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Preface

This book is an attempt to bring closer the greater vision of the development
of Social Informatics. Social Informatics can be defined as a discipline of
informatics that studies how information systems can realize social goals, use
social concepts, or become sources of information about social phenomena.
All of these research directions are present in this book: fairness is a social
goal; trust is a social concept; and much of this book bases on the study of
traces of Internet auctions (used also to drive social simulations) that are a
rich source of information about social phenomena.

The book has been written for an audience of graduate students working
in the area of informatics and the social sciences, in an attempt to bridge
the gap between the two disciplines. Because of this, the book avoids the use
of excessive mathematical formalism, especially in Chapter 2 that attempts
to summarize the theoretical basis of the two disciplines of trust and fair-
ness management. Readers are usually directed to quoted literature for the
purpose of studying mathematical proofs of the cited theorems.

Social Informatics in general, and Trust and Fairness Management in
particular, can benefit from the social sciences not just for a theoretical
foundation of knowledge about human behavior, but also for a wealth of
empirical observations that can be used to justify design choices and moti-
vate new methods or algorithms. For this reason, this book has attempted
to emphasize the existence and meaning of such empirical research in the
social sciences. Sometimes it is also possible to point out empirical studies
from informatics that may be of interest to social scientists. These studies are
usually based on data mining and exploration, and can result in hypotheses
that may be verified by social experimentation.

The book has based on research supported by two grants of the Polish Min-
istry of Science and Higher Education: 69/N-SINGAPUR/2007/0 (mTeam)
and N N516 4307 33 (uTrust).
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Chapter 1

Introduction

Love all, trust a few,
Do wrong to none.
“All’s Well That Ends Well”.
William Shakespeare

Information technology today is a vast body of knowledge that has found
applications in most areas of human activity and thought. With the prolif-
eration of the Internet and its various applications, the role of information
technology in society has become vital and is rapidly increasing in impor-
tance. It can be said that the Internet has become intertwined with society;
and with each new generation of Internet users, information technology be-
comes applied not only more widely, but also affects our society and personal
lives more deeply. We are witnessing the birth of the real e-society.

For these reasons, is becoming important to start asking questions con-
cerning information technology that were previously been of little meaning.
At first, the most important criterion for the evaluation of information tech-
nology was performance. With increased adoption of information technology,
issues of security and usability became more important for IT users. Now,
as an entire society begins to use the Internet and IT technology, new criteria
are becoming necessary for its evaluation. These criteria are based on the is-
sues that have always been of the highest importance for societies. Among
these, a prominent role is played by the two concepts of trust and fairness.

Considering trust and fairness in information technology development also
raises new challenges for systems research, mathematics, economics, sociol-
ogy and psychology. The birth and growing maturity of the e-society is lead-
ing to the development of new, interdisciplinary areas of scientific inquiry,
such as the social aspects of Internet usage or the psychology of computer
games. Information technology should benefit from the results of the other
disciplines. This is especially important since information technology already
largely copies social mechanisms. Examples of such copies are Internet auc-
tions, Internet fora, and social systems using Web2.0 technology. While the
social mechanisms that are adopted by information technology may have
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2 1 Introduction

been proven to work in real societies, they often require improvement in the
e-society because of the inherent properties of systems created by informa-
tion technology. In this book, we focus on two such properties: the openness
and distribution of information systems. These two properties have, in our
opinion, a fundamental impact on the e-society.

In this book, we consider two areas of modern information technology:
trust management and fairness management in open, distributed systems.
While these two areas have mostly been considered in separation, this book
will aim to demonstrate their interconnections, and to establish a theoretical
foundation for the joint consideration of trust and fairness. We shall attempt
to show how results from social sciences can be applied to understand and
possibly improve trust and fairness management. However, the book takes a
systems approach, and presents results from the area of information technol-
ogy. Interestingly, while some of these results have been inspired by the social
sciences or by the mechanisms of real society, other solutions for trust or fair-
ness management seem to be the result of purely technical or mathematical
thought. We hope that the contents of the book could also prove interesting
to representatives of the social sciences, especially if they are interested in
the e-society. In this work, we have attempted to create a basis for common
understanding between the social sciences and information technology in the
area of trust and fairness management.

1.1 Open Distributed Systems

The concept of Open Distributed Systems (ODS ) is used as a model for many
kinds of systems studied in this book. The ODS model is very general, yet it
attempts to capture the most significant properties of systems used in the e-
society. Using the ODS model also us allows to recognize similarities between
solutions used in widely different applications or even to transfer successful
mechanisms to new application domains that can also be modeled as ODS.

ODS are an important part of the dynamically developing Knowledge Econ-
omy. We can define ODS as systems that are decentralized in the sense that
there is not exist a complete centralized control over all system components
and functions, and which are open in the sense that agents are able to join
and leave the system easily at any time. Examples of ODS include: the IP net-
work, Peer-to-Peer (P2P) overlay networks, ad-hoc networks, grid systems,
online auctions, e-commerce systems and virtual organizations (for example,
e-businesses) based on Web Services and the Service-Oriented Architecture
(SOA). The success of ODS is mainly due to the fact that they create new
possibilities for interactions between independent participants (agents). This
is achieved by lowering the barriers of entry and communications between
agents. In short: increasing the openness of the system. However, due to
the distributed nature and large scale of ODS, complete, centralized control
cannot be ensured. Moreover, the openness of the ODS results in dynamic
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changes of ODS structure. ODS dynamics makes it even harder to design
effective control mechanisms.

As a result of ODS openness and distribution, agents make decisions under
uncertainty: their outcomes depend on the decisions of others. Furthermore,
the openness and lack (or weakness) of central control in ODS often makes
it impossible to prevent conflicts of interests between agents. In ODS, the
question of fairness therefore becomes important. Increasing the fairness of
ODS can increase the participation of agents in these systems. Equally im-
portant as the fairness of the system, the issue of trust in other agents is of
great significants for ODS users. Trust allows these users to participate in
the ODS even if they cannot be completely certain of how their outcome will
be affected.

To see why ODS are closely related to trust and fairness, consider for a mo-
ment a system that is not an ODS. This means one of two things: either the
system is closed, by which we will mean that the set of agents that participate
in the system is not very large and known in advance; moreover, no (or very
few) new agents join the system during its operation. Another possibility
why the system is not an ODS is that it has a permanent centralized control
over most operations and functions (the two possibilities are not mutually
exclusive). In the first case of a closed system, agents will have repeated in-
teractions with each other, and this should constitute a strong incentive to
behave fairly, as well as remove the uncertainty caused by dealing with un-
known agents. If an agent does not follow the rules of the system, he can
most likely be detected and punished, possibly by removal from the system
or by a reduction of his access privileges. In the latter case of a system with
centralized control, the controller will have knowledge about all agents, and
the possibility of using this knowledge to detect and punish misbehavior in a
similar manner as in the closed system. This ability of the controller removes
the need for trust among the agents, replacing it with the need of strong
trust in the controller. As a matter of fact, many centralized systems (such
as client-server systems) make use of an a priori assumption of complete trust
in the centralized control element.

The above reasoning shows that the definition of an ODS is sometimes
fuzzy, because the important thing is the degree of openness and lack of cen-
tralized control. Often it is quite possible to rely on a completely trusted cen-
tralized control, and indeed sometimes this is the only practical solution. Yet,
in many cases, there exist important reasons for attempting to reduce the
functions and involvement of the centralized controller in the system. Simi-
larly, in some applications it is possible to control the membership of agents
(although this is a less frequent approach in Internet-based applications).

While open, distributed systems are a subject within interest of informa-
tion technology, there are several examples of such systems that are com-
pletely non-virtual. In these non-virtual ODS, issues of fairness and trust are
none the less important.
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1.1.1 Non-virtual Examples of ODS

Many aspects of real society can be modeled as ODS. Consider the problem
of shopping for groceries. The groceries market can be considered as an open,
distributed system without strong and permanent central control. Buyers en-
counter the risk of purchasing stale or unpalatable groceries. While they may
inspect the goods directly, sometimes this is not enough, as not all flaws may
be discovered without tasting or opening the goods. For that reason, buyers
often rely on brand in their selection of goods, and select brands that have
been tested before. The use of brands is of course a mechanism found on most
markets. In Trust Management terms, brand is referred to as reputation, and
is one of the most important TM methods. Note that in virtual markets,
inspecting the goods is often impossible or very difficult, and reputation is
frequently a very important source of information in the selection of sellers
or goods. Fairness Management is also required in a groceries market, but
it is mostly reduced to ensuring the procedural fairness of transactions. For
example, if someone buys stale groceries, the seller is usually expected to
return the money. If he does not, it would be theoretically possible to go
to court; notice, however, that this is usually impractical, and that the real
punishment of the seller is by reducing his brand value. This example imme-
diately shows the interconnection between Trust and Fairness Management
in non-virtual ODS. Market mechanisms are also a special method to solve
very general distribution problems. Distributional and procedural fairness are
therefore implicitly considered by markets.

A completely different example is car traffic. Car traffic can once again
be modeled as an open, distributed system. The decisions of drivers are au-
tonomous and can have a large impact on the safety of others. Many diverse
mechanisms motivate drivers to act fairly (following the established car traf-
fic laws). The strongest by far is the instinct of self-preservation; yet, in some
drivers, this motivation is not always sufficient. A question arises as to why
we are willing to depend on other drivers obeying basic traffic laws to some
extent. Reputation cannot be applied in this case, since we know nothing
about other drivers’ past behavior. The degree of trust we have concerning
other driver’s behavior is obtained, among other things, from the existence of
the traffic police. Since the police can sometimes intervene and punish unfair
behavior, car drivers can be expected to follow the basic traffic laws. Once
again, traffic police function as a mechanism for ensuring procedural fairness,
but also establish trust in drivers who obey traffic laws.

In observing the two above examples, it should be evident that many phe-
nomena that occur in a non-virtual society can be modeled as open, distrib-
uted systems. Yet, this book will focus on methods of information technology
that must be applied for virtual or partially virtual ODS. Due to the increased
openness of virtual ODS, many of the mechanisms from real-life cannot be
directly applied in virtual ODS. Law enforcement is one such example. Due
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to the weakness of international law enforcement, differences in national laws,
and the geographical distribution of ODS users, law enforcement is very hard
to apply in order to ensure fairness and establish trust in virtual ODS. In the
next section we will consider examples of virtual ODS and discuss the special
requirements of these systems that lead to the study of trust and fairness in
ODS.

1.2 Trust and Fairness Requirements in ODS

The development of virtual ODS and of subsequent special problems, such as
Trust and Fairness Management in ODS, is a result of the ongoing innovation
processes. Figure 1.1 illustrates how innovation can lead to the development
of new distribution problems, and in turn, to the use of new methods to solve
these problems. The role of innovation in this process is the creation of new
resources or costs that need to be distributed. As a first example, consider
radio communication, which introduced the problem of fair distribution of
communication frequencies. This problem is now solved by international and
national agreements and law, for example by the International Telecommu-
nication Convention1.

Fig. 1.1 Examples of Fairness Requirements Due to Innovation

1 This document, dating from January 1st, 1934, established the International
Communication Union. It has since been revised many times, and thoroughly
changed in 1992, but remains the main source of international law regarding the
global distribution of communication frequencies.
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The Internet is another example of a rather far-reaching innovation that
has, among other things, lead to several distribution and trust management
problems. In this discussion, the concept of the Internet is limited to the
first four layers of the ISO/OSI stack, excluding Internet applications that
are considered separately. A number of distribution problems have become
of increased importance due to the widespread adoption of the Internet.
Figure 1.1 shows three examples of such problems: the problem of fair net-
work access, the problem of fair network throughput distribution, and the
problem of IP and DNS addresses distribution. The first of these is not re-
ally a distribution problem, rather; it is a problem of providing fair conditions
and opportunities for citizens. A number of government and international aid
programs in many countries aim to solve this problem, by reducing the so-
called digital divide: providing fair access to computers and the Internet.
This subject is especially important in developing countries and for children
living in poverty. Fair DNS address distribution is a subject of ongoing legal
controversy, while the distribution of IP addresses is sometimes the issue of
international politics. Another problem, the issue of fair throughput distri-
bution, has several dimensions. Throughput can be distributed dynamically
in the short term between Internet users by the TCP protocol – one of the
first examples of a technological solution to fair distribution problems in the
Internet. However, network throughput is also controlled by Internet service
providers, who can influence its distribution using traffic engineering (such
as MPLS technology). The operators can take into account the prices paid
by Internet users, but also need to take into consideration the question of
fairness.

The Internet also causes a need for Trust Management. A number of secu-
rity threats with regard to the Internet cannot be solved without trust. The
very basics of Internet security, such as the distribution of keys for public-
key cryptography, rely on trust relationships; without trust in the certificate
authorities of the Public Key Infrastructure (PKI), e-business, e-commerce
and e-banking could not function. The example of PKI also demonstrates the
need for an improvement of Trust Management in the Internet, as Public Key
Infrastructure adoption is slow and often delays the adoption of new Internet
applications. Greater flexibility and resilience of Trust Management could
improve key distribution, resulting in greater security and faster adoption of
new applications.

Among Internet applications, there are numerous examples of fair distri-
bution problems. Figure 1.1 displays two of them: the problem of fair dis-
tribution of content distribution cost in P2P networks, and the problem of
fair distribution of grid resources. The first problem is solved in a number of
ways, among them incentives for participation in cost sharing, and reputation
systems (which are a type of trust management). Fair resource distribution
in grids is solved using scheduling. These examples all show how technolog-
ical means can be used to solve fair distribution problems that arise due
to innovation. Most of these problems today arise in various types of Open
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Distributed Systems, mainly because this is the system architecture of choice
for Internet applications.

Figure 1.1 does not exploit the whole spectrum of fairness requirements
in ODS. Let us mention the problem of Internet auctions, or the problem of
Internet games, both of which are a special kind of fairness problem. These
problems are not distribution problems, but rather problems of “fair play”.
Still, they are an important variety of fairness problems in ODS: the main
source of these problems is the possibility of the violation of fair agreements
by users who wish to exploit others.

Let us look at some of the areas mentioned in more detail, in order to
understand their requirements for trust and fairness.

1.2.1 Network Protocols

Some network protocols, notably the Transfer Control Protocol (TCP), link
layer multi-access protocols, need to consider fairness explicitly. One of the
goals of these protocols is the solution of distribution problems, like the dis-
tribution of throughput by TCP, or the distribution of link bandwidth by the
multi-access protocols. Most of the proposed solutions cannot use centralized
control, with the exception of some multi-access protocols that use polling
or other forms of centralized coordination. Fairness is also an issue for IP
routing protocols that control the critical infrastructure of the Internet. IP
routers execute the Border Gateway Protocol that takes into account market
agreements between Internet service providers and thus solves a distribution
problem. Trust is an issue for access control protocols used widely in the In-
ternet. Many of these protocols rely on implicit or explicit trust relationships,
and newer protocols also utilize trust negotiation mechanisms.

1.2.2 P2P and Ad-Hoc Networks

One of the recent advances of Internet technology has been the develop-
ment of the Peer-to-Peer (P2P) computing model that attempts to exploit
the resources of Internet hosts (end-systems) to achieve a greater scalability
and fault-tolerance than traditional client-server systems. The P2P model is
also applicable in circumstances when centralized server infrastructure is not
available, such as in wireless ad-hoc networks. P2P and ad-hoc systems have
many similarities, as both need to solve routing problems in very dynamic
environments. Both P2P and ad-hoc networks are good examples of ODS.

The lack of central control in P2P and ad-hoc networks creates the possi-
bility of exploiting other agents, often referred to as free-riding. Combating
free-riding is a form of Fairness Management. P2P and ad-hoc systems are
also vulnerable to malicious adversaries that can alter the behavior of ser-
vices. Trust Management can be used to combat such adversaries.
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1.2.3 E-commerce

Global e-commerce systems often rely on Trust Management (usually repu-
tation) systems to combat fraud that cannot be prevented using global law
enforcement. One area experiencing such problems are popular Internet auc-
tions such as e-Bay. Reputation in these systems is an important capital that
can have an impact on prices and revenues. Still, reputation systems used in
e-commerce today are vulnerable to whitewashing, discrimination, coalition
attacks, Sybil attacks, and a variety of other adversary strategies that will
be the subject of chapter 3. Their improvement is therefore of significant im-
portance to the global e-economy, especially when taking into consideration
the volume of e-commerce today.

1.2.4 Virtual Organizations and Grids

E-business and e-government are various forms of virtual organization that
are often constructed using a set of network protocols referred to as Web Ser-
vices. These protocols enable the composition of services provided by various
organizations into more complex services or workflows. Another example of
systems that use Web Services are grids. All systems using Web Services are
examples of ODS, although they can have more centralized control than, for
example, P2P systems – usually because of a smaller scale. Still, virtual or-
ganizations and grids also make use of TM and require FM to solve complex
distribution problems. The latter issue is especially important in grids that
distribute resources through complex scheduling.

1.2.5 Fair Resource Allocation in Telecommunication
Networks

Telecommunication networks are usually managed by a single organization
which reduces the need for Trust Management. However, network operators
must solve a problem of resource distribution, usually by a special design or
traffic engineering in their networks. These distribution problems require a
consideration for fairness. The solutions obtained can be applied dynamically
using traffic engineering based on MPLS technology.

1.3 Goals of This Book

Many of the solutions that satisfy fairness requirements both in virtual, and
non-virtual ODS have similarities in their approach and structure. A schema
for such solutions is shown in Figure 1.2. The various kinds of fairness solu-
tions used in ODS rely on fair procedures or negotiations for the establish-
ment of a fair resource or cost distribution or for the establishment of a fair
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agreement. Fair agreements or fair distributions are sources of rules of indi-
vidual fair behavior. Fair procedures can also be the source of such a rule that
leads to the emergence of a fair distribution. However, in an ODS, rules of
fair behavior may not be followed; users need incentives for following rules, or
rules need to be enforced. Another issue is that the rules can be questioned,
and that their fairness needs to be validated. Most of the examples of fair
technological solutions discussed above are examples of fair procedures: TCP
can be thought of as a fair procedure for dynamic throughput distribution;
scheduling in a grid system is another example. Examples of fair agreements
are the rules of an Internet game, or a transaction that has been made in an
Internet auction system.

Fig. 1.2 Schema of solutions for satisfying fairness requirements and the role of
Trust Management

Trust management can be used to support a variety of solutions for satis-
fying fairness requirements. Enforcement of and incentives to follow fair rules
can be supported by trust management. An example of an incentive is the
value of reputation to a user. Examples of rule enforcement using trust ma-
nagement are the use of escrow services in Internet auctions, or the use of
trust management in Internet games (see section 4.2). In addition, trust man-
agement can also support the process of arriving at a fair distribution or a fair
agreement; for example, the reputation of users can be used in the process of
an Internet auction, which is an example of a negotiation in an ODS.

The subject of this book will be the various algorithms, system designs,
protocols and methods used for Fairness and Trust Management in virtual
ODS. Our goal is to emphasize and point out the interconnections between
the two areas, as well as to demonstrate the common features of various
Trust or Fairness Management approaches. The next chapter of this book will
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aim to create a synthesis of the theoretical knowledge of Trust and Fairness
Management, based on various disciplines, not just on information technol-
ogy. This chapter presents a theory of distributional fairness referred to as
theory of equitable optimality (see section 2.3.2). This theory will be used
throughout the book because it provides measures of distributive fairness
and methods for improving distributional fairness or even finding solutions
that are optimal with respect to distributional fairness. Chapter three is de-
voted to Trust Management and attempts to present universal methods and
algorithms of TM, while also discussing specialized TM applications. Chap-
ter four covers different kinds of Fairness Management, discussing various
case studies of application of the theory of equitable optimality introduced
in chapter two. These applications have been selected in order to represent
different solutions methods, system designs and usage scenarios. Chapters
three and four base on the theory presented in chapter two, which is build
required for a deeper understanding of the presented methods.

Among the most significant new findings reported in this book is the val-
idation of the Fairness Emergence Hypothesis at the end of chapter 4. This
hypothesis states that if a trust management system is working well, then
improved distributional fairness (in the sense of the theory of equitable opti-
mality) will emerge in the system. This allows to circumvent the difficulty of
providing distributional fairness in a completely decentralized system. The
validity of the hypothesis also has theoretical significance, because it shows
that in systems (or human societies) with no trusted central control, a mea-
sure of distributional fairness can be achieved if most agents can trust each
other (even if some agents behave unfairly). The book also proposes a new
trust management system for Internet auctions (see section 3.5) based on a
detailed analysis of a trace of real Internet auction usage. The conclusions of
this analysis allow us to define a better way of representing and processing
computational trust. A theoretical value of the empirical analysis of Internet
auction users is that it confirms another theoretical relationship between the
concepts of trust and fairness. In the comments sent to the reputation system
of the Internet auction platform, users most commonly report violations of
fair procedures that are part of a code of conduct for Internet auctions.



Chapter 2

Theory of Trust and Fairness

Hard models, soft thinking; soft models, hard thinking. Harold Barney, 1978

The subject of this book is an area of research that is in the scope of interests
of many disciplines. While the main focus of this book is on information tech-
nology, it cannot be denied that sociology, economics, psychology, as well as
mathematics (most prominently, game theory) have contributed extensively
to the subject. Moreover, research in information technology often based on
the results from other disciplines. For this reason, the following chapter will
summarize the most important theoretical contributions of the various disci-
plines, especially with regard to their possible contributions to information
technology.

2.1 Basic Concepts of Trust Management and Fairness

The goal of this section is to introduce the most general concepts used
throughout the book. The definitions of these concepts will not be stated
formally, but rather we shall aim to establish an easier understanding of the
terms, which will be considered in more detail (and in some cases, using
mathematical formalism) in later parts of the book.

2.1.1 Agent, Encounter, Action and Context

The participants of an ODS will be referred to as agents . The interactions of
agents in the ODS take place during encounters of two or more agents. Dur-
ing an encounter, each agent can choose and execute one or more actions (the
choice of these actions is usually autonomous). Finally, the concept of context
is difficult to define, as it has a different meaning depending on the applica-
tion. Here, let us state that context is metainformation about the agents, the
encounter, or about encounters of third parties.

A. Wierzbicki: Trust & Fairness in Open, Distributed Sys., SCI 298, pp. 11–69.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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An important consequence of our encounter definition is the conclusion
that an agent’s decision in the encounter can be the choice of one of the avail-
able actions. Contrary to much trust management research, the decisions ma-
de by the agents are therefore not binary. An agent does not make a decision
whether to trust or not to trust; rather, the agent chooses one of the available
actions (in some encounters, there may be just two actions available).

2.1.2 Trust Management

Trust Management (TM ) can be defined as a special method of decision
support under uncertainty. The most general and abstract statement of the
TM problem is in fact as a decision making problem: an agent considers
a situation in which she must make a decision about the choice of action.
The outcome of the action is uncertain, as it will depend on the decisions
made by other agents. In an ODS, the behavior of agents is autonomous and
usually not subject to central control. Moreover, agents often join or leave the
system, and the number of agents in the ODS can be very large. Therefore,
an agent often encounters other agents previously unknown to her. This is
the reason for the uncertainty of the outcome. The aim of Trust Management
is to support the agent in making a decision under uncertainty by establishing
trust or distrust in the other agents on whose actions the decision maker’s
outcome depends .

2.1.3 Trust, Trustworthiness and Reputation

Trust is a concept derived from the humanities and our own common expe-
rience. In fact, its use in information technology can be seen as an instance of
anthropomorphic reasoning, as the agents in an ODS are not always humans,
yet the concept of trust is still applied to them1. There are several known
definitions of trust that will be discussed in more detail below. Here, let us
define trust (and distrust) in the most abstract manner as a relation between
a trustor and a trustee in a context . The existence of this relation can be
represented as a specific state of the trustor. Both trustor and trustee are
agents or groups of agents of the ODS.

Let us here introduce another important aspect of our definitions of trust.
While the definition of trust given above should remain valid even if we
introduce more detailed and restrictive definitions later, it is important at
this point to distinguish between two kinds of trust that will be considered in
1 Note that in our previous definition of ODS in section 1.1, it was not assumed

that agents (if they are not humans) are intelligent or apply reasoning. However,
this possibility should not be excluded. An agent can be modeled using, for
instance, the Believe-Desire-Intention framework, or some similar formalism of
Distributed Artificial Intelligence (DAI) or Multi-Agent System (MAS) theory.
Then, the ODS can be considered as an intelligent system.
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this book. These are human trust and computational trust . Throughout the
book, the term human trust will refer to a mental state of humans. Human
trust has been studied by psychology, sociology, anthropology, economics
and other sciences (such as neuroscience), and many of the definitions and
observations described later in the book apply to some extent to human trust.
However, it should be clear that human trust is a very complex concept that
can perhaps never be precisely defined and fully understood. Computational
trust, on the other hand, is a term that describes representations of trust used
in trust management systems. These representations can be based on trust
definitions that could also apply to human trust. Moreover, computational
trust is usually processed in a manner that aims to replicate how humans
reason about human trust. Finally, the aim of trust management systems is
to establish human trust through computational trust, if the users of the TM
system are humans. In some cases, the agents that use the TM system are
artificial, and then the TM system only provides information in the form of
computational trust that is processed by these agents (perhaps using some
reasoning rules).

The concept of trust is defined here as a relation. However, a related con-
cept is trustworthiness , which is not relational, but is instead a property of
an individual agent (or a group of agents). Trustworthiness can be defined as
the objective, context-dependent quality of deserving trust. In other words, an
agent is trustworthy in a context if many other agents can trust him in this
context. The concept of trustworthiness can differ depending on how many
agents should trust the trustor: we can require that all agents or a majority
of agents do so. Frequently, trustworthiness is believed to be a function of
an agent’s attributes, like the agent’s professional standing, external appear-
ance, or other objective properties. However, this is a misconception. The
attributes of an agent that are believed to be the basis of trustworthiness
are the reason for trust propagation based on similarity (see section 2.2.7).
Trustworthiness is an intrinsic property of an agent that can be thought of as
a function of the agent’s norms or values (if the agent is human). Moreover,
it is hard to use the concept of trustworthiness in practice. Almost all data
that can be obtained by a trust management system is relational in nature;
because of this fact, it is much easier to evaluate or estimate trust than it is
to judge the trustworthiness of an agent.

Another concept that can be derived from our common sense, and from
economics, is the concept of reputation. The distinction between trust and
reputation is one of the earliest theoretical achievements of Trust Manage-
ment research [143]. The most abstract definition of reputation is: informa-
tion about the trustee that is available to the trustor and is derived from the
history of the trustee’s behavior in some contexts . Note that from this defini-
tion it can be seen that reputation can establish human trust (and therefore,
in some trust management systems, computational trust is not used at all.
These TM systems shall be referred to as reputation systems).
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2.1.4 Risk and Uncertainty

For the purposes of this book, we shall use a simple definition of risk: risk
is the expected variation of the outcome of an agent in an encounter. Note
that this variation may be calculated precisely only if the agent knows the
probabilities of the other agent’s behavior (and if the agent’s behavior can
be modeled probabilistically). Then, risk is determined by the expected de-
viation from the expected outcome, and is therefore always expressed in the
same units as the agent’s outcome. There can be many ways of estimating
risk, as sometimes the available samples are too small to use simple proba-
bilistic formulae; in credit risk, for example, complex econometric and data
mining methods are used to estimate risk. In this chapter, we shall assume
that a risk estimate is available; however, methods of calculating risk esti-
mates are beyond the scope of the theory of trust.

In many practical cases, there is insufficient information about the en-
counter and the participating agents to calculate good risk estimates. In-
stead of the term of risk, we shall use the term of uncertainty to denote the
unknown variation of outcome. The worst-case estimate of risk could be as-
sumed in such a case: if an agent chooses an action in an encounter, then his
outcome will depend on the actions of other agents. The worst case estimate
of risk is then the difference between the best case outcome and the worst
case outcome for the chosen action.

2.1.5 Fairness

After trust management and trust, fairness is the most important concept of
this book. It is therefore critical to understand it clearly. Although extensively
studied [190], fairness is a complex concept that depends much on cultural
values, precedents, and the context of the problem.

Fairness has been studied for a long time in the areas of mathematics and
economics, as well as in philosophy, anthropology and other social sciences. It
is important to understand that the concept of fairness does not have to use
concepts from the area of ethics or morality. Fairness can be defined clearly
in a specific context, and further, some concepts of fairness can have a strong
mathematical foundation. This statement does not mean that ethical or moral
considerations do not have an impact on fairness. On the contrary, ethics
and morality establish norms of human conduct that influences fairness. The
relationship between these concepts becomes clearer when using the abstract
definition of fairness outlined below.

Much of the research on fairness has been carried out in the area of the
social sciences, especially social psychology. The results of this research allow
us to understand what the preferences of people are regarding fairness, and
how people understand fair behavior. Research on fairness in the social sci-
ences will be reviewed in section 2.3.4. Interestingly, much of the research in
this area has been influenced by the seminal work of Deutsch, who is also the
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author of one of the basic psychological theories of trust [38, 40]. To begin our
discussion of fairness, let us begin with three general kinds of fairness judge-
ments identified by social psychology [166]: distributive fairness, procedural
fairness and retributive fairness. This book focuses mostly on distributive
fairness. Distributive fairness is usually related to the question of distribu-
tion of goods, resources or costs, be it kidneys for transplantation, parliament
mandates, or the costs of water and electricity. The goal of distributive fair-
ness is to find a distribution of goods that is perceived as fair by the agents
concerned. Procedural fairness focuses on the perceived fairness of procedures
leading to outcomes, while retributive fairness is concerned with rule viola-
tion and the severity of sanctions for norm-breaking behavior. It is possible
to think of distributive fairness as a special kind of procedural fairness. If a
distribution problem can be solved fairly, then a fair procedure would require
all agents to take a fair share of the distributed goods or cost. Procedural
fairness, however, is also applied in the case where a fair solution cannot be
found beforehand or cannot be agreed upon. Both distributional fairness and
procedural fairness aim to find fair solutions of distribution problems.

The most abstract definition of fairness used in this book is therefore as fol-
lows [190]. Fairness means the satisfaction of justified expectations of agents
that participate in the system, according to rules that apply in a specific con-
text based on reason and precedent2. This general definition applies to dist-
ributive, procedural or retributive fairness.

It is also useful to distinguish between individual fairness and system fair-
ness . By individual fairness we shall mean the property of an individual
agent’s behavior. We shall say that the agent behaves fairly if he obeys certain
rules of behavior that apply in a specific context (the agent behaves unfairly
if he disobeys any of these rules). These rules could be contracts, agreements
or norms that govern the behavior of all agents in a system. If all agents that
participate in an encounter behave fairly, then the distribution of goods (or
costs) of the agents in this encounter will be fair in the sense of procedural
fairness. System fairness can be defined as the ability of a system to support
the individual fairness of agents in the system. In the context of distributional
fairness, system fairness can also mean the ability of a system to support the
distributional fairness of all agents’ participation in goods or costs.

Note that the rules that determine individual fairness can be derived from
the rules that determine distributive fairness: an individual agent should not
take more goods or incur less costs than are assigned to him using the rules
of distributive fairness. On the other hand, if a notion of fair distribution is
not available or not enforceable, then individual fairness can be dictated by
procedural fairness.

There can be many kinds of distribution problems. An important dis-
tinction is between the distribution of divisible goods (like money, or net-
work bandwidth) and indivisible goods (like kidneys for transplantation or
2 According to the Oxford English Dictionary, the word “fair” means: equitably,

honestly, impartially, justly; according to rule.
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mandates in an election). Another kind of distinction is between the distribu-
tion of heterogenous and homogenous goods. In many cases, such as markets,
the distribution problem is reduced to problems of exchange of some goods
for other goods (usually money). Distributive fairness in markets is achieved
by mechanisms that allow the determination of a fair rate of exchange of
these goods (a fair price). Then, the considered problem is of heterogenous
goods distribution.

It can be seen from the above examples that the problem of distributive
fairness is extremely general and has a wide range of instances, especially
in the non-virtual society. For an excellent overview of distributive fairness
methods and applications, see [190]. In this book, we shall focus on distribu-
tive fairness in ODS.

2.1.6 Equity, Justice, Reciprocity, Altruism

The concept of equity is sometimes identified with that of distributive fair-
ness. However, in this book, equity will have a stronger meaning than that
of distributive fairness. To intuitively understand the difference between the
two, consider a problem of distributing two kinds of goods between agents.
The first kind of good is the profit made by a group of agents who worked on
a project together (for example, the employees of a company). It is clear that
a fair distribution of this profit that aims to minimize the differences in the
shares of equally entitled agents is desirable. We shall refer to such a distri-
bution as not only fair, but also equitable. Equitable distribution relies on
the ability of determining that certain agents are equally entitled to a share
of goods or costs, by examining certain properties or attributes of the agents
themselves. If all agents can be compared, but are not equally entitled, the
concept of equity can be extended. Agents should then receive shares ac-
cording to their entitlement. A popular notion of equity is the notion of a
distribution that is proportional to the contributions of agents. This notion,
according to Deutsch [38], is one of the three basic psychological expectations
of a just distribution. (The other two psychological expectations are equal-
ity and distribution according to need.) Note, however, that the expectation
of a proportional distribution may be intuitive only in certain cultures, as
for example traditional Jewish law does not propose proportional distrib-
ution [190].

If the participating agents cannot be compared or if the minimization of
differences between their shares is not a goal, we can still speak of distributive
fairness. However, in such a case we shall not refer to the distribution as
equitable.

Equity is a concept that is narrower than social justice [137]. Social justice
concerns itself with the total welfare of agents in a society, considering all
(even unmeasurable) goods that may influence an agent’s welfare (including
the right to public services such as education, health care and safety, or social
attitudes that determine the self-esteem of people).
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Finally, the concepts of reciprocity and altruism can both be considered as
special cases of individual fairness. The rules that govern the behavior of in-
dividual agents can be determined by the context of the encounter. In some
contexts, fair individual behavior is reciprocal behavior. In other contexts,
altruistic behavior is expected of agents (for example in the case of a parent
caring for a child). Therefore, most of the reasoning that applies to individual
fairness would also apply to agents that behave reciprocally or altruistically,
in an appropriate context. On the other hand, sometimes reciprocity and al-
truism are not individually fair behavior (a salesperson would not behave fair
if he altruistically gave goods away for free). Note that in this book, the term
altruism will be applied only to the situation when an agent prefers another
agent’s welfare to his own. An act is said to be altruistic if it is costly to per-
form but confers a benefit on another agent [182, 165]. Altruism is also widely
used (especially in game-theory and economics) to mean “un-selfishness” (in
constant sum games, the two notions are equivalent). In the terminology used
in this book, unselfish behavior can be any fair behavior, while altruism has
a stronger meaning (and is also much more rare [25].

2.2 Theory of Trust

This section introduces the most important findings of previous research on
the concept of trust. Most of this research concerned human trust, without
explicitly making the distinction between human and computational trust.
It is often assumed that computational trust should model human trust as
closely as possible, and therefore all research on the subject of human trust
would also apply to computational trust. In chapter 3 we shall show that
could also behave differently from human trust, and that trust management
functions can be carried out even without using computational trust. Still,
in many cases it is desirable that computational trust should be used and
should model human trust faithfully. Therefore, research on human trust has
a high relevance for trust management in information technology, especially
if it can be empirically verified.

For the above reasons, this section focuses on human trust. Examples of
computational trust are sometimes used to better demonstrate introduced
definitions, yet it would be a mistake to consider these examples as instances
of how humans think about trust. It is likely that any formula used to cal-
culate computational trust is to some extent inappropriate for human trust,
and computational trust can only approximate human trust. More sophisti-
cated methods to calculate computational trust and, more interestingly, ways
of using computational trust will be the subject of chapter 3.

This section presents the most important and most commonly used def-
initions of the concept of trust, and gives a broad overview of the research
literature on human trust. However, it should be noted that the list of cov-
ered definitions may not be complete; in the social sciences, research on trust
is an active area, and new developments can be expected. Another goal of
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this section is to present the definitions in a way that will allow the reader to
understand the relationships between them, and to show the logical relations
between the theory of trust and of fairness. A final goal is to present em-
pirical evidence concerning the use of trust and reputation by humans, and
empirical research that can falsify the theory of trust.

2.2.1 Expectancy Trust

According to this definition, human trust is a subjective, context-dependent
expectation that the trustee will choose a specific action in the encounter . This
definition is close to definitions proposed in literature, such as [53] and [118].

An example of expectancy trust is when a buyer on an Internet auction
pays for a product in advance (this method is preferred by sellers). The bu-
yer then expects that the seller will send him the purchased item. Another
example is Peer-to-Peer file sharing, where a peer is expected to reciprocate
for data downloaded from another peer. In grids, agents expect that their jobs
will be scheduled fairly by other agents who compute these jobs on their own
machines. An agent in a grid can also put foreign jobs at the end of the queue.

Note that in order for this definition to apply, it is not necessary that a
human should explicitly calculate and compare the probabilities of choosing
an action by the trustee. It would suffice that the trustor would be able to
choose a particular action and expect that the trustee will also choose this
action. Note also, that if the trustor is able to form such an expectation about
all other agents in the encounter, then it will follow that the trustor will be
able to choose his own best action and to form an expectation about his own
outcome in the encounter.

Apart from support for this definition in much literature in the social sci-
ences, expectancy trust has also received some recent empirical support. The
expectation is formed based on information that is relevant to the future
outcome of the encounter. In order to verify whether humans form an expec-
tation about the outcome, it is necessary to observe their behavior when the
information provided is varied. If the behavior varies, it can be concluded
that an expectation is formed and is affecting behavior (under the ceteris
paribus assumption that no other factors impact behavior). In [10], the find-
ing that people form expectations based on information about trustees is
verified. Barr used an economic investment experiment conducted in small
communities in Zimbabwe, and tried to verify whether people acted based on
expectations about the trustee in the absence of any other mechanism that
would facilitate cooperation (this included the absence of reputation: players
were paired into anonymous pairs, and interactions were not repeated). In the
experiment, both trustor and trustee came from the same community. The
experiment was designed in such a way that the trustor’s decision depended
on the expected payoff received due to the decision of the trustee, and on
the variation of this payoff. If the players expected a higher payoff, they in-
vested more. If the players expected a high variation in payoffs, they usually
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invested less. Thus, the findings of Barr give empirical support to the theory
that human trust is an expectation. The expectation in the experiment could
only be formed based on the experiment setup and based on the knowledge
of the participants about their communities.

2.2.1.1 Fairness and Expectancy Trust

Recall that distributional fairness has been defined as satisfaction of justified
expectations of agents. If we agree on defining human trust as an expectation,
then the concepts of trust and fairness can be logically related. If an agent A
trusts another agent B in an encounter (A expects that B will choose a certain
action), and B behaves fairly (hence, satisfies the justified expectations of A),
then the expectations of A will be satisfied if they were justified. Let us, for
the moment, assume that the context of an encounter includes rules that
enable agents to verify whether their expectations are justified, and that A
would not form expectations that are not justified. If that is the case, then
the trustor can trust the trustee if the trustee will behave fairly. (Note that
this statement uses the definitions of trust and fairness introduced above, yet
is also completely in with our common sense).

However, this statement relies on an important assumption about the
agents. Not only must the rules of justified behavior be known to all agents
that participate in an encounter, but also agents must not form expecta-
tions that violate these rules. This assumption may not always be simple to
make. Consider a case when two accomplices form a conspiracy to cheat an
insurance company. To this end, one of the accomplices drives a car and hits
the other accomplice on a pedestrian crossing. The other accomplice fakes
an extensive injury and receives considerable compensation from the insur-
ance company that he shares with his accomplice. In this case, the generally
accepted rules of behavior (norms) are clearly violated; not only that, but
one of the accomplices forms an expectation that the behavior of the other
accomplice will violate these norms. However, this example does not invali-
date our reasoning, but merely stresses the importance of a context to the
consideration of trust and fairness. In this case, the two accomplices have
formed their own rules that defined fair behavior in the encounter, and while
these rules violated generally acceptable norms (and therefore, changed the
encounter context), the trust and fairness of the agents still agreed with our
reasoning. Our reasoning here is based on a rationality assumption about the
agents; forming expectations that are contrary to the rules of fair behavior
can only be possible due to incorrect or incomplete information.

Still, the reasoning presented here does not imply that trust can only be
formed if the rules of fair behavior are known. For other, possibly valid defini-
tions of trust, the relationship between trust and fairness is not obvious, and
it is possible for humans to form trusting decisions even in situations when
rules of fair behavior are unknown or unclear. On the other hand, observation
of comments in feedbacks posted by users of Internet auction platforms gives
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empirical support to the hypothesis that trust and fairness are indeed re-
lated. Users of Internet auctions use the comments in nonpositive feedbacks
to point out violations of procedural rules that are part of a code of con-
duct for buyers and sellers on Internet auctions. For more details, see section
3.5.2.2.

2.2.1.2 Reputation and Expectancy Trust

We have chosen the usual definition of reputation as information about the
trustee that is based on a history of the trustee’s behavior in context. This
definition can be refined towards a probabilistic model. If the complete and
correct history of the trustee’s behavior is available, and if the trustee’s be-
havior is modeled probabilistically, then we can calculate an empirical prob-
ability that the trustee will choose a particular action in the given context
(recall that context is metainformation about an encounter, and therefore
also includes the set of available actions. The complete history includes all of
the trustee’s choices of actions from this set.).

Reputation could, as in [118], be defined as these empirical probabilities.
Provided that these probabilities are available, it is certainly possible to form
an expectation about the trustee’s behavior (for example, to expect that the
trustee will choose the action that has the highest probability). Therefore, it
can be seen that such reputation can directly establish expectancy trust.

There are a few problems with this definition of reputation. The most
significant is that the history of behavior may be incorrect. This can be due
to several reasons – the available information may be deliberately falsified,
or the information about encounter contexts may be incorrect. The available
information could also be incomplete, leading to a biased estimation of the
probability of the trustee’s behavior. Finally, a simple probabilistic model of
the trustee’s behavior may be inadequate; for example, it may be necessary
to model the trustee’s behavior using a stochastic process.

Also, it should be clear that the availability of reputation is not a necessary,
but may be a sufficient condition for forming expectancy trust. Humans can
expect behavior even if information about reputation is not available (recall
the example of car traffic discussed in section 1).

2.2.2 Reputation

Reputation, like trust, is subjective and context-dependent. From the defini-
tion of reputation, it follows that reputation can only be influenced by the
history of the trustee’s behavior. A detailed classification of types of repu-
tation, following [118], is shown in figure 2.1. (In this classification, we have
chosen to remove the category of prior-derived reputation that has been used
by Mui, as it seems to conflict with the chosen definition of reputation as
dependent only on history of behavior. This does not mean that trust cannot
be prior-derived.)
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Fig. 2.1 A classification of types of reputation based on

Examples of reputation include the simple reputation used in Internet auc-
tions, where each buyer can read the feedback about a given seller and make
his decision on whether to trust that seller. Another example is reputation
in Peer-to-Peer systems, where each agent has a certain amount of informa-
tion about the past behavior of other agents that can be used to calculate a
measure of reputation.

Note here that in the literature there exists a distinction between local
and global reputation. Local reputation is equivalent to the definition of
reputation as used here: it is subjective with respect to the trustor. On the
other hand, global reputation is not subjective to the trustor, although it can
be context-dependent. Global reputation is related to trustworthiness, not to
trust (see Section 2.1), and is therefore not discussed further. We shall return
to this subject in section 3.2, where we will introduce a model of a universal
TM system that is capable of calculating both local and global reputation.

The most important distinction used in the presented classification is be-
tween direct and indirect reputation. Direct reputation is based on informa-
tion about the history of an agent’s behavior that is directly available to
another agent. Reputation based on first-hand experience, for example, is
in this category (referred to as interaction-derived reputation by Mui). An-
other type of direct reputation is observed reputation that can be obtained
if an agent can observe interactions of other agents without participating in
them. Indirect reputation is based on information obtained through a third
party that cannot be directly verified. Reputation systems used by online
auctions or other e-commerce enterprizes are in this category, referred to as
propagated reputation. Group-derived reputation, as the name suggests, is
a reputation of an individual that is derived from the history of behavior of
a group. The distinction between direct and indirect reputation stresses the
difference between using verifiable information and information that cannot
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be verified. The latter approach, most common in reputation systems used
today in online auctions, is especially vulnerable.

Any kind of reputation system is vulnerable to so-called first-time cheating.
This phenomenon occurs when an agent makes a sudden change in behavior.
For example, it is possible for a seller on e-Bay to achieve a high reputation,
but then to cheat for the first time. Reputation cannot predict this behavior,
since, by definition, it is based on behavior history from a time period before
the change in behavior.

Indirect and propagated reputation is further vulnerable to adversaries
that give incorrect reports about the behavior of agents. While a typical in-
direct reputation system uses the majority principle to determine reputation,
and is therefore resistent to a small number of incorrect reports, adversaries
can form coalitions in order to increase the impact of their incorrect reports.
Indirect reputation systems are not resistant to this behavior.

A final, important vulnerability of reputation systems is vulnerability to
discrimination. A discriminating adversary will behave fairly towards a ma-
jority of agents, but will consistently cheat a minority of agents. By doing so,
the adversary should be able to maintain a high reputation, but can get away
with cheating a small subset of encountered agents. This type of adversary
has been described by [34], who suggested making agents anonymous could
prevent their discrimination. However, this approach cannot be used in all
cases, and reputation systems are therefore still vulnerable to discrimination.

A more systematic description of adversaries will be given in section 3.3.3.2.
Reputation is a well studied concept, and strong evidence exists concerning

the use of reputation by human agents. This evidence comes first from eco-
nomics, where the concept of reputation is well known. Not only is reputation
the subject of study in marketing research; economists have studied here, for
example, how reputation impacts the prices of goods and sales volume, also
in online systems [139, 140, 41, 62].

For a description of the use of reputation systems in e-commerce, see
section 3.3.1.

Reputation has also been considered using game theory. Economists and
game-theorists have linked reputation to the existence of cooperative equilib-
ria in repeated games such as the iterated Prisoner’s Dilemma. The existence
of such equilibria was proven in the 1970’s [51], but was postulated since the
1950’s in the so-called Folk Theorem [52]. Since then, cooperative equilibria
have been observed using simulation in the iterated Prisoner’s Dilemma in
the famous work of Axelrod [7], and further research in game theory has
extended the existence proofs to other types of games [130, 70, 71]. New
strategies for the iterated Prisoner’s Dilemma have been formed that make
use of reputation (Axelrod explicitly ruled out the use of reputation in his
definition of the game). The simplest and one of the most effective strategies
is Reputation Tit-for-Tat [134], where the reputation of the partner is taken
into account in the first move, in order to decide whether to cooperate or
defect. In the next moves, Tit-for-Tat is played.
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Reputation has also been of interest to evolutionary biologists [134, 27]
and anthropologists. In these areas of research, the term “altruism” is often
used to describe cooperative behavior towards unrelated strangers [7, 61].
According to evolutionary anthropology, cooperation should be rare and lim-
ited to next of kin and sexual partners. Up to recent times, the dominant
paradigm in this area of research has been that of rational, selfish behavior.
However, recent research has demonstrated that this assumption does not
apply to most social groups in a cross-cultural study [61], and that humans
have social preferences that support large-scale cooperation. These prefer-
ences include concerns for fairness and inequality aversion [45].

For a comprehensive overview of modern reputation systems, see [144].
Section 3.6 contains overviews of related work on using reputation in infor-
mation technology and computer science.

From this extended look at the theory of reputation it can be seen that
there is more empirical research on the subject of reputation than on the
subject of trust. Also, it can be seen that in many cases, the concept of trust
has been replaced by the concept of reputation in this research. This ap-
proach can be seen as a mental short-cut: if trust can be established through
reputation, then its existence can be overlooked by empirical research that
links reputation directly to its observable changes in behavior. Our example
of car traffic demonstrates that trust can also be established by other means.
However, sometimes the question of whether trust has been established is
doubtful when we are using another definition of trust: that of dependency
trust.

2.2.3 Dependency Trust

Dependency trust can be defined as the subjective, context-dependent ex-
tent to which the trustor is willing to depend on the trustee in a situation of
uncertainty. This definition is an adaptation of dependency trust definitions
proposed by [67] and [108]. The trust theory of [37] also supports this defini-
tion. A similar definition has been used in sociology [158, 157]: trust has been
defined there as the attitude that allows the trustor to accept a bet on the
trustee’s behavior. Accepting such a bet would mean a willingness to depend
on the trustee.

The example of Internet auctions can also be used for dependency trust.
When a buyer on an auction pays for an item in advance, he expects that
this item will be sent to him; however, he also depends on the seller to send
the item, and this dependency is high and can be adequately measured by
the amount of money paid to the seller. In Peer-to-Peer file sharing, on the
other hand, a peer expects that his partner will reciprocate by sending him
data in exchange for downloaded data. However, the dependency of the peer
is smaller, because there also exist other peers that can send him the required
pieces of a file.
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Dependency imposes a different condition on human behavior than ex-
pectancy trust. The reason why this is so is the following: consider a situation
where there is a high expectation that the trustee will behave in a certain
manner (choose a specific action in the encounter). Because of this action,
the expected outcome of the trustor may also be high. However, the probab-
ilities that the trustee could choose another action could be nonzero, and the
difference in the utilities of the trustor when the other action is chosen by the
trustee could be high. Consequently, the trustor could face a high risk in this
encounter. Because of this, he may choose to not interact with the trustee in
the encounter, even though expectancy trust would indicate that he should
do so. To give a more concrete example: if a buyer considers an auction on
e-Bay where he can buy an expensive car at a good price, and the seller has
a high reputation, the buyer may nevertheless choose not to buy the car be-
cause of the risk that the car may be damaged, or not delivered at all. This
high risk is due to the high price of the car, and not to the small probability
of this occurrence.

The two definitions of human trust are not necessarily contradictory (rat-
her, they can be seen as complementary). The premise that a particular con-
cept can be defined only in one way may make sense in the exact sciences or
mathematics, but does not necessarily apply to humans, and it is human trust
that we are trying to define. It should be possible for humans to use both kinds
of trust simultaneously, considering perhaps only expectancy trust if the risk
is low, and requiring dependency trust when the risk is high. Following this
reasoning, it is not necessary for computational trust to agree with only one
of the presented definitions; Trust Management systems could use more than
one kind of computational trust. However, the argument behind introducing
dependency trust points out that TM systems must also consider the risk in
an encounter.

Dependency trust is supported by findings of sociological and psychological
research [59, 66]: this research has found that the more frequently an agent
is be able to trust others, the more likely he/she is to take risks. Dependency
trust emphasizes and explains the relationship between trust and risk, leading
us to an attempt to rephrase the definition of dependency trust in terms of
risk.

The relationship between dependency trust and risk [68] has led to a com-
mon misunderstanding. Since dependency trust is required in a situation
where the risk is high, it has been argued that if risk can be reduced, then
dependency trust would also be reduced. However, this argument is fallacious:
it is the need for dependency trust that is reduced if we can reduce risk. De-
pendency trust can still be high in a low-risk encounter. On the other hand, it
may be true that if the risk in encounters between a trustor and a trustee is
always low, then dependency trust may not develop. The reason for this is that
the trustor can only receive proof that can establish high dependency trust
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in an encounter that has a high risk3. If this encounter is followed by low-risk
encounters, the already established dependency trust may still be high.

This argument brings us to a variation of the definition of dependency
trust that can perhaps be more computationally useful.

2.2.3.1 Trust as a Tolerance of Risk

Dependency trust can also be seen as a tolerance for risk . Risk is the expected
variation of the trustor’s outcome. The definition of dependency trust as an
“extent to which the trustor is willing to depend” points to using units of the
trustor’s own outcome to express dependency trust (as well as risk). These
units could be, for example, amounts of money, as in the case of a car buyer on
e-Bay. Moreover, looking at dependency trust as a tolerance of risk points to
a rule that can be applied to the use of dependency trust in decision making.
If the trustor’s risk in an encounter can be represented as an interval on the
scale of trustor’s outcome (around the expected outcome of the trustor), then
so can dependency trust. And if the interval of dependency trust is larger
than (includes) the interval of risk, then the dependency trust of the trustor
is sufficient for him to make a decision to interact with the trustee. On the
other hand, if the interval of dependency trust is smaller than the risk, then
the risk in the encounter cannot be tolerated by the trustor.

Defining dependency trust as a tolerance of risk allows us to explain the
decision making process of the trustor. If a trustor is involved in an encounter
with an agent, he will consider the actions that he can choose. In some en-
counters, one of these actions is to do nothing (avoid the encounter) – for
example, in the example of buying a car on e-Bay, one of the available actions
is to not buy the car. When the trustor considers his choices, he will calculate
the risk that is associated with each action. This risk is due to the choices
that any other agent in the encounter can make (considered separately). Next,
the trustor will choose from among the actions for which the risk due to any
trustee’s behaviors is smaller than the dependency trust in that trustee.

Figure 2.2 illustrates an example of using dependency trust. The trustor
has three actions available: {A1, A2, A3}. On the y axis, the dependency trust
and risk due to the actions of the trustee is shown. The dependency trust is
the same regardless of the action chosen by the trustor (although in the
figure, the position of the interval changes because it is centered around the
3 Note also that it has been argued [44] that trust management provides informa-

tion that reduces uncertainty, and therefore may contribute to the decrease of
trust. This conclusion need not apply if trust management is used in high-risk
encounters: the information provided by trust management may be used to estab-
lish trust, but not to reduce risk (most reputation systems are in that category).
Therefore, dependency trust can still be established and increased even if trust
management is used; although some trust management methods (like escrow)
indeed contribute to the reduction of risk.
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mean outcome for each chosen action). The risk depends on the action chosen
by the trustor. The figure demonstrates that when using dependency trust,
one of the actions (A3) can be excluded from consideration (note that this
action could be chosen based on expectancy trust alone). Among the two
other actions, the choice could depend on risk and on the expected outcome.
Also, expectancy trust can be used in such a case to further support decision
making.

Fig. 2.2 A trustor’s decision making based on dependency trust and risk

To further understand dependency trust, let us give a simple example of
how it could be calculated. Consider a history of a seller’s transactions in
an electronic marketplace. Assume that with regard to each transaction, the
following information is available: the price paid by the buyer and an obser-
vation of the seller’s behavior that can be binary: either the transaction has
been satisfactorily concluded by the seller, or it was not. (This is clearly a
strong simplifying assumption; for further discussion of computational depen-
dency trust, see section 3.5.) From this history, dependency trust of the seller
can be calculated as follows: the sum of prices of satisfactorily concluded
transactions decreased by the sum of prices of unsatisfactory transactions is
then divided by the number of all transactions. Note that such a value could
be negative. While this may be a very simplified way of calculating compu-
tational dependency trust, it could be directly compared to an estimate of
risk (see 2.1.4).

2.2.4 Cognitive and Affective Trust

Research on human trust has always struggled with the criticism that trust
is too irrational and subjective to be understood. Establishing the rational
basis for human trust is therefore essential for trust management; for, if trust
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cannot be treated rationally, there is no way to support its establishment
through information technology.

Following the work of [92, 111], we identify two main types of human trust:
affective and cognitive trust. This distinction stresses the fact that trust has
both an emotional and a rational side. Social scientists have established that
affective trust is established through close interpersonal relationships, and
is increased by evidence of care and concern between agents. On the other
hand, cognitive trust is based on information, and can be established towards
strangers. Therefore, cognitive human trust is the main focus of interest of
trust management systems.

Figure 2.3 shows the relationship between computational trust and human
cognitive trust. The arrows in the figure represent a relation of influence.
Proofs of any type can be used by trust management systems to calculate
reputation or cognitive trust. These, in turn, can influence the cognitive hu-
man trust of an agent. On the other hand, proofs represent information that
can also be used by humans directly, and can establish affective trust as well
as cognitive trust.

Fig. 2.3 Relationship of Proofs, Reputation, Computational, Cognitive and Affec-
tive Trust

Trust management systems, so far, do not use affective trust nor support
its formation. In a way, this is practical, as trust management systems aim
mainly to establish trust in strangers. A trust management system that would
aim to monitor and support a close interpersonal relationship could take
into account affective trust. However, since this type of trust is emotional in
nature, supporting it would probably require assessing the emotional state of
human agents (which is possible using information technology today).

2.2.5 Distrust

If we agree that humans use trust when making decisions under uncertainty,
it follows that in some situations trust should actually prevent humans from
wrongly relying on others. In natural language, the term distrust is used to
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denote this form of trust. We shall attempt here to give a logical definition
to this term.

First, note that expectancy trust is general enough to mean distrust as
well as trust. Expectancy trust merely allows the trustor to expect that the
trustee will carry out a specific action in an encounter. Nothing in the defini-
tion suggests that this action would lead to a better, or worse outcome of the
trustor. It is therefore quite possible for expectancy trust to be expectancy
distrust. In order to avoid confusion, the concept of expectancy trust can
be divided into two more specific concepts: that of positive expectancy trust
and negative expectancy trust (or distrust). Positive expectancy trust can be
defined as an expectation of the trustor that the trustee will choose an action
in the encounter with the goal of improving the trustor’s outcome. Negative
expectancy trust is the expectation of the trustor that the trustee will choose
an action in the encounter with the goal of worsening the trustor’s outcome.

These definitions seem ambiguous in the sense that they do not indicate
what action would be chosen. However, as we are trying to define human
trust, we must not forget that humans are capable of reasoning. Positive
expectancy trust may be an expectation about the goals (or values) of the
trustee, but if the trustee has a complete knowledge and free choice of all
actions in the encounter, the trustor can expect that the trustee will choose
the action that maximizes the outcome of the trustor. If the choices are
constrained or incomplete, then the trustee will still choose the best possible
action from the trustor’s point of view.

