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Preface to Handbook 29B

Thirty five years ago, the Central Bureau of Statistics in Israel held a big farewell party
for the then retiring Prime Minister of Israel, Mrs Golda Meir. In her short thank you
speech, the prime minister told the audience: “you are real magicians, you ask 1,000
people what they think, and you know what the whole country thinks”. Magicians or
not, this is what sample surveys are all about: to learn about the population from a (often
small) sample, dealing with issues such as how to select the sample, how to process and
analyse the data, how to compute the estimates, and face it, since we are not magicians,
also how to assess the margin of error of the estimates.

Survey sampling is one of the most practiced areas of statistics, and the present
handbook contains by far the most comprehensive, self-contained account of the state
of the art in this area. With its 41 chapters, written by leading theoretical and applied
experts in the field, this handbook covers almost every aspect of sample survey theory
and practice. It will be very valuable to government statistical organizations, to social sci-
entists conducting opinion polls, to business consultants ascertaining customers’ needs
and as a reference text for advanced courses in sample survey methodology. The hand-
book can be used by a student with a solid background in general statistics who is
interested in learning what sample surveys are all about and the diverse problems that
they deal with. Likewise, the handbook can be used by a theoretical or applied researcher
who is interested in learning about recent research carried out in this broad area and
about open problems that need to be addressed. Indeed, in recent years more and more
prominent researchers in other areas of statistics are getting involved in sample survey
research in topics such as small area estimation, census methodology, incomplete data
and resampling methods.

The handbook consists of 41 chapters with a good balance between theory and
practice and many illustrations of real applications. The chapters are grouped into
two volumes. Volume 29A entitled “Design, Methods and Applications” contains
22 chapters. Volume 29B entitled “Inference and Analysis” contains the remaining 19
chapters. The chapters in each volume are further divided into three parts, with each part
preceded by a short introduction summarizing the motivation and main developments
in the topics covered in that part.

Volume 29A deals with sampling methods and data processing and considers in great
depth a large number of broad real life applications. Part 1 is devoted to sampling and
survey design. It starts with a general introduction of alternative approaches to survey
sampling. It then discusses methods of sample selection and estimation, with sepa-
rate chapters on unequal probability sampling, two-phase and multiple frame sampling,
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vi Preface to Handbook 29B

surveys across time, sampling of rare populations and random digit dialling surveys.
Part 2 of this volume considers data processing, with chapters on record linkage and
statistical editing methods, the treatment of outliers and classification errors, weighting
and imputation to compensate for nonresponse, and methods for statistical disclosure
control, a growing concern in the modern era of privacy conscious societies. This part
also has a separate chapter on computer software for sample surveys. The third part
of Volume 29A considers the application of sample surveys in seven different broad
areas. These include household surveys, business surveys, agricultural surveys, envi-
ronmental surveys, market research and the always intriguing application of election
polls. Also considered in this part is the increasing use of sample surveys for evaluating,
supplementing and improving censuses.

The present volume 29B is concerned with inference and analysis, distinguishing
between methods based on probability sampling principles (“design-based” methods),
and methods based on statistical models (“model-based” methods). Part 4 (the first part
of this volume) discusses alternative approaches to inference from survey data, with
chapters on model-based prediction of finite population totals, design-based and model-
based inference on population model parameters and the use of estimating functions and
calibration for estimation of population parameters. Other approaches considered in this
part include the use of nonparametric and semi-parametric models, the use of Bayesian
methods, resampling methods for variance estimation, and the use of empirical likeli-
hood and pseudo empirical likelihood methods. While the chapters in Part 4 deal with
general approaches, Part 5 considers specific estimation and inference problems. These
include design-based and model-based methods for small area estimation, design and
inference over time and the analysis of longitudinal studies, categorical data analysis and
inference on distribution functions. The last chapter in this part discusses and illustrates
the use of scatterplots with survey data. Part 6 in Volume 29B is devoted to inference
under informative sampling and to theoretical aspects of sample survey inference. The
first chapter considers case-control studies which are in common use for health and pol-
icy evaluation research, while the second chapter reviews several plausible approaches
for fitting models to complex survey data under informative sampling designs. The other
two chapters consider asymptotics in finite population sampling and decision-theoretic
aspects of sampling, bringing sample survey inference closer to general statistical theory.

This extensive handbook is the joint effort of 68 authors from many countries, and
we would like to thank each one of them for their enormous investment and dedication
to this extensive project. We would also like to thank the editorial staff at the North-
Holland Publishing Company and in particular, Mr. Karthikeyan Murthy, for their great
patience and cooperation in the production of this handbook.

Danny Pfeffermann
C. R. Rao



Contributors: Vol. 29B

Binder, David A., Methodology Branch, Statistics Canada, 100 Tunney’s Pasture Drive-
way, Ottawa ON K1A 0T6; e-mail: dbinder49@hotmail.com (Ch. 24).

Breidt, F. Jay, Department of Statistics, Colorado State University, Fort Collins, CO
80523-1877; e-mail: jbreidt@stat.colostate.edu (Ch. 27).

Datta, Gauri S.,Department of Statistics, University of Georgia, AthensGA 30602-7952,
USA; e-mail: gaurisdatta@gmail.com (Ch. 32).

Dorfman, Alan H., Office of Survey Methods Research, U.S. Bureau of Labor Statistics,
Washington, D.C., U.S.A., 20212; e-mail: dorfman.alan@bls.gov (Ch. 36).

Gershunskaya, Julie, U.S. Bureau of Labor Statistics, 2 Massachusetts Avenue, NE,
Washington, DC 20212, USA; e-mail: gershunskaya.julie@bls.gov (Ch. 28).

Ghosh, Malay, Dept. of Statistics, University of Florida, Gainesville, Florida, 32611-
8545, USA; e-mail: ghoshm@stat.ufl.edu (Ch. 29).

Godambe, V. P., Department of Statistics and Actuarial Science, University ofWaterloo,
Waterloo, Ontario, Canada N2L 3G1; e-mail: vpgodamb@uwaterloo.ca (Ch. 26).

Graubard, Barry I., Biostatistics Branch, National Cancer Institute, Executive Plaza
South Bldg, 6120 Executive Blvd, Room 8024, Bethesda, MD, 20892, USA; e-mail:
graubarb@mail.nih.gov (Ch. 37).

Jiang, Jiming,Department of Statistics, University of California,Davis, CA95616,USA;
e-mail: jiang@wald.ucdavis.edu (Ch. 28).

Korn, Edward L., Biometric Research Branch, National Cancer Institute, Executive
Plaza North Bldg, 6130 Executive Blvd, Room 8128, Bethesda, MD, 20892, USA;
e-mail: korne@mail.nih.gov (Ch. 37).

Kott, Phillip S., RTI International, 6110 Executive Blvd., Suite 902, Rockville, MD
20852; e-mail: pkott@rti.org (Ch. 25).

Lahiri, Partha, Joint Program in Survey Methodology, 1218 Lefrak Hall, University of
Maryland, College Park,MD20742, USA; e-mail: plahiri@survey.umd.edu (Ch. 28).

Lehtonen, Risto, Department of Mathematics and Statistics, University of Helsinki,
P.O. Box 68 (Gustaf Hällströmin katu 2b), FI-00014 University of Helsinki, Finland;
e-mail: risto.lehtonen@helsinki.fi (Ch. 31).

McLaren, Craig, Head, Retail Sales Branch, Office for National Statistics, United
Kingdom; e-mail: chmclaren@hotmail.com (Ch. 33).

Nathan, Gad,Department of Statistics, HebrewUniversity,Mt Scopus, 91905 Jerusalem,
Israel; e-mail: gad@huji.ac.il (Ch. 34, Introduction to Part 5).

Opsomer, Jean, Department of Statistics, Colorado State University, Fort Collins, CO
80523-1877; e-mail: jopsomer@stat.colostate.edu (Introduction to Part 4; Ch. 27).

xix



xx Contributors: Vol. 29B

Pfeffermann, Danny, Department of Statistics, Hebrew University of Jerusalem,
Jerusalem 91905, Israel; and Southampton Statistical Sciences Research Institute,
University of Southampton, Southampton, SO17 1BJ, United Kingdom; e-mail:
msdanny@huji.ac.il (Ch. 39, Introduction to Part 5, 6).

Prášková, Zuzana, Department of Probability and Mathematical Statistics, Faculty of
Mathematics and Physics, Charles University in Prague, Sokolovská 83, 186 75
Prague, Czech Republic; e-mail: praskova@karlin.mff.cuni.cz (Ch. 40).

Rao, J.N.K., School ofMathematics and Statistics,CarletonUniversity, Colonel byDrive
Ottawa, Ontario K1S 5B6, Canada; e-mail: jrao34@rogers.com (Ch. 30).

Rinott,Yosef,Department of Statistics, TheHebrewUniversity, Jerusalem91905, Israel;
e-mail: rinott@mscc.huji.ac.il (Ch. 41).

Roberts, Georgia,Methodology Branch, Statistics Canada, 100 Tunney’s Pasture Drive-
way, Ottawa ON K1A 0T6; e-mail: Georgia.Roberts@statcan.gc.ca (Ch. 24).

Scott, Alastair, Department of Statistics, University of Auckland, 38 Princes Street,
Auckland, New Zealand 1010; e-mail: a.scott@auckland.ac.nz (Ch. 38).

Sen, Pranab Kumar,Department of Biostatistics, University of North Carolina at Chapel
Hill, NC 27599-7420, USA; e-mail: pksen.bios.unc.edu (Ch. 40).

Steel, David., Director, Centre for Statistical and Survey Methodology, University of
Wollongong, Australia; e-mail: dsteel@uow.edu.au (Ch. 33).

Sverchkov, Michail, U. S. Bureau of Labor Statistics and BAE Systems IT, 2 Mas-
sachusetts Avenue NE, Suite 1950, Washington, DC, 20212; e-mail: Sverchkov.
Michael@bls.gov (Ch. 39).

Thompson, M. E., Department of Statistics and Actuarial Science, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1; e-mail: methomps@uwaterloo.ca
(Ch. 26).

Valliant, Richard,Research Professor, Joint Program in SurveyMethodology, University
of Maryland and Institute for Social Research, University of Michigan, 1218 Lefrak
Hall, College Park MD 20742; e-mail:rvalliant@survey.umd.edu (Ch. 23).

Veijanen, Ari, Statistics Finland, Työpajankatu 13, Helsinki, FI-00022 Tilastokeskus,
Finland; e-mail: ari.veijanen@stat.fi (Ch. 31).

Wild, Chris, Department of Statistics, University of Auckland, 38 Princes Street,
Auckland, New Zealand 1010; e-mail: c.wild@auckland.ac.nz (Ch. 38).

Wu, Changbao, Department of Statistics and Actuarial Science University of Water-
loo 200 University Avenue West Waterloo, Ontario N2L 3G1 Canada. e-mail:
cbwu@uwaterloo.ca (Ch. 30).



Contributors: Vol. 29A

Beaumont, Jean-François, Statistical Research and Innovation Division, Statistics
Canada, 100 Tunney’s Pasture Driveway, R.H. Coats building, 16th floor, Ottawa
(Ontario), Canada K1A 0T6; e-mail: Jean-Francois.Beaumont@statcan.gc.ca
(Ch. 11).

Berger, Yves G., Southampton Statistical Sciences Research Institute, University of
Southampton, Southampton, SO17 1BJ, United Kingdom; e-mail: Y.G.Berger@
soton.ac.uk (Ch. 2).

Bethlehem, Jelke, Statistics Netherlands, Methodology Department, The Hague, The
Netherlands; e-mail: jbtm@cbs.nl (Ch. 13).

Biemer, Paul P., RTI International, P.O. Box 12194, Research Triangle Park, NC 27709-
2194; and University of North Carolina, Odum Institute for Research in Social
Science, Chapel Hill, NC; e-mail: ppb@rti.org (Ch. 12, Introduction to Part 2).

Brewer, Kenneth, School of Finance and Applied Statistics, College of Business and
Economics, L.F. Crisp Building (Building 26), Australian National University, A.C.T.
0200, Australia; e-mail: ken.brewer@anu.edu.au (Ch. 1).

Brick, J. Michael,Westat and Joint Program in SurveyMethodology, University ofMary-
land, 1650 Research Blvd, Rockville, MD, 20850; e-mail: mikebrick@westat.com
(Ch. 8).

Chowdhury, Sadeq, NORC, University of Chicago, 4350 East-West Highway, Suite 800,
Bethesda, MD 20814; e-mail: sadeqc@yahoo.com (Ch. 7).

Christman, Mary C., University of Florida, Department of Statistics, Institute of Food
and Agricultural Science, Gainesville, Florida; e-mail: mcxman@ufl.edu (Ch. 6).

De Waal, Ton,Department of Methodology, Statistics Netherlands, POBox 24500, 2490
HA The Hague, The Netherlands; e-mail: t.dewaal@cbs.nl (Ch. 9).

Frankovic, Kathleen A., Survey and Election Consultant, 3162 Kaiwiki Rd., Hilo, HI
96720; e-mail: kaf@cbsnews.com (Ch. 22).

Fuller, Wayne A., Center for Survey Statistics and Methodology, Department of Statis-
tics, Iowa State University, Ames, IA 50011; e-mail: waf@iastate.edu (Ch. 3).

Gambino, Jack G., Household Survey Methods Division, Statistics Canada, Ottawa,
Canada K1A 0T6; e-mail: jack.gambino@statcan.gc.ca (Ch. 16, Introduction to
Part 3).

Glickman, Hagit, National Authority of Measurement and Evaluation in Education
(RAMA), Ministry of Education, Kiryat Hamemshala, Tel Aviv 67012, Israel; e-mail:
hglickman.rama@education.gov.il (Ch. 21).

xxi



xxii Contributors: Vol. 29A

Gregoire, Timothy, Weyerhaeuser, J.P. Jr., Professor of Forest Management, School of
Forestry andEnvironmental Studies,YaleUniversity, 360Prospect Street, NewHaven,
CT 06511-2189; e-mail: timothy.gregoire@yale.edu (Ch. 1).

Haziza, David,Département deMathématiques et de Statistique,Université deMontréal,
Pavillon André-Aisenstadt, 2920, chemin de la Tour, bureau 5190, Montréal, Québec
H3T 1J4, Canada; e-mail: David.haziza@umontreal.ca (Ch. 10).

Hidiroglou, MichaelA., Statistical Research and InnovationDivision, StatisticsCanada,
Canada, K1A 0T6; e-mail: Mike.Hidiroglou@statcan.gc.ca (Ch. 17).

House, Carol C., National Agricultural Statistics Service, U.S. Department of Agricul-
ture, Washington, DC, USA; e-mail: Carol.House@usda.gov (Ch. 18).

Kalton, Graham, Westat, 1600 Research Blvd., Rockville, MD 20850; e-mail:
grahamkalton@westat.com (Ch. 5).

Kelly, Jenny, NORC, University of Chicago, 1 North State Street, Suite 1600, Chicago,
IL 60602; e-mail: Kelly-Jenny@norc.org (Ch. 7).

Lavallée, Pierre, Social SurveyMethods Division, Statistics Canada, Canada, K1A 0T6;
e-mail: pierre.lavallee@statcan.gc.ca (Ch. 17).

Legg, Jason C.,Division of Global Biostatistics and Epidemiology, Amgen Inc., 1 Amgen
Center Dr. Newbury Park, CA 91360; e-mail: jlegg@amgen.com (Ch. 3).

Lohr, Sharon L., Department of Mathematics and Statistics, Arizona State University,
Tempe, AZ 85287-1804, USA; e-mail: sharon.lohr@asu.edu (Ch. 4, Introduction to
Part 1).

Marker, David A., Westat, 1650 Research Blvd., Rockville Maryland 20850; e-mail:
DavidMarker@Westat.com (Ch. 19).

Montaquila, Jill M., Westat and Joint Program in Survey Methodology, University of
Maryland, 1650 Research Blvd, Rockville, MD, 20850; e-mail: jillmontaquila@
westat.com (Ch. 8).

Naidu, Gurramkonda M., Professor Emeritus, College of Business & Economics, Uni-
versity of Wisconsin-Whitewater, Whitewater, WI 53190; e-mail: naidug@uww.edu
(Ch. 20).

Nirel, Ronit, Department of Statistics, The Hebrew University of Jerusalem, Mount
Scopus, Jerusalem 91905, Israel; e-mail: nirelr@cc.huji.ac.il (Ch. 21).

Nusser, S. M., Department of Statistics, Iowa State University, Ames, IA, USA; e-mail:
nusser@iastate.edu (Ch. 18).

Panagopoulos, Costas, Department of Political Science, Fordham University, 441
E. Fordham Rd., Bronx, NY 10458; e-mail: costas@post.harvard.edu (Ch. 22).

Rivest, Louis-Paul, Departement de mathématiques et de statistique, Université Laval,
Cité universitaire, Québec (Québec), Canada G1K 7P4; e-mail: lpr@mat.ulaval.ca
(Ch. 11).

Shapiro, Robert Y., Department of Political Science and Institute for Social and Eco-
nomic Research and Policy, Columbia University, 420 West 118th Street, New York,
NY 10027; e-mail: rys3@columbia.edu (Ch. 22).

Silva, Pedro Luis do Nascimento, Southampton Statistical Sciences Research Institute,
University of Southampton, UK; e-mail: pedrolns@soton.ac.uk (Ch. 16).

Skinner, Chris, Southampton Statistical Sciences Research Institute, University of
Southampton, Southampton SO17 1BJ, United Kingdom; e-mail: C.J.Skinner@
soton.ac.uk (Ch. 15).



Contributors: Vol. 29A xxiii

Stevens, Don L. Jr., Statistics Department, Oregon State University, 44 Kidder Hall,
Corvallis, Oregon, 97331; e-mail: stevens@stat.oregonstate.edu (Ch. 19).

Tillé, Yves, Institute of Statistics, University of Neuchâtel, Pierre à Mazel 7, 2000
Neuchâtel, Switzerland; e-mail: yves.tille@unine.ch (Ch. 2).

Velu, Raja, Irwin and Marjorie Guttag Professor, Department of Finance, Martin J.
Whitman School of Management, Syracuse University, Syracuse, NY 13244-2450;
e-mail:rpvelu@syr.edu (Ch. 20).

Winkler, William E., Statistical Research Division, U.S. Census Bureau, 4600 Silver
Hill Road, Suitland, MD 20746; e-mail: william.e.winkler@census.gov (Ch. 14).

Wolter, Kirk, NORC at the University of Chicago, and Department of Statistics,
University of Chicago, 55 East Monroe Street, Suite 3000, Chicago, IL 60603;
e-mail: wolter-kirk@norc.uchicago.edu (Ch. 7).



Introduction to Part 4

Jean D. Opsomer

1. Introduction

As the chapters in Part 3 of this volume clearly illustrate, surveys are an important source
of primary data in a large array of disciplines, ranging from natural resources and ecology
to social and health sciences. In all those areas, the original focus on the estimation of
well-defined finite-population quantities has been supplemented more recently by the
use of survey data for fitting statistical models.

