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Introduction

This volume on portfolio optimization and construction originated from conver-
sations between a number of the contributors and the editors. We were inspired
to write by the common realization that a lot of exciting unrecognized new
work is being done by both academics and practitioners.

Initial concerns that we would not find enough contributors to fill a volume
changed rapidly to wondering whether this book, should be in one, two, or
n volumes.

This selection of papers presents an excellent overview of a wide variety of
new developments in portfolio construction methods. Everybody, but particu-
larly newcomers to the field, can profitably read Chapter 1, an overview by Pro-
fessor Gautam Mitra. The next eight chapters present practitioners approaches
to portfolio issues. Topics covered include how to build portfolios robustly,
how to simulate, how to account for tax issues, how to use sophisticated math-
ematical tools, how to include multiple asset classes, such as fixed income and
hedge funds, and how to address index issues. The order in which they appear
having no necessary relationship with intrinsic merit.

The academic contributions occur in Chapters 10 to 17; the theory covered
here is demanding in places, covering advanced mathematical statistics and sub-
tleties of optimization. The topics covered in this section address absolute and
relative optimization, higher moment portfolio efficient frontiers, exact distri-
butions, reverse optimization, robust optimization and some advances based on
different choices of gain and loss. This volume comprehensively addresses a
wide range of portfolio construction issues and it will be profitably added to
both practitioner and academic book collections.



Chapter 1

A review of portfolio planning:
models and systems

GAUTAM MITRA (CO-AUTHORS: TRIPHONAS KYRIAKIS,
CORMAC LUCAS, MEHNDI PIRBHAI)

ABSTRACT

In this chapter, we first provide an overview of a number of portfolio
planning models which have been proposed and investigated over the
last fifty years. We revisit the mean-variance (MV) model of Markowitz
and the construction of the risk-return efficient frontier. A piecewise
linear approximation of the problem through a reformulation involv-
ing diagonalization of the quadratic form into a variable separable
function is also considered. A few other models, such as, the Mean
Absolute Deviation (MAD), the Weighted Goal Programming (WGP)
and the Minimax (MM) model which use alternative metrics for risk
are also introduced, compared and contrasted. Recently asymmetric
measures of risk have gained in importance; we consider a generic
representation and a number of alternative symmetric and asymmetric
measures of risk which find use in the evaluation of portfolios. There
are a number of modelling and computational considerations which
have been introduced into practical portfolio planning problems. These
include: (a) buy-in thresholds for assets, (b) restriction on the number
of assets (cardinality constraints), (c) transaction roundlot restrictions.
Practical portfolio models may also include: (d) dedication of cash-
flow streams, and (e) immunization which involves duration matching
and convexity constraints. The modelling issues in respect of these
features are discussed. Many of these features lead to discrete restric-
tions involving zero-one and general integer variables which make
the resulting model a quadratic mixed-integer programming model
(QMIP). The QMIP is a NP-hard problem; the algorithms and solution
methods for this class of problem are also discussed. The issues

Continued on page 2



2 Advances in Portfolio Construction and Implementation

Continued from page 1

of preparing the analytic data (financial datamarts) for this family of
portfolio planning problems are examined. We finally present compu-
tational results which provide some indication of the state-of-the-art
in the solution of portfolio optimization problems.

1.1 INTRODUCTION AND OVERVIEW

The mean-variance (MV) model of Markowitz is a single period static portfolio
planning model and, in recent times, it has become the core decision engine
of many portfolio analytics and planning systems in the construction of the
risk-return efficient frontier.

Markowitz shows that for a rational investor maximizing expected utility, a
chosen portfolio is optimal with respect to both expected return and variance
of return. He defines such a non-dominated portfolio as efficient, that is, it
offers the highest level of expected return for a given level of risk and the
lowest level of risk for a given level of return. His normative MV rule for
investor behaviour both implies and justifies the observable phenomenon of
diversification in investment. Determining the efficient set from the investment
opportunity set, the set of all possible portfolios, requires the formulation and
solution of a parametric quadratic program (QP). Plotted in risk-return space
the efficient set traces out the efficient frontier.

Hanoch and Levy (1969) show that the MV criterion is a valid
efficiency criterion, for any individual’s utility function, when the distributions
considered are Gaussian normal. A study comparing alternative utility
functions appears in Kallberg and Ziemba (1983). They show that
portfolios with ‘similar’ absolute risk-aversion indices have ‘similar’ optimal
compositions, regardless of the functional form and parameters of the
utility function. Hence, MV analysis is justified for any general concave
utility function of the Von Neumann–Morgenstern type (Von Neumann and
Morgenstern, 1944).

The estimation of the underlying parameters (returns, variances and covari-
ances) which are required as the input to MV analysis is an important modelling
step. Small changes in the input can have a large impact on the optimal asset
weights. Chopra and Ziemba (1993) found that, for a typical investor’s risk tol-
erance level, errors in the forecast means are more than ten times as important
as errors in the variance and about twenty times as important as errors in covari-
ances. For practical aspects of portfolio analysis see Perold (1984), Hensel and
Turner (1998) and Grinold and Kahn (1995). The modern portfolio theory has
developed in tandem with simplifications to the QP required by MV analysis;
these simplifications centre around linearizing the quadratic objective function
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or reducing the number of parameters to be estimated. Both approaches involve
either an approximation or a decomposition of the covariance matrix.

Tobin (1958) developed the separation theorem which states that, in the
presence of a risk-free asset, the optimal risky portfolio can be determined
without any knowledge of investor preferences. Ziemba et al. (1974) show that
the solution to the portfolio problem involving a risk-free asset can be obtained
by a two-stage process: first solving a deterministic linear complementarity
problem and then solving a univariate stochastic nonlinear program.

Sharpe (1963) proposed that the single index, or ‘market’, model was a
sufficient model of covariance. Subsequently, Sharpe (1964), Lintner (1965)
and Mossin (1966) independently developed the capital asset pricing model.
This linear model of equilibrium asset prices explains the covariance of asset
returns solely through their covariance with the market. King (1966) presented
evidence of the influence of industry factors that the market model did not take
into account. Rosenberg (1974) proposed a multifactor model that incorporated
industry and other factors. Ross (1976), using factor analysis, developed the
arbitrage pricing theory, which is a multi-index equilibrium model.

Since Markowitz’s seminal paper (1952), a number of alternative models
have been proposed for portfolio planning. The main underlying motivations
for these alternative models are (a) such models are easier to process from
a computational point of view compared to Markowitz’s quadratic program-
ming approach; and (b) they take into consideration alternative risk metrics. In
Section 1.2 of this chapter we describe a number of alternative models taking
into consideration the motivations discussed above. In Section 1.3 we introduce
alternative risk measures for financial planning problems. Although not all of
them are used as such in a single period planning model, they play an important
role in defining measures which can be used in a ‘portfolio analytics’ tool. In
Section 1.4 we present a number of extensions of the original Markowitz model.
Some, if not all, of these extensions are used in many modern portfolio planning
systems. Preparation of asset data in a financial data mart is an important aspect
of portfolio systems. The method of preparation of this analytic information is
discussed in Section 1.5. Real world portfolio planning problems include vari-
ous practical restrictions which reflect financial industry realisms in respect of
threshold constraints, cardinality of assets held and transaction roundlots. These
translate to discrete optimization problems with a convex quadratic objective
function. The resulting problems are NP-hard. In Section 1.6 we discuss solu-
tion methods for processing such QP and quadratic mixed integer programming
(QMIP) problems. In Section 1.7 we consider computational results based on
our experience of a current state-of-the-art portfolio optimization system. We
conclude the chapter with a discussion of the leading issues. In Appendix 1 we
set out the method of linearizing and also approximating the QP. In Appendix 2



4 Advances in Portfolio Construction and Implementation

we provide a comparative analysis of alternative portfolio selection models
and their relative performance in respect of a small yet representative dataset
of assets.

1.2 ALTERNATIVE COMPUTATIONAL MODELS

In this section, we present five different portfolio planning models:
(1) Markowitz’s MV model presented as two quadratic programs (QP1 and
QP2); (2) reformulation of QP as diagonal models (DIAG1, DIAG2, DIAG3),
the piecewise linear approximations of which are given in Appendix 1; (3) the
mean-absolute deviation model (MAD); (4) the weighted goal programming
(WGP) model and (5) the minimax (MM) model. These five models are
presented within a unified framework. The basic set of notations common to all
these models is defined below as Indices, Parameters and Decision variables.

Indices:
Let
i, j = 1, . . .N : denote the different risky assets
t = 1, . . . , T :. . . the time periods of past historical data

Parameters:
Let
rit : denote the return of asset i at time t

µi :. . . the expected return of asset i

σij :. . . the coefficients of the (N × N ) variance-covariance matrix V defined for
asset i and asset j

(σii = σi the diagonal coefficients for the asset i)
ρ:. . . the desired level of return for the portfolio

Decision variables:
Let
xi : denote the fraction of the portfolio value invested in asset i (0 ≤ xi ≤ 1)
x:. . . the N × 1 vector of portfolio weights xi

1.2.1 The markowitz mean-variance model and the risk-return frontier

The portfolio selection model of Markowitz (1952, 1959) laid the basis of Mod-
ern Portfolio Theory. The Markowitz model, put forward in 1952, is a multi-
(two) objective optimization model which is used to balance the expected return
and variance of a portfolio. Markowitz (1952) shows how rational investors can
construct optimal portfolios under conditions of uncertainty. For an investor,
the returns (for a given portfolio) and the stability or its absence (volatility) of
the returns are the crucial aspects in the choice of portfolio. Markowitz uses
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the statistical measurements of expectation and variance of return to describe,
respectively, the benefit and risk associated with an investment. The objective
is either to minimize the risk of the portfolio for a given level of return, or
to maximize the expected level of return for a given level of risk. The mean-
variance (MV) approach still underpins much of the quantitative analysis of
portfolio selection as carried out by the financial industry today.

The classical MV model (Markowitz, 1952, 1959) and an alternative approach
towards computing the Markowitz Efficient Frontier (MEF) are set out below.

QP 1:

Min ZQP1 =
N∑

i=1

N∑
j=1

xixjσij (1.1)

subject to

N∑
i=1

xiµi = ρ (1.2)

N∑
i=1

xi = 1 (1.3)

xi ≥ 0 i = 1, . . . , N (1.4)

Varying the desired level of return, ρ, in QP1 and repeatedly solving the
quadratic program identifies the minimum variance portfolio for each value
of ρ. These are the efficient portfolios that compose the efficient set. By plot-
ting the corresponding values of the objective function (the variance) and ρ

(the return) respectively, we trace out the MEF in the MV plane. Markowitz
(1956) describes a ‘critical line’ solution algorithm tracing out the efficient fron-
tier by identifying ‘corner’ portfolios–points at which a stock either enters or
leaves the current portfolio. It is typical practice to use standard deviation rather
than variance as the risk measure because the σ versus ρ frontier is linear if a
risk-free asset exists, see Tobin (1958) and Ziemba et al. (1974).

An alternative formulation of QP1 explicitly trades risk against return in the
objective function using the Arrow–Pratt absolute risk-aversion index RA (see
Kallberg and Ziemba, 1983). RA is defined as

RA = −u′′(w)

u′(w)
(1.5)

where w is portfolio wealth and u′, u′′ are the first and second derivatives of a
Von Neumann–Morgenstern utility function u.
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QP2:

Max ZQP2 =
N∑

i=1

xiµi − RA

2

N∑
i=1

N∑
j=1

xixjσij (1.6)

subject to

N∑
i=1

xi = 1 (1.7)

xi ≥ 0 i = 1, . . . , N (1.8)

By increasing RA from zero and solving the different instances of QPs, we
trace out the efficient frontier. Empirical results by Kallberg and Ziemba (1983)
show that RA ≥ 6 leads to very risk-averse portfolios, 2 ≤ RA ≤ 4 represents
moderate absolute risk aversion and RA ≤ 2 leads to risky portfolios. RA = 4
corresponds approximately to pension fund management (typically, holdings of
60% stocks and 40% bonds). In practice, it is common to model the risk-return
trade-off using a parameter λ, 0 ≤ λ ≤ 1, with the following objective function:

Min Z = λ

N∑
i=1

N∑
j=1

xixjσij − (1 − λ)

N∑
i=1

xiµi (1.9)

Setting

RA

2
= λ

(1 − λ)
(1.10)

shows equivalence with the objective function in QP2. The same efficient fron-
tier generated by QP1 can be traced out by varying the value of λ and repeatedly
solving QP2. This is the most frequently used way of generating the efficient
frontier, the parameter λ is systematically varied between 0 and 1, which cor-
respond to the maximum return and minimum variance portfolios respectively.

1.2.2 Models with diagonal quadratic form as objectives

Diagonal models are of interest as the corresponding quadratic forms can then
be expressed as variable separable functions which in turn are approximated
as piecewise linear functions (see Appendix). Since these are convex program-
ming problems, piecewise linear approximations lead to a linear programming
(LP) reformulation of the given problem; the solution of the LP guarantees
global optimum solution of the given approximated QP. A detailed description



A review of portfolio planning: models and systems 7

of diagonalization methods (based on Cholesky decomposition, an approach
that exploits the decomposition of the covariance matrix (see also Vanderbei
and Carpenter, 1993) and diagonal QPs (based on index or factor models for
describing asset returns) can be found in Horniman et al. (2000).

Diagonal model 1
By applying Cholesky decomposition the given covariance matrix, V , can be
re-expressed as

V = LT L

where L(N × N) is a lower triangular matrix. The objective function of model
QP1, in matrix form is ZQP1 = xT V x which can be expressed as ZQP1 =
xT LT Lx. Defining a new vector y(N × 1) such that y = Lx with elements

yi =
i∑

j=1

lij xj i = 1, . . . , N (1.11)

leads to the equivalent formulation of the portfolio selection problem, model
DIAG1. The number of terms in the objective function of model QP1 is reduced
from N2 to below N at the cost of N additional constraints (1.11) and N

additional variables (1.11).

DIAG1:

Min ZDIAG1 =
N∑

i=1

y2
i (1.12)

subject to

yi =
i∑

j=1

lij xj i = 1, . . . , N (1.13)

N∑
i=1

xiµi = ρ (1.14)

N∑
i=1

xi = 1 (1.15)

xi ≥ 0 i = 1, . . . , N (1.16)

g
y

i ≤ yi ≤ h
y

i i = 1, . . . , N (1.17)
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For a general quadratic form, yi would be a free variable (−∞ < yi < +∞).
However, with constraints (1.14), (1.15) and (1.16), there are finite upper and
lower bounds on xi for i = 1, . . . , N . As a consequence, there exist finite upper
(hy

i ) and lower (gy

i ) bounds on yi , i = 1, . . . , N (see Brearley et al., 1975).
These bounds are a necessity for the piecewise linear approximations of the
quadratic terms.

Diagonal model 2
A similar approach (see Vanderbei and Carpenter, 1993) exploits the composi-
tion of the covariance matrix V given that it has been calculated from returns
R observed over T periods. Given that the matrix of mean returns is R, the
covariance matrix V is calculated as

V = 1

N − 1
(R − R)T (R − R)

defining S (T × N ) as

S = 1√
N − 1

(R − R)

the covariance matrix can be expressed as

V = ST S

This leads to a model similar to DIAG1 with T (instead of N ) new decision
variables yt and T (instead of N ) additional constraints compared to model
QP1. We refer to it as DIAG2.

DIAG2:

Min ZDIAG2 =
T∑

t=1

y2
t (1.18)

subject to

yt =
N∑

i=1

sit xi t = 1, . . . , T (1.19)

N∑
i=1

xiµi = ρ (1.20)

N∑
i=1

xi = 1 (1.21)

xi ≥ 0 i = 1, . . . , N (1.22)

g
y
t ≤ yt ≤ h

y
t t = 1, . . . , T (1.23)
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In this instance, the number of terms in the objective function (1.19) is reduced
to T , with the addition of T variables (1.23) and T constraints (1.19). Again,
there are finite upper (hy

t ) and lower (gy
t ) bounds on yt , t = 1, . . . , T .

Diagonal model 3
The use of factor models to describe asset returns can also lead to a diago-
nal form provided the composition of the covariance matrix is appropriately
exploited. Sharpe (1971) introduced this feature for the single index model and
the technique can be extended to any number of factors or indices (see Rosen-
berg, 1974 and Perold, 1984). For a model with K factors, let fk denote the
level of the kth factor, βik the sensitivity of asset i to factor k, αi the mean
return of asset i and ei the random component of return of asset i; then asset
returns ri can be expressed as a linear form by

ri = αi +
K∑

k=1

βikfk + ei

If the factors are constructed (or transformed) so that there is no correlation
between the factors and specific returns, and it is further assumed that the spe-
cific returns are uncorrelated, the covariance matrix, V , can be decomposed as

V = BT QB + D

where B is the K × N matrix of factor sensitivities, Q is the K × K diagonal
matrix of factor variances σ 2

fk
, and D is the N × N diagonal matrix of specific

variances, σ 2
εi

. (If the factors are constructed to be orthonormal, then Q reduces
to the K × K identity matrix).

Having decomposed the covariance matrix in this fashion, model DIAG3 can
be stated as follows:

DIAG3:

Min ZDIAG =
K∑

k=1

y2
P,k +

N∑
i=1

x2
i σ

2
εi

(1.24)

subject to

yP,k =
N∑

i=1

xiβikσfk
k = 1, . . . , K (1.25)

N∑
i=1

xiµi = ρ (1.26)
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N∑
i=1

xi = 1 (1.27)

xi ≥ 0 i = 1, . . . , N (1.28)

l
y

k ≤ yP,k ≤ u
y

k k = 1, . . . , K (1.29)

In this approach, the objective function of QP1 is reduced to a sum of squares
in N + K terms with an additional K variables yP,k (expressed as linear forms
of xi) (1.25) with finite upper (uy

k ) and lower (lyk ) bounds (see (1.29)).

1.2.3 The mean-absolute deviation (MAD) model

Konno (1988) proposed a portfolio optimization model using a piecewise linear
risk function. The MAD model, a special case of the piecewise linear risk model,
has been shown to be equivalent to the Markowitz model under the assumption
that returns are multivariate normally distributed (Konno and Yamazaki, 1991).
That is, under this assumption, the minimization of the L1 measure (the sum
of absolute deviations of portfolio returns about the mean) is equivalent to
the minimization of the L2 measure (the variance). Let mt denote the absolute
deviation of the portfolio return (from the mean) at time t , then the MAD model
is stated as:

MAD:

Min ZMAD = 1

T

T∑
t=1

mt (1.30)

subject to

N∑
i=1

(rit − µi)xi ≤ mt t = 1, . . . , T (1.31)

N∑
i=1

(rit − µi)xi ≥ −mt t = 1, . . . , T (1.32)

N∑
i=1

xiµi = ρ (1.33)

N∑
i=1

xi = 1 (1.34)

mt ≥ 0 t = 1, . . . , T (1.35)

xi ≥ 0 i = 1, . . . , N (1.36)
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The objective function (1.30) minimizes the mean of the absolute deviation
calculated using constraints (1.31) and (1.32), with mt restricted to be
non-negative (1.35).

A comparison of the MV model and the mad model
Konno and Yamazaki claim that the MAD model credibly replaces the MV
model as it incorporates all its positive features. They present the following
three arguments in support of their claim:

a) In the formulation of the MAD model, there is no requirement for the
covariance matrix of asset returns;

b) the relative ease with which a linear program can be solved compared
to a quadratic one–thus large scale problems can be solved faster and
more efficiently;

c) mean absolute deviation portfolios have fewer assets–this fact implies
lower transaction costs in portfolio revisions.

Simaan (1997) discusses the advantages and disadvantages of the MAD model.
He puts forward a contrary viewpoint and shows that ignoring the covariance
matrix results in greater estimation risk that outweighs the benefits. In both
models, estimation risk is more severe in small samples (small observations
relative to the number of assets) and for investors with high risk tolerance. The
MV model’s lower estimation risk is most striking in small samples and for
investors with low risk tolerance.

1.2.4 The goal programming model

Goal programming is a branch of multi-objective decision-making and is based
on the concept of finding feasible points as close as possible to a number of
goals. A set of targets/goals is chosen by the decision maker. Any (unwanted)
deviations from these targets are penalized in order to get a satisfactory solution.
How these penalties are implemented depends on the type of goal program.

Weighted Goal Programming (WGP) attaches weights according to the rel-
ative importance of each objective as perceived by the decision maker and
minimizes the sum of the weights. Zero weights are attached to deviations
that do not have to be minimized (for example, positive deviations from the
expected portfolio return goal). Lexicographic Goal Programming (LGP) sep-
arates the objectives into a number of priority levels where the satisfaction of
goals with higher priority is regarded as infinitely more important than the sat-
isfaction of lower level goals. A practical LGP model, first introduced by Lee
and Chesser (1980), and a WGP formulation of Lee’s model can be found in
Tamiz et al. (1996).
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Tamiz et al. (1996), using a factor model of stock returns, measure the risk of
a portfolio as the sum of absolute deviations of the portfolio’s factor sensitivities
from those of a specified target. Unsystematic risk receives no direct treatment.
To force diversification of the stock specific risks, they apply a constraint on
the total holdings allowed in each industry sector.

We present a simplified version of such a WGP model; the objective of the
model is to minimize the risk associated with the portfolio and maximize the
expected return. We do not specify a particular measure of risk. The only limit
on the risk measure is that the portfolio risk is a linear combination of the risks
associated with the component stocks.

We also introduce a few additional parameters and variables for this model.

Parameters:
Let

W1: denote the positive penalty weight associated with shortfalls in portfolio
return below the target
W2: denote the positive penalty weight associated with excess portfolio risk
in relation to the target
RiskP : denote risk associated with the portfolio
Riski : . . . risk associated with the asset i

Decision variables:
Let

n1: denote the negative deviation from the target level of portfolio return
p1: . . . the positive deviation from the target level of portfolio return
n2: . . . the negative deviation from the target risk level
p2: . . . the positive deviation from the target risk level

WGP:

Min ZWGP = W1n1 + W2p2 (1.37)

subject to

N∑
i=1

xiµi + n1 − p1 = ρ (1.38)

N∑
i=1

Riskixi + n2 − p2 = RiskP (1.39)

N∑
i=1

xi = 1 (1.40)
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n1, n2, p1, p2 ≥ 0 (1.41)

xi ≥ 0 i = 1, . . . , N (1.42)

The objective function (1.37) seeks to minimize risk and maximize return by
penalizing excess risk and shortfalls in return, relative to the respective targets.
Lower levels of risk and higher levels of return are not penalized. The shortfalls
in return and excesses in risk are determined by constraints (1.38) and (1.39)
respectively.

The MAD model can be formulated as a weighted goal program. By replacing
inequalities (1.31) and (1.32) with the constraints

N∑
i=1

(rit − µi)xi = pt − nt (1.43)

pt ≥ 0 (1.44)

nt ≥ 0 (1.45)

and replacing mt in the objective function by pt + nt . This results in a weighted
goal program that penalizes absolute deviations from the portfolio mean. Not
penalizing deviations above the mean, using a zero penalty weight on pt , leads
to a weighted goal program version of a negative semi-MAD model, such as
employed by Speranza (1996).

1.2.5 The minimax model (MM)

The principle underlying this model (Young, 1998) can be described as choosing
a portfolio based directly on how it would have performed in the past, over
the historical observations t = 1, . . . , T . The minimum return that could have
occurred in the past is employed as the measure of risk. The model seeks to
maximize this value while achieving a specified level of expected return. An
alternative, and perhaps more appropriate, statement of the minimax portfolio
selection rule is the minimization of the maximum loss that would have occurred
over the observation period. The minimax model uses the L∞ norm to measure
risk which implies a strong absolute aversion to downside risk (Gonin and
Money, 1989). The solution can be strongly affected by only one outlying
value in the data.

We introduce a variable MP which represents the minimum return achieved
by the portfolio over all observation periods. That is, MP = min

t

∑N
i=1 xirit .

The Minimax model (MM) is then stated as

MM:

Max ZMM = MP (1.46)
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subject to

N∑
i=1

xirit ≥ MP t = 1, . . . , T (1.47)

N∑
i=1

xiµi = ρ (1.48)

N∑
i=1

xi = 1 (1.49)

lMP ≤ MP ≤ uMP (1.50)

It is easily seen that finite upper bound (uMP ) and finite lower bound (lMP ) apply
to the variable MP . Young (1998) also suggests an alternative formulation of
the model that maximizes the expected portfolio return subject to a given lower
bound on the portfolio return for every observation period.

1.3 SYMMETRIC AND ASYMMETRIC MEASURES OF RISK

1.3.1 Sources of risk and choice of appropriate measures: risk dilemmas

The introduction of Markowitz’s MV framework provided financial institutions
and portfolio managers with a powerful tool that allowed them, for the first
time, to utilize the concepts of risk and return in a combined paradigm. Despite
the progressive acceptance and wide-spread use of the MV framework, and its
numerous extensions, in practice there has been a considerable debate among
academics and practitioners on the validity of variance as a representative mea-
sure of risk. The notion of risk has found practical application within the science
of risk management, or risk control. Risk control deals with limiting or elimi-
nating specific types of risk, in as much as this is possible by taking an active
position in one or more types of risk. Deciding which types of risk to mitigate is
the first dilemma of a financial institution and demands considerable attention,
since focusing on one particular risk category may lead to a hedged portfolio
for a particular source of risk but may result in exposure to other sources of
risk. This issue becomes more challenging when optimization models are used.
For instance, optimization may result in minimization of the risk (measure)
included in the model, but the solution may be sensitive to other sources of
risks that were not considered and better measured by another metric.

In general, risk measures can be divided into two groups depending on the
perception of risk. The first group contains the so-called dispersion risk mea-
sures that quantify risk in terms of probability-weighted dispersion of results
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around a specific reference point, usually the expected value, and are otherwise
classified as symmetric measures of risk. Measures in this category penalize neg-
ative as well as positive deviations from a pre-specified target. Two of the most
well-known and widely applied risk measures, in this group, are Markowitz’s
(1952, 1959) ‘variance’ or ‘standard deviation’ and the ‘expected’ or ‘mean abso-
lute deviation’ (MAD) of Atkinson (1970) and Konno and Yamasaki (1991).
The second group comprises measures which quantify risk according to results
and probabilities below reference points, selected either subjectively or objec-
tively, and are otherwise classified as asymmetric measures of risk. Such risk
measures include the ‘expected value of loss’ from Domar and Musgrave (1944),
Roy’s (1952) ‘safety first’, the ‘semi-variance’ proposed by Markowitz (1959),
Value at Risk–VaR–(Morgan, 1993) and its extension Conditional VaR–CVaR–
(Uryasev and Rockafellar, 1999), and Fishburn’s α– t criterion (1977). The lat-
ter not only constitutes the generalized case for the above ‘below-target’ risk
measures, but it is also capable of representing the symmetric risk measures. Set
against this background, a financial institution faces a second dilemma of deciding
which of the two main risk metric categories symmetric or asymmetric measures
of risk – represent its attitude towards risk and, therefore, should be utilized.

The incorporation of risk in the investment decision process should also
reflect the benchmark relative to which a financial institution or an individual
assesses its portfolio performance. The simplest approach is that of comparing
the performance relative to the portfolio’s past history. This is achieved by
computing the risk measure as a function of the portfolio composition and the
random returns of the assets. Typically, the standard deviation would then reflect
the deviation of the asset returns from the expected portfolio return. On the other
hand, the portfolio performance can be measured relative to a benchmark index
or an alternative investment opportunity. In this case, the risk measure is also
a function of a target level of return. The standard deviation in this case would
then reflect the deviation of the asset returns from the expected target return (e.g.
FTSE100). Utilizing the two alternative approaches – portfolio return and target
return–implies tackling different planning problems. In particular, the portfolio
return approach is mostly suitable for maximum return strategies, whereas the
target return framework is suitable for ‘index tracking’ or ‘goal achievement’
strategies. Furthermore, the two approaches lead to different portfolio asset
mix decisions and, therefore, for financial institutions choosing the appropriate
framework, becomes the third dilemma.

1.3.2 A generic approach to risk representation and quantification

Bawa (1975) and Fishburn (1977) consolidated the existing research on risk
measures up to that time, and developed the α– t model, and introduced a general
definition of ‘below target’ risk in the form of lower partial moments (LPM).
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Let α be a parameter specifying the moment of the return distribution. In
some cases α may be taken as indicating different attitudes towards risk. Let τ

be a predefined target level of the investment return, and F(x) the cumulative
probability distribution function of the investment with return x. The LPM of
order α for a given τ defines the α– t model and has the following form:

Fα(τ) ≡ LPMα(τ ; x) =
∫ τ

−∞
(τ − x)αf (x)dx = E{(max[0, τ − x])α}, α > 0

(1.51)

The introduction of the LPM is a major advance in the field of risk, as it provides
the most generic representation of risk. Within this framework both symmetric
and asymmetric measures of risk are encapsulated. Alternative formulations
of well-known symmetric and asymmetric risk measures are shown below as
special cases of the generic approach of LPM.

Symmetric measures of risk
The main difference in the symmetric measures of risk, when compared with
the asymmetric, is that returns above the pre-specified target are also included.
In that case, the returns used to calculate the risk measures can take values
between [−∞, +∞]. The two symmetric risk metrics we consider are variance
and MAD.

Variance: the classical representation of variance deals with measuring the
spread of the expected returns relative to the average expected portfolio return.
Therefore, τ = x and α = 2.

σ 2 ≡ LPM2(x; x) =
∫ +∞

−∞
(x − x)2f (x)dx = E{(x − x)2} (1.52)

In the case that the target level of return is not equal to the average expected
portfolio return, the representation of the variance from target τ is given by:

σ 2 ≡ LPM2(τ ; x) =
∫ +∞

−∞
(τ − x)2f (x)dx = E{(τ − x)2} (1.53)

Mean Absolute Deviation: by setting α = 1, the MAD measure of risk can be
represented as:

MAD ≡ LPM1(x; x) =
∫ +∞

−∞
|x − x|1f (x)dx = E{(|x − x|)1} (1.54)

Asymmetric measures of risk
It is easily seen that all asymmetric risk measures for different levels of τ and α

are special cases of the a − t risk. Adopting the general a − t risk measure, we
provide the formulations of a set of (interesting) below-target risk measures.
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Safety First: The ‘Safety First Criterion’ is a special case of the α– t risk when
α → 0.

SF ≡ LPMα→0(τ ; x) = Fα→0(τ ) =
∫ τ

−∞
(τ − x)θ→0f (x)dx

= E{(max[0, τ − x])α→0} (1.55)

Expected Downside Risk: When α = 1 the a − t model equals the expected
downside risk.

D ≡ LPM1(τ ; x) = F1(τ ) =
∫ τ

−∞
(τ − x)1f (x)dx = E{(max[0, τ − x])1}

(1.56)

If the target is set equal to the expected portfolio return then the measure
can be viewed as a special case of the MAD risk measure where only the
negative deviations from the target are considered, thus leading to the Semi-
MAD measure:

MAD− ≡ LPM1(x; x) = F1(x) =
∫ x

−∞
(x − x)1f (x)dx

= E{(max[0, x − x])1} (1.57)

Semi-Variance: as shown by Fishburn in his seminal paper, the semi-variance
is a special case of the a − t model, for α = 2.

σ−2 ≡ LPM2(τ ; x) = F2(τ ) =
∫ τ

−∞
(τ − x)2f (x)dx = E{(max[0, τ − x])2}

(1.58)

Worst Case Scenario: For α → +∞ the a − t model defines the worst-case
scenario as considered by Boudoukh et al. (1995).

WCS ≡ Fα→+∞(τ ) = LPMα→+∞(τ ; x) =
∫ τ

−∞
(τ − x)α→+∞f (x)dx

= E{(max[0, τ − x])α→+∞} (1.59)

Value-at-Risk (VaR): the VaR of a portfolio at the β probability level is the left
quantile of the losses of the portfolio, i.e., the lowest possible value such that
the probability of losses less than VaR exceeds β × 100%. The VaR is given as

V aR(x, β) = θ (1.60)

where the corresponding LPM is

LPM0(θ ; x) = F0(θ) =
∫ θ

−∞
(θ − x)0f (x)dx = 1 − β
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1.4 COMPUTATIONAL MODELS IN PRACTICE

The MV model as described in Section 1.2.1 and the alternative models des-
cribed in the rest of Section 1.2 provide adequate mathematical description of
the investment decision problem in its general form. In real life situations, to
apply such models it is necessary to consider the trading requirements and other
aspects of portfolio performance. For instance, it is meaningful (a) not to have
very small holdings, (b) to restrict the total number of holdings and (c) to take
into consideration the roundlot of assets that can be bought or sold in a bunch.
These requirements can be modelled as threshold constraints (Section 1.4.1),
cardinality constraints (Section 1.4.2) and roundlot constraints (Section 1.4.3);
in general they all lead to sets of discrete variables and constraints.

The original perspective (which is also a restrictive and narrow view) of
portfolio planning is that of asset management, namely buying, selling and rebal-
ancing of assets. In this approach no explicit attention is paid to the investor’s
liabilities. Yet if the assets are bonds/fixed income securities, then coupon pay-
ments, reinvestment of cash and the fund’s liabilities immediately call for cash
flow matching. This is formally known as portfolio dedication and is discussed
in Section 1.4.4. The prices of fixed income securities are dependent on the
term structure of interest rates and hence exposed to interest rate risk. Thus,
measurement and modelling of such risks using duration and convexity and
the corresponding restrictions also known as immunization are described in
Section 1.4.5.

1.4.1 Buy-in thresholds for assets

Buy-in thresholds and cardinality constraints are formulated using a discrete pro-
gramming modelling structure which is well-known as variable upper and lower
bounds or semi-continuous variables (Beale and Forrest, 1976). For discrete pro-
gramming solution systems which do not support semi-continuous variables,
such threshold restrictions may be specified using a binary variable and a pair
of bounding restrictions. Using finite upper and lower bounds li , ui for the stock
weight xi and the binary variable δi , the corresponding threshold restriction is
represented by the constraint pair

liδi ≤ xi ≤ uiδi and δi = 0, 1 i = 1, . . . , N

The introduction of the binary variables transforms the QP to a quadratic mixed-
integer program (QMIP) which becomes larger in size and computationally more
complex. These constraints and the binary variable δi are also used to represent
cardinality constraints which specify the number of stocks in a given portfolio.
Imposing constraints that restrict stock holdings to integer multiples of specified
roundlots increases the complexity of the model yet further.
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The reformulation of model QP1 with buy-in thresholds is set out below.

BUY-IN:

Min ZBUY −IN =
N∑

i=1

N∑
j=1

xixjσij (1.61)

subject to

N∑
i=1

xiµi = ρ (1.62)

N∑
i=1

xi = 1 (1.63)

liδi ≤ xi ≤ uiδi i = 1, . . . , N (1.64)

δi = 0 or 1 i = 1, . . . , N (1.65)

xi ≥ 0 i = 1, . . . , N (1.66)

Constraints (1.64) and (1.65) ensure that if δi = 1, then li ≤ xi ≤ ui otherwise
δi = 0 which imposes xi = 0.

1.4.2 Cardinality constraints

In order to control transaction costs or for other monitoring and control issues,
some investors may wish to limit the number of assets held in their portfolios.
By counting the binary variables introduced in model BUY-IN we can construct
the cardinality constraint which limits the portfolio to a fixed number of assets
k. Thus, by adding the restriction

N∑
i=1

δi = k (1.67)

to the model BUY-IN above we extend it to model CARD.
It may be worthwhile to point out that buy-in thresholds and cardinality

constraints are implicitly linked. For example, a buy-in threshold of 10% of the
value of a portfolio implies that up to 10 stocks can be bought.

1.4.3 Roundlot transactions

In the transaction roundlot model, we introduce the requirement that we can
purchase stocks in set ‘blocks’. Each block, or roundlot, can be described as
a cash value or a number of stocks. For each asset i, a block is defined as a
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fraction fi of the total portfolio wealth. Introducing integer number of blocks
yi , we re-express xi as

xi = yifi, i = 1, . . . , N

which is the fraction of portfolio wealth to be invested in stock i. The roundlot
model can be stated as follows.

LOT:

Min ZLOT =
N∑

i=1

N∑
j=1

yifiyjfjσij + γ ε− + γ ε+ (1.68)

subject to

N∑
i=1

yifiµi = ρ (1.69)

N∑
i=1

yifi + ε− − ε+ = 1 (1.70)

li ≤ yifi ≤ ui i = 1, . . . , N (1.71)

yi integer i = 1, . . . , N (1.72)

ε−, ε+ ≥ 0 (1.73)

Using discrete lot sizes of share purchases, it may not be possible to satisfy
exactly the requirement

∑N
i=1 xi = 1. Hence, this restriction is made ‘elastic’ as

in goal programming. Thus (1.70) includes undershoot and overshoot variables
ε−, ε+ respectively which are in turn penalized in the objective function with
a high cost γ . As a consequence, in an optimum solution ε−, ε+ are made as
small as possible and the fractional stock holdings xi sum to a value ‘as close
as possible’ to 1.

1.4.4 Portfolio dedication

Given that the investment process is in general dynamic and that there are
liabilities or obligations to be taken into account, the fund managers need to:

• match cash flows for known obligations arising out of, say, general invest-
ment contracts (GICs); and

• plan borrowing of shortfall and reinvestment of surplus;

both considered over future time periods.
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Let

Fit denote the positive cash flows from asset i in time period t ,
Lt . . . liability in time period t ,
ρt . . . a reinvestment rate,
ρt + � . . . the borrowing rate with � as the difference between this rate and
the reinvestment rate.

We introduce two variables, v+
t , v−

t as cash surplus and shortfall respectively
in time period t .
Then the restrictions set out below

N∑
i=1

Fi0xi + v0 + v−
0 = v+

0

N∑
i=1

Fitxi + (1 + ρt )v
+
t−1 + v−

t = Lt + v+
t

+ (1 + ρt + �)v−
t−1, for all t = 1, . . . , T

capture portfolio dedication as cashflows matching with borrowing and reinvest-
ment. For a detailed discussion of this and related topics, see Zenios (2002).

1.4.5 Portfolio immunization

Bond prices are affected by yields which in turn depend on market interest rates;
also, short bonds and long bonds are affected non-uniformly by the interest rate
movement. The interest rate sensitivity or risk is traditionally measured by ‘bond
duration’. Duration of a bond is generally defined as the weighted average of the
present values of the cash flows (the coupon payments). There are alternative
definitions of duration (see Douglas, 1990 and Luenberger, 1998) but in general
duration is a first order condition and provides a measure of the interest rate
sensitivity or risk of a given fixed income security. A portfolio which is made
up of only bonds can also have a duration measure.

Let Di denote the duration of the ith bond
Then the duration of the portfolio is computed as

DP = x1D1 + x2D2 + · · · + xNDN

If we also compute the duration of all the liabilities, then by balancing the
portfolio duration and liability duration

DP = xiD1 + · · · + xNDN = DL

we immunize the portfolio against interest rate risk.
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Convexity restrictions
The price-yield relationship of a fixed income security is a non-linear function
for which the second order condition (differential) is called convexity. Whereas
duration matching ensures that for small changes in term structure of interest
rates, asset and liabilities move together, it is necessary also to put a restriction
on convexity in order to have comparable shape for larger changes.

Let

Qi denote the first derivative of duration (with respect to the interest rate) for
the asset i, i = 1, . . . , N ; then Qi is defined as the convexity of asset i; and let
QL denote the convexity of the liabilities.

Then

Q1x1 + Q2x2 + · · · + QNxN ≥ QL

is a constraint which in some sense restricts the sensitivity to the shape of the
term structure or the ‘shape risk’ of the portfolio.

Factor immunization
Factor models are well established in most modern portfolio systems since they
play an important role:

• in analysing and discovering information within the market data; and
• in defining the quadratic objective function of the risk.

By using a linear factor model (typically, principal component analysis) one
may choose to include k factors to represent return variability. The first order
and second order measures can be now redefined in this light as:

• factor modified duration; and
• factor modified convexity.

Further immunization restrictions can be written in terms of these parameters
and the corresponding model then includes factor immunization conditions. For
a fuller treatment of this topic the readers are referred to Zenios (2002).

1.5 PREPARATION OF DATA: FINANCIAL DATA MARTS

Deciding on the portfolio asset mix for a given planning horizon is a core
task in the operations of a financial institution. The adoption of portfolio mod-
els underpins such a task, and in particular these models are used to make
robust hedged decisions. Yet the effective use of the portfolio planning models,
described above, in practice requires their inclusion in an integrated decision
support framework. In this framework it is necessary to consider the roles of



A review of portfolio planning: models and systems 23

data, information and decision models (see Figure 1.1). This integrated frame-
work is also underpinned by the concept of translating transactional data into
analytical data and the integration of information analysis models together with
portfolio optimization models through the combined use of a common data mart.

Within information systems methodology, there is a clear awareness in respect
of data stored in transactional/production databases and information stored in
analytical databases. Transactional data refer to historical market data and inter-
nal (institution specific) data: existing portfolio positions, client orders, cash
flows. Information analysis models filter transactional data and synthesize them
into information that is then stored into the analytical database. The informa-
tion is subsequently used to instantiate decision models and in turn the optimal
solutions are stored in the decision database. The integration of the analytical
database and the decision database is better known as data mart (Koutsoukis
et al., 1999). For industry standard portfolio analysis systems such as Northfield
Systems and UBS Warburg PAS (see Chapter 4), the use of analytical databases
is pivotal, and the underlying information model is illustrated in Figure 1.1.

In respect of our portfolio applications, the information analysis models them-
selves can be broken down further into sub-categories taking into consideration
the analysis stage in which they are utilized (see Table 1.1).

Our overall view of the transactional data, information models, analytic
database and decision models is set out in Figure 1.2. This view can be explained
in the following way.

The transactional data are collected on a day-to-day basis and stored in the
production database which the information analysis models filter into informa-
tion and generate an analytical database. We refer to this as the pre-analytical
database because the information is generated before any optimization takes
place. The pre-analytical database comprises:

• Pre-analysis data: information that provides insight on the portfolio per-
formance to date and assist the decision maker to identify market trends
to select an appropriate investment style and asset universe. The pre-
analysis data includes styles, financial ratios, asset and portfolio statistics,
and performance comparisons.

Transactional
database

Data Mart

Decision
database

Analytical
database

Portfolio modelsInformation
analysis models

Figure 1.1 Data information and decision models
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Table 1.1 A breakdown of information analysis models

Information analysis models

Pre-analysis Model data parameters Solution analysis Post-analysis

Performance indicators Historical data What if analysis Performance indicators
Style analysis Weighted moving Scenario analysis Risk statistics and

Financial ratios average Simulation indices
CAPM Factor models Backtesting Financial ratios
APT Time series models Internal company CAPM

Simulation models ARCH, GARCH,. . . models APT
Internal company Neural networks Simulation models

models Genetic algorithms Risk metrics
Kalman filters Internal company

Chaos models
Internal company

models

Data mart

Pre-analytical database

Pre analytics:
styles, risk statistics,

financial ratios ... 

Optimization engine Production
database

Internal data:
portfolios,

cashflows...

Market data:
historical prices

Analytical
models

Solver

Modelling
system

Portfolio optimization
model

continuous or discrete   

User input:
risk aversion,

target portfolio return ..

Decision database 

Post-analytical database 

Model data parameters:
average return

Var/Cov matrix ...

Results analytics:
what if, different

objectives... 

Optimization results:
portfolio returns, portfolio
risk, optimum asset mix

Post analytics:
backtesting, risk

analysis...

Analytical
models

Figure 1.2 Integrated decision support framework
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• Model data parameters: the data input for the portfolio planning model.
The model data parameters typically include the asset universe, the ex-
pected return of the assets over the given planning horizon, and the
expected risk of the assets (variance–covariance matrix). The remain-
ing data parameters are application specific and depend on the constraints
that the organization wishes to satisfy. The quality of the data parameters
is essential for the quality of the solution that the optimization model
provides and therefore information models for generation of the model
parameters can be highly sophisticated (for a review see Grinold and
Kahn, 1995).

The optimization decision engine processes the portfolio optimization model
which is instantiated by data/information taken from the pre-analytical database.
Subsequently the optimization results (optimum solution) are stored in the deci-
sion database. The output is model specific and mainly comprises the optimum
asset mix, the expected portfolio return(s), and the expected portfolio risk(s).
The information within the decision database can be further filtered to obtain
additional information utilizing once again the information analysis models.
The contents and the processing leading to the post-analytical database is
described below:

• Results analysis data: information on the efficacy and the robustness of
the optimal solution. The analyst may carry out ‘what-if’ analyses, where
the decision-maker changes the input values, that is, using different model
data instances. This technique examines the changes of the optimal solu-
tion and the optimal objective value with respect to variations of some
parameters that are considered to be important. It is usually done by
varying one parameter at a time. Another technique that varies uncertain
parameters is scenario analysis. In this approach different scenarios, that
is certain combinations of possible values of the uncertain parameters, are
considered. Thereafter, the problem is solved for each of these scenarios.
Thus, by solving the problem repeatedly for different scenarios and study-
ing the solutions obtained, the decision-maker observes the sensitivities
and decides on an appropriate solution by following a heuristic approach.

• Post-analysis data: information that provides insight on the expected per-
formance of the optimum portfolios. The decision maker can calculate
the risk exposure in the form of VaR or expected shortfall of the portfo-
lio and compare its expected return with that of a benchmark index or a
chosen portfolio.

1.6 SOLUTION METHODS

Whereas quadratic programs (QPs) can be solved rapidly using solution algo-
rithms with a low order polynomial complexity, the solutions to quadratic mixed
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integer programs are difficult (NP-hard) and challenging. For instance consider
the problem of accurately computing the discrete constraint efficient frontier
(DCEF). Each point of the DCEF curve represents the global optimum solu-
tion of a ‘discrete non-convex’ optimization problem. Given that the quadratic
form for the minimization problem is positive semidefinite, relaxing the dis-
creteness restriction on the variables leads to a convex programming problem.
This continuous variable QP relaxation of the problem provides a lower bound
and is easily embedded (see Mitra, 1976 and Lawler and Wood, 1966) in a
branch-and-bound tree search paradigm.

The FortQP system implemented within the FortMP solver (Ellison et al.,
1999) has both interior point method (IPM) and sparse simplex (SSX) solution

capabilities. The system is extensively tested using QLIB test data (Maros and
Meszaros, 1997) and models from the Finance industry. For the given family
of QMIP problems at hand the branch-and-bound algorithm has been specially
constructed taking into consideration the following design issues:

SSX versus IPM. In medium-to-large test problems IPM performs better than
SSX. Yet as an embedded solver of subproblems within branch-and-bound,
IPM is not well suited since the ‘warm start’ property is relatively poor. We
have therefore chosen SSX as our embedded ‘optimization engine’ for solving
subproblems. The dual algorithm is used to solve these subproblems efficiently.

Information sharing and algorithm choice. In solving the sub-problems in
the child node we share (re-use) the optimum basis information (basis list and
the basis factors) of the parent node. We also apply the dual algorithm which
reduces the total number of pivotal steps for reoptimization. These features also
justify our choice of algorithm and vindicate the useful ‘warm start’ properties
of the SSX.

Integer restart heuristic. In the construction of the DCEF involving, say, 500
points we are unlikely to solve all these models to QMIP optimality. As a
consequence, we are likely to lose the ‘pareto efficient’ property of the frontier
and our experiments confirm this. We do, however, adopt a scheme of computing
the DCEF from the highest return, and its corresponding risk, to lower return and
reduced risk. We use the previous integer solution in this sequence as the ‘first
feasible and upper bounding QP value’ for the next point (problem). Given
the previous solution is feasible (or optimal), this solution is automatically
a feasible solution for the current optimization problem, as we decrease the
desired level of return from its highest value to the smallest and hence relax
the constraint. This has the effect that we obtain an ‘efficient’ DCEF which
is optimal (if all problems are solved to optimality) or sub-optimal (if the
algorithm is terminated at a feasible solution). However, the frontier we generate
cannot contain inefficient points as we either stay at the previous solution or
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we improve on it. We believe, and our experimental results vindicate, that this
approach is preferable to applying modern heuristics to this discrete non-convex
programming problem.

1.7 COMPUTATIONAL EXPERIENCE

In this section, we first describe the software system architecture and the com-
putational platform that we use for the investigation of this class of portfolio
problems. We also describe our computational experience in respect of the dis-
crete constraint efficient frontier (DCEF) model with threshold (BUY-IN) and
cardinality (CARD) constraints using five data sets drawn from the Hang Seng,
DAX, FTSE, S&P and Nikkei indices with 31, 85, 89, 98 and 225 stocks respec-
tively, see Chang et al. (2000). Recently we have further enhanced our discrete
QMIP solver to process a range of models supplied by the UBS Warburg PAS
system; these computational results are also discussed in this section.

1.7.1 Modelling and the solution tools

We have adopted a modular component based approach whereby we are able
to mix and match modelling and solver tools to process different portfolio
problems. The overall computational platform is shown in Figure 1.3. Data
from the data mart (see Section 1.5) is stored and transmitted through EXCEL
datasheets. Using the MPL or AMPL algebraic modelling systems (see MAX-
IMAL, LUCENT), the QP or QMIP as appropriate is generated. The model is
then processed by FortMP (QP) or FortMP (QMIP) and the results/solution files
are again stored in the decision database. The system runs under Windows NT
and Windows 2000. In the experiments reported in Sections 1.7.2 and 1.7.3,

FortMP/
QMIP

Excel/VBA 
−datastorage
−driving application

MPL /
AMPL 

reads data

sends to

solver

results 
Solution

file

reads
solution

Adjusts
MPL /AMPL
model file calls

Figure 1.3 Data, modelling and solver architecture
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we have used a Pentium III, 500 MHZ processor with 128 MB of RAM. This
system is also available as a web application; see (OSP-CRAFT, 2001).

1.7.2 DCEF study for five stock indices

We have developed an integer restart heuristic which allows us to rapidly com-
pute points on the DCEF. We investigate our heuristic approach using model
CARD for the five data sets drawn from the Hang Seng, DAX, FTSE, S&P
and Nikkei indices. We set li = 0.01, i = 1, . . . , N and use the cardinality con-
straint k = 10. To analyse the experimental results we follow the metric used in
Chang et al. (2000). The deviations of the points on the heuristically obtained
DCEF are measured as the minimum absolute distance (vertical or horizontal)
from the MEF. Since they do not calculate the exact DCEF but need to mea-
sure the usefulness of the heuristically computed frontier points, this deviation
measure which they call ‘error’ provides a reasonable metric for comparison.
These reported ‘errors’ mainly reflect the systematic deviations due to the dis-
crete constraints. Using the same metric allows a comparison with the modern
heuristic results of Chang et al. (2000). For each data set and solution method,
we generate the frontiers by solving 500 optimization problems. This number is
chosen arbitrarily and the points are equally spaced with respect to the decrease
in the desired level of return, ρ.

The QMIP problems are solved to the second, improving, feasible integer
solution subject to a limit of 500 nodes in the branch-and-bound algorithm.
Table 1.2 presents the results for the integer restart method applied to the five
data sets. The table includes the mean and median percentage errors, the total
number of DCEF points computed, the number of integer optimal points and
the total solution time in seconds. The number of optimal points obtained does
not appear to influence the size of the errors observed, suggesting that when
optimality is not reached, the second integer solution is a good approximation
of the optimal solution.

For each data set the mean error is below 0.02% with the median error
below 0.015%. In all instances, the mean is greater than the median indicating
positively skewed error distributions. The size of the errors reported indicate
that the DCEFs obtained are very close to the corresponding MEFs. This is
borne out by a mean error of 0.008% (median error 0.006%) for the DCEF
solved to optimality (3000) points for the Hang Seng.

In order to establish the computational advantage of the integer restart heuris-
tic, we also calculate the DCEF without starting with the previous solution
vector. The integer restart heuristic finds more non-dominated points and more
optimal points with a smaller mean deviation in less time. To achieve similar
error and optimality results, the number of nodes to be searched in the branch-
and-bound (B&B) algorithm needs to be increased. For example, for the S&P
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Table 1.2 Results for the integer restart heuristic

Index
Number
of stocks

Total number
of DCEF points

Number of
integer optimal

points
Solution

time
Mean
error

Median
error

Hang Seng 31 500 492 57.55 0.014 15 0.009 97
DAX 85 500 228 8 405.33 0.013 99 0.011 59
FTSE 89 500 244 10 978.12 0.011 41 0.008 60
S & P 98 500 192 15 831.97 0.015 86 0.013 25
Nikkei 225 500 486 18 345.56 0.006 18 0.002 52

Hang Seng 31 3000 3000 382.21 0.008 26 0.006 28

data set, the number of nodes has to be increased from 500 to 2500 but the
solution time also increases five fold.

Comparison with modern heuristic methods
The integer restart and reoptimization heuristics outperform the modern heuristic
methods of Chang et al. (2000) who report average mean and median deviations
in excess of 1% (see Table 1.3). Clearly this makes both of our heuristic schemes
very attractive, from the point of view of the quality of the discrete solution. The
computational times are difficult to compare. Unfortunately, it is not possible
to further compare the results since their full DCEFs are not available (Chang
et al., 2000).

1.7.3 Experience with UBSW-PAS models

The ‘optimization’ requirements of the UBSW-PAS system in respect of the
average as well as the largest instance of their application pose an even greater
challenge in respect of processing such portfolio planning applications. Typ-
ically the total universe of assets can be as large as 8000 and cardinality
constraints (CARD) may have values k = 100; we have tested the system for
cardinality of k = 500 to k = 800. Since the solver must be part of a portfolio
analytics and solution tool, a good discrete feasible solution must be obtained
within a ‘reasonable’ time frame.

To process these models we have introduced an ‘enhanced’ depth first tree
search heuristic to include multiple variable fixing. The heuristic operates in
two stages. In the first stage multiple number of discrete variables are fixed in
one step; some ‘down’ (δi = 0) and others ‘up’ (δi = 1); fixes are carried out
(the number is controlled by a parameter). As a result

1 a number of assets are excluded completely (‘down’ fixes), and
2 a number of assets are brought into the portfolio (‘up’ fixes).

This sequence is followed through a number of depths in the tree search until the
criteria for invoking stage 2 is realized. In stage 2 only ‘up’ fixes are undertaken
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Table 1.3 Comparison with modern heuristic approaches

Index
Number of

stocks Solution method
Number of

efficient points Mean error
Median

error

Hang Seng 31 Integer restart heuristic 500 0.014 15 0.009 97
3000 0.008 26 0.006 28

GA heuristic 1317 0.945 70 1.181 90
TS heuristic 1268 0.990 80 1.199 20
SA heuristic 1003 0.989 20 1.208 20
Pooled (GA, TS, SA) 2491 0.933 20 1.189 90

DAX 85 Integer restart heuristic 500 0.013 99 0.011 59
GA heuristic 1270 1.951 50 2.126 20
TS heuristic 1467 3.063 50 2.538 30
SA heuristic 1135 2.429 90 2.467 50
Pooled (GA, TS, SA) 2703 2.192 70 2.462 60

FTSE 89 Integer restart heuristic 500 0.011 41 0.008 60
GA heuristic 1482 0.878 40 0.596 00
TS heuristic 1301 1.390 80 0.713 70
SA heuristic 1183 1.134 10 0.636 10
Pooled (GA, TS, SA) 2538 0.779 00 0.593 80

S & P 98 Integer restart heuristic 500 0.015 86 0.013 25
GA heuristic 1560 1.715 70 1.144 70
TS heuristic 1587 3.167 89 1.148 70
SA heuristic 1284 2.697 00 1.128 80
Pooled (GA, TS, SA) 2759 1.310 60 1.068 60

Nikkei 225 Integer restart heuristic 500 0.006 18 0.002 52
GA heuristic 1823 0.643 1 0.606 2
TS heuristic 1701 0.989 1 0.591 4
SA heuristic 1655 0.637 0.629 2
Pooled (GA, TS, SA) 3648 0.569 0.584 4

GA: Genetic Algorithm; SA: Simulated Annealing; TS: Tabu Search

Table 1.4 Parameter of a typical UBSW-PAS example

Model 1 Model 2 Model 3 Model 4 Model 5

Stock universe 757 1304 1305 1305 1305
Initial portfolio size 332 251 251 251 251
Target for maximum assets 400 250 250 250 250
Risk acceptance parameter 0.6 0.6 0.6 0.6 0.6

one by one until a full discrete optimum solution is reached. Sub-problems in
stage 1 and stage 2 are always solved using the dual algorithm.

Computational results for a set of five models (see Table 1.4) are summarized
in Table 1.5. These were portfolio rebalancing problems in which portfolios
with a given cardinality of holdings were moved to that with an improved new
maximum number of holdings.
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Table 1.5 Test results for a typical UBSW-PAS example

Model 1

Relaxed QP Objective Value 0.18882922E-13
Time to optimum (secs) 32.42

FortMP (QMIP) IP Nodes 400
IP processing time 1903.94
IP Objective 0.28018533E-07

Two-stage heuristics IP Nodes 129
Time (secs) 121.48
Objective function 0.28437663E-07

Model 2

Relaxed QP Objective Value 0.41097040E-01
Time to optimum (secs) 10.92

FortMP (QMIP) IP Nodes 250
IP processing time 163.98
IP Objective 0.41098065E-01

Two-stage heuristics IP Nodes 84
Time (secs) 62.86
Objective function 0.41098065E-01

Model 3

Relaxed QP Objective Value 0.32291911E-15
Time to optimum (secs) 172.32

FortMP (QMIP) IP Nodes 250
IP processing time 2943.12
IP Objective 0.17839276E-05

Two-stage heuristics IP Nodes 84
Time (secs) 235.45
Objective function 0.15851747E-05

Model 4

Relaxed QP Objective Value 0.24351583E-16
Time to optimum (secs) 130.89

FortMP (QMIP) IP Nodes 250
IP processing time 2992.06
IP Objective 0.17895076E-5

Two-stage heuristics IP Nodes 85
Time (secs) 228.00
Objective function 0.159762557E-5

Model 5

Relaxed QP Objective Value 0.24748111E-17
Time to optimum (secs) 121.89

FortMP (QMIP) IP Nodes 250
IP processing time 2936.82
IP Objective 0.17780700E-5

Two-stage heuristics IP Nodes 85
Time (secs) 235.05
Objective function 0.15851747E-05
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The processing of these models using the built-in QMIP search and the
enhanced two-stage heuristic is shown in Table 1.5 which also includes the
objective value of the quadratic function indicating the quality of these dis-
crete solutions. Since this two-stage heuristic is parameter-dependent, we have
supplied the average values in respect of nine runs carried out for each model.

It is easily seen that the ‘two-stage heuristic’ performs extremely well and
reduces the processing time substantially; the quality of the solution is some-
times marginally worse but more often it is better than the straight branch-and-
bound approach labelled as FortMP (QMIP).

1.8 DISCUSSIONS AND CONCLUSIONS

Over the last 20 years there have been considerable acceptance and deployment
of analytical/quantitative models for portfolio planning, asset management and
asset and liability management. The evolving Basle accord (BIS 1988, 2001)
and its impact on the finance industry with respect to measurement and control
of risk is already considerable. These regulatory requirements of risk also con-
tinue to determine the finance industry’s need for models and software systems.
Set against this growing recognition and requirements of such tools, we have
reviewed and presented in a consolidated form major developments in this field.
In conclusion we would like to observe how development of portfolio planning
and asset/liability management systems require a convergence of different skill
sets. Thus in addition to:

1) financial engineering and quantitative modelling,
it is necessary to introduce

2) information engineering to create analytical databases.
Finally these models must be processed efficiently which requires

3) algorithmic and software engineering skills.

Only by bringing together all these skill sets is it possible to create a new
generation of financial planning systems.

1.9 APPENDIX 1: PIECEWISE LINEAR APPROXIMATION OF THE
QUADRATIC FORM

The advantage of transforming the original quadratic form into a diagonal form
which is a variable separable function is that the quadratic objective function
can be approximated by a piecewise linear function of line segments. In practice,
the choice of the number of line segments is critical if accurate function values
are to be computed. Increasing the discrete points by which the function is
approximated not only increases the accuracy of the approximation but also
increases the model size. An alternative way of increasing the quality of the
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approximation is to apply standard bound analysis to the linear forms in order
to derive a lower and upper bound on each variable appearing in the quadratic
function and discretize the function only within this range. Hence, for a given
number P , the density of discretizing points might now be increased as only the
area of interest is taken into consideration. More details about piecewise linear
polynomial approximations can be found in Darby-Dowman et al. (1988).

For a set of P points on the function f (yi) = y2
i , express these as yi =

aip, y2
i = bip, p = 1, . . . , P . It is easily seen that ai1 = g

y

i , aiP = h
y

i .
Model LA, the linear approximation to QP1, based on the diagonalization

DIAG1 is now presented.

LA:

Min ZLA =
N∑

i=1

P∑
p=1

λipbip (1.74)

subject to

P∑
p=1

aipλip =
N∑

j=1

lij xj i = 1, . . . , N (1.75)

P∑
p=1

λip = 1 i = 1, . . . , N (1.76)

N∑
i=1

xiµi = ρ (1.77)

N∑
i=1

xi = 1 (1.78)

xi ≥ 0 i = 1, . . . , N (1.79)

0 ≤ λip ≤ 1 i = 1, . . . , N ; p = 1, . . . , P (1.80)

This linear programming problem is easier to solve than the associated quadratic
program. As a result, additional discrete constraints (such as described in the
introduction) can be imposed on the model more easily. For LA to be a valid
approximation of DIAG1, it is necessary that either only adjacent λip’s for a
given i are positive or any one λip is positive or taking the value unity. These
restrictions are known as special ordered set of type 2 (SOS2) restrictions and
they are automatically satisfied in a convex programming problem. Hence LA
is a valid approximation of DIAG1.
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1.10 APPENDIX 2: COMPARATIVE COMPUTATIONAL VIEWS OF THE
ALTERNATIVE MODELS

In this appendix we consider a few alternative models: mean absolute deviation
(MAD), minimax (MM) and the discrete constraint efficient frontier (DCEF),
and study their computational results after applying them to a small illustrative
dataset of stocks (equity assets). The respective efficient frontiers of these mod-
els are juxtaposed with the MV model and its frontier; the role of the latter is
that of a benchmark (taking standard deviation as the accepted risk measure)
against which the performance of the other models are evaluated.

Dataset
The historical prices of a set of 30 stocks chosen out of the FTSE 100 shares are
considered. The four-year price history of these 30 stocks is first downloaded
from Datastream feed as a table of 208 weekly prices. In order to create the
financial datamart for this small universe of 30 stocks the returns are first
analysed and filtered against historical facts (typically no extraordinary events,
new issues, or administration have occurred). The return on stocks are computed
on a logarithmic scale and the 208 price values per stock are used as historical
observations (these make up columns of the observation matrix) and are used
in turn to calculate:

1) the estimate (average); and
2) the variance and covariance,

of return.
All these calculations are carried out in Excel.

The model results
We first compute for the model QP1, that is the MV model, the entire risk–return
frontier without imposing any other restrictions. The software system outlined
in Section 1.7 is used and by varying the return ρ discretely over a range
of ρmin return corresponding to min value of risk (variance of the portfo-
lio) and ρmax the max value of return (solved as an LP). In this range, j =
1, . . . , P ; P = 100 points were used corresponding to returns. ρ1 = ρmax, ρ2 =
ρ1 − �, . . . . . . .ρ100 = ρmin. It is easily seen that

� = ρmax − ρmin

P − 1

QP1 and QP2
We first use the model QP2 Equations (1.9) and (1.10) and solve it (a) for λ = 1
which gives us ρmin and then solve (b) for λ = 0 which gives us ρmax. We then
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Figure 1.4 Quadratic programming model
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Figure 1.5 Quadratic programming and MAD model

compute the MV efficient frontier for a discretization of P =100 points. The
frontier is illustrated in Figure 1.4.

MAD
In this model we vary the rhs ρ of Equation (1.33) over the same range of
values and points {(ρmax, ρmin), P = 100}. For each of these expected returns, the
standard deviations of the portfolios (of assets) are computed. The corresponding
frontier with the same range of return ρmin ≤ ρ ≤ ρmax but the risk recomputed
as standard deviation is illustrated in Figure 1.5.

According to Konno and Yamazaki (1991), the fact that the standard deviation
efficient frontier of the MAD model does not coincide with the MEF is largely
attributable to the non-normality of the returns data.

MM
The results of the minimax model are obtained and the corresponding risk
figures are recomputed as standard deviation; in this we follow a procedure
which is analogous to MAD procedure discussed above. The corresponding
efficient frontier is displayed in Figure 1.6.

The comparison of the MM frontier with the MEF (Figure 1.5) is not espe-
cially meaningful since the minimax rule is not directly related to the quadratic
risk term.
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Figure 1.6 Quadratic programming and MM model

Discrete constraints efficient frontier (DCEF)
Discrete constraints (see Sections 1.4.1, 1.4.2) represent practical trading re-
quirements and introduce discontinuities in the otherwise continuous efficient
frontier. To illustrate the relationship of the DCEF in respect of the original effi-
cient frontier, we consider the given dataset of the same 30 stocks and introduce
a threshold of 0.1 and a cardinality constraint of k = 2 and k = 4 (thus only
two and four stocks at a level of 0.1 or more may be included in the portfolio).
Figure 1.7 displays the discrete efficient frontiers for model CARD. The two
discrete frontiers were constructed by solving 100 optimization problems with
varying levels of return ρ and in each instance the optimal solution was found.
Each of the two DCEFs contain discontinuities; also these discrete frontiers are
completely dominated by the continuous MV efficient frontier.

In Jobst et al. (2001), we also discuss the missing portion of the DCEF and
provide a fuller discussion of these and related issues.
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Figure 1.7 Quadratic programming model and DCEF
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Chapter 2

Generalized mean-variance
analysis and robust portfolio

diversification

STEPHEN M WRIGHT AND S E SATCHELL

ABSTRACT

This paper presents a new approach to portfolio optimization, which
we call generalized mean-variance (GMV) analysis. We consider this
to be, in effect, the rank (or quantile) equivalent of conventional
Markowitz mean-variance analysis. The first stage of this process
is to generate rank probability statistics using historic data, Monte
Carlo analysis or direct user input. The second stage is optimization
based on those rank statistics to calculate recommended portfolio
weights.

The approach we take to optimization uses state preference theory
to derive an objective function that can be minimized using standard
quadratic programming techniques. The paper outlines a number
of advantages of this method which include a more intuitive fully
diversified (or minimum risk) position on the efficient frontier with all
the portfolio holdings equally weighted. It also results in more stable
portfolios due to reduced sensitivity to the perfect substitute problem,
as well as the well-known robustness of rank statistics to the presence
of outliers in the data.

The disadvantage of the approach is that if we use ranked mean
and ranked variance in the search for robustness, it throws away some
of the information available in the conventional analysis. However our
GMV approach allows use of a mix of a ranked mean and a conven-
tional variance to construct portfolios, or indeed other combinations,

Continued on page 41
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Continued from page 40

so that the trade off between efficiency and robustness can be varied
to fit the circumstances.

2.1 INTRODUCTION

Mean-variance (MV) analysis is widely accepted as the best way of analysing
and explaining the benefits of diversification of holdings across a portfolio of
assets at least in principal. In addition the MV framework is tractable and
allows us to incorporate constraints, tilts, inequalities, and indeed all the fea-
tures of linear and quadratic programming. Together these benefits make MV
analysis popular both with teachers of financial market theory and with system
implementers within the investment technology industry.

At the same time, among practitioners and specialists in financial market the-
ory, MV analysis and the portfolios that result from MV optimization continue
to attract a steady flow of detailed criticism. To quote R.O. Michaud (1998),
‘the basic problem is that MV portfolio efficiency has fundamental investment
limitations as a practical tool of asset management’. Four major problems that
occur in practice are discussed next.

Firstly, it is often difficult for practitioners to produce forecasts in the form
required for MV optimization. They will often prefer to forecast relative return
between assets, or wish to restrict their forecasts to those assets currently
impacted by ‘big picture’ issues. Also many fund managers prefer to fore-
cast rank rather than linear return. Turning these alternative forms back into
the format required by standard mean-variance analysis can be an inelegant and
error prone compromise.

Secondly, our MV optimal portfolio can be highly sensitive to the exact
value of the return forecasts. This problem is magnified by the fact that the
forecasting process is known to usually produce results which are highly inac-
curate and noisy. This leads to undesirable instability in recommended port-
folio holdings (see Merton (1981) among many others). This instability is
then further compounded by the fact that the correlation coefficients used
in standard mean variance analysis can themselves be worryingly unstable
over time.

Thirdly, many investors feel uneasy about the use of variance as a risk
measure. The most counter-intuitive feature is its equal penalization of gains and
losses, see Sortino and Forsey (1996). However, it is also possible for returns
on a minimum variance portfolio to be dominated by a nominally riskier port-
folio which, while more volatile, still always produces a higher return. Also,
depending on the choice of asset set, if one of the assets has much less volatile
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returns than the others, then a minimum risk portfolio in a mean-variance sense
will be heavily concentrated in this one asset rather than diversified across a
wide range of holdings.

Finally, it is usual when using MV optimization to exclude assets with a
highly non-normal distribution of return (e.g. options, or some of the dynamic
trading strategies executed by hedge funds) as the conventional summary statis-
tics do not fully capture the distribution of the return on these assets and hence
the portfolio statistics could conceal undesirable concentrations of risk. Simi-
larly less liquid assets such as property or private equity show artificially low
volatilities which lead to an over allocation in mean-variance analysis.

Given these problems, it is not clear which aspects of MV analysis to retain
and which one should jettison. It is desirable to use the linear quadratic frame-
work of the MV world without limiting ourselves to the specific choice of
mean return and variance or tracking error of return as the parameters which
drive the investor decision function. This approach has already been adopted
in the literature. Wang (1999) uses a MV model to solve multiple benchmark
problems. Chow and Kritzman (2001) convert MV analysis into value at risk-
based capital allocations. We plan to take this further by putting all these cases
into a general framework. In particular, we show how non-parametric statistics
can be incorporated into this framework. The approach we use is based on
state preference theory, see Copeland and Weston (1988), we derive an objec-
tive function which can be minimized using standard quadratic programming
techniques.

We will then show how this generalization of the mean variance frame-
work allows a more robust portfolio construction process that is less sensitive
to noise in the input parameters and we will introduce an innovative set of
summary statistics that provide a very intuitive representation of downside
risk.

At the heart of the investment management process is a simple question: ‘In
what proportion should I hold this range of assets given my expectations about
future risk and return on each one’. In principle, the process for arriving at this
optimal set of portfolio weights has been firmly established since Markowitz
introduced mean-variance analysis, see Markowitz (1959).

As one might expect, this deceptively simple question hides a vast range
of complications. In practice, in order to apply classical mean-variance anal-
ysis you have to make a number of simplifying assumptions. Many of these
assumptions are routinely violated in practice.

The first assumption is that risk and standard deviation of expected return
are synonymous. In reality, investors’ appetites for upside and downside risk
are very different! If the forecast return on all your assets can be adequately
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modelled by a normal distribution then upside and downside risk are equal and
this is merely a semantic quibble. However, investors are becoming increasingly
concerned about the asymmetric behaviour of return on many asset types, hence
alternative approaches have been developed to address this problem, see Sortino
and Forsey (1996). Usually these approaches require accurate modelling of the
higher moments of the return distribution hence they are extremely sensitive to
limitations in the next assumption.

The next problem is that estimating the parameters used in mean-variance
optimization (expected return, standard deviation and correlation of return on
all assets) is a process which is plagued by data problems. In particular, corre-
lation estimates can be quite unstable with the diversification effect calculated
in normal times reducing dramatically when most needed as the markets go
through a turbulent period. Suggested improvements involve separately mod-
elling normal and abnormal market behaviour and mixing the results in some
way, see Chow et al. (1999), or employing less summarized risk statistics, see
Embrechts et al. (1999), or Gardener et al. (2000). Equally, the return forecasts
used will typically be subject to estimation error. This can lead to further insta-
bility in the recommended holdings; in fact the process of optimization has been
referred to as one of error maximization! (See Jorion, 1992).

The final problem is that providing an excess return forecast for each asset
is not a very effective format for capturing the insight of professional investors
into likely market movements. Usually investors will feel more confidence
in some forecasts than others. Typically, they will feel more confident about
relative return forecasts than absolute return forecasts, and they would pre-
fer to only forecast return for that limited range of assets currently being
affected by ‘the big picture’ while leaving the remainder to set to a neutral
value. This has led to the use of Bayesian approaches to building up a fore-
cast from multiple partial views; see Black and Litterman (1992). While this
can be very effective, the mathematics involved can be intimidating, and the
detailed implementation decisions made are critical to achieving well-behaved
intuitive results.

From an investment practitioner’s perspective, our initial simple question has
turned into a vast specialist subject where the best approach is highly depen-
dent on the detailed circumstances in which the optimization is done. In the
many investment organizations who can afford to develop (or commission) the
correct level of specialist expertise, this is not a problem. For many others,
a two-culture situation develops. Practical fund managers distrust and dislike
the black box characteristics of the usual diversification approaches. Special-
ist quantitative analysts dislike and distrust the apparently ‘ad hoc’ nature of
many investment decisions. For a final group, the value added by formal risk



44 Advances in Portfolio Construction and Implementation

management is so outweighed by the costs and complexities of implementation
that they adopt one of a range of alternative heuristic approaches to diversifi-
cation.

Most attempts to date to make the assumptions inherent in mean-variance
analysis more closely reflect day-to-day realities of the investment world have
usually involved ever more sophisticated mathematics. Unfortunately, for many
people the complexity of the mathematics is a barrier to acceptance in its own
right. An alternative is to use a diversification technique which is based on
mathematics which is inherently less sensitive to noise in the data, less depen-
dent on the assumed form of the forecast return distributions, and with built
in assumptions which are essentially simple to understand. Robust statistics
addresses all of these issues with the potential penalty of not being able to
use all available information. In addition this approach builds on and formal-
izes the established practice among an important subset of fund managers who
actively use ranking approaches in their forecasting and portfolio construc-
tion processes.

In Section 2.2, we present a discussion on what we call generalized mean-
variance analysis which attempts to put the above problems and approaches into
a general framework. The procedure we advocate to replace expected returns is
m-tile membership. The concept of m-tile membership means what m-tile does
the stock belong to when ranked over the universe of stocks. If m = 10, for
example, we are asking what decile the stock belongs to.

In Section 2.3 we detail our ‘mean-variance’ approach whilst in Section 2.4
we present details of more Monte Carlo investigations and empirical implemen-
tations. Conclusions follow in Section 2.5

2.2 GENERALIZED MEAN-VARIANCE ANALYSIS

In modelling decision making for an organization, we can afford to be a little
more hazy than in modelling the decision making of an individual, where the
accepted wisdom is to use a variant or generalization of expected utility theory.
The reason for this laxity is the fact that we have very few clear guidelines as
to how to aggregate the preferences of individual stakeholders into the decision
function of the organization. To take a simple example of a company with
an employee pension plan, the interest of the average shareholder typically
conflicts with the interests of the pension plan members. Conflicting interests
may be resolved via the use of game-theoretic notions, but such resolutions
usually depend upon a set of auxiliary assumptions describing the behaviour of
the individuals playing the game.