Of course, it is also possible for humans to use multi-criteria reasoning,
and to consider the trustee capable of choosing actions by taking into account
both the interests of the trustor (positively or negatively), and his own. It
would therefore be possible to define further refinements of expectancy trust
that are all expectations about the behavior of the trustee that are based on
a model of the trustee’s reasoning.

The proposed definition of distrust using expectancy trust shows that dis-
trust can be a negative version of trust. In much trust management research,
computational distrust is represented in such a way, using negative units of
trust. However, this need not always be the case, for example when depen-
dency trust is used.

The concept of distrust is still not clear when using dependency trust.
Let us here choose the definition of dependency trust as a tolerance of risk.
In other words, dependency trust is the largest amount of risk that can be
tolerated by the trustor and that is due to the behavior of the trustee. This
version of the definition of dependency trust can be used for distrust, as well.
If an agent is distrusted, then the trustor’s dependency trust in that agent will
be very small, or even zero; and therefore the trustee will avoid encounters
with that agent. If the level of risk in a larger population of agents can be
established as a reference, then we could speak of positive dependency trust
if dependency trust is larger than the risk in the population of agents, or of
negative dependency trust (distrust) in the other case.
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2.2.6 Credibility Trust

A concept that is often related to trust, and has important applications in
trust management, is credibility. For the purpose of this book, credibility will
be defined as the quality of being believable. Credibility trust will be defined
as the trust in the credibility of the trustee.

Using the concept of encounter context, it is possible to show that cred-
ibility trust is indeed a special kind of trust. Consider agents who meet in
the ODS solely for the purpose of exchanging information. In other words,
during an encounter of these agents, the only action that can be taken is giv-
ing information (true, false, or partially true) to other agents. The context
of this encounter is information sharing. After receiving new information, an
agent will have some possibility to evaluate its correctness (perhaps not im-
mediately, but during a period of time after the encounter). The trust in the
agent that has given this information to the trustor in the context of informa-
tion sharing is credibility trust. Based on that trust, the trustor may or may
not accept information from trustees in information sharing encounters. Note
that the trustor’s outcome may depend vitally on the received information,
and the information sharing encounter is associated with uncertainty about
the information’s correctness.

A similar approach to credibility trust has been adopted by [118]. In his
work, Mui has used reputation of agents in the context of giving recommen-
dations. Agents could request recommendations even when they already had
their own opinion on the subject of recommendation, solely for the purpose
of evaluating other agent’s credibility and establishing credibility trust or
distrust. Next, credibility trust was used to evaluate reports received from
agents that could impact an other agent’s reputations. This property of com-
putational trust as used by Mui reflects a property of human trust that has
raised significant theoretical difficulties. While it is useful to distinguish be-
tween encounter contexts and it is possible to give examples of human trust
in different contexts that are not related, it is also sometimes possible to use
trust from different contexts simultaneously. This brings us to the subject of
reasoning about human trust.

2.2.7 Human Trust Propagation

Most researchers of human trust describe methods of human reasoning about
trust. Reasoning is usually applied in order to extend the trust relation to new
agents. This kind of reasoning is, in fact, used for one of the main purposes
of trust: establishing trust in strangers. Without reasoning about trust that
leads to an extension of the trust relation, it would not be possible for trustors
to have trust in strangers. In this book, such reasoning about trust will be
referred to as trust propagation.

An example of trust propagation is the use of credibility trust to establish
trust in a different context. Consider a trustor, A, that receives information
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from a third agent, C, about C’s trust in the trustee, B. The trustor has
some credibility trust (or distrust) in C. Based on that credibility trust and
on the information received, the trustor can adjust his trust in B in a com-
pletely different context. Note that before the information was received, A
may have had no trust about B (the trust relation has been extended). This
example shows two phenomena: that of transitive trust propagation and that
of composition of different contexts . The context of information sharing is an
example of a context that usually can be composed with other contexts to
establish trust. The reasoning applied here is based on the principle of tran-
sitivity: the trust relation between A and C has been transitively composed
with the trust relation between C and B, in order to create or change the
trust relation between A and B.

To give a simple example of transitivity, consider a businessman who rec-
ommends an employee to his colleague. Based on his trust in the recom-
mender, the trustor may trust (or distrust) the recommended employee. Note
that the recommendation is more likely to be accepted if the recommender
has had first-hand experience with the employee. On the other hand, if the
recommendation is passed on from another source without first-hand experi-
ence, it is less likely to be accepted. This observation points out that transi-
tive human trust propagation is likely to be constrained, and should not be
thought of as a simple transitivity of the trust relation.

It also should be clear that there exists contexts of trust where transitive
propagation does not apply. For example, consider a situation where an agent
A often borrows books from his friend, B. Based on that observation, it can
be concluded that A trusts B to lend him books that interest A. Assume that
B also often borrows books from C. The same conclusion about B’s trust that
C’s books are interesting to B applies. The context of that trust relationship
is personalized: the trust concerns that received books are interesting to the
trustor. However, based on that relation it is hard to conclude whether A
should trust that books from C would be interesting to A, if received directly
and not borrowed and read first by B.

Another, simple and common type of reasoning about human trust is re-
flexive propagation. This kind of propagation is based on the observation that
the more you trust another person, the greater the likelihood that the person
will trust you. This finding has been supported by sociological research [59].

A third kind of propagation is similarity propagation. This kind of prop-
agation applies if two agents are part of another relation, called a similarity
relation. Similarity propagation is shown in Figure 2.4. The existence of a sim-
ilarity relation between agents A and B implies the creation of two new trust
relations: A trusts B and B trusts A. The similarity relation can be variously
defined. It is usually undirected, and can be based on agent attributes such
as ethnic background, institutional membership, professional background or
others. The similarity relation can also be defined as structural or topological
similarity in some social network (for example, the network of acquaintance).
A special kind of similarity relation is defined as topological similarity in the
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Fig. 2.4 Similarity propagation of trust

trust network itself. Agents A and B are similar if they trust a large set of
same trustees. If B also trusts another trustee, C, that A has no relation
with, then it could follow that A will also trust C.

Similarity propagation is often combined with transitive propagation.
Figure 2.5 B will trust C because they are similar, and since B trusts C
and A trusts B, then A will trust C because of transitive propagation. This
kind of propagation can also be referred to as a special type of similarity
propagation, if the new trust relations between B and C are not explicitly
established, but the trust between A and C is established. Similarity prop-
agation can be used instead of transitive propagation especially by agents
who are new users of the system and have not yet established their own trust
relations that can be the basis of transitive propagation (solving a kind of
“cold start problem”). Notice here that the notion of similarity propagation
can be easily extended to the use of stereotypes by humans. A stereotype
may be thought of as an artificial construct that possesses certain character-
istics similar to other humans. It can be modeled as an artificial node in the
trust (distrust) relation that is not associated with any real agent. However,
the similarity relations used in both trust and distrust propagation may be
applied to real agents and to the stereotype. In this way, trust and distrust
may propagate based on similarity to a stereotype; this kind of propagation is
especially useful if the agent has no other information available (for example,
no basis of comparison of the newly encountered agents to any previously
encountered agents). Of course, similarity propagation based on stereotypes
may lead to wrong results, but this objection applies to all kinds of human
trust propagation. The possibility of making a wrong judgement of trust

Fig. 2.5 Combination of Similarity and Transitive Propagation of Trust
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(distrust) towards a stranger can never be excluded, and in such a case the
trust (distrust) relation will be corrected using first-hand experience (which
is a different phenomenon than trust propagation).

This kind of propagation is related to observations that trust is correlated
with acquaintance and social similarity. This observation has been supported
by numerous sociological and psychological studies [119, 156, 103]. On the
other hand, it should be clear that similarity propagation needs to be well
defined and studied before it is applied in practice. Not all similarity relations
can be used for similarity propagation. Not only does the similarity relation
need to be precisely defined, but it may also be necessary to define a degree of
similarity and specify how strong the trust relation will be that is the result
of similarity propagation given the degrees of similarity between agents.

Another important aspect of propagation is the consideration of distrust.
It is clear that transitive propagation does not apply to distrust, because if
A distrusts B and B distrusts C, it does not follow that A will distrust C –
perhaps on the contrary (but not necessarily). On the other hand, similarity
propagation may apply to both trust and to distrust, although the mea-
ning of the similarity relations should be different in both cases. On the other
hand, the propagation of trust and distrust jointly can be transitive, even if
only in a limited manner. If A trusts B, B distrusts C and gives a negative
(distrustful) recommendation about C to A, then A may distrust C. This
means that trust can be propagated transitively with distrust, but not the
other way around.

The kinds of human trust propagation described in this section have also
been used to support computational trust. Efforts to validate computational
trust have also partially validated these kinds of trust propagation [57]. For
more on the subject of computational trust propagation and the validation
of computational trust, see chapter 3.6.3.

The subject of human trust propagation should become one of the central
issues of trust research, as it is these kinds of propagation that really extend
the trust network to strangers. Human trust propagation is important, but it
should be noted that it is very difficult to replicate human reasoning about
trust using computational trust and simple computational trust propagation
rules. On the other hand, using properties of human trust propagation, it
would be possible to formulate na operational definition of computational
trust that would not have to rely an definitions of trust formulated previously.
Any relation between agents that would satisfy the properties of human trust
propagation could be referred to as trust, using the operational definition.

2.2.8 Probabilistic Trust Estimation

The trust definitions discussed above do not preclude a probabilistic inter-
pretation of trust. In particular, it is possible to define trust as a probability
distribution of agent behavior. Then, expectancy and dependency trust can
be viewed merely as the two moments of a probability distribution.
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This point of view is attractive because it immediately gives a set of math-
ematical tools for the estimation of trust. However, a number of assumptions
need to be made in order to apply these tools. The following assumptions are
required:

• agents behave in a probabilistic manner (each agent has an innate proba-
bility for each possible kind of behavior),

• behavior of agents is independent,
• an a priori distribution form of agent behavior is known.

If the above assumptions can be made (to an extent, this is possible for
example for artificial agents), then trust estimation might proceed in the
following manner. For simplicity, let us assume that agents can choose only
two actions in an encounter that represent fair and unfair behavior. These
actions are chosen by each agent B with a probability pB. Assume that agents
share reports about their behavior with each other, but can also falsify these
reports. Let us denote the probability of lying in a report by agent C as
lC (note that this is in fact a reputation in the context of credibility). The
probability of receiving a report repC about agent B from agent C is as
follows:

P [RepC = repC ] =

{
lC(1 − pB) + (1 − lC)pB if repC = 1
lCpB + (1 − lC)(1 − pB) if repC = 0.

When an agent A searches for information about an unknown agent B, the
probability of receiving a set of reports {repCi} from various agents Ci is
a function of the probability that agent B behaves unfairly (given that the
credibility probabilities are known and independent of pB). The probability
of receiving a random set of reports is given by:

P [{repCi}] = P [RepC1 = repC1 ]P [RepC2 = repC2 ] . . .
. . . P [RepCn = repCn ].

A maximum likelihood estimation of pB can be applied when agent A knows
the values of received reports. This estimation of pB relies on the fact that the
probabilities of lying in reports (credibility reputation) lC is known. In some
applications, these probabilities can be determined through a comparison of
agents A’s own observation with the reports received from other agents (this
is possible for example in recommender systems). Note that such a use of
credibility reputation is in fact an application of the transitive propagation
of trust in different contexts (because lC is reputation credibility and pB

determines trust in a different context).
The mathematical approach presented here for the simple case of encoun-

ters with just two actions can be extended to more complex scenarios. How-
ever, the fundamental assumptions presented above need to hold in order to
apply this method. In more complex scenarios, a distribution form must be
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assumed for the distribution of agents’ actions. [118] has assumed that the
proportion of the number of received positive reports to all reports (still for
encounters with two actions) has a Beta-prior distribution. The parameters
of this distribution can be adjusted to suit various a priori assumptions about
agent behavior, for example an assumption of ignorance that requires a uni-
form distribution.

In the example shown above, transitive propagation can be applied for just
one step (probabilistic methods do not support similarity propagation). One
of the inherent difficulties in applying the probabilistic method is that in
order to apply transitive propagation for more than one step using Bayesian
estimation, it is necessary to deal with multiple propagation paths (and paths
that can include cycles). Applying Bayesian estimation requires a selection of
single paths without cycles. In section 3.6.3, different propagation algorithms
that are capable of selecting such paths will be described.

2.2.9 Other Concepts of Trust Theory

2.2.9.1 Confidence

The distinction between confidence and trust is mostly due to Luhman [101].
Luhman defines confidence as an expectation that neglects a small possibility
of disappointment in a situation where there is no alternative but to expect a
positive outcome. For example, confidence may be placed in the fact that our
car will not suddenly break down on the road, or that a war will not suddenly
be started by our government (this example shows that confidences, too, can
be misplaced). The main difference between confidence and trust is that when
humans use trust, they must have alternatives available. In other words, we
can say that trust is confidence, if there is no alternative but to make a
trusting choice.

2.2.9.2 Self-trust

The notion of self-trust has been introduced in [31] as a basis for all human
trust relationship. Self-trust is a precondition for the establishment of any
trust relation. Considering transitive trust propagation discussed in the pre-
vious section, it can be seen that if an agent does not trust himself, it would
follow that this agent cannot trust any other agent. In fact, this view has
been confirmed by sociological research that has linked the lack or trust (or
the existence of distrust) to low levels of social intelligence and self-esteem
[188, 117].
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2.2.10 Other Trust Definitions

Research on trust is abundant in the social sciences. [171] gives a very good
review of research in trust in sociology, psychology and anthropology. The
theoretical overview presented in this chapter focuses on trust definitions
and their implications for computational trust expression.

The definitions discussed above are based on previous research, but have
also been adapted and sometimes modified in an attempt to create a set of
logically consistent theoretical terms and relations. In this attempt, some of
the finer points of the definitions of human trust available in literature may
have been lost. In this section, we summarize the most important research in
the area, quoting verbatim the most important definitions from the consid-
ered texts. At the same time, quoted definitions will be compared with the
definitions previously introduced in this chapter.

2.2.10.1 Luhman

For Luhman [101], trust is:

an effective form of complexity reduction.

To understand this definition, it is necessary to comprehend Luhman’s notion
of complexity:

complexity is manifested as the unimaginable superabundance of the world’s
realities and possibilities.

A human’s social environment further increases the world’s complexity.
Therefore, Luhman observes:

in conditions of increasing social complexity, man can and must develop more
effective ways of reducing complexity.

Luhman’s trust definition seems, at first, completely different from the dis-
cussion in this chapter. The main reason for this apparent difference is that
Luhman’s definition is not psychological, but sociological; it does not at-
tempt to describe the mental state of humans that is trust. Rather, Luhman
attempts to describe how trust operates in a society. However, it seems that
Luhman has also unwittingly described a psychological notion. Trust can be
seen as a mental heuristic that is used by humans in order to reduce the
high complexity of reality. Instead of constantly using complex deliberative
reasoning humans apply such heuristic in order to make decisions faster, or
when they do not have sufficient information. The origin of such heuristics is
largely evolutionary. For this reason, Luhman’s definition does not contradict
our notions of expectancy and dependency trust; rather, it shows a different
aspect of trust, and stresses the value of trust in human decision making in
a social environment.
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2.2.10.2 Gambetta

Gambetta’s [53] definition of trust is as follows:

trust (or, symmetrically, distrust) is a particular level of the subjective prob-
ability with which an agent assesses that another agent or group of agents
will perform a particular action, both before he can monitor such action (or
independently of his capacity ever to be able to monitor it) and in a context
in which it affects his own action.

Gambetta’s definition is consistent with expectancy trust. While the defi-
nition uses the term of “subjective probability”, this can be extended to an
expectation, as has been explained whilst discussing the relationship between
expectancy trust and reputation.

2.2.10.3 Mui

Mui’s [118] definition of trust is one of the most simplest ones:

Trust: a subjective expectation an agent has about another’s future behavior.

The definition of Mui is based on Gambetta’s, and is very similar to our
definition of expectancy trust. Mui’s research has given much support to the
hypothesis that trust and reputation are necessary for the evolution of reci-
procity and altruism [115].

2.2.10.4 Deutsch

The trust definition of Deutsch [36] states:

1. The individual is confronted by an ambiguous path, a path that can lead
to an event perceived to be beneficial (V a+) or to an event perceived to
be harmful (V a−);

2. he perceives that the occurrence of V a+ or V a− is contingent on the
behavior of another person;

3. he perceived the strength of V a− to be greater than the strength of V a+.

If he chooses to take an ambiguous path with such properties, I shall say that
he makes a trusting choice; if he chooses not to take the path, he makes a
distrustful choice.

The definition of Deutsch is quite complex, and is further refined in his work.
However, it is possible to relate the quoted definition to the terms used in
this book. Firstly, Deutsch presupposes a situation of uncertainty or risk
that is due to the behavior of independent persons, as in our notion of an en-
counter between agents in the ODS. Secondly, Deutsch assumes that trust is
“perceived”, is similar to considering trust as subjective. Thirdly, Deutsch
introduces a condition that is not used in our definitions, that the harm must



2.2 Theory of Trust 37

outweigh the benefit of the situation. This condition is rather strong, but
could be reformulated as the assumption that a risk must exist in the en-
counter. Clearly, if all outcomes of actions in an encounter will give an equally
good outcome, trust is not required. Therefore, the trust definition of Deutsch
is partially consistent (although stronger) with our definition of dependency
trust.

2.2.10.5 Marsh

In [107], Marsh defines trust as:

the belief (or a measure of it) that a person (the trustee) will act in the best
interests of another (the trustor) in a given situation, even when controls are
unavailable and it may not be in the trustee’s best interests to do so.

In his thesis, March deals mostly with computational trust [108]. He intro-
duces a formalism that aims to replicate how human trust works. The for-
malism is largely based on the work of Deutsch on human trust, as it aims to
reproduce Deutsch’s psychological observations of how human trust is used.

2.2.10.6 Barber

Barber’s [9] view of trust is inherently sociological. He recognizes three di-
mensions of trust that can be an expectation of:

• the persistence and fulfillment of the natural and moral social orders,

• technically competent role performance,

• that partners in interactions will carry out their fiduciary4 obligations and
responsibilities, that is, their duties in certain situation to place others’
interests before their own.

Barber does not give a precise definition of trust, but rather stresses some
sociological aspects of trust. His conclusion is very similar to the work of
Elgesem, and therefore will be discussed in more detail below.

2.2.10.7 Elgesem: Normative Trust

In [44], Elgesem gives a definition of trust that is in many ways consistent
with Barber’s view:

trust is a normative notion in the sense that an essential ingredient in all cases
of trust and trustworthiness is the existence of a set of norms that provide
the motivation to cooperate.

4 The fiduciary duty is a legal relationship of confidence or trust between two or
more parties, most commonly a fiduciary or trustee and a principal or beneficiary.
Source: Wikipedia, the free encyclopedia.
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The definitions of Elgesem is consistent with our refined definitions of ex-
pectancy trust. Recall from the discussion of positive and negative expectancy
trust that trust could be an expectation about the behavior of a trustee based
on a model of his reasoning. Elgesem’s and Barber’s views on trust support
this more general definition: in their case, the expectation concerns that the
trustee applies certain norms of behavior. Barber states that these norms can
be the “natural and moral social order”, the norms that describe technical
competence and professionalism, or the norms that govern legal obligations.
t Elgesem gives a more abstract view of “norms that provide the motivation
to cooperate”. In [178], trust is redefined as an expectation of or dependency
on fair behavior. Using the definition of fairness as a justified expectation,
we have shown in the discussion above that the concepts of expectancy trust
and fairness can be logically related: using these concepts, the statement that
“a trustor can trust the trustee if the trustee behaves fairly” is a conclusion
from the two definitions. These considerations all point to the relation be-
tween trust and fairness that will be the subject of much of this book.

2.2.11 Economic Theories of Trust

Most of the trust definitions described in this chapter have been applied in
economics, sociology, psychology, anthropology and many other social sci-
ences. Quite apart from theories of human trust that aim to explain how
humans use trust in situations of uncertainty, economic theories of trust deal
with the subject of how trust impacts entire economies, but also how trust im-
pacts prices. This research has largely avoided the discussion of human trust,
sometimes by using reputation and investigating its influence on behavior
directly (without considering trust), and sometimes by simply adopting a be-
havioral model of human trust (for example, seeing trust as a state of mind
that allows users to cooperate). In this section, we shall briefly summarize the
findings of economic theories of trust in order to understand how trust can
impact large-scale ODS (of which an economy is a good example). Another
reason for a discussion of this research is that it has a significant empirical
background.

In economics, trust is often defined as a factor that decreases transaction
costs. [192] develop a theoretical model where trust is defined as the time
people spend in production rather than in verifying that others do not cheat
or behave opportunistically. This definition of trust is consistent with depen-
dency trust, as high dependency trust leads agents to tolerate risks. This
means that in an encounter where one action implies a dependence on the
trustee, while another allows a reduction in risk through costly verification,
the trustor will choose the first (more risky, but cheaper) action if he has
sufficiently high dependency trust. In the well known research of [136], one
finding is that the more an individual trusts others, the less costly his/her
daily social interactions will tend to be. This view includes economic inter-
actions, and once again is consistent with the definition of dependency trust.
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Neuroscience also provides empirical support for research on trust. In [78],
authors found that reciprocity expressed by one player strongly predicts fu-
ture trust expressed by their partner, measured by neural responses in the
dorsal stratum of the brain.

2.3 Theory of Distributive Fairness

The general definition of fairness used in this book is that of a “justified
expectation”. The definition goes on to say that the expectation can be jus-
tified “according to rules that apply in a specific context based on reason or
precedent”. This section gives an overview of the various “rules based on rea-
son” that can be applied to a distribution problem. While this section focuses
solely on fairness in distribution problems, let us not forget that the “justified
expectation” used in the definition of fairness may also be the result of an
agreement that does not concern a distribution of goods, resources or costs
– for example, the agreement on following the rules of a computer game.

The problem of distributing resources or costs in an ODS may be simple
if the rules of fairness are indeed established by precedent. This is sometimes
the case, when the ODS applies rules that are already established in real
society. Such is, for example, the case of e-commerce, where fairness is simply
defined as satisfaction of justified expectation according to rules that are
based on commercial law. Yet, even here, the specific circumstances of the
ODS may lead to problems of fairness that are unexpected in the real world.
Note that we want to exclude from consideration adversary behaviors in trust
management systems, although these, also, could be called unfair. However, in
online auctions, there exist opportunities for unfair behavior in auctions that
are much less common in the real than in the virtual market. Also, in some
markets a regulator is required, and then the question of fair distribution by
the regulator remains an issue.

However, rules that are based on precedent, norms or codes of behavior
may not always suffice for an expression of fairness in the ODS. When they
do not, the definition allows the use of rules based on reasoning. This means
asking the question: what rules of distribution, or what solutions of the distri-
bution problem, would be fair in the given context? The answer is not always
obvious. Consider the problem of several agents using a computer network
that need to share a common bandwidth for different purposes, and have
different throughput requirements. In addition, the operator of the network
is also a party of the distribution problem, and is the interested primarily in
most cost-effective allocation of his resources. The search for a fair throughput
distribution in such a situation is far from simple. Still, it can be approached
as a mathematical problem.

Contrary to trust and trust management, distributive fairness has received
much attention from mathematicians. There exist several mathematical (also
axiomatic) formulations of distributive fairness, as well as entire theories of
fairness [95, 47, 149]. In this section, we shall also formulate a theory of
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distributive fairness that uses a multi-criteria optimization model of the fair
distribution problem. This theory, referred to in this book as the theory of
equitable optimality, will be presented in the section 2.3.2.

Several algorithms and mechanisms can be applied in various contexts
of fair distribution problems. For example, for the purpose of distributing
indivisible goods or costs, a priority queue can be used. An example in the
ODS would be the selection of a peer to serve as a superpeer in an overlay P2P
network. The superpeer must provide some of his resources to other peers,
yet the network as a whole often works more effectively when superpeers
are used. Who should become the superpeer, and under what conditions?
Making all peers become superpeers in turn is not a good solution, as some
peers do not have sufficient resources. While a priority queue can be used
here, it is still not obvious what should determine the priority, and priorities
will probably depend on multiple factors. The algorithms and mechanisms to
solve fair distribution problems in an ODS will be discussed in more detail
in chapter 4.

In many of the distribution problems in the ODS, game-theoretic formula-
tions can be used. An example could be that of a grid system that is shared
by several agents; each of these agents is selfish and attempts to optimize his
job execution times. Clearly, such a distribution problem cannot always be
solved; an agent that has few computational jobs may execute them all locally
and will get best performance if he does not allow any other agents to use his
resources. This example shows that agents can withdraw their resources if
they believe that they are not treated fairly, or if they are selfish and believe
that participating in the ODS does not lead to an advantage. Since the grid
depends on agents who contribute resources, this is not the best solution. It
would be better to provide incentives for the agent to participate and pro-
vide resources for others, receiving resources at a later time when he needs
them. Still, the question of how much resources an agent should supply is a
distribution problem that should be solved fairly, considering the interests of
all involved agents. Game-theoretic formulations of fair distribution problems
will be considered in section 2.3.5.

2.3.1 Comparing Agents to Establish Fairness

Before going on to discuss the various concepts and theories of distributive
fairness, it is necessary to mention a basic problem. In order to make any
decision about the fairness of distributions, or to execute a procedure that
aims to establish a fair distribution, it is necessary to make comparisons be-
tween different agents. This necessity is obvious, but raises methodological
questions when using the concept of utilities. The theory of utility usually
disallows comparisons between utilities of various agents, deeming such utili-
ties incomparable. Also, in a procedure it would not be safe to assume that an
agent knows the utility of another agent (game theory predicts that depend-
ing on the availability of this knowledge, outcomes of games could differ).
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For this reason we shall initially assume comparisons only between the di-
rectly measurable or observable outcomes of agents. In other words, whenever
a distribution problem is considered, there must be some measurable crite-
ria for evaluating the outcome of any agent (in units of money, resources,
goods, or any other). Comparisons between agents’ outcomes are made pos-
sible by using these criteria. The theory of equitable optimality can thus be
formulated without using the concept of agent utility. Whenever this concept
is required for some theoretical consideration (as in game theory), this as-
sumption will be stated explicitly. This is the case with economic theories of
fair allocations, described in section 2.3.8, that are based on the concept of
no-envy. In section 2.3.4, this assumption is relaxed.

Note that we assume that all agents are equally entitled or capable of
achieving good outcomes. We shall call such agents similarindexsimilar agents
agents. The theory of equitable optimality can be extended to take into ac-
count various priorities of agents, but this makes the definition considerably
more complex [122]. This extension of the theory will be discussed in section
2.3.3. If the agents are not similar because they have different levels of ex-
penditure or contribution and are therefore entitled to different outcomes, a
common practice is to transform every agent’s outcome by dividing them by
the agent’s contribution [173]. After such a transformation, it is possible to
think of the agents as similar, because they are equally entitled to receive a
unit of outcome per unit of contribution. If some agents are not similar for
other reasons (in an Internet auction, the reason can be that various sellers
have various qualities of goods or services, and various marketing), then it is
still possible to consider the fairness for a subset of agents that are similar
according to these criteria. A system should at least be able to provide fair-
ness to this subset of similar agents. This approach is equivalent to a ceteris
paribus assumption from economics: when all other factors can be excluded
and all agents are equally entitled, the theory of equitable optimality can be
used for testing distributional fairness. In a laboratory setting, such condi-
tions can often be satisfied and we can design systems that realize the goal of
fairness, even in the presence of adversaries that do not act in a procedurally
fair manner.

2.3.2 Equitable Optimality

In a fair distribution problem, the objectives of all agents must be taken into
consideration. The problem of optimizing the outcomes of all agents can be
formulated as a multicriteria problem. We shall refer to this as the problem
of efficient optimization. Efficient optimization of an agent’s outcomes need
not have any concern for fairness. The outcomes can be the shares of goods
or costs received by agents in an ODS. Let y = [y1, ..., yn] ∈ Y be an outcome
vector of the efficient optimization problem where Y is a set of all possible
outcomes. We assume that there are n agents that maximize their outcomes
without loss of generality: if outcomes are minimized, it is enough to multiply
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them by −1 in order to transform the efficient optimization problem into a
maximization problem.

Because of our assumption that there exists a common, objective, measur-
able criterion for evaluating the outcome of any agent, we can assume that
the values of yi are all specified in the units of that criterion. For simplicity,
let us assume that yi are non-negative real numbers.

Outcomes of the efficient optimization problem can be for example the
download speeds of agents in a Peer-to-Peer file sharing system. Another ex-
ample is the amount of computational time received in a grid. In grids, it is
also possible to use outcomes that should be minimized, for example the time
needed to compute all the jobs of an agent. For TCP flows that share an IP
network, the outcomes may be the throughputs of each flow; the values of
these outcomes depend on the routing in the IP network that can use traffic
engineering in order to increase fairness among the flows. Note that in the
previous example, network management may also be interested in throughput
maximization, rather than fairness. Other examples can include the problem
of locating a facility in a city (for example, a hospital or a school). The travel
distances of the users of this facility (for example, hospital patients) can be
the outcomes of such an efficient optimization problem.

Among general examples of the fairfair distribution problem, the famous
cake-cutting problem should be mentioned. The outcomes of this problem are
the shares of agents participating in the division of cake that has a fixed size.
The fair solution of this problem is known (if agents are similar, they should
have equal shares), but the problem often focuses on fair procedures for the
division of cake, which makes this a problem of procedural fairness. A more
interesting, general example is a fair distribution problem with a budget. In
this problem, each agent is associated with a cost, and the sum of outcomes
of all agents multiplied by their costs cannot exceed the available budget.

In order to make this approach to solving distribution problems opera-
tional, one needs to assume some solution concept specifying what it means to
maximize multiple outcomes. The solution concepts are defined by properties
of the corresponding preference model within the outcome space.

The commonly used concept of the (strongly) Pareto-optimal solutions, as
feasible solutions for which one cannot improve any criterion without worsen-
ing another, depends on the dominance relation �r which may be expressed
in terms of the vector inequality: y′ �r y′′ iff y′

i ≥ y′′
i for all 1 ≤ i ≤ n, where

at least one strict inequality holds.
Without any additional constraints, any Pareto-optimal solution of this

problem will be an efficient solution. In plain words, this means that anything
goes – a solution where one agent gets all, and nobody else gets anything, is
as good as a solution where all agents get equal shares.

Distributive fairness can be based on an axiomatic expression and can
be expressed as another multicriteria optimization problem using the theory
of equitable optimality (this definition is also referred to as equitable opti-
mization [128]). The axioms of the theory of equitable optimality define a
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preference relation on the outcome vectors of the efficient optimization prob-
lem. An equitable rational preference relation is any symmetric and transitive
relation satisfying the following axioms [128]:

1. Impartiality. The ordering of the outcome values is ignored (e.g. a solu-
tion y = [4, 2, 0] is equally as good as a solution y = [0, 2, 4]). First of all,
fairness requires impartiality of evaluation, thus focusing on the distribu-
tion of outcome values while ignoring their ordering. This means that in
the efficient optimization problem we are interested in a set of outcome
values without taking into account which outcome takes a specific value.
Hence, we assume that the preference model is impartial (anonymous,
symmetric). In terms of the preference relation it may be written as the
following axiom. Let I = {1, 2, . . . , n}

(yτ(1), yτ(2), . . . , yτ(n)) ∼= (y1, y2, . . . , yn) for any permutation τ of I,
(2.1)

which means that any permuted outcome vector is indifferent in terms of
the preference relation.

2. Monotony. An outcome vector that improves the value of one of the
outcomes is preferred, the values of other outcomes are not deteriorated
(e.g. y = [4, 2, 0] is preferred to y = [3, 2, 0]). This axiom is actually a
repetition of the requirement of efficiency. It guarantees that only efficient
solutions will be chosen as equitable solutions. Another way of looking at it
is that the monotony axiom prevents a phenomenon well-known in former
Communist countries: that of “equating downwards”, or making outcomes
worse (and more equal, but not more equitable) for everyone. The axiom
can be expressed as follows:

y − εei ≺ y for ε > 0, 1 ≤ i ≤ n. (2.2)

3. Principle of transfers. A transfer of any small amount from an outcome
to any other relatively worse-off outcome results in a more preferred out-
come vector (e.g. y = [3, 2, 1] is preferred to y = [4, 2, 0]). Fairness requires
equitability of outcomes which causes that the preference model should sat-
isfy the (Pigou–Dalton) principle of transfers. The principle of transfers
states that a transfer of any small amount from an outcome to any other
relatively worse–off outcome results in a more preferred outcome vector.
This axiom may be expressed as a property of the preference relation:

yi′ > yi′′ ⇒ y − εei′ + εei′′ 	 y for 0 < ε < yi′ − yi′′ . (2.3)

The above axioms are sufficient in order to compare two outcome vectors on
the basis of theory of equitable optimality, to determine whether they are
equitably equivalent, or whether one of them is preferred to another. For in-
stance, consider the two vectors: y1 = [5, 5, 10] and y2 = [2, 2, 2]. It can be
seen that by applying the axiom of monotony, vector y1 is equitably preferred
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to y2. This example demonstrates that the theory of equitable optimality is
not about equality: vector y2 has an equal distribution of outcomes, but it
is considered worse, because in outcome y1, all agents are better off. On the
other hand, the two vectors: [2, 4, 8] and [2, 5, 6] are equitably incompara-
ble: none of them can be preferred to the other. Equitable solutions of the
efficient optimization problem are the solutions that cannot be improved in
the preference relation established by the axioms of the theory of equitable
optimality.

Any relation on the outcome vectors of the distribution problem that is
symmetric, transitive and satisfies axioms (2.1), (2.2) and (2.3) will be called
hereafter a fair (equitable) rational preference relation.

We say that outcome vector y′ fairly dominates y′′ (y′ 	e y′′), iff y′ 	 y′′

for all fair rational preference relations �. In other words, y′ fairly dominates
y′′, if there exists a finite sequence of vectors yj (j = 1, 2, . . . , s) such that
y1 = y′′, ys = y′ and yj is constructed from yj−1 by application of either
permutation of coordinates, equitable transfer, or increase of a coordinate.

To understand the fair preference relation better, it is good to start by con-
sidering just two of the axioms: impartiality and monotony. Together, these
two axioms define a set of preference relations that is larger than the set of
fair preference relations. Let us limit our attention to an unconstrained distri-
bution problem with just two agents (where each outcome vector y = (y1, y2),
y1 and y2 are positive real numbers). In such a problem, shown in Figure 2.6,
preference relations that conform to the axioms of monotony and impartiality
allow us to distinguish between the set D(y) of dominated outcomes (obvi-
ously worse than y for all fair preferences) and the set S(y) of dominating
outcomes (obviously better for all fair preferences). To see why the solution
y

′
shown in the figure is better than y, consider that according to the axiom

Fig. 2.6 Ordered Pareto preference relation in 2D: D(y) - set fairly dominated by
y, S(y) - set of outcomes fairly dominating y
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of impartiality, the outcome (3, 2) is equally preferable as y; and according to
the axiom of monotony, y

′
= (3.1, 2.1) is better than (3, 2). Since a preference

relation is also transitive, y
′
is preferred to y. Another way of looking at the

sets D and S is as follows: notice that as we order outcome (3, 2) starting from
the worst outcome to the best, we get (2, 3). And, the set S(y) is composed
of the solutions that Pareto-dominate y. Similarly, the set D(y) is composed
of the solutions that are strongly Pareto-dominated by y. Thus, the axioms of
monotony and impartiality define preference relations that correspond to the
ordered strong Pareto dominance over Y (where the ordering is from worst
outcome to best). This set of solutions plays an important role in the theories
of fair distribution. The theory of equitable optimality defines a subset of this
set (this subject is discussed in further detail in section 2.3.4).

Equitable solutions are visualized in Figure 2.7. Notice that the set S(y)
changes from Figure 2.6 because of the addition of the third axiom: the
principle of transfers. This axiom implies that all solutions that have a sum of
outcomes similar to y, but where both outcomes are more equal, are preferred
to y. These solutions lie on the black line between the two points shown in
the figure. The axiom of monotony implies that all solutions that have a
larger coordinate than any of the solutions on this line are also preferred.
This increases the set S(y) when compared to figure 2.6. Similarly, the set
D(y) is increased, because solutions that have a similar sum of outcomes
as y, but are more unequal, are considered as worse than y. However, some
outcome vectors are left (in white areas) and they can be differently classified
(as dominated or not) by various specific fair preferences.

Another graphical description of the theory of equitable optimality is
shown on figure 2.8. The left part of the figure shows one of the key concepts
of distributive fairness: the Generalized Lorenz curve (to use its name from

Fig. 2.7 fair preference relation in 2D: D(y) - set fairly dominated by y, S(y) - set
of outcomes fairly dominating y
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economics). The Generalized Lorenz curve is obtained by first taking the out-
comes of all agents that participate in a distribution and ordering them from
worst to best. Then, the ordered outcomes are added one at a time, creating
a sequence of cumulative sums, called cumulative ordered sums. Usually, the
Generalized Lorenz curve is normalized by the number of agents, n [150]. In
this book, we use a re-scaled version that is not divided by n, which is useful
because the curve can then be used to show the sum of total outcomes of all
agents.

Let us denote this operation by a vector function θ(y) = [θ1(y), ..., θn(y)]
of the outcome vector. The cumulative ordered sums of agents’ outcomes are
calculated starting from the outcome of the worst agent (θ1), then the sum
of outcomes of the worst and the second worst (θ2), and so on, until the sum
of all agent outcomes, which is denoted in the figure as θn. The second line in
the figure, the equal distribution line, is simply a straight line connecting the
points (1, θ1) and (n, θn). The area between the two curves, denoted by S,
can be seen as a measure of inequality of the agent’s outcomes. The objective
of distributive fairness is to minimize this inequality, making the Generalized
Lorenz curve as close to the equal distribution line as possible. Note that this
objective frequently forms a tradeoff with the objective of maximizing the
total sum of agents’ outcomes (θn). The right part of Figure 2.8 shows two
generalized Lorenz curves that correspond to different distributions among
the same agents. The first distribution has a higher θn, but also a higher
inequality, while the second distribution has a lower total of agents’ outcomes,
but is fairer. In terms of equitable optimization, the two distributions on the
right side of Figure 2.8 are incomparable - the choice of one of them depends
on the preferences of a decision maker5.

By applying cumulative ordered sums, the efficient optimization problem
is transformed into another multicriteria optimization problem. Therefore,

The Generalized Lorenz Curve Two incomparable distributions

Fig. 2.8 Examples of Generalized Lorenz curves

5 Incomparable distribution can also have identical total efficiencies θn.
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the Generalized Lorenz curve actually represents the criteria that need to
be optimized in order to achieve equitably efficient (fair) solutions. These
criteria are the cumulative sums of worst outcomes θ1, θ2, ..., θk. The new
optimization problem will be called the equitable optimization problem. The
Pareto-optimal solutions of the equitable optimization problem are a subset
of the efficient solutions. More importantly, they are equitable solutions of
the efficient optimization problem: they cannot be improved in the fair pref-
erence relation. This observation is established by the following theorem (a
consequence of results from the theory of majorization):

Theorem 1. [128] Outcome vector y′ ∈ Y fairly dominates y′′ ∈ Y , iff
θi(y′) ≥ θi(y′′) for all i where at least one strict inequality holds.

Note that Theorem 1 permits us to express equitable efficiency for the effi-
cient optimization problem in terms of the strong Pareto-optimality for the
equitable optimization problem:

Corollary 1. A feasible solution y ∈ Y is an equitable solution of the efficient
optimization problem, if it is a Pareto-optimal solution of the equitable optimiza-
tion problem, the problem with objectives Θ(y): max {(θ1(y), . . . , θn(y))}.
Note that according to the theory of equitable optimality, the utilitarian
approach is a special case: optimizing the sum of an agent’s utilities also leads
to an equitably efficient solution [128]. However, this solution is one of many
and it is up to the decision maker (the designer of a fairness management
system) to make a choice for one solution. At the other extreme, the solution
obtained by lexicographically optimizing the outcomes of all agents (without
constraints, this approach would equalize outcomes) is also equitably efficient.
The lexicographic optimization approach starts with optimizing the outcome
of the worst-off agent, then the second-worst off, and so on, until a constraint
is reached or the ordering of the agents changes – the approach continues until
all agents have active constraints, or the outcomes are equal. In chapter 4,
we shall discuss various methods of solving equitable optimization problems.
Many of these methods allow for the expression of various preferences that
lead to different equitable solutions.

The area between the Generalized Lorenz curve and the equal distribution
line can be simply calculated and used as a computable measure of inequality.
It can be shown that minimizing this measure leads to fair distributions [128].
The Gini coefficient (frequently used in economics) is the area S normalized
by θn: Gini = 2S

θn
. Note that minimizing the Gini coefficient to obtain fair

distributions can lead to worse total outcomes (sums of all agent’s utilities).
Also, the Gini coefficient is not consistent with fair preference: a distribution
that has a smaller Gini coefficient can be dominated in terms of the fair
preference relation by another distribution. This fact is a consequence of
normalization.
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Another measure of fairness that is consistent with equitable optimality
is the area under the Generalized Lorenz curve (BLC), BLC = nθn

2 − S.
This area is always larger if the distribution D1 is equitably preferred to
another distribution D2, since the Generalized Lorenz curve of D1 is then
above the Generalized Lorenz curve of D2. Unfortunately, maximizing the
area under the Generalized Lorenz curve does not necessarily always lead to
a more equitable solution. As in the example shown in 2.8, the areas under
two incomparable generalized Lorenz curves may differ, but if one is larger
this does not imply that the solution is more equitable. A full solution of
the equitable optimization problem can only be achieved by finding a set of
Pareto-optimal solutions and choosing one that best suits the preferences of a
decision maker (which are expressed as additional input to the problem). The
decision maker can then choose whether or not he prefers increase equality
at the cost of decreasing the total outcome.

2.3.3 Considering Entitlements in Equitable
Distribution

Some of the most popular definitions of equity [39] consider that equity is al-
ways related to the concept of agent entitlements. In our previous discussion
of the theory of equitable optimality, we assumed that all agents are equally
entitled. This section will demonstrate why this is not a significant simplifi-
cation of the theory and how entitlements can be introduced into equitable
optimization.

Agent entitlements are usually modeled as weights that indicate an agent’s
priority or importance. These weights can be determined from an agents’,
level of past contribution or cost (for example, based on the amount of pro-
vided resources in a P2P or grid system). For simplicity, we shall assume that
the agents in the ODS have weights vi that are positive integer numbers. So-
metimes we will use normalized weights vi = vi/

∑
i vi.

The original problem of efficient optimization is now redefined: there are
n agents in the ODS with outcomes yi and weights vi. The question is: what
is a good definition of equitable solutions for such a problem?

The efficient optimization problem with weights can be transformed into
an unweighted problem (in which all agents have weights equal to 1). For in-
teger weights, this can be simply done by splitting each weighted agent i into
vi unweighted agents. The outcomes of the split agents can be added in order
to determine the outcome of the original, weighted agent. Thus, the equitable
solution for the weighted problem is defined as the equitable solution of the
transformed unweighted problem.

Note that this transformation can also be applied for rational weights, but
usually dramatically increases the problem size. For this reason, it is also
useful to consider methods of finding equitable solutions for the weighted
problem directly. Such methods will be considered in section 2.3.9.
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The Generalized Lorenz Curve used to represent the theory of equitable
optimality can be reformulated for the weighted problem. This reformula-
tion uses the cumulative distribution function of the distribution of weights
according to sorted outcomes:

Fy(d) =
∑

i

viδi(d), δi(d) =
{

1 if yi ≤ d

0 otherwise.

The integral of the inverse of this cumulative distribution function is the
Generalized Lorenz Curve for the weighted problem. For more details, the
reader is referred to [122].

It is also possible to redefine the axioms of the theory of equitable opti-
mality so that they can be applied directly to the outcomes of the weighted
problem. The axiom of monotony does not need to change. The axiom of im-
partiality can be replaced by the equality of distributions defined above:

Fy′ = Fy′′ ⇒ y′ ∼= y′′. (2.4)

The principle of transfers can be redefined using normalized weights so that
the transfer is done in weighted units.

yi′

vi′
>

yi′′

vi′′
⇒ y − εvi′ei′ + εvi′′ei′′ 	 y for 0 < ε <

yi′

vi′
− yi′′

vi′′
. (2.5)

2.3.4 A Utility-Based Theory of Distributive Fairness
for Multiple Goods

The above formulation of the theory of equitable optimality relied on the
availability of an objective, common measure of agent outcomes in the dis-
tribution problem. This reliance removed the need to consider subjective
utilities. Yet, in some applications it is not possible to agree on a common, ob-
jective valuation of outcomes. For such applications, distributive fairness mo-
dels may be formulated using subjective utilities.

The theory of equitable optimality requires another simplification – it con-
siders only a single-good distribution problem. Of course, this difficulty could
be partially removed by considering a bundle of goods that was evaluated as
a unit; yet, in a multi-good distribution problem, one good may be traded
off against another in an outcome.

In this section, we shall formulate a theory of distributive fairness for the
multiple-good distribution problem, based on the work of [149]. The theory is
in many respects similar to the theory of equitable optimality, which can be
reformulated in the same setting using subjective utilities for multiple goods.
Yet, equitable solutions (in the sense discussed above) are only a subset of the
solutions obtained from the new theory of distributive fairness. For simplicity
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of discussion, we shall refer to the new theory as Generalized Distributional
Fairness.

As defined in section 2.3.2, let Y be the set of all possible outcomes (not
only the efficient outcomes, but all) of the distribution problem. In the def-
inition of the theory of equitable optimality, we assumed that there existed
a common, objective, measurable criterion of evaluating the outcome of any
agent. This criterion was not explicitly denoted, but rather it was assumed
that outcome values yi are in the units of that criterion. For a multi-good
problem, yi ∈ Y is a vector that describes how much of any good the agent i
has received in outcome y. Also, we are now going to consider the case where
a common, objective criterion of outcome valuation does not exist. Rather,
each agent values his outcome subjectively, using a unique utility function.
This real-valued vector function will be denoted by u(y). We shall assume
that agents aim to maximize their utility.

It has been noted previously that in order to introduce a concept of dis-
tributive fairness, there must be a way of comparing the outcomes of indi-
vidual agents. This observation still holds (even more strongly) in the case of
subjective utilities 6. In order to introduce the theory of Generalized Distri-
butional Fairness, it is necessary to assume that the subjective utilities can be
compared. Yet, there can be many different kinds of comparison [95]. For our
purposes, it is sufficient to assume that the utilities of individual agents can be
sorted in a non-decreasing order (from worst to best). Let us denote the vec-
tor of ordered utilities of all agents for outcome y by u∗(y) = [u∗

1(y), u∗
2(y),

. . . , u∗
n(y)] such that u∗

1(y) ≤ u∗
2(y) ≤ . . . ≤ u∗

n(y). Thus, while ui is the
utility of agent i, u∗

i is the utility of the ith worst-off agent in the ODS.
Note here that ordered utility functions are not quite enough to use the

theory of equitable optimality. The assumption that utilities are comparable
is not equivalent to the assumption that the differences between utilities
are comparable (the first assumes an ordinal relation on utilities, while the
second assumes a cardinal relation). If, as required by the theory of equitable
optimality, we are going to compare sums of utilities, it is necessary to use
a stronger assumption of cardinal comparison. Then, it would be possible to
apply the theory of equitable optimality to the problem of multiple goods with
subjective utilities that has been described so far in this section. However,
we shall present a different theory of fairness that is more general than the
theory of equitable optimality. Then, we shall compare the new theory to the
6 The famous Arrow’s impossibility theorem is a consequence of the lack of ability

of comparison of subjective utilities. The theorem shows that a fair solution to
the problem of aggregating social opinions does not existunless the solution is
imposed by a dictator. However, the theorem’s assumptions do not apply if there
is a way of comparing the agents’ subjective valuations (utilities) of available
alternatives. Under such conditions, it is possible to find a fair social opinion.
A similar reasoning to Arrow’s would apply to fair distribution problems if the
subjective utilities of agents could not be compared.
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theory of equitable optimality, also for the single-good problem with universal
utilities that has been described so far.

The theory of Generalized Distributional Fairness, formulated in [95], but
based on the work of Sen and Suppes [149], is defined as follows, using two
concepts: the Generalized Rawlsian Fairness relation of the kth degree, and
the Generalized Conservative Fairness relation of the kth degree.

For two possible outcomes y
′
and y

′′
, y

′
is considered as fairer than y

′′
ac-

cording to the Generalized Rawlsian Fairness relation of the kth degree, if
and only if u∗

i (y
′
) ≥ u∗

i (y
′′
) for all i such that 1 ≤ i ≤ k, and there exists

at least one j such that 1 ≤ j ≤ k and u∗
j(y

′
) > u∗

j (y
′′
). This condition is

equivalent to Pareto-dominance of the sorted utility vector for the k worst
utilities.

Similarly, for two possible outcomes y
′

and y
′′
, y

′
is considered as fairer

than y
′′

according to the Generalized Conservative Fairness relation of the
kth degree, if and only if u∗

i (y
′
) ≥ u∗

i (y
′′
) for all i such that n−k+1 ≤ i ≤ n,

and there exists at least one j such that n−k+1 ≤ j ≤ n and u∗
j(y

′
) > u∗

j (y
′′
).

This condition is equivalent to strong Pareto-dominance of the sorted utility
vector for the k best utilities among the utilities of n agents. The conservative
preference relation can be thought of as favoring the fittest (and thus best-off)
agents.

Let us define two sets of solutions in Y : the set Rk of the solutions that are
optimal (maximal) with respect to the Generalized Rawlsian Fairness relation
of the kth degree, and the set Ck of the solutions that are optimal (maximal)
with respect to the Generalized Conservative Fairness relation of the kth
degree. Notice that the sets Rn and Cn are equal (and equal to the set of all
Pareto-optimal ordered solutions in Y ). This set is also the set of solutions
that are optimal with respect to the fairness relation proposed by Suppes [95],
and will therefore be called the Suppes set, S. The solutions belonging to S
are exactly the ordered Pareto-optimal solutions of the efficient optimization
problem, as discussed in section 2.3.2.

Using these sets, we can now define a broad class of solutions that are op-
timal according to the theory of Generalized Distributional Fairness. These
solutions are the sum of three sets: S∪GR∪GC, where GR = R1∪. . .∪Rn−1

and GC = C1 ∪ . . . ∪ Cn−1.
If we assume cardinal comparison of agent utilities, then we can apply

the theory of equitable optimality and obtain the set of its optimal solu-
tions, denoted by O. We can further refine this notion by the following
definition: let the set of Ok denote the equitable solutions of the problem
max {θ1(y), . . . , θk(y)}, where thetak(y) =

∑k
i=1 u∗

i (y). Then, O = On. We
shall now show the relationship between the theory of equitable optimality
and the theory of Generalized Distributional Fairness.

Theorem 2. An outcome y ∈ Y that is equitably efficient according to the
theory of equitable optimality is also optimal according to the theory of Gener-
alized Distributional Fairness. In particular, Ok ⊂ Rk.
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Proof: If an outcome y /∈ Rk, then there exists an outcome y
′
that Pareto-

dominates y. This means that

u∗
1(y

′
) ≥ u∗

1(y), u∗
2(y

′
) ≥ u∗

2(y), . . . , u∗
k(y

′
) ≥ u∗

k(y),

where at least one inequality also is strict. But then, by taking increasing
sums of the inequalities we get:

θ1(y
′
) ≥ θ1(y), θ2(y

′
) ≥ θ2(y), . . . , θk(y

′
) ≥ θk(y),

where also at least one inequality is strict. This means that y /∈ Ok, which
implies that Ok ⊂ Rk. �

However, the reverse inclusion does not hold. To see why this is so, consider
the example of a distribution problem for just two agents (assuming there is a
single good, and the agents have similar utilities). This example was already
discussed in section 2.3.2, and the solutions belonging to R2 = S (because
n = 2) shown in Figure 2.6. Here, let us directly compare the dominating
sets S(y) for a solution y. The comparison is shown in Figure 2.9. The area
in the middle of the figure with a finely dashed background belongs to the
dominating set according to the theory of equitable optimality, but not ac-
cording to the theory of Generalized Distributional Fairness. In particular,
point y

′
dominates y according to the theory of equitable optimality, but

not according to the theory of Generalized Distributional Fairness. If the set
of all possible outcomes is given by: Y = {y, y

′
, y

′′}, then O2 = {y′}, but
R2 = {y, y

′
, y

′′}. Thus, the example shows that the inclusion Ok ⊂ Rk is
strict.

Fig. 2.9 Comparing equitable solutions with solutions of Generalized Distribu-
tional Fairness in 2D: D(y) - set fairly dominated by y, S(y) - set of outcomes
fairly dominating y
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Note that another way of showing that On ⊂ Rn would be to observe
that the set On is defined as the set of solutions optimal according to pref-
erence relations that conform to the three axioms of the theory of equitable
optimality (as shown by theorem 1). However, Rn (the set of ordered Pareto-
optimal solutions) is also the set of solutions optimal according to preference
relations that conform to just two of these axioms (without the principle of
transfers). Thus, solutions in On must also belong to Rn. The result shown
above extends this observation to Ok and Rk, for k < n.

In this section, we have extended the theory of equitable optimality to a
problem with multiple goods and subjective utilities by defining the set of
On = O of equitably optimal solutions for this problem. We have also in-
troduced the Generalized Distributional Fairness (GDF) theory that extends
the set of solutions considered fair. This extension is rather large, as the set
of equitably optimal solutions is strictly included in just a part of the solu-
tions of the theory of GDF. However, the extended theory has an important
interpretation in the social sciences: it can be shown that the solutions of
the theory of Generalized Distributional Fairness describe well the solutions
chosen as fair by real human subjects in empirical experiments.

2.3.5 Game-Theoretic Notions of Fairness

Distribution problems in an ODS have a high resemblance to game-theoretic
settings. The notion of an encounter itself is similar to a game. However,
the conditions of an ODS are usually very complex, and many of the ba-
sic assumptions of game-theory are too limiting in practice. In fact, much
empirical evidence today suggests that the most basic assumptions of game
theory: that players are selfish; that players are strategic; and that an equi-
librium can be reached, do not apply in practice to the behavior of human
agents (see [25]). Still, concepts of game theory have frequently been ap-
plied in ODS, and have also lead to practical solutions. A well known exam-
ple is the application of the Tit-for-Tat strategy for the iterated Prisoner’s
Dilemma in Bittorrent for the prevention of free-riding. The reasons for the
usefulness of some game-theoretic concepts is that they have been developed
for situations where centralized control is not available. In games, players
make autonomous decisions, and this similarity to an ODS is sufficient for
game-theoretic strategies to be applicable in practical ODS. It is also possible
to consider game-theory as a pessimistic approximation of human behavior
(since it assumes selfish and strategic behavior). In this section, we shall
consider game-theoretic concepts that are useful in the theory of fairness.

2.3.5.1 Noncooperative Games

Non-cooperative games can be used to model a situation when selfish, strate-
gic agents interact in encounters with no incentive to cooperate (there exists
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no enforcement mechanism of fair behavior). An example of such a situation
are peers who share files in a P2P overlay network. Every peer is interested
to receive files, but is not interested to provide files to others. This situa-
tion is usually modeled using games which have two actions for each agent:
Cooperate and Defect. The structure of payoffs is usually such that the Nash
equilibrium in a single game is the choice of the Defect action by all players.
The Nash equilibrium is clearly not the utilitarian optimal choice (a choice
that would result in the highest sum of payoffs of all agents). For our example
of P2P file sharing, the Nash equilibrium is the choice of never providing files
by all peers in the system. As a result, no file would be available in the system
for retrieval. The ratio of the highest sum of payoffs of all agents to the sum
of payoffs in the worst Nash equilibrium is called the price of anarchy. In our
example, the price of anarchy is infinite.

Note here that the concept of a Nash equilibrium in a noncooperative game
should only be used if it can be proven that the game players are selfish. If they
are not, the Nash equilibrium is not likely to be chosen. Empirical research
from behavioral game theory supports the notion that Nash equilibria are
rarely chosen by real players.

The most popular game used in noncooperative game theory is the Pris-
oner’s Dilemma (PD) [7]. This game has in-built incentives for cooperation,
although the Nash equilibrium of the game is still uncooperative. It can be
said that research on the iterated PD and its famous conclusion about the
evolution of cooperation has created a paradigm in the research on fairness. In
this paradigm, fairness is identified with reciprocity, and the noncooperative
game theory assumptions are considered true: agents are selfish, strategic,
and uncontrolled. The PD allows us to measure cooperation using a simple
utilitarian function (the sum of all agent’s payoffs), as the sum of payoffs
is highest for the cooperative solutions of the game. This method is also a
utilitarian approach to the evaluation of trust management and reputation
systems [118, 34, 178]. The payoff structure of the PD can be characterized
as follows:

PayoffA,PayoffB Cooperate Defect

Cooperate R,R S,T

Defect T,S P,P

Fig. 2.10 Structure of payoff in the Prisoner’s Dilemma

The payoffs of the game (R: Reward for mutual cooperation, S: Sucker’s
payoff, T: Temptation to defect, and P: Punishment for mutual defection)
fulfil the following relations:

T > R > P > S,

and
T + S < 2R.
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These relations guarantee that the Nash equilibrium is mutual defection,
while the Pareto-optimal (also utilitarian optimal) solution is mutual cooper-
ation. The values for the payoffs could vary, as long as the relations presented
above are satisfied. By varying the payoffs, the PD could become more simi-
lar to a constant-sum game. The most frequently used payoff structure of the
PD is as follows: T = 5, R = 3, P = 1 and S = 0.