When targeting finite-population quantities, design-based inference remains the
dominant approach in use today. But even within this context, modeling plays an impor-
tant role in estimation and inference. Some of the main uses of modeling are to improve
the precision of survey estimators at the population level or for domains, to calibrate
estimates so that they “match” control quantities such as census numbers or estimates
from other surveys, and to adjust estimators for nonresponse or measurement error.
Purely model-based inference for finite-population quantities is also possible, as will be
discussed below.

In inference on statistical models, the finite population is often not of primary interest.
In fact, the design randomization itself is often viewed as a nuisance by data analysts,
because their focus is on estimating and evaluating the model and its associated sources
of uncertainty. Nevertheless, there is a clear recognition that model fitting with survey
data needs to take account of the sampling design features. Inference on models is
usually undertaken using one of the two modes: a pure model-based approach or a
“hybrid” approach blending design-based and model-based methods.

Sitting at the intersection between model-based and design-based inference, the anal-
ysis of survey data can be a complicated affair, even though it certainly did not start
off that way. Indeed, the original principles underlying randomization-based sample
selection and corresponding inverse-probability weighted estimation are among the
simplest concepts in statistics. The complexities arise because survey data analyses
need to account not only for this randomization uncertainty but also for the effect of
modeling. The next section provides a brief look at the different modes of inference with
survey data. Section 3 gives an overview of the chapters in Part 4, which address a range
of both traditional and modern methods for estimation of finite-population quantities,
model quantities, or both.

3



4 J. D. Opsomer

2. Modes of inference with survey data

Consider a finite population U ={1, . . . , i, . . . , N}. Associated with each element i is a
(possibly vector-valued) variable of interest yi. For now, we will focus on the population
meanyN =

∑
U yi/N as a finite-population quantity of interest.Aprobability sample s ⊂

U is drawn according to a sampling design p(·), where p(s)= Pr[sample s is selected].
Let πi= Pr[i ∈ s]= ∑

s:i∈s p(s) > 0. When the sampling design is the only source of
randomness explicitly accounted for in estimation and inference, the mode of inference
is usually referred to as design-based or, somewhat less frequently, randomization-based.

Pure design-based estimators of yN are given by the Horvitz–Thompson esti-
mator ŷHT=N−1 ∑

s yi/πi and the Hájek estimator ŷHA= N̂−1 ∑
s yi/πi, where

N̂ = ∑
s 1/πi. Both estimators have a long history of applications in survey estimation

because of their simplicity and desirable statistical properties. They are design unbiased
(ŷHT), or approximately design unbiased (ŷHA), without reliance on a model for the yi,
and inference can be performed using the fact that for sufficiently large samples, the
distribution of the estimators is well approximated by the Gaussian distribution. See
Chapter 40 of this handbook for asymptotics in finite-population sampling. For most
sampling designs, explicit formulas are available for constructing estimators for the
variance of ŷHT. These, together with the Gaussian distribution, can then be used for
constructing confidence intervals for yN (the case of ŷHA will be treated below).

For at least as long as design-based estimation have been used, the pure design-
based estimators ŷHT and ŷHA have been supplemented by alternative design-based
estimators that take advantage of additional information about the population, such as
the ratio estimator and the poststratified estimator. Fuller (2002) gives an overview of the
development of the more general class of regression estimators, which have traditionally
relied on linear models. Let xi represent a vector of auxiliary variables for element
i and xN its known population mean. A general form of the regression estimator is
given by

ŷreg = ŷHT + (xN − x̂HT)B̂, (1)

where B̂ is a sample-based quantity whose exact form varies, depending on the specific
version of regression estimation being considered. For ŷreg to be a design-consistent
estimator for yN , the only requirement on B̂ is that it converges in probability to a
constant, which allows a great deal of flexibility in the formulation of the regression
estimator. Note also that the Horvitz–Thompson estimators in (1) can be replaced by
the Hájek versions.

Depending on the choice of the auxiliary variables xi and the specific choice of B̂,
the regression estimator can be significantly more efficient than the Horvitz–Thompson
and Hájek estimators, while maintaining design consistency. Most methods define B̂
as a vector of estimated regression coefficients for a linear regression model relating yi
and xi. A simple version of such a model can be written as

yi = xiβ + εi, (2)

with the εi representing independent and identically distributed (iid) zero-mean random
variables. When working in the design-based paradigm, such a model is sometimes
called aworkingmodel, because the regression estimator in (1) remains design consistent
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even if the model is not a correct representation of the relationship between yi and xi.
However, the smaller the deviations between the yi and the working model mean xiβ,
the more efficient is the regression estimator.

The linear working model in (2) can be replaced by more complicated regression
models, such as nonparametric or nonlinear models, which can be more appropriate
depending on the nature of the data. In addition, using a working model is not the only
approach to improve the efficiency of estimators of finite-population quantities with
respect to the randomization distribution. Calibration estimators (Deville and Särndal,
1992) form a broad class of estimators that include regression estimators based on
linear models and the raking ratio estimator as special cases. Calibration estimators
do not use models in their construction. They have the same form as the Horvitz–
Thompson estimator but with new weights wi such that the “distance” between the
calibrated estimator, written as ŷcal=N−1 ∑

s wiyi, and the purely design-weighted
estimator ŷHT=N−1 ∑

s π
−1
i yi is minimized, subject to a set of calibration constraints.

The “distance” referred to here is a sample-based function of the weights of the form∑
s q(wi, π

−1
i ) for some suitable function q(·, ·), and the calibration constraints are

given as
∑

s wixi=
∑

U xi. Several chapters in Part 4 explore the working model and
calibration approaches for improving the efficiency of survey estimators.

The previous discussion focused on the design-based mode of estimation for simple
finite-population quantities that can be expressed as population means. For more com-
plicated population quantities that can be written as functions of population means,
design-based estimation is ordinarily based on estimating the individual means using
the methods just described and plugging the estimators into the same function. For exam-
ple, a population ratio of two variables,RN = yN/xN can be estimated by R̂ = ŷHT/x̂HT.
The estimator ŷHA is actually the ratio of two Horvitz–Thompson estimators and fol-
lows this principle. The same principle applies to more complicated finite-population
quantities including population regression coefficients or those implicitly defined by
population estimating equations. This is further explored in some of the chapters in
Part 4.

Just like for ŷHT, the Gaussian distribution is used as an approximate distribution
for all the estimators mentioned so far. However, with the exception of ŷHT, none of
the estimators mentioned above has an explicit variance expression for general designs.
Inferential statements such as confidence intervals are therefore based on “delta method”
arguments, in which an approximate variance is used instead of the exact variance. A
number of methods are available for estimating the approximate variance, including
Taylor linearization followed by estimation of the unknown population quantities, and
several replication methods, including the jackknife and bootstrap methods. These meth-
ods are described in further chapters in Part 4.

It is also possible to consider a model-based mode of inference. In this case, we start
from a model such as (2), which is assumed to be a correct representation of the data.
Finite-population quantities such as yN are now random with respect to the model, and
“estimation” of yN involves estimation of model parameters such as β in (2), followed
by model-based prediction. We will, therefore, return to this mode after discussing
inference for model parameters.

When model parameters are the target of inference with survey data, the data analyst
starts from a statistical model such as (2), and based on that model, a suitable estimator is
applied to the observed sample data to estimate the parameters. A crucial consideration
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in this context is whether the model is correct for the sample data. While the issue of
model correctness exists of course in any statistical data analysis, it is more pressing for
survey data because of the effect of the sampling design.

To see this, consider again model (2) and assume that it holds in the finite population,
in the sense that the pairs (xi, yi), i ∈ U, follow the linear mean model and have the
assumed iid error distribution. Under this model and for a simple random sampling
design, the ordinary least squares (OLS) estimator is suitable for estimating β, in the
sense of having the smallest variance among the linear unbiased estimators. Now suppose
that the sample s is drawn by a sampling design that tends to select pairs in which, for
a given value of xi, the value of yi is larger than expected under the iid model error
distribution. In this case, the OLS estimator will be biased and any inference based on
this estimator will be incorrect, because the assumed model is not correct for the sample
data. If the model for the data in the sample is the same as that in the population, the
sampling design is often called ignorable, and conversely, if the sample model deviates
from the population model, the design is called nonignorable or informative.Acomplete
treatment of inference under informative sampling is given in Chapter 39.

Note that ignorability of the sampling design does not require the full distributional
specification of the data be unaffected by the design. For instance, a sampling design
that tends to select pairs (xi, yi) with larger values for some or all the elements in xi
is ignorable for the estimation of β in the model (2), as long as it does not affect the
linear relationship between yi and xi, and hence the validity of the OLS estimator for β.
This is despite the fact that under this design, the joint distribution of the (xi, yi) in the
sample is clearly different from their distribution in the population.

Several different approaches are available for performing statistically valid inference
for model parameters. A first possible approach, which is rarely fully satisfactory in
practice, is to assume that the statistical model holds for the sample itself and to base
the inference on that model. The issue of ignorability is avoided because the population
from which the sample originated is not considered. While statistical analysis in this
manner is readily performed, a major concern is how to generalize the results beyond
the particular sample at hand, because the representativeness of the sample data with
respect to a broader context, whether a finite population or a hypothetical data generating
mechanism, is not established.

Asecond possible approach is to specify the model in such a way that it holds for both
the sample and the population. This approach is typically preferable over the previous
one, because it ensures both the statistical validity of the estimator and the generaliz-
ability of the inference. This can be done in a number of different ways, the simplest of
which is to check whether ignorability of the design holds and if not, adapt the model
so that it is valid for both the sample and the population. For instance, in the linear
regression model (2), ignorability of the design can often be achieved by including the
so-called design variables such as stratification and/or cluster indicators in the covari-
ate vector x. We refer to chapters in Part 4 and Chapter 39 for a discussion of testing
for ignorability and model adaptation strategies. While simple in concept, this “model
extension” approach to achieve ignorability has drawbacks as well, further described
in Chapter 39 but briefly summarized here. One key issue is that it requires access
to all the design variables, which might not be available to secondary data analysts
because of data confidentiality concerns. While it might be possible to use the sam-
pling weights instead of the design variables, the weights might be not be sufficient
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to achieve ignorability. If the design variables are available, another problem is that
the extended model will now contain variables that are not part of the original model,
complicating the interpretation of the fitted model. Finally, this model extension with
design variables will not be applicable in all situations.A typical example of this is when
the inclusion in the sample depends on the outcome variables (the yi in the regression
context).

A third approach is to acknowledge the fact that two different models will hold at the
sample and the population level, but connect them with each other by using an additional
model for the inclusion probabilities. Based on the relationships between these three
models, it is possible to obtain sample-based parameter estimates that are valid for
the population model. For a complete discussion of this relatively recent approach to
inference for model parameters with survey data, we refer to Chapter 39.

A final approach for inference for model parameters combines design-based and
model-based inference and is the approach most commonly used by survey statisti-
cians. Under this approach, the finite population is viewed as a realization from a sta-
tistical model, often referred to as the superpopulation model in this case. A sample is
drawn from this finite population according to the sampling design. The first step in
constructing sample-based estimators for the superpopulation model parameters is to
define population-level “estimates,” which are the appropriate model-based estimates
for the model parameters if the full population had been observed. Pfeffermann (1993)
refers to those population-level estimates as “descriptive population quantities” (DPQ).
Typically, DPQs can be written as functions of finite-population sums. Then, sample-
based estimators of the DPQs are constructed by applying the design-based methods
described earlier in this section, that is, by replacing the population sums by their respec-
tive sample-based estimators. For instance, for the linear model (2), the DPQ is the
population-level OLS estimator of β, which can be written as

B =
(∑

U

xTi xi

)−1 ∑
U

xTi yi.

A sample-based estimator of the DPQ B, based on Horvitz–Thompson estimation, is
defined as

B̂HT =
(∑

s

xTi xi

πi

)−1 ∑
s

xTi yi

πi
,

which is then used as an estimator of β under the combined design-based and model-
based approach.

Inference under this approach requires to explicitly account for two sources of ran-
domness: the model-based randomness, accounting for the difference between the DPQ
and the superpopulation model parameters, and the design-based randomness, account-
ing for the difference between the sample estimator and the DPQ. An important advan-
tage of this hybrid approach to inference is that the question of ignorability does not
occur, because no model specifications are required at the sample level. Disadvantages
are that the combined inference mode is more cumbersome to apply in practice and that
the resulting estimators are often less efficient than pure model-based estimators. It is
also restricted to point estimators of model parameters and cannot be used for prediction,
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say to predict y for an unobserved unit with covariates x or to predict a small area mean
with no sample from that area. Several chapters in Part 4 further discuss issues involved
in this approach.

We now briefly return to the estimation of finite-population quantities, where these
quantities are predicted based on a model fitted to the sample data. As it is clear from
the above discussion, statistical validity of this approach requires either a model that
is valid for both the sample and the population (in order words, a model for which the
design is ignorable) or a way to connect the sample model with the population model. A
model specification with ignorable design is most often assumed by statisticians pursuing
model-based estimation of finite-population quantities. Once such a model is found, it
is possible to apply appropriate model-based prediction methods and perform inference
based on the model. As a simple example, suppose once again that we want to estimate
the finite population mean yN and that the data in the sample and the population follow
the linear model (2) with iid errors. An appropriate “estimator” for yN under this model
is the best linear unbiased predictor

ŷblup = 1

N

(∑
s

yi +
∑
sC

xiB̂

)
,

where sC represents the complement of the sample s in the populationU, and B̂ is the OLS
estimator computed from the sample data (xi, yi), i ∈ s. Prediction under informative
sampling was considered in Sverchkov and Pfeffermann (2004). Other models and
predictors are also possible, as further discussed in several chapters in Part 4.

3. Overview of Part 4

Chapter 25 by Kott revisits regression estimation and calibration for finite-population
quantities. Kott discusses a number of refinements and extensions of regression esti-
mators, including the use of instrumental variables, nonlinear calibration, and the issue
of optimal regression estimation. Kott’s discussion focuses on design-based estimators
and their properties with respect to their randomization distribution over repeated sam-
pling, but he also considers model-based properties.

Chapter 23 by Valliant and Chapter 29 by Ghosh discuss model-based prediction of
finite-population quantities, the former using a frequentist prediction approach and the
latter using Bayesian estimators. Echoing the previous discussion of design ignorabil-
ity in model-based inference, both chapters explicitly acknowledge the importance of
ensuring that any sample-fitted model is also valid at the population level. Once this is
accomplished, the full set of model-based techniques familiar to statisticians, includ-
ing best linear unbiased prediction for linear models (as in Chapter 23) or hierarchical
Bayesian inference (Chapter 29), become available to the data analyst.

Chapter 24 by Binder and Roberts covers inference for parameters under general
models. They expand on the discussion of ignorability in Section 2 and then compare
the model-based and “hybrid” modes of estimation and inference for model parameters.
They describe an extended version of the superpopulation-population-sample inferential
framework of the previous section and evaluate the properties of estimators in this
framework.
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Chapter 26 by Godambe and Thompson and Chapter 27 by Breidt and Opsomer
review two classes of estimators that are widely used in general statistics but are still
relatively uncommon in survey statistics. Godambe and Thompson discuss estimators
that are defined as the solutions to inverse-probability-weighted estimating equations.
This class of estimators includes common survey estimators such as ratio and distribution
function estimators but also covers less familiar ones such as quantile estimators. They
consider these estimators both when targeting finite-population quantities (themselves
defined as solutions to population-level estimating equations) and when targeting super-
population model parameters. Breidt and Opsomer cover applications of nonparametric
methods in survey estimation. The purpose of nonparametric regression and density
estimation methods is to describe features of a model without having to specify the full
parametric form for it. Breidt and Opsomer describe several nonparametric regression
estimators of finite-population quantities. They also discuss nonparametric estimation
of superpopulation models using survey data.

Finally, Chapter 28 by Gershunskaya, Jiang, and Lahiri and Chapter 30 by Rao and
Wu focus on uncertainty measures for survey estimators of finite-population quanti-
ties. Gershunskaya et al. review replication methods in a number of survey estimation
contexts. These methods include jackknife and bootstrap replication and several exten-
sions. These methods are particularly useful for variance estimation in surveys, because
the analytic variance formulas for complex sampling designs are often cumbersome
or difficult to derive in case of complex nonlinear estimators or because they require
information that cannot be provided to survey data users due of confidentiality con-
cerns. Confidence intervals for finite-population quantities are obtained by combining
the approximate normality of the point estimators with the replication-based variance
estimators. In contrast, Rao and Wu discuss a relatively novel way to perform inference
from survey data by extending the concept of empirical likelihood to the survey context.
An empirical likelihood assigns point mass pi to each observed value yi in a data set,
and a maximum empirical likelihood estimator is obtained by searching for the values
pi that maximize the (log) likelihood, subject to constraints such as pi > 0,

∑
pi = 1

and calibration constraints. An important application of empirical likelihood ideas is in
the construction of confidence intervals based on probability level sets for likelihood
ratio statistics. In the design-based context, the empirical likelihood is replaced by a
pseudo empirical likelihood in which each observation is weighted by the inverse of
its inclusion probability. The resulting method is applied to point estimation and to the
construction of confidence intervals that do not rely on asymptotic normality of the
estimators.
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Model-Based Prediction of Finite Population Totals

Richard Valliant

1. Superpopulation models and some simple examples

A finite population is a collection of distinct units such as people, business establish-
ments, schools, hospitals, or transactions over some period of time. A basic descriptive
statistic for these collections is the total of some variable. Depending on the population,
the total may be the number of persons who are employed, the total of expenditures
on capital equipment, total salary costs for teachers, or total number discharges from
hospitals during some time period. Another common descriptive statistic is the mean
per unit, which is often estimated as a total divided by an estimate of the number of
units that contribute to the total.

In many populations, particularly ones that have been previously sampled or sur-
veyed, a frame of units is available along with some auxiliary data on each unit. In other
cases, a full frame of all units is not on hand but can be constructed by sampling in
stages and assembling a partial frame at each stage. In both the cases of single-stage
and multistage sampling, auxiliary data may be used to construct efficient estimators of
totals.

A superpopulation model is a way of formalizing the relationship between a target
variable and auxiliary data. For example, in a survey of hospitals, the number of dis-
charges of patients in a particular calendar quarter may be related to the number of beds
in the hospital and the type of hospital (e.g., general medical and surgical, rehabilitation,
children’s hospital, military, etc.). Quantities of interest are modeled as being realiza-
tions of random variables with a particular joint probability distribution. For example,
in the case of the hospital population, the model might be

Yi = βxi + εi; i = 1, . . . , N (1)

where Yi is the number of discharges for hospital i, xi is the number of beds in the
hospital, β is an unknown parameter, N is the number of hospitals in the population,
and the εis are uncorrelated random errors with mean 0 and variance σ2xi. This simple
model says that the number of discharges is, on average, proportional to the number
of beds and that the variability among discharges is larger for the hospitals with the

11
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larger numbers of beds. More elaborate models might be more realistic. We might, for
instance, want to use a different model for the different types of hospitals or to include
a quadratic term in x.

