surjectiveness of Ω. Besides, the
source and the target of Ω are finitely generated projective modules that have the
same rank at every prime ideal of K. The bijectiveness of Ω now follows from
(1.13.5). �

(7.3.3) Theorem. Let T be an element of T (M, q), and Z = χ(T ) its image in
BLip(V, q). The mapping Ω induces a bijection

Z ⊗
∧max

(U)⊗ Z −→
∧max

(T ).

Proof. This is trivial when T = U and Z = K. To prove it for every T , we
can suppose that K is a local ring; then there exists X ∈ G′Lip(M, q) such that
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T = GX(U) (see (7.2.6)), whence Z = RX(K) (see (7.2.5)). Thus Ω maps Z ⊗∧max(U) ⊗ Z on the submodule generated by all products Rx(1) ω τ(Rx′(1))
with x and x′ in X . Because of (7.3.1) these products are equal to xωτ(x′). Since
the submodule τ(X) is the inverse of the submodule X in the algebra C�(M, q), we
realize that the submodule generated by all xωτ(x′) is the image of

∧max(U) by
the automorphism C�(GX) of C�(M, q) derived from GX ; it is equal to

∧max(T )
since GX(U) = T . �

The following proposition has been stated here merely because its proof uses
Propositions (7.2.5) and (7.2.6) in the same way as the proof of (7.3.3).

(7.3.4) Proposition. Let T and T ′ be elements of T (M, q), Z = χ(T ) and Z ′ =
χ(T ′) their images in BLip(V, q). The intersection T ∩ T ′ is the submodule of all
a ∈ M such that

∀z ∈ Z , ∀z′ ∈ Z ′ , ∀ω ∈
∧max

(U) , dq(a) � (z ω τ(z′)) = 0.

Proof. It suffices to prove (7.3.4) when K is a local ring; by using the transitive
action of G′Lip(M, q) on T (M, q), we can reduce the problem to the case T ′ = U .
In other words, if r is the rank of U , and z and ω are generators of Z and

∧r(U)
respectively, it suffices to prove that dq(a) � (zω) = 0 if and only if a belongs
to T ∩ U . This preliminary argument needs the equality dq(g(a)) �C�(g)(ξ) =
C�(g)(dq(a) � ξ) (an easy consequence of (4.4.6)) which holds for all g ∈ GO(M, q),
a ∈ M and ξ ∈ C�(M, q).

In the equality dq(a) � (zω) = (dq(a) � z)ω + σ(z)(dq(a) �ω) (see (4.4.4))
the factors ω and dq(a) �ω belong respectively to

∧r(U) and
∧r−1(U). Since the

multiplication mapping C�(V, q)⊗
∧

(U)→ C�(M, q) is bijective, this allows us to
prove that dq(a) � (zω) vanishes if and only if dq(a) � z and dq(a) �ω both vanish.
The vanishing of dq(a) �ω means that a belongs to U⊥ = U ; indeed by means
of a basis of U it is easy to prove the injectiveness of the mapping U∗ →

∧
(U)

defined by h �−→ h �ω. Now for every a ∈ U we can write dq(a) � z = Ra(z), and
the vanishing of Ra(z) means that a belongs to T ∩ U . �

With the help of (4.8.12) we get this immediate corollary.

(7.3.5) Corollary. The hypotheses are the same as in (7.3.4). If N is a direct
summand of M , then z ω τ(z′) belongs to the subalgebra generated by N in
C�(M, q) for all z, z′, ω respectively in Z, Z ′ and

∧max(U) if and only if N⊥ is
contained in T ∩ T ′.

The components of Ω when 2 is invertible

In 4.8 it is explained that, when 2 is invertible, there is a canonical linear bi-
jection

∧
(M) → C�(M, q) which provides the module C�(M, q) (but not the al-

gebra C�(M, q)) with a grading by submodules C�k(M, q). We suppose that M
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has a nonzero constant rank 2r ; therefore C�2r(M, q) is the discriminant module
of QZ(M, q) (see (4.8.15)). Since (M, q) is hyperbolic, this quadratic extension
QZ(M, q) is trivial, in accordance with the next lemma.

(7.3.6) Lemma. C�2r(M, q) is a free module generated by an element ζ such that

ζ2 = 1 ; ∀z ∈ C�(V, q), Rζ(z) = σ(z) ;

and ∀ω ∈
∧r

(U) , ω = ζω = σ(ω)ζ.

Proof. Because of Theorem (7.2.1) there exists an element ζ ∈ C�(M, q) such
that Rζ = σ. The submodule generated by σ in End(C�(V, q)) is a direct sum-
mand because the canonical images of K in End(C�0(V, q)) and End(C�1(V, q))
are direct summands (see (1.13.2)); consequently ζ generates a direct summand
(of constant rank 1) in C�(M, q). The equality ζ2 = 1 follows from σ2 = id.
Since σ anticommutes with all odd elements, and since the isomorphism x �−→ Rx

is graded, ζ is an even element that anticommutes with all odd elements; be-
cause of (4.8.13), this implies c ∧ ζ = 0 for all c ∈ M , and consequently ζ
belongs to C�2r(M, q), and generates it. At last Rω is the interior multiplication
by

∧
(dq)(ω), which belongs to

∧∗r(V ) and must be given the degree−r. Therefore
Rω maps C�r(V, q) onto C�0(V, q) = K, and annihilates C�<r(V, q). Consequently
Rω = RζRω = (−1)rRωRζ and the last announced equalities follow. �

If V is also totally isotropic, for every ω′ ∈
∧r(V ) the operator Rω′ maps∧0(V ) onto

∧r(V ), and annihilates
∧>0(M). A similar argument involving Rζ

and Rω′ shows that ω′ = ω′ζ = ζσ(ω′) .
It is worth looking at the components Ωk of Ω in the submodules C�k(M, q);

they satisfy the following properties (for k = 0, 1, . . . , 2r, for all z and z′ in C�(V, q),
and for all ω ∈

∧r(U)):

(7.3.7) Ωk(z ⊗ ω ⊗ z′) = 0 if ∂z + ∂z′ �= r − k modulo 2 ;

(7.3.8) Ωk(z′ ⊗ ω ⊗ z) = (−1)r(r−1)/2(−1)k(k−1)/2 Ωk(z ⊗ ω ⊗ z′) ;

(7.3.9) Ωk(z ⊗ ω ⊗ z′) = ζ Ω2r−k(σ(z)⊗ ω ⊗ z′)

if ζ is defined as in (7.3.6);

(7.3.10) Ω0(Rx(z)⊗ ω ⊗ z′) = Ω0(z ⊗ ω ⊗Rτ(x)(z′)),
Ω2r(Rx(z)⊗ ω ⊗ z′) = Ω2r(z ⊗ ω ⊗Rστ(x)(z′))

for all x ∈ C�(M, q) ;

(7.3.11) Ωk(Rx(z)⊗ ω ⊗Rx(z′))

= (−1)k∂x(xτ(x)) C�(GX) ◦ Ωk(z ⊗ ω ⊗ z′)

for all X ∈ G′Lip(M, q) and all x ∈ X (whence GX ∈ GO(M, q) and xτ(x) ∈ K).
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Proof. First (7.3.7) follows from the fact that the parity of Ω(z ⊗ ω ⊗ z′) is ∂z +
∂ω + ∂z′. Since the reversion τ of C�(M, q) is also described by (3.1.5), we deduce
(7.3.8) from the equalities

τ(Ωk(z ⊗ ω ⊗ z′)) = (−1)k(k−1)/2Ωk(z ⊗ ω ⊗ z′) and τ(ω) = (−1)r(r−1)/2ω .

Since the multiplication by ζ maps C�2r−k(M, q) bijectively onto C�k(M, q) (see
(4.8.15)), the equality (7.3.9) follows from the equalities ζz = σ(z)ζ and ζω = ω.
The equality in (7.3.10) involving the scalar component Ω0 is a consequence of
(7.3.1) and (4.8.16):

Ω0(Rx(z)⊗ ω ⊗ z′) = Scal(xzωτ(z′)) = Scal(zωτ(z′)x) = Ω0(z ⊗ ω ⊗Rτ(x)(z′)) .

With (7.3.9) we deduce the equality involving Ω2r from the preceding one. At last
(7.3.11) is another consequence of (7.3.1); remember that C�(GX) = ΘX is defined
in this way: ΘX(y)x = (−1)∂x∂yxy for all x ∈ X and all y ∈ C�(M, q). �

The equalities (7.3.10) involve the space BV of all bilinear forms on C�(V, q),
because every ω ∈

∧r(U) determines two elements ϕ3 and ϕ4 of BV :

Ω0(z ⊗ ω ⊗ z′) = ϕ3(z, z′) and Ω2r(z ⊗ ω ⊗ z′) = ϕ4(z, z′)ζ .

Although we do not find in (7.3.10) the twisting sign mentioned in the analogous
equality (6.8.11), it is probable that (7.3.10) means that ϕ3 and ϕ4 belong to the
graded centralizer of C�(M, q) in BV for a suitable structure of graded bimodule
over C�(M, q). To make it clear, let us consider any graded algebra A = A0 ⊕A1

provided with an involution τ , any graded module S over A, and the graded module
B of all bilinear forms ϕ : S⊗S → K. How can B become a graded bimodule over
A by means of a formula

(xϕx′)(z, z′) = (−1)ξ ϕ(x′z, τ(x)z′)

in which the twisting exponent ξ is a function of ∂x, ∂x′, ∂z, ∂z′? It is not necessary
to take ∂ϕ into account since both members of the above equality vanish if the
equality ∂ϕ = ∂x + ∂x′ + ∂z + ∂z′ does not hold. In (7.ex.6) it is proved that
there are exactly eight twisting exponents ξ that give B a structure of bimodule
whatever A and S may be; they depend on an element (λ, µ, ν) ∈ (Z/2Z)3 in the
following way:

ξ = λ(∂x∂x′ + ∂x∂z + ∂x′∂z′) + µ∂x + ν∂x′ .

It is easy to verify that Zg(A,B) is not modified when we add ∂x + ∂x′ to ξ.
Therefore, according to the value of (λ, µ, ν), we get four graded centralizers of A
in B. When (λ, µ, ν) is equal to (0, 0, 0) (resp. (0, 1, 0), resp. (1, 1, 0), resp. (1, 0, 0)),
then the homogeneous elements of Zg(A,B) are the homogeneous bilinear forms
ϕ1 (resp. ϕ2, resp. ϕ3, resp. ϕ4) such that

ϕ1(xz, z′) = (−1)∂x∂ϕϕ1(z, τ(x)z′) , ϕ3(xz, z′) = ϕ3(z, τ(x)z′) ,

ϕ2(xz, z′) = (−1)∂x∂ϕϕ2(x, στ(x)z′) , ϕ4(xz, z′) = ϕ4(x, στ(x)z′) ,
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for all x ∈ A and all z, z′ ∈ S. Now if ϕ1 is any (homogeneous) bilinear form on
S, it is easy to verify that the previous four equalities are equivalent if we set

ϕ2(z, z′) = (−1)∂zϕ1(z, z′) , ϕ3(z, z′) = (−1)∂z(1+∂z′)ϕ1(z, z′)

and ϕ4(z, z′) = (−1)∂z∂z′
ϕ1(z, z′) for all (homogeneous) z, z′ ∈ S.

Consequently all four graded centralizers of A in B are known when one of them
is known. It is also worth noticing that ϕ1 = ϕ3 and ϕ2 = ϕ4 when ϕ1 is even,
and that ϕ1 = ϕ4 and ϕ2 = ϕ3 when ϕ1 is odd.

Besides, all the eight twisting exponents ξ are amenable to the twisting rule
(4.2.1) by means of suitable subterfuges. In particular the action of τ(x) on the
left side must be interpreted as an action of xo (the image of x in the opposite
algebra Ao) on the right side; in other words, τ(x)z′ becomes z′xo. Instead of
variables z and z′ in S we may also consider variables zc and z′c in the conjugate
module Sc (defined in 6.2); for instance let us suppose that ψ is a bilinear mapping
S × Sc → K; then (4.2.1) is compatible with

(xψx′)(z, z′c) = (−1)∂x(∂ψ+∂x′+∂z+∂z′)ψ(x′z, z′cxo) ;

since ∂ψ must be replaced with ∂x + ∂x′ + ∂z + ∂z′, and since z′cxo means
(−1)∂x(τ(x)z′)c, this equality is equivalent to the equality defining (xϕx′)(z, z′)
with the twisting exponent ξ = 0. In this way we get the four exponents ξ with
λ = 0. We get the four exponents ξ with λ = 1 if we permute the positions of z
and z′. For instance if ψ is a bilinear mapping Sc × S → K, then (4.2.1) is also
compatible with

(xψx′)(z′c, z) = (−1)∂x(∂ψ+∂z′)+∂x′∂z′
ψ(z′cxo, x′z) ;

this equality is equivalent to the equality defining (xϕx′)(z, z′) with the twisting
exponent ξ = ∂x∂x′ + ∂x∂z + ∂x′∂z′.

Let us come back to BV and to the equalities (7.3.10). Since BV has the same
rank as C�(M, q) (see (7.2.1)), and since the multiplication mapping C�(M, q) ⊗
Zg(C�(M, q),BV ) → BV is always bijective (see (6.7.6)), we realize that the graded
centralizer of C�(M, q) in BV is a direct summand of constant rank 1. Now it is easy
to prove that the above defined mapping ω �−→ ϕ3 or ω �−→ ϕ4 is an isomorphism∧r(U) → Zg(C�(M, q),BV ) for a suitable structure of graded bimodule on BV .
The bilinear forms ϕ3 are the elements of Zg(C�(M, q),BV ) when we set

(xϕx′)(z, z′) = (−1)∂x(1+∂x′+∂z)+∂x′∂z′
ϕ(Rx′(z), Rτ(x)(z′)).

Nevertheless it is also possible to ignore this discussion about the twisting
exponents ξ, and strictly to respect the terminology presented in 6.8. If we maintain
that the equality (6.8.11) characterizes the scalar products associated with an
involution τ , then we observe that Ω0 determines bilinear forms ϕ3 which have
the same parity as r, and we realize that they are the scalar products associated
with the involution σrτ . These scalar products admit extensions C�(V )×C�(V ) →
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C�(M) which are defined as in (6.8.16), and the comparison between (6.8.17) and
(7.3.1) shows that these extensions are the bilinear mappings (z, z′) �−→ σr ◦Ω(z⊗
ω⊗ z′). If we overlook the factor σr which comes from the conventions previously
chosen in 6.8, we can say that Ω is the extension of its scalar component Ω0

according to the following equality which is an easy consequence of (7.3.1):

(7.3.12) Scal(x Ω(z ⊗ ω ⊗ z′)) = Scal(xzωτ(z′))
= Ω0(Rx(z)⊗ ω ⊗ z′) ;

since the symmetric bilinear form (x, y) �−→ Scal(xy) is nondegenerate on C�(M, q)
(see (4.8.16)), this equality shows how Ω0 determines Ω.

In (7.ex.4)(b) and (7.ex.5) (resp. (7.ex.8)(a)) the scalar products ϕ3 (resp.
ϕ4) are constructed without the hypothesis that 2 is invertible.

At last (7.3.11) describes the action of the Lipschitz group GLip(M, q) in the
module C�(V, q)⊗C�(V, q). This description is a classical problem when K is the
field R or C of real or complex numbers. When K = C, a spinorial group Spin(M, q)
is extracted from GLip(M, q), it is the subgroup of all x ∈ GLip(M, q) such that
xτ(x) = 1. The morphism Spin(M, q)→ GO(M, q) is still surjective, but its kernel
is reduced to {1,−1}. When K = R, the spinorial group Spin(M, q) defined in the
same way does not give a surjective morphism Spin(M, q)→ GO(M, q), unless q is
positive definite, contrary to the present assumption that q is hyperbolic. But we
get a surjective morphism Spin±(M, q) → GO(M, q) with kernel {1,−1} if we use
the subgroup Spin±(M, q) of all x ∈ GLip(M, q) such that xτ(x) = ±1. Groups
Spin±(M, q) with an arbitrary q have been studied in (5.ex.24). The requirement
xτ(x) = ±1 simplifies the equality (7.3.11) and all other equalities involving the
scalar xτ(x).

Spinor spaces and scalar products of spinors

When (M, q) is any quadratic space over a field K, usually a spinor space is a
minimal faithful module over C�(M, q); this definition does not take the parity
grading of C�(M, q) into account. When the center of C�(M, q) is a field (either K
or a quadratic extension of K), C�(M, q) is a simple algebra, and all irreducible
modules are faithful, and isomorphic to one another; in this case a spinor space is
merely an irreducible module. But when the center of C�(M, q) is isomorphic to
K2, then C�(M, q) (without its grading) is the direct sum of two simple ideals both
isomorphic to C�0(M, q); therefore there are two isomorphy classes of irreducible
modules over C�(M, q), and every minimal faithful module is the direct sum of
two nonisomorphic irreducible modules called half spinor spaces. Nevertheless this
terminology may be questioned because it ignores the parity gradings; in (6.2.2) it
is explained that the spinor spaces required by the Dirac equation in physics, which
are at the origin of this terminology, are graded; and on the side of purely algebraic
studies, the most recent progress (which often stems from H. Bass’s works) show
that the “good objects” are the graded modules, whether irreducible or not.
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All graded irreducible modules over C�(M, q) are faithful, and they are iso-
morphic to one another when the center of C�0(M, q) is a field (see (6.6.2) and
(6.6.3)); when Z(C�0(M, q)) is isomorphic to K2, every graded irreducible module
over C�(M, q) is isomorphic either to some particular module S, or to the module
Ss with shifted grading; but Ss is isomorphic to S in a weaker sense, since the
odd bijections z �−→ zs and z �−→ (−1)∂zzs are respectively C�(M, q)-linear and
C�(M, q)-g-linear. If we come back to the case of a hyperbolic space (M, q) as
above, the representation x �−→ Rx of C�(M, q) in C�(V, q) (defined in (7.2.1)) is
graded, faithful and irreducible; in this case we get the easiest example of a spinor
space, especially when V is totally isotropic.

Let S be a module over C�(M, q), and B the space of all bilinear mappings ϕ :
S×S → K; it is a bimodule over C�(M, q) for different possible actions of C�(M, q).
As suggested by the developments around the Dirac equation in physics, particular
elements of B, called scalar products of spinors, must be emphasized; they must be
nondegenerate, either symmetric or skew symmetric, and they must be associated
in some way to the involution τ (the reversion) or στ (the conjugation). When
parity gradings are not taken into account, the resulting theory splits into the study
of many particular cases, especially depending on the parity of the dimension of
M , and on the nature of the quadratic extension QZ(M, q).

When S is a graded module, we get a unified theory as explained in 6.8. The
above discussion about the scalar products ϕ1, ϕ2, ϕ3 and ϕ4 shows that we do
not have to worry about the twisting signs, which can always be adapted to any
sensible system of conventions (not necessarily the conventions preferred in 6.8).
Besides, with the unified graded theory the study of nongraded modules becomes
much easier: this is explained in (6.ex.19) and (6.ex.20).

7.4 The Cartan–Chevalley criterion

Let us come back to (7.3.3). We suppose that V has a nonzero constant rank
r, so that

∧max(U) =
∧r(U). The case of a nonconstant rank can be reduced

to this case by means of suitable idempotents of K. For every z that belongs to
some Z = χ(T ), the product z ω τ(z) belongs to

∧r(T ), which is contained in
C�≤r(M, q). We are going to prove that the lipschitzian elements z are actually
characterized by the fact that z ω τ(z) belongs to C�≤r(M, q); this is the Cartan–
Chevalley criterion. As explained in (7.2.4), the Cartan–Chevalley criterion has
played a capital role in the discovery of the definition (5.3.1) of the Lipschitz
monoid. Nevertheless hurried readers are advised to skip the long proof of the
next theorem.

(7.4.1) Theorem. A locally homogeneous z ∈ C�(V, q) belongs to Lip(V, q) if and
only if

∀ω ∈
∧r

(U) , z ω τ(z) ∈ C�≤r(M, q) .
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Proof. When z is lipschitzian, from (5.3.3) we immediately deduce that zωτ(z)
belongs to C�≤r(M, q). The main difficulty is to prove the converse statement; in-
deed it is much harder to derive useful consequences from the hypothesis zωτ(z) ∈
C�≤r(M, q). Chevalley’s proof depends on the assumption that V is totally iso-
tropic, and cannot help us when q(V ) �= 0. Therefore we must go the opposite
way, and reduce the general case to the case of a nondegenerate restriction to V ;
this is the aim of the first step.

First step. Let us suppose that V is the direct sum of two submodules V ′ and
V ′′ of constant ranks r′ and r′′. We know that Lip(V ′, q) is the intersection of
Lip(V, q) and C�(V ′, q) (see (5.4.4)). On the other side, V ∗ can be identified with
the direct sum of V ′∗ and V ′′∗, and the isomorphism U → V ∗ induced by dq

makes U split into the direct sum of two submodules U ′ and U ′′ isomorphic to
the dual spaces of V ′ and V ′′ respectively; thus U ′′ is orthogonal to V ′, and U ′

to V ′′. There is a canonical isomorphism from
∧r′

(U ′)⊗
∧r′′

(U ′′) onto
∧r(U). If

we set M ′ = U ′ ⊕ V ′ and M ′′ = U ′′ ⊕ V ′′, we can use the bijective multiplication
mapping coming from (4.8.5):

C�(M ′, q)⊗ C�(M ′′, q) −→ C�(M, q) , x′ ⊗ x′′ �−→ x′x′′ ;

by means of localizations and (4.8.11), it is easy to verify that this bijection induces
an injection

(
C�≤k(M ′, q) / C�<k(M ′, q)

)
⊗

∧r′′

(U ′′) −→ C�≤k+r′′
(M, q) / C�<k+r′′

(M, q)

for every degree k = 0, 1, . . . , 2r′. Now let z′ be a homogeneous element of
C�(V ′, q′), and let ω′ and ω′′ be elements of respectively

∧r′
(U ′) and

∧r′′
(U ′′),

so that ω′ω′′ (the same thing as ω′ ∧ ω′′) belongs to
∧r(U). Since V ′ and U ′′ are

orthogonal, we can write

z′(ω′ω′′)τ(z′) = (−1)r′′∂z′
(z′ω′τ(z′)) ω′′ ;

all this proves that z′ω′τ(z′) belongs to C�≤r′
(M ′, q) for all ω′ ∈

∧r′
(U ′) if

and only if z′ωτ(z′) belongs to C�≤r(M, q) for all ω ∈
∧r(U). Consequently, if

Theorem (7.4.1) is true for (V, M, q), it is also true for (V ′, M ′, q).
Now (V, q) can always be embedded as a direct summand into a quadratic

space (for instance (M, q)). Consequently it suffices to prove (7.4.1) when the
restriction of q to V is nondegenerate.

Second step. When the restriction of q to V is nondegenerate, M is the direct sum
of V and V ⊥ (see (2.3.8)). Just before (7.2.9) it is explained that the equality
M = U ⊕ V implies M = U ⊕ V ⊥, that there is a bijection p : V → V ⊥ such
that c − p(c) belongs to U for every c ∈ V , whence q(p(c)) = −q(c), and that
p extends to a bijection ψ : C�(V, q) → C�(V ⊥, q) such that zto �−→ ψ(z) is an
algebra isomorphism from C�(V, q)to onto C�(V ⊥, q).
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The mapping (c, c′) �−→ c + p(c′) is an isomorphism from (V, q) ⊥ (V,−q)
onto (M, q), and it maps the diagonal ∆′

V of V ⊕ V (that is the submodule of all
(c,−c)) bijectively onto U . Thus we catch sight of the objects that play essential
roles in the definition of lipschitzian elements of (V, q) according to (5.3.1): a lo-
cally homogeneous element z of C�(V, q) is called lipschitzian if z⊗ τ(z)to belongs
to C�((V, q) ⊥ (V,−q); ∆′

V )≤0; in this definition C�((V, q) ⊥ (V,−q)) is identi-
fied with C�(V, q) ⊗̂C�(V, q)to. Because of the above isomorphism C�(V, q)to →
C�(V ⊥, q) we can state that z is lipschitzian if and only if z ψτ(z) belongs to the
subalgebra C�(M, q; U)≤0.

This modified version of the definition (5.3.1) lets V and V ⊥ play symmetric
roles; therefore we must manage to let V and V ⊥ also play symmetric roles in the
Cartan–Chevalley criterion. This can be achieved in an easy way: indeed in (7.2.9)
it is stated that ψ(v) − v belongs to C�(M, q)U , and consequently to UC�(M, q)
too, for all v ∈ C�(V, q), whence ωv = ωψ(v) ; thus we can replace zω τ(z) with
zω ψτ(z) in the Cartan–Chevalley criterion.

Third step. Since M is the orthogonal sum of V and V ⊥, there is an isomorphism

C�(V, q) ⊗̂C�(V ⊥, q) −→ C�(M, q) , v ⊗ w �−→ vw.

From the bijectiveness of Ω (see (7.3.2)) and the equality ωv = ωψ(v) (see above)),
we deduce the bijectiveness of the mapping

C�(V, q)⊗
∧r

(U)⊗ C�(V ⊥, q) −→ C�(M, q) , v ⊗ ω ⊗ w �−→ vωw.

These two bijections imply the existence of another bijection

J : C�(M, q)⊗
∧r

(U) −→ C�(M, q) such that J(vw ⊗ ω) = (−1)r∂w vωw

whenever v, w and ω belong respectively to C�(V, q), C�(V ⊥, q) and
∧r(U). If we

manage to prove that, for every k ∈ Z, J induces a bijection

C�(M, q; U)≤k ⊗
∧r

(U) −→ C�≤k+r(M, q) ,

the proof is complete, because z ψτ(z) then belongs to C�(M, q; U)≤0 if and only
if zω ψτ(z) belongs to C�≤r(M, q).

We know that the submodules C�≤k+r(M, q) are direct summands of
C�(M, q) (see (4.8.7)). From the assumption that U is a totally isotropic direct
summand of constant rank r, we can deduce that C�(M, q; U)≤k is also a direct
summand with the same rank as C�≤k+r(M, q): see (5.ex.3). Consequently it suf-
fices to prove that J maps C�(M, q; U)≤k ⊗

∧r(U) into C�≤k+r(M, q).

Fourth step. Let γ be the symmetric bilinear form on M that coincides with bq on
V ⊥ × V ⊥, but vanishes on V ×M and M × V . From γ we derive an element γ′′
of

∧∗2(M ×M) in the same way as we have derived β′′ from β in 4.7. Besides πq
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is the multiplication mapping C�(M, q) ⊗ C�(M, q) → C�(M, q) as in 4.7. Let us
prove in this fourth step that, for all x ∈ C�(M ; q) and all ω ∈

∧r(U),

J(x⊗ ω) = πq

(
Exp(−γ′′) � (x⊗ ω)

)
.

Indeed the right-hand member of this equality is the product of x and ω in the alge-
bra C�(M, q;−γ). We can replace C�(M, q) with the canonically isomorphic alge-
bra C�(V, q) ⊗̂C�(V ⊥, q), and since V and V ⊥ are orthogonal with respect to q and
γ, we can replace C�(M, q;−γ) with the twisted tensor product of C�(V, q;−γ) and
C�(V ⊥, q;−γ). But these two subalgebras are respectively equal to C�(V, q) and
C�(V ⊥, q;−bq) because of the definition of γ. Besides, the mapping w �−→ wto is
an isomorphism from C�(V ⊥, q;−bq) onto C�(V ⊥, q)to (see (4.7.8)). Consequently,
when v, w and x′ belong respectively to C�(V, q), C�(V ⊥, q) and C�(M, q), the
product of vw and x′ in C�(M, q;−γ) is (−1)∂x′∂wvx′w ; this agrees with the
equality J(vw ⊗ ω) = (−1)r∂wvωw.

Fifth step. To complete the proof, we must explain why J(x ⊗ ω) belongs to
C�≤k+r(M) whenever x belongs to C�(M, q; U)≤k. First we prove that

x⊗ ωto belongs to (C�(M, q) ⊗̂C�(M, q)to; ∆′
M )≤k+r ;

as in 5.3, C�(M, q) ⊗̂C�(M, q)to is treated as the Clifford algebra of the hyperbolic
space (M, q) ⊥ (M,−q), which contains ∆′

M as a totally isotropic direct summand.
Indeed we can suppose that U is a free module with basis (b1, b2, . . . , br) since by
localization we can reduce the problem to this case. Then ω = λb1b2 · · · br for some
λ ∈ K. Since a permutation on the basis (b1, . . . , br) leaves the product b1b2 · · · br

invariant up to a sign ±, it suffices to prove that x⊗ ωto has a degree ≤ k + r for
the filtration determined by ∆′

M whenever

x = x′bsbs−1 · · · b2b1 with x′ ∈ C�≤k+s(M, q) ;

this assertion is proved by the equality

x⊗ ωto = (x′ ⊗ λto) (bs ⊗ bto
s ) · · · (b2 ⊗ bto

2 ) (b1 ⊗ bto
1 ) (1⊗ (bs+1 · · · br)to) ,

because every factor bj ⊗ bto
j has degree ≤ 0 for the above filtration:

bj ⊗ bto
j = (bj ⊗ 1to − 1⊗ bto

j ) (1⊗ bto
j ) .

Then the interior multiplication by Exp(−γ′′) leaves invariant the filtering
degrees determined by ∆′

M ; indeed, if we prove that γ′′ has a filtering degree ≤ 0,
this is a consequence of (5.2.9) and (5.2.8). By definition, for all a1, a′

1, a2, a′
2 in M ,

γ′′((a1, a
′
1) ∧ (a2, a

′
2)) = γ(a1, a

′
2)− γ(a2, a

′
1) ;

γ′′ has a filtering degree ≤ 0 (for the filtration determined by ∆′
M ) if and only

if the right-hand member of the above equality vanishes whenever a′
1 = −a1 and
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a′
2 = −a2; but this means that γ is symmetric, as it actually is. It should also

be mentioned that the interior multiplication by Exp(−γ′′) has the same effect on
x⊗ ω and x⊗ ωto, because C�(M, q)to is a deformation of C�(M, q) (see (4.7.8)),
and all deformations of C�(M, q) are equivalent to it as comodules over

∧
(M) (see

(4.7.5)).
Let u and v be any elements of C�(M, q); it remains to prove that πq(u⊗ v)

falls into C�≤k+r(M, q) whenever u ⊗ vto has a degree ≤ k + r for the filtration
determined by ∆′

M . It suffices to repeat the argument in the proof of (5.3.3).
Indeed u ⊗ vto is a sum of two kinds of terms; first there are terms that have
degree ≤ k + r for the natural filtration of C�(M, q) ⊗̂C�(M, q)to that ignores
∆′

M ; obviously πq maps them into C�≤k+r(M, q). Secondly there are terms like
(u′ ⊗ v′to)(a⊗ 1to − 1⊗ ato) which are all mapped to 0 by πq :

(u′ ⊗ v′to)(a⊗ 1to − 1⊗ ato) = (−1)∂v′
(u′a⊗ v′to − u′ ⊗ (av′)to) ,

πq(u′a⊗ v′ − u′ ⊗ av′) = 0 .

This ends the proof of (7.4.1). �

Improvements when 2 is invertible

When 2 is invertible in K (or when the mapping a �−→ 2a is bijective from M
onto M), the natural filtration of C�(M, q) comes from a grading by submodules
C�k(M, q) (see 4.8). When T is a totally isotropic direct summand of M of constant
rank r, it is clear that

∧r(T ) ⊂ C�r(M, q). Thus (7.3.3) and (7.4.1) lead to a more
precise result.

(7.4.2) Corollary. A locally homogeneous z ∈ C�(V, q) belongs to Lip(V, q) if and
only if

∀ω ∈
∧r

(U) , z ω τ(z) ∈ C�r(M, q) .

Proof. It remains to explain why zωτ(z) belongs to C�r(M, q) whenever z belongs
to Lip(V, q), even if it does not belong to an element of BLip(V, q). From (5.3.3)
it follows that it belongs to C�≤r(M, q), and we must still prove that it belongs to
C�≥r(M, q). According to (4.8.15), there is a bijective multiplication mapping from
C�2r(M, q)⊗C�k(M, q) onto C�2r−k(M, q) for k = 0, 1, 2, . . . , 2r, and consequently
it suffices to prove that ζ(zωτ(z)) belongs to C�≤r(M, q) if ζ is defined as in
(7.3.6). Since z is locally homogeneous, it suffices to prove this for each of his
homogeneous components. Since ζz = σ(z)ζ and ζω = ω (see (7.3.6)), we observe
that ζ(zωτ(z)) = σ(z)ωτ(z) and the conclusion follows. �

The equalities (7.3.7), (7.3.8), (7.3.9) give more information about the Car-
tan–Chevalley criterion. Indeed, if z is a locally homogeneous element of C�(V, q),
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from (7.3.7) we deduce that the component of zωτ(z) in C�k(M, q) vanishes when-
ever r − k is odd. From (7.3.8) and the equality

1
2
r(r − 1) − 1

2
k(k − 1) =

1
2
(r − k)(r − k − 1) + (r − k)k

we deduce that it vanishes whenever r−k is even but not divisible by 4. And from
(7.3.9) we deduce that it vanishes if and only if the component in C�2r−k(M, q)
vanishes. Consequently z is lipschitzian if and only if the component of zωτ(z) in
C�r+4j(M, q) vanishes for all ω ∈

∧r(U) and for all j > 0 (or equivalently, for all
j < 0).

When the rank of V is everywhere ≤ 3, then C�r+4j(M, q) is reduced to 0
whenever j �= 0; thus we prove again that in this case every locally homogeneous
z is lipschitzian (see (5.4.3)).