There are many real-life examples of Prisoner’s Dilemmas. One of the most
well-known examples, described in Axelrod’s book, is the trench warfare of
World War I. Companies of soldiers located on two sides of the frontline would
refrain from attacking each other, although a surprise attack could result in
a significant gain. However, attacks were extremely dangerous for both sides;
and the reward for mutual cooperation was high. Another frequently used
example of the Prisoner’s Dilemma is the arms race between countries in the
Cold War.

A more general form of the Prisoner’s Dilemma is the n-person PD, also
called a Social Dilemma (SD) [82, 81, 74]. The SD differs from the PD in
several respects. The negative effects of defection affect not one, but many
agents involved in the encounter. Also, identifying defectors may be more
difficult, because the perceived negative results of defection could be caused
by any of the other agents.

Social dilemmas are further classified into resource dilemmas and public
good dilemmas. Resource dilemmas describe a situation where a scarce re-
source can be harvested by many people. Every agent in a resource dilemma
is tempted to take large amounts of the resource (defect), but if sufficiently
many agents harvest too much, the resource is depleted for all other agents.
Participants of the resource dilemma may keep their harvests as long as the
resource is not depleted completely. In the case where the resource is depleted,
all participants lose their harvests.

A public good dilemma models a situation where people contribute to-
wards a public good (a good that benefits all agents without possibility of
exclusion). The public good can only be established by a sufficient amount of
contributions from agents, but once established, it is usually multiplied by a
factor. Therefore, the possibility exists that some agents will not contribute
to the public good, but will benefit from it (free-ride). On the other hand,
if too many agents free-ride, then all agents will be deprived of the public
good. Two stages can be distinguished in a public good dilemma: the first
stage requires the provisioning of the public good. In this stage, it is necessary
to motivate agents to contribute the required resources or bear the necessary
costs. The second stage is the distribution or allocation of the public good.
Depending on additional assumptions on the public good problem, the dis-
tribution stage may be ignored (if it is assumed that all agents have equal
access to the public good once it is established). However, if it is possible to
control access to the public good, it may be distributed among agents. The
problem of its distribution is then a typical fairfair distribution problem, and
the theory of equitable optimization may be applied.
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2.3.5.2 Cooperative Games

The basic definition of cooperative game theory is that it is a game where
players can enforce fair behavior. However, this definition can be relaxed.
If the fair agreements made on the basis of cooperative game theory are
violated, trust management can be applied to punish offending peers.

Cooperative game theory is concerned with the distribution of gains that
a group of agents obtain from cooperation. The model assumes that the
group of agents wishes to solve a common problem. An example could be
the problem of waste disposal by cities: each city needs to solve a problem,
therefore it is common to all. By cooperating, cities could dispose of their
waste more efficiently. All agents that could potentially cooperate form a set
A. The task of cooperative game theory is to determine what subset K of A
would actually agree to cooperate in a given situation.

Cooperative game theory assumes the existence of a cost function, c (also
called the “alternative costs”), that takes as an argument any subset B of
the set A. The cost function returns the cost c(B) for which the agents in
B could solve the problem. B could contain only one agent. If B contains
more than one agent, then the agents in B would still need to divide the cost
among themselves, but how this is done is not specified by the cost function.
Since agents are selfish, for every agent a ∈ A the cost function determines an
upper bound on the agent’s share of costs in a cooperation: no agent would
agree to contribute more than c(a).

For every agent a, the cost function also determines the cost c(A − a),
which is the cost at which all other agents could solve the problem without
the cooperation of a. This cost determines a lower bound on the share of
costs of the agent a (the cost contribution of a). If the agent was willing to
contribute less, it would be possible for all other agents to solve the problem
without him at a lower cost. As a matter of fact, if c(a) < c(A−a), it is clear
that a would never be part of the cooperation with all other agents.

The same reasoning can be applied to any subset B of A. The reasoning of
cooperative game theory leads to the concept of a set of cooperating agents
that divide the costs among themselves in some way. The cost divisions of
the cooperating agents must fulfil the property that for any subset of B (the
cooperating agents), their cost contribution must be less than their alterna-
tive costs (c(A) − c(A − B) < c(B)). The set of this cost divisions is called
the core. It is also possible to think of a set of cooperating agents that have
a non-empty core. If the core is empty, then the considered set of agents will
not cooperate in the game-theoretic model.

The core can still be a large (if the costs are continuous, even infinite) set
of cost allocations among the cooperating agents. In order to suggest a single
solution to the problem of cost allocation, cooperative game theory defines a
new problem of distribution. Instead of looking at the costs, the theory now
considers the gains (or savings) of each agent. For any cost allocation that
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assigns the cost of ca to agent a, the gains of a are ca − c(a). It is assured
that this value is not negative if the cost allocation is part of the core.

The problem of finding a fair solution to the gains distribution problem
in cooperative game theory is posed as the problem of fair distribution of
savings for cost allocation inside the core. In other words, the core specifies
constraints on the cost allocations, while the optimization criteria are the
savings of cooperating agents. Cooperative game theory defines the concept
of the nucleolus , which is a cost allocation in the core obtained by lexico-
graphically maximizing the savings of all agents.

However, the reader will notice that it is possible to extend cooperative
game theory using the theory of equitable optimality. The nucleolus need
not be the only equitable solution of the problem of gains distribution in the
core. It would also be possible to suggest methods that would search for other
such solutions. The problem could be defined as a multicriteria optimization
problem, and solved using various preferences of the decision makers.

It would also be possible to define the problem of searching for fair distri-
butions inside the core as a problem of equitable distribution of costs, and
not of gains. The formulation of the criteria of the problem could also be
chosen by decision makers.

It follows that collaborative game theory and the theory of equitable op-
timality complement each other. The game-theoretic model allows us to take
alternative costs that form a set of constraints on equitable solutions into
account. On the other hand, equitable optimization methods can be used to
search for various equitable solutions that satisfy these constraints.

2.3.5.3 Fair Negotiations

Fair negotiations can be used to solve distribution problems, or to arrive
at fair agreements. The game-theoretic theory of fair negotiations assumes
that all agents in an encounter have to agree on a particular solution to the
distribution problem. If any agent disagrees, negotiations are broken and the
encounter does not take place. It is assumed by game theory that in such
a case, the amount of goods that could be distributed during the encounter
is lost. Another assumption is that goods are divisible (if they are not, it is
possible to divide the chances of obtaining the goods).

The game-theoretic negotiation model further assumes that the agents
make their decisions based on expected utilities, and that these utilities will
have a functional form that reflects the agent’s attitude towards risk. The
source of risk in the negotiations is the ability of any agent to “veto” the
outcome, leading to the loss of the divided goods by all agents in the en-
counter. Classical negotiation theory predicts two possible fair negotiation
solutions to the distribution problem. The first of them, referred to as the
Kalai-Smorodinski solution, can be described as follows. Every agent should
be indifferent to receiving his outcome in the Kalai-Smorodinski solution with
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certainty, and to the participation in a lottery where each agent can receive
the entire available amount of goods with a fixed probability.

The other fair solution of the distribution of negotiated goods is the Nash
bargaining solution. This solution gives all agents outcomes with the property
that no transfer between any two agents would be justified using the Nash
criterion. Using the Nash criterion, a transfer from agent A to agent B is
justified if the relative decrease of the utility of agent A is less than the
relative increase of the utility of agent B. Notice that the Nash criterion
avoids interpersonal comparison of utilities, as it only compares the relative
changes of utilities. Also, notice that if agent A is more risk averse than agent
B, then they will not receive equal outcomes in the Nash bargaining solution.
The reason for this is that the utility function of agent A will increase at
a slower rate with the increase of the outcome, than the utility function of
agent B. Thus, the relative decrease of A’s utility will be less than the relative
increase of B’s utility if their shares are initially equal.

Both the Kalai-Smorodinsky and the Nash bargaining solution are efficient
solutions to the distribution problem, using the definition introduced in the
previous section.

The classical, game-theoretic negotiation theory has serious drawbacks.
The first drawback is a lack of consideration for context, for example with
regard to the relative priorities of the negotiating parties. Imagine that ne-
gotiations concern the distribution of the residual capital of a firm, and that
the negotiating agents are creditors of this firm. Clearly, the amount that the
firm owed to each creditor should have an impact on the outcome. In classical
negotiation theory, only the risk attitudes of negotiators will have an impact
on the solution.

A more significant drawback is that empirical observations from experi-
mental negotiations have shown that human agents seldom choose distribu-
tion solutions that are in agreement with game-theoretic negotiation theory.
Rather, negotiators tend to select solutions that are influenced by some com-
mon norm of fairness. In other words, negotiators that agree on a norm of
fairness apply this norm to find an acceptable distribution solution, rather
than play a game of nerves as expected by game-theoretic negotiations.

2.3.6 Empirical Investigations of Fairness
Preferences

This section provides a summary of the research on fairness preferences de-
scribed in [95, 96]. The results of this research are especially relevant for the
evaluation of the introduced fairness theories.

The presented results are based on an experiment that uses a problem of
social choice in order to evaluate human preferences with respect to the rules
of fair distribution. The problem of social choice can be defined as follows:
given individual opinions from a group of agents, create a single social opinion
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for the entire group. A good example of the problem of social choice is the
problem of determining the results of an election from the individual votes.
In the experiment used to test fairness preferences, participants were asked
to determine the verdict of a jury given the opinions of three jurors. The
three jurors ranked three alternatives in a complete, weak order. Out of the
three opinions, experiment participants had to create a jury verdict.

Such a problem of social choice can be reduced to an efficient multicriteria
optimization problem by considering the distances of the individual agents’
opinions to the social opinion. In the case of the three jurors, it is possible to
compute a distance of every juror’s opinion to the jury verdict. A distance
measure that can be used for this reduction is the Kemeny-Snell measure (for
details, see [77]). Naturally, it makes sense to require that the jury verdict
should be fair in the sense that the distances of the individual jurors’ opinions
to the verdict should be fairly distributed. Therefore, a social choice experi-
ment can be used to test the preferences of human subjects with respect to
fair distribution. Additionally, the jury problem provides an attractive and
simple experimental setting.

Each experiment participant has been asked to provide a jury verdict for
8 sets of jury opinions (jury profiles). A sequence of jury verdicts created by
a single participant will be referred to as an empirical strategy of a partic-
ipant. There were 140 participants, and therefore 140 empirical strategies.
The question considered in the analysis of the experiment results has been:
which of the theories of fair distribution best explains the empirical choices of
experiment participants? A theory of fair distribution should create for each
jury profile a set of solutions that correspond to possible jury verdicts. The
theory explains an empirical strategy if each of the empirical choices of a par-
ticipant made for a jury profile is in the set of possible jury verdicts predicted
by that theory for this jury profile.

The empirical strategies of participants turned out to be widely distrib-
uted. Over 62% of the empirical strategies were unique. The analysis of the
experiment results considered several possible methods of fair social choice
and of fair distribution. For example, the jury’s opinions were created using
the majority method, the ranking method, and Borda’s elimination method.
However, each of the single, classical methods had a very limited capacity for
explaining empirical choices. The best of the classical theories (the ranking
rule) explained less than 11.5% of the empirical strategies. All the classical
theories considered together explained less than 52% of the empirical strate-
gies (even under the condition that a different theory could be applied to
each of the 8 jury profiles).

In contrast, the theory of Generalized Distributional Fairness introduced
in section 2.3.4 explained over 80% of the empirical strategies. This result
demonstrates that the theory of Generalized Distributional Fairness defines
a very broad class of fair solutions that corresponds well to the fairness pref-
erences of human subjects. Notice that the theory of equitable optimization
defines a smaller subset of this set of fair solutions. Yet, both theories are
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posed as multicriteria problems, and multicriteria optimization methods can
be used to select solutions that best match the preferences of a decision
maker. Using one of the two theories, a decision maker will be searching in a
set that most likely includes his fairness preferences. Equitable solutions from
the theory of equitable optimality have the additional property of being more
easily computable than solutions of the Generalized Distributional Fairness
theory.

2.3.7 Cooperation and Reciprocity

Following the work of Axelrod [7], a large body of research has considered
the emergence of cooperation in the iterated Prisoner’s Dilemma. The intro-
duction of reputation has been demonstrated as helpful to the emergence of
cooperation.

The problem of cooperation is often similar to the Social Dilemma problem
introduced in section 2.3.5.1. In most research on this problem, it has been
assumed that participating agents are selfish (choose options with the most
beneficial outcome to themselves, without considering outcomes of others).
However, research in psychology has revealed that in group situations, the
decisions of individuals are influenced by motives such as group performance,
sense of responsibility for others, or social concern. For a good overview of
research results on this subject, the reader is referred to the work of Kazemi
[74].

Research in psychology [74] has also revealed that in fair distribution prob-
lems in group settings (fair allocation of public goods), agents revealed pref-
erences for equitable treatment that took into consideration inputs of agents,
rather than a simple equal division of the public good. Furthermore, when
the group needed to reach a goal of economic productivity, agents preferred
an equitable distribution of the public good that rewarded agents who had
contributed more to the establishment of the public good. On the other hand,
if the group goal was social harmony, then agents preferred a distribution ac-
cording to equal final outcomes (that took into account a difference between
the contribution and the value of the received public good. This approach is
similar to the use of a utility function that is equal for all agents).

2.3.8 Economic Notions of Fairness

The theory of distributive fairness described in this chapter does not assume
that an agents’ utilities can be explicitly expressed. Economic theories of fair
allocations, on the other hand, usually rely on the reverse assumption, that an
agents’ utilities can be expressed as computable functions or relations. Such
theories are built on the basic concept of no-envy that relies on the ability of
each agent to compare a received outcome with any other outcome received
by another agent. This comparison is not based on objective outcome criteria
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(such as amounts of goods, money or services), as in the theory of distributive
fairness. Rather, they are based on subjective preferences of agents.

Economic theories of fairness [161] combine the notions of Pareto-optimality
and no-envy. A solution is deemed fair under economic theory of fair allocation,
if it is Pareto-optimal and it is a no-envy solution. Such solutions exist, and a
good example which is a special type of a Pareto-optimal, no-envy solution, is
the equal-division Walrasian allocation. The Walrasian allocation can be de-
fined as the allocation that maximizes each agent’s utility for any good, subject
to a total budget constraint that is the same for all agents. The budget con-
straint is the total cost of a bundle of goods that is an equal division of every
good between all the agents. The total cost is calculated for a set of common
(usually normalized) prices among all agents.

Equal-division Walrasian allocations are not the only Pareto-optimal and
no-envy allocations, but they can be thought of as the result of a market
process. In a perfect, stable market, every agent can maximize his subjective
utility by purchasing the goods he wants, using the budget obtained from an
equal-division initial allocation of goods (that he can sell on the market). The
equal division Walrasian solution also has interesting theoretical properties:
in the theory of mechanism design, this solution has a minimal dimension
of message spaces required for its realization, and therefore has the highest
informational efficiency. Moreover, it can be shown to be the only such mech-
anism [24]. Another important feature is that this mechanism only depends
on local information about agent preferences. Other mechanisms for deter-
mining no-envy solutions cannot operate based only on local information.

Economic theories of fairness distinguish between the fairness of initial
allocations, the fairness of trades (or transitions between allocations), and the
fairness of the final allocation (in a stable market solution). Equal division
is the usual choice of a fair initial allocation. The criteria of fair trades are
usually also based on the principle of no-envy. The final allocation ought
to be a Pareto-optimal, no-envy allocation. However, these considerations
lead to certain paradoxes [161]. For example, when starting from an initial
Pareto-optimal, no-envy allocation, and applying no-envy trades, one can
obtain an allocation that is not envy-free. Also, there may be a non Pareto-
improving trade that leads to a particular Pareto-optimal, no-envy solution,
starting from a certain initial allocation. The only fairness principles that are
consistent with respect to transitions are the Walrasian principles. Starting
from an equal-division Walrasian allocation, Walrasian trades always lead to
another equal-division Walrasian allocation.

To conclude the discussion of economic notions of fairness, recall that these
notions always assume the existence and computability of subjective agent
preferences. Furthermore, the most appealing solution that satisfies economic
notions of fairness (i.e., is Pareto-optimal and envy-free) is the equal-division
Walrasian solution that assumes the existence of a perfect market.

Finally, let us give an example that demonstrates a basic problem of the eco-
nomic notions of fairness. Consider a set of agents that are animals in a zoo.
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These animals have utilities that can be expressed by the amount of calories
that they consume, but they can only consume certain types of food. Thus,
their utilities are subjective. The problem of fair distribution of food among
these animals can be solved by applying economic notions of fairness. Yet, con-
sider an animal that can only eat one type of food that is also eaten by certain
other animals – for example, eggs. A no-envy, Pareto-optimal solution for the
zoo can give the egg-eater an insufficient amount of eggs for him to survive.
However, it is both Pareto-optimal and envy-free, as giving the egg-eater more
eggs would require taking them away from some other animals that would also
need them, and the egg-eater already has more eggs allocated than any other
animal. The weakness of the concept of no-envy is demonstrated in this exam-
ple: no-envy does not take into account the actual level of utility achieved by
the agents that are worst off. This level of subjective utility can actually be
much lower than that of the other agents (in our example, below starvation
level). The theory of equitable optimality starts with the consideration of the
improvement of the utility of the worst-off agent.

A connection of the economic notions of fairness and the theory of equity
can be made by requiring that the two theories are consistent if the sub-
jective utilities of agents are the same. In the case of equal utilities of all
agents, Pareto-optimal, no-envy solutions are reduced to equal distributions.
A generalization of the no-envy principle can lead, for agents with equal
preferences, to other equitable solutions.

2.3.9 Computational Approaches to Distributive
Fairness Problems

There can be many approaches for obtaining computational solutions of dis-
tributive fairness problems. All of them would somehow solve the efficient op-
timization problem. If by distributive fairness we will understand equity, then
a computational approach needs to solve the equitable optimization problem
(1). Recall that this was a multicriteria optimization problem obtained from
the original problem of efficient optimization by taking the ordered sums of
the outcomes, starting from the worst off, then the sum of the worst and
second-worst, and so on.

An intuitive approach for a fair solution to this problem would be lex-
icographic optimization. In other words, consider the first criterion that is
worst-off and optimize it; then take the sum of the worst and second-worst,
and so on until we consider the sum of all criteria. This approach gives, how-
ever, only one of the many possible Pareto-optimal solutions of the equitable
optimization problem. In some sense, it is an extreme solution – it puts the
most emphasis on equality. If there are no constraints, the lexicographic op-
timization will always find a perfectly equal distribution.

While the lexicographic optimization is only a specific solution concept,
the entire multi-criteria problem (1) may serve as a source of various eq-
uitable solutions [127]. Moreover, it may be modeled using linear auxiliary
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constraints. Thus, if the original efficient optimization problem was linear, the
equitable optimization problem is also in the computational class of linear
optimization problems [126].

Let us notice that for any given vector y, the quantity θk(y) is defined by
the following LP problem:

θk(y) = min
n∑

i=1

yizi

s.t.
n∑

i=1

zi = k, 0 ≤ zi ≤ 1 for all i.

(2.6)

The above problem is an LP for a given outcome vector y while it becomes
nonlinear for a variable y. This difficulty can be overcome by taking advantage
of the LP dual to (2.6):

θk(y) = max kt −
n∑

i=1

di

s.t. t − yi ≤ di, di ≥ 0 for all i,

(2.7)

where t is an unrestricted variable while nonnegative variables di represent
downside deviations of outcome values yi from the value of t [126].

Formula (2.7) allows us to formulate problem (1) as follows:

max (θ1, θ2, . . . , θn) subject to y ∈ Q, (2.8)

θk = ktk −
n∑

i=1

dik for all k, (2.9)

tk − dik ≤ yi, dik ≥ 0 for all i, k . (2.10)

Note that problem (2.8) only adds linear constraints to the original attainable
set Q. Hence, if the basic optimization problem with the set Q was in LP,
the resulting formulation (2.8) remains in the same computational class.

2.3.9.1 Solving Multi-criteria Distributive Fairness Problems

A computational approach to distributional fairness needs to give a solution
to the equitable distribution problem. Since this problem has been formulated
as a multi-criteria optimization problem, a solution can be found by applying
one of the many known multi-criteria optimization methods. In this section
we give a brief overview of a few such methods. The subject of this book is
not multi-criteria optimization: the interested reader should refer to [175].

Before introducing some methods of solving multi-criteria problems, it
is necessary to explain that solving such a problem can mean two things.
Firstly, it can mean finding one of the Pareto-optimal solutions. Secondly, it
can mean finding the entire set of all Pareto-optimal solutions. The second
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task is often very difficult. On the other hand, the first task may be more
simple, but the question remains as to which solution is the right one. Multi-
criteria analysis and decision making solve this problem by assuming that the
decision maker is able to specify his preferences, sometimes in an interactive
procedure. Preferences are expressed in a way that allows them to be used
by the chosen multi-criteria optimization method. These preferences allow us
to find a unique Pareto-optimal solution.

There can be many ways of expressing preferences. One of the simplest
of these is using weights. For the ordinary weighted sum, it can be shown
that no matter how the preferences (weights) are specified, optimizing the
weighted sum may not discover all available Pareto-optimal solutions (for
non-convex sets of all Pareto solutions). On the other hand, another method
is available that seems uniquely suited to the theory of equitable optimality.
This is the Ordered Weighted Average (OWA) [185].

The OWA method can be introduced by considering the ordering of out-
comes from worst to best, as in the theory of equitable optimality. Let these
ordered outcomes be denoted as yπi, where πi is the index of the ith worst
outcome. Then, the OWA method can be defined as:

max

(
n∑

i=1

wiyπi

)
.

If the weights wi are strictly decreasing (w1 > w2 > . . . > wm), each optimal
solution corresponding to the OWA maximization is a Pareto-optimal solu-
tion of (2.8). Hence, each optimal solution of the OWA maximization with
strictly decreasing weights is an equitable solution of the efficient optimiza-
tion problem.

The reason for this fact is that any equitable transfer results in a larger
value of the OWA aggregation with strictly decreasing weights. On the other
hand, an equitable transfer within a class of equal weights wi does not change
the value of the corresponding OWA aggregation. This implies that the equity
of OWA solutions can still sometimes be improved. Still, for LP efficient op-
timization problems, every equitable solution can be found as an OWA
optimal solution with appropriate strictly monotonic weights [83]. Several
decreasing sequences of weights allow us to find various equitable solutions,
including solutions resulting from classical fairness models.

Still, weights are not an easy way to express decision maker preferences or
to manipulate the selection of equitable solutions. Better controllability and
the complete parameterization of nondominated solutions even for non-conv-
ex, discrete problems can be achieved with the direct use of the reference point
method. The reference point method (RPM) is an interactive technique where
the decision maker specifies preferences in terms of aspiration levels (reference
point), i.e. by introducing desired (acceptable) levels for several criteria.

The reference point method was introduced by Wierzbicki [174] and later
extended leading to efficient implementations of the so-called aspiration/
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reservation based decision support (ARBDS) approach with many successful
applications [175]. The ARBDS approach is an interactive technique allow-
ing the DM to specify requirements in terms of aspiration and reservation
levels, i.e., by introducing acceptable and required values for several crite-
ria. Depending on the specified aspiration and reservation levels, a special
scalarizing achievement function is built which may be directly interpreted
as expressing the outcomes to be maximized. Maximization of the scalariz-
ing achievement function generates an efficient solution to the multi-criteria
problem. The solution is accepted by the DM or some modifications of the
aspiration and reservation levels are introduced to continue the search for
a better solution. The ARBDS approach provides a complete parameteriza-
tion of the efficient set of the multi-criteria optimization problem. Hence,
when applying ARBDS methodology to the ordered cumulated criteria in
(2.8), one may generate all (fairly) equitable solutions of the original efficient
optimization problem.

While building the scalarizing achievement function the following prop-
erties of the preference model are assumed. First of all, for any individual
criterion ηk (in our case, the cumulative sum of outcomes) more is preferred
to less (maximization). To meet this requirement the function must be strictly
increasing with respect to each outcome. Secondly, a solution with all individ-
ual outcomes ηk satisfying the corresponding reservation levels is preferred
to any solution with at least one individual outcome worse (smaller) than its
reservation level. Next, provided that all reservation levels are satisfied, a so-
lution with all individual outcomes ηk equal to the corresponding aspiration
levels is preferred to any solution with at least one individual outcome worse
(smaller) than its aspiration level. This means that the scalarizing achieve-
ment function maximization must ensure reservation levels are reached prior
to further improvement of criteria. In other words, the reservation levels rep-
resent some soft lower bounds on the maximized criteria. When all these
lower bounds are satisfied, the optimization process then attempts to reach
the aspiration levels.

The generic scalarizing achievement function takes the following form [174]:

σ(η) = min
k∈K

{σk(ηk)} + ε
∑
k∈K

σk(ηk), (2.11)

where ηk are the scalarized criteria, ε is an arbitrary small positive number
and σk, for k ∈ K, are the partial achievement functions measuring actual
achievement of the individual outcome ηk with respect to the corresponding
aspiration and reservation levels (ηa

k and ηr
k, respectively). Thus the scalar-

izing achievement function is essentially defined by the worst partial (indi-
vidual) achievement but additionally regularized with the sum of all partial
achievements. The regularization term is introduced only to guarantee the
solution efficiency in the case where the maximization of the main term (the
worst partial achievement) results in a non-unique optimal solution.
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The partial achievement function σk can be interpreted as a measure of the
DM’s satisfaction with the current value (outcome) of the k-th criterion. It is
a strictly increasing function of outcome ηk with value σk = 1 if ηk = ηa

k , and
σk = 0 for ηk = ηr

k. Thus the partial achievement functions map the outcomes
values onto a normalized scale of DM’s satisfaction. Various functions can be
built meeting these requirements [175]. We use the piecewise linear partial
achievement function introduced in [120]. It is given by

σk(ηk) =

⎧⎨
⎩

γ(ηk − ηr
k)/(ηa

k − ηr
k), for ηk ≤ ηr

k

(ηk − ηr
k)/(ηa

k − ηr
k), for ηr

k < ηk < ηa
k

β(ηk − ηa
k)/(ηa

k − ηr
k) + 1, for ηk ≥ ηa

k ,
(2.12)

where β and γ are arbitrarily defined parameters satisfying 0 < β < 1 < γ.
This partial achievement function is strictly increasing and concave which
guarantees its LP computability with respect to outcomes ηk.

The aspiration and reservation values for the criteria can be selected in-
teractively by the decision maker. As their selection is made separately for
each criterion, it is easier to express decision maker preferences than by us-
ing weights (where the criteria needed to be compared against each other).
For the equitable optimization problem, the criteria are cumulative ordered
sums. For this reason, it is possible to select reservation and aspiration values
using simple increasing sequences, which allows for a simple parametrization
at the expense of the full power of the reference point method.

2.3.9.2 Solving Distributive Fairness Problems with
Entitlements

In section 2.3.3 the distributive fairness problem was extended with the ad-
dition of entitlements that were modeled using positive integer weights vi

(the normalized weights have been denoted by vi). The problem with entitle-
ments can be reduced to distributive fairness problems without entitlements
by “cloning” agents so that each agent can have a weight of one. The outcomes
for the problem with entitlements can be obtained by adding the outcomes of
the “cloned” agents. However, as mentioned in section 2.3.3, this reduction –
while theoretically valid – is inefficient, resulting in problems of dramatically
increased size. It is therefore desirable to find computational methods that
are able to find equitable solutions to the distributive fairness problems with
entitlements directly, without having to reduce it to an unweighted problem.

The OWA method introduced in the previous section can be extended to
achieve this purpose. The so-called Weighted OWA (WOWA) method [164]
can be formulated as follows:
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max

(
n∑

i=1

ωiyπi

)
,

where

ωi = ω∗
(

i∑
k=1

vπk

)
− ω∗

(
i−1∑
k=1

vπk

)
,

and ω∗ is a piecewise linear function that interpolates points ( i
n ,
∑i

k=1 wk)
together with (0, 0).

Thus, the Weighted OWA formulation requires the same weights as the
OWA method (wi), but will also use the entitlement weights of agents, vi.
The WOWA method follows the rule that entitlements weights define a rep-
etition measure within the distribution of outcome values while the OWA
weights wi are applied to averages within specific quantiles of size 1/n for
this distribution.

The WOWA aggregation function can also be formulated similarly to the
OWA function, with the OWA weights wi applied to conditional means calcu-
lated according to the importance weights vi instead of the original outcomes.
For more details, see [122].

Notice that the WOWA method searches for equitable solutions for dis-
tributive fairness problems with entitlements by focusing on the quantiles
of outcome distributions. The same approach can be applied in distributive
fairness problems with a large number of participating agents. Using quan-
tiles reduces the size of the problem dramatically, while still allowing us to
increase the equity of resulting solutions.

2.4 Procedural Fairness

The previous section covered the theory of distributive fairness that can be
applied whenever it is possible to precisely define a fair distribution problem
and to find a solution that is accepted by the participants (or proposed and
enforced by an authority). However, there remains the possibility that the
distribution problem may be very complex or hard to define (for example, in
the case of real estate, the legal rights to distributed goods may be complex
or unclear), and the possibility that participants may not agree on a solution
(such a possibility is already foreseen by game theory, as described in the
previous section).

Procedural fairness is concerned with the fairness of decision procedures
leading to outcomes even in the cases that have been described above. The
entire legal system may be viewed as a system of procedural fairness oper-
ating in human societies. Systems of fair procedures are applied in dispute
resolutions, or in cases when participants cannot agree on a solution of a dis-
tribution problem. Often, fair procedures require the introduction of trusted
third parties and a distribution of control among participants. For this reason,
procedural fairness is directly related to trust management.
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Games (computer games or real games) are an interesting example of a
situation where it is not possible to define a distributive fairness problem,
yet if the goal of procedural fairness is realized, a solution exists that will
be considered fair. This solution can be any game outcome if the established
fair procedures (game rules) are not violated. Consider also that this example
can be taken much further. It is possible to view any security policy as a
set of rules that must be followed by all agents in the system. Therefore,
problems of assuring security can be solved by procedural fairness systems if
these systems can guarantee that the rules are obeyed or that misbehavior is
quickly detected and can be punished.

Procedural fairness systems also find applications in cases where a distribu-
tive fairness problem can be solved, but the resulting distribution cannot be
enforced, because the agents involved are autonomous and there is no trusted
central control (as in an ODS). Consequently, the goal of procedural fairness
is to design a system of procedures that leads to the enforcement of a fair or
equitable solution.

According to Thibaut and Walker [162], procedural fairness can be ac-
complished using two types of control: process control and decision control.
Process control gives agents control over the decision making process: agents
can present evidence or arguments in favor of their preferred outcomes. Deci-
sion control gives agents direct control over outcomes. People generally prefer
decision control over process control [162], but decision control is not feasible
in all applications. Therefore, process control should be designed in such a
way that it allows us to reach fair outcomes. Recent research in psychology
[74] has found that procedural fairness is relational in character, and that
people care about the results of fair procedures because these results reveal
their own social position. Because of this, issues of neutrality, trustworthiness,
and status recognition are central to understanding procedural fairness.

2.4.1 Fair Division Procedures

The problem of fair distribution can also be approached from the point of
view of fair procedures. The goal of such procedures is finding a fair solution
that would satisfy all participants in a way that does not require a central
controller that would determine and impose a solution on all others. Fair di-
vision procedures attempt to satisfy fairness criteria that have been discussed
in this chapter:

• proportional division (each agent receives not less than a share that is
proportional to the inverse of the number of agents),

• envy-free division,
• efficient (Pareto-optimal) division,
• equal valuation division (all agents receive such shares that their subjective

valuations of received shares are equal.
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Many diverse procedures have been proposed that satisfy various fairness
criteria. An additional criterion for such procedures is being strategy-proof.
This criterion means that a rational who that is performing the division at
any step of the procedure should not be able to influence the outcome in
a way that is beneficial for himself. Such strategies usually require that the
agent should have some knowledge of other agents’ preferences and be able
to falsely represent his own preferences. However, without assuming that
such knowledge is available, the known fair division procedures usually fail
to satisfy the criterion of efficient division.

The main drawback of known fair division procedures for more than two
agents is that they usually fail to satisfy the criterion of Pareto-optimality. A
majority of the procedures satisfies proportional division or envy-free division
criteria. A good overview of fair division procedures is given in [17]. One of the
best-known procedures described in the cited this book is the adjusted winner
procedure. The procedure is a variant of the Knaster procedure of sealed bids.
In these procedures, agents bid for the goods, and agents with the highest
bids win. After the auction, the outcomes of agents are equalized. In the
Knaster procedure, this is achieved by monetary payments. In the adjusted
winner procedure, the goods are divided (which is only possible for divisible
goods). For two agents, the adjusted winner procedure results in the Kalai-
Smorodinski solution discussed in section 2.3.5.3. The Knaster procedure
results in a proportional division but is not strategy-proof. Pareto-optimality
is achieved by the Gap procedure [18]. This procedure also assumes payments
for goods, and maximizes the sum of received bids. Then, the prices are
reduced proportionally to the gap between the highest and next-highest bids.
The results of this procedure are the prices of goods, and the division is done
according to these prices. The Gap procedure also satisfies the criterion of
proportional division. The allocations of the Gap procedure are not envy-free.

Procedures that would be able to find equitably optimal solutions in the
sense discussed in this chapter are not known. Moreover, many of the pro-
cedures discussed here assume some measure of trusted central control – for
example, in a procedure that assumes the payment for goods and the re-
distribution of surplus, the payments must be delivered to a trusted agent.
Therefore, many of the proposed procedures are not well suited to a com-
pletely distributed implementation. In section 4.3, we shall show how the use
of a Trust Management system can improve distributional fairness (in the
sense of the theory of equitable optimality) in a completely distributed envi-
ronment and in the presence of adversaries. However, the proposed solution
does not provide any guarantees that the outcomes of agents will be equitably
optimal.



Chapter 3

Trust Management

The user is sovereign.
Andrzej Wierzbicki

Trust, but verify.
Ronald Reagan

Trust Management (TM) is an area of information technology that aims to
improve the operation of open, distributed systems by predicting or influenc-
ing the behavior of their users. When applied to human users, Trust Ma-
nagement methods attempt to leverage the human capacity for trust or
distrust. Alternatively, TM systems can also be applied to control the be-
havior of non-human agents. In such a case, TM algorithms can support the
fully automated control of agent operations, and have an impact on emergent
properties of the ODS.

In this chapter, we will first consider the possible applications of TM sys-
tems such as Internet auctions and e-commerce systems, grid systems and
other systems that can use the Web services architecture, and Peer-to-Peer
systems. Next, we shall introduce a general model of TM systems that aims
to become a unifying approach for the subsequent discussion of various TM
algorithms. We shall devote some attention to the criteria of evaluation of
TM systems: their correctness, effectiveness, and computational complexity.
An important aspect of evaluation of TM systems is an adversary model that
defines the possible behavior of agents in an ODS that aim to subvert or by-
pass the TM system. Adversary models will be used in the discussion of TM
algorithms, but also in the next chapter that concerns Fairness Management.

This chapter shall then describe the various methods of expressing hu-
man trust in TM systems, in other words, ways of representing computa-
tional trust. The question here is not just of a choice of representation, like
the choice of a continuous or discrete scale and of the ranges of this scale. A
computational trust representation is tightly related with processing meth-
ods that are later the building blocks of more complex TM algorithms. These
processing methods can be defined as operators on computational trust. In
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section 3.5, we shall propose two new computational trust representations for
two different applications: Internet auctions and recommender systems. The
new computational trust representation for Internet auction is based on a de-
tailed empirical analysis of Internet auction traces that allows us to determine
how users represent and evaluate information relevant to trust management.

In section 3.6, we discuss various algorithms of trust management, such as
algorithms for determining initial trust when the Trust Management system
has no information about an agent, ways of gathering proofs, and compu-
tational trust propagation algorithms. Propagation algorithms fulfil a very
important task in a TM system: based on available information, they can
produce a new trust recommendation for a previously unknown agent. Such
algorithms can also rank agents on the basis of trust or extend trust networks
as widely as possible by recommending new trust relations. In this chapter, we
present CloseLook, a highly efficient algorithm that can significantly reduce
the computational and communication complexity of computational trust
propagation [181].

The chapter concludes by a discussion of algorithms for calculating repu-
tation in Internet auctions and P2P networks.

3.1 Applications of Trust Management

3.1.1 Internet Auctions and E-commerce Systems

The Internet economy is doing very well. According to Forrester Research
and eMarketer, the e-commerce retail market is steadily growing with an-
nual gains reaching 11% in 2009 (despite the global crisis) and 13% in 2008.
Growth is broad-based and distributes almost equally among all categories
of retail, travel and entertainment. Projection for the future is optimistic:
annual gains will continue to grow at a double-digit level, reaching retail rev-
enues of $156 billion in 2009 in the United States alone. Online auctions are
among the most popular and important e-commerce services. It is estimated
that over 15% of all e-commerce sales can be attributed to online auctions.
EBay, the global leader in online auctions, has over 85 million active users
(and hundreds of millions of registered users). Annual transactions on eBay
surpass %50 billion. This immense marketplace for customer-to-customer e-
commerce provides means for anonymous and geographically dispersed users
to seal retail transactions. But an important question arises: how does one
estimate the reputation of an anonymous business partner and how does one
develop trust when there is hardly any history of business contacts between
any two partners?

A reliable reputation system is crucial for enabling a fair and credible en-
vironment for e-commerce activities. The quality of the reputation system
directly affects the credibility of an online auction service and impacts the
amount of fraud present on the online auction market. Unfortunately, fraud
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is still the main factor hindering further development of online auctions. Ac-
cording to the National Fraud Information Center in 2005, online auctions
accounted for 42%1 of all registered complaints with an average loss of $1,155.
The number of complaints has grown quickly (12,315 complaints in 2005 com-
pared to 10,794 in 2004) as well as total losses ($13,863,003 in 2005 compared
to $5,787,170 reported lost in 2004). Online auction fraud definitely outranks
other popular types of scams (in 2007, online auction fraud ranked third in
NFIC rankings. Other e-commerce retail fraud was second.). As a result, the
reputation system used by an online auction site must be robust enough to
safeguard the online community of auction participants against fraud.

Devising a robust and fraud-free reputation system for auctions is difficult
for various reasons. Most importantly, the reputation system must take into
consideration high asymmetry between buyers and sellers in online auctions.
These two classes of auction participants are exposed to different types of risk.
Sellers are almost never threatened financially, because they can postpone the
shipment of the merchandize until the payment is delivered. Therefore, sellers
are generally not concerned with the reputation of their business partners. On
the other hand, buyers decide upon participation in an auction solely based on
the reputation of a seller. Furthermore, after delivering the payment, buyers
are still in danger of receiving no merchandize, or of receiving merchandize
of a lower quality and one inconsistent with the initial offer. From a buyer’s
point of view, a credible estimation of a seller’s reputation is indispensable
for secure and successful trade.

3.1.2 Web Services, Virtual Organizations and Grid
Systems

Grid systems often use Web Services to implement frameworks of grid ser-
vices. The Web Services architecture includes a special Trust Management
method that relies entirely on recommendations in order to establish trust,
and does not calculate reputation. The method also relies on trusted third
parties: authorities that can issue recommendations to agents who wish to
use a Web (or grid) service.

In the Web Services TM approach, an agent obtains certain recommenda-
tions (called security tokens) after authentication from an authority. When
the agent wishes to invoke a Web Service, it will present his recommendations.
The process of obtaining and presenting recommendations is standardized by
the WS-Trust standard.

On the other hand, an agent that provides a service (for example, a mem-
ber of the grid) can express his preferences concerning recommendations.
Various recommendations can be required in order to have access to various
services. The requirements of a providing agent can be specified using rules
1 This number is grossly underestimated due to eBay’s reluctance to cooperate

with NFIC. NFIC estimates that the real number is closer to 70%.
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described in the WS-Policy standard. When a requesting agent presents rec-
ommendations, the providing agent checks whether his policy is satisfied, and
based on this check makes the decision of whether to provide the requested
service.

The TM method used in Web Services and grids can be exploited to sup-
port workflows, yet this requires better methods for trust negotiation and
retrieval of trust recommendations [14]. TM methods can also be used for
access control in Grid systems [29].

3.1.3 Peer-to-Peer and Ad-Hoc Networks

In Peer-to-Peer systems and ad-hoc networks, the most common method of
trust management is reputation. These systems are examples of the most
decentralized ODS. Therefore, applied TM algorithms must be distributed.

Every designer of a P2P reputation system has to cope with the following
challenges:

• How to establish trust between different peers without trusted third parties
or authorities?

• How to gather and evaluate proofs?
• How to deal with adversaries in open P2P systems?

Section 3.7.3 gives an overview of P2P reputation systems.

3.2 Universal Trust Management

3.2.1 Trust Management as a Service

In the future, trust management may become yet another, standard ser-
vice of information security, such as authentication, authorization, privacy
or integrity. For this to happen, it is necessary to define standard primi-
tives of trust management, and agree about what is in common among the
many different applications, frameworks, architectures and languages of trust
management studied to date. Currently, although there are many practical
trust management systems, they are applied in widely different domains: some
of them have centralized components, others are fully distributed; some use
reputation, while others rely on recommendations for transferring or delegat-
ing trust. This makes it difficult to propose a unified approach to managing
trust. On the other hand, generic architectures such as WebServices use trust
management already.

In this section, a blueprint for a library of universal Trust Management se-
rvices is presented and discussed. A challenge in the design of the library is to
make it sufficiently general, yet not too abstract.

When Trust Management (TM) is treated as a service, its interfaces must
be sufficiently general to support a variety of applications. In this section (and
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in Figure 3.1), we present a generic scenario of an application that uses TM
services. We introduce this scenario on two example applications: an Internet
auction system and a Web service application. In the first case, the “agent”
depicted in Figure 3.1 is the auction system itself. In the second example,
the agent is an entity that invokes the Web service.

Fig. 3.1 Universal TM Services and Interfaces

The scenario begins with an authentications phase. Nothing is assumed
about the authentication mechanism, although its quality will have an impact
on the effectiveness of various TM algorithms and protocols. In the case
of the Internet auction system, authentication may be based on a simple
pseudonymous login and password. In the case of the Web service, there may
be certificate-based authentication.

3.2.2 Universal Encounter Description

An agent that requests the help of TM service passes an the description of
the future interaction, called the Encounter. An Encounter (see section 2.1)
models all possible interactions between agents or applications that use TM
services.

Relevant information about encounters should include agent identities,
context, the actions available to agents and their outcomes. In section 2.1,
context was defined as metainformation about the encounter. Context can
be modeled as an arbitrary set of attributes that describe the encounter.

In the case of an Internet auction, encounter data includes the identity of
a user (buyer or seller), and possible actions: sending of purchased goods,
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or not sending them; paying or not paying the agreed price. For a Web ser-
vice, encounter data includes an identity and the available actions are the
following: returning the correct result of the invocation in reasonable time,
returning incorrect results or delaying the reply. Context data for a Web ser-
vice may include parameters of the Web service that could influence running
times.

3.2.3 Results: Trust, Risk, Credibility and Others

TM service returns values of trust, risk, credibility or other information,
depending on the type of invoked service. Note that the library is capable of
incorporating various definitions of these concepts [143]. For example, we can
adopt the definition of trust as a tolerance of risk. This definition emphasizes
that trust and risk can be values expressed on the same scale, thus enabling
a direct comparison (see section 2.2).

For the Internet auction, the TM service can return the reputation repre-
sented on a simple ordinal scale. In the case of the Web service, trust may be
not represented at all. The TM service could return information about the
policies that have been satisfied by available information. In addition, the
TM service can run the risk that a service takes an excessively long time to
return a result.

3.2.4 Feedback by Universal Proofs

After the encounter, the agent passes feedback information to the TM system.
To represent this information, the library uses the concept of a Proof, a
universal representation of an encounter.

In the Internet auction, a proof is a history-based report. In the Web
service, a proof, called a “security token”, delegates trust obtained in previous
encounters with a trust management authority. Proofs can be prior even trust
assumptions. Proofs can also be added at any other moment. In the Web
service example, proofs could be presented by the agent at the beginning of
the scenario, possibly following a trust negotiation procedure.

3.2.5 Architecture of TM Services

A library of universal trust management services must be designed so that
many different applications could use common primitives and data. It should
be able to incorporate diverse methods, various algorithms and protocols of
trust management. The challenge in the design of a library of universal TM
services is therefore the discovery of a common basis for the largest possible
set of TM methods.

This section and a class diagram in Figure 3.2 describes the basic building
blocks required to design various trust management services. We start with an
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Encounter and a Proof, already introduced in the previous section. An En-
counter includes information about Context, about the participating Agents,
and about the available Actions and their outcomes. A set of template en-
counter definitions can be created in the TM library when a service is devel-
oped for a specific application. Though, the instance of an Encounter will be
received during service invocation. In the previous section, two examples of
encounters were described. In the Internet auction, an Encounter represents
a transaction between a buyer and a seller. In the Web service, an Encounter
is a Web service invocation or an attempt to obtain “security tokens” from
a TM authority.

Fig. 3.2 Class Diagram of a TM Library

Note that an Encounter can also be used to model an interaction between
two agents who exchange Proofs. The treatment of exchange of Proofs (for
example, during reporting in an auction service, during trust negotiation, or
during gossiping of opinions in a P2P application) as an Encounter empha-
sizes that TM methods can be used to decide whether to trust the received
Proofs. This form of trust is sometimes referred to as credibility [143], which
is modeled in Figure 3.2 as a class that inherits from Trust.

A Proof represents any information that can be used by diverse TM meth-
ods to compute trust. A Proof can store data about past encounters of the
agent running the library, but also Recommendations or Reports from other
agents. For instance, reputation systems use mainly propagated information
concerning the history of encounters, modeled as Reports. Observations refer
to encounter history, as well, but are obtained first-hand by the observing
agent - such a possibility exists, for example, on Wikipedia which displays
history of entry modifications. On the other hand, TM methods used in Web
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Services use proofs that delegate trust, modeled here as Recommendations.
It is hard to list or foresee all kinds of proofs that will be used in a TM serv-
ice library; however, the kinds planned so far should be sufficient to sup-
port many diverse TM methods. Proofs are kept in a Proof Container that
is under the direct control of the agent running the TM service. However,
when additional Proofs are required that are not available, the Proof Con-
tainer can use the Proof Discovery Protocol to search for new proofs or re-
quest them in Encounters from other agents using trust negotiation. Various
TM methods use different kinds of information, such as Trust, Reputation,
or Risk. The algorithms that actually calculate this information are all mod-
eled as TMAlgorithms. The arguments of TMAlgorithms are usually Proofs,
but TMAlgorithms can also use different Parameters such as User Prefer-
ences. For example, consider Risk, which could depend on Risk Aversion as a
Parameter.

A universal TM system should be able to integrate Proofs of different kinds.
Our approach enables the construction of such a system. Also, the distinction
between Reports and Observations on the one hand, and Recommendations
on the other, makes it possible to further understand the relation between
reputation and computational trust.

Consider a situation where the TM system only has Observations issued by
agent A about agent B, all in the same encounter context. This information
can be used to calculate the reputation of agent B as perceived by agent A. In
the terminology introduced in section 2.2, this is direct, local reputation. (If
agent A has no Observations about B, direct, local reputation is undefined;
however, if A has Reports about B from C, then it may be able to calculate an
indirect, local reputation of B.) If agent A has calculated a direct reputation
of B, then he may issue a Recommendation about B. Recommendations can
be thought of as information about computational trust. Computational trust
propagation algorithms that will be discussed further in this chapter can be
used to calculate computational trust between agents that do not have a
history of direct interactions.

The question remains, then, what is the difference between a TM system
that uses only Recommendations to express computational trust, and a TM
system that uses Observations to calculate direct reputation that is the basis
of computational trust? For comparison of these two systems, we have to
assume that the Recommendations and Observations are all in the same
encounter context. One of the differences is the consideration of time. The
behavior of agents can change over time, and it is possible for adversaries
to strategically modify their behavior (for example, to earn high trust, and
then abuse this trust). Thus, a sequence of observations made by A about B
should be indexed by time, and can be denoted by OAB

t . There can be many
varied methods used to calculate direct reputation in a way that considers
time (an overview of these methods will be given lather). For example, it is
possible to disregard time and just calculate an average, or simply the most
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recent Observation. It is also possible to use weights that increase for more
recent observations (linearly, quadratically or exponentially).

Another difference lies in the possibility of error in the evaluation of an
agent. If the Observations made by A can be impacted by some noise (for
example, in an Internet auction, the performance of a seller is also dependent
on postal delivery, and the quality of a Web service service is dependent on
transient network congestion), then Observations should be made repeatedly
in order to better approximate the reliability, quality, or fairness of an agent.
In such a situation, the distribution of all available Observations should be
taken into account when calculating a direct reputation.

3.2.5.1 Activities of a TM Service Library

This section and Figure 3.3 show how the classes introduced in the previous
section interact with each other.

Fig. 3.3 Activity diagram of a TM Services Library

When a TM service is invoked, it formulates a query for proofs. The query
is passed to the Proof Container and can result in the invocation of the Proof
Discovery Protocol. Note that an Encounter can be the result of receiving a
Proof from another agent; this Proof is forwarded to the Proof Container as
shown in the figure. The next activity of the service library is the gathering of
proofs, which can then - depending on their type - be used to compute various
kinds of information, using functions stored in the library. The diagram shows
the computation of Reputation, Trust and Risk, emphasizing that informa-
tion about action probabilities and action utilities is necessary to calculate
Risk.
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3.2.5.2 Centralized or Distributed Trust Management?

In our opinion, a universal TM library should support both centralized and
distributed operation. In the approach presented, Proofs are received during
Encounters and stored in the Proof Container that is under the direct control
of the agent running the TM service library. This does not exclude the possi-
bility of other agents being present who also have their own Proof Containers.
However, agents can also use TM services provided by one, trusted agent who
centrally gathers all Proofs. If a more distributed approach is used, agents
can exchange Reports or issue Recommendations about other agents, using
for example a P2P gossiping protocol or a structured P2P overlay, which can
be instances of the Proof Discovery Protocol. Any algorithm to be discussed
further can be executed using all available information in the local Proof
Container; the question is whether the results of the algorithm will be useful
if the information in the locally available Proofs are incomplete.

Another approach to distributed TM requires the use of iterative or recur-
sive algorithms that are inherently distributed and require communication.
This approach is not chosen in the proposed TM library for several reasons.
Firstly, the convergence of such an algorithm is always dependent on the dy-
namics of the system. If new Proofs are made available by agents in the TM
system all the time, then such an algorithm may never converge. Secondly,
the communication cost of such an algorithm may be large. For these reasons,
in the anticipated design of the universal TM system we propose to decouple
the discovery of proofs from the computation of trust or reputation through
the use of the Proof Discovery Protocol that is able to operate independently
of the TM system’s computations.

3.3 Evaluation of TM Systems

While many of the TM methods presented in literature have been evaluated
by their authors, there is still no established and widely accepted method
of TM evaluation - much less any form of a benchmark for methods. In the
uTrust project, the development of such evaluation methods and benchmarks
is planned. Here, some initial ideas are presented.

3.3.1 Effectiveness of Trust Management

A Trust Management service that consistently overvalues, or undervalues
trust (or risk) certainly decreases users’ performance. It is necessary, there-
fore, to consider Trust Management service correctness. This could be vali-
dated by using special scenarios that can be treated analytically in order to
calculate correct values of trust and risk. Next, various Trust Management
algorithms could be simulated using the considered scenario, in order to see
how close the resulting values are to the correct values of trust and risk.
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3.3.2 Adversary Models and TM Benchmarks

One of the most important aspects of Trust Management evaluation is the
resistance of TM methods to adversaries. Since many Trust Management
methods - especially all reputation systems - are based on a majority princi-
ple, they are also vulnerable to colluding adversaries or to strategies such as
discrimination [34]. Here, we discuss the characteristics of adversaries against
which the services library should be evaluated. Adversary models depend on
the model of the environment in which Trust Management service works.
Such a model states what basic security services are available. For example,
a strong, certificate-based authentication of all agents makes many schemes
of adversary behavior impossible. However, in other models of environments,
only weak, pseudonymous authentication can be available. The environment
model should also specify other relevant aspects of information security, for
instance whether the communication primitives are vulnerable to eavesdrop-
ping, modification, or man-in-the-middle attacks. After determining an envi-
ronment model, different adversary models can be chosen. An adversary can
be described by the following characteristics:

Adversary knowledge. An adversary’s knowledge about the TM system can
vary. An omniscient adversary knows all the used Trust Management al-
gorithms and attempts to exploit their weaknesses; an ordinary adversary
uses rather simple, sub-optimal strategies. Even if an adversary knows the
used Trust Management algorithms, he may or may not have access to the
complete information used by the TM system. Adversaries can thus have
global or partial knowledge of the information used by the Trust Manage-
ment system.

Adversary goals. An adversary could be selfish, pursuing only her individ-
ual gain, for example a maximization of her own utility, performance, or
reputation. On the other hand, an adversary can also be malicious: he can
aim to damage the ODS, or to decrease the utility, performance or repu-
tation of other agents. In the latter case, when an adversary is malicious
towards particular agents but benign or selfish towards others, we speak of
a discriminating adversary. Adversaries may also be capable of adapting
their strategy.

Adversary collaboration degree. An adversary can act autonomously, or
can be capable of collaboration with other adversaries. The kinds of collab-
oration could be limited (for example, the number of collaborating agents
could be limited).

Adversary resources. Adversaries could have varying amounts of resources
of various types: computational resources, communication resources, or
even control over bots that can act as fake agents. Adversary resources
would be especially important in comparison with the resources available
to other agents who use the TM system.
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Adversary complexity. Adversaries can have varying degrees of complexity.
We can consider strategic and intelligent adversaries, who are capable of
unlimited computation and unconstrained reasoning. Other adversaries
may be heuristic or reactive, capable of only limited computation and of
applying rules that react to events, rather than of strategic reasoning.
Adversaries may also employ a variety of algorithms or strategies that can
vary in complexity.

3.3.2.1 Adversary Models for P2P Trust Management

Several adversaries have been proposed for P2P trust management. Kamvar
[69] describes a number of threat models: an individual malicious peer that
always provides an inauthentic file; malicious collectives that assign maximum
trust values to other malicious peers, and malicious spies who provide good
files but assign maximum trust values to malicious peers. Malicious peers can
provide inauthentic files with a given probability.

[32] reviews several attacks on P2P networks, such as the self replication
attack (an attack that relies on altering data) and man-in-the-middle attacks.
They describe the Mandragore Gnutella worm that responds to all queries
and sends a copy of itself instead of the requested data. Man-in-the-middle
attacks can be executed by modifying the IP and port of the QueryHit mes-
sage and sending corrupted data. Moreover, Damiani et al. introduce attacks
on reputation systems called pseudospoofing that is a type of whitewashing
attack, and the ID stealth attack that uses the Sybil method to multiply peer
IDs during query and vote phase. Such an attack aims to boost the reputation
of the attacker (shilling attack).

PeerTrust [184] list several adversary models such as modifying informa-
tion (providing fake resources), man in the middle attacks, or compromising
peer settings (allowing others to share specific files like trojans or viruses). In
addition to PeerTrust, Srivatsa et al. [155] consider malicious peers referred to
as “strategic” who alter their behavior based on their own reputation value.
Also, they describe shilling attacks to boost malicious peers’ reputation.

Abrams et al. in the cycling partitioning [2] system assume the existence
of two types of adversaries: malicious and selfish. Selfish peers wish only to
maximize their trust score. Malicious peers desire to minimize the number of
authentic downloads in the network and may collaborate to do so.

The dropping of negative proofs has been described in R-CHAIN[99]. Ma-
licious nodes would like to keep only favorable transaction records and drop
unfavorable records.

[88] assume that malicious nodes can disseminate arbitrary trust informa-
tion. All malicious peers in NICE form a cooperating clique. Each malicious
peer always reports implicit trust (maximum value) for every other malicious
peer and has a 50% chance of truthful reporting for normal peers.



3.3 Evaluation of TM Systems 83

Adversary strategies vary from simple to complex ones and can pose vary-
ing levels of threats. We shall use the adversary characteristics developed in
section 3.3.2 to distinguish between various types of adversaries in P2P trust
management systems.

Knowledge. Adversaries may differ in their knowledge about the system.
We can distinguish between adversaries who rely only on their local knowl-
edge; more advanced entities who have knowledge about their neighbor-
hood within the radius k, and adversaries with full system information.
To become an adversary with global knowledge, a malicious peer should
gather information about the P2P system, for example using a crawler.
The adversary can gather knowledge about the ranking of peers, network
interconnections or data distribution.

Goals. Adversaries may have a variety of objectives. There could be selfish
peers [2, 126, 78, 149], whose purpose is simply to boost their reputation,
performance or utility. Such peers can form collectives [55, 69, 121] to
obtain their goal.

Another type of adversaries are malicious. Their aim is to destroy the
P2P system itself (or a part of it) by damaging the query or/and response
messages [2], sending corrupted data [69, 32, 148, 184] or simply by making
peers inoperative [148, 184] or compromising peers [184]. Adversaries can
also attack the Trust Management system itself by executing attacks such
as altering feedback information [88, 69, 99], man in the middle attacks
[32, 184] or whitewashing attacks [32, 148].