Models such as this can be used for constructing estimators, determining sample sizes,
and assessing the precision of estimates. The population total of the Y is T = ∑

U Yi,
whereU denotes the set ofN units in the population (or universe). If a sample s of n units
is selected from the N in the population, we can observe the sample total, Ts =∑

s Yi.
The total for the remainder of the population, r = U − s, is equal to Tr =∑

r Yi, which
is unknown and must be estimated using the sample units.

A logical approach is to treat this as a prediction problem in regression, predict each
nonsample Y , and then add the predictions. The best linear unbiased estimator of β under
model (1) is β̂ = Ys/xs where Ys = ∑

s Yi/n and xs = ∑
s xi/n. Thus, an estimator

of the Y -value for each unit in r is Ŷi = β̂xi. An intuitive estimator, or more properly,
predictor, of T is then T̂ = Ts +∑

r Ŷi. After some simplification, this predictor can be
written as T̂ = β̂∑U xi = NYsxU/xs with xU =∑

U xi/N. This is known as the ratio
estimator and is the best linear unbiased predictor (BLUP) of T under model (1).

Figure 1 illustrates the general situation in estimating a finite population total. The
upper panel of the figure is a plot of Y versus x for a hypothetical population. The
middle plot shows a sample from the same population. The gray circles mark the x
values of the nonsample units. In the model-based approach, a prediction is made for
each nonsample unit and the total of the predictions is added to the observed sample total
to estimate T . In the lower panel, the weighted least squares regression line estimated
from the sample is superimposed for the model EM(Y) = βx, varM(Y ) = σ2x. The
gray points on the line are the predicted values for the nonsample points. To get a good
aggregate prediction of the total, predicting the realized value for each nonsample point
is unnecessary; we need only estimate the mean via Ŷi = β̂xi. Naturally, if the model
is incorrectly specified, the predictions can be poor, leading to a biased estimator of the
total. Guarding against certain types of model misspecification has been a major concern
in the prediction approach, as discussed in Section 4. As in any regression application,
having a sample that covers the range of covariates in the population is important to
have some assurance that an assumed model is a reasonable fit throughout the range.

A key feature of this approach is that only the model is used to generate the esti-
mator. The model is also the basis for estimating the precision of T̂ and for making
inferences about T (e.g., through confidence intervals). There are no restrictions on how
the sample is selected other than that the sample units must follow model (1). Said more
prosaically: the model that holds for the sample must be the same one that holds for
the population. There are cases of informative sampling where this requirement is vio-
lated; methods of handling such situations are discussed in Pfeffermann (1993, 1996),
Sverchkov and Pfeffermann (2004) and Chapter 39. In the model-based approach or
the Bayesian approach (see Chapter 29), there is no assumption that a random sampling
plan is used. This is in contrast to the design-based theory of sampling (see Chapter 1)
and the model-assisted theory (see Chapter 25) in which a random sampling plan must
be used because it generates the distribution which is the basis for inference. However,
use of randomization in the model-based and Bayesian approaches does have the same
justification as in experimental design. Randomization insulates the sample designer
from accusations of personal bias in selection, and it provides, in expectation, certain
types of balance on covariates between the sample and nonsample units.
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Fig. 1. A hypothetical population with one auxiliary (x) variable. The top panel shows the full population.
The middle panel shows a sample from the population (black dots). The gray circles mark the nonsample units
and their x’ for which Y must be predicted. The lower panel shows the weighted least squares line estimated
from the sample for the model EM(Y ) = βx, varM(Y ) = σ2x. The gray dots are the predicted values for the

nonsample units.
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The appropriate approach to inference in finite population sampling has been an
interesting source of debate and controversy over the last 50 years or so. This chapter
does not address these foundational issues, but some discussion can be found in Basu
(1971), Godambe (1955, 1966), Royall (1976, 1994), Smith (1976, 1984, 1994), and
Valliant et al. (2000). This last reference also gives many of the technical details of
results that are summarized in the rest of this chapter.

2. Prediction under the general linear model

Estimation of a total can be formulated for a general linear model and the BLUP derived.
The finite population consists of N units, each of which has a value of a target variable
y associated with it. The population vector of y is y = (y1, . . . , yN)

′ and is treated as
the realization of a random vector Y = (Y1, . . . , YN)

′. Our goal will be to estimate a
linear combination of the y, γ′y, where γ = (γ1, . . . , γN)

′ is an N-vector of constants.
If each γi = 1, then the target is the total; if γi = 1/N, the target is the mean. From
the population of N units, a sample s of n units is selected, and the y values of the
sample units are observed. Denote the set of nonsample units, that is, the remainder
of the population, by r. For any sample s we can reorder the population vector y so
that the first n elements are those in the sample and the last N − n are those in the
nonsample: y = (y′s, y′r)′ where ys is the n-vector of observed values and yr the N − n
unobserved. The vector γ can also be partitioned into parts corresponding to the sample
and nonsample units, γ = (γ′s, γ′r)′. The estimation target can now be expressed as
γ′y = γ′sys + γ′ryr, which is the realization of the random variable γ′Y = γ′sYs + γ′rYr.
Because the sum for the sample units, γ′sys, is known after the sample is selected and
the values for its units observed, the problem of estimating γ′y is logically equivalent
to that of predicting the value, γ′ryr, of the unobserved random variable γ′rYr.

The types of estimators considered here are linear combinations of the sample Y as
defined in the following section.

Definition 1. A linear estimator of θ = γ′Y is defined as θ̂ = g′sYs where gs =
(g1, . . . , gn)

′ is an n-vector of coefficients.

Definition 2. The estimation error of an estimator g′sYs is θ̂ − θ = g′sYs − γ′Y.

The estimation error can be rewritten in terms of the sample and nonsample units as

g′sYs − γ′Y = (g′s − γ′s)Ys − γ′rYr,

= a′Ys − γ′rYr

where a = gs − γs. Using g′sYs to estimate γ′Y is equivalent to using a′Ys to predict
γ′rYr. Consequently, finding a good gs is equivalent to finding a good a. This prediction
problem can be studied under the general linear model M:

EM(Y) = Xβ, varM(Y) = V, (2)

where X is anN×pmatrix of auxiliaries, β is ap×1 vector of unknown parameters, and
V is a positive definite covariance matrix. This is also the setting for much of calibration
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and model-assisted estimation (see Chapter 25). In much of this development, it is
assumed that all auxiliary values are known for each unit in the population. In some
special cases, this condition can be relaxed to require only that population totals of the
components of X be known. The population elements are rearranged so that the first
n elements of Y are those in the sample, and the first n rows of X are for units in the
sample. Then, X and V can be expressed as

X =
[

Xs

Xr

]
V =

[
Vss Vsr

Vrs Vrr

]
,

where Xs is n× p, Xr is (N − n)× p, Vss is n× n, Vrr is (N − n)× (N − n), Vsr is
n× (N − n), and Vrs = V′sr. Assume that Vss is positive definite.

Definition 3. The estimator θ̂ is unbiased (or, equivalently, prediction unbiased or
model unbiased) for θ under a model M if EM(θ̂ − θ) = 0.

Definition 4. The error variance (or, equivalently, prediction variance) of θ̂ under a
model M is EM(θ̂ − θ)2.

If the auxiliaries are known for every unit in the population, this implies that a
sampling frame has been constructed that lists every unit in the survey universe. In a
universe of elementary-level schools, auxiliaries could include the number of students
and teachers, location of the school (urban, suburban, or rural), and total budget in a
recent year. There are many applications in which a complete list of every population unit
is not available. For example, in personal-interview surveys of households in countries
without population registries, multistage sampling is often used. The sample is selected
in a series of stages with each stage being a different type of unit. The first two or
three stages may be successively smaller geographic areas. The last stage may be the
households that are the target of the survey. Models for clustered populations are usually
appropriate in such cases, as discussed in section 7.

The general prediction theorem (Royall, 1976), giving the BLUP of θ̂ under model
(2) is

Theorem 1. Among linear, prediction-unbiased estimators θ̂ of θ, the error variance is
minimized by

θ̂opt = γ′sYs + γ′r
[
Xrβ̂+ VrsV−1

ss

(
Ys − Xsβ̂

)]
, (3)

where β̂ = A−1
s X′sV−1

ss Ys with As = X′sV−1
ss Xs. The error variance of θ̂ is

varM(θ̂ − θ) = γ′r
(
Xr − VrsV−1

ss Xs

)
A−1
s

(
Xr − VrsV−1

ss Xs

)′
γr

+ γ′r
(
Vrr − VrsV−1

ss Vsr

)
γr. (4)

A feature of the BLUP is that it equals the weighted sum for the sample units, γ′sYs, plus
a predictor of the weighted sum for the nonsample units, γ′r[Xrβ̂+VrsV−1

ss (Ys−Xsβ̂)].
When the sample and nonsample units are uncorrelated, that is, Vrs = 0, the BLUP sim-
plifies to θ̂opt = γ′sYs + γ′rXrβ̂. The assumption that sample and nonsample units are
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uncorrelated will often be reasonable in populations where single-stage sampling is
appropriate, such as institution or establishment sampling. However, in clustered pop-
ulations, described later in this chapter, units within the same cluster will be correlated,
a feature that must be accounted for in analysis.

To appreciate the formulation of the theorem as one of prediction, rather than esti-
mation, it is instructive to look at the results for the optimum θ̂ if we minimize its
variance, varM(θ̂) = g′sVssgs instead of the error variance varM(θ̂− θ). In that case, the
minimum variance estimator is θ̂∗ = γ′Xβ̂. In other words, the value for each unit in
the population is estimated as its expected value from the estimated regression model.
Contrast this to θ̂opt where the sum for the sample units, γ′sYs, is used directly, and the
sum for the nonsample units is predicted by the estimated regression mean, γ′rXrβ̂, plus
an adjustment based on sample residuals, γ′rVrsV−1

ss (Ys − Xsβ̂).
Many commonly used estimators can be derived by applying Theorem 1 to partic-

ular models. In the examples below, the estimation target is the finite population total
T = ∑

U Yi, implying that γ = 1N , a vector of N ones. Suppose that the model is
Yi = μ+ εi with the εi being uncorrelated and εi ∼ (0, σ2). Then, in model (2) β = μ,
X = IN , V = σ2IN , and β̂ = Ys ≡ ∑

s Yi/n. The BLUP is the expansion estimator,
T̂0 =∑

s Yi+
∑

r Y s = NYs, with the implied prediction for each nonsample unit being
Ys. The error variance of the expansion estimator is

varM
(
T̂0 − T

)
= N2

n
(1− f )σ2,

where f = n/N. This is also the usual, design-based variance formula under simple
random sampling without replacement.

The model that leads to the ratio estimator, as noted earlier, is (1). The estimator itself
is T̂R = β̂∑U xi with β̂ = Ys/xs, and its error variance under the model is

varM
(
T̂R − T

)
= N2

n
(1− f )xrxU

xs
σ2,

where xr is the mean of x for the nonsample units, xU is the population mean, and
f = n/N is the sampling fraction.

The simple linear regression estimator comes from the model Yi = β0 + β1xi + εi
with the εi being independent with mean 0 and variance σ2. The BLUP is T̂LR =N[Ys+
β̂1(xU − xs)] where β̂1 = ∑

s(xi − xs)(Yi − Ys)/
∑

s(xi − xs)2. The error variance is
varM(T̂LR − T ) = N2

n
(1− f )σ2

[
1+ n(xs − xU)2/(1− f )∑s(xi − xs)2

]
.

Another common estimator is the stratified expansion estimator. A set of strata is a
collection of mutually exclusive groups that covers the entire population. Strata might
be regions of a country, types of industries, or size classes of schools. Suppose that h
denotes a stratum and that the model is Yhi = μh+εhi with the εhi being uncorrelated and
εhi ∼ (0, σ2

h). The BLUP is T̂st = ∑H
h=1NhYhs where Nh is the number of population

units in stratum h, Yhs =∑
sh
Yhi/nh, sh is the set of sample units in stratum h, and nh

is the number of sample units from that stratum. The error variance is varM(T̂st − T ) =∑H
h=1N

2
h(1− fh)σ2

h

/
nh with fh = nh/Nh.

A final example is the mean-of-ratios estimator which flows from the model
Yi = βxi + εi where εi ∼ (0, σ2x2

i ). The BLUP is T̂ = ∑
s Yi + β̂

∑
r xi with
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β̂ = n−1 ∑
s Yi/xi. The error variance is varM(T̂R − T ) = [(N − n)2x2

r

/
n+∑

r x
2
i ]σ2.

When the sampling fraction is small, the BLUP is approximated by the mean-of-ratios
estimator, T̂ = NxUβ̂.

The models that can be used in estimating a total are by no means limited to the
simple ones mentioned above.Amixture of quantitative and qualitative auxiliaries along
with interactions, nested structures, and other complexities may be needed in some
populations. These possibilities are all within the scope covered by Theorem 1.

3. Estimation weights

When constructing a database from a sample survey, standard procedure is to have a
weight associated with each unit in the sample that is used to calculate linear estimates.
The weights are intended to be applicable to several Y variables of interest. For a single
y variable, the n×1 optimal vector of coefficients in a linear estimator of a total, implied
by Theorem 1, is

gs = V−1
ss

[
Vsr − XsA−1

s

(
X′r − X′sV

−1
ss Vsr

)]
1r + 1s,

where 1r and 1s are, respectively, vectors ofN−n and n 1’s. Unit i is assigned a weight
equal to the ith component of the vector gs. The optimal weight depends, through the
covariance structure, on the particular y variable being considered and on the way that
the population is split between the sample and nonsample units.

The simple examples from Section 2 are ones in which the weight for a sample
unit does not depend on the particular Y being studied. For the expansion estimator,
gi = N/n for all units in the sample. The ratio estimator has gi = NxU/(nxs), which is
also the same for all i ∈ s. The linear regression estimator has gi = N[n−1 + (xU −
xs)(xi − xs)]

/∑
j∈s(xj − xs)

2. The weight for the stratified expansion estimator is
Nh/nh for i ∈ sh and for the mean-of-ratios estimator is gi = NxU/nxi. The simple
linear regression and the mean-of-ratios estimators are cases where the weight depends
on the particular sample unit through xi.

Although common survey practice is to use the same weight to make an estimate for
different y variables, this is justifiable from the model-based point-of-view only when
the y follow the same general form of model. If one variable follows the expansion
estimator model while another follows the regression estimator model, using the same
weight for each is not generally sensible. However, in the case where the sample is
balanced, in the sense given in Section 4, estimators of many forms, can in effect be
subsumed under one form, so that per-unit weights are well-grounded.

All the examples we have considered share a certain common structure that will be
discussed in more detail in the next section. Suppose that V is diagonal and that the ith
diagonal element can be expressed as vi = σ2f(xi) with f(xi) = ∑p

j=1 cjxij being a
known function and xi thep-vector of auxiliaries for unit i. In matrix terms, suppose that
V1N = Xc for a p× 1 vector c. The BLUP becomes T̂ = NxU β̂ (see Lemma 1 below)
where xU = (xU1, . . . , xUp)

′ is the vector of population means of the auxiliaries. Notice
that this form of T is the same as would be obtained under the general linear model
if we minimized varM(T̂ ) rather than varM(T̂ − T ). Even if the variance condition
V1N = Xc does not hold, T̂ = NxU β̂ is still prediction unbiased under model (2).
The weight for the ith sample unit is then gi = NxU

[∑
s xix′i

/
f(xi)

]−1
xi
/
f(xi). This
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weight depends on the variance structure only through f(xi). However, these weights
may differ for different Y variables because the vector c in the condition V1N = Xc may
depend on Y . Another option would be to use the ordinary least squares slope estimate,
β̂
∗ = (X′sXs)

−1X′sYs, which ignores any nonconstant variance structure. The estimator,

T̂ ∗ = NxU β̂
∗

with weights gi = NxU(X′sXs)
−1xi, is also prediction-unbiased under (2)

but is inefficient.

4. Weighted balance and robustness

In this section, we describe the idea of balanced samples and show that BLUP of total
based on models fulfilling certain conditions are bias-robust in weighted balanced sam-
ples. Furthermore, there exists a lower bound on the error variance of the BLUP under
these conditions, and this bound is only achieved if the sample is balanced.

Any model used to generate an estimator should, at best, be considered a “working”
model. That is, one that may be plausible based on data or prior knowledge but that
may be wrong. If the working model is wrong, then the BLUP based on that model
can be seriously biased. Consider the ratio estimator but suppose that the correct model
includes an intercept: EM∗(Yi) = α + βxi. The bias of the ratio estimator under M∗
is EM∗(T̂R − T ) = Nα(xU/xs − 1). When the sample is balanced in the sense that
xs = xU , the ratio estimator is still unbiased, even though the straight-line through
the origin, working model is violated. If xs is much smaller than xU , T̂R will be an
over-estimate on average; when xs is larger than xU , the opposite is true. Some random
sampling plans, like simple random sampling (srs), are balanced on average. That is,
Eπ(xs) = xU where Eπ denotes design-expectation. On the other hand, a particular
sample that has been randomly selected may be far from balanced. Averaging across
all simple random samples obscures the conditional bias of T̂R in some samples. The
unconditional nature of design-based calculations has historically been one of the main
objections to the design-based approach.

A more general version of balance is defined below and plays a role both in bias
protection and optimality. Models that satisfy the variance condition V1N = Xc play
a key role in robustness and optimality. Let M(X : V) refer to the special case of the
general linear model given by (2) with matrix X of auxiliary variables, and diagonal
covariance matrix V = diag(σ2

i ), i ∈ U. Define W to be an N × N diagonal matrix
and Ws to be the n× n diagonal submatrix for the sample units. When V1N = Xc, the
BLUP and its variance simplify as shown in Lemma 1.

Lemma 1 (Royall, 1992). If V1N = Xc for some vector c, then the BLUP predictor and
its error variance are T̂ = NxU β̂ and varM(T̂ − T ) =

(
N2x′UA−1

s xU − 1′NV1N
)
.

Definition 5. The collection of samples that satisfy

1

n
1′sW

−1/2
s Xs = 1′NX

1′NW1/21N
(5)

will be denoted B(X : W), and said to be balanced with respect to the weights root(W),
root(W) balanced, or to be weighted balanced.
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The weighted balance condition can also be written asn−1 ∑
s xi

/
w

1/2
i = x/w(1/2)U where

w
(1/2)
U =∑

U w
1/2
i

/
N, the population mean of the square roots of the w weights.