The preliminary remarks above justify, in our view, presenting a firm’s deci-
sion function in terms of an (n × 1) vector of positive attributes a associated
with the n investible assets in the universe, together with a positive definite
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matrix C(n × n). Then, for a given set of portfolio weights ω∼(n × 1), the
firm maximizes

ω∼
′a∼ − λω∼C∼ω∼ (2.1)

where λ represents the trade off between the attribute of the portfolio (ω∼
′a∼)

versus the risk of the portfolio (ω∼
′C∼ω∼). For obvious reasons, we call such

an analysis generalized mean-variance analysis. Together with some additional
constraints, such as ω′e = 1 or 0, where e = (1,1,1,1,1,1)′, or ωi ≥ 0 (long-only
positions) we have a conventional quadratic programming problem.

We next turn to the choice of attribute and the choice of n × n measure C∼ .
Necessary features for a∼ would be that more ω∼

′a∼ is desirable for the firm and that
a∼ is approximately linear so that if rp = 1

2 r1 + 1
2 r2, then ap ≈ 1

2a1 + 1
2a2. We say

approximately linear because an attribute that is almost linear but reasonably
easy to measure and/or forecast should lead to better portfolios than an attribute,
such as the expected rate of return, which is exactly linear and very difficult
to forecast.

One attribute of considerable interest is m-tile membership where m is a
divisor of n, the number of stocks in the universe. If m = 10, for example, this
tells us what decile of the universe of stocks we expect the stock to lie in. If
m = n, then the attribute is the expected rank. At first glance, it might seem
that the theory of order statistics might help us advance our analysis. Sadly,
that theory is based on the assumptions that the n returns are a random sample,
i.e. independent identically distributed (i.i.d.) random variables. Equity returns
are anything but iid. To illustrate the type of mathematical issues set m = 2 and
n = 4, then for stock 1 we can compute the probability stock 1 is in the top
two of the four stocks. Denoting Ri as the return of stock i, call this event A,
then denoting Probabilities by P (),

P (A1) = P (R1 > R2 and R1 > R3) + P (R1 > R3 and R1 > R4)

+ P (R1 > R2 and R1 > R4)

Now analogously, we calculate P (Ai), i = 1, 4, and retain the two stocks with
the largest P (Ai)

′s then, in the population rather than the sample, we would have
defined what we mean by top-half stocks. If we took many samples from our
universe we could construct sample estimators of P (Ai), thus we could identify
and estimate top-half membership. Of course with real data the changing time
varying nature of return distributions inhibits this.

In the population, decile (or m-tile) membership will be partly linear. For
weights ωi , �ωi = 1, if assets (1, . . . , k) belong to m-tile j , then, max(Ri) =
�ωimaxi∈1,...k(Ri) ≥ Rp ≥ �ωi minit (Ri) = min(Ri) so that Rp also lies in m-
tile j . By the same argument if (1, . . . , k) lie between m-tiles j , and k so will
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Rp = �ωiRi also lie between m-tiles j and k. It should also be clear that m-tile
membership is not fully linear as the following example demonstrates.

Consider stocks 1 to 6 with returns 10, 9, 8, 7.5, 7.4 and 0 and m = 3,
thus stocks 1 and 2 are in the top ter-tile, stocks 3 and 4 are in the second
ter-tile and stocks 5 and 6 are in the third ter-tile. Suppose we construct a
portfolio of 0.8 stock 2 (rank 1) plus 0.2 stock 6 (rank 3), the portfolio rank
is 0.8 × 1 + 0.2 × 3 = 1.4, thus the portfolio is a rank 2 asset according to
linearity. However, its return is 0.8 × 9 + 0.2 × 0 = 7.2 which is in the third
ter-tile, since assets 5 and 6 have returns 0 and 7.4

2.3 THE STATE PREFERENCE THEORY APPROACH TO PORTFOLIO
CONSTRUCTION

In conventional mean-variance analysis, we use correlation matrices as a key
intermediate variable when calculating the optimum. When we do this, we
are assuming that knowing the mean, standard deviation, and correlation of
the return on all the constituents of the portfolio is all that is needed to fully
describe the risk characteristics of any portfolio built from these constituents. In
practice, the real distribution of return may often be fat-tailed, skewed, and/or
discontinuous as will the multivariate probability distributions.

Unfortunately it is not obvious that the mean-variance results derived for
conventional correlation apply equally to rank correlation statistics. Even worse,
there are alternative non-parametric statistics that we might think of using (i.e.
Spearman’s rank order correlation or Kendall’s Tau). Hence the need to go back
to first principles in order to prove our method.

In the state preference model, uncertainty takes the form of not knowing
what the state of nature will be at some future date. To the investor, each secu-
rity is a set of possible payoffs, each one associated with a mutually exclusive
state. Once the uncertain state of the world is revealed, the payoff on each
security is determined exactly. This is a very flexible way of modelling com-
plex valuation and decision-taking processes. This very flexibility is also its
main problem. There are usually an infinite number of states (high/low) hence
the usual assumption of normal distribution of return in order to make the
mathematics tractable.

When considering m-tiles, we can consider all cases from m = 2 to m = n

(rank). We shall investigate the rank case next. If we assume that the states of
nature are adequately represented by the rank order of the portfolio, then for
an ‘n’ asset problem the number of states of nature has reduced from infinite
to ‘n’ factorial. This total falls even further as we reduce the resolution of the
calculation from rank to m-tile. If we then further assume that the actual proba-
bilities observed are a sample drawn from a distribution which is continuous and
with limited magnitude of first derivative then we do not need to exhaustively
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evaluate all ‘n’ factorial states in order to optimize our weights. However, by
sampling repeatedly, the probability that stock i belongs to m-tile j can easily
be determined with any degree of accuracy.

In effect this generates a time series for which we can find a formula for the
‘mean’ and ‘variance’.

For values of m that are reasonably large, it is clear that conventional historic
data cannot be simply applied to compute rank probabilities as there are not
enough degrees of freedom. However, as mentioned above, given assumptions
about the data-generating process (DGP), for example, that returns r∼ are multi-
variate normal with mean vector µ∼ and covariance matrix �∼ ,

r∼ ∼ N(µ∼, �∼ ) (2.2)

we can employ Monte Carlo methods to compute rank probabilities by simu-
lation. The benefit of the above approach is that we can replace (2.2) by more
complex assumptions, i.e. we can model non-normality, extreme returns, con-
ditional volatility etc. without complicating matters unduly; all we need to be
able to do is to simulate the DGP.

Once we have evaluated the pk , we can set up our quadratic optimization. xk

is the return (i.e. rank) of the portfolio on each of ‘m’ possible states. pk is the
probability) of each of the ‘m’ possible states. ωi is the weight of each of the
‘n’ assets. rik is the rank of each asset in each state.

xk =
∑

i=1...n

ωirik (m-tile value)

x− =
∑

k=1...m

( ∑
i=1...n

(ωirikpk/m)

)
(average m-tile value)

x−2 =
( ∑

k=1...m

( ∑
i=1...n

(ωirikpk/m)

))2

(squared m-tile value)

xk
2 =

∑
i=1...n


 ∑

j=1...n

(ωirikωj rjk)


 (squared root value)

v =
( ∑

k=1...m

(xk
2pk) − mx−2

)
/(m − 1) (rank variance)

θ = x− − λv (objective function)

θ = x− − λ

( ∑
k=1...m

(x2
kpk) − mx−2

)
/(m − 1) (substituted for variance)
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θ =
∑

k=1...m

( ∑
i=1...n

(ωirikpk/m)

)
− λ

( ∑
k=1...m

(x2
kpk)/(m − 1)

)

+ mλ

( ∑
k=1...m

( ∑
i=1...n

(ωirikpk/m)

))2

/(m − 1)

θ =
∑

k=1...m

( ∑
i=1...n

(ωirikpk/m)

)
− λ


 ∑

k=1...m


 ∑

i=1...n


 ∑

j=1...n

(ωirikωj rjk)




× pk

) /
(m − 1) + mλ

( ∑
k=1...m

( ∑
i=1...n

(ωirikpk/m)

))2

/(m − 1)

As this is a standard quadratic objective function, it can be minimized using all
the conventional quadratic programming algorithms.

In the above we consider m-tile rank as our ‘return’ and rank variance as our
‘risk’. Actually, hybrid procedures could be used. For example, if we thought
that tracking error/conventional variance was a sensible risk measure, then we
could use this in conjunction with a ranked return. In mixing different charac-
teristics, care needs to be taken in the determination of λ. This is not, however,
an insurmountable problem as we can take the λ of the market portfolio based
on the mix assumed much as is done in conventional mean-variance analysis
where you choose the λ which makes the FT All-Share optimal. Then by vary-
ing λ we can assume that we are more or less risk tolerant than the market
representative agent.

2.4 IMPLEMENTATION AND SIMULATION

In order to test the properties of the ranking approach to mean-variance anal-
ysis, a number of simulations were run to demonstrate different aspects of the
approach. The first test was to look at the ‘perfect substitute’ problem. This
occurs where some assets in a portfolio have such similar forecast risk charac-
teristics that the optimizer sees little extra risk in moving a holding from fully
in one of the pair into fully in the other as the relative forecast return for the
pair of assets changes sign. Unconstrained, this results in large long–short bets
for such asset pairs, and sharp changes in recommendation over small change
in forecast return.

To demonstrate this, we chose a three asset portfolio containing French equity,
and French and German bonds. Historically, the latter two assets have been closely
correlated. The first plot below (Figure 2.1a) shows the changing holdings rec-
ommended by conventional mean-variance analysis (at a constant tracking error)
as the forecast return varies over half a percentage point. The second chart
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Figure 2.1a Conventional mean-variance optimization
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Forecast of German bond return relative to French bond return

Rank Mean -Variance optimization

Figure 2.1b Rank mean-variance optimization

(Figure 2.1b) shows the same test done with rank optimization demonstrating
the desired reduction in sensitivity to small changes in the user’s input fore-
cast. (Tracking error in this case is only approximately constant hence the slight
‘wobble’ in the lines.)

The second issue with mean-variance analysis is the problem of defining
risk. Taking a typical global asset allocation portfolio of European, Asian and
American equities and bonds looked at from a US dollar perspective, the effi-
cient frontier calculated using five years of return history from 1986 to 2001
shows recommended holdings which vary along the efficient frontier as shown
in Figure 2.2a. The minimum risk portfolio is in reality not very well diversified,
consisting as it does largely of US bonds. This represents a very concentrated
exposure to forecasting errors.

The same exercise undertaken using rank optimization (Figure 2.2b) results
in a minimum risk portfolio with equally weighted holdings as by definition
placing the same bet on every asset must result in zero volatility of average rank
return. This is intuitively a much more diversified position than the standard
mean-variance analysis above.
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Figure 2.2a Conventional efficient frontier
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Figure 2.2b Rank efficient frontier

The third issue is volatility of recommended holdings caused by noise in
the correlation matrix over a period of time. Figure 2.3 shows the same set of
assets with constant forecast returns but now at a fixed tracking error position
recalculated monthly over the period 1998 to 2001. This was calculated using
three years of monthly data, exponentially weighted with a weighting half-life
of one year) This can be seen to routinely produce substantial short-term move-
ments in recommended holdings that are highly undesirable from a practical
investment perspective.

100%

Holdings

0.0%

1998 1999 2000 2001

German_Bond_3_5_year_maturity

US_Bond_3_5_year_maturity

Japanese_Bond_3_5_year_maturity
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Japanese_Equity

American_Equity

Figure 2.3 Volatility of optimum portfolio due to correlation matrix changes over time
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Volatility of coefficients in the calculated correlation matrix is an inevitable
consequence of the stochastic nature of the time series being compared. In
an ideal world, where there is an underlying ‘true’ value of correlation, the
distribution of the estimated values around that ‘true’ value can itself be esti-
mated using a knowledge of the method used to calculate the correlation
coefficients. The width of this distribution is then usually taken as a measure
of the significance of the estimated coefficient.

In linear correlation, occasional large values of return (fat tails) and uncer-
tainty about the form of the joint probability distribution create uncertainty as
to the formula to use to calculate the significance of the correlation estimate.
In rank correlation, there is no uncertainty over the distribution of returns from
which any given sample is drawn (it is always drawn from the set of integers
1 to n). Hence the correct formula to calculate the significance of the correla-
tion is known. As the joint probability distribution of the underlying variables
approaches a bivariate normal distribution, the significance of the linear esti-
mates becomes as good as those produced from the rank correlation. In fact the
significance formula becomes the same, viz: T = r ∗ sqrt((N − 2)/(1 − r2)).

Another way of putting this is that for any given level of underlying real
correlation, and sample size, as the underlying distribution deviates more and
more from bivariate normal, the volatility of the estimated linear correlation
coefficient increases relative to the volatility of the rank correlation. Given that
these deviations from normality are unknown and potentially large and time
varying, the implicit use of rank correlation rather than linear correlation must
reduce this source of volatility in recommended holdings. Given a hypotheti-
cal sample size of a hundred data points and historic distribution of return for
the above asset set, this could reduce the volatility of correlation coefficients
very significantly.

The final problem with traditional mean-variance analysis is forecasting return
in a way that is intuitive to a typical fund manager. Capturing this insight into
likely market movements is an art not a science. In due course, a range of alter-
native methods are likely to be developed to capture this information. However
all of these methods need to convert the manager’s input, in whatever form it
is most conveniently entered, into a standard set of summary statistics used for
analysis. In mean-variance analysis these summary statistics are the means, and
covariance of return. The equivalent summary statistics in our approach is the
rank (or m-tile) probability matrix illustrated below.

This m-tile probability matrix is a very simple way of describing intuitively
the likely rank of each asset. There is one column per asset and in each column
the probability of that asset being in each quantile is indicated in the relevant
row. In the rank case the matrix is a matrix of probabilities, hence all the rows
and all the columns must sum to 100%. Such a matrix is called bi-stochastic.
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We give an example below.

Rank probability matrix

USB CVB EAFE R1000 R2000

16.47 23.96 5.94 17.19 36.44
16.65 23.18 11.44 29.99 18.74
16.23 23.41 26.66 20.14 13.56
19.74 19.64 27.24 19.88 13.50
30.91 9.81 28.72 12.80 17.76

The above matrix, which details an m = n = s case, tells us for example,
the probabilities that R2000 is ranked first is 36.44%. The row sum adding to
one simply means that the sum of probabilities that different stocks could be
first should add to 1. Likewise the second row is the sum of probabilities that
different stocks could be second, which again adds to 1. The column numbers,
say the second column, CVB, tells us the rank probabilities of CVB, which
again add to 1. One can deduce immediately from such a column the expected
rank of CVB. An alternative graphical representation is shown in Figure 2.4
where the height of each band of grey is proportional to the probability of that
asset being in that quantile.

As with covariance matrices, these m-tile probability matrices provide sum-
mary statistics that give a valuable insight into likely investment out-turn. They
implicitly contain joint probability information. They are straightforward to
calculate from the state probability values, and are easily interpreted.

Any optimization process, inherently optimizes an average expected value.
Given that return is frequently highly non-normal (even if we choose to ignore

Asset Rank Probability

Figure 2.4 Rank asset probability
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this fact in the interests of tractable computation), this average could hide con-
centrations of downside risk which are highly undesirable. The m-tile probability
matrix allows this downside probability to be observed in a very direct way.

When combined with the fact that the significance of rank correlation is much
more robust to non-normality in the return distributions, the presence of this
safeguard makes it practical to include assets in a portfolio being diversified
which have a very non-normal distribution of forecast return. This considerably
extends the range of asset types and forecasting methods which can be reliably
employed in this type of diversification exercise.

In particular, scenario forecasts are more naturally handled in this environ-
ment, unlike standard mean-variance analysis which requires that you forecast a
single vector of mean returns. This approach allows you to postulate a range of
alternative scenarios and allocate probabilities to each. Monte Carlo simulation
enables you to combine these scenarios to generate a forecast of the probability
of different assets outperforming each other.

2.5 CONCLUSIONS AND SUGGESTED FURTHER WORK

It can be seen from the preceding section that the recommended holdings pro-
duced using GMV analysis are more stable than those calculated using standard
mean-variance analysis.

Choosing an appropriate definition of risk is ultimately a matter of your
particular circumstances and preferences. Defining the minimum risk portfolio
such that it is the equally weighted set of holdings has the attraction that it is
more consistent with our intuitive ideas of full diversification than are portfolios
produced using the minimum volatility criteria.

In addition, this approach is much less sensitive to problems caused by non-
normal forecast return distributions than classical mean-variance analysis. The
ability to display the rank (or m-tile) probability matrix provides an easily
interpreted safeguard against hidden concentrations of risk. The fact that the
significance level of the rank correlation is independent of the return distribution,
avoids the problem with classical mean-variance which can lead to unreliable
recommended portfolios if the significance of the calculated linear correlation
coefficient proves to be particularly low.

As we have retained the linear quadratic framework of the MV world, we
can incorporate constraints, tilts, inequalities, and indeed all the other oper-
ationally convenient features of linear and quadratic programming. However,
we have also retained the simplifying assumption that the return distribution is
adequately represent by its (rank) mean and standard deviation. Hence if users
have marked preferences for the shape of the probability distribution of forecast
portfolio rank return as well as for its mean and standard deviation, they should
compare this GMV approach to those based on optimizing downside deviation,



54 Advances in Portfolio Construction and Implementation

value at risk, or stochastic dominance. Simple extensions of our approach can
allow optimization based on the m-tile equivalent of these criteria.

The main problem using this approach is the other side of the robustness
coin. The standard mean variance model has beatified excess return and tracking
error as measures of performance and risk. It will take considerable effort to
establish alternative non-parametric risk and return measures in general use.
However, in practice this may not be the major problem that it first appears.
While the holdings are optimized on the basis of the m-tile (or rank) statistics,
the results can still be reported in terms of tracking error, excess return etc.,
hence achieving the best of both worlds.
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Chapter 3

Portfolio construction from mandate to
stock weight: a practitioner’s perspective

DR JULIAN COUTTS

ABSTRACT

Whereas risk analysis is all about the risks run in a predefined portfolio,
portfolio construction is about the general shape a portfolio should
take to assume predefined risks. The risk analysis problem is fairly well
defined. Portfolio construction, on the other hand, has been largely
treated heuristically by the investment community.

This work has been undertaken to provide a more objective frame-
work for designing funds. This framework leads to a ‘flight envelope’
for the fund – a term specifically chosen to evoke images of how
test pilots assess the safe regimes for flying aircraft, which can
then be used by other pilots responsible for the safety of hundreds
of passengers.

How should risk be allocated to the various risk-taking activities in
the fund?

The result of a non-linear optimization can be used to allocate
tracking error optimally to the various teams, bearing in mind their
abilities and other constraints.

How should we set appropriate bet sizes within a stock
level portfolio?

We present an approximation to the covariance matrix that
introduces a Euclidean distance measure as a suitable proxy. We
find expressions for the tracking errors of arbitrary portfolios. We
consider inserting industry bets into portfolios. We make use of the
distance measure not only for setting fund specifications but for other
purposes too, e.g. fund turnover limit setting.

How far should ideas be supported within a portfolio?

Continued on page 56
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Continued from page 55

By re-deriving the core CAPM results in an active fund context,
and making use of our approximation to the covariance matrix, we
derive simple formulae, which make intuitive sense. The formulae
should provide a useful starting point for setting stock weightings,
when tradability of stocks is not a major issue. The output of this
investigation is a methodology – a smooth way to mutate a portfolio
from on-index to progressively more aggressive stances. The key is
the algorithm used to treat the no-short-selling constraint.

3.1 INTRODUCTION

This document is a summary of a large body of research and development
work aimed at portfolio construction. This work was delivered by the Risk
Management Team, at Standard Life Investments, during the period January
1998 to May 2001. This is a rich vein of research, and intensive work continues
on this subject.

Whereas risk analysis is all about the risks run in a predefined portfolio, port-
folio construction is about the general shape a portfolio should take to assume
predefined risks. The risk analysis problem is fairly well defined. Software
packages are continually being built to dissect portfolios in novel ways and the
debate about risk analysis has moved on from whether the job can be done, to
whether it can be done better using different algorithms.

Portfolio construction, on the other hand, has been largely treated heuristically
by the investment community. Experienced fund managers write specifications
for funds by considering the competition and use their combined years of wis-
dom to set how aggressive a portfolio needs to be and how to implement
that aggression.

This work has been undertaken to provide a more objective framework for
designing funds, from benchmark setting through to position taking. This frame-
work leads to a ‘flight envelope’ for the fund – a term specifically chosen to
evoke images of how test pilots assess the safe regimes for flying aircraft,
which can then be used by other pilots responsible for the safety of hundreds
of passengers.

It is difficult to ‘explode’ the fund risk into how it can be forecast from other
parameters. Time is too limited to explore all the funds that could be drawn
from all the assets in all the asset classes throughout the possible universe.
Rather, we have made approximations to cut to the principal decisions made
by fund managers.
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These are the questions we seek to answer in this chapter:
How Should Risk be Allocated to the Various Risk Taking Activities in the

Fund?
This is addressed in Section 3.2. The competition defines the tracking error

taken at asset allocation level, which must then be married to the abilities
of the various decision-taking groups to turn risk into return. The result of a
non-linear optimization can be used to allocate tracking error optimally to the
various teams.

How Should We Set Appropriate Bet Sizes within a Stock Level Portfolio?
In Section 3.3 we present an approximation to the covariance matrix that

introduces a Euclidean distance measure as a suitable proxy. This can be shown
to work well empirically within asset classes. We also take this consequence of
the covariance matrix approximation further to find expressions for the tracking
errors of arbitrary portfolios (from the highly aggressive 10 stock portfolios
through intermediate strength portfolios through to the index fund). The tail
of uninvested small stocks is of particular importance. The core result can be
extended to suggest the numbers and extents of overweighted stocks for any
particular portfolio risk requirement.

Market practice can be shown to reduce the overweightings for large funds
(an empirical fact that is not reflected in any analysis package and justifies
the use of load ratios as risk control tools). We consider the effect on track-
ing error of inserting industry bets into portfolios. Finally, we bring all the
analysis together to set up a flight envelope for a variety of funds. We make
use of the distance measure not only for the standard application in setting
fund specifications – here we show how to do this for the emerging mar-
ket equity class – but for others too, such as for fund turnover constraint
setting.

How Far Should Ideas be Supported within a Portfolio?
In Section 3.4 we begin by re-deriving the core CAPM results but in an

active fund context. We find expressions for the optimal portfolio and informa-
tion ratio. We make use of our new approximation to the covariance matrix,
which allows simple expressions for portfolio weightings to be derived. The
shapes of the formulae make intuitive sense: for example, the efficient fron-
tier is a straight line through the origin. The formulae should provide a useful
starting point for setting stock weightings, when tradability of stocks is not a
major issue.

The output of this investigation is a methodology described in Section 3.5 – a
smooth way to mutate a portfolio from on-index to progressively more aggres-
sive stances, by taking a predefined level of risk producing results in close
agreement with a commercial optimizer, when fed with the same preferences.
The key is the algorithm used to treat the no-short-selling constraint.
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3.2 ALLOCATING TRACKING ERROR FOR MULTIPLE PORTFOLIO
FUNDS

3.2.1 Introduction

As part of the effort to gather best practice in portfolio construction, we consider
how a fund director might allocate the ability to take risk among the reporting
asset class managers. This Section presents two tools, a simple rule of thumb
and a more sophisticated non-linear allocator. Examples using two types of
product (UK pension fund and global equity) are presented.

3.2.2 Rationale and approach

When deciding on how much risk asset class managers should be allowed to
take, it is a useful check to ensure that no one manager is shouldering more
than a fair allocation of fund risk.

We can develop a simple rule of thumb which equalizes the potential for
downside between asset allocation and stock selection. This rule of thumb
assumes that managers have no skill.

Conversely, those who are skilful managers should be given more opportu-
nity. The ability to perform should be spread between asset allocation and stock
selection. However, there are some practical limitations resulting from the fact
that tracking error can never be negative and is bounded on the upper side by
some fraction of index volatility.

We can use Lagrangian techniques to define a set of rules where tracking
error is allocated optimally.

3.2.3 Mathematics

The rule of thumb equalizes the tracking error taken on in one asset class,
assuming that all others are on index, and also taking an asset allocation bet in
that asset class.

Consider a benchmark of two assets: Y in asset A and 1 − Y in asset B.
Consider a fund of X in asset A and 1 − X in asset B. The fund has the B
component on index. The A component is run with stock selection tracking
error. The monthly outperformance will be

rfund − rbm = X(ra + δra) + (1 − X)rb − (Y ra + (1 − Y)rb)

= (X − Y)(ra − rb) + Xδra (3.1)

Note that the first term is what contributes to asset allocation tracking error, and
the second is the stock selection tracking error. The first term is of the order
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of the volatility of asset A, but may be less, depending on the decorrelation
between A and B. If the assets A and B are fully uncorrelated and of equal
volatility, then the standard deviation of the asset allocation term will be the
volatility of A divided by the square root of 2.

(Bet)i ∗ (Volatilty)i ∼ (Weight)i ∗ (Tracking Error)i ∗ √
2 (3.2)

This shows the start of a theme that will emerge more fully, that the tracking
error that should be taken in asset class i is roughly inversely proportional to
weight of that asset class in the fund. Simple back of the envelope calculations
show that this rule produces sensible numbers for asset weights around 50%
and bet sizes around 5%. Equally, it is important to notice that a smaller asset
class weight in the fund leads to the ability to take higher tracking errors within
asset class.

However, there is a problem. If the weight gets very small, the tracking
error can become unfeasibly high. In practical terms, it is difficult to find a
single stock (the ultimate portfolio) with a tracking error much more than a few
times the volatility of the index. Babcock versus the FT Allshare has a tracking
error of 3 ∗ (volatility) of the FT Allshare. Glaxo or BP both have individual
tracking errors close to 1.5 ∗ (volatility). These, however, are somewhat imprac-
tical limits. By the time we have moved to four stocks, the tracking error is
0.7 ∗ (volatility of index). So for practical portfolios, it is sensible to limit the
tracking error taken to (at the very most) the volatility.

The most sophisticated analysis comprises two equations, one for the value
added by the managers and the other for the risk taken on by the fund. The first
equation is

〈Value Added〉 = IRAA +
∑
i=1,n

wiIRiσT E,I (3.3)

and the second is

σT E
2 = σAA

2 +
∑
i=1,n

w2
i σT E,i

2 (3.4)

In these equations, the Information Ratio for asset class i is IRi (IRAA for asset
allocation), wi is the weight of the fund in asset class i, and the tracking errors
for the asset classes are σT E,I , combining to a total tracking error of σT E .

We want to maximize the value added for the risk we are taking into the fund,
so we optimize this equation set using Lagrange multipliers. Writing down the
Lagrangian and setting the first derivatives of the Lagrangian with respect to
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the variables to zero, leads to several conditions that must be met for the value
obtained by the risk taken to be maximal. They are

σAA = (λ/2) ∗ IRAA (3.5)

σT E,i = (λ/2) ∗ (IRi/wi) (3.6)

〈Value Added〉 = (λ/2) ∗
[

IR2
AA +

∑
i=1,n

IR2
i

]
(3.7)

In Equations (3.5–3.7), λ is the Lagrange multiplier. If the managers are skil-
ful in their markets, they should be allowed to take more risk. The benefits
and objections outlined above still hold. Lower weight leads to higher tracking
error allowances but only up to a limit. There is an additional problem. Infor-
mation ratios can be negative, which may invalidate this analysis. The practical
consequence is to limit those asset classes which consistently lose money to
index performance, bounding the tracking error at zero. The money would be
passivated in this case anyway.

This in fact makes the problem non-optimal. We can improve, however, on
the bounded solution. The ratio of the value added by the bounded solution to
the value added by the ideal solution can be used to amplify the risks taken
by the asset classes whose risk allocation upper limit is still not biting until
the value added converges on that of the ideal solution. Thus, the risk limited
funds stay risk limited, but the others take progressively more risk until the
return objective is met.

One way to think about this analysis simply is to think of the team of man-
agers who all contribute to fund performance. To a first approximation, it would
seem sensible to force each portfolio manager to shoulder an equal amount of
responsibility for outperformance. This prevents the whole fund from being
unduly dependent on the fortunes of the manager of the largest asset class.
However, this may force some asset classes to take unreasonably high risks.
The funds have to stand by themselves as rational, well diversified portfolios,
largely clipping their ability to add equal value and the strain has to be borne
by the largest asset classes.

3.2.4 Prototype implementation

The mathematics of the non-linear optimization does, unfortunately, converge
slowly. An Excel spreadsheet designed as an example of this approach has been
written which takes some 10 iterations to approach the ideal value-added target.

The prototypes for UK pension types and for a global (but country-based)
equity type fund can be requested from the author. Both of these, of course,
just have sample data in place. In particular, the information ratios achieved by
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the asset classes are completely made up; we have not yet done the exercise
to measure the information ratios achieved by asset classes over meaningful
time periods.

On these spreadsheets, we begin from the observation that we can calculate
the theoretical information ratio for the whole fund (everyone contributes to
the added value in the optimal proportions). The Lagrange multiplier then takes
on the role of scaling the House capability (measured by the theoretical whole
fund information ratio) to the value-added target set by the client. We also know
the theoretical tracking error taken by the fund, therefore. Having established
the size of the multiplier, we then apply the optimality conditions above to set
the theoretical tracking errors for the components of the whole fund, bearing in
mind the component information ratios. Several clamps then need to be applied.
Firstly, an information ratio that is negative should result in an indexed fund
for this component, so the ratio should be lower bounded by zero. Secondly,
the ideal tracking errors for components to take will, in some cases, be higher
than sensible upper bounds. Other parts of the spreadsheet are a simple iteration
scheme designed to amplify the risk taken by those parts of the fund that can,
until the return target is met.

3.2.5 Examples

As simple examples of this prototype, see Tables 3.1 and 3.2. These are a
UK pension fund type and a (country-based) global equity type. Plausible but
imaginary information ratios are inserted. The weights in the funds are inserted.
The upper bounds on the tracking error have been set as plausible values for
the spectrum of product we have at Standard Life Investments. The typical
concentrated portfolios of some global clients have tracking errors close to 8%,
but these are less risk-seeking for the UK type. It is interesting to note that the
small components nearly always have their ideal tracking errors clipped, with
additional risk being taken in the larger classes. Lower skill classes are permitted
less tracking error, as are classes present at large weights in the benchmark.
Sector-based work is withheld.

3.2.6 Conclusions

Even at the level of allocating sensible tracking errors to component parts of
funds, compromises and trade-offs must be made. Negative information ratios
are bounded to zero and upper limits on tracking error are fixed ultimately by
the ‘no gearing’ rule, although there are other reasons why tracking error may
be upper bounded for component portfolios in a fund. However, by adjusting
the tracking error taken by the larger classes in the fund, the binding upper
limits on the tracking error need not prevent a return target being met.



Table 3.1 UK Pension prototype

Creating the tracking error targets for portfolios
imposing constraints
(UK pension prototype)

Fund Information Asset Ideal Final Ideal Actual Ideal Actual Min TE Max TE
weight ratios classes te to take te to take risk risk value value

55% 0.5 UK 0.6% 1.2% 9.61E-06 4.05E-05 0.16% 0.32% 0% 2%
5% −0.1 US −1.2% 0.0% 3.85E-07 0 0.01% 0.00% 0% 4%
6% 0.5 Japan 5.2% 4.0% 9.61E-06 5.79E-06 0.16% 0.12% 0% 4%
6% 0.5 Pac x J 5.2% 5.0% 9.61E-06 9.04E-06 0.16% 0.15% 0% 5%
6% 0.7 Eur x UK 7.2% 5.0% 1.88E-05 9.04E-06 0.30% 0.21% 0% 5%
1% 0.1 Lat Am 6.2% 6.0% 3.85E-07 3.62E-07 0.01% 0.01% 0% 6%
10% 0.2 UK Bonds 1.2% 2.0% 1.54E-06 4.02E-06 0.02% 0.04% 0% 2%
5% 0.5 Int Bonds 6.2% 3.0% 9.61E-06 2.26E-06 0.16% 0.08% 0% 3%
6% 0 Cash 0.0% 0.0% 0 0 0.00% 0.00% 0% 0%

0.25 AA 0.16% 0.3% 2.4E-06 1.01E-05 0.04% 0.08% 0% 1%

Max achievable value add 1.38%

100% chksum 0.79% 0.90% 1.00% 1.00%

Value to be added Theory TE Lambda Ideal whole fund IR Actual IR achieved
1.00% 0.79% 0.012 1.27 1.09



Table 3.2 Global regional type

Creating the tracking error targets for portfolios
imposing constraints
global regional type

Fund Information Asset Ideal Final Ideal Actual Ideal Actual Min TE Max TE
weight ratios classes te to take te to take risk risk value value

10% 0.5 UK 10.0% 8.0% 0.0001 6.4E-05 0.50% 0.40% 0% 8%
45% 0.5 US 2.2% 2.6% 0.0001 0.000135 0.50% 0.58% 0% 8%
15% 0.5 Japan 6.7% 7.7% 0.0001 0.000135 0.50% 0.58% 0% 8%

7% 0.5 Pac x J 14.3% 8.0% 0.0001 3.14E-05 0.50% 0.28% 0% 8%
23% 0.5 Eur x UK 4.3% 5.0% 0.0001 0.000135 0.50% 0.58% 0% 8%

0.5 AA 1.00% 1.2% 0.0001 0.000135 0.50% 0.58% 0% 2%

Max achievable value add 5.00%

100% chksum 2.45% 2.52% 3.00% 3.00%

Value to be added Theory TE Lambda Ideal whole fund IR Actual IR achieved
3.00% 2.45% 0.040 1.22 1.19
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3.3 TRACKING ERRORS FOR ARBITRARY PORTFOLIOS

3.3.1 Introduction

In this Section, we begin by deriving an approximation for the covariance
matrix, which will allow us to derive estimates for the tracking error found
in arbitrary portfolios. This leads to insights into portfolio construction, both
in terms of the number of stocks in a portfolio, but also how the tracking
error depends on the size of the fund. The analysis works at both the 10 stock
portfolio aggressive end and the index fund end. Trading practice can be shown
to limit the tracking error obtainable with larger funds.

3.3.2 Deriving the distance measure

We begin by stating the tracking error

T E2 = (hp − hbm)T .σ .(hp − hbm) = bT .σ .b

=
∑

i

σ 2
i b2

i +
∑

i

∑
j �=i

bibjσiσjρij (3.8)

In this formula hp and hbm are the vectors of the percentage weights in the
portfolio and benchmark respectively, and define the bet, b. Note the space of
the vectors is the union of the sets of benchmark and portfolio holdings.

Let us assume that the stock variances are all comparable and thus we
can define

σi = σj = 〈σ 〉, ∀i , j (3.9)

T E2 = 〈σ 〉2 ∗

∑

i

b2
i +

∑
i

∑
j �=i

bibjρij


 (3.10)

Further, we assume that the correlation between the assets can also be repre-
sented by the average value

ρij = 〈ρ〉, ∀i , j (3.11)

T E2 = 〈σ 〉2 ∗

∑

i

b2
i + 〈ρ〉

∑
i

∑
j �=i

bibj


 (3.12)

We can simplify this expression further, using the nature of bets

bi +
∑
j �=i

bj = 0, so
∑
j �=i

bj = −bI (3.13)

and substitute this.
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Then,

T E2 = 〈σ 〉2 ∗ (1 − 〈ρ〉) ∗
∑

i

b2
i (3.14)

T E2 = 〈σ 〉2 ∗ (1 − 〈ρ〉) ∗ D2 (3.15)

In Equation (3.15), we have introduced D, the Euclidean distance. This makes
the tracking error approximately related to the norm of the vector of bets. This
is intuitively correct. Portfolios that are ‘further away’ from the benchmark have
higher tracking error. The distance is modified by average values of volatility
for assets and the correlation between them. In fact the key result that carries
forward into system design is that D is easy to calculate from accounting
systems and the covariance matrix is not. The fractional change in TE is the
same as the fractional change in D.

We can use this approximation to make a number of portfolio construction
problems simple.

3.3.3 Initial empirical tests

Consider two funds. Both are based on a 20 stock benchmark. Both funds
contain all the stocks in the benchmark. The first fund contains 10 off +1%
stock bets and 10 off −1% stock bets. The second fund contains two off +5%
stock bets and two off −5% stock bets. Both funds have equal active monies
but the second fund is clearly more aggressive. The second fund is quite a ‘long
way from the benchmark’ and it will have the higher tracking error.

It is worth exploring the link between distance and tracking error empirically
in more realistic cases. The first trial is to consider the link between T E and
D for typical asset allocation stances. This is effectively a 10 stock (index)
portfolio but the correlations and volatilities are distinctly different from the
ideal above.

The result of creating possible asset allocation mixes and comparing the D

and T E measures leads to the result that

T E = 14% ∗ D (3.16)

A more realistic test is to take the FTSE and compare the T E and D measures
arising from taking 1% and 2% bets, both positive and negative. The experi-
ments were to measure T E and Excel to measure D. The results are shown in
Figure 3.1. This appears to suggest that the D and T E measures are broadly
proportional to each other.

A better test still is to take the top 50 stocks in the FTSE and equally weight
them. This portfolio was set up as a benchmark, and + or −2% bets were taken at
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Figure 3.1 Tracking error v distance for FTSE100 stock bets
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Figure 3.2 Tracking error v distance for the top 50 FTSE stocks, equally weighted

the stock level with respect to this benchmark. The results are shown in Figure 3.2.
This is an even more convincing proportionality.

This suggests that the D measure can be used as a tool. A regression of T E

on D would give good statistics but even this is not required to estimate the
impact of a proposed change on a current tracking error. The relevant marginal
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formula is

�T E/T E = �D/D (3.17)

Thus we have empirically explored a rule of thumb that operates at the stock
level for assessing the tracking error impact of changing the stock bets. It has
the advantage that, for broad portfolios, it does not require a covariance matrix
and can thus be driven from in-house systems simply. The statistics appear
quite good at the stock level and at the asset class level, so we may infer that
sector level data would also support this measure.

3.3.4 The 10 stock portfolio

For this aggressive portfolio, we have 10 good ideas, broadly equally weighted,
with no further restrictions. In general, the weight of the stocks in the bench-
mark is sufficiently low that the equal weighting is broadly similar to equal
overweighting. In this case, as described below:

D2 ≈
∑

N−2 ≈ N−1 (3.18)

How do we treat such a portfolio? Where is such a portfolio to be found?
If we start from a crude approximation to pension fund thinking, we begin

with a scheme with equities representing the cohorts who are still working and
bonds representing the cohorts who have retired. The currency of the assets
and liabilities is sterling for a UK pension fund. Into this bonds and equities
portfolio is admixed various other asset classes for risk reduction, with the aim
of adding value too. The portfolio gets closer to some efficient frontier.

The important point to note at this stage is that the ‘admixtures for diversifi-
cation’ argument in pension fund design relies on indices. It is assumed that the
portfolios that would operate in practice in the admixtures are index funds. This
is a sub-optimization over asset classes, ignoring the stock selection element.

The smaller the admixture, the higher the tracking error that should be run, if
all members of the team are expected to contribute equally to the performance of
the fund. The converse also holds true. That is why, for a typical scheme, the UK
equity component is run with a lower risk than the Latin American component.

In Table 3.3, we show the results of a non-linear optimizer that allocates the
tracking error taking capability among the asset classes. This shows the tracking
error implications of outperforming a UK Pension class of funds by a target
of 1%. The UK element takes an ideal tracking error that is low but the Latin
American part takes a far higher tracking error. Now we apply constraints. Most
funds buy into sensibly constructed portfolios, by which we mean funds with a
lower tracking error than ideal. Thus the smaller asset classes ‘have their (tracking
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error) wings clipped’ and the net result is that the larger asset classes have to make
up the difference, from a risk perspective. Thus we arrive at the final construction
seen in the industry, with 2% tracking error taken in the UK and 4–5% tracking
error taken in the admixtures.

There is an interesting further point that is not so obvious. The fact that
the admixture funds are sensibly constructed makes for funds that do generally
follow the index, with some value added. Thus the funds hold true to the
original aim of the international diversification, as defined by indices. Thus
for the UK institutional market, it is natural to find admixture funds of a well
defined construction and the only difference is that the larger funds can afford
to be segregated and the smaller funds make use of pooled funds.

Compare these results to Table 3.4, where the target is now plus 2%. Now
the tracking errors taken in the asset classes are pretty dramatic. Even the core
UK equities takes nearly 4% tracking error and the admixtures could take 10%
tracking error at the least. These admixture funds are fairly aggressive. To what
extent is a 10% tracking error consistent with a 10 stock portfolio?

Tracking error Number of stocks

5 32
6 22
7 16
8 13
9 10

10 8
11 7
12 6
13 5
14 4
15 4

This shows that the number of stocks declines rapidly as the tracking error
demands rise. Indeed this provides strong backing to the concept that a 10 stock,
equally weighted portfolio is a suitable vehicle for a 10% tracking error fund.

However, this may be close to the limit of rational portfolio construction,
since the number of stocks is very small. Consider the CAPM result

σ 2
P = β2σ 2

M + σ 2
SS (3.19)

where we relate the portfolio variance (σP ) to the market variance (σM ) together
with specific risk (σSS). If we say that the stocks are broadly uncorrelated, then
the component of portfolio variance that is not Beta dependent becomes equal



Table 3.3 Risk budget for a standard UK Pension Fund

Creating the tracking error targets for portfolios
imposing constraints
UK pension fund type, WM local authority ex property end 2Q 1998

Fund Information Asset Ideal Final Actual Min TE Max TE
weight ratios classes te to take te to take value

56.0% 0.4 UK 0.8% 2.1% 0.48% 0% 3%
4.0% 0.3 US 8.3% 5.0% 0.06% 0% 5%
3.0% 0.3 Japan 11.1% 5.0% 0.05% 0% 5%
3.0% 0.3 Pac x J 11.1% 5.0% 0.05% 0% 5%

12.0% 0.3 Eur x UK 2.8% 5.0% 0.18% 0% 5%
1.0% 0.3 Lat Am 33.3% 6.0% 0.02% 0% 6%

12.0% 0.4 UK Bonds 3.7% 1.0% 0.05% 0% 1%
4.0% 0.3 Int Bonds 8.3% 2.0% 0.02% 0% 2%
5.0% 0 Cash 0.0% 0.0% 0.00% 0% 0%

0.2 AA 0.22% 0.5% 0.10% 0% 0.5%

1.00%
100% chksum

1.19%

Value to be added Ideal TE Lambda Actual IR achieved Actual TE
1.00% 1.05% 0.022 0.68 1.47%



Table 3.4 Risk budget for an aggressive UK Pension Fund

Creating the tracking error targets for portfolios
imposing constraints
UK pension fund type, WM local authority ex property end 2Q 1998

Fund Information Asset Ideal Final Actual Min TE Max TE
weight ratios classes te to take te to take value

56.0% 0.4 UK 1.6% 4.4% 0.98% 0% 5%
4.0% 0.3 US 16.7% 10.0% 0.12% 0% 10%
3.0% 0.3 Japan 22.2% 10.0% 0.09% 0% 10%
3.0% 0.3 Pac x J 22.2% 10.0% 0.09% 0% 10%

12.0% 0.3 Eur x UK 5.6% 10.0% 0.36% 0% 10%
1.0% 0.3 Lat Am 66.7% 10.0% 0.03% 0% 10%

12.0% 0.4 UK Bonds 7.4% 2.0% 0.10% 0% 2%
4.0% 0.3 Int Bonds 16.7% 3.0% 0.04% 0% 3%
5.0% 0 Cash 0.0% 0.0% 0.00% 0% 0%

0.2 AA 0.44% 1.0% 0.20% 0% 1.0%

2.00%
100% chksum

2.14%

Value to be added Ideal TE Lambda Actual IR achieved Actual TE
2.00% 2.11% 0.044 0.67 2.97%
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to the market component at roughly four stocks. This result is in full accord
with fund manager intuition that a four stock portfolio cannot be said to be
following a market. The diversification benefits established using index level
analyses have been lost. All that is left is a few good stock ideas, wherever
in the world they may be. There may of course be an argument for currency
diversification according to a predefined asset allocation.

The view on 10 stock portfolios is that they are indeed appropriate for higher
risk funds. They do correspond to a refinement on other model funds, and so
are a different process, and the information ratio may not be the same for the
10 stock portfolio as it is for the 30 stock portfolio. Whether these portfolios
are appropriate, depends on the marketing of the funds as a whole. If the
clients are expecting a high risk, high value-added portfolio, then the 10 stock
portfolio is what is required. The 10 stock portfolio is at the very limit of
portfolio construction, in the sense that anything with fewer stocks cannot be
said to be market related and so the original fund construction with diversifying
elements fails.

3.3.5 The other extreme: the index fund

One approach to indexing is to fully replicate the index, to a level close to the
full number of stocks in the benchmark – say we will hold N stocks out of an
index of M. This means that the bet structure is

(hp − hbm)T = (0, 0, 0, . . . , 0, 0, −hbm,N+1, −hbm,N+2,

− hbm,N+3, . . . , −hbm,M) + ε (3.20)

Here we need to add in an error vector ε such that the active portfolio has
zero net weight. This error is spread over all M stocks, and is small compared
to hbm,N+1. So D2 is the sum of the benchmark weights squared, from the
(N + 1)th stock through to the Mth stock. This can only be handled empirically,
given that the shape of the index weights as a function of rank is only very
approximately a power law. (A plot of ln(Index weight) against ln(rank) is
currently comprised of two straight line segments, one for the FTSE250 and
beyond and one for the FTSE100. See Figure 3.3.) We have calculated the
distance measure using the above approximation (Figure 3.4). We have also
calculated the tracking errors for optimizations to the index, with constraints on
the number of stocks (Figure 3.5).

The result of the empirical comparison is that both the distance measure for
the above bet structure and the optimized portfolio tracking errors are both fitted
very well by the empirical law

D2 = (a ∗ (ln N/N) + b)2 (3.21)
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Figure 3.3 Log rank as a function of log weight for the FTSE350
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Figure 3.4 Square root of cumulative weight squared v Ln(N)/N for the FTSE350

The shape of the index defines the functional form. There is no particular ab
initio reason as to why this particular function works well. Note that all we are
checking here is that the distance measure operates just as well at the nearly
full replication end of fund design, as it does at the few stock portfolio end.

3.3.6 Intermediate portfolios

If the approximation works well at both extremes, it ought to work as an inter-
polation for intermediate portfolios. The key to this is to recognize that there are
two distinct sets of positions in an intermediate portfolio. The positions actively
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Figure 3.5 Tracking errors plotted against Ln(N)/N, where N is the number of stocks in the
portfolio
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Figure 3.6 Portfolio positions

chosen and the positions passively ignored. Figure 3.6 shows the situation for a
200 stock portfolio. To the left is the explicit 200 stock overweights and under-
weights. To the right is the remaining ‘tail’ of 600 stocks that are passively
ignored, leading to many small negative bets. As a more obvious example, take
a 50 stock active portfolio. The way to calculate the distance for such portfolios
is to consider the 50 stocks directly and then add a correction for the passive
ignored stocks. Thus:

D2 =
∑

i=1,N

s2
i + (a ∗ (ln N/N) + b)2 (3.22)

In this formula, N is the number of stocks in the portfolio, a and b are found
from the fit of the index fund to the passive benchmark and s is an explicit
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active bet. We note that the distance calculated at the stock level correctly takes
account of the true distance in the portfolios. Sector neutral structures show low
risk levels at the industry level, although a lot of stock specific risk is inserted
by choosing the ‘best’ stock to represent the sector.

Some examples:
For 10 stocks, σ = 0.4, ρ = 0.5, D2 = 0.1, D = 0.316 and T E is close to 9%.

Using actual FTSE350 data, a is 0.412 661, and b is −0.006 39. A typical 70
stock portfolio has a bet structure with 10 @ +2%, 10 @ +1%, 10 @ −1% and
40 @ 0. In this case the ‘passive ignored’ correction is 0.018 6562, D calculates
to be 0.074 7, implying that the tracking error is 2.1%.

A 36 stock portfolio has equal weights at nearly 3% bets, typically. The
correction is calculated as above, and D = 0.169, implying a tracking error
of 4.7%.

A practical example: turnover limits in funds: an underpinning
This example addresses how limits on stock turnover should be set.

The basic way to approach this problem is to recognize that, if all
funds are following commonality of views, and those views change, then
a concentrated fund must turn over more stock to keep in line than a
diversified fund. Thus turnover should scale with tracking error.

Estimating this, we assume that there are roughly 20 good ideas in a
fund. The rest of the stocks are there for risk control. The ideas change
roughly twice per year, implying that the 20 positions are reversed halfway
through the year. If the bets are at the 1% level, then the turnover in the
fund will be at the 80% level. If the bets are at the 2% level, the turnover
will be 160%.

Formalizing this, we make use of our link between the distance measure
and the tracking error in the fund. The distance is a simple function of
the turnover.

T E2 = σ 2(1 − ρ) ∗ (1/(42nb)) ∗ (Turnover)2

If we use nb = 20, volatility = 40%, correlation = 0.5, then we have

(Turnover) ∼ (63) ∗ (Tracking Error)

A diversified UK fund with tracking error 2% should have a limit at
roughly 125%. A narrow Japanese fund with tracking error 5% should
have a limit of roughly 300%.

Continued on page 75
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Continued from page 74

UK Equities Diversified 150%
Concentrated 250%
Aggressive 400%

US Equities Diversified 250%
Concentrated 400%

Europe ex UK Equities Diversified 250%
Concentrated 400%

Japan Equities Diversified 300%
Concentrated 500%

Pacific Basin Equities Diversified 300%
Concentrated 500%

Lat Am Equities Diversified 300%

3.3.7 A typical distribution of bet sizes

If we look at portfolios in regions where the benchmarks are very dispersed, with
low weightings and many stocks (like the TOPIX) we tend to find portfolios with
(effectively) zero weighted stocks, singly weighted stocks and doubly weighted
stocks. For example, a 40 stock portfolio with 0%, 2%, and 4% weightings.
It is not so easy to see, but similar structures appear in portfolios closer to
benchmark. A good idea gets 2%, a very good idea gets 4% and a not very
good idea is similar to a bad idea and gets zero.

To come to a view on a reasonable spectrum of bet sizes, we assume that the
strength of view is approximately normally distributed. Kinetic theory can be
used to derive the fact that 〈b2〉 can be described with a parameter σ 2

b (provided
the average bet size is zero). This is a standard deviation of bet sizes. Then

T E2 = 〈σ 〉2(1 − 〈ρ〉) ∗ (Nσ 2
b + (a ∗ (ln N/N) + b)2) (3.23)

If we know that a 30 stock strong portfolio has a tracking error of 5%, then
we can calculate that σb is about 3.2%. We would then expect a spectrum of
bets with 1/5th of them greater than +3%, 1/5th of them below −3%, and 3/5th

within these boundaries.

3.3.8 Very large funds

It is well known that funds above a certain size, dependent on the market, begin
to get unwieldy. More diversification creeps in and the tracking error reduces.
There is nothing in a risk analysis, or indeed in the approximations above,
that suggests that fund size is an important parameter. Empirically, however,
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it is. The reason lies in the nature of the way that positions are taken. Fund
managers are nervous that they cannot get out of positions quickly, should
something go wrong with a stock story. They might not be able to ‘cut their
losers’. Obviously enough, with a very large fund, as with a small fund, it is
the arithmetical difference in portfolio and benchmark weights that gives rise
to a contribution to fund performance. For a large fund, though, the number
of shares this position amounts to can be much larger than the typical buffers
of stock that the market making community keep as market lubricant. Large
positions liquidated quickly create market impact.

We can get a handle on the almost social science of what size of trade leads
to market impact from a SEC rule (Section 3.22(e) of the Investment Company
Act, 1940) which requires a fund to be able to redeem its shares in five working
days, in the normal course of business. Also, no more than 15% of the fund
should be invested in illiquid securities, where illiquidity means not being able
to dispose of the shares in five working days. Dealers have interpreted this rule
to mean that ‘85% of a fund should be able to be dumped within five working
days, trading at 30% of the median daily trading volume’.

We may apply this argument to the overweights in a very large fund. For
example, if 2 000 000 shares of a particular stock are traded in a day, then the
maximum overweight should be 3 600 000 shares. Now consider fund structure.
A 100 stock portfolio might have 1% overweights, for a tracking error close to
2%. If the average share price is £5, then the fund size cannot be larger than
£2 bn. If the fund gets larger than this, then the overweights have to be reduced
accordingly and the tracking error reduces linearly with fund size.

Empirically it is possible to obtain the average trading volume over 30 days
for the FT Allshare and fit that to market cap (Figure 3.7). The fit is not perfect,
but it is plausible that the fit of ln(market cap) to ln(cap traded) is close to one
(Figure 3.8). This shows that a load ratio is a proxy for the time it would take
to trade a position. Thus, for very large funds, load ratios are sensible control
mechanisms, even though it inevitably means that larger bets can be entertained
in the FTSE than in the FT Small Cap. Figure 3.9 shows the bet structure for
a typically large fund, in percentage over weights. Figure 3.10 shows the same
fund, oriented with the portfolio at the left, with the positions expressed in days
trading. The load ratio concept has ensured that the fund is close to a few days
trade away from neutralizing an idea that goes wrong.

3.3.9 Bets at the industry level and their influence on tracking error

It will be noted that the above work has treated the portfolio of stocks as
undifferentiated. Of course the correlation matrix for the UK splits into industrial
and style groupings as well. If one insurance company is bid for, and marked up,
others will be marked up too. We have done significant work to assess the effect
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Figure 3.8 Market cap and trading volume

of industries on tracking error within portfolios. This work has started from
optimizing portfolios to different numbers of stocks with particular industry bets
inserted as constraints in the optimizations. In the UK market, this has largely
involved positions in oil, telecoms, banks and pharmaceuticals. We thus collect
a data set comprised of a broad set of portfolios with different bet structures,
different stock numbers and different tracking errors. It is a straightforward job
to find a suitable best fit functions for the data – it turns out to be (for the
FT Allshare).

T E = [(a′ ∗ (ln N)/N + b′)2 + c′ ∗ Dind
2](1/2) (3.24)

With a′ = 24.5, b′ = −0.164 and c′ = 0.02473. The error in this fitting function
is described with a standard deviation of 7.5bp (Figure 3.11). This is very
low and implies that the tracking error in real portfolios is well described by
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functions of this form, that perhaps vary by market. Real portfolios exhibit
more risk than this. This is because an optimized portfolio will try to move to
equalize the constrained portfolio and constrained benchmark sector weights.
If the number of stocks permits and close to equal stock weighting is possible,
the optimized solution will choose several (for example) banks, to provide a
low risk bank basket. Real managers will, in contrast, perhaps choose one bank,
at a weight to represent the sector as a whole, thus shoe-horning more stock
selection risk into the portfolio than the optimization would suggest. It is for
this stock specific reason that we would prefer to use the stock level analysis
above and use the industry level analysis here to provide additional constraints
for portfolio engineering.
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positions

3.3.10 A portfolio flight envelope

As an additional equity example, we consider the construction of a practical
flight envelope, based on the above tracking error analysis.

The portfolio has an outperformance target of 3%. If we assume a top quartile
information ratio of 0.5, then this would imply a tracking error of 5–7%. What
number of stocks should we have?

Starting from the intermediate portfolio case above, (a ∗ (ln N)/N + b) +
(1/N) = D2, for an equally weighted portfolio. (This is an approximation to the
equally overweighted portfolio, if the stock numbers are low, and the benchmark
broad. At TE = 5%, we can solve for N , by relating D to TE, finding D = 0.197,
and N = 30. Similarly at TE = 7%, N = 15). Thus this portfolio could have
15 to 30 stocks with individual stock bet sizes of up to 7%.

At the industry level, we set the T E = 6%, N = 22, and use the empirical
results above to solve for a Dind .

TE = 6% = [(24.5 ∗ (ln 22)/22 − 0.164)2 + 0.02473 ∗ Dind
2](1/2)

To find that Dind = 32, or roughly 10% bets in 8 industry sectors.

3.3.11 Flight envelopes for correlated regional equity markets, with
particular reference to emerging markets

The starting point is the expressions for value-added and risk taken.

V A = IRAAσAA + IRSSσSS (3.25)

σT E
2 = σAA

2 + σSS
2 (3.26)
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In these formulae, σAA is the tracking error taken at the asset allocation level,
and σSS is the tracking error taken at stock selection level. The value added
is linearly related to the risk taken at asset allocation (between countries) and
stock selection. The constants are information ratios. The total risk taken is
the root mean square of the risks taken at asset allocation and stock selection.
Here we assume the tracking errors for the two processes are decorrelated. This
is reasonable, since in emerging markets, the country risks are still partially
influenced by PEST analyses and the currencies are not all perfectly tied to
the US$.

The risk equation is the equation of an ellipse in risk space, and the value
added equation is a straight line. The optimal point can be found as the point of
tangent of the value added lines and the risk ellipse. We use Lagrange multipliers
to find the point of tangency. We find that the optimal condition is

σSS/σAA = IRSS/IRAA (3.27)

The emerging markets team spend equal amounts of time on both stock selec-
tion and country selection, so we should assume in the first instance that the
information ratios will be comparable. Thus, the tracking errors run at country
selection level and stock selection level should be comparable. If the total value
added target is 3%, and the information ratios are 0.4 (typical of just below top
quartile), then 1.5% is expected for each dimension. The tracking errors run on
each dimension should be 4%.

We now have to express how the tracking errors within countries cumulate.
If the correlation between tracking error generating processes within countries
is zero, then the in country stock selection tracking errors add in quadrature. If
the correlation between tracking error generating processes is correlated, then
the tracking errors add linearly.

σT E
2 =

∑
w2

i σT Ei
2 (uncorrelated) (3.28)

σT E
2 =

[∑
wiσT Ei

]2
(correlated) (3.29)

In the case of the emerging markets, it is felt that stock selection would be
driven by global themes, and thus the tracking error generating processes will
be correlated.

Consider the asset allocation dimension. We have built a full covariance
matrix built on MSCI indices for the region. We have used this to probe how
the tracking error varies with bet sizes. This gives a way of examining individual
bet structures and allows us to rank markets by their impact on tracking error.
However, for control purposes, we would prefer a simpler method. We have an
approximation to the covariance matrix, in terms of the distance measure. The
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distance measure is the square root of the sum of the squares of the bets, and
is related to the tracking error via the average volatility of the markets and the
typical correlation coefficient. We have used the covariance matrix to check the
results, which agree satisfactorily.

T E2 = 〈σ 〉2 ∗ (1 − 〈ρ〉) ∗ D2 (3.30)

Here, we use 0.4 for the factor between T E and D. If the tracking error is
4%, then D2 = 100, and the matrix proposed by the emerging markets team
is indeed appropriate. If ‘core’ markets have 1VH@5%, 1VL@5%, 1H@3%
and 1L@3%; ‘secondary’ markets have 1VH@3%, 1VL@3%, 2H@1% and
2L@1%; and ‘satellite’ markets have 1VH@1%, 1VL@1%, 1H@1% and
1L@1%: then D2 = 94.

It should be remembered that this analysis would allow bets to be shuffled
around such that the D measure is satisfied without regard to the tradability of
the markets. The matrix proposed by the emerging markets team takes account
of the liquidity in the markets and should be adopted, in our view.

For risk allocation between countries, we note that ideally we should have
equal contributions to value-added from every country. This would allocate risk
in inverse relation to the weight in the country. However, this would make the
risk taken in tiny countries unreasonably high. Jordan would have to run a
tracking error of 125%! This is hardly pragmatic. In reality, even two large cap
stocks in a country tracks the country index to a tracking error of the order of
10%–20%.

In order to address these issues, we have built an optimizer which limits the
tracking error taken to 10% in the satellite countries and reallocates the risk to
the larger countries such that the total value added remains on target. This sets
the in country tracking errors to the values shown in the accompanying table.

For stock selection bets within country, we make use of our work to relate
stock bets to tracking error in country. Tracking error at this level comes from
two sources – the bets put on deliberately and the stocks not held. To address
these issues, to set the stock number levels and the bets sizes, we have analysed
the following markets: Mexico, Brazil, South Africa, Argentina (as an example
of a secondary market) and Venezuela (as an example of a satellite market).
Where possible, we fit to an equation of the form:

σT E
2 = 〈σ 〉2(1 − 〈ρ〉)σb

2N + (a ln (N)/N + b)2 (3.31)

in which σb is the standard deviation of the bets taken, N is the number of
stocks, and the factor depending on ln(N ) is a statistical fit to the tracking
errors found from optimizing to a country benchmark with a set of stocks
limited to N , which represents the influence of the stocks not held. Clearly
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this is an empirical fit which depends on country index structure, but seems to
have a wide applicability of functional form. This set of analyses leads to the
following matrix for stock bets (we close the problem by assessing the variance
contributions from the two elements – bets, and tail not held).

Country Weight Tracking Stock Stock bets std
% error % numbers deviation %

Mexico 20.2 2.0 10–20 1.5
South Africa 15.9 2.5 15–30 1.5
Brazil 15.7 2.5 15–30 1.5
Greece 9.2 4.0 10–20 1.5
Israel 9.1 4.0 5–10 10.0
Turkey 7.1 5.0 5–10 10.0
Chile 5.6 5.0 5–10 10.0
Argentina 3.8 7.0 5–10 10.0
Russia 4.3 7.0 5–10 10.0
Poland 2.4 10.0 0–5 Equally wtd
Hungary 2.3 10.0 0–5 Equally wtd
Czech Rep 1.4 10.0 0–5 Equally wtd
Peru 1.3 10.0 0–5 Equally wtd
Venezuela 1.1 10.0 0–5 Equally wtd
Colombia 0.5 10.0 0–5 Equally wtd
Jordan 0.2 10.1 0–5 Equally wtd

3.4 ACTIVE CAPM, OR HOW FAR SHOULD A BET BE TAKEN?

In this Section, we rework the classic CAPM covariance minimization using
Kuhn Tucker conditions to derive the equivalent to CAPM when there is no
risk free asset – i.e. the competitive asset is not cash, but an index fund. This is
necessary pre work to find expressions for optimal bets, which make use of the
approximation to the covariance matrix found above. Along the way we find
the limitations to the CAPM approach.

An active portfolio is formed via

hportfolio − hbenchmark = h (3.32)

in which h refers to the vector of weights in the space of possible investments.
Prudent active management is concerned with minimizing risk while capital-

izing on the added value form our return estimates.
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This implies that we minimize the tracking error

min{h}(1/2)hT .V .h

such that

hT .e = E

hT .I = 0 (3.33)

In these constraints we are stating the conditions that the added value E on the
portfolio will be the sum of relative contributions from the positions and that
the sum of active weights is zero. The vector e is the vector of next period
returns for the assets that are entries in h.

Using the Lagrange multiplier approach:

min{h, λ, γ }L = (1/2).hT .V .h + λ(E − hT .e) + γ (0 − hT .I ) (3.34)

Forming the Kuhn Tucker conditions:

∂L/∂h = V .h − λe − γ I = 0 (3.35)

∂L/∂λ = E − hT e = 0 (3.36)

∂L/∂γ = −hT.I = 0 (3.37)

Note that the third of these conditions is compatible with the second constraint.
We can invert the first condition to find a solution for h.

h = λV −1.e + γV −1.1 (3.38)

Now we premultiply this solution by eT and use the second of the conditions:

E = λeT .V −1.e + γ eT .V −1.1 (3.39)

Similarly, we can premultiply by I T and use the third condition:

0 = λIT .V −1.e + γ IT .V −1.1 (3.40)

Now, these last two equations are simultaneous and we may solve them to
recover a more useful form of solution.
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Defining:

A = I T .V −1.e (3.41)

B = eT .V −1.e (3.42)

C = I T .V −1.1 (3.43)

The simultaneous equations become:

E = λB + γA (3.44)

0 = λA + γC (3.45)

Which leads to:

γ = −AE/D (3.46)

λ = CE/D (3.47)

where D = CB − A2

Leading to the solution

h = (E/D) ∗ (C.V −1.e − A.V −1.1) (3.48)

Now we consider the active variance, which we have set up (in this analysis)
to be the tracking error squared:

σ 2 = hT .V .h = (C/D)E2 (3.49)

This is a fascinating result. An ‘information ratio’, or E/σ , can be calculated,
which is a function both of the covariance matrix, i.e. history, and the vector of
next period returns, namely a projected portfolio return. There is only one opti-
mal portfolio, whose added value depends on how well we predict the returns
for the stocks over the next period, and we also see the correct result that the
tracking error is proportional to the added value. More risk, more return – but
the equivalent to the efficient frontier is a straight line. Gratifyingly, this line
goes through the origin, as it must, given that full replication index funds should
have no active positions and thus no added value over the benchmark.

This solution is pretty abstract as it stands and would only be amenable to
numerical calculation in its full detail. Fortunately, we have derived (at the start
of Section 3.3) an approximation for the covariance matrix which allows us to
simplify the above solution and its consequences considerably. This leads to
better insights into portfolio construction.
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Given that tracking error squared is given in the approximation by:

σ 2 = hT .V .h = 〈σ 〉2(1 − 〈ρ〉)hT .h (3.50)

We can identify

V = 〈σ 〉2(1 − 〈ρ〉)I (3.51)

in which 〈σ 〉 is the average volatility for the stocks in the benchmark (indi-
vidually) and 〈ρ〉 is the average correlation between the stocks. Using this
approximate expression, we can evaluate the quadratic forms A, B, C and D.

A = I T .V −1.e = N〈e〉/((1 − 〈ρ〉)〈σ 〉2) (3.52)

B = eT .V −1.e = N〈e2〉/((1 − 〈ρ〉)〈σ 〉2) (3.53)

C = I T .V −1.1 = N/((1 − 〈ρ〉)〈σ 〉2) (3.54)

In these expressions, 〈e〉 represents the arithmetic average of the estimates for
returns for all the stocks, and 〈e2〉 represents the average of the squares of the
returns. N is the total number of assets in the universe (the union of the sets of
the benchmark holdings and the portfolio holdings).

Using these estimates

h = (E/N) ∗ (e − 〈e〉1 )/Var{e} (3.55)

In this expression, E is the expected relative return of the portfolio over the
benchmark. Note that this expression has an appealing structure. The portfolio
is made more intense as the return target is raised, in a linear fashion (at small
perturbations on the benchmark – see Section 3.5 for the treatment with respect
to the non-linear constraints arising from the no-short-selling constraint). If the
added value is zero, the active portfolio is zero and the fund is on index. If the
expected return for a stock is above average, the active portfolio is upweight of
the benchmark. Similarly, a portfolio is underweight a stock which returns less
than the average. If all the stocks return close to the same amount, the variance
of the returns is close to zero and the fund bets are large to win added value.
If the variance is very high, only small positions are required. All stocks are
potentially equally attractive as money-making opportunities, provided they can
be traded in a meaningful size for the fund in question.

Consider an example: There are three assets in the universe. One will return
+20%, one will return 0 and one will return −20%. Thus e = (+20%, 0, −20%).
We find that 〈e〉 = 0, and Var{e} = 0.0267. We want to add 1% relative to the
benchmark. Using the expression for the optimal portfolio above, we find that



Table 3.5 CAPM optimal portfolios

Stock First guess First guess Contribn Suggested Suggested Contribn Return less uwt? Contribution
Stocks Benchmark return active portfolio optimal portfolio than market positive

a 15% −5.0% −1% 14% 0.0500% -0.85% 14.15% 0.0427% yes yes yes
b 10% −5.0% −1% 9% 0.0500% -0.85% 9.15% 0.0427% yes yes yes
c 9% −5.0% −1% 8% 0.0500% -0.85% 8.15% 0.0427% yes yes yes
d 8% −5.0% −1% 7% 0.0500% -0.85% 7.15% 0.0427% yes yes yes
e 7% −4.0% −1% 6% 0.0400% -0.65% 6.35% 0.0262% yes yes yes
f 7% −4.0% −1% 6% 0.0400% -0.65% 6.35% 0.0262% yes yes yes
g 6% −4.0% −1% 5% 0.0400% -0.65% 5.35% 0.0262% yes yes yes
h 5% −4.0% −1% 4% 0.0400% -0.65% 4.35% 0.0262% yes yes yes
i 5% −3.0% −1% 4% 0.0300% -0.45% 4.55% 0.0136% no yes yes
j 4% −3.0% 0% 4% 0.0000% -0.45% 3.55% 0.0136% no yes yes
k 3% −1.0% 0% 3% 0.0000% -0.05% 2.95% 0.0005% no yes yes
l 3% −0.5% 0% 3% 0.0000% 0.05% 3.05% −0.0002% no no no
m 2% −0.5% 0% 2% 0.0000% 0.05% 2.05% −0.0002% no no no
n 2% −0.5% 0% 2% 0.0000% 0.05% 2.05% −0.0002% no no no
o 2% 0.0% 0% 2% 0.0000% 0.15% 2.15% 0.0000% no no no
p 2% 0.0% 0% 2% 0.0000% 0.15% 2.15% 0.0000% no no no
q 1% 0.0% 0% 1% 0.0000% 0.15% 1.15% 0.0000% no no no
r 1% 0.5% 1% 2% 0.0050% 0.25% 1.25% 0.0012% no no yes
s 1% 0.5% 1% 2% 0.0050% 0.25% 1.25% 0.0012% no no yes
t 1% 0.5% 1% 2% 0.0050% 0.25% 1.25% 0.0012% no no yes
u 1% 1.0% 1% 2% 0.0100% 0.35% 1.35% 0.0035% no no yes
v 1% 4.0% 1% 2% 0.0400% 0.95% 1.95% 0.0378% no no yes
w 1% 4.0% 1% 2% 0.0400% 0.95% 1.95% 0.0378% no no yes
x 1% 5.0% 1% 2% 0.0500% 1.15% 2.15% 0.0573% no no yes
y 1% 5.0% 1% 2% 0.0500% 1.15% 2.15% 0.0573% no no yes
z 1% 5.0% 1% 2% 0.0500% 1.15% 2.15% 0.0573% no no yes

checksum 100% 0.0% 100% 0.0% 100%

weighted sum retn −3.18%

av retn −0.73% value add 0.65% value add 0.56%

risk 0.0424 risk 0.0334
IR 0.15 IR 0.17
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h = (+2.5%, 0, −2.5%), which can be checked to give the right result, of +1%
value added.

However, one oddity is that the market return is a weighted average return
and the relevant average referred to above is unweighted. This flies in the face
of the market adage ‘overweight the stocks you think will outperform the mar-
ket’. A spreadsheet was written to examine this in closer detail (Table 3.5). This
shows a small market portfolio with the small cap stocks providing the return
and the large cap stocks showing negative price action. The market return is
−3.18%. A first guess portfolio is shown, with a typical fund manager response,
with nine overweights and nine underweights. We calculate the value added, the
risk taken (in our approximate form of ‘distance’) and a ratio which behaves
like an information ratio. We then show the suggested optimal portfolio driven
by the unweighted average process shown above. The particular point we wish
to make here is that there are situations where the stocks are returning less
than the unweighted average, but more than the market. If these stocks are
underweighted, the portfolio receives a positive contribution. Note also that
the information ratio has improved using the weightings driven from the for-
mula above. It is possible to play with the weightings in this spreadsheet by
hand but overweighting the highlighted stocks as market outperformers has, in
all the cases run to date, led to a reduction in the value added. These over-
weights have to be paid for from somewhere else in the portfolio, thus reducing
the optimality.

Consider the tracking error:

σ 2 = hT .V .h = 〈σ 〉2(1 − 〈ρ〉)hT .h

= 〈σ 〉2(1 − 〈ρ〉) ∗ E2/(N ∗ Var{e}) (3.56)

and the information ratio:

IR = E/σ = [(N ∗ Var{e})/(〈σ 〉2(1 − 〈ρ〉))]1/2 (3.57)

Note that the tracking error reduces like the inverse of root N . The higher
the number of assets, the smaller the bets need to be to meet the target. The
smaller the bets, the smaller the tracking error. Note that the information ratio
rises with the number of assets in the portfolio. Note also that this whole analysis
is based on portfolio construction for the optimal portfolio where the return in
the following period is known for all the stocks in the universe. Of course, this
is where the whole CAPM methodology has nothing to say! If we know the
returns, we can calculate a cute portfolio. However, we have to estimate the
returns and we get this wrong. The interesting point is how wrong the estimates
of return are.
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Consider the above example: Using 〈σ 〉 = 0.4, 〈ρ〉 = 0.5, then the tracking
error calculates to be 1%, and the information ratio is 1.

Consider another example: N = 10 assets in the universe. Var{e} = 0.02,
〈σ 〉 = 0.4, 〈ρ〉 = 0.5, then the information ratio calculates to be 1.58. This is
for perfect foresight.

Top quartile managers seem to be able to achieve information ratios of 0.5.
For a FTSE portfolio, the theoretical information ratio calculates to be 5! This
is such an outrageously high number that we can only square this with reality
by suggesting that fund managers only really have strong views on 10 or so
holdings. The rest become (broadly) tracking error reduction tools to keep the
fund performance within a pre-agreed tolerance, should the predictions of return
prove wrong. If true, this analysis provides a strong support for highly active
satellite portfolios, with index core portfolios, providing the dilution.

The above analysis relies on being able to short securities, if required. Of
course this is not permitted in many cases, leading to a non-linear constraint.
It is not possible to be more underweight than zero weight. This is a trivially
small bet size compared to the typical upweighting bet and leads to the view
that the main bets in a portfolio are positive ones. The way this could be thought
about is as the adding back of a ‘no-short-selling’ (NSS) portfolio back onto the
ideal portfolio. The NSS portfolio is in the opposite direction when compared
to the ideal portfolio for, typically, half the stocks. Thus, to the extent that
the positive bet sizes are large compared to the typical benchmark holding, the
NSS portfolio deoptimizes the ideal portfolio and likely reduces the information
ratio by a factor of two. The information ratio for 10 strong ideas, with perfect
foresight, could be 0.8. More ideas raise the information ratio, lack of perfect
foresight reduces it.

A practical implementation – an optimizer for buy-side asset allocation
An optimizer was required that would find the optimum portfolio for
adding a certain number of basis points with the House View, around
an arbitrary benchmark. This is not an absolute risk/return efficient fron-
tier generator. We need to add value and minimize tracking error, in the
hedge fund that is the set of positive and negative positions within the
Standard Life House View.

There are sophisticated, highly engineered systems that will accommo-
date constraints. A simple device was built in Excel based on some maths
done above, in particular implementing the equation:

h = (E/D) ∗ (C.V −1.e − A.V −1.1)

Continued on page 89
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Continued from page 88

This device is unconstrained, so should only be used to give a guide to
small overweights and underweights. This device is based on an analyt-
ical solution to the problem of minimizing tracking error subject to a
defined value to be added. This is like CAPM, but instead of referenc-
ing everything to a risk free rate (the absolute investor concept) we are
referring to a benchmark. This shift in formalism has a number of con-
sequences. The value added and tracking error are linear in bet size, but,
more fundamentally, there is only one optimal portfolio, and an analytical
expression can be written for it, in terms of operations on the inverse of
the covariance matrix.

The advantages of this approach are that the results of the optimization
are available in real time (as the returns vector is altered) and the maths
is not buried inside a numerical scheme. The disadvantages are similar to
all optimizers. The results depend critically on the return estimates. Small
increases in expected returns can move the optimal portfolio around quite
dramatically. Also, the results are dependent on the covariance matrix,
which depends on historical data. Another criticism of optimizers does
not apply here, in that the number of assets is small, allowing us to esti-
mate the covariance matrix sensibly from five years of historical data. Our
covariance matrix has a well-defined inverse.

One oddity that has appeared in other areas before, is that property
is a bizarre asset class. Because the assets are valued infrequently, and
on a rolling basis, the volatility of the property asset class is artificially
reduced. This has the effect of making property the low volatility asset of
choice, perhaps prompting a short cash, long property position. When a
truer volatility is reinserted into the covariance matrix, property ceases to
dominate stochastically to quite the same extent. The ability to influence
the calculation is an advantage of having access to the formulae directly.