Since the submodules C�k(M, q) are orthogonal for the symmetric bilinear
form (x, y) �−→ Scal(xy), from (7.3.12) we can still deduce that a locally homoge-
neous z is lipschitzian if and only if Ω0(Rx(z)⊗ ω⊗ z) = 0 for all ω ∈

∧r(U) and
for all x ∈ C�r+4j(M, q) with j > 0 (or equivalently with j < 0).

7.5 Applications to Lipschitz monoids

It is clear that every quadratic module (V, q), with V a finitely generated projective
module, can be embedded in a hyperbolic space (M, q) in such a way that M is
the direct sum of V and a totally isotropic submodule U isomorphic to V ∗. Then
the Cartan–Chevalley mapping determines a bijection between BLip(V, q) and
T (M, q), in such a way that the group G′Lip(V, q) corresponds to the elements
of T (M, q) supplementary to V (see (7.2.12); thus every fact about T (M, q) may
give information about BLip(V, q). Although Lip(V, q) is not always the union of
all elements of BLip(V, q), it is probable that an element of Lip(V, q) is that more
interesting if it belongs to an element of BLip(V, q); in a similar way an isotropic
element of M is that more interesting if it belongs to an element of T (M, q).
Unfortunately up to now it is still difficult to get information about T (M, q) when
K is not a field; therefore only the first three statements in this section are valid
with an arbitrary ring K. First we prove the bijectiveness of the natural mapping∧2(V )→ G′Lip(V ) by means of Chevalley’s method; another proof is supplied in
(5.ex.6).

(7.5.1) Proposition. Here V is assumed to be totally isotropic. Let TV (M, q) be the
subset of all T ∈ T (M, q) such that M = T⊕V , and Hom∧(U, V ) the submodule of
all δ ∈ Hom(U, V ) such that bq(b, δ(b)) = 0 for all b ∈ U . There is a commutative
diagram ∧2(V ) −→ G′Lip(V )

↓ ↓
Hom∧(U, V ) −→ TV (M, q)
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in which the four arrows are bijective, and are defined in this way:

∧2(V ) −→ G′Lip(V ) , v �−→ K Exp(v) ,∧2(V ) −→ Hom∧(U, V ) , v �−→ ( b �−→ [v, b] = −dq(b) � v) ,
G′Lip(V ) −→ TV (M, q) , Z �−→ GZ(U) ,

Hom∧(U, V ) −→ TV (M, q) , δ �−→ { b + δ(b) | b ∈ U } .

Proof. The main statement in this proposition is the bijectiveness of
∧2(V ) →

G′Lip(V ); all the remainder serves to master this mapping. We already know that
Exp(v) belongs to GLip(V ) for every v ∈

∧2(V ). The mapping b �−→ −dq(b) � v
belongs to Hom∧(U, V ) because

bq(b, dq(b) � v) = dq(b) � (dq(b) � v) = (dq(b) ∧ dq(b)) � v = 0 .

By means of localizations it is easy to prove the bijectiveness of
∧2(V ) →

Hom∧(U, V ); indeed with every basis (c1, c2, . . . , cr) of V is associated a dual
basis (b1, b2, . . . , br) of U such that bq(bi, bj) = 1 if i = j, 0 if i �= j; then every
element of

∧2(V ) is described by a skew symmetric (or rather alternate) matrix
of order r, and it is mapped to the element of Hom∧(U, V ) that is described by
the same matrix. The existence of a bijective mapping TV (M, q) → G′Lip(V ) is
stated in (7.2.12); it maps T to χ(T ). Conversely the equality χ(T ) = Z, with
Z ∈ G′Lip(V ), implies χ(T ) = RZ(K) = RZ(χ(U)) = χ(GZ(U)) (see (7.2.5)),
whence T = GZ(U). The submodules T of M supplementary to V are in bi-
jection with Hom(U, V ) in this way: with each δ ∈ Hom(U, V ) is associated a
graph in U × V (the subset of all (b, δ(b))); if we treat this graph as a subset of
M = U ⊕ V , it is the same thing as the submodule T of all b + δ(b) with b ∈ U .
Since q(b + δ(b)) = bq(b, δ(b)), this submodule T is totally isotropic if and only if
δ belongs to Hom∧(U, V ); whence the bijection from Hom∧(U, V ) onto TV (M, q).

It remains to prove the commutativity of the diagram; since the bijectiveness
of three arrows is sure, its commutativity implies the bijectiveness of the fourth
arrow

∧2(V )→ G′Lip(V ). Let us set z = Exp(v) with v ∈
∧2(V ), whence z−1 =

Exp(−v). From (4.4.12) and (4.5.4) we derive (for all b ∈ U)

bz − zb = (dq(b) � v) z whence Gz(b) = zbz−1 = b − (dq(b) � v) ;

this implies that the two images of v in TV (M, q) are equal. �

Now we are especially interested in elements of BLip(V, q) that are not in
the group G′Lip(V, q). In (7.2.11) we discovered the elements

∧max(N) with N a
totally isotropic direct summand of V . How can we recognize whether an element Z
of BLip(V, q) is equal to the product of some X ∈ G′Lip(V, q) and some

∧max(N)
derived from a totally isotropic direct summand of V ? Let us begin with three
observations; first

X
∧max

(N) =
∧max

(GX(N)) X
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if GX is the orthogonal transformation of (V, q) derived from X . Secondly if Z is
actually equal to some product X

∧max(N) as above, it is easy to guess which are
the submodules N and GX(N); this is explained in (7.5.2) below. Thirdly, when
N is known, and also T = χ−1(Z), then the existence of X ∈ G′Lip(V, q) such
that Z = X

∧max(N) is equivalent to the existence of g ∈ GO(M, q) such that

T = g((N⊥ ∩ U)⊕N) and g(w) = w for all w ∈ V ⊥;

indeed X
∧max(N) is the same thing as RX(

∧max(N)); because of (7.2.5) the
equality Z = RX(

∧max(N)) is equivalent to T = GX(TN ) if T and TN are the
elements of T (M, q) associated with Z and

∧max(N); because of (5.4.5), GX (that
is now the element of GO(M, q) derived from X) is any orthogonal transformation
of (M, q) that leaves invariant all elements of V ⊥; and in (7.2.11) we read TN =
(N⊥∩U)⊕N . In (7.5.3) there is a criterion allowing us to recognize whether such
an element g of GO(M, q) exists. Therefore the next two propositions constitute
a solution to our problem.

The bijection p : V → V ⊥ involved in (7.5.2) is defined before (7.2.9).

(7.5.2) Proposition. Let Z be any element of BLip(V, q), T the associated element
of T (M, q), and let RKer(Z) (resp. LKer(Z)) be the submodule of all c ∈ V such
that zc = 0 (resp. cz = 0) for all z ∈ Z; it is called the right kernel (resp. the left
kernel) of Z. It is a totally isotropic submodule of V and moreover

RKer(Z) = p−1(T ∩ V ⊥) (resp. LKer(Z) = T ∩ V ).

If Z = X
∧max(N) for some X ∈ G′Lip(V, q) and some totally isotropic direct

summand N of V , then N = RKer(Z) and GX(N) = LKer(Z).

Proof. The equality Zc = 0 implies Zq(c) = (Zc)c = 0, whence q(c) = 0. Conse-
quently RKer(Z) is totally isotropic, and the same for LKer(Z). Since cz = Rc(z),
the equality LKer(Z) = T ∩ V is evident. The equality zc = 0 is equivalent to
p(c)ψ(z) = 0 if ψ is the twisted anti-isomorphism C�(V, q) → C�(V ⊥, q) involved
in (7.2.9). Since ψ(Z) = χ⊥(T ), the vanishing of p(c)ψ(Z) means that p(c) belongs
to T ∩V ⊥, whence RKer(Z) = p−1(T ∩V ⊥). If Z = X

∧max(N) with X and N as
in (7.5.2), the equality Zc = 0 is equivalent to

∧max(N)c = 0. If P is a submodule
supplementary to N in V , the multiplication mapping

∧
(N)⊗C�(P, q) → C�(V, q)

is bijective (see (4.8.5)), and allows us to prove that
∧max(N)c = 0 if and only

if c ∈ N . Since X
∧max(N) =

∧max(GX(N))X , similarly cZ = 0 if and only if
c ∈ GX(N). �

Before (7.5.3) is stated, three remarks might be helpful. First if T ∩ V ⊥ is
a direct summand of V ⊥, then it is a direct summand of M , and consequently a
direct summand of T . Secondly if T ∩V ⊥ is a direct summand of T , then T ∩V is
not necessarily a direct summand of T , as it appears in the example (7.5.5) below.
Thirdly dq induces injective mappings

T/(T ∩ V ) −→ (V ⊥/(T ∩ V ⊥))∗ and V ⊥/(T ∩ V ⊥) −→ (T/(T ∩ V ))∗
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because T = T⊥; if T ∩ V ⊥ is a direct summand, and if the first mapping is
bijective, then V ⊥/(T∩V ⊥) and T/(T∩V ) are projective, consequently T∩V too is
a direct summand; moreover bq induces a duality between T/(T ∩V ) and V ⊥/(T ∩
V ⊥), and consequently both mappings are bijective; analogous conclusions would
follow from the hypotheses that T ∩ V is a direct summand and that the second
mapping is bijective.

(7.5.3) Proposition. Let T be an element of T (M, q) and N a totally isotropic
direct summand of V . There exists g ∈ GO(M, q) such that T = g((N⊥ ∩U)⊕N)
and g(w) = w for all w ∈ V ⊥ if and only if these three conditions are all fulfilled:

– T ∩ V ⊥ = p(N) ;

– T contains a submodule that is supplementary both to T ∩ V and to T ∩ V ⊥;

– bq induces a duality between T/(T ∩ V ) and V ⊥/(T ∩ V ⊥).

Proof. Let us set W2 = p(N) and let W3 be a submodule of V ⊥ supplementary to
W2. Here the lower index 2 (resp. 3) is given to direct summands of M that have
the same rank as N (resp. V/N). Since bq induces a duality between U and V ⊥, U
is the direct sum of U2 = U∩W⊥

3 (isomorphic to W ∗
2 ) and U3 = U∩W⊥

2 = N⊥∩U .
From (7.2.11)(equivalence of the assertions (b) and (e)) we know that N ⊕ U3 =
W2 ⊕ U3. If T = g(N ⊕ U3) for some g ∈ GO(M, q) such that V ⊥ ⊂ Ker(g − id),
then T = g(N) ⊕ g(U3) = g(W2) ⊕ g(U3) with g(N) ⊂ V (because g(V ) = V )
and g(W2) = W2; moreover g(U) is supplementary in M both to V and to V ⊥.
Therefore g(N) = T ∩ V , W2 = T ∩ V ⊥ and g(U3) is supplementary in T both to
T ∩ V and to T ∩ V ⊥. Since bq induces a duality between U3 and W3, it induces a
duality also between g(U3) and W3 = g(W3), or equivalently between T/(T ∩ V )
and V ⊥/(T ∩ V ⊥).

Conversely let us assume that T ∩ V ⊥ = W2, that U ′
3 is a submodule of T

supplementary to W2 and to V2 = T ∩ V , and that bq induces a duality between
U ′

3 and W3. If we manage to prove the existence of a totally isotropic submodule
U ′

2 such that bq(U ′
2, U

′
3) = 0 and M = (U ′

2 ⊕ U ′
3) ⊕ V ⊥, then we can claim the

existence of an orthogonal transformation g such that V ⊥ ⊂ Ker(g − id) and
g(U) = U ′

2 ⊕ U ′
3 , because bq induces a duality both between V ⊥ and U , and

between V ⊥ and the totally isotropic submodule U ′
2 ⊕ U ′

3. When the existence
of U ′

2 is sure, the proof ends in this way: on one side U3 = U ∩ W⊥
2 ; on the

other side the inclusion U ′
3 ⊂ (U ′

2 ⊕ U ′
3) ∩W⊥

2 is an equality because it involves
direct summands that have the same rank; consequently g(U3) = U ′

3, whence
T = W2 ⊕ U ′

3 = g(W2 ⊕ U3) = g((N⊥ ∩ U)⊕N).
Since bq induces a duality between U ′

3 and W3, its restriction to U ′
3 ⊕W3 is

nondegenerate (even hyperbolic), and its restriction to (U ′
3⊕W3)⊥ too is nondegen-

erate. Since (U ′
3⊕W3)⊥ contains the totally isotropic direct summand V2 = T ∩V ,

and since the rank of V2 is half of the rank of (U ′
3⊕W3)⊥, this quadratic subspace

too is hyperbolic (see (2.5.5)), and it is the direct sum of V2 and some other to-
tally isotropic direct summand U ′

2 (see (2.5.4)). Thus M = (U ′
2⊕V2) ⊥ (U ′

3⊕W3).
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Since T = V2 ⊕ U ′
3 = W2 ⊕ U ′

3, we can claim that M = U ′
2 ⊕W2 ⊕ U ′

3 ⊕W3 =
(U ′

2 ⊕ U ′
3)⊕ V ⊥. �

(7.5.4) Example. Here V and U are both totally isotropic submodules of (M, q),
and they are free modules of rank 2; let (c1, c2) be a basis of V and (b1, b2) the
dual basis of U , such that bq(bi, cj) = 1 if i = j, 0 if i �= j. Let λ be a nonzero
element of K, and n the ideal of all ν ∈ K such that λν = 0. With λ we associate
the totally isotropic submodule T with basis (a1, a2) such that

a1 = c1 + λb2 , a2 = c2 − λb1 ;

it is an element of T (M, q) because M = T ⊕ U . Obviously T ∩ V = nc1 ⊕ nc2 ;
consequently T ∩V is a direct summand of M if and only if n is a direct summand
of K. Now n is a direct summand of K if and only if there is an idempotent e
such that λ belongs to Ke and is not a divisor of zero in Ke. If e exists, then
T ∩ V = (1 − e)T = (1 − e)V and

∧max(T ∩ V ) is the submodule generated by
e + (1 − e)c1 ∧ c2. Then bq induces a duality between T/(T ∩ V ) and V/(T ∩ V )
if and only if it induces a duality between eT and eV ; this occurs if and only if λ
is invertible in Ke.

On the other hand it is easy to calculate that, whatever λ may be, χ(T ) is
the submodule of

∧
(V ) generated by λ + c1 ∧ c2. Consequently, if λ belongs to

the ideal Ke generated by some e ∈ Ip(K), and if there exists µ ∈ Ke such that
λµ = e, then λ + c1 ∧ c2 must be the product of e + (1 − e)c1 ∧ c2 and some
x ∈ GLip(V ). Because of (7.5.1), x is the exponential of an element of

∧2(V )
multiplied by an invertible element of K. All this is corroborated by this equality:

λ + c1 ∧ c2 = (λ + (1− e)) Exp(µc1 ∧ c2) ∧ (e + (1− e)c1 ∧ c2) .

(7.5.5) Example. Let F be a field, and K = F [λ, µ, λ′, µ′] the ring of polynomials
in four indeterminates λ, µ, λ′, µ′. Whenever it seems opportune, we will accept
a ring extension K → K ′ with K ′ a ring of fractions of K. Here V is still a free
module with basis (c1, c2) over K, (b1, b2) is the dual basis in U , but the restriction
of q to V does not vanish:

∀ξ, ζ ∈ K, q(ξc1 + ζc2) = (λξ + µζ)(λ′ξ + µ′ζ) .

Therefore we need the bijection p : V → V ⊥ and we calculate

p(c1) = c1 − 2λλ′b1 − (λµ′ + µλ′)b2 ,

p(c2) = c2 − (λµ′ + µλ′)b1 − 2µµ′b2.

Let T be the totally isotropic submodule with basis (a1, a2) such that

a1 = c1 − λλ′b1 − λµ′b2 = p(c1) + λλ′b1 + µλ′b2 ,

a2 = c2 − µλ′b1 − µµ′b2 = p(c2) + λµ′b1 + µµ′b2.
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Since M = T ⊕ U , we have an element of T (M, q). It is clear that T ∩ V and
T ∩ V ⊥ are the submodules respectively generated by

µa1 − λa2 = µc1 − λc2 and µ′a1 − λ′a2 = p(µ′c1 − λ′c2).

A localization at a maximal ideal containing λ and µ shows that T ∩ V is not a
direct summand; neither is T ∩V ⊥. If ξa1 + ζa2 is any element of T , in general by
a suitable extension K → K ′ we can make the submodule K(ξa1 + ζa2) become
supplementary both to T ∩V and T ∩V ⊥ in T ; an easy calculation of determinants
shows that this happens if and only if we make λξ + µζ and λ′ξ + µ′ζ become
invertible; of course this imposes a little constraint on the choice of ξa1+ζa2, since
neither λξ + µζ nor λ′ξ + µ′ζ may be the null polynomial. It is worth observing
that if we make just λ′ξ + µ′ζ become invertible, then T ∩ V ⊥ becomes a direct
summand, but not T ∩ V . Does bq induce a duality between T/(T ∩ V ) and
V ⊥/(T ∩ V ⊥)? When λξ + µζ and λ′ξ + µ′ζ are invertible, it is equivalent to ask
whether bq induces a duality between the submodules generated by ξa1 + ζa2 and
p(ξc1 + ζc2), and the answer is positive because

bq(ξa1 + ζa2, p(ξc1 + ζc2)) = −(λξ + µζ)(λ′ξ + µ′ζ) = −q(ξc1 + ζc2).

On the other side it is easy to calculate that χ(T ) is the submodule generated
by λµ′−c1c2 = −µλ′+c2c1. Consequently, when λξ+µζ and λ′ξ+µ′ζ are invertible,
then λµ′−c1c2 is equal to µ′c1−λ′c2 (generator of p−1(T ∩V ⊥)) multiplied on the
left side by some x ∈ GLip(K ′⊗ (V, q)); it is also equal to µc1−λc2 multiplied on
the right side by a factor x′ colinear with x. Since x and x′ are odd, they belong
to K ′⊗V , and it is sensible to conjecture that they may be colinear with ξc1 +ζc2

which is obviously invertible. All this is corroborated by these calculations:

(ξc1 + ζc2)(µ′c1 − λ′c2) = (λ′ξ + µ′ζ)(λµ′ − c1c2) ,

(µc1 − λc2)(ξc1 + ζc2) = −(λξ + µζ)(λµ′ − c1c2).

When K is a field, the criterion presented in (7.5.3) gives a positive answer
whenever the first condition T ∩ V ⊥ = p(N) is fulfilled.

(7.5.6) Lemma. Let us assume that K is a field. When T is an element of T (M, q),
then T contains a submodule supplementary both to T ∩ V and to T ∩ V ⊥, and bq

induces a duality between T/(T ∩ V ) and V ⊥/(T ∩ V ⊥).

Proof. Let r be the common dimension of T , U and V , and s the dimension of
T ∩ V . The dimension of T + V ⊥ = (T ∩ V )⊥ is 2r− s, and consequently T ∩ V ⊥

has the same dimension s as T ∩ V . By means of a basis of T that contains a
basis of T ∩ V ∩ V ⊥, a basis of T ∩ V and a basis of T ∩ V ⊥, it is easy to prove
that T contains a subspace supplementary both to T ∩ V and T ∩V ⊥. At last the
mapping T/(T ∩V )→ (V ⊥/(T ∩V ⊥))∗ is bijective because it is injective, and the
source and the target have the same dimension r − s. �
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The next theorem (the main result of this section) is an immediate conse-
quence of (7.5.6), (7.5.3) and (7.5.2). When an element z ∈ Lip(V, q) generates
an element Z of BLip(V, q), the notations RKer(z) and LKer(z) have the same
meaning as RKer(Z) and LKer(Z) defined in (4.7.8).

(7.5.7) Theorem. Let us assume that K is a field, and that z is a nonzero element
of Lip(V, q). If y is any nonzero element of

∧max(RKer(z)), there exists x ∈
GLip(V, q) such that z = xy. Moreover LKer(z) = Gx(RKer(z)), and there is
a nonzero y′ ∈

∧max(LKer(z)) such that z = y′x.

When the group GLip(V, q) operates in the set Lip(V, q) by multiplications
on the left side (resp. on the right side), the orbits other than the trivial orbit {0}
are in bijection with the totally isotropic subspaces of V , and the orbit GLip(V, q)
corresponds to the totally isotropic subspace reduced to 0; if z is a nonzero element
of Lip(V, q), and N a totally isotropic subspace of V , then z is in the same orbit as
the nonzero elements of

∧max(N) if and only if N = RKer(z) (resp. N = LKer(z)).
Every element of

∧max(N) (when N is totally isotropic) is a product of
isotropic elements of V . Of course it must be understood that a product of 0
factor is equal to 1. Whence the following corollary.

(7.5.8) Corollary. When K is a field, Lip(V, q) is generated as a monoid by the
group GLip(V, q) and all isotropic vectors of V . In particular,

– if the restriction of q to V is anisotropic, then every nonzero element of
Lip(V, q) is invertible;

– if GLip(V, q) is generated by the invertible elements of V (as it almost al-
ways is when q(V ) �= 0), then Lip(V, q) is the monoid generated by all ele-
ments of V ;

– if q(V ) = 0, then Lip(V ) is the monoid generated by all elements of K and
V , and by all exponentials of elements of

∧2(V ).

Proposition (7.5.1) is involved in the last statement of (7.5.8), which is exactly
the same thing as Theorem (5.10.2).

When q(V ) �= 0, then GLip(V, q) is generated by the invertible elements of
V except in the cases pointed out in (5.7.3); let us recall them with the notation
of this chapter. The quadratic module (V, q) over the field K belongs to an ex-
ceptional case when these three conditions are fulfilled: first K ∼= Z/2Z, secondly
dim(V ) ≥ 3 whereas V/(V ∩V ⊥) has dimension 2 or 4, thirdly q(V ∩V ⊥) = 0 and
q induces on V/(V ∩V ⊥) a hyperbolic quadratic form. Let Γ(V, q) be the subgroup
of GLip(V, q) generated by the invertible elements of V ; from (5.7.8), (5.7.9) and
(5.10.3) it is possible to deduce a subgroup of GLip(V, q) supplementary to Γ(V, q).
In Dieudonné’s exceptional case, in other words when dim(V/(V ∩ V ⊥)) = 4, we
can find c1 and c2 such that Kc1⊕Kc2⊕ (V ∩ V ⊥) is a maximal totally isotropic
subspace; then {1, 1 + c1c2} is a subgroup of order 2 supplementary to Γ(V, q).
When dim(V/(V ∩ V ⊥)) = 2, then V contains an isotropic element c′ outside
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V ∩V ⊥, and the mapping c �−→ 1+ cc′ is an injective morphism from the additive
group V ∩ V ⊥ onto a subgroup supplementary to Γ(V, q).

Although the main purpose of this section is the study of Lip(V, q), we may
still state a geometrical property involving elements of T (M, q).

(7.5.9) Proposition. When K is a field, for every pair (T, T ′) of elements of
T (M, q) these three assertions are equivalent:

(a) T + V = T ′ + V ;
(b) T ∩ V ⊥ = T ′ ∩ V ⊥;
(c) there exists x ∈ GLip(V, q) such that T ′ = Gx(T ).

Proof. The equivalence (a)⇔(b) comes from the equality (T + V )⊥ = T ∩ V ⊥.
The implication (c)⇒(b) is trivial, because every Gx with x ∈ GLip(V, q) leaves
invariant every element of V ⊥ (see (5.4.5)). Conversely let us assume that there
is a totally isotropic subspace N of V such T ∩ V ⊥ and T ′ ∩ V ⊥ are both equal
to p(N). Then (7.5.3) and (7.5.6) show that T and T ′ are in the same orbit as
(N⊥ ∩ U)⊕N under the action of the group GLip(V, q). �

7.6 Applications to totally isotropic direct

summands of maximal rank

Whereas the previous section was devoted to the quadratic module (V, q), here
we are again interested in the hyperbolic space (M, q) and in the set T (M, q); we
assume M to be a faithful module; thus the center of C�0(M, q) is a quadratic
extension denoted by QZ(M, q) in 3.7.

With each T ∈ T (M, q) is associated a graded direct summand χ(T ) in
C�(V, q); since χ(T ) has constant rank 1, every localization of χ(T ) is either even
or odd; thus at every prime ideal p of K, T has a parity which is an element
of Z/2Z and which is denoted by par(p; U, T ). For instance par(p; U, U) is always
even because χ(U) = K. Although the definition of par(p; U, T ) involves the de-
composition M = U ⊕ V , the proposition (7.6.3) shows that it does not depend
on V , that par(p; U, T ) = par(p; T, U), and that, for all T and T ′ ∈ T (M, q),

(7.6.1) par(p; T, T ′) = par(p; U, T ′)− par(p; U, T ).

Therefore the best name for par(p; U, T ) should be the difference of parity between
U and T at the prime ideal p.

Obviously every ring extension f : K → L gives a hyperbolic space L⊗(M, q)
which is the direct sum of L ⊗ U and L ⊗ V , and a mapping T (M, q) → T (L ⊗
(M, q)). Since χ(T ) is a direct summand, it is clear that χ(L ⊗ T ) = L ⊗ χ(T ),
whence, for every prime ideal q of L,

par(q; (L⊗ U), (L⊗ T )) = par(f−1(q); U, T ).
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In particular par(p; U, T ) can be calculated by means of the extension K → Kp

and even by means of the extension to the residue field Fp = Kp/pKp :

par(p; U, T ) = par(Up, Tp) = par((Fp ⊗ U), (Fp ⊗ T )) ;

the extension K → Fp allows us to apply (7.6.5), (7.6.7) and (7.5.9) which are
only valid when K is a field.

If p ⊂ p′, there is a ring morphism Kp′ → Kp and consequently par(p; U, T ) =
par(p′; U, T ). This justifies the short notation par(U, T ) when K is a local ring.

When U and T remain constant, the function p �−→ par(p; U, T ) is locally
constant on Spec(K) (see (1.12.7)); consequently there is a unique idempotent e ∈
Ip(K) such that par(p; U, T ) is 0 or 1 according as p contains e or not. Remember
that every set of idempotents is provided with the boolean addition (e, e′) �−→
e+̃e′ = e + e′ − 2ee′.

(7.6.2) Lemma. The quadratic extension Z = QZ(M, q) contains an idempotent ε
such that Z = Kε⊕K(1−ε) and the mapping e �−→ e+̃ε is a bijection from Ip(K)
onto the subset of all ε′ ∈ Ip(Z) such that Z = Kε′ ⊕ K(1 − ε′). The converse
mapping is ε′ �−→ ε+̃ε′.

Proof. The existence of ε follows from the fact that Z is a trivial quadratic exten-
sion. The idempotents ε′ ∈ Ip(Z) such that Z = Kε′ ⊕K(1 − ε′) are in bijection
with the isomorphism f ′ : K2 → Z, and if f is the isomorphism K2 → Z as-
sociated with ε, they are in bijection with the automorphisms of Z : with ε′ is
associated f ′ ◦ f−1. From (3.4.15) we know that the automorphisms of Z are in
bijection with the idempotents e ∈ Ip(K); the automorphism associated with e
induces the identity mapping on (1 − e)Z, the standard involution on eZ, and
maps ε to ε′ = (1 − e)ε + e(1 − ε′). This equality is equivalent to ε′ = e+̃ε, and
the conclusion follows. �

(7.6.3) Proposition. For every T ∈ T (M, q) there is a unique ε(T ) ∈ Ip(Z) (with
Z = QZ(M, q)) satisfying these two conditions:

Z = Kε(T )⊕K(1− ε(T )) ,∧max
(T ) ⊂ ε(T ) C�(M, q) (or equivalently (1 − ε(T ))

∧max
(T ) = 0).

In particular ε(U) is the element of C�(M, q) such that Rε(U) is the parallel pro-
jection C�(V, q)→ C�0(V, q) with respect to C�1(V, q). Moreover ε(U)+̃ε(T ) is the
unique e ∈ Ip(K) such that par(p; U, T ) is even or odd according as p contains e
or not.

Proof. Since the algebra morphism x �−→ Rx is bijective from C�(M, q) onto
End(C�(V, q)), there is a unique ε ∈ C�(M, q) such that Rε is the projection onto
the even component C�0(V, q). The center of End0(C�(V, q)) is KRε⊕KR1−ε and
consequently the center of C�0(M, q), that is Z, is equal to Kε ⊕ K(1 − ε). For
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all ω ∈
∧max(U) we deduce from (7.3.1) that εω = Rε(1)ω = ω ; this equality

is equivalent to ω ∈ εC�(M, q) and to (1 − ε)ω = 0. If ε2 is an idempotent of
Z such that similarly Z = Kε2 ⊕ K(1 − ε2) and

∧max(U) ⊂ ε2C�(M, q), then
ε2 = (1− e2)ε + e2(1− ε) for some e2 ∈ Ip(K), and for all ω ∈

∧max(U),

ω = ε2ω = (1− e2)εω + e2(1 − ε)ω = (1− e2)ω ;

since
∧max(U) is a faithful module, this implies e2 = 0 and ε2 = ε. Since ε is

characterized by the properties Z = Kε⊕K(1− ε) and
∧max(U) ⊂ εC�(M, q), it

does not depend on V and can be denoted by ε(U).
Since U is any element of T (M, q), with every T ∈ T (M, q) is associated in

the same way an idempotent ε(T ) in Z. We must find a relation between ε(T ) and
the idempotent e of K such that (1− e)χ(T ) is even whereas eχ(T ) is odd.

Since the standard involution of Z maps ε to 1 − ε, from (3.5.13) we derive
that

∀x ∈ C�0(M, q), εx = xε , and ∀x ∈ C�1(M, q), (1 − ε)x = xε .

From (7.3.2) we know that
∧max(T ) is generated by the products zωτ(z) with

z ∈ χ(T ) and ω ∈
∧max(U). If we set ε′ = (1 − e)ε + e(1 − ε) (with ε = ε(U) as

above), then for all z ∈ χ(T ) and all ω ∈
∧max(U) we can write

ε(1− e)zω = (1− e)zεω = (1 − e)zω and (1− ε)ezω = ezεω = ezω ,

whence ε′zωτ(z) = zωτ(z) and ε′ = ε(T ). �

The equality (7.6.1) follows from (7.6.3) and

ε(T )+̃ε(T ′) = (ε(U)+̃ε(T ′)) +̃ (ε(U)+̃ε(T )).

When 2 is invertible in K, the element ζ mentioned in (7.3.6) is equal to
2ε(U)−1 ; when moreover M has constant rank 2r, then the inclusion

∧max(T ) ⊂
ε(T )C�(M, q) (with T ∈ T (M, q)) is equivalent to

∧r(T ) ⊂ ε(T )C�r(M, q).

In the remainder of this section we suppose that K is a field and we derive
consequences from (7.3.4). Every element in a Clifford algebra (or exterior algebra)
over a field K has a support that is defined in the next lemma; the definition of
the support of a bivector just before (5.9.2) is compatible with this more general
definition.

(7.6.4) Lemma. Let (N, q̃) be a quadratic module over a field K, and let x be a
nonzero element of C�(N, q̃). There is a smallest subspace of N among all the
subspaces P such that x belongs to the subalgebra generated by P ; it is called the
support of x. If x is lipschitzian and if m is the integer such that x belongs to
C�≤m(N, q̃) but not to C�<m(N, q̃), then m is the dimension of the support of x.

Proof. If P and P ′ are subspaces of N , the intersection of the subalgebras gener-
ated by P and P ′ is the subalgebra generated by P ∩ P ′; this can be proved by
means of a basis of N that contains a basis of P ∩ P ′, a basis of P and a basis
of P ′; remember that by definition every subalgebra contains K. Among the sub-
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spaces P such that x belongs to the subalgebra generated by P , there is a subspace
P0 of finite minimal dimension; let us prove that P0 ⊂ P whenever the subalge-
bra generated by P contains x. Indeed x belongs to the subalgebra generated by
P0 ∩P , whence dim(P0 ∩P ) ≥ dim(P0) and P0 ⊂ P . If β is a bilinear form on N ,
the subalgebras generated by any subspace P in C�(N, q̃) and in its deformation
C�(N, q̃; β) are equal as subspaces of C�(N, q̃); consequently the support of x is
invariant by deformation. There is a deformation C�(N, q̃; β) that is isomorphic to∧

(N), and if x is lipschitzian in C�(N, q̃), its image x′ in
∧

(N) is lipschitzian in∧
(N) (see (5.4.1)). Theorem (5.10.2) (corroborated by (7.5.8) just above) states

that x′ is the exterior product of a decomposable element (a scalar or a product
of elements of N) and the exponential of an element of

∧2(N); therefore

x′ = λd1 ∧ d2 ∧ ∧dn ∧ (1 + e1 ∧ e2) ∧ · · · ∧ (1 + e2k−1 ∧ e2k)

with (d1, d2, . . . , dn, e1, e2, . . . , e2k) a linearly independent family of vectors, and λ
a scalar that is only indispensable when n = 0. The support of x′ (which is also
the support of x) is the subspace spanned by this family of vectors; this can be
proved in a rigorous way by means of (4.8.12). If we set m = n + 2k, it is clear
that x′ belongs to

∧≤m(N) but not to
∧<m(N), whence the conclusion. �

(7.6.5) Proposition. Let M = U ⊕ V be a hyperbolic space of dimension 2r over
a field K, and let T and T ′ be maximal totally isotropic subspaces like U . If ω,
z and z′ are generators of the lines

∧r(U), χ(T ) and χ(T ′), then zωτ(z′) is a
lipschitzian element with support T + T ′ in M .

Proof. If P is any subspace of M , from (7.3.5) we know that zωτ(z′) belongs
to C�(P⊥, q) if and only if P ⊂ T ∩ T ′. Consequently the support of zωτ(z′) is
(T ∩T ′)⊥. Since T = T⊥ and T ′ = T ′⊥, by means of (2.3.6) and (2.3.7) we realize
that (T ∩ T ′)⊥ = T + T ′. �

(7.6.6) Corollary. With the same notation as in (7.6.5) the following assertions are
equivalent:

(a) T and T ′ have the same parity;
(b) dim(T + T ′) has the same parity as r ;
(c) dim(T ∩ T ′) has the same parity as r.