Some adaptive adversaries, described in [155], can change their goals
depending on their own reputation value.

Collaboration degree. The goals of an adversary affects his collaboration
degree. Some goals cannot be achieved by a single adversary, due to
their difficulty or to the possibility of detection. Adversaries can act au-
tonomously (e.g. selfish peers), or in collaboration with other adversaries.
Collaboration may be occasional, or peers can form a collective (clique)
[69, 88, 148].

Complexity. Like in the previous aspect, the complexity of an adversary de-
pends on his goals. Simple attacks may be performed by dropping mes-
sages [99], tampering with data [69, 32, 148, 184, 2] or altering feedback
[88, 69, 99].

Complex attacks can be a combination of simpler attacks. For example,
the denial-of-service attack [148] can be executed by peer collectives. A
DoS attack can affect the P2P overlay itself, for example crash some highly
connected peers to handicap or even partition the network. This can be
exploited by peers who want to modify routing or spoof the identity of
other peers.
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Adversaries can also perform the Sybil attack [69, 32] to create a number
of clones of themselves using different IDs. This attack can be combined
with whitewashing to boost the reputation of a peer.

3.3.3 Scalability and Efficiency

3.3.3.1 Evaluation of Computational Cost

A neglected, yet important aspect of Trust Management evaluation is the
investigation of TM method performance. Many TM methods, in particular
cryptographic and Bayesian TM, are rather complex, resulting in a non-neg-
ligible computational cost. In the context of distributed systems, some TM
methods can also incur communication overheads.

3.4 Authentication Requirements

A trust management system could use many different forms of authentication.
At present, many applications in ODS use weak authentication based on nick
names and IP addresses (or IDs that are derived from such information). Ho-
wever, it has been shown that such systems are vulnerable to the Sybil
attack [42].

Most of the mechanisms discussed in this section would not work if the
system were to be compromised using the Sybil attack. An attacker that
can control an arbitrary number of clones under different IDs could use these
clones to defeat the TM system. One way to prevent the Sybil attack is to use
a strong form of authentication, such as one based on public-key cryptogra-
phy. Public key cryptography may be used in a TM system for authentication
and digital signatures of short messages.

In applications of ODS, authentication must be used efficiently. In other
words, it should not be necessary to repeatedly authenticate agents. The use
of authentication could depend on the application. For instance, if groups of
agents interact frequently with each other in an ODS, perhaps only mutual
authentication of group members is required. Once all agents in the group
are authenticated, they could agree on a common secret (such as a group
key) that will be used to identify group members, using a method such as
the Secure Group Layer (SGL) [15]. Alternatively, these users could exchange
public keys.

Let us briefly discuss here how such an authentication could be imple-
mented. A well-known solution is the PKI infrastructure. This solution also
has the advantage of direct availability and possibility of implementation. Ho-
wever, developers of P2P games may be concerned about the single point of
failure, lack of anonymity, or insufficient security of PKI [22]. The use of glob-
al PKI may be unnecessary, since certificates can be issued for example by a
bootstrap server or coordinator. On the other hand, such a design assumes the
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existence of a trust relation between the agents in the ODS and the identity
responsible for issuing certificates. There may exist solutions better suited
to the needs of ODS, such as the Web-of-Trust model, or solutions based
on trust graphs. Also, we recognize that the use of local names as proposed
in Simple Public Key Infrastructure (SPKI) [154] is more suited to ODS ap-
plications and should be also more scalable. Another solution that is well
suited to the P2P model is the use of threshold cryptography for distributed
PKI [6].

Another, promising direction for protecting against Sybil attack is the
use of a social network. Mechanisms like SybilGuard [42] are based on the
assumption that malicious peers can create only a few links to honest users
even if they possess many fake identities. This assumption can be satisfied
by establishing secure edges between user pairs by using shared/secret key,
exchanged among the participants using an out-of-band mechanism. Another
interesting possibility is to let the trust management system itself control the
edges (the social network used by SybilGuard is then the trust network). This
approach ought to assure that adversaries that can be recognized by the TM
system receive few and weak edges, which renders them unable to attack a
mechanism such as SybilGuard.

3.5 Computational Trust

As defined in section 2.1, computational trust is a representation of human
trust used in trust management systems. Similarly to human trust, computa-
tional trust is usually modeled as a relation between agents, although some
trust management systems use a representation of trustworthiness (often re-
ferred to as global trust) that is the property of an agent and not a relation
between agents. In this section, we shall refer to computational trust only
in the sense of a representation of human trust relation (in this meaning,
the term local trust is sometimes used in the literature). We shall use the
following notation: TR =< V, T >, where V is the set of agents and T is the
set of trust relations between the agents, denotes the computational (trust
relation). Each edge e ∈ T is associated with a strength se that is a specific
computational trust value. The values of se can be obtained from Recom-
mendations or from direct reputation that is calculated from Observations.
We shall use the notation sAB if e = (A, B) is an edge from node A to node
B. Computational representations used for se differ in different approaches
to trust and will be described further in this section. The computational dis-
trust relation is denoted by DTR =< V, DT >, where V is the same set of
agents as in TR and DT is the set of distrust relations among the agents.
Similarly, every edge de ∈ DT is associated with a strength sde. We shall use
the same notation for the strength of the trust and distrust relations.
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3.5.1 Simple Computational Trust Models

Most Trust Management systems use simple computational representations
of trust. Internet auctions, for example, use a three-valued discrete scale of
“negative”, “neutral” and “positive” (with the exception of the new system
used by e-Bay). The epinions recommendation system [109] also uses a three-
valued scale. The FilmTrust [54] recommendation system uses a 10-valued
discrete scale. More theoretical reputation systems often use a continuous
scale from [0, 1 or [−1, 1] [118, 108]. A more complex system has been pro-
posed by Josang [65] and uses a two-dimensional scale with uncertainty rep-
resentation. However, Josang’s system also uses a simple scale for the actual
representation of trust expressed by users.

The questions considered in this section are: what is the appropriate sys-
tem for computational representation of human trust? Are the simpler sys-
tems used so-far sufficient for this purpose? This question has been frequently
considered in the literature on trust management; yet, previous research has
lacked a way of evaluating the simpler trust representations, and has there-
fore usually opted for simplicity. Another reason for this choice is that the
consequences of introducing a new computational trust representation for the
TM system are not simple. A simple representation makes it easier to develop
meaningful algorithms for processing trust. One of the most important types
of algorithm used by a TM system is the trust propagation algorithm. A sim-
ple representation of trust makes it easy to compute a propagated trust value
(for example, using multiplicative trust propagation). Therefore, in order to
answer our question constructively, we must not only propose a suitable trust
representation, but also to define how the new computational trust can be
processed by the TM system.

To tackle this issue, it is necessary to use information on how users express
trust. The difficulty here is that most available datasets are obtained from
TM systems that use a simpler computational trust representation. However,
these systems (probably in order to account for the limitations introduced
by the simplistic computational trust representation) also allow users to add
a textual comment. Our approach to the evaluation of how humans express
trust will be based on a large dataset of comments from an Internet auc-
tion platform. In this dataset, we shall investigate the following questions:
do users systematically try to add more information than is allowed by the
computational trust scale used by the reputation system? What kind of in-
formation is being added by users? How are the quantitative reports (using
the current computational trust scale) related to the additional information
in textual comments? In order to answer these and related questions, we shall
use Natural Language analysis of the textual comments that extracts their
emotional content, as well as a classification of comments that reveals an
implicit, more complex scale of trust valuations.

Based on the analysis of the dataset, we shall attempt to propose a trust
representation system that is adapted to the implicit user requirements



3.5 Computational Trust 87

revealed by our analysis. The proposed system is based on the work of
Sabater-Mir [146]. It is also in some respects similar to eBay’s new Detailed
Seller Rating system2.

Therefore, we shall review the DSR system and discuss some of its de-
ficiencies. We shall also introduce operators that allow to process the new
computational trust. In this area, we go beyond the work of Sabater-Mir, in-
troducing new operators and showing how the proposed computational trust
can be used in a real, general trust propagation algorithm. We are able to
show that our proposed computational trust representation can be used in
various types of propagation, while at the same time it is much better adapted
to an expression of human trust, based on our observations of the Internet
auction trace.

3.5.2 Empirical Investigation of Human Trust
Expression

Reputation systems in Internet auctions are perhaps the most widely used
form of a TM system today. For that reason, they are an attractive choice
when we consider the question of adequacy of computational trust representa-
tion. An attempt to answer this question could choose one of two approaches:
directly asking users about their opinion on the trust representation, or ana-
lyzing a dataset that records actual usage of the reputation system. The first
approach has the following drawbacks: it would have to be limited in the num-
ber of received opinions (as with any survey-based approach); the received
opinions may be biased based on the actual user experiences with the auction
system; and, it would be hard to propose constructive improvements to the
trust representation system based on the received responses (we could ask
users to compare various versions of trust representation or ask about spe-
cific improvements, but their answers would not necessarily be conclusive).
Also, a survey-based approach would suffer with the problem of choosing a
representative set of responses, and would rely entirely on declarative data,
which may be imperfect due to human memory or bias.

For these reasons, we have chosen the second approach. Based on a large
trace from an Internet auction site, we shall analyze the usage patterns of
the reputation system, with particular emphasis on behavior that indicates
whether a user is trying to circumvent the limitations imposed by the com-
putational trust representation. This involves searching for responses to the
following questions:

• do users systematically try to add more information than they can express
on the scale used by the reputation system?

• if they do, what kind of information is being added?
2 http://pages.ebay.co.uk/services/buyandsell/powerseller/criteria.html
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• how is this information related to the values expressed on the scale of
reports?

• do users try to extend or reduce the available scale of reports in their
comments?

Our approach is based on textual comments added to reports sent by users
of the Internet auction system. These reports represent the users’ valuations,
typically on a three valued scale of “negative”, “neutral” and “positive”. It is
noteworthy that reputation systems used in Internet auctions have evolved
and recently, eBay has proposed a new scale referred to as “Detailed Seller
Rating” (DSR). In the textual comments, users contain a wealth of infor-
mation about each other. However, it is interesting that users usually add
information only for negative or neutral comments. For positive comments,
the added information is negligible.

In the textual comments, we shall search for the following kinds of ad-
ditional information: that which expresses the emotional attitude of the re-
porting user. Here, we shall be especially interested in whether users try to
amplify the meaning of the report by a strongly emotional textual comment.
Emotionality of comments can also be used in order to judge whether users
agree with the proposed scale of feedback. If they do, then the comments
for “neutral” feedbacks should be emotionally more positive than “negative”
feedbacks, and less positive than “positive” feedbacks. If users do not exhibit
this kind of behavior, it means that they are not using the feedbacks accord-
ing to the initially designed scale. This could be due to the fact that users
evaluate feedback differently: not on a simple scale that constitutes a total
order. We have found evidence that this is the case.

Another interesting type of additional information comes from an attempt
to describe the situation that has occurred during the auction or transaction.
If the added descriptions form a systematic set of categories (a taxonomy),
then the users are actually modifying the scale used by the reports using a
systematic set of descriptions. Once again, we find evidence that this is the
case. The set of categories used depends on the type of report (negative or
neutral), and is absent for positive reports.

Once again, the question of feedback valuation can be reconsidered if a
taxonomy of non positive feedback categories exists. It is then possible to
pose the question: do users attach the same importance to all categories of
feedback? Or rather, does there exist some kind of relation that allows us to
compare the importance of various feedback categories? Studying the emo-
tional content of comments is one way of answering this question. However,
we have also considered the balance of negative and neutral feedback for each
category and have carried out an opinion poll among buyers and sellers on a
Polish Internet auction site. In the poll, we asked auction users to compare
the importance of categories. We found evidence that there exists a relation
that allows us to compare categories according to their importance.
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3.5.2.1 The Used Internet Auction Trace

The dataset was acquired from www.allegro.pl which is the leading Eastern
European online auction provider. In this service, each auction has an explicit
deadline and all current bids are exposed to all participants. Moreover, all
information about all participants is accessible. In most auctions the bidders
can specify a maximum price that they want to pay for an item and the
proxy bid system automatically raises the bid, using only as much of the bid
as is necessary to maintain the top position. Bidders can also increase their
maximum price at any moment. When the auction terminates, the bidder
with the highest bid wins. There are also multi-item (Buy now!)-type auctions
in which sellers can sell more than one item (and hence there is more than
one winner). In such an auction, every bid is the winning bid.

We have selected a subset of 9500 sellers and buyers, and their 285K
auctions listed in 16K categories. Our research was performed on a subset
of 1700K cases of positive and non-positive (15K) feedback. The unequal
amount of auctions and feedback items is caused by the existence of multi-
item auctions.

3.5.2.2 Internet Auction Comment Classification

Existing reputation systems do not distinguish between different kinds of
negative or neutral user feedback. As long as we treat every negative feedback
equally, we cannot distinguish purposeful behavior from an accidental one.
For example, there is a great difference between sending the wrong color or
size of a T-shirt and not sending it at all.

In our previous [73], we mined information from research users’ comments
using two independent classification rules for the buyers and for the sellers.
We have partitioned all negative and neutral feedback into the detailed types
of the complaint taxonomy, using regular expressions. Each complaint type
has its own meaning and also a unique set of regular expression patterns.
We created tree structures of complaints against buyers and sellers similar
to [55].

A feedback entry could be assigned to more than one pattern from different
types. Our regular expression tool has matched 68% of negative comments
(for the seller and the buyer equally), 54% of neutral comments for the seller
and 35% of neutral comments for the buyer. Figure 3.4 shows the taxonomy
of complaints against sellers. The most detailed classes of this taxonomy are
sometimes too small, so we have opted to present our analysis for a higher
level of the taxonomy tree, marked as “General” on the figure.

We observed two types of harmful activity reported by auction users: user
behavior related and item related. The first group includes the following user
behavior:
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Fig. 3.4 Taxonomy of complaints against sellers

• No response. Communication with the user after the auction was impos-
sible. The user did not answer phone calls and did not respond to e-mails.
The meaning of this behavior is equal for sellers and buyers.

• Odd behavior. The user behaved in a completely unpredictable manner,
communication with the seller was possible but handicapped. If user has
the seller role, she has sent the item with a delay or has not defined the
payment method and shipping price. If the user is a buyer, she seemed
not to follow the auction rules, or did not read the information provided
by the seller. Sometimes a buyer even tries to force the seller to choose a
particular payment method.

• Delivery not accepted. The buyer did not accept the delivery which
should be paid for by cash on delivery. The seller must pay the round trip
shipping charges, which is sometimes a significant amount of money. This
is the only type of complaint against the buyer related to loss of money.

• No intention to buy. The buyer did not pay for the item, and did not
inform the seller about her plans. Sellers call such behavior childish or
bidding for fun.

• Reneged on buying. The buyer contacts the seller and declares that she
will not buy the item. From the seller side, the category ’No product to
sell’ is very similar to this behavior.

• Overcharged shipping or shill bidding. We consider only explicitly
formulated accusations concerning shill bidding or shipping overcharge,
not those computed from historical auction data. Such behavior is related
only to the seller.

The second group of complaints is related strictly to the item (and thereby
to the seller) and consists of:
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• Item not sent or lost. The item was not sent to the recipient. Sometimes
the seller argues that the item was lost by the courier or post office.

• No product to sell. The seller declares that the item was already sold
to another buyer, or the item is no longer on sale. In this case the item is
not sent to the buyer.

• Careless Packing. The seller did not take care about the packaging of
the items. This type also includes the situation when the received item was
damaged. It is not possible to verify whether the seller has sent a damaged
item or the item has been destroyed during shipment.

• Wrong item. The seller made a mistake and sent a wrong item (wrong
color or type) or the received item was not complete.

• Item not as expected. The item seems to be illegal goods (a fake, or a
pirate copy of software) or just does not satisfy the buyer.

The results of our complaint classification show that users use a rich and
complex system for expressing the typical types of behavior in Internet auc-
tions. This is in contrast to the simplistic representation of comments as
negative, neutral or positive. Negative and neutral comments could benefit
from a much more detailed description of reported behavior.

An important conclusion from the observed classification of complaints is
that almost all of these categories are related to procedural fairness criteria
of Internet auctions (with the exception of the “Odd behavior” category).
This observation points out that users of Internet auctions have created an
implicit code of behavior (that is supported by an explicit statement of rules
by the Internet auction platform) and are using the rules of that code in the
comments posted in feedbacks. This conclusion gives empirical support to the
hypothesis that the concepts of fairness and trust are related, as proposed in
the trust definition given in section 2.2.1.1.

3.5.2.3 Emotional Variation of Internet Auction Comments

Automatic Sentiment Extraction

For the sentiment analysis task we used a modified version of Sentipejd [20] - a
hybrid of lexeme category analysis with a shallow parsing engine. At the basic
level, Sentipejd checks for the presence of a specific categoryof lexemes. Such an
abstraction originates or in content analysis systems, most notably the classic
General Inquirer [132]. Lexical categories used in this work include two sets of
words (dictionaries): 1580 positive and 1870 negative ones, created by Zetema3.
Because comment texts are typed in a careless manner, very often completely
without diactrits, lexeme recognition was extended with a diacrit guesser. Rec-
ognized sentiment lexemes, along with morphosyntactic tags, are analyzedwith
Spejd - a tool for simultaneous morphosyntactic disambiguation and shallow
3 www.zetema.pl
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parsing [19], with a number of rules crafted to recognize multiword opinion pat-
terns and apply sentiment modifying operations.

The Spejd formalism is a cascade of regular grammars. Unlike in the case
of other shallow parsing formalisms, the rules of grammar allow for explicit
morphosyntactic disambiguation, independently or in connection with struc-
ture building statements, which facilitates the task of the shallow parsing of
ambiguous and/or erroneous input.

For the purpose of sentiment analysis we extended the default Spejd’s
morphosyntactic tagset with a sentiment category expressing properties of
positive or negative sentiment. This hybrid approach is called Sentipejd [20].
Sentiment rules included (but were not limited to): affirmation, negation,
nullification, limitation and negative modification.

Table 3.1 Emotion intensity and comments’ length in categories

Feedback category Emotion Avg. comment’s length

POS 2.75 89.38

NEU 0.37 161.66

NEG −1.08 177.00

The most commonly used reputation systems embedded in online auction
website allow us to evaluate transaction results not only by selecting a pre-
defined category from a list but also by leaving longer or shorter comments.
When a given transaction is completed, every eBay/Allegro user can evaluate
his or her partner by choosing either a positive, neutral, or negative mark.
General, common-sense driven understanding of these three textual labels as
three separate categories which represent three grades of transaction outcome
evaluation, does not stand up to scrutiny of data from the real system. 99%
of transactions are followed by comments labeled “positive” and only 0.6%
and 0.4%, respectively, neutral and negative. The overwhelming domination
of positive evaluation indicates that users, both buyers and sellers, award
every non-fraudulent outcome of transaction with positive comment4.

The average comment’s lengths for separate feedback categories are pre-
sented in tab. 3.5.2.3. It is easily noticeable that as far as comment’s length
is concerned the difference between positive and neutral comments is much
bigger than between neutral and negative. Neutral comments are long (in
comparison to positive). More characters are probably needed for expressing
a user’s attitude (evaluation) toward an unexpected transaction’s outcome.

As far as emotional intensity is concerned the neutral comments are also
closer to negative than positive. The value of emotion index ranging above
zero should not be mistakenly understood as an expression of satisfaction.
4 In some cases positive comment is coerced by either unjustified reciprocal eval-

uation or legal threat.
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Because of the properties of emotional measurement selected for this research
a meaningful interpretation of results can only be performed based on relative
values. Yet another approach to in-depth study of emotional distance between
categories was applied. Two separated, balanced subsets of comments were
created:

• Set I (NEG; NEU) - contains 1454 comments of which 727 are negative
and 727 positive,

• Set II (NEU; POS) - contains 1454 comments of which 727 are neutral and
727 positive.

Every set of comments has been partitioned on testing and training set (30%
and 70% cases respectively). For both sets of comments three different clas-
sification algorithms were used: neural network, support vector machine and
decision trees (CHAID algorithm). As a target variable the label given by
the comment’s author (negative, neutral or positive) was selected and the
emotional intensity as input variables.

Table 3.2 Classification accuracy for different algorithms and testing subsets

Neural Network Support Vector Machine Decision Trees (CHAID)

NEG and NEU (set I) 65, 16% 65, 80% 64, 11%

NEU and POS (set II) 65, 16% 65, 80% 64, 11%

To confirm the hypothesis that neutral comments are more similar to neg-
ative than positive the quality of classification for two sets described in pre-
vious paragraph were compared. Independent of used algorithm obtained
results show that it’s easier to distinguish between neutral and positive com-
ments than neutral and negative. Thus, the claim that in a real reputation
system embedded in an auction house only positive and non-positive com-
ments exist. In most applications negative and neutral comments can be
interpreted in the same way - as an expression of dissatisfaction - and the
label should not be explicitly treated as a scale of the experiences.

The conclusion from the analysis of emotional content of comments is that
Internet auction users do not use the proposed three-valued scale of comments
in an anticipated manner. Rather, they distinguish mainly between positive
and nonpositive feedback. On the other hand, the difference between these
two kinds of feedback is very large and even amplified by the emotional
content of comments. These findings seem to question the validity of using
such a simple scale. One possible conclusion is that it would suffice to use a
binary scale, as proposed by many trust management systems. However, as
our advanced analysis shows, this situation is really more complex, because
users do not evaluate feedback on a scale that is a total order and instead
use many different criteria when considering nonpositive feedback.
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3.5.2.4 Harmfulness of Unfair Behavior

A simple computational method can be used to rate the types of complaints
along with their harmfulness. This method is based on the percentages of neg-
ative and neutral comments in each complaint category. The balance between
the negative and neutral comments serves as a measure of the harmfulness
of this type of complaint.

Fig. 3.5 Harmfulness grading of sellers’ activities

In order to verify the correctness of this method, we also conducted an op-
inion poll among real Internet auction users. We received 208 responses from
Internet auction users (between the ages of 19 and 59). 148 respondents de-
clared that they had sold goods on auction systems, and 193 of them declared
that they had bought goods on auctions. This implies that a large number of
the respondents have been both buyers and sellers. Respondents were asked
about their subjective opinion on the harmfulness of each complaint category.

In addition we included an evaluation of the emotional content of feedback
description. All values for the computational and emotional methods were
generated from nonpositive (negative or neutral) feedback. We have juxta-
posed the results from all three methods in Figure 3.1 and Figure 3.2 (for
sellers and buyers respectively). The Figure shows the harmfulness of each
complaint category as calculated by all three methods. The length of the bar
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Fig. 3.6 Harmfulness grading of buyers’ activities

indicates the position of the particular category in a ranking created by the
particular evaluation method.

The results obtained from this opinion poll demonstrate that the more fre-
quently used types of complaint are not necessarily the most harmful as con-
sidered by our respondents. Users seem to be more tolerant to lack of response
from the seller or to a situation in which the seller declares after the auction
that there is no item to sell. According to our respondents, the most harm-
ful behaviors concern the condition of the item, such as sending a damaged,
incomplete or different item.

From the emotional point of view, buyers are more irritated when there is
a communication problem with the seller (odd behavior or lack of response).
Buyers get more emotional when the seller declares that there is no product
to sell, or the product is damaged.

From the seller’s point of view, the most harmful behavior is related to the
lack of response and lack of payment (no intention to buy). There is a minor
disagreement between the computational method and the opinion poll. Odd
behavior of the buyer is not a serious problem for the seller as long as the
buyer still pays before receiving the item. Results from the emotional method
show that the most irritating behaviors are not accepting the delivery and
lack of response. Both of these groups are related to the loss of money. When
the buyer does not pick up the delivery, the seller must pay the round trip
shipping charges, which is sometimes a significant amount of money. Lack of
response is connected to the loss of time, which (in case of the e-market) is
very closely connected to the loss of money.

Based on the three harmfulness rankings of the report categories, it is
possible to create an assignment of the categories to importance classes (the
more harmful categories should be considered the more important). Let us
assume that there are 5 importance classes, least important, less important,
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important, more important and most important. The problem of assigning the
report categories to importance classes based on the three different rankings
is really a problem of merging social valuations. The computational methods
of the theory of equitable optimality can be used for such a problem; notably,
the OWA and WOWA methods are particularly suitable (see section 2.3.9).
Recall from this element of study that the WOWA method uses two sets of
weights: the priority (or entitlement) weights that are assigned to individual
criteria (or agents’ outcomes), and the OWA weights that are assigned to
the ordered criteria. Consider a WOWA aggregation of the three rankings
that will have the following priority weights: vc = 2, ve = 1, and vo = 1,
where vc is the weight of the computational ranking, ve is the weight of the
emotional ranking and vo is the weight of the opinion poll. This means that
the computational method can be counted double, because it is based on
the largest set of declarative responses (the emotional method is computed
from the contents of the comments, and is therefore not declarative, and the
opinion poll is based on a smaller set of responses). This can be achieved by
simply cloning the computational ranking, so as a result we obtain 4 rankings
where the computational ranking is repeated. For these 4 rankings, we can
specify a set of Ordered Weighted Average weights: w4 = 0.5, w3 = 0.25,
w2 = 0.25 and w1 = 0, where wi is the weight of the ith worst position in the
four rankings. This set of weights can be interpreted as follows: we consider
only the three best positions in the four rankings, and the first position is
twice as important as the second and third. If the best position is from the
computational ranking, it will occur twice in this computation because the
ranking is repeated.

This method produces a joint ranking for the report categories. The rank-
ing can be partitioned into five classes using threshold values that are selected
so that all five importance classes will be used to compare the report cate-
gories. Using this method, we obtain the following assignment of categories
of reports about sellers (see Table 3.3.).

Table 3.3 Assignment of report categories to importance classes basing on WOWA
aggregation of rankings

Report category Importance class

No response Most important

Item not sent or lost Most important

Careless packaging More important

No product to sell Important

Overpriced shipping Less important

Item wrong Less important

Item not as expected Least important

Odd behavior Least important
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This assignment will be used in the next section in order to design a method
of comparing reports that takes their importance into account.

3.5.3 A New Computational Trust Representation for
Internet Auctions

The computational trust representation proposed in this paper attempts to
take into account information about user behavior gained through the analy-
sis of Internet auction traces. The conclusions from this analysis point towards
an emphasis on for improvement of the computational trust representation
currently used in Internet auctions:

• the categorization of comments has demonstrated that buyers and sellers
on Internet auctions use detailed and meaningful criteria for the evaluation
of other agents’ behavior,

• emotional contents of comments and the comparison of categories in terms
of perceived harmfulness shows that Internet auction users have a prefer-
ence structure that allows us to compare the importance of the various
criteria.

These two observations are the basis of the new proposed computational trust
representation based on the work of Yager [186, 187] and resembles the rep-
resentation used by Sabater-Mir et al. [146]. However, the processing of the
representations by the proposed operators is significantly different due to a
fundamentally different interpretation of the values. Firstly, the labels used
in the representation are interpreted by Yager and Sabater-Mir as exclusive
alternatives that are comparable by a total order (even though the repre-
sentation makes it possible to specify non-zero strengths for various labels.
Still, the labels without strengths can only be interpreted as exclusive alter-
natives). In the representation proposed in this paper, labels are interpreted
as criteria for the description of behavior. These criteria are not mutually
exclusive. In addition, there exists a preference relation that describes the
importance of the criteria to users.

Consequently, Yager proposed a completely different treatment of opinions
represented by his system. Firstly, the strengths used by Yager are normal-
ized, so that they add up to 1 for the different labels. Such a normalization
makes sense for exclusive alternatives, but not for non-exclusive criteria. Fur-
thermore, Yager’s aggregation operator is based on strength multiplication,
not on the OWA operator as proposed here. This is motivated by the fact
that a “unit” opinion in Yager’s system is an opinion that has equal strengths
for all labels. Such an opinion should not change the aggregated result. In
our system, a unit opinion does not exist, but the OWA weights ensure that
opinions which have strengths close to the mean will have a smaller impact
on the aggregated proof.

Sabater-Mir additionally introduces a confidence measure (called “strength
of belief in the representation of trust about an agent”). This confidence



98 3 Trust Management

measure is really a measure of trust in the context of the credibility of opin-
ions received from another agent. The confidence measure is therefore used in
a form of transitive trust propagation that combines credibility trust with a
trust rating in another context. However, since Sabater-Mir does not explic-
itly identify contexts, the confidence measure is added to every credibility
rating. A composition operator could be used instead that would explic-
itly calculate transitively propagated trust in the context of opinion credibil-
ity. However, in Internet auctions, such transitive propagation is not useful,
and therefore we have not included such an operator or a confidence meausre
in our system.

Another difference to the work of Sabater-Mir is the introduction of the
selection operator. This operator can be used to create rankings of agents
or to reduce the amount of noise in the aggregation by selecting the more
extreme opinions.

3.5.3.1 Proof Definition

In Internet auctions, proofs are in the form of reports about the behavior
of an agent (seller or buyer). The new computational trust representation
consists of a definition of proof and of operators for processing proofs in
order to propagate computational trust. A proof can be defined as follows:

PAB = {c, {li, si}m
i=1}.

where A and B are agents: A is the trustor and B is the trustee; c is the proof
context. In Internet auctions, contexts can be the categories of products, the
price ranges, and the role of the user (buyer or seller).

li is a set of labels that are used to describe the behavior of a user. m is
the number of labels. One can think of the labels as criteria used to describe
behavior. These criteria can be determined from the comment categories
proposed in section 3.5.2.2. In contrast to the work of Sabater-Mir, we propose
that the labels are not comparable by a strong order. Rather, there exists a
preference relation that represents their “degree of importance” of criteria,
as indicated by our analysis. We shall denote this fact by li ≺ lj , whenever
lj is considered as more important than li by the trustor.

Each proof also includes a related strength value for each label, si. The
strength represents the degree to which the proposed label applies to the
trustor. Initial strength values should be on an intuitive scale that is easy
to use by buyers and sellers on Internet auctions. For example, an integer
scale of 0, 1, ..., 5 can be used. However, strengths will later be processed and
transformed by the trust management system, so that it can be assumed that
strengths will be real numbers in the range of [0, 5].
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3.5.3.2 Requirements for Proof Processing Operators

The proposed proofs will be processed by a trust management system that
should be capable of presenting the best possible trust recommendation about
a new agent. For example, consider a buyer who has never before bought
from a certain seller on an Internet auction. The trust management system
should produce a recommendation for that buyer that is based on available
proofs. Current reputation systems on Internet auctions use a simple average
of scores given in available reports. A more sophisticated system could also
attempt to propagate trust using seller similarity – incorporating a larger
amount of proofs about similar sellers. (Transitive trust propagation cannot
be applied in Internet auctions because buyer and seller roles are asymmetric,
and information about the credibility trust in other buyers’ opinions is not
available). Another requirement is the ability to produce a ranking of agents.
For example, consider a buyer who has searched for products and found a set
of sellers that offer similar products in comparable price ranges. The buyer
wants to rank these sellers according to their computational trust measures.
Once again, in a simple reputation system, these sellers would be sorted using
the reputation value.

Following the work of [58], we shall define two operators that are sufficient
to implement simple ot sophisticated algorithms that fulfil the requirements
described above. These operators are: the aggregation operator ⊕ and the
selection operator . Both operators are applied to a set of proofs, PAB

i . Be-
fore formally introducing these operators, let us discuss what should be their
desirable properties.

The aggregation operator should return a single proof that represents a
summary of the information available in a set of proofs. Usually it is applied
to summarize the proofs available from different agents about a single trustee
B or even for a single relation between a trustor A and trustee B. In a simple
reputation system, where reports are on a scale of −1, 0, 1, the aggregation
operator could return a ratio of nonnegative reports (0, 1) to all reports. Using
the proposed new computational trust representation, the aggregation oper-
ator will have to be more complex. Since the aggregation operator produces
a single proof, the job is to create the new strengths for that proof. The first
possibility is to calculate average values for each label li from the strengths
of that label in the aggregated set of proofs. However, as more proofs will be
aggregated, this algorithm would converge to the average of strengths used
for each label by the entire population of agents. In order to produce a more
diversified opinion, it is desirable to allow more extreme opinions to have
more impact on the result.

The job of the selection operator is to choose the most relevant proofs from
a set of proofs. Usually it is applied to select a single proof from a set of aggre-
gated proofs about various trustees. This operation can be applied iteratively
to produce a ranking of trustees. Also, the selection operator can be applied
before aggregation, in order to select the more extreme opinions. Such a
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selection has been shown to improve the quality of trust recommendation [54].
The reason for this is that excluding less relevant proofs reduces the noise
of the trust recommendation. A simple way of judging relevance is based on
the strengths of opinions. Proofs with extremely high or low strengths should
be preferred. In a simple reputation system, the selection operator could
just return reports that have values of 1 and −1, ignoring the neutral values.
In our system, the selection operator can return proofs that are weakly Pa-
reto-optimal with respect to scaled strengths (in other words, the selection
operator will not include a proof if it has strengths less or equal to another
proof in the set, and one inequality is strict: it is weakly Pareto-dominated by
another proof), where the scaling function should take into account the mean
strength value for each label. Selecting Pareto-optimal proofs will return the
most positive opinions; this process can be repeated using negated criteria,
so that the most negative opinions will be selected, as well. The number
of selected proofs should be a parameter. Last but not least, the selection
should take into account the preference relation that establishes the relative
importance of labels.

3.5.3.3 Aggregation Operator

The aggregation operator can be defined as follows. Let

PAB
agg = ⊕(PX1B , . . . , PXnB),

where PABagg = {c, {li, sagg
i }} and PXjB = {c, {li, sj

i}} for all j.

The trust management system should record the empirical distribution
of strengths used for each label. This empirical distribution can be used to
determine the average user valuations for each label, denoted by si. Another
important value is the kth q-quantile of the strengths used for each label,
denoted by ŝk

i . The value of q is a parameter, for example q = 5 (quintiles).
The defining property of ŝk

i is that Probsi < ŝk
i ≤ k/q, where k ∈ 1, ..., q − 1.

For convenience, we shall denote ŝ0
i = 0 and ŝq

i = 5 (recall that si ∈ [0, 5].
The new strengths of the aggregated proof are given by:

s
agg
i =

q∑
k=1

wk average({sj
i : ŝk−1

i ≤ sj
i < ŝk

i }).

This operation is equivalent to the OWA operator [121, 185] on quantiles.
The weights wk are applied to the averages of values in the range of two
adjacent quantiles. On table 3.4, the proposed values for these weights are
shown. Note that the weights are designed so that they will emphasize the
extreme values at the cost of the values closer to the mean. The mean values
will therefore have a smaller effect on the aggregated proof.
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Table 3.4 OWA weights for quantiles

k 1 2 3 4 5

wk 0.3 0.175 0.05 0.175 0.3

3.5.3.4 Selection Operator

The aggregation operator can be defined as follows. Let

PAYsel = (PAY1 , . . . , PAYn).

The selection of proofs can be done using a real-valued scaling function that
should be maximized. Therefore, PAYsel is determined by choosing the proof
PAYk that maximizes this scaling function, denoted by σ(PAYk). This func-
tion, on the other hand, will use scaling functions that operate on the strength
values for any label. The scaling function on proofs can be defined as follows:

σ(PAYk) = mini{σi(sk
i )} + ε/m

m∑
i=1

σi(sk
i ),

where PAYk = {c, {li, sk
i }} for all k.

The scaling function of strengths is based on the partial achievement func-
tion of the reference-point approach to multi-criteria optimization [180]. The
values of this function can be interpreted as satisfaction levels for the strength
values. The scaling function is piecewise linear, but changes its slope at two
special points (strength values). These are the so-called reservation (sr

i ) and
aspiration (sa

i ) points. These points can be determined from the empirical
distribution of strength values, as follows: sr

i = si/2 and sa
i = (5 + si)/2, for

each label li.
The scaling function of strengths is given by:

σi(si) =

⎧⎪⎨
⎪⎩

αsi/sr
i , for si ≤ sr

i

α + 2/5(β − α)(si − sr
i ), for sr

i ≤ si ≤ sa
i

β + (5 − β) si−sa
i

5−sa
i

for sa
i ≤ si .

(3.1)

The parameters α and β of the scaling function are the values of the scaling
function at the reservation and aspiration points, respectively. For example,
α = σi(sr

i ) = 2 and β = σi(sa
i ) = 4. These values will be varied for var-

ious labels li in order to take into account the preference structure on the
importance of labels.

Based on the important classes of report criteria proposed in section 1.5,
it is possible to refine the selection operator. The parameters of the scaling
function should change so that it returns smaller values for the more impor-
tant labels. The rationale for such a design is as follows: if a label is least
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important, then the agent should be satisfied if the value of the strength of
that label is only at its lower reservation level. On the other hand, if another
label is most important, then the agent will have a similar level of satisfac-
tion as for the least important one, only if the strength for that label is at
its higher aspiration level. As reservation and aspiration levels depend on the
distribution of strengths for a label, this reasoning is valid even if different
labels have different strength distributions.

Following [180], the following values of the parameters of the scaling func-
tion for various importance classes of labels have been proposed in table 3.5.

Table 3.5 Parameter values for scaling function depending on importance class of
the label

Importance class Least Less Important More Most
imp. imp. imp. imp.

α (value of scaling function 3 2.5 2 1.5 1
at reservation level)

β (value of scaling function 5 4.5 4 3.5 3
at aspiration level)

3.5.3.5 Applying the Proposed Operators Trust Management
Systems for Internet Auctions

As described in section 3.5.3.2, the proposed operators should be used to solve
two main problems: determining a trust recommendation about a previously
unknown agent, and ranking a set of agents (for example, sellers). Let us
describe how the operators can be applied for such a purpose.

Assume that a buyer A in an Internet auction considers a previously un-
known seller B of a certain product. The trust management system of the In-
ternet auction stores a set of proofs {PXiB} about B. The system can directly
use the aggregation operator to produce a single recommendation about the
agent, PAB = ⊕({PXiB}).

If the buyer considers more than one seller and wishes to produce a
ranking of a set of sellers, {Bi}, the trust management system can itera-
tively use the selection operator: PABi1 = ({PAB1 , . . . , PABn}), PABi2 =
({PAB1 , . . . , PABn}\{PABi1}) and so on, until a sufficient number of agents
(or all) are ranked.

3.5.3.6 A Comparison with eBay’s DSR Scale

The Detailed Sellers Rating (DSR) is a new system introduced by eBay for
buyers to rate sellers using 4 different criteria:
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• product description accuracy,
• communication between seller and buyer,
• shipping time,
• shipping charge.

Buyers can leave one to five stars for each criteria. The DSR system could
therefore be expressed using the computational trust representation proposed
in this paper for Internet auctions. However, we propose to use a different
list of criteria. The DSR criteria are marked on Figure 3.4 with stars near
the complaint type. In comparison to our model, the criteria used by DSR
cover most of the user-related problems but do not take into consideration
item-related complaints (only one criterion concerns the item description).
Moreover, DSR does not introduce a context for the report, like the price
range or product category.

Although system design is easy to use for buyers, eBay does not instruct
them how to use this system. This results in misunderstandings of the pro-
posed rating scale. Also, eBay expects very high average rating results for all
criteria for sellers. Therefore, when a buyer submits a report that has a valu-
ation of four stars on some scale, she may think that the report represents a
positive feedback; however, to the seller the report is really negative, because
the expected averages for higher seller status are above 4.

Moreover, there exist concerns that the introduction of the DSR system
together with the new status hierarchy for sellers can have an adverse affect
on low-volume sellers.

Another, more significant difference lies in the processing of the reports.
eBay does not compute any value beyond the simple averages of received
reports for each criterion (and the number of reports. A report that contains
valuations for only a subset of the criteria is counted only for these criteria).
This means that buyers who want to compare sellers based on the DSR cri-
teria must compare vectors of values together with information on the number
of reports for each value. This is a complex task for an ordinary auction user.
Using the system proposed here, it is possible to create rankings of sellers
(using the selection operator).

The Detailed Sellers Rating system is also unable to take into consideration
a preference relation of the buyers on the proposed criteria. All four DSR
criteria are considered as equally important. On the other hand, our system
takes into account such a preference relation and allows the auction user to
specify his own subjective preferences on the criteria.

3.5.4 Computational Trust Models for Credibility
Trust

The proposed computational trust representation can be used in other appli-
cations other than Internet auctions. A potential application are recommenda-
tion systems, where computational trust is used to evaluate recommendations
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received from other agents. This kind of application uses trust in the context
of the credibility of received opinions. Credibility trust is used in various appli-
cations such as epinions, FilmTrust, and many others. Research on credibility
trust is abundant [118, 54, 57].

However, credibility trust is rarely treated as a separate context of trust
that coexists with other contexts. This is because in many recommendation
systems, trust is only used in the context of credibility. On the other hand,
in other systems, credibility trust is treated as additional information that is
used to process computational trust in the main context [146].

Also, previous research has used simple, scalar representations of credibil-
ity trust. The reason for this choice is that credibility trust has been usually
acquired automatically through a comparison of received opinions with the
trustor’s first-hand knowledge. This comparison is often elaborate [54, 146],
but results in a scalar real number.

In comparison with computational trust used in Internet auctions, credi-
bility trust is based on completely different information. Trust management
systems for Internet auctions are based on reports, while credibility trust is
based on observations. The reason for this is that in Internet auctions, agents
do not have the opportunity to observe other agents’ transactions and must
base their evaluations on indirectly acquired proofs. In recommendation sys-
tems, agents can compare their own opinions about objects with the opinions
received from others. This comparison is the basis of first-hand proofs about
the credibility of other agents. However, a few precautions ought to be taken
into account when basing credibility trust on observations derived only from
the comparison of opinions:

• a similarity of opinions about known objects may not imply a similarity
of opinions about newly observed objects,

• a human trustor may consider another agent as credible even if received
opinions are not similar,

• a comparison of opinions may be robust to small variations in agents’
opinions.

Credibility trust can also be treated as a social opinion that can be elicited
by directly asking human users of the system. Credibility trust has all the
properties of trust discussed in section 2.2. A simple way of eliciting an opin-
ion about credibility trust is to ask a human agent, A, a question about her
credibility trust in B that can be answered on a discrete scale (for example,
of five levels).

Elicited credibility trust recommendations can be aggregated with observa-
tions obtained from the trust management system by comparison of received
opinions with first-hand knowledge, and can be propagated. It is notewor-
thy that trust in the context of credibility can be propagated transitively.
Moreover, when it is necessary to evaluate the credibility trust of a previ-
ously unknown agent, the trustor should aggregate available credibility trust
recommendations (that have been propagated transitively). In this case, it is
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possible that the trustor would receive two extremely different opinions from
two equally trusted agents. It is difficult to reconcile these opinions using a
scalar computational trust representation.

For these reasons, the more complex computational trust representation
using labels may be applied to credibility trust. In this case, labels may repre-
sent exclusive levels of credibility, such as: least credible (l1), less credible (l2),
credible (l3), more credible (l4), most credible (l5). The associated strengths
may be normalized, so that

∑5
i=1 si = 1. Notice that given such a defini-

tion of labels and strengths, a proof that has equal strengths (equal to 0.2)
expresses a neutral value (lack of trust or distrust). A proof with strength
values below 0.2 for l1 or l2 expresses credibility trust, while a proof with
strength values above 0.2 for l3, l4 or l5 expresses trust.

Following Yager [187], Sabeter-Mir [146] defines operators for the aggre-
gation of such proofs. Sabeter-Mir’s system also includes a representation of
credibility trust as a scalar that is used in the proposed aggregation. The new
proofs for credibility trust can be processed differently, using the following
credibility trust determination procedure:

1. elicit a human user’s opinion about the credibility of a trustee, resulting
in a credibility trust recommendation,

2. if available, compare the opinions received from the trustee with the
trustor’s opinions, resulting in an observation of credibility trust in the
trustee,

3. aggregate the recommendation and observation obtained in previous steps,
if available, producing a new credibility trust recommendation,

4. if no information is available, use a computational trust propagation algo-
rithm to produce a credibility trust recommendation about the trustee,

5. aggregate the recommendations produced in steps 3 and 4, resulting in a
final credibility trust recommendation.

The proposed procedure requires repeated use of the aggregation operator,
as well as a comparison of opinions in step 2 and the application of a com-
putational trust propagation algorithm in step 4. Computational trust prop-
agation algorithms will be discussed in the next section; here, it remains to
define a new operator (the composition operator) of the proposed proofs that
will be used by such algorithm.

3.5.4.1 Determining Credibility Trust Observations from
Differences of Opinions

Step 2 of the above procedure states that an observation about credibil-
ity trust can be created on the basis of a comparison of the opinions re-
ceived from the trustee with the trustor’s own opinions. This comparison
must be based on a measure of difference of opinion. Several approaches for
trust management in recommendation systems have proposed various such
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measures. In order to give a short overview, assume that there are two proofs,
P1 = {c, {li, sP1

i }n
i=1} and P2 = {c, {li, sP2

i }n
i=1}. Note that these proofs need

not be proofs about credibility trust, but can be made in any context in
which two agents, A and B, can encounter each other. In such an encounter,
agents can exchange proofs about any third agent, C. After the encounter,
each agent may compare the proofs about C received from the other with
his own observations that represent what he considers as certain. The sought
measure of difference of opinion, δ(P1, P2), is a function of the strengths of
the two proofs.

Sabater-Mir [146] proposes to use two values, the total absolute difference
of strengths

∑n
i=1 |sP1

i − sP2
i |, and the difference of centers of mass, 1/(n −

1)
∑n−1

i=0 i|sP1
i − sP2

i |. The difference measure δ is then a function of the two
values.

Golbeck [85] proposes to use average absolute differences calculated on all
opinions (strengths) or on the set of extreme opinions. Golbeck proposes to
use the top 20% and the bottom 20% of opinions. A final value that is used
to determine the difference measure is the maximum difference of opinions.

Another measure of difference of opinion can be based on the Kemeny-
Snell measure that is widely used in the comparison of social opinions. The
Kemeny-Snell measure can be applied to opinions that are in the form of a
preference ranking. Observe that a proof P1 can be represented as a preference
ranking matrix rP1

ij (1 ≤ i, j ≤ n) as follows.

rP1
ij =

⎧⎪⎨
⎪⎩

1 if sP1
i > sP1

j

0 if sP1
i = sP1

j

−1 if sP1
i < sP1

j .

The Kemeny-Snell measure of difference of opinions is given by:

δ(P1, P2) =
1
2

n∑
i=1

n∑
j=1

|rP1
ij − rP2

ij |. (3.2)

The proposed measure has several desirable properties, such as the triangle
inequality, independence of a similar permutation of opinions [77, 95]. Its
values are nonnegative integers, and δ(P1, P2) = 0 only for proofs that have
identical preference ranking matrices. The value of the Kemeny-Snell measure
for two proofs that have n labels is bounded above by n(n− 1) (because the
maximum of this measure is for two proofs that have completely reversed or-
derings of labels). A good property of the proposed difference measure is its
robustness to small variations in proof strengths. Values of δ(P1, P2) depend
only on the ordering of labels according to strength values. This allows us
to use the measure regardless of whether proofs have normalized strengths,
or not.
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It remains to propose how the observation of credibility trust should be
created based on the calculated measure of difference of opinion, δ. Firstly,
observe that it is necessary to calculate a summary measure of difference
of opinion between two agents, A and B. This difference of opinion ought
to concern only first-hand knowledge of A and B expressed by observations
about other agents. This is because a difference of opinion calculated from
recommendations received from third parties would include factors that have
no connection to the credibility of B as perceived by A. Let us therefore
denote the set of proofs that B has sent to A and that represent B’s first-
hand knowledge by OB = {PBXi}m

i=1 (all PBX1 are observations). Out of
this set, we should consider a subset of proofs that concern agents Xi that A
has first-hand knowledge about: OBA = OB ∩ OA, where OA = {PAXi}l

i=1

and all PAXi are observations. Let k = |OBA| be the number of observations
that A and B have in common with other agents.

l5 (most credible) I5 = [0, 1
5
n(n − 1)]

l4 (more credible) I4 = [ 1
5
n(n − 1), 2

5
n(n − 1)]

l3 (credible) I3 = [ 2
5
n(n − 1), 3

5
n(n − 1)]

l2 (less credible) I2 = [ 3
5
n(n − 1), 4

5
n(n − 1)]

l1 (least credible) I1 = [ 4
5
n(n − 1), n(n − 1)]

Fig. 3.7 Intervals of the Kemeny-Snell difference measure for determination of
credibility trust level

To create a credibility trust observation PAB
cred on the basis of a comparison

of first-hand knowledge of A and B, a histogram of the observed differences
between the opinions of A and B can be created. Let di = δ(PAXi , PBXi).
Since 0 ≤ di ≤ n(n−1), where n is the number of labels in PAXi , it is possible
to create five intervals that correspond to the five labels of a credibility proof.
These intervals could be created by equally dividing the interval [0, n(n− 1)]
into five proportionate parts, as shown in Figure 3.7.

Each value di ∈ Ij will increase the count of values mj for the interval
j by 1. After all observed differences are counted, the values mj will be
normalized (divided by the number of observations, k). The normalized values
m

′
j = mj/k form an empirical histogram of the differences of opinion between

A and B. However, in order to determine the strengths of the credibility
observation PAB

cred, it is good to compare the values m
′
j to a reference level.

This would allow us to take into account how human agents interpret and use
the computational trust representation. For the reference levels, the values
of a histogram created for all observed differences of opinion (not just for
the agent B) can be used. Agent A can maintain a second histogram, mj ,
that is created as described above, but from a comparison of the observations
of A with proofs received from all other agents. The comparison of the two
histograms can determine the strengths of PAB

cred.
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A piecewise linear scaling function may be used to compare the histogram
values m

′
j and mj . This function can be given by:

σ(m
′
j , mj) =

{
1
5m

′
j if m

′
j < mj

1
5(1−mj)

(4m
′
j + 1 − 5mj) if m

′
j ≥ mj .

The proposed scaling function has values σ(0, mj) = 0, σ(mj , mj) = 0.2 and
σ(1, mj) = 1 for any mj . The values of the scaling function for all j add to 1
(
∑5

j=1 σ(m
′
j , mj) = 1), therefore the values of σ(m

′
j , mj) can be used directly

as the strengths of the proof PAB
cred. If the differences between the opinions

of A and the opinions of all other agents have the same distribution as the
differences of opinions between A and B (mj = m

′
j for all j), then the credi-

bility trust observation PAB
cred will have strengths equal to 0.2. This property

ensures that the credibility trust observation will be neutral in such a case.

3.5.4.2 Aggregation Operator for Credibility Trust Proofs

Following Yager [187] we define the aggregation operator for credibility trust
proofs as follows.

PAB
credagg = ⊕cred(P1, . . . , Pn),

where Pi = {credibility, {lj, sij}5
j=1} are proofs about the credibility trust of

B. Note that these proofs could have been obtained in any of the steps of
the credibility trust determination procedure 5. The proofs could therefore
be observations of A or recommendations about the credibility trust of B re-
ceived from any other agent. The received recommendations would have to be
composed with proofs about the credibility of their source; this composition
will be described in the next section.

The result of the aggregation operator, PAB
credagg = {credibility, {lj, sj}5

j=1},
can be defined using formulas for the strengths sj . Yager has proposed two
methods for aggregating strengths of belief. Both of these methods have desir-
able properties such as symmetry, monotonicity, associativity and the preser-
vation of the neutral proof as a unity. The first, simpler method is a weighted
product of the strengths of contributing proofs:

sj =
∏n

i=1 sij∑5
j=1

∏n
i=1 sij

. (3.3)

This method is undefined for conflicting proofs such that s1j s2j = 0 for all j.
In this special case, the strengths of the aggregated proofs are all equal and
equal to 0.2 (the aggregated proof is a neutral proof).

The second method defined by Yager is based on the following procedure.
First, for each label lj of a credibility trust proof, the set {sij} of contribut-
ing strengths is partitioned into three subsets: the strengths equal to 0.2
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(neutral), the strengths above 0.2 and the strengths below 0.2. The last two
subsets can be defined as: L = {sij : sij < 0.2} and H = {sij : sij > 0.2}.
Let us denote the sizes of the two subsets by nL = |L| and nH = |H |. The
formula for aggregated strengths is given by:

sj = Q(
nL

nH
)T (L) + (1 − Q(

nL

nH
))S(H). (3.4)

Here, Q is a nondecreasing function on the interval [0, 1]. For simplicity, we
shall assume that Q is the identity function. T and S can be chosen from a
large set of operators, but a simple and intuitive choice is T (L) = min(L)
and S(H) = max(H). The formula for aggregated weights simplifies then to
the following expression:

sj =
nL

nH
min(L) + (1 − nL

nH
)max(H).

3.5.4.3 Composition Operator for Credibility Trust
Recommendations

The difference of the approach for representation and processing of credibil-
ity trust and of the approaches proposed by Yager and Sabater-Mir lies in
the treatment of transitive composition of credibility trust. The composition
operator formalizes the observation that credibility trust is inherently transi-
tive: if an agent A has a high credibility trust in an agent B and receives from
B a recommendation that expresses high credibility trust in a third agent C,
then A will most likely believe C.

Let us define the composition operator as follows: Pcompose =�(P1, . . . , Pk).
A special case is k = 2: Pcompose = �(P1, P2). The following intuitive require-
ments can be specified for a composition operator of computational trust: if
P1 expresses high trust, then Pcompose should be similar to P2. On the other
hand, if P1 expresses high distrust, then Pcompose should express neutral trust.

Given the above definition of labels and strengths, it is possible to define
a function that calculates the overall credibility trust rating of a proof. This
can be done as follows:

eT (P ) = 1/3
5∑

i=3

(i − 2)si,

for P = {c, {li, si}5
i=1}. If s5 = 1 for a certain proof, PTT , (and consequently,

strengths for the other labels are zero), then eT (PTT ) = 1. For a proof PHT

such that s4 = 1, eT (PT ) = 2/3. For a proof PT such that s3 = 1, eT (PT ) =
1/3. For all proofs such that s1 + s2 = 1, the value of eT (P ) is zero.

The function eT (P ) can be used to define the composition operator in
the following manner. Let Pcompose = {c, {li, sPcompose

i }} = �(P1, P2), where
P1 = {c, {li, sP1

i }} and P2 = {c, {li, sP1
i }}. Then:
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s
Pcompose

i = (1 − eT (P1))1/5 + eT (P1)sP2
i . (3.5)

This transformation of the weights of the two proofs P1 and P2 preserves
their normalization. To see why this is so, consider that

∑5
i=1 s

Pcompose

i =
1 − eT (P1) + eT (P1)

∑5
i=1 sP2

i = 1.
Then, the general composition operator can be defined by repeatedly ap-

plying the composition operator for two proofs: �(P1, . . . , Pk) = �(�(P1, P2),
P3, . . . , Pk).

The proposed formula for the composition operator has the undesirable
property that when a neutral proof (or even total distrust) will be combined
with a sequence of proofs of total trust of increasing length, the resulting proof
will approach a limit of total trust. This property is undesirable because a
composition of a sequence of proofs of increasing length should not converge
to total trust (especially if the first proof was total distrust), but rather to
the neutral proof. In order to achieve such a property of the composition
operator, it is possible to modify equation 3.5 as follows:

s
Pcompose

i = (1 − (eT (P1))k)1/5 + (eT (P1))ksP2
i , (3.6)

where k is a parameter. An exponent of k = 4 results in a fast convergence
of a sequence (composed of an initial neutral proof and subsequent proofs of
total trust) to the neutral proof.

3.6 Algorithms and Protocols of Computational Trust
and Reputation Management

3.6.1 Establishing Initial Trust

A trust management system operates on the basis of proofs and is capable
of recommending computational trust valuations based on proofs available
about the trustee and other agents. However, sometimes the TM system
does not have any proofs available about the agent. This situation is referred
to as establishing initial trust (and should not be confused with the situation
where there are no proofs that represent direct observations of the behavior
of agent B made by agent A. Initial trust needs to be established if the TM
system has no information at all about B).

At first, the problem seems insurmountable. However, it is possible for
the TM system to calculate a general trust towards all agents. This general
trust value is sometimes called the trust propensity, and represents the TM
system’s view of the environment it operates in [143].

This approach can be refined if all agents can be partitioned into groups.
If the TM system would have any proofs about the past behavior of agents
in a group, it could compute a group reputation measure. However, let us
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consider a situation where no reports are available about the agents in a
group. In such a case, it is possible to use stereotypes to determine initial
trust [97]. In order to apply stereotypes, the groups of agents should be
defined using some observable attributes of agents (for example, all agents
that live in Tokyo and work for the government). A stereotype is then a prior
assumption about the trust in the agents belonging to the group. Stereotypes
can be represented as recommendations that are not made for a specific agent,
but rather for a hypothetical agent that matches the stereotype. Applying
stereotypes is really a form of similarity propagation where the similarity
relation is extended to include stereotypes (see section 2.2.7).

3.6.2 Gathering and Processing of Proofs

The gathering and processing of proofs is one of the most important parts of
the TM system. In the system proposed in this chapter, this task is delegated
to the Proof Discovery Protocol (PDP. See section 3.2).

A basic distinction of TM systems into centralized and distributed systems
also assumes that in the first case, all proofs will be available from a single
agent, while in the second, every agent has his own set of proofs, but agents
can share the proofs among each other. Both of these cases can be imple-
mented using the PDP. The distributed system can also support a hybrid
architecture, where large sets of proofs are stored by a few special agents (as
in a P2P network with superpeers).