3.5 IMPLEMENTING IDEAS IN REAL STOCK PORTFOLIOS

3.5.1 Introduction

This Section investigates a way of implementing buys, sells and holds in a
portfolio. The output of this investigation is a methodology – a smooth way to
mutate a portfolio from on-index to progressively more aggressive stances, by
taking a predefined level of risk. Key to the methodology is the algorithm, or
recipe, used to accommodate the ‘no-short-selling’ constraint.

Results that are in tune with fund manager instinct can be found with a
program which sells underweights to buy overweights as far as possible, then
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when no short selling becomes a binding constraint, neutral stocks have to be
sold down. The method has been coded in Excel.

3.5.2 Rationale and approach

The object of this exercise is to find a way of implementing stock level bets
to come up with an advisory fund profile of a predefined risk level, that can
vary from on-index to highly aggressive. An advantage would be a height-
ened visibility of the connection between stock preferences, portfolio shape
and portfolio risk. This would reduce the opacity of commercial optimization
software. The output of this methodology, while being self-consistent, would
only provide advice. There will inevitably be hard issues (like transactions
costs) and soft issues (some buys are more equal than others) that dictate final
portfolio structure.

Preferences are first converted into an ideal over- or under-weighting. The
ideal fund is the benchmark plus this satellite hedge fund. However, the combi-
nation of the hedge fund and the benchmark will end up with underweights that
imply short positions, which are not permitted by the no-short-selling rule. The
problem becomes one of finding a suitable way of implementing the bets as far
as possible consistent with these constraints. Initially, small positions can be
self-funded – the buys are funded by the sells. Eventually, this process can no
longer fund the buys directly. Some other stocks must be raided. The question
is how? One way of doing this is to sell down the benchmark pro-rata to fund
the buys. However, this program has a pathology. If the risk becomes truly
extreme, the buys have to be extensively funded by selling down the bench-
mark and we can end up with large cap stocks going underweight, even though
they are buys! Unsurprisingly, fund managers object to this. A buy on Glaxo is
the same as a buy on Photo-me International, it is just that the companies are
many orders of magnitude different in size.

An alternative program has been followed in this document, which is more
in tune with fund manager instinct. Effectively, underweights are sold down
even further to fund overweights, and once the under-weights are all sold out,
then the neutral stocks are sold out. This program ends, at very high risk, with
all overweights being equally overweight, and there being no presence in the
neutral or underweight stocks at all.

It will be noted that the risk profile of the fund has changed during this
process. Large cap underweights and neutrals are progressively more heavily
bet against than the overweights are bet for. Thus most high risk funds, (although
they contain very positive statements, implemented as fully as possible) have
an asymmetric risk profile, being over-exposed to outperformance in a few
large cap stocks not represented. Conversely, small cap stocks in the fund
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are over exposed to underperformance in the stocks chosen, and less prone to
unrepresented stocks outperforming.

One way out of this dilemma may be to think of the overweighting percent-
age as a trigger level. Stocks in the fund below this weighting in the index
are exposed to underperformance, stocks above this weighting in the index are
exposed to non-representation in the fund. The aim should be to diversify ade-
quately among the stocks held for small stocks and diversify out the stocks not
held for large stocks.

Another outcome is that equally overweighted funds (with only a few stocks)
are so overweight in the few stocks that they appear almost equally weighted.
Most portfolios would then just be constructed on an equally weighted basis to
short circuit the intermediate steps.

3.5.3 Mathematics and implementation: model problem

The model problem has been constructed within Excel. The spreadsheet con-
sists of a simple imaginary benchmark, broadly exponentially weighted. A
full covariance matrix has been created by symmetrizing a triangular array
of random numbers between −1 and 1 (adding the lower triangular block to
its transpose, 1 has then been inserted on the diagonal). The purpose of this
covariance matrix is to be able to calculate the tracking error inherent in the
implementation of varying degrees of aggressiveness (as measured by the ideal
active portfolio inserted on top of the benchmark).

The ideal active portfolio perhaps conflicts with the no-short-selling rule as
well as any other constraints that can be inserted on the spreadsheet. If this
happens then the active portfolio becomes unbalanced and has a borrowing or
lending requirement. Rather than accommodating this from the benchmark, the
active portfolio is scaled to zero weight. This, in all practical cases, forces the
neutrals to assume slight negative bets – since the desired overweighting is large
compared to the natural stock weighting in the benchmark. This rescaled active
portfolio is applied to the benchmark. This will in turn lead to slight conflict
with the constraints and a simple iteration scheme leads to a converged solution.

The tracking error of the final portfolio is calculated and compared to a
target. A goal-seeking algorithm can be used to drive the portfolio to a desired
riskiness or aggressiveness in the fund. Finally, the stocks in the fund and the
benchmark are compared as a histogram.

3.5.4 Results: model problem

Three sets of results are presented here. Figure 3.12. shows the fund and the
benchmark where the preferences are only implemented to a small level of risk.
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Figure 3.12 Effect of constraints on implementing preferences – result 1

Unsurprisingly, the index structure is left nearly intact, with small overweights
and underweights visible.

The next set of results are shown in Figure 3.13. The risk level has been
driven up. We begin to see large load ratios applied to small stocks. Many
stocks have sold out. Underweights larger in absolute size than the overweights
begin to be seen. However, the risk inherent in the portfolio is not so high that
disliked stocks are sold out altogether – risk control presences can be seen.

The next set of results are shown in Figure 3.14. The risk level has been
driven very high. The disliked stocks have been sold out completely. The over-
weighted stocks are equally overweighted. The system is now stable. No further
risk can be taken into the portfolio on this basis of preferences. Any further risk
must come from a re-examination of the preferences – some further refinement
to the very best ideas is required.

3.6 CONCLUSIONS

The codes described here are intended to describe how a portfolio construction
methodology can be built that takes the output of a stock selection process and
applies the stock preferences at various levels of aggressiveness to come up
with portfolios either close or less close to the index.

The nature of the constraint on no-short-selling becomes apparent in the
compromises that need to be made to fund overweight positions. If the purchases
come from the fund as a whole, then the main contributor to the purchases comes
from the large cap stocks, which can even end up underweight, even though they
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Figure 3.13 Effect of constraints on implementing preferences – result 2
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Figure 3.14 Effect of constraints on implementing preferences – result 3

are liked. Another way to fund the buys is to rob the underweights and neutrals.
This has the advantage that buys stay as overweight but the underweight stocks
go very underweight, implying a stronger view than may really be present.
Further work is necessary to understand the asymmetrical large and small cap
risk statements in a broad portfolio.
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Chapter 4

Enhanced indexation

ALAN SCOWCROFT AND JAMES SEFTON

ABSTRACT

Over the past twenty years, index funds have gained tremendous
popularity among both retail and institutional equity investors. In part,
this must be due to disillusionment with the performance of active
funds, but predominantly it reflects attempts by fund managers to
minimize their costs. Managers adopt strategies that allocate capital to
both passive index and active management funds. A large proportion
of their fund is therefore run at the reduced costs of a passive fund,
allowing the managers to concentrate their resources on the smaller
active component.

Enhanced index funds have evolved as a synthesis between the
pure active fund, and this more recent combined fund or fund of funds
approach. These enhanced index funds are benchmarked tightly to a
recognized index, thus maintaining the substance of a passive fund.
However, at the same time the fund manager actively ‘tilts’ the index
in line with his forecasts so as to earn a slightly better return. As
diBartolomeo (2000) says, ‘Enhanced index funds generally involve a
quantitatively defined strategy that ‘‘tilts’’ the portfolio composition
away from strict adherence to some popular market index to a slightly
different composition that is expected to produce more return for
similar levels of risk’.

The aim of this chapter is to outline, in some detail, the UBS Warburg
approach to designing enhanced index funds. Firstly, though, we shall
briefly summarize the arguments in favour of enhanced indexation.
This summary draws heavily on the work of diBartolomeo (2000) and
to a much lesser extent Riepe and Werner (1998).
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4.1 INTRODUCTION

4.1.1 Enhanced index funds

We shall define enhanced index funds as equity funds with less than 2.5% ex
ante tracking error to their benchmark, which are designed using quantitative
strategies to increase their expected returns. We therefore do not include in our
definition any funds that use a derivative overlay, or any form of cross-asset
alpha portability to increase returns. Riepe and Werner (1998) investigate these
types of funds, which are sometimes called enhanced index funds too.

As diBartolomeo (2000) argues, the principle motivation for enhanced index
funds is that they are designed to be mean-variance efficient. The information
available to the fund manager is efficiently incorporated into the portfolio so as to
maximize the return to risk ratio of the fund. It is this feature which distinguishes
them from funds made up of a combination of an active and passive fund.

In fact, the design strategy of combining passive and active funds to achieve in
aggregate a moderately ‘tilted’ fund is likely to be far from efficient. The active
component of these combined funds tends to be a fund that takes relatively large
positions vis-à-vis the market, as opposed to being mildly tilted. This is in part
so that the combined portfolio has moderate size position, in part to recoup the
dead-weight costs of running active funds, and in part because it is seen as a
better use of the active fund manager – if you are paying a skilled manager, let
him use his skill, don’t over constrain him. Now Grinold and Kahn (2000) have
argued that it is far harder for the fund managers of these very active funds
to use their information efficiently because of the ‘long-only’ constraint that is
imposed on almost all equity funds. The ‘long-only’ constraint does not allow
these funds to ever be significantly underweight small cap stocks, and hence
by implication overweight large cap stocks. Grinold and Kahn (2000) show
that this capitalization bias can significantly reduce the performance of these
funds. Broadie (1993) argues that, in addition, these active funds can also often
underperform because they must rely heavily on information that is inherently
more difficult to estimate or collate. These funds are forced to hold stocks that
will generate a high return to reward the investor for taking on the higher risk
of the fund. However, identifying stocks that give a high return, as opposed
to those that simply give a better than average return, is a hard task. Picking
the exceptional performers means choosing companies that are innovating and
often dramatically changing. Clearly estimating the returns of such companies
can be a hazardous task at the best of times.

Finally, the original motivation for the combined fund strategy was to reduce
costs. However, it is somewhat ironic that an approach designed to reduce costs
can end up paying the costs of a passive fund, and a number of active fund
managers. As diBartolomeo (2000) notes, a number of active managers are often



Enhanced indexation 97

employed so as to reduce the reliance on one particular manager outperforming,
and as a means of pursuing a more involved investment strategy. At some
level, these managers can be seen to be trading between themselves, therefore
increasing costs with absolutely no benefit to the aggregate portfolio.

Enhanced index funds suggest a way around nearly all these problems. They
are only mildly ‘tilted’ and so their efficiency is unlikely to be effected by
‘long-only’ constraints; they do not try and pick the super performers and so
avoid problems of spotting outliers and they provide a quantitatively rigorous
way of combining a number of strategies in a single portfolio. In addition,
because of their close adherence to an index, the degree of trading can be kept
to a minimum.

4.1.2 A summary of the chapter

In this chapter we aim to describe the UBS Warburg approach to the design of
enhanced index funds. The next Section starts by arguing that a fund manager’s
or a strategist’s forecasts are best described as a return to a chosen portfolio.
Thus if the strategist has a sector view, then this can be described as a return
to the global sector portfolio; or if a fund manager has style view then this
can be captured as a return to a portfolio of all companies that satisfy a set of
accounting ratio constraints.

Following this discussion, we will then introduce the Theil–Goldberger mixed
estimator. This estimator provides a consistent and rigorous way to combine
these forecasts with the unconditional return and risk matrix of stock returns,
so as to derive a distribution of stock returns next period.

The enhanced portfolio is constructed from these ‘tilted’ estimates of the
mean and variance of next period returns using the UBS Warburg optimizer. We
then show that if the default estimate of the unconditional expected returns are
the reversed optimized returns, we ensure ‘strict adherence’ to the benchmark
index. For in the absence of any forecasts, the optimizer returns the index as
the optimal enhanced portfolio.

In the final Section we illustrate this design process by working through an
example. One issue, which we explore in this Section, is a comparison of our
‘bottom up’ or stock level approach to portfolio design, with a ‘top down’ or
asset allocation approach. The two are directly comparable in our illustrative
example, as all the strategists’ views are expressed at the sector or country
level. We also discuss how modifying or reducing the number of strategists’
forecasts effects the final stock selection.

4.2 CONSTRUCTING A CONSISTENT VIEW

There are broadly two types of fund manger: the stock selectors and the asset
allocators. In this Section, we shall argue that the forecasts or views of both
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these types of managers can be best described as the return to a chosen port-
folio.

Stock selectors often ‘cherry pick’ stocks on the basis of fundamental valua-
tion information. The ‘screening process’ aims to identify a basket of stocks, all
of which possess various characteristics. These are the characteristics that the
manager believes are going to put the underlying company in a relatively better
position to take advantage of the current prevailing economic conditions. Thus
the manager might screen for growth or value stocks using simple accounting
ratios, or stocks with a low debt to asset ratio or stocks that have performed
well recently, so-called momentum stocks. From this basket, the fund man-
ager will pick his favoured stocks possibly with some eye to the overall risk
characteristics of the final portfolio.

This very process of screening is a process of constructing portfolios of
stocks. As all the stocks in these portfolios possess a factor, which the manager
believes is likely to indicate out-performance, then the manager’s view can be
captured by ascribing an above average return to this portfolio. Therefore, the
information available to the manager can be described as the return to a set of
chosen portfolios. Further, it is also possible to assign a confidence to each of
these views as a range within which the return of the portfolio is likely to lie.
Thus if the fund manager is confident that this portfolio is likely to outperform
then the range is likely to be small around his central estimate. Conversely,
if the particular view has only a marginal impact on his complete picture the
confidence is likely to be much lower.

An alternative approach adopted by stock selectors is to rank stocks according
to their expected returns. This information can again be captured in a similar
manner. The universe of stocks may be broken down into quantiles in accor-
dance with the rankings. Each quantile would constitute a portfolio, and the
portfolios of higher ranking stocks would be ascribed a higher expected return.
Some judgement must be applied here as to the ‘optimal’ number of quantiles or
portfolios; the trade-off being between maximizing resolution and minimizing
the transmission of estimation error, a type of signal to noise ratio.

In contrast, asset allocators usually make top down or aggregate level fore-
casts concerning sector, country or global style performance. Clearly, these
views can be very naturally described as the return to a sector, country or style
portfolio. Again, it is also possible to describe the confidence the fund man-
ager or strategist has in these views, as a confidence interval around the central
return prediction.

Asset allocators and stock selectors alike must eventually pick a set of stocks
based on their views. Though this can be done in a structured fashion, with
attention paid throughout to the risk characteristics of the final portfolio, the
process, ultimately, must rely on an ad-hoc set of rules. It is therefore at this



Enhanced indexation 99

final stage where we shall use quantitative methods to systematically arrive at
the final portfolio selection.

4.2.1 Theil–Goldberger mixed estimator

We have argued that strategists’ and analysts’ views are most easily captured
in terms of views on, or as a forecast of returns to, a given set of portfolios.
The problem now is how to integrate these views into consistent quantitative
framework. The UBS Warburg approach to this problem is based on Theil
and Goldberger’s (1961) mixed estimator. Later Theil (1971) rephrased his
derivation in a Bayesian probabilistic framework; this exposition will draw
heavily on the terminology in this latter presentation.

Assume that there are n stocks in our investable universe, and denote next
period’s returns on these assets by the n by 1 vector rt . These returns can
be considered to be a sum of the long run equilibrium return of the assets,
denoted µ, and the stochastic return, εt . We shall assume εt is distributed as a
multi-variate normal with zero mean and variance of �, thus

rt ∼ N(µ, �) (4.1)

The covariance matrix � is often called the risk matrix, and is the information
at the core of any risk model of stock returns.

Under the semi-strong efficient market hypothesis, the hypothesis that all pub-
licly available information is already incorporated into asset prices, the expected
return in the next period to holding these assets, E(rt ), is simply the correspond-
ing element of the mean vector µ. Now there are two reasons why strategists
might believe they could improve on this estimate:

• That they have an insight or information into the stocks’ future perfor-
mance not yet in the public domain. This information therefore is not
yet reflected in prices and could be used to construct an estimate of
the stochastic returns, εt , and a portfolio with the likelihood of earning
superior returns in the short run to the market portfolio.

• That asset returns are partly forecastable. Indeed there is a growing body
of evidence, summarized in Cochrane (1999), to this effect. If this is the
case, then the strategist could improve on the initial estimate E(εt ) = 0
and further would want to tilt his portfolio to reflect this knowledge.

We shall now quantify the distribution of the strategist’s forecasts of future
stock returns. We have argued that the strategist’s views are best expressed as
a view on the likely future returns of a set of Portfolios.1 Let these portfolios
be represented by the m by n matrix P , where the rows of the matrix P are the
stock holdings in each of these m portfolios.2 Now the strategist’s forecasts, ft ,
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are assumed to be distributed around the final realized vector of returns with an
error, vt . The error has multivariate normal distribution with variance �. Thus

ft = P (rt − µ) + νt where νt ∼ N(0, �) (4.2)

For reasons we will discuss later, we have assumed that the strategist forecasts
returns relative to the long run equilibrium (that is they forecast εt ) rather than
absolute returns.

In addition to Equation (4.2), we also assume that the forecast error, vt , is
uncorrelated with the realized returns

E(ν ′
t εt ) = 0 (4.3)

Now, though these two formulae look relatively innocuous, they need discussing
in some detail. We need to make the following observations:

(1) We have assumed that there is no consistent bias in the strategist’s
forecast; the expected value of the forecast equals the expected returns
on the portfolios.

(2) The forecast is rational in the sense that there is no information in the
errors, Equation (4.3). Another way of the saying the same thing is that
the strategists do not consistently make systematic errors. For example
they will not consistently forecast that the industry group Basic Materials
will outperform its long run average whilst the industry group Energy
will underperform it; for we know the performance of these two sectors
is very highly correlated.

(3) We have phrased the strategist’s forecasts as the return of his portfolios
relative to the long run equilibrium portfolio return. Though in this
framework we have assumed that the long run average stock returns are
known, and relative returns can be converted to absolute and vice-versa
with ease, this in practice is obviously not the case. We have therefore
phrased the problem in this manner so that it is consistent with any
approach to estimating these equilibrium rates of return.

(4) The volatility of the strategist’s forecasts is strictly greater that the
volatility of the returns he is forecasting. This is because the volatility
of the forecasts is equal to the inherent volatility of the portfolio returns
plus the volatility of his errors.

Var(ft ) = P�P ′ + � (4.4)

However, this does not imply there is no information in these forecasts,
simply that the strategist does make errors.
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(5) We can also write down the conditional probability density function of
the strategist’s forecasts given that we know stock returns in period t ,

ft |rt ∼ N(P (rt − µ), �) (4.5)

This answers the question: if we knew what the stock returns in period t

were, how well could we have predicted what the strategist would have
forecast (given of course that he does not know these actual realized
returns). It does not answer the question: what would the strategist
have forecasted if he knew what actual realized returns are. This latter
question, of course, has the rather trivial answer that he would have
forecasted perfectly.

Within this framework, it is now possible to construct an estimate of next
period’s stock returns given the strategist’s forecasts, rt |ft . The derivation here
uses a straightforward application of Bayes’ theorem, that

Pr(rt |ft ) ∝ Pr(ft |rt ) Pr(rt ) (4.6)

Substituting in our assumptions about the distributions, and after some simple
algebraic manipulations (details are given in Appendix A) gives,

rt |ft ∼ N(µ + (�−1 + P ′�−1P)−1P�−1ft , (�−1 + P ′�−1P)−1) (4.7)

Hence we have derived an optimal estimate of the distribution of next period’s
stock returns by ‘mixing’ the strategist’s views on some key portfolios with the
estimated risk matrix of stock returns. Again, we need to make some observa-
tions:

(1) The expected value, or central estimate, of next period stock returns is

E(rt |ft ) − µ = (�−1 + P ′�−1P)−1P�−1ft (4.8)

where we have expressed these returns as relative to the long run equi-
librium level of returns. Therefore, in this sense, the inference of the
strategist’s forecasts for the estimates of this period stock returns is
independent of the estimates of the long run equilibrium rates of returns
and depends only on the strategist’s forecasts and the risk matrix. This
is desirable for as both Merton (1980) and Jorion (1986) have pointed
out, the risk matrix can be estimated with a great deal more confidence
that the equilibrium levels of returns.
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(2) To understand the construction of the central estimate of next period
stock returns, rewrite Equation (4.8) as

E(rt |ft ) − µ = �P ′(P�P ′ + �)−1ft (4.9)

using an application of the matrix inversion theorem and some algebraic
manipulation.3 The central estimates are constructed by first weight-
ing the strategist’s forecasts in inverse proportion to their variance, see
Equation (4.4), or equivalently in proportion to the confidence one can
have in these forecasts. Then these scaled forecasts are multiplied by
the covariance matrix between the stock’s stochastic return, εt , and the
stochastic return of the strategist’s portfolios, Pεt . Thus if a stock’s
returns vary, or are highly correlated with, the portfolios’ returns, then
its expected return will be modified in line with the forecasts. In con-
trast, if there is little correlation between the stock’s returns and the
portfolios’ returns, then there will be little change made to the expected
value of the stock’s return next period.
An alternative way to explain Equation (4.9) for the special case when
� = 0, is as a solution to a minimum least squares problem. The problem
is minimize the error

(E(rt |ft ) − µ)′�−1(E(rt |f ) − µ) (4.10)

subject to the condition P (E(rt |f ) − µ) = ft . In words, find the min-
imal adjustment to expected returns from their long run equilibrium
levels such that the expected return to the strategist’s portfolios equal
their forecasts.

(3) The revised risk matrix, which could be used when we construct our
enhanced index portfolio, is

Var(rt |ft ) = (�−1 + P ′�−1P )−1 (4.11)

(4) The mixed estimator weights together the strategist’s forecast with the
information in the risk matrix. To understand better how this weight-
ing works, we shall focus on the estimated expected returns on the
strategist’s key portfolios, that is

P (E(rt |ft ) − µ) = P (�−1 + P ′�−1P )−1P�−1ft

= P�P ′(P�P ′ + �)−1ft (4.12)

The second line comes, in an identical way to Equation (4.9), from an
application of the matrix inversion formula and some straightforward
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manipulation (these steps are detailed in Appendix A). From this sec-
ond line, it is clear that if the strategist is confident in his views, � → 0,
then the mixed estimator forecasts equals the strategist’s forecasts. Con-
versely if the strategist is guessing, � → ∞, then no weight is put on
the forecasts and expected relative returns are equal to zero.

4.2.2 The difference between forecasting absolute performance or
performance relative to the market

In this section, we discuss a few issues concerned with the construction or
encapsulation of the strategist’s views into this framework. In particular, we
shall concentrate on the difference in phrasing these views in terms of absolute
performance or performance relative to the market.

The difference is best illustrated with reference to an example. Suppose the
strategist holds the view that the Financial Sector is likely to perform well
over the next year and this view is expressed simply that the Financial Sector
will give a return next period in excess of its equilibrium level of returns.4

Now the Financial Sector portfolio has a market beta very close to 1 with the
market able to account for about 50% of the sector’s return volatility, see for
example Scowcroft and Sefton (2002). Therefore, the model, in the absence of
any other information, will deduce that about half of the above average sector
performance can be accounted for by the above average performance of the
market. Hence the model, when inferring the implication of this forecast for
other sectors, will assign an above average performance to all other sectors too,
and in particular those sectors with high market betas, such as Technology.

In contrast to this scenario, assume that the strategist’s view is expressed in
relative terms that the Financial Sector will outperform the market in the com-
ing year.5 In this scenario, the model must attribute all of the above average
performance to the sector. Therefore, it will assign an above average perfor-
mance to those sectors whose performance, ex the market, is highly correlated
with the financial sector’s and a below average performance to those that have
historically been inversely correlated. In this case, it is likely that the model
will deduce that Technology will underperform, as historically its performance
ex the market has been inversely correlated with the Financial sector.

4.3 ENHANCED INDEXING

So far we have deferred any discussion of how to calculate the long run equilib-
rium returns. This was deliberate, as the mixed estimator problem can be phrased
in terms of returns relative to these long run equilibrium returns, enabling us to
remain agnostic as to what approach to use to estimate them. However, if we
are to build investable portfolios, then we must finally address this issue.
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There are three fundamental approaches in the literature, all others being
basic variations on these three. They are:

• historical mean or average returns;
• the equilibrium returns as defined by the Capital Asset Pricing Model

(CAPM);
• the reversed optimized rates of return.

As many authors have pointed out, Frankfurter et al. (1971), Merton (1980)
and Jorion (1986) being good examples, it is almost impossible to estimate
equilibrium returns by averaging past returns. To illustrate, assume a stock’s
return has an average annual volatility of 30% (this is on the low side), then the
mean return can be expected to be estimated with an accuracy of ±30/

√
n where

n is the number of data observations. Therefore, even with a 100 years of data
(and assuming there has been no structural change in the market!), one could
only hope to estimate the mean return to within ±3%. Increasing the frequency
of the data observations does not help, as the volatility rises at the same rate
as the number of observations.6 Though Jorion (1986) suggested using a Stein
estimator to improve the accuracy a little, the approach remains impractical.

Given the difficulty with this first approach, some authors have suggested
using the structural CAPM model to help inform the estimation process. This
approach has been popularized by Black and Litterman (1992). Under the
assumptions of CAPM,7 an asset’s equilibrium return is equal to the risk free
rate plus its market beta times the average market return. The market betas,
as they are correlation coefficients, can be estimated with more accuracy than
mean returns and, as every stock’s equilibrium return is proportional to the
average market return, errors in the estimate of the market return do little to
affect relative rates of return. Though this solution is theoretically attractive,
using it to build portfolios quantitatively is fraught with difficulties.

The principal difficulty is that portfolio optimizers, in the words of Michaud
(1999), are ‘error maximizers’. To illustrate what he means by this phrase,
assume it is estimated that the equilibrium return of an asset is particularly
good relative to other assets, simply because its market beta was erroneously
estimated to be large. Now any optimizer assumes that these model parameters
are estimated without error, and therefore if one asset gives a good return
relative to other assets, it will want to heavily overweight this asset. If short
selling is allowed, this tendency will be even more extreme. Therefore, small
estimation errors can cause large changes in optimal asset holdings. As Michaud
argues, the errors do not have to be very large before this effect drives entirely
the optimal asset allocation.

The final approach, and the one adopted by UBS Warburg, is to estimate
the equilibrium returns using reverse optimization. The idea underlying this
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approach is that in the absence of any views about next period’s return, an
investor should hold the benchmark portfolio or equivalently the index. In line
with this idea, the equilibrium returns are estimated to be those returns such
that, in the absence of any further information, the portfolio optimizer returns
the benchmark portfolio as the optimal portfolio. Therefore, the equilibrium
returns are reverse engineered. In practice, this implies that the equilibrium
returns are a simple function of the risk matrix, �, and the benchmark weights.
In a mean-variance framework, the function is particularly straightforward:

µ = sMkt�w where sMkt = µMkt

w′�w
(4.13)

where w is the n-vector of the benchmark portfolio weights (normalized so
as to sum to 1), µMkt is the long run equilibrium benchmark return and sMkt

is the Sharpe ratio of the benchmark portfolio. As the reverse optimization
process only estimates the relative returns of the assets, we have normalized
the level of these equilibrium returns so that the long run equilibrium return of
the benchmark portfolio equals the historical average return of the benchmark.

4.3.1 Our definition of enhanced indexing

We are now in a position to describe precisely what we understand by enhanced
indexing. It makes explicit the terms, ‘quantitatively defined strategy’, ‘strict
adherence’ and ‘tilts’ in Dan diBartolomeo’s original definition of enhanced
index funds:

Enhanced Index funds generally involve a quantitatively defined strategy
that ‘tilts’ the portfolio composition away from strict adherence to some
popular market index.

Our enhanced index funds are built using the latest version of the UBS War-
burg mean-variance optimizer. The functionality of this optimizer is described
in detail in Appendix B, but fundamentally it constructs an optimal portfolio
that minimizes a mean-variance criterion subject to a set of linear and inte-
ger constraints. The principal inputs to this optimizer are the expected returns
and variance of next period’s returns. It is in this sense that we understand a
‘quantitatively defined strategy’.

The default estimates of the expected returns and variance of next period’s
returns are the reversed optimized returns and the covariance matrix calculated
using the UBS Warburg global country sector model. We therefore ensure that
in the absence of any further information, the optimizer will return the bench-
mark or index portfolio as the optimal fund. In this way we guarantee ‘strict
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adherence’ to the benchmark index. The funds are then ‘tilted’ by shifting the
estimates of the distribution of next period expected returns from the default
estimates to a distribution whose mean and variance is a mixture of these default
estimates and the views of the strategists. The synthesis is performed by cod-
ifying the strategist’s views as a set of predictions, with confidence bounds,
on the returns to a chosen set of portfolios; and then combining these views
with the reversed optimized returns and risk matrix using the Theil–Goldberger
mixed estimator.

The enhanced portfolio is finally constructed from these ‘tilted’ estimates of
the mean and variance of next period returns using the UBS Warburg optimizer.
This final portfolio will therefore be ‘tilted’ towards or slightly overweight those
stocks whose returns are highly correlated to those portfolios favoured by the
strategist, and underweight those stocks highly correlated to those portfolios
unfavoured by the strategist.

The final enhanced portfolio will be mean-variance efficient with respect to
the ‘tilted’ distribution of next period’s returns. By this we mean, that given our
updated view on the distribution of next periods returns, there is no other portfolio
that will offer a higher expected return for the same level of risk, or lower risk for
the same level of expected return. At this point, it is of course worth reminding
ourselves that even though we have used the strategist’s views in an efficient
and rational manner to construct a portfolio, the performance of this enhanced
portfolio will succeed or fail based on the quality of the strategist’s forecasts.

4.4 AN ILLUSTRATIVE EXAMPLE: TOP-DOWN OR BOTTOM-UP?

In this Section we will illustrate the design process of a 100 stock ‘enhanced
index fund’ that reflects the current8 views of both UBS Warburg global sector
analysts’ and country desks. The emphasis of the discussion will be on the
design process, rather than on the final portfolio though we include a short
discussion of this portfolio.

One issue, which we will explore first, is comparing a ‘bottom up’ or
stock level approach to portfolio design, with a ‘top down’ or asset allocation
approach. The two are directly comparable in this illustrative example, as all
the strategists’ views are expressed at the sector or country level. Clearly, if
some of these views could not have been phrased in terms of the returns to
broad asset classes, no direct comparisons would have been possible. Now
assuming linearity is observed, then as Haitovsky (1973) and Johnston (1984)
prove under some quite restrictive conditions, the two approaches can deliver
identical results at the aggregate asset level. However, in practice, there are some
strong non-linearities in any portfolio design approach. The most important of
these being the introduction of no-short constraints and the inclusion of integer
constraints on the number of stocks in the portfolio. Therefore, this exercise can
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be thought of as a quantitative investigation into the importance of accounting
for these non-linearities in the portfolio design process.

The ‘bottom up’ or stock level approach is implemented on the UBS War-
burg Portfolio Analysis System (PAS). It is therefore worth describing briefly
the approach underlying this model, precise details of its functions are described
in the two UBS Quantitative Research publications ‘Understanding Risk: A new
country-sector model’ and ‘Where the numbers come from’. The PAS system
uses a time-series or factor approach to construct the risk matrix. The advantage
of this approach is that it enables the risk characteristics of a portfolio to be
allocated precisely to a selection of risk factors; that is market, sector, country
and style risks. One by one, the returns of each stock are regressed on the
time-series returns of these risk factors. The risk factor returns are the returns
to the market index, the returns to the 10 Dow Jones industry group indices
(adjusted so that they are market neutral9), the returns to eight regional Dow
Jones indices (adjusted so that they are sector neutral), and the returns to the
UBS Warburg global growth and value indices. Two-step Bayesian consistency
regression checks are performed on the regression coefficients or factor betas;
these amount to setting any factor betas to zero that are statistically insignificant
and shrinking the estimates of the market betas back to towards general means.
The risk matrix is then constructed directly from these regression results using
the imposed factor structure.

Next the PAS system uses the Theil–Goldberger mixed estimator to construct
estimates of next period expected returns in the manner described earlier in
this article. Finally, the optimal portfolio is constructed so as to minimize a
mean-variance criterion subject to both no-short constraints and a limit to the
maximum number of stocks in the portfolio.

In contrast to the PAS system, the asset allocation model (AAM) built for
this article is more streamlined.10 This was deliberate as we wished the dif-
ferences between the results of the two models to be directly attributable to
the sophistication of the PAS system rather than the asset allocation model
(AAM). The 80 assets included in the AAM were each of the local sector
indices in the 10 sectors in the eight equity regions. The risk matrix for this
model was, like PAS, built by a time series approach using the identical mar-
ket, sector and country risk factors as used in the PAS model. However, the
style risk factors were omitted from the AAM model, and no consistency or
robustness checked performed.11 In an identical manner to the PAS system, a
Theil–Goldberger mixed estimator was used to construct the estimates of next
period’s expected returns, and mean-variance analysis used to build the opti-
mal asset allocation portfolio. However, in the case of AAM, the portfolio was
built without imposing any short constraints, though at the index level these
constraints are obviously likely to be less binding. Further, in an AAM model



108 Advances in Portfolio Construction and Implementation

it is obviously not possible to impose any constraints on the maximum number
of stocks in a portfolio.

Though there are some minor differences between the PAS and AAM mod-
els in the procedure used to estimate the risk matrix, the principal difference
between the two models lies in the imposition in the PAS system of both
no-short constraints and a limit to the number of stocks in the portfolio.

4.4.1 The strategists’ forecasts

In this illustrative example we will use the views of the UBS Warburg global
sector strategists and the UBS Warburg regional economic desks on likely equity
returns over the six months from February 2002 to each of the 10 global indus-
try groups and to the seven main economic regions. Unless otherwise stated,
the universe of stocks is assumed to be the Dow Jones Global Universe, with
all classifications into Industries and Countries based on the Dow Jones Classi-
fications. All figures quoted are calculated on monthly returns over the previous
five years.

In Table 4.1 we have summarized the views of the global sector strategists.
These views are expressed as returns relative to the market, thus it is expected
that the Energy Sector will underperform the market over the six months begin-
ning February 2002 by an annualized rate of 2%. Further, we have assigned a
confidence to these forecasts equal to 50% of the average volatility of the cor-
responding index relative returns.12 These forecasts are based on the view that:

‘Over the next 12 months, the issue of which sectors will participate strong-
ly in an environment of rising global equity markets depends on the com-
bination of two main forces: sector sensitivity to a cyclical upturn and
the extent of over-investment over the past few years. While we think the
typically cyclical sectors are liable to rise along with the broader mar-
ket in anticipation of a global economic recovery, their performances may
be compromised by pockets of over-investment, low capacity utilization
rates and minimal pricing power. Sectors with favourable industry con-
ditions, where there are strong product cycles, high capital efficiencies,
strong branding and market concentration should do well in this environ-
ment. Based upon the outlook for those industry conditions, we believe
technology should remain the highest secular growth sector over the next
few years, driven primarily by favourable product cycles. Utilities, basic
materials and industrials are weighed down by their mature product cycles,
heavy capital intensity, lack of branding and pockets of fragmentation, and
are expected to record inferior secular returns over the next few years.’
UBS Warburg Global Analyser, 1 February 2002.
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Table 4.1 Global sector strategists’ forecast of returns to the 10 Dow Jones global
industry groups

Dow Jones
group classification

Forecasted return
Feb 2002–Aug 2002

(annualized)

Confidence in forecast
(annualized standard

error)

% by market cap of the
global Dow Jones

universe

Basic Materials 0.32 6.36 3.69
Consumer Cyclical 0.45 4.00 13.95
Energy −2.02 6.00 6.65
Financial −0.14 4.95 21.96
Healthcare −0.15 5.86 11.63
Industrial 0.47 4.04 11.13
Consumer Non-Cyclical −0.29 4.26 7.70
Technology 1.98 6.79 13.65
Telecommunications −0.32 7.67 6.06
Utilities −2.93 3.61 3.58

The forecasts are returns relative to the market.
Source: UBS Warburg.

In Table 4.2, we have recorded the corresponding numbers of the UBS War-
burg forecasts for the seven principal global equity regions. These are based on
the numbers reported in the UBS Warburg publication ‘Tactical Asset Alloca-
tion’ by Larry Hatheway and Jeffrey Palma in February 2002. Similarly, these
numbers are the forecasts for returns in these regions over the next six months,
though the figures are all quoted at an annualized rate. The forecasts are based
on the view that:

‘The world economy is staging a recovery from the recessionary vice that
took hold toward the back end of last year. Business confidence indicators
in nearly every major economy have stabilized or picked up a little. . . .

The second estimate of US GDP for the final quarter of last year suggests
an annualized expansion of 1.4% over the quarter. With purchasing man-
agers’ surveys close to the expansion mark of 50, new orders showing a
tentative recovery and the deterioration in the labour market beginning
to slow, the US recession, that was formally estimated to have begun last
March, may prove to be one of the mildest in recent memory. . . . (In con-
trast) Japan, the world’s third largest economy, has managed to disappoint
once again with its latest government package. As a result, we believe that
the only path open to policy makers is greater monetization by the BoJ’.
Global Economic Perspectives, 28 February 2002.

4.4.2 A comparison of asset allocation v stock selection

We shall now use the strategists’ forecasts of next period’s returns to a chosen set
of portfolios or indices to update our estimates of the returns to all stocks or asset
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Table 4.2 Global sector strategists’ forecast of returns by region

Country

Forecasted
return Feb
2002–Aug

2002
(annualized)

Confidence in forecast
(annualized standard

error)

% by market cap of the
global Dow Jones

universe

Canada −1.66 6.37 2.16
United Kingdom −0.46 4.07 9.64
Japan −11.66 8.87 8.06
United States 2.54 4.27 57.91
EMU Region 0.74 5.70 12.08
Europe ex EMU and UK −4.26 4.35 3.84
Pacific ex Japan −1.26 8.69 5.06
Latin America N/A N/A 1.25

The forecasts are returns relative to the market.
Source: UBS Warburg.

classes within our universe. In the section entitled the Theil–Goldberger Mixed
Estimator, we described in detail how to perform this update. This estimator
updates the returns to all assets in the universe on the basis of the historical
correlation between the returns of these assets and each of the strategists’ chosen
portfolios. If an asset’s returns have been historically highly correlated with a
given portfolio’s returns, then its expected return next period will be updated in
line with the strategists’ forecast for this portfolio. The greater the confidence
in the forecast, the more the asset’s returns will be moved into line with the
forecast. Using the Theil–Goldberger estimator this whole process can be done
consistently for all assets and all forecasts, to derive the most likely or optimal
forecast for all assets.

In Table 4.3 and Table 4.4 we give the details of the constructed forecasts of
next period’s returns update for each of the local sector indices. The forecasts in
Table 4.3 were calculated by the UBS Warburg Portfolio Analysis System (PAS)
at the stock level; those in Table 4.4 were done at the index level by a basic
asset allocation model (AAM). The first observation is that the numbers from
the two approaches agree very closely, save perhaps in Latin America. However,
this region is the smallest regional equity market and is notoriously volatile and
marked by dramatic structural economic changes. We shall therefore conclude
that the differences between the two approaches at this stage are minimal.

The row and column totals give the market cap weighted averages of the
expected returns across all regions for a given industry and the expected returns
across all industries for a given region respectively. These totals concord closely
with the views of the strategists, though in every case the totals are a margin
smaller than the forecasts of the analysts. This is because the final forecast
from the Theil–Goldberger mixed estimator will be a matrix weighted average
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Table 4.3 Annualized relative expected returns next period by industry and region after
combining strategists’ forecasts with the Default Risk Matrix at the stock level using the UBS

Warburg Optimizer

Canada
United

Kingdom Japan
United
States

EMU
Region

Europe Ex
EMU and UK

Pacific Ex
Japan

Latin
America

Industry
Totals

Basic Materials 0.51 −0.25 −9.68 2.68 1.96 −0.55 −0.97 0.68 −0.02
Consumer Cyclical −1.02 0.95 −6.84 2.96 1.73 −1.20 −1.36 1.80 0.84
Energy −1.92 −1.23 −14.10 −2.64 −0.70 −2.17 −1.96 0.27 −1.98
Financial 0.66 −0.19 −13.28 2.76 −0.36 −2.78 −1.44 −0.03 0.27
Healthcare −0.81 −0.79 −10.82 0.97 −2.56 −4.92 −2.55 0.00 −0.39
Industrial −0.34 −1.05 −10.04 2.07 0.10 −2.09 −1.16 0.28 −0.43
Consumer

Non-Cyclical
−1.08 −0.49 −11.19 1.11 −1.27 −3.67 −1.82 1.00 −0.49

Technology −1.06 0.59 −9.14 2.09 0.85 −3.86 2.90 0.00 1.26
Telecommunications −1.97 −1.54 −17.39 2.76 −0.33 −2.24 −2.34 1.24 −0.02
Utilities −1.76 −2.53 −8.89 −1.05 −1.51 0.00 −3.38 0.88 −2.36

Regional totals −0.40 −0.59 −9.94 1.78 −0.06 −3.17 −0.88 0.80 0

Source: UBS Warburg. The industry and regional totals are the market cap weighted average of the respective
row and columns.

Table 4.4 Annualized relative expected returns next period by industry and region after
combining strategists’ forecasts with Default Risk Matrix at the index level

Canada
United

Kingdom Japan
United
States

EMU
Region

Europe Ex
EMU and UK

Pacific Ex
Japan

Latin
America

Industry
Totals

Basic Materials 1.25 −1.07 −10.40 4.38 2.47 −3.44 −1.68 2.70 0.10
Consumer Cyclical −1.49 1.74 −5.43 2.50 1.62 −0.67 −0.51 3.22 0.71
Energy −2.98 −2.08 −14.54 −1.22 −0.90 −7.75 −3.60 −4.68 −1.69
Financial 0.62 −0.18 −14.47 3.11 −0.68 −4.71 −1.13 1.63 −0.20
Healthcare −1.19 −1.93 −9.98 1.35 −1.48 −2.63 −0.87 −1.73 −0.11
Industrial 3.03 2.31 −8.74 2.02 0.77 −1.26 −1.07 2.57 −0.23
Consumer

Non-Cyclical
2.91 −1.52 −9.29 1.76 −0.63 −1.68 −0.09 1.62 0.01

Technology −3.52 1.47 −8.29 2.62 1.13 −0.25 −2.58 0.00 1.41
Telecommunications −1.44 1.81 −11.27 0.61 2.43 −0.21 −0.45 1.44 0.30
Utilities 0.50 −0.29 −8.98 −0.62 −1.56 −2.17 −1.16 1.12 −1.99

Regional totals −0.20 −0.25 −9.42 1.94 0.18 −2.78 −1.17 1.26 0

Source: UBS Warburg. The industry and regional totals are the market cap weighted average of the respective
row and columns.

of the strategists’ forecasts and the long run equilibrium levels. As all the results
have been expressed as relative to the long run equilibrium returns, these final
numbers are therefore a weighted average of strategists’ forecasts and zero.
If we reduced our confidence in the strategists’ forecasts by increasing the
bounds in Table 4.1 and Table 4.2, this shrinking effect would become more
and more pronounced.



112 Advances in Portfolio Construction and Implementation

Table 4.5 Optimized Portfolio Tilt by industry and region after combining strategists’ forecasts
with the Default Risk Matrix at the stock level using the UBS Warburg Optimizer

Canada
United

Kingdom Japan
United
States

EMU
Region

Europe Ex
EMU and UK

Pacific Ex
Japan

Latin
America

Industry
Totals

Basic Materials −0.11 0.01 0.01 1.06 0.66 0.26 −0.05 0.12 1.96
Consumer Cyclical −0.11 −0.20 −1.50 −0.22 0.13 0.05 −0.35 0.11 −2.10
Energy −0.17 0.18 −0.06 −0.66 0.39 −0.07 −0.06 0.02 −0.43
Financial −0.45 −0.32 −0.70 −0.81 −0.47 −0.79 −0.97 −0.02 −4.53
Healthcare −0.04 0.59 −0.39 3.09 0.15 −0.74 −0.06 0.00 2.61
Industrial −0.19 −0.20 −0.24 3.88 0.04 0.05 0.03 0.07 3.43
Consumer

Non-Cyclical
0.02 0.10 −0.15 1.97 0.00 −0.47 −0.12 0.01 1.36

Technology −0.18 0.01 −0.65 0.97 0.43 −0.15 −0.13 0.00 0.29
Telecommunications −0.10 −0.01 −0.27 −0.10 0.14 −0.07 −0.20 0.00 −0.61
Utilities 0.23 −0.36 −0.07 −1.42 −0.59 0.00 −0.13 0.37 −1.98

Regional totals −1.08 −0.21 −4.03 7.75 0.88 −1.92 −2.06 0.67 0

Source: UBS Warburg. The industry and regional totals are the sum of the respective row and columns.

Table 4.6 Optimized Portfolio Tilt next period by industry and region after combining
strategists’ forecasts with the Default Risk Matrix at the Index Level

Canada
United

Kingdom Japan
United
States

EMU
Region

Europe Ex
EMU and UK

Pacific Ex
Japan

Latin
America

Industry
Totals

Basic Materials −0.18 0.08 0.04 0.61 0.30 −0.08 0.15 0.07 0.98
Consumer Cyclical −0.09 0.10 −0.70 0.61 0.33 −0.13 0.04 0.00 0.15
Energy −0.37 0.01 −0.04 0.32 0.21 −0.02 0.02 −0.05 0.09
Financial −0.64 0.23 −0.63 1.25 0.72 −1.17 0.10 −0.01 −0.16
Healthcare −0.07 0.24 −0.12 1.50 0.28 −0.70 0.03 0.03 1.19
Industrial −0.13 0.25 −0.15 2.05 0.30 −0.31 0.18 0.03 2.22
Consumer

Non-Cyclical
0.10 0.09 −0.20 0.49 0.19 −0.50 0.03 −0.06 0.14

Technology −0.13 −0.02 −0.29 0.46 0.19 −0.21 0.02 0.00 0.02
Telecommunications −0.17 −0.02 −0.17 −0.03 0.16 −0.11 −0.05 −0.15 −0.54
Utilities −0.08 −0.41 −0.88 −1.87 −0.68 0.11 −0.18 −0.13 −4.10

Regional totals −1.76 0.56 −3.14 5.39 1.99 −3.11 0.35 −0.28 0

Source: UBS Warburg. The industry and regional totals are the sum of the respective row and columns.

We now shall compare the optimal asset allocations calculated using the
different approaches. To try and understand what is driving the differences in
the results between the two models, we shall do this in two steps. In the first
stage, there is no constraint imposed on the PAS system as to maximum number
of stocks that it can include in the portfolio. Only at the second stage do we
re-optimize the PAS portfolio under the constraint that there must be only 100
stocks in the portfolio.

In Table 4.5 and Table 4.6, we report the optimal asset allocations from PAS
and AAM respectively. There are now more substantial differences between
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the recommendations of two models, in particular in the allocations to the
Financial and Consumer Cyclical sectors. However, these sectors apart, the
numbers are again remarkably close. It is of considerable interest as to why
the optimal allocations to these sectors are markedly different between the
two models.

To this end, we have reproduced a table from our publication, ‘Understanding
Risk: A new country sector model’. In Table 4.7, we have broken down the
variance of each of the 80 local sector indices into the component that can be
attributed to the global market factor, the component that can be attributed to
the 10 global sector factors, the component that can be attributed to the eight
country factors and the residual component, the stock specific risk. We have
also recorded in the top square the average annual standard deviation of the
returns of each of these local sector indices.

The important observation from this table is that if the sectors are ranked
by the degree to which the local market factors can explain the co-movement
in index returns, the Consumer Cyclical and Financial sectors are ranked at
the top.

Consumer Cyclicals is made up of a very diverse set of industries, automobile,
media, construction and entertainment services being the major constituents.
Though some of the firms in this sector are undeniably global businesses,
there is little coherence in the performance of these firms over and above their
dependence on the global market. Therefore, the performance of these firms is
predominantly a function of the markets in which their businesses are located.
Therefore, the asset allocation to this sector will be driven by the strategist’s
forecasts for the local market and not by his sector forecast.

The Financial sector is very different. It is predominantly comprised of two
very distinct but internally coherent groups: the retail and investment banks. The
performance of the retail banks is cyclical and therefore very much a function
of the local markets in which they operate. On the other hand, the investment
banks conduct their business globally and there is a marked coherence in their
performance across the group. In terms of the asset allocation, the allocation
to the retail banks will be very much a function of the strategists’ forecasts for
the local market, whereas the allocation to investment banks is more a function
of the strategists’ forecasts for the global sector. The PAS system is able to
pick up this distinction as its allocation is done at the stock level, whereas the
AAM can not. We shall discuss these sectors as an illustrative example in the
next section.

In the final stage, we restrict, in the PAS system, the number of stocks in
the optimal portfolio to 100. In Table 4.8, we have recorded the asset alloca-
tion of this portfolio by sector and country. In Table 4.9, we have noted in
which of the local sectors the 100 stocks are held. By comparing Table 4.5
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Table 4.7 Variance breakdown of local market sector returns using the method described in the
UBS Warburg publication, ‘Understanding Risk: a new country-sector model’ (2002)

United
States

United
Kingdom Canada Euro-Bloc

Europe ex
Euro-Bloc

& ex
UK

Pacific ex
Japan Japan

Latin
America

Annual standard deviations of return

Energy 17.2 20.1 21.6 16.5 26.8 22.8 30.4 43.3
Basic Materials 20.0 20.8 26.0 16.4 19.7 23.2 24.3 27.9
Industrial 16.2 16.0 19.1 16.6 17.0 25.1 20.4 30.2
Technology 32.1 43.2 46.3 30.2 38.5 37.2 27.8 40.5
Telecommunications 18.9 24.6 25.5 27.2 24.0 28.2 33.4 33.0
Utilities 14.5 13.1 15.3 14.3 13.4 19.5 17.1 34.9
Healthcare 15.2 16.6 30.0 13.4 13.4 19.8 18.9 31.2
Consumer Non Cyclical 14.3 13.0 14.7 13.9 13.8 24.2 21.0 23.7
Consumer Cyclical 15.4 15.5 18.3 17.5 16.3 19.8 17.5 30.8
Financial 18.9 15.8 19.9 17.3 21.3 26.2 26.6 32.4

% of Variance explained by Global Market Factor

Energy 23.8% 26.9% 15.0% 36.8% 15.4% 36.4% 6.3% 29.4%
Basic Materials 35.7% 34.0% 24.9% 39.3% 31.6% 37.1% 15.7% 47.1%
Industrial 86.3% 43.2% 61.0% 53.8% 54.1% 45.5% 41.5% 36.4%
Technology 53.4% 29.6% 25.7% 44.4% 37.2% 37.1% 46.4%
Telecommunications 41.2% 28.8% 53.4% 35.9% 37.1% 54.7% 30.7% 50.6%
Utilities 5.4% 6.5% 14.5% 25.0% 14.3% 23.1% 4.6% 25.8%
Healthcare 23.4% 9.4% 36.2% 13.6% 20.9% 40.1% 11.7% 16.7%
Consumer Non Cyclical 48.4% 9.9% 11.4% 35.7% 28.0% 40.2% 20.1% 52.3%
Consumer Cyclical 75.5% 40.5% 48.6% 50.2% 53.5% 53.7% 48.7% 44.3%
Financial 43.5% 40.1% 45.9% 55.9% 52.4% 48.1% 29.4% 31.8%

% of Variance explained by Global Sector Factors

Energy 61.5% 52.7% 62.2% 35.4% 51.4% 32.9% 14.9% 3.0%
Basic Materials 53.5% 48.7% 54.0% 24.7% 37.7% 33.8% 16.2% 9.3%
Industrial 6.9% 29.9% 19.9% 20.8% 26.1% 7.9% 7.1% 5.8%
Technology 23.0% 24.8% 26.1% 24.2% 22.0% 11.1% 20.4%
Telecommunications 27.7% 37.9% 15.2% 38.7% 20.0% 21.4% 16.6% 3.6%
Utilities 68.6% 32.0% 44.1% 13.3% 33.4% 29.5% 26.2% 4.9%
Healthcare 68.1% 38.8% 20.4% 23.9% 31.4% 24.2% 20.7% 10.6%
Consumer Non Cyclical 38.2% 45.1% 44.6% 26.3% 31.4% 14.2% 12.5% 9.5%
Consumer Cyclical 12.1% 26.9% 15.0% 18.1% 13.6% 13.3% 10.0% 16.5%
Financial 29.5% 14.2% 24.3% 10.5% 17.0% 5.8% 19.0% 4.6%

% of Variance explained by Local Market Factors

Energy 6.8% 11.9% 15.6% 23.1% 14.5% 19.8% 50.9% 49.2%
Basic Materials 6.4% 11.9% 6.1% 30.1% 25.4% 23.9% 50.0% 34.9%
Industrial 3.9% 18.2% 12.8% 21.6% 15.1% 45.2% 47.0% 43.2%
Technology 9.1% 9.0% 5.5% 23.3% 9.1% 22.0% 27.7%
Telecommunications 16.3% 15.9% 18.3% 19.9% 30.9% 13.6% 28.4% 25.5%
Utilities 10.7% 33.5% 21.0% 51.1% 33.0% 38.1% 46.3% 59.7%
Healthcare 5.7% 29.0% 19.2% 36.8% 32.8% 22.9% 51.6% 35.9%
Consumer Non Cyclical 6.9% 34.2% 32.2% 37.9% 28.0% 35.5% 53.4% 30.6%
Consumer Cyclical 6.4% 24.4% 31.1% 27.6% 20.1% 30.1% 34.2% 24.6%
Financial 20.9% 31.6% 25.8% 29.2% 28.5% 40.0% 39.7% 54.6%

Source: UBS Warburg estimates.
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Table 4.8 Optimized Portfolio Tilt by industry and region after combining strategists’ forecasts
with the Default Risk Matrix at the stock level using the UBS Warburg Optimizer and limiting

stock selection to 100 stocks

Canada
United

Kingdom Japan
United
States

EMU
Region

Europe Ex
EMU and UK

Pacific Ex
Japan

Latin
America

Industry
Totals

Basic Materials −0.28 1.22 −0.47 1.09 2.24 −0.19 −0.38 −0.09 3.14
Consumer Cyclical −0.15 −1.07 −2.18 −1.62 1.82 −0.20 −0.55 −0.09 −4.03
Energy −0.33 2.10 −0.06 0.28 2.00 −0.08 −0.09 −0.09 3.74
Financial −0.69 1.21 −1.35 −0.32 0.71 −1.14 −1.65 −0.24 −3.46
Healthcare −0.06 0.77 −0.50 2.52 0.20 −0.90 −0.07 0.00 1.97
Industrial −0.24 −0.64 −1.63 3.49 −0.66 −0.47 −0.63 −0.09 −0.88
Consumer

Non-Cyclical
−0.07 −0.27 −0.44 3.52 0.11 −0.54 −0.24 −0.13 1.95

Technology −0.18 −0.12 −0.72 2.83 0.45 −0.24 −0.79 0.00 1.22
Telecommunications −0.11 0.03 −0.27 0.69 0.58 −0.10 −0.45 −0.41 −0.07
Utilities −0.03 −0.36 −0.45 −1.72 −0.70 0.00 −0.20 −0.11 −3.58

Regional totals −2.16 2.86 −8.06 10.77 6.74 −3.84 −5.06 −1.25 0

Source: UBS Warburg. The industry and regional totals are the sum of the respective rows and columns.

Table 4.9 Number of stocks selected in each industry and region after combining strategists’
forecasts with the Default Risk Matrix at the stock level using the UBS Warburg Optimizer and

limiting stock selection to 100 stocks

Canada
United

Kingdom Japan
United
States

EMU
Region

Europe Ex
EMU and UK

Pacific Ex
Japan

Latin
America

Industry
Totals

Basic Materials 0 1 0 4 2 0 0 0 7
Consumer Cyclical 0 0 0 6 3 0 0 0 9
Energy 0 2 0 2 3 0 0 0 7
Financial 0 5 0 12 5 0 0 0 22
Healthcare 0 2 0 12 1 0 0 0 15
Industrial 0 0 0 9 0 0 0 0 9
Consumer

Non-Cyclical
0 1 0 8 1 0 0 0 10

Technology 0 0 0 11 3 0 0 0 14
Telecommunications 0 1 0 4 2 0 0 0 7
Utilities 0 0 0 0 0 0 0 0 0

Regional totals 0 12 0 68 20 0 0 0 100

Source: UBS Warburg. The industry and regional totals are the sum of the respective rows and columns.

and Table 4.8, it is clear that the addition of this constraint effects, unsurpris-
ingly, the asset allocation dramatically. Now stocks are only held in the UK,
EMU or US. Stocks are still held in all global sectors, save Utilities. Excluding
the Financial and Consumer Cyclical sectors again, the tilts directly reflect the
strategists’ forecasts. The ex ante tracking error of the fund rises from 1.91 to
2.55 after introducing this stock constraint. As this is on the upper bound of the
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acceptable range for enhanced index funds, this could be reduced slightly by
either increasing the number of stocks in the portfolio, reducing the confidence
levels of the strategists’ forecasts or increasing the risk aversion parameter in
the mean-variance analysis.

4.4.3 Simplifying the design process

The portfolios were constructed in the previous section using a comprehensive
set of strategists’ forecasts for all of the 10 global sectors and eight economic
regions. However, it would be a mistake to conclude that it is always necessary
to have such a comprehensive set of views. Amassing a consistent set of views
is both time-consuming and demanding, and as we show in the next example,
often unnecessary.

From the quotes given in Section 4.4.1, it is apparent that the key themes in
the strategists’ view centre on the Technology and Utilities industries and focus
on the US and Japanese regions. In Table 4.10, we have restated these key ideas.

We designed a 100 stock portfolio or enhanced index on the basis of these four
forecasts. The portfolio tilt and stock allocation are recorded in Table 4.11 and
Table 4.12 respectively. The principal difference between this portfolio and the
one designed earlier, on the basis of a comprehensive set of forecasts, is that this
portfolio has significantly greater tilts in the Financial and Consumer Cyclical
sectors and a smaller allocation of stocks in the European Ex EMU region.

We noted earlier that the Financial sector comprises stocks that are sensitive
to both the local market performance and to the global sector performance.
Therefore, the optimal holdings in this sector are particularly sensitive to relative
changes in the sector performance against the regional performance. In moving
from the comprehensive to the condensed set of strategy views, we have become
more positive towards the US relative to the EMU and more positive on global
financial stocks. Table 4.13 records the changes in the holdings and alphas of
the stocks in the Financial sector during the move from the comprehensive to
the condensed set of views. Concentrating on the stocks entering the portfolio,

Table 4.10 Summary table of strategists’ strong views

Dow Jones
group classification

Forecasted return
Feb 2002–Aug 2002

(annualized)

Confidence in forecast
(annualized standard

error)

% by Market cap of the
global Dow Jones

universe

Japan −11.66 8.87 8.06
United States 2.54 4.27 57.91
Technology 1.98 6.79 13.65
Utilities −2.93 3.61 3.58

Source: UBS Warburg.
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Table 4.11 Optimized Portfolio Tilt by industry and region after combining strategists’ strong
views with the Default Risk Matrix at the stock level using the UBS Warburg Optimizer and

limiting stock selection to 100 Stocks

Canada
United

Kingdom Japan
United
States

EMU
Region

Europe Ex
EMU and UK

Pacific Ex
Japan

Latin
America

Industry
Totals

Basic Materials −0.28 −0.34 −0.47 1.54 −0.59 −0.19 −0.38 −0.09 −0.80
Consumer Cyclical −0.15 −1.07 −2.18 2.03 1.35 −0.20 −0.55 −0.09 −0.86
Energy −0.33 2.01 −0.06 1.45 1.70 −0.08 −0.09 −0.09 4.52
Financial −0.69 1.43 −1.35 1.73 1.74 −0.41 −1.65 −0.24 0.56
Healthcare −0.06 −0.12 −0.50 0.14 0.15 0.97 −0.07 0.00 0.51
Industrial −0.24 −0.64 −1.63 1.25 −0.66 −0.47 −0.63 −0.09 −3.12
Consumer

Non-Cyclical
−0.07 0.17 −0.44 2.39 −0.84 1.16 −0.24 −0.13 2.00

Technology −0.18 −0.12 −0.72 2.84 −0.17 −0.24 −0.79 0.00 0.61
Telecommunications −0.11 0.03 −0.27 1.35 0.12 −0.10 −0.45 −0.41 0.15
Utilities −0.03 −0.36 −0.45 −1.72 −0.70 0.00 −0.20 −0.11 −3.58

Regional totals −2.16 1.00 −8.06 12.99 2.09 0.45 −5.06 −1.25 0

Source: UBS Warburg. The industry and regional totals are the sum of the respective row and columns.

Table 4.12 Number of stocks selected in each industry and region after combining strategists’
strong views with the Default Risk Matrix at the stock level using the UBS Warburg Optimizer and

limiting stock selection to 100 stocks

Canada
United

Kingdom Japan
United
States

EMU
Region

Europe Ex
EMU and UK

Pacific Ex
Japan

Latin
America

Industry
Totals

Basic Materials 0 0 0 2 0 0 0 0 2
Consumer Cyclical 0 0 0 10 3 0 0 0 13
Energy 0 2 0 3 2 0 0 0 7
Financial 0 5 0 15 5 1 0 0 26
Healthcare 0 2 0 11 1 2 0 0 16
Industrial 0 0 0 7 0 0 0 0 7
Consumer

Non-Cyclical
0 1 0 6 0 1 0 0 8

Technology 0 0 0 11 2 0 0 0 13
Telecommunications 0 1 0 4 1 0 0 0 6
Utilities 0 0 0 0 0 0 0 0 0

Regional totals 0 11 0 69 14 4 0 0 98

Source: UBS Warburg. The industry and regional totals are sum of the respective row and columns.

they fall into two categories: large US retail banks, that is Bank of New York,
FleetBoston and Wells Fargo, and large global investment banks, that is UBS
and Merrill Lynch. The alphas also reflect this change with the alphas of the US
retail banks remaining largely unchanged but the alphas of the global investment
banks increasing significantly. Hence, the shift in the portfolio tilts is entirely
consistent with shift in views.
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Table 4.13 A comparison of the portfolio holdings and alphas in the Financial sector moving
from the comprehensive to the condensed set of strategists’ forecasts

Condensed set Comprehensive set
of strategy views of strategy views

Stock Country Benchmark Portfolio Alpha Portfolio Alpha Difference in
weight weight weight portfolio

weights

American Express Company United States 0.22 1.70 3.2 1.52 3.2 0.17
American International Group United States 0.99 2.16 0.7 2.16 0.4 0.00
Banco Bilbao Vizcaya Argenta Spain 0.19 0.93 2.5 0.75 0.4 0.18
Banco Santander Central Spain 0.19 1.07 2.2 0.90 0.2 0.18
Bank of America Corp United States 0.51 0.98 4.7 1.13 1.4 −0.15
Bank of New York Co Inc United States 0.16 0.62 4.0 4.2 0.62
Bank One Corp United States 0.22 0.62 5.0 0.58 4.5 0.04
Barclays United Kingdom 0.27 0.65 2.0 0.65 0.5 −0.01
BNP Paribas France 0.20 0.82 2.0 0.69 0.0 0.13
Citigroup Inc United States 1.26 1.73 3.7 1.64 1.2 0.08
Deutsche Bank Germany 0.20 0.79 2.1 0.65 0.2 0.14
Fannie Mae United States 0.42 0.72 2.4 0.67 2.9 0.04
FleetBoston Financial Corp United States 0.18 0.53 4.5 4.4 0.53
Freddie Mac United States 0.24 0.48 3.0 0.47 3.6 0.01
HBOS United Kingdom 0.22 0.53 1.0 0.47 −0.1 0.06
HSBC Holdings United Kingdom 0.54 1.55 1.6 1.43 −0.4 0.12
ING Groep N.v.-Cva Netherlands 0.21 1.39 1.4 0.99 −0.5 0.40
JP Morgan Chase United States 0.35 0.68 3.2 0.73 0.5 −0.05
Lloyds TSB Group United Kingdom 0.30 0.71 1.4 0.68 0.3 0.04
Merrill Lynch & Co United States 0.21 0.87 1.1 −2.2 0.87
Morgan Stanley Dean Witter United States 0.28 0.94 3.9 0.86 1.4 0.08
Royal Bank of Scotland Group United Kingdom 0.33 0.57 1.3 0.55 0.3 0.02
UBS AG Switzerland 0.30 0.72 2.0 −2.3 0.72
US Bancorp United States 0.21 0.13 4.9 0.21 5.0 −0.08
Wachovia Corp United States 0.23 0.20 5.8 0.30 3.8 −0.10
Wells Fargo & Company United States 0.41 0.43 4.7 4.9 0.43

Source: UBS Warburg.

In Table 4.14 we have reported the same statistics for the Consumer Cyclicals
sector. This sector is very diverse, with most of its volatility being explained by
global and local markets. Again the shifts in portfolio tilt are towards the US
and away from EMU with the big US retailers Comcast, Lowe’s, McDonald’s
and Walgreen entering the portfolio, and a reduction in the holdings of Phillips,
the Dutch electrical goods manufacturer.

The risk characteristics of the portfolio changed little during this simplifica-
tion process with the tracking error falling slightly from 2.55 to 2.45 with the
reduction being due to a slightly lower exposure to region equity risk.

Therefore to summarize, reducing the set of forecasts or concentrating on the
strongly held views only slightly modifies the asset allocation of the optimal
portfolio. We were able to trace and explain the large shifts in the portfolio
allocations in terms of the changes to the slightly modified set of forecasts.
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Table 4.14 A comparison of the portfolio holdings and alphas in the Consumer Cyclical sector
moving from the comprehensive to the condensed set of strategists’ forecasts

Condensed set Comprehensive set
of strategy views of strategy views

Country Benchmark Portfolio Alpha Portfolio Alpha Difference in
weight weight weight portfolio

weights

Aol Time Warner United States 0.58 0.89 5.5 0.78 5.5 0.12
Comcast Corp-Special United States 0.17 0.52 −0.3 −0.3 0.52
Daimlerchrysler AG Germany 0.17 1.66 4.3 1.57 4.3 0.09
Home Depot Inc United States 0.60 1.61 1.0 1.40 1.0 0.21
Lowe’s Companies United States 0.16 1.14 4.3 4.3 1.14
McDonald’s Corporation United States 0.18 0.64 1.4 1.4 0.64
Philips Electronics NV Netherlands 0.18 0.63 3.7 1.19 3.7 −0.55
Target Corp United States 0.20 1.20 4.8 1.08 4.8 0.12
The Walt Disney Co United States 0.22 0.95 2.6 0.93 2.6 0.02
Viacom Inc-Cl B United States 0.33 1.26 0.5 1.11 0.5 0.15
Vivendi Universal SA France 0.22 0.79 1.0 0.80 1.0 −0.01
Wal-Mart Stores Inc United States 0.85 1.24 2.5 1.07 2.5 0.17
Walgreen Co United States 0.19 0.55 −0.1 −0.1 0.55

Source: UBS Warburg.

4.5 CONCLUSIONS

In this chapter, we have argued that, given some market information,13 the
UBS Warburg approach to constructing enhanced index funds produces portfo-
lios that are superior in a mean-variance sense to passive indexation. Further,
the approach will capture alpha more efficiently than a mixture of an index
fund and an actively managed portfolio. The focus of our approach lies in the
recognition that it is easier to forecast alpha for portfolios of stocks that share a
common characteristic, such as industry or style, than it is to produce forecasts
for individual stocks. Moreover, we demonstrate that it is a straightforward
matter to translate the distribution of stock alphas implied by these forecasts
into consistent inputs for a stock level optimization.

In the illustrative example we show that in the absence of stock level con-
straints there is a high degree of correspondence between the optimal country
and sector weights of portfolios constructed using a simple asset allocation
model and the same weights derived from a stock level optimization, when the
conditional alphas are computed using the Theil–Goldberger formula. However,
not all industries are homogenous. The stock level optimization is better able
to distinguish stocks which have a greater loading on the global factors from
those which are more local in character using the betas from the global coun-
try sector model. The difference between the two approaches becomes more
marked when we introduce integer restrictions to limit the number of stocks in
the final optimal portfolio.
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It is also interesting to note that the nature of the optimal portfolio does
not change substantially when we construct the prior distribution using only
the key or central forecasts of the strategists’ as opposed to using a full set
of forecasts for all countries and sectors. We believe therefore that this is a
practical method for constructing enhanced index portfolios. In the absence of
any prior view, the method will result in holding the benchmark. However,
given a set of key forecasts for some portfolios, the method will generate a
consistent set of stock alphas which can be used with an optimizer to generate
efficiently tilted portfolios. Such portfolios will be optimally tilted in favour of
the strategists’ macro views yet still be subject to a set of tight risk controls.

4.6 APPENDIX 1: DERIVATION OF THE THEIL–GOLDBERGER MIXED
ESTIMATOR

We shall start the analysis from Bayes’ relation in Equation (4.6), which we
rewrite below:

Pr(rt |ft ) ∝ Pr(ft |rt ) Pr(rt ) (4.14)

Now substituting in the parameterization of the distributions given in
Equations (4.1) and (4.5) we have

Pr(rt |ft ) ∝ 1
M
√

2π |�|e− 1
2 (P rt −ft )

′�−1(P rt −ft )
1

N
√

2π |�|e− 1
2 r ′

t �
−1rt (4.15)

We have ignored the µ as these cancel out in the long run and only serve
therefore to complicate the analysis. Now we shall rearrange the sum of the
two exponents so as to complete the square. This gives

− 1

2
(P rt − ft )

′�−1(P rt − ft ) + −1

2
r ′
t�

−1rt = −1

2
r ′
t (P

′�−1P + �−1)rt

+ r ′
t (P

′�−1ft ) − 1

2
f ′

t �
−1ft = −1

2
(rt − (P ′�−1P + �−1)−1P ′�−1ft )

′

× (P ′�−1P + �−1)(rt − (P ′�−1P + �−1)−1P ′�−1ft ) − 1

2
f ′

t �
−1ft

+ 1

2
f ′

t �
−1P (P ′�−1P + �−1)−1P ′�−1ft

Of the two expressions on the right hand side the second is independent of
rt and can be ignored (it is part of the constant of integration). The first term
is now expressed in terms of the square of rt . Therefore the distribution of
Pr(rt |ft ) is also normal with mean (P ′�−1P + �−1)−1P ′�−1ft and variance
(P ′�−1P + �−1). This is the result given in Equation (4.7).
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We shall now derive the alternative expression for the mean of this distribution
quoted in the text. By the matrix inversion lemma,

(P ′�−1P + �−1)−1 = � − �P ′(P�P ′ + �)−1P� (4.16)

and so

(P ′�−1P + �−1)−1P ′�−1ft

= �P ′�−1ft − �P ′(P�P ′ + �)−1P�P ′�−1ft

= �P ′(P�P ′ + �)−1((P�P ′ + �) − P�P ′)�−1ft

= �P ′(P�P ′ + �)−1ft

This is the alternative expression given in the text.

4.7 APPENDIX 2: OPTIMIZATION

The illustrative example contrasts two approaches to constructing optimal port-
folios using forecasts for country and sector indices. A ‘top down’ or asset
allocation level approach and a ‘bottom up’ or stock level approach. In prac-
tice, both approaches are often useful since working with aggregate indices at
the asset allocation level permits the use of powerful graphical simulation tech-
niques to analyse the sensitivity of portfolio weights to changes in the prior
distribution. Whilst stock level optimization is ultimately necessary to impose
the wide range of restrictions often required for particular mandates.

The stock level optimizer maximizes a quadratic utility function using the
forecast alphas from the Theil–Goldberger formula and the covariance matrix
from the UBS Warburg global risk model, subject to a comprehensive set of
bounds, linear and integer restrictions. The latter are required to implement
two sets of constraints: holding thresholds and cardinality constraints imposed
on the number of assets held. Formally, the enhanced index problem may be
stated as:
Maximize:

U(x) = α′(x − b) − λ(x − b)′�(x − b) − p′x+ − s′x− (4.17)

Subject to:

N∑
i=1

xi = 1 (4.18)

L ≤ Ax ≤ U (4.19)
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lδi ≤ xi ≤ uδi i = 1, . . . , N (4.20)
N∑

i=1

δi = K δi ∈ {0, 1} (4.21)

Where α, x, and b denote the vectors of alpha, portfolio and benchmark weights.
� is the forecast covariance matrix, λ a risk aversion coefficient and p and
s denote the transaction cost vectors. L and U are the row wise lower and
upper bounds on the linear constraints. Equation (4.17) is maximized subject
to the constraints (4.18) to (4.21). The integer constraints (4.20) and (4.21) are
clearly related, the parameters l and u represent thresholds forcing the portfolios
weights to act as semicontinuous variables. Equation (4.21) is often referred to
as the cardinality constraint, in the illustration K = 100.

Solving this optimization problem is non-trivial since the presence of the
integer restrictions makes the resulting quadratic mixed-integer (QMIP) prob-
lem NP-hard. A good discussion of the difficulties encountered is presented
in Horniman et al. (2000) and the chapters by Gautam Mitra et al. and Tim
Wilding in this book. A major consideration is that in the presence of discrete
constraints not only is the efficient frontier discontinuous but simple heuristic
approaches like dropping algorithms can converge on a sub-optimal solution
(see e.g. Jobst et al., 2001).

The first issue to be addressed in computing the solution is the potential size
of the required arrays. Fortunately, since the covariance matrix � is computed
using the UBS Warburg global risk model, we can exploit the factor structure
to greatly reduce the storage requirements. The solution algorithm first com-
putes the continuous solution using the FortMP14 Sparse Simplex Solver for
Quadratic Programs (SSX-QP) ignoring any discrete constraints. The choice
of the powerful SSX-QP solver is particularly important, since in the tree
search stage, the sub-problems are rapidly processed using the optimum basis
of the parent and a dual algorithm. The discrete solver then searches for the
best K stock portfolio in the neighbourhood of the initial continuous solution
using a customized variant of the integer restart heuristic described in Jobst
et al. (2001).

The integer programming heuristic operates in two stages. In the first stage
the problem size is reduced by multiply-fixing the most obvious choices either
forcing stocks out of or into the solution set. This stage is repeated and the
resulting problem is re-solved each time until by default 30% of the desired
number of stocks is reached. The stocks are then fixed singly, the sub prob-
lem re-solved at each step, until the target number of assets is reached. At
this stage all remaining assets are forced out by the cardinality constraint
and the resulting sub-problem (if feasible) is a valid integer solution to this
problem.15
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NOTES

1. Clearly, these portfolios could be single stock portfolios and thus this approach
can encompass views on single stocks.

2. The rows of the matrix P therefore sum to 1 if the strategist is taking a view
on long only portfolio, or zero if the strategist is taking a view on a portfolio’s
performance relative to the market, a market hedged portfolio.

3. Note that unlike Equation (4.8) which requires the inversion of N by N matrices,
Equation (4.9) only needs to invert one M by M matrix, this is an important
practical consideration when N is very large. Exploiting the factor structure of
the covariance matrix � further simplifies the calculation, which can be most
efficiently computed using for example the BLAS routines from the NAG Fortran
SMP library.

4. The corresponding row in the matrix P will have positive entries corresponding
to stocks in the Financial sector (probably proportional to the stocks’ market cap-
italization) and zeros elsewhere, with the weights scaled so that they sum to 1.