Proof. The parities of T and T ′ are equal if and only if the parity of zωτ(z′) is the
same as the parity of ω, that is the parity of r. From (7.6.4) we deduce that the
parity of zωτ(z) is the parity of the dimension of its support; as stated in (7.6.5),
its support is T + T ′; whence (a)⇔(b). Since the sum of the dimensions of T + T ′

and T ∩ T ′ is 2r, it is clear that (b)⇔(c). �

When the field K does not have characteristic 2, it is sensible to associate with
every nonzero x ∈ Lip(M, q) two subspaces of M , first its support Sup(x) defined
in (7.6.4), and a smaller subspace Ker∧(x) defined by means of the canonical
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isomorphism C�(M, q) →
∧

(M ; bq/2); if x′ is the canonical image of x in
∧

(M),
then Ker∧(x) = LKer(x′) = RKer(x′); in other words, Ker∧(x) is the subspace of
all a ∈ M such that a ∧ x′ = 0. If x′ is written as above in the proof of (7.6.4),
then Ker∧(x) is the subspace spanned by (d1, d2, . . . , dn); its dimension n has the
same parity as the dimension m of the support, all nonzero components of x′ have
a degree between m and n, and the nonzero components of highest and lowest
degrees are decomposable elements in

∧m(Sup(x)) and
∧n(Ker∧(x)).

(7.6.7) Proposition. With the same notation as in (7.6.5) we can write

Ker∧(zωτ(z′)) = T ∩ T ′

if the field K does not have characteristic 2.

Proof. This is a consequence of (7.6.5) and (7.3.9), because the multiplication by
ζ (an element of C�2r(M, q)) maps every C�k(M, q) bijectively onto C�2r−k(M, q)
(see (4.8.15)). Indeed let us set x = zωτ(z′) and m = dim(T + T ′); thus x belongs
to C�≤m(M, q), and its component in C�m(M, q) is the product of the m elements
of an orthogonal basis (a1, a2, . . . , am) of T + T ′; they have the same product
in C�(M, q) and in the deformation C�(M, q;−bq/2) isomorphic to

∧
(M). From

(7.3.9) we deduce x = ±ζx. Consequently, if we set n = 2r−m, we know that x be-
longs to C�≥n(M, q), and that the dimension of Ker∧(x) is n, like that of T∩T ′. Up
to an invertible scalar, the component of x in C�n(M, q) is ζa1a2 · · ·am ; to prove
that it is an element of

∧n(T ∩T ′), it suffices to verify that a′∧ (ζa1a2 · · ·am) = 0
for all a′ ∈ T ∩ T ′. From (4.8.13) we deduce

2a′ ∧ (ζa1a2 · · · am) = a′ζa1a2 · · · am + (−1)m ζa1a2 · · · ama′ ;

now a′ anticommutes with each ai (i = 1, 2, . . . , m) because a′ is orthogonal
to T + T ′, and moreover a′ anticommutes with ζ (see (3.5.13)); therefore a′ ∧
(ζa1a2 · · · am) = 0 as predicted. �

Exercises

(7.ex.1) Exceptionally in this exercise we accept that the canonical mappings
K → C�(M, q) and ρ : M → C�(M, q) may be not injective; consequently we use
again the notations 1q and ρ. We suppose that M is a direct sum of a totally
isotropic submodule U and any other submodule V . Let q′ be the restriction of q
to V , and ρ′ the canonical mapping V → C�(V, q′). By means of the “universal
property” of C�(M, q) (see 3.1), prove the existence of an algebra morphism f :
C�(M, q) → End(C�(V, q′)) such that f(ρ(c)) is the multiplication z �−→ ρ′(c)z
for every c ∈ V , whereas, for every b ∈ U , f(ρ(b)) is the interior multiplication
z �−→ d′

q(b) � z by the restriction d′
q(b) of dq(b) to V .

(7.ex.2)* It may be interesting to find out which features ensure the equality
Rxy(z) = RxRy(z) (with x, y, z ∈ C�(M, q)) when both members are calculated
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by means of the formula discovered in (7.1.6). Straightforward calculations (like
those in the proof of (4.7.2)) show that

Rxy(z) = �π ◦ (π ⊗ id∧)
(
Exp(f) � (x⊗ y ⊗ z)

)
with f = (π ⊗ id∧)∗(β′′ + π∗(β†)) + β′′ ⊗ 1 ,

RxRy(z) = �π ◦ (id∧ ⊗�π)
(
Exp(g) � (x⊗ y ⊗ z)

)
with g = (id∧ ⊗�π)∗(β′′ + π∗(β†)) + 1⊗ (β′′ + π∗(β†)) ;

the presence of (π⊗ id∧)∗ (resp. (id∧⊗�π)∗ ) in the definition of f (resp. g) comes
from an application of (4.4.6). Obviously �π ◦ (π ⊗ id∧) and �π ◦ (id∧ ⊗�π)
are the algebra morphisms associated by the functor

∧
with the same mapping

M ⊕M ⊕M → M . But the verification of the equality f = g is a much tougher
exercise.

(7.ex.3) Let A be a graded Azumaya algebra that is isomorphic to End(P ), with
P some graded finitely generated projective module of constant nonzero rank r.
Let S (resp. S′) be a graded left ideal (resp. a graded right ideal) of constant rank
r. It is also assumed that A contains a graded left ideal (resp. a graded right ideal)
that is supplementary to S (resp. S′).

(a) Prove that S∩S′ is a graded direct summand R of A, and that R has constant
rank 1.
Hint. You can suppose that A = End(P ); prove that P contains a graded
direct summand H of rank r − 1 such that S is the subset of all f ∈ A such
that Ker(f) ⊃ H , and that P contains a graded direct summand L′ of rank
1 such that S′ is the subset of all f ∈ A such that Im(f) ⊂ L′.

(b) Let B′ be the graded module of all bilinear mappings ψ : S′ × S → K. It is
a graded module over A ⊗̂Ato according to this equality (in which x and x′

run through A, z runs through S and z′ through S′):

(xψx′)(z′, z) = (−1)∂x(∂ψ+∂z′)+∂x′∂z′
ψ(z′x, x′z).

For every (z′, z) ∈ S′×S it is clear that z′z belongs to R = S ∩S′; therefore
every ω∗ ∈ R∗ determines an element Ψω∗ of B′ : Ψω∗(z′, z) = ω∗(z′z).
Prove that Zg(A,B′) is the submodule of all Ψω∗ .
Hint. The submodule of all Ψω∗ is a direct summand of B′ because the
multiplication mapping S′ ⊗ S → R is surjective, and R is projective.

(c) Now we assume that A is provided with an involution τ (see (1.13.7)), and
that S′ = τ(S). We consider R = S ∩ τ(S) and the module B of all bilinear
mappings ϕ : S × S → K, which is a bimodule over A according to the
equality

(xϕx′)(z′, z) = (−1)∂x(∂ϕ+∂z′)+∂x′∂z′
ϕ(τ(x)z′, x′z) ,

in which the twisting exponent is equivalent to ∂x(1 + ∂x′ + ∂z) + ∂x′∂z′.
Explain how to get the elements of Zg(A,B).
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Comment. This construction of Zg(A,B), which probably stems from Cheval-
ley, has been borrowed by many other mathematicians; when K is a field, it
has been generalized to algebras which (unlike the previous algebra A) have
a nontrivial Brauer–Wall class, by means of a graded minimal left ideal S.

(7.ex.4) This exercise is an application of the previous one to the Cartan–Cheval-
ley mapping. As in 7.3, (M, q) is a hyperbolic quadratic space, U belongs to
T (M, q), and V is any supplementary submodule. If T is any element of T (M, q),
we can apply the results of (7.ex.3) to the left ideal SU generated by

∧max(U)
in C�(M, q), and to the right ideal S′

T generated by
∧max(T ) in C�(M, q); in

particular SU ∩ S′
T is a graded direct summand of C�(M, q) of constant rank 1.

(a) In (7.1.4) there is a bijection C�(V, q)⊗
∧max(U) → SU . Prove that χ(T ) is

the submodule of C�(V, q) such that χ(T )⊗
∧max(U) is mapped bijectively

onto SU ∩ S′
T .

Comment. This property of χ(T ) underlies Chevalley’s original definition of
χ(T ).

(b) Obviously τ(SU ) is the right ideal S′
U generated by

∧max(U), and
∧max(U) =

SU ∩S′
U . As suggested in (7.ex.3)(c), every element ω∗ ∈ (

∧max(U))∗ deter-
mines a bilinear form Φω∗ on SU ; but here we are interested in the module BV

of all bilinear forms on C�(V, q); consequently with every w ∈ (
∧max(U))∗ ⊗∧max(U) ⊗

∧max(U) we associate a bilinear form Fw on C�(V, q), which is
defined in this way when w = ω∗ ⊗ ω1 ⊗ ω2 :

Fw(z′, z) = ω∗(ω1z
′zω2) .

Prove that Zg(C�(M, q),BV ) is the submodule of all Fw .
Remark. (

∧max(U))∗ ⊗
∧max(U) ⊗

∧max(U) is canonically isomorphic to∧max(U) and to (
∧max(V ))∗.

(7.ex.5) Here is a construction of Zg(C�(M, q),BV ) quite different from the one
in (7.ex.4)(b). We assume that V has constant rank r. Since the graded alge-
bra Gr(C�(V, q)) derived from C�(V, q) is canonically isomorphic to

∧
(V ) (see

(4.8.7)), there is a canonical surjective mapping p : C�(V, q) →
∧r(V ) with kernel

C�<r(V, q). Every w ∈
∧∗r(V ) determines a bilinear form Fw on C�(V, q) in this

way:
Fw(z′, z) = w ◦ p(τ(z′) z).

Prove that the mapping w �−→ Fw is a bijection from
∧∗r(V ) onto the submodule

of all ϕ ∈ BV such that

∀x ∈ C�(M, q), ∀z′, z ∈ C�(V, q), ϕ(Rx(z′), z) = ϕ(z′, Rτ(x)(z)).

Hint. It suffices to prove that τ(Ra(z′)) z − τ(z′)Ra(z) belongs to C�<r(V, q) for
all a ∈ M , and all z′ and z ∈ C�(V, q); this is trivial if a = c ∈ V , and follows from
(4.4.4) and other properties when a = b ∈ U .
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(7.ex.6) Let A be a graded algebra provided with an involution τ . As usual we
set σ(x) = (−1)∂xx for all x ∈ A. Moreover let S be a graded module over A,
and B the graded module of all bilinear forms ϕ : S × S → K. We try to make B
become a graded bimodule over A by means of a formula of this kind:

(xϕx′)(z, z′) = (−1)ξ ϕ(x′z, τ(x)z′) ;

a function ξ of ∂x, ∂x′, ∂z, ∂z′ (with values in Z/2Z) is said to be an admissible
twisting exponent if it makes B become a bimodule over A for all triplets (A, τ, S)
over any ring K.

(a) Let ξ(∂x, ∂x′, ∂z, ∂z′) be an admissible twisting exponent. Prove that
ξ(0, 0, ∂z, ∂z′) = 0, that ξ(1, 0, ∂z, ∂z′) is a function ζ(∂z) of the only vari-
able ∂z, and that ξ(0, 1, ∂z, ∂z′) is a function ζ′(∂z′) of the only variable ∂z′;
moreover

ξ(∂x, ∂x′, ∂z, ∂z′) = ∂x ζ(∂z) + ∂x′ ζ′(∂x + ∂z′)
= ∂x ζ(∂x′ + ∂z) + ∂x′ ζ′(∂z′).

Conversely two functions ζ(∂z) and ζ′(∂z′) determine an admissible twisting
exponent ξ if and only if ζ(0) + ζ(1) = ζ′(0) + ζ′(1) .

(b) Consequently all admissible twisting exponents ξ are in bijection with the
elements (λ, µ, ν) of (Z/2Z)3 according to this formula:

ξ = λ(∂x∂x′ + ∂x∂z + ∂x′∂z′) + µ∂x + ν∂x′.

The notation B(λ, µ, ν) means the bimodule B over A obtained with the
corresponding twisting exponent ξ. Replacing µ with µ + 1 is equivalent to
replacing τ with στ .

(c) Let σ1 (resp. σ2, resp. σ3) be the automorphism of the K-module B that
maps every element ϕ to

(z, z′) �−→ (−1)∂z∂z′
ϕ(z, z′) (resp. (−1)∂zϕ(z, z′), resp. (−1)∂z′

ϕ(z, z′)).

Prove that σ1 (resp. σ2, resp. σ3) is an isomorphism from B(λ, µ, ν) onto
B(λ + 1, µ, ν) (resp. B(λ, µ + 1, ν), resp. B(λ, µ, ν + 1)).

(d) For every (i, j) ∈ (Z/2Z)2, let Zi(j) be the submodule of all ϕ ∈ Bi such that

∀x ∈ A, ∀z, z′ ∈ S, ϕ(xz, z′) = ϕ(z, σjτ(x)z′) .

Verify that σ1 (resp. σ2 or σ3) induces a bijection from Zi(j)) onto Zi(i+j+1)
(resp. Zi(j + 1)).

(e) Prove that the homogeneous elements ϕ of the centralizer Zg(A, B(λ, µ, ν))
are characterized by this condition:

∀x ∈ A, ∀z, z′ ∈, ϕ(xz, z′) = (−1)(λ+µ+ν)∂x(−1)(λ+1)∂x∂ϕϕ(z, τ(x)z′) ;

consequently this centralizer is Z0(λ + µ + ν)⊕Z1(µ + ν + 1) .
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(7.ex.7) Here is a direct proof of (7.4.2) (without the help of (7.4.1)) when 2 is
invertible in K. As reported in (7.2.4), the definition (5.3.1) has been first derived
from the Cartan–Chevalley criterion under the assumption that 2 is invertible,
and with the argument presented just below. As in (7.4.2) we assume that V has
constant rank r. We set β = bq/2 (the canonical scalar product on M) and we
identify C�(M, q) with

∧
(M ; β). We also write q2 for the quadratic form on V ⊕V

defined by q2(c, c′) = β(c, c′). Obviously (V ⊕V, q2) is the direct sum of the totally
isotropic subspaces V ⊕0 and 0⊕V , whence a grading of the algebra C�(V ⊕V, q2)
according to (5.2.7).
(a) Prove the existence of an algebra morphism F from C�(V ⊕ V, q2) into

End(
∧

(M)) mapping every (c, c′) ∈ V ⊕V to the endomorphism x �−→ c∧x+
dβ(c′) �x. Prove the existence of an algebra morphism D from C�(V, q) into
C�(V ⊕ V, q2) mapping every c ∈ V to (c, c). Then deduce from (4.8.9) that
for every z ∈ C�(V, q) the left multiplication x �−→ zx in C�(M, q) =

∧
(M ; β)

is the endomorphism of
∧

(M) equal to F ◦D(z).
Similarly there is an algebra morphism D′ from C�(V, q)to into C�(V ⊕V, q2)
that maps every cto ∈ V to to (c,−c). And the twisted right multiplication
x �−→ (−1)∂x∂zxz is the endomorphism F ◦ D′(zto). Besides, if z and z′

are homogeneous elements of C�(V, q), then D(z) and D′(z′to) commute or
anticommute in C�(V ⊕ V, q2) according to the sign (−1)∂z∂z′

.
(b) Prove that for every degree k ∈ Z the mapping ζ ⊗ ω �−→ F (ζ)(ω) induces a

bijection

C�(V ⊕ V, q2 ; V ⊕ 0, 0⊕ V )k ⊗
∧r

(U) −→ C�r+k(M, q).

Hint. Since (V ⊕ V ; q2) is the orthogonal sum of its diagonals ∆V and ∆′
V ,

the bijectiveness of C�(V ⊕ V, q2)⊗
∧r(U) → C�(M, q) follows from (7.3.2).

(c) Observe that the mapping (c, c′) �−→ (c + c′, c− c′) is an isomorphism from
(V, q) ⊥ (V,−q) onto (V ⊕ V, q2) that maps the diagonals ∆V and ∆′

V

respectively onto V ⊕ 0 and 0 ⊕ V . Conclude that, for every homogeneous
z ∈ C�(V, q), all products zωτ(z) (with ω ∈

∧r(U)) are in C�r(M, q) if and
only if z ⊗ τ(z)to belongs to (C�(V, q) ⊗̂C�(V, q)to; ∆, ∆′)0.
Hint. zωτ(z) = ± F (D(z)D′(τ(z)to))(ω).

(7.ex.8) Let (M, q) be a hyperbolic space of constant rank 2r, let U be an element
of T (M, q), and V a submodule supplementary to U . Since the graded algebra
Gr(C�(M, q)) is isomorphic to

∧
(M) (see (4.8.7)), there is a canonical surjective

mapping C�(M, q) →
∧2r(M) with kernel C�<2r(M, q); therefore, even when 2 is

not invertible in K, from the mapping Ω defined in 7.3 we can derive a mapping

Ω2r : C�(V, q)⊗
∧r

(U)⊗ C�(V, q) −→
∧2r

(M).

Take notice that
∧2r(M) is canonically isomorphic to K because there are canoni-

cal isomorphisms
∧r(U)⊗

∧r(V )→
∧2r(M) and

∧r(U)⊗
∧r(V )→ K (resulting

from M = U ⊕ V and U ∼= V ∗).
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(a) Prove that, for all x ∈ C�(M, q) and all z and z′ in C�(V, q),

Ω2r(z ⊗ ω ⊗ z′) = (−1)r(r+1)/2 Ω2r(z′ ⊗ ω ⊗ z) ;
Ω2r(Rx(z)⊗ ω ⊗ z′) = Ω2r(z ⊗ ω ⊗Rστ(x)(z′)) .

Consequently Ω2r gives the graded centralizer Zg(C�(M, q), BV ) when BV

is a bimodule over C�(M, q) according to a formula that you shall specify.
(b) Prove that an element x′ of C�(M, q) belongs to C�≤r(M, q) if and only

if xx′ belongs to C�<2r(M, q) for all x ∈ C�<r(M, q). Prove that a locally
homogeneous z ∈ C�(V, q) belongs to Lip(V, q) if and only if Ω2r(Rx(z)⊗ω⊗z)
vanishes for all x ∈ C�<r(M, q) and all ω ∈

∧r(U).
(c) Prove the existence of a bilinear mapping ψ from C�(V, q) × C�(V, q) into∧r(V ) such that, for all z, z′ ∈ C�(V, q) and all ω ∈

∧r(U),

ψ(z, z′) ∧ ω = (−1)r∂z′
Ω2r(z ⊗ ω ⊗ z′).

Prove that ψ is nondegenerate, either symmetric or skew symmetric.
Hint. The nondegeneracy of ψ depends on the bijectiveness of dψ : C�(V, q)→
Hom(C�(V, q),

∧r(V )) ; since C�(V, q)∗ ⊗
∧r(U) is faithfully flat, you can

replace dψ with a mapping from C�(V, q) ⊗ C�(V, q)∗ ⊗
∧r(U) into some

module that proves to be isomorphic to BV ⊗
∧2r(M) ; because of (7.2.1)

there are isomorphisms

C�(V, q)⊗ C�(V, q)∗ ←→ End(C�(V, q)) ←→ C�(M, q) ;

finally you have to examine this mapping:

C�(M, q)⊗
∧r

(U) −→ BV ⊗
∧2r

(M) ,

x⊗ ω �−→
(
(z, z′) �−→ ±Ω2r(Rx(z)⊗ ω ⊗ z′)

)
;

its bijectiveness follows from (6.7.6) and (a) just above.
(d) For every T ∈ T (M, q), let χ̃(T ) be the submodule of C�(V, q) generated by

all Ra(z) with a ∈ T and z ∈ C�(V, q). Prove that χ̃(T ) is a graded direct
summand of C�(V, q) of constant rank 2r − 1. Prove that χ(T ) and χ̃(T ) are
orthogonal to each other for the bilinear mapping ψ defined in (c). Prove
that χ(T ) ⊂ χ̃(T ) .

(7.ex.9) Let (M, q) be a hyperbolic space, U an element of T (M, q), and V and
V ′ two submodules supplementary to U ; thus there exists a unique bijection p :
V → V ′ such that p(c) − c ∈ U for all c ∈ V . Since C�(V, q) and C�(V ′, q) are
both supplementary to the left ideal C�(M, q)U , this mapping p extends to an
isomorphism ψ : C�(V, q) → C�(V ′, q) of modules over C�(M, q); by definition,
ψ(z)− z belongs to C�(M, q)U for every z ∈ C�(V, q). We intend to calculate ψ.
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(a) We set γ(c, c′) = bq(p(c)− c, c′) and q′(c) = q(c) + γ(c, c) for all c and c′ in
V . Verify that p is an isomorphism from (V, q′) onto (V ′, q). Consequently p
extends to an algebra isomorphism C�(p) : C�(V, q′) → C�(V ′, q).

(b) As explained in 4.7, there is an isomorphism Φγ from C�(V, q′) onto the
deformation C�(V, q; γ). Prove that ψ = C�(p) ◦ Φ−1

γ .
Hint. Prove that p(c)ψ(z) = ψ(c�z) (with c�z = cz+dγ(c) � z ) for all c ∈ V
and z ∈ C�′V, q).

(c) When V ′ = V ⊥, deduce from (4.7.8) the description of ψ given in (7.2.9).

(7.ex.10) Let (M, q) be a hyperbolic space over a field K, and T , U , V three
elements of T (M, q). The purpose of this exercise is to prove that M is the or-
thogonal sum M1 ⊥ M2 ⊥ · · · ⊥ Mn of hyperbolic subspaces Mi such that each
one satisfies one of these two properties:

either Mi has dimension 4, whereas Mi ∩ T , Mi ∩ U , Mi ∩ V all have
dimension 2, and are pairwise supplementary in Mi;
or Mi has dimension 2, whereas Mi∩T , Mi∩U , Mi∩V all have dimension
1; therefore these three totally isotropic lines cannot be pairwise distinct.

(a) Prove this statement when M = U ⊕ V .
Hint. Let U ′ (resp. V ′) be the projection of T on U (resp. V ) with respect
to the decomposition M = U ⊕ V ; or equivalently U ′ = U ∩ (T ∩ V )⊥

and V ′ = V ∩ (T ∩ U)⊥; let U∞ be a subspace of U supplementary to U ′;
observe that T determines an alternate bilinear form f on U ′ according to
this definition: for all b and b′ in U ′, f(b, b′) = bq(c, b′) if c is any element
of V such that b + c belongs to T ; the kernel of f is U0 = T ∩ U , and
consequently U ′ is the direct sum of U0 and some planes U1, U2, . . . , Um

that are pairwise orthogonal with respect to f ; to the decomposition of U as
the direct sum of U0, U∞ and the m planes U1, . . . , Um, there corresponds the
dual decomposition of V as the direct sum of V∞, V0 and m planes V1,. . . ,Vm;
this means that V∞ (resp. V0) is orthogonal to all Uj except U0 (resp. U∞),
whereas Vi (for i = 1, 2, . . . , m) is orthogonal to all Uj except Ui; at the end,
the subspaces Mi of dimension 4 are the m subspaces Ui ⊕ Vi.

(b)* Prove this statement without the above additional assumption.
Hint. Let T0, T1 and T2 be subspaces of M such that

U ∩ V = T0 ⊕ (T ∩ U ∩ V ) , T = T2 ⊕ (T ∩ (U + V )) ,

T ∩ (U + V ) = T1 ⊕ ((T ∩ U) + (T ∩ V )) ,

and let U0, U1, U2, V0, V1, V2 be chosen in a similar way; therefore

T = (T ∩ U ∩ V )⊕ U0 ⊕ V0 ⊕ T1 ⊕ T2 and so forth . . . ;

observe that T1, U1, V1 have the same dimension, and can be chosen in such
a way that U1 ⊕ V1 = V1 ⊕ T1 = T1 ⊕ U1; besides, U1 ⊕ V1 is a hyperbolic
subspace of (M, q); and T0⊕T2 and the two similar subspaces are hyperbolic
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too; moreover it is possible to choose T2, U2, V2 inside (U1 ⊕ V1)⊥; then you
are brought back to the previous case, because

T +U +V = (T ∩U ∩V ) ⊥ (T0⊕T2) ⊥ (U0⊕U2) ⊥ (V0⊕V2) ⊥ (U1⊕V1).

(7.ex.11) Let (M, q) be a hyperbolic space over a ring K, and K → L an exten-
sion of this ring. By means of counterexamples, show that the natural mapping
T (M, q) → T (L ⊗ (M, q)) may be not injective, and that it may be not surjec-
tive. Prove that it is surjective if K is a local ring, and L its residue field; hint:
(7.ex.10)(a).

(7.ex.12) Let (M, q) be a hyperbolic space of constant rank 2r over a ring K, and
V a direct summand of constant rank r in M ; does there exist any U ∈ T (M, q)
such that M = U ⊕ V ? By means of a counterexample (for instance with K = Z

and r = 1) show that the answer may be negative. Deduce from (2.7.8) that the
answer is always positive when K is a field. Then deduce from (7.ex.11) that the
answer is still positive when K is a local ring.

(7.ex.13) Let V be a vector space of dimension r over a field, and ω∗ a nonzero
element of

∧r(V ∗); we set F(z) = ω∗ # z as in 5.9, whence a transformation F :∧
(V ) →

∧
(V ∗). With every nonzero z ∈ Lip(V ) we associate its support Sup(z)

and the subspace Ker∧(z) of all b ∈ V such that b ∧ z = 0. Besides, with every
subspace N of V we associate its annihilator Nan in V ∗. Prove that

Sup(F(z)) = (Ker∧(z))an and Ker∧(F(z)) = (Sup(z))an.

Therefore the quotients P = Sup(z)/Ker∧(z) and P ′ = Sup(F(z))/Ker∧(F(z))
can be treated as dual spaces. Explain that z (resp. F(z)) determines a nondegen-
erate alternate bilinear form f (resp. g) on P ′ (resp. P ); deduce from (5.9.5) that
f and −g induce reciprocal mappings P ′ ←→ P .

(7.ex.14)* Let (M, q) be a hyperbolic space over a field K, and let U and V
be two supplementary totally isotropic subspaces of (M, q). Thus bq determines
a duality between U and V . Let A(U) (resp. A(V )) be the set of all alternate
bilinear forms U ′×U ′ → K (resp. V ′×V ′ → K) with U ′ (resp. V ′) any subspace
of U (resp. of V ). Consider the diagram

BLip(V ) −−−− −→ BLip(U)
| ↖ ↗ |
| T (M, q) |
↓ ↙ ↘ ↓

A(U) −−−− −→ A(V )

in which the arrows are defined as follows:

– the arrow T (M, q) → BLip(V ) is the Cartan–Chevalley mapping T �−→ χ(T ),
and the arrow T (M, q) → BLip(U) is defined by permuting the roles of U
and V ;
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– the arrow BLip(V ) → BLip(U) comes from the isomorphism
∧

(V )→
∧

(U∗)
induced by dq and from the transformation F∗ :

∧
(U∗) →

∧
(U) defined as

in 5.9; according to (5.3.14) dq induces a bijection Lip(V ) → Lip(U∗), and
according to (5.9.3) F∗ induces a bijection Lip(U∗)→ Lip(U);

– the arrow BLip(V ) → A(U) maps the line spanned by any nonzero lips-
chitzian element

c1∧c2∧· · ·∧ck∧Exp(v) with k ≥ 0, c1, c2, . . . , ck ∈ V and v ∈
∧2

(V ),

to the alternate linear form f induced by v on U ′ = U ∩ (Kc1⊕ · · ·⊕Kck)⊥;
in other words, an element b of U belongs to U ′ if and only if bq(b, cj) = 0
for j = 1, 2, . . . , k, and

∀b, b′ ∈ U ′, f(b, b′) = (dq(b) ∧ dq(b′))(v) ;

of course U ′ = U when k = 0; the arrow BLip(U) → A(V ) is defined in the
same way by permuting the roles of U and V ;

– the arrow T (M, q) → A(U) maps any maximal totally isotropic subspace T
to the alternate bilinear form f defined on the projection U ′ of T on U in
this way: f(b, b′) = bq(c, b′) if c is any element of V such that b + c belongs
to T ; prove that an alternate bilinear form on U ′ is actually defined in this
way; of course T (M, q) → A(V ) is defined in the same way by permuting the
roles of U and V ;

– at last the arrow A(U) → A(V ) is the mapping f �−→ g defined in this way:
every alternate bilinear form f on a subspace U ′ of U determines a nonde-
generate alternate bilinear form f ′ on the quotient of U ′ by the kernel U0

of df ; whence an isomorphism U ′/U0 → (U ′/U0)∗; then bq induces a nonde-
generate duality between U ′/U0 and the quotient V ′/V0 where V ′ = V ∩U⊥

0

and V0 = V ∩ U ′⊥; with f ′ is associated a nondegenerate alternate bilin-
ear form g′ on V ′/V0 such that f ′ and −g′ induce reciprocal isomorphisms
U ′/U0 ←→ V ′/V0; and finally g′ determines an alternate bilinear form g on
V ′.

Prove that the eight arrows in the above diagram are all bijective, and that the
four triangles in this diagram are all commutative.
Hint. (7.ex.10)(a) and (7.ex.13).

(7.ex.15) Let (P, q) be a quadratic space of dimension r over a field K; let s be
the maximal dimension of totally isotropic subspaces contained in (P, q).
(a) Prove that 0 ≤ 2s ≤ r. The equality s = 0 means that (P, q) is anisotropic,

whereas the equality 2s = r means that it is hyperbolic.
(b) Prove that every totally isotropic subspace of (P, q) is contained in a totally

isotropic subspace of dimension s.
(c) Let T and U be two totally isotropic subspaces of dimension s in (P, q);

prove that T and U are contained in a hyperbolic subspace of dimension 2s
in (P, q).
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(7.ex.16) Let (M, q) be a hyperbolic space of rank 2r over a local ring K, and U
an element of T (M, q). For each parity i = 0, 1, let Ti(M, q) be the subset of all
T ∈ T (M, q) such that par(U, T ) = i, and let

∧r
|i(M) be the subspace of

∧r(M)
spanned by all elements of all

∧r(T ) with T ∈ Ti(M, q). Prove that
∧r(M) is the

direct sum of
∧r

|0(M) and
∧r

|1(M).

Let g be an orthogonal transformation of (M, q). Prove that
∧

(g) maps each∧r
|i(M) onto itself (resp. onto

∧r
|1−i(M)) if g belongs to the subgroup SO(M, q)

(resp. if g does not belong to SO(M, q)).

(7.ex.17) Consider a quadratic space (M ′, q′) of odd dimension 2r − 1 (with
r ≥ 2) over a field K of characteristic �= 2, and suppose that (M ′, q′) contains
totally isotropic subspaces of dimension r − 1. Let T ′(M ′, q′) be the set of all
totally isotropic subspaces of dimension r − 1.

(a) Prove that (M ′, q′) can be embedded into a hyperbolic space (M, q) of di-
mension 2r.

(b) Prove that every element of T ′(M ′, q′) is contained in exactly two elements
of T (M, q).

(c) Define T0(M, q) and T1(M, q) as in (7.ex.16). Prove that, for i = 0, 1, the
mapping T �−→ T ∩M ′ is a bijection from Ti(M, q) onto T ′(M ′, q′).

Remark. When M ′ has odd dimension over a field K of characteristic 2, the above
results are still valid when q′ is “almost nondegenerate” (see (2.ex.14)).

(7.ex.18)* Consider a quadratic space of dimension 4 over a field K, and suppose
that q is not anisotropic. Let a0 be a nonzero element of M such that q(a0) = 0.
The “projective space” of dimension 3 derived from M is the set P of all vector
lines (or vector subspaces of dimension 1) contained in M ; if b is a nonzero element
of M , p(b) is the line spanned by b, considered as an element of P . The projective
lines (resp. projective planes) in P are the images by p of the vector subspaces
of dimension 2 (resp. 3) in M . The image of q−1(0) in P is denoted by Q and is
called a projective quadric ; let x0 = p(a0) be a point of Q.

(a) A projective line L containing x0 is said to be tangent to Q at the point x0

if the restriction of q to the plane p−1(L) is degenerate. Prove that the lines
tangent to Q at x0 are the projective lines passing through x0 and contained
in some plane, called the plane tangent to Q at x0.

(b) Prove that the intersection of Q with any projective line L passing through
x0 is a set of two points (x0 and another one), except when L is tangent to
Q at this point. What happens when L is tangent to Q? Remember that L
may be contained in Q when (M, q) is hyperbolic!

(c) Now (M, q) is assumed to be a hyperbolic quadratic space, and L(Q) is the
set of all projective lines contained in Q. Prove that L(Q) is the union of two
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subsets Li(Q) with i = 0, 1, in such a way that these assertions are true for
every pair (L, L′) of elements of L(Q) :

if L and L′ belong to the same subset Li(Q) (with i = 0, 1), either L∩L′

is empty, or L = L′;
if L and L′ do not belong to the same Li(Q), then L ∩ L′ contains
exactly one point.

Hint. See (7.6.6).
(d) With the same assumptions as in (c), prove that there are two elements

of L(Q) passing through x0, and that the plane tangent to Q at x0 is the
projective plane generated by these two tangent lines.

Weyl algebras (for interested readers)

(7.ex.19) Let ψ be an alternate bilinear form on a finitely generated projective
module M that is the direct sum of two submodules U and V such that ψ(U, U) =
0. Thus S(U) and W(V, ψ) can be identified with subalgebras of W(M, ψ).

(a) Prove that W(M,ψ) is the direct sum of W(V,ψ) and the left ideal W(M,ψ)U .
This leads to an algebra morphism W(M, ψ) → End(W(V, ψ)). Describe the
operations in W(V, ψ) of the elements of S(U) and W(V, ψ).
Hint. Use a scalar product β such that ψ(a, a′) = β(a, a′)− β(a′, a) for all a,
a′ ∈M , and β(M, U) = 0.