TM algorithms can be accordingly partitioned into algorithms that rely on
global knowledge or algorithms that rely on local knowledge. On the other
hand, some global knowledge algorithms can also operate on a subset of proofs
available to an agent at the time of algorithm execution. The real distinction
between algorithms with respect to availability of information is whether or
not the algorithm can control the process of discovering necessary proofs
during its execution. If it cannot, we can speak of an algorithm that relies
on the information available at execution time (which can be local or global
knowledge). If it can, then the algorithm is more suitable for a distributed
system because it can start with local knowledge and then attempt to extend
it using the PDP.

For the first type of algorithms, the PDP can work continuously and gather
as many proofs as possible so that when the algorithms are executed, it will
have sufficient proofs available. For the second type of algorithm, the PDP
may be invoked by the algorithm itself, whenever it needs additional proofs.
However, the most extreme form of distribution would require that the PDP
cannot work independently of the TM algorithm and is invoked during every
iteration of the algorithm to find a proof. This approach is likely to incur a
large communication overhead and to delay the algorithm’s operation. In the
TM system proposed in this chapter, the PDP works continuously, but also
supports queries from algorithms that can result in the search for required
proofs (for example, for more proofs about a previously unknown agent).
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Examples of completely distributed algorithms that search for proofs in
every iteration are TM algorithms used in P2P networks, such as Eigentrust,
that will be described below.

3.6.3 Trust Propagation Algorithms

Human trust propagation is one of the principal properties of trust that can
be exploited by TM methods. As described in section 2.2.7, there can be many
types of trust propagation, but they all have the same effect: the establish-
ment of new trust (or distrust) relations to strangers. Human trust propaga-
tion usually relies on additional information obtained by human agents. In a
TM system, such information (represented as proofs, or computational trust)
can be automatically processed. This processing is done by Trust Propagation
Algorithms. A result of a Trust Propagation Algorithm can be a recommen-
dation for a human user that leads to human trust propagation. On the other
hand, if agents are not humans, then the results of Trust Propagation Algo-
rithms can be processed automatically.

This section gives a classification of Trust Propagation Algorithms accord-
ing to the specific problem that they solve. Next, the section presents an
overview of such algorithms presented in the literature. A new Trust Prop-
agation algorithm is proposed and evaluated. The section concludes with a
discussion of general trust propagation operators that can be used to decom-
pose Trust Propagation Algorithms.

3.6.3.1 Computational Trust Propagation Problems

The trust propagation algorithms described in the literature solve at least
three different types of computational trust propagation problems. These
problems will be defined and discussed in this section for the sake of better
explanation of the algorithms.

We will define four kinds of computational trust propagation problems:

• Problem 1. Given TR (DTR) and two agents, Alice (A) and Bob (B),
such that no edge eAB = (A, B) exists in T (or DT ), establish a new edge
eAB and its strength sAB.

• Problem 2. Given TR (DTR) and an agent A, find a set of k agents in V
that are most trusted (distrusted) by A. A variant of Problem 2 requires
that the produced set of agents should be sorted by trust (distrust) of A
or requires that the entire set of agents V should be ranked by trust or
distrust of A.

• Problem 3. Given TR (DTR), create as many new trust (distrust) edges
as possible between pairs of agents in V . The output of an algorithm that
solves Problem 3 is a new trust (distrust) relation TRP (DTRP ) that
includes the new propagated trust edges. The new trust edges may be
established on the basis of a recursive or iterative procedure that uses the
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trust edges from T (DT ) as well as new trust edges created in a previous
iteration.

• Problem 4. Given TR (DTR) and an agent A, determine a measure of
trustworthiness of A based on the propagation of computational trust of
a set of other agents towards A. The considered set of agents can be all
agents in V .

Note that a solution for Problem 1 can be used to solve problem 3, if it is
applied iteratively to several pairs of agents that are not connected by edges in
TR (DTR). However, such an approach may not be computationally efficient.
On the other hand, a solution for Problem 3 may also contain a solution for
Problem 1. Also, a solution to Problem 3 may be used to produce a ranking
of trusted agents for any agent A, and therefore can be used to construct a
solution to Problem 2.

Problem 4 is a special kind of propagation problem that is related to the
notion of global trust or reputation. Recall from section 2.1 that trustworthi-
ness is a property of an agent that is not subjective with regard to the trustor
(in other words, it is not a relational property, such as trust). Global trust
or global reputation are terms used in the literature for measures of trust-
worthiness. Here we can show that computing these values is not different in
principle from other kinds of computational trust propagation. A following
algorithm can be used to solve Problem 4:

1. Choose a propagation scope r (the maximum length of a propagation path
in T ).

2. Starting at A, do a BFS search to find the set X of all nodes within
distance r from A.

3. For all nodes B ∈ X , solve Problem 1 for the pair of nodes B and A.
4. Aggregate the propagated computational trust strengths for all nodes

B ∈ X .

The last step of the proposed solution for Problem 4 is the only one that
seems to require a specialized approach. However, we will show that this
step is in fact a basic step of computational trust propagation algorithms for
Problem 1 or Problem 3. Thus, Problem 4 is not different in principle from the
other kinds of computational trust propagation problems. The single draw-
back of the proposed approach may be the inefficiency of repeatedly solving
Problem 1; this may be avoided by specialized algorithms that integrate steps
2 and 3 of the proposed procedure.

3.6.3.2 Correctness of Trust Propagation Algorithms

The problem formulations described above have one serious drawback. Any
solution for these problems could be proposed that does not necessarily fulfil
requirements of correctness for trust propagation.
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The obvious approach to evaluate the correctness of computational trust
propagation algorithms would be to test them on human subjects and evalu-
ate whether the subjects think that the recommended, propagated trust re-
lations are valid (in case of algorithms for Problem 1 and Problem 3), or
whether the ranking produced matches the trust preferences of humans
subjects (Problem 2). Unfortunately, such an approach has not yet been
described in the literature. The main reason may be the difficulty of per-
forming such experiments; the design of such experiments requires knowledge
and training in experimental games. Another evaluation approach that has
been used in previous work is based on the availability of declarative trust
networks that contain trust relations declared by human subjects. In such a
trust network, a certain number of trust edges can be “hidden” and consti-
tutes a test set. The computational trust propagation algorithm can use the
remaining trust edges. The output of the algorithm is then compared against
the trust edges in the test set.

The correctness of an algorithm for Problem 1 can be simply defined using
this evaluation approach. An edge between two agents A and B is “hidden”
and the algorithm is correct if it can reconstruct an edge of similar strength.
An algorithm for Problem 2 can be tested as follows: k strongest trust edges
originating in a certain agent A are “hidden”. The algorithm is used to pro-
duce a ranked set of k agents that A can trust. The order of these agents is
compared with the order of the trust edges in the test set. The correctness
of an algorithm for Problem 3 can be tested by “hiding” a random subset of
trust edges. The algorithm will return a result set of propagated trust edges.
The result set can be compared with the test set. It is possible to evaluate
the recall (percentage of the edges in the test set that are also in the result
set) of the algorithm. However, the algorithm’s precision cannot be evaluated
because of the fact that not all real trust relations may have been declared
by the human subjects in the experimental trust network.

Also, it is necessary to keep in mind that all tests using trust networks are
dependent on the structure of the chosen network. Preferably, an algorithm
should be tested on several trust networks of different origin.

A propagation algorithm for Problem 2 or Problem 3 can compute new
strength values for existing edges in the trust network. The difference in
strengths between existing trust edges is another measure of the algorithm’s
correctness. We refer to this measure as the consistency of the algorithm.
Intuitively, a high consistency indicates that the trust propagation algorithm
does not produce recommendations that are in conflict with the first-hand
knowledge of an agent.

A final, important correctness measure of an algorithm for Problem 2 or 3
is the amount of new trust edges that the algorithm recommends. We refer
to this measure as the edge growth of the algorithm. Edge growth forms a
tradeoff with the recall of a propagation algorithm, because if an algorithm
will add many edges to a starting node, the likelihood that it will rediscover
a removed edge grows. In a way, edge growth is related to the precision of
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the algorithm; however, the exact precision is impossible to evaluate without
additional data about which of the new trust edges are correct.

Our correctness measure can be formally specified as follows: we are given
a trust network TR. In this network, we shall select nodes A that will be
used to find user-centric subnetworks of TR. These subnetworks will be the
test cases of the algorithm evaluation method. Let the set of all test cases
be H = {(Ai, Gi =< Vi, Ei >, rei), i ∈ 1, . . . , n}, where Ai is a starting
node in TR, Gi is the subgraph of TR within radius r of Ai (including all
edges between the nodes within the radius), and rei is the “hidden” edge
removed from Gi. Let the output of a propagation algorithm on all test
cases be O = {GP

i =< Vi, E
P
i >}, where GP

i is a propagated subgraph
consisting of the same vertices as Gi, but with new (propagated) edges EP

i

with strengths sP
e .

Assume that the propagated trust edges in EP
i are ordered according to

their decreasing strengths. Let us denote the set of the strongest l edges in
EP

i as lEP
i . This set may or may not include the removed edge rei. Our

correctness measure is referred to as the total inclusion measure (TIM):

TIM(l) = |{i : rei ∈ lEP
i }|/n.

The total inclusion measure is equal to the percentage of test cases in which
the l strongest propagated edges included the “hidden” edge. If TIM is equal
to 100%, then the set of the strongest l propagated edges includes the removed
edge rei.

The set lEP
i may include other edges besides the removed edge and the

original trust edges. The value of λ = l
|Ee| indicates how many additional

edges have been included in the set of propagated edges. While some of these
edges may point to new, trustworthy agents that have been strangers until
now, a high value of λ increases the likelihood that untrustworthy agents
are recommended by the trust propagation algorithm. λ is therefore similar
to edge growth. It is possible to define TIM as a function of λ: TIMλ =
TIM(λ|Ee|). A good trust propagation algorithm would therefore have a
high total inclusion measure TIMλ for a low λ. We shall investigate the
relation between these two values for GKRT and for CloseLook.

3.6.3.3 Computational Trust Propagation Algorithms

Advogato

The oldest known computational trust propagation algorithm is Advogato
[91, 90], an algorithm for solving Problem 2 for a trust network TR (Advogato
is not suitable for distrust propagation). However, it does not produce a
ranked set, but returns an unordered set of k fully trusted agents. Advogato
was developed for the purpose of public key distribution. Given the existence
of a set of authorities that are fully trusted a priori, Advogato can be used to
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determine all nodes that can be trusted because they are sufficiently trusted
by the authorities. Advogato can calculate the set of k trusted agents not
just for one source A, but for any set of authoritative agents.

Advogato uses the Floyd and Fulkerson algorithm for maximum integer
network flow computation. In order to do this, Advogato needs to transform
the trust network TR into a flow network. This transformation is the essence
of the algorithm. Advogato assigns capacities to nodes in V based on their
distance from the source A (or the shortest distance from multiple sources)
and the outdegree of nodes with a smaller distance (if any). The initial capac-
ity of the source A is k (for multiple sources, each receives the same capacity).
Next, the algorithm calculates an average outdegree dj of all nodes at dis-
tance j from the sources. The capacity of all nodes at distance j + 1 is the
total capacity of their neighbors at distance j divided by dj .

After the capacity calculation, Advogato transform TR into a flow network
by changing each node v ∈ V into a pair of nodes, v+ and v−. An edge is
added from v− to v+ with a capacity equal to the capacity of v. The maximum
integer network flow is found in the transformed network, and all nodes that
are reached by a non-zero flow from the sources are returned as trusted
nodes.

The main goal of Advogato’s design has been attack resistance. The au-
thors formulate a so-called “bottleneck property” of computational trust
propagation algorithms which states that the strength of a propagated trust
edge from A to B should not be affected by the changes in the trust network
among the successors of B. If this property holds, B cannot manipulate his
own trust score by issuing his own recommendations. Advogato has the “bot-
tleneck property” and is therefore deemed attack-resistant against adversaries
that can create trust edges among themselves.

The main drawback of Advogato is that it only produces a set of fully
trusted agents, without a ranking that would allow us to further discriminate
among these agents. Interestingly, Advogato uses transitive trust propaga-
tion, but the composition of trust is based on the minimum of trust strengths
along a propagated path, not on the multiplication of these strengths.
The reason for this is the application of the maximum integer network
flow algorithm.

Appleseed

Appleseed is another algorithm for Problem 2 [196] (again, only for trust and
not distrust propagation). Appleseed avoids the drawbacks of Advogato by
producing a ranked set of most trusted agents. Similarly to Advogato, Apple-
seed applies an established algorithm for computational trust propagation. In
this case, it is the spreading activation model by Quillian. In this approach,
energy is propagated among nodes of a graph. Edge strengths represent ca-
pacity of energy transmission. The higher the strength, the more energy will
flow to the next node. Yet, energy can only flow from a node if this node
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receives a sum of energy that exceeds a threshold (the node is then activated
– hence the name). Energy is divided among successor nodes based on nor-
malized local edge strength. This is a further advantage of this approach over
the maximum integer network flow calculation which requires global knowl-
edge. The Appleseed algorithm, unlike Advogato, is suitable for distributed
implementation.

In contrast to Advogato, Appleseed uses transitive trust propagation that
is multiplicative. The algorithm modifies spreading activation in several ways.
Firstly, energy transmission in the spreading activation model can be for an
unlimited distance. Appleseed introduces trust decay for transitive propaga-
tion. In this approach, not all energy (trust) is propagated to successor nodes,
but only a fraction of it. This fraction is controlled by the spreading factor d.
Appleseed uses a spreading factor of d = 0.85, meaning that 15% of energy is
retained in the node, and the rest is propagated. Another modification is in-
troduced to handle dead-ends. In spreading activation, if an amount of energy
reached a node with zero outdegree, this energy was lost and not propagated
further. Appleseed deals with this problem by modifying the trust network.
For every node, it introduces a special edge of full strength (equal to 1) that
leads back from this node to the source A. As a result, energy flows back if
a dead-end is reached and can be redistributed.

The edges leading back to the source allow Appleseed to deal with problems
related to trust normalization that will be discussed next.

Normalization in Trust Propagation

Appleseed is the first discussed trust propagation algorithm that introduces
normalization of edge strengths. Generally, normalization is often introduced
because of several reasons. For some trust networks, edges can be made ar-
bitrarily strong. On the other hand, if there is a limitation of trust strength
(for example, only allowing trust strengths to be in the range of [0, 1]) then
this limitation may be easily exceeded by trust propagation. Consider mul-
tiplicative, transitive computational trust propagation as used in Appleseed.
Imagine that A trusts B and C with strength 1, while B and C both trust D
with strength 1. Then it is easy to see that A should trust D with strength 2,
unless trust strengths are normalized. An even more serious trust normaliza-
tion problem occurs for instances of Problem 3 if the trust network contains
cycles. In the same example as before, let us add a trust edge from D to A with
strength 1. Then, it is easy to see that we can obtain the following propagated
trust edges: from A to D with strength 2, from D to B with strength 2, and
as a result from A to B with strength 4. If this process is applied recursively,
the strength of propagated trust edges can become arbitrarily large.

There can be various approaches to trust normalization, and these ap-
proaches can be adapted to the chosen trust propagation algorithm. Nor-
malization is usually applied on the strengths of trust edges before a trust
propagation algorithm is executed, or at each stage of the trust propagation
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algorithm before determining the strengths of propagated links. The simplest
form of normalization would be to use a linear weighted sum of local outgoing
edge strengths:

wAB =
sAB∑

(A,X)∈T sAX
.

However, normalization creates its own problems. Consider the example 1
of a trust network shown in figure 3.8:

Example 1 Example 2

Fig. 3.8 Examples of trust networks with normalization problems

In the network shown in example 1, it is possible to apply multiplicative,
transitive trust propagation to determine the trust of A in other nodes (D,
F , G, H). If no normalization is applied, then A should trust D with strength
0.45, and the other nodes with strength 0.9. Yet if linear trust normalization is
applied, A will trust D with strength 0.5, and the other nodes with strength
less than 0.17! This is clearly a paradox, because it would appear that A
should trust the nodes F , G and H much more than D, but as a result of
normalization it will trust them for less. The reason for this result is that the
node C is “punished” by the normalization formula for being “too trusting”:
C has three equally trusted neighbors, while B (which is equally trusted by
A) has only one trusted neighbor. It seems that the linear normalization
formula is too strict in discriminating between nodes with various amounts
of trusted neighbors. A different approach can use non-linear, for example
quadratic normalization:

wAB =
s2

AB∑
(A,X)∈T s2

AX

.

Quadratic normalization (or using any other power) will not change the re-
sults of Example 1. Yet, consider the trust network shown in Example 2. In
this network, using linear normalization would result in A trusting D with a
strength of about 0.17, that is, equally as A would trust F , G and H . With
square normalization, A would trust D with strength 0.1, which is less than
the trust of A in F , G and H .

Yet a different approach would use Ordered Weighted Averaging, assigning
larger weights to edges with a larger strength. In this approach, only the
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ordering of the strengths is important; therefore, the edge with the largest
strength will get the largest weight, regardless of whether it has a strength of
1 or 0.5. The advantage of this approach is that a user who is reluctant to use
high strengths will be treated similarly as a user who uses higher strengths.

All of the previously described normalization approaches are local in the
sense that they only consider the outgoing links of a single node. Another ap-
proach could use global information; for example, it would be possible to run
the trust propagation algorithm without normalization, and then normalize
the resulting strengths using a global distribution of trust edge strength. This
approach has a certain drawback; if adversaries were to succeed in affecting
the trust propagation algorithm in such a way that they would receive higher
trust strengths relative to the rest of the network (for example, by using
cycles), then the global normalization would still assign them higher trust
strengths than the other nodes.

TidalTrust

TidalTrust [54] is an algorithm that takes a more straightforward approach
to trust propagation. It is an algorithm for Problem 1, aiming to establish a
trust relation between two nodes, A (the trustor) and B (the trustee). Tidal-
Trust considers only multiplicative, transitive trust propagation and is not
capable of propagating distrust. The main idea of the algorithm is to select
only the most important information from the trust network, disregarding
the rest as a source of additional noise and complexity. TidalTrust only con-
siders the best paths in TR leading from A to B. It uses a modified BFS
algorithm to find the shortest paths from A to B (considering each trust
edge as having length 1). Afterwards, TidalTrust only considers the paths
of the shortest length, disregarding others. This approach is motivated by
empirical observations from trust networks obtained from recommendation
systems which show that the longer the path, the smaller the likelihood of
obtaining good recommendations [54].

Among the shortest paths from A to B, TidalTrust calculates the maxi-
mum of the minimum edge strengths on a path, smaxmin. The minimum of
the edge strengths on a path is therefore considered as a measure of strength
of this path, as in Advogato. Yet, after the path selection process, TidalTrust
again uses multiplication to calculate the strength of a path from its edge
strengths, as in Appleseed. smaxmin is used as a threshold value to select the
best paths. The paths that will be considered in the final trust computation
are only the shortest paths from A to B with a minimum of the edge strengths
that is not less than smaxmin.

The same threshold is also used to change the normalization approach.
When the edges are normalized, TidalTrust considers only the outgoing links
with a strength that is not less than smaxmin, leading to the following nor-
malization formula:
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wAB =
sAB∑

(A,X)∈T :sAX≥smaxmin
sAX

.

Thus, TidalTrust disregards weak edges in the normalization process, focus-
ing only on the strongest ones. After the best paths are selected, TidalTrust
normalizes the edge strengths and applies multiplicative transitive trust prop-
agation to all of the best paths.

Matrix Algorithms

It is not difficult to notice that transitive, multiplicative computational trust
propagation can be expressed in matrix form. If the trust network T is ex-
pressed as an adjacency matrix, then the kth power of that matrix T k rep-
resents the result of propagating all trust relations transitively k times. This
observation has been used independently in at least two important computa-
tional trust propagation algorihtms: GKRT [57] and Eigentrust [69]. These
algorithms are discussed jointly in this section.

The algorithm of Guha et al. (GKRT) is an algorithm for Problem 3. It
uses four kinds of trust propagation that can all be expressed in the form of
matrix multiplication and transposition. One of these is multiplicative transi-
tive propagation. Another important kind of propagation used by Guha et al.
is a kind of similarity propagation called co-citation. Co-citation defines the
similarity of two agents, A and B, based on these agents position in the trust
network itself. If A and B trust similar sets of other agents (the sets of agents
connected by outgoing edges from A and B in T have a large intersection),
then A and B are considered similar. Similarity propagation is then applied
using this similarity relation. Notice that while multiplicative transitive trust
propagation for paths of length 2 can be expressed in the form of matrix mul-
tiplication T 2, a single trust propagation using co-citation can be expressed
using the formula TT TT . The other two forms of propagation used by Guha
et al. are transpose propagation (referred to as reflexive propagation in this
book. See section 2.2.7), and trust coupling which occurs if A’s trust in B is
propagated to C because B and C trust many agents in common. A single
reflexive propagation can be expressed by the formula TT T, whereas trust
coupling by T 2T T. All of these forms of single propagation can be expressed
by the formula TM , where M is a matrix operator. In order to extend the
propagation further, it is necessary to use the next powers of the operator M .

The work of Guha et al. is unique in one particular aspect: it is the only
work that directly considers the propagation of computational distrust, treat-
ing distrust distinctly from trust and taking into account its basic propagation
properties 2.2.7. Guha et al. consider a one-step propagation of trust with
distrust. On the other hand, Guha et al. also consider the possibility of jointly
propagating computational trust and distrust, which requires that the two
quantities should be combined (Guha et al. substract computational distrust
from trust). Note that while this is a feasible operation for computational
trust and distrust, there are theoretical objections to this kind of approach,
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because it assumes that humans would compensate distrust with trust (treat-
ing both attitudes equally). Interestingly, Guha et al. have found that only a
one-step propagation of trust with distrust is validated by empirical data.

Guha et al. were one of the first to propose a method of experimental
validation of computational trust propagation through the use of declarative
data about a trust and distrust network, as described in this section. Guha et
al. used a dataset from the Epinions recommendation system [109] (a Web-
site where users may recommend certain items, such as books or movies,
and declare their trust or distrust in the recommendations of other users).
Among the considered kinds of propagation, transitive, co-citation and one-
step propagation of trust with distrust were the most successful.

The limitations of the Epinions data for the evaluation of computational
trust propagation lies in the fact that users can only express binary state-
ments about trust or distrust. The results of a computational trust propag-
ation algorithm have to be rounded in order to compare them with the
declared values. Guha et al. employ several rounding techniques, but their
analysis makes it impossible to evaluate whether the observed differences are
due to rounding or the employed trust propagation algorithms. Guha et al.
state that the rounding methods turned out to be critical in getting good re-
sults; without using another dataset with trust declared on a continuous scale,
it is hard to validate the results of empirical analysis on the Epinions data.

GKRT has one significant drawback: it is vulnerable to cycles, when tran-
sitive propagation is employed. Guha et al. attempt to limit this vulnerability
by limiting the length of transitive propagation to three steps. However, this
still does not entirely avoid cycles, and makes the approach vulnerable to ad-
versaries who can create a large number of short cycles (this is especially true
if adversaries can create an arbitrary number of clones with fake identities).
This vulnerability is common to all matrix algorithms.

Eigentrust is a trust propagation algorithm that can be easily explained
using the previously discussed methods. The basic Eigentrust algorithm uses
multiplicative transitive trust propagation and linear normalization. How-
ever, Eigentrust does not attempt to solve any of the trust propagation prob-
lems described above. Rather, it is an algorithm for calculating a measure of
trustworthiness of each agent (which does not depend on the trustor, only
on the trustee) 2.1. A measure of trustworthiness is simple to calculate if
only multiplicative transitive propagation is used. A result of applying the
propagated trust matrix T n on a vector of uniform a priori trustworthiness is
the sought trustworthiness of all agents. This calculation can be simplified by
taking the left principal eigenvector of T . Eigentrust modifies the basic algo-
rithm by introducing nodes that are trusted a priori. Trust to these nodes is
not propagated, and the calculated trustworthiness is modified so that in each
iteration, it takes into account a measure of trust in the pretrusted nodes.
This modification has two purposes: first, it attempts to protect the compu-
tation against adversaries who can form cycles, and second, it ensures that
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the calculation of high powers of the trust matrix T will converge, because
the modified matrix will be irreducible and aperiodic.

Furthermore, the Eigentrust algorithm can be distributed and further mod-
ified to improve its security in a distributed Peer-to-Peer environment. This
modification uses a Distributed Hash Table (CAN) that is also used for gath-
ering proofs.

Sunny

Sunny is the most complex computational trust propagation algorithm among
those described in this section. [85]. It is an algorithm for Problem 1, with
additional input in the form of recommendation profiles. Sunny is therefore
suitable only for computational trust propagation in recommendation sys-
tems. Sunny propagates trust in a manner similar to TidalTrust. The differ-
ence lies in the selection process of the paths used to calculate trust from A
to B. Firstly, Sunny creates a subset of the shortest paths from A to B that
are disjointed and do not contain cycles. From these, Sunny selects only a
subset of paths that contain specially selected neighbors of B. The selection
process of these neighbors relies on the calculation of a confidence interval
in the recommendations of B. This confidence interval is calculated using a
Bayesian network constructed from the trust network TR. The transforma-
tion is made in the following manner: for each node X ∈ V , the Bayesian
network contains a variable that represents the belief of X in a recommenda-
tion from B. This variable depends on another variable Y if there is an edge
between X and Y in T . The Bayesian probability distribution is constructed
using a similarity measure of the recommendation profiles of X and Y . After
the Bayesian network is constructed, it is used for probabilistic sampling that
allows us to determine the upper and lower limits of the confidence of each
node in a recommendation from B, using a procedure described in [86].

The calculated bounds on confidence levels depend on additional states of
the neighbors of B that can be used for the final calculation of trust. Each
neighbor of B has one of three states: “unknown”, “include” or “exclude”
from the set of paths used for the final trust calculation. In the beginning,
the Bayesian network is used to calculate bounds on the confidence of A in
B’s recommendation when all neighbors of B have an “unknown” state. After
this initial step, Sunny iterates through all neighbors of B and tries to change
their state to “include” and again calculates confidence bounds for the belief
of A in a recommendation from B. If the resulting confidence bounds are too
different from the original confidence bounds, then the state of this neighbor
of B is changed to “exclude”. Finally, only the neighbors of B that do not
change the original confidence bounds too much are selected. Only the paths
from A to B that end in one of these neighbors are selected for the final trust
calculation.
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3.6.4 CloseLook: A Limited-Scope Trust Propagation
Algorithm

Of the algorithms presented above, few have directly considered computa-
tional efficiency and communication resources requirements. An exception is
Appleseed that has been designed for distributed implementation [196]. Ap-
pleseed achieves this goal because the distribution of energy among the nodes
during the algorithms’ operation can be simply distributed. However, Apple-
seed does not consider the communication overheads of such an approach;
the amount of asynchronous communication among all nodes, required until
the algorithm converges, may be large. Eigentrust is another algorithm that
can be distributed, although it relies on a structured Peer-to-Peer network
for its scalability properties. However, both Appleseed and Eigentrust have
distributed both the task of discovering proofs and the trust calculation (and
using the same approach). A distributed computational trust propagation
algorithm may use different mechanisms for the tasks of proof discovery and
distributed computation.

For example, consider GKRT. This algorithm assumes global knowledge.
Yet, in practice, the transitive trust propagation of Guha et al. is limited to a
scope of three trust edges (for larger scopes, the computational cost becomes
prohibitive). This suggests that GKRT could be distributed and calculated
locally by each node, if this node could acquire the knowledge about his
neighborhood in the trust network within a radius of three. This task is actu-
ally quite simple to accomplish using gossiping protocols that randomly walk
the network for a specified distance. A walking message contains information
about the known neighborhood of a node and the distances to each neighbor.
Whenever a walking message passes another node, this node acquires more
knowledge about his neighborhood (and can limit his knowledge to a radius
of three). Such a gossiping protocol could be used for discovery of the local
trust network. Then, GKRT (or any other algorithm that relies on global
knowledge) could be calculated using the acquired data.

This section presents CloseLook, a computational trust propagation al-
gorithm designed for efficiency and potential for distributed implementation
[181].

Extending the Edges of the Trust Network by Similarity
Propagation

Similarity propagation can be carried out before the execution of the main
CloseLook procedure. During a preprocessing stage, the original trust net-
work is extended by edges that are established as a result of similarity prop-
agation. The strength of these edges is determined by the similarity relation,
but also normalized so that it is on the same scale as the strengths of edges
in the original trust network.
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Algorithm Description

CloseLook was been designed in order to fulfil the following goals:

• the algorithm should be more computationally efficient than GKRT, while
achieving comparable quality of results,

• the algorithm should be capable of limiting the amount of computational
time used through the use of a scope parameter,

• the algorithm should be capable of using any kind of trust propagation
rule, not just transitive propagation, and should be capable of propagating
computational distrust as well as trust,

• the algorithm should not be vulnerable to cycles (and therefore should be
more resistant to cooperating adversaries),

• the algorithm should be sufficiently generic to solve the computational
trust propagation Problems 1, 2 and 3.

The presented algorithm fulfils all the above requirements. The basic idea
of the algorithm is to first find the pairs of nodes between which computa-
tional trust or distrust can be most likely propagated. The pseudocode of the
algorithm is shown in Figure 3.9.

The algorithm is based on a priority queue. In the beginning, the queue
is initialized with a set of starting nodes. If the algorithm is used to solve
Problem 1 or 2, then the set of starting nodes contains only node A. If
the algorithm is used for Problem 3, the set of starting nodes can contain all
nodes in V . In each iteration, a node is removed from the queue for processing.
The queue is always sorted according to node processing priorities that are
calculated on the basis of current knowledge about accumulated trust of a
starting node A in the node in the queue using all known paths from A to
that node. This ensures that the first pairs of nodes to be processed will be
the ones most likely to have a propagated trust edge.

Note that the algorithm is inherently suitable for distributed implemen-
tation with incomplete knowledge. As the algorithm proceeds, it requires
information about a new trust relation only when it reaches a new node. In
such a case, it would be possible to send a message to that node inquiring
about its trust and distrust edges. The complete information about the trust
and distrust network is not necessary to start the algorithm, and may not be
used at all if the algorithm completes its operation without considering all
the nodes (see below).

A node can be processed multiple times, but not indefinitely. Node process-
ing is controlled by the toBeProcessed method that takes as an argument the
starting node from which the considered node has been recently reached. If a
node is reached multiple times from the same starting node, then it may be
part of a cycle (although not always). Even then, the node may be processed
more than once; the number of times that a node can be processed when
reached from the same starting node is an algorithm parameter (which has
an impact on CloseLook complexity). The condition for processing a node
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for A ∈ START do
Queue.push( A, MAX PRIORITY )

end for
while not Queue.isEmpty and (pCount < scope ∗ N∗size(START )

2
) and not

stop() do
u ← Queue.pop
if not (u.toBeProcessed(u.currentPath.start) and u.currentPath.length ≤ k)
then

continue
end if
pCount ← pCount + 1
p ← u.currentPath
for e ∈ u.edges do

p.add(e)
v ← e.end
v.updateTotalTrust( p.start, p )
if e.isDistrust then

v.updateDistrust( p.start, p )
end if
v.priority ← v.totalTrust(p.start) ∗(0.1)p.length

v.updateStatistics( p.start, p, Queue )
Queue.pushOrUpdate( v, v.priority )

end for
u.setProcessedFrom(p.start)

end while
normalizeTrustOrDistrust(Queue)
for A ∈ START do

for B ∈ V do
if B.hasBeenProcessedFrom(A) then

createNewEdge( A, B, B.totalTrust(A), B.distrust(A) )
end if

end for
end for

Fig. 3.9 Pseudocode of CloseLook

fulfils another purpose: it can limit the lengths of trust propagation paths. A
node that is too distant will not be processed further. The parameter k can
be used to control the maximum length of trust propagation paths.

Whenever an edge is processed, the counter pCount is incremented. This
counter is used as a part of the algorithm’s stopping condition. The number
of processed edges cannot exceed a fraction of the number of all edges in T .
The fraction is determined by the scope parameter.

The trust between a starting node A and a processed node, B, can be
calculated using all available information about the paths from A to B,
as well as information about the similarity of A and B using a defined
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similarity relation. The actual formula for calculating the priority of a node
can depend on the chosen types of trust propagation. Accumulated trust
can also be calculated by taking into account similarity propagation sepa-
rate from transitive propagation. For example, accumulated trust can be a
weighted sum of the strengths of computational trust using similarity propa-
gation and using transitive propagation. Based on the results of Guha et al., it
would seem advisable to use equal weight for these two types of propagation.
Note that the trust established by similarity propagation can be propagated
further through transitive propagation. Therefore, the accumulated trust is
used further by the algorithm for transitive propagation.

The algorithm updates the current value of accumulated trust from a start-
ing node to a processed node using the method updateTotalT rust. Trust is
not normalized during transitive propagation, as the new, propagated trust
and distrust edges will be created at the end of the algorithm’s operation.

The algorithm can apply the transitive propagation of trust and distrust,
because nodes are sorted according to the trust of A. Distrust propagation is
applied only for one step and creates a propagated distrust relation. There-
fore, the propagated distrust value need not be considered further for trust or
distrust propagation, and can be remembered in a node attribute (together
with the starting node) for further creation of propagated distrust edges.

The priority of a node B in the queue that has been reached recently from
a starting node A is calculated by multiplying the currently known total com-
putational trust by (0.1)d, where d is the currently known distance between
A and B. This heuristic is similar to the approach used in TidalTrust, where
only the shortest paths between nodes are chosen for trust propagation, or
to Appleseed, where trust propagation is discounted by the distance between
two nodes.

Note that as the algorithm progresses, it will first consider nodes that
are closest to a starting node A, and the formula used for node priorities
approximates the BFS ordering of nodes. Thus, if B is reached repeatedly
from A, it will usually be reached first using the shortest paths, and then
using longer paths (or paths of the same length, but smaller propagated
trust). As B is reached by the longer paths, it will be moved further down in
the priority queue (although the position of other nodes in the queue might
change, as well). Note also that the stopping condition based on the scope
parameter assures that only a part of the possible relationships can be tried.
This part will not be divided equally among all starting nodes. Rather, the
starting nodes that have strong propagated trust in nodes will be able to
create more new trust relations than other starting nodes.

After each processing, a node can be reinserted in the queue. The status
of the node is changed to reflect that is has been already reached from a
certain starting node. A special rule of the algorithm applies to nodes that
have been processed more than once. The rule determines whether such a
node can be processed again. By limiting the number of times a node can
be processed, it is possible to break cycles. If the number of processing times
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is limited to 1, the algorithm will never revisit any node after it has been
reached from a particular starting node (although the node may be reached
again from another starting node). Thus, only the shortest paths with the
highest propagated computational trust will be used to reach any node.

The main loop of the algorithm can also be stopped by an additional
condition (computed by the stop procedure). The additional stopping condi-
tion can be used to change the operation of the algorithm for a solution of
Problem 1. Recall that in this computational trust propagation problem, it is
necessary to propagate trust or distrust from a starting node A to a specific
node B. In our algorithm, when node B is reached, the length of the shortest
path from A to B can be recorded (this can be done by the updateStatistics
function). Then, the stopping condition can limit the length of processed
paths to the length of the shortest path from A to B. This kind of opera-
tion would be similar to the TidalTrust algorithm; however, TidalTrust also
removes all paths that contain cycles or join other paths, and our algorithm
takes into account joining paths, while dealing with cycles in a different way.

After the algorithm has completed the propagation loop, it normalizes
the resulting trust and distrust values. Normalization is executed globally,
rather than locally during the propagation. Normalization depends on the
chosen computational trust representation, since the propagated values must
be normalized so that they match the limits of computational trust and
distrust. Assuming that trust and distrust are represented as reals in the
intervals of [0, 1] and [−1, 0], then the normalization function divides the
propagated trust by the length of the interval between the maximum and
minimum propagated trust values (similarly for distrust).

The final stage of the algorithm is the creation of new trust or distrust
edges based on the computed results. For each pair consisting of a start-
ing node and a node that has been reached from the starting node, a new
trust edge can be created. This is done by the createNewEdge function.
The strength of the new edge is equal to the normalized propagated trust or
distrust value between the nodes.

3.6.5 Algorithm Evaluation

3.6.5.1 The Complexity of CloseLook

In this section, we discuss the computational complexity of the proposed
algorithm and compare it with GKRT. Let us, for the purpose of this section,
introduce the notation: n is the number of nodes of the input trust network
(|V |), while m is the number of edges of the input trust network (|T |).

CloseLook uses a priority queue that can be variously implemented. As-
sume that the queue is implemented using a Fibonacci heap. The number
of iterations of the main loop depends on the number of insertions into the
queue. In the beginning, there may be up to n start nodes. The number of
times that each nodes is inserted into the queue is limited by a constant,
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J . This means that there may be O(Jn) = O(n) main loop iterations. Dur-
ing each iteration, there is a queue pop operation, which for a Fibonacci
heap has the cost of O(lg n), and a queue insert operation with the cost
O(1). Then, there may be queue updates when the edges attached to the
chosen node are processed. Pessimistically, because we have m edges and
each is connected with two nodes, which might be processed J times we get:
O(2Jm) = O(m) updates(2J is constant). In a Fibonacci heap, the amor-
tized cost of an update is O(1). The cost of the trust processing functions
of CloseLook (updateTotalTrust, updateDistrust, updateStatistics) is O(1),
and these functions are called each time an edge is processed, giving the
cost of O(m). Thus, the total pessimistic computational cost of Closelook is
O(Jn(lg n + 1) + 2Jm + Jm) = O(n lg n + m).

The computational complexity of GKRT is quite high. The cost of a sim-
ple implementation is of the order of O(n3), where n is the number of nodes
in the trust network (the cost may be reduced to O(n2.376) using advanced
matrix multiplication algorithms). Even if we limit the algorithm to a sub-
network within a radius of three, this subset might still be too large in order
to efficiently calculate the results (imagine a trust network with average de-
gree of 10. In a radius of 3 within a random node, there will be on average
1000 nodes. The complexity of GKRT is then 109). While GKRT has many
advantages, due to the fact that it can take into account various methods of
propagation, as well as distrust, its computational cost is too high to be used
in many practical applications. Also, GKRT attempts to take into account
all the data. TidalTrust and Sunny are examples of approaches that limit
the amount of information used in trust propagation to reduce the noise
induced by many weak edges and paths in the trust network. Despite (or
because of) an aggressive filtering of the input data, both algorithms work
remarkably well. While TidalTrust and Sunny are algorithms for Problem 1, a
similar approach can be used to improve the performance of an algorithm for
Problem 2 or 3.

CloseLook is more computationally efficient than GKRT, because it incurs
a O(n lg n + m) computational cost even if its computation is not limited in
scope (when similarity propagation is not used. If similarity propagation is
used, computational cost may increase depending on the type of similarity
relation). For the example trust network with average degree of 10 in a radius
of 3 within a random node, this gives a pessimistic complexity (assuming a
fully connected network) of the order of 106, which is an improvement of 3
orders of magnitude over GKRT. If scope limitation is used, the complexity
of Closelook decreases even more.

3.6.5.2 The Correctness of CloseLook

We have evaluated the correctness of the proposed algorithm by comparing it
with GKRT. We have used the epinions dataset, in order to better replicate
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the experiments described in [57]. Following the approach described there,
we have limited the operation of the algorithms to randomly selected sample
subsets of the entire trust network. A sample subset was obtained by ran-
domly choosing a starting node A and taking a portion of the trust network
reachable from A within a specified radius of r ∈ 2, 3. In the described exper-
iments, computational trust or distrust were propagated from A to all other
nodes (effectively reducing Problem 3 to Problem 2). This approach limits
the complexity of GKRT (reducing it by a constant factor), because instead
of matrix multiplication, a trust vector was multiplied by the combined ma-
trix of trust operators. For our algorithm, we have changed the set of start
nodes to include only A.

The samples were chosen so that they would include all trust edges between
the nodes within radius r = 3 from A. Because of this, the similarity measure
of Guha et al. (the co-citation measure) could be calculated on the sample
without error (all edges required to calculate the co-citation similarity of any
two nodes in the sample were present in the sample). Sample subsets were
chosen at random, but in a way that would exclude degenerated cases in
which the starting node A would trust very few or very many neighbors.
Therefore we have excluded cases where a chosen starting node A had less
than 3 or more than 12 direct neighbors in T . Also, we have excluded cases
where the subgraph within a radius of 3 from A had less than 50 nodes (as this
would imply that the neighbors of A have a very low degree). Excluding such
degenerated cases allowed us to run our algorithm on more test samples where
computational trust propagation could more easily occur. In the epinions
dataset, there are over 1000 nodes that fulfil the described requirements.

Overall, the selected test cases were obtained by taking sample subgraphs
from 325 nodes that fulfilled the criteria described above. As in the approach
described in [57], we have tested the correctness of our computational trust
propagation algorithm by removing an edge originating in the center node A
of a sample subgraph, and then running the propagation algorithms starting
from A. A different edge could be chosen for the same sample, resulting in
more test runs for the same sample. A total of 1339 test cases were selected
in such a manner.

The epinions service uses declarative computational trust and distrust, ex-
pressed on a scale of −1, 0, 1. However, our dataset only had values of 0, 1; be-
cause of this we could not evaluate distrust propagation (which may have de-
creased the performance of GKRT). The strengths of edges obtained through
trust propagation may be rounded to one of these values. This has been the
approach adopted by Guha et al.. However, the correctness measure used in
this paper has been specified without requiring the rounding of the propa-
gated trust strengths. Such an approach has the advantage that the quality
of the propagation algorithm is evaluated directly without considering the
additional effect of the rounding procedure.

We have tested several configurations of GKRT. The first group of config-
urations was implemented as defined in the original paper. The second group
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was limited to only transitive propagation. Majority rounding was used for
all configurations of the GKRT algorithm. Also, for both variants we have
limited the propagation scope to 1 (propagating using two adjacent edges), 2
or 3. The same scope limitation was used for CloseLook; however, CloseLook
could additionally limit its scope by considering only a certain number of
edges. In our experiments, this number was calculated as a percentage of the
edges in the graph Gi.

Figure 3.10 shows the results of comparing the total inclusion measure
TIMλ of GKRT and CloseLook as a function of λ. CloseLook algorithms are
denoted by a prefix “CloseLook” on the figure, while the two other numbers
are the scope parameters: the number of hops and the percentage of con-
sidered edges. GKRT has the prefix “GRKT”, while “GRKT DEF” denotes
the original variant, and “GRKT T” denotes the variant limited to transitive
propagation only.

None of the variants of GKRT outperforms the worst variant of CloseLook.
Even for low values of λ, CloseLook performs better than GKRT. This is
particularly important as very high values of λ (over 400%) are required for
high values of TIM. The reason for this is that TIM is a conjunction of two
conditions: 100% recall and 100% consistency.

Figure 3.11 shows the sensitivity of CloseLook to the scope parameters
(without taking into account the results of similarity propagation. For these
experiments, CloseLook was run on the original trust network that did not
include edges created by similarity propagation.). Recall that CloseLook uses
a conjunction of the two scope parameters in its stopping condition: the

Fig. 3.10 Comparison of GKRT and CloseLook
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Fig. 3.11 Sensitivity of CloseLook to scope limitation

algorithm stops if the number of hops exceeds the hop limit or if the number of
processed edges exceeds the edge limit. It can be seen that in all cases, a lower
hop limit gave better results. This is consistent with the observations made by
the authors of TidalTrust that shorter propagation paths give better results
[54]. Given a fixed hop limit, CloseLook performs better for higher values of
the node limit (in our experiments, the edge limit was set to 25%, 50%, 75% or
100% of the size of Gi for any test case). However, this improved performance
comes at the cost of additional computation. For values of the edge limit as
low as 25%, CloseLook still outperforms GKRT and gives reasonably good
results. This implies that for resource-constrained devices, it is still possible
to achieve good computational trust propagation using the scope limitations
of CloseLook.

We have compared the execution times of GKRT and CloselLook. Recall
that the complexity of CloseLook and GKRT increases when similarity prop-
agation needs to be considered. The results confirm our analytical comparison
of CloseLook and GKRT complexity. For small graphs, GKRT may execute
as fast as CloseLook when both algorithms are limited to transitive propa-
gation. This is due to the fact that GKRT uses very simple data structures
(tables), while CloseLook uses a priority queue and object representations
of nodes. However, for larger graphs (5000 nodes and above), the execution
times of CloseLook are on average about 7.7 times smaller than the execution
times of GKRT. The total execution time of CloseLook on the sample graphs
of over 5000 nodes was usually less than 1 second (on a fast machine. On a
resource-constrained device, execution times may be larger). The difference
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between CloseLook and GKRT would have been larger if we had not consid-
ered a constant overhead of loading program and data into memory, which
is similar for both programs and can be large for large graphs; however, our
comparison gives an idea of the practical advantage of using CloseLook.

3.6.6 Conclusions from CloseLook Evaluation

In this section, we have proposed a new computational trust propagation
algorithm, called CloseLook. Under the presented classification of trust
propagation algorithms, CloseLook is an algorithm for Problem 2 and for
Problem 3; however, with some modifications of the stopping condition it
can also be applied for Problem 1. The algorithm is based on the principle of
limiting the amount of computation (and considered information) by select-
ing the best paths to propagate trust and by stopping the trust propagation
using scope parameters that can limit the number of considered nodes. This
property is especially important for resource-constrained devices. CloseLook
is also inherently suitable for distributed implementation, because it can op-
erate using only partial information about the trust network.

We have compared CloseLook with GKRT, which is unique among the
other trust propagation algorithms described in the literature, because it can
consider transitive and similarity propagation, as well as transitive trust and
distrust propagation. CloseLook is also capable of considering the same kinds
of propagation, but is more efficient than GKRT.

GKRT has been tested using an experiment on a sample trust network
that relied on removing edges and attempting to rediscover using the trust
propagation algorithm. However, just a single correctness measure - recall -
was used in the algorithm’s evaluation in the original work of Guha et al.. In
this paper, we have proposed three correctness measures: recall, consistency
and edge growth. The three measures have further been reduced to two mea-
sures: the total inclusion measure which is a conjunction of 100% recall and
100% consistency and λ, which is a measure of edge growth. These two cor-
rectness measures form a tradeoff: the total inclusion measure can be seen as
an increasing function of λ. However, increasing λ is equivalent to allowing
higher edge growth, which increases the risk that the propagation algorithm
will make incorrect recommendations. Using the proposed testing method, it
is not possible to evaluate the correctness of recommendations made by the
trust algorithm for nodes that have before been strangers. Still, limiting edge
growth through keeping low values of λ is a sensible precaution.

We have found that the total inclusion measure is a very strict measure
of trust propagation algorithms (very high values of λ are required for high
values of TIM). However, for all investigated values of λ, CloseLook has
outperformed GKRT. This property can be explained by the observation that
limiting the information considered by a trust propagation algorithm makes
it more robust, as well as reduces the computation time. Therefore, we find
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that CloseLook is well suited not only for resource-constrained devices, but
for general-purpose trust propagation.

Future work will be directed at a further evaluation of CloseLook. In par-
ticular, we plan to compare it with the TidalTrust algorithm in order to
evaluate its effectiveness in solving Problem 1.

3.7 Algorithms for Calculating Reputation

The problem of calculating reputation is in many respects similar to the prob-
lem of calculating computational trust. The main difference is that in the case
of reputation, we are always dealing with reports, and not with recommen-
dations. Interestingly, reports may be weighted by computational credibility
trust that is propagated transitively (a common feature of reputation algo-
rithms, such as the Eigentrust algorithm discussed in section 3.6.3.3). In this
book, the two problems: of calculating reputation and propagating computa-
tional trust, are separated. In this section, we deal solely with the problem
of calculating reputation, when a solution to the computational trust propa-
gation problem is given.

Another difference in calculating reputation is that often what is desired is
a so-called global reputation that takes into account all reports about an agent
B that are available. Global reputation is no longer a relational value, such
as computational trust. The main reason for this simplification is the desire
to produce rankings of agents based on a single value. Recall that solutions
to computational trust propagation problems may also produce rankings.

It is possible to completely reduce a reputation system to a trust manage-
ment system that relies on reports, but does not use the concept of reputation.
This can be done in the following manner. Let us denote all available reports
in a given context from an agent A about an agent B by RepAB. The set
RepAB may be transformed into a single value that represents the overall
trust of A in B (in the context of the reports). This value may be calculated
variously, either as a simple average, or as a moving average that depends
on the time ordering of the reports (an extreme would be to simply take
the most recent report as the summary value, not taking into consideration
the previous information). The summary of RepAB may then represented
as a recommendation. As a result, the trust management system will use
only recommendations that can be an input for computational trust prop-
agation algorithms. These algorithms may produce rankings or recommend
computational trust values for previously unknown agents, as described in
the previous section.

On the other hand, reputation is an intuitive concept that is used by
human societies. It is therefore useful to calculate reputation values that
may be presented to human users who may make their own trust decisions
based on this information.
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3.7.1 Simple Global Reputation Algorithms

Consider the set RepB =
⋃

A RepAB that is the set of all reports available
about agent B. Further, consider the set Rep

′
B which is the set of most

recent reports about B, for example, the reports available within a specific
past period – like the last month. Assume that the value of a report is given
by the function val(r). The two sets are the basis of calculating simple global
reputation values:

The first formula for reputation, R1 =
∑

r∈RepB
val(r), is a simple sum of

all ratings. A refined version of this is a sum of only the most recent ratings,
R2 =

∑
r∈Rep

′
B

val(r). Another possibility is calculating average rate values,

R3 = R1/|RepB| or R4 = R2/|Rep
′
B|.

The use of more recent reports may be motivated by the desire to re-
duce the noise in reputation calculation, especially if it is possible to assume
that the behavior of agents changes infrequently. However, if the reports are
unreliable, the average of all ratings is more resilient. If there are only two
possible report values (positive and negative), then the average of all ratings
also approximates the probability of fair behavior (if the behavior of agents
can be modeled probabilistically).

3.7.2 Reputation Algorithms in Internet Auctions

Most online auction sites use a simple feedback-based reputation system [141].
One of the most important tasks of reputation systems is to provide an eco-
nomical incentive to behave honestly [8] and to reward participants for fair
behavior [112]. Typically, parties involved in a transaction mutually post
feedback after the transaction is committed. Each transaction can be judged
as ’positive’, ’neutral’, or ’negative’. The reputation of a user is simply the
number of distinct partners providing positive feedbacks minus the number
of distinct partners providing negative feedback. As pointed out in [104],
such simple reputation system suffers from numerous deficiencies, including
the subjective nature of feedbacks and the lack of transactional and social
contexts. This points to yet another drawback of feedback-based reputation
systems: these systems do not account for the psychological motivation of
users. Many users refrain from posting a neutral or negative reports in fear
of retaliation, thus biasing the system into assigning overestimated reputation
scores. This phenomenon is manifested by high asymmetry in feedbacks col-
lected after auctions and, equally importantly, by a high number of auctions
with no reports provided. Much of this missing feedback conveys implicit and
unvoiced assessments of poor seller’s performance which must be included in
the computation of seller’s reputation in orderto provide an unbiased estima-
tion of the seller’s reliability.

This section introduces the concept of an implicit report. An implicit report
is a useful, actionable pattern hidden in large amounts of online auction
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data. The history of user feedback can be used to discover missing feedback
purposely left out and can be included as implicit feedbacks in reputation
scoring. We present an efficient and flexible strategy for identifying implicit
feedbacks and compare it to a simple majority voting strategy, based on a
large volume of transaction data from a real Internet auction. This proposed
algorithm to calculate reputation using implicit reports is then evaluated
using game-theoretic simulation. The results of conducted experiments clearly
indicate a significant impact of using implicit feedbacks in reputation scoring.

3.7.2.1 Existence of Implicit Feedback

A close investigation of the distribution of feedbacks reveals a striking devia-
tion. The examined dataset contains data on a sample group of 10 000 buyers
collected over a period of six months. There are 656 376 committed auctions
and 890 876 cases mutual feedback. Table 3.6 summarizes data statistics.

Table 3.6 Distribution of feedbacks

negative % neutral % positive %
∑

%

buyer 4318 1% 2877 0.6% 445 723 98.4% 452 918 69%
seller 2558 0.6% 553 0.1% 434 847 99.3% 437 948 66%

Buyers provided 452 918 items feedback, which accounts for 69% of all
examined auctions. Note that over 30% of all auctions are not sealed with
feedback. Almost all registered feedback is positive (98.4%), with only 1%
of negative and 0.6% neutral feedback. Similar characteristics can be ob-
served for feedback provided by sellers, although sellers are slightly less ea-
ger to provide feedback in general. Similar results are reported in [142], so
we believe that such distribution is quite typical for online auction sites.
Table 3.6 presents a grossly optimistic view of the quality of service offered
by participants. There are two interesting points to make. First, neutral feed-
back is missing, the scope for positive feedback ranges from open praise to
the acknowledgement of a correct auction (but nothing more), and negative
feedback appears only when the quality of service becomes totally unaccept-
able. Secondly, more than 30% of auctions did not finalize with feedback. In
many of these auctions sellers conducted poorly, but the quality of service
was either bearable, or the buyer was intimidated and afraid of retaliatory
negative feedback. In both cases the reputation of a seller should be affected
negatively. We refer to this purposely omitted feedback as implicit feedback
that indicate a seller’s performance that is unsatisfactory and not deserving
praise, yet passable. Listening to this silent, unvoiced feedback makes the rep-
utation estimation more credible. Alas, current reputation systems are not
aware of the existence of implicit feedbacks and do not incorporate implicit
feedback into reputation scoring.
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Not every item of missing feedback should be regarded as an implicit as-
sessment of the user’s performance. Feedback might be missing for various
reasons, e.g., one of the trading parties might be an inexperienced user who
does not know how to post feedback. One simple strategy is to check the his-
tory of user’s feedback and compute the ratio of user’s auctions for which a
given user has posted a feedback. If the majority of user’s auctions have been
sealed with feedback, missing feedback for a given auction might indicate a
purposeful omission of feedback, i.e., implicit feedback. We call this strat-
egy the majority voting strategy. We also devise a more complex and flexible
cosine strategy presented next. Let F (ui) = 〈f1, f2, . . . , fn〉 , fi ∈ {0, 1} be
a chronologically ordered list of feedback flags posted by the user ui, where
fk = 0 denotes the fact that the user ui did not provide feedback for her
k -th auction, and fk = 1 denotes the fact that the user ui explicitly pro-
vided feedback for her k -th auction. We arbitrarily assume that the effect
of each auction experience (either positive or negative) influences the next
two auctions of a given user5. F (ui) can be transformed into an ordered list
of trigrams T (ui) = 〈t1, t2, . . . , tn−2〉, where ti = fifi+1fi+2 is a binary con-
catenation of feedback flags for the i-th auction with feedback flags for the
consecutive two auctions. There are 23 = 8 possible trigrams represented by
binary numbers ranging from 000 (three consecutive auctions do not have
feedback) to 111 (three consecutive auctions have feedback). Thus, T (ui) can
be represented as a vector T̄ (ui) =

[
t0i , . . . , t

7
i

]
, where tni is the number of

occurrences of the n-th trigram in T (ui). We perceive T̄ (ui) as a condensed
representation of feedback habits of the user ui. Having transformed the
original history of user feedback into an 8-dimensional vector we can com-
pare this vector to a template vector representing a user who almost never
provides feedback for her auctions (in our experiments we have used the
template vector T̄ (0) = [1, 0.1, 0.1, 0.01, 0.1, 0.01, 0.01, 0], where three con-
secutive auctions without feedback have the weight 1, two missing cases of
feedback have the weight 0.1, and one missing case of feedback has the weight
0.01). Let k -th auction of the user ui does not have feedback. First, we build
F (ui) = 〈f1, f2, . . . , fk〉, which is transformed into T (ui) = 〈t1, t2, . . . , tk−2〉,
and the resulting list T (ui) is transformed into the vector T̄ (ui). Next, we
compute the Ochini coefficient (the cosine similarity function) between T̄ (ui)
and T̄ (0) as follows

Ochini(T̄ (ui), T̄ (0)) =
∑7

k=0 tki ∗ tk0√∑7
k=0(t

k
i )2 ∗∑7

k=0(t
k
0)2

.

5 The authors acknowledge that the choice of three consecutive auctions as the
range of psychological influence of an auction outcome is arbitrary and the cor-
rectness of this assumption remains open for discussion.
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If Ochini(T̄ (ui), T̄ (0)) < β, where β is a user-defined threshold, we conclude
that the two vectors are similar and the omission of feedback should not be
regarded as implicit feedback.

Example. Let us assume a user u with the following list of feedback flags:
F (u) = 〈0, 1, 0, 1, 1, 0〉. The user u participated in six auctions and did not
provide feedback for three of them. We want to know if the last missing
item of feedback is a purposeful omission. First, the list of feedback flags
F (u) is transformed into a list of trigrams T (u) = 〈010, 101, 011, 110〉. Next,
the list of trigrams is transformed into a compact vector representation
T̄ (u) = [0, 0, 1, 1, 0, 1, 1, 0]. The final result is Ochini(T̄ (u), T̄ (0)) = 0.09.
After a certain period of time the user u participates in more auctions and
gains experience. Let us assume that, after a while, the list of feedback flags
for the user u is F (u) = 〈0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0〉. We want to decide
on the last missing case of feedback as being an implicit feedback. The list
of trigrams is T (u) = 〈010, 101, 011, 110, 101, 011, 111, 110, 101, 011, 110〉 and
the vector representation is T̄ (u) = [0, 0, 1, 3, 0, 3, 3, 1]. Now the computation
of the Ochini coefficient yields Ochini(T̄ (u), T̄ (0)) = 0.035. As can be seen,
this procedure is flexible and allows for temporal changes in feedback habits.