The matrix W can be V−1 or another arbitrary weight matrix. When W = I,B(X : I)
is the set of samples that are balanced on the columns of X, that is, xs = xU . This type
of balance made the ratio estimator unbiased when EM∗(Yi) = α+ βxi was the correct
model. If the model for Y is polynomial in x, then x(j)s = x(j)U where x(j)s =

∑
s x

j

i

/
n and

x
(j)

U =∑
U x

j

i

/
N for j = 1, . . . , J with J being the degree of the polynomial.

Theorem 2 below gives the lower bound on the error variance of the BLUP in a
certain class of models and shows that the bound is achieved in a weighted balanced
sample. Let M(X) denote the linear manifold generated by the columns of X, that is
the vector space spanned by all linear combinations of the columns of X.

Theorem 2 (Royall, 1992). UnderM(X : V) if both V1N and V1/21N ∈M(X), then

varM[T̂ (X : V)− T ] ≥
[
n−1(NσU)

2 −Nσ(2)U
]
,

where σU = ∑
U σi/N and σ(2)U = ∑

U σ
2
i /N. The bound is achieved if and only if

s ∈ B(X : V), in which case T̂ = NσU
n

∑
s
Yi
σi
.

Note that the reduced form of the BLUP in the theorem does not depend on the x
in the model. Suppose that, instead of M(X : V), the correct model is M(X̃ : V) where
X̃ includes all of the columns in X plus some additional ones. If the sample is root(V)

balanced on the columns of X̃, that is, 1
n
1′sV

−1/2
s X̃s = 1′N X̃

1′NV1/21N
, then the BLUP still

reduces to T̂ = NσU
∑

s (Yi/σi)/n. As a result, weighted balanced sampling, using an
augmented version of the auxiliary matrix X, is robust to misspecification of the matrix
of auxiliaries in the model.

As an illustration, consider a model in which the variance is proportional to x. If the
model for Y is Yi = β1x

1/2
i + β2xi + εi with the errors being uncorrelated and εi ∼

(0, σ2xi). The conditions of Theorem 2 are satisfied because σ2
i = σ2xi and σi = σx1/2

i

are both in the column space of X. Call the BLUP under this model T̂ (x1/2, x : x). The
lower bound on its variance is[

n−1
(
Nx

(1/2)
U

)2 −NxU
]
σ2

with x(1/2)U = N−1 ∑
U x

(1/2)
i . The lower bound is achieved in any sample that is balanced

in the sense that x(1/2)s = xU
/
x
(1/2)
U where x(1/2)s = n−1 ∑

s x
1/2
i . Bias protection against

general polynomial models is obtained by balancing on additional powers:

n−1
∑
s

x
j−1/2
i = x(j)U

/
x
(1/2)
U for j = 1, . . . , J.

The additional powers correspond to the additional columns in X̃ mentioned earlier. For
example, if varM(Yi) = σ2xi and the correct mean specification in the model isEM(Yi) =
β1x

1/2
i +β2xi+β3x

2
i , then the weighted balance conditions are n−1 ∑

s x
1/2
i = xU

/
x
(1/2)
U

and n−1 ∑
s x

3/2
i = x

(2)
U

/
x
(1/2)
U . In such a sample, the BLUP under the working model
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M(x1/2, x : x) is T̂ = Nx(1/2)U

∑
s

(
Yi
/
x

1/2
i

)/
n and is unbiased under both that working

model and the extended model M(x1/2, x, x2 : x).
Exact methods for obtaining weighted balanced samples are described in Chauvet

and Tillé (2006) and Tillé (2006, Chapter 2). These methods are implemented in the R
software package, sampling available at www.r-project.org.

Standard methods of probability proportional to size (pps) sampling (see Chapter 2)
can also be used to approximate weighted balanced samples. Suppose that the size
measure, according to which pps is carried out, is σi = [varM(Yi)]1/2 so that, for a fixed
sample size, the inclusion probability of unit i is πi = nσi/NσU . We refer to this as a
pp(σ) plan. Then, the sample is balanced in design-expectation because

Epps

(
n−1

∑
s

xi/σi

)
= xU/σU,

where pp(σ) is expectation with respect to pp(σ) sampling.
Consequently, a pp(σ) plan produces weighted balance on average across all possible

pp(σ) samples. However, this may be far from true in any particular sample. One practical
approach is select a pp(σ) sample and retain it if the sample moments, n−1 ∑

s xi/σi,
are within some prespecified tolerances of xU/σU . This method of restricted sampling
was illustrated first by Herson (1976) for simple random sampling and in Valliant et al.
(2000) for various sampling plans, including srs and pps.

The formulas for the BLUP and its lower bound are also found in design-based the-
ory. If the inclusion probability of unit i is πi = nσi/NσU in a fixed size sample, then
the BLUP, T̂ = NσU ∑s (Yi/σi)/n, is the Horvitz–Thompson estimator

∑
s yi/πi. The

variance bound is the one established by Godambe and Joshi (1965, Theorem 6.1) for
the model-based expectation of the design-based variance of the Horvitz–Thompson
estimator. Isaki and Fuller (1982) also showed that this bound is approached asymptoti-
cally by an estimator based on a regression model that includes the standard deviations
and variances (of the Y given the x) in the column space of the X matrix, when the
inclusion probabilities are proportional to the standard deviations.

One of the practical constraints in many survey applications is that a sample that is
selected to be balanced does not remain so at the analysis stage. Losses due to nonre-
sponse (see Chapter 9) and ineligible units can destroy balance. In such a case, careful
modeling is essential, and it may be wise to include auxiliaries in the estimator beyond
those in the working model if extra x are available. Accounting populations of trans-
actions or bookkeeping entries are examples where balance can often be selected and
maintained through data collection.

5. Variance estimation

Because the total T itself is the realization of a random variable, we want to estimate the
mean square error or error variance,EM(T̂ − T )2. If T̂ is unbiased, the error variance is
just the variance varM(T̂ − T ). Once we have an estimate v of this variance, a confidence
interval for T of the form T̂ ± zv1/2 can be constructed, where z is the appropriate
quantile of the standard normal distribution. This type of interval is justified because,
under appropriate conditions, T̂ will be asymptotically normal.
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Deviations of the working model from models that might be better descriptions of the
population values are a concern when estimating the variance. If the variance structure
assumed in the working model is wrong, standard least squares variance estimators
are vulnerable to bias. However, it is possible to construct variance estimators that
are robust to this departure. Robustness to misspecification of EM(Yi) can be achieved
through balance, as described in Section 4, but this may be difficult, especially if there are
omitted and unknown regressors that should be included in EM(Yi). If T̂ is biased, then
EM(T̂ − T )2 will contain a bias-squared component that typically cannot be estimated.

The estimation error of any estimator of the total can be written as T̂ − T = T̂r − Tr,
where Tr is the total for the nonsample units and T̂r is an estimator of Tr based on
the sample units. When the sample and nonsample units are independent, T̂r = 1′rXrβ̂,
with β̂ a weighted least squares estimator of the underlying parameter β. We can also
write varM(T̂ − T ) = varM(T̂r − Tr) = varM(T̂r)+ varM(Tr). Under typical sampling
conditions, the first component, varM(T̂r), has order O((N − n)2/n) while the second
isO(N − n). If n/N → 0 as n,N →∞, the first component of the variance, varM(T̂r),
dominates and is, consequently, the more important one to estimate.

The idea behind robust variance estimation is fairly simple. Define the working model
to be

EM(Yi) = x′iβ, varM(Yi) = σ2
i (6)

with theY being uncorrelated.Aweighted least squares variance estimator can be derived
under this working model, but it will perform poorly when σ2

i is misspecified (Royall
and Cumberland, 1978, 1981a). Consider the case where varM(Yi) = ψi rather than
the σ2

i in the working model. The estimator of the nonsample total can be rewritten as
T̂r =∑

s aiYi with ai = 1′rXrA−1
s xi

/
σ2
i . The error variance is

varM(T̂r)+ varM(Tr) =
∑
s

a2
i ψi +

∑
r

ψi.
(7)

Separate estimators are needed for these two components.
Estimators of the ψi for the sample units can be constructed using the regression

residuals, defined as ri = Yi−Ŷi with Ŷi = β̂xi. Under the working model (6),EM(r2
i ) =

σ2
i (1− hi)with hi = x′iA−1

s xi
/
σ2
i being the leverage (e.g., see Belsley et al., 1980, p. 16,

Hoaglin and Welsch, 1978). More generally, EM(r2
i ) � ψi since hi → 0 under some

weak conditions as n increases. Thus, two choices for estimating ψi are ψ̂i = r2
i and

ψ̂i = r2
i (1− hi). Both of these are robust in the sense that EM(r2

i ) � ψi regardless of
whetherψi is known or not.An estimator of the first term in (7) is then v(T̂r) =∑

s a
2
i ψ̂i.

A third choice which, on average is an overestimate ofψi, is ψ̂i = r2
i /(1− hi)2. Finally,

a choice that amounts to an aggregate adjustment to
∑

s a
2
i r

2
i is ψ̂i = r2

i

∑
s a

2
i σ

2
i∑

s a
2
i σ

2
i (1−hi) .

The choice ψ̂i = r2
i generates what is known as a “sandwich” estimator because the

estimator of varM(T̂r) can be written as∑
s

a2
i r

2
i = a′diag

(
r2
i

)
a

with a = (a1, . . . , an)
′ and diag(r2

i ) being then×n diagonal matrix of squared residuals.
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Estimating the variance of the nonsample total,
∑

r ψi, requires more assumptions.
Residuals for the nonsample units are not available because the Y is unknown. One
strategy is to take

∑
s ψ̂i and inflate it to the nonsample size using quantities from the

working model (6). A reasonable approach is to use

v(Tr) =
∑
r

σ2
i∑

s

σ2
i

∑
s

ψ̂i.

An estimator of the error variance is then v(T̂ ) =∑
s a

2
i ψ̂i+

∑
r σ

2
i∑

s σ
2
i

∑
s ψ̂i with ψ̂i being

one of the three choices noted earlier.
The choice ψ̂i = r2

i /(1− hi)2 is closely related to the jackknife. One version of the
jackknife variance estimator is defined as

vJ(T̂ ) = n− 1

n

∑
s

(T̂(i) − T̂ )2,

where T̂(i) is the BLUP calculated after deleting unit i from the sample. The jackknife
can be rewritten exactly as

vJ(T̂ ) = n− 1

n

⎧⎨
⎩
∑
s

(
airi

1− hi
)2

− 1

n

(∑
s

airi

1− hi

)2
⎫⎬
⎭ .

The second term in the braces converges in probability to 0. As a result, the jackknife is

approximately equal to
∑

s

(
airi

1−hi
)2

, corresponding to the choice , ψ̂i = r2
i /(1− hi)2.

Adding an estimator of the variance of the nonsample total, a jackknife estimator of the

error variance is vJ(T̂ − T ) = vJ(T̂ )+
∑

r σ
2
i∑

s σ
2
i

∑
s ψ̂i.

6. Models with qualitative auxiliaries

In many populations, some of the most useful auxiliaries are qualitative rather than
quantitative. For example, in surveys of persons, demographic variables like age group,
race-ethnicity, and gender are useful predictors of response variables. Quantitative x
can also be used in combination with qualitative ones. Some numerical issues arise
because As = X′sV−1

ss Xs is not invertible when one or more columns of Xs are a linear
combination of others. This can happen if, say, dummy variables are included for both
male and female. However, under model (2) the BLUP of θ = γ′Y can still be found as

θ̂opt = γ′sYs + γ′r
[
Xrβ

o + VrsV−1
ss (Ys − Xsβ

o)
]
, (8)

where βo = GX′sV−1
ss Ys with G being a generalized inverse (also called a g-inverse) of

As (Valliant et al., 2000, Theorem 7.4.1). Although G is not unique, the predictor (8) is
invariant to the choice of G. Analogous to the formula in Theorem 1, the error variance
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of θ̂opt is

varM(θ̂opt − θ) = γ′r
(
Xr − VrsV−1

ss Xs

)
G
(
Xr − VrsV−1

ss Xs

)′
γr

+ γ′r
(
Vrr − VrsV−1

ss Vsr

)
γr

When the Y have a common variance, V = σ2I, the BLUP and its error variance
simplify to

θ̂opt = γ′sYs + γ′rXrβ
o (9)

varM(θ̂opt − θ) = σ2γ′rXrGX′rγr + σ2γ′rγr

with G being the generalized inverse of X′sXs. If V = σ2I is used to generate T̂ ,
the weight vector simplifies to ġs = XsGX′r1r + 1s. If the correct model has a more
general covariance matrix than σ2I, T̂ using these weights is not optimal but will still
be unbiased. In applications where qualitative auxiliaries are typically used, there may
be insufficient knowledge to specify a covariance matrix more complicated than σ2I so
that (9) is a practical choice.

One example of using a qualitative auxiliary is a model that specifies a separate mean
in different groups:

Yij = β0 + βi + εij, εij ∼ (0, σ2), i = 1, . . . , I; j = 1, . . . , Ni

with the errors being uncorrelated. Groups are denoted by i and units within groups
by j. This model is the same as a one-way analysis-of-variance model. The BLUP of
the population total is T̂ = ∑I

i=1NiYsi, which is the stratified expansion estimator
defined earlier. This estimator is also the Horvitz–Thompson estimator in stratified
simple random sampling.

7. Clustered populations

Many naturally occurring populations exhibit clustering in which units that are, in some
sense, near each other have similar characteristics. Households in the same neighborhood
may tend to have similar incomes, education levels of the heads of household, and
amounts of expenditures on food and clothing. Business establishments in the same
industry and geographic area will pay similar wages to a given occupation because of
competition. Students within the same school may have similar scores on achievement
tests because of similar demographics and classroom instruction. This similarity among
“nearby” units can express itself statistically as a correlation between the target variables
for different units.

In clustered populations, the methods of data collection may also differ from the
methods used in other populations. In a household survey, for example, a complete list
of households to use for sampling may not be available, especially if the population
is large. The households may be geographically dispersed so that field work can be
more economically done when sample units are clustered together to limit travel costs.
A practical, and widely used, technique is to select the sample in stages, using, at each
stage, sampling units for which a complete list is available or can be compiled as part
of field work. In the household example, geographic areas may be selected at the first
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stage. At the second stage, each first stage sample unit may be further subdivided and a
sample of the subdivisions selected. A list of the households in each sample subdivision
is then compiled and data collected from each. In a student population, schools may be
selected at the first stage, a list of classrooms compiled in each sample school, and a
sample of students then drawn from a sample of classrooms. Although students are the
units ultimately sampled, a complete list of students for each school in the universe is
unlikely to be available while a list of schools often is. Selecting schools at the first stage
is also sensible because survey costs may depend on the number of sampled schools
more than the number of sampled students. Cooperation must be elicited at the school
level and the more schools in the sample, the more the survey will cost.

In clustered populations, an intraclass correlation model may be useful. We present
one of the simpler versions here. Suppose the population is divided into N nonoverlap-
ping clusters. Cluster i containsMi units with the total number of units in the population
being M = ∑N

i=1Mi. Associated with unit j in cluster is a random variable Yij . The
total of the Y is T =∑N

i=1

∑Mi

j=1 Yij . A simple working model is

EM(Yij) = μ

covM(Yij, Ykl) =

⎧⎪⎨
⎪⎩
σ2
i i = k, j = l
σ2
i ρi i = k, j 
= l

0 i 
= k
(10)

Under this model, units have a variance that can differ among the clusters; different units
within the same cluster are correlated; and units in different clusters are uncorrelated.
In some populations, more elaborate models that involve several levels of clustering
are better descriptions. A population of school districts, schools within districts, classes
within schools, and students within classes is an example. Multilevel models can then be
used as discussed in Pfeffermann et al. (1998) and Rabe-Hesketh and Skrondal (2006).
Note that this type of multilevel structure should be accounted for in estimation even if
all of the levels are not used as stages in sample selection.

In the discussion later, assume a two-stage sample is selected. At the first stage, a
sample s of n clusters is picked; within sample cluster i, a sample si of mi units is
selected. The population total is then naturally represented as the sum of three parts:
(i) the total for the sample units in the sample clusters, (ii) the total of the nonsample
units in the sample clusters, and (iii) the total for the units in the nonsample clusters:

T =
∑
i∈s

∑
j∈si

Yij +
∑
i∈s

∑
j /∈si

Yij +
∑
i/∈s

Mi∑
j=1

Yij

The optimal predictor under model (10) is

T̂ =
∑
s

∑
si

Yij +
∑
s

∑
(Mi −mi)

[
ωiYsi + (1− ωi)μ̂

]+∑
i/∈s
Miμ̂, (11)

where ωi = miρi/[1+ (mi − 1)ρi], Ysi =∑
si
Yij/mi, and μ̂ =∑

s uiY si is a weighted
average of the sample means with weights

ui = mi
/{
σ2
i [1+ (mi − 1)ρi]

}
∑
s

mi
/{
σ2
i [1+ (mi − 1)ρi]

} .
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The estimator of the nonsample total within sample cluster i is a kind of composite
estimator between the sample mean for that clusterYsi, and the overall weighted mean, μ̂.

A practical limitation to using (11) is that the intraclass correlations, ρi, and the
variance components, σ2

i , are unknown and must be estimated. More workable estima-
tors are in the class, T̂ = ∑

s giY si. An estimator in this class is prediction-unbiased
if
∑

s gi = M. One member of the class is T̂p = (M/n)
∑

s Y si, which is also the
Horvitz–Thompson estimator under a plan where clusters are selected with probabil-
ities proportional to size, that is, nMi

/∑N
k=1Mk, and an equal probability sample is

selected within each sample cluster. As in single-stage sampling, a probability sampling
plan is not required to construct this estimator. The vital requirement for prediction-
unbiasedness is that model (10) holds for both the sample and population.

Regression models can also be used in clustered populations. If EM(Y) = Xβ and
W is an arbitrary weight matrix, then a prediction-unbiased estimator of the total is

T̂ = 1′sYs + 1′rXrβ̂ (12)

with β̂ = A−1
s X′sWsYs if As = X′sWsXs is nonsingular. If an over-parameterized model

is used, then we take βo = GX′sWsYs, where G is a generalized inverse of As. The
weight vector corresponding to T̂ , when a g-inverse is used, is

gs = WsXsGX′r1r + 1s. (13)

As in previous sections, the x in the model can include qualitative variables, quantitative
ones, and interactions.

The estimator in (12) is unbiased under a model with EM(Y) = Xβ, and can also be
expressed as

T̂ = 1′sYs + T′xrβ̂, (14)

where Txr = ∑
i∈s

∑
j /∈si xij +∑

i/∈s
∑Mi

j=1 xij is the vector of nonsample totals of the

auxiliary variables. If the population totals of the auxiliaries, Tx =∑N
i=1

∑Mi

j=1 xij , are
known from the frame, a census, or some other source, then the nonsample total Txr
can be obtained by subtraction. An alternative model-unbiased predictor is T̂ = T′xβ̂.
In fact, if the model contains an intercept and V = σ2I, the BLUP reduces to T̂ = T′xβ̂
due to Lemma 1 mentioned earlier.