(b) Suppose that there is a positive integer n such that nV = 0; prove that bn

belongs to the kernel of W(M, ψ) → End(W(V, ψ)) for all b ∈ U . Let r be a
positive integer such that the rank of V is always ≤ r; prove that the kernel
of this morphism contains Sk(U) for all k > (n− 1)r.

(7.ex.20) The hypotheses are the same as in (7.ex.19). Let β : M ×M → K be
a scalar product such that ψ(a, a′) = β(a, a′) − β(a′, a) for all a, a′ ∈ M , and
β(U, U) = 0; this β gives an element β′′ of S∗2(M ⊕ M), and its restriction to
V ×U gives an element β† of S∗2(M). State and prove the assertions analogous to
(7.1.5) and (7.1.6). To define exponentials of elements of S∗2(M) or S∗2(M ⊕M),
you may either assume that K contains a subring isomorphic to the field Q, or
define these exponentials as in (4.ex.2)(b).

(7.ex.21) Let ψ be a nondegenerate alternate bilinear form on a finitely generated
projective module M . A lagrangian submodule of M is a direct summand U such
that ψ(U, U) = 0 and rk(p; M) = 2rk(p; U) at every prime ideal p (or equivalently
U⊥ = U).

(a) Prove that every lagrangian submodule U admits a supplementary lagrangian
submodule V .
Hint. Follow the proof of (2.5.4).

(b) Prove that lagrangian submodules always exist when K is a local ring.
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(7.ex.22) Here we assume that the canonical morphism Z → K extends to a
morphism Q → K. Let M be a finitely generated projective module of even rank
over K, and ψ a nondegenerate alternate form on M . We also assume that M is
the direct sum of a lagrangian submodule U and a supplementary submodule V ;
thus we get an algebra morphism x �−→ Rx from W(M, ψ) into End(W(V, ψ)).

(a) Prove that the image of W(M, ψ) → End(W(V, ψ)) is dense in the following
sense: for every integer k > 0 and for every f ∈ End(W(V, ψ)), there exists
x ∈W(M, ψ) such that Rx(z) = f(z) for all z ∈ W≤k(V, ψ).
Hint. There is a lagrangian submodule V ′ supplementary to U (see (7.ex.21)
(a)); if this statement is true for V ′, it is also true for V ; therefore you can
assume V to be lagrangian; now follow the proof of (3.7.2).

(b) Prove that W(V, ψ) is an irreducible module over W(M, ψ) when K is a field
of characteristic 0.

(c) Prove that the morphism W(M, ψ) → End(W(V, ψ)) is not surjective.
Hint. It suffices to prove that for every x ∈ W(M, ψ) there exists an inte-
ger j such that Rx(W≤k(V, ψ)) ⊂ W≤k+j(V, ψ) for all k ∈ N. If you are
more courageous, you can even prove this more difficult assertion: if x is
any nonzero element of W(M, ψ), there is no integer k such that Im(Rx) ⊂
W≤k(V, ψ).

(d) Prove that the morphism W(M, ψ) → End(W(V, ψ)) is injective.

(7.ex.23)* Let U be a vector space of finite dimension r over R and V = U∗

the dual space. We set M = U ⊕ V and M∗ = V ⊕ U . We provide M∗ with the
usual symplectic form ψ defined by ψ(c + b, c′ + b′) = c(b′)− c′(b). As announced
in (4.ex.23), we are interested in the Weyl algebra WC(C ⊗M∗, i ⊗ ψ) (where
i =

√
−1). Let A(U) be a space of functions or distributions U → C that is stable

by multiplication by polynomial functions and by derivations; thus every g ∈ A(U)
has a derivative ∂b(g) in the direction b for every b ∈ U . Prove the existence of
a C-algebra morphism WC(C ⊗M∗, i ⊗ ψ) → EndC(A(U)) such that for every
v ∈ S(V ) the operation of 1⊗ v in A(U) is the multiplication by v (considered as
a polynomial function on U), whereas for every b ∈ U the operation of 1 ⊗ b is
i∂b . The elements in the image of this morphism are called “differential operators
with polynomial coefficients”.

Comment. As announced in (4.ex.23), we are interested in “enlargements” of the
Weyl algebra under consideration; here they should afford “generalized differential
operators”. We choose an admissible scalar product β such that β(U, U) = 0 (for
instance β = ψ/2); thus WC(C⊗M∗, i⊗ψ) can be identified with SC(C⊗M∗; i⊗
β), and the elements of the wanted enlargement can be treated as functions or
distributions on M . Let f be an element of this enlargement; to derive from it
an operator Rf we use Fourier transformation; for a suitable g ∈ A(U), we try
to define Rf (g) by means of the following equality which is suggested by (7.1.6)
and by the subsequent decomposition of β′′ + π∗(β†) into a sum of four terms,
among which only the first three are here relevant; the letters t, t1 and t2 are
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variables running through V , whereas s runs through U , and ϕ(t) is any “test
function” on V :

(2π)r

∫
V

ϕ(t) F(Rf (g))(t) dt

=
∫

M∗⊕V

ϕ(t1 + t2) exp
(
− iψ(s, t2)− iβ(t1, t2) + iβ(t1, s)

)

×F(f)(t1, s)F(g)(t2) dt1 ds dt2.

When the Fourier transform F(f) or F(g) has a compact support, the existence
of Rf (g) is beyond doubt; but its existence is already ensured by much weaker
hypotheses which are not discussed here. Besides, we can accept a symplectic form
ψ that induces a duality between a lagrangian subspace U and any supplementary
subspace V , even not lagrangian, since only the condition β(U, U) = 0 is required.
The following exercise (analogous to (7.ex.14)) shows that a Cartan–Chevalley
mapping also exists in this context.

(7.ex.24)* Let U , V , M and ψ be as in (7.ex.23); let Lag(M∗; ψ) be the set of
lagrangian subspaces of M∗ (among which there are U and V ); here A(U) is the
space of all distributions on U admitting a Fourier transform. With every c + b ∈
M∗ is associated a differential operator Rc+b on A(U) : Rc+b(g) = cg + i∂b(g).
It is known that if T is any lagrangian subspace of M∗, the subset χ(T ) of all
g ∈ A(U) such that Ra(g) = 0 for all a ∈ T is a vector space of dimension 1 over
C. For instance χ(U) is the subset of all constant functions on U , whereas χ(V ) is
the line spanned by the Dirac distribution at the null element of U . By definition
BLip∨(V ) is the image of this mapping χ.

Describe the elements of BLip∨(V ), and explain which are the arrows in
the following diagram, that make it become commutative; besides Lag(M∗, ψ),
BLip∨(V ) and BLip∨(U) which are already defined, it also involves the set Q(U)
of all quadratic forms U ′ → R defined on any vector subspace U ′ of U , and
similarly Q(V ) :

BLip∨(V ) −−−−−− −→ BLip∨(U)
| ↖ ↗ |
| Lag(M∗, ψ) |
↓ ↙ ↘ ↓

Q(U) −−−−−− −→ Q(V ).

Comments. An element of BLip∨(V ) is determined by a subspace U ′ of U and a
quadratic form q : U ′ → R, and is made of all the distributions g on U that can
be written in this way, for some Lebesgue measure dsU ′ on U ′ and some constant
µ ∈ C : ∫

U

ϕ(s) g(s) ds = µ

∫
U ′

ϕ(s) exp(iq(s)) dsU ′ ;
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thus the bijection BLip∨(V )→ Q(U) is obvious. The steady presence of the factor
i beside ψ accounts for its presence beside q, and implies that all these distributions
g have a Fourier transform. The bijection BLip∨(V )→ BLip∨(U) (with U = V ∗)
is merely Fourier transformation. It is worth explaining how BLip∨(V ) is related to
the Lipschitz monoid Lip∨(V ) defined in the comment following (5.ex.41); except
for the element ∞ that must be inserted into Lip∨(V ) because of the “inversion
rule”, all the other elements of Lip∨(V ) are distributions like the above g, with the
additional requirement that µ must belong to the group (R×)1/4 (in other words,
µ4 ∈ R×); thus the elements of BLip∨(V ) are no longer subsets of Lip∨(V ), but
they are in bijection with the orbits of the group (R×)1/4 in Lip∨(V ) \ {∞}. In
an analogous way the elements of BLip(V ) are in bijection with the orbits of the
group R× in Lip(V ) \ {0}.



Chapter 8

Complements about Witt Rings
and Other Topics

This chapter contains some complements to previous chapters, which the authors
have preferred to postpone until the last chapter. The quadratic Witt ring defined
in 2.7 opens this chapter. In 8.1 we get precise results about this Witt ring when
K is a local ring in which 2 is invertible. But in 8.2 where 2 is not invertible in
the local ring K, we do not reach so effective and general results.

When K is an integral domain and L its field of fractions, it often occurs
that the canonical morphism WQ(K) → WQ(L) is injective; this property, and
still stronger ones, are valid for instance when K is a Prüfer ring. The section 8.3
devoted to Prüfer rings gives the opportunity for a digression about W(Q), the
Witt ring of the field of rational numbers, although it is not possible here to get
very deep into so sophisticated a subject.

The elementary properties of quadratic forms over fields of characteristic �= 2
are very well known; but with a field of characteristic 2 special properties appear,
especially because of the existence of “additive quadratic forms”; this is explained
in 8.4. And in 8.5 we study their Clifford algebras.

The section 8.6 is devoted to the group H(K) of classes of Clifford algebras,
and involves both Witt rings and Brauer–Wall groups; this group H(K) is the
image of the canonical morphism WQ(K) → Brg(K), and gives the opportunity
to revisit some results obtained in 3.8.

8.1 Witt rings over local rings when 2 is invertible

The semiring WIQ(K) of isomorphy classes of quadratic spaces, the quadratic
Witt–Grothendieck ring WGQ(K) and the quadratic Witt ring WQ(K) have been
defined in 2.7; there are canonical morphisms WIQ(K) → WGQ(K) → WQ(K).
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When 2 is invertible in K, they are respectively isomorphic to WIB(K), WGB(K)
and WB(K), whence the short notations WI(K), WG(K) and W(K); moreover
the quadratic space K with quadratic form λ �−→ λ2/2 affords a unit element in
each of them.

Here we suppose that K is a local ring with maximal ideal m, and that 2
is not in m, and we search a precise description of the rings WG(K) and W(K).
As in 2.6, when a1, a2, . . . , an are elements of K×, the notation 〈a1, a2, . . . , an〉
means the free module Kn provided with the quadratic form

(λ1, λ2, . . . , λn) �−→
n∑

i=1

1
2

aiλ
2
i .

We begin with the so-called cancellation theorem.

(8.1.1) Theorem. Let N , N ′, P , P ′ be quadratic spaces over the local ring K. When
N ⊥ P and N ′ ⊥ P ′ are isomorphic, and also P and P ′, then N and N ′ too are
isomorphic.

Proof. Since P admits orthogonal bases (see (2.6.2)), it suffices to prove that
(8.1.1) is true when P and P ′ have rank 1. We can also assume that N ⊥ P and
N ′ ⊥ P ′ are the same quadratic space M . Thus we reduce the problem to the proof
of this statement: if the quadratic space (M, q) contains two elements a and a′ such
that q(a) and q(a′) are the same element of K×, there exists an automorphism of
(M, q) that maps a to ±a′, and consequently N = (Ka)⊥ onto N ′ = (Ka′)⊥. The
existence of such an automorphism is already stated in (5.7.4). �

(8.1.2) Corollary. The canonical mapping WI(K)→WG(K) is injective.

Proof. Two quadratic spaces N and N ′ have the same class in WG(K) if and
only if there exists a quadratic space P such such that N ⊥ P and N ′ ⊥ P are
isomorphic; this implies that N and N ′ have already the same class in WI(K). �

For all a ∈ K× we denote by ((a)) and [a] the classes of the quadratic space 〈a〉
in WG(K) and W(K). Besides, let Z(K×) be the additive group freely generated by
K× (see 1.3); it is a free group with basis (ea)a∈K× ; since the tensor product of 〈a〉
and 〈b〉 is isomorphic to 〈ab〉, we provide Z(K×) with the Z-bilinear multiplication
such that eaeb = eab ; with this multiplication, Z(K×) becomes the group ring
of K× over Z, usually denoted by Z[K×]. Since every K-quadratic space admits
orthogonal bases, there are surjective ring morphisms Z[K×]→WG(K)→W(K)
mapping every ea successively to ((a)) and to [a]. The main purpose of this section
is a precise description of the kernels of these ring morphisms, that shall allow us
to construct WG(K) and W(K) as quotients of Z[K×]. Although these kernels are
ideals, we look for subsets that generate them as additive subgroups. For the kernel
of the second morphism, the next lemma is sufficient; it involves the determinant
of bq which is well defined modulo the subgroup K×2 of all squares (see (2.ex.3)).
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(8.1.3) Lemma. If K is any ring (not necessarily a local ring), these two assertions
are equivalent for every quadratic space (M, q) of rank 2 :

(a) (M, q) is a hyperbolic space.
(b) M contains a totally isotropic direct summand of rank 1.

When K is a local ring, they are equivalent to this one:

(c) there exists a basis (e1, e2) of M such that q(e1)=q(e2)=0 and bq(e1,e2)=1.

When 2 is invertible in the local ring K, they are still equivalent to these two
assertions:

(d) there exists an orthogonal basis (e′1, e
′
2) of M such that q(e′1) = −q(e′2) = 1/2.

(e) the determinant of bq is equal to −1 modulo K×2.

Proof. The equivalence (a)⇔(b) is a consequence of (2.5.5); indeed, if N is a totally
isotropic direct summand of constant rank 1, the evident inclusion N ⊂ N⊥ is an
equality because N⊥ too is a direct summand of rank 1. When K is a local ring,
the implications (a) ⇒ (c) ⇒ (b) are trivial. When 2 is invertible in K and (c) is
true, we get a basis (e′1, e

′
2) with the desired properties if we set e′1 = e1 + 1

2e2 and
e′2 = e1− 1

2e2 . The determinant of q in such a basis (e′1, e′2) is equal to −1. At last
we prove that (e)⇒(b). If (b1, b2) is an orthogonal basis of M , the assertion (e)
implies q(b1)q(b2) = −λ2 for some λ ∈ K×; consequently λb1 + q(b1)b2 generates
a totally isotropic submodule, that is supplementary to Kb2. �

Every hyperbolic space H[N ] over K is an orthogonal sum of hyperbolic
spaces of rank 2 because N is assumed to be finitely generated and projective,
consequently free; because of (8.1.3), H[N ] is an orthogonal sum of hyperbolic
spaces isomorphic to 〈1,−1〉. This leads to this immediate corollary.

(8.1.4) Corollary. The kernel of WG(K) → W(K) is generated by ((1)) + ((−1))
as an additive subgroup; it contains ((a)) + ((−a)) for all a ∈ K×. The kernel of
Z[K×] →W(K) is generated by e1 + e−1 and the kernel of Z[K×]→WG(K).

Thus we realize that the serious problem is the description of the kernel of
Z[K×] →WG(K).

(8.1.5) Proposition. The kernel of Z[K×] → WG(K) is the additive subgroup
generated by the elements eab2 − ea (for all a, b ∈ K×) and the elements
ea + eb − ec − ed corresponding to all (a, b, c, d) such that 〈a, b〉 and 〈c, d〉 are
isomorphic quadratic spaces.

Indeed this is an immediate corollary of the following lemma.

(8.1.6) Lemma. Let (M, q) be a quadratic space of rank r over the above local ring
K, and let B = (e1, e2, . . . , er) and B′ = (e′1, e′2, . . . , e′r) be two orthogonal bases
of (M, q). There exists a finite sequence (B0,B1, . . . ,Bn) of orthogonal bases such
that B0 = B, Bn = B′ and each Bj−1 (for j = 1, 2, . . . , n) can be carried onto Bj

by means of an operation that only modifies one or two elements.
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Proof. We prove this by induction on r. There is nothing to prove when r is ≤ 2;
therefore we assume r ≥ 3. Because of the induction hypothesis it suffices to prove
that we can transform B into an orthogonal basis beginning with e′1 by means of
operations modifying one or two elements. Let us write e′1 =

∑r
i=1 λiei with all

λi in K.
First we suppose that q(e′1) − q(λjej) is invertible for at least one j ∈

{1, 2, . . . , r}. We can suppose j = r, because it is permitted to permute ej and er

if j �= r. Let us set e′′1 =
∑r−1

i=1 λiei so that e′1 = e′′1 + λrer . Since q(e′′1 ) =
q(e′1) − q(λrer) is invertible, there are orthogonal bases beginning with e′′1 in
the submodule generated by (e1, e2, . . . , er−1), and the induction hypothesis says
that we can transform B into an orthogonal basis beginning with e′′1 by means
of operations modifying one or two elements, and leaving er unchanged. Then
it suffices to replace e′′1 and er respectively with e′1 and the orthogonal vector
λrq(er)e′′1 − q(e′′1 )er .

Now we suppose that q(e′1)− q(λjej) belongs to the maximal ideal m for j =
1, 2, . . . , r. This implies that q(λ1e1) ≡ q(λ2e2) ≡ q(e′1) modulo m. Consequently
q(e′1)− q(λ1e1 +λ2e2) cannot fall into m. If we replace e1 and e2 respectively with
λ1e1 + λ2e2 and −λ2q(e2)e1 + λ1q(e1)e2, we are brought back to the previous
case. �

The elements generating the kernel of Z[K×] → WG(K) in (8.1.5) can be
understood as relations imposed on the generators ((a)) of WG(K). Nevertheless
these relations are not yet very practical, because it is not always evident to reckon
whether 〈a, b〉 and 〈c, d〉 are isomorphic. Consequently we must improve (8.1.6).

(8.1.7) Lemma. In the lemma (8.1.6) we can demand every operation carrying an
orthogonal basis onto the subsequent one to be a permutation of two elements, or
to belong to one of the following three types which have respectively this effect when
operating (for instance) on the first basis B :

(i) to replace (e1, e2) with (λe1, e2) with any λ ∈ K×;
(ii) to replace (e1, e2) with (e1 + e2 , −q(e2)e1 + q(e1)e2) when q(e1) + q(e2) ∈

K×;
(iii) to replace (e1, e2) with (e1 + µq(e1)e2 , −µq(e2)e1 + e2) with µ ∈ m, when

q(e1) + q(e2) ∈ m.

Moreover the operations of type (iii) are indispensable only when the residue field
K/m is isomorphic to Z/3Z and m �= 0.

Proof. It is clear that the improvement proposed in (8.1.7) involves a quadratic
space of rank 2 with two orthogonal bases (e1, e2) and (e′1, e

′
2). Let us write e′1 =

λ1e1 +λ2e2. First we suppose that λ1 and λ2 are both invertible. Then we replace
e1 and e2 respectively with λ1e1 and λ2e2; this requires two operations of type
(i) (and also two permutations). An operation of type (ii) transforms (λ1e1, λ2e2)
into a basis beginning with e′1 in which the second element must generate the same
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submodule as e′2. The conclusion follows after another operation of type (i) (and
two permutations).

At least one of the two factors λ1 or λ2 must be invertible; we can assume
that λ1 (for instance) is invertible, whereas λ2 ∈ m. Here we moreover assume that
q(e1)+q(e2) is invertible. In this case we first perform an operation of type (ii) that
carries (e1, e2) onto (e′′1 , e′′2) such that e′′1 = e1 + e2 and e′′2 = −q(e2)e1 + q(e1)e2,
whence e′1 = λ′′

1e′′1 + λ′′
2e′′2 with

λ′′
1 = (q(e1) + q(e2))−1(λ1q(e1) + λ2q(e2)) , λ′′

2 = (q(e1) + q(e2))−1(−λ1 + λ2) ;

since λ′′
1 and λ′′

2 are both invertible, we are brought back to the previous case.
Now we assume that q(e1) + q(e2) is not invertible, and that K/m is not

isomorphic to Z/3Z; therefore K× contains an element κ such that κ2 − 1 is
invertible. Then we replace e1 with κe1 (by an operation of type (i)) and we
observe that q(κe1) + q(e2) is invertible, because it is congruent to (κ2 − 1)q(e1)
modulo m. We are again brought back to the previous case.

It remains to consider the case in which K/m is isomorphic to Z/3Z, λ2 (for
instance) is a nonzero but noninvertible element, and q(e1) + q(e2) ∈ m. In this
case every e ∈ M such that q(e) is invertible, is congruent to ±e1 or ±e2 modulo
mM , and no operation of type (ii) is possible. Now we replace e1 with λ1e1, and
we set µ = q(λ1e1)−1λ2 so that the operation (iii) transforms (λ1e1, e2) into a
basis beginning with e′1. Since the second vector generates the same submodule as
e′2, an operation of type (i) leads to the conclusion. �

From (8.1.6) and (8.1.7) we can derive a precise description of the kernel of
Z[K×] →WG(K). We state the resulting theorem in the most usual way: instead
of showing elements generating this kernel (as an additive subgroup), we write the
corresponding relations imposed in WG(K).

(8.1.8) Theorem. As an additive group, WG(K) is the group generated by all sym-
bols ((a)) with a ∈ K×, constrained to the relations of these three types:

(i) ((ab2)) = ((a)) for all a, b ∈ K×;
(ii) ((a)) + ((b)) = ((a + b)) + ((ab(a + b) )) whenever a + b ∈ K×;
(iii) ((a))+((b)) = (( (1+abµ2)a))+(( (1+abµ2)b)) whenever a+b and µ are in m.

Moreover the relations of type (iii) are consequences of the previous ones if one of
these two hypotheses is true: if K/m is not isomorphic to Z/3Z, or if the mapping
ν �−→ ν − ν2 is surjective from m onto itself.

Proof. First let us verify that all these relations are necessary; this is evident for
the type (i). Let (M, q) be a quadratic space with orthogonal basis (e1, e2) such
that q(e1) = a/2 and q(e2) = b/2. If a+b is invertible, then (e1+e2, −be1+ae2) is
an orthogonal basis on which q takes the values (a+ b)/2 and ab(a+ b)/2, whence
the relations (ii). If µ ∈ m, then (e1 +µae2, −µbe1 + e2) is an orthogonal basis on
which q takes the values (1 + abµ2)a/2 and (1 + abµ2)b/2, whence the relations
(iii), which actually are valid even when a + b is not in m.
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It remains to prove that the kernel of the ring morphism Z[K×] →WG(K) is
generated by the elements corresponding to the relations (i), (ii) and (iii); this is an
immediate consequence of Lemma (8.1.7), which also shows that the relations (iii)
with an invertible a + b are always consequences of the previous ones. Moreover,
when K/m is not isomorphic to Z/3Z, it also shows that all relations (iii) are
consequences of the previous ones.

When the mapping ν �−→ ν − ν2 is surjective from m onto itself, we first
prove the surjectiveness of the mapping λ �−→ λ2 from 1 + m onto itself. Indeed,
for every κ ∈ 1 + m there is a ν ∈ m such that ν − ν2 = (1 − κ)/4, whence
(1 − 2ν)2 = 1 − 4(ν − ν2) = κ . Now let us consider a relation of type (iii); since
1 + abµ2 belongs to 1 + m, we can write 1 + abµ2 = λ2 for some λ ∈ 1 + m,
and with the relations (i) we already get (( (1 + abµ2)a )) = ((aλ2)) = ((a)) and
(( (1 + abµ2)b )) = ((b)). �

Remarks

(a) The kernel of Z[K×] → WG(K) is generated as an additive group by the
elements corresponding to the relations mentioned in Theorem (8.1.8); yet
as an ideal it may be generated by a smaller set of generators; it is an easy
exercise to prove that we can replace a with 1 in the relations (i), (ii) (and (iii)
when they are indispensable) if we wish to generate this kernel as an ideal.

(b) This remark and the following one are also valid when 2 is not invertible
in the local ring K. When ν runs through m, it is easy to prove that the
mapping ν �−→ ν− ν2 is injective; therefore its surjectiveness is equivalent to
its bijectiveness. And when m is finite, it is necessarily bijective; this applies
to all local rings Z/pkZ where p is a prime integer, and k > 0.

(c) The mapping ν �−→ ν − ν2 is actually surjective from m onto itself when
the local ring K is henselian. This means that the following condition is
fulfilled for all polynomials P (x) = xn +

∑n
i=1 αix

n−i in K[x] : if Q(y) is the
image of P (x) in (K/m)[y] and if Q(y) admits a simple root y0 (such that
Q(y0) = 0 and Q′(y0) �= 0), then P (x) admits a root x0 in K with image
y0 in K/m. Indeed, when K is henselian, for every µ ∈ m, the polynomial
x2 − x + µ must have a root ν with image 0 in K/m; in other words, ν ∈ m
and ν − ν2 = µ. All the rings Z/pkZ (with p a prime integer) are henselian;
the ring of p-adic integers (defined in (1.ex.29)) is also henselian. When F is
a field, the ring F [[t]] of formal series is also henselian. But the localization
of the ring of polynomials F [t] at the maximal ideal generated by t is not
henselian; for instance if we set a = 1, b = −1+ t and µ = t, the polynomial
1 + abµ2 = 1− t2 + t3 has no square root in F [t](t).

At last, let us compare the Witt rings of K and its residue field.

(8.1.9) Proposition. The following assertions are equivalent:
(a) The mapping ν �−→ ν − ν2 is surjective from m onto itself.
(b) The natural ring morphism WG(K)→WG(K/m) is bijective.
(c) The natural ring morphism W(K)→W(K/m) is bijective.
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Proof. The surjectiveness of the group morphism K× → (K/m)× implies the sur-
jectiveness of the ring morphisms involved in the assertions (b) and (c). When the
assertion (a) is true, it suffices to prove that 〈a〉 and 〈b〉 are isomorphic whenever
a ≡ b modulo m, because this implies the injectiveness of the ring morphisms in
(b) and (c). At the end of the proof of (8.1.8) it has been explained that every
element of 1 + m admits a square root in 1 + m ; this allows us to write ab−1 = λ2

for some λ ∈ 1 + m, and the equality a = λ2b leads to the conclusion.
Conversely let µ be an element of m. When the assertion (b) is true, the

quadratic space 〈1−4µ, −1〉 must be hyperbolic; when the assertion (c) is true, it
is still hyperbolic because (8.1.1) implies that the Witt class of a quadratic space
vanishes if and only if it is hyperbolic. Consequently the equality (1−4µ)x2−y2 =
0 is true for some couple (x, y) of elements of K, not both in m. This implies that
x and y are invertible, and that y/x or −y/x belongs to 1+m, and can be written
1− 2ν for a suitable ν ∈ m. The equalities (1 − 4µ) = y2/x2 = (1 − 2ν)2 imply
that µ = ν − ν2. �

8.2 Continuation when 2 is not invertible

In this section we try to do the same as in the previous one when 2 is not invertible
in the local ring K. After some successes, unfortunately the difficulties become so
grave that we shall continue with the hypothesis that K is a field. Again we begin
with the cancellation theorem.

(8.2.1) Theorem. Let N , N ′, P , P ′ be quadratic spaces over the local ring K. When
N ⊥ P and N ′ ⊥ P ′ are isomorphic, and also P and P ′, then N and N ′ too are
isomorphic.

Proof. Since P is an orthogonal sum of quadratic subspaces of rank 2 (see (2.6.2)),
it suffices to prove (8.2.1) when P has rank 2. As in the proof of (8.1.1), we can
reduce the problem to the proof of this assertion: if a quadratic space (M, q)
contains four elements a, b, a′, b′ such that q(a) = q(a′) ∈ K×, q(b) = q(b′) and
bq(a, b) = bq(a′, b′) ∈ K×, there exists an automorphism of (M, q) that maps a to
a′ and b to b′. This has been already stated in (5.7.5). �

As in the previous section, this theorem implies the injectiveness of

WIQ(K)→WGQ(K)

(see (8.1.2)). It also implies that the Witt class of a quadratic space is trivial if
and only if it is hyperbolic.

The fact that every quadratic space over K is an orthogonal sum of quadratic
subspaces of rank 2 leads to the following definitions. Let (M, q) be a quadratic
space of rank 2n over K; a basis (e1, f1; e2, f2; . . . ; en, fn) is said to be almost
orthogonal if every ei and fi is orthogonal to ej and fj whenever i �= j. This
implies that bq(ei, fi) is invertible for i = 1, 2, . . . , n. By replacing every fi with
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f ′
i = bq(ei, fi)−1fi, we obtain an almost orthonormal basis (e1, f

′
1; . . . ; en, f ′

n) in
which bq(ei, f

′
i) = 1 for i = 1, 2, . . . , n. When the equality 2 = 0 holds in K, such

a basis is often called a symplectic basis, because in this case bq is actually a sym-
plectic form, for which this concept of symplectic basis already exists. With any
sequence (a1, b1, a2, b2, . . . , an, bn) of 2n elements of K we associate a quadratic
space denoted by 〈a1, b1; a2, b2; . . . ; an, bn〉 and provided with an almost orthonor-
mal basis (e1, f1; . . . ; en, fn) such that, for i = 1, 2, . . . , n, the quadratic form
takes the values ai and bi respectively on ei and fi. The class of 〈a, b〉 in WGQ(K)
(resp. WQ(K)) is denoted by ((a, b)) (resp. [a, b]). It is clear that WGQ(K) (resp.
WQ(K)) is generated by the classes ((a, b)) (resp. [a, b]).

Consequently we consider the additive group Z(K×K) freely generated by the
set K ×K, with basis (εa,b)(a,b)∈K×K ; there is a surjective group morphism from
this free additive group onto WGQ(K) that maps every εa,b to ((a, b)). Here we
shall not try to define a multiplication on this free additive group so that we get
a ring morphism; the following lemma shows that in general such a multiplication
would be very cumbersome.

(8.2.2) Lemma. The tensor product of 〈a, b〉 and 〈c, d〉 is isomorphic to

〈 2ac, 2bd ; 2ad(1− 4ab)(1− 4cd), 2bc(1− 4ab)−1(1 − 4cd)−1〉.

Proof. If (e1, e2) and (e3, e4) are the canonical bases of 〈a, b〉 and 〈c, d〉, we can
write

q(e1) = a , q(e2) = b , bq(e1, e2) = 1 ,

q′(e3) = c , q′(e4) = d , bq′(e3, e4) = 1 .

Let us set

e′1 = e1 − 2ae2 , e′2 = e2 − 2be1 , λ = 1− 4ab ,

e′3 = e3 − 2ce4 , e′4 = e4 − 2de3 , µ = 1− 4cd .

These elements e′j (with j = 1, 2, 3, 4) have been chosen so that

bq(e1, e
′
1) = bq(e2, e

′
2) = bq′(e3, e

′
3) = bq′(e4, e

′
4) = 0 ;

and it is easy to verify that

bq(e1, e
′
2) = bq(e′1, e2) = bq(e′1, e

′
2) = λ ,

bq′(e3, e
′
4) = bq′(e′3, e4) = bq′(e′3, e

′
4) = µ.

All this allows us to construct an almost orthonormal basis of 〈a, b〉 ⊗ 〈c, d〉 :

( e1 ⊗ e3 , e2 ⊗ e4 ; e′1 ⊗ e′4 , (λµ)−1e′2 ⊗ e′3 ).

A last calculation shows that

q(e′1) = −aλ , q(e′2) = −bλ , q′(e′3) = −cµ , q′(e′4) = −dµ
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and allows us to calculate the values of q ⊗ q′ on the above almost orthonormal
basis, and to conclude that the tensor product is isomorphic to

〈 2ac, 2bd ; 2adλµ, 2bc(λµ)−1〉. �

Let WIQ2(K) be the set of isomorphy classes of quadratic spaces of rank 2; it
can be considered as a subset of WGQ(K) that generates it as an additive group.

(8.2.3) Lemma. Let (M, q) be a quadratic space of rank 2. Every α ∈ K× deter-
mines an operation on the set of almost orthonormal bases of (M, q) by carrying
every such a basis (e1, e2) onto (αe1, α−1e2). And every β ∈ K determines an op-
eration on the same set by carrying every (e1, e2) onto ((1−2βq(e2))e1+βe2 , e2).
When (e1, e2) and (e′1, e

′
2) are two almost orthonormal bases of (M, q), there exists

a finite sequence of operations that finally carries the former onto the latter, and
which contains only operations of the two previous types, and trivial operations
that merely permute the two elements of the basis.

Proof. It is clear that the two operations defined in the first assertion of (8.2.3)
carry every almost orthonormal basis of (M, q) onto a basis of the same kind.
Only the second assertion requires serious explanations. Let us set e′1 = λe1 +µe2.
When e′2 = e2, the equality bq(e′1, e′2) = 1 requires λ = 1 − 2µq(e2); thus (e1, e2)
can be carried onto (e′1, e

′
2) by means of the operation of the second type in which

β = µ. It remains to prove that we can carry (e1, e2) onto a basis containing e′2
by means of the allowed operations; since we can permute e′1 and e′2, it suffices to
explain how to carry (e1, e2) onto a basis containing e′1 = λe1 +µe2. Since λ and µ
cannot be both in m, and since we can permute e1 and e2, we can suppose that λ
is invertible. In this case we perform the operation of the first type determined by
some α ∈ K×, followed by the operation of the second type determined by some
β ∈ K, and thus we carry (e1, e2) onto

( (1− 2βα−2q(e2))αe1 + βα−1e2 , α−1e2 ) ,

and we try to determine (α, β) so that

(1− 2βα−2q(e2))α = λ and βα−1 = µ .