5. In this case the relevant row in the matrix P will be the vector of the market cap
weights of the stocks in the Financial sector (if the stock is not in the sector the
corresponding entry will be zero) minus the vector of the market cap weights.
As the weights of both of these separate vectors sum to 1, the weights in the
final vector sum to zero. It is important that the scale is maintained, so that the
resultant portfolio is long the financial sector and short the rest of market.

6. Assuming the returns in each period are independent.
7. The strongest of these being that markets are complete, there are no taxes or

transaction costs, no short constraints and that all expectations are homogeneous.
8. Current is as of the end of February 2002.
9. This adjustment is far from straightforward and is described in detail in the

publication ‘Understanding Risk’, January 2002.
10. This asset allocation model is not related to the UBS Warburg Asset Allocation

Toolbox (AAT). The AAT is a far more sophisticated asset allocation model than
the one built here and, like PAS, is designed to be an investment tool for fund
managers.

11. This latter omission is important, as it is a source of non-linearity between the
PAS and AAM model.

12. These were calculated using the methodology described in the UBS Warburg
publication ‘Understanding Risk: A new global country sector model’ by Alan
Scowcroft and James Sefton (2002).

13. This market information may be as simple as the choice of benchmarking the
fund to one index rather than another.

14. http://www.optirisk-systems.com/docs/FortMP/PDF/fortmp-manual.pdf contains
a full description of the system.

15. We would like to thank Frank Ellison and Gautam Mitra of CARISMA based
in the Department of Mathematical Sciences, Brunel University for their contri-
bution in the development and testing of this algorithm.



Chapter 5

Portfolio management under taxes

DAN DIBARTOLOMEO

ABSTRACT

Taxable portfolios represent a special challenge to the investment
manager. To active managers, the imposition of capital gains taxes
makes many strategies that they believe will be profitable on a pre-tax
basis into certain losers on an after-tax basis. In many jurisdictions
such as the USA, Japan and the UK, both active and passive man-
agers must deal with the imposition of capital gains taxes when
portfolio positions are liquidated to meet cash withdrawal require-
ments. Many alternatives such as index funds, ETFs and simple loss
harvesting strategies have been considered with respect to tax effi-
ciency, but most active managers faced with running large numbers of
taxable accounts are choosing to pursue optimal loss/gain matching
procedures through portfolio optimization.

5.1 INTRODUCTION

Taxable portfolios represent a special challenge to the investment manager. To
active managers, the imposition of capital gains taxes makes many strategies
that they believe will be profitable on a pre-tax basis into certain losers on an
after-tax basis. In many jurisdictions such as the USA, Japan and the UK, both
active and passive managers must deal with the imposition of capital gains taxes
when portfolio positions are liquidated to meet cash withdrawal requirements.
Due to the additional complications associated with taxes, managers of taxable
accounts have been largely unable to achieve the decreases in labour intensity
associated with quantitative strategies and automated portfolio rebalancing, both
of which are very common in the pension fund arena.
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In recent years, changes in the relative importance of different classes of
investors have spurred the development of technological solutions for the prob-
lems of managing taxable equity accounts. The long bull market of the 1980s
and 1990s has lead to unprecedented levels of household wealth being concen-
trated in the taxable stock market accounts. In addition, the rising popularity of
separately managed accounts for non-institutional investors such as ‘wrap’ pro-
grams offered to retail investors in the USA and Europe have vastly increased
the number of taxable accounts that investment managers must deal with.

Insurance company investment portfolios are also taxable in most countries
and have the additional complexity that under the accounting standards of those
nations, realized capital gains (losses) can be counted for the computation of
the company’s profit (or loss), while unrealized gains and losses are not marked
to market for corporate income calculation.

A relatively new innovation in the USA is the nuclear decommissioning
trust (NDT). NDTs are taxable entities but otherwise have the asset/liability
characteristics of non-taxable investors such as pension funds. With the advent
of NDTs, institutional investment firms were faced with incorporating taxes into
their frequently automated portfolio decision processes.

5.2 DO TAXES REALLY MATTER TO INVESTORS AND MANAGERS?

The most obvious indication that taxes are of considerable interest to investors
is that the pricing of many financial instruments is very dependent on the tax
circumstances of the investors likely to be interested in that instrument. For
example, in the USA, the income from municipal government bonds is free
from federal government taxation, while income from federal bonds is taxable.
As such, US Treasury bonds must offer higher yields to investors than municipal
bonds of similar maturity, despite the obvious superior creditworthiness of the
federal bonds. While there is a rich literature in this area, a mathematically
rigorous general treatment is provided in Dermody and Rockafellar (1995). Kim
et al. (2000) provide an econometric analysis of potential tax arbitrages. Tax
effects appear to have differing levels of influence at different bond maturity
levels. This issue is examined in Harwood and Manzon (2000) and Jordan
(1997). Derivative pricing is also seen as highly dependent on tax circumstances.
Lui and Wu (2000) study the impact of taxation on credit risk derivatives, while
Laatsch (2000) studies pricing of total return swaps under taxes.

For the retail investors of many nations such as the USA, the dramatic impact
of taxes on investment returns has been amply demonstrated. Most prominent
are the studies of Dickson and Shoven (1993) and Dickson et al. (2000). This
work showed that performance rankings of mutual funds on a pre-tax and post-
tax basis yield nearly unrelated results. The international accounting firm KPMG
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has distributed an extensive white paper edited by Wolfson (2000) detailing the
dramatic effects of taxation on mutual fund investors.

The dramatic impact of taxation on active equity portfolio management strate-
gies in the USA was first described by Arnott and Jeffrey (1993), who found
that even most successful alpha prediction strategies do not produce a net gain
after taxes. Two papers by Arnott et al. (2000, 2001) review the relationship of
pre-tax to after-tax returns among institutional investment managers.

Elliman (1989) presented a computer simulation study of the impact of tax-
ation on the implementation of value oriented equity selection strategies for
managers with different levels of information coefficients for their forecasts. It
found that a single stock, considered in isolation, must be extremely undervalued
or overvalued to make trading worthwhile for the taxable investor.

A rigorous mathematical analysis of active management under taxes is pre-
sented in Apelfeld et al. (1996). This paper illustrated the key insight that within
any actively managed equity portfolio the cross-sectional volatility of security
returns over short time intervals is larger than the mean return of all the assets.
As such, managers could mitigate the impact of taxes by offsetting realized
gains on profitable positions by realizing losses on losing positions on a regular
basis. This approach is the basis of most tax sensitive active equity portfolio
strategies in use today.

In Garland (1997), the issues of tax-management of index funds are explored.
This paper argues that investors who think they are minimizing tax effects
by virtue of the minimum of portfolio turnover associated with passive index
investing are still far from an optimal solution. Meziani, Seddick and Yang
(2001) consider the tax benefits associated with Exchange-Traded-Funds (ETFs)
in the USA. It should be noted that some equity indices are far more suitable
than others from a tax perspective. For example, the Russell 2000 index of
small capitalization US equities is reconstituted every 30 June. To the extent
that many stocks are removed from this particular index because they have risen
in market capitalization through share price increase, an investor would have
no choice but to realize a substantial amount of capital gains in order to keep
their portfolio in conformity with the revised index membership.

Several theoretical studies of portfolio rebalancing with tax considerations
have appeared in the literature such as Talmor (1985), Fedenia and Grammatikos
(1991) and Fisher et al. (1992).

5.3 THE CORE PROBLEMS

Taken to a ridiculous extreme, one can minimize capital gain tax effects simply
by never selling anything. This approach of simply minimizing turnover can
work for an index fund if you are confident that cash flows will always be into,
rather than out of, the fund. Since dividend flows are very stable for a large
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fund, the impact of taxes on the dividend stream may easily be incorporated into
security return expectations. In the event of net cash outflows, even the index
fund case becomes quite problematic. We must have a mechanism to optimally
trade-off our desire to minimize taxes with our desire to keep the index fund
portfolio as close as possible in composition to the underlying index.

Unfortunately, the idea of avoiding selling securities to defer taxes had been
the standard approach for many years. Bank trust departments and other invest-
ment advisers that handled taxable accounts routinely continued to charge active
management fees, while justifying a lack of any portfolio activity to add return
or reduce risk by citing the inhibitions to trading posed by tax considerations.
Obviously, charging active management fees for ‘closet’ passive accounts led
to significant long-term underperformance even on a pre-tax basis, net of fees.
Interestingly, Smolira (1999) argues that the level of turnover in mutual fund
portfolio (as defined by regulations of the US Securities and Exchange Com-
mission) is not a powerful explanatory variable for taxable distributions from
US funds.

The complexity of the problem is considerable. Managers of taxable accounts
must simultaneously consider not only the return and risk aspects of each
portfolio but also the tax circumstances of the investor and the tax consid-
erations of the existing portfolio. In some countries such as the USA, cost basis
must be considered on a tax lot-by-tax lot basis. The UK uses a sliding scale
scheme. When faced with handling large numbers of accounts, portfolio man-
agers are simply unable to respond promptly to new information about market
conditions while concurrently considering the myriad tax issues of proposed
portfolio changes.

Strategies to address tax efficiency in portfolio management must have three
key properties. First, they must reduce the cost of taxes, the spread between
pre-tax and after-tax returns to investors. Second, they must provide minimum
inhibition (i.e. not limiting turnover) to the portfolio management process, so
as to allow active management strategies to be effectively pursued. Third, tax
efficient strategies must be able to be implemented in an automated fashion so
that separate account managers can keep up with what otherwise would be the
hopeless burden of handling hundreds or thousands of accounts.

5.4 THE STATE OF THE ART

Apelfeld et al. (1996) presented a practical approach for active managers. In
this paper, a traditional mean-variance portfolio optimization procedure is used.
Capital gains taxes are treated as additional transaction costs which occur on
sales only and the magnitude of which are specific to the tax lot of the security
that is being sold. To mechanically implement this approach, they make each tax
lot (different tax cost basis) of a security, a separate stock for the purposes of the
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optimization algorithm (i.e. IBM stock lot 1 is a different stock from IBM stock
lot 2). During the portfolio rebalancing process, the optimizer harvests capital
losses on some stocks to offset the realized capital gains on other stocks. As is
currently customary, they used a factor risk model to measure the risk of the
portfolio for optimization purposes. A particularly high level of computational
care must be exercised with this combination of methods, as factor models
assume that the stock specific risk of each stock in a portfolio is uncorrelated
with the stock specific risk of all other stocks. Clearly, this assumption is faulty
when we treat different tax lots of the same stock as though they were shares
in different companies.

In 1997, Northfield commercially introduced an approach that is similar but
does not treat different tax lots as different securities. We specify capital gains
taxes as a selling only transaction cost which is linear piecewise. That is, dif-
ferent percentage transaction costs may result from selling different amounts of
a security. As long as the amount to be sold is equal to or less than the size
of a given tax lot, the tax effect is treated in the same fashion as a regular
transaction cost. Given the gradient method used in our portfolio optimization
algorithm, the same security may be ‘traded’ multiple times in a given rebal-
ancing. In order to implement taxes as linear piecewise transaction costs, we
need only constrain the size of each trade such that only the shares contained in
the highest basis cost tax lot can be traded in a single iteration of the algorithm.
Other shares of the same stock in other tax lots can be traded in subsequent
transactions with their appropriate tax costs attached.

The key to understanding the benefit of tax-awareness for active management
is that we are not trying to reduce turnover. Instead, our goal is to actively
offset realized capital gains with realized capital losses. In many cases, the
turnover of the portfolio actually increases relative to turnover that would occur
ignoring taxes. For example, the process may find that a particular stock is
an ‘average’ contributor to a portfolio’s return and risk characteristics. If this
position was held in multiple lots, some of which had unrealized capital gains
while other lots had unrealized capital losses, the algorithm might choose to
sell the lots with unrealized losses, which could then be offset against the
realization of capital gains elsewhere in the portfolio. In this fashion, active
management strategies with considerable turnover can be accommodated in
taxable accounts, without worry that the tax bite will exceed the benefit of a
successful active strategy.

Many managers are reluctant to use portfolio optimization techniques. This
reluctance often arises from the incorrect belief that for portfolio optimiza-
tion to be effective, managers must make explicit and accurate forecasts of
the expected return from each stock. Jobson and Korkie (1981) advocate for
presuming the expected return of each stock to be equal. Bernstein and Tew
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(1994) demonstrate the effectiveness of this simple assumption. Miller et al.
(1998) provide a mechanism for traditional ‘stock picking’ managers to con-
vert their historical ‘rightness’ percentage into expected average return values
suitable for optimization use under taxes.

One simple way to deal with the large numbers of taxable portfolios is to
maintain a ‘model’ account that is managed without any attention to taxes at all.
The optimization algorithm then has the reduced task of maintaining each actual
account to have as close as possible expected behaviour to the model account,
while minimizing the amount of taxes required to maintain an acceptable level
of similarity.

5.5 THE MULTI-PERIOD ASPECT

One tricky aspect of the taxable account problem is that in reality it is a multi-
period problem, when traditional mean-variance optimization looks at the future
as a single long period. These time sensitive aspects of the problem specifica-
tion can arise from a variety of sources. In most cases, deferring the sale of a
stock with an unrealized capital gain results in just deferring payment of taxes.
Eventually, the stock is likely to be sold and the capital gains taxes paid. In
such a case, the only financial benefit is the time value of the tax payment, not
a savings in taxes. However, if a US shareholder dies (or donates the shares to
charity) before selling the stock, the capital gains taxes may be escaped entirely.
Perhaps, the level of capital gains taxes themselves will be raised or lowered
in the future.

Market expectations can also introduce this multi-period aspect. Imagine a
case where a portfolio has a large number of stocks with unrealized capital
gains, but none with capital losses. Such portfolios are common today given
the strong stock market performance over the last decade. Given our fore-
casts of future stock returns and risks, it may be optimal to sell some stocks
with unrealized gains and pay the required taxes. If we believe that the stock
market is going to go through a very volatile period in the near future, we
might believe that our portfolio would soon contain some securities with cap-
ital losses. It might then be optimal to wait, so that the capital gains might
be offset with capital losses and the portfolio rebalanced without incurring any
immediate taxes.

Another example is a passively managed portfolio that starts with a concen-
tration in a single stock with a large unrealized gain. By selling the stock, we
would incur a large tax, but the risk of the portfolio (tracking error) to its index
might be dramatically reduced for many years. How much tax we should be
willing to pay to reduce risk is tied to over how long a time period we expect
such reductions in risk to persist.
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To help deal with the multi-period aspect of the problem, we introduce a
transaction amortization factor, which is merely a percentage value multiplied
by all taxes and transaction costs. Put simply, the investment manager is able
to control how much of the tax burden of possible current transactions is to
be charged against portfolio objectives (increased return or reduced risk) on an
annual basis. What is a reasonable value for this factor will depend on the tax
situation, expectations of portfolio turnover and market outlook of the parties.
One can also use this amortization feature to vary the level of tax-sensitivity
through the calendar year. Some firms basically ignore taxes in the early part
of the year and gradually increase the sensitivity to tax concerns as we move
toward the end of the tax year.

One way to think of the tax amortization process is to pretend that when we
incur taxes that must be paid, we borrow the funds to make the tax payments
using our investment assets as collateral for the loan. We can infinitely defer
the payment of the principal of the tax loan as long as your collateral is suffi-
cient. As such, the after-tax cost of loan interest becomes the true cost of the
taxation. If portfolio trades will improve return or reduce risk sufficiently to
justify this interest cost, the transactions are a net improvement to the portfolio.
Of course, in the real world, cash flow needs and estate transfers make the idea
of infinitely deferring the repayment of tax loan principal somewhat unrealistic
in most cases.

Investor risk preferences also play an important consideration structuring
of taxable portfolios. To the extent that the imposition of taxes, truncates the
distribution of after-tax returns as compared to pre-tax returns, taxable investors
prefer to take on greater levels of risk than even those same investors would
care to do in a tax-exempt account. Finally, capital gain taxes are levied on
absolute returns, while active managers are generally measured on benchmark-
relative returns. To the extent that investors have different willingness to bear
absolute risk and benchmark relative risks, the economic tradeoffs become more
complex. Wilcox (2000) argues that investors ought have the same willingness
to bear absolute and relative risk.

The problem of taxation also tends to produce style biases in portfolios. If
our expectations are that future stock returns will be completely random, we
could maximize our tax position by holding onto stocks that had risen in value
and selling those that had fallen. As such, price momentum strategies may be
redundant in taxable portfolios, which are implicitly biased toward high price
momentum stocks. A value approach may offset this natural bias, but is the most
likely to generate unfavourable tax consequences. As such, value oriented active
managers may have the most to benefit from tax-awareness in portfolio con-
struction and rebalancing. Sundar et al. (2000) document investor preferences
for equity ‘growth’ or ‘value’ portfolios based on tax considerations.
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5.6 LOSS HARVESTING

One approach to taxable active management that can be accomplished with a
minimum of analytical effort is simple ‘tax loss’ harvesting. In these strategies,
a stock is sold automatically whenever it has gone down in price a prescribed
percentage from the purchase cost. In essence, the investor seeks to ‘bank’ a
cushion of tax losses even in advance of having any capital gains to offset. Arnott
(2001) evaluates such strategies and provides suggestions on their implementa-
tion. Brunel (1997) suggests a portfolio bias toward high volatility securities, as
providing a greater opportunity for tax loss harvesting. Samuelson (1998) argues
that loss harvesting can be done too aggressively, leaving the portfolio with noth-
ing but positions with gains left, a condition known as ‘lock up’. Chay et al. (1999)
evaluate the tax timing issue in an explicit option framework.

There are a number of important considerations with respect to simple loss
harvesting strategies. The first is that in many jurisdictions, tax losses cannot
be carried forward indefinitely, so having an excess of losses over the amount
needed to offset realized may not be useful. Another is that transaction costs
are always incurred, so the time value of the tax deferral must be carefully
considered in markets where transaction costs are not very small. Finally, many
nations have ‘wash sale’ rules that will nullify an investor’s tax loss if the
investor repurchases the same stock within a prescribed period (e.g. 30 days
in the USA). Unless a manager has strategies that have very long holding
periods, it is likely that the timing of an investment purchase is sensitive to
particular new information or market conditions. Loss harvesting may create
circumstances where attractive investment opportunities must be passed up, in
order to not nullify previously realized tax losses.

5.7 AFTER-TAX BENCHMARKS

Another issue for taxable investors is that of benchmark indices. In the USA,
the AIMR performance presentation standards simply provide for inclusion of
realized tax costs in computation of after-tax performance. When these after-tax
returns are compared to pre-tax returns for popular benchmark indices, managed
accounts obviously look like they are broadly disadvantageous. Poterba (1997)
outlines the difficulties with trying to take the economic value of the unrealized
gains (losses) into account for measurement of investment performance.

At the surface, the simple answer would be to create after-tax benchmark
indices. As discussed in Stein (1998), this is much more complex than it seems. It
would seem that we could simply measure the taxes arising from a hypothetical
index fund on the particular index in question and then compute the after-tax
return. However, the cost basis of the index fund in question would depend on
when shares were purchased and at what prices. As such, the after-tax return of
the index fund for a given period would be dependent on the starting date of the



Portfolio management under taxes 133

index fund. The after-tax return on the index for 1999 would be different if had
started the fund in 1990 as compared to 1985 or 1995. Gulko (1999) proposes a
time-weighting scheme to deal with this issue. In addition, the existence of taxes
reduces the volatility of after-tax returns, relative to pre-tax returns. As such, the
investor’s choice of benchmarks may be different, even for the same investment
objective, in a taxable setting. This issue is explored in Stein, Siegel, Narasimhan
and Appeadu (2000).

5.8 CONCLUSIONS

Over the past few years our understanding of the managing investment portfolios
under taxes has increased markedly. The technology necessary to implement
appropriate new techniques is readily available and is being rapidly adopted by
sophisticated investment firms. Measuring the performance and evaluating the
performance of taxable accounts remains problematic.
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Chapter 6

Using genetic algorithms to
construct portfolios

DR T WILDING

ABSTRACT

Markowitz’s (1952) mean-variance optimization framework was an
excellent development in pushing portfolio construction towards a
science and away from being an art. However, there are a number of
drawbacks one faces when using quadratic programming in practice.
This chapter will focus on the practical need to restrict the number of
securities held or traded to construct the final portfolio. This constraint
is often known as the cardinality constraint. When the problem incor-
porates this constraint, the resultant optimization becomes part of a
class of problems that can be very difficult to solve using traditional
optimization methods such as branch-and-bound. In this chapter,
we review alternative methods and investigate the use of genetic
algorithms for efficiently selecting a subset of stocks to trade, while
satisfying other optimization objectives.

6.1 LIMITATIONS OF TRADITIONAL MEAN-VARIANCE PORTFOLIO
OPTIMIZATION

Fund managers, building on the work of Markowitz (1952), are increasingly
using quantitative techniques to build their final portfolios. Markowitz formu-
lated the portfolio construction problem as a utility maximization problem and
used this to develop a framework for assembling portfolios. Markowitz made
several additional assumptions that further simplified the portfolio selection to
a quadratic programming problem, developing a technique known as mean-
variance portfolio optimization.
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Several drawbacks with mean-variance portfolio optimization have meant
that very few investors use plain quadratic programming as formulated by
Markowitz to build portfolios. In practice, fund managers often want to place
other constraints on the final portfolio such as turnover constraints, limits on the
holding in individual securities, limits on the holdings in a particular category
of securities and, finally, limits on the number of securities traded or held in
the final portfolio.

The following is a practical version of the portfolio optimization function
that fund managers might use to construct their portfolios. Assuming there are
n securities in the investable universe, we can formulate the actual portfolio
optimization problem in the following way:

Maximize the quadratic objective function:

Quadratic utility function f (x) = c′x − λx ′V x − p′xp − s ′xs (6.1)

subject to:

Budget constraint
n∑
1

xi = 1 (6.2)

Additional linear constraints A′x = b (6.3)

Variable bounds li ≤ xi ≤ ui (6.4)

where c is a n × 1 vector of expected returns for each security, x is the n × 1
vector of portfolio weights in each security, λ is the risk-aversion coefficient,
V is the n × n covariance matrix, p is the n × 1 vector of purchase costs for
each security, xp is the n × 1 vector of purchases in each security (or 0 if the
position in the security was not increased), s is the n × 1 vector of sales costs
for each security, and xs is the n × 1 vector of sales in each security (or 0 if
the position in the security was not decreased).

Equation (6.3) shows additional linear constraints that are often designed to
constrain portfolio exposure to a particular sector or industry. Equation (6.4)
shows additional bounds on the holdings in any particular security. These
variable bounds serve to prevent the portfolio becoming concentrated in any
particular security. This problem can be further modified to incorporate long-
short portfolios.

This practical optimization model is still limited by several of the assumptions
that it contains:

• the investment decision is a single period;
• either the investor’s utility function is quadratic, or returns are normally

distributed and the shape of the investor’s utility function is irrelevant;
• assets are infinitely divisible;
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• the variance and average of returns over the period is known exactly
(see Michaud (1998) for a full discussion of some of the consequences
of this);

• all costs, returns and constraints can be summarized using a linear com-
ponent and are known exactly.

Most of these assumptions have been discussed widely in the literature. For
instance, there is much discussion of the shape of the investor’s utility function
(e.g. Konno and Yamazaki, 1991). In this chapter we will focus on the final issue
and, in particular, how to build a portfolio containing a limited number of secu-
rities and/or a limited number of trades using genetic algorithms. The constraint
on the number of securities is often known as the cardinality constraint.

The cardinality constraint is motivated by portfolio construction costs that are
not taken into account by the mean-variance framework above. For example,
the costs could be:

• Settlement costs: the administrative cost of settling trades is a function of
the number of trades and not their value.

• Custody costs: custodial services usually make some of their charges on
a per ticket basis.

• Due diligence: except in the rare cases of exclusively quantitative man-
agement, it is usual for portfolio construction, even if quantitatively aided,
to be subject to (human) judgmental overlay. This requires the portfolio
manager to accept responsibility for trades undertaken and necessitates
his review of a trade list before final execution. Given the value of a
portfolio manager’s time a limited number of trades is to be preferred.

• Efficient dealing: except where reliance on automated dealing is total, a
shorter list of trades is more likely to facilitate working of an order to get
the best execution price.

• Compliance costs: checks on the regulatory compliance of a portfolio
would increase costs in proportion to the number of trades and securities
in the final portfolio.

These costs cannot be incorporated in a Quadratic Program, since they are
not simple linear or non-linear functions of the trade size or position in the final
portfolio. Figure 6.1 shows a chart comparing three different transaction cost
models. Model 1 is a simple linear transaction cost model typically encountered
in the enhanced form of Markowitz optimization detailed above. In the linear
model there is no barrier to purchasing a position in any security no matter how
small that position is. The marginal cost of purchasing each additional security
is the same no matter how much of the security has been purchased. Model 2
shows a fixed cost of purchase combined with a linear transaction cost. There
is a fixed ‘hurdle’ cost associated with deciding to purchase the security and
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Figure 6.1 Alternative transaction cost models. Model 1 shows a linear cost model with a fixed
marginal cost (or fixed cost per incremental trade). Model 2 shows a model in which there is a fixed
hurdle cost incurred for making the purchase followed by a fixed marginal cost per incremental
trade that is made in the security. Model 3 shows a quadratic cost model with a fixed hurdle cost,
a fixed marginal cost and a linearly increasing cost per incremental trade (which makes the total
trade cost a quadratic function of the volume traded)

a fixed marginal cost for purchasing each additional amount of the security.
The second model is probably a more realistic model of transaction costs even
though it is possible to imagine various practical additions to this model. For
example, one could consider a marginal cost for purchasing additional amounts
of the security that increases linearly with the amount purchased (resulting
in quadratic transaction costs, Model 3) or piecewise linear transaction costs
(e.g. Perold, 1984). These costs are, in general, a function of the number of
securities in the final portfolio and/or the number of trades required to construct
the final portfolio (Figure 6.2). Since these costs are fixed costs, the value
of the final portfolio can be a determining factor in considering them. For
example, fixed costs may be very significant if your assets under management
are US$10m, but would be less significant if the assets under management
are US$100m.

Figure 6.2 shows the effect a fixed cost has on the trading costs incurred
in building or rebalancing a portfolio. The chart shows the costs of different
numbers of trades given a fixed level of turnover. The figure shows that the
fixed cost forces a fund manager to lower the number of trades and/or the
number of securities in the final portfolio. Lowering the number of trades and/or
securities in the final portfolio will lower the total costs involved in constructing
the portfolio.
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Figure 6.2 The effect a fixed hurdle cost has on portfolio construction. It shows that for any given
level of turnover a fixed base cost forces a fund manager to lower the number of trades made in
constructing the final portfolio. It assumes that transaction costs are composed of a fixed hurdle
cost and a linear cost (Model 2 in Figure 6.1). The graph shows the effect of a fixed hurdle cost
with a portfolio that is being traded with two levels of turnover. Each line corresponds to a different
level of turnover. For each level of turnover, we are assuming that the trades are distributed evenly
between the securities. This shows that the best way to reduce costs given a set level of turnover is
to reduce the number of securities traded

There are other motivations for limiting the number of trades besides direct
trading costs. For example, the duration of an estimated alpha might be an
issue. If a fund manager is working with short-term alphas, then he may need
to consider the efficiency with which he can execute a particular trade. The
shorter the duration the more desirable it would be to limit the trades to a list
that can be executed as soon as possible.

Since we are modifying the problem to incorporate additional costs, we might
expect the objective function (Equation (6.1)) to be modified to account for the
costs. For example, we could add costs to the equation that are linear functions
of the number of securities and number of trades required to construct the final
portfolio. However, there are a couple of reasons why we do not formulate the
problem this way: lack of information and efficiency of solving the problem. In a
practical scenario, a fund manager typically does not have full information about
his costs. The fund manager resolves this by examining the trade-off between
the number of securities traded and the final objective without accounting for
the fixed hurdle costs. For example, see Figure 6.3 for a chart showing the
trade-off between tracking error and number of securities in the final portfolio.
The fund manager would then use Figure 6.3 to select the portfolio that has the



140 Advances in Portfolio Construction and Implementation

Trade-Off: Number Of Stocks v. Tracking E
X-Axis

Y-Axis

Number Of Optimizations 5

Tradeoff
Portfolio Name Number Of

Stocks
25 Stock Tracker 25 2.76%
50 Stock Tracker 50 1.38%
75 Stock Tracker 75 0.90%
100 Stock Tracker 100 0.63%
125 Stock Tracker 125 0.46%

100 Stock Tracker

75 Stock Tracker

50 Stock Tracker

25 Stock Tracker

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

0 20 40 60 80 100 120 140

Double-click on a point to see the relevant
portfolio report. 

Number Of Stocks

T
ra

ck
in

g 
E

rr
or

125 Stock
Tracker

Tracking
Error

Figure 6.3 Trade-off made as the optimal solution is allowed to contain more stocks. As
expected, the marginal improvement of tracking error with number of stocks decreases as the

number of securities in the final portfolio increases

best combination of tracking error and number of securities. This is similar to
using the level of turnover in the portfolio to control transaction costs. Although
models of transaction costs exist, a fund manager often models transaction costs
as a linear function of the turnover of the final portfolio and then examines
the trade-off between the objective function and the level of turnover. It is
more efficient to treat the number of securities as a constraint because this
makes evaluation of the objective function faster. By constraining the number
of securities, the evaluation of the objective function can be transformed into a
quadratic programming problem for a subset of securities that is relatively easy
to solve. There exists a vast amount of literature about quadratic programming
and there are various efficient models for the solution of a quadratic program.

Incorporating the limit on the number of securities in the final portfolio leads
to the following enhanced portfolio optimization problem:

Maximize the quadratic objective function subject to:

The cardinality constraint
n∑
1

δi = K (6.5)

the budget constraint, additional linear constraints, and a modified form of the
original variable bounds (shown in Equation (6.4)):

Modified variable bounds liδi ≤ xi ≤ uiδi (6.6)
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In Equations (6.5) and (6.6), δi is a variable that can take only integer values
0 or 1 and represents a decision to purchase a particular security, and K is the
number of different securities in the final portfolio.

In practice, this modification is only the start. Since the motivation for adding
the cardinality constraint was trading costs, a user is likely to require an addi-
tional constraint on the number of trades required to construct the final portfolio.
In other words, the problem formulation would require the following additions:

Constraint on number of trades
n∑
1

γi = T (6.7)

Modified trading bounds γi(ui − x0,i ) ≥ xp,i

γi(x0,i − li) ≥ xs,i (6.8)

where γi is 0–1 integer variable that represents a decision to trade in a particular
security, x0,i is the holding in the original portfolio, and T is the number of
different trades required to construct the final portfolio. The addition of these
constraints to the portfolio optimization problem alters various practical aspects
of the solution. For example, the efficient frontier is no longer continuous when
the cardinality constraint is added (Chang et al., 2000).

Various other modifications to the portfolio optimization problem exist, but
this chapter will only deal with an algorithm designed to handle the additional
constraints on the number of holdings and the number of trades.

6.2 SELECTING A METHOD TO LIMIT THE NUMBER OF SECURITIES
IN THE FINAL PORTFOLIO

Limiting the number of securities in the final portfolio changes the nature of
the optimization problem from a quadratic programming problem to a quadratic
mixed integer-programming problem. In traditional optimization literature, a
method such as branch-and-bound (BB) would be used to solve this problem.
BB starts off with the entire universe of securities. The algorithm then ‘branches’
on each security by deciding whether to incorporate the security in the final
problem. The algorithm proceeds to branch at another security until the algo-
rithm has generated a feasible solution. The algorithm then examines alternate
branches until it has determined the optimal solution. For a full description of the
BB method see standard optimization texts (e.g. Nemhauser and Wolsey, 1998).
Often BB methods are combined with a method of generating cutting planes to
reduce the search area (see Bienstock, 1996).

BB algorithms guarantee a convergence to the true optimal solution. How-
ever, there is one drawback–this class of problems is NP-complete (Mansini
and Speranza, 1999). A BB solution may take an exponentially long time to
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complete as the algorithm goes through all possible subsets of securities that
contain the right number of securities in the final portfolio. Optimization sys-
tems do not currently use the full BB solution because it would be beyond a
current PC’s capability to generate a full solution. One would have to terminate
a BB algorithm early and generate a solution that could possibly be no better
than a solution generated using a heuristic.

There have been two approaches to solving this problem. The first approach
is to modify the form of the portfolio optimization problem. The modified form
would be designed to be easy to solve with current algorithms and to gener-
ate a solution that only contains a limited number of securities. The portfolio
optimization problem is usually modified by converting it into some form of
linear programming problem that only has solutions with the correct number of
securities (e.g. Konno and Yamazaki, 1991).

The second approach has been to develop a heuristic that solves the resultant
problem. Commercially available optimizers typically use heuristics to deter-
mine the effect of the cardinality constraint on the final portfolio. This decision
has been motivated by a couple of factors. First, algorithms that guarantee con-
vergence to the optimal solution can be computationally expensive and may
only generate a marginally better portfolio than a heuristic. Second, since the
inputs to the optimization process are merely estimates of the actual variance
matrix, the optimal portfolio generated using a particular model may not be
any closer to the ‘true’ optimal portfolio than the portfolio generated by the
heuristic. Michaud (1998) contains a full discussion of the consequences of the
lack of precision in the model of the variance matrix.

A number of heuristics have been used to solve the problem in practice and to
overcome the limits on processor time. Early heuristics were often very simple
and could generate solutions that were far from optimal. More recently, effort
has been directed towards developing more optimal solutions to the problem.
Here are brief descriptions of some of the heuristics that have been tried:

• Paring Heuristics – most commercially available optimizers use a form of
paring heuristic. This is an algorithm that starts off with a solution to the
full problem with no constraint on the number of securities. The algorithm
then gradually removes the smallest securities by weight until a portfolio
with the required number of securities is created. Discarding more than
one security at a time could accelerate this algorithm. In other variants,
multiple baskets of securities are created. Securities are removed from
each of these baskets and the baskets are combined until the algorithm is
left with the required number of securities.

• Incrementing Heuristics – This was a popular early method for limiting
the number of securities. Incrementing heuristics would add securities
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to the current set of securities one at a time and solve the optimiza-
tion problem derived from the current set of securities. Securities were
usually added to the current set on the basis of their marginal contribu-
tions to utility at the final solution. The algorithm was terminated when
the current set contained the correct number of securities. This method
had the advantage that it was very fast to reach a solution since solutions
started from very small problems, but the final solutions would often be
far from optimal.

• Tabu Search (TS) – TS follows the method of Glover and Laguna (1997).
TS starts from a randomly generated solution. This solution is then used to
generate solutions that are close to the current solution. The best solution
is found from these nearby solutions and is then used as the seed point to
look for more nearby solutions. The transition from the previous solution
to the current best solution is stored. It is known as TS because the
algorithm prevents cycling by using the list of transitions that have already
been made.

• Simulated Annealing (SA) – SA is similar to TS in that it generates tran-
sitions from one solution to the next. SA derives its name from its origin
as a simulation of the cooling of material in a heat bath and was first
applied as an optimization technique by Kirkpatrick et al. (1983). SA dif-
fers from TS in that there is a probability that the algorithm will accept a
worse solution than the currently stored maximum. SA uses a parameter
known as the ‘temperature’ to determine this probability. As the algorithm
progresses, the ‘temperature’ is lowered and the algorithm converges to
a solution. The ability of the algorithm to move to a potentially worse
solution prevents the algorithm from getting trapped in local maxima.

• Genetic Algorithm (GA) – GAs are very popular optimization algorithms
developed by Holland (1975) and reviewed very thoroughly by Goldberg
(1989). A GA represents a particular subset of securities as an ‘individual’.
The GA starts with a population of these individuals. For each individ-
ual the GA optimizes the portfolio using the subset of securities that
corresponds to the individual. The GA then examines the population and
selects new subsets using the more successful members of the population.

We wanted to select an algorithm that would allow us to solve problems that
had constraints on the number of trades and/or the number of securities. Each
one of the above algorithms requires modifications so that they can solve such
problems. Additionally, we also wanted to allow a user to be able to force or
deny inclusion of certain securities in the final portfolio. For example, if a fund
manager wants IBM to be in the final portfolio then the fund manager must
be able to express that wish. Again, all of these heuristics would have to be
expanded to accommodate this new problem.
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There are very few papers that review the use of these algorithms to solve the
cardinality-constrained problem. Chang et al. (2000) present three algorithms
designed to solve the problem – tabu search, simulated annealing, and genetic
algorithms. Chang et al. conclude that some combination of GA and SA would
provide the best solution to the problem. Horniman et al. (2000) have pre-
sented a comparison of these three algorithms with the full branch-and-bound
solution. Horniman et al. also review the effect of the cardinality constraint on
the efficient frontier. They conclude that the branch-and-bound algorithm pro-
duces the best results but do not include information on timing and efficiency
of the algorithm. Shapcott (1992) reviews the use of GAs as a method for
selecting index-tracking portfolios. Grinold and Kahn (1994) briefly mention
that BARRA had compared their heuristic approach to a genetic algorithm but
dismissed the genetic algorithm because it took ‘48 hours of CPU time’ on a
typical 1998 PC to generate a solution similar to BARRA’s existing heuristic.
Unfortunately, Grinold and Kahn do not provide significant details about the
GA code that was used for the comparison.

Although Chang et al. (2000) suggest that the choice of algorithm comes
down to a choice between a GA and an SA, we found that distinction is some-
what artificial. In the literature, the term GA can be used to cover a wide variety
of algorithms depending on the choice of problem representation and popula-
tion breeding methods. Chang et al. only implement a limited form of a GA.
They only use crossover techniques for breeding new members of the popula-
tion while typical GAs use a combination of crossover and mutation methods.
Chang et al. suggest that the ideal solution would be to implement a combina-
tion of the GA and SA approach. In fact, GAs approach their description of an
algorithm that uses a combination of GA and SA techniques for generating new
solutions. Implementing a GA left us free to incorporate a population breeding
method that is equivalent to the operator used to generate neighbouring ran-
dom portfolios in simulated annealing. We might therefore reasonably expect
that a well-designed genetic algorithm with its mix of operators should perform
better than a SA algorithm with its single operator. For that reason, we chose
and implemented a GA as the best available heuristic for solving the problem.
Once we have implemented the GA, we can further test to determine what the
optimal mix of breeding methods should be to determine the final solution (see
the later section on refinement of GA parameters). In fact, a well-designed GA
can incorporate many of the best features of other heuristic search techniques.
In addition, we believe GAs have a number of advantages:

1. Easy to implement – the wide availability of source code and libraries
for GAs helps with the design and implementation of GAs in practice
(for example, see http://lancet.mit.edu/ga/ for a publicly available library
of codes).
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2. Quick to generate a reasonable solution – GAs work only with solutions
that satisfy the cardinality and which are, therefore, small and extremely
fast to solve. Most algorithms start from the solution to the problem with-
out the cardinality constraint. Since the time to solve a particular problem
is typically a power-law function of the number of securities this means
that these optimizers start by solving a disproportionately hard problem
before paring down the number of securities to a reasonable amount.

3. Easily adaptable to more complicated problem forms – GA literature
shows that GAs have been used to solve a wide variety of problems.
A GA could easily accommodate our additional problem modifications.

4. Intuitive – they mimic the process of natural selection which is evidently
a successful strategy for producing practical solutions to a variety of
incalculable problems.

5. Robust – GAs will eventually converge to an optimal solution (Gold-
berg, 1989). Simple heuristics such as the paring and incrementing heuris-
tics may generate solutions that are far from optimal and are simply an
artifact of the particular problem’s constraints.

6.3 PRACTICAL CONSTRUCTION OF A GENETIC ALGORITHM-BASED
OPTIMIZER

After selecting the GA, two extra practical choices need to be made:

1. Design and implementation of the genetic algorithm.
2. Optimization of performance.

6.3.1 Design and implementation of the genetic algorithm

Genetic algorithms are search algorithms based on the mechanics of natural
selection and natural genetics. There are a number of terms associated with
GAs that refer to various features of the algorithm. Table 6.1 shows those GA
terms and their equivalents in the investment universe. GAs use data structures
called ‘genes’ to represent potential solutions. GAs combine survival of the
‘fittest’ among the genes with a randomized information exchange between
genes to form a search algorithm that captures many of the intuitive features of
a human-prompted search method. A simple genetic algorithm that yields good
results takes the following form:

• develop an initial population of genes;
• determine fitness of the current population of genes;
• use the fitter members of the current population to breed a new population

of genes;
• repeat steps 2 and 3 for a certain number of generations.
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Table 6.1 Correspondence between terms used in GA and the concepts they represent
in portfolio construction

GA term Investment equivalent Description

Population A group of optimal portfolios for different
portfolio universes.

Gene/Individual Optimal portfolio for the
portfolio universe

A gene is a combination of a
chromosome, and the fitness value.

Chromosome Portfolio universe This is the list of securities used to
construct the final portfolio

Allele Individual security The portfolio universe is constructed from
a set of individual securities.

Fitness Expected utility This is a measure of how attractive a
particular portfolio is to a fund
manager.

Crossover A way of combining two or more genes
to form a third, hopefully fitter, gene

Mutation A method for creating a new, hopefully
fitter, gene from an existing gene

In every generation, a new set of genes is created using elements of the fittest
genes of the previous generation and, on occasion, a random new element. GAs
do not simply search through the potential solutions randomly; they efficiently
exploit historical information to determine new search points with expected
improved fitness.

In typical genetic algorithms, the next generation is bred using the following
three operators:

• reproduction;
• crossover;
• mutation.

Reproduction is a process in which individual genes are copied according to
their expected utility. Copying genes according to their utility means that genes
with a higher value have a higher probability of contributing one or more off-
spring in the next generation. The reproduction operator is an artificial version
of natural selection, a Darwinian survival of the fittest among gene creatures.
In natural populations fitness is determined by a creature’s ability to survive
predators, pestilence, and the other obstacles to adulthood and subsequent repro-
duction. In our GA, the utility function (Equation (6.1)) is the final arbiter of
the genes survival or otherwise.

Crossover is a process in which the fittest genes are mated at random. A
selection of the information contained in the parents is used to create a child.
This exchange of information should allow the algorithm to pick the best of
both parents and generate a child that is likely to give a better solution to the
current problem.
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Finally, mutation is the occasional random alteration of a parent gene. By
itself, mutation is a random walk through the gene space. Mutation helps the
algorithm by preventing the gene pool from focusing on one particular type of
solution. Instead, mutation occasionally generates new genes that are possibly
better solutions of the current problem.

Therefore, implementing a genetic algorithm involves a couple of design
decisions – selection of data structure to represent a particular solution (design
of the chromosome), and determination of methods used as crossover and muta-
tion operators.

A gene must represent the ability to trade in a subset of securities that satisfies
the constraint on the number of holdings and the number of trades. We choose
to represent a gene as three subsets of securities – securities to trade, securities
to add, and securities to remove from the final portfolio. The set of additions
was the set of securities that are not in the existing holdings, but we would
like to add to the portfolio. The set of removals is the set of securities that are
currently in the existing holdings, but whose position we would like to wind
down. The trades are those securities that are currently in the existing holdings,
but there are no preferences for the weight.

The methods used for the crossover and mutation operators must take the
information from parent genes and generate new genes that are expected to
have higher utilities. For crossover, we developed a method where multiple
parents were selected. Securities were randomly selected from the parent gene
and placed in the child gene. This process was repeated until a child gene
that was feasible with respect to the cardinality constraints was created. The
crossover method is similar to the Random Assorting Recombination operator
described in Shapcott (1992). A particular security is more likely to be passed
to the new gene if it appears in both copies of the parent gene. This ensures
that the securities that are most important for reducing the tracking error will
appear in the child. This attribute of the operator is sometimes referred to as
‘respect’ for the parent.

For mutation, we developed a method where we searched through the set of
securities in the parent gene, and randomly replaced a small fraction of them.
The likelihood that a particular security will be picked is in proportion to a
weighting assigned by the system at the start of the process. This weighting is
typically the weight of the security in the benchmark index.

6.3.2 Optimization of performance

There are various areas in which the performance of the final algorithm can
be optimized. Two particular areas are more efficient evaluation of the utility
function, and refinement of the GA parameters.
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Efficient evaluation of the utility function
One of the most important areas is the efficient evaluation of the utility function.
The genetic algorithm is only responsible for selecting the subset of securities
that appears in the final solution. Once that subset has been selected, it is
necessary to optimize the final portfolio using that subset as the investable
universe. The resultant quadratic programming problem determines the util-
ity of a particular gene. Hence, it is necessary to have an efficient quadratic
programming routine to determine the utility value for that subset.

Recent developments in the linear programming field suggest that interior point
methods may be the method of choice for quadratic programming (see e.g. Van-
derbei, 1996). These methods guarantee convergence within a polynomial time.

Since we were working with factor models of the covariance matrix, we were
able to make several changes to the problem formulation so that we could take
advantage of sparsity. Using the method of Perold (1984), we added several
extra variables to the problem to represent factor exposures. The addition of the
linear constraints to represent the factor variance matrix significantly reduces
the density of the final covariance matrix and improves the performance of the
final algorithm. Therefore, it was advantageous to require a quadratic program-
ming algorithm that could take advantage of the sparsity in the final problem
formulation. Interior point quadratic programming methods are most efficient
when the covariance matrix is diagonal. Performance decreases as the density of
the covariance matrix increases. This sparsity can have a significant impact on
the speed of the final algorithm. For example, inverting the covariance matrix
can be a significant rate-limiting step in any quadratic optimization algorithm.
Without adjusting for the sparsity of the covariance matrix, inversion can be an
O(n3) process, so that the time inversion will require to complete is proportional
to the number of inputs cubed.

Interior point methods have one drawback when applied to integer program-
ming problems; so far good methods of ‘warm-restarting’ the algorithm have
not been designed. In other words, it is not possible to start from a solution
for a particular basket of securities and generate a solution to a problem that is
significantly close in formulation. In our case, this is not a significant drawback,
since the GA does not necessarily generate neighbouring solutions.

An additional benefit of sparse techniques is that fund managers often use
sector constraints to construct the final portfolio. Sector constraints usually lead
to a very sparse constraint matrix, since entries in the sector constraint matrix
typically take the form of 1 for securities in a particular sector and 0 otherwise.

Refinement of the GA parameters
There are several parameters that may be altered to improve the performance of
the algorithm. In this section, we attempt to find the best selection of parameters
for optimization.
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The GA uses three operators to build the next generation of individuals – re-
production, crossover, and mutation. In this section, we analyse what propor-
tions of the next generation should be constructed using each operator. In order
to do this we ran repeated trials of the GA using different proportions to deter-
mine which set of proportions was best. The trials consisted of 12 different
optimization jobs in which the goal was to minimize tracking error using only
a limited number of securities. Three benchmarks were used with four differ-
ent limits on the number of securities in the final portfolio. The optimizer was
allowed to choose any security in the benchmark. The three benchmarks were
constructed from the following universes:

• UK: FTSE All-share;
• USA: S&P500;
• Japan: Nikkei 300.

Universes were constructed as of October 2001. These benchmarks were
all capitalization weighted. The GA was allowed to construct a portfolio with
25, 50, 100, and 200 securities. Table 6.2 shows average times for the various
jobs and demonstrates that the GA is capable of producing a reasonable solution
to the problem quickly.

After all of the trials were run, we were left with various solutions for each
of the 12 jobs. The lowest possible solution for each of the 12 combinations
was determined and used as a baseline. For each job, we determined a score
for the solution by calculating the difference between the tracking error and the
lowest possible tracking error and then dividing this number by the standard
deviation of tracking errors across all jobs.

We then examined how this score varied with three of the parameters in
the GA – number of individuals chosen for reproduction, number of individ-
uals chosen for mutation, and number of individuals chosen for crossover
(Figure 6.4). The charts illustrate that better tracking errors are generated when
the GA generates more mutants as a fraction of the next generation. This
improvement levels off after the proportion of mutants is increased to approx.
70% of the next generation. After running the test, we increased the default

Table 6.2 Average timing in seconds of the various jobs used to refine
the GA parameters on an AMD 1.3 GHz machine with 256 MB Ram

Number of stocks FTSE Nikkei SP 500 Average

25 96 61 63 73.38
50 124 84 95 100.82

100 136 122 132 130.23
200 141 132 141 138.11
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These three charts show the effect of changing
the fraction of the next generation produced by
a specific mechanism.The score is the average
amount by which the solution exceeds the
lowest possible tracking error (TE) for a
particular job.

Score = (TE - Min. Possible TE)/ SD of TE

Hence, a lower score indicates a better quality
of solution.

The graphs show that the most improvement is
gained by increasing the number of mutations in
the next generation

Figure 6.4 Performance variation when different operators are emphasized for creating the new
generation

proportion of children created by mutation and decreased the proportion of
children created by crossover in the next generation for the algorithm.

6.4 PERFORMANCE OF GENETIC ALGORITHM

Finally, we would like to test whether our GA is practically useful for building
a final portfolio of securities. We would like to determine whether the solutions
provided by the GA are practically useful. In order to do that, we will examine
the results of a particular optimization to confirm that the portfolios constructed
are sensible portfolios. We will also test whether the GA solutions provide
portfolios that perform significantly better from a tracking error perspective.

We conducted practical tests of the GA solutions to answer the following
three questions:
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1. Do the portfolios generated by the GA have a significantly better track-
ing error than other portfolios satisfying the same limit on the number
of holdings?

2. Are the portfolios generated by the GA practically sensible – i.e. do they
display a normal distribution by size and sector?

3. Do the portfolios generated by the GA perform well in practice – i.e with
an out-of-sample test?

The second and third test both the GA routine and the model of the covariance
matrix in Equation (6.1) used to construct the final portfolios. The selection of a
good model of the covariance matrix that is used to test the GA is a necessary but
not sufficient condition for the GA to produce good results. Consequently, if the
results with the GA are good, it confirms that the GA works well. The GA opti-
mizer has been designed to work with all types of factor model – fundamental
factor models, industry index models, and pure statistical models (see Connor
and Korajczyk, 1995, for a review of the different types of factor modelling
techniques available).

For this Chapter, the tests have been conducted using the EM applications
statistical factor models. The factor models are constructed quarterly from
200 weeks of returns using EM (‘Expectation Maximization’) factor analysis
techniques developed by Stroyny (1992). Factor models are estimated for var-
ious countries and regions. For each test, we selected the appropriate factor
model for the job. For example, when building portfolios to track the FTSE All
Share we selected the UK factor model. You can find further information about
the factor model at www.emapplications.com.

To test whether the GA solutions are close to optimal we compared the GA
solution to optimized baskets of securities satisfying the same limit on the num-
ber of holdings. We conducted a random search by constructing 1500 baskets
of securities and optimizing the baskets. Figure 6.5 shows the distribution of
tracking errors for these randomly generated baskets of securities. The randomly
generated baskets had an average predicted tracking error of 6.2% with a stan-
dard deviation of 0.4%. On the other hand, the GA produced a tracking error of
3.2%. Not one of the random portfolios had a predicted tracking error that was
close to the GA solution. The best randomly generated solution had a tracking
error of 5.1%. If we assume that the random baskets had a normal distribution of
tracking errors, then a portfolio with a tracking error of 3.2% or better would
only be found in 1 in 1012 portfolios produced randomly. This is illustrated
graphically in Figure 6.3.

In order to answer the second question and show that the portfolios generated
by the GA are practically sensible we will review some of the portfolios created
in a particular scenario. In our case, the scenario will be designing a portfolio
to track the FTSE All Share, which contained 758 securities, in October 2001.
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Figure 6.5 The distribution of tracking errors for random subsets of 35 securities from a
500-security benchmark. After the subset has been randomly selected, an optimized portfolio of
the 35 securities is chosen and the tracking error is calculated. Since the optimizer generates a
tracking error of approx. 3.2%, this graph clearly shows that the GA returns a very good choice of
portfolio. No randomly generated portfolio came close to the optimal solution

We will use the GA to build portfolios containing 25, 50, 75, 100, and 125
securities. Figure 6.6 shows a list of statistics for each of those portfolios. The
portfolios are constrained to have no more than 10% of the final weight in any
particular security. Earlier, Figure 6.3 showed how the tracking error of the
final portfolio changes with the number of securities. There is a very significant
reduction in the estimated tracking error as we increase the number of securities
from 25 to 50, but this reduction decreases as the number of securities increases.

Figure 6.7 shows a trade report giving the optimal portfolio of 25 securities to
track the FTSE All Share. The portfolio is sorted by weight. This figure shows
that the portfolio constructed by the GA is a reasonable portfolio and matches
one’s expectations of what a tracking portfolio should look like. The portfo-
lio is constructed mostly from the larger-cap universe and contains significant
positions in all of the largest securities.

Figure 6.8 shows the sector weights of the portfolio and the benchmark.
The GA has produced portfolios that have sector weights that correspond very
closely to the benchmark, even though no sector constraints were specified as
part of the optimization process. The largest differences are seen on the 25 stock
portfolio, but even then the sector weights do not differ from the benchmark
by more than 2.6% (Energy Minerals sector).

As a final test we checked whether the portfolios produced by the genetic
algorithm performed well out-of-sample. For this test, we constructed several
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Volatility Breakdown Selected Portfolio Statistics
Total Latent Specific R-Squared Portfolio Alpha 0.00

FTSE Tracker 16.65% 15.41% 6.32% 85.62% Portfolio Beta 1.02
FTSE All Share 16.06% 15.22% 5.13% 89.80% Correlation 0.99

Number of Trades 25
Tracking Error 2.76% 1.17% 2.50% 17.94% Number of Securities 25

Individual Portfolio Reports

Selected
Portfolio 25 Stock Tracker

Trade Report Trade Report for selected portfolio showing the trades used to create the portfolio

Optimized Portfolio Report Report showing the composition of the final portfolio

Optimization Results

Portfolio Name
Tracking

Error
Portfolio
Volatility Beta Alpha

Number of
Securities

Number of
Trades Turnover

1 25 Stock Tracker 2.76% 16.65% 1.02 0.00 25 25 100.00%
2 50 Stock Tracker 1.38% 16.21% 1.01 0.00 50 50 100.00%
3 75 Stock Tracker 0.90% 16.16% 1.00 0.00 75 75 100.00%
4 100 Stock Tracker 0.63% 16.12% 1.00 0.00 100 100 100.00%
5 125 Stock Tracker 0.46% 16.10% 1.00 0.00 125 125 100.00%

Summary Reports
Report Name Available? Description
Output Statistics Yes Table of Output Statistics for all portfolios
Valuation Report Yes Table of Valuation Attributes for all portfolios

Yes Sector Report for all of the optimized portfolios
Yes Efficient Frontier Report for all of the optimized portfolios
Yes Country Report for all of the portfolios
No Constraint Report for all of the portfolios

Optimization

Repeat the optimization with any changes made to the optimization job

Review Parameters Review the optimization parameters used in the optimization process
Review Data Review stock-level data used in the optimization process

2.76%

Tracking Error

EM Applications Home Page

Repeat Optimization

Constraint Report
Country Report

Sector Report
Efficient Frontier Report

Figure 6.6 The EM Applications Optimizer uses Microsoft Excel to generate system reports. This
is a typical report generated by the Optimizer. This is the main page of the report and shows links
to other reports generated by the Optimizer. The report shows a scenario in which the optimizer has
been run repeated times each time with a different number of securities allowed in the final portfolio

portfolios with the GA. These portfolios were limited to 25, 35, 50, 75, and 100
securities and were designed to track an index. The index was constructed from
500 of the largest securities in the world. For each of these numbers of secu-
rities we constructed a portfolio without sector constraints and a portfolio that
had sector constraints. We used the EM applications model from October 2000
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Action
Stock
Identifiers Name

Shares
Bought 

Shares
Bought 

Shares
Sold Price

Portfolio
Weight

Benchmark 
Weight

Active
Weight

Buy
Weight

Sell
Weight

Buy 079805 Bp Ord Usd0.25 177933 177933 0 5.62 10.00% 9.41% 0.59% 10.00% 0.00%
Buy 092528 Glaxosmithkline Ord Gbp0.25 49659 49659 0 19.2 9.53% 8.84% 0.69% 9.53% 0.00%
Buy 071921 Vodafone Group Ord Usd0.10 557884 557884 0 1.5 8.37% 7.54% 0.82% 8.37% 0.00%
Buy 054052 Hsbc Hldgs Ord Usd0.50(Uk Reg) 95328 95328 0 7.17 6.84% 4.96% 1.88% 6.84% 0.00%
Buy 080341 Shell Trnspt&Trdg Ord Gbp0.25(Regd) 117127 117127 0 5.1 5.97% 3.72% 2.26% 5.97% 0.00%
Buy 098952 Astrazeneca Ord Usd0.25 16147 16147 0 31.65 5.11% 4.14% 0.97% 5.11% 0.00%
Buy 075478 Royal Bk Scot Grp Ord Gbp0.25 29602 29602 0 14.98 4.43% 3.16% 1.27% 4.43% 0.00%
Buy 079087 Scot & Southern En Ord Gbp0.50 67357 67357 0 6.48 4.36% 0.41% 3.95% 4.36% 0.00%
Buy 007820 Barclays Ord Gbp1 18356 18356 0 18.71 3.43% 2.30% 1.14% 3.43% 0.00%
Buy 023740 Diageo Ord Gbx28.935185 44999 44999 0 7.145 3.22% 1.80% 1.42% 3.22% 0.00%
Buy 087628 Bg Group Ord Gbp0.10 119278 119278 0 2.6225 3.13% 0.68% 2.45% 3.13% 0.00%
Buy 305875 Hbos Ord Gbp0.25 41612 41612 0 7.34 3.05% 1.93% 1.13% 3.05% 0.00%
Buy 010812 Boc Group Ord Gbp0.25 32560 32560 0 9.375 3.05% 0.34% 2.71% 3.05% 0.00%
Buy 087061 Lloyds Tsb Group Ord Gbp0.25 46641 46641 0 6.5 3.03% 2.65% 0.38% 3.03% 0.00%
Buy 061070 Cadbury Schweppes Ord Gbp0.125 67444 67444 0 4.415 2.98% 0.67% 2.31% 2.98% 0.00%
Buy 088470 Tesco Ord Gbp0.05 113906 113906 0 2.56 2.92% 1.31% 1.60% 2.92% 0.00%
Buy 024319 Six Continents Ord Gbp0.28 43442 43442 0 6.2 2.69% 0.40% 2.29% 2.69% 0.00%
Buy 014084 British Telecom Ord Gbp0.25 77298 77298 0 3.4 2.63% 2.15% 0.48% 2.63% 0.00%
Buy 071887 Rio Tinto Ord Gbp0.10 24259 24259 0 10.7 2.60% 0.84% 1.75% 2.60% 0.00%
Buy 088869 3I Group Ord Gbp0.50 35567 35567 0 7 2.49% 0.31% 2.18% 2.49% 0.00%
Buy 056540 Marks & Spencer Ord Gbp0.25 82985 82985 0 2.55 2.12% 0.54% 1.57% 2.12% 0.00%
Buy 070995 Prudential Ord Gbp0.05 29887 29887 0 7 2.09% 1.03% 1.07% 2.09% 0.00%
Buy 067760 Pearson Ord Gbp0.25 28138 28138 0 7.29 2.05% 0.43% 1.62% 2.05% 0.00%
Buy 023691 Reuters Group Ord Gbp0.25 33939 33939 0 5.99 2.03% 0.63% 1.40% 2.03% 0.00%
Buy 097404 Wpp Group Ord Gbp0.10 37778 37778 0 4.95 1.87% 0.42% 1.45% 1.87% 0.00%

EM Applications Trade Report
Optimization_FTSE_Tracker

Figure 6.7 A sample optimizer trade report showing the portfolio of 25 securities to track the
FTSE All Share produced by the GA. The weight in each security was capped at 10%. The shares
bought and sold are based on a nominal portfolio value of £10m. As you would expect when setting
out to construct such a portfolio, the final tracking portfolio is mostly constructed from high-cap
securities that constitute a significant portion of the benchmark

to construct these portfolios. We then constructed 200 random portfolios by
selecting a random subset of securities and optimizing the portfolio against
the benchmark.

We proceeded to test the performance of the portfolios by tracking the portfo-
lios against the benchmark for the following year. In all cases, the out-of-sample
performance of the GA portfolios was significantly better than any of the ran-
dom baskets of securities. Table 6.3 shows the performance of the GA solutions
compared to the performance of the random baskets for the year following
(October 2000 to October 2001).

Even out of sample, the portfolios constructed by the GAs are still the best
performers when measured by the realized tracking error – the standard devi-
ation of the portfolio’s returns relative to the benchmark. The GAs have the
lowest predicted and realized tracking error given the number of securities
in the final portfolio demonstrating conclusively that the GA portfolios are
good choices.
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1 2 3 4 5
Sector Benchmark 25 Stock Tracker 50 Stock Tracker 75 Stock Tracker 100 Stock Tracker 125 Stock Tracker

Commercial Services 3.2% 3.9% 3.1% 3.5% 3.1% 3.0%
Consumer Durables 0.5% 0.0% 0.0% 0.0% 0.0% 0.4%
Consumer Non-Durables 6.6% 6.2% 6.1% 5.9% 6.5% 6.6%
Consumer Services 4.7% 4.7% 5.0% 5.6% 5.5% 5.4%
Electronic Technology 1.7% 0.0% 1.8% 0.8% 1.0% 1.2%
Energy Minerals 13.4% 16.0% 13.7% 14.2% 13.8% 13.6%
Finance 24.1% 22.9% 26.7% 25.4% 23.0% 24.0%
Health Services 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Health Technology 14.3% 14.6% 14.7% 14.1% 14.5% 14.4%
Industrial Services 1.3% 3.1% 1.2% 0.9% 0.8% 0.7%
Non-Energy Minerals 3.2% 2.6% 3.2% 2.7% 3.5% 3.2%
Process Industries 1.1% 3.1% 1.0% 1.4% 1.0% 1.2%
Producer Manufacturing 1.3% 0.0% 0.0% 1.0% 0.3% 0.5%
Retail Trade 5.3% 5.0% 3.6% 4.3% 5.5% 4.8%
Technology Services 1.0% 0.0% 0.5% 0.4% 0.7% 0.8%
Transportation 1.5% 0.0% 0.0% 1.1% 1.1% 1.3%
Utilities 14.5% 15.4% 13.7% 15.2% 14.4% 14.5%

Portfolio
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Figure 6.8 Sector weights of various portfolios built by the GA. Each portfolio is constrained by
the number of securities in the final portfolio. Portfolios are constructed with 25, 50, 75, 100, and
125 securities. This graph shows that even with very few securities used in the construction of the
final portfolio, the final sector weights are still very close to the index
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1 2 3 4 5
Category Benchmark 25 Stock Tracker 50 Stock Tracker 75 Stock Tracker 100 Stock Tracker 125 Stock Tracker

Very Large 18.3% 19.5% 18.5% 18.6% 18.3% 18.3%
Large 20.4% 26.3% 21.2% 20.8% 20.4% 20.3%
Medium 20.8% 24.8% 22.9% 21.7% 20.6% 20.5%
Small 20.4% 29.4% 23.0% 24.9% 23.2% 22.1%
Very Small 20.2% 0.0% 14.4% 14.1% 17.5% 18.8%

Portfolio
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Figure 6.9 The distribution of weights by size categories built by the GA. For this graph, securities
were categorized into five groups – Very Large, Large, Medium, Small, and Very Small. Each of these
groups was designed to contain approx. 20% of the benchmark. The graph shows that most of the
portfolios match the size profile of the benchmark very closely. The only significant difference is for
the 25 stock portfolio which has no securities in the Very Small category (i.e. securities that make
up the bottom 20% of the index)

Table 6.3 also shows the ratio of realized to predicted tracking error for
both the GA portfolios and the random portfolios. All categories of portfolio
had a higher volatility in the year following the construction of the model.
This increase seems to be explained by the fact that the year following the
model was a period of increasing volatility. For example, the SP 500 increased
volatility in the following year. Over the model period, the SP 500 had a
volatility of approx. 19%. This volatility increased to 23% in the year used for
the out-of-sample trial (i.e. approx. a 20% increase in volatility over the model
sample period and in line with the ratios in the table).
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Table 6.3 Comparison of performance of GA optimized portfolios with random baskets
of securities. It shows that the GA’s are still among the best possible portfolios when projected out of
sample. The realized tracking error is calculated using the standard deviation of the relative weekly
returns of the portfolio and the benchmark for the next year. Although all of the tracking errors are
higher for the GA portfolios, it is worth noting that the returns data included 11 September 2001
and the WTC tragedy. Data from this period increased volatility for all portfolios

Number Genetic algorithm portfolios Optimal portfolios of random subsets
of
stocks Predicted Realized Over/ Ratio of Lowest Lowest Average ratio of

tracking tracking under realized to predicted realized predicted/realized
error error performance predicted tracking tracking tracking error

tracking error error error

25 4.10% 4.59% 0.87% 1.12 5.72% 5.19% 1.13
35 3.09% 3.84% 0.54% 1.24 5.02% 4.76% 1.15
50 2.39% 3.06% 1.06% 1.28 4.08% 3.87% 1.17
75 1.74% 2.54% −0.45% 1.46 3.35% 3.21% 1.22

100 1.33% 2.06% −0.12% 1.54 2.91% 2.69% 1.23
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Figure 6.10 The performance of 50-stock GA solutions to track the index. The lighter lines show
the performance of the benchmark and the 95% confidence interval around the benchmark. The
dark line shows the performance of the portfolio. The portfolio never exceeds the 95% confidence
interval and ends up with a performance indistinguishable from the benchmark. The 50-stock GA
solution had a predicted tracking error of 2.39%. The realized standard deviation of returns was
3.09%
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Table 6.4 The performance of sector constrained portfolios out of sam-
ple. These portfolios are constrained to a limited number of securities in
the final portfolio and to have a sector weight within 2% of the benchmark

Number of GA portfolio with sector constraints
stocks

Predicted Realized Ratio of
tracking error tracking error realized to

predicted
tracking error

25 4.29% 4.43% 1.03
35 3.29% 3.92% 1.19
50 2.52% 2.94% 1.16
75 1.81% 2.39% 1.32

100 1.34% 1.92% 1.44

Table 6.3 also shows that the ratio of realized to predicted tracking error
increased as the number of stocks in the final portfolio increased. We noticed that
the portfolios generated by the GA were closely matched on a country weight
basis, but were not so closely matched on a sector weight basis. We believed that
the period in question has seen a rise in the importance of sector volatility on
world markets, and we decided to further investigate by adding sector constraints
to the portfolio construction process. We then tested the performance of these
portfolios out of sample. We generated portfolios with the same number of
securities using the GA, but this time we constrained the sector weights of
the final portfolio to be within 2% of the benchmark. The results in Table 6.4
show that the sector constraints improve the performance of the portfolio out
of sample. In most cases, the performance of the GA portfolio with sector
constraints actually has a better tracking error than the performance of the
portfolio created without sector constraints.

6.5 CONCLUSIONS

Genetic Algorithms yield promising solutions to the practical optimization prob-
lems solved by fund managers routinely. However, there are a few areas where
they could be improved. First, the GA needs to improve its feasibility detec-
tion. The current version of the optimizer uses an identical value of the utility
function for all infeasible solutions. This makes feasibility detection difficult
for all situations in which the set of feasible solutions is small. In this sce-
nario, the GA does not distinguish between a solution that is close to feasibility
and a solution that is very distant from feasibility. Second, the GA could be
designed with improved rules for picking and discarding securities. Finally, a
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full comparison between methods such as these and a branch-and-bound style
solution would be very instructive.

In spite of this, GAs offer a feasible way of constructing portfolios with a
limited number of securities and/or trades efficiently. GAs are flexible enough
to be able to solve various practical modifications of the simple cardinality
constraint. For example, the optimizer has been adapted to allow a constraint
on the number of trades as well as the number of securities. The optimizer has
also been adapted to allow the user to force or deny inclusion to a particular
security. GAs can be used on modern PCs to generate reasonable solutions in
a fairly short time (two to three minutes).
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Chapter 7

Near-uniformly distributed, stochastically
generated portfolios

RICHARD DAWSON AND RICHARD YOUNG

ABSTRACT

In modern science, experimental results without a control carry little
weight. In the science of portfolio construction and financial modelling
no such control currently exists. Thus it is very difficult to show
conclusively the effect that a model, strategy, or individual (manager)
has on the investment process.

A set of uniformly distributed, stochastically generated, portfolios
that by construction incorporate no investment strategy, bias or skill
form an effective control set for any portfolio measurement metric.
This allows the true value of a strategy or model to be identified.
They also provide a mechanism to differentiate between effects due
to ‘market conditions’ and effects due to either the management of
a portfolio, or the constraints the management is obliged to work
within.

Presented here is a mechanism to generate a set of portfolios,
with a near-uniform distribution over an n-dimensional search space,
restricted by k linear constraints.

All algorithms discussed here have been implemented in C++ as
part of Vestek-Quantec’s (a Thomson Financial Company) Policy
Guidelines Simulator (PGS). All results and simulations have been
taken from PGS. Computing resource used was an AMD Athlon
 1000 Mhz with 256 Mb of memory, or equivalent.
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7.1 INTRODUCTION – A TRACTABLE N-DIMENSIONAL
EXPERIMENTAL CONTROL

In modern science experimental results without a control carry little weight. In
the science of portfolio construction and financial modelling no such control
currently exists. It is therefore very difficult to show conclusively the effect that
a model, strategy, or indeed individual has on the real investment process. It is
possible to do a comparison against other live portfolios but these will either
have unknown construction methodologies or will have some other (possibly
unknown) biases (Allen and Tan, 1998), Section 7.2 provides a review of exist-
ing research in persistence of performance, and also covers survivorship bias;
Brown and Goetzmann (1995); Grinblatt and Titman (1992)).

The ideal solution would be to generate a set of portfolios, constrained in the
same way as the portfolio(s) built with the theory or model under investigation,
only without the information produced by the theory. It would then be possible
to compare the distributions of the portfolio characteristics with and without
the added information from the new theory, giving strong statistical evidence
of the effects of the new information.

This set of Monte Carlo portfolios needs to be uniformly distributed over
the solution space1 so as not to introduce any biases. This is most easily done
by first fully identifying the boundary of the solution space. Unfortunately the
complexity of the shape of solution space grows geometrically with increasing
number of assets (dimensions) and constraints.

To be able to generate a set of portfolios the solution space must be bounded
in all dimensions and we impose the constraint that we must be fully invested,
i.e. all portfolios have 100% total holding. So the number of constraints, k, has
a lower bound of n + 1. This is the simplest case. Here there are n + 1 vertices,
forming what might be described as a hyper-tetrahedron, more formally known
as a simplex (Anderson, 19XX).

In reality all investment is done under many constraints. Not just those
imposed by the owners of the money in the fund, and regulatory bodies, but
also by the market (e.g. liquidity). In addition, an investment strategy is essen-
tially a set of constraints that are carefully constructed to (hopefully) remove,
in aggregate, poor performing regions of the solution space.

We must build a set of uniformly distributed points in an n dimensional space,
bounded by k (orthogonal or non-orthogonal) linear constraints, without explic-
itly calculating the boundaries of the solution space. This is a well established
academic problem in mathematical programming (Kai-Tai Fang, Guo-Liang
Tain and Min-Yu Xie, 1991; Crosier, 1986; May and Smith, 1982; Rubin, 1984).

The central simplification used is not to map the solution space by identifying
the vertices, and mapping how they are connected together with edges and how
the edges are connected at the vertices. We do however build a list of the
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hyper-planes that the constraints define, these hyper-planes bound the solution
space. Those planes that connect to each other are recorded, exactly where and
how is not. These hyper-planes do fully define the solution space but this is
not an explicit mapping of the solution space as no attempt is made to record
the parameters of the equations that define the intersections of these planes.
Hence the overall shape of the solution space remains unknown through out
the procedure.

By not attempting to map the solution space explicitly we can only achieve
an approximation to the ideal uniform distribution but it is now tractable in
polynomial time.

Two algorithms are used in conjunction. First is an algorithm using dynamic
constraints to build a portfolio that is in the solution space. The limitations and
distortions created by this mechanism are identified. However it is efficient and
fast and with appropriate optimizations will execute in O(kcn), where kc is the
number of child constraints (see Section 7.3, Dynamic Constraints).

A further algorithm is then presented that modifies the distributions produced
by the dynamic constraints algorithm, reducing the majority of the distortions.

7.1.1 Order of calculation for determination of membership of solution

The order of this computation for a given point is very dependent on the constraints
and varies between O(k), where there are no general linear constraints only simple
bounding constraints, tending to O(nk) as the number of general linear (multiple
asset) constraints dominates over the simple bounding constraints. However in
either case the problem is tractable, and will not be addressed further here.

7.1.2 Other assumptions

No short holdings are allowed, and a portfolio must be fully invested so the widest
holdings are 0–100%. Modifications to both algorithms that deal with shorting
have been implemented by the authors, but are not detailed here for simplicity.

All the assets in the universe must be held in all portfolios. This restriction is
only necessary for the local density algorithm not for the mapping of the solution
space, or the actual generation of a portfolio in the solution space. It is a severe
assumption. Practical implementations will need to formulate methodologies to
relax this assumption.

7.2 APPLICATIONS

7.2.1 Constraint evaluation

Many investment companies impose in-house constraints on their managers,
with the intention of controlling risk, or improving returns. The effects on the



164 Advances in Portfolio Construction and Implementation

distribution of possible portfolios of different aspects of these constraints can
be explored, along with the distribution of characteristics of those ‘available’
portfolios. This is particularly useful in identifying the range of tracking errors
that is available to the fund managers.

For example, if a single set of portfolios is created and randomly rebalanced
each month, the average turnover required simply to keep within the constraints
can also be calculated, revealing the amount of freedom the fund manager
actually has to stock pick.

7.2.2 Returns model evaluation

In evaluating an alpha model it is usual to look at the performance of only a
handful of portfolios, often only one. Typically this portfolio will be built to
express the full power of the model, i.e. containing the highest alpha stocks,
perhaps after adjusting for risk. Unfortunately this does not reflect the reality
of running a live portfolio, its market driven limits of liquidity, cash flows,
changing alphas etc. It is possible to run paper portfolio to reflect this reality
but it is both time consuming and difficult.

A broad and statistically powerful view of the model’s performance can be
achieved by comparing the characteristics of two sets of random portfolios. The
first without the data from the alpha model, using only the standard in-house
constraints, the second with the additional constraint that each portfolio must
achieve above a certain aggregate alpha (as defined by the model under test)
value. With thousands of portfolios generated for each set, standard statistical
analysis could now be applied.

7.2.3 Manager performance

Currently the standard way of measuring the performance of a fund manager
is by comparison with his/her peers. This is flawed for a number of reasons,
but primarily because the peers are not managing under the same conditions
nor with the same information. A more accurate measure would be against
known no-skill portfolios that have been built and managed under the same
limitations and constraints. One need only randomly rebalance a set of Monte
Carlo portfolio to keep them within the constraints, to have such a set of no-
skill portfolios. One would clearly expect a manager to beat the mean return of
this set of portfolios.

7.2.4 Portfolio attribute benchmarking

An example will best explain the general nature of attribute benchmarking. A
portfolio manager is given a fund to manage, with the client setting a range
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of limits, these limits are not to be broken, they include tracking error and
turnover. After a year the fund manager has breached these limits five times
and the fund is removed from their control. Is this justified? This question is
currently answered subjectively. However if a set of random portfolios is gener-
ated and randomly rebalanced each month to stay within the constraints we can
use the average breach count of these portfolios as a statistically meaningful
benchmark. If these portfolios have on average only breached three times then
the fund owner would seemed to be justified. If however the average breach
count of these portfolios was seven, then the manager would have a strong
defence, in that market conditions lead to unavoidable breaches.