The estimator in (14) is especially useful in populations where a full frame of the
units to be surveyed is not available, but response variables are known to depend on
auxiliaries. Even though the auxiliary values are not known for all individual units in
the population, the x can be collected for the units that are in the sample. As long as the
population totals, Tx, are on hand, (14) or T̂ = T′xβ̂ can be constructed. An example of
this is the model:

EM(Yij) = μc (15)

when unit ij is in group c(c = 1, . . . , C).
Often group membership of individual units is unknown at the time of sampling and

can only be determined when the data are collected. A group can cut across clusters and,
in design-based sampling, is usually called a poststratum if the membership of a unit in
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a group is determined after the sample is selected. A particular example of this would
be a two-way model with interaction:

EM(Yij) = μ+ αk + β� + (αβ)k�,
where unit (ij) is in level k of the first factor (say, age group) and level � of the second
factor (say, sex). Men and women of different ages may, for example, have different
average incomes in a population of households. A sample of clusters is selected and
households are listed within the sample clusters. The age and sex of household members,
and possibly other important explanatory variables, are collected only for individuals
who are in the sample. However, the total numbers in the population of males and
females in different age groups may be known from a census or from demographic
projections.

Under the poststratification model (15), the estimator T̂ = 1′sYs + T′xrβ̂ reduces to

T̂PS =
C∑
c=1

McYsc,

where Mc is the number of units in the population in group c, Ysc = ∑
i∈s∑

j∈sic Yij/mc,mc is the number of sample units in group c across all sample clus-
ters, and sic is the set of sample units in sample cluster i that are also in group c. Note
that T̂PS is, in general, different from the poststratified estimator that flows from the
model-assisted general regression estimator (see Chapter 25).

Variance estimation in samples from clustered populations is, as might be expected,
more complicated than in unclustered populations. First, consider the simple model

EM(Yij) = μ

covM(Yij, Ykl) =

⎧⎪⎨
⎪⎩
σ2 i = k, j = l
σ2ρ i = k, j 
= l
0 otherwise

(16)

which is a special case of (10). Consider the general class of estimators, T̂ =∑
s giY si.

The estimation error is T̂ − T =∑
s giY si−

(∑
s MiY i +∑

r MiY i
)
. A general form of

the error variance is

varM(T̂ − T ) = B1 − 2B2 + B3, (17)

where B1 = varM(T̂ ) = ∑
i∈s g

2
i varM(Ysi), B2 = ∑

i∈s giMicovM(Ysi, Y i), and B3 =∑N
i=1M

2
i varM(Yi). If the first-stage sampling fraction is negligible, and certain other

population and sample quantities are bounded, the B1 term dominates the variance (see
Valliant et al., 2000, Theorem 9.1.1).

The formulation in (17) is different than the one usually found in design-based texts.
For example, take the case of a two-stage sample of clusters and elements with simple
random sampling without replacement used at both stages. The π-estimator of the total
is t̂π = (N/n)

∑
s MiYsi, which has the form T̂ = ∑

s giY si with gi = NMi/n. The



Model-Based Prediction of Finite Population Totals 27

design-variance of t̂π, that is, the variance in repeated sampling (see Särndal et al., 1992,
Chapter 4) is

varπ(t̂π) = N2 1− n/N
n

S2
1 +

N

n

∑
U1

M2
i

1−mi/Mi

mi
S2

2i (18)

with

S2
1 =

N∑
i=1

(
MiYUi −N−1

N∑
i=1

MiYUi

)2/
(N − 1),

YUi =
Mi∑
j=1

Yij
/
Mi, and

S2
2i =

Mi∑
j=1

(
Yij − YUi

)2
/
(Mi − 1).

If the cluster sizes and means,Mi andYUi, are bounded as the population and sample sizes
of clusters, N and n, become large and the sampling fraction of clusters is small, then
the first term in (18) is dominant with order N2/n. The first term is a variance between
cluster totals. In (17) the dominant term,

∑
s g

2
i varM(Ysi) = (N/n)2 ∑s M

2
i varM(Ysi) is

a weighted combination of within-cluster variances but also has order N2/n. However,
as noted subsequently, variance estimators that flow from design-based and prediction
theories are similar in this example.

A robust estimator of the dominant term in the error variance can be constructed
under the general model

EM(Yij) = μ i = 1, . . . , N; j = 1, . . . ,Mi

covM(Yij, Yk�) = 0, i 
= k. (19)

This model says that units in different clusters are uncorrelated. But, it is less specific
than (16), because it imposes no further constraints on the covariance structure within
clusters. Each unit within a cluster may have a different variance, for example, and
different pairs of units may have different correlations. Define the residual for cluster i
as ri = Ysi − μ̂ where μ̂ = T̂ /M. When EM(Yij) = μ, EM(ri) = 0 and

EM(r
2
i ) = varM

(
Ysi

) (
1− 2gi

M

)
+ 1

M2

∑
i′∈s

g2
i′varM

(
Ysi′

)
for i = 1, . . . , n.

When gi = O(N/n) and Mi = O(1), we have gi/M = O(n−1). Thus, r2
i is an

approximately unbiased estimator of varM(Ysi) under model (19). A sandwich variance
estimator is then simply vR = ∑

s g
2
i r

2
i . This estimator is approximately unbiased and

consistent under either the working model (10) or the more general model (19) when the
sample of clusters is large and their sampling fraction is small. It is possible to estimate
the two less important terms in (17) but the component estimators are unbiased only
under more restrictive working models than (19).
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Returning to the case of a two-stage cluster sample with simple random sampling at
each stage, it is instructive to compare vR to a variance estimator often used in design-
based practice. As noted earlier, the π-estimator is t̂π = (N/n)∑s MiYsi. The ultimate
cluster variance estimator (see Chapter 1) in this example can be written as

vπ
(
t̂π
) = (

N

n

)2 ∑
s

M2
i

(
Ysi − t̂π

NMi

)2

.

Strictly speaking this estimator is appropriate when the sample of clusters is selected
with replacement but is often used for without replacement sampling. In this case, we
have

vR =
(
N

n

)2 ∑
s

M2
i

(
Ysi − t̂π

NM

)2

with M = M/N. If Mi = M, then vπ = vR. Such correspondences can frequently
be found in special cases. But, because prediction theory conditions on the obtained
sample, unlike design-based theory, variance estimators resulting from the two theories
are often quite different (e.g., see Royall, 1986; Royall and Cumberland, 1978, 1981a)

Variance estimators can also be developed when EM(Y) = Xβ and the predictor
T̂ = 1′sYs + 1′rXrβ̂ = g′sYs is used. The weight vector, gs, is given in (13). As in the
case of estimation under the common mean model, we can construct a simple, sandwich
estimator that is consistent under a reasonably general variance specification.Analogous
to (19), consider the model:

EM
(
Yij
) = x′ijβ i = 1, . . . , N; j = 1, . . . ,Mi

covM
(
Yij, Yk�

) = 0, i 
= k. (20)

This model assumes that the regression specification, EM(Yij), used to construct T̂ is
correct. Units in different clusters are assumed to be uncorrelated, but the variance–
covariance structure within each cluster is arbitrary. The estimation error of T̂ is

T̂ − T =
∑
s

g′iYsi −
(∑

s

MiY i +
∑
r

MiY i

)

where gi = (gi1, . . . , gimi )
′ is the part of the weight vector for the sample cluster i and

Ysi = (Yi1, . . . , Yimi)
′ is the data for the sample units from sample cluster i. The error

variance is

varM(T̂ − T ) = B1 − 2B2 + B3 (21)

whereB1=∑
s g′ivarM(Ysi)gi, B2= ∑

s g′icovM(Ysi,Yi)1Mi
with Yi= (Yi1, . . . , YiMi

)′,
and B3 = ∑N

i=1M
2
i varM(Yi). As in the common mean model, the B1 term dominates

under some reasonable conditions.
To construct a robust estimator of this dominant term, define the residual for sample

unit ij to be rij = Yij − x′ij β̂ where the estimator of slope is either β̂ = A−1
s X′sWsYs

or βo = GX′sWsYs. The vector of residuals for sample cluster i is ri = (ri1, . . . , rimi )
′.
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Define gi = (gi1, . . . , gimi )
′, which is the part of gs associated with sample cluster i.

The sandwich variance estimator

vR(T̂ ) =
∑
s

(
g′iri

)2 =
∑
s

g′i
(
rir′i

)
gi.

is approximately unbiased under the general model (20).
There are also adjusted versions of the sandwich variance estimator. The adjustments

involve the hat matrix H = XsGX′sWs and are covered inValliant et al. (2000, Chapter 9).
The jackknife variance estimator, where one cluster is deleted at a time, also involves
parts of the hat matrix. One version of the jackknife estimator of the variance of T̂r is

vJ(T̂r) = n− 1

n

∑
i∈s
(T̂r(i) − T̂r(•))2

where T̂r(i) is the estimate of Tr found after omitting cluster i and T̂r(•) = n−1 ∑
s T̂r(i).

Rather than mechanically deleting a cluster, computing T̂r(i), and cycling through all
sample clusters, the following alternative computational form can be used:

vJ(T̂r) = n− 1

n

⎧⎨
⎩
∑
s

(
a′iP

−1
i ri

)2 − n−1

[∑
s

a′iP
−1
i ri

]2
⎫⎬
⎭ (22)

where ai is the part of as = WsXsGX′r1r associated with cluster i, Pi = Imi −Hii, Imi is
the mi ×mi identity matrix, Hii = XsiGX′siWsi, Xsi is the mi × p matrix of auxiliaries
for the sample units in sample cluster i, and Wsi is the mi × mi part of the W matrix
for sample cluster i. The jackknife (22) is a consistent estimator of the dominant term
in the variance (21).

8. Estimation under nonlinear models

The preceding sections of this chapter have described the estimation of totals and the
variances of the estimators assuming that a linear working model is reasonable. An
obvious situation where a nonlinear model may be better is when Y is an indicator for
whether a unit has a characteristic or not. For example, we might want to estimate the
total number of persons with a chronic health condition like osteoarthritis. For such 0–1
Y variables, logistic or some other type of nonlinear model is usually a better fit than a
linear model.

Standard survey practice is to estimate the total of a binary variable with a linear
estimator of the form T̂ = ∑

s wiYi as described in previous sections. This type of
estimator can be prediction-unbiased if a linear model holds, but can be seriously biased
if, say, the correct underlying model is logistic. One problem with using a linear model
for a binary variable in the presence of auxiliaries is that the predicted value for a given
unit does not have to be confined to [0,1], as a probability should be.

Estimators of totals can be developed under nonlinear models that are very similar
in appearance to the BLUP introduced earlier (Valliant, 1985). Related model-assisted
work is found in Lehtonen and Veijanen (1998). Suppose that the population vector of
target values is Y = (Y1, . . . , YN)

′ where each Y can be continuous or binary. Denote
the vector of expected values of Y by f(β) = (f(x1; β), . . . , f(xN; β)) where f is



30 R. Valliant

a nonlinear function of the components of the p × 1 parameter vector β and xi is a
p-vector of auxiliaries associated with unit i. The N × N covariance matrix for Y is
V. As in earlier sections, after a sample is selected, the population can be split into the
sample s and the nonsample r. The full specification of the model for Y is

EM(Y) = f(β) = [fs(β)′, fr(β)′]′

varM(Y) = V =
[

Vss Vsr

Vrs Vrr

]
(23)

where f(β) and V are decomposed in the obvious way. We also need the vectors and
matrices of first partial derivatives defined by

Fi(β) =
[
∂f(xi; β)
∂β1

, . . . ,
∂f(xi; β)
∂βp

]′
for i = 1, . . . N, and

F(β) = [F1(β), . . . ,FN(β)]′
= [Fs(β)′,Fr(β)′]′

where Fs(β) is the n×pmatrix of first partial derivatives for the sample units and Fr(β)
is the (N−n)×pmatrix of partials for the nonsample units. In subsequent formulas, the
argument β will sometimes be suppressed in Fi(β), Fs(β), and Fr(β) for compactness
of notation.

If β were known, the BLUP of T is simply the sample sum of the Y plus the BLUP
of the nonsample sum as stated in the following theorem.

Theorem 1. Under model (23) with β known, among linear estimators of the form
T̂ = g′sYs satisfying EM(T̂ − T ) = 0, the error variance EM(T̂ − T )2 is minimized by

T̂ ∗ =
∑
s

Yi + 1′r
[
fr(β)+ VrsV−1

ss (Ys − fs(β))
]

where 1r is an (N − n)-vector of all 1.

When β is unknown, an estimator must be used. The standard estimator of β in a
nonlinear regression problem is obtained by generalized least squares (GLS). The GLS
estimator is the value β̂ that minimizes the sum of squares

[Ys − fs(β)]′V−1
ss [Ys − fs(β)]. (24)

Differentiating (24) with respect to β and setting the result to 0 leads to this set of p
estimating equations in the p unknowns β1, . . . , βp:

Fs(β)′V−1
ss [Ys − fs(β)] = 0. (25)

These must be solved iteratively to find an estimator of β. If Y is binary, the maximum
likelihood estimator (MLE) is also found by solving a system like (25).
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When estimating the population total, the obvious candidate comes from substituting
β̂ into the estimator from Theorem 3 giving

T̂ =
∑
s

Yi + 1′r
{

fr(β̂)+ VrsV−1
ss [Ys − fs(β̂)]

}
. (26)

Notice that if f(β) = Xβ, then (26) reduces to the BLUP under the general linear
model in Theorem 1. An approximation to the error variance of T̂ is:

varM(T̂ − T ) ∼= 1′r
(
Fr − VrsV−1

ss Fs
) (

F′sV
−1
ss Fs

)−1 (
Fr − VrsV−1

ss Fs
)′

1r

+ 1′r
(
Vrr − VrsV−1

ss Vsr

)
1r.

Some details of the approximation are given inValliant (1985).When the observations
are all independent, then the error variance approximation simplifies to

varM(T̂ − T ) ∼= 1′rFr
(
F′sV

−1
ss Fs

)−1
F′r1r + 1′rVrr1r. (27)

In the particular instance of independent Bernoulli random variables, the model is

EM(Yi) = f(xi;β)
varM(Yi) = f(xi;β)[1− f(xi; β)], (28)

where 0 ≤ f(xi;β) ≤ 1. The covariance matrix under this model is automatically
unknown because we assume that the parameter β is unknown. When the Y are inde-
pendent, the estimator of the total reduces to

T̂ =
∑
s

Yi + 1′rfr(β̂).

Under model (28), the MLE of β can be calculated using standard methods like the
Newton–Raphson algorithm. A variance estimator is found by substituting the estimator
β̂ into (27) to obtain

v(T̂−T ) = 1′rFr(β̂)
[
Fs(β̂)′V−1

ss Fs(β̂)
]−1

Fr(β̂)′1r + 1′rV̂rr1r,

where V̂ss = diag[fs(β̂)(1− fs(β̂))] and V̂rr = diag[fr(β̂)(1− fr(β̂))].
Use of nonlinear models in estimating totals is seldom if ever used because of the

inconvenient form of T̂ . For example, If the superpopulation model were logistic, that
is, f(xi;β) = exp(x′iβ)/[1+ exp(x′iβ)], then the estimated total would be

T̂ =
∑
s

Yi + 1′rfr(β̂)

=
∑
s

Yi +
∑
r

exp
(

x′iβ̂
)

[
1+ exp

(
x′iβ̂

)]
This cannot be expressed as a weighted summation of the sample Y and, thus, does not
dovetail with standard survey practice where a single weight is used for all types of
estimates. Nevertheless, estimators based on nonlinear models may have advantages in
particular applications, especially for totals of rare characteristics where there is some
danger of a linear estimator having implied predictions that are outside of [0,1].
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Design- and Model-Based Inference for Model
Parameters

David A. Binder and Georgia Roberts

1. Introduction and scope

When survey data are being analyzed, it is common to formulate the questions of interest
as relationships among parameters of a statistical model. We refer to studies that make
inferences on model parameters as analytic studies, in contrast to descriptive studies
where the relationships refer only to finite population characteristics; see Kalton (1983).
Commonly used statistical models are linear regression models, logistic regression mod-
els, generalized linear models, and hierarchical linear models. When the questions of
interest are based on parameters of a statistical model, populations satisfying these mod-
els are conceptually infinite. It is often assumed that the values of the variables in the
finite population from which the observed survey sampled units were selected are out-
comes resulting from sampling from this infinite population. The model may or may
not contain variables related to the survey design.

In this chapter, we use a frequency-based framework to discuss the issues associ-
ated with making inferences about model parameters from survey data that have been
obtained from a probability-sampling scheme. There are many similarities between
the randomization assumptions used in this chapter and those in Chapter 39, but in
Chapter 39 there is more attention paid to the sample likelihood function. In this chap-
ter, we do not discuss statistical models used for estimating finite population quantities,
such as is the case in small area estimation (see Chapters 31 and 32), or model-based
prediction of finite population quantities, as discussed in Chapter 23.

In Section 2, we explain what is meant by the survey population, by the populations
targeted by the survey producers and by the populations of interest to the researcher who
is fitting a statistical model to the survey data. In Section 3, we focus on the probability
randomization distribution of the observations as a basis for frequency-based statistical
inference. This distribution is based on the statistical model that generated the values
of the variables of interest in a finite population and the sampling plan used to select
the sample from that population. In Section 4, we discuss the properties of model- and
design-based estimators in the context of a model-design-based randomization frame-
work. Situations where the design-based approach can be problematic are discussed in
Section 5, including cases of large sampling fractions, small sample sizes, estimating
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parameters for models that include random effects, population-based case-control stud-
ies, and making appropriate design-based inferences in event history analysis models.
In Section 6, we briefly discuss the estimation of design-based variances of estimates
of model parameters. The particular problem of integrating data from more than one
survey is given in Section 7. In Section 8, we provide some final remarks.

The more technical details are confined to Section 4 and part of Section 5, so that
readers who wish to read the less technical discussions can skip over these parts. Table 1
in Section 4 summarizes many of the main concepts described in that section.

2. Survey populations and target populations

In sample surveys, information is collected from a sample of units from a finite popula-
tion. It is common for the sampling plan to be complex, which we define as any sampling
plan where the units are selected using a design that is not simple random sampling.
To select the units for the sample using a complex probability-based sampling plan, a
sampling frame is constructed, and a probability sample is taken using this frame to
lead to the ultimate units observed in the survey. (See Part 1 of this Handbook for more
details.)

A descriptive study is one where the quantities of interest are characteristics of a
finite population, such as population totals, means, proportions, or other ratios. On the
other hand, in an analytical study, the quantities of interest are related to the parameters
of a statistical model, such as the coefficients of a regression model.