These equations are equivalent to

β = αµ and α = 2µq(e2) + λ ;

obviously there is a (unique) solution (α, β). �

Observe that in Lemma (8.2.3) the quadratic form q takes the value q(e1)+
β(1− βq(e2))(1− 4q(e1)q(e2)) on (1− 2βq(e2))e1 + βe2 ; this leads immediately
to this corollary.
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(8.2.4) Corollary. There is a natural bijection between the subset WIQ2(K) and
the quotient of the set K×K by the equivalence relation generated by the following
equivalences (in which a, b, β run through K, and α through K×):

(a, b) ∼ (b, a) ,

(a, b) ∼ (α2a, α−2b) ,

(a, b) ∼ (a + β(1 − βb)(1− 4ab) , b) .

This knowledge about WIQ2(K) is sufficient to extend the validity of (8.1.9).

(8.2.5) Proposition. The following assertions are equivalent:

(a) The mapping ν �−→ ν − ν2 is surjective from m onto itself.
(b) The natural ring morphism WGQ(K)→WGQ(K/m) is bijective.
(c) The natural ring morphism WQ(K)→ WQ(K/m) is bijective.

Proof. It is clear that the morphisms mentioned in (b) and (c) are always surjec-
tive. When (M, q) is a quadratic space over K, every almost orthonormal basis
(ē1, f̄1; . . . ; ēn, f̄n) of (K/m)⊗ (M, q) is the image of an almost orthonormal basis
of (M, q); indeed (ē1, f̄1) is the image of some pair (e1, f1) in M , which can be
normalized so that bq(e1, f1) = 1, and which generates an orthogonal summand of
(M, q); then in (Ke1⊕Kf1)⊥ we can find a pair (e2, f2) above (ē2, f̄2); we normal-
ize it, and consider the submodule orthogonal to (e1, f1, e2, f2), and so forth. . . .
After this preliminary observation, the injectiveness of the morphisms mentioned
in (b) and (c) follows from this elementary assertion: if a ≡ a′ and b ≡ b′ modulo
m, then 〈a, b〉 and 〈a′, b′〉 are isomorphic quadratic spaces.

Let us prove that (a) implies this elementary assertion. Since 〈a, b〉 contains
elements on which the quadratic form takes an invertible value (see (2.6.2)), we can
assume that b is invertible, and we first prove that 〈a, b〉 and 〈a′, b〉 are isomorphic.
From (8.2.4) we know that 〈a, b〉 is isomorphic to 〈a + β(1− βb)(1 − 4ab) , b〉 for
every β ∈ K; we wish to find some β such that

a + β(1 − βb)(1− 4ab) = a′ ;

since b and 1− 4ab are invertible, this is equivalent to

βb− (βb)2 = (a′ − a) b(1− 4ab)−1 ;

when the assertion (a) is true, such a β exists, because the right-hand member
belongs to m.

When a is invertible (and therefore a′ too), in the same way we prove that
〈a′, b〉 and 〈a′, b′〉 are isomorphic. When a and a′ belong to m, our first result
proves that 〈a, b〉 and 〈a′, b′〉 are respectively isomorphic to 〈0, b〉 and 〈0, b′〉 ; then
Lemma (8.1.3) (in which we only use the assertions (a), (b), (c)) proves that these
quadratic spaces are hyperbolic and isomorphic to each other. Instead of (8.1.3),
we might alternatively take the equivalence (a, b) ∼ (a + β(1 − βb)(1 − 4ab), b)
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from (8.2.4), replace the variables (a, b, β) with (b, 0,−b), and thus obtain the
equivalence (b, 0) ∼ (0, 0), and similarly (b′, 0) ∼ (0, 0).

Now we suppose that the assertion (b) or (c) is true. If µ is any element of m,
the quadratic space 〈−µ,−1〉must be hyperbolic; consequently −µx2+xy−y2 = 0
for some x and y in K but not both in m. Thus y(x − y) = µx2, and either y or
x− y belongs to m, whereas x is invertible. If y belongs to m, we realize that the
equality ν − ν2 = µ holds for ν = yx−1; if x − y belongs to m, we realize that it
holds for ν = (x− y)x−1. �

From now on we suppose that K is a field of characteristic 2. Our next pur-
pose, that is the description of WGQ(K), inclines us to accept this simplification,
because it is a tremendous problem when K is merely assumed to be a local ring
such that 2 ∈ m. When K is a field of characteristic 2, the equality bq(x, x) = 0
holds for every x in every quadratic space (M, q), and Lemma (8.2.2) shows that
every tensor product is hyperbolic.

First we try to get a lemma similar to (8.1.6).

(8.2.6) Lemma. Let (M, q) be a quadratic space of rank 2r over the field K of
characteristic 2, and let B = (e1, f1; . . . ; er, fr) and B′ = (e′1, f

′
1; . . . ; e

′
r, f

′
r) be

two almost orthogonal bases of (M, q). There exists a finite sequence of almost
orthogonal bases, in which the first one is equal to B and the last one to B′, and
such that two consecutive bases only differ by modifications in one or two among
the r pairs of elements constituting these bases.

Proof. We proceed by induction on r. When r is 1 or 2, there is nothing to prove.
Therefore we assume r ≥ 3. Because of the induction hypothesis, it suffices to
prove that we can transform the basis B into another one that is also almost
orthogonal and begins with the pair (e′1, f

′
1). For i = 1, 2, . . . , r, let gi and hi be

the components of e′1 and f ′
1 in the subspace Kei ⊕Kfi.

First we suppose that bq(e′1, f
′
1) �= bq(gj, hj) for some j ∈ {1, 2, . . . , r}; we

can assume that j = r. We set e′′1 =
∑r−1

i=1 gi and f ′′
1 =

∑r−1
i=1 hi ; the inequality

bq(e′1, f
′
1) �= bq(gr, hr) implies that bq(e′′1 , f ′′

1 ) does not vanish, and consequently
(e′′1 , f ′′

1 ) can be the first pair in an almost orthogonal basis of the subspace spanned
by (e1, f1; . . . ; er−1, fr−1). The induction hypothesis implies that we can transform
the basis B into another one that is also almost orthogonal, begins with (e′′1 , f ′′

1 )
and still ends with (er, fr). Since e′1 = e′′1 +gr and f ′

1 = f ′′
1 +hr, by only modifying

the first pair (e′′1 , f ′′
1 ) and the last pair (er, fr), we get a new basis beginning with

(e′1, f ′
1).
Now we suppose that bq(e′1, f

′
1) = bq(gi, hi) for i = 1, 2, . . . , r ; consequently r

is odd. Then we set g′3 =
∑r

i=3 gi and h′
3 =

∑r
i=3 hi ; this implies e′1 = g1+g2+g′3

and f ′
1 = h1 + h2 + h′

3, and moreover

bq(e′1, f
′
1) = bq(g1, h1) = bq(g2, h2) = bq(g′3, h

′
3) �= 0.
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The induction hypothesis (applied to the subspace spanned by (e3, f3, . . . , er, fr))
implies that we can transform the basis B into a new basis beginning with

(e1, f1; e2, f2; g′3, h
′
3).

Then we can replace the pairs (e1, f1) and (e2, f2) respectively with (g1, h1) and
(g2, h2), and we perform these three modifications only involving the first three
pairs:

( g1 , h1 ; g2 , h2 ; g′3 , h′
3 ) ,

( g1 , h1 ; g2 + g′3 , h2 ; g′3 , h2 + h′
3) ,

(g1 + g2 + g′3 , h1 ; g2 + g′3 , h1 + h2 ; g′3 , h2 + h′
3) ,

(g1 + g2 + g′3 , h1 + h2 + h′
3 ; g2 + g′3 , h1 + h2 ; g1 + g2 , h2 + h′

3) ;

since the first pair is now (e′1, f
′
1), the proof is finished. �

It was convenient to prove (8.2.6) with almost orthogonal bases; but since it
is easy to normalize them, it is also valid for almost orthonormal (or symplectic)
bases. Now we try to get a lemma similar to (8.1.7); in this lemma we find again
the three types of operation already discovered in (8.2.3.), and a fourth type that
has just appeared at the end of the proof of (8.2.6).

(8.2.7) Lemma. When the bases B and B′ in Lemma (8.2.6) are almost orthonor-
mal, we can demand every operation carrying a basis onto the subsequent one to
be either a permutation of two among the r pairs of elements, or an operation be-
longing to one of the following four types which have respectively this effect when
operating (for instance) on B :

(i) to replace (e1, f1) with (f1, e1) ;
(ii) to replace (e1, f1) with (αe1, α−1f1) with any α ∈ K×;
(iii) to replace (e1, f1) with (e1 + βf1, f1) for some β ∈ K ;
(iv) to replace (e1, f1; e2, f2) with (e1 + e2, f1; e2, f1 + f2) when r ≥ 2.

All these operations carry every almost orthonormal basis onto an almost orthonor-
mal one.

Proof. Lemma (8.2.3) shows that (8.2.7) is true for quadratic spaces of rank 2, and
Lemma (8.2.6) shows that it suffices to prove it for quadratic spaces of rank 4. Let
(e1, f1; e2, f2) and (e′1, f ′

1; e′2, f ′
2) be two almost orthonormal bases of a quadratic

space of rank 4; it suffices to prove that we can transform the former into an almost
orthonormal basis beginning with (e′1, f

′
1), and then (8.2.3) ensures that we can

also reach the second pair (e′2, f
′
2) without modifying the first one.

First let us suppose that e1 = e′1. Then f ′
1 = λe1 + f1 +µe2 + νf2 for some λ,

µ, ν in K. If µ = ν = 0, the conclusion follows immediately from (8.2.3); otherwise
we deduce from (8.2.3) that we can transform (e2, f2) into a pair (e′′2 , f ′′

2 ) such that
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e′′2 = µe2 + νf2. Then we perform these four operations:

( e1 , f1 ; e′′2 , f ′′
2 ) ,

( f1 , e1 ; e′′2 , f ′′
2 ) ,

( λe1 + f1 , e1 ; e′′2 , f ′′
2 ) ,

(λe1 + f1 + e′′2 , e1 ; e′′2 , e1 + f ′′
2 ) ,

( e1 , λe1 + f1 + e′′2 ; e′′2 , e1 + f ′′
2 ) ;

since e′1 = e1 and f ′
1 = λe1 + f1 + e′′2 , this particular case is settled.

It remains to prove that we can transform (e1, f1; e2, f2) into an almost or-
thonormal basis beginning with e′1 by means of the operations described in (8.2.7).
Let g1 and g2 be the components of e′1 in Ke1 ⊕Kf1 and Ke2 ⊕Kf2. If g2 = 0,
from (8.2.3) we know that we can transform (e1, f1) into some (g1, h1) with a
suitable h1; if g1 = 0, we first replace (e1, f1; e2, f2) with (e2, f2; e1, f1) and we
are brought back to the previous case. If neither g1 nor g2 vanishes, from (8.2.3)
we know that we can transform (e1, f1) into some (g1, h1), and (e2, f2) into some
(g2, h2), and then an operation of type (iv) reveals e′1 = g1 + g2. �

From (8.2.7) we immediately deduce the kernel of Z(K×K) → WGQ(K);
instead of giving a set of elements generating it as an additive subgroup, we rather
give the relations in WGQ(K) corresponding to these generators.

(8.2.8) Theorem. The kernel of the ring morphism Z(K×K) → WGQ(K) is gen-
erated as an additive subgroup by the elements that correspond to these four types
of relations in WGQ(K) :

(i) ((a, b)) = ((b, a)) for all a, b ∈ K ;
(ii) ((a, b)) = ((α2a, α−2b)) for all a, b ∈ K and α ∈ K×;
(iii) ((a, b)) = ((a + β + β2b, b)) for all a, b, β ∈ K ;
(iv) ((a, b)) + ((c, d)) = ((a + c, b)) + ((c, b + d)) for all a, b, c, d ∈ K.

Now we consider WQ(K); it is the quotient of WGQ(K) by the subgroup
made of the classes of hyperbolic spaces. This subgroup is generated by the iso-
morphy class of hyperbolic spaces of dimension 2, that is the isomorphy class of
〈0, 0〉 (see (8.1.3)). Consequently the kernel of Z(K×K) → WQ(K) is generated
by the elements of the four types described in (8.2.8), to which we must add the
element ε0,0 that gives the relation [0, 0] = 0. It is worth noticing that the awaited
relation [a, 0] = 0 is a consequence of this relation together with the relation
[a, b] = [a + β + β2b, b] of type (iii) in which (a, b, β) is replaced with (a, 0, a).

Nevertheless there is another description of WQ(K) that avoids Z(K×K).
Indeed on one side it is clear that K is a vector space over its minimal subfield
that we identify with Z/2Z; on the other side WQ(K) is also a vector space over
Z/2Z, because the relations (iv) show that

[a, b] + [a, b] = [2a, b] + [a, 2b] = [0, b] + [a, 0] = 0 ;
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this fact might also be deduced from (2.5.8). Now it appears that the mapping
(a, b) �−→ [a, b] is a (Z/2Z)-bilinear mapping from K ×K into WQ(K); indeed

[a, c] + [b, c] = [a + b, c] + [b, 2c] = [a + b, c];

this symmetric bilinear mapping induces a linear mapping from the second sym-
metric power S2

Z/2Z
(K) into WQ(K) (see (1.4.3)); and this linear mapping is surjec-

tive because WQ(K) is generated as an additive group by the classes of quadratic
spaces of dimension 2. Consequently it is possible to describe WQ(K) as a quotient
of S2

Z/2Z
(K).

(8.2.9) Theorem. There is a surjective (Z/2Z)-linear mapping S2
Z/2Z

(K)→WQ(K)
that maps every a ∨ b to [a, b]. Its kernel is the additive subgroup generated by all
elements of these two types (with a, b running through K, and α through K×):

a ∨ b− α2a ∨ α−2b and a ∨ b− a ∨ ab2.

Proof. The existence of this (Z/2Z)-linear mapping has been explained above; the
universal property of Z(K×K) gives this commutative diagram:

K ×K −→ S2
Z/2Z

(K)
↓ ↗ ↓

Z(K×K) −→ WQ(K).

The three arrows other than the arrows coming from K ×K are surjective group
morphisms. Consequently the kernel of S2

Z/2Z
(K) → WQ(K) is the image of the

kernel of Z(K×K) → WQ(K). The image of ε0,0 in S2
Z/2Z

(K) is 0, and also the
images of all elements corresponding to the relations of types (i) or (iv):

a ∨ b− b ∨ a = 0 and a ∨ b + c ∨ d− (a + c) ∨ b− c ∨ (b + d) = 0.

The images of the elements corresponding to the relations of type (ii) are merely
a ∨ b− α2a ∨ α−2b . At last, for the type (iii) we get these images:

a ∨ b− (a + β + β2b) ∨ b = β ∨ b− β2b ∨ b ;

if we replace (b, β) with (a, b), we get the elements announced in (8.2.9). �

Example. When K = Z/2Z, we find again some results presented in 2.7. Indeed
the equalities a ∨ b = α2a ∨ α−2b and a ∨ b = a ∨ ab2 hold for all a, b, and all
invertible α; consequently WQ(Z/2Z) is isomorphic to S2

Z/2Z
(Z/2Z) which is itself

isomorphic to Z/2Z as an additive group.
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8.3 Witt rings of Prüfer rings

The ring K is said to be a Prüfer ring if it is an integral domain, and if every
finitely generated torsionless K-module is projective. The first condition means
that K contains no divisors of zero; it is well known that an integral domain K
and all its rings of fractions S−1K (when the multiplicative subset S does not
contain 0) can be identified with subrings of its field of fractions L. A K-module
M is said to be torsionless if any equality λx = 0 (with λ ∈ K and x ∈M) implies
λ = 0 or x = 0; it is well known that every flat module over an integral domain
(therefore every projective module too) is torsionless.

There are many other properties characterizing Prüfer rings; here is a sample
of such properties, in which K is always assumed to be an integral domain:

– for every λ in L (the field of fractions), K +Kλ is an invertible K-submodule
in L according to the definition in (1.ex.25);

– the nonzero finitely generated K-submodules of L constitute a group under
multiplication;

– every ring K ′ such that K ⊂ K ′ ⊂ L is flat over K;

– every ring K ′ such that K ⊂ K ′ ⊂ L is a ring of fraction of K if it is
a valuation ring (in other words, if it contains λ or λ−1 or both for every
λ ∈ L×);

– the equality a + (b ∩ c) = (a ∩ b) + (a ∩ c) holds for all ideals a, b, c of K.

Besides, a module over a Prüfer ring is flat if and only if it is torsionless. The
concept of Prüfer ring has been suggested by the study of Dedekind rings (which
play an important role in some topics); indeed Dedekind rings are noetherian
Prüfer rings. See [Bourbaki 1965, Algèbre commutative, Chap. 7, §3] or [Fontana,
Huckaba, Papick 1997] for more information and for proof.

Of course every field is a Prüfer ring. Every principal ring (in other words,
every integral domain in which every ideal is generated by one element) is also a
Prüfer ring, because every finitely generated module over this ring is isomorphic
to a direct sum of quotients of K by some ideals, and consequently it is free as
soon as it is assumed to be torsionless. It follows that Z is a Prüfer ring. Other
examples of Prüfer rings can be derived from the next proposition.

(8.3.1) Proposition. If K is a Prüfer ring, every ring K ′ between K and its field
of fractions L is a Prüfer ring.

Proof. Let M ′ be a finitely generated torsionless module over K ′, and let M be the
K-submodule of M ′ generated by any finite subset {x1, x2, . . . , xm} that generates
M ′ as a K ′-module. This K-module M is finitely generated, and torsionless too,
since M ′ is torsionless over K ′. Since K is a Prüfer ring, M is projective; conse-
quently K ′ ⊗K M is a projective K ′-module (see 1.9). If we manage to prove the
bijectiveness of the K ′-linear mapping K ′⊗K M →M ′ defined by λ′⊗x �−→ λ′x,
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the proof is complete; the surjectiveness of this mapping is already evident. Every
element x′ of K ′ ⊗M can be written x′ =

∑
i λ′

i ⊗ xi for some λ′
1, λ′

2, . . . , λ′
m in

K ′; we must prove that x′ = 0 when its image
∑

i λ′
ixi in M ′ vanishes. There are

elements λ1, λ2, . . . , λm and s in K such that λ′
i = λi/s for i = 1, 2, . . . , m ; the

vanishing of
∑

i λ′
ixi in M ′ implies the vanishing of

∑
i λixi in M :

∑
i

λixi =
∑

i

(
s
λi

s

)
xi = s

∑
i

λi

s
xi = 0 ;

the vanishing of
∑

i λixi in M implies the vanishing of
∑

i λ′
i ⊗ xi in L⊗M :

∑
i

λi

s
⊗ xi =

∑
i

1
s
⊗ λixi =

1
s
⊗

∑
i

λixi = 0.

Since M is projective over K, it is flat, and the mapping K ′ ⊗M → L ⊗M is
injective like the morphism K ′ → L. Thus the vanishing of

∑
i λ′

i ⊗ xi in L ⊗M
implies the vanishing of x′ in K ′ ⊗M . �

Here we are especially interested in this theorem.

(8.3.2) Theorem. If K is a Prüfer ring, and L its field of fractions, the canonical
morphisms

WQ(K) −→WQ(L) and WB(K) −→WB(L)

induced by the ring morphism K → L are injective.

Proof. Let (M, q) be a quadratic space over K such that the Witt class of L⊗(M, q)
vanishes; this means that the orthogonal sum of this L-quadratic space and some
hyperbolic L-quadratic space is hyperbolic; because of the cancellation theorem
(8.1.1) or (8.2.1) this implies that already L⊗(M, q) is hyperbolic, and isomorphic
to some V ∗⊕V , with V a finite dimensional vector space over L. Since M is a flat
K-module, we can identify M with a K-submodule of V ∗ ⊕ V . If P is the image
of M by the projection V ∗ ⊕ V → V , we have an exact sequence

0 −→M ∩ V ∗ −→M −→ P −→ 0 .

As a K-submodule of a L-vector space, P is torsionless; as an image of M , it
is finitely generated; consequently P is projective, and the above exact sequence
splits. Thus M ∩ V ∗ is a direct summand of M ; it is totally isotropic because V ∗

is totally isotropic in V ∗ ⊕ V .
As a projective module over an integral domain, M ∩V ∗ has a constant rank,

and its rank is the dimension of L ⊗ (M ∩ V ∗) over L (the localization of K at
the prime ideal (0) ). If we manage to prove that the rank of M ∩ V ∗ is half of
the rank of M , we can claim that the totally isotropic direct summand M ∩ V ∗ is
equal to its orthogonal submodule in M , and conclude that (M, q) is hyperbolic
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because of (2.5.5). From the above splitting exact sequence we deduce an exact
sequence of L-vector spaces:

0 −→ L⊗ (M ∩ V ∗) −→ V ∗ ⊕ V −→ L⊗ P −→ 0 ;

since the extension K → L is flat, the injection P → V gives an injection L⊗P →
L ⊗ V . We can identify L ⊗ V (the module of fractions of V ) with V , and thus
we have proved the injectiveness of the L-linear mapping L ⊗ P → V defined by
λ⊗x �−→ λx. Consequently we can now identify L⊗P with the L-vector subspace
P ′ of V generated by P . And similarly we can identify L ⊗ (M ∩ V ∗) with the
L-vector subspace N ′ of V ∗ generated by M ∩ V ∗. Because of the above exact
sequence, V ∗ ⊕ V is the direct sum of N ′ (subspace of V ∗) and P ′ (subspace of
V ), whence N ′ = V ∗ and P ′ = V . Now it is clear that the dimension of L⊗M is
the double of the dimension of L⊗ (M ∩ V ∗). It follows that the rank of M is the
double of the rank of M ∩ V ∗, and that (M, q) is hyperbolic.

In this proof we have used the fact that V ∗ is totally isotropic in V ∗ ⊕ V ,
without worrying about V . Thus this proof still works with a metabolic bilinear
space V ∗⊕V , and allows us to prove the injectiveness of WB(K)→WB(L). �

The proof of (8.3.2) also implies this statement: if the Witt class of a quadratic
(resp. bilinear) space over a Prüfer ring vanishes, this space is hyperbolic (resp.
metabolic). Indeed its Witt class still vanishes after the ring extension to the field
of fractions, and then the above proof shows that the quadratic or bilinear space
under consideration is hyperbolic or metabolic.

Because of Theorem (8.3.2) we can identify WQ(K) with a subring of WQ(L),
and WB(K) with a subring of WB(L). If K ′ is a ring such that K ⊂ K ′ ⊂ L, then
K ′ too is a Prüfer ring (see (8.3.1)) and we get a sequence WQ(K)→WQ(K ′) →
WQ(L) of two injective morphisms; thus we can identify WQ(K ′) with a subring
of WQ(L), and WQ(K) with a subring of WQ(K ′). And the same for the bilin-
ear Witt rings. This suggests paying attention to this question: is it possible to
present WQ(K) as the intersection of some subrings WQ(K ′) derived from an in-
teresting family of intermediate rings K ′? Since K is the intersection in L of all its
localizations Km at maximal ideals, it is sensible to choose these rings Km as inter-
mediate rings. The following theorem has been proved in [Hoestmaelingen 1975]
for quadratic Witt rings, but the proof should also work with bilinear Witt rings.

(8.3.3) Theorem. When K is a Prüfer ring, then WQ(K) is the intersection in
WQ(L) (the Witt ring of the field of fractions) of all subrings WQ(Km) associated
with the localizations of K at all maximal ideals.

Although the proof of this theorem deserves to be revisited, it requires so
specialized knowledge that it is outside the scope of this book. The detailed study
of an example seems to be here more profitable, especially if it is so interesting an
example as the injective morphisms WQ(Z) → W(Q) or WB(Z) → W(Q). It will
reveal a great sophistication because of the extreme complexity of W(Q).
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The Witt ring W(Q) of the field of rational numbers

From (8.1.8) and (8.1.4) we know that W(Q) is the group generated by all symbols
[a] with a ∈ Q× constrained to the relations [1] + [−1] = 0 ,

[ab2] = [a] and [a] + [b] = [a + b] + [ab(a + b)] if a + b �= 0 ;

consequently each class [a] is equal to some [b] with b ∈ Z, and it is easy to
prove that W(Q) is also the group generated by all symbols [a] with a ∈ Z \ {0},
constrained to the same relations. With every element p of the set

P = { ∞, 2, 3, 5, 7, 11, 13, 17, 19, . . . . . . }

we associate a field Kp and a group morphism δp : W(Q) →W(Kp). When p = ∞,
then K∞ = R and δ∞ is the ring morphism W(Q) →W(R) derived from the field
extension Q → R; among all group morphisms δp it is the only one that is a ring
morphism; we can write W(R) = Z and say that δ∞ maps the Witt class of every
Q-quadratic space (M, q) to the signature of the real quadratic space R⊗ (M, q).
When p is a finite element of P , then Kp is the finite field Z/pZ. When p = 2, both
groups WQ(Z/2Z) and WB(Z/2Z) are isomorphic to Z/2Z, and here it suffices to
write W(K2) without more precision; but the “natural” construction of δp shows
that it takes its values in WB(Kp). This “natural” construction requires quite
long explanations, which are already available in the specialized literature, and
here we propose to reach δp by a short way. For every a ∈ Z, the notation ap

means the image of a in Z/pZ, and when a is not divisible by the odd prime
integer p, the notation [ap] means the corresponding element of W(Z/pZ). When
we write a = pαa′, (resp. b = pβb′,. . . ), it is silently assumed that α (resp. β,. . . )
is the largest exponent in N such that pα (resp. pβ ,. . . ) divides a (resp. b,. . . ).

(8.3.4) Proposition. For every prime integer p ≥ 3, there is a unique group mor-
phism δp : W(Q) → W(Kp) satisfying this property for every nonzero integer
a = pαa′ :

δp([a]) = 0 if α is even,
δp([a]) = [a′

p] if α is odd.
Similarly there is a unique group morphism δ2 : W(Q) →W(K2) that maps [a] to
0 if and only if a = 2αa′ with α even and a′ odd.

Proof. We must prove that the definition of δp proposed in (8.3.4) is compatible
with the relations between the generators [a]. There is no problem with the rela-
tions [1] + [−1] = 0 and [ab2] = [a]. We have only to worry about the relations
[a] + [b] = [a + b] + [ab(a + b)], with a + b �= 0. Let us set a = pαa′ and b = pβb′;
we must verify that the definition of δp gives four values δp([a]), δp([b]), δp([a+ b])
and δp([ab(a + b)]) satisfying the desired relation in W(Kp). We distinguish three
cases: either α �= β (for instance α < β), or α = β and a′ + b′ is not divisible by
p, or α = β and a′ + b′ is divisible by p.
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When α < β, the definition of δp implies

δp([a + b]) = δp([a]) and δp([ab(a + b)]) = δp([b]) ,

whence the desired relation in W(Kp).
When α = β, we set a + b = pγc′, and we first assume that α = γ. When α

is even, δp maps everything to 0, and when α is odd, we remember the following
relation in W(Kp) :

[a′
p] + [b′p] = [a′

p + b′p] + [a′
pb

′
p(a

′
p + b′p)].

When α = β < γ, then −a′
pb

′
p is a square in Kp; since the relation [a′

p] +
[−a′

p] = 0 holds in W(Kp), we observe that δp maps [a] and [b] to opposite
elements; thus it suffices to observe that δp also maps [a + b] and [ab(a + b)] to
opposite elements.

For the group morphism δ2 the proof is still easier because there are only two
cases to distinguish; indeed when the odd prime integer p is replaced with 2, the
equality α = β implies α < γ. �

The definition of δp in (8.3.4) allows us to calculate the image by δp of the
class of any Q-quadratic space (M, q) as soon as we know an orthogonal basis
(e1, e2, . . . , er); this image is

∑r
i=1 δp([2q(ei)]).

The essential progress about quadratic forms over Q was achieved by Min-
kowski and other mathematicians (whose works are already involved in Theorem
(2.8.7)), and later more properties were discovered by Milnor [1970] and other
mathematicians: see [Milnor, Husemoller 1973], [Scharlau 1985]. Among the new
results there is a description of the additive group W(Q).

(8.3.5) Theorem. The group morphisms δp : W(Q) → W(Kp) (with p equal to ∞
or to a prime integer ≥ 2) determine a group isomorphism

∆ : W(Q) −→
⊕
p∈P

W(Kp) .

As explained above, K∞ = R and δ∞ : W(Q) → Z gives the signature. For
a finite p, Kp = Z/pZ. When p is an odd prime, W(Kp) is a group of order 4,
isomorphic to Z/4Z if p ≡ 3 modulo 4, isomorphic to (Z/2Z)2 if p ≡ 1 modulo 4
(see (8.ex.11)). When p = 2, then W(K2) = WB(Z/2Z) is a group of order 2. The
proof of (8.3.5) is well expounded in the literature; the surjectiveness of ∆ can
be proved by means of the inductive argument presented in the proof of (8.3.8)
below, and the main difficulty lies in the proof of its injectiveness, for which we
refer to the above-mentioned books.

(8.3.6) Example. It is easy to verify that ∆ takes the same value on [10] − [2] +
[15] + [3] and [1] + [1] ; only the elements p of {∞, 2, 3, 5} are involved. Since ∆
is injective, the Q-quadratic space 〈10,−2, 15, 3〉 is isomorphic to 〈1, 1, 1,−1〉. In
other words the Q-quadratic space (M, q) with an orthogonal basis (b1, b2, b3, b4)
such that (2q(b1), 2q(b2), 2q(b3), 2q(b4)) = (1, 1, 1,−1) contains an orthogonal basis
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(c1, c2, c3, c4) such that (2q(c1), 2q(c2), 2q(c3), 2q(c4) = (10,−2, 15, 3). Let us find
such a basis (c1, . . . , c4). Because of the cancellation theorem (8.1.1) we can begin
with any c1 such that 2q(c1) = 10 ; then the research of an orthogonal c3 such that
2q(c3) = 15 is still easy (easier than the research of c2), and at last the research
of (c2, c4) in the plane (Qc1 ⊕Qc3)⊥ raises no difficulty:

c1 = 3b1 + b2 , c2 = −b1 + 3b2 + 2b3 + 4b4 ,

c3 = −2b1 + 6b2 + 5b4 , c4 = −b1 + 3b2 + 3b3 + 4b4 . �

Here we are especially interested in the canonical injections of WB(Z) and
WQ(Z) into W(Q).

(8.3.7) Proposition. If (M, ϕ) or (M, q) is a bilinear or quadratic module over Z,
for every p �= ∞ the group morphism δp maps the Witt class of its Q-extension to
0. In other words, the isomorphism ∆ maps it to (s, 0, 0, 0, . . . ) if s is its signature.

Proof. Since the Witt class of a bilinear space (M, ϕ) is not modified when a
metabolic orthogonal summand is added, we can assume that ϕ is indefinite of
odd type. Then from (2.8.11) we deduce that (M, ϕ) contains an orthogonal basis
(e1, . . . , er) such that ϕ(ej , ej) = ±1 for j = 1, 2, . . . , r. The conclusion follows
immediately because δp([±1]) = 0 if p �= ∞. Since W(Q) stands for both WQ(Q)
and WB(Q), the morphism WQ(Z) → W(Q) can be factorized through WB(Z),
and we get the same conclusion for quadratic spaces over Z. �

Now we consider the Witt rings of the localizations of Z at its maximal ideals;
because of (8.3.2) we identify them with subrings of W(Q). If p is a finite element
of P , the localization Z(p) is the subring of Q in which all prime elements of Z

are invertible except p. When p ≥ 3, it is clear that W(Z(p)) is the subgroup of
W(Q) generated by all [a] associated with an integer a that is not divisible by p.
When p = 2, we must distinguish WB(Z(2)) and WQ(Z(2)); as in 2.8, we can say
that WQ(Z(2)) classifies the bilinear spaces (M, ϕ) of even type, in other words,
such that ϕ(x, x) is divisible by 2 in Z(2) for all x ∈ M ; indeed this implies the
existence of a unique quadratic form q such that bq = ϕ. From (2.6.3) we know
that every bilinear space (M, ϕ) of odd type admits an orthogonal basis; and if
(M, ϕ) has even type, anyhow the orthogonal sum of (M, ϕ) and any discrimi-
nant module admits an orthogonal basis; consequently WB(Z(2)) is the subgroup
of W(Q) generated by all [a] associated with an odd integer a. Still from (2.6.3)
we know that every bilinear space (M, ϕ) of even type is an orthogonal sum of
subspaces of rank 2; in each subspace there is a basis (e1, e2) such that ϕ(e1, e1)
and ϕ(e2, e2) are even integers 2a and 2c, whereas ϕ(e1, e2) is an odd integer b
(because b2 − 4ac must be invertible in Z(2)); if ac = 0, this subspace generated
by (e1, e2) is hyperbolic, and if ac �= 0, the equalities

ϕ(e1, 2ae2 − be1) = 0 and ϕ(2ae2 − be1, 2ae2 − be1) = 2a(4ac− b2)

show that after the extension Z(2) → Q the Witt class of this subspace becomes
[2a]+[2a(4ac−b2)] . Consequently WQ(Z(2)) is the subgroup of W(Q) generated by
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all elements [2a]+ [2a(4ac− b2)] associated with an odd integer b and with nonzero
integers a and c.

From the next proposition we shall soon deduce that WB(Z), as a subring
of W(Q), is the intersection of all subrings WB(Z(p)), in accordance with (8.3.3).

(8.3.8) Proposition. For every prime integer p ≥ 2, WB(Z(p)) is the kernel of
δp : W(Q)→ W(Z/pZ).