There are many such measures used in portfolio management that currently
have no benchmark, or only use a single portfolio (e.g. S&P500) as the bench-
mark. Using the market index is often both statistically useless, and comparably
meaningless, as the S&P500 does not pay transaction costs, is not bound by
in-house constraints, alpha models, limitations on holdings etc. that many funds
are subject to.

7.3 DYNAMIC CONSTRAINTS

7.3.1 Overview

The problem is solved in percentage holding space. Cash is considered an asset,
so the holdings in a portfolio must sum to 100%.

We start with an empty proto-portfolio, and a set of dynamic constraints. The
dynamic constraints define the float for each asset and each constraint.

We randomly select an asset with a non-zero float, and then a random holding
increase within the available float.

The process of asset selection and addition to the portfolio continues until all
float on all assets in all constraints is used.

7.3.2 Definitions
Problem constraints: The k constraints specified at the problem out set.
Dynamic constraints: The kc set of constraints that fully define the

remaining solution space available to the
proto-portfolio. They map the intersections
between the problem constraints, and ultimately,
give the Float available for each asset.

Float: The amount an assets holding in the proto-portfolio
may be increased by. It is the maximum distance
between the solution space boundaries in this
dimension, for this set of problem constraints,
and given the current proto-portfolio.
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Proto-portfolio: A portfolio with less than 100% holding,
i.e. incomplete.

Constraint minimum holding requirement:
The smallest weight that this constraint must hold

in order to be satisfied.

7.3.3 Mapping the solution space

In principle it is possible to entirely define the boundaries of the solution space
for any set of linear constraints. In practice, this rapidly becomes an unfeasible
task as the number of assets rises. Kai-Ta et al. (1991) presents a mechanism
to transform the solution space and calculates an exact solution. Rubin (1994)
also presents a mechanism for an exact solution, but both of these techniques
rapidly become intractable as the number of dimensions grows. The number of
asset combinations, for a problem with n assets is:

n∑
k=1

n!

k!(n − k)!
(7.1)

so for a 100 asset problem, there are of the order of 1 × 1030 different asset
combinations. Mapping a space of this complexity is beyond current computer
architecture.

Fortunately, for finance problems in the real world, the solution space is much
simpler than this. Most asset combinations are meaningless, of no interest to
fund managers. It is also possible to artificially reduce the number of assets
by combining them into asset patterns, reducing the number of combinations
still further.

Additionally, for the Monte Carlo mechanism described in this paper, there
is no need to completely calculate the solution space at every stage of portfolio
generation. Only those parts of the space that are relevant at the time need be
fully mapped.

7.3.4 Asset patterns – reducing the size of the problem

For a system of simple linear holding constraints, it is possible to calculate the
boundaries of the entire solution space, even for problems with a large number
(>1000) of assets. This is because different assets can be grouped into sets in
which they are indistinguishable from the other assets in that set. No esoteric
mechanism is required to determine what these sets are; they are readily defined
by Quantec’s Asset Pattern.
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This is an asset classification, consisting of three hierarchies: domicile coun-
try, asset class and currency. It is simple and intuitive classification, useful to
fund managers as well as algorithmic engineers!

Assets with the same pattern (for instance UK Banking stocks quoted in UK
£s) are indistinguishable from each other. This rationalization of the available
asset combinations dramatically reduces the complexity of the solution space.
To calculate the solution space for a FTSE100 simulation, 150 linear constraints
completely describe the solution space when the assets are grouped by Quantec’s
asset classification scheme (100 single asset constraints, and 50 pattern (or asset
set) constraints). This compares favourably with the theoretical limit.

Note that every problem has at least one constraint in common with every other
problem – the portfolio constraint, or 100% holding constraint. This requires
every portfolio to be fully populated, to have a total asset holding weight of
100%, and reduces the dimensionality of the solution space by one.

7.3.5 The constraint hierarchy

At this point, we have constructed a consistent system of linear inequalities.
While this does completely describe the problem, on its own this information is
not readily useful in the generation of portfolios. It is convenient to gather more
information about the structure of the solution space; specifically how the linear
constraints interact with each other. Generally speaking, the more information
that we determine about the solution space in its initial state (all assets in the
proto-portfolio having a holding weight of zero), the more efficient the later
portfolio generation becomes.

A useful arrangement is to form a hierarchy, relating all the linear constraints
from the simple asset holding constraints at the bottom, to the 100% portfolio
holding constraint at the top. The key to building this hierarchy is to define
the relationship between constraints in terms of the assets that make up those
constraints.

Set theory is extremely useful for performing this sort of analysis and turns
out to provide all the tools necessary to solve all problems associated with linear
constraints. To avoid confusion however, the terminology used in the rest of
this paper will be that of a hierarchy – a parent is a superset, a child is a subset.

7.3.6 Monte Carlo solutions

It is important to remember that this is not an optimization problem. Any point
in the solution space is a good portfolio. Ideally, the algorithm will produce an
even distribution of portfolios across the solution space, but in practice this is
difficult to achieve without some form of post processing.
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The portfolios are built by randomly selecting a single dimension (one asset)
from the entire solution space, and determining the current limits on that dimen-
sion. The weight of that asset is increased in line with these limits, and this
process is then repeated until all the constraints are satisfied. If these limits
have been determined correctly, then each weight increase will move closer
to satisfying one or more constraints, and will not violate any of the other
constraints.

It transpires that these limits are potentially influenced by every constraint
in the system. Those constraints that contain the asset in question apply their
current maximum holding limits. Those constraints that do not contain the asset
in question, restrict on the basis of their minimum holding requirements.

With judicious use of the hierarchy, many optimizations are possible that can
substantially reduce the number of limiting constraints that need to be consid-
ered. However, calculating the current maximum and minimum holding limits
of a constraint turns out not to be a trivial process. Determining a constraint’s
minimum holding requirement is a particularly interesting problem.

7.3.7 Pattern constraints

Determining a constraint’s minimum holding requirement at a particular time
in a Monte Carlo simulation is an important part of determining the shape of
the solution space at that time. Dynamically recalculating the entire solution
space every time an asset is added to the current Monte Carlo proto-portfolio
is an arduous task however, made all the more complicated by the inevitable
presence of pattern constraints that have some assets in common with other
pattern constraints.

Changes in the weights of these shared assets can have subtle effects on the
shape of the solution spaces as it changes dynamically. Calculating the con-
tribution of these constraints to the overall solution space is mainly a matter
of determining the pattern’s minimum required holding weight. Several con-
cepts need to be introduced here to fully understand how the linear holding
constraints work:

Minimum child holding
Since the constraint hierarchy has been constructed in terms of the assets that
each constraint affects, parent constraints will always constrain more assets
than their children. This implies that, once shorting has been accounted for,
all parent constraints have a greater or equal minimum and maximum holding
requirement than their children.

However, the parent’s minimum holding requirement is not independent of
its children. Once an asset has been added to the proto-portfolio, new limits are
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calculated for all constraints and changes in child weights and limits can affect
parent limits in sometimes complex ways.

A constraint’s contribution to the problem is defined in terms of its mini-
mum holding requirement. In fact there are three quantities that influence this
minimum dynamic limit:

• The constraint’s minimum holding limit. This is always the dominant
quantity in the initial, unweighted solution space.

• The constraint’s current holding weight.
• The constraint’s minimum child contribution. The following example will

explain what is meant by this:

Consider three constraints: a parent constraint with two child constraints, A
and B. They have the following holding limits:

Parent constraint 20% –60%
Child A 5% –30%
Child B 10% –20%

First of all, consider the case where A and B do not share any assets (Figure 7.1).
How does increasing the weights of assets in the child constraints affect the

minimum holding requirement of the parent?
If A has a weight of 12% and B 0%, then the parent’s minimum holding

requirement now becomes 22%, since B still requires at least another 10%.
A parent’s minimum holding requirement due to its children is referred as the

minimum child contribution and is the third quantity used to assess a constraint’s
contribution to the current problem. Whichever is the greater of these three

Parent 20%–60%

B
10%−50%

A
5%−30%

Figure 7.1 Parent–child constraints, no intersections
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determines the constraint’s contribution.

Minimum dynamic limit = MAX
(∑

Child contribution,

∑
Asset weights, initial holding limit

)
(7.2)

Constraint intersections – generation of implied constraints
Intersections between child constraints complicate the calculation of a parent’s
minimum holding limit and the above equation is no longer valid. Consider the
case where A and B do have assets in common.

Single intersection
Any changes in the weight of the assets in the intersection A ∩ B affect the
limits of both child A and B and hence the parent’s child minimum.

If A has a weight of 18% and B 8%, and 3% of this is in the intersection
what is the minimum contribution of the parent to the problem?

A’s unique contribution is 18–3 = 15%;
B’s unique contribution is 10–3 = 7%;
B’s minimum holding (10) is greater than its weight (8), so use this in the

calculation above. The intersection contribution is 3%.
So the parent’s contribution is 15 + 7 + 3 = 25%, which in this case satisfies

its minimum.

Parent contribution =
∑

Intersection contribution

+
∑

Unique child contribution (7.3)

Multiple intersections
Multiple intersections are exceedingly common and complicate matters only
slightly.

Parent 20%−60%

B
10%−20%

A
5%−30%

Figure 7.2 Parent–child constraints, single intersections
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Consider a parent P, with three children, A, B and C.
In this case, there are up to four intersections possible:

A ∩ B, A ∩ C, B ∩ C and A ∩ B ∩ C.

Remember that the key to determining the current shape of the solution space
is to find the parent constraint’s minimum required holding value.

This implies that the intersection with the most number of assets must be
dealt with first, reducing the minima of as many children as possible.

This does not change the previous sum, it merely imposes an order in which
it must be done.

7.3.8 Generating a Monte Carlo portfolio

Having mapped the unweighted solution space, we are now able to generate
portfolios. There are a number of ways in which this could be done, but the
particular method described below takes advantage of the information that has
been gathered about the empty solution space.

Essentially, assets are added one at a time into the proto-portfolio. Every
time an asset weight is changed, the solution space is recalculated. Clearly,
each iteration of this process shrinks the solution space until, when the port-
folio constraint (100% holding) is finally met, the available space has shrunk
to nothing. This ‘dynamic constraint’ mechanism proves to be efficient and
amenable to optimizations.

Parent 20%−60%

C
5%−10%

A
5%−30%

B
10%−20%

Figure 7.3 Parent–child constraints, multiple intersections
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7.3.9 Portfolio generation with the dynamic constraints algorithm

Each constraint in the problem is considered in turn, starting with those at the
bottom of the constraint hierarchy. Although the algorithm will still produce
results no matter what order the constraints are satisfied in (and it is possible
just to satisfy the portfolio constraint, all other constraints being met during
this process), this tends to produce some bias when there are minimum holding
constraints applied to single assets.

The method described below constructs a portfolio by satisfying minimum
constraints, starting all assets with a weight of zero and increasing their weights.
Other methods, such as giving all assets 100% weighting and then satisfying
all the maximum constraints by reducing asset weightings are equally valid,
although suffer from different problems.

1) Select the all the single asset constraints, and randomize their order.
2) Step through this randomized list of dynamic constraints and add each

assets minimum holding to the proto-portfolio. (If the total holding in the
proto-portfolio is >100% the problem constraints are infeasible.) Discard
the list.

3) Select a dynamic constraint.
4) From the constraint in question, an asset is selected. The float, or amount

by which the asset’s weight can be increased, is determined, and a ran-
dom weighting increase assigned, up to this float. Note that the float
calculation ensures that no maximum limits are ever breached.

5) If the weight of the assets that make up that constraint is not greater
than the constraint minimum, go to 4). Note that an asset may have its
weight increased more than once.

6) Repeat from 3) until all constraints are satisfied.

When all have been satisfied, the final Monte Carlo portfolio consists of those
assets with a non zero holding weight.

7.3.10 Number of holdings in a Monte Carlo portfolio

The latter half of this chapter concerns the theoretical distribution of portfolios
across the solution space. The definition of a uniform distribution with portfolios
of different sizes is unclear as they have different dimensionality, so the analysis
is restricted to considering the distribution of portfolios with the same number
of assets.

The only influences on the portfolio size in the dynamic constraints algorithm
are the asset holding limits, with the average portfolio size clearly being related
to the average asset weighting. When a particular portfolio size is desirable,
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some post processing of the fully weighted portfolio must be performed. One
way of doing this is as follows:

If the portfolio is undersized, select an asset at random and find another asset
that is affected by the same constraints. This asset should not be in the portfolio
already. Assign a random portion of the first asset’s weight to this new asset.
Repeat this process until the portfolio contains the desired number of assets.

If the portfolio is oversized, select two assets in the portfolio that are affected
by the same constraints. Reduce one of these assets’ weight to zero and increase
the other asset’s weight according. The asset with no weight is discarded from
the portfolio. Repeat this process until the portfolio contains the desired number
of assets.

7.4 RESULTS FROM THE DYNAMIC CONSTRAINTS ALGORITHM

Calculating the expected distribution of holding sizes of an assets, given a
uniform distribution of portfolios in the solution space is surprisingly difficult,
even for simple cases. See Appendices 2 and 3.

Figure 7.4 shows the results for three assets as they are easily visualized.
Further results are shown combined with just the dynamic constraints algorithm
later without distorting the solution space.

7.4.1 Three asset results

As the solution space with three assets and the minimal constraints is a 2D
triangle, we can show the full solution space and all the portfolios plotted
within it.
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The three dimensions (x, y, z) have been mapped to x∗ and y∗

x∗ = y − cos(60◦
)(x − z)

x∗ = sin(60o)(x − z)

The boundary preferring nature of the dynamic constraints algorithm can
be easily seen with over population at the very small holding level and the
very large.

An alternative way of viewing this is to look at the distribution of holdings in
a single asset across all portfolios. See Appendices 2 and 3 for theoretical dis-
tribution and ‘Results of the Dynamic Constraints with Local Density Control’
for plot of the three asset dynamic constraints results.

7.5 PROBLEMS AND LIMITATIONS WITH DYNAMIC CONSTRAINTS
ALGORITHM

As the proto-portfolio grows the amount left to add reduces, approaching zero
asymptotically. This creates the tendency to over populate with very small
holdings. Applying a cut off of say 10 basis points, as the smallest allowable
holding in any one asset can reduce this effect. As the number of assets in the
problem increases this limit must fall so as not to impose an artificial minimum
holding limit on an asset that has a meaningful impact on the distribution of
any portfolio metric.

Equally where the initial float for some or all the assets is very wide there is
a tendency to over populate with large holdings. This is because the first asset
to be added to the proto-portfolio will have a very large allowable range, in the
extreme 0–100%, and its weight is a uniform distribution between these limits.
So that there will be an over abundance of portfolios with a few large holdings
and many small holdings.

While there are many different ways in which the change in an asset’s weight
could be calculated, for example using a normal or exponential distribution
rather than a uniform one, and while some of these distributions will give
results that are closer to the theoretical distribution, they are highly dependant
on the parameters used to define these weighting distributions. In turn, these
parameters differ for problems of different sizes. As the rest of the algorithm is
unparameterized and it is unclear how these distribution parameters would be
determined for complex problems in which the results are not already known it
seems wise to apply a simple uniform distribution. The inaccuracies resulting
from this approach are at least understood!

All these problems have the effect of over populating the edges and especially
the corners of the solution space. These points will have a strong tendency to
be the more extreme of the portfolios in the solution space.
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It is worthy of note that in real world problems it is not normally allowable
to have very large holdings in a single asset. For portfolios of 100+ assets it
would be usual to have a maximum holding limit on each assets of 10% or less.
These real world individual holding limits significantly reduce the distortions
the raw dynamic constraints algorithm introduces.

7.6 IMPROVEMENTS TO THE DISTRIBUTION

There are many ways to improve the distribution once one has been established.
Rubin (1985) describes the effects of the most obvious (Random Walk) over
short runs of the type most likely to be used in portfolio generation. We use a
variant of random walk, which reduces the rejection of points that ‘walk’ out
of the solution space, and is tailored to the known deficiencies in the dynamic
constraints algorithm.

7.6.1 Overview

It is a necessary condition of a uniform distribution that the density of portfolios
over a smooth, continuous, convex subsection of the solution space is (broadly)
the same as that over any other sub-section of the solution space. As the size of
the sub-spaces tends towards the total space the portfolio densities in any two
such sub-spaces will tend towards each other.

It is this property that is at the heart of the mechanism that is used to detect
and correct variations in the population distribution over different regions of
the solution space.

A particular (serious) problem arises with using local population density
measurement at the boundary of the solution space. Any sub-space that extends
outside the solution space will have an artificially low density, as there are no
portfolios in the region of the sub-space that is outside the solution space. This
will lead to over population at the edge of the solution space. It is difficult to
compensate for this as the overall shape and location of the boundary of the
solution space is unknown.

A technique is used to find the boundary of the solution space locally. The
proportion of the hyper-surface of the sub-space that is outside the solution
space is then used as an approximation to hyper-volume that is outside the
solution-space. (See Boundary detection and Density correction, Section 7.6.2.)

7.6.2 Algorithm description

Definitions

Active list: The list of portfolios that have been created so far and
are deemed to be ‘correctly’ placed in the
solution space.
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Generate a new
portfolio (uses

dynamic
constraints)

Add to Nomad list

Update  failure rate

Has failure rate limit
 been reached?

Local density
too low

Reduce the
local radius and
the territory size

Failure rate too high

Local density
calculations

Reset failure
rate

No

Move and 
retest all
Nomads

Update  failure rate

Add to active list

Test for local density 
and territory breach with

compensation for
 boundary proximity

Local density
too high

Repeat until required
number of portfolios

generated

Figure 7.5 Local density control algorithm

Nomad: A portfolio that failed the local density, and/or territory
test, i.e. a portfolio not on the active list.

Failure rate: A rolling window of the past p attempts to place a
(new) portfolio onto the active list.
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LocalRadius: The radius of the hyper-sphere that defines the sub-space
for which we are calculating the population density. A
hyper-sphere is used as the shape of the sub-space.
Determining whether a point is inside the
hyper-sphere is only a matter of comparing the radius
of the hyper-sphere to the distance from the centre of
the sphere to the point.

Territory size: The minimum distance between two portfolios.

Functional block outline

Failure rate limit reached:
Test to see if the rate at which portfolios are added has

fallen below some limit. This needs to be fairly low.
The greater the inherent non-uniform distribution in
the portfolio generation algorithm the lower this needs
to be.2 This is the test for saturation at the current
local density limit.

Reduce LocalRadius and territory size:
We have reached saturation with the current level of

portfolio density, and minimum portfolio separation,
so to add more portfolios we need to increase the
allowable density.

Reset failure rate:
Now we have increased the allowable density we reset

the failure rate by deleting the existing history of
attempted portfolio additions.

Move and retest all Nomads:
Loop through each Nomad and as it does not fit in

where it is attempt to move it to where it does.
See Figure 7.5.

Generate a new portfolio:
Run the previously described dynamic constraints

algorithm to create a new random portfolio.
Local density calculations:

Calculate the density of the portfolios in a hyper-sphere
(of radius LocalRadius) around the current portfolio.

Test for local destiny, territory breach and boundary proximity correction.
Is the portfolio density around the current portfolio

lower than the current limit, even after compensating
for the hyper-volume in the sub-space that is outside
the solution space. (See Boundary detection and
Density correction, Figure 7.6.)
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Update failure rate.
Add to our rolling history of portfolio additions.

Boundary detection
A portfolio is defined as on the boundary of the solution space if any part of
its local hyper-sphere is outside the solution space. Clearly, as the local density
is allowed to increase and the radius of the hyper-sphere falls, portfolios that
were once deemed on the edge will no longer be.

Start loop: 
all Nomads

End loop

Local density
too low

Move Nomad

Local density
calculations

Local density
too high

Add to active list

Test for local density
and territory breach with

compensation for
boundary proximity

Figure 7.6 Move and re-test all Nomads
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As we do not know where the edge of the solution space is it is not possible to
look directly for its intersection with the hyper-sphere. Instead we take random
points on the surface of the hyper-sphere and test to see if they are in the
solution space. A single failure indicates this portfolio is on the edge. The more
successes we have, the more confident we can be that no part of this portfolio’s
local hyper-sphere is outside the solution space.

Density correction
We are attempting to correct for the following effect:

If a hyper-sphere has a density of p portfolios per VL (hyper-volume of
n − 1 dimensions) but some fraction fV falls outside the solution space then
the density will be under stated and should be

p

VH (1 − fV )
(7.4)

As previously stated the boundary of the solution space is not explicitly known,
and so it is not possible to directly calculate fV .

We make the following simplifying assumption:
The fraction fS of the surface of the local hyper-sphere that is outside the

solution space is the same as the fraction fV of the volume that falls outside.
This assumption is true as long as:

1) There are no sub-vertex3 in the hyper-sphere and the boundary of the
solution space passes through the centre of the sphere.

2) A single sub-vertex passes through the centre of the hyper-sphere.

As the portfolio get closer to the boundary of the solution space, and the
sub-space becomes a smaller proportion of the total space, 1) becomes more
likely and the approximation improves.

Where neither 1) nor 2) is true fS > fV as the centre of the hyper-sphere is
always on the inside of a convex shape.4 The degree to which this helps control
the over population of the boundary regions of the solution space is difficult
to quantify.

We can now use a similar procedure to the boundary proximity detection to
determine fS : for a large number of random points

fS = po

pi + po

(7.5)

where po is number of random portfolio outside the solution space and pi is
the number of random portfolios inside the solution space.
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Moving Nomads
Once a portfolio has been tested to see if it fits into the current active set of
portfolios, and has failed, the question arises what to do with it. The most naive
of answers is to throw it away and generate a new one. However the cost of
moving a portfolio is O(4n), whilst generating a new one is O(nkc) But how
do we move the portfolio without breaking the constraints?

We could use a random walk. However the dynamic constraints algorithm
is edge preferential, and hence this is the area of the solution space that will
saturate first as a result most of the Nomad portfolios will be close to the edge
of the solution space. A random walk on these portfolios will have a high
likelihood of moving them out of the solution space. Although the Nomads will
then either be removed from the solution space or moved away from an area
of high density, on average smoothing any population density variations, we
found that this was highly inefficient and becomes more so as the number of
dimensions increases.

As the boundary of the solution space is convex, and the solution space itself
is continuous, then all portfolios on a straight line drawn between two portfolios
already known to be in the solutions space will also be in the solution space.
This gives us an efficient mechanism to move a portfolio to a new position that
is guaranteed to be in the solution space. To move a portfolio we randomly
select another portfolio from the active list and make a small semi-random step
towards it. The size of the step is controlled to be evenly distributed between
0 and 100/n per cent of the distance between the two portfolios. A Nomad may
make as many steps as is required to find a space in the active set.

The tendency of Nomads to move towards the centre of the search space
is the main counter to the edge preference in the dynamic algorithm. Further
there is an (imperfect) self-correcting feature. If there is an over abundance of
portfolios that are close to the edge of the solution space, then one of these
is more likely to be selected to be moved towards. Also as the Nomad will,
more likely than not, be moving from a position that is on the boundary of
the solution space towards another, also on the boundary, the distance to move
will tend to be large (or more precisely larger than a move from a boundary
portfolio to a non-boundary). The result is that as the number of boundary
portfolios increases so does the tendency of Nomad portfolios to take a big step
away from the edge of the solution space.

7.7 RESULTS OF THE DYNAMIC CONSTRAINTS WITH LOCAL
DENSITY CONTROL

All results presented here are with all parameters of the algorithm fixed.
Improvements can be made by varying the parameters as the number of
dimensions changes.
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Figure 7.7 Assets with minimal constraints: 1000 portfolio plot dynamic constraints and local
density control
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Figure 7.8 Holding probability plot for a single asset problem

Figure 7.7 shows a three-asset problem, mapped to two dimensions, with the
local density control algorithm as described. The apparent voids and clusters
are a feature of the random weight allocation, and whist always present their
position and form changes from run to run.

These results can be presented as a ‘probability vs percentage holding in
a specified asset’ plot. See Figure 7.8 showing this plot for the data set in
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Figure 7.7, the data set presented in ‘Results from the dynamic constraints
algorithm’ (see Figure 7.4) and the expected distribution. The boundary hugging
nature of the dynamic constraints algorithm can be seen as higher than expected
probability at the low and high holding ends of the graph.

Appendix 3 explains the shape and expected holding distribution in a three
asset problem when each asset is limited to a holding between 0–50%. The
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Figure 7.9 Holding probability plot for a single asset in asset problem with 50% holding limit
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Figure 7.10 Holding probability plot for an average asset in asset problem
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Figure 7.12 Holding probability plot for a single asset in 10 asset problem

results achieved are plotted against this theoretical expectation in Figure 7.9
(the Monte Carlo set consists of 1000 portfolios). This very simple case, demon-
strates that the algorithm is at the very worst independent of the shape of the
solution shape at low dimensionality. Unfortunately constructing the expected
holdings distribution at higher (10 asset+) dimensionality is very hard, even
with simple constraints, so this test of solution space shape independence has
yet to be done at high dimensions.
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Figure 7.13 Holding probability plot for a single asset in 20 asset problem
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Figure 7.14 Holding probability plot for a single asset in 30 asset problem

When we move to higher dimensions it becomes necessary to scale the graph
such that theoretical results form a constant probability.

The local density + dynamic constraints plot in Figure 7.10 is the average
of all of the five assets. The plot in Figure 7.11 is all five assets from the
same distribution and the average, it shows no significant bias between the
assets. Although asset 2 does have a notably higher probability at low weights,
repeated runs do not show persistence. These results were built from 2400
random portfolios, taking approximately 100 seconds to calculate.

At 10 assets (Figure 7.12) note the steeply exponential nature of the x-axis
scale needed to keep the theoretical probability plot flat. Figure 7.12 shows an
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improvement over the five asset case. There are 1000 portfolios in this results
set, taking about two minutes to calculate.

As can be seen from the 20 assets case (Figure 7.13), the correction the
local density algorithm provides diminishes as the number of assets climbs.
The probability of a very small holding (under 0.3%) is twice the theoretical
(0.102). However the average error is only 0.016.

At 30 assets (Figure 7.14) the improvement from the local density algo-
rithm is limited to the very small holdings. The plot is of 1000 assets taking
approximately five minutes to calculate.

7.8 CONCLUSIONS

This paper has not attempted to make any new observations about the invest-
ment process. Rather it has provided a new tool to aid analysis of the invest-
ment process.

Monte Carlo analysis is a powerful tool used in almost every other scientific
discipline, from climate modelling to cosmology. It is not a tool that has been
readily applied to the investment process in the past, due to the perceived
complexity of the problem. However over the last few years the power of
desktop computers has risen sufficiently to make simple Monte Carlo modelling
practical and once we began analysing the Monte Carlo modelling in detail, we
found that it was not necessarily as intractable as first thought.

While the general problem of mapping a solution space for an n asset problem
is exceedingly complex when n becomes large enough to be interesting (∼30
assets for example), the problems found in portfolio construction are much
simplified, and it is possible to build near-uniform distributions.

The time to build a set of 2000 simulated portfolios for problems of fewer
than 30 assets is under 10 minutes. This is fast enough to be of practical use
in ‘what-if’ analysis, constraint set design, portfolio metric benchmarking or
Monte Carlo portfolio management.

As most real world problems will be done with no knowledge of the expected
holdings distributions, or solution space shape, the lack of manual parameter
tuning is a requirement in implementing real world systems. The algorithms
presented here either have no parameters, or the parameters used throughout all
the results are fixed, demonstrating that practical systems can be built.

7.9 FURTHER WORK

Calculating a reasonable estimate for whether a portfolio is close to the boundary
of the solution space is both computationally intensive and frequently exe-
cuted–the worst combination. An improvement here would allow both reduc-
tions in the execution time and the better estimates of the local density in the
critical boundary areas.
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The way Nomads move, both direction and distance, have much scope for
research. A record could be kept of where portfolios have been recently suc-
cessfully added. A Nomad could be moved close to this point, on the grounds
that it had a low enough density to accommodate one portfolio, perhaps it can
take another. The pattern of migration of the Nomads currently used does not
seem to fit the problems as the dimensionality increases above 20 or so. Con-
stricting a dynamic migration algorithm that is sensitive to the varying local
densities is likely to bring better results over a wider range of dimensions and
constraint sets.

It is very difficult to find ways to see how changes in the algorithm affect
the distributions. A mechanism to ‘eye-ball’ the distributions would be very
helpful in selecting profitable areas of future developments. If the linear con-
straints were set such that the solution space was a hyper-cube, then the port-
folios could be projected down onto a 2D plot, one plot for each dimension.
Like looking into a glass box from the top, the front and the side. If all n

plots have even distributions then the distribution throughout the space must
also be uniform. More importantly any distortions would be relatively easy
to see.

The authors are not mathematicians by training, and much of the algo-
rithm relies on extrapolation from three- and four-dimensional cases where
the mathematics of geometric shapes is well established. Things that are sim-
ple at three dimensions seem to be absent from the mathematical literature in
n dimensions, where n is 50 to 1000. For example whilst generalized polar
co-ordinates are detailed (Muirhead, 1983), the hyper-sphere equivalent of the
volume of a cap or spherical cone is not. Much of the work and ideas con-
tained in this chapter would benefit greatly from a more rigorous and for-
mal footing.

7.10 APPENDIX 1: REVIEW OF HOLDING DISTRIBUTION IN LOW
DIMENSIONS WITH MINIMAL CONSTRAINTS

The minimal constraints, as defined in the assumptions, are all assets bounded
between 0–100% and a single general linear constraint that forces all holdings
to sum to 100%.

The combined effect of these constraints is to reduce the problem space to a
n − 1 dimensional (hyper) volume.

Figure 7.15 shows a three asset example.
The shaded triangle is the solution space defined by three assets and the

minimal constraints. It is important to note that whilst the solution space itself
is two dimensional (it is just a 2D equilateral triangle), it lies in a way that cuts
through three dimensions.
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The question we ask is: if I have three assets in a problem, with the minimal
constraints, and I have a fair sample from my solution space how many port-
folios will I have with holdings in asset ‘A’ of between 0 and 10, how many
between 11 and 20 etc.? In short, what is the asset holding distribution?

As discussed above the solution space for a three asset problem with the
default constraints is a equilateral triangle in three dimensions (Figure 7.15).

Figure 7.16 shows this solution space with a sub-set of equally distributed
random points for clarity.

We now collapse those points onto the ‘Ford’ axis, through the other two
dimensions. Figure 7.16, shows the first collapse and the arrows in Figure 7.17
the second.

The probability distribution for holding size in Ford is shown in Figure 7.18.

7.11 APPENDIX 2: PROBABILITY DISTRIBUTION OF HOLDING
WEIGHT IN MONTE CARLO PORTFOLIOS IN N DIMENSIONS
WITH MINIMAL CONSTRAINTS

This is a generalization of the three dimensional example in Appendix 1.
From Appendix 1 the total area of the search space with three assets is 1

2

√
(3).

If the minimum holding of an asset is r , then the area of the search space
containing the portfolios with a weight of that of r or more is

1
2 (1 − r)2√(3)

The probability of a portfolio having this asset with a weight of r or more is
the ratio of these two areas:

P (x > r) = (1 − r)2

We can extend this to calculate the probability of a portfolio holding being
between r1 and r2 for a specified asset:

P (r1 < x < r2) = (1 − r1)
2 − (1 − r2)

2 (7.6)

We can extend the above analysis into any number of dimensions, by noting
that area of

x > r = k(1 − r)n−1

Therefore by the argument above

P (x > r) = (1 − r)n−1 (7.7)
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And as before the probability of a holding being between two weights r1 and
r2 is

P (r1 < x < r2) = (1 − r1)
n−1 − (1 − r2)

n−1 (7.8)

7.12 APPENDIX 3: THE EFFECTS OF SIMPLE HOLDING CONSTRAINTS
ON EXPECTED DISTRIBUTION OF ASSET HOLDING WEIGHTS

This is really a disguised question, the underlying issue being how do asset
holding constraints change the shape of the solution space as it is the shape of
the solution space that dictates the distribution of asset holdings?

The addition of constraints will either remove part of the solution space, or
if that constraint is dominated, leave it unchanged. Application of number of
constraints can dramatically alter the shape of the solution space, although as
all the constraints are linear its boundary always remains convex.

An example of how dramatic a change in the expected distribution of holding
weights it is possible to achieve even in the simple case of three assets is
presented in Figure 7.19. Let us take the example in Appendix 1, and alter the
default constraints (all three assets held between 0–100%) to all three assets
held between 0–50%, a seemingly minor change.

IBM
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50%

0% 50%
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100%

100%
Disney
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Figure 7.19 Solution space, three assets, altered default constraints
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Figure 7.20 Altered probability distribution for holding size in Ford

But from Figure 7.19 we can see that the solution space is significantly
smaller (light shaded). Its projection onto two dimensions is shaded darker.
Note the number of portfolios we lose. The probability distribution this gives
us is shown in Figure 7.20.

Previously (see Appendix 1) the closer to zero holding in an asset the more
likely it became. Now, however, holdings closer to 50% are more likely, with
the distribution falling off as the holding approaches 0%.

Adding constraints to the minimal case creates holding distributions that
are surprisingly complex, particularly as the number of dimensions grows. For
example, the four assets problem with no asset held more than 50% is very
different to the three-dimension example above. It is symmetrical and there are
no linear parts to the distribution function, but four quadric curves.

7.13 APPENDIX 4: PROPERTIES OF HYPER-SOLIDS

In general, the n-content (volume) of an n-dimensional hyper-sphere is:

if n is even : (1/(n/2)!)π(n/2)rn (7.9)

if n is odd : ((2((n+1)/2))/(n!!))π((n−1)/2)rn (7.10)

Finding random points on the surface of a hyper-sphere can be done by finding
a ‘random’ solution to:

n2
1 + n2

2 . . . n2
n = R2

where R is the radius of the sphere.
The visualization and understanding of hyper-solids helps in the understand-

ing of the complexity of, say, a 40-dimension problem. The solution space of the
minimal constraints is a hyper-simplex, see Anderson ‘The Simplex – Minimal
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Higher Dimensional Structures’ for visualizations and a description of the
complexity.
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NOTES

1. The space is defined as all the combinations of weights that all the assets in the
investable universe can be held in. The solution space is all those combinations
allowed by the constraints. So in this context ‘space’ is holding (% weight) space,
and is flat. It is possible to conceive of other ‘spaces’ that are not flat that one
may wish to have a uniform distribution over e.g. tracking error.

2. If the portfolio generation algorithm was perfect, than on average the entire solu-
tion space would saturate at the same time (for any given local density). However,
as it is not we will have areas that saturate too early. Allowing a high number
of failure gives the other areas time to ‘catch up’. Whilst they are catching up
the rejection of portfolios in areas of high local density prevents these areas from
over saturating.

3. A sub-vertex can be thought of as a corner (meeting point of (hyper)surfaces of
the solution space), of any dimensionality less than the full (n − 1) required for
a true vertex.

4. This can be shown for two and three dimensions. However it is unclear what hap-
pens when the number of dimensions passes five (the hyper-volumetric maxima)
and seven (the hyper-surface maxima). (Le Lionnais, 1983).



Chapter 8

Modelling directional hedge funds–mean,
variance and correlation with tracker funds

EMMANUEL ACAR

ABSTRACT

Many hedge fund managers use some kind of systematic approach to
actively trade the markets. Modelling the returns generated by these
dynamic strategies requires allowing for market inefficiencies. The first
two moments, expected value and variance are derived analytically for
a general class of trading rules with potential forecasting ability. The
correlation coefficient between the active program and a tracker fund
is subsequently derived allowing for mean-variance allocation. The use
of theoretical formulae improves the accuracy of the parameter’s esti-
mates. Furthermore, this permits the construction of ex-ante optimal
portfolios. When the underlying market shows a positive drift and the
goal is to maximize the return-to-risk ratio on the investment, a portfo-
lio including both a tracker fund and a long/short strategy will be supe-
rior to both investments considered separately. The forecasting model
used to time the derivatives markets will have to take into account
the tracker fund it is associated to if the goal is to provide the highest
return-to-risk ratio. Finally, we provide an empirical application in the
currency markets. We show how two popular overlay strategies can
be added to a benchmark and how theoretical modelling can be used.

8.1 INTRODUCTION

Alternative investment has grown in popularity over the past few years. The
main reason being the decline in stock markets and the lack of correlation
between hedge fund returns and major indices. Still, theoretical work on hedge
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funds is at its infancy. The academic research can be roughly split into two
areas. The first category studies the historical track records generated by these
managers and attempts to replicate their performance using popular strategies.
The fact is that many hedge fund managers base their trading decisions on mod-
els. They often receive the label of ‘systematic’ managers. Therefore it is not
unreasonable to think that their returns can be replicated or at least explained
by basic market factors. These studies are informative because they provide a
better understanding of the trading process followed by hedge fund managers.
In the Futures markets, trend-following indicators are especially used. How-
ever the range of explanatory factors is much wider in other markets and the
reader is referred to Schneeweis and Spurgin (1998), Fung and Hsieh (2001),
Mitchell and Pulvino (2001) and Martin (2001) for an in-depth analysis of
hedge fund strategies. The second category of research concentrates on estab-
lishing the return distributions of dynamic strategies. Directional trading rules
are typical examples of techniques affecting the distribution of return (Acar and
Satchell, 1998). Extension of this work and its relevancy to hedge fund man-
agement has been investigated by Lundin and Satchell (2000). Generalization
to active fund management and relative returns has been recently formulated
in Hwang and Satchell (2001). Most of these studies use the assumption of no
forecasting ability to achieve analytical developments. These results are use-
ful because they provide the statistical means to build random walk tests, or
value-at-risk estimators. Our goal is here to combine both parties, that is to rec-
oncile empirical observations with analytical formulae. Modelling the returns
generated by directional strategies, especially their expected value, requires
allowing for market inefficiencies. More specifically, Section 8.2 establishes
the first two moments of the returns generated by the directional predictor
allowing for forecasting ability. Our theoretical work draws from Acar (1998)
but generalizes the findings to a much broader class of active strategies includ-
ing long/short, short only, long only and asymmetrical positioning. Section 8.3
studies the effect of combining a tracker fund with a hedge fund. Section 8.4
performs some Monte Carlo simulations to compare the efficiency of estimat-
ing mean-variance and correlation of hedge fund returns either directly or using
our formulae. Section 8.5 discusses the issue of optimal allocation when the
goal is to maximize the return-to-risk ratio of the portfolio. Finally, Section 8.6
provides an empirical application in the currency markets. We show how two
popular overlay strategies can be added to a benchmark and how theoretical
modelling can be used.

8.2 MEAN AND VARIANCE OF DIRECTIONAL STRATEGIES

Let us consider a money manager trading an underlying asset whose returns
are denoted X. To generate his position, the trader uses a forecasting technique
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to predict the sign of the forthcoming returns. The forecast F decides if the
asset is to be bought or sold. We study here the general trading process where
units in quantity a are held when the forecast is positive and units in quantity b

are hold when the forecast is negative. A rationale rule consists in buying the
asset (a ≥ 0) when the forecast is positive and selling the asset (b ≤ 0) when
the forecast is negative. However it could be that the strategy is constrained to
be long only and that a > b ≥ 0. To consider the most general case, we do not
put any restrictions on the parameters a and b and the formulae developed in
this section are also valid for any values of a and b including a < b or b = 0.
This is a significant generalization of Acar (1998) and Skouras (2001) who only
consider symmetrical long/short strategies of the form a = −b = 1. The returns
generated by the forecasting rule are denoted H . That is:

H =
{

aX if F > 0
bX if F < 0

}
(8.1)

The case F = 0 is considered of zero possibility.
The forecasting technique could be a technical indicator, an auto-regressive

predictor or an exogenous variable. Two examples in the currency markets
would be moving averages and interest rate differential (See Section 8.6 for
further details). Here, we assume that the joint distribution of the underlying
returns X and the forecast F is a bivariate normal distribution denoted by:

[
X

F

]
∼ N

([
µx

µf

]
,

[
σ 2

x ρxf σxσf

ρxf σxσf σ 2
f

])

The random walk hypothesis would imply that there cannot be any correla-
tion between the forecast and the forthcoming market returns. That is ρxf = 0.
Appendix 1 demonstrates that under the assumption that the underlying market
and the forecast follow a bivariate distribution, the directional strategy has for
first two moments:
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where � is the cumulative function of a normal distribution N (0,1).
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The variance is simply given by the relationship Var(H) = E(H 2) − (E(H))2

and the standard deviation Std(H) = √
Var(H).

Equation (8.2) may explain some of the empirical results observed by
Schneeweis and Spurgin (1998). They find that Commodity Trading Advisors,
(CTAs) returns are positively correlated to factors such as market trends and
currency movements, while hedge fund and mutual fund returns are best
explained by the return to a buy and hold strategy in the markets the fund
invests in. On the one hand, CTAs usually trade the futures markets, which
over long period of time exhibit small drift. The profit generated by active
programs has got to come therefore from the second block in Equation (8.2),
the product of the market volatility with the correlation coefficient between
forecast and future moves. On the other hand, in markets exhibiting strong
drift, the first term in Equation (8.2) is more likely to be the dominant factor.

Higher moments of the hedge fund returns also accept exact analytical formu-
lae. They are not reproduced here for length purpose but the interested reader
is referred to Kotz et al. (2000: p. 315) or Chou and Owen (1984) who develop
the explicit formulas for the cumulants of a variable of the bivariate normal
distribution when the other variable is truncated below. These values are useful
for obtaining, via the Cornish–Fisher expansion, approximation to percent-
age points of the hedge fund returns. An inspection of the cumulants (Kotz
et al., 2000, p. 315) shows that the correlation coefficient between forecast and
market significantly affects the mean of the hedge fund return, but its effect
on higher moment decreases rapidly. This effect is particularly pronounced in
Finance since the correlation coefficient is very unlikely to exceed 0.3. The
amounts of skewness and kurtosis will be mostly a function of the trading
units, the parameters a and b rather than the correlation coefficient between
forecast and market. The less symmetrical the strategy, the bigger the magni-
tude of the skewness and kurtosis coefficients. In particular, ‘polar’ strategies
(a = 1, b = 0 or a = 0, b = −1) are likely to generate returns deviating sig-
nificantly from a normal distribution simply because of the abnormally large
number of zero observations.

8.3 CORRELATION WITH TRACKER FUND

So far we have only considered systematic programs as an asset class in isola-
tion of any other investment. In practice, directional hedge funds do not purely
and simply replace traditional investments but complement them to form a fully
diversified portfolio. Indeed, an interesting approach already adopted by a few
large institutions, is to construct a portfolio including both a tracker fund and
a hedge fund. The inclusion of hedge funds in a portfolio can potentially result
in better risk-return tradeoffs due to the low correlation between hedge fund
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returns and the returns on the traditional asset classes like equities or bonds
(Fung and Hsieh, 1997). However to realize an effective allocation between a
tracker fund and a hedge fund, a crucial parameter is needed, the correlation
coefficient between the two investments. As pointed out in Schneeweis and
Spurgin (2000), it is important to realize that while hedge fund managers do
not emphasize benchmark tracking this does not mean that their entire return is
based solely on manager skill or is independent of the movement of underlying
stock, bond or currency markets. The correlation coefficient with the tracker is
clearly going to be negative for short only fund and positive for long only funds,
whereas it may be closer to zero for market neutral hedge funds. It is notori-
ously difficult to estimate the correlation coefficient between hedge funds and
benchmarks from historical returns. Previous research has identified a tendency
for hedge fund and managed futures strategies to exhibit non-constant corre-
lation with the US equity market. Schneeweis and Spurgin (1998) observed
that many market-neutral strategies exhibit higher correlation with stock and
bond benchmarks during the market declines, and lower correlation during ral-
lies. Schneeweis and Spurgin (2001) outlines a simple econometric method
of estimating changes in correlation from historical returns. Indeed, a precise
quantification of the correlation coefficient is key for use in the asset allocation
decision. A complementary approach is to establish the theoretical correlation
coefficient. This can be achieved when the hedge fund trading process is mod-
elled by Equation (8.1). We simply need to incorporate the tracker fund in our
modelling process. Here, we explicitly assume that the joint distribution of the
underlying returns X, the forecast F and the tracker fund T is a trivariate normal
distribution denoted by:


 X

F

T


 ∼ N





 µx

µf

µt


 ,




σ 2
x ρxf σxσf ρxtσxσt

ρxf σxσf σ 2
f ρf tσf σt

ρxtσxσt ρf tσf σt σ 2
t







The hedge fund returns H and the tracker fund T will not follow a bivariate normal
distribution. However for mean variance allocation purposes, it is still important
to assess the correlation coefficient between the tracker fund and the hedge fund
Corr(T ,H ) which is the only parameter missing at this stage. The basic idea is
that the covariance between the two variables can be deduced from the variance
of the portfolio including both the tracker fund and the hedge fund. Let us note
the portfolio P = T + H, δf = µf /σf the return to risk ratio of the forecast and

g[µx, σ 2
x , δf , ρxf ] = µ2

x�(δf ) + 2µxσx

ρxf√
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−δ2

f

2

)

+ σ 2
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(−ρ2
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2π
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2
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+ �(δf )
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Appendix 2 shows that:

E(P ) = µt + E(H)

E(P 2) = g


µt + aµx, σ 2

t + a2σ 2
x

+ 2aρxtσtσx, δf ,
ρf tσt + aρxf σx√

σ 2
t + a2σ 2

x + 2aρxt


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+ g


µt + bµx, σ 2

t + b2σ 2
x + 2bρxtσtσx, −δf ,

−

 ρf tσt + bρxf σx√

σ 2
t + b2σ 2

x + 2bρxt







Var(P ) = E(P 2) − (E(P ))2

and Corr(T ,H) = Var(P ) − σ 2
t − Var(H)

2σt

√
Var(H)

(8.4)

It can be shown by developing (8.4) that the correlation coefficient between
the tracker and the hedge fund will be equal to zero irrespective of the val-
ues of ρxt , ρf t , and ρxf when the following three conditions are met. Firstly,
the underlying actively traded market X has zero mean µx = 0. Secondly, the
forecast has zero mean µf = δf = 0. Lastly, the trading process is long/short
in equal quantities b = −a. This implies that we can think of combining a cash
index fund with a derivatives program trading exclusively the index futures
contracts. If the mean of the index futures contracts is zero as well as the mean
of the forecast, then the correlation coefficient between the cash index and the
short/long futures program will be zero. This intuitive result may not hold as
soon as the market drift is different from zero or the strategy is not long/short
in equal quantity (b �= −a) and/or probability (µf �= 0).

8.4 PARAMETERS ESTIMATION

The benefit of a theoretical formula to estimate the hedge fund mean, variance
and correlation with other asset classes is primarily in the improved understand-
ing of the market conditions required for out-performance. Sensitivity analysis
is rendered possible. Here we want to make a further point that by using the-
oretical formulae better estimates of mean, variance and correlation may be
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achieved. If we think of short-only hedge funds, active positioning may be
infrequent and if we only have access to the hedge funds returns we may have
very few observations. On the other hand, studying the forecasting strategy
and its relation to the underlying market may be more valuable since this is
similar to observing a distribution before truncation. Let us take the example
of a normal random walk with no drift for all the variables, the underlying
market, forecast and tracker fund. We further assume zero correlations between
all the variables:


 X

F

T


 ∼ N





 0

0
0


 ,


 1 0 0

0 1 0
0 0 1







Of course the hedge fund will have zero expected value E(H) = 0 and variance
Var(H) = 0.5(a2 + b2). An informative experimentation is to use Monte-Carlo
simulation to compare the estimates of the hedge fund moments either pro-
vided directly using the empirical observations for H or implied by the joint
distribution of [X,F ,T ]. Measurement errors will affect both methodologies but
the use of theoretical formulae may exacerbate or decrease those. Since very
few hedge funds have more than ten years’ track records of monthly returns,
series of 36, 60 and 120 observations were simulated ten thousand times for
two sets of strategies, long/short with equal quantity a = −b = 1 and short only
strategies a = 0, b = −1.

For long/short strategies (Table 8.1), the use of analytical formulae only
marginally improves the estimations of the mean and standard deviation. How-
ever the correlation coefficient between the tracker and the hedge fund converges
towards its expected value of zero much more quickly as seen by a smaller range
maximum minus minimum. For short only strategies (Table 8.2), the estima-
tions implied from the joint distribution of X, F and T are more accurate than
row observations for both the standard deviation of hedge fund returns and
its correlation with the tracker fund. However the magnitude of improvement
is reduced.

8.5 OPTIMAL ALLOCATION

Let us consider an investor holding a tracker fund and willing to add a hedge
fund to its portfolio. His resulting portfolio will be P = T + wH . The weight
w to be given to the hedge fund depends on the investor utility function. This
section considers that the investor is willing to maximize his return divided
standard deviation ratio SR(P ) = E(P )/

√
Var(P ), the optimal weight w* can

be derived for given directional strategies using the steps similar to Elton
et al. (1987). The results of the previous section can be used to establish
µh = E(H), σh = √

Var(H), and ρth = Corr(T ,H).
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Table 8.1 Long/short strategies

Observed from (H,T ) Implied from (X,F ,T )

E(H) Std(H ) Corr(T ,H ) E(H) Std(H ) Corr(T ,H )

36 months
Average 0.0027 0.9923 0.0007 0.0007 0.9972 0.0001
Standard deviation 0.1664 0.1197 0.1678 0.1339 0.1194 0.0312
Minimum −0.7072 0.5525 −0.5699 −0.5761 0.5643 −0.1636
Maximum 0.6833 1.4890 0.5807 0.4775 1.4972 0.1747

60 months

Average −0.0013 0.9956 0.0001 −0.0010 0.9984 0.0000
Standard deviation 0.1275 0.0905 0.1307 0.1030 0.0904 0.0186
Minimum −0.4794 0.5962 −0.4944 −0.4183 0.5973 −0.1205
Maximum 0.4792 1.3347 0.4421 0.3883 1.3450 0.1290

120 months

Average −0.0003 0.9987 −0.0004 −0.0006 1.0002 0.0000
Standard deviation 0.0911 0.0648 0.0910 0.0732 0.0647 0.0093
Minimum −0.3492 0.7748 −0.3506 −0.2743 0.7757 −0.0511
Maximum 0.3395 1.2595 0.3402 0.3029 1.2602 0.0486

Table 8.2 Short-only strategies

Observed from (H,T ) Implied from (X,F ,T )

E(H) Std(H ) Corr(T ,H ) E(H) Std(H ) Corr(T ,H )

36 months
Average 0.0007 0.6951 −0.0011 0.0009 0.7019 −0.0017
Standard Deviation 0.1169 0.1327 0.1692 0.1068 0.0960 0.1193
Minimum −0.3855 0.2312 −0.5991 −0.3711 0.3751 −0.4396
Maximum 0.4075 1.1755 0.5997 0.4162 1.1104 0.4271

60 months

Average −0.0004 0.6999 0.0006 −0.0001 0.7043 0.0005
Standard Deviation 0.0911 0.1018 0.1287 0.0821 0.0737 0.0914
Minimum −0.3597 0.3576 −0.4539 −0.3566 0.4586 −0.3316
Maximum 0.3403 1.0913 0.4897 0.3241 1.0041 0.3352

120 months

Average −0.0003 0.7048 −0.0005 −0.0004 0.7066 −0.0007
Standard Deviation 0.0648 0.0716 0.0918 0.0589 0.0521 0.0656
Minimum −0.3161 0.3959 −0.3215 −0.2673 0.5124 −0.2550
Maximum 0.2680 0.9683 0.3710 0.2345 0.9344 0.2441

Under the assumptions that:

(
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σh

)
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(
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σt

)
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)
ρth
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σt

)
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(
µh

σh

)
ρth

σt

σh

(8.5)
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The optimal weight may be larger than one, but since the allocation is made
to a hedge fund, this would mean increasing the leverage used by the hedge
fund manager. This is often possible given that the latter trades the deriva-
tives markets.

An interesting question is to know if an actively managed fund is prefer-
able to the combination of a tracker fund and a hedge fund or vice-versa.
Indeed, it could be claimed that an actively managed fund can always be
decomposed as the sum of a tracker fund and a hedge fund. The benefit
generated by such decomposition is that it allows the asset allocator and/or
investor to adjust the weightings between passive and active management. In
the most general case, the number of degrees of freedom to build the trad-
ing rule is too large to bring a definite conclusion. However some comparison
can be investigated analytically if we restrict ourselves to long/short strate-
gies in equal quantity a = −b = 1. Let us consider an index returns X with
positive mean µx , and standard deviation σx . We assume that there exists
a futures market, X∗ which differs from the underlying market only by the
long-term drift. We do not suppose the existence of any risk premium. That
is X∗ = X − µx . The question is which of the two portfolios produces the
highest return to risk ratio, an actively managed fund on the index itself or a
portfolio including the index and an actively managed index futures program.
Let us establish the corresponding maximum returns–to–risk ratios for both
investments.

8.5.1 Optimal long/short fund on the index itself X

Our long/short strategy is defined by:

H =
{

X if F > 0
−X if F < 0

}
where F is a forecast used to predict the index mar-

ket X.
It is worthwhile noting that in this case E(H 2) = E(X2) = µ2

x + σ 2
x and

Var(H) = µ2
x + σ 2

x − E(H)2. As a consequence, the forecast that maximizes
returns will also minimize variance1. Acar (1998) shows that such a forecast
needs to maximize ρxf and satisfies the equation

µf

σf

= µx

σxρxf

. If we

denote Hmax the returns derived by the optimal predictor, we obtain from
Equation (8.1):

E(Hmax) = µx

[
1 − 2�

(
− µx

σxρxf

)]
+ σx

√
2

π
ρxf exp

(
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µ2
x

σ 2
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xf

)

SR(Hmax) = E(Hmax)√
µ2

x + σ 2
x − E(Hmax)2
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It can be noted that SR(H)max is an only function of the return to risk ratio
δx = µx/σx and ρxf .

SR(Hmax) =
δx

[
1 − 2�

(
− δx

ρxf

)]
+

√
2

π
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π
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(
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x
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))2

Figure 8.1 plots the maximum return-to-risk ratio generated by the directional
forecast as a function of the return-to-risk ratio of the underlying market and
the correlation between the forecast and the cash index market. When there is
little correlation, the market timing ability is low and the optimal strategy is
close from Buy and Hold. However the presence of positive correlation between
forecast and the underlying market permits the directional hedge fund to exhibit
a superior return-to-risk ratio. It is worthwhile noting that the excess returns are
larger, the lower the drift in the cash market. In other words, fund managers
have an incentive to trade a zero drift market when they are evaluated in terms
of relative performance against a Buy and Hold benchmark.
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Figure 8.1 Maximum return-to-risk ratio of optimal long/short strategy



Modelling directional hedge funds 203

8.5.2 Optimal allocation between an index and the maximum return
long/short futures fund

Before investigating the general portfolio of an index fund with a managed
futures program, we consider first the case of a separate futures program. This
means that the manager seeks to maximize first the return on the futures con-
tract and does not take into consideration the fact that his trading may not be
optimal when combined to an index fund. This is very often the case in practice.
Hedge fund managers design vehicles, which have for goals to maximize risk-
adjusted returns on a stand-alone basis. No hedge fund manager will modify
their strategies as a function of the index fund they may be added to.

P = X + wH ∗ and H ∗ =
{

X∗ if F > 0
−X∗ if F < 0

}

where F is the forecast used to predict the Futures market X∗.
We have just seen that maximizing the returns on the long/short futures

fund requires maximizing the correlation between the forecast and the futures
markets (or the index itself) ρxf and satisfies the equation δf = µf /σf = 0. If
we denote H ∗

max the returns derived by the optimal predictor on the dritfless
futures markets, we obtain from Equation (8.2):

E(H ∗
max) = σx

√
2

π
ρxf and Var(H ∗

max) = σ 2
x

(
1 − 2

π
ρ2

xf

)

We also know from Section 8.3 that for long/short strategies in a driftless market
Cov(H ∗

max, X∗) = Cov(H ∗
max, X) = 0.

The second step is to allocate the optimal weight w between tracker and
hedge fund given by (8.5).

w̃ = σx

µx

√
2

π
ρxf(

1 − 2

π
ρ2

xf

)

Simple algebra provided in Appendix 3 shows that:

SR(P ) =
δ2
x + 2

π
ρ2

xf√
1 − 2

π
ρ2

xf

√
δ2
x + 2

π
ρ2

xf (1 − δ2
x)

It can be noted once more that SR(P ) is an only function of the return to
risk ratio δx and ρxf . Figure 8.2 plots the return-to-risk ratio generated by
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Figure 8.2 Maximum return-to-risk ratio of optimal portfolio including the index and the
long/short strategy maximizing returns on the futures markets

the optimal combination of the tracker and the directional forecast maximiz-
ing return on the derivatives, as a function of the return-to-risk ratio of the
underlying market and the correlation between the forecast and the forthcoming
market returns.

Figure 8.3 specifies the weight actually given to the futures fund. Small values
of the index fund tend to generate extremely large values on the derivatives
position. They are not therefore being represented. As anticipated, the bigger
the forecasting ability as measured by the correlation coefficient the bigger the
allocation to the futures fund. This effect increases as the mean of the index
fund decreases.

A close examination of the mathematical formulae would suggest that for
ρxf > 0, δx > 0, SR(P ) > SR(Hmax). The differences are the biggest when the
drift and correlation coefficient are the highest. The maximum improvement is
in the order of 0.05. This has important consequences since this suggests that
going long/short in equal quantities (but not necessarily in equal probability) in
a market with drift will be sub-optimal to combining a passive position and an
active long/short program in the driftless market.
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Figure 8.3 Optimal weight on the long/short strategy maximizing returns on the futures markets
within a portfolio including the index

8.5.3 Optimal allocation between an index and a long/short futures fund

The reader should bear in mind that the previous portfolio had been constructed
to first maximize the returns on the futures market. The derivatives program
was then given the weight maximizing the return-to-risk ratio of a portfolio also
including the cash market. This two separate steps process does not guarantee
the reach of a global maximum. A joint study of the forecasting strategy and
weight is necessary. Let us establish ratio SR(P ) = E(P )/

√
Var(P ) in its most

general form.

P = X + wH ∗ and H ∗ =
{

X∗ if F > 0
−X∗ if F < 0

}

E(P ) = µx + wE(H ∗), Var(P ) = σ 2
x + w2Var(H ∗) + 2wCov(H ∗, X)

If we note δf = µf /σf , we know using (8.2), (8.3) and (8.4) that

E(H ∗) = σx

√
2

π
ρxf exp(−0.5δ2

f ), E(H ∗2) = σ 2
x
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Figure 8.4 Maximum return-to-risk ratio of optimal portfolio including the index and a
long/short strategy as a function of the return-to-risk of the forecast when the return-to-risk ratio

of the index = 0 .1 and the correlation (forecast, index) = 0 .1

Cov(H ∗, X) = σ 2
x

(
−2δf

√
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π
ρ2

xf exp(−0.5δ2
f ) + 4(�(δf ) − 0.5)

)

The function Cov(H ∗,X) is an increasing of δf irrespective of the value of the
correlation ρxf . This is negative for δf < 0, equal to zero when δf = 0 and
positive when δf > 0. Let us only consider the case where both the index and
the futures fund have positive expected value. That is δx > 0 and ρxf > 0. The
case δf > 0 cannot lead to a maximum return to risk ratio for the all portfolio.
Having δf > 0 generates lower expected value on the futures fund than having
δf = 0 and higher correlation with the index. On the other hand, δf < 0 may
lead to a global maximum. Having δf < 0 again generates lower expected value
on the futures fund than having δf = 0.

However, this time the correlation with the index is negative and it could
be that the risk reduction compensates the decrease in returns. Injecting these
results in Equation (8.5) suggests that the optimal weight will be an only
function of δx, δf and ρxf . Figure 8.4 charts one example of SR(P ) = E(P )/√

Var(P ) as a function of δf for a given value of δx = 0.1 and ρxf = 0.1. The
maximum return-to-risk ratio of 0.19 is obtained for δf equal to approximately
−1.36. This is a considerable improvement to the previous allocation that forced
δf = 0 and could only achieve a ratio of 0.13. Therefore the benefits of combin-
ing tracker and directional hedge funds will be greater if the directional strategy
applied to the derivatives markets takes into account the tracker it is combined
to2. This raises an important issue since in practise it is unlikely that the hedge
fund manager will be willing to refine his/her strategy as a function of the asset
it is associated to.
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8.6 AN EMPIRICAL APPLICATION TO THE CURRENCY MARKETS

This Section investigates the explanatory power of our theoretical modelling.
Attention is restricted to the mean, standard deviation of the directional hedge
fund as well as its correlation with the tracker fund. For illustrative purposes, we
consider a hedge fund trading currency. The underlying markets X is therefore
the spot currency appreciation plus the carry in percentage terms over a month.
The first forecasting strategy AR1 is based on an autoregressive model of length
one. This trend-following strategy simply says buy the currency after a monthly
appreciation and sell it after a depreciation. The second strategy FRB is the
forward rate bias, formally defined as buy the currency pair if the forthcoming
monthly carry is positive and sell it if this is negative. We express the forecasting
strategy in terms of carry rather than hedged returns (the opposite) such that the
correlation between forecast and forthcoming returns is sought to be positive.
Tables 8.3 and 8.4 provide summary statistics respectively on the underlying
currency markets X and the forecasting strategies F .

Both strategies have been studied by academics and applied by currency
fund managers over the past twenty years. Strange (2001) gives an example
of how these trading rules can be applied to hedge the currency exposure of
international portfolios. In our first example, the benchmark will be a 50%
hedged bond benchmark. We can then add a long/short currency overlay on
50% of the position a = −b = 0.5, denoted 0.5 l/s in Table 8.5. The second
benchmark will be an unhedged bond benchmark, to which we add a short only
currency overlay a = 0, b = −1. Our last benchmark will be a fully hedged
bond benchmark, to which we add a long only currency overlay a = 1, b = 0.

Table 8.3 Underlying currency markets
X, monthly statistics from end May 1987 to

end July 2002

$/Euro $/Yen

Mean (X) 0.073% 0.151%
Stdev(X) 3.179% 3.657%

Table 8.4 Forecasting strategies F

$/Euro $/Yen

AR(1) FRB AR(1) FRB

Mean (F ) 0.073% 0.025% 0.151% 0.264%
Stdev(F ) 3.179% 0.242% 3.657% 0.208%
Corr(F,X) 0.139 0.128 0.019 0.191
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Table 8.5 Directional overlay program H and combination with benchmark T

Dollar bond investments from a Euro base Dollar bond investments in Yen

AR(1) FRB AR(1) FRB

0.5 l/s short long 0.5 l/s short long 0.5 l/s short long 0.5 l/s short long

Mean (H ) 0.289% 0.252% 0.325% 0.211% 0.175% 0.248% 0.243% 0.168% 0.319% 0.234% 0.159% 0.310%
From model 0.177% 0.141% 0.214% 0.165% 0.128% 0.201% 0.030% −0.045% 0.106% 0.184% 0.109% 0.260%

Stdev(H ) 1.563% 2.410% 2.032% 1.576% 2.017% 2.439% 1.814% 2.504% 2.645% 1.815% 1.094% 3.475%
From model 1.580% 2.218% 2.264% 1.581% 2.146% 2.334% 1.830% 2.543% 2.630% 1.821% 1.196% 3.448%

Mean(T ) 0.675% 0.711% 0.638% 0.675% 0.711% 0.638% 0.474% 0.550% 0.398% 0.474% 0.550% 0.398%
Stdev(T ) 1.871% 3.214% 1.315% 1.871% 3.214% 1.315% 2.139% 3.758% 1.308% 2.139% 3.758% 1.308%
Corr(T ,X) 0.723 0.915 −0.180 0.723 0.915 −0.180 0.794 0.938 −0.100 0.794 0.938 −0.100
Corr(T ,F ) 0.052 0.099 −0.095 −0.024 0.049 −0.189 0.013 0.016 −0.006 0.066 0.131 −0.158

Corr(T ,H ) −0.072 −0.685 −0.062 −0.191 −0.562 −0.088 0.050 −0.645 −0.066 0.715 −0.231 −0.040
From model 0.014 −0.643 −0.130 0.060 −0.622 −0.134 0.027 −0.652 −0.072 0.629 −0.308 −0.090

Empirically, we analyse a dollar bonds index (SSB all maturities) from two
different bases, Euro (Deutschmark prior to 1999) and Yen, over the period end
of May 1987 to July 2002. Table 8.5 indicates the monthly returns achieved by
the active overlay programs on a stand alone basis, H as well as its correlation
with the passive benchmark. Overall, the estimates implied from the joint dis-
tribution of (X,F ,T ) are close to direct observations (Table 8.5), especially the
standard deviation of the overlay program as well as the correlation with the
benchmark. Expected value derived from the model are lower than observed
in the markets suggesting that assuming multivariate normal distributions can
only be a first approximation and that further research is needed to model more
closely the expected value of directional strategies.

8.7 CONCLUSIONS

Systematic programs are popular among commodity trading advisors and hedge
fund managers. A better understanding of directional strategies can be achieved
using stochastic modelling. The first two moments, expected value and variance,
are derived analytically for a general class of trading rules. The correlation coef-
ficient between the active program and a tracker fund is subsequently derived
allowing for mean-variance allocation. When the underlying markets show a
positive drift and the goal is to maximize the return to risk ratio on the invest-
ment, a portfolio including both a tracker fund and a long/short strategy will be
superior to both investments considered separately. The forecasting model used
to time the derivatives markets will have to take into account the tracker fund
it is associated to if the goal is to provide the highest return-to-risk ratio. An
avenue for further research would include the consideration of non-symmetrical
directional strategies. Indeed in a market with positive drift, it could well be that
an asymmetrical strategy outperforms the combination of tracker fund with an
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actively managed futures contract. This will involve redefining the risk analytics
and going beyond the traditional mean-variance analysis which cannot capture
the risk of dynamic strategies such as shorting options or take profits rules.

An empirical application to the currency markets suggests that the theoretical
model explains both the standard deviation of returns generated by the active
program as well as its correlation with a tracker fund. Expected values are
underestimated in sample. These results indicate that assuming multivariate
normal distributions can only be a first approximation and that further research
is needed.

8.8 APPENDIX 1: MEAN AND VARIANCE OF DIRECTIONAL
STRATEGIES

H =
{

a X if F > 0
b X if F < 0

}

Let us note the trading signal B =
{

a if F > 0
b if F < 0

}

H = BX[
X

F

]
∼ N

([
µx

µf

]
,

[
σ 2

x ρxf σxσf

ρxf σxσf σ 2
f

])

Let us note X∗ = (X − µx)/σx and F ∗ = (F − µf )/σf the standard normalized
variables.

H = BX = B(µx + σxX
∗) = µxB + σxBX∗

E(H) = µxE(B) + σxE(BX∗)

E(H) = µx
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Using the results of Kotz et al. (2000, p. 311-2 as well as p. 315) on truncated
bivariate distributions
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E(H) = µx
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Therefore:
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8.9 APPENDIX 2: CORRELATION WITH TRACKER FUND

Here, we explicitly assume that the joint distribution of the underlying returns
X, the forecast F and the tracker fund T is a trivariate normal distribution
denoted by:


 X

F

T


 ∼ N





 µx

µf

µt


 ,




σ 2
x ρxf σxσf ρxtσxσt

ρxf σxσf σ 2
f ρf tσf σt

ρxtσxσt ρf tσf σt σ 2
t







Let us note the portfolio P = T + H .

E(P ) = µt + E(H)
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E(P 2) can be developed using the argufies which were invoked to establish
E(H 2). Indeed, we only need to remark that:

P =
{

T + aX = Y if F > 0
T + bX = Z if F < 0

}

Therefore both [Y ,F ] and [Z,F ] also follow bivariate normal distributions.

Y ∼ N(µt + aµx, σ 2
t + a2σ 2

x + 2aρtxσtσx)

Cov(Y ,F ) = Cov(T ,F ) + aCov(X,F )

Corr(Y ,F ) = ρtf σt + aρxf σx√
σ 2

t + a2σ 2
x + 2aρtxσtσx

Similarly, Z ∼ N(µt + bµx, σ 2
t + b2σ 2

x + 2bρtxσtσx) and

Corr(Z,F ) = ρtf σt + bρxf σx√
σ 2

t + b2σ 2
x + 2bρtxσtσx

We know from Appendix 1, that by choosing a value of a = 1, b = 0 in
Equation (8.3):

E(H 2)|a=1, b=0 =
∫

X

∫
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x�(δf ) + 2µxσx
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2

)
+ �(δf )

)

If we note g[µx, σ 2
x , δf , ρxf ] this function, we obtain:

E(P 2) = g


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
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−

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



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Var(P ) = E(P 2) − (E(P ))2

and Corr(T ,H) = Var(P ) − σ 2
t − Var(H)

2σt

√
Var(H)

8.10 APPENDIX 3: OPTIMAL ALLOCATION
8.10.1 Optimal allocation between an index and the maximum return

long/short futures fund

If we denote H ∗
max the returns derived by the optimal predictor on the dritfless

futures markets, we obtain from Equation (8.1):

E(H ∗
max) = σx

√
2

π
ρxf and Var(H ∗

max) = σ 2
x

(
1 − 2

π
ρ2

xf

)

We also know from Section 8.3 that for long/short strategies in a driftless market
Cov(H ∗

max, X∗) = Cov(H ∗
max, X) = 0.

The second step is to allocate the optimal weight w between tracker and
hedge fund given by (8.5).
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As a consequence:
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NOTES

1. Strictly speaking the forecast the forecast maximizing the absolute value of the
expected return will minimize variance. However if the predictor generates a loss,
it is always possible to establish the reverse strategy generating the maximum
gain.

2. The improvement will only affect investors exhibiting a quadratic utility function.
Different values of δf will generate different skewness and kurtosis coefficients.
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Chapter 9

Integrating market and credit risk in fixed
income portfolios

ALLA GIL AND YURI POLYAKOV

ABSTRACT

This paper proposes an original approach to the simultaneous assess-
ment of market and credit risk. This approach combines the advan-
tages of major existing models and uses all sources of information
relevant to credit risk. We model credit spread as jump-diffusion pro-
cess (as in reduced form approach) and use rating transition matrices
for parameter calibration. We estimate recovery rates externally using
the value of the firm model (as in structural approach).

We expand this methodology to a portfolio level and apply a novel
algorithm for portfolio optimization.

This chapter provides a portfolio manager with a practical and
comprehensive tool to quantify and compare the different portfolio
strategies. It addresses the main issues that a manager of a credit
risky portfolio of fixed income instruments faces.

9.1 INTRODUCTION

Traditional portfolio optimization has boiled down to construction of the effi-
cient frontier – the family of portfolios with the lowest risk for a given level
of return – without explicitly taking into consideration credit (and default) risk.
The two obvious reasons for this omission have been the difficulty of evalu-
ating this non-traditional risk and the lack of means for dealing with it. The
portfolio manager could only take on the risk associated with fixed income
instruments and try to diversify it as much as possible within the preferred
credits and industries.
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The development of credit derivatives markets in the past decade has brought
new flexibility to measuring and managing credit risk. Now portfolio managers
can afford to buy and hold any names that have good prospects while unloading
exactly that portion of credit risk that they are uncomfortable with.

In order to use these newly created opportunities efficiently, one has to eval-
uate market and credit risk consistently with each other. This means employing
the models that can verify whether the different types of risk offset or enhance
each other on the portfolio level. Let us consider an example of a portfolio
consisting of an emerging market (EM) bond and a currency swap paying this
EM currency and receiving US$. This is a typical example of market and credit
risks offsetting each other. Since a country event drives both credit and foreign
exchange exposures, they are highly correlated. As credit spread increases and
the bond loses value, the currency swap gets deeply in the money thus com-
pensating for loss. Of course, such risk offsetting is possible only if the swap
counter-party does not default at the same time as underlying EM bond (which
can happen if the swap was with the bank from the same EM country).

This paper starts by discussing the differences between market and credit risk
management and measurement and the challenges facing the portfolio manager
who is trying to assess the exposures on an integrated basis (Sections 9.2 and
9.3). Section 9.4 outlines our original approach to consistent estimation of mar-
ket and credit risk. It focuses on the risks associated with a single name and
prepares for the portfolio approach outlined in Section 9.5. There we offer a
new evaluation tool for comparing different portfolio strategies and an original
optimization approach to determining the most efficient credit risk profile.

9.2 HOW TO MEASURE MARKET AND CREDIT RISK

Traditionally, market risk was measured using Value-at-Risk methodology (VaR)
for 95% confidence interval. This methodology is based on historical changes
in the portfolio value. Since historical performance does not give an adequate
future forecast, many VaR methodologies today are based on Monte Carlo sim-
ulations to cover feasible dynamics of relevant environments. At the same time
historical information should not be ignored but can be taken into account in
the form of covariance matrix.

Credit risk was traditionally measured not on the portfolio level but on
name-by-name or industry-by-industry basis. Though this approach provided
fundamental depth, it did not take into account correlations between the instru-
ments in the portfolio. At the same time, the conventional VaR methodology
was not appropriate for measuring credit risk. The distribution of portfolio value
due to credit risk uncertainty is very asymmetric and has fat tails. It is possible
to parameterize it using extreme value theory but the results of such calibration
are not intuitive.
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In recent years there have been several approaches to credit risk evaluation
on a portfolio level:

• CreditMetrics1 and KMV2 use equity information and the ‘value of the
firm’ concept;

• CreditRisk+3 developed by CSFB uses an actuarial approach; and
• CreditPortfolioView4 developed by McKinsey & Co, based on economet-

ric models.

All these methodologies take into consideration correlations within the portfolio,
they construct loss distribution functions and they are based on the historical
information.5 However they lack flexible transparent connection with the current
market pricing.

We propose an approach that combines valuable, stable, and reliable historical
information with the market observable implied dynamics of credit spreads
and yield curves. This methodology is consistent with pricing and hedging,
providing a portfolio manager with a practical tool to compare and quantify
different market strategies.

We use loss distribution function of the portfolio to generalize VaR approach
so as to make it applicable to credit (and default) losses as well as other market
uncertainties.

The function in Figure 9.1 clearly demonstrates that expected loss (repre-
sented by average portfolio credit spread and credit rating) does not fully
explain all portfolio risks. Unexpected loss defined by correlations among port-
folio instruments is another important risk indicator. This function allows us to
determine the amount of losses incurred in the portfolio with any given con-
fidence interval. The losses include changes in the market environment (yield
curves, exchange rates, credit spreads) as well as losses due to defaults (when
the value of investment drops significantly).
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9.3 THE WAYS OF CONSTRUCTING LOSS DISTRIBUTIONS

In the credit risk-free interest rate world, there are many different models (with
different numbers of factors and parameters) but all of them are focused on
modelling the yield curve. There is a much bigger variety of approaches to mod-
elling credit risk. Different sets of market information are used: equity prices
and the value of the firm notion, corporate bond prices, historical probabilities
of defaults and rating transition matrices – and this is not a complete list.

It is possible to distinguish two major directions in modelling credit risk:

• structural approach based on the traded equity prices and the fundamental
analysis of the balance sheet of a firm;

• reduced-form approach derived from the market credit spreads.

Each of these approaches uses only a subset of market data relevant to credit
risk. Since information related to credit is very scarce, in order to construct a
comprehensive model it would be advantageous to use all available sources.

We propose to use a combination of the best features of existing models.
Such an approach combines all available sources of information and allows us
to include market risk into consideration.