When a survey is conducted, the survey producer1 targets a particular population of
inference (or a particular set of populations of inference). It is important to distinguish
between two types of populations: the survey population and the target populations.
The survey population comprises all the units that are eligible for selection in the sur-
vey sample.2 The survey population is always finite. However, the survey population
and the finite population being targeted by the survey producer may not necessarily
coincide. The units observed in the survey depend on the sampling frame, which may
suffer from imperfections due to coverage or classification errors. Also, for operational
reasons, the survey producer may exclude certain population units from being eligible
for inclusion in the sample. On the other hand, for a statistical study, either descrip-
tive or analytic, the researcher’s target populations are the populations about which he
wishes to draw conclusions and are often different from either the survey population or
the survey producer’s target population. The target population that is appropriate for a
particular analysis may depend on the quantities being estimated, since more than one
target population can be studied from the same survey. The quantities being estimated
are based on the purpose of the study and on how the estimates will shed light on the
questions of analytic interest.

1 In this chapter, we use the term survey producer to refer to the agencies or organizations that select
the sample, collect the survey data, process the data, and produce the files to be used for the production
of survey estimates and for making inferences about the finite populations targeted by the survey.

2 Note that the definition of the survey population might depend on the particular survey variables being
included in the study, since some survey variables may not be collected for certain subpopulations. As an
example, we might not ask some labor-related questions from those who are not currently employed.
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In this chapter, we consider analytic studies where a researcher is interested in making
inferences on the parameters of a statistical model. It is presumed that the realizations
of the random variables generated by such a model have given rise to the values of the
characteristics of interest in the finite population from which the sample was selected.
Graubard and Korn (2002) gave several references where the primary interest is in the
parameters of the model. Also, examples and further discussion may be found in mono-
graphs by Chambers and Skinner (2003), Korn and Graubard (1999), and Lehtonen and
Pahkinen (2004). If the finite population could be completely observed, then an estimate
of the model parameters of interest, based on all the values of the finite population, would
be available. These estimates are finite population quantities that are associated with
parameters of the model. Generally, the choice of estimator is based on its statistical
properties under the assumed model.

We denote the parameters of the model by θ and the finite population quantities
associated with these parameters by θN . As an example, if the statistical model assumed
to have generated values of the characteristics of interest in theN units in a population is a
standard linear regression model, yN = XNθ+ εN , where εN is a vector of independent
and identically distributed normal errors, the finite population quantities associated
with the regression coefficients could be the ordinary least-squares estimator of the
regression coefficients, based on the complete finite population values; that is, θN =
(X′NXN)

−1X′NyN . These finite population quantities are descriptive characteristics of
the population. Note that even if the model is only approximately true, the researcher
may consider these finite population quantities to be useful descriptive measures for the
finite population.

We provide some examples of possible studies that illustrate the concepts of survey
population and target population and the differences between descriptive and analytic
studies:

(a) A descriptive study where the survey producer’s target population is either the
survey population or differs from the survey population due to frame over-
coverage (such as duplication of persons on the frame, persons on the frame
but not resident in the geographic area covered by the survey, etc.), or due
to frame undercoverage (such as those units that were deliberately excluded
from selection from the frame and those units that were missing from the
frame).

Example 2.1. Suppose that we are interested in studying (i) the average expenses
per acre for Canadian farmers who used organic farming techniques for vegetables
in 2002 and (ii) whether the average of expenses per acre in the province of Ontario
differs from that in the province of Quebec. Our data source is a cross-sectional
survey based on a frame consisting of farmers in Canada operating in 2001. The
survey producer’s target population was actually farmers in Canada operating in
2002. Survey questions included information about organic farming techniques
used in 2002. In this case, our analysis is primarily descriptive and the population
of interest consists of those farmers who engaged in organic farming in 2002 among
all the farmers in the finite population targeted by the survey producer. We see that
some differences between the survey population and the target population are due
to frame imperfections.
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Example 2.2. Suppose that we are interested in studying residents of the
United States living in households, aged 25–40 years, who were overweight in
1993. We would like to know (i) what percentage of these persons were still over-
weight in 2001 and (ii) whether males and females differ with respect to these
characteristics. To study these questions, we use a longitudinal survey where the
finite population targeted by the survey consists of residents of the United States
living in households in 1993 and where data pertaining to years 1993 and 2001 are
collected from the sampled individuals (such as by interviewing the people every
2 years beginning in 1993). In this case, we again have a descriptive analysis, but
here the population of interest consists of the finite population units targeted by
the survey in 1993, who were overweight in 1993. Since we have a longitudinal
survey, we can observe the overweight status both in 1993 and in 2001 for units in
the observed sample.

(b) A descriptive study where the researcher’s target finite population is larger than
the one targeted by the survey producer, but its characteristics can be repre-
sented by the characteristics of the finite population targeted by the survey
producer.

Example 2.3. Suppose we believe, based on clinical or other studies, that the
prevalence of chronic back pain in Canada was constant throughout the 1990s,
and we would like to know this prevalence rate. We use as our source of data
a cross-sectional survey of the 1993 Canadian population, where a question was
asked about the existence of chronic back pain in that year. In this case, we are
interested in estimating the prevalence rate, but our population of interest is wider
than the finite population targeted by the survey, since we are assuming that the
1993 prevalence rate applied throughout the 1990s. Even though we are estimating
a quantity for a target population that is larger than that targeted by the survey
producer, we say that the study is descriptive because we are estimating a quantity
that refers to a finite target population.

(c) An analytic study where the researcher’s target population is infinite and the
values of the characteristics of the units in the finite population from which the
sample is selected are considered to be outcomes of random variables from a
statistical model. This is the case we focus on in this chapter.

Example 2.4. Suppose we want to know whether obesity, age, and gender are
important risk factors for a senior needing to leave his/her home to go to reside
in a long-term care facility. In particular, we are interested in the impact of age,
after controlling for the other variables. Our data source is a longitudinal survey of
seniors in the Canadian province of Ontario, where the sample was chosen from
seniors living in households in 1992 and sampled individuals were followed for 6
years. In this case, our objectives are primarily analytical. We would like to study
statistical models that can be used to explain the relationships among the variables of
interest. Our target population is wider than the particular finite population targeted
by the survey; rather, it is the conceptually infinite population, represented by the
statistical model, from which the values of the characteristics of interest in the finite
population were generated.
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2.1. Units of analysis

For either a descriptive or an analytic study, the structure of the units of analysis is not
necessarily the same as the structure of the units selected by the sampling plan. This
would be the case when the units of analysis are derived from the units that were actually
sampled.As an example, the survey population units could be persons, whereas the units
of analysis could be households. Another example would be where the units observed
in the sample are persons in a longitudinal employment survey, and the units of analysis
are job spells held by the people surveyed.

The relationship between the units of a population and the units of analysis is impor-
tant. The researcher must be aware of the differences between the two types of units.
Survey weights for the units to be analyzed may not be provided and would need to
be constructed; for example, this would be the situation when the units of analysis are
households, the units observed in the sample are persons, and the data files contain just
person-level weights. In the case of a longitudinal study, when the units of analysis are
spells, such as spells of unemployment, there may be multiple units of analysis for the
same person, so that the estimation of variances of survey estimates must account for
the fact that some units of analysis refer to the same individual and may be correlated
within the individual.

2.2. Weighting and estimation

In Chapters 8 and 25, weighting and estimation approaches for estimating finite popula-
tion characteristics from cross-sectional surveys are discussed in detail. Here, we review
some of the main approaches for making inferences about survey characteristics in the
finite population targeted by the survey producer.

In finite population sampling, the finite survey population consists of N units. We
denote by Yi= (Y1i, . . . , Yqi)

′, for i= 1, . . . , N, the values for q survey variables mea-
sured on the ith unit. (It may be possible for the number of variables to vary among
units, but for the sake of simplicity of notation, we consider here the case where the
same number of survey variables of interest is associated with each population unit.)
A sample is selected from the finite population and we suppose that n units are observed
in the sample. We denote survey observations by y1, . . . , yn, where each of the yis corre-
sponds to one of the Yjs in the population. For the ith sampled unit, yi = (y1i, . . . , yqi)

′,
we have an associated survey weight wi. (In some survey files, there may be more than
one weight variable. Each weight variable could correspond to a different population
targeted by the survey producer, or different weight variables could be used with dif-
ferent subsamples to represent the same population, such as is the case for weight
variables associated with different cycles from a longitudinal survey with different
nonrespondents in each cycle.) A survey-weighted estimate for the population total
Y1= ∑N

i=1 Y1i, say, is Ŷ1= ∑n
i=1wiy1i.3 Similarly, a survey-weighted estimate for a

ratio R = Y1/Y2 is R̂ = Ŷ1/Ŷ2= ∑n
i=1wiy1i/

∑n
i=1wiy2i. For example, a population

3 An alternative way to express this is to let Ii = 1, for the n observed units in the finite population, and
Ii = 0 for the N - n units of the population not observed, so that Ŷ1 is expressed as

∑N
i=1 IiwiY1i, where the

wi’s are associated with the finite population units, rather than the sampled units. We use this formulation
throughout much of this chapter.
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mean or proportion Y 1 = Y1/N may be estimated using the survey-weighted estimator

Ŷ 1= Ŷ1/N̂ =∑n
i=1wiy1i/

∑n
i=1wi.

Normally, each survey weight variable is constructed in such a way that the survey-
weighted estimator of a finite population total is approximately unbiased under the
probability randomization distribution induced by the sampling plan. To account for
differences between the survey population and the finite population targeted by the pro-
ducer, it is common to adjust the survey weights, for example, by using poststratification,
a special case of calibration (see Chapter 25). Weight adjustment is also one of the means
of accounting for nonresponse (see Chapter 8). Adjustment of the survey weights can
improve the accuracy of the weighted estimates for finite population characteristics,
such as population means, totals, and ratios. The goal is to reduce the sampling errors,
which are the differences between the estimates based on an observed sample and the
true values for characteristics in the finite population targeted by the survey producer. In
design-based estimation, the properties of the sampling errors are assessed with respect
to the sampling distribution resulting from the probabilities used in the sampling plan
and the assumed nonresponse mechanism.

3. Statistical inferences

In a frequency-based framework for statistical inferences, there is interest not only in
what is observed but also in what could have been observed had different samples been
selected. The properties of estimators are studied in terms of expectations, variances, or
other measures related to the distribution of the random variables generating the sample
observations, as described below. We use this distribution to perform tests of statistical
hypotheses and to construct confidence intervals.

Of interest is the distribution of estimates under hypothetical random repetitions.
This distribution depends on whether or not a statistical model is presumed to have
generated the values of the characteristics of interest in the finite population. As well,
the distribution of the estimates may be affected by the sample design. Hence, the
inferences depend on the assumptions made about the randomization mechanism used
to create the hypothetical repetitions.

Suppose that for a scalar parameter, these hypothetical repetitions yield estimates
θ̂1, θ̂2 . . .. Assuming the expected value of the θ̂is exists and is equal to μθ̂ , the limit
of the average value of θ̂1, θ̂2 . . . , θ̂K for large K, would converge to μθ̂ . When the
sampling variance Vθ̂ exists, it would be the limit of the average value of (θ̂i − μθ̂)2,
over i = 1, . . . , K, for largeK. Extension to the multiparameter case is straightforward.

We now distinguish between two common randomization mechanisms that
researchers assume to have generated the hypothetical repetitions for determining the
distribution of the estimates, and we introduce a third mechanism that can incorporate
both. First, for design-based randomization, the sampling distribution for θ̂ is based on
the probability randomization distribution resulting from the plan for sampling from a
finite population. The values of the characteristics of interest are assumed to be fixed
quantities. In cases where the finite target population is different from the survey popu-
lation, it may be necessary to make additional assumptions about the relationship of the
target population to the actual survey population from which the sample was drawn. As
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an example, the finite target population may be for a different reference period than the
survey population and reweighting on age and sex is applied to help account for the
differences.

Secondly, when the statistical inferences are based on model-based randomization, it
is assumed that the observed units can be considered to be a realization of random vari-
ables that follow the distribution of a statistical model. This model may need to include
factors that explain the impact of the sampling plan. For example, if a stage of sampling is
based on choosing clusters, a model-based approach might incorporate a random effects
component in the model to account for the clustering.

A third randomization mechanism that can incorporate both design- and model-based
randomization is known as model-design-based randomization. For this mechanism,
the randomization distribution for the values of the characteristics of interest for the
observed units is considered to be the realization of random variables arising from a
three-phase process as follows:

• In the first phase, values of the characteristics of a finite target population are
generated, based on random variables of a statistical model.

• The second phase augments the finite population variables with design variables,
such as stratification and clustering identifiers. The values of these design variables
can depend on the outcomes of the random variables in the first phase and may be
random.

• In the third phase, a probability sample is selected from the finite population using
the design variables.

This three-phase framework is similar to that given in Molina et al. (2001).
We note that here we are presuming that the values of the survey variables in the finite

population from which the survey sample was drawn are generated before the survey
frame is constructed. An alternative formulation could be that a statistical model has
generated the values of the survey variables only after having selected the units to be
included in the sample. For example, in DuMouchel and Duncan (1983) it is assumed
that the coefficients of the linear regression model that is used to generate the values
of the survey variable can depend on the particular stratum within which each of the
selected units in the sample falls. However, for most researchers, the purpose of the
analysis is to understand the behavior of the units in the finite target population from
which the sample was drawn, and if any survey design variables are relevant to the
analysis, such variables should be included in the statistical model.

We illustrate the model-design-based randomization in Fig. 1.As shown in the figure,
for a given superpopulation model, several finite populations could have been generated.
For each of these finite populations, we have an associated finite population quantity
given by θN . Then for the actual finite population realized, we have a sampling plan that
could give rise to a number of different samples. For the sample actually selected, we
form an estimate θ̂, which is the one based on the realized sample. The figure illustrates
that in the model-design-based framework, we consider not only the possible samples
from the actual finite population from which the survey sample was selected but also
the samples that could have been generated from other possible finite populations.

The model-design-based randomization framework can also include additional ran-
domization phases that account for nonresponse and measurement error, but we do not
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Fig. 1. Model-design randomization.

discuss these in this chapter. The methods for small area estimation (Chapter 32) and for
model-based prediction of finite population totals (Chapter 23) can be included in this
framework when the target population of interest is finite, but where there is a model
assumed to have generated the values of the finite target population.

3.1. Informative sampling and ignorability

In the model-design-based randomization framework, two concepts encountered in the
literature are informativeness and ignorability. See Pfeffermann (1993), Binder and
Roberts (2001), and Chambers (2003) for some discussion of these.

In this framework, the observed sample is considered to be the result of a three-phase
process as described previously, where the values of the characteristics of the finite
population are generated according to the first-phase model, design variables are added
in the second phase, possibly conditional on the outcomes of the random process in the
first phase, and at the third phase, the sample is drawn according to the survey design.
When the distribution of the sample observations resulting from the three phases is
the same as the distribution that would have arisen had the observations been generated
directly from the first-phase model, the sampling is said to be noninformative. Otherwise,
the sampling is informative. One-stage simple random sampling designs are noninfor-
mative. For more complex sampling plans, whether or not the sampling is informative
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will depend on the statistical distribution for the sample resulting from the three-phase
process. See Chapter 39 for a more rigorous description of informative sampling.

The specification of the first-phase model can determine whether or not the sampling
is informative. For example, a first-phase model that does not include certain design
variables could be informative, whereas a first-phase model that includes these design
variables may yield a noninformative sampling plan. Since it is the parameters of the
first-phase model that are of interest to the researcher, he must give careful consideration
to the appropriateness of including such design variables in the model. For some studies,
including such variables could be appropriate, whereas for other studies it may not be.
The following example is taken from Korn and Graubard (1999, Section 4.5). Sup-
pose the researcher is interested in understanding the relationship between a mother’s
smoking behavior and gestational age of the newborn, and the sampling plan involves
birthweight of the newborn. In this case, including birthweight in the model would be
inappropriate for understanding the relationship between smoking and gestational age.
By not including birthweight in the model, the sampling plan might be informative.
On the other hand, if the sampling plan involves mother’s age, then including mother’s
age in the model might result in having a noninformative sampling plan, but the inter-
pretation of the other model parameters would change. The appropriateness of adding
mother’s age would depend on the nature of the relationship between smoking behavior
and gestational age that the researcher is studying. The change to the interpretation of
the model parameters resulting from including design variables in the model is also dis-
cussed in Chapter 39. It should be noted that even if the researcher chooses to include
such design variables in the model, there might still be some model misspecification so
that the first-phase model would still not adequately explain the sampling distribution
of the observed sampled values.

If a model-based method of inference is valid under a model-design-based randomi-
zation process, the sampling is said to be ignorable for that analysis. Otherwise, it is
nonignorable. For example, when fitting a linear model, suppose the model residuals
are correlated within sampled clusters in a cluster sample where more than one unit is
selected from each cluster. In this case, the sample design is nonignorable if the intra-
cluster correlation is not properly taken into account in the model and in the estimation
method. On the other hand, if only one unit is selected from each cluster, the intracluster
correlation would not need to be taken into account in the model describing the sample
observations.4 Noninformative sampling is always ignorable. Some research has been
done on diagnostics for ignorability (see Section 4.3).

4. General theory for fitting models

In this section, we give some of the technical details for the properties of design- and
model-based estimators. The reader who is interested in skipping the mathematical
derivations can find a summary of the main results at the end of the section. We leave
out the assumptions on the rates of convergence that would be required for some of
the asymptotic results to be valid. To simplify the presentation, we focus on the case of

4 Note that if, as in Chapter 23, we were interested instead in predicting the values of the unsampled units
in the cluster, the intracluster correlation would need to be taken into account.
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inference for the regression coefficients of a linear regression model. However, these
results can be extended to estimating parameters for many models that use linear estimat-
ing equations (see Chapter 26), such as the parameters in generalized linear models dis-
cussed by Nelder and Wedderburn (1972).Also, the framework discussed for the regres-
sion case can be modified to include the quasi-likelihood function approach to parameter
estimation, (Wedderburn, 1974), the generalized estimating equation approach (Liang
and Zeger, 1986) and, more generally, M-estimation for parameters of models with
independently distributed observations. This section includes results first discussed by
Binder and Roberts (2003).