Proof. Since δp vanishes on [a] if the integer a is not divisible by p, it vanishes on
every element of WB(Z(p)). Conversely let w be an element of W(Q) such that
δp(w) = 0, and let �′ be the smallest prime integer ≥ 2 such that δp′(w) = 0
for all p′ ≥ �′. We will prove by induction on �′ that w belongs to WB(Z(p)). If
�′ = 2, then ∆(w) is the same thing as ∆(s [1]) with s = δ∞(w); the injectiveness
of ∆ implies that w = s [1], and that w belongs to WB(Z), therefore to WB(Z(p)).
Now let us suppose �′ ≥ 3, and let � be the next prime integer smaller than �′;
thus δ(w) �= 0, and δ(w) is a sum of terms [a] associated with integers a such
that 0 < a < �. For each such integer a there is an integer b satisfying these three
conditions: first −� < b < � ; secondly a + b ≡ 0 modulo �; and thirdly b is not
divisible by p (the third condition is void if p > �); indeed we can set b = −a if a
is not divisible by p, and b = � − a in the other case. Thus [a] + δ([b�]) = 0,
and since we can do this for each term [a], we have proved the existence of an
element w′ ∈ WB(Z(p)) such that δp′(w + w′) = 0 for all p′ ≥ �. Because of the
induction hypothesis we know that w + w′ belongs to WB(Z(p)), and w too. �

If an element w ∈ W(Q) belongs to all subrings WB(Z(p)), then ∆(w) =
∆(s [1]) with s = δ∞(w), and the injectiveness of ∆ implies that w belongs to
WB(Z). If w belongs to all subrings WQ(Z(p)), it is not yet evident that w ∈
WQ(Z); to verify it, we need the group morphism θ : W(Q) → Z/8Z which is
defined in (8.ex.5). This morphism θ satisfies these two properties: first θ([a]) only
depends on the image of a in Z/8Z when the integer a is not divisible by 4 ; secondly
θ([1]) = 1 modulo 8. These properties do not determine θ in a unique way; indeed,
if δ′2 is the group morphism W(Q)→ Z/8Z resulting from δ2 : W(Q)→ Z/2Z and
from the morphism Z/2Z → Z/8Z induced by the multiplication by 4 in Z, then
θ + δ′2 too satisfies the properties required from θ; but only θ and θ + δ′2 satisfy
them (see (8.ex.5)). In (8.ex.6) it is proved that WQ(Z(2)) is the intersection of
the kernels of δ2 and θ. Consequently, if w belongs to all subrings WQ(Z(p)), we
first write w = s [1] as above, and since θ(w) = 0 and θ([1]) = 1 modulo 8, we
conclude that s ≡ 0 modulo 8, and that w ∈ WQ(Z) (see (2.8.13)).

(8.3.9) Example. It is clear that δ2 maps [14]− [6] to 0; since 14 ≡ 6 modulo 8, even
θ maps it to 0. Therefore [14] − [6] belongs to the image of WQ(Z(2)) → W(Q);
let us verify it directly. The induction presented in the proof of (8.3.8) leads us to
consider [14]− [6]+ [35] which is annihilated by δ7 , and then [14]− [6]+ [35]+ [15]
which is annihilated by δ5 and even by δ3 , and which is consequently equal to
[1]+[1]. Thus we discover that [14]−[6] = [1]+[1]−[15]−[35] and that [14]−[6] is the
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image in W(Q) of the Z(2)-bilinear space (M, ϕ) provided with an orthogonal basis
(b1, b2, b3, b4) such that (ϕ(b1, b1), ϕ(b2, b2), ϕ(b3, b3), ϕ(b4, b4)) = (1, 1,−15,−35).
This result can be improved because (M, ϕ) contains metabolic subspaces. Indeed
if we set

c1 = 5b1 + 5b2 + b3 + b4 and c2 = b2 ,

the plane P generated by c1 and c2 is metabolic because c1 is isotropic and ϕ(c1, c2)
is invertible in Z(2). This plane contains two isotropic lines respectively generated
by c1 and c1 − 10c2 ; since they are not supplementary in P , this plane is not
hyperbolic. We can forget P and focus our attention on P⊥ which is generated by

c3 = 3b1 + b3 and c4 = 7b1 + b4 .

On one side the Witt class of Q ⊗ (M, ϕ) is [14] − [6] because ϕ(c4, c4) = 14,
ϕ(2c3 − 3c4, 2c3 − 3c4) = −6 × 25, and c4 is orthogonal to 2c3 − 3c4 = −15b1 +
2b3−3b4 . On the other side the restriction of ϕ to P⊥ has even type in accordance
with the prediction:

ϕ(λc3 + µc4, λc3 + µc4) = 2 (−3λ2 + 21λµ + 7µ2). �

(8.3.10) Historical comment. The description of W(Q) by means of the group iso-
morphism ∆ in (8.3.5) was first expounded in [Scharlau 1972], but the description
of the groups associated with the field Q has a somewhat longer story, some steps
of which are briefly reported here. Let us begin with [Albert 1939] who proved that
the subgroup Br2(Q) of all elements of Br(Q) of order 1 or 2 is generated by Brauer
classes of quaternion algebras. Consequently every element of Br2(Q) is the class
of a Clifford algebra C�(M, q) such that QZ(M, q) = Q2, as explained in [Micali,
Villamayor 1970]. Efficient tools for the study of W(Q) were elaborated already in
1969 and led eventually to a calculation of W(Q) that was independent of that of
Scharlau, and that appeared in [Micali, Villamayor 1971] §5.5, and in [Larotonda,
Micali, Villamayor 1973]. These works were first concerned with the groups H(Q)
and H0(Q) that here are defined farther in 8.6; but they also produced an elabo-
rate formula for the group W(Q), which involved Br2(Q) among other objects. In
a notice added to [Larotonda, Micali, Villamayor 1973], it is explained that the
comparison of this formula and that of Scharlau could be performed in different
ways; either one accepts both formulas and then discovers again Albert’s theorem
about Br2(Q), together with a set of quaternion algebras generating Br2(Q); or
one accepts Albert’s theorem and proves the equivalence of both formulas describ-
ing W(Q). See [Kientega 1986] for the details of the calculations needed in this
comparison. The above-mentioned notice in [Larotonda, Micali, Villamayor 1973]
also explained the calculation of the Witt group of a “field of numbers” (a finite
dimensional field extension of Q). This calculation was achieved by [Knebusch,
Scharlau 1971], and later independently by [Laborde 1974]. In [DeMeyer, Harri-
son, Miranda 1989] the multiplication in W(Q) is also taken into account, but this
work requires more arithmetical knowledge (for instance Hilbert symbols, which
anyhow are already involved in the proof of (2.8.7) expounded in [Serre]).
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8.4 Quadratic forms in characteristic 2

Let K be a field of characteristic 2, Φ the Frobenius morphism K → K defined
by λ �−→ λ2, and K2 = Im(Φ); since K2 is a subfield of K, we can treat K
as a vector space over K2. Later Φ will often be considered as an isomorphism
K → K2, and this leads to the concept of Φ-linear mapping from a vector space
over K into a vector space over K2: a Φ-linear mapping f must satisfy the condition
f(λx) = Φ(λ) f(x) for all λ and x.

If V is a vector space over K, a quadratic form q : V → K is said to be
additive if bq = 0, or equivalently q(x + y) = q(x) + q(y) for all x and y in V .
Beside this condition, an additive quadratic form must also satisfy the condition
q(λx) = Φ(λ)q(x), and both conditions together mean that q is a Φ-linear form
on V . Therefore the image q(V ) is a K2-subspace of K, denoted by Im(q). At
last, let us remember that q is said to be anisotropic if the equality q(x) = 0
implies x = 0.

(8.4.1) Proposition. Let (V, q) be a quadratic module over the field K of character-
istic 2; let V1 be a subspace supplementary to Ker(bq) in V , V2 a subspace supple-
mentary to Ker(q) in Ker(bq), and let q1, q2 and q3 be the restrictions of q to V1,
V2 and V3 = Ker(q). Then (V, q) is the orthogonal sum of the quadratic submodules
(V1, q1), (V2, q2), (V3, q3); moreover q1 is weakly nondegenerate (consequently non-
degenerate if V1 has finite dimension), q2 is an additive and anisotropic quadratic
form, whereas q3 is the null form. Besides, the isomorphy classes of (V2, q2) and
(V1, q1) ⊥ (V2, q2) only depend on (V, q), and not on the choices of V1 and V2.

Proof. It is clear that the subspaces V1, V2 and V3 are pairwise orthogonal and
that q3 is the null form. It is clear that the restriction of q to Ker(bq) is additive;
and since the equality q(x) = 0 with x in Ker(bq) means that x belongs to Ker(q),
q2 is anisotropic. The restriction of dq : V −→ V ∗ to V1 is injective, and dq(x)
always vanishes on Ker(bq); consequently dq induces an injection V1 → V ∗

1 ; in
other words, q1 is weakly nondegenerate. At last, q induces quadratic forms on the
quotients V/Ker(q) and Ker(bq)/Ker(q); the former quotient (with the quadratic
form induced by q) is isomorphic to (V1, q1) ⊥ (V2, q2), and the latter quotient is
isomorphic to (V2, q2). �

Let us pay more attention to additive quadratic forms, since they are quite
different from the quadratic forms studied up to now. When q is an additive
quadratic form on V , then (8.4.1) decomposes (V, q) into an orthogonal sum
(V2, q2) ⊥ (V3, q3), and (V2, q2), which is well defined up to isomorphy, is called
the anisotropic space derived from (V, q). Since q is a Φ-linear mapping, it induces
a bijection from V/Ker(q) onto Im(q), as stated in the next corollary.

(8.4.2) Corollary. An additive quadratic form q : V → K induces a Φ-linear iso-
morphism from the anisotropic space (V2, q2) derived from (V, q) onto Im(q). A
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family of elements of V2 is linearly independent over K if and only if its image by
q is linearly independent over K2. Moreover,

dimK(V ) = dimK(Ker(q)) + dimK2(Im(q)) .

(8.4.3) Corollary. The upper bound of the dimensions of the anisotropic spaces of
additive quadratic forms is the dimension of K over K2.

Proof. The dimension of V2 over K is the dimension of Im(q) over K2, which
cannot exceed dimK2(K). Now let B be a (perhaps infinite) basis of K over K2,
and K(B) the vector space over K with basis (eb)b∈B ; every element of K(B) is a
finite sum

∑
b λbeb in which all scalars λb vanish except a finite number; and if we

map every such a sum to
∑

b λ2
bb in K, we get an additive quadratic form that is

anisotropic, because all b in B are linearly independent over K2. �

(8.4.4) Examples. A field F of characteristic 2 is said to be perfect if F 2 = F . This
condition is always fulfilled when F is finite. When F is perfect, the field F (t) of
rational functions has dimension 2 over F (t)2, because (1, t) is a basis of F (t) over
F (t)2. If we consider the field F (t1, t2) with two indeterminates, it has dimension
4 over F (t1, t2)2, because (1, t1, t2, t1t2) is a basis of F (t1, t2) over F (t1, t2)2. More
generally the field F (t1, t2, . . . , tn) has dimension 2n over F (t1, t2, . . . , tn)2.

(8.4.5) Theorem. Two quadratic modules (V, q) and (V ′, q′) with additive quadratic
forms q and q′ are isomorphic if and only if

dimK(Ker(q)) = dimK(Ker(q′)) and Im(q) = Im(q′) .

Proof. It is clear that these equalities are true when there is an isomorphism
(V, q)→ (V ′, q′). Conversely let us suppose that they are true. Let V2 be a subspace
supplementary to V3 = Ker(q) in V , so that (V, q) is the orthogonal sum of (V2, q2)
and (V3, q3), and similarly (V ′, q′) = (V ′

2 , q′2) ⊥ (V ′
3 , q′3). Since V3 and V ′

3 have the
same dimension, there is a K-linear isomorphism f3 : V3 → V ′

3 . Moreover q induces
a Φ-linear bijection ϕ : V2 → Im(q), and q′ a Φ-linear bijection ϕ′ : V ′

2 → Im(q′).
Since Im(q) = Im(q′), we get a K-linear bijection f2 : V2 → V ′

2 if we set f2 =
ϕ′−1 ◦ ϕ. Obviously the couple (f2, f3) determines an isomorphism from (V, q)
onto (V ′, q′). �

Now let us examine how additive quadratic forms behave in case of orthogonal
sums or tensor products. As explained in 2.4, a tensor product q⊗ q′ of quadratic
forms is the same thing as bq ⊗ q′ or q ⊗ bq′ ; consequently q ⊗ q′ is the null form
whenever q or q′ is an additive quadratic form.

(8.4.6) Proposition. Let (V, q) and (V ′, q′) be two quadratic modules in which q and
q′ are additive quadratic forms, and let (V ′′, q′′) be their orthogonal sum. Then

dimK(Ker(q′′)) = dimK(Ker(q)) + dimK(Ker(q′)) + dimK2(Im(q) ∩ Im(q′))
and Im(q′′) = Im(q) + Im(q′) .
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Proof. It is trivial that Im(q′′) is the sum of Im(q) and Im(q′) in K, in general not
a direct sum. Let us set, according to the notation of (8.4.1),

(V, q) = (V2, q2) ⊥ (V3, q3) and (V ′, q′) = (V ′
2 , q′2) ⊥ (V ′

3 , q′3) ;

we can treat q′′ as a quadratic form over V2 ⊕ V ′
2 ⊕ V3 ⊕ V ′

3 ; let us denote by
q′′2 and q′′3 its restrictions to V2 ⊕ V ′

2 and V3 ⊕ V ′
3 ; of course q′′2 is not in general

anisotropic; but since q′′3 is a null form, the kernel of q′′ is the direct sum of V3⊕V ′
3

and the kernel of q′′2 . Let us consider the exact sequence

0 −→ Im(q) ∩ Im(q′) −→ Im(q)⊕ Im(q′) −→ Im(q) + Im(q′) −→ 0 ;

the second arrow maps x to (x,−x), and the third arrow maps (x, y) to x + y.
Since q (resp. q′) induces a bijection V2 → Im(q) (resp. V ′

2 → Im(q′)), this exact
sequence yields another exact sequence of additive groups, in which the third arrow
represents the additive quadratic form q′′2 :

0 −→ Im(q) ∩ Im(q′) −→ V2 ⊕ V ′
2 −→ Im(q′′) −→ 0 ;

in this exact sequence the second arrow is Φ−1-linear; it shows that the dimension
of Im(q) ∩ Im(q′) over K2 is equal to the dimension of Ker(q′′2 ) over K. �

Now we consider again quadratic forms that may have nondegenerate compo-
nents; when are two such quadratic forms isomorphic? This question is not trivial
because in the orthogonal decomposition presented in (8.4.1), the isomorphy class
of (V1, q1) in general depends on the choice of V1. Nevertheless bq induces a bilin-
ear form on V/Ker(bq); consequently the isomorphy class of the bilinear module
(V1, bq1) does not depend on the choice of V1.

(8.4.7) Proposition. Let (V, q) and (V ′, q′) be two quadratic modules over the field
K of characteristic 2, and let us decompose them as explained in (8.4.1):

(V, q) = (V1, q1) ⊥ (V2, q2) ⊥ (V3, q3)
and (V ′, q′) = (V ′

1 , q′1) ⊥ (V ′
2 , q′2) ⊥ (V ′

3 , q′3) ;

(V, q) and (V ′, q′) are isomorphic if and only if these three conditions are fulfilled:

dimK(V3) = dimK(V ′
3 ) ;

Im(q2) = Im(q′2) ;

there exists an isomorphism of bilinear modules f1 : (V1, bq1) → (V ′
1 , bq′

1
) such that

∀x1 ∈ V1 , q′1(f1(x1))− q1(x1) ∈ Im(q2) .

Proof. From (8.4.5) we already know that the first two conditions mean that
(V2, q2) ⊥ (V3, q3) and (V ′

2 , q′2) ⊥ (V ′
3 , q′3) are isomorphic. When there is an iso-

morphism f : (V, q) → (V ′, q′), then f maps every x1 ∈ V1 to a sum x′
1 + x′

2 + x′
3
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in which x′
j ∈ V ′

j for j = 1, 2, 3; since q1(x1) = q′1(x′
1) + q′2(x2), it follows that f

determines a bijection f1 : V1 → V ′
1 satisfying the condition written at the end

of (8.4.7); and it is clear that f1 must be an isomorphism of bilinear modules.
Conversely let us suppose that all the conditions in (8.4.7) are fulfilled, and let
f3 : V3 → V ′

3 and f2 : V2 → V ′
2 be the K-linear bijections obtained in the proof of

(8.4.5). Let us consider the composition g of these two mappings:

g : V1 −→ Im(q2) = Im(q′2) −→ V ′
2 ;

the first arrow is defined by x1 �−→ q′1(f1(x1))− q1(x1); since f1 is an isomorphism
of bilinear modules, it is easy to verify that this first arrow is Φ-linear; the second
arrow is the Φ−1-linear bijection reciprocal to V ′

2 → Im(q′2); thus g is a K-linear
mapping g : V1 → V ′

2 . We get an isomorphism from (V, q) onto (V ′, q′) if we map
every x1 + x2 + x3 ∈ V to (f1(x1) , f2(x2)− g(x1) , f3(x3)) . �

8.5 Clifford algebras in characteristic 2

Let (V, q) be a finite dimensional quadratic module over a field K of characteristic
2. Let us recall the orthogonal decomposition of (8.4.1):

(V, q) = (V1, q1) ⊥ (V2, q2) ⊥ (V3, q3) ;

accordingly the Clifford algebra can be decomposed in this way:

C�(V, q) = C�(V1, q1)⊗ C�(V2, q2)⊗
∧

(V3).

The first factor C�(V1, q1) is a graded Azumaya algebra; the last factor is a well-
known exterior algebra, which here is commutative (in the ordinary sense) since
the field K has characteristic 2. The next theorem is essentially concerned with the
structure of C�(V2, q2), the Clifford algebra of an additive anisotropic quadratic
form. It is already clear that C�(V2, q2) is also a commutative algebra; consequently,
if the parity gradings are forgotten, C�(V, q) is isomorphic to the Clifford algebra
of the quadratic space K ′ ⊗ (V1, q1) over the commutative ring K ′ = C�(V2, q2)⊗∧

(V3).

Let us first consider a field K of any positive characteristic p, and K → L an
algebraic field extension of K (such that every element of L generates a subfield
of finite dimension over K); we say that L is a purely inseparable extension of K if
for every x ∈ L there exists an integer n ≥ 0 such that xpn

is in K, or equivalently,
if the minimal polynomial of every element of L over K is equal to Xpn − a for
some integer n and some a ∈ K.

A purely inseparable extension of a purely inseparable extension of K is
still a purely inseparable extension of K, because the equalities xpm

= y and
ypn

= a ∈ K imply xpm+n

= a.
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(8.5.1) Example. Let K be a field of characteristic 2, and A = K[X ]/(X2−βX+γ)
the quotient of K[X ] by the ideal generated by the polynomial X2 − βX + γ.
The discriminant of this polynomial is β2, and when β �= 0, we get a quadratic
extension of K (see 3.4) that is separable over K (see (6.5.6)). When β = 0, then
A is an inseparable extension, that contains nilpotent elements when γ belongs
to the subfield K2; but when γ is not in K2, then A is a field, and it is a purely
inseparable extension of K; indeed, if x is the image of X in A, for all λ and µ in
K we can write (λ + µx)2 = λ2 + γµ2 ∈ K .

The next theorem is especially interesting when the quadratic form q is ad-
ditive and anisotropic; but it works as well with any additive quadratic form,
whether anisotropic or not.

(8.5.2) Theorem. Let K be a field of characteristic 2, V a vector space of finite
nonzero dimension r over K, and q an additive quadratic form on V . There exists
a purely inseparable extension L of K, of dimension 2s over K for some s ∈
{0, 1, 2, . . . , r}, such that C�K(V, q) is isomorphic to

∧
L(Lr−s) as a nongraded

algebra.

Proof. Let (e1, e2, . . . , er) be a basis of V . After a suitable permutation of the
vectors of this basis, we can manage to make these assertions become true for
some s such that 0 ≤ s ≤ r :

q(e1) does not belong to K2, and consequently K[X ]/(X2−q(e1)) is a purely
inseparable extension K1 of dimension 2 over K;

q(e2) does not belong to K 2
1 , and consequently K1[X ]/(X2−q(e2)) is a purely

inseparable extension K2 of dimension 2 over K1, therefore of dimension
4 over K;

q(e3) does not belong to K 2
2 , and consequently K2[X ]/(X2 − q(e3)) is a

purely inseparable extension K3 of dimension 2 over K2 , therefore of
dimension 8 over K;

and so forth . . . up to

q(es) that does not belong to K 2
s−1, and consequently determines a purely

inseparable extension Ks of dimension 2s over K;

and then

q(es+1), . . . , q(er) all belong to K 2
s .

For j = 1, 2, . . . , s, let Vj be the subspace spanned by (e1, e2, . . . , ej), and qj

the restriction of q to Vj ; we also set V0 = 0 and K0 = K. By induction on j we
prove that C�(Vj , qj) is isomorphic to Kj . This is clear if j = 0. Let us suppose
that C�(Vj , qj) is isomorphic to Kj , and let f be the restriction of q to the subspace
U generated by ej+1; since C�(Vj+1, qj+1) is isomorphic to C�(Vj , qj)⊗ C�(U, f),
it is also isomorphic to Kj ⊗K C�K(U, f) or equivalently C�Kj(Kj ⊗K (U, f)).
The tensor algebra of Kj ⊗K U (considered as a Kj-module) is isomorphic to the
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ring of polynomials Kj [X ], and the Clifford algebra of Kj ⊗K (U, f) is isomorphic
to the quotient of Kj[X ] by the ideal generated by X2 − q(ej+1); this is exactly
Kj+1. Consequently C�(Vj+1, qj+1) is isomorphic to Kj+1, and finally C�(Vs, qs)
is isomorphic to Ks.

Now let V ′ be the subspace spanned by (es+1, . . . , er), and q′ the restriction
of q to V ′. By a similar argument we realize that C�(V, q) is isomorphic to Ks⊗K

C�K(V ′, q′) or equivalently C�Ks(Ks ⊗K (V ′, q′)). We want to prove that this is
isomorphic to

∧
Ks

(K r−s
s ); it suffices to prove it when s = 0, since this proof

remains valid when K and r are replaced respectively with Ks and r − s.
Therefore we suppose that q(e1), q(e2), . . . , q(er) all belong to K2, and we

prove that C�(V, q) is isomorphic to
∧

(Kr). Indeed let us write q(ej) = ν 2
j with

νj ∈ K for j = 1, 2, . . . , r; thus the equality (ej−νj)2 = 0 holds in C�(V, q) for j =
1, 2, . . . , r. These nilpotent elements ej − νj generate C�(V, q) as an algebra (with
unit), and the universal property of

∧
(Kr) implies the existence of a surjective

algebra morphism
∧

(Kr) → C�(V, q). It is an isomorphism because both algebras
have dimension 2r over K. �

(8.5.3) Example. Let V be a vector space of dimension 4 over the field of rational
functions K = F (t1, t2) (see (8.4.4)), let (e1, e2, e3, e4) be a basis of V , and q :
V → K the quadratic form defined by

q(λ1e1 + λ2e2 + λ3e3 + λ4e4) = t1λ
2

1 + t2λ
2

2 + λ 2
3 + t1t2λ

2
4 ;

q is an additive and anisotropic quadratic form. The subalgebra generated by e1

and e2 in C�(V, q) is a purely inseparable extension L of dimension 4 over K; it
is isomorphic to F (

√
t1,
√

t2), and the images of
√

t1 and
√

t2 in C�(V, q) are e1

and e2. The Frobenius morphism of L maps L bijectively onto L2 = K, because
F is assumed to be perfect (as in (8.4.4)). Obviously q(e3) and q(e4) belong to
L2, whence there exist two nilpotent elements e3 − 1 and e4 − e1e2 in C�(V, q).
Therefore C�(V, q) is isomorphic to

∧
L(L2).

From the above theorem we can derive some corollaries stating that all idem-
potents in some Clifford algebras are trivial.

(8.5.4) Corollary. The hypotheses being the same as in (8.5.2), every idempotent
element of C�(V, q) is equal to 0 or 1.

Proof. Because of (8.5.2), it suffices to prove that in the exterior algebra of any
vector space W over any field every idempotent element ε is equal to 0 or 1.
Indeed the component of ε in

∧0(W ) must be an idempotent element of the
basic field, consequently 0 or 1. When it is 0, and yet ε �= 0, there is a positive
integer k such that ε belongs to

∧≥k(W ) but not to
∧>k(W ). Since ε2 belongs

to
∧≥2k(W ), and ε2 = ε, there is a contradiction; therefore ε = 0. And when the

scalar component of ε is 1, then 1− ε is idempotent too, and the same argument
proves that 1− ε = 0. �
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(8.5.5) Corollary. Let K be a local ring with maximal ideal m, such that K/m is a
field of characteristic 2. If M is a free K-module of finite rank, and q a quadratic
form M → K that induces an additive quadratic form on (K/m) ⊗M , then the
only idempotents of C�(M, q) are 0 and 1.

Proof. More generally we prove this assertion: let C be an algebra over a local
ring K, and let us suppose that C is a free K-module of finite rank; if the only
idempotents of (K/m) ⊗ C are 0 and 1, then the same property is true for C.
Indeed let (e1, e2, . . . , en) be a basis of the free module C. If x =

∑
j λjej is an

idempotent of C, we know that the image of x in (K/m)⊗C is 0 or 1; if it is 1, we
replace x with the idempotent 1 − x, so that the image of x is again 0. Since the
family (ej) yields a basis of (K/m)⊗C over K/m, this implies that all coefficients
λj belong to m. If J is the ideal generated by all these λj , the equality x2 = x
implies J2 = J , whence mJ = J (since J ⊂ m), and finally J = 0 because of
Nakayama’s lemma (1.12.1). It follows that x = 0. �

(8.5.6) Corollary. Let K be a commutative ring such that Rad(K) contains 2, and
such that Spec(K) is connected, and let M be a finitely generated projective K-
module. If q is a quadratic form M → K such that bq(x, y) belongs to Rad(K) for
all x and y in M , then the only idempotents of C�(M, q) are 0 and 1.

Proof. For every prime ideal p ∈ Spec(K), the residue field Fp has characteristic
2, and q induces an additive quadratic form on Fp ⊗ (M, q). Consequently Fp ⊗
C�(M, q) has no other idempotents than 0 or 1 (see (8.5.4)). Because of (8.5.5), the
algebra C�(M, q)p over the local ring Kp contains no other idempotents than 0 or
1. Thus we are led to prove this assertion: if C is a K-algebra such that for every
prime ideal p there is no idempotent in Cp other than 0 or 1, then the same is true
for C itself, provided that Spec(K) is connected . Indeed let x be an idempotent
of C, and U (resp. V ) the subset of all p ∈ Spec(K) such that the image of x in
Cp is 1 (resp. 0). We know that Spec(K) is the disjoint union of U and V , and
that these subsets are closed; indeed U = V(a) (resp. V = V(b)) if a (resp. b) is
the ideal of all λ ∈ K such that λx = 0 (resp. λ(1 − x) = 0). Consequently V or
U is empty, and x is equal to 0 or 1. �

Remark. In (8.5.6) we may replace Rad(K) with the Jacobson radical J(K) which
is the intersection of all maximal ideals, and also the subset of all λ ∈ K such that
1+λµ is invertible for all µ ∈ K. If we use J(K), we must replace Spec(K) with the
subset Max(K) of all maximal ideals. On one side Rad(K) may be much smaller
than J(K), on the other side Spec(K) may be connected even when Max(K) is not
connected (as it happens for instance when K is the intersection of the localized
rings Z(2) and Z(3) in Q).



468 Chapter 8. Complements about Witt Rings and Other Topics

8.6 The group of classes of Clifford algebras

When (M, q) is a quadratic space, (3.7.8) says that the Brauer class of C�(M, q)
only depends on the Witt class of (M, q), and that there is a group morphism

WQ(K) −→ Brg(K) , [(M, q)] �−→ [C�(M, q)].

By definition the group of classes of Clifford algebras over K is the image H(K)
of this morphism. Remember that WQ(K) is even a ring (sometimes without unit
element); since very soon we speculate about an operation in H(K) that might
correspond to the multiplication in WQ(K), here we shall use additive notation
for the group Brg(K), and also for the group Qg(K) which is related to it by a
surjective canonical morphism Brg(K)→ Qg(K) defined by [A] �−→ [QZ(A)] (see
(3.5.19)). It is worth observing that, when we proved the surjectiveness of this
morphism just after (3.8.14), as a matter of fact we proved the surjectiveness of
its restriction H(K)→ Qg(K).

From the definition of H(K) it follows that H is a functor from the category
Com(Z) toward the category Mod(Z). Every ring extension K → L determines a
group morphism Brg(K)→ Brg(L), and by restriction a group morphismH(K)→
H(L), because C�L(L ⊗K (M, q)) = L ⊗K C�K(M, q) for every quadratic space
(M, q) over K. Besides, it is also clear that the group morphisms WQ(K)→ H(K)
and all the group morphisms involved in the exact sequences (3.5.19) and (3.4.13)
determine morphisms between the functors WQ, H, Brg, Br, Qg, Q, Ip′, which are
all functors from Com(Z) toward Mod(Z).

The group H(K) allows us to formalize some results obtained in the previous
chapters, especially in 3.8. For instance the formulas presented below in (8.6.4)
and (8.6.6) are essentially formalizations of (3.8.6) and (3.8.13). As for (3.8.15),
now it means that H(K) is contained in the subgroup of all elements of Brg(K)
of order 1, 2, 4 or 8; anyhow this property also appears below as a corollary of
(8.6.4); and yet a third proof is proposed in (8.ex.15).

Let us recall the essential facts that underlie the above definition of H(K). A
graded Azumaya algebra S is said to be trivial if it is isomorphic to a graded algebra
End(P ) derived from some graded finitely generated and faithful projective module
P = P0 ⊕P1. Two graded Azumaya algebras A and A′ are said to be equivalent if
there exist trivial algebras S and S′ such that A ⊗̂ S and A′ ⊗̂ S′ are isomorphic.
Since the quadratic extension QZ(S) is trivial, the tensor products A ⊗̂ S and
A⊗ S are isomorphic (see (3.8.6)); consequently we get the same definition if we
require A⊗ S and A′ ⊗ S′ to be isomorphic. Since the tensor product (twisted or
not) of two trivial algebras is still trivial, we have actually defined and equivalence
relation for graded Azumaya algebras. The set of equivalence classes is a group
because A ⊗̂Ato is always a trivial algebra. It is worth observing that every algebra
that is equivalent to a trivial algebra, is also trivial; this is not at all evident, it is
a consequence of (6.7.12): if A is equivalent to a trivial S, it is also equivalent to
K, and (6.7.12)(c) or (6.7.12)(d) shows that it is isomorphic to some EndK(P ).
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Thus it suffices to remember that a Clifford algebra has a trivial class inH(K)
if and only if it isomorphic to some trivial algebra S, and that the class of a twisted
tensor product of Clifford algebras (that is the Clifford algebra of an orthogonal
sum) is the sum of the classes of the factors. Besides, the class of C�(M,−q) is the
opposite of the class of C�(M, q), because C�(M,−q) is isomorphic to C�(M, q)to.

A first conjecture

The group H(K) suggests two conjectures, which here are proved only when K is
a local ring.

(8.6.1) Conjecture. If the Clifford algebra of the quadratic space (M, q) has a trivial
class, then the same is true for the Clifford algebra of (M, q) ⊗ (N, ϕ) whatever
the bilinear space (N, ϕ) may be.

If this conjecture is true for the ring K, the kernel of the group morphism
WQ(K) → H(K) is an ideal, and therefore H(K) inherits a structure of ring
(without unit element when 2 is not invertible in K).

Besides, the classes in WB(K) of all bilinear spaces (N, ϕ) such that
C�((M, q) ⊗ (N, ϕ)) has a trivial class for all quadratic spaces (M, q), constitute
an ideal, and the quotient of WB(K) by this ideal is a ring HB(K) (with unit el-
ement) that has the same relations with the ring H(K) as WB(K) with WQ(K):
first the ring HB(K) acts in the additive group H(K), secondly there is a ring
morphism h : H(K) → HB(K) that is compatible with the action of the latter in
the former (in other words, xy = h(x)y for all x, y ∈ H(K)), and thirdly, when 2
is invertible in K, this ring morphism is an isomorphism that allows us to identify
HB(K) with H(K).

The next lemma prepares a partial proof of (8.6.1).

(8.6.2) Lemma. Let D be a discriminant module. If the Clifford algebra of (M, q)
has a trivial class, then the same is true for the Clifford algebra of D ⊗ (M, q).

Proof. The Clifford algebra of D⊗(M, q) is isomorphic to C�(M, q)D (see (3.8.7)).
Since C�(M, q) is assumed to be isomorphic to some End(P ), it suffices to prove
that End(P )D is isomorphic to some End(Q). This is true if we set Q0 = P0 and
Q1 = D⊗P1 ; indeed we get an isomorphism End(P )D → End(Q) if we map every
even f ∈ End0(P ) to the endomorphism g of Q defined in this way (for all d ∈ D,
all x ∈ P0 and all y ∈ P1):

g(x) = f(x) and g(d⊗ y) = d⊗ f(y) ,

and if we map d′ ⊗ f for every d′ ∈ D and every odd f ∈ End1(P ) to this
endomorphism g of Q :

g(x) = d′ ⊗ f(x) and g(d⊗ y) = (dd′) f(y) . �
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Proof of (8.6.1) when K is a local ring. If (N, ϕ) is the orthogonal sum of two bi-
linear spaces (N1, ϕ1) and (N2, ϕ2), then

C�((M, q)⊗ (N, ϕ)) ∼= C�((M, q)⊗ (N1, ϕ1)) ⊗̂ C�((M, q)⊗ (N2, ϕ2)) ;

therefore if (8.6.1) is true for (N1, ϕ1) and (N2, ϕ2), it is also true for (N, ϕ). Yet
we must also realize that (8.6.1) is true for (N1, ϕ1) if it is already established
for (N, ϕ) and (N2, ϕ2). Now Lemma (8.6.2) states that (8.6.1) is true for all
bilinear spaces of rank 1; therefore (8.6.1) is true for (N, ϕ) whenever it admits an
orthogonal basis. And if (N, ϕ) does not, from (2.6.3) we know that anyhow the
orthogonal sum of (N, ϕ) and any bilinear space D of rank 1 admits an orthogonal
basis; since (8.6.1) is true for (N, ϕ) ⊥ D, it is also true for (N, ϕ). �

The three components of a graded Brauer class

Let Ip′(K) be the subset of all idempotents e of K such that 2e is invertible in Ke ;
it is easy to realize that Ip′(K) is an ideal of the boolean ring Ip(K). In the sequel
several definitions and statements may become simpler when Ip′(K) is a principal
ideal (generated by one element); in a boolean ring every finitely generated ideal
is principal; unfortunately in (8.ex.23) there is an example of a ring K such that
Ip′(K) is not a principal ideal. Let us remember the two exact sequences (3.5.19)
and (3.4.13), here written again with additive notation:

0 −→ Br(K) −→ Brg(K) −→ Qg(K) −→ 0 ,

0 −→ Q(K) −→ Qg(K) −→ Ip′(K) −→ 0 .