Let us discuss conceptually what features are critically important for mod-
elling credit risk on a portfolio level.

There are important differences between strategic modelling of portfolios and
pricing credit derivatives instruments. All the pricing models have to be arbi-
trage free and allow the replication of the derivatives payoff with the underlying
securities pricing. If a portfolio manager strictly believes in absence of arbitrage
in the market, all the investments would have the same fair value. On the other
hand strategic modelling of portfolio trends contains the asset allocation views
where the curve projections may deviate from the implied forwards.

Changing economic and market environment quite often causes the realized
future trends to be far away from the projected ones. To make longer term
assessment of portfolio risk, a portfolio manager should be able to stress-test the
input assumptions (interest rates and credit spread trends as well as their covari-
ance characteristics) and make sure that the models used for constructing the
distributions of portfolio values are consistent with the pricing methodologies.

One of the important issues in modelling credit risk is understanding how a
bond can arrive to a default event. From the observations we can say that high
investment grade companies are most likely to default by a catastrophic event,
which is totally unpredictable. By contrast, a lower grade company could be
driven into bankruptcy even by a regular market move, so one can clearly see
the default event coming. This means that the rating of the company should
define a number of parameters for evaluating the losses in the portfolio value.
In particular, since lower-graded companies depend more on the general health
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of the economy, they will have a higher joint correlation of default than more
stable established companies even from the same industry group.

The credit rating of a company gets re-evaluated on a regular basis by
different agencies (like Moody’s or Standard & Poors), who publish histor-
ical probabilities of default and credit rating transition matrices. However,
results of credit risk models based on these rating transition matrices are not
entirely accurate.

Because the credit ratings do not change often, the existing ratings generally
lag behind the continuously changing credit quality. The market anticipates
changes in credit ratings and announcements of such a change usually do not
cause abrupt changes in affected bonds prices, because they have already been
lowered (or lifted) to the corresponding level. Credit risk as reflected in the
traded bond prices changes continuously. The smooth changes in credit quality
really represent market risk. Portfolio managers associate credit risk with the
events that cause abrupt and significant losses in the portfolio (like defaults).

Hence a diffusion process might be a better choice for modelling the changes
in credit quality than the counting process implied by rating transition matrices.
In addition, credit ratings do not change much with economic conditions because
the rating agencies always have ‘normal’ conditions in mind, while continuous
correlated spread processes containing the liquidity component can take this
issue into account.

By separating the dynamics of the credit spreads s(t) into two components,
diffusive changes in credit quality φ(t) and jumps to default ϕ(t), we will
have the flexibility of changing the proportion between them depending on the
current level of spread

s(t) = φ(t) + ϕ(t)

This proportional split into components φ(t) and ϕ(t) can be calibrated using
the rating transition matrix approach suggested by Jarrow et al. (1994).

The jump component ϕi(t) represents the rate of arrival of the unexpected
Poisson event – default trigger (Madan and Unal, 1998 and Duffie and Single-
ton, 1997).

To incorporate liquidity premium into this modelling approach we can assume
that each credit instrument comes with a convenience yield modelled as a pro-
cess λ(t).

To summarize, we represent market risk by the underlying yield curves, liq-
uidity premium λ(t), and a diffusion component φ(t). Credit (default) risk is
associated with the jump component ϕ(t). By simulating interest rate and credit
curves simultaneously and by identifying the components of credit risk on each
path, we obtain consistent measures for market and credit risk.
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9.4 COMPONENTS OF CREDIT RISK

Credit spreads of tradable securities are directly observable indicators of the
credit risk. They reflect the combined market information on the liquidity risk
associated with the given instrument maturity, the expected recovery rate in the
event of default, the probability of being downgraded as well as the probability
of default. The ability to evaluate those components is absolutely critical for the
correct pricing and risk management. Most of existing approaches recognize the
existence of these components. But they either try to calibrate all of them to the
market traded instruments or focus on some of these components while virtually
ignoring the others. The simultaneous calibration is not always practical; first,
because the credit derivatives markets are not developed enough to produce the
satisfactory information for such calibration; second, the parameters estimation
obtained as a result of this calibration quite often is not robust and not intuitive.

We propose a model that identifies different types of parameters and cali-
brates all of these types sequentially using market data most appropriate for the
respective type.

Obtaining intuitive results is one of the most important features in assessing
credit risk exactly because we have very limited information about a particular
credit traded on the market. Relying on other sources of information becomes
very critical. This works quite well for estimating the components of the credit
spread because they all reflect different aspects of risk.

9.4.1 Liquidity component

In this context, the liquidity component represents the portion of credit spread
that is not associated with the risk of default. Quite often the widening of
the credit spread means lack of liquidity in the market, while the probability
of default does not increase. This component depends on the maturity of the
trade, shape of the risk-free yield curve and its volatility, the collateral and
termination conditions of the trade. The liquidity component can be estimated
by considering the spreads of illiquid but credit risk-free instruments. Since
Libor, government agency, AAA-industrial curves are all constructed from the
instruments that are traded at some spread to Treasury curve, we can consider
this spread, λ, to be the liquidity part of the total credit spread. In doing so we
recognize that the spread λ does not represent the credit risk but other pressures
on the market that are not directly associated with credit.

Let us consider a one-period zero-coupon bond. If this is a risk-free bond,
its price, B0, can be determined as

B0 = E{e−
∫ t

0
y(ν) dν}

where the process y(ν) is the risk-free (Treasury) yield and t is time to maturity.
B0 represents a discount factor for risk-free liquid cash flows.
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If D0 is similar discount factor implied from Libor curve then

D0 = E{e−
∫ t

o
(y+λ)(ν) dν} = E{e−

∫ t

o
y(ν) dνe−

∫ t

o
λ(ν) dν} (9.1)

D0 is utilized to discount risk-free but illiquid cash flows, where the extra

discounting, E{e−
∫ t

o
λ(ν) dν}, represents liquidity risk.

Let us consider a corporate bond trading at spread S to Treasury curve.
We can decompose S as S = λ + s, where λ is the spread to Libor and s

is the remaining part of the total spread S, representing the specific credit
risk of the issue. The risky discount factor D1 can be expressed then using
Equation (9.1) as

D1 = E{e−
∫ t

o
(y+S)(ν) dν} = E{e−

∫ t

o
(y+λ+s)(ν) dν} = E{e−

∫ t

o
y(ν) dνe−

∫ t

o
λ(ν) dν}

= E{e−
∫ t

o
y(ν) dνe−

∫ t

o
λ(ν) dνe−

∫ t

o
s(ν) dν}

Assuming independence of credit spread to the risk-free but illiquid curve (i.e.
Libor) with the Libor rate we obtain the following:

D1 = E{e−
∫ t

o
y(ν) dνe−

∫ t

o
λ(ν) dν}E{e−

∫ t

o
s(ν) dν} = E{e−

∫ t

o
s(ν) dν}D0 (9.2)

We can see from the Equation (9.2) that the risky discount factor D1 can be
obtained as an extra discounting of a credit risk-free but illiquid discount factor,
D0. Thus D0 incorporates the general liquidity component carried but almost
all credit risky instruments. It represents supply–demand pressures, popularity
of some specific maturities, but it is not name specific and does not reflect
credit worries.

A natural question that appears in this situation is how to deal with a liquidity
component specific to an industry group and/or credit rating?

We do know that the lower the credit rating, the less liquid corporate bond
is. Also it is a known fact that some industries get out of fashion (usually
when in trouble) and are traded at a huge liquidity spreads. But all of these
considerations are credit specific so they should not be considered as liquidity
but as a portion of specific credit spread.

9.4.2 Probability of default

The extra discounting in the Equation (9.2) represents the risk of not receiving
the promised cash flows at maturity. It has to be equal to the expected out-
come at maturity of zero-coupon bond. For a one-period bond, there are two
possible outcomes:
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• with the probability of default the owner of the bond will receive only a
fraction R (recovery rate) of a promised cash flow (US$1, par value);

• if default does not occur, the full promised cash flow will be paid.

Let p be the probability of default and respectively (1 − p) the probability of
surviving to maturity. Then the expected outcome of cash flows for one-period
zero-coupon bond is pR + (1 − p). The present value of this expected outcome
equals to D0{pR + (1 − p)}. Assuming no-arbitrage condition, we can equate
this present value with the risky discount factor from the Equation (9.2).

D1 = D0[pR + (1 − p)]

or in a simplified form with a constant s in Equation (9.2),

e−stD0 = D0[pR + (1 − p)]

from where

e−st = pR + (1 − p) (9.3)

Consider the first order approximation, e−st = 1 − st , the Equation (9.3) becomes

1 − st = pR + 1 − p

or over one-year period with t = 1

s = p(1 − R) (9.4)

The right-hand side of equation represents the expected loss in the event of
default – with the probability p the owner of the bond receives only recovery
R instead of promised par, thus loosing 1 − R. The expected loss is also equal
to the expected payoff in default protection. So the Equation (9.4) illustrates
a well-known fact – the credit spread received above the risk-free rate has to
be paid out in order to obtain default protection. In absence of arbitrage and
transaction costs, the combination of risky zero-coupon bond and the default
protection for this investment is equivalent to the risk-free bond.

The Equation (9.4) has two unknowns: the probability of default, p, and the
recovery rate, R. The only known variable is spread s that can be observed on
the market (or more precisely, obtained from the observable credit spread S and
liquidity λ). Since we do not have enough market instruments to calibrate the
unknowns, we have to choose which one to estimate using some external infor-
mation. The proposed solution is to use the fundamental (structural) analysis of
a firm for the recovery rate evaluation.
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9.4.3 Recovery rate

According to the rating agencies, recovery rate is the price of a bond 30 days
after default. The 30-day interval was chosen to let the price of a distressed bond
calm down after the bankruptcy announcement. This price reflects the expected
payoff of the obligation in the bankruptcy court proceedings. Rating agencies
also publish statistical tables on the historical recovery rates. The historical
average rate has been around 40% of par. But it varies significantly by the
seniority of the obligation as it is demonstrated in the Table 9.1.

Other factors determining the expected recovery rate are industry affiliation
and company assets. For example, US non-financial assets, on average, recover
41.7% while US banks only 22%.7

Expected recovery also depends on general economic conditions.8 If many
defaults occur together, the recovery rate might be much lower than the average
historical level and investors would care about it much more. Recovery rates do
not depend much on the maturity of the underlying treasury or on the original
credit rating (it is almost always below investment grade just prior to default).

So we have taken a historical average recovery rate from the statistical tables.
Now it can be plugged into the Equation (9.4). The spread s we can observe on
the market. Thus Equation (9.4) can be used to extract the implied probability
of default p:

p = s/(1 − R) (9.5)

Since we do not know the recovery rate with certainty, only the historical
average, we might want to stress-test our assumption. The structural approach
helps to obtain recovery rates on all defaults paths. In order to identify the
possible constraint for this parameter, let us assume that the recovery rate is
very close to 100%. Then the probability implied from the Equation (9.5), can
become greater than 1.0 which is not possible. This paradox can be explained
with the following reasoning. When the recovery rate is close to 100%, the
owner of the bond under consideration receives the same cash flows whether
the bond defaults or not. This means that the bond is practically risk-less. Its
cash flows are equivalent to the cash flow of the bond with price D0. Then
in the absence of arbitrage its price, D1, should be equal to D0, that is spread

Table 9.1 Average recovery rates 1970–20006

Seniority
Security

Senior
Secured
Bonds

Senior
Unsecured

Bonds

Senior
Subordinate

Bonds
Subordinate

Bonds

Junior
Subordinate

Bonds

52.6% 46.9% 34.7% 31.6% 22.5%
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s = 0 (Equation (9.1)). But we do not control the spread, it is implied from
the bond’s prices it is given by the market. This means that stress-testing of
recovery assumption should be done with this restriction: the probability in the
Equation (9.5) must be between 0 and 1.

The same intuition lies behind the following paradox: Equation (9.5) implies
that when recovery rate increases the probability of default grows too. Every-
body understands this is not the case: higher recovery means less risk and
respectively lower probability of default. Again, the higher recovery rate and
lower risk of losses will be reflected in the lower credit spread with which
the instrument is traded. More narrow credit spread will cause reduction in
the default probability. But if spread is out of our control and we manipulate
only the recovery assumption, the higher recovery will mean the higher implied
probability of default for the same level of spread.

9.4.4 Value of the firm approach9

In evaluating the future uncertainties in portfolio value, it is important to simu-
late the dynamics of recovery rates for obligations of different seniorities. Some
modification of a classic value of the firm model provides the best platform for
this task.

In its original form this model makes the following assumptions:

• Interest rates are deterministic (this assumption can be relaxed).
• The value of the firm follows a log-normal diffusion process.
• Default occurs if the value of the firm’s assets falls below liability level

(Figure 9.2).

This model provides a very intuitive approach, which is easy to implement. But
since the value of the firm is an unobservable and non-traded entity, all the

V (t )

V (t ) = value of the firm
B (t ) = firm's liabilities
      τ = the first time the value of assets falls below
           liability boundary

B (t )

V

tt

Figure 9.2 The dynamic of a firm’s assets and liabilities (1)
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parameters for its dynamics have to be backed out from the traded equity of
the firm the equity/liability ratio of the balance sheet.

σE = VA

VE

σAK

where σE and σA are respectively firm’s equity and asset volatilities, VA and
VE are the market values of firm’s assets and equity (VA = VE + VL, where
VL is the market value of the debt), and K is a coefficient defined by firm’s
capital structure.

Thus this model relies entirely on the equity information and ignores the
corporate bond market and the traded credit spreads. This model also assumes
that the firm’s liabilities are strongly prioritized in bankruptcy proceedings, that
is the holders of more senior obligations do not get hurt until all subordinate
layers of debt are completely wiped out.

This is usually not the case – once the default is announced it affects all debt
holders, but the senior obligations will provide a much higher recovery than
the subordinate ones.

Also even on the paths where the value of the firm closes the liability level,
default is not necessarily recorded right away. The modification is implemented in
KMV10 – if there is no obligatory cash flow at the time of the crossing, the default
event is not going to be noticed by the market. Default is recorded only when a
payment is missed. Thus the value of the firm has a chance to either recover or
deteriorate further before the cash flow is due. If the asset value remains below
the liability level, the default event will be recorded and the total recovery on
company’s debt will be the value of the firm at this point (Figure 9.3).

When default happens, the debt owners take over the firm at no cost and
the available value of the assets is distributed proportionally to the seniority of
the obligation:

Rk(p) = {VA(p)|VA ≤ VL& t > τ } Rk∑
j

Rj

V (t )

B (t )

tt

Figure 9.3 The dynamic of a firm’s assets and liabilities (2)
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where Rk(p) is a recovery rate of an obligation with the seniority k on a random
path p where the value of the firm VA falls below the level of liabilities VL

and the cash flow scheduled at time τ is overdue. Rj here is average historical
recovery level for a given industry group and seniority level11.

That is why the structural approach is best suited for backing out the recovery
rates. It models the behaviour of the firm’s assets VA. So for every simulation
path where the default occurs (that is VA(t) < VL(t) and at the same time the
cash flow scheduled at time τ has been missed), this approach can determine
exactly how much assets can be used to pay off the debt holders. Then using
average historical recovery ratios between the different seniority pieces it is
possible to determine how much exactly each obligation will recover for this
specific default path.

9.4.5 Rating transition matrix approach

Once the recovery rate has been estimated, the next important step is to identify
what portion of the credit spread is due to risk premium charged for the smooth
changes in the credit quality, spread volatility and the possibility of downgrade.
The remaining portion is due to the probability of jump to default. Such separa-
tion is appropriate for the well-established markets as in the emerging markets
there can be more than one jump.

We propose to use rating transition matrices to calibrate the split of credit
spread movements into diffusive and jumpy parts. The original approach has
been proposed by Jarrow, Lando, and Turnbull12 in order to consider the infor-
mation published by the rating agencies and reflecting changes in credit quality.

This model assumes that the bankruptcy process is a finite state Markov
process where the states are the firm’s credit ratings. Since the observable
rating transition probabilities are the historical (actual) ones, JLT adjusts them
to risk-neutral rating transition probabilities.

Let Q(t, t + 1) = {qij } be a historical rating migration matrix, where qij is
the actual probability of going from the state i to the state j in one tine step;
Q̃(t, t + 1) = {q̃ij } is the equivalent martingale probability matrix; πi are the
risk premium adjustments such that

q̃j (t, t + 1) = πi(t)qj (9.6)

for all i, j , i �= j .
The probability that default occurs after time T is Q̃i

t (τ > T ) =∑
j �=K q̃j (t, T ) = 1 − q̃K(t, T ), where K is default state. In this model q̃K(t, T )

is deduced from the term structure of credit spreads assuming constant
recovery; the adjustment coefficients are calculated from default state πi(t) =
q̃K(t, T )/qK(t, T ), and q̃j for j �= K are derived from Equation (9.6).
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This approach has a lot of attractive features. It is easy to implement because
of availability of historical credit ratings transition matrices. But it does not fully
reflect the dynamics of the changes in credit quality. Also it is not practical to
use this approach for the portfolio – it is not feasible to follow all of the states
and their combinations in the correlated credit spread environment.

As a result we have come up with the following methodology for the total
risk assessment:

• Liquidity for all of the instruments is incorporated in Libor spread to
Treasury. Corporate spreads to Libor contain industry, credit rating and
name specific pressures only.

• Corporate spread to Libor combines the information on recovery rates,
rating transition probability and possible defaults, as well as risk premium
for spread volatility.

• In order to cope with the lack of substantial term structure for each instru-
ment in the portfolio, we combine into a single credit curve all the issuers
belonging to the same industry group, credit rating and seniority level.

• Recovery rates are estimated from the fundamental (structural) approach.
• We use jump-diffusion process for credit spreads – calibration of the

respective parts is done through rating transition matrix methodology.

9.5 PORTFOLIO APPROACH

9.5.1 Modelling joint defaults

Now that we have identified the steps in modelling the individual risk exposures,
we need to combine them on the portfolio level. In order to obtain the risk
picture for the entire portfolio, we need to introduce correlation between the
instruments.

Ideally we would like to obtain a full correlation matrix between the credit
spreads of all the instruments in the portfolio. But it is not feasible in practice as
there are not enough instruments on the market to calibrate all the correlations.
Moreover there is not enough historical information either.

The proposed solution to overcome this obstacle is to aggregate the issuers
by their industry groups and credit ratings. It is possible to obtain substantial
information renewed weekly13 for these integrated entities. The correlations
within industry (on average 70% on log-normal basis) are higher than between
the industries (on average 10–20%). In addition the correlations can be made
dynamic as the highly rated issuers usually have lower default correlation (they
can withstand systematic stresses from the market), while deteriorated below
investment grade companies can be driven out of business by a regular market
volatility (rising interest rates, etc.).
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Historical correlations of credit spreads contain not just default correlation
but the systematic spread moves as well. Two large companies in the same
business can be quite highly correlated but if one of them defaults by internal
catastrophic event (that has nothing to do with their business cycle), it does
not mean the second one is in worse shape as well. Surely, there will be a
temporary increase in spread just by continuity of the correlation effect. But
once the panic on the market settles down, the other company is going to thrive
without a major competitor.

The observable correlations extracted from the historical time series are the
ones containing both systematic (general market movements) and idiosyncratic
(industry and name specific) components. The first component will affect mostly
market risks for the portfolio, the latter – fat-tailed credit and default risk. Our
approach to separating credit spreads into jumpy and diffusive components takes
care of this correlation issue as well. When the spreads are simulated we use
the correlation coefficients with both components. Then each spread sample on
the path is split into diffusive and jumpy parts and the jump component only
serves as rate of arrival of default event for another simulation series.

9.5.2 Monte carlo simulation of portfolio values

We assume joint log-normal distribution of credit spreads based on historical
volatilities and correlations. The observable credit curves are constructed using
industry, credit rating and seniority association.

The credit spread samples on a random path are obtained as:

si(t) = ŝi(t)e
− σ 2

2 t+σ
√

tzi (9.7)

where si(t) is a credit spread for the i-th obligor in the portfolio; σi is credit
spread volatility; zi is a standard normal random variable.

Then the credit spread is represented in the following form:

si(t) = φi(t) + ϕi(t) (9.8)

Here φi(t) is the diffusive component of the spread, and ϕi(t) is the rate of
arrival of default events.

φi(t) is used for mark-to-market of the corresponding instrument while ϕi(t)

gives us the probability of default.
To determine how the spread in Equation (9.8) is split between these two

components we use the historical rating transition matrices.
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In order to simulate the default events in the portfolio, we interpret the
probability of default on the path obtained from ϕi(t) as area under stan-
dard log-normal distribution of spread and finding z-score bi corresponding
to default.

1 − pi = 1√
2π

∫ bi

−∞
e− v2

i

2 dvi

Thus bi = N−1(pi) corresponds to the default boundary of the i-th instrument
in the portfolio. In terms of Monte Carlo simulation this means that we can
define default path as a path where simulated credit spread crosses the unknown
default boundary. Then the ratio of the number of default paths to the total
number of paths can be expressed as cumulative normal distribution func-
tion of this unknown boundary and it should be equal to the probability of
default.

Once all default boundaries have been identified, on each path obtained by
simulating the correlated portfolio assets, we can see whether any defaults took
place and what losses are associated with them on each time interval.

Illustrative example of portfolio distribution
Let us consider the following portfolio example. It has 20 instruments with
average credit rating of Aa3 and an average spread over Libor of 34 basis
points (b.p.). This portfolio is fairly concentrated: 65% of the total portfolio
value is allocated to Financial, Utility and Telecom sectors. All instruments
have fixed rates. We assume that when an instrument matures it is rolled over
into a similar tenor/credit quality security with a coupon composed of the par
rate prevailing at that time and respective credit spread.

After simulating yield curve environment and credit spreads on a five-year
time interval, observing the value of the portfolio on each path (including
default paths) and discounting it back to today, we obtain the expected value
of the portfolio of US$2.32bn. Because of the uncertainty in market envi-
ronment, 1% of simulated outcomes falls below US$2.004bn. The difference
(US$316m) represents the total risk – losses that can happen because of rein-
vestment risk, rating migration and possible defaults. Out of this US$316m,
US$46m are the losses that occur due to defaults only. This has been calculated
by analysing the default subset of all possible outcomes (paths that resulted in
defaults).

On these paths the average loss value of the portfolio is US$1.2m and the
worst case outcome (with 99% confidence interval) is US$47.2m. Since the cap-
ital reserve should cover the losses above and beyond the expected loss (which
is covered by the portfolio revenues), we obtain the difference of US$46m
(Table 9.2).
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Table 9.2 Portfolio risk analysis

Various measures US$m Current

Expected portfolio value 2.320
Credit risk capital reserve 46
Total risk capital reserve 316
99% worst case portfolio value 2.004
Average credit loss 1.2
99% worst case credit loss 47.2
Average portfolio spread 34
Average portfolio rating Aa3

In this example the credit risk component (US$46m) represents a small por-
tion of the total risk (US$316m) because this portfolio has a relatively high
average credit rating (Aa3). At the same time it is exposed to significant mark-
to-market risk because it is composed of fixed rate instruments.

In the next section we will demonstrate how this portfolio can be improved
by achieving simultaneously a higher average credit spread and a lower risk
measured by amount of capital that needs to be reserved for possible credit
losses.

9.5.3 Optimizing portfolio credit risk profile

The loss distribution function of the portfolio is determined by the composition
of weights of the portfolio instruments {wn}. The whole universe of feasible
names for the optimization is described by the credit curves Vj with the same
probability of default per curve. The instruments belonging to the same curve
have a higher correlation than between the curves but it does not mean they
will necessarily default together.

The objective function for optimization depends on the result of the cur-
rent portfolio analysis. For risky portfolios with relatively high yield, the major
objective would be to reduce the risk without sacrificing the return. On the
contrary, for higher investment grade portfolios, the manager would be more
interested in boosting up the returns without jeopardizing current risk charac-
teristics and without major deviation from the benchmark.

The benchmark considerations traditionally have been very strong for portfo-
lio managers – as long as they outperform it they are in a good shape. That is
why portfolio optimization has focused on asset allocation, not on risk charac-
teristics – they were given by a benchmark and the portfolio manager did not
have incentives to improve them.

But since 2000, we have observed a lack of performance both in equity
and fixed income portion of the portfolio. It resulted in serious reduction in
capital reserve. Now the portfolio manager wants to follow (and outperform)



Integrating market and credit risk in fixed income portfolios 231

the benchmark only on the way up. But it is also very important for him to
know not just the relative risk expressed as the deviation from the benchmark
but the absolute level of risk as well.

Our approach to optimization treats the benchmark considerations as con-
straint but primarily focuses on the smoothing the volatility of charge-offs in
the portfolio by providing a longer-term strategic optimal direction.

We consider n-dimensional space of portfolio weights {w1, w2, . . . , wn}
(where n is the number of current and feasible instruments in the portfolio).

One of the most popular objectives for strategic optimization is to minimize
risk W(w1, w2, . . . , wn) as defined by portfolio loss that might be exceeded only
1% of the time (99% worst case outcome). At the same time the portfolio return
E(w1, w2, . . . , wn) should remain at least at the current level. Optimization
is also subject to investment, market and accounting constraints. Restrictions
on the deviation from the benchmark can be viewed as type of investment
constraints.

The objective function is computed algorithmically, that is for every set of
weights {wn} we calculate the whole loss distribution function, its expected
level and 99%-confidence interval. The optimization algorithm (see Appendix)
chooses the next set of weights, etc.

When the optimization methodology described above is applied to the illus-
trative example, the following changes to the credit spectrum composition of
the portfolio are suggested (see Figure 9.4)

As a result of proposed changes the credit risk of the portfolio was reduced
from US$46m to US$22m while average credit spread increase from 31 to 45
b.p. per annum. The original and optimized distributions of the portfolio value
are illustrated in Figure 9.5.

The results of the portfolio modification represent the minimum necessary
increase in granularity of portfolio composition.
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Figure 9.5 Original and optimized distributions of portfolio value

9.6 CONCLUSIONS

The proposed approach has a number of advantages over the existing models
for analysing and optimizing credit risky portfolios.

It evaluates market and credit risk simultaneously with a clear dynamic
modelling of their effect on each other. This is achieved by estimating the
components of risk sequentially using relevant market data for parameter cali-
bration. At each step we apply some modification of one of the existing models
to evaluate the component of risk for which this model is suited the best. Along
the way we consider all the information on credit risk contained in observ-
able market sources. This allows us to combine the best features of existing
approaches and overcome their shortcomings.

As a result of risk assessment on a portfolio level we generate loss distribution
function by combining historical information and future dynamics of credit and
yield curves. This procedure can easily accommodate different views on market
projections, asset allocation strategies and stress-testing.

While constructing loss distribution function we directly simulate default
events thus producing fat-tailed distributions naturally, without imposing an
inflexible parametric structure.

Then it is possible to estimate tracking error with respect to portfolio bench-
mark and the absolute losses with a given confidence interval. This helps the
portfolio manager to identify risk tolerance on the portfolio level and design
flexible strategies to eliminate undesirable portions of loss distribution.

Because we assess risk consistently with pricing and hedging methodology,
we are able to provide clear risk/return trade-offs in modification of portfolio
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composition. Thus the portfolio manager can formulate objectives and con-
straints for a strategic portfolio optimization.

To solve this problem, we suggest a unique optimization approach that utilizes
gradient-based methods for non-smooth and non-convex function. The proposed
method can be immediately applied to a given problem, while the standard
optimization algorithms require that the problem be modified first to satisfy
restrictions. This methodology has been successfully applied to a number of
actual investment and loan portfolios.

9.7 APPENDIX

The original methodology used for optimizing credit risk profile has been
derived from a technique for construction of algorithms for unconstrained min-
imization of function of many variables under conditions of imperfect initial
information. It may be the case that the objective function f (x) is given by
its values alone. No other information is necessary for the algorithm to work.
The objective function may also be non-smooth and non-convex, with non-
unique optimum.

Existing methods for such kinds of problems, as a rule, are oriented to esti-
mating the first and second order differential characteristics (or their generalized
concepts), which are used in the effective algorithms of smooth optimization.
Usually probabilistic algorithms (varieties of random search) and deterministic
ones (using finite-difference approximations of derivatives) are based on dif-
ferent principles. Schemes of looking through the feasible directions of search
both probabilistic and deterministic (as in polytope algorithm) are based on
still different (heuristic) principles. But the absence of a unified basis for the
construction of the indicated classes of algorithms makes it difficult to develop
them using various kinds of initial and current information.

The method suggested here allows us to obtain all these algorithms from
the common gradient basis. Instead of finding derivatives of the objective
function our method differentiates the specially constructed potential func-
tion. This potential function satisfies some classic partial differential equations.
Our approach is based on replacing the original problem with its random-
ized equivalent.

We reformulate the initial problem and obtain the whole series of essential
algorithmic structures which are usually connected with different classes of
models. In our approach they can be derived as special cases of a family of
methods with the invariant algorithmic kernel.

We start with randomization of variable as one of the ways of looking through
feasible directions. But now the objective function becomes a random vari-
able and its minimization is meaningless. Thus a different formalization of the
problem is necessary.
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9.7.1 Random reformulation of the initial problem and the first order
variation of the objective functional

For this purpose the initial problem

min
x∈Rn

f (x) = f (x1, x2, . . . , xn) (9.9)

is converted into a randomized one:

min
x∈{X} F(X) = E[f (X)] (9.10)

where {X} is the set of random vectors, and E is the operation of expectation.
Here deterministic vectors are included in the set of random ones and correspond
to concentrated distributions. The problems (9.9) and (9.10) are equivalent in a
certain sense.

In order to identify the gradient basis for algorithm solution of problem (9.10),
we consider the variation of objective functional F(X). Consider the following
equation for the functional derivative δY F (X0) at the point X0 with respect to
direction of random vector Y :

δY F (X0) = d

dε
[F(X0 + εY )]ε=0 = d

dε

[∫
Rn

f (x)pXε (x) dx

]
ε=0

(9.11)

where the distribution density pXε (x) of the random vector xε = x0 + εY can
be expressed through joint distribution density pX0,Y (x, y) of vectors X0 and Y :

pXε (x) =
∫

Rn

pX0,Y (x − εy, y) dy (9.12)

Let us assume that the integral in (9.12) is differentiable with respect to param-
eter ε (which can always be achieved by choosing appropriate classes of distri-
bution densities p(x, y)).

Then taking (9.12) into account we can get:

δY F (X0) = d

dε

[∫
Rn

f (x)

(∫
Rn

pX0,Y (x − εy, y) dy

)
dx

]
ε=0

=
∫

Rn

d

dε
[Aεf (y)]ε=0 dy (9.13)

where

Aεf (y) =
∫

Rn

pX0,Y (x − εy, y)f (x) dx (9.14)
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For further transformation it is convenient to use the following property of
divergence operator:

[
d

dε
pX0,Y (x − εy, y)

]
ε=0

= 〈−∇xpX0,Y (x, y),y〉

= −divx[pX0,Y (x, y)y] (9.15)

where 〈·, ·〉 - denotes the scalar product, ∇ is the gradient operator. Introduce
the conditional distribution density

pY |X0x(y) = pX0,Y (x, y)/pX0(x), pX0(x) =
∫

Rn

pX0,Y (x, u) du (9.16)

Then directional derivative δY F (X0) can be written in the following way:

δY F (X0) = −
∫

Rn

f (x)divx[pX0(x)y(x)] dx (9.17)

where

y(x) = E(Y |X0 = x) =
∫

Rn

ypY |X0=x(y) dy (9.18)

At the same time, differentiating the identity
∫

Rn

pXε (x) dx = 1

with respect to ε when ε = 0 we will get:
∫

Rn

divx[pX0(x)y(x)] dx = 0 (9.19)

This leads to the final expression for directional derivative:

δY F (X0) = −
∫

Rn

[f (x) − C]divx[pX0(x)y(x)] dx (9.20)

where C is an arbitrarily chosen constant.
So, the derivative of the functional F(X) (9.10) at the point X0 (characterized

by density pX0(x)) with respect to direction of random vector Y , which is
characterized by vector field y(x) (9.18), is determined up to the constant C.

9.7.2 The concept of gradient in the non-smooth extreme problem

In order to define the gradient basis for problems where only the values of objec-
tive function f (x), x ∈ Rn, are available, we have to choose vectors Y , which
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maximize the directional derivative δY F (X0). After imposing additional restric-
tions on vector Y using Cauchy inequality, we obtain the following condition
for maximization:

div	pX0(x)y(x)
 = −λ[f (x) − C]pU(x) (9.21)

where parameter C is determined according to (9.19) as

C =
∫

Rn

f (x)pU(x) dx (9.22)

For the constructive description of the set of solutions for the Equation (9.21),
we will decompose finite, or vanishing at infinity, vector field pX0(x)y(x) into
the potential ∇φ0 and zero-divergent W0 components.

pX0(x)y(x) = ∇φ0(x) + W0, divW0 = 0 (9.23)

Under an additional condition φ0|∞ = 0, this representation is unique.
Then, according to (9.21), the potential function φ0(x) will satisfy the equation


φ0(x) = −λ[f (x) − C]pU(x) (9.24)

This represents a Poisson equation with respect to scalar function φ0(x). The
uniqueness condition for the solution of this equation (that the vector field van-
ishes at infinity) can be easily satisfied because of the properties of distribution
density pX0(x). It has the following form:

φ0(x) = −λ

∫
Rn

L(x, ξ)[f (ξ) − C]pU(ξ) dξ (9.25)

where L(x, ξ) is the fundamental solution of a Laplace equation:

L(x, ξ) =




− 1

(n − 2)ωn|x − ξ |n−2
, n > 2

1

2π
ln |x − ξ |, n = 2

(9.26)

Here ωn is the surface area of unity sphere in Rn space.
As a result the gradient of the potential component φ0(x) in (9.23) can be

expressed as:

∇φ0(x) = −λ

∫
Rn

∇xL(x, ξ)[f (ξ) − C]pU(ξ)dξ

= −λE[∇xL(x, U)[f (U) − C]] (9.27)
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∇φ0 here represents the generalized gradient for the direction of update under
general assumptions about the objective function f (x).

9.7.3 Constructing optimization algorithm

The iterative procedure in random vector space has the following form:

XN+1 = XN + αN+1Y
N+1 (N = 0, 1, 2, . . .) (9.28)

This update can be rewritten in distribution characteristics:

E(XN+1) = E(XN) + αN+1E(YN+1) (9.29)

or representing E(YN+1) as E(YN+1) = EXN+1E	YN+1|XN
, we get

E(XN+1) = E(XN) + αN+1EXN E(YN+1|XN) (9.30)

Expectation of the random vector Y can be estimated from

E(Y |X) = y(X) = ∇φ(X)/p(X) (9.31)

Denoting the estimation of EXN+1 as m̂N+1 we can represent (9.30) in the
following form:

m̂N+1 = mN + αN+1EX[y(x)] (9.32)

where mN = EXN, E is some statistical estimation of expectation.
Since expectations should concentrate in the potentially optimal area of

search, we use only successful updates from the previous point mN to cal-
culate the statistical estimation of the next point m̂N+1. Such strategy assigns a
higher probability to realizations with high potential. Degree of future prospect
is determined by deviation of the objective function value in this realization
from the moving average C. Then an estimation of expectation of X can be
calculated as

∑
j γjx

j where γj are the weights proportional to |f̂ (xj )|, f̂ (xj ) =
f (xj ) − C, γj > 0,

∑
j γj = 1.

Let us consider some specifics of search strategy in case of successful (f̂ > 0)

and unsuccessful (f̂ < 0) realizations for estimation of the direction of update.
Recalling the representation (9.23) and assigning for simplicity W = 0, we
choose E[∇φ(XN)/pN ] as direction of update Y . Then the iterative search
procedure can be rewritten as

m̂N+1 = mN + αN+1EXEU

{
f̂ (U)

ωn|U − XN |np(XN)
(XN − U)

}
(9.33)
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If we limit the expectation estimation to just one realization u of random vec-
tor U and substitute the mean mN as one of realizations of a random vector
X, (9.33) becomes

m̂N+1 = mN + αN+1
f̂ (u)

ωn|u − mN |np(mN)
(mN − u) (9.34)

The suggested scheme is some adaptive expansion of well-known polytope
method.14 This method starts with initial set of n + 1 points in Rn space that
are sorted in order of increasing values of objective function. The ‘worst’ point
xn+1 (with the highest function value) is symmetrically reflected with respect
to centre of gravity of others

xn+1,1 = h + α(h − xn+1), h = 1

n

n∑
i=1

xi, α > 0

If this reflection step has found the best (so far) point, that is f (xn+1,1) < f (x1),
then an expansion of polytope is performed:

xn+1,2 = h + β(xn+1,1 − h), β > 1

If it can not improve the current polytope at all (f (xn+1,1) > f (xn)) a contrac-
tion procedure is carried out:

xn+1,2 = h + γ (xn+1,1 − h), 0 < γ < 1

If the reflected point is neither the ‘best’ nor the ‘worst’ (f (x1) < f (xn+1,1) <

f (xn)), then the vertex xn+1 is replaced with xn+1,1 and all vertices are resorted
and enumerated again to retain the ascending order.

In our iteration procedure if realization u is potentially optimal (f̂ (u) < 0)
then the search moves from mN in the direction mN − u, which corresponds to
expansion in the polytope method. Otherwise the search moves in the opposite
direction as in reflection stage. If the point m̂N+1 as a result of update (9.34) sat-
isfies the condition f (m̂N+1) < 0, then we assign mN+1 = m̂N+1, CN = f (mN)

and move forward. If the trial point in (9.34) gave an unsuccessful estimation
m̂N+1 (that is f (m̂N+1) ≥ 0), then we can try the same direction with shorter
step size αN+1. This would correspond to contraction stage in polytope method.
If a number of such attempts didn’t give successful value of m̂N+1, then we
obtain a new realization u of random vector U .

The current mean mN in (9.34) can be interpreted as a centre of gravity
at the iteration N . To assign the new value to mN+1 we can also use several
estimations of m̂N+1, satisfying the condition f (m̂N+1) < 0 and corresponding
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to different realizations of the random vector U . This would correspond to the
modification of polytope method where several vertices are reflected on the each
iteration. The parameter C can be evaluated from the Equation (9.22). Thus the
described iterative procedure can provide a natural regular empowerment of
traditional heuristic polytope method.

We propose the following algorithm to implement this version of general-
ized gradient algorithm based on randomization of initial problem and use of
potential theory:

1. Choose an initial point X0(weights in the current portfolio).
2. Obtain K realization of a random vector UN, {UN,i}, i = 1, 2, . . . , K(they

may be interpreted as vertices of a polytope with K = n + 1).
3. Calculate the values of objective function in that vertices f (UN,i).
4. Sort these vertices in the order of increase of function values.

5. Calculate the mean level CN = 1

K

∑K
i f (UN,i).

6. Calculate the initial expected value mN (centre of gravity).
7. Perform (9.34) for each of the realizations of a random vector

UN, {UN,i}, i = 1, 2, . . . , K, reconciling the step size in case of an
unsatisfactory result:

m̂N+1,i = mN + αN+1
f̂ (UN,i)

ωn|UN,i − mN |n (mN − UN,i)

8. Verify a stopping rule for a given tolerance level

DN = 1

K

K∑
i=1

[f (UN,i) − CN ]2 < ε

If it is not satisfied revert to step 4 after respectively updating the vertices.
To strengthen local properties of the algorithm the centre of gravity can be

calculated using weights proportional to their successful deviation from the
mean level:

mN = 1

M

M∑
j=1

γjU
N,j , f̂ (UN,j ) < 0, γj = |f̂ (UN,j )|

n∑
i=1

|f̂ (UN,i)|

For emphasizing global properties of the algorithm we can overstate level C,
assigning C = f (UN,K−1). This would make more realizations to satisfy the
condition of local improvement and allow algorithmic search to get out of local
extreme neighbourhoods.
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Chapter 10

Incorporating skewness and kurtosis in
portfolio optimization: a multidimensional

efficient set

GUSTAVO M DE ATHAYDE AND RENATO G FLÔRES, JR

ABSTRACT

We develop mathematical tools that make the algebra of multivariate
higher moments very tractable. Based on them, a multidimensional
portfolio frontier is created, incorporating skewness and using kur-
tosis instead of variance. Although both these moments describe
dispersion, the former is a much more efficient instrument to capture
extreme variations than the latter. A complete characterization of this
portfolio set is made. Interesting properties make the construction of
the portfolio frontier a task easier than supposed.

10.1 INTRODUCTION

Most models in finance are based on mean-variance analysis. Risk premium
is therefore derived from the second moment of a random variable. The basic
assumption of this kind of modelling is that agents are not so concerned about
moments higher than the variance. In practice, however, it is known that these
moments have an influence in investors’ decisions. This might explain the bad
empirical performance of the CAPM, as it is based on the assumption that the
investors’ goal is to minimize the variance, or maximize the expected return
of their portfolio. Literature on this subject can be found in Markowitz (1952),
Sharpe (1964), Lintner (1965), Mossin (1966) and Merton (1972).

In general, agents not only care about higher moments, but also their pref-
erences seem to follow some standard behaviour. They are willing to trade a



244 Advances in Portfolio Construction and Implementation

highly probable loss of a few cents, for a neglectable chance of winning a for-
tune. Intuition therefore suggests that agents prefer the highest odd moments.
As far as even moments, the wider the tails of the returns distribution, the
higher they will be. They capture, above all, the dispersion of the payoffs and,
in general, people dislike them.

In fact, all the utility functions that are strictly increasing and concave have
expected utilities that increase with odd moments and decrease with even
moments. When restricting ourselves to expected utility, mean-variance analysis
may be justified by either a quadratic utility function or by a Taylor approxi-
mation of a more general and acceptable utility function. The first approach has
some theoretical problems, like a region in which more money would decrease
investors’ utility, while the second, in view of the arguments above, can often
be considered a rough approximation. Further, classical discussions on these
subjects may be found in Pratt (1964), Pratt and Zeckhauser (1987) Samuelson
(1970) and Tsiang (1972).

Another argument in favour of mean-variance analysis is the assumption that
asset returns are normally distributed.1 Since all the odd moments are null, the
optimization of the investor would be restricted to minimizing even moments.
However, in the normal family, minimizing variance implies minimizing all the
even moments, because any even moment of a normal distribution is given by.

(σ 2)n
n∏

i=1

(2i − 1)

where 2n, n ≥ 1, is the order of the moment.
It turned out that normality of asset returns has been widely rejected in empir-

ical tests (see for instance Eftekhari and Satchell, 1996, Mandelbrot, 1997).
Skewness and fat tails are present on the conditional or unconditional distri-
butions of returns. Additional facts, like the worldwide presence of the ‘smile’
effect on options quotations, can also be pointed out as a clear rejection of
normality on asset returns.

Another argument in favour of the use of higher moments is the current
concern with the downside risk of portfolios, and measures of risk like the VaR
(value at risk). They all emphasize the worst states of the world, i.e. the left
tails of the distributions. The higher the odd moments, and the lower the even
ones, the lower this kind of risk will be.

Most of the models that dealt with higher moments were focused solely on
the CAPM, or on simple microeconomic approaches, assuming a representative
agent who chooses one single portfolio, which becomes the market portfolio.
The great inconvenience of these approaches2 is that they are unable to analyse
the technical properties of the portfolio set per se. In other words, we know the
technical characteristics of the Markowitz portfolio frontier that depend solely
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on the distribution of assets returns – namely, its means and covariances – as
two-fund separation. In the approach described above, it is impossible to develop
this analysis. The solution is always dependent on the utility function used. Not
surprisingly, the optimal portfolio set is bypassed. In contrast to the Markowitz
solution, that allows you to have several different investors with different risk
tolerances, these models need to assume that all the investors demand exactly the
same optimal portfolio. In the classical portfolio frontier, investors could choose
several points in the portfolio frontier, or in the capital market line. Therefore it
should be clear that when we choose to avoid the characterization of the portfo-
lio set, and move to the representative agent approach, heterogeneity of investor
behaviour towards risk is a fair assumption that will need to be discarded.

Apparently, the main difficulty of working with higher moments was the lack
of mathematical tools that could reproduce the non-linear algebra they require.
Some attempts were made to rewrite the problem in a typical linear algebra
setting, as Kraus and Litzenberger (1976) and Simaan (1993). Both papers
simply considered a vector containing the coskewness between each single
asset and the optimal portfolio, so the inner product of the optimal portfolio
and this vector would give us the skewness of the optimal portfolio. However,
the optimal portfolio is the vector to be found, making their approach quite
dubious. On one hand the portfolio is endogenous, and on the other it is taken
as given a priori.

In this paper, we construct a portfolio frontier similar to the mean-variance-
skewness in Athayde (2001), the only difference is that instead of using vari-
ance, we will use kurtosis. The goal to minimize kurtosis, instead of variance,
is very interesting. Both capture dispersion, volatility and, to some extent, risk.
However the fourth moment puts much more weight on extreme values (like
crises) than variance does. Therefore, controlling kurtosis would imply control-
ling huge dispersions, and not putting much weight on small changes. If we
think in terms of VaR, or even extreme values, kurtosis seems to be a much
better indicator of that kind of risk.

Differently from the mean-variance case, that only requires linear algebra,
higher moments require the use of the so-called tensors, which can be seen as a
generalization of matrices. For instance, the skewness version of the covariance
matrix has a three-dimensional cubic shape. In case we have n different assets,
it will have dimension n × n × n. The kurtosis will be represented by a four-
dimensional figure with dimensions n × n × n × n, and so on. Needless to say,
the mathematics becomes far more cumbersome than in the classical case. These
‘multidimensional matrices’ are called tensors. While matrices are defined in
terms of only two co-ordinates, they can have several different co-ordinates.
Although they are quite popular in physics – Einstein developed the tensorial
notation when working on the Theory of Relativity – they are not so familiar
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to economists. Nonetheless, their use in the problems we will be dealing with is
also cumbersome. We developed a friendlier notation, to bring the style closer
to simple linear algebra. The following section explains these new mathematical
tools, fully developed in Athayde (2001).

10.2 THE ALGEBRA OF MULTIVARIATE MOMENTS

The variance of a portfolio made of n assets, each one with a weight α is
given by:

σp2 =
n∑

i=1

n∑
j=1

αiαjσij = [ α1 α2 . . . αn ]




σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n

...
...

. . .
...

σn1 σn2 . . . σnn







α1

α2

...

αn




While the skewness is given by:

σp3 =
n∑

i=1

n∑
j=1

n∑
k=1

αiαjαkαijk

Notice that the formula above suggests a product of vectors and matrices, in
which the matrix of the third moment would have a cubic shape, like the n

matrices below one above the other.




σ111 σ121 . . . σ1n1

σ211 σ221 . . . σ2n1

...
...

. . .
...

σn11 σn21 . . . σnn1







σ112 σ122 . . . σ1n2

σ212 σ222 . . . σ2n2

...
...

. . .
...

σn12 σn22 . . . σnn2


 . . .




σ11n σ12n . . . σ1nn

σ21n σ22n . . . σ2nn

...
...

. . .
...

σn1n σn2n . . . σnnn




Each one of these matrices would be pre- and post-multiplied by the vector of
weights α, resulting in n scalars, therefore forming a vector with dimension n.
This vector would be multiplied again by the same vector α, resulting in a
scalar, that will be the third moment of the portfolio α.

This approach can be extended towards higher moments, where kurtosis
would be given by a matrix with equal borders, with a four dimensional shape.
In other words a matrix with dimensions n × n × n × n. This matrix would be
multiplied four times by the vector α until it has been reduced to a scalar:

σp4 =
n∑

i=1

n∑
j=1

n∑
k=1

n∑
l=1

αiαjαkαlαijkl
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These multidimensional matrices are in fact the tensors, and their typical nota-
tion is quite different from the one to be developed. In order to make them
easier to handle, we shall adopt the following technique. For the skewness,
instead of a cubic matrix n × n × n, a n × n2 matrix, formed by putting each
of the n × n matrices side by side, can be used:

[M3] =




σ111 σ121 . . . σ1n1

σ211 σ221 . . . σ2n1

...
...

. . .
...

σn11 σn21 . . . σnn1

σ112 σ122 . . . σ1n2

σ212 σ222 . . . σ2n2

...
...

. . .
...

σn12 σn22 . . . σnn2

. . .

σ11n σ12n . . . σ1nn

σ21n σ22n . . . σ2nn

...
...

. . .
...

σn1n σn2n . . . σnnn




Notice that, using the following decomposition of the matrix [M3]:

[M3]
nxn2

=
[

[M31]
nxn

[M32]
nxn

. . . [M3n]
nxn

]

where

[M3k]
nxn

=




σ11k σ12k . . . σ1nk

σ21k σ22k . . . σ2nk

...
...

. . .
...

σn1k σn2k . . . σnnk




the skewness of a portfolio α will be given by:

σp3 = [α]′
1xn

[
[M31]

nxn
[M32]

nxn
. . . [M3n]

nxn

]




α1[α]
lxn

α2[α]
lxn

...

αn[α]
lxn




= [α]′
1xn

[M3]
nxn2

[α ⊗ α]
n2x1

where ⊗ refers to the kroenecker product.
By analogy, the kurtosis could be written in the following manner:

σ 4
p = [α]′

1xn

[M4]
nxn3

[α ⊗ α ⊗ α]
n3x1

Moreover, as shown in Athayde (2001):

∂σp3

∂α
= 3 [M3]

nxn2
[α ⊗ α]

n2x1

∂σp4

∂α
= 4 [M4]

nxn3
[α ⊗ α ⊗ α]

n3x1

∂2σp3

∂α∂α
′ = 3 [M3]

nxn2
[α ⊗ I ]

n2x1

∂2σp4

∂α∂α
′ = 4 [M4]

nxn3
[α ⊗ α ⊗ I ]

n3x1
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Another way to look at these properties is to think in the same manner in
which the covariance matrix is constructed. The latter can be interpreted as the
sum of several n-dimensional vectors, each one multiplied by their transpose
(which would ensure the positive definiteness property), creating a matrix with
dimension n × n. The skewness matrix (tensor) is also a sum of the products
of several vectors with dimension n (representing n asset returns at a specific
date), multiplied by themselves in an orthogonal way and multiplied again in
another orthogonal way, generating a figure with dimensions n × n × n.

No wonder the skewness matrix (tensor) is symmetric in a three-dimensional
way. This symmetry guarantees many interesting properties. The same goes
for kurtosis and all the higher moments. All these matrices (tensors) will be
symmetric if we keep one or more of its co-ordinates fixed.

10.3 THE PORTFOLIO FRONTIER: EXPECTED RETURN, SKEWNESS
AND KURTOSIS

The aim of this section is to provide the characteristics, the shape and the ways
to assure the investor he is on the efficient set of portfolios. By this, we will
be referring to the points on the surface where one cannot get better in any
moment, without getting worse on another. Ingersoll (1975) made an effort in
this direction, giving a clue of the shape of a portfolio frontier with the first
three moments. Moreover, characterization of the efficient set seems a much
more plausible approach if we are interested in practical problems, such as
asset allocation or fund managing. Use of criteria such as utility functions may
not seem reasonable for fund managers, especially those who need to provide
reports to clients on their criteria to select portfolios.

Our aim is to provide a characterization of the set of portfolios that:

Property 1 – For a given expected return and skewness, they have the lowest
kurtosis.

Property 2 – For a given expected return and kurtosis, they have the highest
skewness.

Property 3 – For a given skewness and kurtosis, they have the highest expected
return.

The first step we shall take is to ensure Property 1. Therefore we will be min-
imizing kurtosis for a given skewness and expected return:

Min α,[M4](α ⊗ α ⊗ α) + λ[E(rp) − ([α],[M1] + (α,[1] − 1)rf )]

+ γ (σp3 − [α],[M3][α ⊗ α])
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The first order conditions are given by:

4[M4][α ⊗ α ⊗ α] = λ[x] + 3γ [M3][α ⊗ α] (10.1)

E(rp) − rf = α,([M1] − [1]rf ) = α,[x] (10.2)

σp3 = [α],[M3][α ⊗ α] (10.3)

Pre-multiplying (10.1) by [x],[[M4](α ⊗ α ⊗ I )]−1 and using (10.2), we’ll have:

4R = λA(−2) + 3γA(0) (10.4)

Pre-multiplying (10.1) by ([M3][α ⊗ α]),[[M4](α ⊗ α ⊗ I )]−1 and using (10.3),
we’ll have:

4σp3 = λA(0) + 3γA(2) (10.5)

In the expressions above, we have used the following conventions:

R = E(rp) − rf

A(−2) = [x],[[M4](α ⊗ α ⊗ I )]−1[x]

A(0) = [x],[[M4](α ⊗ α ⊗ I )]−1[M3](α ⊗ α)

A(2) = ([M3][α ⊗ α]),[[M4](α ⊗ α ⊗ I )]−1[M3](α ⊗ α)

The subscripts of the A’s terms were chosen to correspond to the degree of
homogeneity of the term with respect to the vector α.

Making use of (10.4) and (10.5), we have that the (implied) solution for the
problem will be given by:

[M4](α ⊗ α ⊗ α) = A(2)R − A(0)σp3

A(−2)A(2) − (A0)2
[x]

+ A(−2)σp3 − A(0)R

A(−2)A(2) − (A0)2
[M3](α ⊗ α) (10.6)

Proposition 1: [[M4](α ⊗ α ⊗ I )] is positive definite, and A(−2) and A(2) are
positive.

Proof: We can pre and post-multiply it by a vector β, resulting in:

β,[[M4](α ⊗ α ⊗ I )]β = σααββ > 0
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Thus we can also say that A(−2) and A(2) are positive, because the inverse of a
positive matrix will also be positive definite.

Q.E.D.
The kurtosis of the solution portfolios will be given by:

σp4 = A(2)R
2 − 2A(0)Rσp3 + A(−2)(σp3)2

A(−2)A(2) − (A0)2
(10.7)

Due to Proposition 1, A(−2) and A(2) are positive, as well as both the numerator
and the denominator of (10.7):

{[M3](α ⊗ α)R − [x]σp3},[[M4](α ⊗ α ⊗ I )]−1{[M3](α ⊗ α)R − [x]σp3}
= A(2)R

2 − 2A(0)Rσp3 + A(−2)(σp3)2 > 0

{[M3](α ⊗ α)A(0) − [x]A(2)},[[M4](α ⊗ α ⊗ I )]−1{[M3](α ⊗ α)A(0)

− [x]A(2)}
= A(−2)[A(−2)A(2) − (A0)

2] > 0

For the rest of this chapter we will make use of what we call the ‘standardized
moments’. They are the cubic root of skewness – denoted by y3 – and the fourth
root of kurtosis – denoted by y4.

Proposition 2: For a given scalar k, all the minimum kurtosis portfolios that
have the property that σp3 = k3R3, or y3 = kR, are given by α = αR, where α

is the minimum kurtosis portfolio when for R = 1 and y3 = kR.

Proof: Making use of (10.7), when σp3 = k3R3, or y3 = kR:

[M4](α ⊗ α ⊗ α) = A(2)R − A(0)k
3R3

A(−2)A(2) − A2
(0)

[x]

+ A(−2)k
3R3 − A(0)R

A(−2)A(2) − A2
(0)

[M3](α ⊗ α) (10.8)

For the case when R = 1, we will have:

[M4](α ⊗ α ⊗ α) = A(2) − A(0)k
3

A(−2)A(2) − A2
(0)

[x]

+ A(−2)k
3 − A(0)

A(−2)A(2) − A
2
(0)

[M3](α ⊗ α) (10.9)
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where α is the solution to this problem. Replace now α by αR in (10.8):

[M4](α ⊗ α ⊗ α)R3 = A(2)R
3 − A(0)k

3R3

A(−2)A(2) − A
2
(0)

[x]

+ A(−2)k
3R − A(0)R

A(−2)A(2) − A
2
(0)

[M3](α ⊗ α)R2

After cancelling the R’s, we will be back to (10.9).

Q.E.D.
This means that in the direction yp3 = kR, the kurtosis will be given by:

σp4 = α,R[M4](αR ⊗ αR ⊗ αR) = σp4R4 ⇒ yp4 = yp4 ||R||

and the standardized kurtosis will be a linear function of the modulus of R in
a given direction k, in the R × y3 plane. Therefore, all the minimum kurtosis
portfolios whose R and y3 are such that y3 = kR will be described as:

y4

y3
y4 y4

k

R

Figure 10.1 Minimum kurtosis portfolios

When we take into consideration all the possible angles k, the surface of the
minimum kurtosis portfolio could take several shapes, shown in Figure 10.2:

y4

y3

R

(a)

y4

y3

R

(b)

Figure 10.2 Various shapes of minimum kurtosis portfolios
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y4

y3

R

(c)

y4

y3

R

(d)

Figure 10.2 (continued)

The areas in light grey represent the bottom surface of the whole portfolio
set, and they are formed by the set of minimum kurtosis portfolios described in
Figure 10.1. In Figure 10.2(d) we would have some directions that would give
us local maxima R and Y3, for a given level of Y4. In Figure 10.2(c) there would
be several maxima R and only one direction that would give us a maximum
Y3. In Figure 10.2(b) we would have several local maxima Y3 and only one
maximum R. Finally, Figure 10.2(a) represents the ideal situation where there
is only one maximum R and one maximum Y3 for a given Y4. It will be shown
that the cases described in Figures 10.2(c) and 10.2(d) will never happen.

Because of Proposition 2, in case we want to find the set of minimum kurtosis
portfolios that have the highest R or Y3 it suffices to find a portfolio that lies
on that specific direction. The desired set will be made of multiples of these
portfolios.

But how do we find these specific directions? Consider the case where we
want to minimize kurtosis subject only to R:

Min α,[M4](α ⊗ α ⊗ α) + λ(R − α,[x])

The first order conditions are:

4[M4](α ⊗ α ⊗ α) = 4[M4](α ⊗ α ⊗ I )α = λ[x] (10.10)

R = α,[x]

Pre-multiplying (10.10) by [x],[[M4](αR ⊗ αR ⊗ I )]−1:

λ = 4R

A(−2)

Substituting λ in (10.10) we have that the solution is given by:

[M4](αR ⊗ αR ⊗ αR) = R

A(−2)

[x] (10.11)
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Consider now the case of α, which is the portfolio that solves the problem for
the case where R = 1:

[M4](α ⊗ α ⊗ α) = 1

A(−2)

[x] (10.12)

If we try the solution α = αR for (10.11), we will see that it fits. This shows us
that we only need to find one portfolio α to generate the whole set of minimum
kurtosis portfolios for a given R.

Since it is possible to show that kurtosis is strictly convex in its entire domain
(Proposition 1), and we have only a linear constraint, we can ensure the solution
is unique. Any numerical procedure can be applied.

Pre-multiplying the equation above by ([M3][α ⊗ α]),[[M4](α ⊗ α ⊗ I )]−1,
we have:

σp3 = A(0)R

A(−2)

In view of (10.6), we see that this skewness will make the LaGrange multiplier
of the skewness constraint null. Another aspect of interest is that the skewness
of the portfolios that lie on this direction will be homogeneous of degree 3 with
respect to R. These portfolios will also have a fixed k on the R × y3 space, and
therefore a kurtosis behaviour just like in Figure 10.1:

k =
(

A(0)

A(−2)

)1/3

σp4 = σp4R4, or yp4 = yp4 ||R||

This direction, by duality, will also be giving us the highest (in absolute value)
R for a given kurtosis. It also divides the minimum kurtosis set in two parts.
Since we want the highest possible skewness, we will always work with the
upper half of the surface. By doing so, we will be ensuring Property 2. Thus,
we already have achieved two of our three desired properties.

The second case is the highest skewness one. Just like in the previous case,
this direction will be the one that gives us the lowest kurtosis subject only to a
given skewness. Let us call these portfolios α:

Min α,[M4](α ⊗ α ⊗ α) + λ(σs3 − α,[M3][α ⊗ α])

The first order conditions are:

4[M4](α ⊗ α ⊗ α) = 4[M4](α ⊗ α ⊗ I )α = λ3[M3][α ⊗ α] (10.13)

σp3 = α,[M3][α ⊗ α]
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Pre-multiplying (10.13) by ([M3][α ⊗ α]),[[M4](α ⊗ α ⊗ I )]−1, we will have:

λ = 4σp3

3A(2)

Substituting λ in (10.13) we have the solution:

[M4](α ⊗ α ⊗ α) = σp3

A(2)

[M3][α ⊗ α] (10.14)

Consider the case of α, which is the portfolio that solves the problem for the
case where σp3 = 1:

[M4](α ⊗ α ⊗ α) = 1

A(2)

[M3][α ⊗ α] (10.15)

If we try the solution α = yp3α for (10.14), we see that it fits. This shows us
that we only need to find one portfolio α to generate the whole set of minimum
kurtosis portfolios for a given skewness. It can also be easily verified that:

R = σp3

A(2)

A(0) kp =
(

A(0)

A(2)

)1/3

σp4 = σp4(yp3)4 ⇒ yp4 = yp4 ||yp3 ||

The first relation makes the first constraint in (10.6) redundant. Meaning that it
applies to the general case, being a particular case where the constraint on R

does not count.
Unfortunately, there can be several solutions to (10.15), because now we have

a non-linear constraint. Some of them will be a local maximum of skewness (in
modulus) and some will be local minimum (in modulus). This situation is well
described in Figure 10.2(b), which is the most common profile of our minimum
kurtosis surface. For a fixed level of kurtosis, we shall have only one direction
with the highest R, and a few others with local maxima skewness.

In case we want to verify if the portfolio is a local maximum/minimum, we
must look at the determinants of the bordered Hessian below, and verify if they
are all positive.


 12[M4](α ⊗ α ⊗ I ) − 8

A(−2)

[M3](α ⊗ I ) −3[M3](α ⊗ α ⊗ I )

−3[M3](α ⊗ α ⊗ I )′ 0




Let us now consider the figure below (which is a common shape), which rep-
resents an isoquant of kurtosis, with three directions on the R × y3 plane – one
with the highest R and two with the highest (local) skewness. The direction



Incorporating skewness and kurtosis in portfolio optimization 255

y3
a

b

ka
kb

R

Figure 10.3 Isoquant of kurtosis (1)

with the highest R (kb) will divide the isoquant in two halves, and we shall
select only the upper half, because for a given R, the upper half of the isoquant
will always have higher skewnesses than the lower half – ensuring Property 2.

If we take the direction of highest skewness (ka), we can make a similar
analysis. It divides the isoquant in two parts. We shall choose the portfolios on
the right side of this direction, because the right side will give us always higher
R’s than the left part for a given level of skewness – ensuring Property 3. The
area that ensures us all those three properties mentioned at the beginning of this
section is the area in bold and between points a and b.

In this case, all we should do is:

1 Minimize kurtosis with respect to R only.
2 Minimize kurtosis with respect to skewness only.
3 Get ka and kb.
4 Minimize kurtosis with respect to R and skewness, only in the directions

between ka and kb.

However, let us say that our picture looks in fact like that in Figure 10.4. The
optimal area will be the one in bold (between points a and b, c and d). This
is the area that, for a minimum kurtosis isoquant, will also have the highest
skewness for a given R, and the highest R for a given skewness. To reach this
area, we should:

1 Minimize kurtosis with respect to R only – we will get kd

2 Minimize kurtosis with respect to skewness only – we will get ka and kc.

In case the highest local skewness is not the one furthest to the right (like
in Figure 10.4), then we will need to go a bit further. First of all, the area
in between the direction with the highest R and the highest local skewness
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y3

kb

kc

ka kd

a

b c

d

R

Figure 10.4 Isoquant of kurtosis (2)

furthest to the right is optimal. Therefore minimizing kurtosis with respect to
angles between kc and kd , guarantees optimal portfolios – in the sense they have
the three properties desired.

So far the procedure is the same as in the former case. We could stop here
in case the investor is not so sensitive to skewness. In case he is, there is still
another region (between points a and b) that is also considered to be optimal.
In this region, he could get higher skewnesses at the cost of R. To get to this
region he should start in the direction of the portfolio with the highest skewness
(ka) and keep minimizing kurtosis on directions with higher angles k, moving
on the isoquant until he reaches point b. Once point b is reached, one gets kb.
Then the optimal sets are completely defined. You just need to keep minimizing
kurtosis with respect to R and skewness, provided these two lie in the directions
between ka and kb, and in the directions between Kc and Kd . To get the whole
optimal surface, just scale the isoquants.

10.4 CONCLUSION

In this chapter we provided mathematical tools to deal with higher moments.
Specifically, we showed how to construct a portfolio frontier that takes into
consideration expected return, skewness and kurtosis. The properties of this
portfolio frontier are analysed; showing some features that make far easier to
achieve the optimal set of portfolios.
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2. With the exception of Ingersoll (1975) and Bawa and Lindenberg (1977).



Chapter 11

Balancing growth and shortfall probability
in continuous time active portfolio

management

SID BROWNE

ABSTRACT

Active portfolio management is concerned with objectives related to
the outperformance of the return of a target benchmark portfolio.
Here we consider an objective that relates the probability of achieving
a given performance objective to the time it takes to achieve the
objective, in this way balancing risk and return. As a special case,
our analysis includes the case where the investor wants to minimize
the expected time until a given performance goal is reached subject
to a constraint on the shortfall probability. We find that this purely
probabilistic based objective is equivalent to maximizing a Hyperbolic
Absolute Risk Aversion utility function with particular parameter values,
thus extending the class of equivalences between utility (i.e. subjective)
and probabilistic (i.e. objective) based portfolio optimization.

11.1 INTRODUCTION

The goal of active portfolio managers is to beat an index, while passive man-
agers track an index. An index, as used here, refers to some specific portfolio
strategy. As such, the goal of the active manager can be restated as to beat
another given portfolio strategy.

In this chapter, the objectives of interest relate to non-standard goal type
objectives. More specifically, for a given investment ‘goal’ and ‘shortfall’ level,
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we consider the objectives of maximizing the probability of achieving the goal
before the shortfall, as well as minimizing the expected time until goal reached.
Such objectives have their roots in the classical work of Dubins and Savage
(1965). This paper deals with dynamic multi-period models in continuous time.
One-period models of active portfolio management are covered in Grinold and
Kahn (1995).

For fixed finite–time horizon problems, the active portfolio problem with
the maximal probability objective has been studied in Browne (1999b, 1999c),
where it was shown that option strategies are optimal but are then very ‘risky’
in the sense that they replicate a binary option.

Alternatively, over an infinite horizon, the maximal probability objective as
well as the minimum time objective both have a constant proportions strat-
egy as the optimal policy (Browne, 1999a). Recall that constant proportions
dictates that the asset mix always be held constant in terms of the proportion
of wealth invested. To implement such a strategy, one needs to sell an asset
after an appreciation and buy after a depreciation. These probabilistic based
objectives are also shown to have an equivalence, for the case of a stationary
coefficient model, to utility based objectives for particular Constant Relative
Risk Aversion (CRRA) utility functions. In spite of these optimality character-
istics, constant proportions is considered ‘too simple’ an idea to be used by
many professional investors.

In this chapter, we consider a goal related objective for the risk/return tradeoff,
where we consider risk to be the shortfall probability, and return to be related
to the time it takes to reach an investment goal. Thus we combine growth and
risk in a single dynamic optimization framework. For our objective, it turns
out that the policy is no longer constant proportions, and provides a framework
that allows explicit consideration of risk-constraints (see Browne (2000b) for a
more mathematical treatment of many of these issues). Moreover, it is related to
optimizing a particular extended Hyperbolic Absolute Risk Aversion (HARA)
utility function.

11.2 SOME BASICS

Our results are stated here in terms of a basic and simple continuous time model,
but a more general framework is provided in Browne (1999a).

Here the investor can split and adjust his wealth dynamically, and without
cost, between a risky stock and a riskless asset (the money market). The price
of the risky stock follows a geometric Brownian motion,

dSt = µSt dt + σStdWt (11.1)

while the price of the riskless asset is given by

dBt = rBt dt (11.2)
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A portfolio allocation (trading) strategy is given by a suitably admissible
integrable process {πt , t ≥ 0}, where the interpretation of πt is the fraction of
wealth invested in risky stock at time t .

The wealth process associated with strategy {πt , t ≥ 0} is denoted for the sequel
by {Xπ

t t ≥ 0}. Observe that this wealth process satisfies (see Merton, 1990)

dXπ
t = πtX

π
t

dSt

St

+ (1 − πt)X
π
t

dBt

Bt

= [r + πt(µ − r)]Xπ
t dt + πtσXπ

t dWt

Observe too that for πt = 0 for all t , we recover the riskless asset X0
t = Bt ,

while or πt = 1 for all t (referred to as the ‘buy and hold’ strategy), X1
t = St .

11.2.1 Constant proportions and optimal growth

For the model under consideration here, a constant proportions strategy is opti-
mal for a variety of objectives, both utility based (see Merton, 1990) as well as
goal based (see Heath et al., 1987 and Browne, 1995, 1997). A constant pro-
portions strategy has πt = π for all t , for some constant π . See Perold and
Sharpe (1988) for an interesting discussion of such strategies from a practi-
tioner viewpoint. Observe that for constant π , wealth Xπ

t , is the geometric
Brownian motion

Xπ
t = X0 · exp

{(
r + π(µ − r) − π2σ 2

2

)
t + πσWt

}
(11.3)

Constant proportions is the optimal portfolio strategy for maximizing expected
terminal utility of wealth, with U(x) = xα for α < 1, or U(x) = ln(x) (Merton
1990). The resulting optimal fractions are (1 − a)−1π∗ and π∗ accordingly,
where the constant π∗ is defined as

π∗ = µ − r

σ 2
(11.4)

It is also well known that for any t , the ‘growth rate’ 1
t
E ln(Xt/X0), is max-

imized by π∗. More pertinent to our interests here, π∗ also minimizes the
expected time to reach any given (upper) investment goal (see Heath et al., 1987
and Browne, 1997). For these reasons, it is sometimes called the ‘optimal
growth’ strategy. (Further optimality properties of π∗ are reviewed in Mer-
ton (1990, chapter 6) and Browne, 1998).

The wealth under the optimal growth strategy π∗ is given by

X∗
t = X0 exp

{(
r + (σπ∗)2

2

)
t + σπ∗Wt

}
(11.5)
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This wealth process is intimately related to the Girsanov martingale for Brow-
nian motion. In particular, for any other strategy {πt , t ≥ 0}, the wealth process
Xπ

t satisfies

E

(
Xπ

t+s

X∗
t+s

∣∣∣∣Ft

)
≤ Xπ

t

X∗
t

−−−→ 0, as t → ∞ (11.6)

Ft is the relevant history at time t , while for any constant π

Xπ
t

X∗
t

= exp

{
−σ 2

2
(π∗ − π)2t − σ(π∗ − π)Wt

}
(11.7)

Equation (11.6) exhibits the supermartingale structure as well as the asymptotic
dominance of the optimal growth of wealth.

This fact is intimately related to the pricing of derivative securities, in that
if there is a contingent claim that will pay g(X1

T ) at time T (recall that X1
t is

the price of the risky stock at time t), then the time t ‘fair’ (Black & Scholes,

1973) price of the contingent claim can be expressed as X0
t E

(
g(X1

T )

X∗
T

∣∣∣∣Ft

)
,

where X0
t is the price of the riskless asset at time t .

11.3 ACTIVE PORTFOLIO MANAGEMENT

The components of the active portfolio management problem are the controlled
wealth process,

dXπ
t = Xπ

t [(r + πt(µ − r)) dt + πtσdW
(1)
t ] (11.8)

as well as a benchmark target process,

dYt = Yt [µY dt + σY dW
(2)
t ] (11.9)

where W(1) and W(2) are two correlated Brownian motions with E(W
(1)
t W

(2)
t ) =

ρt . For example Y could be an exogenous process, such as inflation, or some
other economic index, or the wealth process associated with a trading strategy
that encompasses other assets not included in the investment opportunity set of
the ordinary investor.

The sufficient statistic for our problem is the ratio of the controlled wealth to
the target benchmark, Xπ

t /Yt , which is stochastically equivalent to the process
Zπ

t defined by

dZπ
t = Zπ

t (m(πt) dt + v(πt)dW̃t ) (11.10)
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where the drift function is given by

m(π) = π(µ − r − σ 2β) − (µY − r − σ 2
Y )

and the diffusion function is given by

v2(π) = π2σ 2 + σ 2
Y − 2πσ 2β

where β = ρσY /σ .
For two constants l and u, with l < u, we say that investment goal u reached

at t if Zπ
t = u, and that the shortfall level l reached at t if Zπ

t = l.

• If ρ2 < 1, then the market is ‘incomplete’ and no perfect hedge exists in
the sense of eliminating the variance of the ratio process.

• If ρ2 = 1, and Y is traded, then the ‘no arbitrage’ condition implies that

µ − r

σ
= µY − r

σY

which in turn implies that

µY = r + π(µ − r), and σY = πσ, for some π (11.11)

As noted earlier, it is known that constant allocations strategies are optimal for
many ‘goal’ based objectives. In particular, Browne (1999a) showed that such
strategies are optimal for minimizing the shortfall probability (i.e. maximizing
the probability of reaching goal before shortfall), minimizing the expected time
to reach the goal in the superfair case (also for maximizing the expected time
to reach the shortfall in the subfair case) as well as maximizing (minimizing)
the expected discounted reward (cost) of reaching goal (shortfall). We discuss
some of these results directly.

11.3.1 The incomplete market case: diffusion minimization and
probability maximization

Observe now that choosing πt to pointwise minimize the diffusion function
gives the constant proportions strategy

π
min−diff
t = β

with resulting diffusion parameter v2(β) = σ 2
Y (1 − ρ2). We will call this the

diffusion minimizing strategy.
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From Browne (1997), we know that the probability maximizing strategy (of
reaching the goal before the shortfall) is given by the pointwise maximizer of
the ratio of the drift to the diffusion, i.e.

π
max−prob
t = arg min

πt

m(πt)

v2(πt)

Performing the maximization for this case yields the following constant pro-
portions strategy

πmax−prob = M −
√

M2 + S2 − 2ρSM = M −
√

M2 + S2 − 2βM

where

M = µY − r − σ 2
Y

µ − r − σ 2β
and S = σY

σ

It is of interest now to compare the strategy of the probability maximizer with
that of a diffusion minimizer: in particular, observe that a probability maxi-
mizer invests less than a diffusion-minimizer. This can be seen by noting that
πmax−prob ≤ πmin−diff can be rearranged to give M − β ≤ √

M2 + S2 − 2βM,
and squaring both sides shows that this inequality holds if β2 ≤ S2, which of
course holds by definition, since β2 = ρ2S2.

11.3.2 Minimizing/maximizing expected time

Consider now an investor whose sole interest lies in achieving a given invest-
ment goal (e.g. increase wealth by 10%) in a short a period of (expected) time
as possible, or to maximize the expected time to a given shortfall level. The
solution to the these goal problems depends on the sign of the ‘favourability’
parameter θ , where

θ := 1

2

[
σ 2

Y +
(

µ − r

σ

)2
]

− (µY − r)

Observe that θ is independent of ρ. The interpretation of θ is the difference
between the maximal possible growth rate for an ordinary investor (see e.g.
Merton, 1990, chapter 6), given by 1

2 ((µ − r)/σ )2 – and the growth rate of the
benchmark itself, given by µY − r − σ 2

Y /2.
The ordinary optimal growth strategy, π∗ ≡ (µ − r)/σ 2, is again optimal

for the active portfolio problem with a benchmark, and in particular, if θ > 0,
then π∗ minimizes expected time to goal, while if θ < 0, then π∗ maximizes
expected time to shortfall.
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Worst case (for the benchmark) bounds for many of these goal type problems
can be obtained from the game theoretic analysis of Browne (2000a), who
considered a stochastic differential game between two investors, each of whom
is restricted from investing in the other one’s investment opportunity. The games
have nontrivial values if and only if ρ2 < 1.