Suppose that we are interested in estimating the parameters of a model that we assume
has generated the values of the variables of interest in a finite population from which
we have selected a sample. As an example, suppose that the finite population contains
a dependent variable Y = (Y1, . . . , YN)

′ and p-dimensional vector-valued explanatory
variables given by x1, . . . , xN . We assume that population values for Y were generated
by the model Yi = x′iθ+ εi, where the εis are independent N(0, σ2) random variables.
If we could observe the complete finite population, the population-based maximum
likelihood estimator for the unknown parameter θ would be θN , the solution to the
estimating equation

UN(θN) =
N∑
i=1

xi(Yi − x′iθN) = 0. (1)

The quantities θN are the ordinary least-squares estimators for the regression coeffi-
cients based on the complete finite population. We say that θN are the finite population
quantities associated with the model parameters θ. For an arbitrary value of θ̃, we define
ui(θ̃) as ui(θ̃) = xi(Yi−x′iθ̃), so that θN , the finite population quantities associated with
the model parameters θ, may be written as the solution to

UN(θN) =
N∑
i=1

ui(θN) = 0. (2)

Suppose we have selected a sample from the finite population and we let Ii= 1, for
i = 1, . . . , N, if the ith unit is in the observed sample, and Ii = 0 otherwise. We denote
by θ̂ a model-based estimator for the unknown parameters θ, given by the solution to
the estimating equation

Û(θ̂) =
N∑
i=1

Iixi(Yi − x′iθ̂) =
N∑
i=1

Iiui(θ̂) = 0. (3)

This model-based estimator is the sample-based maximum likelihood estimator. It is
similar to expression (1), except that it is based on only the sampled observations. The
estimator θ̂ is the ordinary least-squares estimator for the regression coefficients based
on the sample. This estimator is appropriate when it can be assumed that the sampling
is ignorable. If, however, the sampling is not ignorable, it may be possible to modify the
model assumptions for the distribution of the observed sample by accounting for how
the random variables for the observed sample are affected by the sample design, and
then to use estimating equations appropriate for the modified model. See Chapter 39 for
some examples.
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Suppose that when the ith unit is in the observed sample, the survey weight is given
by wi. Using the subscript p to denote the randomization due to the sampling process
for selecting units from the finite population, a design-based weighted estimator for the
unknown parameter θ is denoted by θ̂p, the solution to the estimating equation

Ûp(θ̂p) =
N∑
i=1

Iiwixi(Yi − x′iθ̂p) =
N∑
i=1

Iiwiui(θ̂p) = 0. (4)

Note that, by convention, Iiwi= 0 whenever the ith unit is not in the observed sample.We
are assuming that the survey weight variable is constructed in such a way that the survey-
weighted estimator of a finite population total is approximately unbiased under the
probability randomization distribution induced by the sampling plan. The estimator θ̂p in
(4) is known as the pseudo maximum likelihood estimator of the regression coefficients.
It is the survey-weighted least-squares estimator for the regression coefficients based
on the sample.

We consider the properties of our random variables θN , θ̂p, and θ̂ under the model-
design (ξp) randomization described in Section 3. By taking a linear expansion of
UN(θN) around θN = θ, we have from (1) and (2) that

θN − θ = S−1
xx

N∑
i=1

xi(Yi − x′iθ) = S−1
xx UN(θ), (5)

where

Sxx =
N∑
i=1

xix′i. (6)

As well, since θN is fixed for a given finite population, we see that the model-design
expectation of θN is the model parameter θ.

Now, considering the model variance for θN , we have from (5) that

Vξ[θN ] = S−1
xx Vξ[UN(θ)]S−1

xx . (7)

Under the assumed linear regression model,

Vξ[UN(θ)] = σ2Sxx, (8)

so that we obtain the familiar result that

Vξ[θN ] = σ2S−1
xx . (9)

It should be noted that the model-based variance given in expression (7) is correct
whether or not the assumed regression model is valid.

4.1. Properties of the design-based estimator

We now consider the model-design properties of θ̂p. From expression (4), we have,
using a linearization expansion of Ûp(θp) around θ̂p = θN , that

θ̂p − θN = Ŝ−1
xx Ûp(θN), (10)
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where

Ŝxx =
N∑
i=1

Iiwixix′i. (11)

For large sample sizes (or, in the case of a multistage survey design, for a large number
of primary sampling units), Ep[Ŝxx] ≈ Sxx. We assume, therefore, that Ŝxx → Sxx in
probability, so that

θ̂p − θN → S−1
xx Ûp(θN) (12)

in probability. (See Chapter 40 for technical details of asymptotics in finite population
sampling). Since

Ep[Ûp(θN)] ≈ Ûp(θN) = 0, (13)

we have from (12) that θ̂p is asymptotically design unbiased for θN . Also, since θN

is model unbiased for θ, we have that θ̂p is asymptotically model-design unbiased
for θ.

The choice of whether to use the design-based survey-weighted estimator or the
model-based ordinary least-squares estimator for the regression coefficients should be
made on the basis of efficiency or robustness. We say that a method is robust when the
method gives valid inferences not only under the ideal conditions of the assumed model
being correct but also when there is a departure from these assumptions. The ordinary
least-squares estimator will have smaller model-design-based variances than the survey-
weighted estimator when the sampling is ignorable since the ordinary least-squares
estimator is the minimum variance linear unbiased estimator under the model. However,
using model-based estimates and model-based variances could lead to inappropriate
inferences under the model-design-based framework when the model assumptions are
violated for the sample. On the other hand, as we discuss below, inferences based on
design-based estimators can be valid under the model-design-based framework, even
when some of the model assumptions are violated.

We now consider the model-design-based variance of θ̂p. We use the decomposition

Vξp[θ̂p] = EξVp[θ̂p] + VξEp[θ̂p]. (14)

From expression (12), we see that, asymptotically,

Vp[θ̂p] = S−1
xx Vp[Ûp(θN)]S−1

xx . (15)

Therefore, from expression (12) and (14),

Vξp[θ̂p] → S−1
xx EξVp[Ûp(θN)]S−1

xx + Vξ[θN ] (16)

for large samples. Since θN → θ, it follows that

Vξp[θ̂p] → EξVp

[
S−1
xx Ûp(θ)

]
+ Vξ[θN ]. (17)

For many sample designs and models, EξVp[S−1
xx Ûp(θ)] isO(n−1).Also since Vξ[θN ]

isO(N−1), the magnitude of the term Vξ[θN ], compared with the magnitude of Vξp[θ̂p],
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is negligible when the sampling fraction, n/N, is small. We note that even if there
are some units in the finite population that are selected with certainty, if the overall
sampling fraction is small, EξVp[S−1

xx Ûp(θ)] is O(n−1). Therefore, for small sampling
fractions and large sample sizes, the design-based variance of θ̂p is model unbiased
for the design-model-based variance of θ̂p. This is an important result for the analysis
of survey data from complex surveys, since the design-based variance is derived from
only the probability randomization distribution of the sampling plan, without explicit
reference to the first-phase model presumed to have generated the finite population
values.

It is important to note also that the model-design-based variance of θ̂p in (17) is
valid even if the assumed regression model is incorrect, providing the model-expected
value of UN(θ) is equal to zero; that is, providing the model is linear with no missing
explanatory variables. In practice, we would need to estimate the model-design-based
variance in (17). If there is an asymptotically design-unbiased estimator of Vξp[θ̂p], then
this estimator will be asymptotically model-design unbiased. To estimate the design-
based variance Vp[S−1

xx Ûp(θ)] in (17), we note that Ûp(θ) is an estimator of a total, so
that design-based methods for estimating the variance of a total for a finite population
may be used. Since θ and Sxx are unknown, we would substitute the estimates using
θ̂p and Ŝxx, respectively, to compute the estimated design-based variance. (We briefly
discuss estimating the design-based variance in Section 6.)

We see, therefore, that when the sampling fraction is small and the sample size is
large, the design-based variance, as an estimate of the model-design-based variance
of θ̂p, is robust to certain departures from the variance assumptions under the model,
provided that θ̂p is asymptotically design unbiased for θN , and that θN → θ.

However, when the sampling fraction is not small, a design-based estimator of the
variance would not be completely appropriate, since the second term of Vξp[θ̂p] in (14)
would not be properly accounted for. Korn and Graubard (1998a) discuss this situation
in some detail. We discuss the estimation of Vξ[θN ] further in Section 5.1.

A question that is often asked is whether replacing the design-based variance
Vp[S−1

xx Ûp(θ)] in (17) by a model-based variance Vξ[S−1
xx Ûp(θ)] yields an asymptotically

correct model-design-based variance of θ̂p. If this were the case, it would be possible to
estimate the model variance, using only the survey weights and any design information
used in the first-phase model, without needing all the design information that would
be normally required for estimating the design-based variance. Now if the sampling is
ignorable, then Vξp[S−1

xx Ûp(θ)]=Vξ[S−1
xx Ûp(θ)]. Since when the sampling fraction is

small and the sample size is large Vp[S−1
xx Ûp(θ)] is model unbiased for Vξp[S−1

xx Ûp(θ)],
the model-based variance and the design-based variance are asymptotically equal. Pro-
viding we have consistent estimates of the variances, the two estimated variances should
be close when the sampling is ignorable. Therefore, comparing the two variances is a
possible diagnostic tool for whether or not the sampling is ignorable (see Section 4.3
for more discussion of tools for diagnosing nonignorability).

4.2. Properties of the model-based estimator

We now consider the model-design properties of the model-based estimator θ̂ for esti-
mating the parameter θ. By taking a linear expansion of Û(θ̂) around θ̂ = θ, we have
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from expression (3) that

θ̂− θ =
[

N∑
i=1

Iixix′i

]−1 N∑
i=1

Iiui(θ). (18)

We denote Ep[Ii] by πi, the probability that the ith unit is included in the sample.
Now, we assume that for large sample sizes from a given finite population that

N∑
i=1

Iixix′i → Ep

[
N∑
i=1

Iixix′i

]
=

N∑
i=1

πixix′i, (19)

which we denote by S(π)xx . Therefore, by taking design-based expectations in expression
(18), it follows that, asymptotically,

Ep[θ̂− θ] → [
S(π)xx

]−1
N∑
i=1

πiui(θ), (20)

in probability. Note that the πis can vary under hypothetical repetitions of the finite
population generated by the model. We assume that as n,N → ∞, the limit of S(π)xx
exists and is equal to Eξ[S(π)xx ]. Taking the model expectation of expression (20), it
follows that, asymptotically,

Eξp[θ̂− θ] = [
Eξ

[
S(π)xx

]]−1
N∑
i=1

Eξ [πiui(θ)]. (21)

We know that if the sampling is ignorable, θ̂ is model-design unbiased for θ. However,
in general, under nonignorable designs, the model-based estimate of θ may be biased
and inconsistent.

Using methods similar to the case of the design-based estimator, it is possible to
derive the expression for the model-based variance of θ̂, but we leave out the details
here.Again if the sampling is ignorable, the model variance Vξ[θ̂]will be design unbiased
for Vξp[θ̂].

When under a specific model, the sampling is nonignorable, it may be possible, as
mentioned in Section 3.1, to modify the model to incorporate the effect of the sampling
mechanism; see, for example, Chambers (1986). An alternative approach that explicitly
accounts for the conditional distribution given the sampling mechanism is given in
Chapter 39.

4.3. Comparing model- and design-based estimators

When the sample design is not ignorable, we know that both θ̂p and θ̂ are model-design
unbiased for estimating θ. Also, for ignorable sample designs and for small sampling
fractions, the model-based variance and the design-based variance for S−1

xx Ûp(θ) (and
hence for θ̂p) are asymptotically equal. Therefore, an indicator for checking on the
ignorability of the sample design is to compare the values of θ̂p and θ̂ and to compare an
estimate of Vξ[θ̂p] with an estimate of Vp[θ̂p]. Another possibility, but one that is often
not as simple to compute, is to compare an estimate of Vξ[θ̂] with an estimate of Vp[θ̂],
the model and design-based variances of the model-based estimates of the parameters.
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Table 1
Properties of design- and model-based estimators under model-design-based randomization (for small
sampling fractions and large sample sizes)

Assumed first-phase model is valid Assumed first-phase model is misspeci-
and sampling is ignorable fied or the sampling is nonignorable

Model-based Asymptotically unbiased May be inconsistent
estimator Efficient Variance estimates may be invalid

Valid variance estimates Inferences may be invalid
Valid inferences
May be best

Design- Asymptotically unbiased If the mean of the estimating equation is
based May be inefficient zero under the model:
estimator Valid variance estimates Asymptotically unbiased

Valid inferences Valid variance estimates
Valid inferences

For a single parameter θ, the factor, V̂p[θ̂p]/V̂ξ[θ̂p], is the estimate of the inflation
of the variance due to the sample design. Binder et al. (2005) have conducted some
simulations to study this. Other measures of ignorability based on only the point esti-
mates have also been proposed in the literature; for example, Pfeffermann (1993) and
Asparouhov (2004). DuMouchel and Duncan (1983) and Fuller (1984) have suggested
statistical tests for testing whether θ̂p and θ̂ are estimating the same quantities in the case
of a linear regression model. More generally, it is also possible to compute [Ûp(θ̂)] and
a model-based estimate of its model variance and to test for whether Eξ[Ûp(θ̂)] = 0.
Some further discussion is given in Chapter 39.

To summarize the properties of the design- and the model-based estimators,
Table 1 displays the advantages and disadvantages of model-based versus design-based
estimation.

5. Cases where design-based methods can be problematic

There are situations where the general theory given to support design-based methods of
inference for model parameters can be problematic. We consider some of these here.

5.1. Nonnegligible sampling fractions

When the sampling fraction is small and the sample size is large, the term, Vξ[θN ]
in expression (16), can be ignored for the model-design-based variance of θ̂p. How-
ever, when the sampling fraction is not negligible, this term must be included. Since
this term depends on the model, it would seem to be necessary to use model assump-
tions to estimate this. For example, if the coefficients of a linear model have been
estimated by θ̂p, the survey-weighted least-squares estimate, we would need to esti-
mate Vξ[θN ]=Vξ[(X′NXN)

−1X′NyN ], which would require knowledge of the model
variance structure. However, for many sample designs, it is possible to estimate the
model-design-based variance Vξp[θ̂p] even without full model details. It turns out that
using a variance estimator that assumes that the sampling is with replacement at the
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first stage of selection will give an estimate of the correct model-design-based variance
regardless of the sampling fraction.

We now demonstrate why the with-replacement variance estimator can be appropriate
by considering the example of a single-stage sample design for the case of fitting a linear
regression model with independent and identically distributed normal errors. Denoting
Ep[IiIjwiwj] by dij , and taking the simple case whereEp[Iiwi] = 1, the model-design-
based variance of Ûp(θ̃) is

Vξp[Ûp(θ̃)] =
N∑
i=1

N∑
j=1

Eξ[dijui(θ̃)u′j(θ̃)], (22)

since VξEp[Ûp(θ̃)] = 0. A design-based estimator for the variance of Ûp(θ̃), assuming
a with-replacement sampling plan for a single-stage design, is given by

V̂wr[Ûp(θ̃)] = n

n− 1

⎡
⎣ N∑
i=1

Iiw
2
i ui(θ̃)u

′
i(θ̃)−

1

n

N∑
i=1

N∑
j=1

IiIjwiwjui(θ̃)u′j(θ̃)

⎤
⎦. (23)

It can be shown that if Eξ[dijui(θ̃)u′j(θ̃)] = 0 for i �= j then the model-design-based
expectation of the with-replacement variance estimator in (23) is equal to the model-
design-based variance in (22) when θ̃ is equal to the true value of the model parameter θ.

This result can also be extended to the case where there is some nonzero model
correlation between units, provided that this correlation is not too large. We do not give
the details here.

In practice, to estimate the variance, an estimator for θ in expression (23) is
required, but the effect on the estimate of substituting θ̂p for θ in (23) is asymptotically
negligible.

5.2. Small sample sizes or rare characteristics

For small-scale surveys, or for studies of domains where the sample sizes are small,
a model-based approach may be preferred to a design-based approach, especially if
the design-based approach leads to much higher variances; see, for example, Kalton
(1983) and Little (2004). Small sample sizes can also occur in the case of event history
analysis when the number of observed events is small, even for a large-scale survey.
As mentioned in Section 4, the use of design-based (weighted) estimates rather than
model-based (unweighted) estimates can lead to less efficient estimates when the model
is correct. When the sample size is small, this increased variance may be unacceptable.
If a model-based approach is taken, consideration should be given to incorporating into
the model features of the sample design so that the sample is ignorable, as discussed in
Section 3.1.

Problems with typical design-based methods can also arise when the researcher is
fitting models for rare characteristics, even when the survey sample size is large. As
we mention in Section 6 below, for estimating variances using jackknife or bootstrap
replicates, alternatives, such as the linearized jackknife or the linearized estimating
function bootstrap (see Binder et al., 2004; Yung and Rao, 1996), might be consid-
ered for estimating design-based variances in such cases. Korn and Graubard (1998b)
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discussed alternatives for confidence interval estimation of estimating population pro-
portions when the sample contains only a small number of positive counts.

5.3. Models that include random effects

Many models of interest to researchers contain random effects. Mixed effects models,
of which hierarchical or multilevel models are specific cases, are models that include
both fixed effects parameters and parameters for variance components corresponding
to random effects. We consider two issues here: first, that of finding appropriate point
estimates for both the fixed effects parameters and the random effects parameters, and
second, that of problems associated with making appropriate inferences about these
parameters. We consider both these issues in the context of the model-design-based
randomization framework.

In Section 4, we described large-sample approaches that are appropriate when the
estimating equations provide consistent estimates of the unknown parameters. How-
ever, for hierarchical or multilevel models, for example, using unrestricted maximum
likelihood estimators to define the estimating equations for point estimates of the para-
meters of the variance components can lead to biased and inconsistent estimators when
the number of units sampled at the first level of the hierarchy5 is small even when the
sample design is ignorable. Careful consideration must be given to deciding which esti-
mators are appropriate for each of the following three cases: (a) when the complete finite
population is observed, (b) when a sample of the finite population is observed and the
sample design is ignorable, and (c) when a sample of the finite population is observed,
and the sample design is not ignorable. Cases (a) and (b) are covered in the nonsurvey-
based statistical literature using model-based approaches. For case (c), even the meaning
of a “design-based approach” is not necessarily clear. What has been proposed in the
literature for this case is to first determine appropriate model-based estimators for case
(a), and by expressing these estimators in terms of estimating equations, to develop
weighted estimating equations as a basis for defining the estimators. However, finding
appropriate weights using this approach can be problematic. Weighting at each level of
the model hierarchy is required and some weight rescaling within levels is generally
recommended. Acceptable rescaling methods are still being researched.

Some approaches considered for point estimation of the model parameters are itera-
tive generalized least-squares multilevel pseudo maximum likelihood and a model-
dependent approach; see, for example, Pfeffermann et al. (1998b), Kovačević and Rai
(2003), Asparouhov (2006), Pfeffermann et al. (2006), Pfeffermann and Sverchkov
(2007); however, such approaches can be complex to implement and may not give the
desired results. Korn and Graubard (2003), for example, have suggested that survey-
weighted estimators for estimating the variance components, even when using rescaled
weights, could be badly biased.

Although estimating the variance parameters of random effects components can be
problematic, the estimation of the fixed effects (such as the fixed regression coefficients
in a mixed effects model) is more tractable. To see this, we partition the model parameter

5 In the hierarchical modeling literature, the first level of the hierarchy is what the sampling literature would
refer to as the final stage of sampling. For example, if the model includes students within schools, the first
level of the hierarchy is the sample of students.