These exact sequences suggest the existence of a bijection from Brg(K) onto
Ip′(K)×Q(K)×Br(K) which should associate with every graded Brauer class [A]
its three components e, α, β respectively in Ip′(K), Q(K) and Br(K). Of course
e is the idempotent such that (1− e)A is a graded Azumaya algebra of even type
over K(1 − e) (in other words its rank is a square), whereas eA has odd type
over Ke (its rank is the double of a square). From A we have derived a quadratic
extension QZ(A) (defined just before (3.5.18)), and e is also the idempotent such
that (1− e)QZ(A) is a trivially graded quadratic extension of K(1 − e), whereas
the odd component of eQZ(A) has constant rank 1 over Ke.

The choice of the third component β is not difficult, since a graded Azumaya
algebra of even type is still an Azumaya algebra when its grading is ignored,
whereas the even subalgebra of a graded Azumaya algebra of odd type is an
Azumaya algebra; consequently β is the class in Br(K) of (1− e)Ang⊕ eA0 ; as in
3.8, the notation Ang means “A without grading”. It is sure that the choice of the
third component determines a bijection Brg(K)→ Qg(K)×Br(K) ; indeed, when
A has even type, the classes of QZ(A) and Ang determine [A] because of (3.8.14),
and when A has odd type, the classes of QZ(A) and A0 determine [A] because
of the multiplication isomorphism QZ(A) ⊗ A0 → A. Then we must choose the
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component α of QZ(A) in Q(K), and the most natural choice is the isomorphy
class of QZ(A)ng ; it is a good choice because QZ(A) is determined up to isomorphy
by e and α.

When the three component mappings are defined on Brg(K), a question quite
naturally appears: if we know the three components of the classes of A and B,
which are the three components of [A]+ [B] = [A ⊗̂B] ? Besides, in 3.8 with every
couple (A, D′), where A is a graded algebra and D′ a discriminant module, we
have associated an algebra AD′ = A0 ⊕ (D′ ⊗A1) ; if we know the components of
the class of a graded Azumaya algebra A, which are the components of [AD′ ] ?

Before tackling these questions, some notation must be explained. First we
can define eα and eβ for all e ∈ Ip(K), α ∈ Q(K) and β ∈ Br(K). When α is the
class of Z, then eα is the class of (1 − e)K2 ⊕ eZ ; and when β is the class of A,
then eβ is the class of (1− e)K ⊕ eA. The following equalities are evident:

(ee′)α = e(e′α) , e(α + α′) = eα + eα′ , (e+̃e′)α = eα + e′α ,

(ee′)β = e(e′β) , e(β + β′) = eβ + eβ′ , (e+̃e′)β = eβ + e′β − 2(ee′β) .

Thus Q(K) is a module over Ip(K). Although Br(K) is not always a module over
Ip(K), the subgroup Br2(K) of all β such that 2β = 0 is actually a module over it.
And it is worth observing that the third component of an element of H(K) always
belongs to the subgroup Br2(K); indeed every Clifford algebra C is provided with
a reversion τ that gives an isomorphism C → Co, and the well-known equality
[C] + [Cto] = 0 becomes 2[C] = 0 when C is trivially graded and isomorphic to
Co.

Secondly we get an Ip(K)-linear mapping J : Ip′(K) → Q(K) if we map
every e (such that 2e is invertible in Ke) to the class of the nongraded quadratic
extension (1 − e)K2 ⊕ e(K ⊕Kj) where K ⊕Kj is the K-algebra generated by
an element j such that j2 = −1 ; thus e(K ⊕Kj) is a quadratic extension of Ke
for every e ∈ Ip′(K). It is easy to verify that eJ (e′) = J (ee′) and J (e′+̃e′′) =
J (e′) + J (e′′) for all e ∈ Ip(K) and all e′, e′′ ∈ Ip′(K). When Ip′(K) is a
principal ideal generated by one element e0, it suffices to define J (e0) because
J (e) = eJ (e0). The same observation is valid for the other Ip(K)-linear mapping
D : Ip′(K) → Q(K) that shall be introduced later, just before (8.6.7).

Thirdly we need the Z-bilinear mapping Q defined in 3.8. When δ is the
class in Disc(K) of a discriminant module D, and when α′ is the class of Z ′ in
Q(K), then Q(δ, α′) is the Brauer class of C�(D⊗Z ′)ng; this notation is meaning-
ful because D is a bilinear space and Z ′ a quadratic space; indeed the standard
involution of Z ′ determines a norm Z ′ → K which is a nondegenerate quadratic
form. To avoid the intrusion of a new notation, we will write Q(α, α′) when we
mean Q(δ, α′) with δ depending on α in this way: it is the class of the discrimi-
nant module of a quadratic extension representing α. As explained in (3.8.16), in
this way we get a symmetric Z-bilinear mapping Q(K) × Q(K) → Br(K) which
obviously takes its values in the subgroup Br2(K). There is an alternative defi-
nition of Q(α, α′) according to which it is the Brauer class of C�(Z ⊥ Z ′)ng if
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Z and Z ′ are quadratic extensions representing α and α′; indeed C�(Z ⊥ Z ′) is
isomorphic to C�(Z) ⊗̂C�(Z ′), therefore isomorphic to C�(Z) ⊗ C�(D ⊗ Z ′) (see
(3.8.8)), and the class of C�(Z)ng is trivial (see (3.8.1)). Now Disc(K), Q(K)
and Br2(K) are modules over Ip(K), and obviously Q is bilinear over Ip(K) :
Q(eδ, α′) = eQ(δ, α′) = Q(δ, eα′).

The mappings J and Q are related by this equality (for all e ∈ Ip′(K), and
all α ∈ Q(K)):

(8.6.3) Q(J (e), α) = e Q(α, α).

Proof. We treat every algebra over K as the direct product of an algebra over
K(1 − e) and an algebra over Ke. Since we compare the Brauer classes of two
quaternion algebras that have trivial components over K(1 − e), it suffices to
compare their components over Ke. Therefore we can assume that e = 1, and
thus (8.6.3) becomes an immediate consequence of the statement (d) in (3.8.16).
Indeed if Z is a quadratic extension with class α, and D its discriminant module,
then Q(α, α) is the class of C�(D⊗Z)ng which is also the class of C�(J⊗Z)ng (see
(3.8.16)) if J is the free discriminant module generated by j such that j2 = −1 ;
this is precisely the discriminant module of the quadratic extension K ⊕Kj with
class J (1). �

There is no impropriety in the fact that the Ip(K)-linear mapping α �−→
Q(J (e), α) is equal to the Ip(K)-quadratic mapping α �−→ Q(α, α), because every
mapping that is linear over a boolean ring is also quadratic over it. Now we can
tackle the addition of two Brauer–Wall classes.

(8.6.4) Theorem. Let (e, α, β) and (e′, α′, β′) give the three components of the
Brauer classes of the graded Azumaya algebras A and A′. The three components
of the Brauer class of A ⊗̂A′ are given by the addition formula

(e, α, β) + (e′, α′, β′) =
(

e+̃e′ , α + α′ + J (ee′) ,

β + β′ +Q(α + J (e(1 − e′)), α′ + J ((1 − e)e′) )
)
.

Proof. The ring K is the direct sum of the ideals K(1 − e)(1 − e′), Ke(1 − e′),
K(1 − e)e′ and Kee′ ; by means of the similar decomposition of A ⊗̂A′, we can
reduce the general case to four particular cases in which (e, e′) is either (0, 0)
or (1, 0) or (0, 1) or (1, 1). Consequently it suffices to prove these three addition
formulas:

(0, α, β) + (0, α′, β′) = ( 0 , α + α′ , β + β′ +Q(α, α′) ) ,

(1, α, β) + (0, α′, β′) = ( 1 , α + α′ , β + β′ +Q(α + J (1), α′) ) ,

(1, α, β) + (1, α′, β′) = ( 0 , α + α′ + J (1) , β + β′ +Q(α, α′) ) ;

of course, the second and third equalities are only meaningful when 2 is invertible
in K. The first equality is trivial when A is trivially graded, because in this case
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α = 0 and A ⊗̂A′ = A ⊗ A′; consequently we can suppose that the grading of A
is not trivial; and the same for A′.

First step. The first equality is an immediate consequence of (3.8.6) and (3.8.13).
Indeed (3.8.6) implies that A ⊗̂A′ = AD′ ⊗A′ if D′ is the discriminant module of
QZ(A′). And since Br(K) is here treated as an additive group, (3.8.13) implies that
the class of A ng

D′ is the sum of the classes of Ang and C�(D′⊗Z)ng if Z = QZ(A).
The class of C�(D′ ⊗ Z)ng is Q(α′, α) = Q(α, α′).

From this first result it follows that

−(0, α, β) = (0, α, −β +Q(α, α)) .

The second step is devoted to two very particular cases, which both require 2 to
be invertible:

(1, α, 0) + (0, 0, β) = (1, α, β) ;
(1, α, 0) + (1, α′, 0) = (0, α + α′ + J (1), Q(α, α′)) .

The first formula is an immediate consequence of the natural isomorphism Z(A)⊗
A0 → A which is valid for every graded Azumaya algebra A of odd type. The
second formula is the most wearisome patch in this proof; here A and A′ are
graded quadratic extensions in which the odd components are the discriminant
modules D and D′; thus A and A′ are also graded Azumaya algebras, and we
must find the three components of the class of A ⊗̂A′. Because of (3.5.17), the
first two components represent the class of Z ′′ = A � A′ in Qg(K); this trivially
graded quadratic extension is not isomorphic to Ang �A′ng because of the twisting
rule, according to which (x ⊗ x′)2 = −x2x′2 for odd elements x ∈ D and x′ ∈ D′;
it is actually isomorphic to Ang � A′ng � (K ⊕ J) if J (the discriminant module
of K ⊕ J) is generated by an element j such that j2 = −1. This shows that the
second component of A ⊗̂A′ is α + α′ + J (1).

We can identify A = K ⊕ D with the Clifford algebra C�(D2) if D2 is the
quadratic space D with quadratic form x �−→ x2; similarly A′ = C�(D′

2), and
consequently A ⊗̂A′ = C�(D2 ⊥ D′

2). If we prove that the quadratic spaces
D2 ⊥ D′

2 and D ⊗ Z ′′ are isomorphic, the conclusion follows, because the class
of C�(D ⊗ Z ′′)ng is Q(α, α + α′ + J (1)), which is the same thing as Q(α, α′)
because of (8.6.3). In the following calculations the lower index 2 transforms ev-
ery discriminant module ∆ into the quadratic module ∆2 with quadratic form
ξ �−→ ξ2, and with associated bilinear form (ξ, ξ′) �−→ 2ξξ′ (instead of ξξ′).
Thus K2 is the quadratic space K with quadratic form λ �−→ λ2. It is clear
that ∆ ⊗ ∆′

2 = (∆ ⊗ ∆′)2 for all ∆ and ∆′. Moreover if ∆ is the discriminant
module of a quadratic extension, as a quadratic space this quadratic extension is
isomorphic to K2 ⊥ (J ⊗∆)2 because the standard involution operates as −1 on
∆. All this implies that Z ′′, as a quadratic space, is isomorphic to K2 ⊥ (D⊗D′)2.
This shows that D ⊗ Z ′′ is actually isomorphic to D2 ⊥ D′

2 .
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Third step, in which we prove the above second and third equalities corresponding
to the cases (e, e′) = (1, 0) and (e, e′) = (1, 1). First we notice that

−(1, α, 0) = (1, α + J (1), 0) ;

indeed the sum of (1, α, 0) and (1, α+J (1), 0) is equal to (0, 0, Q(α+J (1), α)),
which vanishes because of (8.6.3). Then we verify the vanishing of

(1, α + α′, β + β′ +Q(α + J (1), α′)) − (1, α, β)− (0, α′, β′) ;

of course we replace the first term with the sum of (1, α + α′, 0) and (0, 0, β +
β′ +Q(α +J (1), α′)), and we replace −(1, α, β) with the sum of (1, α +J (1), 0)
and (0, 0,−β); the sum of (1, α + α′, 0) and (1, α + J (1), 0), which we calculate
as explained in the second step, has component 0 in Ip′(K), and thus we get a
sum of four terms with component 0 in Ip′(K), which we calculate as explained
in the first step; this verification ends after another intervention of the equality
Q(α + J (1), α) = 0.

Finally the calculation of (1, α, β) + (1, α′, β′) raises no difficulty, since it is
equal to

(1, α, 0) + (1, α′, 0) + (0, 0, β) + (0, 0, β′). �

(8.6.5) Corollary. If (e, α, β) gives the components of the class of A, the components
of the class of Ato are given by

−(e, α, β) = ( e , α + J (e) , −β + (1− e)Q(α, α) ) .

Proof. As a direct consequence of (8.6.4) we find

−(e, α, β) = ( e , α + J (e) , −β +Q(α, α + J (e)) ) ;

then (8.6.3) shows that

Q(α, α + J (e)) = Q(α, α) + eQ(α, α) = (1− e)Q(α, α) . �

After the class of A ⊗̂A′ we calculate the class of AD′ .

(8.6.6) Proposition. Let D′ be a discriminant module with class δ′ in Disc(K),
and A a graded Azumaya algebra with class (e, α, β) in Brg(K). The class of
AD′ = A0 ⊕ (D′ ⊗A1) is

(e, α, β)δ′ = ( e , α + δ′Q(e) , β + (1− e)Q(δ′, α) ) ,

if δ′Q(e) is the class of the quadratic extension (1− e)K2 ⊕ e(K ⊕D′) .

Here K ⊕D′ is the trivially graded algebra provided with the multiplication

(λ1, d
′
1) (λ2, d

′
2) = (λ1λ2 + d′1d

′
2 , λ1d

′
2 + λ2d

′
1).
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Proof. Again it suffices to treat separately the cases e = 0 and e = 1 and to prove:

(0, α, β)δ′ = (0, α, β +Q(δ′, α)) and (1, α, β)δ′ = (1, α + δ′Q(1), β).

In the former case the same quadratic extension is derived from A and AD′ whereas
(3.8.13) says that the class of A ng

D′ is the sum of the classes of Ang and C�(D′ ⊗
QZ(A))ng , which are respectively β and Q(δ′, α). In the latter case A and AD′

have the same even subalgebra, whereas Z(AD′) is isomorphic to Z(A) � (K ⊕D′),
because its discriminant module is D ⊗ D′ (if D is the discriminant module of
Z(A)); thus the latter case immediately follows from the definitions. �

Let us derive some interesting consequences of (8.6.4). For every positive
integer n,

2n (0, α, β) = (0, 0, 2nβ + nQ(α, α)) ;

consequently 2n(0, α, β) = 0, when n is even and 2nβ = 0. More generally

4n (e, α, β) = (0, 0, 4nβ + nQ(J (e), J (e))) ;

consequently 4n(e, α, β) = 0 when n is even and 4nβ = 0. This gives another
proof of (3.8.15), which states that the order of every element of H(K) is a divisor
of 8.

It is also worth observing that the elements (e, α, β) such that 2nβ = 0 for
some given positive integer n constitute a subgroup of Brg(K).

The groups E ′ ×Q×B and the rings E ′ ×Q×B2

More generally let E be a boolean ring with unit element 1. It is well known that
the equality e2 = e characterizing boolean rings implies ee′ = e′e and e+̃e = 0
for all elements e and e′. To avoid misunderstandings, we still use the notation
e+̃e′ for sums in E, and we also write 1 − e instead of 1+̃e. Let E′ be an ideal
of E, Q a module over E, and B an additive group containing a subgroup B2

that is a module over E. Besides, let J : E′ → Q be any E-linear mapping, and
Q : Q × Q → B2 any symmetric E-bilinear mapping. It is easy to verify that
the addition defined in Theorem (8.6.4) determines a structure of group on the set
E′ ×Q×B. The property (8.6.3) is not indispensable to make this set become a
group. Because of the equality 1+̃1 = 0, each element of the additive group Q or
B2 has order 1 or 2, and each element of the subgroup E′ ×Q×B2 has an order
dividing 8.

Now let us suppose that J and Q satisfy the property (8.6.3), and let D :
E′ → Q be any E-linear mapping. We define a multiplication on E′ ×Q×B2 in
the following way:

(8.6.7) (e, α, β) (e′, α′, β′) =
(

ee′ , eα′ + e′α + D(ee′) ,

eβ′ + e′β + (1− ee′)Q(α +D(e), α′ +D(e′))
)
.
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It is easy to verify the associativity of this multiplication:

(e, α, β)(e′, α′, β′)(e′′, α′′, β′′)
= (ee′e′′, e′e′′α + e′′eα′ + ee′α′′, e′e′′β + e′′eβ′ + ee′β′′

+ (1− e′e′′)eQ(α′, α′′) + (1− e′′e)e′Q(α′′, α) + (1− ee′)e′′Q(α, α′) ) ;

but more patience is needed to verify that

(e, α, β)
(
(e′, α′, β′) + (e′′, α′′, β′′)

)
= (e, α, β)(e′, α′, β′) + (e, α, β)(e′′, α′′, β′′) ;

the verification of this distributivity law needs the relation

Q(α +D(e), J (e′e′′)) = Q(e′α +D(ee′), e′′α +D(ee′′)) ,

and it is the only place where (8.6.3) is absolutely indispensable.

(8.6.8) Proposition. With the addition discovered in (8.6.4) and the multiplication
defined in (8.6.7), the set E′×Q×B2 is a ring (perhaps without unit element). For
each e ∈ E, the subset eE′× eQ× eB2 is an ideal, and if e belongs to E′, it is the
principal ideal generated by the idempotent (e,D(e), 0). In particular if E = E′,
then (1,D(1), 0) is a unit element. Moreover the mapping e �−→ (e,D(e), 0) is an
isomorphism from E′ onto the boolean ring of all idempotents of E′ ×Q×B2.

The proof of (8.6.8) is a matter of straightforward verifications. Obviously eE′ ×
eQ×eB2 is an ideal for all e ∈ E, and it is generated by the idempotent (e,D(e), 0)
when e belongs to E′ because

(e,D(e), 0) (e′, α′, β′) = (ee′, eα′, eβ′).

It is clear that (e,D(e), 0)(e′,D(e′), 0) = (ee′,D(ee′), 0) but it takes more time to
verify the equality

(e,D(e), 0) + (e′,D(e′), 0)− 2(ee′,D(ee′), 0) = (e+̃e′, D(e) +D(e′), 0)

which with the previous one means that e �−→ (e,D(e), 0) is a morphism of boolean
rings. At last, the equality (e, α, β)2 = (e,D(e), (1 − e)Q(α, α)) shows that
every idempotent of E′ × Q × B2 is equal to (e,D(e), 0) for some e ∈ E′, since
(1− e)Q(α, α) = 0 when α = D(e). �

Let us calculate the other powers (e, α, β)n for n > 2; they are periodical:

(e, α, β)n = (e, eα, eβ) if n is odd ≥ 3,

(e, α, β)n = (e, D(e), 0) if n is even ≥ 4.
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A second conjecture

Our second conjecture is devoted to the structure of ring on H(K), the existence
of which has followed from the first conjecture.

(8.6.9) Conjecture. If (e, α, β) and (e′, α′, β′) are the classes of the algebras
C�(M, q) and C�(M ′, q′), then the class of C�((M, q) ⊗ (M ′, q′)) is given by the
multiplication (8.6.7) in which D is the mapping Ip′(K) → Q(K) defined in this
way: D(e) is the class of the quadratic extension (1 − e)K2 ⊕ e(K ⊕Kd), where
K ⊕Kd is the algebra generated by an element d such that d2 = 2.

Proof of (8.6.9) when K is a local ring. When 2 is invertible in this local ring,
(M ′, q′) is an orthogonal sum of quadratic spaces of rank 1; since the multipli-
cation (8.6.7) is distributive, it suffices to prove (8.6.9) when the rank of M ′ is
1. In this case (M, q) ⊗ (M ′, q′) is the tensor product of (M, q) and the discrim-
inant module D′ = (M ′, bq′), and consequently its Clifford algebra is isomorphic
to C�(M, q)D′ , the class of which is given by (8.6.6). We must remember that
bq′(a′, a′) = 2q′(a′) for all a′ ∈ M ′; therefore the quadratic extension K ⊕ D′

mentioned in (8.6.6) is here isomorphic to C�(M ′, q′)ng � (K ⊕Kd) with d2 = 2.
This explains why we need the class D(1) of K⊕Kd. Now it is easy to verify that
(e, α, β)δ′ (with δ′ the image of α′ + D(1) in Disc(K)) coincides with the result
announced by (8.6.7) when e′ = 1 and β′ = 0; both (8.6.6) and (8.6.7) give the
class (e, α + eα′ +D(e), β + (1 − e)Q(α, α′ +D(1)) ).

When 2 is not invertible, then e = e′ = 0, and the distributivity of the
multiplication (8.6.7) allows us only to consider the case of a quadratic module
(M ′, q′) of rank 2. Let (e1, e2) be a basis of M ′, and let us set a = q′(e1), c = q′(e2)
and b = bq′(e1, e2). We must prove that the class of the Clifford algebra of (M, q)⊗
(M ′, q′) is (0, 0, Q(α, α′)). Let D′ be the discriminant module of C�0(M ′, q′), and
δ′ its class in Disc(K); thus Q(α, α′) is the same thing as Q(δ′, α). Since the
algebra C�0(M ′, q′) is generated by the element z = e1e2 such that z2 = bz − ac,
its discriminant module is generated by an element the square of which is b2−4ac.
Now (M, q) ⊗ (M ′, q′) is the same thing as (M, q) ⊗ (M ′, bq′), and from (2.6.3)
we know that the orthogonal sum of (M ′, bq′) and any discriminant module D0

admits an orthogonal basis (e′1, e
′
2, e

′
3); in other words, it is the orthogonal sum of

the discriminant modules Dk (with k = 1, 2, 3)) generated by the elements of this
orthogonal basis. Consequently the class of the Clifford algebra of (M, q)⊗(M ′, bq′)
is the sum of the classes of the three algebras C�((M, q) ⊗ Dk) with k = 1, 2, 3,
minus the class of C�((M, q)⊗D0). Instead of subtracting this last class, we can
add the class of C�((M, q)⊗ J ⊗D0), if J is the discriminant module J generated
by an element j such that j2 = −1.

Let ϕ be the bilinear form on (M ′, bq′) ⊥ D0, and let us set λk = ϕ(e′k, e′k)
for k = 1, 2, 3, and also λ0 = ϕ(e0, e0) if e0 is a generator of D0. For k = 0, 1, 2, 3,
let δk be the class of Dk in Disc(K), and δ−1 the class of J . Because of (8.6.6) we
know that the class of C�((M, q) ⊗ Dk) is (0, α, β + Q(δk, α)); and the class of
C�((M, q)⊗J⊗D0) is (0, α, β+Q(δ−1+δ0, α)). Now we apply three times (8.6.4) to
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add four classes, the sum of which is the class of C�((M, q)⊗(M ′, q′)), and because
of the Z-bilinearity of Q the result is (0, 0, Q(δ−1 + δ0 + δ1 + δ2 + δ3, α)) . The
sum of all δk with k = −1, 0, 1, 2, 3, is the class of J⊗D0⊗D1⊗D2⊗D3 ; this is a
discriminant module generated by an element the square of which is −λ0λ1λ2λ3,
and we must compare it with the discriminant module D′ of C�0(M ′, q′). It is
isomorphic to D′ if the quotient −λ0λ1λ2λ3 / (b2 − 4ac) is a square in K×. Since
λ1λ2λ3 is the determinant of ϕ in the basis (e′1, e

′
2, e

′
3), and since λ0(4ac − b2) is

the determinant of ϕ in the basis (e1, e2, e0), the quotient λ1λ2λ3 / λ0(4ac− b2) is
actually the square of the determinant of the elements (e′1, e′2, e′3) relative to the
basis (e1, e2, e0), and thus we realize that D′ ∼= J ⊗D0 ⊗D1 ⊗D2 ⊗D3 . �

(8.6.10) Historical comments. The first attempts to study H(K) were directed to
the subgroup H0(K) that is the kernel of H(K) → Ip(K), and to the smaller
subgroup H00(K) that is the kernel of H(K)→ Qg(K); with the above notation,
H0(K) (resp.H00(K)) is the subgroup of all (e, α, β) ∈ H(K) such that e = 0 (resp.
e = 0 and α = 0). The injective group morphism H00(K) �−→ Br2(K) (that is
(0, 0, β) �−→ β) appeared in [Micali, Villamayor 1968]; as explained in (8.ex.15), the
existence of this morphism implies that the order of every element of H0(K) (resp.
H(K)) is a divisor of 4 (resp. 8); when K = Q, the morphism H00(Q) → Br2(Q)
is even bijective (see (8.3.10)). The injective mapping H0(K) → Q(K)× Br2(K)
appeared in [Micali, Villamayor 1970], together with an addition formula that is
equivalent to (8.6.4) when e = e′ = 0, and that can be translated here by the
formula (α, β) + (α′, β′) = (α + α′, β + β′ +Q(α, α′)) . The same topic was sur-
veyed in [Revoy 1971] and [Micali, Revoy 1979]. The complete addition formula
(8.6.4) appeared in [Helmstetter, Micali 1993], unfortunately with an incomplete
multiplication formula (8.6.7) in which the mapping D was still missing; conse-
quently the invertibility of 2 was still necessary, and the tensor product of (M, q)
and (M ′, q′) was defined in the Bourbaki fashion (which gives the quadratic space
here denoted by (M ⊗M ′, q ⊗ q′/2)). Now it remains to find a complete proof of
Conjectures (8.6.1) and (8.6.9), and to consider this puzzling question: if (e, α, β)
and (e′, α′, β′) are the classes of the algebras A and A′, and if β and β′ belong to
Br2(K), is there a “natural operation” that would derive from A and A′ a new
algebra, the class of which is represented by the product in (8.6.7)?

Exercises

(8.ex.1) Let K be a local ring with maximal ideal m, in which 2 is invertible.
Give a direct proof of the following fact: the relation ((a))+ ((−a)) = ((1))+ ((−1))
(valid for every a ∈ K×) is a consequence of the relations of types (i), (ii) and (iii)
listed in (8.1.8).
Hint. When a2 − 1 /∈ m, you can set c = a + 1 and d = a− 1, and write

((a)) + ((−a)) = ((ac2)) + ((−ad2)) = ((a(c2 − d2) )) + ((−a3c2d2(c2 − d2) ))
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and so forth . . . ; when a2 − 1 ∈ m and 3 is invertible in K, then

((a)) + ((−a)) = ((4a)) + ((−a)) = ((3a)) + ((−12a3)) = ((3a)) + ((−3a)) ;

when K/m is isomorphic to Z/3Z, you can assume a− 1 ∈ m and write

((a))+((−a)) = (( (1−µ2a2)a))+((−(1−µ2a2)a)) with µ = (a−1)a−1(a+1)−1.

(8.ex.2) Let WQ0(K) be the subgroup of WQ(K) generated by the Witt classes
of quadratic spaces of even rank at every prime ideal of K; it is even an ideal of
WQ(K).

(a) Explain the exact sequence

0 −→WQ0(K) −→ WQ(K) −→ Ip′(K) −→ 0.

(b) When K is a local ring in which 2 is invertible, we denote by [a, b] the Witt
class of the quadratic space 〈a, b〉 . Prove that W0(K) is generated as an
additive group by all classes [a, b] with a and b in K×; it is even generated by
all classes [a, b] such that a is a fixed element of K×, whereas b runs through
K×.

(c) Let K still be a local ring with maximal ideal m, in which 2 is invertible. Prove
that W0(K) is the additive group generated by all symbols [a, b] constrained
to these relations:

(i) [aλ2, b] = [a, b] for all a, b, λ ∈ K×.
(ii) [a, b] = [a + b, ab(a + b)] whenever a + b ∈ K× .
(iii) [a, b] = [(1 + abµ2)a, (1 + abµ2)b] whenever a + b and µ are in m.
(iv) [a,−a] = 0 for all a ∈ K×.
(v) [a, b] = [b, a] for all a, b ∈ K×.
(vi) [a, b] + [c, d] = [a, c] + [b, d] for all a, b, c, d ∈ K×.

Besides, the relations of type (iii) are consequences of the other ones when K/m
is not isomorphic to Z/3Z, and also when the mapping µ �−→ µ− µ2 is surjective
from m onto m. And the relations (iv) can be replaced with the only relation
[1,−1] = 0 (see (8.ex.1)).

(8.ex.3) Let K be a local ring in which 2 is invertible. Since ((a))2 = ((1)) for all
a ∈ K×, the relation (ii) in (8.1.8) can also be written ((1))+((ab)) = ((a+b)) ( ((a))+
((b)) ) ; the two previous relations are the beginning of an infinite sequence in which
the third relation (valid when a, b, c and a + b + c are invertible) may be written
in this way:

((1)) + ((ab)) + ((ac)) + ((bc)) = ((a + b + c))
(
((a)) + ((b)) + ((c)) + ((abc))

)
.

To obtain the nth relation in this sequence, we take n elements a1,. . . ,an of K×,
we assume that their sum bn is invertible, and we consider this polynomial Pn

with coefficients in the ring WG(K) :

Pn(X) =
(
((1)) − ((a1))X

) (
((1)) − ((a2))X

)
· · ·

(
((1)) − ((an))X

)
;
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now the announced relation is Pn( ((bn)) ) = 0. Prove that this relation actually
holds.
Hint. Let Pn(x) be the image of Pn(X) in the quotient of the polynomial ring
WG(K)[X ] by the ideal (X2 − 1); prove the existence of wn ∈ WG(K) such that
Pn(x) = wn ( ((1))−((a1))x), and establish the induction formula wn = wn−1 ( ((1))+
((a1an)) ) (for all n > 1); thus Pn( ((bn)) ) = wn ( ((1)) − ((a1bn)) ) ; when n = 3,
and almost always when n > 3, it occurs that bn − aj is invertible for some
j ∈ {1, 2, . . . , n}, and you can assume that j = n, so that bn−1 is invertible (if
bn−1 = bn−an); deduce the equality Pn( ((bn)) ) = 0 from Pn−1( ((bn−1)) ) = 0 ; but
when bn−aj is never invertible, then an+an−1 and bn−2 = bn−an−an−1 are both
invertible, and the announced result can be deduced from Pn−2( ((bn−2)) ) = 0.

(8.ex.4) Let K be a local ring in which 2 is not invertible. As in 8.2, the notation
〈a, b〉 means the quadratic space K2 with quadratic form (x, y) �−→ ax2 +xy+by2,
and ((a, b)) is its class in WGQ(K).

(a) Prove that ((a, b)) = ((−a(1−4ab)−1, b )) = ((−a(1−4ab)−1, −b(1−4ab) )) .
(b) Let a, b, c, d be four elements of K, and let us set λ = 1−4ab and µ = 1−4cd.

Prove that the class of the tensor product 〈a, b〉 ⊗ 〈c, d〉 is equal to

((a, b)) ((c, d)) = (( 2ac, 2bd )) + (( 2adλµ, 2bcλ−1µ−1))
= (( 2ac, −2bdµ−1)) + ((−2adλ, 2bcλ−1µ−1))
= (( 2ac, 2bdλ−1µ−1)) + ((−2adλ−1, −2bcµ−1))
= ((−2acµ, −2bdµ−1)) + ((−2adλ, −2bcλ−1)) .

The Witt ring W(Q) and its subrings WB(Z(2)) and WQ(Z(2))

(8.ex.5) Let Θ be the set of all group morphisms θ : W(Q) → Z/8Z satisfying
these properties: when the integer a is not divisible by 4, then θ([a]) only depends
on the image of a in Z/8Z, and θ([a]) = 1 modulo 8 whenever a ≡ 1 modulo 8.

(a) Suppose that θ is an element of Θ and prove that θ([3]) = 3 modulo 8, and
that θ([2]) is equal to 1 or 5 modulo 8. Conclude that the cardinal of Θ is 0
or 2.
Hint. [1]+[1] = [2]+[2] and [3]+[−1] = [2]+[−6] ; don’t forget the morphism
δ′2 : W(Q)→ Z/8Z derived from δ2 : W(Q) → Z/2Z.

(b) Prove the existence of a morphism θ ∈ Θ that maps [a] to the following value
when a = 2αa′ with a′ an odd integer:

θ([a]) = a′ modulo 8 if α is even,

θ([a]) = (−1)(a
′−1)/2 modulo 8 if α is odd.

Hint. Verify that this definition of θ is compatible with the relations between
the generators [a] of W(Q); since the relation [a]+ [b] = [a+ b]+ [ab(a+ b)] is
not modified when (a, b) is replaced with (b, a) or (a,−a−b), you can suppose
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that a = 2αa′ and b = 2βb′ with a′ and b′ odd integers, and α < β. It may
be useful to notice that (−1)(a

′−1)/2 ≡ a′ modulo 4.