To prove the existence of implicit feedback we begin by investigating the
distribution of the number of missing cases of feedbacks per user (in this
experiment we include only buyers). The results of the experiment are de-
picted in Figure 3.12. Interestingly, there are only a few buyers with more
than 20 missing feedback. This might indicate that most of the missing feed-
back is in fact purposeful omissions, thus turning items of missing feedback
into implicit feedbacks. When we have constrained our search to buyers who
had participated in at least 10 auctions, the average percentage of missing
feedback dropped to 11.6%, which indicates that experienced users are even
less likely to omit feedback.

Fig. 3.12 Missing feedback distribution Fig. 3.13 Ochini coefficient selectivity
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Figure 3.13 presents user selectivity depending on the value of the Ochini
coefficient. Recall that the Ochini coefficient represents the similarity be-
tween a given user’s feedback vector and the template vector of a hypothet-
ical ’I-don’t-do-feedback’ user, with the values closer to 1 representing high
similarity and the values closer to 0 representing high dissimilarity. The fig-
ure presents the percentage of users who would be considered as generally
not providing feedbacks, given the value of the Ochini coefficient thresh-
old. For reasonable values of the Ochini coefficient threshold (i.e., 0.5 and
above) less than 10% of buyers are regarded as reluctant to provide feedback,
which means that their missing feedback would not be considered as implicit
feedback. Again, this result proves that for the majority of buyers missing
feedback is an important, yet unvoiced, assessment of a business partner’s
performance.

3.7.2.2 Effectiveness of Using Implicit Feedback

To evaluate a reputation system it is necessary to find out how this system
affects the behavior of users and the outcome of user transactions. Ideally,
we would like to know whether a reputation system enables trust: all honest
users should trust other honest users and should be treated fairly by other
honest users. On the other hand, all dishonest users should not be trusted and
therefore should not participate in transactions. In this section we compare a
simple reputation algorithm, such as the one used by eBay, to a more complex
algorithm that uses implicit feedback. Section 3.7.2.2 presents the design of
the simulator of online auctions. The results of conducted simulations are
reported in Sect. 3.7.2.2.

The Simulator

Prior to starting the simulation we had to make a decision about a suffi-
ciently realistic, yet not too complex model of the auctioning system, of user
behavior, and of the reputation system. We choose to simulate the reputation
system almost totally faithfully, the only simplification is that we use only
positive and negative feedback. The behavior of a user is also realistic: the
user takes into account reputation when choosing a business partner. The
user also decides whether she wishes to report or not, depending on the type
of report. Users can cheat in reports, as well as in transactions. Users may
also use transaction strategies that depend on the history of their individual
interactions with other participants.

The auctioning system, on the other hand, has been simplified. We reflect
that the simulation of the entire auction process is unnecessary. Rather, we
simulate the selection of users using a random choice of a set of potential
sellers. The choosing user (i.e., the buyer) selects one of the sellers from
among users with the highest reputation in the set. The auction itself has
also been simplified. We use a popular game-theoretic model of an auction,
namely, the iterated Prisoner’s Dilemma [7].
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In the simulator, a number of agents that represent users interact with each
other. Each interaction represents an auction between a seller and a buyer.
The reputation system is maintained by a reputation server that is also used
to summarize the outcomes of agent interactions. Each agent is characterized
by the following parameters: r+, the probability that an agent will send a
report if it is positive, r−, the probability that an agent will send a report
if it is not positive, the chosen game strategy, the reputation threshold ρmin

that is used by some strategies, and the probability of cheating c, that is used
by some strategies. We can specify the number of agents and every agent can
have distinct parameters. However, we usually partition all agents into two
sets that have the same parameters, called the honest and dishonest agents.

The two game strategies used in the simulations are: to cheat with the
probability c or to play Tit-for-Tat with a reputation threshold ρmin. Tit-
for-Tat is a famous strategy for the iterated Prisoner’s Dilemma game. This
strategy works simply by repeating the move made by the other agent in the
previous encounter. If two agents meet for the first time, the classic Tit-for-
Tat strategy forces the agents to cooperate, thus allowing the agents to start
an unending pattern of honest transactions. We modify Tit-for-Tat to use
a reputation threshold: if two agents meet for the first time and the second
agents’ reputation is below ρmin, the first agent defects.

The server computes reputation scores using available feedback and using
any implemented algorithm. The results of the simulation include: reputation
scores of individual agents and the total payoffs (from all auctions) of every
agent. The payoffs are affected by the way the reputation system works. For
example, if agents post very little feedback, reputation scores will be generally
random, and the payoffs of good agents would drop. The simulator allows
us to check whether the implemented reputation algorithm is effective. To
verify the concept of implicit feedback, we simulate the behavior of a simple
reputation algorithm that uses implicit feedback.

Consider a user u with the history of n auctions. Let us assume that
only m ≤ n of these auctions have a feedback. Out of these m feedback
m+ is positive feedback, while m− = m − m+ is all other feedback. Thus,
m+ ≤ m ≤ n. The reputation ρu of the user u will be calculated as follows

ρu =
m+

α ∗ m− + m
,

where 0 ≤ α ≤ 1. Thus, if α = 0, the above reputation score becomes a
simple ratio of the number of examples of positive feedback received by the
user u. In a case where the user u has had no auctions, the above formula
is undefined. In such a case we set the reputation ρu to an initial value,
ρ0. To be precise, in our simulations we use a slightly more complex version
of the above algorithm. Since agents in the simulator choose whom they
want to interact with on the basis of reputation scores, it is necessary to
avoid the possibility that reputation would drop suddenly to a low level.
This can happen in the initial phase of the simulation, when the reputation
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score has not yet stabilized (initially, a single negative item of feedback could
decrease the initial reputation by a large degree). Therefore, we use a moving
average to smooth reputation changes. The smoothed reputation ρma

u (t) =
0.5ρma

u (t − 1) + ρu(t), where t is time, and ρma
u (0) = ρ0 - the smoothed

reputation is initialized by the initial reputation value. Note that over time,
the estimate converges to the formula for ρu (since the impact of the initial
reputation decreases exponentially).

Evalutation by Simulation

We have tested the algorithm described above using the following simula-
tion scenario. First, we have divided all 300 agents into two sets, the good
agents and the bad agents. Good agents were 66% of all agents, the remaining
agents were bad agents. A good agent used the Tit-for-Tat strategy with the
reputation threshold of ρmin = 0.5. A bad agent used a strategy of random
cheating with probability c = 0.6. All agents had the same behavior with
respect to feedback. This behavior was a further parameter of the simulation
scenarios. We used two posting behaviors: perfect feedback, where all agents
always posted feedback truthfully, and poor feedback, where if the feedback
was positive, an agent would post it with probability r+ = 0.66, and if the
feedback was not positive, an agent would post it with probability r− = 0.05.
All items of feedback were always true, if they were sent. The parameters of
the poor feedback were derived from the analysis of traces obtained from the
real-world data. In all simulations, 40 000 auctions were simulated between
the agents.

Together, there are three significant simulation scenarios: perfect reports
with reputation calculated using a simple ratio of positive feedback (a reputa-
tion algorithm like described in the previous section, only with α = 0); poor
reports with a simple ratio; and poor reports with the reputation algorithm
that uses implicit feedback, with different settings for α.

All experiments were conducted using the Monte-Carlo method. We present
average results from 10 simulation runs, together with 95% confidence inter-
vals of results. The outcomes of the experiments were the payoffs of every
agent. We evaluate the effectiveness of a reputation system using the fol-
lowing criteria: the average payoff of a good agent, the average payoff of a
bad agent, and the Gini coefficient of the payoffs of the good agents. The
last criterion was introduced as a way of evaluating the effectiveness of the
reputation system in providing fairness of the treatment of good agents.

The results of the simulations are summarized in Table 3.7. The first row
in the table corresponds to the perfect feedback scenario, where all agents
always post truthful feedback, and reputation is calculated using a simple
ratio of positive feedback. In this idealized scenario, the average payoff of
good agents is the highest, at 101.76 (the values of payoffs for a single auction
were derived from the payoff table of the Prisoner’s dilemma game). The
average payoff of a bad agent is much lower, at 22.66. This indicates that the
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Table 3.7 Impact of implicit feedback reputation algorithm on agent payoffs and
justice

Scenario AVGP+a AVGP-b GC+c GCId AGPCIe

Perfect reports 101.76 22.66 0.70 0.63–0.76 100–103,5

Poor reports, α = 0 96.45 54.20 0.51 0.45–0.58 93.6–99.3

Poor reports, α = 0.05 99.08 23.03 0.75 0.66–0.85 96.1–102

Poor reports, α = 0.1 100.40 23.52 0.67 0.58–0.76 98.8–101.9

Poor reports, α = 0.2 100.74 22.64 0.74 0.66–0.82 98–103.4

a Average payoff of a good agent
b Average payoff of a bad agent
c Gini coefficient of good agents
d Gini confidence interval (95%)
e Average good payoff confidence interval (95%)

reputation mechanism is working because cheating agents get punished by
lower reputation. In these simulations, the final reputation value of bad agents
was almost always 0. The Gini coefficient at about 0.7 will be treated as a
reference level for further experiments and values of the Gini coefficient above
this level will be considered unacceptable. The 95% confidence intervals for
both the Gini coefficient and the average payoff are quite narrow. The second
row of the Table 3.7 shows the results of the second simulation scenario. In
this scenario, agents provided feedback realistically, and the effect of this is
an increase in the payoff of bad agents by almost 150%. In many simulations,
bad agents managed to keep a high reputation value, leading the good agents
to trust them. This enabled bad agents to cheat more good agents. As a
result, the average payoff of good agents also decreased significantly. This
decrease is also visible in the confidence interval of payoffs of good agents.

Further rows of the table show the impact of using implicit feedback. The
rows correspond to using the reputation algorithm described in the previous
section with different values of α. For all considered values of α, the payoffs
of bad agents dropped sharply, almost to the level achieved when agents
reported perfectly. This is the main argument for using implicit feedback: as
our simulations indicate, the use of implicit feedback is efficient in preventing
cheating. The payoffs of good agents also increased to a varying degree, but
for all values of α, the average payoff of a good agent was higher than when
a simple ratio of positive feedback was used as the reputation algorithm. On
the basis of the performed experiments, it seems that the value of α = 0.1
gave the best results. For α = 0.2, the average payoffs of the good agents were
higher, and the average payoffs of bad agents were lower than for α = 0.1.
However, the average Gini coefficient was also higher. The reason for this
may be that in the simulations, good agents sent positive feedback randomly
with a probability of 66%. It was possible that a good agent would repeatedly
get no positive feedback for her cooperation with another good agent. This
could result in decreasing the reputation of the good agent, especially for
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higher values of α. The poor performance of α = 0.05 can be explained by
the fact that with such a low setting of α, the reputation of bad agents did
not decrease quickly enough. While our simulations do not allow to choose
the value of α that would be applicable in a real-world scenario, they are
sufficient to indicate that there should exist an optimal value of α that is
neither too high nor too low.

3.7.3 Design of P2P Reputation Systems

Now let us turn to the design of P2P reputation systems. We distinguish four
main aspects of every reputation system: types of used proofs, aggregation
scope, computed value and resilience to adversaries.

Type of used proofs. Proofs given from peers can be divided into two dis-
tinct groups: reports and observations. Reports are the feedback from
peers after their own transactions. Observations are information about
the transaction from third party peers (observers). Systems like NICE
[88], P2PREP [30] or proposed by [148] are based on reports. Proofs can
evaluate several criteria like transaction completion, provided transfer, or
quality of service. [170] use context-specific ratings which can integrate
several criteria (for example, a peer seeks the provider which has high
download speed and good quality of audio files). In PeerTrust [184], all
types of proofs are used, an proofs are weighted by the credibility of the
peer. Also, the context factor is taken into consideration. In addition to
PeerTrust, Xiong et al proposed TrustGuard [155] in which they claim
that only secure proofs can be used. Their TrustGuard credibility filter is
based on the similarity of experience between two peers.

Aggregation scope. Full aggregation systems consider proofs from all peers,
concerning both about own and third-party iterations. Such aggregation
is applied in Eigentrust [69], Gossiptrust [194] and PET [93] systems. This
approach has a high accuracy of rating due to the use of full system infor-
mation, but unfortunately it involves a high computational cost.

Selective aggregation is applied when the performance of the system is more
important than accuracy. Systems like [195, 152, 30, 32, 148, 88, 193, 99]
gather the information only from a subset of peers (in most cases from
their neighborhood).

Computed value. Global reputation systems [69, 194, 195, 152] are based
on the opinions from the whole peer population. Reputation represents an
objective evaluation of the trustworthiness of a peer in the system.

Personalized trust measures [93, 30, 32, 148, 88, 193, 99] are more often
used in open peer to peer environments due to problems of obtaining
global system information. Such measures are subjective and personalized
and can have different values for each asking peer.

System resilience. To prevent peers from cheating, TM systems can use
cryptographic methods like Public Key techniques [184, 148, 151, 191].
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In [148], every proof provided by peers is signed. Strong authentication of
peers is also used in TrustMe [151] by Singh et al to protect the system from
adversaries. [191] assumed the use of PKI for naming and authentication
in their system in order to detect unreliable or malicious peers.

More sophisticated attacks can be deflected by special algorithms or sys-
tem designs. [69] deals with malicious collectives in the basic version of
EigenTrust by adding a probability of crawling to a peer that has been
recommended a-priori (is pre-trusted). In the secure version of EigenTrust,
authors prevent peers from manipulating their own trust values ti by the
assuming that the current trust value of host i should be computed by
score managers.

Dropping of negative proofs is a challenge in R-CHAIN[99]. To prevent
the Sybil attack, R-Chain can enforce some proof of work for peers joining
the system.

[148] protect their TM system against denial of service attacks. They add
an extra round before the response in which querying peers receive a puzzle
scheme. A querying peer decides in which file versions he is genuinely
interested, solves the puzzle and sends the proof-of-work back.



Chapter 4

Fairness Management

It is in justice that the ordering of society is centered.
Aristotle

By Fairness Management we refer to a wide variety of techniques that aim
to improve the procedural or distributional fairness of ODS. This chapter
begins with a consideration of Fairness Management for resource sharing in
an ODS, and presents various application areas where such a problem needs
to be solved. The discussion of these application areas will be accompanied by
case studies that present various Fairness Management techniques. Most of
these techniques can be described using the concepts of the theory of fairness
introduced in section 2.3. The case studies have been selected so that they
demonstrate various kinds of fair distribution problems. The first example of a
fair scheduling in grids is a decentralized problem, in which a solution cannot
be imposed on the participants. On the other hand, in the second example
of a network dimensioning problem, the fair solution can be implemented
by a central control – network management. The two cases differ also in
other respects; the first problem has an extremely large solution space and a
heuristic method is presented for finding equitable solutions, while the second
problem is formulated as a Mixed Integer Linear Optimization problem and
solved by a CPLEX solver. As a third example, we consider fairness in Peer-
to-Peer systems that are even more decentralized than grids.

In section 4.2, we turn to procedural fairness, another important type of
fairness management. ODS are a particularly challenging area for procedural
fairness management, as their openness and lack of centralized control makes
it easy for adversaries to work against the fairness management system. In
these respects, procedural fairness management must deal with problems sim-
ilar to TM techniques. As a matter of fact, it is possible to directly apply
Trust Management solutions to the problem of procedural fairness manage-
ment. Yet, in section 4.2 we begin with the discussion of an approach that
uses cryptography to directly guarantee procedural fairness in Peer-to-Peer
Massive Multiplayer games. We then turn to distributed priority queues and
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agreement protocols that can be important primitives in Procedural Fairness
management.

Following the discussion of various Fairness Management techniques, the
chapter describes how it is possible to use Trust Management for distributed,
emergent Fairness Management. In section 4.3, we discuss the mechanism of
fairness emergence due to trust management, spending some time on a con-
sideration of the conditions required for this phenomenon to occur. The exis-
tence of fairness emergence is good news for ODS designers, as it shows that
using even very simple Trust Management techniques it is possible to im-
prove distributional fairness as defined by the theory of equitable optimality
introduced in section 2.3.

4.1 Distributed Resource Sharing

4.1.1 Grids

Computational Grids [50] are distributed supercomputers of a very large
scale. With the growing level of complexity of models used in many areas of
modern science on one hand, and the growing volume of experimental data
to analyze on the other hand, the access to computational power becomes a
key apparatus [21] in areas as diverse as molecular biology, particle physics,
physical chemistry, or civil engineering. Computational grid may become a
convenient tool that provides the enormous computing power required by
such projects. Computational grids have been extensively studied since the
end of the nineties. Nowadays it seems that most engineering problems either
have been resolved already, or will be resolved soon with the advancement of
the middleware, such as the Globus Project [49]. One of the most important
remaining challenges is rather of economical, or even psychological nature.
The Grid, by its definition [48], is inherently distributed, as it combines re-
sources under different administrative domains. Consequently, certain rules
of collaboration must exist, which specify how users from one domain ac-
cess resources belonging to others. Providers must have some motivation to
share their resources, expressed either by earning money for each CPU hour
donated, by barter-trading the access, or by formal bilateral agreements be-
tween institutions.

The problem of fairness management in grids can be approached differently
than in P2P systems. Grids can have some measure of central control, or at
least a central authority that can suggest an equitably optimal solution, even
if it is not capable of enforcing it. Fairness management in grids can be
reduced to a scheduling problem. Since all agents use resources provided by
various grid members, the problem is how to schedule the tasks of all users
on each grid machine. This problem can be made more concrete by assuming
a specific model of the grid. Such a model needs to specify, for example,
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whether tasks are infinitely divisible, or not, and whether or not certain grid
machines are dedicated to certain types of tasks.

The mainstream of the current research on scheduling and resource man-
agement [46] concerns systems in which the performance of all tasks is op-
timized. Usually, a common metric, such as the makespan, or the sum of
completion times is optimized and thus all the jobs are treated in a more or
less equal manner.

In the context of Grid computing, multi-criteria approaches may be used.
Different criteria usually express performance of different jobs [105]. A
scheduling algorithm is expected to deliver Pareto-optimal solutions. Fur-
ther restrictions on Pareto-optimal solutions should be imposed in order to
achieve equitably optimal solutions.

Grid economic approaches [23, 183, 76] analyze the problem of grid re-
source management by means of market economy. Each resource has a (mon-
etary) cost for its usage. Each user has a budget to spend for executing his/her
jobs. The problem is that in highly heterogeneous settings the perfect com-
petition assumption, stating that no single participant is able to influence
the market price, is hardly fulfilled. Real-world grids, however, are expected
to be heterogeneous [56]. Solutions that solve the problem of scheduling in
heterogeneous systems directly, without relying on free-market assumptions,
are therefore desirable.

There were also some applications of game theory to the problem of grid re-
source management. [168] focuses on maintaining good relationships of a node
with its neighbors by accepting neighbors’ jobs to be executed on the node
and therefore increasing the probability that the node’s jobs will be accepted
by its neighbors in the future. [87] proposes a model where individual clusters
(placed in e.g. different departments of an university) are visible as one site
in the grid. The model assumes that a job has been already accepted for exe-
cution by the site. [87] studies which cluster from that site should eventually
execute the job. There was also some previous work where the infrastruc-
ture was considered a common property and there was selfishness between
individual jobs [5],[98].

An approach that combines game theory and equitable optimization is pre-
sented in [145]. The authors introduce an algorithm (called Equitable Walk)
that can discover equitably optimal solutions to the global scheduling prob-
lem. These solutions can then be proposed by a centralized scheduler to the
grid members. Since the solutions are equitably optimal, it can be assumed
that fair agents would accept such a schedule. However, malicious agents may
still exploit the system by locally modifying the equitably optimal schedules
for their own advantage. Still, if the number of malicious agents is small, the
existence of equitably optimal schedules should provide an incentive for fair
agents to participate in the system. The behavior of unfair agents could be
controlled by a trust management system.
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4.1.1.1 Dedicated Grids

A special case of a grid could be a system that is composed not only of com-
puting devices (processors), but also of special-purpose experimental equip-
ment like sophisticated displays, microscopes, or DNA sequencers. Any com-
putation on the grid may involve ordinary computers, as well as the special
devices. This means that the computation must be decomposed into jobs
that can only be run on one type of device in the grid. This grid model is
referred to as a dedicated grid model, since certain processors are dedicated
for certain jobs. The dedicated model can be useful even when there are no
special processors in the grid: computers could be dedicated to running legacy
software, like Fortran code.

Therefore, a computational grid logically interconnects several process-
ing units such as clusters, supercomputers, but also pieces of specialized
equipment (Figure 4.1). The actual physical network, consisting of high-
performance network links, is out of the scope of this section. Users are
grouped in organizations, such as laboratories or faculties. Each organiza-
tion owns some (without loss of generality, we shall assume that it owns just
one) of the processors, which is the organization’s contribution to the grid.
By contributing, the organization expects that its users will be granted ac-
cess to other processors in a fair manner. Each organization is concerned only
with the performance (measured as the sum of completion times) of the jobs
produced by its members. Processors have their local schedulers, which order
jobs to be computed according to some criteria. A centralized grid scheduler
helps to coordinate local schedulers. However, the organizations are indepen-
dent, i.e. a local scheduler is not forced to follow the advice given by the grid
scheduler. This model is a typical example of an ODS. It also shows that
fairness expectations are made by the organizations who are agents in this
ODS.

In this section we address two issues concerned with such an architecture.
Firstly, what should be the properties of the schedules proposed by the grid
scheduler to be acceptable by local schedulers. Secondly, how can the grid
scheduler produce such schedules. The results presented in this section are
based on [145]. The reader is referred to this publication for proofs of cited
facts.

4.1.1.2 Notation and Preliminary Definitions

By O = {O1, . . . , Om} we denote the set of independent organizations forming
the grid. Each organization Oi owns a processor Pi. Processors are dedicated.
Therefore, each job in the system must be executed on a specific processor.

Jk
i,q is kth job which must be executed on processor Pq and which is pro-

duced (and owned) by organization Oi. Index k is used only to distinguish
between jobs on a processor and does not imply the arrival or execution
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Fig. 4.1 A grid composed of two organizations and two dedicated processors.
P1 processes white jobs, P2 processes gray jobs. O1 produced 7 jobs (plotted in
continuous lines), 4 of them are not yet sent, two are waiting in P1’s queue and one
is waiting in P2’s queue. O2 produced 5 jobs (plotted in dotted lines).

order. By Ji,q we denote the set of all jobs produced by Oi which must be
executed on Pq. ni,q = |Ji,q| is the number of such jobs.

We will use the standard game-theoretic notation of −i to denote the set
containing everything but the element i, so J−i,q =

(⋃
j Jj,q

)−Ji,q. Similarly,
by · we denote the set containing all possibilities, e.g. Ji,· is the set of jobs
that are produced by organization Oi: Ji,· =

⋃
j Jj,q.

From processor’s Pq point of view, jobs produced by the processor’s orga-
nization Jq,q are called the local jobs. Remaining jobs J−q,q to be executed
on this processor are called the foreign jobs. For organization Oi, remote jobs
Ji,−i are the jobs produced by this organization which are to be executed on
non-local processors.

A scheduler is an application which assigns start times to jobs. A schedul-
ing problem is the problem of how to assign such start times (formal defini-
tions follow). A scheduling problem is considered off-line if all the jobs are
known before the scheduling starts. Here, we also consider that all the jobs
are ready to be executed (there are no release dates). A clairvoyant scheduler
knows the size pk

i,q of each job Jk
i,q. There is no preemption if the job must be

executed completely and cannot be interrupted after a processor has started
to execute it. A processor can be shared by the jobs assigned to it in many
ways. In time sharing, at any moment, a processor executes only one job.

By Ck
i,q we denote the completion (finish) time of a job Jk

i,q. For an organi-
zation Oi, we may compute the sum of completion times as Ci =

∑
q

∑
k Ck

i,q

and the maximum completion time (makespan) as Cmax i = maxk,q Ck
i,q . In

the classic multiprocessor scheduling problem, the optimization of ΣCi re-
sults in schedules better for users, whereas the optimization of the makespan
Cmax produces schedules which utilize the machine better [43].

For processor Pq, a (list) schedule is a permutation π : J·,q → (Jπ(1)
·,q , J

π(2)
·,q ,

. . . , J
π(n·,q)
·,q ) of jobs J·,q. A scheduler is an application which produces sched-

ules, given the sets of jobs assigned to each processor. A non-preempting,
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time-sharing processor executing a schedule π, firstly executes the first job
J

π(1)
·,q , then, when the jobs finishes, executes the second one J

π(2)
·,q and so on. A

Shortest Processing Time (SPT) schedule πSPT is a schedule which orders the
jobs J·,q according to non-decreasing sizes of jobs, i.e. p

πSPT (k)
i,q ≤ p

πSPT (k+1)
i,q .

If there is one processor and one organization, SPT schedule is optimal re-
garding the sum of completion times of jobs [15].

4.1.1.3 Problem Statement

We consider off-line, clairvoyant scheduling with no preemption on time-
sharing processors. Each organization Oi is concerned with the sum of com-
pletion times Ci of the jobs Ji,· which have been produced by its members.
Organization Oi does not care about the performance of other organizations.
However, as the processors are dedicated, organizations must submit jobs also
to non-local processors. As a result, Ci depends heavily on the performance
of jobs executed on processors other than the organization’s local processor,
which in turn are controlled by other organizations.

The scheduling problem considered in this section is the fair ordering
of jobs J·,q on each processor Pq which minimizes the sum of completion
times Ci of all the organizations. We follow the axiomatic theory of equitable
optimality, as stated in Section 2.3.2.

Informally, equity guarantees that the resulting sum of completion times
would be fair to every organization. However, if each organization is able to
improve its objective by introducing some local modifications in the schedule,
the resulting system must be analyzed by game theoretic approaches.

The following general property applies in both equitable optimization and
in game-theoretic approach:

Proposition 4.1. For a processor Pq, a schedule which orders jobs Ji,q orig-
inating from a organization Oi not in shortest processing time (SPT) order
is Pareto-dominated by a SPT schedule for those jobs.

Note that this proposition does not apply for jobs belonging to different
organizations. Given two jobs with different owners Jk

i,q and J l
j,q, Jk

i,q executed
before J l

j,q, swapping them would increase Ci, at the same time decreasing
Cj . Consequently, neither solution would Pareto-dominate.

The consequence of the proposition presented above is that the number
of reasonable (Pareto-efficient) schedules is reduced considerably. However,
their number is still very large. Let us assume that there are only two organi-
zations O1 and O2. Consider processor P1 with n1,1 local jobs and n2,1 foreign
jobs. A multiset (called also a bag) is a set which may contain multiple copies
of an element. The schedule can be fully described by a multiset of size n2,1,
with elements {1, . . . , n1,1 +1}. The idea is that each member of the multiset
specifies a placement for one foreign job. In order to construct a schedule
from the multiset, the local jobs are ordered according to SPT. Then, the
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shortest foreign job is assigned the smallest element from the multiset, which
specifies its placement (1 – the job is placed before the shortest local job, 2
– before the second shortest local job, . . . , n1,1 + 1 – after the longest local
job). This element (actually, one of the copies of the element) is removed
from the multiset. The algorithm proceeds with the rest of foreign jobs (con-
sidering them in SPT order). Consequently, the number of SPT schedules for
one processor is equal to the number of multisets of size n2,1 with elements
{1, . . . , n1,1 + 1}, which in turn is equal to the number of combinations with
repetition of (n1,1 + 1) objects from which n2,1 objects are chosen:(

n1,1 + n2,1

n2,1

)
=

(n1,1 + n2,1)!
n1,1!n2,1!

∈ O(nn2,1
1,1 ).

Note that although not necessarily all SPT schedules are Pareto-optimal, in
the worst case the number of non-dominated schedules for a single processor
is exponential with the number of foreign jobs [4]. A complete schedule on
the grid level specifies schedules for each processor. In a two processor case,
each of O(nn2,1

1,1 ) schedules of the first processor is matched with O(nn1,2
2,2 )

schedules of the second processor. Most of the resulting combinations are
Pareto-dominated. However, at least O(nn2,1

1,1 ) Pareto-optimal schedules re-
main. Thus, the number of Pareto-optimal grid schedules is also exponential.

4.1.1.4 Equitable Walk (EW)

In this section we assume that organizations cannot control the schedule on
their processors. The problem considered is how to construct a grid schedule
(consisting of schedules for each processor) which would treat all the partici-
pating organizations fairly, at the same time as being efficient. This problem
is, in fact, multicriteria minimization of the sum of completion times Ci of
different organizations. In this section we will firstly characterize some gen-
eral properties of equitable multicriteria optimization, and then propose an
heuristic approach which produces equitable solutions of the multicriteria
minimization – a local search method called Equitable Walk.

EW is a heuristics which produces a number of grid schedules by iterative
modifications of the initial SPT schedule in order to improve the outcome of
the organization disfavored by the SPT schedule. The resulting schedules are
possibly equitable: the algorithm may produce non-equitable schedules and
not all possible equitable schedules may be produced.

The algorithm modifies the schedules by switching the order of two jobs
executed one after another on the same processor. Let us assume that job
Jk

i,q is executed before J l
j,q. The deterioration from a particular switch can

be defined as the difference between the decrease of Cj and the increase of
Ci. For instance, if pk

i,q = 3 and pl
j,q = 4, the switch of order of those two jobs
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will reduce Cj by 3 and increase Ci by 4. The deterioration of that particular
switch is thus 1.

Corollary 4.1. A schedule which orders jobs on all processors according to
SPT (regardless of their owners) is equitable.

This is a direct consequence of Theorem 1. Such schedule (denoted SPT ) is
optimal with regard to the sum of completion times of all jobs on all proces-
sors (

∑
i

∑
q

∑
k Ck

i,q). Therefore, it is also the minimal sum of sum of comple-
tion times of respective organizations (

∑
i Ci). Hence, SPT is Pareto-optimal

solution of the aggregated equitable optimization problem, as it minimizes
the sum of all criteria.

The algorithm starts with ordering jobs J·,q on every processor Pq ac-
cording to SPT. Then, the organization Oi with the largest Ci is selected.
For each Oi’s remote job Jk

i,q, the algorithm tentatively advances the job by
switching Jk

i,q with the job executed immediately before. Similarly, each for-
eign job Jk

·,i executed on Oi’s local processor Pi which is followed by a local
job J l

i,i is tentatively delayed by switching Jk
·,i with J l

i,i. From all the tenta-
tive moves performed, the one which results in the smallest deterioration is
actually performed. Then, the grid schedule is appended to the list of results.

The algorithm iterates such moves until either Ci is no longer the largest
completion time, or no further improvement is possible. In the first case, the
algorithm can proceed with improving the payoff of the other organization, in
the purpose of producing more solutions. However, in order not to introduce
infinite loops, a taboo list of previously visited schedules must be kept (such
schedules cannot be revisited).

The output of the algorithm is a list of grid schedules. The first (SPT )
and the second schedule produced are definitely equitable. However, the eq-
uitableness of the rest of the schedules is not guaranteed. Therefore, after
the above algorithm stops, the list of solutions is cleaned. All the solutions
which are not equitably-optimal with respect to other solutions on the list
are removed. Moreover, the algorithm may not produce all possible equitable
solutions (the equitable part of the Pareto-front), because it may be trapped
in a local optimum.

4.1.2 Telecommunication Systems and Computer
Networks

A fair way of distribution of the bandwidth (or other network resources)
among competing demands becomes a key issue in computer networks [35]
and telecommunication network design in general [75, 159]. This section
deals with problems of bandwidth allocation within telecommunication and
computer networks (also called network dimensioning), basing on previous
research described in [129]. We focus on the approaches that attempt to
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provide equitable treatment of all the network flows (demands) while allo-
cating resources [102, 124].

The problem of network dimensioning is a typical example of a fair dis-
tribution problem with a budget. Each network demand is associated with a
cost that is a function of the network topology and of the location of demand
endpoints in that topology. The total sum of costs for realizing a demand
cannot exceed the budget. This implies that the solution of the network di-
mensioning problem described in this chapter can also be applied to other
fair distribution problems with a budget.

Expanding demand on Internet services has led to an increased role of the
traffic carried by the IP protocol in telecommunication networks. The TCP
protocol is the most frequently used transport protocol in best-effort IP net-
works. The data traffic carried by the TCP protocol adapts its throughput
to the amount of available bandwidth. Such traffic, called elastic traffic, is
capable to use the entire available bandwidth, but it is also able to reduce its
throughput in the presence of contending traffic. It should be noted here that
elastic traffic communicated by the TCP protocol is currently the most signifi-
cant portion of traffic in IP networks. Applications such as World Wide Web,
e-mail, or Peer-to-Peer file-sharing all use the TCP protocol and therefore
communicate elastic traffic, which forms the majority of the traffic volume
in IP networks. Nowadays, network management often faces the problem of
designing networks that carry elastic traffic. These network design problems
are essentially network dimensioning problems as they can be reduced to a
decision about link capacities. Flow sizes are outcomes of the design problem,
since the flows adapt to given network resources on a chosen path.

Network management must stay within a budget constraint on link band-
width to expand network capacities. An obvious goal is to achieve a high
throughput of the IP network to increase the multiplexing gains (due to the
use of packet switching by the IP protocol). This traffic is offered only a
best-effort service, and therefore network management is not concerned with
offering guaranteed levels of bandwidth to the traffic. A straightforward net-
work dimensioning with elastic traffic could be thought of as a search for such
network flows that will maximize the aggregate network throughput while
staying within a budget constraint for the costs of link bandwidth. However,
maximizing aggregate throughput can result in extremely unfair solutions al-
lowing even for starvation of flows for certain demands. At the other extreme,
while looking at the problem from the perspective of a network user, the net-
work flows between different nodes should be treated as fairly as possible
[16]. The so-called Max-Min Fairness (MMF) [13, 63] is widely considered as
such ideal fairness criteria. Indeed, the lexicographic max-min optimization
used in the MMF approach generalizes equal sharing at a single link band-
width to any network while maintaining the Pareto optimality. Certainly,
allocating the bandwidth to optimize the worst performance may cause a
large worsening of the overall throughput of the network. Therefore, network
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management must consider two conflicting goals: increasing throughput and
providing fairness.

Any solution to the network dimensioning problem may be implemented
by network management today with the use of traffic engineering techniques,
for example in an IP/MPLS network. This means that it is not necessary to
change the physical speeds of links, or to change any hardware configuration
in the network. A new solution to the network dimensioning problem can be
implemented using soft reconfiguration of the network.

The search for compromise solutions that do not starve network flows, and
give satisfying levels of throughput has led to the development of methods
depending on maximization of the sum of the flows evaluated with some (con-
cave) utility function. In particular, the so-called Proportional Fairness (PF)
approach [75] maximizes the sum of logarithms of the flows. The approach
has been further extended to a parametric class of concave utility functions
[114]. However, every such approach requires to building (or to guessing)
a utility function prior to the analysis and later it gives only one possible
compromise solution. More general parametric approach may depend on the
use of the so-called Ordered Weighted Averaging (OWA) (see chapter 2.3.9)
with weights assigned to the ordered outcomes (flows) thus allowing to model
various fair preferences [125].

In this section, we shall demonstrate how the computational methods of
equitable optimization can be used in practice. The problem of allocating
network throughput to satisfy the demands of various services is a typical
distribution problem. However, the setting of this problem is not typical
for an ODS. While the resulting distribution applies to an ODS which is a
telecommunication or computer network under a single administration (for
example, an autonomous system), the problem is solved by a decision maker
that has complete information and is able to enforce that the equitable solu-
tion chosen by him is accepted by all agents in the ODS. This decision maker
is the operator of the network. This situation is not typical for ODS, where
complete information and control is usually not available to a single agent. In
the next sections, we shall consider other practical applications of the theory
of equitable optimality that do not require complete control or information.

The Bandwidth Allocation Problem

The efficient optimization problem considered in this section is a problem of
distributing network resources to demands while satisfying a general budget
constraint. Each demand is associated with a cost that is a consequence
of the network topology and of the location of the demand endpoints in
the topology. Solving the efficient optimization problem without concern for
fairness would therefore allocate network resources to the cheapest demands,
as the assumption of elastic traffic ensures that these demands would use all
available resources. However, some (or indeed a majority) of more expensive
demands would be unsatisfied (starved).
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The basic problem of network dimensioning with elastic traffic can be
formulated as a Linear Programming (LP) based resource allocation model
as follows [133]. Given a network topology G =< V, E >, consider a set of
pairs of nodes as set I = {1, 2, . . . , n} of demands representing the elastic flow
from source vs

i to destination vd
i . For each demand, we have a given set Pi of

possible routing paths in the network from the source to the destination. This
information can be summarized with binary coefficients δeip, where δeip = 1,
if link e belongs to routing path p ∈ Pi (connecting vs

i with vd
i ), and δeip = 0

otherwise.
For each demand i ∈ I, the elastic flow from source vs

i to destination
vd

i is a variable representing the model outcome and it will be denoted by
xi. This flow may be realized along various paths p ∈ Pi. The flow may be
either split among several paths or a single path must be finally selected
to serve the entire flow. Actually, the latter case of nonbifurcated flows is
more commonly required. Both bifurcated or nonbifurcated flows may be
modeled as xi =

∑
p∈Pi

xip where xip (for p ∈ Pi) are nonnegative variables
representing the elastic flow from source vs

i to destination vd
i along routing

path p. The single-path model requires additional multiple choice constraints
to enforce nonbifurcated flows. This can be implemented with additional
binary (flow assignment) variables uip equal 1 if path p ∈ Pi is assigned to
serve flow xi, and 0 otherwise. Assuming existence of some constant M upper
bounding the largest possible total flow xi, the assignment variables uip can
easily be used to limit the number of positive flows xip with the following
constraints:

0 ≤ xip ≤ Muip, uip ∈ {0, 1} ∀ i ∈ I; p ∈ Pi, (4.1)∑
p∈Pi

uip = 1 ∀ i ∈ I, (4.2)

The network dimensioning problem depends on allocating the bandwidth to
several links in order to maximize flows of all the demands. Typically, the net-
work is already operated and some bandwidth is already allocated (installed)
while decisions are rather related to the network expansion. Therefore, we
assume that each link e ∈ E has already capacity ae while decision variables
ξe represent the bandwidth newly allocated to link e ∈ E, thus expanding the
link capacity to ae + ξe. Certainly, all the decision variables must be nonneg-
ative: ξe ≥ 0 for all e ∈ E and there are usually some bounds (upper limits)
on possible expansion of the links capacities: ξe ≤ āe for all e ∈ E. Finally,
the following constraints must be fulfilled:∑

i∈I

∑
p∈Pi

δeipxip ≤ ae + ξe ∀e ∈ E, (4.3)

0 ≤ ξe ≤ āe ∀e ∈ E, (4.4)∑
p∈Pi

xip = xi ∀i ∈ I, (4.5)
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where equations (4.5) define the total demand flows, while inequalities (4.3)
establish the relation between the demand flows and the link bandwidths.
The quantity ye =

∑
i∈I

∑
p∈Pi

δeipxip is the load of link e and it cannot
exceed the available link capacity.

Further, for each link e ∈ E, the cost of allocated bandwidth is defined. In
the basic model of network dimensioning it is assumed that any real amount of
bandwidth may be installed and marginal costs ce of link bandwidth is given.
Hence, the corresponding link dimensioning function expressing amount of
capacity (bandwidth) necessary to meet a required link load [133] is a linear
function. While allocating the bandwidth to several links in the network di-
mensioning process, the decisions must keep the cost within available budget
B for all link bandwidths. Hence the following constraint must be satisfied:∑

e∈E

ceξe ≤ B . (4.6)

The model constraints (4.3)–(4.6) together with respective nonnegativity re-
quirements define a linear programming (LP) feasible set. It turns into Mixed
Integer LP (MILP), however, if nonbifurcated flows are enforced with discrete
constraints (4.1)–(4.2).

Link modularity (bandwidth granulation) is is a common feature in com-
munications networks [133]. Therefore, in more realistic models for each link
e ∈ E the minimum unit of bandwidth be is assumed to be available for
allocation (installation) and ce represents the corresponding unit cost. The
corresponding link dimensioning function is then a stepwise function. In the
case of modular links (discrete bandwidth units be), the installed capacity ξe

must satisfy an additional equation:

ξe = beze ∀e ∈ E, (4.7)

where ze is an integer decision variable representing the number of bandwidth
units installed at link e. The model constraints (4.3)–(4.6) extended with
(4.7) turns then into MILP feasible set even if bifurcated flows are allowed.
The network dimensioning model can be considered with various objective
functions, depending on the chosen goal. One may consider two extreme
approaches. The first extreme is maximization of the total throughput (the
sum of flows)

∑
i∈I xi. At the other extreme, network flows between different

nodes should be treated as fairly as possible which leads to maximization
of the smallest flow or rather to the lexicographically expanded max-min
optimization (the so-called max-min ordering) allowing also to maximize the
second smallest flows provided that the smallest remain optimal, the third
smallest, etc.

This approach is widely recognized in networking as the so-called Max-
Min Fairness (MMF) [13, 63] and it is consistent with the Rawlsian the-
ory of justice [137]. Note that for convex models there exists at least one
blocked outcome which is constant on the entire set of optimal solutions to the
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Max-Min problem because of an active link capacity constraint. Hence, the
MMF solution can be found by solving a sequence of properly defined Max-
Min problems with fixed outcomes (flows) that have been blocked by some
critical constraints (link capacities) [79, 106]. Unfortunately, in our network
dimensioning model it applies only to the basic LP constraints (4.3)–(4.6).
In the case of a nonconvex feasible set such a blocked quantity may not exist
[123], which makes the approach not applicable to the case of nonbifurcated
flows enforced by discrete constraints (4.1)–(4.2).

In the simplified problem with linear link dimensioning function (no modu-
larities) and dimensioning of a completely new network (ae = 0 for all links),
the cost of the entire path p for demand i can be directly expressed by the
formula κip =

∑
e∈E ceδeip. Hence, the cheapest path for each demand can

easily be identified and preselected. Constraints (4.6) and (4.3) may then be
treated as equations and they allow one to eliminate variables ξe, thus for-
mulating the problem as a simplified resource allocation model with only one
constraint

∑n
i=1 κixi = B and variables xi representing directly the deci-

sions. In the problem under consideration the cost of available link capacity
is actually nonlinear (piecewise linear) and this results in the lack of direct
formula for the path cost since it depends on possible sharing with other
paths of the preinstalled bandwidth (free capacity ae). Such a simplification
is certainly also impossible for the modular case, due to additional discrete
constraints (4.7).

In the simplified dimensioning model (with preselected paths and contin-
uous bandwidth) the throughput maximization approach apparently would
choose one variable xio which has the smallest marginal cost κio = mini∈I κi

and make that flow maximal within the budget limit (xio = B/κio), while
eliminating all other flows (lowering them to zero). On the other hand, the
MMF concept applied to the simplified dimensioning model would lead us
to a solution with equal values for all the flows: xi = B/

∑
i∈I κi for i ∈ I.

Such allocating of resources to optimize the worst performance may cause a
large worsening of the overall (mean) performance as the MMF throughput
(nB/

∑
i∈I κi) might be considerably smaller than the maximal throughput

(B/ mini∈I κi). In more realistic dimensioning models assuming bandwidth
modularity or other nonlinearities in link dimensioning function (like the ex-
istence of a free capacity ae of preinstalled bandwidth) and nonbifurcation
requirements, a direct formula for the path cost is not available and the cor-
responding solutions are not so clear. Nevertheless, the main weaknesses of
the above solutions remain valid. The throughput maximization can always
result in extremely unfair solutions allowing even for starvation of certain
flows while the MMF solution may cause a large worsening of the network
throughput. In an example built on the backbone network of a Polish ISP, it
turned out that the throughput in a perfectly fair solution could be less than
50% of the maximal throughput [125].

Network management may be interested in seeking a compromise between
the two extreme approaches discussed above. One of the possible solutions
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depends on maximization of the sum of flows evaluated with some (concave)
utility function U(x) =

∑
i∈I u(xi). A parametric class of utility functions

[114]:

u(xi, α) =
{

x1−α
i /(1 − α) if α �= 1

log(xi) if α = 1,
(4.8)

may be used for this purpose generating various solution concepts for α ≥ 0.
In particular, for α = 0 one gets the throughput maximization which is the
only linear criterion within the entire class. For α = 1, it represents the Pro-
portional Fairness (PF) approach [75] that maximizes the sum of logarithms
of the flows while it converges to the MMF with α tending to the infinity.
However, every such approach requires building (or guessing) a utility func-
tion prior to the analysis and later it gives only one possible compromise
solution. It is very difficult to identify and formalize the preferences at the
beginning of the decision process. Moreover, apart from the trivial case of
throughput maximization, all the utility functions that really take into ac-
count any fairness preferences are nonlinear. Nonlinear objective functions
applied to the MILP models we consider result in computationally hard opti-
mization problems. In the following, we shall describe an approach that allows
us to search for such compromise solutions with multiple linear criteria rather
than nonlinear objective functions.

The bandwidth allocation problem we consider may be viewed as a special
case of a general resource allocation problem where set I of m demands
is considered and for each demand i ∈ I its measure of realization xi is
a function xi = fi(ξ) of allocation pattern ξ ∈ A. This function, called the
individual objective function, represents the outcome (effect) of the allocation
pattern for demand i. In applications we consider fi expresses the demand
flow and a larger value of the outcome means a better effect (higher service
quality or client satisfaction). This leads us to a vector maximization problem:

max {(x1, x2, . . . , xm) : x ∈ Q} , (4.9)

where Q = {(x1, . . . , xm) : xi = fi(ξ) for i ∈ I, ξ ∈ A} denotes the
attainable set for outcome vectors x. For the network dimensioning problems
we consider the set Q is an MILP feasible set defined by basic constraints
(4.1)–(4.6) with additional discrete constraints (4.7) in the case of modular
bandwidth.

The Equitable Bandwidth Allocation Problem

The theory of equitable optimality and the computational methods described
in section 2.3.9 can be applied to find equitable solutions to problem 4.9. In
the terminology introduced in section 2.3.2, problem 4.9 is the efficient opti-
mization problem. We shall now demonstrate that it is indeed possible to find
equitable solutions for even such a complex efficient optimization problem.
A similar approach can be used for other fair distribution problems with a
budget. First, we shall reformulate the efficient optimization problem as a
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new multicriteria problem. The solutions of the new (equitable) multicrite-
ria problem will be equitably optimal solutions of the efficient optimization
problem. Next, we shall use a method for solving the new multicriteria prob-
lem. In this section, we describe the usage of the well-known reference point
method for this purpose.

Following the approach suggested in section 2.3.9, the equitable optimiza-
tion problem may be formulated as a following MILP problem:

max (η1, η2, . . . , ηm) subject to x ∈ Q, (4.10)

ηk = ktk −
n∑

i=1

dik for k ∈ I, (4.11)

tk − dik ≤ xi, dik ≥ 0 for i, k ∈ I . (4.12)

Note that problem (4.10)–(4.12) adds only linear constraints to the original
attainable set Q. Hence, for the basic network dimensioning problems with
the set Q defined by constraints (4.1)–(4.6), the resulting formulation (4.10)–
(4.12) remains in the class of (multi-criteria) MILP. The same applies to the
modular dimensioning model with additional constraints (4.7).

Although defined with simple linear constraints, the expanded model
(4.10)–(4.12) introduces m2 additional variables and inequalities. This may
cause a serious computational burden for real-life network dimensioning prob-
lems. Note that the number of demands corresponds to the number of ordered
pairs of network nodes which is already on the order of the square of the num-
ber of nodes |V |. Thus, finally the expanded multi-criteria model introduces
|V |4 variables and constraints which means polynomial but fast growth and
may not be acceptable for larger networks. In order to reduce the problem
size one may attempt the restrict the number of criteria in the equitable
optimization problem.

Let us consider a sequence of indices K = {k1, k2, . . . , kq}, where 1 = k1 <
k2 < . . . < kq−1 < kq = m, and the corresponding restricted form of the
multi-criteria efficient optimization problem:

max {(ηk1 , ηk2 , . . . , ηkq ) : ηk = θk(x) for k ∈ K, x ∈ Q} , (4.13)

with only q < m criteria. Following Theorem 1, the equitable optimization
problem allows us to generate any fairly efficient solution of problem (4.9).
Reducing the number of criteria we restrict these capabilities. Nevertheless,
one may still generate reasonable compromise solutions.

Theorem 3. If xo is an efficient solution of the restricted problem (4.13),
then it is an efficient (Pareto-optimal) solution of the multi-criteria problem
(4.9) and it can be fairly dominated only by another efficient solution x′ of
(4.13) with exactly the same values of criteria: θk(x′) = θk(xo) for all k ∈ K.

For the proof, see [129].
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It follows from Theorem 3 that while restricting the number of criteria
in the equitable optimization problem we can essentially still expect a rea-
sonably fair efficient solution and only unfairness may be related to the dis-
tribution of flows within classes of skipped criteria. In other words we have
guaranteed some rough fairness while it can possibly be improved by redis-
tribution of flows within the intervals (θkj (x), θkj+1 (x)] for j = 1, 2, . . . , q−1.
Since the fairness preferences are usually very sensitive for the smallest flows,
one may introduce a grid of criteria 1 = k1 < k2 < . . . < kq−1 < kq = m
which is dense for smaller indices while sparser for larger indices and expect
solution offering some reasonable compromise between fairness and through-
put maximization. In our computational analysis of the network with 132
elastic flows (Section 5) we have preselected 24 criteria including the smallest
12 flows. Note that any restricted model contains criteria θ1(x) = mini∈I xi

and θm(x) =
∑

i∈I xi among others. Therefore, it is more detailed than any
bicriteria combination of max-min and throughput maximization.

Example Solutions of Equitable Bandwidth Allocation Problems

The reference distribution approach described in section 2.3.9 has been tested
on a sample network dimensioning problem with elastic traffic. Recall that
in the case of elastic traffic, the network dimensioning procedure results in
the capacities of links in a given network, and that the flows will adapt
to the bandwidth available on links in the designed network. The input to
a network dimensioning problem with elastic traffic consists of a network
topology, of pairs of nodes that specify sources and destinations of flows,
of sets of network paths that could be used for each flow, and of optional
constraints on the capacities of links or on flow sizes. The user must also
specify a budget for purchasing link capacity (B in (4.6)), prices of a unit of
link capacity (possibly different for each link, ce in (4.6)), and may specify
module sizes and prices for a link. The given network topology may contain
information about preinstalled link capacities (ae in (4.3)): the budget is then
spent on additional link capacities that extend the present capacity of links.

The network topology of the presented problem (Fig. 4.2) is patterned
after the backbone network of a Polish ISP [125]. The network consists of 12
nodes and 18 links. All links have unit costs equal to one, and the budget for
link bandwidth is B = 1000. Flows between any pair of different nodes were
considered (i.e., 144−12 = 132 flows). Since all links have equal costs of one,
the path cost is equal to the path length (1, 2, 3 or 4 for the shortest paths
in the example topology). For each flow, two alternative paths (the shortest
and the second shortest) have been specified that could be used for transport.
The entire flow had to travel along one of the paths with no splitting allowed
(nonbifurcation formulation (4.1)–(4.2)). All flows are unbounded. However,
it is clear that due to the budget constraint no flow can exceed B.

In [125] a simplified LP model has been studied without additional con-
straints on link capacity, with a limitation that flows could only use the
shortest path, and with equal link costs, since in such a case it was simple
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Fig. 4.2 Sample network topology patterned after the backbone network of Polish
ISP

to understand the best choices with respect to fairness and overall through-
put. However, for such a problem it is also simple to calculate the solution
obtained by the two other methods used in literature for allocation problems
with fairness objectives: max-min fairness and proportional fairness. Indeed,
in [125] we have calculated these solutions and have shown that appropriate
OWA aggregations allow us to obtain similar results. Additionally, using the
OWA criterion, it was possible to obtain a spectrum of alternative solutions
and to control the results using intuitive parameters. Here, we focus on two
extensions of the problem studied in [125] that are too complex for a simple
application of proportional fairness or max-min fairness. To apply either of
these methods to the discussed problem extensions, it would be necessary
to solve a nonlinear optimization problem or a sequence of MILP problems
with changing constraints. The proposed problem modifications also make
the studied models more practical and realistic.

The first studied extension allowed flows to choose one of two paths for
transport (4.1)–(4.2), added constraints that limited the capacity of certain
links from above and added free link capacity for certain links (4.3). The
intention behind the modification was to model a situation where the network
operator wishes to extend the capacity of an existing network. In this network,
certain links cannot be upgraded beyond certain values due to prohibitive
costs or administrative reasons (for instance, it may be cheap to use existing
fiber that has not been in use before, but it may be prohibitively expensive
to install additional fiber). The existence of free link capacity and of link
capacity constraints may be the reason for choosing alternative paths for
certain flows.
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Additionally, a modular version of the original problem has been consid-
ered. In the second problem modification, flows were still limited to shortest
paths, and no constraints on link capacities were added. The size of a link
capacity module was set to 5. For each link, integer variable ze has been (see
(4.7)). Modular link capacities are frequently encountered in networks, when
it is simple to upgrade a link by installing an equipment module that is capa-
ble of faster communication over the same link. Modular link capacities also
occur in telecommunication networks that use traffic trunks, or portions of
link capacity that are indivisible and therefore allocated in a modular way.

The reference point method has been chosen to solve the formulated mul-
ticriteria optimization problem. As in any application of this method, it is
necessary to choose aspiration and reservation levels for each criterion. This
task becomes challenging for a large number of criteria, as in this case. (How-
ever, it is still a simpler job than choosing weights for the same number of
criteria, because that requires a pairwise comparison of criteria.) We shall
now demonstrate how the reference point method can be applied to a com-
plex multicriteria optimization problem.

For all model versions, the final input to the model consisted of the reser-
vation and aspiration levels for the sums of ordered criteria. For simplicity, all
aspiration levels were set close to the optimum values of the criteria, and only
reservation levels were used to control the outcome flows. One of the most
significant parameters was the reservation level for the sum of all criteria
(the network throughput). This value denoted by ηr

m was selected (varying)
separately from the other reservation levels. All the other reservation levels
were formed following the linearly increasing sequence of the ordered val-
ues with slope (step) r and where the reservation level for minimal flow was
φ1 = 1. Hence, for the final criteria ηk = θk(x) representing sums of the
ordered outcomes in model (4.10)–(4.12), the sequence of reservation levels
increased quadratically (except for the last one). Thus, the three parameters
have been used to define the reference distribution but we have managed
to identify various fair and efficient allocation patterns by varying only two
parameters: reservation level ηr

m for the total throughput and slope r for the
linearly increasing sequence.

While dealing with a simplified model in [125] we have used all criteria ηk

which resulted in the linear program containing a large number of constraints
(1322). Here, we have limited the number of criteria ηk to 24, by choosing only
the indices 1, 2, 3, . . . , 9, 10, 11, 12, 18, 24, 30, 36, 48, 60, 72, . . . , 120, 132 from
the full set of all indices. As a result, the computation time drops from around
one hour for each problem to the order of seconds. At the same time, the abil-
ity to control the outcomes using the reservation levels has not deteriorated;
we were able to obtain similar results with the reduced set of criteria as with
the full set.

In the first experiment, we used the first model extension that introduced
alternative paths for flows, free link capacity and upper limits on capacity
for certain links. For certain links, free link capacity was set to values from
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5 to 20, and the upper limit on the capacity of certain links was set to 20.
Due to the presence of free link capacity and upper limits on link capacity,
the MILP solver found solutions where certain flows had to use alternative
paths rather than shortest paths. These flows were more expensive than other
flows that were allowed to use their shortest paths. Recall that we have used
a single-path formulation, meaning that the entire flow had to be switched
to the alternative path. Flows could not be split, which is consistent with
several traffic engineering technologies used today.

In the experiment, the reservation level ηr
m and the slope r were used to

search for compromise solutions that traded off fairness against efficiency.
The throughput reservation was varied from 500 to 1100. As ηr

m increases,
the cheaper flows receive more throughput at the expense of more expensive
(longer) flows. For values of ηr

m above 1100, some flows were starved, and
therefore these outcomes were not considered further.

The linear increase of the other reservation levels was varied as well. The
parameter r could have values of: 0.02, 0.03 and 0.04. The results of the exper-
iment are shown in Fig. 4.3 with the corresponding generalized Lorenz curves
[128]. The figures present plots of cumulated ordered flows θk(x) versus num-
ber k (rank of a flow in ordering according to flow throughput) which means
that the normalizing factor 1/m = 1/132 has been ignored (for both axes).
The total network throughput is represented in the figures by the height of
the right end of the curve (θ132(x)). A perfectly equal distributions of flows
would be graphically depicted by an ascending line of constant slope. All
other (unequal) distributions of flows are represented by convex lines. First
of all, one may notice that all the lines intersect each other which guarantees
that no solution fairly dominates any other solution (Theorem 1). This con-
firms that our approach enables us to generate various fair (fairly efficient)
solutions. Due to the limited resources, any increase of the throughput reser-
vation enforces the increase of the cheaper flows (implemented on shorter
paths) while restricting the most expensive flows (longer paths) sharing the
same link capacities. This appears with reversal order of the solution lines
at their ends. Actually, it turns out that all the lines intersect each other
around the same point of k = 110. Hence, the available budget essentially
limits the maximum throughput of about 80% of the smallest flows to the
level of about 500 which cannot be exceeded without starvation of some flows.
Nevertheless, it is still possible to increase the total throughput (of all 132
flows) while decreasing the fairness (increasing differences among flows).