11.3.3 Active Portfolio Management: the complete market case with
ρ2 = 1

When ρ2 = 1, the market is complete and as mentioned earlier, to preclude
arbitrage, we must have

µY = r + π(µ − r) and σY = πσ

where π is the ‘benchmark’ strategy.
If the objective is to maximize the probability of beating benchmark return

by a fixed deadline T , then the optimal strategy is to replicate a binary (dig-
ital) option (Browne, 1999b, 1999c), which is risky in the sense it can lead
to substantial shortfalls. The infinite horizon probability maximizing problem
becomes trivial since the investor can reach the goal with probability 1 (so long
as π �= π∗). Similarly, the expected time to the shortfall can be made infinite,
and π∗ will minimize the expected time to goal.

However, there are some significant disadvantages to using the ordinary opti-
mal growth policy π∗ in the active case with a benchmark. In particular, the
optimal growth strategy is independent of the benchmark policy π . More impor-
tantly, for the optimal growth strategy, the probability of reaching the goal
before the shortfall is independent of benchmark policy, as well as any other
parameter of interest.

In particular, recall that the ratio of the optimal growth wealth to the bench-
mark is the geometric Brownian motion

dZt (π
∗, π) = Zt(π

∗, π)[γ dt + (π∗ − π)σdWt ]

where γ = σ 2(π∗ − π)2/2, for which the probability of reaching the goal u

before the shortfall l, starting from z is

θ(z) = u

z

(
z − l

u − l

)

Observe that this is independent of all parameters in the model. The expected
time to exit the strip (l, u) is given by

γ −1
[
θ(z) ln

(u

l

)
− ln

(z

l

)]
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Note that this does depend on the benchmark policy π as well as all other
parameters through the constant γ .

As such, we now move on to consider a new objective which is a linear
tradeoff between shortfall probability and expected time to the goal.

11.4 TRADING OFF RISK AND RETURN IN ACTIVE PORTFOLIO
MANAGEMENT: FRACTIONAL OBJECTIVES

For given constants α and β, consider now an objective that tradeoffs the
expected time to a goal with the probability of a shortfall. Analytically, if τf

is the first escape time from the strip (l, u), then successful escape (in terms
of reaching the goal) is exit through the upper barrier u, and hitting the lower
barrier first, l, results in a shortfall. We are interested in maximizing a linear
tradeoff between these two:

sup
f

{αPz(Z
f

τf = u) − βEz(τ
f )}

where {ft , t ≥ 0} is a control policy. As shown in Browne (2000b), the optimal
portfolio strategy for this objective is no longer constant. In particular, the
optimal portfolio strategy is given by

f ∗(Zt ) = π∗ + (π∗ − π)
b

Zt

(11.12)

where

b = ue−γα/β − l

1 − e−γα/β

Remark 1: Observe that the portfolio strategy f ∗(z) is a state dependent
policy that is inversely modulated by the level of the ratio process Z. The
representation in (11.12) shows that the policy is composed of two parts: first
it just uses the optimal growth policy π∗, and then multiplies the difference
between the optimal growth policy π∗ and the tracking portfolio π by the
correction term b/z. The sign of the correction factor is determined by the sign
of b. Some direct manipulations shows that the sign of b is the sign of

1

γ
ln

(u

l

)
− α

β

We can write this quantity as G∗(l) − α/β, where G∗(l) is the minimal pos-
sible expected time to get from the shortfall level l to the surplus goal u.
Thus b is positive (negative) if the ratio α/β is less (more) than this minimal
expected time.
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Observe further that if b > 0, then the active manager invests more heavily in
the stock than does π∗ so long as the benchmark is underinvested in that stock
relative to the optimal growth policy, i.e. so long as π∗ > π . Finally, note that
we must always have b ≥ −l.

Remark 2: Observe that the optimal policy of (11.12) depends on the bench-
mark through γ = σ 2(π∗ − π)2/2. Furthermore, under this policy, the proba-
bility of reaching the goal before the shortfall is given by

(z − l)(u + b)

(z + b)(u − l)
(11.13)

This follows from the fact that the optimal ratio in this case, Z∗, satisfies

Z∗
t =

(
1 + b

Z0

)
Zt(π

∗, π) − b

Remark 3: A quick check with Merton (1990, Section 5.6, p. 137) reveals
that there is a one-to-one relation between this probabilistic based objective
and optimizing a utility based objective with a particular objective function. In
particular, if the investor wants to maximize the terminal utility of the wealth
to benchmark ratio, i.e.

sup
f

E(U(ZT ))

for the special case of a HARA class utility function given by

U(z) = α ln

(
z + b

l + b

)
/ ln

(
u + b

l + b

)

where b is as above, then the optimal investment policy according to Merton
(1990, 5.49) is given by (11.12). This extends the class of equivalences between
probabilistic based objectives and terminal utility of wealth based objectives as
given in the earlier works of Browne (1995, 1997, 1999a).

11.5 RISK-CONSTRAINED MINIMAL TIME

The results of the previous section can now be applied directly to the active port-
folio management case where the shortfall probability is prespecified. Specifi-
cally, suppose that the shortfall probability is prespecified to the active manager
to be no more than 1 − p, where p is a given number between 0 and 1, i.e. the
active manager is told that he must have Pz(Z

f

τf = l) ≤ 1 − p, or equivalently,
that he must have Pz(Z

f

τf = u) ≥ p. The risk-constrained active portfolio man-
agement problem is now to minimize the expected time to beat the benchmark



Balancing growth and shortfall probability 267

subject to a constraint on the shortfall probability, specifically, to find the strat-
egy {f ∗

t , t ≥ 0} that minimizes E(τf ) subject to P (Z
f

τf = u) ≥ p, where p is
a given number in (0, 1). This is now related to the gambling problem first
solved in Gottlieb (1985). Following Gottlieb, we observe first that the dual
of the risk-constrained active portfolio management problem is to maximize
the probability that P (Z

f

τf = u) subject to a constraint on E(τf ). Moreover,
observe that should a solution exist, then the constraint will be met at equality,
and so we would have P (Z

f

τf = u) = p.
The dual of this problem is

sup
f

[Pz(Z
f

τf = u) − βEzτ
f ] (11.14)

where now β is Lagrangian multiplier.
From the risk-constraint (met at equality), we can determine β, or equiva-

lently b.
When we perform the computations, we find that the optimal strategy is

again given by f ∗(z) of (11.12), but now with a different b, namely now with
b = b̃, where

b̃ = pZ0(u − l) − u(Z0 − l)

Z0 − l − p(u − l)
(11.15)

where Z0 is the initial value of the ratio.
Remark 4: The risk-constrained problem is feasible only for an initial prob-

ability level p that satisfies

p >
Z0 − l

u − l

Observe that for p = 1, b̃ reduces to b̃ = −l, which makes the lower bar-
rier l unattainable as in many ‘portfolio insurance’ models (see Black and
Perold, 1992 and Browne, 1997). The insurance level b̃ is positive for values
of p satisfying

Z0 − l

u − l
< p <

u

Z0

(
Z0 − l

u − l

)

and b̃ is negative for larger values in the region

p >
u

Z0

(
Z0 − l

u − l

)
≡ θ(Z0)

where θ(Z0) is the initial probability that the optimal growth wealth/ratio hits
u before l. Thus, as intuition suggests, to have a higher ‘success’ probability
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than the optimal growth strategy, the active portfolio manager must take less
risk and invest less (since b̃ < 0) than the ordinary optimal growth investor.
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Chapter 12

Assessing the merits of rank-based
optimization for portfolio construction

SOOSUNG HWANG, STEPHEN E SATCHELL AND STEPHEN
M WRIGHT

ABSTRACT

The purpose of this chapter is to assess the merits of portfolio con-
struction based on optimizations using rank information on asset
returns. We carry out simulations and some historical calculations
based on UK FTSE100 stocks. We find conclusive evidence of
enhanced portfolio construction using these methods, in particular, in
terms of reducing turnover and avoiding extreme short positions.

12.1 INTRODUCTION

Practitioners have used rank information to construct robust measures of
expected asset returns for some time. These methods have recently been
advocated in a formal setting (see Chapter 2). There are a number of advantages
of this method. For example, it is possible to construct more stable portfolios due
to reduced sensitivity to a small number of outliers as well as the well-known
robustness of rank statistics. Similar results are well-known in the statistics
literature. Gideon and Hollister (1987) showed how a rank correlation coefficient
is resistant to outliers relative to the Pearson, Spearman, and Kendall correlation
coefficients. Readers interested in statistics research should look for such notions
as quintile regression; for example, Koenker and Bassett (1978, 1982) and
Taylor (1999).

The purpose of our study is to assess the benefits of using ranks instead
of returns using both simulation and historical studies. In the next Section, we
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present our model of analysis. We show how to obtain the optimal rank portfolio
and calculate the investment weights for the portfolio. Then in Section 12.3 the
empirical results are shown and discussed. We find some interesting properties
of the rank optimal portfolio. First, as expected, for a given portfolio return, the
optimal rank portfolio is less efficient in the return mean-variance space than
the optimal mean-variance (MV) return portfolio. This is a disadvantage of
using ranks instead of returns. However, we find that the optimal rank portfolio
is more stable than the optimal return portfolio. The gearing ratio, defined as
the sum of absolute weights of the portfolio, and the changes of weights over
time of the optimal rank portfolio are both far less than those of the optimal
MV return portfolio. For example, if we try to maintain the optimal portfolio’s
expected return at the average return of the FTSE All-share index over the
last 10 years, we find that the optimal rank portfolio’s gearing ratio is less
than 200% and the changes in the investment weights are less than 100%.
These numbers are far less than those of the optimal return portfolio which
shows amounts of 400%–1000% and 100%–800%, respectively. The unstable
movement in the gearing ratio and the changes in weights for the optimal
return portfolio are another disadvantage of conventional techniques. When we
impose non-negativity constraints on the weights (i.e. short positions are not
allowed), numerically optimized results show that the optimal rank portfolio is
still more stable, despite the fact that the difference between the optimal return
and rank portfolios is not so high. We also find that when we increase the
number of M-tiles, the optimized rank portfolio performs better in all ways;
increased expected returns with smaller standard deviation, smaller but more
stable changes in the weights over time.

In Section 12.4, we conclude our study by noting that there exists a tradeoff
between portfolio stability and robustness versus MV efficiency. If efficiency
in the traditional MV world is preferred, then using ranks may not be a good
procedure because the optimal rank portfolio is not efficient. However, we still
have to consider that efficiency cannot be attained in practice due to the restric-
tion on short positions, not to mention the large number of other restrictions
that institutional investors face. Our study shows that the optimal rank portfolio
may be a good alternative for institutional investors who have (a) constrained
weights and (b) clients who will not tolerate high turnover.

12.2 OPTIMAL PORTFOLIO WITH RANKS

Suppose that there are N assets available to make a portfolio. The conventional
method is to use historical returns to obtain the optimal portfolio; that is, to cal-
culate the optimal portfolio that minimizes variance for a given portfolio return.
However, the investment weights of the optimal portfolio are very sensitive to
changes in returns and thus the weight vector changes over time significantly.
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In addition, in the conventional MV analysis there is no restriction on short
and long positions and thus some assets can be several hundred per cent short-
positioned whilst some others can be several hundred per cent long-positioned.
These highly geared positions and dramatic changes in investment proportion
have been important reasons why practitioners frequently avoid MV analysis.

In this Section we shall show how to construct the optimal portfolio using
ranks which, we believe, is less noisy. We expect that any portfolio calculated
with ranks is less geared than the equivalent portfolio calculated with returns.

12.2.1 Mean and variance–covariance matrix of ranks

Suppose that we are going to rank the N assets according to their returns
and assign those assets to M rank-portfolios. That is, we rank the assets and
assign 1 to M according to the size of returns at each time. M is a natural
number, and 2 ≤ M ≤ N . Since we rank asset returns in descending order, the
stocks ranked in the first represents higher returns than the other stocks. Thus
each asset belongs to j th rank-portfolios, j = 1, 2, . . . , M. Let the (N × 1)

rank vector at time t be denoted by Rt . Then the (N × 1) expected rank and
the (N × N) variance–covariance matrix of ranks can be denoted by µR and
�R , respectively. The mean vector and the variance–covariance matrix can be
calculated by the usual method once Rt, t = 1, 2, . . . , T , is obtained. That is,
the sample mean vector of assets’ ranks is

µ̂R = 1

T

T∑
t=1

Rt (12.1)

and the sample variance–covariance matrix of assets’ ranks �̂R,is estimated by

�̃R = 1

T − 1

T∑
t=1

(Rt − µ̂R)(Rt − µ̂R)
′

(12.2)

We can also calculate the rank probability matrix that the ith asset is ranked
to the j th rank-portfolio. Let the (N × M) rank probability matrix denoted by
PR. Then the ij th element of the matrix shows the probability that asset i is in
M-tile j . The sample rank probability matrix, P̂R, can be computed by

P̂R = 1

T

T∑
t=1

IRt (12.3)

where IRt is the (N × M) indicator matrix whose ij th element is one when the
ith element of the vector Rt is j , and zero otherwise.
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12.2.2 The optimal rank portfolio

One important property of the rank variance–covariance matrix �R is that the
matrix is singular. This is because once we know ranks of any N − 1 assets,
the last asset’s rank will be known automatically. Thus the dimension of the
null space is 1. Since any matrix that is singular cannot be inverted, �R cannot
be used to derive the optimal portfolio in the usual way.

There are a few methods to solve this problem. In this study we simply use
randomly selected N − 1 assets. By omitting one asset, the optimal rank port-
folio we calculate cannot be the efficient frontier. However, when N becomes
large, the difference becomes trivial.

Let �R,N−1 be the (N − 1) × (N − 1) rank variance–covariance matrix for
the randomly selected N − 1 assets and the (N − 1) weight vector be denoted
by wR,N−1. Then the problem for the investor reduces to solving the following
quadratic program:

min
w

1

2
w′

R,N−1�R,N−1wR,N−1

s.t.µp

R = w′
R,N−1µR,N−1

1 = w′
R,N−1e (12.4)

where µ
p

R is the expected rank of the optimal portfolio, µR,N−1 is the (N − 1) × 1
vector of the expected ranks of the N − 1 assets, and e is an (N − 1) × 1 vector
of ones. We allow negative elements in vector wR,N−1 (short sales are allowed)
and thus the range of expected ranks on feasible portfolios is unbounded.

Using the Lagrangian multiplier, we obtain

W
p

R,N−1 = λ�−1
R,N−1e + ν�−1

R,N−1µR,N−1 (12.5)

where

ν = Aµ
p

R − B

AC − B2

λ = C − Bµ
p

R

AC − B2
(12.6)

and

A = e′�1
R,N−1e

B = e′�1
R,N−1µ

C = µ′�1
R,N−1µ (12.7)

Note that the optimal weight vector (12.5) provides only N − 1 weights,
although N assets are used to calculate the N × N rank variance–covariance
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matrix. If we want to obtain the weight vector for the optimal rank portfolio
using a specific set of N∗ assets, one additional asset should be included as
the last (N∗ + 1) element and then calculate the vector of expected rank and
(N∗ + 1) × (N∗ + 1) rank variance–covariance matrix for the N∗ + 1 assets.
Finally, the optimization problem in (12.4) can be solved with the first N∗ assets
as in (12.5). For the MV analysis for returns, since the variance–covariance
matrix of returns can be assumed non-singular, we can use all N asset returns
and our problem can be represented as the following quadratic programe:

min
w

1

2
w′�w

s.t.µR = w′µ

w′e = 1 (12.8)

where µ and � are the expected return vector and variance–covariance matrix
for returns, respectively. Using the same method as in the above, we have

wp = λ�−1e + ν�−1µ (12.9)

where

ν = Aµp − B

AC − B2

λ = C − Bµp

AC − B2
(12.10)

and

A = e′�−1e

B = e′�−1µ

C = µ′�−1µ (12.11)

12.3 EMPIRICAL TESTS

To investigate the difference between the portfolio based on returns and our
rank-based portfolio, we use simulations. We first randomly select 50 stocks
from FTSE100 constituents; N = 50. The sample period is from August 1991
to July 2001.

12.3.1 Properties of ranks

For the selected 50 stocks, the mean and variance–covariance for the returns are
calculated. These estimates are assumed to be the true values in the simulations.
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The first two columns of Table 12.1 show the mean and standard deviation of
the selected stocks.1 We then generate 10 000 returns for each stocks from the
sample (true) mean and variance–covariance matrix calculated in the previous
step; T = 10 000. Columns 3 and 4 of Table 12.1 report the estimated mean and
standard deviation of 10 000 returns. Note that the estimates are pretty close to
the true values in the first two columns.

We note that there are two major differences between the true and sample
returns. The first is that the sample returns generated as described are now
normally distributed. The true returns may not be normal, but the generated
returns are normal. Using the same method, we can also make the sample returns
with some other choice of probability density function (pdf). By controlling the
pdf of returns, we can investigate the performance of using ranks instead of
returns. The second difference between the true and sample returns is that in the
sample returns there is no serial autocorrelation, whilst in the true returns there
may exist some significant autocorrelation. Any possible serial autocorrelation
structure is disregarded in the sample returns.

The next step is to calculate the rank probability, PR. In the simulations, we
assume 10 possible states, i.e. M = 10, and for all 50 stocks we have 50 × 10
vector of states. The numbers of times that each stock belongs to the states are
then counted for the generated 10 000 returns, and the numbers are divided by
10 000 to obtain the probabilities. See Equation (12.3). For each stock we have a
1 × 10 rank probability row vector and thus for all 50 stocks, a 50 × 10 matrix.
Columns 5 to 14 of Table 12.1 report the results. Each row represents each
stock and each column (rank) represents probabilities that the stock belongs to
the rank on the top of the column. Note that the 50 stocks are listed in ascending
order in their true mean returns.

When standard deviations of the stock returns are equal, we expect the prob-
ability that a stock, whose expected return is small, belonging to the 10th rank
to be smaller than the probability that a stock, whose expected return is large,
belonging to the 10th rank, and vice versa. However, in many cases, this is not
what we find in the Table 12.1 and the results in the table show that standard
deviations are important. For example, when standard deviations are large as in
the 1st and 42nd stocks, we can see that the last and first and last rank proba-
bilities become large, suggesting that large swings in the stock returns tend to
make the rank of these stocks take the first or the last.

With the returns calculated in the previous step, we ranked the equities and
assigned 1 to 10 according to the size of returns at each time. Since we rank
stock returns in ascending order, higher ranks represent higher returns. Using
Equations (12.1) and (12.2), we calculate the mean vector of stocks’ ranks and
the variance–covariance matrix of stocks’ ranks; see the last two columns of
Table 12.1 for the mean and standard deviation of the ranks. The mean ranks



Table 12.1 Simulation results on rank

Selected stock
10 000 simulation

results Rank statistics

True True Sample Sample
Probability

Rank Rank
Stock mean STD mean STD 1 2 3 4 5 6 7 8 9 10 mean STD

1 −1.66% 18.55% −1.65% 18.79% 0.28 0.10 0.07 0.06 0.05 0.05 0.06 0.07 0.08 0.17 4.95 3.50
2 −1.33% 15.00% −1.37% 15.07% 0.22 0.12 0.09 0.07 0.07 0.07 0.07 0.08 0.08 0.12 4.90 3.23
3 −0.46% 10.68% −0.40% 10.63% 0.13 0.12 0.11 0.10 0.10 0.09 0.10 0.09 0.08 0.08 5.07 2.89
4 −0.44% 10.91% −0.44% 10.91% 0.12 0.12 0.11 0.11 0.10 0.10 0.09 0.09 0.08 0.07 5.03 2.78
5 −0.34% 11.66% −0.38% 11.62% 0.13 0.12 0.11 0.10 0.10 0.10 0.09 0.09 0.08 0.08 5.08 2.87
6 −0.22% 10.39% −0.10% 10.39% 0.09 0.12 0.12 0.11 0.11 0.11 0.10 0.10 0.09 0.05 5.13 2.68
7 0.21% 10.58% 0.38% 10.49% 0.07 0.12 0.13 0.11 0.11 0.11 0.11 0.11 0.09 0.05 5.27 2.65
8 0.33% 8.83% 0.19% 8.72% 0.08 0.11 0.12 0.12 0.12 0.11 0.11 0.09 0.08 0.06 5.21 2.65
9 0.35% 13.08% 0.25% 13.08% 0.16 0.11 0.10 0.09 0.08 0.07 0.08 0.09 0.10 0.13 5.29 3.12

10 0.38% 9.06% 0.43% 9.11% 0.11 0.11 0.10 0.11 0.11 0.10 0.10 0.09 0.09 0.09 5.29 2.84
11 0.49% 8.83% 0.43% 8.83% 0.12 0.11 0.10 0.10 0.10 0.09 0.09 0.09 0.10 0.09 5.29 2.93
12 0.52% 10.68% 0.50% 10.58% 0.12 0.11 0.10 0.09 0.10 0.09 0.10 0.10 0.09 0.10 5.34 2.96
13 0.58% 13.27% 0.58% 13.23% 0.15 0.12 0.09 0.09 0.08 0.08 0.08 0.09 0.11 0.12 5.35 3.12
14 0.58% 13.23% 0.36% 13.19% 0.13 0.12 0.10 0.09 0.09 0.09 0.09 0.09 0.10 0.10 5.30 3.00
15 0.64% 7.07% 0.68% 7.14% 0.07 0.11 0.11 0.12 0.11 0.11 0.11 0.10 0.09 0.06 5.34 2.64
16 0.65% 10.15% 0.65% 10.05% 0.11 0.11 0.10 0.10 0.10 0.10 0.10 0.10 0.09 0.10 5.37 2.88
17 0.73% 9.49% 0.73% 9.38% 0.07 0.10 0.11 0.11 0.12 0.11 0.12 0.10 0.09 0.06 5.39 2.62
18 0.84% 9.54% 0.87% 9.54% 0.08 0.11 0.11 0.10 0.11 0.11 0.11 0.11 0.10 0.07 5.44 2.75
19 0.88% 14.14% 0.87% 14.21% 0.16 0.11 0.09 0.07 0.07 0.07 0.08 0.09 0.11 0.15 5.43 3.22
20 0.97% 10.20% 0.93% 10.20% 0.08 0.10 0.11 0.11 0.11 0.11 0.11 0.10 0.10 0.08 5.46 2.76
21 1.03% 6.86% 0.92% 6.86% 0.03 0.08 0.12 0.14 0.14 0.15 0.13 0.11 0.07 0.03 5.43 2.27
22 1.05% 9.06% 1.17% 9.17% 0.09 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 5.52 2.85
23 1.07% 9.54% 1.06% 9.49% 0.08 0.10 0.10 0.10 0.11 0.10 0.10 0.10 0.10 0.09 5.48 2.80
24 1.12% 10.10% 1.21% 10.15% 0.09 0.10 0.10 0.10 0.11 0.10 0.11 0.10 0.10 0.09 5.53 2.82
25 1.14% 8.25% 1.04% 8.19% 0.08 0.10 0.11 0.11 0.12 0.12 0.10 0.10 0.10 0.08 5.48 2.71

(continued overleaf )



Table 12.1 (continued)

Selected stock
10 000 simulation

results Rank statistics

True True Sample Sample
Probability

Rank Rank
Stock mean STD mean STD 1 2 3 4 5 6 7 8 9 10 mean STD

26 1.17% 8.49% 1.08% 8.54% 0.07 0.10 0.11 0.11 0.12 0.11 0.11 0.11 0.10 0.07 5.50 2.67
27 1.18% 10.86% 1.14% 10.86% 0.11 0.11 0.10 0.10 0.09 0.09 0.09 0.10 0.11 0.10 5.50 2.93
28 1.23% 15.81% 1.30% 15.87% 0.20 0.10 0.07 0.06 0.06 0.06 0.06 0.07 0.10 0.21 5.55 3.46
29 1.23% 8.31% 1.25% 8.25% 0.10 0.10 0.10 0.10 0.10 0.09 0.10 0.11 0.11 0.10 5.54 2.87
30 1.29% 6.56% 1.34% 6.48% 0.05 0.08 0.11 0.13 0.12 0.14 0.12 0.11 0.09 0.05 5.58 2.48
31 1.34% 9.06% 1.35% 9.17% 0.04 0.10 0.12 0.11 0.11 0.11 0.11 0.12 0.12 0.05 5.57 2.57
32 1.39% 7.62% 1.32% 7.62% 0.03 0.08 0.11 0.13 0.14 0.14 0.13 0.11 0.09 0.04 5.58 2.34
33 1.60% 6.24% 1.56% 6.16% 0.03 0.07 0.10 0.13 0.14 0.15 0.14 0.12 0.09 0.04 5.64 2.31
34 1.61% 15.46% 1.69% 15.59% 0.17 0.11 0.08 0.07 0.06 0.06 0.07 0.08 0.11 0.19 5.64 3.35
35 1.63% 10.44% 1.60% 10.30% 0.11 0.10 0.09 0.09 0.09 0.09 0.09 0.10 0.10 0.13 5.63 3.00
36 1.68% 7.07% 1.59% 7.07% 0.04 0.08 0.10 0.12 0.13 0.14 0.13 0.12 0.09 0.05 5.67 2.39
37 1.75% 7.87% 1.68% 7.87% 0.07 0.09 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.10 5.69 2.77
38 1.81% 7.28% 1.66% 7.28% 0.04 0.08 0.10 0.12 0.12 0.13 0.13 0.11 0.10 0.06 5.69 2.49
39 1.83% 7.48% 1.67% 7.55% 0.07 0.10 0.10 0.11 0.10 0.11 0.11 0.11 0.11 0.09 5.67 2.75
40 1.84% 10.15% 1.70% 10.05% 0.08 0.09 0.10 0.10 0.10 0.11 0.11 0.11 0.10 0.10 5.68 2.75
41 1.99% 6.40% 1.94% 6.48% 0.02 0.07 0.10 0.12 0.14 0.14 0.15 0.13 0.10 0.04 5.78 2.29
42 2.05% 17.23% 2.13% 17.32% 0.20 0.09 0.07 0.06 0.06 0.06 0.06 0.07 0.10 0.24 5.68 3.52
43 2.10% 9.75% 2.14% 9.70% 0.07 0.09 0.10 0.09 0.10 0.10 0.11 0.11 0.12 0.10 5.79 2.81
44 2.19% 11.09% 2.13% 11.18% 0.06 0.10 0.11 0.10 0.09 0.10 0.10 0.12 0.14 0.09 5.80 2.79
45 2.25% 8.06% 2.30% 8.12% 0.06 0.08 0.10 0.10 0.11 0.11 0.11 0.11 0.12 0.10 5.87 2.73
46 2.39% 9.11% 2.23% 9.11% 0.06 0.08 0.09 0.10 0.11 0.11 0.11 0.12 0.12 0.09 5.86 2.67 Average
47 2.65% 10.91% 2.55% 10.86% 0.10 0.09 0.08 0.09 0.08 0.09 0.09 0.10 0.12 0.15 5.89 3.02 Average rank
48 2.85% 14.49% 2.83% 14.53% 0.13 0.10 0.08 0.07 0.07 0.07 0.07 0.09 0.12 0.20 5.92 3.26 correlation correlation
49 2.89% 14.07% 2.89% 14.21% 0.10 0.09 0.09 0.08 0.08 0.08 0.09 0.10 0.13 0.16 5.98 3.07 0.98668 0.923985
50 2.99% 16.09% 2.95% 16.12% 0.16 0.10 0.07 0.06 0.06 0.06 0.07 0.08 0.11 0.23 5.89 3.40 0.986316 0.923253

Notes: The results are obtained with 10 000 samples generated with the true mean and variance–covariance matrix.
The true means and standard deviations are calculated with 50 randomly selected stocks in the FTSE100 Index.
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are highly correlated with the mean returns in the first and third columns. For
both cases, the estimated correlation coefficients are around 0.98. We find that
the correlation coefficient between the standard deviations of returns and the
ranks is high as well, i.e. 0.92. Therefore, the rank variables are not exactly the
same as returns, but retain very similar information to returns. Figure 12.1(a)
shows the relationships between return and return standard deviation as well as
the relationship between rank and rank standard deviation. The mean returns are
not always explained by total risk (standard deviation) except in several cases.
We can also see a similar pattern in the mean-standard deviation of ranks in
Figure 12.1(b).

12.3.2 The optimal rank portfolio: short sale allowed

We next calculate the optimal weight vectors for given expected ranks as
explained in Equation (12.5). As explained in the previous section, once we
obtain ranks of N stocks from the returns of N stocks, the first N − 1, stocks’
ranks are used to calculate the (N − 1) × 1 mean rank vector and the (N − 1) ×
(N − 1) rank variance–covariance matrix.

In order to compare the rank optimal portfolio with the return optimal port-
folio, we calculate the weight vector for the rank and return portfolios for given
expected returns. That is, the optimal rank weight vector is also used to cal-
culate expected returns which in turn are used to calculate the optimal return
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portfolio weight as described in Equation (12.9). Thus, the optimal return port-
folios are comparable with the optimal rank portfolios if they show the same
expected returns.

Figure 12.2 shows that the frontier portfolios calculated with ranks are not
optimal since they are located to the right of the Markowitz efficient frontier.
The difference between them does not seem to be trivial. This means that when
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we use the optimal rank portfolio for investment, we expect that the portfolio
is far from the optimal portfolio in the conventional Markowitz MV world, and
if all our decisions were for one period. The investor would need to weigh the
disadvantages of reduced theoretical efficiency against the wider diversification
and potentially more intuitive tilts of a rank optimized portfolio.

Figures 12.3(a) and 12.3(b) show the investment proportions for the 50 stocks
for three given portfolio returns. The investment proportions calculated with
ranks are much smaller than those calculated with returns for all three cases.
Other investment weight vectors for different portfolio returns also show the
same pattern. Figure 12.4 summarizes the results. In Figure 12.4, we calculate
the sum of the absolute weights for different expected returns (ranks). The figure
shows that the gearing ratios of the optimal return portfolios are always larger than
those of the optimal rank portfolios. In addition, the gearing ratios are smallest
when the expected return of the portfolios is close to the monthly average market
return of the sample period; during the sample period, i.e. August 1991 to July
2001, the average monthly return of the FTSE All-share Index was 0.93%.

We further investigate the gearing ratios over time using the rolling windows
method. For the above 50 stocks from the constituents of the FTSE100 index
we have 120 monthly returns from August 1991 to July 2001 for each of them.
Then using the first 60 monthly returns and ranks from August 1991 to July
1996, the optimal weights are calculated as in (12.5) and (12.9) for ranks and
returns, respectively. Note that the first 49 stocks are used for the calculation of
the weights of the rank optimal portfolio. We then repeat the same procedure
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Figure 12.4 Gearing ratios of the optimal return and rank portfolios without non-negative
constrains on investment weights

again using the next 60 observations from September 1991 to August 1996, and
so on. Every month we calculate the gearing ratio by taking sum of the absolute
values of the weights. Figures 12.5(a) and (b) report the gearing ratios from July
1996 to July 2001 of the optimal return and rank portfolios for given portfolio
returns. As expected in Figure 12.4, for all five portfolio returns from −0.4 to
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Figure 12.5(a) Gearing ratio of the optimal portfolio calculated with mean return and return
variance–covariance matrix without non-negative constraints on investment weights
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Figure 12.5(b) Gearing ratio of the optimal portfolio calculated with mean rank and rank
variance–covariance matrix without non-negative constraints on investment weights

2.8%, the gearing ratios in the optimal portfolio weights are far less in the rank
portfolios than in the return portfolios. If we try to maintain the return based
optimal portfolio with 1.2% a month for example, our gearing ratio ranges from
400% to 1000% of our investment amount, which is unattainable in practice.
On the other hand, the gearing ratios of the optimal rank portfolio with 1.2% a
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month are less than 200%. These gearing ratios are relatively small. If we were
to make the portfolio implementation more realistic by imposing sector and
stock constraints, we would expect reduction in both cases. For a long–short
fund, a gearing ratio of about 200% would be consistent with 150% long and
50% short.

Finally, we further investigate changes in the investment weights over time
using the rolling windows method. Even though the gearing ratios of the rank
portfolio above are relatively small, if the changes in the weights are large over
time, a fund manager cannot maintain the optimal rank portfolio because of large
trading costs. Clients will believe, possibly unfairly, that the portfolio is being
‘churned’. Using the same procedure we calculate changes in the investment
weights and take sum of the absolute value of the changes.

Figures 12.6(a) and (b) report the changes from July 1996 to July 2001 of
the optimal return and rank portfolios for given portfolio returns. As expected
in Figures 12.4 and 12.5, for all five portfolio returns from −0.4% to 2%,
the changes in the optimal portfolio weights are far less in the rank portfolios
than in the return portfolios. If we try to maintain the return based optimal
portfolio with 1.2% a month for example, we should change 50% to 1000%
of our investment amount every month, most of which would be impossible
in practice. On the other hand, the optimal rank portfolio with 1.2% a month
requires less than 100% of changes every month. These changes are relatively
small, but still seem to be too large to be used in practice. However, the interest
of the results rests in their relative, not absolute, magnitude.
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Figure 12.6(a) Changes in weights of the optimal portfolio calculated with mean return and
return variance–covariance matrix without non-negative constraints on investment weights
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Figure 12.6(b) Changes in weights of the optimal portfolio calculated with mean rank and rank
variance–covariance matrix without non-negative constraints on investment weights

Another property we find in the changes in weights is that the changes in
the optimal rank portfolio are relatively stable to those in the optimal return
portfolio. This may provide useful information for a fund manager who wants
to avoid large changes in trading activity if the fund manager is also asked to
reduce tracking error. See Hwang and Satchell (2001) for the effects of dynamic
trading activity on the ex post tracking error. The results in this section show that
using ranks instead of returns can reduce the amount of short sales and thus the
gearing ratio. Also the optimal rank portfolio requires that the optimal weights
need to be changed less often than those required by the optimal return portfolio.
However, we note that the results are possible by increasing risk measured by
variance of return but reduced risk measured by degree of diversification. That
is, in Figure 12.2 the optimal rank portfolios are not MV efficient measured
by returns.

12.3.3 The optimal rank portfolio: short sale not allowed

Another interesting question is what happens when short sales are not allowed.
In this case we do not have analytic results as we have in Section 12.2. The
optimization needs to be carried out numerically. The calculation is not simple
because we need all weights to be non-negative and also the sum of the weights
to be one.
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We have the following maximization problem for the optimal rank portfolio:

max
wR

w′
RµR − λRw′

R�RwR

s.t.1 = w′
Re

wi
R ≥ 0, ∀i (12.12)

where wi
R is the ith element in the weight vector wR and λR is a positive

parameter. On the other hand, for the optimal return portfolio, we have

max
w

w′µ − λw′�w

s.t.1 = w′e

wi ≥ 0, ∀i (12.13)

where wi is the ith element in the weight vector w and λ is a positive parameter.
The choice of λ and λR is important. For plausible values of λ, Grinold

(1996) suggested 120 to 220 for the US market; see Damant et al. (2000) for
the UK market. However, there is no research on the values of λR so far. In
this study we use various values of λ and λR, e.g. from 1 to 1000.

Figure 12.7 plots the mean and standard deviation of the optimal return and
rank portfolios for given values of λ and λR. The figure is obtained with the same
data we used for Figure 12.2; that is mean and variance–covariance matrix of
the sample returns and rank generated in Section 12.3.1. For the values of λ for
the optimal return portfolio, the figure shows that unless λ is very small, e.g. 10
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Figure 12.7 Mean-variance frontiers with returns and ranks with non-negative constraints



Assessing the merits of rank-based optimization for portfolio construction 285

or 50, the choice of λ does not affect the MV relationship; see for the cases
that λ > 50. On the other hand, the figure also shows that when λR > 100, there
is little difference in MV space. Only when λR is small, e.g. less than 10, we
find that there are some changes. Note that during the sample period, the FTSE
All-share index returns show 0.93%, suggesting the values of λ and λR should
be much larger than 1000.

Another relevant finding is that when λ and λR are large, the optimal invest-
ment weights show little difference for different values of λ and λR e.g. 100
and 1000. Therefore, in this study we arbitrarily select λ = 200 and λR = 10,
both of which give the same portfolio return 1.26%. Finally Figure 12.7 shows
that the optimal return portfolios are always more efficient than the optimal
rank portfolio.

Since there are now non-negativity constraints on the weights, we don’t need
to calculate the gearing ratio; the ratio is always one. Instead, in Figure 12.8(a)
and (b) we show the weights of the optimal return and rank portfolios for given
portfolio return, i.e. 1.26%. Figure 12.8 obtained with non-negativity constraints
can be compared with Figure 12.3 without such constraints. The figure suggests
that the optimal rank portfolio consists of all 50 stocks and weights are around
0.02. However, the optimal return portfolio consist of far less than 50 stocks
and weights are also very different for different stocks. The wide variety of
weights is expected to reduce the portfolio variance for the given return, but at
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Figure 12.8(a) Invesment proportion for given portfolio returns calculated with returns in the
presence of non-negativity constraints
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Figure 12.8(b) Invesment proportion for given portfolio returns calculated with ranks in the
presence of non-negativity constraints

Note: λ = 10 for the rank portfolio and λ = 200 for the return portfolio provide the same.

the same time it also implies that the optimal weights may change dramatically
over time.

For Figures 12.9(a) and (b), we use the rolling windows method for the same
data we used in the previous section. The comparable figure without the non-
negativity constraints can be found in Figure 12.6. Figure 12.9 suggests that
the weights of the optimal portfolios calculated with returns and ranks show far
less changes in weights over time than those without non-negativity constraints
in Figure 12.6, especially in the weights of the optimal portfolio calculated
with returns. All of the changes are less than 60%. However, the optimal rank
portfolio requires fewer changes than the optimal return portfolio. The mean of
the changes over the 61 months is 16.3% for the rank portfolio, whilst the same
for the return portfolio is 19.7%. In addition, the changes of the weights of the
return portfolio are more volatile than those of the rank portfolio.

12.3.4 The effects of the number of the rank portfolio

Although the detailed results are not reported, we also used two different values
of M, the number of rank portfolios, i.e. M = 5 and 50, and repeated all the
calculations in the previous section. What we found is that as M increases, we
have the better optimal rank portfolio in various aspects both with and without
the non-negativity constraints. The results suggest that we should use M = N

for best results.
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Note: The average values of the changes over 61 months for the optimal return and rank portfolios.
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Table 12.2 The effects of different numbers of rank portfolios (M) in the presence of
non-negativity constraints

Optimal Return
Portfolio

(lambda = 200)

Optimal Rank
Portfolio

(lambda = 10)

when M = 5

Optimal Rank
Portfolio

(lambda = 10)

when M = 10

Optimal Rank
Portfolio

(lambda = 10)

when M = 50

Average Value of the
Optimal Portfolio Returns

1.276% 1.044% 1.145% 1.306%

Standard Deviation of the
Optimal Portfolio Returns

2.515% 3.740% 3.696% 3.688%

Changes in Weights of the
Optimal Portfolio

19.663% 17.934% 16.319% 8.408%

Standard deviation of the
Changes in Weights of
the Optimal Portfolio

13.904% 11.424% 9.325% 6.453%

Notes: The numbers above are average and standard deviation of 61 monthly results.

Some of the interesting findings with the non-negativity constraints are sum-
marized in Table 12.2. Note that the first column of Table 12.2 serves as the
benchmark calculated with returns and λ = 200. When the number of rank port-
folios are increased, i.e. as M → N , the effects on the return MV space become
better slowly in the sense that the optimal rank portfolio with a large M has
larger average means but less standard deviation than the optimal rank portfolio
with a small M; see the first two rows of Table 12.2. However, any change in
M does not give similar average returns and standard deviation to those of the
optimal return portfolio in the first column. In addition, as we saw in the above,
any different choice of λR does not allow the optimal rank portfolio to attain
the level of the optimal return portfolio.

The second point is that for given values of λR , when M is large, changes in
weights of the optimal rank portfolio decrease dramatically, whilst the standard
deviation of the changes becomes smaller. Note that the changes in weights
over time decrease from 17.9% (M = 5) to 8.4% (M = 50). The smaller value
of the standard deviation of the changes may be another benefit as explained
above. Actually, as M increases, the optimal rank portfolio becomes closer to
an equally weighted portfolio, suggesting that the optimal rank portfolio is less
sensitive to big changes of a small number of stock returns.

12.4 CONCLUSIONS

In this study, we evaluated the merits of using ranks instead of returns using real
data. We found that the portfolios based on ranks had decreased MV efficiency
taken in a one period context. However, the rank based risk measures were
found to be far more reliable out of sample, resulting in far lower turnover
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than that for the return based portfolio optimization. In addition, they exhibited
fewer short positions and lower turnover than the portfolios based on returns.
We conclude that such portfolios have a useful role in implementation as their
multi-period running costs will be low. We did not investigate non-normality
in this study. We expect further gains to be made if some of our assets are
derivatives.
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Chapter 13

The mean-downside risk portfolio frontier:
a non-parametric approach

GUSTAVO M de ATHAYDE

ABSTRACT

In contrast to the classical Markowitz portfolio frontier, downside risk
optimization deals with a positive definite matrix that is endogenous
to portfolio weights. This aspect makes the problem far more difficult
to handle. For this purpose, a simple algorithm was developed by
Athayde (2001) that ensures the convergence to the solution is pre-
sented. However, due to some properties of this frontier, when we
have a finite number of observations, the portfolio frontier presents
some discontinuity on its convexity. In order to overcome that, kernel
estimations of the returns were used, creating a smoother portfo-
lio frontier. In this sense, the former algorithm is generalized, and the
properties of this improved portfolio frontier carefully analysed. Finally,
a new version of the Lower Partial Moment CAPM is presented to deal
with kernel estimates.

13.1 INTRODUCTION

The main criticism to variance and volatility as measures of risk is, in essence,
that they make no distinction between gains and losses. In fact, in Markowitz’s
original work (1955) he argues for other measures of risk. Two ways were sug-
gested. The first would be to include higher moments. This has been approached
by a few authors like Ingersoll (1975), and Kraus and Litzenberger (1976),
among others. However the complete formal characterization of the portfo-
lio frontier with higher moments has not been done since Athayde and Flôres
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(2002). In that paper the portfolio set with higher moments and all of its features
were presented.

The second way that Markowitz proposed was to use what he called
semivariance. That is the sum of the squares of negative deviations from the
mean, divided by the total number of observations:

Semivariance ⇒ 1

n

n∑
i=1

[Min(ri − µ, 0)]2

The great advantage of the use of semivariance over variance is that it does
not include positive gains, so what is considered as risk takes into account only
negative deviations.

However one may be led to the wrong conclusion that minimizing semi-
variance necessarily means minimizing only negative deviations. This common
mistake becomes even clearer if the distributions we are dealing with are sym-
metric, like the normal curve. In this case minimizing variance and semivariance
will lead to the same problem.

Nonetheless, normality on assets returns have been widely rejected in prac-
tice, see Eftekhari and Satchell (1996). The only case that justifies the use
of semivariance is when the presence of skewness or any other measure of
asymmetry is observed.

Semivariance was generalized to a broader definition, called Downside Risk
(DSR):

Downside Risk (DSR) ⇒ 1

n

n∑
i=1

[Min(ri − µ, 0)]k

where µ is a given benchmark, and k is a positive number, chosen to penalize
the losses with respect to the benchmark. When k is an odd number, these
deviations should be treated in absolute values. When µ is the mean and k = 2,
we are driven back to semivariance.

Although the approach to use higher moments is far more complete than the
use of semivariance, the popularity of the latter is larger, maybe because it
measures risk in one number, while the use of variance, skewness and possibly
kurtosis would give us three different values to capture risk. In terms of portfolio
frontier, we will be dealing only with two dimensions, rather than three or four,
and make the analysis simpler (although not so efficient if compared to the
multi-dimensioned three or four moment portfolio frontier).

Finding the portfolios with minimum semivariance is not an easy task. This
is due to the fact that we do not have a fixed number to represent the downside
risk of an asset. For instance, if we have acquired a single asset, its semivariance
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will be given by negative deviations, while if we short sell this asset, then we
will have to deal with positive deviations (because now the risk is for the asset
to go up). Thus what will be used to construct its semivariance depends on
whether we are short or long.

The problem becomes even more complex when we deal with more than
one asset. Suppose we have a given portfolio P0. To compute the semivariance
of this portfolio we have to take into consideration only the observations that
were negative deviations. If we change the weights of this portfolio a little,
creating a new portfolio P1, some observations in which the former portfolio
was negative might become positive, and vice versa. Thus they will have to be
included or excluded from the semivariance of portfolio P1. Therefore the set
of observations that will be taken into account when building the semivariance
of this portfolio will be function of the portfolio weights, making the problem
more difficult to handle than in the case of minimizing variance per se.

For instance, suppose we have two assets, with zero mean. On one day, one
could have a return of 1%, and on another day of −1%. If the weight of the first
asset is more (less) than 1/2, the portfolio’s return will be positive (negative),
and therefore excluded (included) in the semivariance of the portfolio.

In this sense the set of observations that will be used to construct a portfolio’s
DSR is necessarily a function of the weights of the portfolio per se. It should
be clear that there is no such thing as a fixed well-behaved positive definite
semivariance matrix, independent of the portfolio weights, which we can pre-
and post-multiply by the vector of weights of any portfolio and get its respec-
tive semivariance. Therefore the minimization problem becomes much more
complicated, because the set of observations that will be taken into account is
endogenous to the weights of the portfolio in question.

Athayde (2001) has shown an algorithm to construct a mean-DSR portfolio
frontier, along with some properties this frontier will have. Although it is con-
tinuous, its convexity is not, in contrast to the Markowitz case. The number of
kinks in the convexity will increase with the number of observations, getting
closer and closer to each other, until when we reach the asymptotic limit, they
will not be qualified as kinks anymore, and the whole portfolio frontier will
have a smooth shape.

In practice, we only have a finite number of observations, and although we
can always have an enormous number of data, the assumptions of asset returns
being identically distributed during the whole period of the sample may not be
a very realistic assumption. Thus, when computing a DSR portfolio frontier we
will always be facing these kinks on the convexity, which would only disappear
if we had a continuous number of observations.

The idea behind this chapter is to make use of nonparametric techniques to
estimate smooth continuous distributions of the portfolios in question, and from
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these estimations, optimize their DSR, constructing with this, a new portfo-
lio frontier.

It will be shown that, instead of these kinks, we will see smoother transitions
between optimal portfolios, when we make use of this technique. The analogy
is similar to the case in which we move from a histogram to a smooth esti-
mated continuous curve. The properties of the traditional frontier, and also the
algorithm presented in Athayde (2001) to build it, can be seen as a particular
case of the nonparametric approach, in which the bandwidth (also called the
smoothness parameter) goes to zero.

13.2 THE MEAN-DSR PORTFOLIO FRONTIER: THE TRADITIONAL
APPROACH

In this Section, we will show the characteristics of the mean-DSR portfolio
frontier. For more details, see Athayde (2001).

Let us assume that we have two risky assets a and b. The return of a portfolio
p that has w units of a and (1 − w) units of b, at time i can be expressed as:

ri
p(w) = wri

a + (1 − w)ri
b

where ri
j stands for the return of asset j at time i.

Let us consider the case where k = 2, and that we have observations that
start at time 0 and end at time n.

DSR = 1

n + 1

n∑
i=0

[Min(ri
p(w) − µ, 0)]2

The value of w at time i that makes the portfolio’s return equal to the benchmark
µ is given by:

wi = µ − ri
b

ri
a − ri

b

If we had only this observation, assuming that ri
a > ri

b, the DSR of this portfolio
would be given by:

DSR(w) = [w(ri
a − ri

b) − (µ − ri
b)]

2, if w < wi ; and 0 otherwise

DSR
′
(w) = 2�w(ri

a − ri
b) − (µ − ri

b)�
× (ri

a − ri
b) < 0, if w < wi ; and 0 otherwise

DSR
′′
(w) = 2(ri

a − ri
b)

2 > 0, if w < wi ; and 0 otherwise
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The function is illustrated in Figure 13.1.

wi

w

Figure 13.1 DSR portfolio function (1)

In case ri
a < ri

b, the DSR would be described by the curve in Figure 13.2.

wi

w

Figure 13.2 DSR portfolio function (2)

It is not hard to see that when we are computing DSR as a function of the
weight w, we will be adding these piecewise quadratic functions. Every time
we cross points like wi , there will be a change in the convexity of the curve.
When we include all observations the whole DSR will be a curve as shown in
Figure 13.3.

DSR

w

Figure 13.3 DSR portfolio function (3)

The expected return of the portfolio will be given by:

E(rp) = wE(ra) + (1 − w)E(rb) ⇔ w = E(rp) − E(rb)

E(ra) − E(rb)
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Thus, since we have a linear relation between w and E(rp), we may conclude
that the shape of the set DSR × E(rp) will be as shown in Figure 13.4.

DSR

E(rp)

Figure 13.4 DSR portfolio function (4)

As it has been shown, this curve is a sum of segments of quadratic functions.
The curve will become steeper and steeper as we move toward the extremes, in
either direction. The more observations we have, the more quadratic functions
will be added and smaller the segment of each will become. The changes in the
convexity, when we move from one quadratic function to another will become
more frequent and smoother. In the limit case, where we will have an infinite
number of observations, each of these quadratic functions will degenerate to
a single point, creating a continuous smooth changing in the convexity of the
curve. Thus we may conclude that, in the bivariate case, the portfolio set and
consequently the portfolio frontier will have a convex shape.

How do we find the vertex of the curve above? Which value of w gives us
the minimum DSR? The answer is given in the algorithm presented below.

We start with a given portfolio w(0), and calculate its downside risk. We
select only the set of observations S0 that contains negative deviations of this
portfolio w(0).

S0 = {i|1 < i < n & ri(w
(0)) < µ}

Consider the following curve given by:

σ 2
0 (w) = 1

n

∑
i∈S0

(ri
p(w) − µ)2, where ri

p(w) = wri
a + (1 − w)ri

b (13.1)

It should be clear from the last section that for a small neighbourhood of w(0),
the set of observations with negative deviations remains the same as S0, without
adding or excluding any observation, remaining on the same quadratic function.
When w becomes very different from w(0), some days will enter and some will
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go away when we compute the downside risk of w (because we have moved
to another segment of a different quadratic function in the DSR curve). In this
case the curve that describes the downside risk and σ 2

0 will become more and
more different. Nevertheless, for small changes on w, if the set of negative
deviations is still given by S0, the two curves will coincide.

The second step is to find a portfolio w(1) that minimizes σ 2
0 (w). This is an

ordinary well-behaved quadratic problem, whose minimum is easily obtained.
This optimal portfolio will be given by:

w(1) =

∑
i∈S0

(ri
a − ri

b)(µ − ri
b)

∑
i∈S0

(ri
a − ri

b)
2

Once we find w(1), we compute its DSR, creating a new set of observations S1,
which has only negative deviations of w(1) with respect to the benchmark µ:

S1 = {i| 1 < i < n & ri(w
(1)) < µ}

In the neighbourhood of w(1), the DSR will coincide with the following quadratic
function:

σ 2
1 (w) = 1

n

∑
i∈S1

(ri
p(w) − µ)2, where ri

p(w) = wri
a + (1 − w)ri

b (13.2)

We then minimize (13.2) with respect to w. The solution is given by:

w(2) =

∑
i∈S1

(ri
a − ri

b)(µ − ri
b)

∑
i∈S1

(ri
a − ri

b)
2

(13.3)

From w(2) we separate the new set of observations with negative deviations
S2, construct a new quadratic function that takes into consideration only the
observations in S2, minimize it with respect to w, finding w(3), that will give
us a new set S3, and so on. The algorithm will stop when St = St+1, which will
be the unique minimum DSR.

In order to extend the last example – consider Figure 13.5 in which we have
three quadratic functions, each one representing a segment of the DSR function,
which is given by the thick black line. It is easy to see that no matter which
quadratic function we pick from the start, if we follow the proposed algorithm,
we will end up in P3. The minimum of this quadratic function is also the
minimum of DSR, guaranteeing the convergence.
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P2 P1 P3

w

Figure 13.5 DSR portfolio function (5)

For instance, if our initial guess of w is very low, we will select the obser-
vations in such a way that we will start at P1. Once we find w that minimizes
this quadratic function, we will select a new set of returns that were below
the benchmark, ending up with a new quadratic function P3. Again, we will
find the portfolio w that minimizes this quadratic function. However, after this
portfolio is found, the new set of observations whose deviations are negative
is the same as before, so we will remain at P3, and the minimum DSR (which
coincides with the minimum of P3) is achieved.

The same goes for the case in which our initial guess of w is high. In this
situation, we would have started at P2 and on the next iteration, be driven back
to P3. In case we have stared on P3, only one iteration would be necessary to
achieve the minimum.

13.3 THE MULTIVARIATE CASE

The procedure for the multivariate case is analogous to the previous procedure.
Let us say we have m assets. We will start with a given portfolio w(0). Then
we select the set S0 of observations in which this portfolio w(0) had negative
deviations. Then we construct the following positive semidefinite matrix:

M(0) =
∑
i∈S0




Ri
1

Ri
2
...

Ri
M


 [ Ri

1 Ri
2 . . . Ri

M ]

where Ri
m means the excess return (actual return minus the benchmark) of asset

m on date i.
The next step is to find the portfolio w1 that solves the following problem:

Min
w

wtM(0)w s.t. wt1 = 1

where 1 is a vector of 1s.
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The solution to the problem will be given by:

w(1) = M(0)−1
1

1tM(0)−11

If M(0) is non-invertible, this means that we will have few observations, and
that it will be possible to find a portfolio that will give us a null DSR. This is
not an interesting case, it does not mean there is no DSR, it only means that
the sample in question is poor, leaving us with few degrees of freedom.

With the new portfolio w(1) we collect the set of observations S1 that contains
only negative excess returns of portfolio w(1). We now form a new positive
semidefinite matrix M(1):

M(1) =
∑
i∈S1




Ri
1

Ri
2
...

Ri
M


 [ Ri

1 Ri
2 . . . Ri

M ]

The next step is to find the portfolio w(2) that solves the following problem:

Min
w

wtM(1)w s.t. wt1 = 1

The solution to the problem will be given by:

w(2) = M(1)−1
1

1tM(1)−1
1

From then on, we form a new matrix M(2) collecting only the negative obser-
vations of portfolio w(2), and so on. The iterations will stop when the matrix
M(T ) will be the same as M(T +1). The solution will be given by:

w(T ) = M(T )−1
1

1tM(T )−1
1

(13.4)

This portfolio will give us the minimum DSR. In terms of the portfolio frontier,
this will represent the vertex of the curve. In order to build the portfolio fron-
tier, we will have to find some other points on the efficient set. Since we are
interested in points with a higher expected return than the vertex, we shall fix an
expected return a bit higher than the minimum downside risk portfolio above.
So the new recursive minimization procedure will take the following form:

Min
w

wtM(t)w s.t. wt1 = 1 and wte = E(r)

where e is the vector of expected returns, and wt is the transpose of w.
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After we have achieved the convergence, after T iterations, the minimum
downside risk portfolio with expected excess return given by E(r) will be
given by:

w(T ) = αE(r) − γ

αθ − γ 2
M(T )−1

e + θ − γE(r)

αθ − γ 2
M(T )−1

1 (13.5)

where α = 1tM(T )−1
1, γ = etM(T )−1

1, θ = etM(T )−1
e.

It should be noted that for small changes in the expected return, the matrix
we will end up with remains unchanged. Pre-multiplying (13.5) by wtM(T ):

DSR(w) = α(E(r))2 − 2γE(r) + θ

αθ − γ 2

The equation above shows us that while the final matrix M(T ) does not change,
downside risk will be a quadratic function on the expected return. However, if
we change considerably the expected return, we will end up with a new matrix,
and therefore a new quadratic function, because we will have new values for
α, γ and θ . Thus, as in the bivariate case, the portfolio frontier will be described
as a sequence of segments of different quadratic functions.

This result is expected because the portfolio frontier is a convex combi-
nation of several bivariate cases, each one like Figure 13.4. One interesting
aspect is that the more assets are used, the smoother will be the portfolio
frontier in question, creating a similar effect as if we were adding more obser-
vations.

The aim of next section is to provide a non-parametric technique, using kernel
estimations of asset returns, to create an effect similar to as if we had continuous
observations, and therefore build a new portfolio frontier with a smoother shape,
and avoid huge changes in the convexity.

13.4 A KERNEL APPROACH

In this section we will make use of a more sophisticated estimation of DSR, in
which we estimate the density of the returns using kernels. A kernel estimation
of one point can be seen as a weighted average of the observations, in which
the weight given to each observation decreases with its distance from the point
in question. A kernel estimation of some return r̂j of a given asset or portfolio
is given by:

r̂j =

∑
i

riK

(
ri − rj

h

)

∑
i

K

(
ri − rj

h

) (13.6)
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where K(x) is a function that decreases with x. The term h is chosen in order
to penalize the distance between rt and r , it is also called the bandwidth, or
smoothness parameter.

It is straightforward to see that

if h → ∞, K

(
ri − rt

h

)
→ K(0), r̂t =

∑
i

ri

n
, ∀ r̂t

In this case we would have smoothed our series to the extreme. On the other
hand:

if h → 0, K

(
ri − rt

h

)
→ 0, if rj 
= ri

and K

(
ri − rt

h

)
→ K(1), if rj = ri

r̂j = 0, if rj 
= ri, and r̂j = ri, if r̂j = r̂i (13.7)

The new estimation of the DSR, called DSR(K) is given by:

DSR(K) ⇒ 1

n

n∑
i=1

[Min(r̂i − µ, 0)]2 (13.8)

It can be seen by using (13.7) that when h → 0, DSR(K) ⇒ DSR. The higher h

becomes, the more different these two estimations will be. In fact, DSR(K) will
always be smaller than DSR. This difference will become smaller as h tends to
zero. For details on the optimal choice of kernels and of h (which is far more
relevant), see Silverman (1986) and Pagan and Ullah (1999).

We will now present the algorithm for constructing the portfolio frontier with
DSR(K). We will begin in the bivariate case, just like in the last section. There,
the DSR curve had some segments in which there was a constant convexity,
because they belonged to the same quadratic function. In our new case, this will
not occur. Even if we set a new portfolio that is very close to another, although
the set of observations that will be included might remain the same, there will
be a slight change in the convexity, due to the changes in the kernel weights,
as will be shown. In other words, the kernel estimation will make the convexity
of the curve change continuously and provide us with a smoother estimate of
the portfolio frontier, instead of those abrupt changes followed by regions of
constant convexities.

Figure 13.6 illustrates this aspect. DSR is the curve constructed with the
method proposed in Athayde (2001) (demonstrated in the last section), while
DSR(K) is the kernel estimation. It can be seen that the kernel estimation



The mean-downside risk portfolio frontier: a non-parametric approach 301

DSR

DSR(K)

w

Figure 13.6 DSR portfolio function (6)

resembles what would be the curve when we have an infinite number of obser-
vations. It would also be expected that the kernel estimation curve would tend to
be a little below the first one, because we are dealing with smoother estimation
of returns, and consequently offsetting some extreme effects.

There is one aspect that should be emphasized. When we move toward the
vertex of the curves above, everytime facing portfolios with lower DSR, they
tend to have little extreme values (especially on the losses). If we keep using
the same bandwidth h as in the former iterations (portfolios with higher risk),
we will tend to underestimate the DSR(K). An ideal bandwidth that was used
for a very risky portfolio, when applied to a ‘conservative’ portfolio (whose
losses are small), will tend to penalize little the distance between the observa-
tions, making our estimations smoother than desired, and consequently bringing
underestimated values for DSR(K).

Thus, when moving towards portfolios with smaller risk, one should dimin-
ish the bandwidth used. Therefore one should redefine the bandwidth used for
every iteration of the algorithm described below. One simple procedure that
has worked reasonably well in our simulations is to define the bandwidth as
proportional to the volatility of the portfolio. In this sense we only have to
estimate the optimal bandwidth once, and get this constant of proportionality.

How does the algorithm work in this case? As in the previous sections, we
start with some portfolio w(0). Then we make n kernel estimations of all the n

returns r̂
j

0 of this new portfolio:

r̂
j

0 =

∑
i

r i
0K

(
ri

0 − r
j

0

h

)

T∑
t=1

K

(
ri

0 − r
j

0

h

) , i, j = 1, . . . , n (13.9)
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For the estimation of the n returns of each single asset, we shall follow the
same procedure, but we will use the same (kernel) weights of the portfolio w0:

r̂ j
a =

∑
i

r i
aK

(
ri

0 − r
j

0

h

)

T∑
t=1

K

(
ri

0 − r
j

0

h

) , r̂
j

b =

∑
i

r i
bK

(
ri

0 − r
j

0

h

)

T∑
t=1

K

(
ri

0 − r
j

0

h

) (13.10)

Consider S0 to be the set of the estimated excess returns of w(0) that were
negative:

S0 = {i| 1 < i < n & r̂ i
0 < µ}

The first minimization will be given by:

Min
∑
i∈S0

(r̂i − µ)2, r̂i = wr̂i
a + (1 − w)r̂i

b

Let us call the portfolio that solves this problem w(1). The next step will be the
kernel estimation of the returns of this portfolio:

r̂
j

1 =

∑
i

r i
1K

(
ri

1 − r
j

1

h

)

T∑
t=1

K

(
ri

1 − r
j

1

h

)

And then, the new estimations of the returns of each single asset:

r̂ j
a =

∑
i

r i
aK

(
ri

1 − r
j

1

h

)

T∑
t=1

K

(
ri

1 − r
j

1

h

) , r̂
j

b =

∑
i

r i
bK

(
ri

1 − r
j

1

h

)

T∑
t=1

K

(
ri

1 − r
j

1

h

) (13.11)

Consider S1 to be the set of the estimated excess returns of w1 that were
negative. The second minimization will be given by:

Min
∑
i∈S1

(r̂i − µ)2, r̂i = wr̂i
a + (1 − w)r̂i

b

where r̂ i
a and r̂ i

b given by (13.11).
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From here on, we will follow the same procedure, in contrast to the previous
case, in which we would stop the algorithm when ST = ST +1. In this case, we
should continue the iterations because even with the same set of observations
selected, the kernel estimations will differ for every new portfolio found. Nev-
ertheless, it should be noted that the changes in the portfolio, and consequently
on DSR, will be smaller for each iteration. Thus, we should set a convergence
limit in which, if the changes in the portfolio are smaller than the limit, we will
stop the iterations.

13.5 THE KERNEL APPROACH TO THE MULTIVARIATE CASE

For the multivariate case, we start with some portfolio wo, then we make a kernel
estimation of the returns r̂

j

0 of this new portfolio, as in the previous case:

r̂
j

0 =

∑
i

r i
0K

(
ri

0 − r
j

0

h

)

T∑
t=1

K

(
ri

0 − r
j

0

h

)

Following that, we make estimations of the returns of each single asset m on
date j :

r̂ j
m =

∑
i

r i
mK

(
ri

0 − r
j

0

h

)

T∑
t=1

K

(
ri

0 − r
j

0

h

)

From that, we select the dates when the estimated returns of portfolio w(0)

had negative excess returns. Let us call this set of observations S0. Then we
construct the following positive semidefinite matrix:

M̂(0) =
∑
i∈S0




Ri
1

Ri
2
...

Ri
M


 [ Ri

1 Ri
2 . . . Ri

M ]

where R̂i
m means the excess return (r̂ i

m − µ) of asset m on date i.
The first task will be to find a portfolio w1 that solves the following problem:

Min
w

wtM̂(0)w s.t. wt1 = 1
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The solution will be given by:

w(1) = M̂(0)−1
1

1t M̂(0)−1
1

Then, we shall collect all the returns ri
1 of this portfolio, and make a kernel

estimation of the returns r̂
j

1 of this new portfolio w(1):

r̂
j

1 =

∑
i

r i
1K

(
ri

1 − r
j

1

h

)

T∑
t=1

K

(
ri

1 − r
j

1

h

)

Following that, the new estimations of the returns of each single asset m on
date j will be given by:

r̂ j
m =

∑
i

r i
mK

(
ri

1 − r
j

1

h

)

T∑
t=1

K

(
ri

1 − r
j

1

h

)

From that, we can construct a new positive definite matrix, taking into consid-
eration only the elements in which r̂ i

1 < µ. As in the former cases we will call
this set of observations S1:

S1 = {i| 1 < i < n & r̂ i
1 < µ}

M̂(1) =
∑
i∈S1




Ri
1

Ri
2
...

Ri
M


 [ Ri

1, Ri
2 . . . Ri

M ]

The second task will be to find a portfolio w(2) that solves the following
problem:

Min
w

wtM̂(1)w s.t. wt1 = 1

The solution will be given by:

w(2) = M̂(1)−1
1

1t M̂(1)−1
1
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Then we make a kernel estimation of the returns r̂ i
2 of this new portfolio,

and follow the same procedure as before. The iterations should stop when
the changes in the portfolio become negligible, or simply smaller than a pre-
established limit.

In order to construct a portfolio frontier, we shall use the same procedure as
in Section 13.3, but making use of estimated returns of the assets. The problem
becomes computationally more complex, since for every iteration, we have new
estimations of returns for every asset, due to the changes in the kernel weights,
for every time we alter the portfolio. As already mentioned, the portfolio frontier
will be a smoother curve than the former case.

One may ask why we should not make a non-parametric estimation of the
whole joint, multivariate distribution of all the assets and construct the portfolios
from there, instead of all this series of univariate nonparametric estimations?

A possible answer is given by the so-called ‘curse of dimensionality’. This
shows that the more dimensions we add to a multivariate nonparametric esti-
mation, the less efficient our estimators will become. Therefore, it is better to
choose a portfolio, and then to make univariate kernel estimations, rather than
estimate the whole joint distribution of all the assets returns first, and then
choose the portfolio.

13.6 THE MEAN-DSR PORTFOLIO FRONTIER USING KERNEL
ESTIMATES

In order to construct a portfolio frontier, we shall use the same procedure
as in Section 13.3, but making use of estimated returns of the assets. The
problem becomes computationally more complex, since for every iteration, we
will have new estimations of returns for every asset, due to the changes in the
kernel weights, for every time we alter the portfolio. As already mentioned, the
portfolio frontier will be a smoother curve than the former case.

The algorithm remains the same, and each step can be defined by:

Min
w

wtM̂ w s.t. wt1 = 1 and wte = E(r)

where e is the vector of expected returns, and this time it will change on every
iteration. This is due to the fact that the estimation of the returns of each single
asset r̂ i

m will differ due to the change in kernel weights on each iteration.

e(t) =




∑
i

r̂ i
1

n
...∑

i

r̂ i
M

n



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After we have achieved the convergence, after T iterations, the minimum
downside risk portfolio with expected excess return given by E(r) will be
given by:

w(T ) = α̂E(r) − γ̂

α̂θ̂ − γ̂ 2
M̂(T )−1

e(T ) + θ̂ − γ̂ E(r)

α̂θ̂ − γ̂ 2
M̂(T )−1

1 (13.12)

where α̂ = 1t M̂(T )−1
1, γ̂ = 1t M̂(T )−1

e(T ), θ̂ = (e(T ))t M̂(T )−1
e(T ).

Pre-multiplying (13.12) by M(T ), and then by the transposition of w(T ), we
will have:

DSR(K) = α̂(E(r))2 − 2γ̂ E(r) + θ̂

α̂θ̂ − γ̂ 2
(13.13)

In contrast to Section 13.3, where we had a local quadratic function, this time
we aim for small changes in E(r), the coefficients α̂, γ̂ and θ̂ will also change,
due to the change in kernel weights (they might be negligible changes, but
they exist). In this situation, instead of moving from one segment of quadratic
function to another, we have a smooth continuous transition as we change E(r).

13.7 ASSET PRICING

In this Section, we will provide a kernel version of the Lower Partial Moment
CAPM, derived by Bawa and Lindenberg (1977) other approaches can be seen
in Hogan and Warren (1974), and Harlow and Rao (1989). For the original
CAPM, see Sharpe (1964), Lintner (1965) and Mossin (1969).

Consider a portfolio z that has the following zero cross-DSR with a frontier
portfolio p:

1

n

n∑
i=1

[Min(ri
p − µ, 0)](ri

z − µ) = 0

If we pre-multiply (13.12) by z
′
M(T ), we have:

0 = α̂E(rp) − γ̂

α̂θ̂ − γ̂ 2
E(rz) + θ̂ − γ̂ E(rp)

α̂θ̂ − γ̂ 2

Substituting in (13.13) it becomes:

p = α̂E(rp) − γ̂

α̂θ̂ − γ̂ 2
M(T )−1

(e(T ) − E(rz)1) (13.14)
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If we pre-multiply the equation above by ptM(T ), we have:

DSR(K)p = α̂E(rp) − γ̂

α̂θ̂ − γ̂ 2
(E(rp) − E(rz))

Consider now a given portfolio k. If we pre-multiply (13.14) by itM(T ), we have:

σkp∗ = α̂E(rp) − γ̂

α̂θ̂ − γ̂ 2
(E(rk) − E(rz)), where σkp∗ =

∑
i∈ST

(ri
k − µ)(ri

p − µ)

Comparing the two equations above, we can see that:

E(rk) − E(rz) = βk ∗ (E(rp) − E(rz)), where βk∗ = σkp∗
DSR(K)p

(13.15)

This means that any asset or portfolio k can be expressed as this version of
the CAPM for any portfolio p of the portfolio frontier. The only difficulty in
transforming it into a CAPM is that we do not have the two-fund separation
property to guarantee that the market portfolio is an efficient portfolio.

Let us consider now the case where we also have a riskless asset, with a
given fixed return rf . Our problem now becomes:

Min wtM w s.t. E(r) − (wte + (1 − wt1)rf )

Let us call this optimal portfolio by portfolio p. After all the iterations, p will
be given by:

p = M(T )−1
d

dtM(T )−1
d

(E(rp) − rf ), where d = e(T ) − rf 1 (13.16)

If we pre-multiply the equation above by ptM(T ), we have:

DSR(K)p = (E(Rp) − rf )2

dtM(T )−1
d

Consider now a given portfolio k. If we pre-multiply (13.16) by ktM(T ), we
have:

σkp∗ = (E(rk) − rf )(E(rp) − rf )

dtM(T )−1
d

Comparing these two equations above, we can see that:

E(rk) − rf = βk ∗ (E(rp) − rf ) (13.17)
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Therefore, as regards asset pricing, the results are virtually the same as the tra-
ditional Lower Partial Moment CAPM. The only difference is that in the kernel
methodology, we shall be replacing DSR by DSR(K), and the semicovariance
by σkp∗.

13.8 CONCLUSION

In this chapter a generalized version of the algorithm developed by Athayde
(2001) to construct a mean-DSR portfolio frontier is presented. This generaliza-
tion allows one to make use of kernel estimations. The great advantage of this
technique is that it provides an effect similar to the case in which we had con-
tinuous observations. As a consequence, some inconveniences of the traditional
portfolio frontier (like ‘kinks’ in its convexity) are therefore bypassed. The new
portfolio frontier has a smoother shape than the traditional one. Finally, a new
version of the Lower Partial Moment CAPM, is also derived to deal with these
kernel estimates.
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Chapter 14

Some exact results for efficient
portfolios with given returns

G H HILLIER AND S E SATCHELL

ABSTRACT

We consider the problem of the derivation of the finite sample
distributions of a portfolio estimator based on normally distributed
data where we are given the proportions of the current holdings.
Our portfolio estimator is designed to be efficient and with the same
expected return as our current portfolio. We derive the distribution of
the risk estimator and the (conditional) distribution of the estimated
weights. We also derive the (unconditional) expected value of the
estimated weights.

14.1 INTRODUCTION

It is now widely recognized that portfolio optimization suffers greatly from
sample fluctuations due to estimation error and that investment decisions based
solely on mean-variance calculations are likely to lead to ridiculous portfolios
and excessive turnover. The defects of simplistic optimization are detailed in
Michaud (1998). Some authors, notably Jobson and Korkie (1980, 1982) have
worked on these problems, but their results are approximate rather than exact
and they have concentrated on the riskless asset case, rather than the more
general zero-beta case. For the zero-beta capital asset pricing model (CAPM),
testing and estimation have occurred largely in mean-beta space rather than in
portfolio space. Roll’s critique that testing the validity of the implied market
portfolio has been taken to heart by financial economists, but strangely his
original suggestion in Roll (1979) of working directly with the portfolio itself
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has not been followed up. It is curious that the study of the statistical properties
of the sample portfolios has not been a topic of greater interest, since it should
be of central importance in the CAPM literature.

The purpose of this chapter is to examine the properties of the estimators of
the optimal portfolio, its return and risk, given some ex ante proportions. As
such the problem has close similarities to the technique of reverse optimization,
and our results could, perhaps, be applied to such a situation. We derive the exact
distributions in each case, and find the moments of each of the estimators. The
properties of these distributions, although very complex, shed light on some of
the commonly used test statistics. In fact, this is a situation where finite sample
theory leads to conclusions and conditions that have some economic content,
thus justifying a labour intensive approach to the problem. For example, the
key parameter in the distribution of the portfolio risk estimator is essentially
the population analogue of Shanken’s CSR test statistic (Shanken, 1985); under
the null of market portfolio mean-variance efficiency, it takes the value of zero.
Secondly, the expected value of the estimated market portfolio is a convex
combination of the global population minimum variance portfolio and the ex
ante market portfolio; we prove that the expected value is ex ante mean-variance
efficient if and only if the ex ante market portfolio is ex ante mean-variance
efficient. This conclusion is a positive result for applied financial economics and
can be contrasted with the pessimism of Roll’s conclusions in Roll (1977). We
also show that, on average, under certain assumptions, sample portfolios have
fewer short and long positions than their population counterparts. Finally, for
the expected return and risk of the sample portfolio, we show that on average the
sample efficient frontier should be to the left of the ex ante efficient frontier. This
implies that as the risk of our current holdings increases, the underestimation
of risk increases with it.

We assume that the vector, x(n × 1), of rates of return on the assets of
interest is normally distributed with mean µ and covariance matrix

∑
. The

investor is assumed to know µ and
∑

, and his problem is to calculate an
optimal portfolio, characterized by a vector of proportions a0, given a vector
of ‘market’ proportions, a, i.e. an efficient portfolio with the same mean as the
market. Other interpretations are possible, for example a could be the vector of
current holdings of the investor, in which case we wish to estimate the efficient
portfolio with the same mean. In what follows, we shall use the term market
to mean a; practitioners may prefer to think of this as their current portfolio
weights. Roll (1977) shows that, for a portfolio with return π0 = a′µ, a0 is
given by

a0 =
∑−1

(µ, e)

[
(µ, e)′

∑−1
(µ, e)

]−1

(µ, e)′a (14.1)
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and that its risk is

σ 2
a = a′(µ, e)

[
(µ, e)′

∑−1
(µ, e)

]−1

(µ, e)′a (14.2)

where e is an n × 1 vector of ones.