(8.ex.6) Let θ be the group morphism W(Q) → Z/8Z defined in (8.ex.5)(b), and
δ2 the group morphism W(Q) → Z/2Z defined in (8.3.4). Here our purpose is to
prove that WB(Z(2)) and WQ(Z(2)), considered as subgroups of W(Q), are equal
to Ker(δ2) and Ker(θ) ∩Ker(δ2). We shall not use (8.3.5).

(a) Verify that δ2(w) = 0 for all w ∈ WB(Z(2)), and that θ(w) = 0 for all
w ∈ WQ(Z(2)).

(b) Let w be an element of W(Q); prove the existence of w′ ∈ WQ(Z(2)) and
k ∈ Z such that w − w′ is equal either to k [1] or to k [1] + [2] .
Hint. When n ≡ 2 modulo 8, then [n] − [2] is one of the generators [2a] +
[2a(4ac− b2)] of WQ(Z(2)); when n ≡ 1 modulo 8, then [n] + [1] = [n + 1] +
[n(n+1)] and [n]+[1]− [2]− [2] is a sum of two such generators; when n ≡ 3
modulo 8, then [n]− [1]− [2]− [2] belongs to WQ(Z(2)); finally remember
[1] + [1] = [2] + [2].

(c) Let w be an element of W(Q) such that δ2(w) = 0 ; prove that w ∈ WB(Z(2)).
Now suppose that δ2(w) = 0 and θ(w) = 0 ; prove that w ∈ WQ(Z(2)).

(8.ex.7)

(a) It is known that WB(Z(2)) is generated as a group by all [b′] with b′ an
odd integer. Consider the element w = [2a] + [2a(4ac − b2)] of WQ(Z(2))
(with b an odd integer, and a and c nonzero integers), and decompose it into
a sum of two or four elements like [b′] (with an odd b′), according to the
exponent α and the odd factor a′ in the equality a = 2αa′. When α is odd,
you get immediately a decomposition w = [b1] + [b2]. Explain how to get a
decomposition w = [b1] + [b2] + [b3] + [b4] when α is even.

(b) Let b1, b2, . . . , bn be odd integers. From (8.ex.6) deduce that
∑

k [bk] belongs
to WQ(Z(2)) if and only if

∑
k bk ≡ 0 modulo 8.

(c) Example. Let b1and b2 be two odd integers such that b1 + b2 ≡ 0 modulo 8.
Find a triplet of integers (a, b, c) (with b an odd integer) such that [b1]+[b2] =
[2a] + [2a(4ac− b2)].

Fields with property C1(2)

A field K is said to have the property C1(2) if for every integer r > 2 and for
every quadratic form q on Kr there exists a nontrivial x ∈ Kr such that q(x) = 0.
More generally it is said to have the property Ci(d) (with i ≥ 0 and d ≥ 2) if
every homogeneous polynomial function of degree d over Kr vanishes at some
nonzero element of Kr whenever r > di; and it has the property Ci if it has the
property Ci(d) for all degrees d. For instance, an algebraically closed field has the
property C0.
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(8.ex.8) Prove that these two assertions are equivalent when K is a field of char-
acteristic �= 2 :

(i) K has the property C1(2);
(ii) every nondegenerate quadratic form on K2 is a surjective mapping K2 → K.

When K is a field of characteristic 2, prove that (i) implies (ii).

(8.ex.9) Let K be a field of characteristic �= 2 and with the property C1(2).
With every quadratic space (M, q) is associated an integer dim(M) in N and a
determinant det(q) well-defined modulo the subgroup of squares K×2 : it is the
image in K×/K×2 of the determinant of bq in any basis of M .

(a) Prove that every quadratic space (M, q) of dimension r contains an orthog-
onal basis (e1, . . . , er) such that q(ei) = 1/2 whenever i < r. What can you
say about 2q(er) and det(q)?

(b) Prove that there is a group isomorphism from WG(K) onto Z× (K×/K×2)
that maps the class of every quadratic space (M, q) to (dim(M), det(q)).
This isomorphism maps the class of the hyperbolic space 〈1,−1〉 to (2, ω),
where ω is the image of −1 in K×/K×2.
The group Z×(K×/K×2) is here treated as an additive group, and the tensor
product of quadratic spaces provides it with the following multiplication:
(r, ξ) (s, ζ) = (rs, ξsζr) .

(c) Derive from (b) an exact sequence

0 −→ K×/K×2 −→W(K) −→ Z/2Z −→ 0 .

Prove that the Witt ring W(K) is isomorphic to the set (Z/2Z)× (K×/K×2)
provided with this modified addition and this multiplication:

(ρ, ξ) +̂ (σ, ζ) = ( ρ + σ , ωρσξζ ) ,

(ρ, ξ) (σ, ζ) = ( ρσ , ξσζρ ).

Conclude that the additive group W(K) is isomorphic to the ordinary direct
product (Z/2Z)× (K×/K×2) if and only if −1 is a square in K, and that in
the other cases every element of W(K) with a nontrivial image in Z/2Z has
order 4 in the additive group W(K).

(8.ex.10) Let K be a field of characteristic 2 with the property C1(2).

(a) Prove that every nonhyperbolic quadratic space is the orthogonal sum of a
hyperbolic quadratic space and an anisotropic quadratic space of dimension 2.

(b) From (8.ex.8) it follows that every quadratic space of dimension 2 contains a
basis (e1, e2) such that q(e1) = bq(e1, e2) = 1. Prove that its isomorphy class
is determined by the image of q(e2) in K/℘(K), where ℘(K) is the subgroup
of all elements κ − κ2 with κ ∈ K. Deduce from this fact that an element
Arf(M, q) ∈ K/℘(K) is associated with every quadratic space (M, q).
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Remark. This element Arf(M, q) coincides with the Arf invariant already met
in (3.ex.25).

(c) Prove that there is a group isomorphism form WGQ(K) onto 2Z×(K/℘(K))
that maps the isomorphy class of every (M, q) to (dim(M), Arf(M, q)). Prove
that it induces an isomorphism of additive groups WQ(K)→ K/℘(K).

(8.ex.11) Let K be a finite field of cardinal n (a power of the characteristic of K).

(a) Prove that K has the property C1(2).
Hints. When n is even, this follows immediately from K×2 = K×; when n
is odd, prove that q(M) = K for every quadratic space (M, q) of dimension
2 (see (8.ex.8)); it suffices to prove that the equation aλ2 + bµ2 = c, with
a, b, c given in K, ab �= 0, always admits a solution (λ, µ) ∈ K2; calculate
the number n′ of elements in the image of λ �−→ aλ2, and the number n′′ of
elements in the image of µ �−→ c− bµ2, and verify that n′ + n′′ > n.

(b) From (8.ex.9) and (8.ex.10) deduce a description of the rings WGQ(K) and
WQ(K). The additive group WGQ(K) is isomorphic to 2Z when n is even,
to Z × (Z/2Z) when n is odd. The additive group WQ(K) is isomorphic to
Z/2Z if n is even, to (Z/2Z)×(Z/2Z) if n ≡ 1 modulo 4, and to Z/4Z if n ≡ 3
modulo 4. In all cases, the Witt ring WQ(K) contains a nonzero element the
square of which vanishes.

(8.ex.12) Here we suppose that K is a finite ring; consequently K is semilocal, in
other words, it contains finitely many maximal ideals m1, m2, . . . , mk. By definition
the Jacobson radical r is the intersection of all maximal ideals.

(a) Prove the bijectiveness of the natural ring morphism K/r→
∏k

i=1 K/mi .
Comment. This is a particular case of the “Chinese remainder theorem”.

(b) Prove the existence of an integer n such that rn = 0.
Hint. If K contains only one maximal ideal m, there exists an exponent n
such that mn = mn+1, whence mn = 0 because of Nakayama’s lemma; in the
general case, every localization of K is still a finite ring.

(c)* Let K momentarily be any ring, and r an ideal of K; the identity mapping
of K induces surjective ring morphisms · · · → K/r3 → K/r2 → K/r, whence
a ring morphism from K into the projective limit of the rings K/rj (see
(1.ex.29)); when this morphism K → lim←−(K/rj) is bijective, K is said to
be “complete for the r-adic topology”; this refers to the topology on K for
which the ideals rj are a basis of neighbourhoods of 0. In [Baeza 1978] the
following theorem is proved: if K is a semilocal ring that is complete for
the r-adic topology determined by its Jacobson radical r, then the natural
ring morphisms WGQ(K) → WGQ(K/r) and WQ(K) → WQ(K/r) are
isomorphisms.
Prove that the above finite ring K is complete for the r-adic topology.

(d) From (a) and (8.ex.11) deduce a description of the rings WGQ(K/r) and
WQ(K/r) which, according to (c), are isomorphic to WGQ(K) and WQ(K);
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these rings depend on the number k′ (resp. k′′, resp. k′′′) of maximal ideals
mi such that the cardinal of K/mi is even (resp. equal to a multiple of 4 plus
1, resp. equal to a multiple of 4 minus 1).

(8.ex.13) Let F be an algebraically closed field, and K = F (t) the field of rational
functions in an indeterminate t. The following statement (a classical result of
elimination theory) is needed in (a) below: if P1, P2, . . . , Pm are nonconstant
homogeneous polynomial functions on F r, and if 0 < m < r, there is a nonzero
element of F r at which all these m polynomials vanish.

(a) Prove that K has the property C1(2).
Hint. Let q be a quadratic form on K3; you may assume that the coefficients
of q are polynomials in t, all of degree ≤ k for some positive integer k; let
x1(t), x2(t), x3(t) be polynomials of degree ≤ k − 1 ; thus the coefficients of
these three polynomials determine an element ξ ∈ F 3k; there are polynomials
Pj(ξ) (the coefficients of which depend on q) such that

q(x1(t), x2(t), x3(t)) =
3k−2∑
j=0

Pj(ξ) tj ;

these (3k − 1) polynomials Pj all vanish at some nonzero element ξ of F 3k.
Comment. More generally K has the property C1 : every homogeneous poly-
nomial of degree d vanishes at some nonzero element of Kr whenever r > d.
In [Greenberg 1969] it is proved that more generally the field F (t) has the
property Ci+1 when the field F has the property Ci.

(b) Now suppose that 2 is invertible in F . Let G be the field Z/2Z and G(F )

the vector space over G freely generated by the elements of F . Deduce from
(8.ex.9)(c) that W(K) is isomorphic to the additive group G×G(F ) provided
with the following multiplication:

(ρ, (ξa)a∈F ) (σ, (ζa)a∈F ) = (ρσ, (ρζa + σξa)a∈F ).

(8.ex.14) For every ring K there are surjective group morphisms WQ(K) →
H(K) and H(K) → Qg(K). Prove that they are bijective when K is a field with
the property C1(2). By restriction to the subgroups of elements with trivial image
in Ip′(K), we get isomorphisms WQ0(K)→ H0(K)→ Q(K).

The group H(K) of classes of Clifford algebras

(8.ex.15) Let H0(K) be the intersection of H(K) with the kernel of the canonical
group morphism Brg(K)→ Ip(K), and H00(K) its intersection with the kernel of
the canonical morphism Brg(K) → Qg(K). Consider this commutative diagram
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in which all lines and columns are exact:

0 0
↓ ↓

0 −→ H00(K) −→ H0(K) −→ Q(K) −→ 0
! ↓ ↓

0 −→ H00(K) −→ H(K) −→ Qg(K) −→ 0
↓ ↓

Ip(K) ←→ Ip(K)

Let β : H0(K) → Br(K) be the mapping defined in this way: it maps the
class of every C�(M, q) (with (M, q) a quadratic space of even rank) to the class
of C�(M, q)ng (with forgotten parity grading). Prove that the restriction of β to
H00(K) is an injective group morphism (Hint: (3.8.8)), and that every element of
H00(K) has order 1 or 2. Now let ξ be an element of H0(K) (resp. H(K)); observe
that ξ2 (resp. ξ4) belongs to H00(K), and conclude that the order of ξ is a divisor
of 4 (resp. 8).

(8.ex.16) Here (M, q) is a quadratic space of constant rank 4, and there exists a
graded algebra isomorphism from C�(M, q) onto some End(P ), with P a graded
finitely generated projective module of constant rank 4. Prove that (M, q) is hyper-
bolic when these two additional hypotheses are also fulfilled: P0 contains a direct
summand of constant rank 1, and M contains a direct summand D of constant
rank 1 such that q(D) generates K as an ideal. These additional hypotheses are
always fulfilled when K is a local ring. You can proceed in this way:

(a) Let ε be the idempotent in C�(M, q) that is mapped to the projection P0 ⊕
P1 → P0 by the isomorphism C�(M, q) → End(P ). Prove that εC�0(M, q)
is an algebra isomorphic to End(P0). Each of the algebras εC�0(M, q) or
End(P0) is a quaternion algebra over K, and is provided with a unique
standard involution; prove that the standard involution of εC�0(M, q) is
the restriction of the reversion τ of C�(M, q), whence a norm N defined
by xτ(x) = εN (x) for all x ∈ εC�0(M, q); and the norm associated with
the standard involution of End(P0) is the quadratic form f �−→ det(f) (see
(3.6.3)).

(b) Prove the existence of an isomorphism D ⊗ D → K that makes D become
a discriminant module such that q(d) is the image of d ⊗ d in K for every
d ∈ D (Hint: (2.5.3)). Prove that the mapping d ⊗ a �−→ εda is a bijection
from D ⊗M onto εC�0(M, q).

(c) The normsN and det associated with the standard involutions of εC�0(M, q)
and End(P0) make them become quadratic spaces. Prove that the above bi-
jections D⊗ (M, q)→ εC�0(M, q)→ End(P0) are isomorphisms of quadratic
spaces, that End(P0) is hyperbolic, and conclude.

(8.ex.17) This exercise is an application of (8.ex.16) and (3.8.2). Let K be a local
ring.
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(a) Suppose that every element of WQ(K) is the Witt class of a quadratic space
of rank≤ 4. Prove that the surjective morphism WQ(K)→ H(K) is bijective.

(b) Suppose that K is a field with property C2(2); this means that for every
quadratic form q on Kr there is a nontrivial x ∈ Kr such that q(x) = 0
whenever r > 4. Prove that every element of WQ(K) is actually the Witt
class of a quadratic space of dimension ≤ 4 .

(8.ex.18)* Let K be a Dedekind ring, and L its field of fractions. The K-sub-
modules of L (also called fractionary ideals) that are invertible inside L (see
(1.ex.25)), constitute a group, and the K-submodules generated by one nonzero
element (also called principal fractionary ideals) constitute a subgroup; the quo-
tient of the former by the latter is called the “group of classes of ideals” of K and
denoted by C(K).

For more information about fractionary ideals of Dedekind rings, see [Jacob-
son 1995], Chap. 10.

(a) If P is a finitely generated projective K-module of constant rank 1, there
are isomorphisms P ⊗L → L. Prove that any such isomorphism maps P ⊗ 1
onto a K-submodule of L that is invertible inside L, and that in this way we
obtain an isomorphism Pic(K)→ C(K).
When L is a “field of numbers” (that is a finite dimensional field extension
of Q), and K its ring of integer elements, then K is a Dedekind ring, and in
[Samuel 2003] (Chap. III, §3.4., theorem 3) it is stated that C(K) is a finite
group; consequently Pic(K) is also finite.

(b) Let Q′(K) be the group of isomorphy classes of quadratic extensions of K that
are free K-modules; such a quadratic extension A admits a basis (1, z) with
z2 = βz − γ and β2 − 4γ ∈ K×. Prove that we obtain a group morphism
Q′(K) → K×/K×2 if we map the isomorphy class of any free quadratic
extension A to the discriminant β2 − 4γ modulo the subgroup of squares
K×2. Prove the injectiveness of this group morphism when K is a Dedekind
ring.
Besides, there is an exact sequence 0 → Q′(K) → Q(K) → Pic2(K). When
K is the ring of integers of a field of numbers, the group K×/K×2 is finite
(see [Samuel 2003], Chap. IV, §4.4); consequently the group Q(K) is finite.

(c) When K is the ring of integers of a field of numbers, it is known that the
subgroup Br2(K) is finite (see [Grothendieck 1968]); conclude that the group
H(K) is also finite.

(8.ex.19)* Let p be a prime integer ≥ 2, K the ring of p-adic integers (see
(1.ex.29)(d)), and L its field of fractions. It is known that K×/K×2 is a group of
order 2, whereas the order of L×/L×2 is 4 when p > 2, and 8 when p = 2 (see
[Serre 1970], chap. 2, §3.3). Besides, Br(L) is isomorphic to Q/Z (see [Serre 1962]
chap. 12, or [Blanchard 1972] chap. 5), and consequently Br2(L) contains only two
elements. Prove that H0(K) (resp. H(K)) is a group of order 8 (resp. 16) when
p > 2, of order 16 (resp. 32) when p = 2.
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Comment. K is a local ring with maximal ideal pK, and K/pK is isomorphic
to Z/pZ; since K is complete for the p-adic topology (see (8.ex.12)(c)), W(K) is
isomorphic to WQ(K/pK) = WQ(Z/pZ) which has been calculated in (8.ex.11).
According to [Auslander, Goldmann 1960], the completeness of the local ring K
also implies Br(K) = Br(K/pK) = Br(Z/pZ), whence Br(K) = 0.

(8.ex.20) Let (M, q) be a quadratic space; prove (by means of (6.7.10)) that the
class of C�(M, q) is trivial if and only if there exists a graded finitely generated
projective module P and a linear mapping F : M → End1(P ) satisfying these
conditions: rk(m, C�(M, q)) = (rk(m, P ))2 for all maximal ideals m, and F (a)2 =
q(a) idP for all a ∈M .

(8.ex.21) Let K be a ring in which 2 is invertible, κ an element of K×, and q the
nondegenerate quadratic form on K8 that maps every (λ1, . . . , λ8) to 1

2

∑8
n=1 κλ2

n .
Since the order of every element of H(K) is a divisor of 8, the graded Brauer class
of C�(K8, q) is trivial; this exercise leads to the construction of an isomorphism
C�(K8, q)→M(8, 8; K).

(a) Let us set A = C�(〈−2,−2〉)ng; it is a quaternion algebra with basis (1, i, j, ij)
such that i2 = j2 = −1 and ji = −ij ; its standard involution is denoted by
x �−→ x̄. Verify that A with the quadratic form x �−→ xx̄ is a quadratic space
isomorphic to 〈2, 2, 2, 2〉.

(b) Let A4 be the graded free module in which the even (resp. odd) elements are
those of A × A × 0 × 0 (resp. 0 × 0 × A × A). With every (x, y) ∈ A2 we
associate this endomorphism F (x, y) of A4 :

F (x, y)(a, b; c, d) =
(

x̄c + dȳ , xd − cy ;
κ

2
(xa− bȳ) ,

κ

2
(x̄b + ay)

)
.

Calculate F (x, y)2.
(c) Deduce from (8.ex.20) a graded algebra isomorphism C�(K8, q)→ End(A4).
(d) Let ϕ be the symmetric bilinear form on A4 such that, for all (a, b; c, d) ∈ A4,

ϕ((a, b; c, d), (a, b; c, d)) =
κ

2
(aā + bb̄) + (cc̄ + dd̄) ;

prove that, for all (a, b, c, d) and (a′, b′, c′, d′) in A4, and for all (x, y) ∈ A2,

ϕ
(
F (x, y)(a, b; c, d) , (a′, b′; c′, d′)

)
= ϕ

(
(a, b; c, d) , F (x, y)(a′, b′; c′, d′)

)
.

(8.ex.22)* Let P be the quadratic space P8 over Z defined just before (2.8.9),
and Q the quadratic space defined in (2.ex.23); the Z-modules P and Q are both
treated as additive subgroups of R8. Here we consider the real quaternion algebra
H with basis (1, i, j, ij) such that i2 = j2 = −1 and ji = −ij, and we identify R8

with H2. Consequently the element of R8 formerly represented by (x1, x2, . . . , x8)
is now represented by (x, y) with x = x1 + x2i + x3j + x4ij and y = x5 + x6i +
x7j + x8ij ; similarly we write (a, b) instead of (a1, a2, . . . , a8), and (c, d) instead
of (c1, c2, . . . , c8).
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(a) With every (x, y) ∈ H2 we associate the endomorphism F (x, y) of H4 sug-
gested by (8.ex.21):

F (x, y)(a, b; c, d) =
(

x̄c + dȳ , xd− cy ;
1
2

(xa− bȳ) ,
1
2

(x̄b + ay)
)

.

Suppose that (x, y) belongs to P , and (a, b; c, d) to Q ⊕ P ; verify that
F (x, y)(a, b; c, d) also belongs to Q⊕ P .
Comment. This verification probably needs a lot of calculation.

(b) Deduce from (8.ex.20) the existence of a graded algebra isomorphism
C�Z(P ) → EndZ(Q ⊕ P ). Here the elements of Q are even, and those of
P are odd.

(c) Prove that H(Z) is a trivial group, without using the difficult theorem stating
that Br(Z) is a trivial group (Hint: (2.8.14)).

(8.ex.23) Let X be an infinite set, and L the ring of all mappings X → Q. For
every subset Y of X , we call eY the function that maps all elements of Y to 1,
and all elements of X \ Y to 0.

(a) Prove that the mapping Y �−→ eY is a bijection from the set of subsets of X
onto Ip(L).

(b) By definition the “fractional support” of an element f of L is the subset of
all x ∈ X such that f(x) does not belong to Z, and K is the subset of all
elements of L with finite “fractional support” in X . Prove that K is a subring
of L, and that Ip(K) = Ip(L).

(c) Now let Ip′(K) be the subset of all e ∈ Ip(K) such that 2e is invertible in
Ke; it is an ideal of the boolean ring Ip(K). Prove that eY belongs to Ip′(K)
if and only if Y is a finite subset of X , and that Ip′(K) is not a principal
ideal of Ip(K).
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Dieudonné, J., La géométrie des groupes classiques, Springer Verlag, 1963.
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lier 25, 1982.
Helmstetter, J., Algèbres de Weyl et �-produits, Cahiers Math. Montpellier 34,

1985.
Hestenes, D., Space-time algebra, Gordon + Breach 1966, 1987, 1992.



Books and booklets 491

Hestenes, D., Sobczyk, G., Clifford algebra to geometric calculus, Reidel, 1984,
1987.

Hirzebruch, F., Neumann, W.D., Koh, S.S., Differentiable manifolds and quadratic
forms, Marcel Dekker Inc., New York, 1971.

Jacobson, N., Basic Algebra, vol. I and II, W.H. Freeman and Co., New York,
1974,. . . , 1995,. . . .

Knebusch, M., Kolster, M., Witt rings, Aspekte der Math., F. Vieweg und Sohn,
Braunschweig/Wiesbaden 1982.

Knebusch, M., Scharlau, W., Generic methods and Pfister forms, DMV Seminar
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Micali, A., Villamayor, O.E., Algèbres de Clifford sur un anneau local, duplicated
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d’un anneau de Prüfer, C.R. Acad. Sc. Paris 280, pp. 69–71, 1975.

Kaplansky, I., Quadratic forms, J. Math. Soc. Japan 5, pp. 200–207, 1953.
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Laborde, O., Formes quadratiques et algèbres de Clifford, Bull. Sc. Math. (2), 96,
pp. 199–208, 1972.
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spectivas em F́ısica Teórica”, Instituto de F́ısica da Universidade de São
Paulo, pp. 130–143, 1987.

da Rocha Barros, A.L., Schenberg e as álgebras geométricas da teoria quântica,
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Index of Definitions

additive quadratic form : 8.4
almost nondegenerate : (2.ex.14)
almost orthogonal (or orthonormal)

basis : 8.2
anisotropic : 2.7, 8.4
Arf invariant, − subalgebra : 3.7,

(3.ex.25)
associated bilinear mapping : 2.1
Azumaya algebra : (3.5.1)

balanced grading : (3.5.2)
bilinear module, − space : 2.5
Brauer (-Wall) group : 3.5

cancellation : (2.7.7)
canonical scalar product : (4.8.8)
Cartan-Chevalley mapping : (7.2.3)
Cartan-Chevalley criterion : (7.4.1)
central simple algebra (graded −) :

6.6
centralizer (graded −) : 6.5
Clifford algebra : 3.1
Clifford group : 5.1
cliffordian quadratic form : (4.8.1)
coalgebras, comodules : 4.1
comultiplication, counit,. . . : 4.1
conjugation : 3.1, before (3.6.8)
covariant or contravariant functor :

1.5

decomposable : 4.5
defective : (2.ex.6), (5.7.1), 8.4
definite (positive or negative −) : 2.8
deformation : (4.7.1)
derivation : (4.3.4), (4.4.4), (6.5.9)
determinant : 3.6

direct (or inductive) limit : (1.ex.27)
direct sum, − product : 1.3

direct summand : 1.13

discriminant module : 3.4, 3.8

divided powers : 4.6

divided trace (complex, twisted
−−) : 6.8

division algebra (graded −) :
(3.5.20), before (6.6.2)

dual category : 1.3

equivalence of categories : 6.4

exact sequence, − functor : 1.6

exponential : 4.5

extension of ring, − of module : 1.8

exterior algebra : 4.3

faithful functor : 6.2

faithful module : (1.13.3)
filtration : 3.1, 5.2

finitely presented : 1.8

flat, faithfully flat : 1.7, 1.9

fractions : 1.10

freely generated module : 1.3

functor : 1.5

. . . -g-linear : 6.2

generator of modules : 6.1, (6.2.9)
grade automorphism : 3.1, 3.2

graded center : (3.5.2)
grading (or gradation) : 4.2

half determinants : (2.ex.13)
homogeneous : 3.2, 4.2

hyperbolic space : 2.5
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indefinite : 2.8
infinitesimal. . . : 5.4
integral domain : 1.10
interior multiplication : 4.3, 4.4
invariance property : (5.4.1)
invertible module : (1.12.10)
involution of an algebra : (1.13.7)
irreducible module : 6.3
invertible module : (1.12.10)
invertible submodule : (1.ex.25),

after (5.1.12)
isotropic : 2.5

Leibniz formula : (4.1.3), (4.3.8),
(4.4.9), (4.4.10)

Lie algebra : 5.4
Lipschitz monoid, − group : (5.3.1)
lipschitzian : (5.3.1)
local ring, localization : 1.10
local property : 1.11
localization of q : 2.2

maximal ideal : 1.10
metabolic space : 2.5
Morita context (graded −) : (6.4.1)
multiplicative subset : 1.10

nondegenerate : 2.3
norm : (1.13.7)

opposite algebra : 3.1
orthogonal : 2.1, 2.3
orthogonal basis : 2.6
orthogonal group : 5.1
orthogonal sum : 2.4
orthogonal summand : 2.6
orthogonal transformation : 5.1

parity grading : 4.2
parity of a submodule T : 7.5
pfaffian : after (5.9.7)
Picard group : after (1.12.10)
prime ideal : 1.10
projective (or inverse) limit :

(1.ex.27)
projective module : 1.7, (6.2.8)

Prüfer ring : 8.3
purely inseparable : 8.5

quadratic extension : 3.4
quadratic form, − mapping : 2.1
quadratic module, − space : (2.5.1)
quaternion algebra : 3.3, end of 3.6,

3.8
quotient module : 1.3

radical of a ring : (1.10.2)
rank : 1.12
reduced center : after (5.1.5)
reflection : 5.5
regular filtration : 5.2
regular grading : (3.5.2)
residue field : 1.10
reversion : (3.1.4)

scalar component : end of 4.8
scalar product (admissible −) :

(4.8.6)
scalar product (on a module) :

(6.8.10), 7.3
semi-simple module (or algebra) :

5.3
separable (graded −) : 6.5
shifted grading : 6.2
signature : after (2.8.1)
simple algebra (graded −) : 6.6
spectrum of a ring : 1.11
spinor : (6.2.2), end of 7.3
spinorial group : (5.ex.24)
spinorial norm : (5.ex.21)
splitting exact sequence : 1.6
standard involution : (1.13.7)
support : before (7.6.4)
symmetric algebra : 1.4
swap automorphism : 3.2

tamely degenerate : before (5.6.7)
tensor algebra : 1.4
tensor product : 1.3, 2.4
totally isotropic : 2.5
trace : (1.13.7), 3.6
twisted algebra : 3.2
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twisted module : 6.2
twisted inner automorphism : 5.1,

especially (5.1.5)
twisted opposite algebra : 3.2
twisted opposite bilinear form : 4.7
twisted tensor product : 3.2
type (even or odd) : 2.8, (3.5.14)

universal object : 1.2

Villamayor group : (3.ex.18)

Weyl algebra : (4.ex.18)
Witt rings : 2.7
Witt-Grothendieck rings : 2.7

Zariski extensions : (1.10.6)
Zariski topology : after (1.11.1)
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Here every algebra is denoted by A (or B), every module by M (or N),. . . . Only
notations that are important, or that are used several times, are recalled here.
According to the context, single letters like β, γ, ε, ϕ,. . . may also be used with
another meaning than the one recalled here.

A× : 1.1
Ao , At , Ato : 3.1, 3.2
(A2)g : 3.5
(A≤k)k∈Z : 3.1 and 5.2
Ang : 3.8
AD : 3.8
A ⊗̂KB : 3.2
[a] , ((a)) : 8.1
[a, b] , ((a, b)) : 8.2
〈a〉 , 〈a1, a2, . . . , an〉 : 2.6
〈a1, b1; a2, b2; . . . ; an, bn〉 : 8.2
Alg(K) : 1.1
Aut(M, q) : 5.1
bq : 2.1
BilK(M, N) : 2.1
BLip(V, q) : 7.2
Br(K) , Brg(K) : 3.5
Br2(K) : 8.6
βto , β′′ , β′′· , [β] ,. . . : 4.7
C : 1.1
CK(N) : 2.4
Com(K) : 1.1
C�K(M, q) , C�≤k(M, q) : 3.1
C�0(M, q) , C�1(M, q) : 3.2
C�(M, q; β) : 4.7
C�k(M, q) : 4.8
C�(M, q; V )≤k,

C�(M, q; U, V )k : 5.2

C�≤2
0 (M, q) : 5.4

cp.dv.tr(τ) : 6.8
∂x : 3.1 and 4.2
dq , dϕ , dβ , dto

β ,. . . : 2.3 and 4.7
det(f) : 3.6
Disc(K) : 3.8, also (3.ex.27)
Derg(A, M) : 6.5
EndK(M) : 1.1
Endg

A(M) : 6.2
Exp(x) : 4.5
εA , ε′A : 4.1

ε , ε′ : 4.3
f ∧ g , x � f , f �x : 4.3 and 4.4
Fy : 5.5
Gx , GX : 5.3
GC�(M, q) , G′C�(M, q) ,

G′′C�(M, q) : 5.1
GLip(M, q) , G′Lip(M, q) ,

G′′Lip(M, q) : 5.3
GO(M, q) : 5.1
Gr(A) , Grk(A) : 3.1

Γ2
K(M) , γ : 2.1

H : 1.1
H(K) : 8.6
H[M ] , H(M) : 2.5
HomK(M, N) : 1.1

Hom∧(A, B) : 4.2
Homg

A(M, N) ,
HomA,0(M, N) : 6.2

idM : 1.2
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IdC : 2.4
Im(f) : 1.6
Ip(K) , Ip′(K) : 3.4
Kp : 1.10
Ker(f) : 1.6
Ker(q) , Ker(bq) = Ker(dq) : 2.2
Lip(M, q) , Lip(M) , Lip∗(M) : 5.3
�ip(M) : 5.9∧

K(M) : 3.1 and 4.3∧∗(M) = Hom(
∧

(M), K) : 4.3∧
(M ; β) : 4.7∧max(U) : (3.2.6)

M∗ : 1.7
M⊥ : 2.3
Mp : 1.10
M c , M t , M s,. . . : 6.2
M(M, ϕ) : 2.5
M ⊗K N : 1.3 and 2.4
M ⊗A N : 6.4
M ⊥ N : 2.4
M(m, A) , M(m, n; A) : 6.6
Mod(A) : 1.1
Modg(A) , Mod0(A) ,
Mod(Ato) : 6.4

µ2(K) , µ4(K) ,
µ8(K) : (3.4.14), 6.8

N : 1.1
N (x) : (1.13.7)
par(p; U, T ) : 7.6
Pic(K) : 1.12, also (3.ex.27)
π , π∗ , π′ , π∗ : 4.3
πA , πM , π′

A , π′
M : 4.1

πq , π′
q : 4.4

ϕ : often as in 2.4 or (1.13.7)
Q : 1.1
Q : 3.8, 8.6
Q(K) , Qg(K) : 3.4
QuadK(M, N) : 2.1
QZ(A) : 3.5
QZ(M, q) : 3.7
R : 1.1
Rx : 7.2
rk(p, M) : 1.12
Rad(K) : (1.10.2)

ρ : 3.1
SK(M) : 1.4
S−1K , S−1M : 1.10
Scal(x) : 4.8
SO(M, q) : 5.6
Spec(K) : 1.10
Spin(M, q) : end of 7.3
Spin±(M, q) : (5.ex.24)
σ : 3.1 and 4.3
 ,  ∧,. . . : 4.1 and 4.2
TK(M) : 1.4
T (M, q) : 7.2
tr(x) : (1.13.7), 3.6
tr(f) : 3.6
tw.dv.tr(τ) : 6.8
Θx , ΘX : 5.1
τ : (3.1.4)
V(a) : 1.10
WB(K), WQ(K), W(K) : 2.7
WGQ(K), WGQ(K), WG(K) : 2.7
WIQ(K), WIQ(K), WI(K) : 2.7
Z : 1.1
Z(A) , Zg(A) , Z(A0, A) : (3.5.2)
Zg(θ) , Zr(θ) , Zr(A) : 5.1
Zg(A, M) : 6.5
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