Note that under moderate throughput requirements, as r increases, the
medium flows gain at the expense of the larger ones, thus enforcing more
equal distribution of flows (one may observe flattening of the curves). On the
other hand, with higher throughput reservations the larger flows are protected
by this requirement and increase of r causes that the medium flows gain at the
expense of the smallest flows (one may observe convexification of the curves).
For values of r higher that 0.04, the increase of the throughput reservation
resulted in flow starvation.
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Fig. 4.3 Flow distribution for varying throughput reservation with r = 0.02 (a),
r = 0.03 (b), r = 0.04 (c)
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Observe from Fig. 4.3(c) that for ηr
m = 1100 (and for some other values of

ηr
m), the boundary between the largest flows (part of the Generalized Lorenz

curve with the highest slope) and the second-largest flows is not sharp. The
change of slope is gradual, resembling a round knee. The reason for this is the
presence of three flows that should receive the same amount of throughput
as the largest flows since they are all transported on paths of the length of 1,
but cannot due to the presence of upper constraints on link capacities. These
flows receive as much as they can, but some capacity is left for other flows
that must travel on the same constrained link. Here the solution violates
fairness in the attempt to get a higher total network throughput.

Also, note in the same figure that the boundary between the smallest
flows for ηr

m = 500 and for ηr
m = 1100 is not in the same position. The reason

for this is once again the upper constraint on link capacities. For ηr
m = 500,

there are 8 flows that should be in the middle group of flows but cannot, since
flows in the middle group receive so much throughput that the constraints
on link capacity would be violated. Therefore, these flows are downgraded to
the group of smallest flows and receive the same amount of throughput as
the smallest flows – here the solution preserves fairness.

Note that the throughput reservation was effectively used to find out-
comes with the desired network throughput. On the other hand, especially
for large throughput reservations, the optimization procedure automatically
found outcomes that divided flows into four categories according to their path
costs. This shows that the presented methodology is cost-aware, and that it
is possible to guarantee fairness to all flows with the same path cost (if link
capacity constraints do not interfere). For the lowest throughput reservation
of ηr

m = 500 and r = 0.04, the outcome was close to a perfectly fair distrib-
ution. Using the methodology described in this section, the user can choose
from a large number of different outcomes and control the trade-off between
fairness and efficiency. For the second experiment we used a slightly differ-
ent dimensioning problem specification. Namely, we added the modular link
capacities (4.7) into the model while eliminating the routing decisions by re-
striction of all demand flows to the corresponding shortest paths. Thus, the
model was still in the class of MILP but with a different discrete structure.
We have repeated a search for compromise solutions using similar preference
parameter configurations as in the first experiment, although taking into ac-
count the constraints on modular bandwidth, the throughput reservation was
varied from 450 to 800. The resulting flow distributions for the reservation
slope parameter r = 0.02 are presented in Fig. 4.4. Predictably, the introduc-
tion of modular link capacities makes it more difficult to find fair solutions.
The outcome for ηr

m = 450 is close to a perfectly even (fair) distribution, al-
though the right end of the curve turns slightly upward. This indicates that
the excess capacities of modules were used by the cheapest flows, leading to
a higher network throughput than in the case of a problem without modular
link capacities. On the other hand, the flows with the cheapest paths were
not equal for some outcomes.
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Fig. 4.4 Varying throughput reservation with r = 0.02 for the model with band-
width modularity

Overall, the experiments on the sample network topology demonstrated
the versatility of the methodology described. The use of reservation levels,
controlled by a small number of simple parameters, allowed us to search for
solutions best fitted to various possible preferences of a network designer.
Using an appropriate reference point procedure, one should be able to easily
find a satisfactory fair and efficient allocation pattern in a few interactive
steps. The same method of finding equitable solutions to a complex efficient
optimization problem can be reused in other domains.

4.1.3 Peer-to-Peer Computing

The problem of fairness management in P2P and grid systems concerns the
fairness of access and provision of shared resources. In P2P file sharing, these
resources are the access bandwidth of peers. In grids, resources can be CPU
time or more generally, processing time of grid tasks. Unfair behavior in P2P
and grid systems is often called free-riding. Peers or grid nodes can some-
times use resources of others without providing resources in return. The goal
of fairness management is the increase of fairness in the distribution of used
and provided resources. The two distributions are often combined using a dis-
tribution of the ratio of used and provided resources. In P2P systems, fairness
management works by providing incentives for peers to provide resources to
the system. The decentralization of control in P2P systems makes it difficult
to manage fairness. Peers can only attempt to control the behavior of oth-
ers using individual strategies, like in a non-cooperative game. P2P fairness
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management considers the following measures of fairness of individual peers:
sharing ratio and altruistic provision.

4.1.3.1 Fairness Management in P2P File Sharing

Sharing ratio is defined as the total number of uploaded bytes divided by
total bytes downloaded [116]. A P2P Fairness Management systems’ pri-
mary objective is to keep the sharing ratio above a certain level for every
peer. A sharing ratio of 1 and above is considered fair, since it indicates
that a peer uploads the same amount (or more) as it has downloaded. If
the sharing ratio drops below a certain level it is possible to exclude the
peer from the system.

Altruistic provision is defined as the difference between the expected up-
load rate and the download rate [116, 131]. Piatek et al. also gives an al-
ternative definition of altruistic provision: an upload contribution that can
be withdrawn without loss in download performance of the providing peer,
given that the other peers use a strategy that is based on the peer’s upload
contribution.

To ensure a fair sharing ratio, BitTorrent uses the choke algorithm described
in [26, 131, 89]. This algorithm is derived from the game theoretic Tit-for-Tat
strategy and affects the peer selection process. It helps to choose the most re-
ciprocating peers, but also prevents the low bandwidth peers from starvation
(optimimistic unchoke). The algorithm attempts to prevent malicious peers
from free-riding.

An example of a modified Bittorrent client is the BitTyrant project[131],
which merges several greedy techniques. The BitTyrant client exploits the
original BitTorrent algorithms by altering the reciprocity factor. Authors
describe alternative choking algorithms. [26] evaluated the BitTyrant modi-
fications. They discovered that BitTyrant’s modified algorithms have an un-
expected positive impact on system performance.

[94] proposed other modifications of the BitTorrent algorithm. Their client
maximize client download rate. An extension of their work was made by
[100]. They described different techniques to maximize the peer download
rate. Locher et al. designed and implemented a BitTorrent client called Bit-
Thief that exploits the original choking algorithm. Their client increases its
neighborhood set as much as possible to boost the chance of being unchocked
by another peer.

Recently, [113] proposed the BarterCast reputation algorithm. This algo-
rithm uses an epidemic protocol for peer discovery and download statistics
exchange. The authors describe how to adapt the BarterCast algorithm to
the BitTorrent protocol. Each peer sends only her own statistics (download
and upload information) to known peers. Peers gather observations and re-
ports received from other known peers. To compute the reputation of third



168 4 Fairness Management

party peers, the MAXFLOW algorithm (Ford-Fulkerson) is used. The au-
thors modify the BitTorrent unchoke algorithm by taking into account the
reputation of a peer. Peers only assign the upload slots to peers that have a
reputation above a certain threshold.

The BarterCast algorithm is also used in the TRIBLER system [135].
TRIBLER is a modification of the BitTorrent client that allows to use ac-
quaintances (“helpers”) to support a peer’s download. These acquaintances
are obtained through a social network.

4.1.3.2 Adversary Strategies Against P2P Fairness Management

[131] and [94] discuss some cheating strategies such as:

Exploiting optimistic unchokes: this technique uses the whitewashing at-
tack to increase the chance of receiving an optimistic unchoke.

Downloadnig only from seeds [75]: this method is simple, because seeds do
not need any reciprocation from downloading peers (since they have com-
pleted their download). On the other hand, there are usually far fewer
seeds, and this method therefore reduces the parallelism of downloads.

Falsifying block availability is another exploitation of the unchoke algo-
rithm. A peer has a greater chance of being unchoked if it offers more
blocks to others [94], even if the blocks contain garbage data.

4.2 Procedural Fairness Management

4.2.1 Fairness Enforcement in P2P Multi-player
Games

The question of providing procedural fairness to agents in an ODS is of course
relevant in many applications. However, P2P multi-player games are a good
example that adequately illustrates the complexity of the problem. In this
type of game, central control over all agent actions is impossible; on the other
hand, agents can gain significant advantage by acting in a way that violates
the fair procedures (that are well defined as the rules of the game).

Role-playing games constitute a category of multi-player games, where the
player assumes the role of a character in a virtual world. The game is most
often based on some exciting stories or fables, where the players compete by
playing the role of such characters as: humans, elves, magicians or priests.
The idea of a typical game is to accomplish various missions or quests with
the controlled character, which involves certain typical types of operations.
The character travels within the virtual world and interacts with other char-
acters or objects. The knowledge of the virtual world possessed by the player
may either increase with time as the player travels or remain constrained to
just the closest surroundings. Early in the game, most of the virtual world
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remains unknown and the player has no knowledge of where objects are lo-
cated. By collecting objects and interacting with other characters (fighting,
making friends, etc.) a player may, for instance, improve certain skills, accu-
mulate experience, earn money or collect weapons or magic spells. All these
properties can be used to improve one’s position over competing players.
In most RPG games the player accumulates ranking points that represent
the result of his past competition with other characters. The objective is to
survive within the virtual world and gain a better ranking than other game
players.

Massive Multiplayer Online games allow many players to interact using
a client-server model. The virtual world, as well as the player’s characters,
is managed by a central server. In many games, there can be many servers
that maintain separate virtual worlds. However, a single server’s scalability
is limited to tens of thousands of users (even for commercial versions of the
game). MMO game servers support a considerably higher number of users
than multiplayer versions of other, more interactive games (such as first-pe-
rson shooters). This improved scalability is achieved by limiting the scope
and type of interactivity of the game [80], and by dividing the large number
of players into separate game groups (sessions) with a maintainable num-
ber of players each. This is reasonable for types of games where the virtual
world can be divided in multiple parallel sub-levels between which players
move for instance in a promotion-based manner (Warcraft III, Quake). De-
spite this limitation, MMO games are very popular and offer an attractive
gaming experience. The most prominent examples of MMO RPG games in-
clude: EverQuest, Ultima Online, There.com, Star Wars Galaxies, The Sims
Online or Warcraft III.

At present, scalability issues in Massive Multiplayer Online (MMO) games
are usually addressed with large dedicated servers or even clusters. According
to white papers of a popular multi-player online game - TeraZona [160] - a
single server may support 2000 to 6000 simultaneous players, while cluster
solutions used in TeraZona support up to 32 000 concurrent players. The
client-server approach has a severe weakness, which is the high cost of main-
taining the central processing point. Such an architecture is too expensive
to support a set of concurrent players that is by an order or two orders of
magnitude larger than the current amounts. To give the impression of what
scalability is needed - games like Lineage report up to 180 000 concurrent
players in one night.

Massive Multiplayer Online games can benefit from the application of the
P2P model. However, in a P2P MMO game, issues related to procedural fair-
ness and trust become of crucial importance, as shall be shown later in this
section. How can a player be trusted not to modify his own private state to
his advantage? How can a player be trusted not to look at the state of hid-
den objects? How can a player be trusted not to lie, when he is accessing an
object that cannot be used unless a condition that depends on the player’s
private state is satisfied? In this section, we show how all of these questions



170 4 Fairness Management

can be answered, and present the proposed protocols in detail. We also ad-
dress performance and scalability issues of the proposed procedural fairness
management mechanisms, validating the proposed architecture in a practi-
cal implementation of a P2P MMO game. This section relies on previous
research [172].

The difficulties of ensuring procedural fairness in a P2P MMO game could
be similar for other applications. Consider for example a Peer-to-Peer auc-
tion. In such an auction, knowing the bids of other agents would be a great
advantage to a their competition, so the bids of agents would have to be kept
secret. On the other hand, if these bids are stored by the peers that made
them, then they can be modified when bids of the competition are revealed.
This demonstrates that the auction bids are private state in a sense that is
similar to the P2P MMO game, and a similar solution can be used to ensure
procedural fairness for Peer-to-Peer auctions.

The proposed procedural fairness management (FM) architecture relies on
cryptographic mechanisms that allow players to verify the fairness of moves.
The architecture is designed for P2P MMO games, but makes use of trusted
central components. It is a hybrid P2P system, the result of a compromise
between the P2P and client-server models. A full distribution of the fairness
management control would be too difficult and too expensive. On the other
hand, a return to the trusted, centralized server would obliterate the scalab-
ility and performance gains achieved in the P2P MMO game. Therefore, the
proposed compromise tries to preserve performance gains while guaranteeing
procedural fairness of the game. To this end, our fairness management ar-
chitecture does not require the use of expensive encryption, which could in-
troduce a performance penalty.

A prototype of the proposed fairness management architecture [177] has
been implemented in a P2P MMO game. The implementation uses FreePas-
try, a public-domain implementation of Pastry, as the overlay network, and
Scribe for application-layer multicast. The implemented game can be played
both on PCs and on mobile phones connected to a Bluetooth access point.
The overlay joins both types of nodes together. The performance of imple-
mented fairness management mechanisms has been tested using experiments
with the prototype.

4.2.1.1 P2P MMO Games

Several multi-player games (MiMaze, Age of Empires) have already been im-
plemented using the P2P model. However, the scalability of such approaches
is in question, as the game state is broadcasted between all players of the
game. AMaze [12] is an example of an improved P2P game design, where the
game state is multicast only to nearby players. Still in both cases, only the
issue of public state maintenance has been addressed. The questions of how
to deal with the private and public concealed states have not been answered
(see section 4).
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The authors of [11] have proposed a method of private state maintenance
that is similar to ours. They propose the use of commitments and of a trusted
“observer”, who verifies the game online or at the end of the game. However,
the authors of [11] have not considered the problem of concealed or conditio-
nal state. Therefore, their procedural FM architecture is incomplete. Also, the
solution proposed in [11] did not address games implemented in the P2P mo-
del. In [60], the subject of fair ordering of public state updates has been con-
sidered which makes it impossible for players to cheat, while taking into ac-
count different network communication delays. This method can be used in
P2P games that use peers to manage public objects, such as in the design
of [80].

The work of Knutsson on P2P support for MMO games [80] offers an
interesting perspective on implementing Massive Multiplayer Online games
using the P2P model. The approach presented mostly addresses performance
and availability issues, while leaving many security and trust issues open. In
this section, we discuss protocols that can be applied in order to considerably
improve the design of Knutsson in terms of security and procedural Fairness
Management. In [60], a P2P approach to MMO games has also been proposed,
again without taking into account issues of security and procedural Fairness
Management.

Reputation-based mechanisms could be used in P2P games. A player would
receive a reputation based on a history of previous games, and this reputa-
tion could be used to exclude cheating players from a game. The reason for
the use of reputation mechanisms in many networked applications is the lack
of enforcement mechanisms that could be used to provide procedural FM, as
noted in [118].

Any reputation system has certain systematic drawbacks which is why
it may be worth avoiding a reliance on reputation systems in P2P games.
Among these, the most important is the problem of first-time cheating. Any
peer may build up a high reputation and then cheat in order to win in a game
(for example, behave fairly in unimportant encounters, and cheat during a
critical encounter).

Cryptography has considered the problems of fair agreements, games, and
multi-party computations. There has been research on the problem of “mental
poker”, or fair implementation of a distributed poker game [169]. The protocol
allows for fair drawing of cards in a poker game, however, it assumes that
the game players do not leave the game and is therefore unsuitable for P2P
applications. Protocols on fair agreement using a third party are utilized in
our research. Multi-party computation allows us to calculate an algebraic
function of inputs supplied by several parties without revealing the inputs
and without centralized control. The research so far in this area requires
that the function should be expressed as a Boolean circuit. Applications of
multi-party computation in our research are a problem of future work.
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4.2.1.2 Adversaries in P2P MMO Games

The adversary strategies described in this section illustrate some of the secu-
rity and procedural FM weaknesses of P2P game implementations so far. We
shall use a working assumption that the P2P MMO game uses some form of
Dynamic Hash Table (DHT) routing in the overlay network, without assum-
ing a specific protocol. In the following section, we describe a procedural FM
architecture that can be used to prevent the attacks described in this section.

Private State: Self-modification

P2P game implementations that allow a player to manage their own private
state [80] do not exclude the possibility that a game player can deliberately
modify his own private state (e.g. experience, possessed objects, location,
etc.) to gain advantage over other game players. A player may also alter
decisions already made in the past during player-player interaction that may
affect the outcome of such an interaction. A similar adversary strategy can
be used in other applications, such as Peer-to-Peer auctions, where a peer
may modify his own bid in order to win the auction.

Public State: Malicious/Illegal Modifications

In a P2P MMO game, updates of public state may be handled by a peer who
is responsible for a public object. The decision to update public state depends
then solely on this peer - the coordinator. Furthermore, the coordinator may
perform malicious modifications and multicast illegal updates to the group.
The falsified update operation may be directly issued by the coordinator and
returned back to the group as a legal update of the state. Such an illegal
update may also be issued by another player that is in a coalition with the
coordinator, and accepted as a legal operation. Once again, in a Peer-to-Peer
auction, the coordinator can maliciously change the auction outcomes by
changing the public description of an object in a way that would discourage
competing agents from bidding (although colluding bidders would know the
real value of the object).

Attack on the Replication Mechanism

When state is replicated in a P2P game, replication players are often selected
randomly (using the properties of the overlay to localize replicated data in
the virtual network). This can be exploited when the replication player can
directly benefit from the replica of the knowledge he/she is storing (i.e. the
replication player is in the region of interest and has not yet discovered the
knowledge by himself). In P2P auctions, attacks on replication mechanisms
can result in knowledge of rival bids.
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Attack on P2P Overlays

In a P2P overlay (such as Pastry), a message is routed to the destination node
through other intermediary nodes. The messages travel in open text and can
be easily eavesdropped by competing players on the route. The eavesdropped
information can be especially valuable if a player is revealing his own pri-
vate state to some other player (player-player interaction). In such case, the
eavesdropping player will find out whether the interacting players should be
avoided or attacked.

The malicious player may also deliberately drop messages that he is sup-
posed to forward. Such an activity will obstruct the game to some extent, if
the whole game group is relatively small.

Conclusion from Described Attacks

Considering all of the attacks described in this chapter, a game developer
may be tempted to return to the safe model of a trusted, central server.
The purpose of this article is to show that this is not completely necessary.
The procedural FM architecture presented in the next section will require
trusted centralized components. However, the role of these components, and
therefore, the performance penalty of using them, can be minimized. Thus,
the achieved architecture is a compromise between the P2P and client-server
models that is secure and benefits from increased scalability due to the dis-
tribution of most game activities.

4.2.1.3 Fairness Management Architecture

The procedural FM architecture proposed in this section is visualized in
Figure 4.5. It uses several cryptographic primitives such as commitment pro-
tocols and secret sharing. It also uses certain distributed computing algo-
rithms, such as Byzantine agreement protocols. The relationships between
the components of the procedural FM architecture will be described in this
section. Note that the modular design of our the architecture makes it

Fig. 4.5 A fairness management architecture for P2P MMO games
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possible to implement selected procedural FM mechanisms; this is the ap-
proach that has been chosen in our prototype implementation.

Our procedural FM architecture for P2P MMO games will use partitioning
of game players into groups, as in the approach of [80]. A group is a set of
players who are in the same region. All of these players can interact with each
other. However, players may join or depart from a group at any time. Each
group must have a trusted coordinator, who is not a member of the group
(he can be chosen among the players of another region or be provided by the
game managers). The coordinator must be trusted because of the necessity
of verifying private state modifications (see below). However, the purpose
of the procedural FM architecture is to limit the role of the coordinator to
a minimum. Thus, the performance gains from using the P2P model may
still be achieved, without compromising security or decreasing trust. In an
implementation of the proposed procedural FM architecture, complexity can
be decreased by assigning more functions to the trusted coordinator. However,
this makes the implementation more centralized.

4.2.1.4 Game Play Scenarios Using Proposed Procedural FM
Architecture

Let us consider a few possible game play scenarios and describe how the
proposed procedural FM mechanisms would operate. In the described game
scenarios that are typical for most MMO games, the game state can be divided
into four categories:

Public state is all information that is publicly available to all players and
such that its modifications by any player can be revealed.

Private state is the state of a game player that cannot be revealed to other
players, since this would violate the rules of the game.

Conditional state is state that is hidden from all players, but may be re-
vealed and modified if a condition is satisfied. The condition must be public
(known to all players) and cannot depend on the private state of a player.

Concealed state is like conditional state, only the condition of the state’s
access depends on the private state of a player.

Note that these types of state may also be used by other applications in ODS.
For example, an e-commerce system may provide agents with the ability to
bid for items. The agents’ bids would then be conditional state.

Player Joins a Game

From the bootstrap server or from a set of peers, if threshold PKI is used,
the player must receive an ID and a public key certificate C=ID, Kpub,
sjoin (where sjoin is the signature of the bootstrap server (or the peers), and
Kpub is the public key that forms a pair with the secret key kpriv,) that
allows strong and efficient authentication (see next section. Note that the
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keys will not be used for data encryption, only for signatures). The player
selects a game group and reports to its coordinator (who can be found using
DHT routing). The coordinator receives the player’s certificate. The player’s
initial private state (or the state with which he joins the game after a period
of inactivity) is verified by the coordinator. The player receives a verifica-
tion certificate (VC) that includes a date of validity and is signed by the
coordinator.

Player Verifies His Private State

In a client-server game, the game server maintains all private state of a user,
which is inefficient. In the P2P solution, each player can maintain his own
private state [80], causing procedural FM problems. We have tried to balance
between the two extremes. It is true that a trusted entity (the coordinator)
must oversee modifications of the private state. However, it may do so only
infrequently. Periodically or after special events, a player must report to the
coordinator for verification of his private state. The coordinator receives the
initial (recently published) private state values and a sequence of modifica-
tions that he may verify and apply on the known private state. For each
modification, the player must present a proof. If the verification fails, the
player does not receive a confirmation of success. If it succeeds, the player
is issued a VC that has an extended date of validity and is signed by the
coordinator. Verification by a coordinator is done by “zeplaying” the game
of the user from the time of the last verification to the present. The proofs
submitted by the player must include the states of all objects and players
that he has interacted with during the period.

Note that a verification may be performed for just a part of the private
state, and the issued VC may specify which elements of the private state
have been verified. Verification may also, for efficiency reasons, be performed
for just a random part of the period, if the player submits all intermediate
state changes.

After verification, the player maintains and modifies his own state. As shall
be explained below, the player collects testimonies from other players that
are sufficient to prove the correctness of his private state modifications.

Player Interacts with a Public Object

Peer-to-peer overlays (like DHTs) provide an effective infrastructure for the
routing and storing of public knowledge within the game group. Any public
object of the game is managed by some peer. The player issues modification
requests to the manager M of the public object. The player also issues a com-
mitment of his action A that can be checked by the manager. A commitment
protocol works by publishing a value (the commitment) for each operation
on the private state. The commitment could be, for example, a hash function
of an object. The commitment is used when a player needs to prove that his
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private state has not been illegally modified. Let us denote the commitment
by C(ID, A) (the commitment could be a hash function of some value, signed
by the player).

Commitments should be issued whenever a player wishes to access any
object, and for decisions that affect his private state. Commitments may also
be used for random draws [176]. It will be useful to regard commitments as
modifications of public state that is maintained for each player by a peer that
is selected using DHT routing, as for any public object.

The request includes the action that the player wishes to execute, and
the player’s validation certificate, VC. Without a valid certificate, the player
should not be allowed to interact with the object. If the certificate is valid,
and the player has issued a correct commitment of the action, the manager
updates his state and broadcasts an update message. The manager also sends
a signed testimony T=t, A, Si, Si+1, P, sM to the player. This message
includes the time t and action A, state of the public object before (Si) and
after the modification (Si+1) and some information P about the modifying
player (e. g., his location). The player should verify the signature sM of the
manager on the testimony. The manager of the object then sends an update
of the object’s state to the game group.

If any player (including the modifying player, if T is incorrect) rejects the
update (issues a veto), the coordinator sends T to the protesting player, who
may withdraw his veto. If the veto is upheld, a Byzantine agreement round
is started. (This kind of Byzantine agreement is known as the Crusader’s
protocol.) Note that if a game player has just modified the state of a public
object and has not yet sent an update, he may receive another update that
is incorrect, but will not veto this update, but send another update with a
higher sequence number.

To decide whether an update of the public state is correct, players should
use the basic physical laws of the game. For example, the players could check
whether the modifying player has been close enough to the object. Players
should also know whether the action could be carried out by the modifying
player (for example, if the player cuts down a tree, he must possess an axe).
This decision may require knowledge of the modifying player’s private state.
In such a case, the modification should be accepted if the modifying player
will undergo validation of his private state and present a validation certificate
that has been issued after the modification took place. In other words, the
modification must be checked by a trusted entity: the group coordinator.
This approach, used in the prototype implementation, can be used instead of
Byzantine agreements whenever a veto is issued.

Player Executes Actions That Involve Randomness

For example, the player may search for food or hunt. The player uses a fair
random drawing protocol [176] (usually, to obtain a random number). This
involves the participation of a minimal number (for instance, at least 3) of
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Fig. 4.6 Reconstruction of concealed and conditional state

other players that execute a secret sharing together with the drawing player.
The drawing player chooses a random share l0 and issues a commitment of
his share C(ID, l0) to the manager of his commitments (that are treated as
public state). The drawing player receives and keeps signed shares p1,...,pn
from the other players, and uses them to obtain a random number. The result
of the drawing can be obtained from information that is part of constant game
state (drawing tables).

Player Meets and Interacts with Another Player

For example, let two players fight. The interaction must be overseen by an
arbiter, who can be any player. The two players should first check their val-
idation certificates and refuse the interaction if the certificate of the other
player is not valid. The VCs of the players are also examined by the arbiter
to avoid a scenario where one of the players denies the interaction by falsely
claiming that his opponent’s VC is invalid. Before the interaction takes place,
both players may carry out actions A1,...,Ak that modify their private state
(like choosing the weapon they will use). The players must issue commit-
ments of these actions. The commitments must also be sent to the arbiter.
The actions remain secret until they can be used to improve the game result
of a player. Then, the actions and relevant private state are revealed, and
commitments can be used to prove correctness. The arbiter will record the
commitments and the revealed actions (as shown on Figure 4.7. After the in-
teraction is completed, the arbiter will send both players a signed testimony
about the interaction.
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Fig. 4.7 Preventing self-modification of private state

If the interaction involves randomness, the players draw a common random
number using a fair drawing protocol (they both supply and reveal shares;
shares may also be contributed by other players).

Finally, the players reveal their actions to each other and to the arbiter.
The results of the interaction are also obtained from fixed game information
and affect the private states of both players. The players must modify their
private states fairly, otherwise they will fail verification in the future (this
includes the case of when a player dies. Player death is a special case. It is
true that once a player is dead, he can continue to play until his VC expires.
This can be corrected if the player who killed him informs the group about
his death. Such a death message forces any player to undergo immediate
verification if he wishes to prove that he is not dead). Note that at any time,
both players are aware of the fair results of the interaction, so that a player
who has won the fight may refuse further interactions with a player who
decides to cheat.

Player Executes an Action That Has a Secret Outcome

For example, the player opens a chest using a key. The chest’s content is
conditional state - other players should not be aware of what is inside the
chest. The player will modify his private state after he finds out the chest’s
contents. To determine the outcome, the player will reconstruct conditional
or concealed state.

Conditional and concealed state can be managed using secret sharing and
commitment protocols, as described in [176]. The protocol developed in [176]
concerned drawing from a finite set, but can be extended to handle any public
condition. However, concealed state has not been considered in our previous
research on fairness of P2P games. Therefore, we needed to extend and modify
our results in order to provide procedural FM of concealed state.
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Fig. 4.8 Distribution of concealed and conditional state

The protocol for concealed and conditional state management has been
shown on Figures 4.8 and 4.6. It is divided into two phases. The distribution
phase needs to be executed by the coordinator whenever a concealed public
object is renewed or created (step 1 on Figure 4.8). The coordinator divides
the object into a fixed number of shares (step 3) that are sent to chosen players
(shareholders in step 5), and to a number of replication players who are not
members of the group (this is done in step 4 to decrease the likelihood of
coalitions). The coordinator also calculates hash values of the shares that are
public state (step 8). Apart from the initializing of the state, the coordinator
does not participate in its management.

The shareholders may leave the game at any time, and the object parts
from the replication players are used instead. If there are not enough parts
to reconstruct an object, the object must be renewed by the coordinator.
This replication approach is more resistant to coalitions than the approach
proposed in [80] (relying on Pastry). Replicating the object parts by random
players from the group increases the likelihood that one shareholder will
receive more than one part. Then, this shareholder may form a coalition with
a smaller number of other players in order to reconstruct the object. Also, the
backup mechanism used in [80] may increase the number of object parts kept



180 4 Fairness Management

by a single player. The protocol described here can also be used for random
draws from a finite set (see [176]).

The second phase of the protocol is the reconstruction phase. In step 1
in Figure 4.6, the player issues a commitment of his action C(ID, A) that
is checked by the shareholders. If the condition is public but depends on
the player’s private state, the player decides himself in step 2 whether the
condition is fulfilled (he will have to prove the condition’s correctness during
verification in the future). In this case, the issued commitment must also com-
mit the player’s private state before the object is accessed (the player must
also keep a copy of the relevant private state). If the condition to access an
object is secret, the condition itself should be treated as a conditional public
object. After the player checks that the condition is fulfilled, he requests and
receives the object shares (steps 3 and 4) and, after verifying that the shares
are correct, reconstructs the concealed or conditional object (steps 5 and 6).

When the player has reconstructed the object, he must keep the shares
for verification. At the same time, the testimony issued by the shareholders
will include a value of the condition that will allow the coordinator to verify
the answer of the player. The elements of private state that may constitute
a zero-knowledge condition should be defined during game design.

Note that concealed and conditional public objects can have states that
are modified by players. If this is the case, then each state modification must
be followed by the distribution phase of the protocol for object management.

4.2.1.5 Security Analysis of FM in P2P MMO Games

P2P
In this section, the attacks illustrated in previous paragraphs will be used to
demonstrate how the proposed protocols protect the P2P MMO game.

Private State: Self-modification

Self-modification of private state can concern the parameters of a player, the
player’s secret decisions that affect other players, or results of random draws.
The first type of modification is prevented by the need to undergo periodic
verification of a private player’s parameters. The verification is done by the
coordinator on the basis of an audit trail of private state modification that
must be managed by any player. Each modification requires proof signed by
third parties (managers of other game objects, arbiters of player interactions).
Any modification that is unaccounted for will be rejected by the coordinator.
Players may verify that their partners are fair by checking a signature of the
coordinator on the partner’s private state. If a player tries to cheat during an
interaction with another player by improving his parameters, he may succeed,
but will not pass the subsequent verification and will be rejected by other
players.
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Modification of player’s move decisions or results of random draws is pre-
vented by the use of commitment protocols. The verification is made by an
arbiter, who can be a randomly selected player. The verification is therefore
subject to coalition attacks; on the other hand, making the coordinator re-
sponsible for this verification would unnecessarily increase his workload.

Note that in order for verification to succeed, the coordinator must pos-
sess the public key certificates of all players who have issued proof about
the player’s game. (If necessary, these certificates can be obtained from the
bootstrap server). However, the players who have issued testimony need not
be online during verification.

A player may try to cheat the verification mechanism by “forgetting” the
interactions with objects that have adversely affected the player’s state. This
approach can be defeated in the following way. A player that wishes to access
any object may be forced to issue a commitment in a similar manner as
when a player makes a private decision. The commitment is checked by the
manager of the object and must include the time and type of object. Since the
commitment is made prior to receiving the object, the player cannot know
that the object will harm him. The coordinator may check the commitments
during the verification stage to determine whether the player has submitted
information about all state changes.

Public State: Malicious/Illegal modifications

We have suggested the use of Byzantine algorithms further supported by a
veto mechanism (Crusader’s protocol) to protect public state against illegal/
malicious modifications. Any update request on the public state shall be
multicast to the whole game group. The Byzantine verification within the
group shall only take place when at least one of the players vetoes the update
request of some other player. The cheating player as well as the player using
the veto in unsubstantiated cases may both be penalized by the group by ex-
clusion from the game. Such a mechanism will act largely as a preventive
and deterring measure, introducing the performance penalty only on an oc-
casional-basis.

The protection offered by Byzantine agreement algorithms will be discus-
sed further in section 4.2.3. We believe the protection offered by such algo-
rithms is far more secure than a coordinator-based approach and tolerable in
terms of performance.

Attacks on P2P Overlays

In our security architecture, players do not reveal sensitive information. A
player does not disclose his own private state, but only commitments of this
state. Concealed or conditional state is not revealed until a player receives all
shares. If the P2P overlay is operating correctly and authentication is used to
prevent Sybil attacks, the P2P MMO game should be resistant to eavesdrop-
ping by nodes that route messages without resorting to strong encryption. A
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secure channel is needed during the verification of a players private state by
the coordinator.

Concealed State: Attack on Replication Mechanism

Concealed state, as well as any public state in the game, must be replicated
among the peers to be protected against loss. The solution offered in [80] uses
the natural properties of the Pastry network to provide replication. However,
we have questioned the use of this approach for concealed state, where the
replicas cannot be stored by a random peer. The existence of concealed state
has not been considered in [80], and therefore the authors did not consider
the fact that replicas may reveal the concealed information to unauthorized
players.

In our approach for replication of concealed state, replication players are
selected from outside the game group. This eliminates the benefits offered by
Pastry network. On the other hand, this approach also eliminates the security
risks. Please note that in our approach a certain number of players must
participate to uncover specific concealed information. Therefore, a coalition
with the replication player is not beneficial for a player within the game
group.

Revocation of Verification Certificates

Verification is performed by trusted group coordinators that can be super-
peers operated by the game provider. However, it is possible that the a ma-
licious player could somehow set up a malicious coordinator and therefore
defeat the verification mechanism. To avoid this, the superpeers should be
equipped with public key certificates that are signed by other superpeers
(using a Web-of-Trust model, or by a signle central authority). When a Ver-
ification Certificate is examined by a player, the player should check the
superpeers signature. To do this, the player should obtain or posess the su-
perpeers public key certificate, and validate this certificate.

4.2.1.6 Performance Analysis of FM in P2P MMO Games

Analysis of the Fairness Management Architecture

We have tried to manage trust in a P2P MMO game without incurring a
performance penalty that would question the use of the P2P model. However,
some performance costs are associated with the proposed mechanisms. Our
initial assumption about partitioning of game players into groups (sets of
players who are in the same region) is required for good performance.

Byzantine protocols have a quadratic communication cost, when a player
disagrees with the proposed decision. Therefore, their use in large game gro-
ups may be prohibitive. This problem may be solved by restricting the Byzan-
tine agreement to a group of superpeers that maintain the public state (an
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approach already chosen by a few P2P applications, such as OceanStore).
Another possibility is the use of hierarchical Byzantine protocols that allow
the reduction of cost but require hierarchy maintenance.

Since private state is still managed by a player, it incurs no additional
cost over the method of Knutsson. The additional cost is related to the ver-
ification of a player’s private state by a coordinator. The coordinator must
“replay” the game of a player, using provided information, and verifying the
proofs (signatures) of other players, as well as the modifications of the ver-
ified private state. This process may be costly, but note that a coordinator
need not “replay” all of the game, but only a part (chosen at random). This
may keep the cost low, while still deterring players from self-modification of
private state.

The cost of maintenance of concealed or conditional state is highest in the
initialization phase. This stage should be carried out only when an object is
renewed. (when the object’s state changes). The expense of this protocol may
be controlled by reducing the constant number of object parts, at the cost
of decreasing security. The number of object parts cannot be less than two.
Table 4.1 shows a performance analysis of the most complex protocols in our
procedural FM architecture: the protocols for management of concealed state.
In the table, N is the number of objects (of concealed or conditional state);
s - the number of shareholders; m*k - the number of replication players; and
l - the number of objects stored by a peer. Note that computational cost
of the distribution stage is complex - but this stage should be carried out
only when an object is renewed. During most game operations, the cost of
concealed state management is reasonable. The reconstruction phase has a
constant (fetching the parts of an object).

All the proposed protocols have allowed us to realize one goal: limit the
role of the central trusted component of the system (the coordinator). The
coordinator does not have to maintain any state for the players. He partici-
pates in the game occasionally, during distribution of concealed/conditional
state and during verification of private state. The maintenance of public state
remains distributed, although it requires a higher communication overhead.

Prototype P2P MMO Game

The proposed architecture has been implemented in a prototype P2P MMO
game. We have chosen this approach, rather than simulation, since we wanted
to evaluate architecture in a more realistic setting. Implementing the pro-
posed mechanisms in a real game has the advantage that all practical imple-
mentation issues need to be worked out, rather than implementing a more
abstract version of the protocols in a simulator. The disadvantage is a smaller
scale of testing and a more complex performance evaluation. However, the
chosen approach has resulted in several practical performance improvements
of the proposed architecture.

The prototype P2P MMO game has been implemented using FreePas-
try and Scribe. The game could be run on mobile phones that accessed the



184 4 Fairness Management

Table 4.1 Complexity of concealed state management
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Internet by Bluetooth. Since it turned out that running FreePastry on mo-
bile phones was impossible due to the limited memory and processor speed,
peers on mobile phones were connected to a single FreePastry node running
on a Bluetooth access point with dual stack that was also connected to the
Internet. Thus the network infrastructure was not a true ad-hoc Bluetooth
network, but a hybrid network of Bluetooth and fixed links. The nodes run-
ning on Bluetooth access points acted on behalf of peers running on mobile
phones.

As described in the architecture of P2P MMO games, the game should
be divided into regions, and all players in a region constituted a group and
joined a single Scribe topic. Each group has a common address prefix, allowing
nodes of the group to be close to each other in the Pastry overlay. Each group
had one trusted superpeer that could have different functions. Depending on
configuration, the superpeer could be responsible only for the verification of
private states of players, or additionally for the management of all public
object in the game.

The P2P MMO game had no concealed or conditional public state. Lo-
cation information was considered public state. All players managed their
own private state and submitted to verification every time they needed to
interact with a public object or with another player (instead of periodic veri-
fication - this form of verification is stricter than that proposed in the original



4.2 Procedural Fairness Management 185

architecture). Public objects were managed by chosen peers - either by the
superpeer, or by peers that were chosen by the superpeer and explicitly in-
dicated to other peers in the group. This approach allowed for a transfer of
trust from the superpeer to the manager of public objects and also limited
the impact of attacks on overlay routing, since the chosen manager had to
sign all of his messages using public key cryptography, and his public key
was signed by the superpeer during the trust transfer. The implemented pro-
totype allowed for performance evaluation of the proposed mechanisms for
private and public state management in the procedural FM architecture.

For evaluation purposes, an automatic game playing agent was imple-
mented that could move at random and interact with objects or other players.
For simplification, the game was modified to allow the automatic agent to
access all objects and all other players, regardless of his location (otherwise,
it would be necessary to implement complex movement algorithms, which
was not necessary for performance evaluation).

Performance Evaluation of Prototype Game

Performance evaluation was carried out by running multiple automatic game
playing agents on single hosts. A total of 11 hosts was used in the experiment,
one of which was used to run the superpeer. The hosts all had 512 MB of main
memory and 1 GHz or 1.8 GHz processors. All hosts were connected by a 100
Mbit Fast Ethernet local network. Since the purpose of the performance test
was to evaluate the overhead of the implemented procedural FM mechanisms,
a simulation of a WAN was not required.

The experiment focused on a comparison of performance of the P2P MMO
game with and without trust enforcement. Trust enforcement could be turned
off, and then all private state modifications were executed by peers without
verification, and all public object accesses and peer interactions proceeded
unconditionally. The results of this part of the experiment were considered
as a reference point for comparison with the same simulation with trust
enforcement mechanisms turned on.

Only the performance results of the game in a stable state, with churn
near to zero (about 1 percent), was considered in the evaluation. One of the
reasons for this decision was that FreePastry and Scribe turned out to be
very unstable under higher churn. Another reason was that with low churn,
the reference performance of the game without procedural FM improved and
stabilized, and therefore the evaluation of the performance overhead of pro-
cedural FM was more reliable.

For the purpose of increasing the number of nodes, multiple game agents
were run on single hosts. However, here the scalability of the experiment was
limited by FreePastry and Scribe. It turned out that it was not possible to run
many nodes of FreePastry and Scribe on a single computer (regardless of the
operating system, although performance was slightly better on Windows than
on Linux). The maximum working number of nodes on a single host was about
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50, however this amount of nodes resulted in very unstable performance.
Therefore, in the experiment the number of game agents on a single host was
in the range of 10-40, thus limiting the total number of nodes in the game
group to about 400. Therefore, the experiment was run with the following
group sizes: 100, 200 and 400 peers.

For the evaluation experiment, one region was created in the game, and
this region had one coordinator (trusted superpeer). The superpeer was re-
sponsible for verification of private state. Every verification request to the
superpeer consisted of the following operations:

• Routing the request to the superpeer through the overlay.
• Finding the client in a data structure.
• Verifying the clients’ private state.
• Creating and signing the verification certificate.

Public state was managed by the superpeer or by peers chosen by the su-
perpeer (who could change his decision over time, thus distributing the load
between peers or allowing for peer departures). Regardless of who managed
the public state, every request for public state access resulted in the following
operations:

• Routing the request to the manager through the overlay.
• Finding the object in a data structure.
• Checking the signature on the verification certificate.
• Checking the position of the accessing player (for evaluation, this stage

was modified so that it always allowed access. However, the same amount
of operations was carried out as in the normal game.)

• Determining the results of the interaction.

These two types of requests, the verification request and interaction re-
quest, have been used to evaluate the performance of the procedural FM
architecture. As described above, the trust enforcement mechanisms could be
turned off. The experiment used the times of game operations with trust en-
forcement mechanisms as a reference value for the comparison with the game
operation times that included time for procedural FM mechanisms of the ver-
ification and interaction requests. The time overhead is of crucial importance
as a performance criterion in a game, since the game was interactive, and
increasing the time of executing game operations could lead to poor game
quality.

Figures 4.9 and 4.10 show the times of game operations that required pri-
vate state verification or public object interaction, respectively. The two types
of bars on the figures correspond to running the tests with trust enforcement
turned off (black bar labeled “NT”, short for “No Trust”) and with trust en-
forcement running (gray bar labeled “TE”, short for “Trust Enforcement”).
5 types of tests are shown on the figures. The first parameter of each of
these tests is the size of the game group: 100, 200 or 400 peers. The second
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Fig. 4.9 Median time of game operations that require private state verification

parameter controls whether public state was managed by the superpeer (cen-
tralized) or distributed to other peers.

Fig. 4.10 Median time of game operations that require public state interaction

The results show that the delay increase due to using trust enforcement is
significant, but for most cases, the game response times are within 1 second.
This is quite an acceptable delay in MMO games. Note that in a Wide Area
Network, the networking delays could well dominate over the delay increase
due to using cryptography in trust enforcement.

Since the verification and interaction requests use Pastry overlay rout-
ing, the delay increase due to the use of trust enforcement increases with
the growth of the game group size. It can be noticed that this increase is
roughly logarithmic. The median time increases by about 100 milliseconds for
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exponential increases of the group size. This corresponds to the known the-
oretical results concerning Pastry routing.

Distributing the functions of public state management from the superpeer
to other peers has a twofold effect. Firstly, the median time required for
public state interaction requests (when trust enforcement is used) increases
by 200-300 milliseconds. This is due to the fact that the superpeer is usually
better connected in the overlay than other peers, and the access time of other
peers can be longer. On the other hand, the median time required for private
state verification decreases by 70-80 milliseconds. This is due to the fact that
the superpeer has a smaller computational load and can handle verification
requests faster.

The results presented on Figure 4.9 and 4.10 showed the median response
times. The distribution of response times resembles a heavy-tailed distribution.
Some example distributions are shown on Figure 4.11. The Figure shows the
times of game operations that required private state verification when trust en-
forcement was turned on, and management of public state was done by the su-
perpeer. Distributions of times for three different group sizes are shown; it can
be seen that increasing the group size increases the response time, but that this
effect is limitedand the increase from200 to 400peers doesnot significantly alter
the distribution of response times. This confirms the theoretical properties of
communication in DHT-based overlays. It can be seen, however, that increas-
ing the group size leads to a narrowing of the distribution around its median
value, which can be interpreted as follows: the delay for overlay routing begins
to dominate in the response time over the other costs.

Fig. 4.11 Impact of group size on distribution of times of actions requiring
verification
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Distributing public state management from the superpeer reduces the
number of requests for public state interaction at the superpeer. This effect
is shown on Figure 4.12. The Figure shows the percentage of all interaction
requests that are served by the superpeer. The line close to 100% is obtained
when the public state is managed exclusively by the superpeer. (The line is
not equal to 100% because some of the interaction requests are lost - prob-
ably due to the high load of the superpeer that could refuse to process a
request.) The lower line is obtained when public state is distributed among
peers (the superpeer participates in sharing the load). It can be seen that
the distribution is effective and obtains fair load balancing regardless of the
group size. There were a total of 11 peers (including the superpeer) that
could be selected as managers of public state. Therefore, the percentage of
interaction requests that was observed at the superpeer - about 9% - re-
flects a good quality of load balancing. A similar load was observed on other
peers.

Fig. 4.12 Percentage of interaction requests served by superpeer

However, note that keeping public state management at the superpeer
reduces the need for transferring trust to other peers.

Summary of Performance Evaluation

The practical implementation of the proposed procedural FM framework has
demonstrated that it is possible to use procedural fairness enforcement in
real P2P MMO games. The observed delays of game actions due to the use
of trust enforcement were within 1 second for group sizes of up to 400 peers.
While these are small groups (it was not possible to simulate larger ones
with the available equipment, due to performance limitations of FreePastry),
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the observed increase of delays was logarithmic, indicating that (if the trend
observed for group sizes of 100, 200 and 400 were to continue), a group of
the order of magnitude of 10000 should not observe an increase in game
action times due to trust enforcement that would be larger than 2 seconds.
This is still a delay that could be tolerated by players. Note also that the
results of performance evaluation indicate that as group sizes increase, the
time needed for overlay routing begins to dominate over the delays due to
the use of cryptography in trust enforcement.

The experiments confirmed that the distribution of public state manage-
ment from the superpeer to other peers is necessary and can achieve fair load
balancing. Note that we have not used the overlay in our implementation of
the load balancing, but allowed the superpeer to choose peers responsible for
public state management and to explicitly transfer trust to those peers by
notifying the game group. This approach solved several security problems,
and allowed for load balancing that was not vulnerable to hot spots in the
DHT.

4.2.1.7 Summary of FM in P2P MMO Games

Many applications that could benefit from the P2P computing model can-
not use it because of concerns over security and fairness. In this section, we
have attempted to show how a very sensitive application (a P2P Massive
Multiplayer Online game) may be protected from unfair user behavior. How-
ever, let us note that while our research focused on P2P MMO games as
a challenging application, the developed procedural FM protocols could be
applied in other P2P applications. An example could be P2P auctions that
have many properties similar to the discussed conditional or concealed game
state in MMO games. Future work may consider applying trust enforcement
mechanisms in P2P e-commerce applications.

In our proposed procedural FM architecture, we have been forced to aban-
don the pure peer-to-peer approach for a hybrid approach (or an approach
with superpeers). However, we have attempted to minimize the role of the
centralized trusted components. The result is a system that, in our opinion,
preserves much of the performance benefits of the P2P approach, as exem-
plified by the P2P platform for MMO games proposed in [80]. At the same
time, it is much more secure than the basic P2P platform.

We see trust as yet another security functionality (such as privacy or au-
thentication) that can be provided by known cryptographic primitives. The
approach that we have tried to use for procedural FM in peer-to-peer games is
considerably different from previous work on trust management in P2P com-
puting, that has usually relied on reputation. However, reputation systems
are vulnerable to first time cheating, and are difficult to use in P2P com-
puting because peers have to compute reputation on the basis of incomplete
information (unless the reputation is maintained by superpeers). Instead, we
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have attempted to use cryptographic primitives to ensure a detection of unfair
behavior and to enable trust.

The proposed trust management architecture was validated by an imple-
mentation in a practical P2P MMO game. The performance of the implemen-
tation was tested and it was found that the use of trust enforcement incurs
a practical performance overhead. Therefore, the use of the proposed trust
enforcement mechanisms is indeed practical in P2P games. As the sizes of
game groups increases, the delays due to overlay routing begin to dominate
over additional delays due to the use of cryptography.

The mechanisms that form the proposed trust management architecture
work on a periodic or irregular basis (like periodic verification of private
players by the coordinator or Byzantine agreement after a veto). Also, the
possibility of cheating is not excluded, but rather the trust enforcement mech-
anisms aim to detect cheating and punish the cheating player by excluding
him from the game. In some cases, cheating may still not be detected (if the
verification, as proposed, is done on a random basis); however, we believe
that the existence of trust enforcement mechanisms may be sufficient to de-
ter players from cheating and to enable trust, like (usually) in the real-world
case of law enforcement.

4.2.2 Distributed Queues

Queues, especially priority queues, are one of the principal mechanisms for
ensuring procedural fairness. In an ODS, queues may often be used by in-
dividual agents; however, in this case they will always rely solely on local
knowledge. In order to apply a queue as a mechanism for assuring procedural
or distributional fairness in an entire ODS, usually a centralized element of
control is required. In this centralized controller (which can be an agent in
the ODS that is trusted by all others), a single queue (or a system of queues)
is created that has access to global information. Such an approach, as any
other that relies on a centralized control element, is vulnerable to failures
and scalability problems, as well as imposing an additional requirement of
a-priori, unconditional trust of all agents in the controller.

It is possible to avoid the difficulties of using a centralized controller in an
ODS and still to make use of a queue that possesses global knowledge. This
approach can be called distributed queuing. In this section, we shall describe
how a distributed priority queue can be created using a distributed sorting
algorithm. The proposed algorithm is based on gossiping protocols and ant
algorithms.

A key challenge in the design of a distributed queue for ODS is the need
to rely on local information (avoiding centralized control). However, this ap-
proach makes the distributed queue vulnerable to cheating by adversaries
who can attempt to improve their position in the queue (or worsen the po-
sition of their competitors). A distributed queue may not be able to prevent
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such cheating strategies using only local information, but it should at least be
able to detect cheating adversaries. Therefore, the protocol of the distributed
queue (based on a distributed sorting algorithm [64]) should be supplemented
by appropriate cryptographic mechanisms. It turns out that the use of agents
who are trusted a priori cannot be altogether avoided; however, their func-
tionality can be reduced, and the system does not need to rely on a single
such agent.

The priorities used to control the distributed queue can be any value (de-
pending on application semantics); in the systems discussed here, this value is
a measure of global trustworthiness. This measure is used to create a priority
queue where the most trusted agents are first.

We shall assume the existence of a standard TMS that calculates trust or
reputation of a given agent in a given context. In a distributed system, such
a service can be implemented using one of the many proposed variations of
Peer-to-Peer trust management systems, such as Eigentrust [69], or using a
structured P2P network. We also assume that TMS is capable of calculating
trust that is objective. This does not mean that the service does not calculate
subjective trust, but only that it can additionally give a trust value for any
user that does not depend on the trustor (e.g. by employing WOWA [33]).

Of course, the distribution of control creates security vulnerabilities. Ad-
versaries may be interested to be first in the priority queue, although their
priorities do not satisfy the selection requirements. Our goal is therefore en-
suring fair ordering of agents, in the presence of adversaries. To this end,
we use a special protocol design and cryptographic primitives. We assume
that there are several trusted components (superpeers) in our network which
control the fairness of all agents.

4.2.2.1 System Organization

We consider an ODS of N agents. We model the distributed system as a gen-
eral graph, where the semantics of the link is that of a logical connection that
exists if two agents interact with each other. Initially, an agent ni connecting
to the network connects to d other agents, called neighbors (d is a parameter
called the network degree). However, the system is highly dynamic. During
experiments we allow agents to disconnect and join the system according to
a churn factor.

Each agent in our system can communicate only with its own neighborhood
(set of its neighbors). A single agent has no knowledge about the system size
and existing connections besides its own neighborhood.

We assume a strong authentication mechanism, that makes whitewashing
and creating “virtual” peers (Sybil attacks) impossible. This can be easily
accomplished by a distributed Public Key Infrastructure (PKI) that uses a
group key to sign public keys of joining peers [1].
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We assume that there are several trusted components (superpeers) in our
network called arbiters, which control the fairness of all agents [172]. Arbiters
can be selected from all agents (for example 2% of most trusted agents will
be the arbiters).

Relationship to Trust Management Service

The proposed system can be used as a priority queue that uses any informa-
tion to determine the priority. However, we propose to apply this system to
determine the most globally trusted agents in the ODS.

For the selection of trusted agents in a specific context, trust can be an
application-specific value. We distinguish between trust and reputation, but
the selection protocols could work using any of the two concepts. All that is
required is that trust or reputation would be expressed on an ordinal scale,
enabling direct comparison. Since trust and reputation are context-specific,
the selection must also be in a specific context. From now on, we shall assume
that such a context is given, although our protocols can work with many
contexts at the same time.

The selection of agents by trust from a global population requires that trust
values should be available and comparable for all agents. We here assume that
there is a Trust Management Service (TMS) capable of providing such trust
values. TMS takes as an input the ID of any agent ni and a context C, and
returns trust value tCi . Note that tCi is independent of the agent who executes
the service.

The TM service is also capable of accepting reports in a specified context,
in other words, of receiving information that would be used to calculate re-
putation in a context. This capability will be used by our protocol as a way of
providing incentives for fair protocol execution. The TMS itself will be used
to control the fairness of execution of the priority queue protocol.

4.2.2.2 Sorting of Agents by Priority

A queue must realize the following main functions: push, which adds a new
agent into the queue with a specified priority, and pop, which removes the
agent with the highest current priority from the queue. However, before we
describe how these functions can be implemented, we will explain how the
distributed priority queue maintains its most important invariant: that nodes
in the queue should be sorted according to their priority (or, in our case, their
global trust).

Existing centralized sorting algorithms are expensive and vulnerable to
bottlenecks, moreover they are not suitable to maintain actual ranking in the
face of churn and the large scale of our network. In our approach we use a
gossip-based sorting algorithm which is a modification of [64]. We extend the
original algorithm by secure initial random number generation, by validating



194 4 Fairness Management

the swap requests and by proposing the different types of ants that perform
these swaps.

In the beginning of the algorithm, each agent ni is assigned a random
number ri. ri values are chosen with a uniform distribution from [0, 1]. Dur-
ing the algorithm computation, each agent swaps its ri with nodes from its
neighborhood according to the value of their priority. With the progress of
the algorithm, the order of ri gradually starts to reflect the order of the
priorities. The detailed description of the algorithm follows.

Random number generation is computed using one of the secret sharing
methods. When agent ni starts the algorithm, ni requests all its neighbors to
generate the pre-shared secret. Each neighbor nj of ni generates a pre-shared
secret Psj , signs it and sends it back to ni. ni computes the random number
ri using all the pre-shared secrets, using bitwise XOR operation (or similar)
ri = Ps1 ⊕ Ps2 ⊕ Ps3 . . . ⊕ . . . Psk

. ni keeps the pre-shared secrets as proofs.
The algorithm proceeds by exchanging random swap requests. In each swap

request, a requesting agent (ni) sends a message to a randomly chosen agent
nj . The responding agent nj compares the priorities (trust values) tCi and
tCj . If the order of tCi and tCj is different than the order of random values ri

and rj (i.e. tCi < tCj and ri > rj , or tCi > tCj and ri < rj ), the two agents
swap their random values. We assume that both the request and the reply
are signed by both agents, regardless of the result. After the exchange each
agent sends the result to its arbiter. The arbiter can verify the correctness of
the agents’ ri and rj values with a certain probability that depends on the
trust the arbiter has in the agents (in the context of protocol execution).

During the swap request, the manner in which agent ni chooses its ex-
change partner nj turns out to be crucial for the algorithm’s performance.
In the original algorithm [64], the exchange partner nj was picked out at
random from the whole population. In our version of the algorithm, we also
consider local exchanges (only within ni neighborhood) and k-step random
walks (different possibilities are detailed in the experimental section).

After a number of such swap requests, using ri, agent ni can estimate the
relation of its priority tCi to priorities of other nodes in the whole popula-
tion. Assume that the initial random numbers are chosen with an uniform
distribution from [0, 1]. If we want to select the 10% most trusted agents, we
simply take the agents which have ri > 0.9. An agent that receives a high
ri and keeps this value for l subsequent exchange rounds (l subsequent swap
requests) is deemed to be located at the beginning of the priority queue.
When the pop operation is performed on the queue, such agents (usually a
very small number, perhaps only one) will reply to the pop request. A final
comparison of their priorities can be then carried out to determine the correct
order of leaving the priority queue.

The algorithm does not stop, as we assume that both the network and the
priorities (trust values) tCi of agents can change. However, a service (such as
the pop operation of the distributed priority queue) that uses the algorithm’s
results will need them at a specific moment (even though the result might not



4.2 Procedural Fairness Management 195

reflect the recent changes). Consequently, we will evaluate the order proposed
by the algorithm not only in steady-state (after the sorting stabilizes), but
also during execution.