Let a = ∑ 1
2 a, µ = ∑− 1

2 µ, c = ∑− 1
2 e, and for any matrix A of full column

rank, let PA = A(A′A)−1A′ and P A = I − PA. We shall make frequent use of
the fact that, if A = (A1, A2)

PA1,A2 = PA1 + P A1A2(A
′
2P A1A2)

−1A′
2P A1 (14.3)

Now,

σ 2
a = a′Pµ,ca = a′a − a′P µ,ca

= a′Pca + a′P cµ(µ′P cµ)−1µ′P ca

= λa′Pca + (1 − λ)a′a (14.4)

where

λ = µ′P a,cµ/µ′P cµ (14.5)

satisfies 0 ≤ λ ≤ 1. Let a′a = a′ ∑ a = σ 2
0 , say, and a′Pca = 1/e′ ∑−1

e =
1/γ , say. Note that σ 2

0 is the variance of a portfolio characterized by weights a,
and 1/γ is the variance of the globally minimum variance portfolio. It follows
from (14.4) that

1/γ ≤ σ 2
a ≤ σ 2

0 (14.6)

with equality on the left just if a = ∑−1
e/γ (so that a′P cµ in the second line

of (14.4) vanishes), and equality on the right just if a is a linear combination
of the vectors

∑−1
µ and

∑−1
e (so that a′P µ,ca in the first line of (14.4)

vanishes). The latter is the condition for the market portfolio a to be mean-
variance efficient: for then, and only then, does a0 = a in (14.1).

Given T independent observations on x, the natural (maximum likelihood)
estimators for µ and

∑
are x, the sample mean, and T −1S, where

S =
T∑

i=1

(xi − x)(xi − x)′

is the matrix of second moments about the mean.1 Hence, natural estimators for
a0, π0, and σ 2

a are obtained by replacing µ and
∑

in the above expressions by
their sample estimates. The properties of x̂0 = â′

0x are straightforward and are
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discussed in Satchell (1986), who also shows that the moments of both â0 and
σ̂ 2

a exist. Our purpose here is to examine in more detail the properties of the
estimators for a0 and σ 2

a . Section 14.2 contains the results for the portfolio risk
estimator, and Section 14.3 the results for the portfolio itself. Section 14.4 dis-
cusses the riskless case, extending previous work by Satchell (1986) where the
properties were derived assuming that

∑
is known. The final section contains

some discussion and conclusions.

14.2 PROPERTIES OF THE RISK ESTIMATOR

The sample mean, x, and S are independent, x ∼ N(µ, T −1 ∑
), and S has the

central Wishart distribution Wn(T − 1,
∑

). Let

q = a′(x, e)[(x, e)′S−1(x, e)]−1(x, e)′a (14.7)

To avoid degeneracy we assume that n ≥ 3. If n = 2 the 2 × 2 matrix (x, e) is
almost surely non-singular and q in (14.7) reduces to q = a′Sa = q0, say, see
(14.11) below.

First note that, by Theorem 3.2.11 of Muirhead (1982), conditional on x,
[(x, e)′S−1(x, e)]−1 has a central Wishart distribution W2(T − n + 1, [(x, e)′∑−1

(x, e)]−1). Therefore, by Theorem 3.2.5 of Muirhead (1982), given x, q|x ∼
W1(ν, a′(x, e)[(x, e)′

∑−1
(x, e)]−1(x, e)′a). That is, given x, q/Q ∼ χ2(v):

pdf(q|x) = exp {− 1
2q/Q} q

1
2 ν−1

2ν/2�(ν/2)Qν/2
(14.8)

where v = T − n + 1, and

Q = a′(x, e)

[
(x, e)′

∑−1
(x, e)

]−1

(x, e)′a (14.9)

Note here that if the market portfolio a is globally efficient, so that a =∑−1
e/γ, Q = 1/γ , and does not depend on x, so that, unconditionally, γ q ∼

χ2(ν). Also, using the same two theorems we see at once that the sample
quantities corresponding to (e′ ∑−1

e)−1 and a′ ∑ a, viz. q1 = (e′S−1e)−1 and
q0 = a′Sa have the following distributions:

(
e′ ∑−1

e

)
q1 ∼ χ2(ν) (14.10)

q0/
(
a′ ∑ a

)
∼ χ2(ν) (14.11)
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Since E[χ2(ν)] = ν it follows at once that q1/ν and q0/ν are unbiased estimators
for 1/γ and σ 2

0 respectively.
In the case of q itself it follows from (14.8) that, given x, the conditional

moments of q are given by

E[qr |x] = (2Q)r�(r + ν/2)/�(ν/2) (14.12)

In particular,

E(q|x) = νQ (14.13)

The unconditional moments of q and the density of q itself may be obtained
from (14.12) and (14.8) by averaging with respect to the density of x.

Let x̃ = ∑− 1
2 x ∼ N(µ, T −1In). Since Q in (14.9) is identical to σ 2

a in (14.1)
with µ replaced by x, we see from (14.4) that

Q = λ̃(1/γ ) + (1 − λ̃)σ 2
0 (14.14)

with

λ̃ = x̃ ′P a,cx̃/x̃ ′P cx̃

= 1/(1 + u) (14.15)

where u = F/(n − 2) and

F = (n − 2)x̃ ′P ca(a′P ca)−1a′P cx̃/x̃ ′P a,cx̃ (14.16)

has a doubly non-central F distribution with 1 and n − 2 degrees of freedom
and non-centrality parameters.

λ1 = T (µ′P cµ − µ′P a,cµ) = T µ′P cµ(1 − λ) (14.17)

λ2 = T µ′P a,cµ − T µ′P cµλ (14.18)

Under market mean-variance efficiency λ = λ2 = 0.
Let δ = T µ′P cµ. From Kendall and Stuart (1969 p. 252), the density of u is

pdf(u) = exp{−δ/2}�
(

1

2
(n − 1)

) /
π

1
2 �

(
1

2
(n − 2)

)

×
∞∑

j,k=0

(
1
2δ

)j+k
λk(1 − λ)ju

j+ 1
2 −1 (

1
2 (n − 1)

)
j+k

j !k!(1 + u)
j+k+ 1

2 (n−1)
(

1
2

)
j

(
1
2 (n − 1)

)
k

(14.19)
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reducing to

pdf(u) = exp

(
1

2
δ

)
�

(
1

2
(n − 1)

)/
π

1
2 �

(
1

2
(n − 2)

)

×
∞∑

j=0

(
1
2δ

)j
u

j+ 1
2 −1 (

1
2 (n − 1)

)
j

j !(1 + u)
j+ 1

2 (n−1)
(

1
2

)
j

(14.20)

when λ = 0. Let

	 = σ 2
0 − [1/γ ]/σ 2

0 , 0 ≤ 	 ≤ 1 (14.21)

so that 	 measures the proportional discrepancy between the risk of the market
portfolio and that of the globally efficient portfolio, and note that Q in (14.14)
can be written as

Q = σ 2
0 [1 − 	/(1 + u)] (14.22)

Using (14.22), (14.8) may be expressed as a multiple series in powers
of (1 + u)−1:

pdf(q|u) = exp
(− 1

2q/σ 2
0

)
q

1
2 v−1

2v/2�(v/2)(σ 2
0 )v/2

·
∞∑

i,
=0

(−q/2σ 2
0 )i	i+
(i + v/2)


i!
!(1 + u)i+

(14.23)

The expectations E[(1 + u)−r ] may be evaluated directly from (14.19):

E[(1 + u)−r ] = e
− 1

2 δ ·
∞∑

j,k=0

(
1
2δ

)j+k
λk (1 − λ)j

(
1
2 (n − 1)

)
j+k

(
1
2 (n − 2)

)
k+r

j !k!
(

1
2 (n − 1)

)
j+k+r

(
1
2 (n − 2)

)
k

(14.24)

Hence, multiplying (14.23) by (14.19) and integrating out u we obtain, for the
density of q:

pdf(q) = exp
(− 1

2q/σ 2
0

)
q

1
2 v−1

2v/2�(v/2)(σ 2
0 )v/2

exp{−δ/2}

×
∞∑

i,j,k,
=0

(−q/2σ 2
0 )i	i+


(
1
2δ

)j+k
λk (1 − λ)j

(
i + 1

2v
)



i!j !k!
!
(

1
2 (n − 1)

)
j+k+i+


×
(

1
2 (n − 1)

)
j+k

(
1
2 (n − 2)

)
k+i+
(

1
2 (n − 2)

)
k

(14.25)
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Likewise, the moments of q may be obtained by using (14.22) in (14.12) and
then using (14.24). In particular, for r = 1,

E(q) = νσ 2
0 (1 − 	φ(δ, λ)) = ν[φ(1/γ ) + (1 − φ)σ 2

0 ] (14.26)

where φ = φ(δ, λ) = E[(1 + u)−1], 0 < φ < 1, is given by

φ(δ, λ) = (n − 2) exp{−δ/2}
(n − 1)

∞∑
j,k=0

(
1
2δ

)j+k
λk(1 − λ)j

(
1
2n

)
k

(
1
2 (n − 1)

)
j+k

j !k!
(

1
2 (n + 1)

)
j+k

(
1
2 (n − 2)

)
k

(14.27)

Thus, like the true value σ 2
a itself (see (14.4) above), 1

v
E[q] is a convex combi-

nation of the globally minimum variance, 1/γ , and the variance of the market
portfolio, σ 2

0 . Evidently the estimator σ̂ 2
a = q/v is biased to the extent that

φ(δ, λ) in (14.27) differs from λ itself, and this depends on δ = T µ′P cµ and
λ = µ′P a,cµ/µ′P cµ, as well as on T and n. Numerical studies of (14.27) are
needed to assess the extent of the bias, and we hope to report some results for
these in a subsequent paper.

From (14.26), and results in Satchell (1986), we can construct a mean-
variance diagram where, for the sample portfolio a, we plot the expected value
of â′

ox on the mean axis and the expected value of q/v on the variance axis.
This seems the natural locus to compare with the efficient frontier relating a′

oµ

and σ 2
a . In finance there has been a regrettable tendency to try and place both

sample and population frontiers on the same diagram, leading to an unnecessary
confusion of ideas.

Using E(̂a′
ox) = â′

oµ and rewriting (14.26) as 1
v
E(q) = σ 2

0 − φ(σ 2
0 − 1

γ
), we

can examine the discrepancies between the two frontiers as we vary a, the pro-
portions of the market portfolio, in such a way that a′ ∑ a(= σ 2

0 ) is increasing.
We see that as we move across from the efficient frontier, for any σ 2

0 , 1
v
E(q) will

lie φ(σ 2
0 − 1

γ
) to the left of σ 2

0 . In relative terms, the bias will be φ
(

1 − 1/v

σ 2
0

)
so the more volatile is our actual portfolio (a), relative to global minimum
variance, assuming φ constant which it will not be.

However, under market mean-variance efficiency, when λ = 0, (14.25) and
(14.27) reduce to

pdf(q) = exp
(− 1

2q/σ 2
0

)
2v/2�(v/2)(σ 2

0 )v/2
q

1
2 v−1 exp{−δ/2}

×
∞∑

i,j,
=0

(−q/2σ 2
0 )i	i+


(
1
2δ

)j (
i + 1

2v
)



(
1
2 (n − 1)

)
j

(
1
2 (n − 2)

)
i+


i!j !
!
(

1
2 (n − 1)

)
j+i+


(
1
2 (n − 2)

)
k

(14.28)



Some exact results for efficient portfolios with given returns 317

and

φ(δ, 0) = (n − 2)

(n − 1)
exp{−δ/2}

∞∑
j=0

(
1
2δ

)j (
1
2 (n − 1)

)
j

j !
(

1
2 (n + 1)

)
j

(14.29)

Since φ(δ, 0) > 0, and, in this efficient market case, λ = 0, φ(δ, 0) > λ, so
that, in the efficient market case, σ̂ 2

a = q/v is biased towards the globally effi-
cient risk 1/γ , i.e., biased downwards.2

Further analysis of φ(δ, 0) under market efficiency implies that a lies in the
linear space of µ and c from the formula for efficient portfolios; this in turn
implies that δ = 0 and φ(0, 0) = n−2

n+1 .
In expressions (14.25) and (14.27) the key parameters are δλ = T µ′P a,cµ

and δ(1 − λ) = T (µ′P a,cµ). The first of these is the population analogue of
Shanken’s (Shanken, 1985) CSR test statistic (c.f. Roll, 1979) of which σ̂ 2

a is
an ingredient.

Hence, although we shall defer a detailed discussion of testing to a com-
panion paper, the above results do evidently give some support to Shanken’s
suggestions.

14.3 PROPERTIES OF THE ESTIMATED PORTFOLIO WEIGHTS

The sample analogue of equation (14.1) is

â0 = S−1(x, e) [(x, e)′S−1(x, e)]−1(x, e)′a (14.30)

We shall consider a fixed linear combination α = h
′̂
a0 of the elements of â0:

α = h
′
S−1(x, e) [(x, e)′S−1(x, e)]−1(x, e)′a

= g′f, say (14.31)

with

g = [(x, e)′S−1(x, e)]−1(x, e)′S−1h

and

f = (x, e)′a

Defining x̃, c, and a as above, and putting h = ∑− 1
2 h and S̃ = ∑− 1

2 S
∑− 1

2 ∼
Wn(T − 1, In), we have

g = [(x̃, c)′S̃−1(x̃, c)]−1(x̃, c)′S−1h (14.32)
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Let

W = [(h, x̃, c)′S̃−1(h, x̃, c)]−1 (3 × 3) (14.33)

By Theorem 3.2.11 of Muirhead (1982), given x̃,

W |x̃ ∼ W3(T − n + 2, [(h, x̃, c)′(h, x̃, c)]−1)

We now transform variables from W to W = W
−1

(Jacobian |W |−4), and note
that g = W−1

22 w21, where W is partitioned as

W =
[

w11 w′
21

w21 W22

]

with W22 2 × 2. Transforming next to s2 = w11 − w′
21 W−1

22 w21, g = W−1
22 w21

and W22 = W22 (Jacobian |W22|) we have

pdf(g, s2, W22|x̃) = C1 exp

{
−1

2
(h − Mg)′(h − Mg)/s2

}

× etr
{
−1

2
M ′MW−1

22

}
[s2|W22|]−

1
2 (ν+1)−2

× |(h, x̃, c)′(h, x̃, c)| 1
2 (ν+1) (14.34)

where C1 = [23(ν+1)/2�3(
1
2 (ν + 1))]−1 and we have put M = (x̃, c). �n(t) here

denotes the multivariate Gamma function, Muirhead (1982, pp. 61–62). Trans-
forming to z = 1/s2 (Jacobian z−2) and to B = W−1

22 (Jacobian |B|−3) it is
straightforward to integrate out z and B, leaving

pdf(g|x̃) = �
(

1
2 (ν + 3)

)
π�

(
1
2 (ν + 1)

) |M ′M|− 1
2 v|(h, M)′(h, M)| 1

2 (ν+1)

× [(h − Mg)′(h − Mg)]−
1
2 (ν+3)

= �
(

1
2 (ν + 3)

)
π�

(
1
2 (ν + 1)

) |(h′P Mh)(M ′M)−1|− 1
2

×
(

1 + (g − (M ′M)−1M ′h)′M ′M(g − (M ′M)−1M ′h)

h′P Mh

)− 1
2 (ν+3)

(14.35)

That is, conditional on x̃, g has a multivariate t-distribution with ν + 1 degrees
of freedom, conditional mean (M ′M)−1M ′h, and conditional covariance matrix
proportional to (h′P Mh)(M ′M)−1.
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It follows at once from (14.35) that the conditional distribution of α = f ′g
given x̃ is

pdf(α|x̃) =
[
�

(
1

2
(ν + 2)

)/
π1/2�

(
1

2
(ν + 1)

)]
(h′P Mhf ′(M ′M)−1f )

− 1
2

×
(

1 + (α − f ′(M ′M)−1M ′h)2

h′P Mhf ′(M ′M)−1f

)− 1
2 (ν+2)

(14.36)

i.e. a t-distribution with conditional mean

E(α|x) = a′(x̃, c)[(x̃, c)′(x̃, c)]−1(x̃, c)′h (14.37)

and conditional variance proportional to v = h′P Mha′PMa. The conditional den-
sity of α may be obtained from (14.36) by averaging with respect to the density
of x̃. However, the result is so complex as to be of little value in assessing the
properties of α. Hence we shall confine attention here to the mean, which may
also be obtained from (14.37) by averaging with respect to the density of x̃.

First note that, since

E(α|x̃) = a′h − a′P x̃,ch (14.38)

if a ∝ c, i.e. a = ∑−1
e/γ , then P x̃,ca = 0 and E(α|x̃) = h

′ ∑−1
e/γ does not

depend on x̃, and hence is the unconditional mean. Thus, if the market is
globally efficient the estimator â0 is unbiased. Also note that when n = 2 the
2 × 2 matrix (x̃, c) in (14.37) is almost surely non-singular and we see that
E(α|x̃) = h′a − h

′
a0, so that α is also unbiased when n = 2. In what follows

we shall therefore assume that n ≥ 3.
The following result is proved in the Appendix:

Theorem 14.3.1. For any fixed h, and n ≥ 3,

E(α) = ψ(δ)h
′
a + (1 − ψ(δ))

(
h

′ ∑−1
e/γ

)
(14.39)

where

ψ(δ) = exp{−δ/2}1F1

(
1

2
(n − 1),

1

2
(n + 1),

1

2
δ

)/
(n − 1) (14.40)

satisfies 0 < ψ(δ) < 1.
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Since (14.39) holds for all h we have

E(̂a0) = ψ(δ)a + (1 − ψ(δ))

(∑−1
e/γ

)
(14.41)

That is, E(̂a0) is a convex combination of the market portfolio a and the globally
efficient portfolio (

∑−1
e/γ ).

For large n (i.e. many assets) ψ(δ) in (14.41) will be close to zero, so that
â0 is biased towards the globally efficient portfolio. Also, as T → ∞ (so that
δ → ∞) ψ(δ) → 0, so that â0 is biased towards the globally efficient portfolio
in large samples.

Theorem 14.3.1 has some interesting consequences. First note that E(̂a0) is
itself a portfolio since e′E(̂a0) = 1. We have

Theorem 14.3.2. ã = E(̂a0) is mean-variance efficient if and only if a is
mean-variance efficient.

Proof: ã is mean-variance efficient if and only if
∑1/2

ã is a linear combination
of µ and c. From (14.41), this is so if and only if a has this property.
Roll (1977) makes the point that a sample portfolio â0 need not reflect the
properties of the market portfolio, whether the latter is mean-variance efficient
or otherwise. Theorem 14.3.2 shows that, while this is true, the sample portfolio
â0 does reflect the mean-variance efficiency property of a on average.
Write am = ∑−1

e/γ , and write (14.41) as (element by element)

E(̂a0i − ai) = (1 − ψ(δ))(ami − ai) (14.42)

Clearly, E(̂a0i − ai) has the same sign as (ami − ai). If a is mean-variance
efficient (a = a0), â0i is biased upwards if ami > ai , and biased downwards if
ami < ai . Hence, for a mean-variance efficient portfolio the element by element
biases reflect the relationships of the components of the portfolio to those of
the globally efficient portfolio. If the components of

∑−1
e are all positive

(which is true for certain choices of
∑

) â0i will be biased upwards if there is a
short position on the i-th asset (ai < 0), while if ai > 0, so that there is a long
position on the i-th asset, â0i will be biased downwards (since the i-th element
of

∑−1
e is necessarily less than one if all elements of

∑−1
e are positive).

Hence, under the above assumptions, and on average, the sample value of a
mean-variance efficient portfolio will contain fewer long and short positions
than its population counterpart. It would be interesting to study the robustness
of this result to the assumption of normality.
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14.4 THE RISKLESS ASSET CASE

Results for the case in which there is a riskless asset can be obtained by a
straight-forward extension of the arguments used above, although the results
are somewhat more complicated. If ρ is the rate of return on the riskless asset,
let x2 = x − ρe be the sample vector of excess rates of return, x∼

2 N(µ2, T −1
∑

),
with µ2 = µ − ρe. The quantities corresponding to q in (14.7), α in (14.31) and
π̂ , are

q2 = [e′S−1x2(x
′
2S

−1x2)
−1x ′

2S
−1e]−1 (14.43)

α2 = h
′
S−1x2/e

′S−1x2 (14.44)

π̂2 − ρ = x ′
2S

−1x2/e
′S−1x2 (14.45)

Define h and c as in Section 14.2, and S̃ = ∑−1/2
S

∑−1/2 as in Section 14.3,
and put x2 = ∑−1/2

x2 = ∑−1/2
(x − ρe)∼N(µ2, T −1I ) independently of S̃,

where µ2 = ∑−1/2
µ2 = ∑−1/2

(µ − ρe). Let

W2 = (x2, c, h)′S−1(x2, c, h) (14.46)

Then, conditional on x2, W−1
2 |x2

∼W3(v + 1), (M ′M)−1), i.e. a Wishart distribu-
tion, where, now M = (x2, c, h), and, in terms of the elements of W2,

q2 = w11/ w2
12 (14.47)

α2 = w13/ w12 (14.48)

π̂2 − ρ = w11/ w12 (14.49)

Thus, q2, α2, and π̂2 − ρ are functions only of the elements in the first row of
W2. Transforming from W−1

2 → W2 gives the conditional density:

pdf(W2|x2) = C1etr
{
−1

2
M ′MW−1

2

}
|M ′M|(v+1)/2|W2|−

1
2 (v+5) (14.50)

Then, transforming from

W2 =
(

w11 w′
2

w2 W22

)

where w′
2 = (w12, w13), to w11, w2, and W22·1 = W22 − w2 w′

2/ w11 (the Jacobian
is unity), and then to B = W−1

22·1 (Jacobian |B|−3), and integrating over B > 0,



322 Advances in Portfolio Construction and Implementation

we find the joint conditional density of w11, w12, and w13:

pdf(w11, w12, w13|x2) = C3 exp

{
−1

2
γ11/ w11

}
γ

(ν+1)/2
11 w

− 1
2 (ν+5)

11

× |�22·1|−
1
2 (1 + γ11(w

−1
11 w2 − γ −1

11 γ2)
′�−1

22·1(w
−1
11 w2 − γ −1

11 γ2))
− 1

2 (ν+2)

(14.51)

where

C3 =
[
�

(
1

2
(ν + 2)

) /
2

1
2 (ν−1)

π�
(ν

2

)
�

(
1

2
(ν + 1)

)]

we have partitioned M ′M as

M ′M =
(

γ11 γ ′
2

γ2 �22

)

and �22·1 = (�22 − γ2γ
′
2/γ11).

Next, transforming to

u =
(

u1

u2

)
= w−1

11 w2

and q2 = w−1
11 , the Jacobian is q−4

2 and we have

pdf(q2, u|x2) = C3 exp

(
−1

2
q2γ11

)
γ

1
2 (v−1)−1

11 q

1
2 (v−1)−1

2

× |�22·1|−
1
2 (1 + γ11(u − γ −1

11 γ2)
′�−1

22·1(u − γ −1
11 γ2))

− 1
2 (ν+2)

(14.52)

Thus, conditionally upon x2, u and q2 are independent γ11q2
∼x2(ν − 1), and u

has a multivariate t-distribution with ν + 2 degrees of freedom, mean γ −1
11 γ2,

and covariance matrix proportional to γ −1
11 �22·1. Note that π̂2 − ρ = u−1

2 , α2 =
u−1

2 u3, and σ̂ 2
2 = u−2

2 q2. From these results it is easy to see that none of these
statistics possess moments of any order (see also Satchell 1986). It is therefore
more difficult to summarize the properties of these sample quantities in the
riskless asset case.

The conditional densities of (π̂2 − ρ), α2, and σ 2
2 can clearly be obtained in

a straightforward but tedious manner from (14.52), and can then be converted
to unconditional densities by multiplying by pdf(x2) and integrating out x2. The
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results are extremely complex and seem to shed little light on the properties of
the statistics, so we omit these details.

14.5 CONCLUSIONS

In conclusion, our analysis may seem difficult but two clear messages come
through. Firstly, there is some linkage between sample and population prop-
erties; a sample portfolio is efficient on average if and only if its population
counterpart is efficient; this is the good news. The bad news is that any measure
of risk seems underestimated by sample data: things are worse than they seem.

14.6 APPENDIX: THE UNCONDITIONAL MEAN OF α

Write (14.37) in the form

E(α |̃x) = a′Pch + a′P cx̃(̃x ′P cx̃)−1x̃)−1x̃ ′P ch (14.53)

Now let C(n × n − 1) be such that P c = CC ′ and C ′C = In−1, and define a1 =
C ′a, h1 = C ′h, x1 = C ′x̃∼N(µ1, T −1In−1), with µ1 = C ′µ. Then

d = E(α |̃x) − a′Pch = a′
1x1h

′
1/x

′
1x

′
1x1

= 1

2
x ′

1[a1h
′
1 + h1a

′
1]x1/x

′
1x1 (14.54)

Next define z = √
T A(a1, h1)

′x1, where

A =
(

a11 a12

0 a22

)

is such that

[(a1, h1)
′(a1, h1)]

−1 = [(a, h)′P c(a, h)′P c(a, h)]−1 = A′A

and r2
1 = T x ′

1P a1 , h1x1. Then z and r2
1 are independent,

z∼N(
√

T A(a1, h1)
′µ1, I2)

and for n > 3, r2∼
1 χ ′2(n − 3, T µ′

1P a1 , h1µ1. If n = 3, r2
1 = 0 and we have d =

z′Pz/z′z, where

P = 1

2

[
A

(
0 1
1 0

)
A′

]−1

(2 × 2) (14.55)
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Otherwise we have

d = z′Pz/(z′z + r2
1 ) (14.56)

Setting δ1 = T µ′
1P a1,h1µ1 and m = √

T A(a1, h1)
′µ1, the joint density of z and

r2
1 is given by

pdf(z, r2
1 ) = c2 exp

[
−1

2
(z′z + r2

1 )

]
exp(z′m)(r2

1 )
1
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× 0F1
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)
(14.57)

where

C2 =
[

exp

(
−1

2
δ

)/
π2

1
2 (n−1)

�

(
1

2
(n − 3)

)]

We now transform z to polar co-ordinates: z1 = r cos θ, z2 = r sin θ , where θ

is the angle between z and m (r > 0, −π < θ < π). The differential element
transforms as dz1dz2 = 1

2dr2dθ , and exp(z′m) = exp{r(m′m)1/2 cos θ)}. Also,

d = {r2/(r2 + r2
1 )}[p22 sin2 θ + 2p12 cos θ sin θ ]

because, as is easily checked, p11 = 0. Expanding exp{r(m′m)1/2 cos θ}, multi-
plying by d, and integrating out θ gives

E(d) = π
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Transforming (r2, r2
1 ) → (b = r2/(r2 + r2

1 ), r2
1 = r2

1 ) (Jacobian r2
1 (1 − b)−2), 0

< b < 1, r2
1 > 0 and integrating out r2

1 and b then gives
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(14.58)

a′
1h1 exp

(− 1
2δ

)
n − 1

1F1

(
1

2
(n − 1),

1

2
(n + 1);

1

4
δ

)

on summing by diagonals and noting that m′m + δ1 = δ.
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Substituting (14.58) into (14.53) we have

E(α) = ψ(δ)h
′
a + (1 − ψ(δ))

−1∑
e/γ (14.59)

where

ψ(δ) = exp

(
−1

2
δ

)
1F1

(
1

2
(n − 1),

1

2
(n + 1);

1

2
δ

)/
(n − 1)

satisfies 0 ≤ ψ(δ) ≤ 1. Hence, in general

E(̂a0) = ψ(δ)a + (1 − ψ(δ))

−1∑
e/γ (14.60)

and we see that the mean of â0 is a convex combination of the market portfolio
a and the globally efficient portfolio

∑−1
e/γ .
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1. The divisor T used in the estimator for
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Chapter 15

Optimal asset allocation for endowments: A
large deviations approach

MICHAEL STUTZER

ABSTRACT

This Chapter provides a simple quantitative asset allocation method
for an endowment that regularly withdraws a fixed percentage of the
fund, yet still wants it to grow in excess of some (possibly zero) rate.
The method uses historical asset returns, to estimate portfolio weights
that maximize the estimated long-run probability that this growth rate
objective will be exceeded. Large deviations theory is used to estimate
this probability. An illustrative example is used to quantify the tradeoff
between the fund’s withdrawal rate and the probability of exceeding
its growth rate objective.

15.1 INTRODUCTION

Unlike a mutual fund, an endowment fund is intended to pay for ongoing
activities desired by the donors. Hence an ongoing fraction of the invested
endowment is withdrawn for those purposes, as well as the fund’s own expenses.
Recent statistics indicate that a typical university endowment fund currently
withdraws funds at an annual rate close to 5%.

Funds generally also want the nominal value of the principal to be maintained,
and may also want it to grow faster than some positive growth rate. It will rarely
be possible to ensure that this can always be done with certainty. There will be a
probability that the fund will not be able to meet both its withdrawal percentage
and its minimal growth rate objective. Even if the growth rate objective is zero,
i.e. the fund just wants to maintain the initial principal, there will always be
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a probability of violating it (assuming the withdrawal percentage exceeds the
riskless rate of interest).

Hence it is useful to quantify the tradeoffs between the withdrawal rate, the
(possibly zero) growth rate objective, and the probability of exceeding the latter.
Of course, this probability will be lower when the withdrawal rate and/or the
growth rate objectives are higher. Fortunately, this decrease in the probability
can be partially mitigated by adjusting the fund’s asset allocation weights. This
Chapter shows how a fund should adjust its portfolio allocation weights, in order
to maximize the long-run probability that its growth rate objective (possibly
zero) will be exceeded while it maintains its withdrawal rate.

Finding the optimal allocation weights is complicated by two practical prob-
lems: one can never know the form of the joint distribution of portfolio returns,
and even if one did, exact calculation of the required probability is generally
impossible. But it is possible to approximate this probability well enough to
rank portfolios in order of their respective long-run probabilities of exceeding
the fund’s growth rate objective. Section 15.2 of this paper shows how to do
this. An illustrative example is developed in Section 15.3, using historical data
from the two biggest and most popular asset classes: domestic equities and fixed
income securities. Section 15.4 concludes with useful ideas for future research.

15.2 THE ASSET ALLOCATION MODEL

Consider the simplest conceivable problem of endowment management. A gift
of size W0 is received by the fund, which desires to withdraw a fraction d of the
invested fund annually, e.g. d = 5% of the invested funds will be withdrawn
annually. The rest will be invested in a portfolio that earns an uncertain gross
return (i.e. one plus a net return) denoted Rp(t), that will generate a total return
over T years equal to �T

t=1Rp(t). The fund’s size after T periods will then be:

WT = W0

T∏
t=1

(1 − d)Rp(t) = W0[elog(1−d)Rp ]T (15.1)

where

log[(1 − d)Rp] ≡ 1

T

T∑
t=1

log[(1 − d)Rp(t)] (15.2)

In light of (15.1), the fund’s realized (continuously compounded) growth rate to
year T will be the random variable (15.2), i.e. the time average of the portfolio’s
log gross returns after netting out the withdrawal rate d. Now suppose the man-
agement also wants its realized growth rate to meet or exceed a (continuously
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compounded) growth rate objective, denoted log r , per period. Because (15.2)
is a random variable, there will always be some probability that this will not
happen for any finite value of T . In order to help minimize this risk, the fund
should certainly restrict attention to those portfolios that make this underper-
formance probability decay to zero asymptotically with T . To ensure this, the
law of large numbers implies that attention should be restricted to portfolios
with a net-of-withdrawal expected growth rate that exceeds the growth rate
objective, i.e. E[log[(1 − d)Rp] > log r . But how should a specific portfolio be
chosen, among the infinitely many portfolios p that meet this expected growth
rate restriction, i.e. that have their respective probabilities of underperformance
decay to zero as the investment horizon T → ∞?

Stutzer (2002) used large deviations theory to calculate the portfolio-
dependent exponential rate at which this probability decays to zero, i.e.

Prob[log(1 − d)RpT ≤ log r] ≈ c√
T

e−DpT (15.3)

where the underperformance probability decay rate Dp in (15.3) is:

Dp ≡ max
θ

θ log r − log E[eθ log[(1−d)Rp ]] (15.4)

Because of the exponential decay of the underperformance probability (15.3), a
portfolio with a high decay rate (15.4) will eventually have a lower underper-
formance probability – and hence a desirably higher probability of exceeding
the growth rate objective – than a portfolio with a lower decay rate. So to rank
portfolios in the order of their respective probabilities of exceeding the fund’s
growth rate objective, the fund should rank the portfolios in the same order
as Dp in (15.4). The optimal portfolio for a desired withdrawal rate (d) and
growth rate objective (log r) is the portfolio pmax that maximizes (15.4). Some
algebraic rearrangement of (15.4) shows that this portfolio also maximizes the
following specific expected power utility:

pmax ≡ arg max
p

[Dp ≡ max
θ

θ log r − log E[eθ log[(1−d)Rp ]]] (15.5)

= arg max
p

max
θ

E


−


 Rp(

r

1 − d

)



θ


where the maximizing θ < 0 determines the power utility’s coefficient of rela-
tive risk aversion 1 − θ > 0. Moreover, (15.5) shows that the optimal portfolio
depends only on the ratio r/1 − d, i.e. on the ratio of the fund’s gross effective
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annual growth rate objective to the annual fraction of funds that are invested
(not withdrawn).

Additional characterizations of the portfolio choice rule (15.5) when d = 0,
relationships of it to other similarly motivated approaches to portfolio choice,
and statistical evidence of its efficacy over finite horizon lengths are provided
in Stutzer (2002).

The following section provides a practical way to estimate Dp from (15.4)
and the optimal portfolio pmax from (15.5) that maximizes it.

15.3 AN ILLUSTRATIVE EXAMPLE

The method is illustrated by examining the asset allocation decision at the
broadest level: what weights should be given to domestic equities and domes-
tic fixed income securities in a fund with given withdrawal and growth rate
objectives? Letting p represent the market value weight of equities in our port-
folio, the gross portfolio return Rp in (15.4) is Rp = pR1 + (1 − p)R2, where
R1 is the gross return from equity and R2 is the gross return from fixed
income securities. The historical gross return to this portfolio in prior year
t is denoted Rpt = pR1t + (1 − p)R2t ; t = 1, . . . , T . In order to estimate the
required index of outperformance probability (15.4) of a portfolio with a spe-
cific (not necessarily the optimal) value of the equity weight p, I follow Kroll
et al. (1984) (and virtually everyone else in academia) in replacing the expected
value in (15.4) by a historical time average, yielding the following estimate D̂p

of (15.4):

D̂p = max
θ

(
θ log r − log

1

T

T∑
t=1

eθ log[(1−d)(pR1t+(1−p)R2t )]

)
(15.6)

The number (15.6) is used to rank the portfolio’s performance relative to other
portfolios, analogous to the use of estimated Sharpe Ratios. So in order to find
the optimal portfolio, one just finds the value of the portfolio equity weight p

that maximizes (15.6), i.e.

p̂max = arg max
p

D̂p = max
p

max
θ

(
θ log r − log

1

T

T∑
t=1

eθ log[(1−d)(pR1t+(1−p)R2t )]

)

(15.7)

The maximization problems (15.6) and (15.7) are both easily solved using
the ‘solver’ tool in the standard personal computer spreadsheets. To begin our
example, let us first proxy the domestic equities class by use of the Ibbotson
Associates large cap stock total return index, and the domestic fixed income
securities class by their intermediate term government bond total return index.
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The results are shown in the following Tables 15.1 and 15.2, using annual
historical returns between 1926 and 1996.

Table 15.1 Optimal equity weight and invested fund’s
expected growth rate

Withdrawal % Growth objective log r%
d 0 1 2 3

4 28 50 76 99
2.8 4.0 5.2 6.1

5 51 77 100 119
3.1 4.2 5.0 5.5

6 79 101 120 136
3.2 4.0 4.5 4.8

For each combination of the fund’s withdrawal rate and growth rate objective,
the optimal portfolio’s equity weight and this portfolio’s expected growth rate
are tabled. Equity returns are proxied by the Ibbotson large cap total return
index, while fixed income returns are proxied by the Ibbotson intermediate
government bond total return index, using annual data from 1926–1996. The
equity weight increases when the fund adopts more ambitious fund objectives.
Equity weights in excess of 100% are financed by short selling the other asset
(bonds), and hence are unlikely to be adopted.

The top, bold faced numbers in the cells of Table 15.1 show that the opti-
mal portfolio equity weight solving (15.7) must increase in order to achieve
higher withdrawal and/or growth rate objectives. Not surprisingly, more ambi-
tious fund objectives require more aggressive portfolios. The second number
in any cell of Table 15.1 shows the corresponding invested fund’s expected
growth rate, which always exceeds the fund’s growth rate objective. The higher
expected growth rate is needed in order to maximize the probability that the
fund’s realized growth rate will not fall below the fund’s growth rate objective.
Table 15.1 shows that a total (i.e. 100%) equity portfolio is needed when the
withdrawal rate is 5% and the growth rate objective is 2%, or when the for-
mer is 6% while the latter is 1%. Further computations with the spreadsheet
indicate that if the fund only cared about preserving the nominal value of the
initial endowment, i.e. it adopts a growth rate objective of log r = 0%, it can
still withdraw d = 6.9% by investing 100% in equities. But as described below,
while this aggressive portfolio will maximize the outperformance probability,
the probability itself may still be relatively small, i.e. the probability of under-
performing the 0% growth objective (‘dipping into the principal’) may persist
for a very, very long time! Less risky policies would be a 51% equity weight,
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which is optimal when the fund adopts a 5% withdrawal rate, or a 79% equity
weight, appropriate when the fund adopts a withdrawal rate of 6%.

Because Table 15.1 showed that higher withdrawal and/or growth rate objec-
tives necessitate higher equity weights and their associated higher expected
portfolio returns, it should not be surprising to find out that the risk of not
exceeding the growth rate objective also increases accordingly – no risk, no
return. This risk is determined by the estimated underperformance probability
decay rate (15.6) associated with each optimal portfolio estimated in (15.7).
The following Table 15.2 describes the results.

Table 15.2 Risk of underperforming growth rate objectives

Withdrawal % Growth objective log r%

d 0 1 2 3

4 8.2 4.2 2.3 1.2
9 17 33 60

5 4.1 2.2 1.2 0.6
18 33 60 120

6 2.1 1.1 0.6 0.2
34 65 120 360

The top number in each cell is the underperformance probability decay rate (Dp)

estimated from (15.6), while the bottom number is this probability’s half-life
(72/Dp in years), associated with Table 15.1’s optimal portfolio (15.7) for each
combination of withdrawal and growth rate objectives. The risk of not meeting
a growth rate objective increases with the magnitude of both objectives.

To read Table 15.2, suppose the fund adopts a growth rate objective of log r =
1%. Reading down the bold faced numbers in the second column of Table 15.2,
note that the decay rate Dp steadily falls, as the fund adopts more aggressive
portfolios pmax (listed in Table 15.1) in order to meet more ambitious withdrawal
rates. To assess the meaning of each decay rate, the second number in each
cell is 72/Dp years, which approximates the number of years required for the
asymptotic probability (of failing to exceed the 1% growth rate objective) to
halve. For example, the first cell in the second column of Table 15.2 indicates
that a 50% equity portfolio (from the corresponding cell in Table 15.1) results in
a probability that decays at a 4.2% rate. Hence, this risk eventually halves about
every 72/4.2 ≈ 17 years. In contrast, the second cell in the second column shows
that a fund with a more ambitious withdrawal rate of 5%, accordingly placing
more weight on equities (77% listed in Table 15.1), has only a 2.2% decay
rate, which eventually halves only every 33 years or so. Hence, a significant
risk of failing to meet the 1% growth objective will remain for roughly twice
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as long when the fund adopts the more ambitious withdrawal objective of 5%
instead of 4%.

15.4 CONCLUSIONS

Endowment management necessarily strikes a tradeoff between the fraction
of funds that users may withdraw, and the growth rate of the remaining funds
invested. Of course, the tradeoff is influenced by the fund’s asset allocation. This
Chapter provides a method of determining the asset allocation that maximizes
the probability of achieving a desired (possibly zero) growth rate objective for
the invested funds, after fixing the fund’s withdrawal rate. In doing so, the
paper quantifies the risk vs. return tradeoff associated with increases in the
fund’s withdrawal and growth rate objectives.

Future research will focus on three areas. First, it is important to determine
the influence of other asset classes, other historical periods, and other return
measurement frequencies on the estimation results. Second, it is important to
develop alternative estimators that continue to perform well when portfolio
returns have time-varying and/or dependent distributions. Third, it would be
useful to obtain historical endowment fund returns, to rank them according to
the outperformance probability indicator developed herein.
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1. When returns are multivariate normally distributed, an arithmetic average version
of this idea provides the same portfolio choice rule as the familiar maximum
Sharpe Ratio rule. For details see Stutzer (2000).
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Chapter 16

Methods of relative portfolio optimization

NIKLAS WAGNER

ABSTRACT

The application of the Markowitz portfolio optimization framework
faces the problem of noise in the input parameters. Methods of
relative portfolio optimization, commonly also denoted as ‘tracking
models’, can be thought of as simple approaches reducing the impact
of noise by combining estimation input with information provided by
a given benchmark portfolio. This chapter provides an overview of
recent developments.

16.1 INTRODUCTION

Portfolio optimization as pioneered by Harry Markowitz aims at achieving an
optimal ex ante tradeoff between risk and return for a portfolio of risky assets.
Unfortunately, the practical application of the Markowitz portfolio optimization
framework faces the problem of forming an assessment about the unknown joint
distribution of asset returns. In a typical application, noisy historical estimates
are used. This makes Bayesian methods of portfolio selection a natural choice.
Apart from sample information, some prior information on the joint distribution
enters the optimization algorithm. This approach was followed for example by
Bawa et al. (1979) and subsequent authors. In case a decision maker forms a
subjective assessment about the joint return distribution which will circumvent
the problem of noise in historical estimates, there is still reason to believe that
noise is present in the assessment of his or her input parameters. This is due
to inevitable errors in private information processing which naturally precedes
the more technical exercise of portfolio optimization.

Models of relative portfolio optimization, frequently also denoted as ‘track-
ing models’, can be thought of as simple approaches to estimation noise by
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combining standard estimation input with information provided by a given
benchmark portfolio. Treynor and Black (1973) as well as Brealey (1986) follow
this approach. The only assumption made is that benchmark portfolio weights
contain useful prior information to the optimization process. Traditional capital
market theory suggests this to be the case for broad capitalization weighted mar-
ket indices. Even when judged from a more critical perspective as in Grossman
(1995), there is generally no doubt about the usefulness of such information.
Based on the assumption that benchmarks provide useful information, stutzer
(2002) derives a behavioral factor model of equilibrium asset prices.

This chapter provides an overview of recent developments in the area.
Section 16.2 gives a brief review on the development of the models and
points out to literature considering implementation issues. A presentation of the
different recent model variants is given in Section 16.3. The chapter continues
with a discussion of the models in Section 16.4 and ends with a brief conclusion.

16.2 SOME BACKGROUND ON RELATIVE PORTFOLIO OPTIMIZATION

Relative portfolio optimization emerged from practitioners’ experience with the
implementation of various portfolio optimization algorithms. Instead of imple-
menting the classical mean-variance or expectation variance (EV) approach,
managers started to optimize portfolios focusing on ‘tracking error’. The lat-
ter can be defined as the difference in a managed portfolios’ return and the
return of a chosen benchmark portfolio (the approach also followed here) or,
alternatively, as the standard deviation of this difference.

16.2.1 Models

In the literature, models of relative portfolio optimization gained growing inter-
est about a decade ago, whilst early work dates back to the 1970s. Without
offering a complete list, work by Hodges (1976), Rudd and Rosenberg (1979),
Markowitz (1987), Rice and Au (1988), Roll (1992) and Sharpe (1992) led to the
foundation of the quadratic tracking approach. Referring to Roll, the procedure
can be labelled as tracking error-variance (TEV) optimization. Hodges (1976)
and Clarke et al. (1994) point out that the underlying decision theoretic concept
must fundamentally differ from that of EV theory.

In subsequent work, Chow (1995) proposed a target function, which includes
both an EV and a TEV component. Zhang (1998) extends the target function
of EV optimization to include an arbitrary number of risk components. Hence,
Chow’s and Zhang’s models can be denoted as multirisk models. Wagner (1998)
suggests a model with ‘moment restricted’ weights which puts a restriction on the
overall set of weights and thereby implicitly restricts tracking error variance. An
analytical analysis of TEV-constrained EV optimization is given in Jorion (2002).
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A mean-variance-covariance (EVC) model which contains both, the EV and the
TEV model, is analysed in Wagner (2002).

16.2.2 Statistical issues

Apart from the developments in modelling, statistical issues play an important
role especially in the implementation of the methods. Of course, noise also plays
a role for tracking applications. Michaud (1998) points out the problem refer-
ring to standard as well as tracking applications and considers various improved
estimation approaches to be applied in management practice. In a recent paper,
Chan et al. (1999) study ex ante parameter estimation quality for standard and
tracking optimization applications. The authors find empirically that, as com-
pared to the standard application, the tracking criterion is less sensitive with
respect to errors in forecasting the risk structure of asset returns. Clearly, this
is consistent with the hypothesis that relative optimization is a simple way to
reduce the impact of noise in the portfolio optimization process. Taking the time
dimension into account, Adcock (2002) also points out that optimization relative
to a given benchmark is a source of stability in portfolio optimization through
time, since benchmark weights usually change slowly, once again reducing the
impact of noise in the estimates.

Another important statistical issue is measuring tracking risk given the styl-
ized fact that financial returns over weekly or shorter intervals are not i.i.d.
(Independent identically distributed) draws from a normal distribution. Pope
and Yadav (1994) were among the first to point out that estimating the variance
of tracking error therefore is a non-trivial task. Particularly, when measuring
tracking risk, differences in liquidity between the benchmark and the man-
aged portfolio may induce dependence in tracking errors which in turn may
cause severe mis-estimation when conventional estimation methods are used.
Recently, the effect of volatility clustering was considered in detail by Lawton-
Browne (2001), who derives a modified estimator taking autocorrelation and
volatility clustering into account. The effects of stochastic portfolio weights and
their impact on estimation of the variance of tracking error are considered in
Satchell and Hwang (2001). Another issue is the non-normality of returns and
tracking errors which reduces efficiency of conventional variance estimators.
Bamberg and Wagner (2000) therefore suggest the use of a robust estimator of
the variance of tracking error once outliers are present in the sample of returns.

16.3 MODEL APPROACHES FOR RELATIVE PORTFOLIO
OPTIMIZATION

This section classifies recent models of relative portfolio optimization.1 The sin-
gle period portfolio selection model assumes a decision maker which possesses



336 Advances in Portfolio Construction and Implementation

information about the distribution of returns of N risky assets, i = 1, . . . , N . A
portfolio allocation is characterized by the vector of portfolio weights, denoted
by x = (xi)N×1. The set of feasible decisions is given as C = {x ∈ RN :xT1 = 1,
x ≥ 0}, where 1 ≡ (1)N×1 and 0 ≡ (0)N×1. The vector of portfolio weights is
called admissible if x ∈ C. Alternatively, short sales may be allowed, i.e. S =
{x ∈ RN :xT1 = 1} and x ∈ S.

Assuming a quadratically approximable utility function or normally dis-
tributed returns r = (Ri)N×1 with expectation µ = [E(Ri)]N×1 and positive
definite covariance matrix � = (σi,j )N×N , the classical mean-variance (or EV)
portfolio selection model can be set up as a minimization problem of the form:

EV xT� x → min (16.1)

s.t.:xTµ = E(RP ) (16.2)

x ∈ C (16.3)

The term E(RP ) is the constant expected return of the managed portfolio
P , which results for a given weights vector x. An analytical solution to the
problem can be derived when (16.3) is replaced by x ∈ S, i.e. when short sales
are allowed.

For the EV portfolio optimization problem, the information input consists of
a risk component � and an expected return component µ. Models of relative
portfolio optimization additionally use the weights of a benchmark portfolio
b = (bi)N×1, where bi > 0, as an input to optimization. We outline five different
variants in the following.

16.3.1 The Markowitz/Roll model

The Markowitz/Roll quadratic tracking model is based on the tracking error,
RE ≡ RP − RB , defined as the difference between the returns of the managed
portfolio (P ) and benchmark portfolio (B). The optimization approach is to min-
imize the variance of tracking error given a constant tracking error expectation:

TEV (x − b)T�(x − b) → min (16.4)

s.t.:(x − b)Tµ = E(RE) (16.5)

x ∈ D (16.6)

The portfolio constraint excluding short sales now translates to x ∈ D with
D = {x ∈ RN

i :xT1 = 1, x ≥ −b}. Clearly, if the constant tracking error expec-
tation in (16.5) equals zero, x = b follows as a trivial solution. Roll (1992)
derives the analytical solution of the problem for x ∈ S. He points out that,
for a given EV inefficient benchmark portfolio, TEV optimization yields EV
inefficient solutions.
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16.3.2 The Rudd/Rosenberg/Roll model

The optimization approach taken by Rudd/Rosenberg and Roll proposes a
quadratic tracking model with a constraint that contains portfolio beta. Hence,
it may be denoted as a TEV model with beta restriction (TEVBR). Defining the
vector of asset betas as β = (βi)N×1 and letting βP denote the chosen portfolio
beta, this model corresponds to the minimization problem:

TEVBR (x − b)T�(x − b) → min (16.7)

s.t.:(x − b)Tµ = E(RE) (16.8)

xTβ = βP (16.9)

x ∈ D (16.10)

Roll (1992) discusses the analytical solution of the problem when (16.10) is
replaced by x ∈ S. He points out that, for a given EV inefficient benchmark
portfolio and a target beta βP < 1, the TEVBR optimization yields portfolios
which dominate the benchmark in the EV dimension.

16.3.3 The multirisk model

The multirisk model adds the variance of the tracking error to the standard
Markowitz EV model. Having multiple variances in the target function, it may
be denoted as a mean-multiple-variance (EMV) model. Introducing a risk aver-
sion parameter κ ≥ 0, one can set up the following minimization problem:

EMV xT�x + κ(x − b)T�(x − b) → min (16.11)

s.t.:xTµ = E(RP ) (16.12)

x ∈ C (16.13)

16.3.4 The moment restricted model

Basically, the moment restricted model is a generalization of traditional
approaches in EV portfolio optimization which set constraints on single
portfolio weights.

However, instead of imposing lower and upper bounds on single portfolio
weights, the EV moment restricted (EVMR) model restricts the whole set of
portfolio weights. This allows for a tradeoff between individual deviations and
circumvents the problem of many optimized weights hitting the admissible
boundaries. Interpreting the optimal decision variable x as random due to noise
in the estimates, the approach takes the given benchmark portfolio weights b
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as the expectation of portfolio weights x. Then, the model sets a constraint on
the second centred moment of the portfolio weights:

EVMR xT�x → min (16.14)

s.t.:xTµ = E(RP ) (16.15)

(x − b)T(x − b) = d (16.16)

x ∈ C (16.17)

The parameter d ≥ 0 in the moment constraint (16.16) is a constant which
controls overall squared weights deviations from the benchmark weights. The
smaller d, the closer the portfolio weights will replicate the benchmark weights.

16.3.5 The mean-variance-covariance model

The mean-variance-covariance (EVC) model derives its target function from a
multi-attribute utility framework imposing standard EV model assumptions and
regret aversion. The latter states that the decision maker is worse off once he or
she fails to achieve the benchmark realized return. Introducing a regret aversion
parameter λ ≥ 0, one can set up the minimization problem:

EVC xT�x − λxT�b → min (16.18)

s.t.:xTµ = E(RP ) (16.19)

x ∈ C (16.20)

An analytical solution to the problem can be derived allowing for short sales
where restriction (16.20) is replaced by x ∈ S. For λ > 0, the optimal portfolio
weights vector x is composed of two EV efficient weights vectors as well as
the benchmark portfolio weights vector b (see Wagner (2002)). Given estimates
of µ and �, regret averse investors will choose EV inefficient optimal portfo-
lios whenever the benchmark portfolio is EV inefficient. This generalization of
Roll’s result is quite obvious: since the portfolios are optimized to be EVC effi-
cient, they cannot be EV efficient with the only exception that the benchmark
happens to be EV efficient for given µ and �.

16.3.6 An overview of the optimization models

Table 16.1 gives an overview of the standard EV and the outlined models of
relative portfolio optimization.

All models in Table 16.1 were formulated as quadratic minimization problems
imposing a constant return expectation. The table entries for each model indicate
which variables are optimized in the target function or set constant in one of
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Table 16.1 EV-model and models of relative portfolio optimization

Model Authors
Return

variance
Return

covariance
Tracking error

variance

EV Markowitz min !
TEV Markowitz/Roll min !
TEVBR Rudd/Rosenberg/Roll constant min !
EMV Chow/Zhang min ! min !
EVMR Jorion/Wagner min ! constant
EVC Wagner min ! max !

Which decision variables are optimized in the target function, which are set constant in a constraint?

the constraints. While the EV and the TEV models focus solely on variance
of returns and tracking error respectively, the other models either explicitly
consider both variances or explicitly take covariance with the benchmark returns
into account. The table also indicates that the list of models is not complete
and there may be model variants not yet covered here.

16.4 DISCUSSION OF THE MODELS

The discussion of the models of the preceding section concentrates on the
target functions of the minimization problems. This allows for the follow-
ing statements.

• The TEV model: The target function (16.4) is given as the variance of
tracking error, which – since � is symmetric – can be written as σ 2

E =
xT�x − 2xT�b + bT�b. Since the variance of benchmark portfolio returns
bT�b is a given constant, variance and covariance are relevant to the choice
of x in this model.

• The TEVBR model: Since βP = xT�b/bT�b is set constant in (16.9),
the model is equivalent to minimizing variance of portfolio returns for a
given covariance between the returns of the portfolio and the benchmark.
It must therefore yield EV efficient, covariance constrained, portfolios.

• The EMV model: One may rewrite the target function (16.11) as
f (x) = xT�x + κxT�x − 2κxT�b + κbT�b. Minimization of f (x) is then
equivalent to minimizing g(x) = xT�x − 2κ/(1 + κ)xT�b. Hence, the
problem contains redundant terms in the target function and is equivalent
to an EVC optimization problem with target function (16.18) and λ =
2κ/(1 + κ).

• The EVMR model: Since (x − b)T (x − b) is constant in (16.16), it fol-
lows that the variance of tracking error is constant as well. In particular,
σ 2

E = (x − b)T P�(x − b). Therefore, the model minimizes variance of
portfolio returns for a given variance of tracking error, i.e. it will yield
EV efficient tracking error variance constrained portfolios.
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• The EVC model: Considering the target function (16.18) for λ = 0, the
EV model follows immediately. For λ = 2, a target function which is
equivalent to the TEV problem follows. Since (x − b)T µ = xT µ − bT µ,
where the expected benchmark portfolio return bT µ is constant, the only
difference between the models (16.4–6) and (16.18–20) is the definition
of the set of admissible solutions. Hence, the TEV model is an EVC model
with the regret aversion parameter restricted to equal a value of two

16.5 CONCLUSION

Previous theoretical literature, empirical findings and the large popularity in the
investment community, indicate that relative portfolio optimization is relevant
to questions of quantitative portfolio selection.

This chapter gave a survey of related methods for portfolio construction.
Closer inspection of the models reveals that there are more similarities than
frequently assumed. The methods discussed here can either be characterized as
EV models with covariance or tracking error variance constraint or they can
be characterized as EVC models simultaneously minimizing variance of return
and maximizing covariance of benchmark and portfolio returns. While the first
group of models yields covariance constrained EV efficient optimal portfolios,
the second group yields EVC efficient optimal portfolios.
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NOTES

1. The section is restricted to portfolio selection models. Alternative applications
based on regression approaches can be found in Rudolf, Wolter, and Zimmermann
(1999) and in Bamberg and Wagner (2000), for example. Beasley et al. (2001)
propose an optimization heuristic for the index tracking problem under optimal
subset selection and transaction costs.



Chapter 17

Predicting portfolio returns using the
distributions of efficient set portfolios

C J ADCOCK

ABSTRACT

Forecast and actual asset returns may often be modelled by multivari-
ate elliptically symmetrical distributions. In such cases, the returns of
an efficient set portfolio are distributed as quadratic forms in such vari-
ables. This chapter describes a practical methodology based on this
property that allows builders of efficient portfolios to make improved
predictions of future actual portfolio returns. The method is illustrated
using an international asset allocation portfolio.

17.1 INTRODUCTION

It is widely accepted that the realized or ex post performance of optimized
portfolios is often very different from that expected ex ante. Furthermore, the
performance is usually inferior. Either the realized returns will be significantly
less than expected ex ante, or the volatility will be greater, or both. This topic
has been widely discussed in the portfolio selection literature. It is well known
that the portfolios produced by formal optimization methods are sensitive to
the inputs – see the well-known papers by Best and Grauer (1991) and Chopra
and Ziemba (1993), for example. This means that, even in the situation where
the user is equipped with good estimates of the input parameters, the outputs
are likely to produce results that are different from those expected. In circum-
stances where the estimates of the inputs are poor, it is inevitable that ex post
performance will be inferior. This veracity of the strong statement in the pre-
ceding sentence is borne out by empirical evidence, as well as in the writing of
leading exponents of portfolio selection methods, notably Richard Michaud. It
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is also confirmed by a theoretical portfolio selection model reported in Adcock
(2000), henceforth CA.

Portfolio selection, regardless of the methodology of portfolio construction, is
a complex process. As Michaud (1998) makes clear, many factors are involved.
From the perspective of a quantitative construction methodology, however, there
are two issues which are of paramount importance. First, given a process that
generates the inputs to portfolio selection, how should users compute the best
estimates of what ex post performance will actually be? Second, how should
users improve the quality of their inputs so that ex post performance is close
to that predicted ex ante?

The aim of this short article is to describe a methodology that provides an
answer to the first of the two questions above. It is shown that it is possible to
construct a systematic process that will generate better predictive information
about realized returns. This does not provide higher quality inputs per se, but
it does create a framework of more realistic expectations for portfolio returns.
It may also implicitly provide information about specific weaknesses in current
parameter estimates.

The methodology described in this paper requires that a discrete reconstruc-
tion of the efficient frontier is computed at each time period. This reconstruction
uses the current inputs, normally forecasts of future expected returns and an esti-
mate of the variance–covariance (VC) matrix. The actual returns on this set of
portfolios over the following time period are then calculated ex post. This data
forms the input to an algorithm that constructs an ex post efficient frontier. This
frontier, which differs in definition from the Markowitz quadratic function, may
be used to generate more realistic predictions of ex post returns. It is shown
that, when the vector of expected returns and the corresponding VC matrix are
assumed, portfolio expected return is a piecewise linear function of risk appetite.
This function is approximated by a continuous quadratic function of risk, which
may be estimated from ex post returns. The effect of estimation error on the
optimal portfolio weights and hence on ex post return is also discussed. The
quadratic model may also be used in these circumstances.

Estimation of the ex post frontier may be done in several ways. The methodol-
ogy used in this paper is ordinary least squares regression. However, as noted in
the conclusions, it would be straightforward to implement a more sophisticated
estimation method.

The methods described are based on the standard mean-variance portfolio
selection objective function. In the usual notation,1 this is:

minwφ = θwT µ − 1
2wT V w such that AT w ≥ b (17.1)

where µ is the vector of expected returns on a set of assets over a single
time period. V is the VC matrix, assumed to be non-singular. The scalar θ ≥ 0
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represents an investor’s degree of risk appetite, with small values corresponding
to a cautious or low risk investor. The vector w contains the portfolio weights.
The matrix A contains the constraint normals and b the corresponding values.
The inequality sign above applies elementwise to the vector AT w and to b. For
basic portfolio selection with N assets, the constraints are the budget constraint
and the non-negativity restrictions on each asset’s weight. A is then an N by
(N + 1) matrix:

A = [1, I ]

where I is an N by N unit matrix and 1 is an N vector of ones. The vector b

contains the corresponding (N + 1) constraint values:

b =




1
0
.

.

0




More general constraints, including upper bounds,2 may be added to (A, b).
The structure of this chapter is as follows. Section 17.2 describes the efficient

set mathematics for the general portfolio selection problem defined at (17.1)
for the case when µ and V are given. Section 17.3 extends the ideas for the
case when V is assumed, but the uncertainty in µ is recognized. Section 17.4
describes the resulting model and process. An empirical study based on an asset
allocation portfolio is in Section 17.5 and Section 17.6 concludes. Notation is
that in common use. The use of 1 to represent a vector of ones is clear from the
context. An Appendix provides some additional detail to support the material
in Section 17.3.

17.2 EFFICIENT SET MATHEMATICS FOR GIVEN µ AND V

When the non-negativity restrictions and any other constraints are ignored, there
is an analytic solution to the simplified portfolio selection problem:

minw φ = θwT µ − 1
2 wT V w such that 1T w = 1.

The portfolio weights are given by:

w∗ = 1

1T V −11
V −11 + θ

{
V −1 − 1

1T V −11
V −111T V −1

}
µ
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For the more general portfolio selection problem stated at Equation (17.1), w∗

will depend on the constraints that are active at the solution. Suppose that the
constraints are given, as stated above, by AT w ≥ b; where A is an N by M

matrix and b is an M vector. Define AS as the N by P matrix of constraint
normals that are active at the solution, with P ≤ N , and bS as the corresponding
P vector of constraint values. The weights that solve the portfolio selection
problem in Equation (17.1) are given by:

w∗ = V −1AS(A
T
S V −1AS)

−1bS + θ{V −1 − V −1AS(A
T
S V −1AS)

−1AT
S V −1}µ

(17.2)

The solution vector w∗ varies with S, the set (AS , bS) that is active at the
solution. However, when µ and V are given, w∗ is deterministic even though
it depends on the parameter set (µ, V ; θ). Consequently, there are analytic
expressions for the mean and variance of return on the optimal portfolio, R∗

p

say. These are:

E[R∗
p] = α0,S + θα1,S = E∗, say

V [R∗
p] = α2.S + θ2α1,S = V ∗, say

(17.3)

The three α constants are defined in terms of µ and V as follows:

α0,S = µT V −1AS(A
T
S V −1AS)

−1bS

α1,S = µT {V −1 − V −1AS(A
T
S V −1AS)

−1AT
S V −1}µ

α2,S = bT
S (AT

S V −1AS)
−1bS

(17.4)

It should be noted that whereas α1,S and α2,S are always non-negative, it is
possible for α0,S to take negative as well as positive values. For portfolio selec-
tion based only on the budget constraint, these reduce to the usual efficient
set constants:

α0 = µT V −11

1T V −11

α1 = µT

{
V −1 − 1

1T V −11
V −111T V −1

}
µ

α2 = 1

1T V −11

These appear in various papers concerned with efficient set mathematics; for
example Roll (1977) or Best and Grauer (1991).
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Figure 17.1 A sketch of expected return v risk appetite

As indicated by equations (17.3) and (17.4), for general portfolio selection
the relationship between expected portfolio return E∗ and risk appetite θ is
piecewise linear. The slope changes when the active set S changes. In general,
as risk increases from zero, the number of active constraints increases.3 The
relationship between E∗ and θ resembles the sketch shown in Figure 17.1.

The methodology described in this article is motivated by the sketch. This
suggests that a piecewise linear function of θ may be approximated by a low
order polynomial. Specifically, it is proposed to model E∗ by:

E∗ = γ0 + γ1θ + γ2θ
2

The coefficients γ0,1,2 are estimated by regression based on the model:

Rp,θ,t = γ0 + γ1θ + γ2θ
2 + εp,θ,t

where Rp,θ,t is the return on a portfolio at time t constructed using the method-
ology above at risk level θ .4 As noted in the Introduction, the details of these
models and the estimation process are described in Section 17.4.

A detailed general discussion of the geometry of the efficient set and in
particular the relationship between (AS , bS) and (µ, V ; θ) is beyond the scope
of this article. However, it is straightforward to show for basic portfolio selection
that as the number of active constraints increases, α1,S the slope of E∗ decreases
but remains non-negative. For more complex constraints, the expected return
may be a higher order polynomial in θ .
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17.3 THE EFFECT OF FORECASTS

Efficient set mathematics assumes that the vector of expected returns µ and
the VC matrix are both given. In practice, these are both estimated quantities.
Furthermore, the estimates will generally be revised each time period as new
observations on returns become available. As noted in Adcock (2002), ‘ana-
lytical investigation of the effects of estimates is in general an open question,
although the effect of estimates on the maximum Sharpe ratio portfolio has been
reported in some detail by Jobson and Korkie (1981)’. Other authors who have
considered aspects of the effect of estimation error include Bawa et al. (1979),
Hillier and Satchell (Chapter 14) and Britten Jones (1999).

In this section it is assumed that the distribution R and the vector of forecasts
F have a joint multivariate normal distribution. The mean vector is:

[
µR

µF

]

and the VC matrix is:

[
VRR VRF

VFR VFF

]

It is assumed that both VRR and VFF are non-singular. For the general portfo-
lio selection problem with inequality constraints, the optimal weights may be
written as:

w∗ = V −1
RR AS(A

T
S V −1

RR AS)
−1bS

+ θ{V −1
RR − V −1

RR AS(A
T
S V −1

RR AS)
−1AT

S V −1
RR }F (17.5)

The active set now depends on (F , V ; θ). Actual portfolio return is given by:

R∗
p = RT V −1

RR AS(A
T
S V −1

RR AS)
−1bS

+ θRT {V −1
RR − V −1

RR AS(A
T
S V −1

RR AS)
−1AT

S V −1
RR }F

In most circumstances, there will be single value of the vector of forecasts. In
this case, the proper approach to inference for the portfolio w∗ and its subsequent
performance is to use the conditional distribution R given F . This is multivariate
normal with mean vector and VC matrix:

µR + VRF V −1
FF (F − µF ) and VRR − VRF V −1

FF VFR
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respectively. Hence:

E[R∗
p|F ] = {µR + VRF V −1

FF (F − µF )}T V −1
RR AS(A

T
S V −1

RR AS)
−1bS

+ θ{µR + VRF V −1
FF (F − µF )}T {V −1

RR − V −1
RR AS

× (AT
S V −1

RR AS)
−1AT

S V −1
RR }F

This function is, like that in equation (17.4), piecewise linear in risk appetite
θ . However, it is no longer necessarily true that the slope of the conditional
expected value5 is always non-negative, even though the matrix

V −1
RR − V −1

RR AS(A
T
S V −1

RR AS)
−1AT

S V −1
RR

is positive semi-definite. This suggests that a quadratic model in θ , of the form
proposed in Section 17.2, may sometimes have a negative γ2 coefficient.

Computation of unconditional expected values, that is expectations taken over
the marginal distributions of returns, is more complicated. In CA it is shown
that, when uncertainty in estimation of the mean µ is taken into account, the
expected return and variance of a standard efficient set portfolio are respectively:

E[R∗
port ] = α0 + θα1 + β0θ, V [R∗

port ] = α2 + θ2α1 + 2θβ1 + θ2β2

where α0,1,2 are as defined above. The beta terms are functions of the parameters
of the assumed multivariate normal joint probability distribution of asset returns
and of the estimates used in portfolio construction. The coefficients β0,1,2 are
defined in CA, where it is shown that β0 and β1 may take both positive and
negative values. The equations above indicate therefore that, depending on the
beta values, expected return and variance may be less or more than that predicted
by standard theory.

If the constraints are equalities and the active set S holds for all values of
(F , V ; θ), expected value and variance may be computed using the methods in
CA. For general portfolio selection with inequality constraints, it is impractical
to compute exact expressions for the unconditional expected values. However,
the discussion in the Appendix indicates that the relationship between E[R∗

p]
and θ is non-linear. The quadratic model is therefore proposed for this case as
an approximation.

17.4 MODEL AND PROCESS

The model and estimation/prediction process is as follows. It is assumed that
one-period ahead forecasts of the inputs and the corresponding returns are avail-
able for times 1 through T . At each time period, t say, the efficient frontier is
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reconstructed at a set of specified values of risk appetite, θi say, i = 1(1)M. The
actual return of the portfolio, Rp,i,t say, corresponding to risk θi is computed
using the actual returns. The cross-sectional regression model:

Rp,i,t = γ0 + γ1θi + γ2θ
2
i + εp,i,t

is estimated using OLS. If the estimated coefficients in this model are denoted
by g0, g1 and g2 respectively, the portfolio return at risk level θi at time (t + 1)
is predicted as:

R̂p.i.t = g0 + g1θi + g2θ
2
i

Cross-sectional regression based on OLS is used on pragmatic grounds. In
Section 17.4, the reported regression diagnostics suggests that there is scope
for a more refined estimation methodology. There are some grounds a pri-
ori for expecting the model coefficients {γj } to be time varying. Investiga-
tion of this and implementation of a more sophisticated method is a possible
future development.

17.5 DATA AND EMPIRICAL RESULTS

The model described above is exemplified by an asset allocation portfolio. This
is based on six asset classes, as follows:

1. US equity index;
2. US bond index;
3. Japan equity index;
4. Japan bond index;
5. Europe equity index;
6. Europe bond index.

All returns are measured in Japanese yen. The data is monthly and runs from
September 1989 to October 1997 inclusive, giving 98 months of forecasts. Fore-
casts of future expected returns are produced each month according to the
convention above. Also estimated each month is the VC matrix of returns.
The basic performance statistics for actual returns and for the corresponding
forecasts are shown in Table 17.1 of Adcock (2002). Optimization is carried

Table 17.1 Risk levels used in model

0 0.001 0.0025 0.005 0.0075 0.01
0.025 0.05 0.075 0.1
0.25 0.5 0.75 1
2.5 5 7.5 10
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out relative to a benchmark portfolio, for which the percentage weights for the
above six assets are 9, 6, 40, 30, 9 and 6 respectively.

The procedure described in Section 17.3 was implemented using 18 levels of
risk appetite. These are as listed in Table 17.1.

Figure 17.2 shows the average forecast expected return at each level of risk.
The average was computed over all 98 months. Also shown are the correspond-
ing actual returns at the same level of risk. As the diagram shows, on average
actual returns are markedly less than those forecast at the start of each period.
This chart corresponds to Table 25.3 of Adcock (2002).

The shape of the forecast expected return curve is, as expected, non-
decreasing in θ . The changing slope reflects the different constraints that are
active at different levels of risk. The behaviour of the actual return curve is
not unusual. The portions of the curve that are decreasing in θ reflect both the
fact that the 98 months is a sample and the complex relationship between risk,
constraints and the joint probability distribution of forecasts and returns.

The regressions were carried out for all 98 months as described in the Section
above. Detailed regression diagnostics are omitted. These are available on
request, but need to be interpreted with some care because of the small number
of observations,6 18, in each cross-section. The key points from the diagnos-
tics are: (1) the F ratio test was significant at the 5% point on 61 out of
98 months; (2) a Bera–Jarque test of normality of the fitted residuals was sig-
nificant at the 5% in only two months; but (3) the Durbin–Watson statistic
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Figure 17.2 Forecast and actual returns along the efficient frontier
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Figure 17.3 Forecast actual returns and revised forecasts along the efficient frontier
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Figure 17.4 Example of actual returns forecasts and revised forecasts for a single month

provided evidence of cross-sectional correlation in the residuals. The 37 non-
significant F ratios suggest that for 37 out of 98 months the forecasts had no
signal capable of exploitation by the optimization process.

Figure 17.3 shows forecasts and actual returns, together with the revised
forecasts produced by the quadratic model.
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As the figure shows, on average over the 98 months, the forecasts generated
by the model predict actual returns more accurately than the original forecasts.
This should not be taken to imply that predictions for a single month will always
be as accurate. Indeed Figure 17.4 gives an example of a month where they
are not. However, it does suggest that the quadratic model has the capability to
predict actual average returns of portfolios along the efficient frontier.

17.6 CONCLUSIONS

This chapter presents a cross-sectional model that may be used to compute
more accurate predictions of actual portfolio return. A similar approach could
be employed to make revised predictions of portfolio volatility.

The modelling methodology used in this chapter is OLS. Although OLS is
effective, at least for the data in the study reported here, the regression diag-
nostics suggest that it may be a sub-optimal estimation methodology. Another
potential development recognizes that the shape of the efficient frontier changes
as time progresses. There is some scope for considering a methodology, such
as the Kalman filter, which would allow the dynamics to be modelled.

As noted in the introduction, this methodology does not lead explicitly to
improved forecasts. It does, however, give information about the performance
of forecasts. This is one of the inputs to the process of forecast improvement.

17.7 APPENDIX: EFFECT OF ESTIMATION ERROR IN µ

It is assumed that the return vector R and the vector of forecasts F have a joint
multivariate normal distribution with mean vector and VC matrix as defined
in Section 17.3. For the general portfolio selection problem at Equation (17.1),
the optimal weights are:

w∗ = V −1
RR AS(A

T
S V −1

RR AS)
−1bS

+ θ{V −1
RR − V −1

RR AS(A
T
S V −1

RR AS)
−1AT

S V −1
RR }F

= w∗(F ; θ, S)

Actual portfolio return is given by:

R∗
p = RT V −1

RR AS(A
T
S V −1

RR AS)
−1bS

+ θRT {V −1
RR − V −1

RR AS(A
T
S V −1

RR AS)
−1AT

S V −1
RR }F

Computation of expected return and variance is done in two stages. First, expec-
tations are computed over the conditional distribution of R given F . Second,
expectations are computed of the distribution of F .
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1. Expectations over the distribution of R given F
The conditional distribution of R given F is multivariate normal with mean
vector and VC matrix given in Section 17.3. As already noted:

E[R∗
p|F ] = {µR + VRF V −1

FF (F − µF )}T V −1AS(A
T
S V −1AS)

−1bS

+ θ{µR + VRF V −1
FF (F − µF )}T {V −1 − V −1AS

× (AT
S V −1AS)

−1AT
S V −1}F

Assuming that forecasts are unbiased, i.e.

µF = µR = µ, say;

this may expressed as:

E[R∗
p|F ] = α0,S + θα1,S + (F − µ)T hS + θ(F − µ)T KS(F − µ)

where, using the definition of w∗() above:

hS = VRF V −1
FF w∗(µ; θ, S) + θ{V −1

RR − V −1
RR AS

× (AT
S V −1

RR AS)
−1AT

S V −1
RR }µ

KS = VRF V −1
FF {V −1

RR − V −1
RR AS(A

T
S V −1

RR AS)
−1AT

S V −1
RR }

2. Expectations over the distribution of F
The active set (AS , bS) at the solution will be determined by the values of
F , θ and V . If the inactive constraints are denoted by the set S,7 the optimal
weights satisfy:

AT

S
w∗ > b

S

This may be written as:

θAT

S
{V −1

RR − V −1
RR AS(A

T
S V −1

RR AS)
−1AT

S V −1
RR }F > b

S

− AT

S
V −1

RR AS(A
T
S V −1

RR AS)
−1bS

In principle, the probability of this inequality in F may be computed. It is a
function, inter alia, of θ . The subspace of RN defined by the above inequality
will be denoted �S . With this notation, the expected value of R∗

p is:

E[R∗
p] =

∑
S

∫
�S

{α0,S + θα1,S + (f − µ)T hS

+ θ(f − µ)T KS(f − µ)}p(f ) df
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where p() is the density function of the multivariate probability distribution
of forecasts and integration is over the N variables in F . This is a non-linear
function of θ in general.
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NOTES

1. This notation is in common use. Further details are in Adcock (2002), for example.
2. Multiplication by −1 turns an upper bound into a lower bound.
3. This is not necessarily true when the constraints are more complex. For example,

an active constraint can be replaced by another as risk increases, or it can some-
time be removed from the active set.

4. A similar analysis leads to a model for portfolio variance V ∗ which includes
terms up to θ4. Elimination of θ between the equations for expected return and
variance gives the ex post efficient frontier.

5. This is the coefficient of θ .
6. The choice of 18 values is arbitrary. More observations along the discretized

frontier could be obtained by using more values of θ .
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7. From an operational perspective, these would be reduced to a set of P < N

linearly independent constraints.
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