4.2.2.3 Evaluation of the Distributed Priority Queue’s Invariant

We evaluate the algorithm presented in the previous section from two dif-
ferent perspectives. Section 4.1 considers procedural fairness, i.e. how the
algorithm works in the presence of malicious adversaries that try to improve
their position in the priority queue. Section 4.2 evaluates the performance of
the sorting algorithm, measured as the quality of proposed ordering.

Procedural Fairness of the Priority Queue

In this section, we will present how the protocol achieves procedural fairness
of results in the presence of adversaries. We shall therefore focus on adver-
saries that attack our protocol for the purpose of leaving the priority queue,
even though their priorities are too low. We do not consider the possibility of
falsifying priorities by the agents but assume that these priorities are glob-
ally known and can be verified (for our example application, the priorities are
global trust values calculated by the TMS; we do not consider the possibility
of attacks on the TMS service).

To influence the outcome of protocol operation in their favor, adversaries
can:

1. Choose values for initial ri in a non-random manner. If many adversaries
choose the same random number, the protocol will not be able to sort by
exchanging these numbers.

2. Cheat in exchanges of random numbers by claiming a higher priority tCi .
3. Cheat in exchanges of random numbers by altering ri in between exchanges

(for example using its ri from previous swap).
4. Cheat at the end of sorting by announcing false ri.

Note that we use the assumption that agents cannot create “virtual” agents
(using the Sybil attack), nor can they change their identity (strong authen-
tication).

We will discuss how the algorithm copes with these problems in subsequent
paragraphs.

Initial random numbers. As mentioned in Section 3, if the initial ri is
generated by an agent independently of its neighborhood, it is possible that
all ri are not sufficiently varied. Thus, the resulting order cannot reflect the
order of priorities.

Consider a situation, in which a group of agents chooses the maximum
number r. That may create regions in the network where sorting will be ha-
ndicapped or even impossible. In such regions, the algorithm cannot swap ri,
as all the values are equal.
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We cope with this situation by controlling the way in which initial ri are
generated. A node computes its ri using secret sharing. The parts of the
secret are obtained from the random values given by the node’s neighbor-
hood. Moreover, ni keeps these values as proofs (the values are signed by the
neighbors who sent them).

Claiming higher priority. Adversaries can be completely prevented from
cheating during the exchange of random numbers if, every time an exchange
is made, both parties summon an arbiter (possibly more than one) who calcu-
lates the trust values of both parties and returns a verdict. However, calling
a trusted third party for each exchange would be too expensive. Therefore,
we use a random verification that depends on the reputation of an agent in
the context of fair sorting. If the agent’s reputation is below a threshold, his
decisions to swap random numbers will be checked more frequently. Setting
this threshold to a high value ensures that agents are strongly discouraged
from cheating. Of course, any verification of the swapping requires an arbiter
that can be any randomly selected agent. Finally, if the swapping decision of
an agent is incorrect, a negative report in the context of sorting fairness will
be passed to the TM service.

Altering ri. An adversary can choose an arbitrary value of ri in between
swaps. However, in the following swap, such an arbitrary value will not have
a correct signature. Recall that we request that ri is signed by agents who
generate a random value, and then it is signed in each swap. Therefore, a false
ri can be easily detected in the next swap. Upon detecting such behavior,
the detecting agent fills a report that reduces the cheater’s reputation (such
a report can be easily validated by checking the ri and the false signatures).
Note that this schema requires that the sorting algorithm does not stop.
In our algorithm, agents check their trust values randomly. Therefore, in a
longer period of time, any false value of ri will be detected.

Performance of Distributed Priority Queue

Algorithm Implementation. We have implemented our sorting algorithm
using the Anthill framework. Swap requests and resulting ri values are repre-
sented by so-called ants. An ant uses a modified random walk with x steps, or
the gossiping algorithm [64]. We tested two types of random walks, performed
by ants and a randomized swap between all the nodes in the network:

• RWxAnt - A standard random walk with range x. The ant contains a swap
request. If the swap method cannot be executed by peer n he must send
the request to his neighbor. Each time an agent forwards the swap request,
the value of x is decreased by 1, and when it reaches 0 the request is sent
back to the requesting agent. For instance, if x = 1, every agent in the
network can swap its random value ri only with its neighborhood. In the
worst case, each ant generates 2 ∗ x messages, as each ant returns to the
requesting peer using exactly the same path it used in the forward walk.
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Fig. 4.13 Effect of distribution of trust value on quality of sorting

• SFxAnt - Sniffing First with x sniffing steps. Here, an ant should visit x
agents and check their tCi and ri values. Among these x agents, the ant
computes the best candidate for the swap operation, taking into account
the priority tCj and the random number ri. Each request in this algorithm
always generates 2 ∗ x messages.

• TeleportAnt - Swap requests are performed between random agents in the
network, without considering neighborhoods [64].

Fig. 4.14 Effect of distribution of trust value on traffic generated by algorithm
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Testing parameters. We run our sorting algorithms several times with
different parameters that are: network size, network degree, probability dis-
tribution of trust values tCi , and churn factor. Each ant type was tested with
a network of 10, 100, 1000, 10000 and 100000 nodes. The network degree
parameter (d) defines the initial number of connections of every node in the
network. We have set d to 2, 3, 4, 5, 7 or 10. We tested two probability dis-
tributions of priorities tCi : uniform and Pareto. We also tested dynamically
changing networks with a 5% churn factor (constant during single experi-
ment). Churn has been implemented as random arrivals and departures of
similar numbers of nodes (the average size of the network does not change).

Experiments. Each experiment was repeated 10 times, and we present
average results. We have calculated t-Student 95% confidence intervals for
the evaluation metrics, but the width of the confidence interval was usually
about 1% of the value. For that reason, the confidence intervals are not visible
in the presented figures.

A single experiment consists of 50 rounds. In the beginning of each round,
each agent generates an ant with a probability 0.5 and a timeout set to 2ttl+1,
where ttl is the amount of iterations that ant can exist in the network (the
agents do not generate a new ant until the ttl drops to 0 or its ant comes
back). After that, the ants wander through the network. At the end of the
round, we gather the current state of sorting and evaluate its quality using
one of the proposed metrics.

Evaluation metrics. The main metric used to evaluate the results of
sorting is the mean square error of the current ordering, relatively to the
perfect ordering. Let us assume a static snapshot of the network after t rounds
of the algorithm. Without loss of generality we assume, that the agents are
numbered according to the non-decreasing tCi values: tCi ≤ tCi+1. n1 is the
agent with the least priority, and nN is the agent with the highest priority.

Let us denote as pi the rank of agent ni, taking into account only the
ordering by its current ri value. For instance, if pi = 1, ni has the lowest ri

in the system.
Our quality measure is the mean square distance between the ordering

resulting from ri values and the proper ordering:

Qt =
∑

i

(pi − i)2.

This measure converges to 0 when an algorithm sorts the priorities tCi com-
pletely.

In Figure 4.15, we present the effect of the initial distribution of priorities
on the quality of sorting. Note that the distribution of priorities can be quite
uneven, if they depend on agent properties that have an uneven distribution
in the ODS, such as, for example, availability of peers in a P2P system. We run
6 scenarios using RW3, SF2 and TeleportAnt assuming uniformly distributed
priorities, and the same ants assuming a priority distributed in agreement
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Fig. 4.15 Impact of churn on quality of sorting

with the Pareto distribution. We gathered results after 50 rounds. The quality
of sorting improves linearly with the course the algorithm, but it does not
converge to perfect order during the simulation time.

Fig. 4.16 Impact of churn on traffic generated by algorithms

For both uniform and Pareto distributions, the best results were achieved
by the random walk ant with range x = 3. The result of TeleportAnt was
almost as good as the best ant. The sniffing ant algorithm with range x =
2 was little worse than the others ants, but generated less swap requests
than the TeleportAnt. As shown in Figure 4.16 the message overhead for
TeleporAnt was much lower than for the other ants. This is because the
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longer range ants wander through the network for a long period of time
before they come back to the requesting agent.

The TeleportAnt seems to offer the best price-performance for both dis-
tributions, but we should take into consideration that this ant uses another
algorithm to select the group of agents to swap with. Another drawback is
overheads connected with routing that TeleportAnt algorithm omits (ant vir-
tually “teleports” to the destination). This indicates that the simple random
walk is a robust choice for various distribution types.

Note that on average, using RW3 the number of swap requests is about
20.6 per agent during 50 rounds. This means that in our application that
determines the most trusted agents, on average, an agent must call the TMS
less than once in every two turns.

In the next experiment we tested the impact of churn on sorting quality.
We ran 6 scenarios using RW3, SF2 and TeleportAnt (the same as in the
previous scenario) assuming uniformly distributed test values. We have tested
these ants with no churn (0%) and with churn factor 5% (constant a during
single experiment). Churn has been implemented as random arrivals and
departures of similar numbers of agents (the average size of the network
does not change). Generally, the quality of sorting improves linearly with the
algorithm’s operation time, and similarly to the first experiment, the results
after 50 rounds do not converge to perfect order. As predicted, convergence is
much slower for the churn factor at 5%. After 50 rounds, the best results for
the churn factor 5% were achieved by the TeleportAnt and random walk. The
results are almost identical, but the Telepor-tAnt achieves these results by
generating more swap requests. The sniffing ant algorithm with range x = 2
algorithm is considerably worse than the others.

As in previous experiment we must take into the consideration that
TeleportAnt uses another algorithm, which helps to select the best candi-
dates to swap. Generally a random walk algorithm with step x = 3 is well
suited for dynamic environments.

4.2.2.4 Summary of Distributed Queues

Priority queues are widely used to achieve procedural fairness. Distributed
priority queues can be especially useful in open, fully distributed systems,
where central control is hard to achieve. In this section, we have proposed a
protocol that implements a distributed priority queue in a distributed man-
ner. The proposed protocol requires the existence of trusted third parties (the
arbiters who can evaluate the ordering in the priority queue). However, the
role of these arbiters can be reduced if for any decision, more than one arbiter
is called, and the arbiters make a decision based on the majority of opinions.

The pop operation of the proposed priority queue can be implemented by
any selected agent that sends a pop message to all agents in the ODS (using an
application-layer multicast protocol, this can be achieved efficiently). When
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an agent receives the pop request, it evaluates the condition described above:
whether or not it has kept its ri value for the recent subsequent l swap
rounds (l is a system-wide parameter that can be set to an appropriately
large number). Such agents respond to the originator of the pop request
specifying their priority values. The agent which executes the pop operation
can order the responding agents by their priorities, if she receives more than
one response.

The push operation of the priority queue is performed simply by a node
that joins the network and starts to exchange its ri value. Such a node will
eventually be placed in the right position in the priority queue.

An example of an application of a distributed priority queue can be the
selection of superpeers in a P2P overlay network. Nodes that are chosen for
superpeers must be the most trusted of all. Furthermore, our algorithm can
ensure that a constant percentage (for example, 10%) of the most trusted
nodes will be superpeers at any given time.

We have tested the fairness and performance of the distributed priority
queue. Its fairness depended on the resilience of the sorting algorithm to
adversaries that tried to modify the algorithm’s operation. We used simple
cryptographic measures such as secret sharing and digital signatures to in-
crease the security of our protocol. While cheating is not made impossible
by these measures, it becomes possible to detect unfair behavior. The proto-
col uses the available trust management service to maintain a reputation of
agents in the context of fair sorting of trust values.

Finally, we investigated the performance of various kinds of sorting algo-
rithms. For this purpose, we simulated gossiping protocols that used various
kinds of localized random walk. Of these, the most resilient to the distribu-
tion of trust values and to churn was a simple random walk. The range of
this walk should depend on the level of churn; for more dynamic systems,
higher ranges of the random walk are preferred. During tests, we have also
detected that our algorithm is scalable. Results for network size n = 10 are
similar to n = 100000.

Using our protocol, it is possible to determine the most trusted agents in
a distributed, efficient and fair manner. The cost of the protocol lies in a
frequent execution of the trust management service during sorting, that is
made necessary due to the dynamic nature of trust. Other types of priorities
may be less dynamic.

4.2.3 Distributed Agreement

An important type of fair procedure is an agreement (consensus) or voting
procedure. Essentially, the task is to determine a choice of an action that is
approved by a required set of agents in the ODS (this required set can be a
simple majority, all agents, or some other set of usually more than 50% of
agents). In distributed systems, this problem has been considered since the
1980s when Lamport defined the so-called Byzantine agreement problem.
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This problem can be defined as follows: how should the agents in an ODS be
able to agree on an action (or value) in the presence of adversaries who par-
ticipate in the system and cannot be distinguished from other agents? Note
that in the case of Byzantine agreement, disagreeing agents are considered
adversaries. These protocols could tolerate a certain number of adversaries
(if there are t adversaries, the early protocols usually worked with at least
2t + 1 fair agents, but this was due to an assumption of a simpler failure
model where nodes could only silently leave the system). However, for a long
time, Byzantine agreement protocols have been considered as too costly to
use in practice, due to a high (usually quadratic) communication overhead.
Another reason for this opinion was that previous Byzantine agreement proto-
cols required unrealistic assumptions about low network delays (synchronous
operation) and simple failures of nodes (they did not consider malicious
adversaries).

Recent research on Byzantine agreement has resulted in new, promis-
ing protocols that can be considered practical given today’s computing and
communication infrastructure. One such protocol was PBFT [28] that used
Byzantine agreement to synchronize a set of replicas in an ODS. PBFT relies
on a coordinator (the primary replica) to control the agreement protocol (any
agent can be a coordinator for a certain period of time). Also, PBFT uses a
three-phase commit protocol in order to write new data to the replicas. PBFT
guarantees safety (replica consistency) and liveness (the ability of processing
new requests by the system) as long as there are at most t adversaries and
3t + 1 fair agents in the ODS.

Another protocol, Paxos [110] reduced the 3-phase commit protocol of
PBFT to a 2-phase commit, thus reducing the communication overhead of
the protocol. Zyzzyva [84] makes use of the agents that consume the repli-
cated content in order to support the agreement process (the previous pro-
tocols used the replicating agents themselves). Bosco [153] is a protocol that
can achieve Byzantine agreement in one communication step at the cost of
tolerating fewer adversaries (Bosco requires 7t + 1 fair agents for strong con-
sistency guarantees).

Quorum-based systems such as Q/U [3] are another form of distributed
agreement protocol that offers weaker guarantees and assumes static mem-
bership. An operation in a quorum-based system is successful if it can achieve
a quorum (find a required number of agents that can offer a service). Quorum-
based systems are also tolerant to Byzantine failures (malicious adversaries),
but only if the number of adversaries is smaller (Q/U requires 5t + 1 fair
agents).

Practical applications such as Chubby (Google) or Zookeeper (Yahoo) use
Byzantine agreement to provide fault tolerance. Byzantine agreement also has
applications in P2P systems. Hybrid approaches such as hierarchical Byzan-
tine agreement protocols offer an interesting and intuitive way of reducing
communication costs and increasing fault-tolerance [189]. Introducing trusted



4.3 Emergence of Fairness as a Result of Trust Management 203

agents into the ODS or using a trust management system directly is a promis-
ing direction for improving distributed agreement protocols.

4.3 Emergence of Fairness as a Result of Trust
Management

In this section, we return to the subject of chapter 3 and investigate the
relations between trust and fairness in ODS. There exists much evidence to
support the idea that the two concepts are related; a connection exists even
at the level of basic, abstract definitions of trust and fairness, as discussed in
section 2.2.1.1. Studies of indirect reciprocity demonstrate another example
of a deep and complex relationship between a special kind of trust manage-
ment mechanism (reputation) and a special kind of fairness (indirect reci-
procity) (see section 2.3.7). In this section, we shall investigate the relation
between trust and fairness more directly, using the definitions and measure
of distributive fairness developed in section 2.3.

Ensuring fairness of resource distributions in ODS is difficult. On the other
hand, trust management (TM) is widely used to improve procedural fairness.
It therefore seems tempting to consider TM methods as a tool to improve
distributional fairness, as well.

The question considered in this section is whether or not TM systems can
also be used to ensure or increase fairness of resource distribution. While this
is different (and more difficult) from procedural fairness, the two concepts
are related. Norms and rules of behavior are often defined with the fairness
of resource or cost distribution in mind. As an example, consider the laws
that oblige all citizens to pay taxes. Enforcing procedural fairness (abiding by
the tax laws) has the goal of enabling efficient resource redistribution by the
government (among its other duties). Such a resource redistribution should
result in increased fairness of income distribution.

The question considered in this section can be formulated as the following
hypothesis: in successful reputation (or trust management) systems, fairness
should be an emergent property. By emergence we understand the arising
of a complex property (fairness) out of simpler system behavior (the use
of a reputation system by agents). The emergent behavior should also be
qualitatively different and not reducible to the sum of simpler behaviors. This
is the case of emergence of distributive fairness due to trust management,
because the increase of distributional fairness is qualitatively different from
even very high mutual trust of agents. We shall refer to this hypothesis as
the Fairness Emergence (FE) hypothesis. In this section, the FE hypothesis
has been verified.

We will use a simulation approach to verify the FE hypothesis. However,
our goal is not just to see whether the hypothesis applies in an abstract mo-
del, but to verify the validity of the Fairness Emergence hypothesis in realistic
conditions. In order to realize this goal, we need to study the behavior of a
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popular, well understood trust management system. The natural candidate
for such a system is the reputation system used by Internet auctions. Previous
studies have established that the use of reputation systems increases the total
utility of agents [134, 142], and investigated the sensitivity or reputation
systems to selfish or malicious user behavior [34]. This study investigates
how the use of reputation impacts the fairness of the distribution of agents’
utilities.

The goal of verifying the Fairness Emergence hypothesis under realistic
conditions can be fulfilled by a study of Internet auction systems under non-
stationary conditions, and in the presence of selfish and malicious users.
Reputation systems used in other applications, such as P2P networks, are
vulnerable to the same effects. Therefore, our model of a reputation system
is sufficiently general to apply to different applications, while at the same
time we are able to draw on the well-known properties of reputation systems
used in Internet auctions in order to increase the realism of our model. This
is done at the risk of drawing conclusions that will apply mostly to Internet
auctions. The realism of our study of reputation systems for Internet auctions
is increased further by the use of trace-driven simulation (to our knowledge,
this is the first such study described in the literature. We have obtained a
large trace from a Polish Internet auction provider that is used in the sec-
ond group of simulations to realistically model agent presence in the system.
However, the results from our first group of simulations are sufficiently gen-
eral to warrant drawing conclusions about the FE hypothesis in the domain
of other applications.

Also, the fairness of distributions of users’ utilities in Internet auctions is an
important goal in its own right. Buyers or sellers in Internet auctions expect
that if they behave as fairly as their competitors, they should have a similarly
high reputation. In other words, the users of a reputation system expect that
the reputation system give a fair distribution of reputations. In the absence
of other differentiating factors, this should also ensure a fair distribution of
utilities. This expectation of users is a consequence of the general social norm:
people expect fair treatment from many social and business institutions, like
a stock exchange, or an Internet auction site.

The questions considered in this section are therefore the following: is
the FE hypothesis universally true? Does the FE hypothesis apply under
realistic conditions? How sensitive is fairness emergence to the performance
of a TM system? What are the conditions that can lead to a lack of fairness
emergence due to the use of a TM system? Does fairness emergence occur
if agents are infrequently unfair? Does fairness emergence occur if agents
have a low sensitivity to reputation? Does fairness emergence occur if agents
employ discrimination? These and similar questions can lead to a better
understanding of the ability of trust management systems to increase fairness
of distribution of costs or resources in an open, distributed system without
central control.
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4.3.1 Considering Fairness in Trust Management
Systems

In most research, a trust management system is considered successful when
the sum of utilities of all agents in the ODS is highest (recall this property
of the Prisoner’s Dilemma that was introduced in section 2.3.5.1). Note that
the utilitarian paradigm is used even if the experiment or simulation uses a
more complex model of agent interaction than the Prisoner’s Dilemma.

The use of Prisoner’s Dilemma allows for an implicit consideration of agent
fairness, while the sum of utilities is considered explicitly. Yet, in a more real-
istic setting, the assumptions of the Prisoner’s Dilemma may not be satisfied,
and it is possible to point out cases where the utilitarian approach fails to
ensure fairness: in an online auction system, a minority of agents can be
constantly cheated, while the sum of utilities remains high. A notable ex-
ample of explicit consideration for fairness of reputation systems is the work
of Dellarocas [34]. An attempt to demonstrate that explicit consideration of
fairness leads to different results in the design and evaluation of reputation
systems has been made in [178].

In a real-world setting, users of trust management systems would be ex-
pected to have quite varied levels of utility (perhaps even incomparable ones).
How, then, do we expect a trust management system to realize a goal of fair-
ness? And how can the Fairness Emergence hypothesis be true?

This concern is based on a frequent misconception that mistakes equality
for fairness. If a trader in an Internet auction house has better goods, provides
better services and has better marketing than other traders, it is perfectly
fair that he should have a larger transaction volume and a larger revenue. In
fact, his reputation should increase, as well, so the trust management system
should in this case support him in getting even more trade. On the other
hand, if we have two honest traders that have comparable goods, services, and
marketing, yet they have very unequal reputation and transaction volumes,
surely something is wrong in the way the trust management system works.

Therefore, when all other factors can be excluded (equivalent to the ceteris
paribus assumption from economics), fairness can be identified with distribu-
tional fairness. In a laboratory setting, such conditions can be satisfied and
we can design trust management systems that realize the goal of fairness,
even in the presence of adversaries.

4.3.2 Verifying the Fairness Emergence Hypothesis
by Simulation

To verify the Fairness Emergence hypothesis, we used simulation experiments.
The FE hypothesis would hold if we could establish that the reputation
system causes an increase of the equity of the distribution of utilities. In
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particular, we will be interested to study the impact of the quality of the
reputation system on the equity of utility distributions.

The simulator is based on the Repast 3.1 platform [138] and resembles an
Internet auction system. In the design of the simulator, we had to make
a decision about a sufficiently realistic, yet not too complex model of the
auction system, of user behavior, and of the reputation system. We chose to
simulate the reputation system and the behavior of its users as faithfully as
possible (the only simplification is that we use only positive and negative fe
edback).

The auction system, on the other hand, has been simplified. We simu-
late the selection of users using random choice of a set of potential sellers.
The choosing user (the buyer) selects one of the sellers that has the highest
reputation in the set.

After the buyer has selected a seller, a transaction between the two agents
may occur. However, this is not always the case in our simulations, because
the chosen seller may have a reputation that is too low for the buyer. If
the chosen seller has a reputation below the buyer’s acceptance threshold, no
transaction will occur. Still, we count the number of such transaction attempts
in our simulation. The number of transaction attempts is used as a measure
of time in our simulation (since we assume that each transaction attempt
would consume some time and effort on behalf of a buyer, the number of such
transaction attempts is limited). Furthermore, the granularity of transaction
attempts in our simulation is very high. To show meaningful results, we group
several hundred subsequent transaction attempts into one turn. The turn is
used as a measure of time for the demonstration of simulation results.

In this paper, we describe two sets of simulation results. The first set was
obtained from simulations of a closed system of agents – the set of agents
was kept fixed for the duration of the simulation. This approach was used
initially to reduce the number of factors that could impact the results, and to
study fairness emergence in a simpler setting. The second set of simulation
results was obtained from a trace-driven simulation approach that was used to
control the presence of sellers in the system. This allowed for a more realistic
simulation of an open system of buyers and sellers, where the time a buyer or
seller could spend in the system was controlled by the trace. The second set
of simulation results takes into account more complex factors, but was used
to verify the results from the first set.

4.3.2.1 Agent Behavior

In our simulator, a number of agents interact with each other. There are two
types of agents in the system: fair and unfair agents. Dishonest agents model
adversaries. To test the FE hypothesis, we shall be interested in the fairness
of utility distributions of fair agents. The payoffs of fair and unfair agents
will also be compared.
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In the closed system simulations, all agents are similar. In the trace-driven
simulations that will be discussed in more detail below, agents can be buy-
ers or sellers (this separation is a consequence of the separation of roles in
real auction systems, where users mostly either buy or sell). This additional
distinction makes the simulations more realistic.

When an agent wants to carry out a transaction, it must make three deci-
sions. The first decision concerns the choice of a transaction partner (seller)
and whether or not to engage in the transaction. The agent chooses his part-
ner from a randomly selected set of k other agents (in the simulations of the
closed system, k has been equal to 3 or 1). From this set, the agent with
the highest reputation is chosen. However, if the highest reputation is lower
than a threshold pchoice

min (in the closed system simulations, fair agents choose
partners with a reputation of at least 0.45, and unfair agents: 0.3), then the
choosing agent will not engage in any transaction. If the best agent’s reputa-
tion is sufficiently high, the choosing agent will engage in the transaction with
a certain probability p (in the simulations presented here, this probability
was 1).

The second decision concerns the agent’s behavior in the transaction. This
decision can be based on a game strategy that can take into consideration the
agent’s own reputation as well as the reputation of his partner, the transac-
tion history and other information. We decided to use the famous Tit-for-tat
strategy developed by Rapaport but extended it using a reputation thresh-
old: if two agents meet for the first time and the second agents’ reputation
is below pgame

min , the first agent defects. The strategy used in the simulations
presented here is also based on the threshold pcheat

min . In the case where the
partner’s reputation is higher than pcheat

min , the agent would act fairly; other-
wise, it would cheat with a certain probability c. In the simulations presented
here, fair agents had a cheating probability of 0, while unfair agents had a
cheating probability of 0.2 and a reputation threshold of 0 - meaning that
unfair agents cheated randomly with a probability of 0.2.

The third decision of the agent concerns the sending of reports. For positive
and negative reports, an agent has separate probabilities of sending the re-
port. In the simulations presented here, the probability of sending a positive
report, p+

rep was 1.0, while the probability of sending a negative report p−rep

varied from 0 to 1. This choice is based on the fact that in commonly used
reputation systems [179], the frequency of positive reports is usually much
higher than of negative reports. In the simulation it is also possible to specify
a number of agents that never send reports. This behavior is independent of
the honesty or dishonesty of agents.

The strategies of agents in our simulations do not evolve, but remain fixed
for the duration of simulation. In this respect our work is different from the
research on evolution of cooperation or indirect reciprocity [182, 165]. Our
research is focused on verifying the effect of trust management on fairness,
without considering how the strategy of using trust management or reputa-
tion has evolved – that is the concern of related and future work [134, 27].



208 4 Fairness Management

Note here that the presented model of agent behavior with respect to the
reputation system matches many kinds of applications. The model has been
described using Internet auctions as an example. Another kind of realistic
application is a Peer-to-Peer system. A transaction in such a system is an
exchange of data or services (resources). Unfair behavior in such a system is
called free-riding: peers use resources of others, but do not reciprocate. A P2P
application can use reputation to combat free-riding. The reputation system
in a P2P application is distributed, in contrast to the reputation system used
in Internet auctions. However, the discovery of proofs by the P2P reputation
system is affected by the quality of the distributed search algorithms and
by the presence of adversaries, who can attempt to drop negative proofs. A
result is a smaller availability of negative reports, which has been modeled
in the simulator by varying the probability p−rep varied from 0 to 1. This
type of adversary has been discussed frequently in the literature [99, 88, 69].
The first set of our simulations presents results that can also apply to P2P
applications that use a reputation system.

4.3.2.2 Reputation System Warmup

A real reputation system has a large initial history that can be used to eval-
uate infrequently present agents. In the simulation approach, this initial his-
tory had to be reproduced. In the closed system, for each simulation, the
first 20 turns have been used to warm-up the reputation system by acquiring
an initial history of agent behavior. This means that the payoffs have note
been recorded, but an agents’ reputation has been modified by positive and
negative reports. This method has been used to model the behavior of a real
reputation system, where the system has available a long history of trans-
actions. Simulating the reputation system without a warm-up stage would
therefore be unrealistic.

In a closed system, it is possible to warm-up the reputation of all agents at
the same time, at the beginning of the simulation. In the open, trace-driven
approach, the trace represents a period of time taken from the operation of
a real Internet auction site. Agents present in the trace could have been
present in the system before the beginning of the trace. As this information
is not available, it is also not realistic to simulate the system without a
warm-up. However, this warm-up can be done separately for each seller. If
a buyer would select a seller that was in the warm-up stage, the results of
the transaction were not recorded in the utility of the buyer and the seller.
The seller’s reputation was updated. A fixed number of l transactions was
used as a warm-up. This ensured that the reputation system had some initial
information about each seller, before the buyers utilities were recorded. In
the simulation results presented below, l = 5. Reducing the length of the
warm-up had a strong effect on emergence: emergence was not observed for
l = 0, for any other setting of simulation parameters.
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4.3.3 Fairness Emergence in a Closed System

4.3.3.1 Experiment Setup

In simulations of the closed system, there was a total of 1500 agents, out of
which 1050 where fair and 450 were unfair. While the proportion of unfair
agents is high, they cheat randomly and at a low probability - so a unfair agent
is really a “not totally fair agent”. Also, considering that frauds in Internet
auctions are among the most frequent digital crimes today, and considering
that cheating in a transaction may be more frequent than outright fraud
- it may be sending goods that are of worse quality than advertised - this
proportion of unfair agents seems realistic.

The simulator can compute reputations using all available feedbacks. The
results of the simulation include: the reputations of individual agents and the
total utilities (payoffs from all transactions) of every agent. In the simulations
presented here, an agent’s reputation is computed as the proportion of the
number of positive reports about the agent to the number of all reports.

All simulations were made using pseudo-random numbers, therefore the
Monte Carlo method has been used to validate statistical significance. For
each setting of the simulation parameters, 50 repeated runs were made, and
the presented results are the averages and 95% confidence intervals for every
calculated criterion. The confidence intervals were calculated using the t-
Student distribution.

We decided to use transaction attempts instead of the number of succes-
sful transaction as a stop condition because we believe that an agent would
consider each transaction attempt as an expense, and the reputation system
would have to work well after as few transaction attempts as possible. In most
presented simulations for each turn, 500 transaction attempts have been
made.

For each simulation, the first 20 turns have been used to warm-up the
reputation system. It means that the payoffs are not recorded but an agents’
reputation is modified by positive and negative reports. This method has been
used to model the behavior of a real reputation system, where the system has
the availability of a long history of transactions. Simulating the reputation
system without a warm-up stage would therefore be unrealistic.

4.3.3.2 Closed System Simulation Results

To verify the Fairness Emergence hypothesis, we have been interested to in-
vestigate the impact of a reputation system on the equity of the agent utility
distribution. Equity of utility distributions was measured using a fairness cri-
terion based on the theory of equitable optimality: the area below the Gener-
alized Lorenz curve (BLC). However, other criteria such as the sum of agent
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utilities are considered as well. The simulations revealed that the Fairness
Emergence hypothesis holds in several cases, but not universally; therefore,
we have investigated the sensitivity of fairness emergence to various factors
that influence the quality of the reputation system.

4.3.3.3 Fairness Emergence in the Long Term

The first studied effect was the emergence of fairness in the long term. In the
simulation experiment, we measured the area under the Generalized Lorenz
curve (BLC) and ran the simulation until the BLC stabilized. This experiment
was repeated using three scenarios: in the first one, the agents did not use
any reputation system, but selected partners for transactions randomly. In
the second experiment, the reputation system was used, but agents submitted
negative reports with the probability of 0.2. In the third experiment, negative
reports were always submitted.

Fig. 4.17 Fairness Emergence in the long term

The results of the three experiments are shown in Figure 4.17. The Figure
plots the average BLC of fair agents from 50 simulation runs against the
number of turns of the simulation. It can be seen that when agents do not
use the reputation system, the BLC stabilizes for a value that is almost twice
smaller than the value of BLC that is obtained when reputation is used.
Furthermore, there is a clear effect of increasing the frequency of negative
feedback: the BLC increases faster and stabilizes at a higher value when
p−rep = 1 . The initial decrease of the BLC from 1 is due to the fact that
at the beginning of the simulation, the distribution of fair agent utilities is
equal (during the warm-up stage, utilities of agents are not recorded. All
agents start with a zero utility after warm-up is completed.)
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The result of this experiment seems to be a confirmation of the FE hy-
pothesis. The distributions of fair agents’ utilities have a higher BLC (and
a higher total sum of utilities) when the reputation system is used. Yet, the
problem here is that in realistic auction systems, most agents only have a
small number of successful transactions, because they use the system infre-
quently. In our simulation, new agents did not join the system (although the
number of agents was large). The average number of successful transactions
of an agent was about 270, which is much lower than the number of agents;
this means that as in a real auction system, the chance of repeated encounters
was low. However, this number is still large. The simulations were continued
until a stable state was reached; in practical reputation systems, such a sit-
uation would not be likely to occur because of the influx of new agents and
the inactivity of old ones. For this reason, we have decided to investigate the
FE hypothesis in the short term, or in unstable system states.

4.3.3.4 Fairness Emergence in the Short Term

The simulation experiments used to study short-term system behavior have
been about 8 times shorter than the long-term experiments. For these exper-
iments, the number of successful transactions of an average agent was about
60. Figure 4.18 shows the BLC of the distributions of fair agents’ utilities.
On the x axis, we show the number of turns. The figure shows two lines cor-
responding to different frequencies of sending negative reports by fair agents
(unfair agents always sent negative reports). The results show that for low
negative report frequencies fairness emerges more slowly. Increasing the avail-
able negative reports reduces the time needed for fairness emergence. This
effect is apparent very quickly, even after 50 turns of simulation.

Fig. 4.18 Fairness Emergence in the short term
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From now on, fairness emergence in the short term will be studied more
closely to verify whether the improvement of reputation system quality will
strengthen fairness emergence. In other words, until now we considered fair-
ness emergence with time, and now we shall consider the sensitivity of fair-
ness emergence to the reputation system’s quality. All further experiments
have been made in the short term, outside of the stable state of the system.

4.3.3.5 Effect of Better Usage of Reputation

The usage of reputation by agents had a particularly strong influence on
the emergence of fairness. In our simulations, during a transaction attempt,
agents chose a seller with the highest reputation from a set of k candidates.
The chosen candidate needed to have a reputation that was higher than
the buyer’s threshold. If k = 1, then the transaction partner was chosen at
random and only the threshold pgame

min was used to consider reputation. If
k = 3, it was less likely that an agent with a lower reputation would be
chosen as a transaction partner. These two scenarios correspond to the real
life situation of buyers who are able to select sellers from a larger set, based
on their reputation; on the other hand, it could be possible that the choice
is low, because only one seller has the required goods or services.

Fig. 4.19 Effect of increased choice on BLC

We considered the two scenarios while investigating the impact of the fre-
quency of feedback on the reputation system. It turns out that increasing the
choice of agents is necessary for the emergence of fairness. Figure 4.19 shows
the effect of increasing the frequency of negative feedback on the BLC of fair
agents. The figure shows two lines that correspond to the scenarios of k = 1
and k = 3. It can be seen that if the choice of agents on the basis of reputa-
tion is possible (k = 3), then the increase in the number of feedbacks leads to
a increase of BLC. On the other hand, if the choice is limited (k = 1), then
the increase in the level of negative feedbacks, does not have a statistically
significant effect on the BLC. This effect is best explained by the fact that if
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choice is available, honest agents have a better chance of avoiding dishonest
agents while at the same time they do not waste transaction attempts. If
agents do not have choice, they can still avoid transactions with dishonest
agents, but they will waste transaction attempts and have a lower utility.

Figure 4.20 shows the effect of increased choice and varying negative feed-
back frequency on the sum of fair agents’ utilities. It can be seen that once
again, enabling the choice of partners based on reputation has a positive ef-
fect on the welfare of fair agents. For k=3, fair agents overall had a higher
sum of utilities than for k=1, and this sum increased when the frequency of
negative reports increased. This also explains why the Gini coefficient of fair
agents for k=1 was lower than for k=3. Since the sum of utilities was lower
for k=1, the Gini coefficient could also be lower, although this does not mean
that the distribution of utilities for k=1 was more equitable than for k=3.

Fig. 4.20 Effect of increased choice on sum of utilities

4.3.3.6 Effect of Better Feedback

Better feedback is a prerequisite for increasing the quality of a reputation sys-
tem. For that reason, we chose to investigate the effect of increased feedback
on the emergence of fairness. As has been explained previously, the frequency
of negative feedback was varied from 0 to 1. We also varied the frequency of
positive and negative feedback simultaneously; however, for the simple repu-
tation algorithms considered in this paper, the only significant parameter is
the proportion of negative to all feedback. For that reason, varying negative
feedback’s sending frequency is sufficient to evaluate the system’s sensitivity
to feedback availability. Another issue related to feedback is the possibility
that agents send false feedback. Our studies indicate that a small amount of
false feedback does not impact the results, but a significant amount of false
feedback will confuse any reputation system. For this reason, in this analysis
we disregard the possibility of sending false feedback by the agents.
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Figure 4.21 shows the effect of increasing negative feedback on the sum of
utilities of all agents. It turns out that the total sum was not affected by the
increase. This seems to be a paradox, since we are using the iterated Pris-
oner’s Dilemma as a model of our auction system. In the Prisoner’s Dilemma,
increased fairness of agents results in an increased sum of all utilities. And in-
creasing negative feedbacks from 0 to 1 should result in decreasing the ability
of unfair agents to cheat.

Fig. 4.21 Effect of increased feedback on sum of utilities of all agents

This experiment also shows that even assuming the use of a Prisoner’s
Dilemma as a model of a transaction, the use of the sum of all agents’ util-
ities (the utilitarian paradigm) would lead to an erroneous conclusion that
the system behavior is not affected. From the utilitarian point of view, the
reputation system works equally well when the frequency of negative reports
is 0, as when it is equal to 1.

Fig. 4.22 Effect of increased feedback on fair and unfair agents’ utilities

Figure 4.22 shows that this is not the case. The sum of utilities of fair
agents increases, as negative feedback is sent more frequently. On the other
hand, the sum of utilities of unfair agents drops. The reason for this fact is
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that with higher frequencies of negative feedback, the reputations of unfair
agents decrease, and therefore these agents have fewer successful transactions.
On the other hand, fair agents manage to avoid unfair ones, and do not waste
transaction attempts (therefore they have more successful transactions and
higher payoffs in these transactions).

Fig. 4.23 Effect of increased feedback on BLC

Figure 4.23 shows the effect of increased negative feedback frequency on
the BLC. Clearly, increased negative feedback frequency leads to an increased
BLC of honest agents’ utilities. Note that the effect is statistically significant
for the variation of from 0 to 1 (also from 0.4 to 1). Note that these simulations
have been made in the short term and that together with the results about
the sum of utilities, they prove the FE hypothesis: increasing the quality of
the reputation system does indeed lead to more equitable distribution of fair
agents’ utilities, as the hypothesis suggested.

4.3.3.7 Effect of Improved Reputation Algorithm

Another important type of fairness emergence could occur if the algorithm
that is used to calculate reputations is changed. With better algorithms, pe-
rhaps it would be possible to improve fairness. That would be equivalent to
fairness emergence with improved trust management system’s operation.

4.3.3.8 Algorithm of Implicit Negative Feedback

The algorithm described in this section has been introduced [179]. Most online
auction sites use a simple feedback-based reputation system [141]. Typically,
parties involved in a transaction mutually post feedbacks after the transac-
tion is committed. Each transaction can be judged as ’positive’, ’neutral ’, or
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’negative’. The reputation of a user is simply the number of distinct partners
providing positive feedback minus the number of distinct partners providing
negative feedback (possibly normalized by the number of all distinct part-
ners). As pointed out in [104], such a simple reputation system suffers from
numerous deficiencies, including the subjective nature of feedback and the
lack of transactional and social contexts. Yet another drawback of feedback-
based reputation systems is that these systems do not account for the psy-
chological motivation of users. Many users refrain from posting a neutral or
negative feedback in fear of retaliation, thus biasing the system into assign-
ing overestimated reputation scores. This phenomenon is manifested by high
asymmetry in feedbacks the collected after auctions and, equally importantly,
by the high number of auctions with no feedback provided. Much of this of
these missing feedback might convey implicit and unvoiced assessments of a
poor seller’s performance which should be included in the computation of a
seller’s reputation.

As described in [179], there can be many ways of identifying implicit feed-
back in a real-world reputation system, based on the observation of behavio-
ral patterns. To evaluate the effectiveness of using implicit feedback, we have
identified a simpler reputation algorithm that can be simulated and compared
to the algorithm of most Internet auction houses.

Consider a user u with a history of n auctions. Let us assume that only m ≤
n of these auctions have feedback. Out of this m feedback m+ are positive or
neutral feedback (in practice, the amount of neutral feedback in reputation
systems of online auctions can be ignored), m− is negative feedback, while
m∗ = n − m is the amount of missing feedback (transactions that had no
feedback). Thus, m+ ≤ m ≤ n. The reputation ρu of the user u will be
calculated as follows:

ρu =
m+

αm∗ + m+ + m− ,

where 0 ≤ α ≤ 1. Thus, if α = 0, the above reputation score becomes a simple
ratio of the number of items of positive feedback received by the user u. In a
case where the user has had no auctions, the above formula is undefined. In
such a case we set the reputation ρu to an initial value, ρ0. The coefficient α
is used to control the importance of implicit negative feedback.

To be precise, in our simulations we use a slightly more complex version of
the above algorithm. Since agents in the simulator choose whom they want
to interact with on the basis of reputation scores, it is necessary to avoid the
reputation dropping suddenly to a low level. This can happen in the initial
phase of the simulation, when the reputation score has not yet stabilized
(initially, a single negative feedback could decrease the initial reputation by
a large degree). Therefore, we use a simple moving average to smooth rep-
utation changes. The smoothed reputation ρma

u (t) = 0.5ρma
u (t − 1) + ρu(t),

where t is time, and ρma
u (0) = ρ0(the smoothed reputation is initialized by
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Fig. 4.24 Effect of improving reputation algorithm on utility sum

the initial reputation value). Note that over time, the impact of the initial
reputation decreases exponentially.

The results of increasing α from 0 to 0.2 on the Gini coefficient of honest
agents’ utility distribution and on the sum of honest agents’ utilities are
shown in Figure 4.25 and 4.24, respectively. The figures show several lines
that correspond to various frequencies of negative reports. Increasing the
role of implicit negative feedback clearly increases fairness, and the effect is
strong and statistically significant. This behavior is a confirmation of the FE
hypothesis in an unstable state, in the presence of adversaries, and when the
probability of negative reports is low. The sum of honest agents’ utilities also
increases when α is increased. Note that the effect of varying α from 0 to
0.2 is similar to the effect of increasing the probability of negative feedback.

Fig. 4.25 Effect of improving reputation algorithm on BLC
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Larger values of α have been found to lead to an increase of the Gini indicator
in our previous research [178] but this effect was obtained for a different,
specific version of the simulations system and needs to be studied further to
allow generalization.

4.3.4 Trace-Driven Simulation of an Internet
Auction System

In the previously described simulations scenarios, all agents were treated
equally (although we have referred to the agent who initiated a transaction
attempt as a “buyer”, all agents had an equal chance to become a “buyer” in
the described simulations). Moreover, all agents had a similar level of activity
in the system. Agents could not leave the system during the simulation and
were chosen over and over again for transaction attempts. New agents could
not join the system. This approach had an impact on the evaluation of the
reputation system. In a realistic reputation system, the amount of information
available about new agents would be considerably less than the amount of
information available about agents that have been active for some time in the
system. In the closed system, in the long term, the reputation system would
have very good information about agents. Considering the operation of the
reputation system in the short term partially reduces that problem, but does
not fully solve it.

The reason for the use of the closed system is that without additional
information or assumptions, it was not possible to specify how active the
agents should be in the system. In this section, we are going to remove this
limitation. On the other hand, the previously described results were more
general and could apply to a variety of applications of reputation systems.

We have obtained a trace from a large Polish Internet auction site. The
trace includes approximately 200 000 seller transactions from 6 months. In
the trace, there were about 10000 sellers randomly selected from the auction
house. The weekly number of seller transactions in the trace is shown on
Figure 4.26. The trace was used to control the times spent by sellers in the
simulated system. In other words, using trace-driven simulations allowed us to
simulate an open system. Figure 4.27 shows the distribution of the number of
transactions made by a seller. It can be seen that this distribution resembles
a heavy-tailed distribution.

The behavior of sellers was not recorded in the trace, and it is therefore
simulated as described in the previous section. Moreover, the buyers are not
trace-driven. Buyers initiate transactions with sellers who are present in the
system at a given time (in the trace-driven simulations, one turn is equivalent
to one day of the trace. During this turn, only the buyers who offered auctions
on that day are present in the system). Buyers choose sellers in the same way
as in the simulations of the closed system, choosing a seller with the highest
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Fig. 4.26 Daily number of seller transactions in the trace

reputation from a random set. Buyers are also able to reject transactions if
a chosen seller’s reputation is below a threshold.

Fig. 4.27 Distribution of number of transactions of a seller

The simulations also used a different kind of warm-up. In the closed system,
it was possible to warm-up the reputation of all agents at the same time, at
the beginning of the simulation. In the open, trace-driven approach, the trace
represents a period of time taken from the operation of a real Internet auction
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site. Agents present in the trace could have been present in the system before
the beginning of the trace. As this information is not available, it is not
realistic to simulate the system without a warm-up. This warm-up needed
to be done separately for each seller. If a buyer selected a seller that was in
the warm-up stage, the results of the transaction were not recorded in the
utility of the buyer and the seller. The seller’s reputation was updated. A
fixed number of l transactions was used as a warm-up. This ensured that
the reputation system had some initial information about each seller, before
the buyers utilities were recorded. In the simulation results presented below,
l = 5. Reducing the length of the warm-up had a strong effect on emergence:
emergence was not observed for l = 0, or for any other setting of simulation
parameters.

4.3.5 Fairness Emergence in the Open System

To test the FE hypothesis in an open system, we have measured the utilities
of two kinds of agents: the buyers and the fair sellers. By the FE hypothesis,
the distribution of both kinds of utilities should become more equitable with
an improvement of the reputation system. The results of the experiments
partially support this hypothesis: the distributions of buyers become more
equitable, but the BLC of the distributions of fair sellers does not vary sig-
nificantly. We attribute this result to the chosen simulation scenario. Varying
the probability of negative reports had an impact on a seller’s reputation,
but we have not simulated unfair buyers, so no effect on the utilities of fair
sellers has been observed.

Fig. 4.28 Fairness emergence in the open system
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Figure 4.28 shows the effect of increasing the probability of negative re-
ports on the sum of utilities of all buyers and on the Generalized Lorenz
curve of the distribution of buyers’ utilities. Since both BLC and the utility
sum increase, it can be concluded that the distribution of buyer’s reputation
indeed becomes more equitable. The effect becomes statistically significant
for an increase of the probability of negative reports from 0 to 0.8. Thus,
the Fairness Emergence hypothesis is partially confirmed in a realistic open
system.

The reputation system effectively prevents unfair sellers from exploiting
buyers. Figure 4.29 shows the sum of utilities of all unfair sellers that decre-
ases with the increasing probability of negative reports. Once again, the effect
becomes statistically significant for an increase of the probability of negative
reports from 0 to 0.8.

Fig. 4.29 Utilities of unfair sellers in the open system

We have investigated the sensitivity of Fairness Emergence to the behavior
of unfair sellers (adversaries). To observe this effect, the probability of cheat-
ing by a unfair seller was varied. The results are shown in Figure 4.30. As
expected, the Fairness Emergence was strongest in the case of unfair sellers
cheating with probability 1. This meant that the reputation system could eas-
ily spot adversaries. Decreasing the probability of cheating weakens Fairness
Emergence, with the values of 0.5 as a threshold. For lower probabilities of
cheating, Fairness Emergence was not observed. This result can be explained
by the simple reputation algorithm used in our simulation scenario (recall
that reputation is a simple ratio of the number of fair transactions to the
number of all transactions).
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Fig. 4.30 Sensitivity of Fairness Emergence to unfair seller behavior

4.3.6 Consequences of Fairness Emergence

We have identified the crucial conditions for Fairness Emergence due to the
use of a Trust Management system to occur. These are:

• the possibility of choosing the agent to interact with on the basis of repu-
tation or trust,

• the availability of sufficient correct proofs (in the tested scenarios, reports
for the reputation system),

• the use of sufficiently good trust management algorithms (in the tested
scenarios, algorithms for computing reputation).

The Fairness Emergence hypothesis and the well-known “evolution of coop-
eration” are both examples of spontaneous emergence of a more complex
behavior due to simpler behaviors of agents. It is noteworthy that trust also
plays a part in the evolution of cooperation, because the use of reputation
information supports direct and indirect reciprocity. Fairness Emergence also
has a theoretical importance for the social sciences, because it demonstrates
that it is feasible for ODS (or societies) to achieve a degree of distributional
fairness due to sufficiently high mutual trust among the majority of agents.
This applies even to ODS that do not have a trusted, central control, and
include some agents that violate fair procedures. In the social sciences, this
could be interpreted as a society that was not developed strong central insti-
tutions or authorities.

On the other hand, the Fairness Emergence hypothesis has an inherent
practical value. First, if the FE hypothesis holds, then the problem of ensuring
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fairness in an open, distributed system without centralized control may have
found a practical solution: it would suffice to use a good trust management
system in order to provide fairness. Second, if the FE hypothesis was not
to be true in realistic conditions, then a reputation (or trust management)
system would allow the existence of a degree of unfairness between similar
agents. Such a situation would be highly undesirable from the point of view
of users of trust management systems, leading to a disincentive of their usage.

We have shown that the Fairness Emergence hypothesis applies in realistic
conditions: in the presence of adversaries and in an unstable state of the sys-
tem, and also in an open system where the presence of sellers was controlled
by a trace from a real Internet auction site. Yet, this work also shows that the
FE hypothesis does not apply universally. In particular, fairness emergence
does not occur (or is very weak) if very little negative feedback is received
by the reputation system. The FE hypothesis does not hold if the users of a
reputation system are not sufficiently sensitive to reputation or do not have
enough choice of transaction partners with a good enough reputation (this
implies that if unfair agents were to be a large fraction of the population,
fairness could not emerge).

Fairness Emergence among buyers was not observed in the open system if
the system was not warmed up. The reason for this is that in the open system,
some sellers are present only for a few transactions. If the reputation system
does not have sufficient information about these sellers, the buyers cannot
determine whether they are fair or unfair. It would be possible to initialize the
reputations of sellers with a small value, but that would effectively exclude
them from the system since it would make it impossible for a new seller to
earn a higher reputation. There exists a practical way out of this difficulty:
the transactions of new agents could be insured, until their reputation reaches
a sufficiently high value. There also exists a practical threat that can lead
to a lack of sufficient information about agents: if agents who have a low
reputation can assume a new identity (an approach known as whitewashing),
then fairness emergence would not occur. This behavior can only be prevented
by using stronger authentication of agents.

We have studied the sensitivity of fairness emergence to discrimination
attacks. While fairness emergence can still be observed when sellers discrim-
inate a minority of buyers, it is not statistically significant. In simulations
where the discriminating agents formed a majority of the population, the FE
hypothesis does not hold.

From these results we can draw the following conclusions:

1. trust management (reputation) systems can improve distributional fairness
in ODS,

2. trust management systems should explicitly consider fairness in their eval-
uation (also in the evaluation of their correctness).

Further research is necessary to establish the sensitivity of the FE hypothesis
to more sophisticated attacks on reputation systems. Furthermore, it would
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be desirable to investigate the emergence of fairness in more general trust
management systems, for example in systems that make use of risk in deci-
sion support. Another possibility would be the use of transaction insurance
together with a reputation system. Last but not least, the use of reputation
in practical fair procedures would require a redesign of these procedures – in
the light of our results, this is a promising direction for future research.



Chapter 5

Conclusion

The problems of fair distribution, assuring fair behavior, and enabling agents
to make decisions under uncertainty on the basis of trust, are among the most
challenging in informatics today. A wide variety of applications require the
solutions of these problems. Some of these applications have been presented
in this book, along with some proposed solutions that have been grouped in
two areas of Trust Management (TM) and Fairness Management (FM).

The difficulty of solving FM and TM problems lies first in the difficulty of
defining the two concepts in a way that can be made operational and treated
by informatics. This book has attempted to show that this difficulty can be
overcome. A variety of definitions of fairness and trust exist and have been
described in sections 2.2 and 2.3. However, we have shown that it is possible
to choose general and broad definitions that can be operationalized and are
in agreement with human preferences, as shown by a number of empirical
studies that are described in this book. This means that not only are these
precise definitions that can be treated mathematically, but also human users
of Open Distributed Systems will likely approve of the behavior of TM and
FM systems that are based on the proposed definitions of trust and fairness.

This book has attempted to show that not only can we define trust and
fairness, but that it is possible to solve practical problems of TM and FM
management. In order to achieve this goal, it is necessary to rely on the
knowledge of the social sciences and on results of empirical observations and
experiments. This knowledge is necessary to improve the organization of vir-
tual ODS, to express important social concepts (such as trust, reputation,
distrust) in computational systems, and also to design better algorithms that
are used in ODS to realize social goals of fairness and trust. In this respect,
this book attempted to provide a synthesis of the relevant knowledge in so-
cial sciences and the state of the art research in information science. The
book gives several examples of computational expressions of social concepts,
such as the operational definition of distributive fairness that is used to solve
practical problems of grid scheduling or computer network dimensioning, or
the use of computational trust in Internet auctions, recommendation systems

A. Wierzbicki: Trust & Fairness in Open, Distributed Sys., SCI 298, pp. 225–227.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2010
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and P2P systems. These examples also present concrete algorithms, such as
the CloseLook algorithm for trust propagation (see section 2.2.7) or the Eq-
uitable Walk algorithm for discovering equitable solutions in complex fair
distribution problems (see section 4.1.1.4).

The two areas of Trust and Fairness Management are closely related. Even
some basic definitions of fairness (as a justified expectation) and trust (as an
expectation of behavior) allow us to conclude that an agent will be trusted
if he behaves fairly (see section 2.2.1.1). These definitions and the reasoning
based on them require the additional assumption of agent rationality and
that the context of encounters includes rules of fair behavior that are known
to all agents. While these assumptions do not hold in all situations for hu-
man agents, they form an interesting guideline for the design of TM and FM
systems. Indeed, many such systems attempt to express rules of fair behav-
ior, such as policies of access control or privacy policies. Another interesting
example of fairness rules was described in section 3.5.2.2, where it was found
that almost all nonpositive comments sent by users of Internet auctions to
the TM system concern the violation of procedural fairness rules that form
a code of conduct in Internet auctions. This finding gives further support to
the hypothesis of a relationship between trust and fairness. A promising di-
rection of future research would be the development of practical systems for
the expression of rules of fair behavior that can be automatically be verified
by TM and FM systems.

Other relationships between FM and TM exist. An example is the phenom-
enon of fairness emergence that has been studied in some detail in this book
(see section 4.3). Fairness emergence is due to the existence and application
of a TM system. It can be particularly useful in fully distributed settings,
because Fairness Management often requires some form of centralized con-
trol, especially for providing distributive fairness. The ability of using a fully
distributed TM system to enable the emergence of a certain degree of dis-
tributive fairness is therefore important. Further research could consider the
question of whether TM systems can be used in other fair procedures, for
example in sealed auctions, in order to remove the dependence of these pro-
cedures on central control by trusted agents. The validity of the Fairness
Emergence hypothesis also has a theoretical significance. It demonstrates
that in an ODS (or a society) that has little established central control, the
use of trust can lead to the emergence of distributional fairness. Both con-
cepts play an important part in social development, and since it is generally
agreed in the social sciences that distributional fairness and equity play an
important role in social welfare, it is important to understand that mutual
trust of a majority of agents can cause their emergence.

Throughout this book, the question of distribution of control has been con-
sidered. There seems to exist a very general tradeoff between the distribution
of control, security and trust. Usually, many fair procedures (or the imple-
mentation of solutions for fair distribution problems) require the existence
of a trusted agent that has some measure of central control over the system.
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The validity of the fairness emergence hypothesis seems to suggest that it
would be possible to remove this reliance by introducing a TM system that
explicitly deals with trust relationships. A straightforward approach would
simply allow us to choose an arbitrary, trusted coordinator from among the
most trusted agents in the system; this would at least remove the need of
relying on a central controller that is trusted a priori without the possibility
of verification. More complex approaches could modify the execution of fair
procedures dynamically on the basis of changing trust relations.

The development of cloud computing and the increased availability of
cheap computing resources has demonstrated that the future of Internet-
based computation systems may lie in a hybrid architecture. It is no longer
considered scalable to maintain expensive and resource-consuming central-
ized client-server applications; on the other hand, the pure distribution of
the Peer-to-Peer model cannot guarantee sufficient reliability and security
for many applications. The hybrid model would combine the best features of
the two competing architectures, allowing systems to move seamlessly (and in
a manner transparent to users) from a more centralized to a more distributed
model. In order to make this vision possible, TM systems must become suf-
ficiently reliable to allow the hybrid system to make critical decisions on the
degree of trust in the available resources.

Another trend is the increasing control of Web users not just over the in-
formation provided through Web2.0 applications, but also over the functions
of information processing themselves. With browser plugins or extensions,
Javascript and Ajax, users can participate in the execution of information
processing functions of the system, not just in the creation of content. In
such new information systems, the questions of fairness and trust will be-
come even more important.

As the e-society continues to develop, it can be expected that its virtual
social functions will have an increased level of sophistication. More and more
social processes will be taking place online. Internet-based social systems have
the capacity of not just replacing, but broadening and deepening our real
social relations. Coupled with an increasing pace of social and technological
innovation that can create completely new social needs, this process will
further increase the importance of fairness and trust in open distributed
systems.
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