50 D. A. Binder and G. Roberts

θ into two components, one for the fixed effects parameters (θ0) and one for the ran-
dom effects parameters (η); that is, θ= (θ′0, η′)′. For many models we can partition the
estimating functions into two components Up(θ0, η) = [U1

p(θ0, η)
′,U2

p(θ0, η)
′]′, where

the first component U1
p(θ0, η) has model-design-based expectation equal to zero when

θ0 is the true value of the first component of θ, for any arbitrary value of η. We assume
that the dimensionality of U1

p(θ0, η) is the same as the dimensionality of θ0, and that θ0

can be estimated by θ̂0 by setting U1
p(θ̂0, η) to zero. In general, the estimate of θ0 will

depend on η. In the case where θ0 corresponds to the regression coefficients of linear
terms, θ̂0 would be asymptotically model-design unbiased for estimating θ0, the fixed
effects parameters, and the variance arising from (15) would be asymptotically valid
under the same assumptions made for the previously discussed design-based estimator
in (4). For example, for a linear regression model with error terms originating from a
random effects model, the design-based estimates of the regression coefficients can be
model-design unbiased even when the estimates of the parameters of the error model
are biased. Generally, design-based methods may be used to estimate the variance of
these estimated regression coefficients.

In addition to the problem of finding suitable point estimates for the parameters of the
model, there is the issue of making inferences, such as constructing confidence intervals
for the estimates, especially for the estimates of the parameters of a random effects
model. Research in the area of estimating variances of the estimates of both the fixed
effects parameters and the random effects parameters is quite recent. Pfeffermann et al.
(1998b) considered a robust design-based sandwich estimator, a variant of the Taylor
linearized method. Asparouhov (2004, 2006) advocates the use of a similar robust sand-
wich estimator. Rabe-Hesketh and Skrondal (2006) also used a sandwich (model-based)
estimator in a generalized linear model. Korn and Graubard (2003) suggested variance
estimation based on resampling clusters (level-2 units), in particular the delete-one PSU
jackknife method. Grilli and Pratesi (2004) described a possible two-stage bootstrap, but
used only the cluster bootstrap for variance estimation when fitting multilevel ordinal
and binary models. Stapleton (2002) also discussed these issues for structural equation
models. Multilevel models are also discussed in Chapter 39.

5.4. Population-based case-control studies

For some population-based surveys, an analytic goal is to compare a sample of cases
and a sample of controls to estimate the strength of association of certain causal factors
for an outcome being studied. Such studies may have very different sampling fractions
for the case and control groups. Although performing a standard model-design-based
analysis is viable here, the variances of the estimates using design-based methods can
be unacceptably large due to the difference in the weights between the two groups. Scott
(2006) used weight rescaling to improve the efficiency of the estimates, still allowing
for informative sampling. (See also Chapter 38). We discuss more general cases of
integrating population-based surveys in Section 7.

5.5. Event history analysis

As mentioned in Section 2.2, survey weight variables are constructed to ensure that esti-
mates for a finite target population are approximately design unbiased for the population
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characteristics. However, in a longitudinal survey, there may be more than one survey
weight variable on the data file because a different number of units responds to each
cycle of the survey. Generally, each of these weight variables is constructed by the sur-
vey producer so that the use of the nonzero weights of a particular weight variable to
compute a weighted estimate would yield approximately unbiased estimates of popu-
lation totals for the survey producer’s target population of the longitudinal survey at a
particular point in time.

When a survival distribution is assumed to have been generated by a statistical model,
it is necessary to consider which survey weight is appropriate when using a design-based
approach for fitting this model. As Lawless (2003) pointed out, the situation is complex
because spells can originate and end at arbitrary times between follow-up interviews or
data collection points. This could create a need for time-varying weights. For example,
for analyzing spell data, the appropriate weight could depend on the survey cycles in
which the observed start points or observed end points of the spells occur. This is an
area where further research is needed.

We also note that for fitting a proportional hazards model to complex survey data,
Binder (1992) and Lin (2000) gave details on how to perform a linearization that can be
used to compute the design-based variance.

6. Estimation of design-based variances

For large sample sizes (or, in the case of a multistage survey design, for a large number
of primary sampling units), confidence intervals for quantities of interest are usually
constructed and tests of hypotheses are conducted assuming approximate normality of
a pivotal quantity, such as a t-statistic or a z -score. Confidence intervals may also
be obtained more directly by inverting the confidence interval based on the estimat-
ing function itself, using the estimated variance of the estimating function; see, for
example, Binder and Patak (1994). What is required to implement these procedures
are estimates of the variances of estimators. Variance estimation techniques for esti-
mates of finite population totals using data from complex surveys are well established.
Techniques for more complex estimates, such as design-based variance estimates for
ratios and for model parameters, are summarized in Lohr (1999, Chapter 8). Also see
Chapter 2.

As we have discussed in Section 4.1, the asymptotic design-based variances for
estimates of model parameters can be derived from the design-based variances of esti-
mating equations evaluated at the estimated parameter values. This approach is the
basis for methods that use linearization techniques for estimating variances. Lineariza-
tion techniques require that a separate formula be developed for each complex estimator.
Approaches for deriving the appropriate formulae have been discussed by Binder (1983),
Binder (1996), and Demnati and Rao (2004).

To avoid some of the complexities of linearization techniques, various approaches for
estimating the variance using resampling or replication techniques have been developed.
For a more complete discussion of these, see Chapter 28. The survey bootstrap, random
groups, balanced repeated replication, and the survey jackknife are all examples of
commonly-used replication methods to obtain design-based variance estimates. As is
the practice for most linearization techniques, many of these replication methods make
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simplifying approximations to the true survey design by assuming with-replacement
sampling of the primary sampling units within each stratum.

In a common approach to estimating variances using the survey bootstrap, the
weighted estimating equations must be solved using the weight variables associated
with each of the bootstrap replicates in turn. As Rao (2005) pointed out, a possible
difficulty with this implementation of the survey bootstrap is that the solution to the
estimating equations may not exist for some bootstrap replicates. Binder, Kovačević,
and Roberts (2004) considered various estimating function bootstrap methods that avoid
this difficulty, including the linearized estimating function bootstrap. Yung and Rao
(1996) suggested a linearized jackknife procedure, and Rao and Tausi (2004) suggested
alternative estimating function jackknife variance estimators. The linearized estimating
function bootstrap and the linearized estimating function jackknife are equivalent to a
Taylor linearization sandwich variance estimator based on expression (15), using the
jackknife or bootstrap variance estimator to estimate the variance in the centre of the
“sandwich.”

7. Integrating data from more than one survey

Comparable variables are frequently available from more than one survey source, lead-
ing researchers to ask whether and how the data from the different sources could be
integrated into a single analysis. These questions are most frequently asked when the
sample sizes for the problem under study are small in each of the survey sources. This
topic is discussed in Korn and Graubard (1999, Chapter 8).

We discuss here the case where a statistical model can be assumed to have gener-
ated the values of the characteristics of interest for the survey provider’s finite target
populations for each of the surveys being integrated. This statistical model may contain
parameters that are specific to each finite population. We also confine ourselves to the
situation where the samples of the different survey sources are independently selected.
We give two broad choices for integrating the data – a pooling approach and a separate
approach. It should be noted that only under very specific conditions would the two
approaches give the same point estimates.

7.1. Pooling approach to integration

For the pooling approach to integration, the researcher considers each survey target
population to be a superstratum of the larger finite population defined as the union of
all the finite target populations for the individual surveys. The data from the different
surveys are then pooled together and treated as if they were from a single survey from
this larger population. It is then generally straightforward to allow for and to test for
inequalities in parameters among the different finite populations making up the larger
population. For example, in the case where an assumed model describes a linear rela-
tionship between a dependent variable and explanatory variables, the modeling process
could begin with distinct intercept and slope parameters for the different finite popula-
tions; statistical tests could then be carried out for assessing whether common intercepts
or slope parameters would be sufficient.

In some situations, such as when the sample sizes or the survey designs are very dif-
ferent among the surveys being combined, consideration could be given to whether more
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efficient estimates of the parameters, could be obtained through rescaling the weights of
the different surveys. However, a rescaling that is most efficient for one parameter esti-
mate is unlikely to be most efficient for another. As well, an estimate based on rescaled
weights may not be estimating a meaningful quantity when a parameter is erroneously
assumed to be constant over the different finite populations. A situation where rescaling
does improve efficiency is mentioned in Section 5.4 in the context of population-based
case-control studies.

7.2. Separate approach to integration

For the separate approach to integrating data from more than one survey, the parameters
of interest are first estimated from each data source separately and then the estimates
are combined through averaging. As for the pooling approach, it is advisable to check
on the assumption of equality of the parameters across the different finite populations,
through statistical testing, even though the power of the statistical tests may not be high
if the sample sizes from the different survey sources are small.

A weighted average of the estimates of an individual parameter could give a more
efficient estimate than a simple average. In fact, the optimal weighted average is achieved
by using a weight for each estimate that is inversely proportional to its variance. How-
ever, there are problems with attempting to obtain optimal weighted estimates. One is
that, in practice, the variances need to be estimated, and these estimates could be quite
inaccurate when the sample sizes from each of the surveys are small. Another problem
is that variances could be quite different for different parameters, so that a weighting
that would give an optimal estimate of one parameter would not necessarily be optimal
for another parameter. When implementing a separate approach, a possible tactic would
be to determine some average or percentile of variance estimates of a large number of
parameters in each survey to produce a set of common weighting factors to be used for
combining estimates of all parameters.

8. Some final remarks

Issues associated with making inferences for model parameters for data obtained from
a complex survey need to be discussed in the context of the population targeted by
the survey producer and the relationship between this population and the parametric
model. Typical complex survey designs often lead to nonignorable samples for many
models assumed by researchers. When the sample is nonignorable, design- (weighted)
and model-based (unweighted) point estimates may or may not be similar. If they are
not similar, it may be possible to modify the model for the observations in the sample
to account for the effect of the sampling mechanism on the distribution of the survey
data. However, even if the point estimates are similar, a modified model might be more
appropriate if it is possible that the observed sample is informative. A tool to indicate
if the sample is nonignorable is a comparison of the design- and the model-based point
estimates, as well as a comparison of an estimate of the design-based variance of an
estimate with an estimate of its model-based equivalent.

When modifying a model to account for the impact of the survey design, such as by
adding survey design variables to the model, the original model parameters may change
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to having an unintended interpretation. This could be the case if the researcher is not
interested in the impact of the design variables on the characteristics being studied. This
point is also discussed in Chapter 39.

When the sample size is small, a model-based approach may be preferred to a design-
based approach, especially if the design-based approach leads to much higher variances;
see Kalton (1983). The researcher should attempt to use models that would yield non-
informative samples, if possible.

We have not discussed computer software that is appropriate for analyzing survey
data, as this is covered in Chapter 13. However, it is worth noting that many researchers
use software that has not been developed to fully account for the survey design, even
though the software can compute survey-weighted point estimates. Many users rescale
the weight variable when using such software knowing that by using normalized survey
weights (rescaling the weights to sum to the sample size) the survey-weighted point
estimates can be obtained, and also expecting that the variance estimates computed by
the software would be correct if the sampling is ignorable. However, in general, such
software does not provide correct design-based variance estimates, even when the sam-
ple is ignorable. Therefore, the inferences using conventional software with normalized
weights are not, in general, valid, even when the sampling is ignorable. However, for a
standard linear regression model, the with-replacement variance estimator given in (23)
is equivalent to the Huber–White robust estimator that is available in some commercial
software, and this estimator would be suitable when the sampling is ignorable.

It should be noted that, when the sampling is ignorable, the model-based approach
could lead to more powerful tests of hypotheses and shorter confidence intervals for
estimated parameters than the design-based approach.

Of course, the first-phase model assumed to have generated the finite population
values may have been incorrectly specified. A design-based approach may be robust
to departures from the assumed correlation structure for the model errors. However,
when the model means are misspecified, both the design- and model-based approaches
may be misleading. This was also pointed out recently by Kott (2007) in the context
of regression analysis. When the model means are correctly specified, the design-based
approach can adjust for misspecification of the model variance structure.

There seems to be a misconception that the use of finite population methods is wrong
when you want to analyze a phenomenon believed to hold beyond the finite population
under study. However, as we have seen, these finite population methods are, in most
common cases, also appropriate for inferences beyond that finite population.

Finally, we mention some of the areas where further research is needed:

• Fitting and making inferences for mixed effects models
• Fitting models to data from more than one survey
• Estimating model-design-based variances when the sampling fractions are large
• Improving resampling methods for estimating design-based variances of model

parameters estimates.
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Calibration Weighting: Combining Probability Samples
and Linear Prediction Models

Phillip S. Kott

1. Introduction

Suppose we wanted to estimate totals for a number of target variables based on data from
a probability sample. If we knew the selection probability, πk, for each sample element k
in the sample S, then we could estimate any population total, Ty =∑

i∈U yk =
∑

U yk,
where U denotes the population, with the expansion estimator tEy = ∑

S yk/πk =∑
U ykIk/πk, where Ik = 1 when k ∈ S and 0 otherwise. Treating the Ik as random

variables, it is easy to see that tEy is an unbiased estimator for Ty. We call properties
arising when the Ik are treated as random variables randomization-based. Although
the term “design-based” is more commonly used, it is a misnomer because there are
nonprobability sampling designs.

We can also write tEy =
∑

U dkyk =
∑

S dkyk, where dk = Ik/πk is called “the sam-
pling weight of element k.” These weights can be used for estimating the population
total of any survey variable, that is, any variable whose values are collected from the
sampled elements.

Deville and Särndal (1992) coined the term “calibration estimator” to describe an
estimator of the form tCAL

y = ∑
S wkyk, where

∑
S wkxk =

∑
U xk = Tx for some

row vector of P benchmark variables, xk = (x1k, . . . , xPk), about which Tx is known.
Benchmark variables are often called “auxiliary variables” or “control variables.” In the
latter case, xk is usually known for all k ∈ U.

There is generally a continuum of sets {wk|k ∈ S}, that satisfy the (vector) calibration
equation: ∑

k∈S
wkxk = Tx, (1)

which can also be rendered as P univariate “calibration equations:”∑
k∈S

wkxpk =
∑
k∈U

xpk for p = 1, . . . , P.

To choose among the sets, Deville and Särndal required that calibration weights min-
imize a nonnegative distance (or loss) function subject to thewk satisfying Eq. (1). Such

55
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a function measures the distance between the vectors (w1, . . . , wn)
′ and (d1, . . . , dn)

′ in
some sense and has its unconstrained minimum at 0 when each wk = dk. One popular
example of a distance function is

L (w1, . . . , wn) =
∑
k∈S

(wk − dk)2
ckdk

. (2)

As with the expansion estimator, the same set of calibration weights can be used no
matter what the variable of interest, yk. When the particular yk is a linear combination of
the components of xk for all k ∈ U, say xkβ, then tCAL

y equals Ty exactly (β is a column
vector, as will be all vectors in this chapter not specifically described as row vectors).
That is a great strength of calibration weighting and the reason why the calibration
estimator is often much more efficient (has a smaller mean squared error) than the
expansion estimator.

Another strength of calibration weighting is that {wk|k ∈ S} and {dk|k ∈ S} must be
close because their difference is in some sense minimized.As a result, with a sufficiently
large sample, tCAL

y is close to randomization unbiased no matter what the y-variable as
long as reasonable regularity conditions are met.

Because tCAL
y estimates Ty perfectly when yk = xkβ exactly, it is reasonable to expect

tCAL
y to be a good estimator when yk and xkβ are close. This can be formalized by
assuming the yk are random variables satisfying the linear prediction model:

yk = xkβ+ εk, (3)

where E
(
εk|{xg, Ig; g ∈ U}

) = 0 for all k ∈ U. Under this model, it is easy to see that
tCAL
y is an unbiased estimator forTy in the sense thatEε

(
tCAL
y − Ty|{xg, Ig; g ∈ U}

) = 0.
(Strictly speaking, tCAL

y is an unbiased predictor for Ty, because the latter is a random
variable under the model.) The subscript ε refers to treating the εk as random variables.
In this context, the Ik are treated as fixed constants.

One practical problem with (prediction) model-based analysis is that we are usually
interested in estimating totals for a number of survey variables at the same time. It is
often unreasonable to assume that different variables satisfy the same linear model.

This problem can be made to all but disappear. Suppose we had postulated separate
models for J different survey variables, y1k, . . . , yJk:

yjk = xjkβj + εjk,
where xjk is a Pj-component row vector, and E

(
εjk|{x1g, . . . , xJg, Ig; g ∈ U}

) = 0 for
all k ∈ U. It is obvious that the model in Eq. (3) still holds with xk now equal to
(x1k, . . . , xJk). Duplicated and singular components of xk can be pruned with no practical
effect on the model (a singular component is a linear combination of other components).

A simple example is the following. Suppose y1k is the current planted corn acres for
farm k, and y2k the farm’s current planted wheat acres. Several years ago, all the farms in
the population provided their annual corn and wheat acres to the Census of Agriculture.
Denoting these previous values for farm k as x1k and x2k, respectively, the combined
linear model inherent in calibration takes the form:

yjk =
(

1 x1k x2k
)⎛⎝ β0j

β1j

β2j

⎞
⎠+ εjk
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for j = 1 or 2. Notice that the xk-vector is common to both the model for corn and
wheat. The β-vector is not. The common xk-vector allows the creation of a common set
of calibration weights for each survey variable.

Calibration has its drawbacks. In the simple farm example, it may be reasonable
to assume that β12 and β21 are zero, in other words, that corn in the census year has
no effect on the current amount of planted wheat, and that census-year wheat has no
effect on current-year corn. Explicitly assuming β12=β21= 0 would likely increase the
efficiency of the resulting estimator. Unfortunately, calibration does not allow us to do
that. It is the price we pay for developing a single set of weights for all survey variables.

Poststratification is a form of calibration that preceded Deville and Särndal by
decades. It is most often used to adjust for unit nonresponse in the sample or cov-
erage errors in the sampling frame, but in the discussion to immediately follow we
assume a perfect frame and complete response.

Suppose the components of xk are binary classification variables such that xpk = 1
when k is in group (poststratum) p and 0 otherwise. In a human population, for example,
we can have x1k = 1 and x2k = 0 when k is male, and x1k = 0 and x2k = 1 when k is
female.

When each k is in one and only one of the P groups, and the group population sizes,
the Np, are known, a poststratified or group-mean-model estimator performs a simple

ratio adjustment in each group, settingwk =
(
Np/

∑
j∈S djxpj

)
dk when k is in both the

sample and in group p. It is easy to see that the calibration equation
∑

S wjxpj = Np
holds for all p. Moreover, EI

(
NP/

∑
S djxpj

) ≈ 1 for a sufficiently large sample under
mild conditions because EI

(∑
S djxpj

) = Np. Thus, wk ≈ dk. The subscript I denotes
that the expectation treats the Ik as random variables.

Building on the example aforementioned, suppose x3k = 1 when individual k is of
African origin, and x3k = 0 otherwise. Iterative proportional fitting or raking essentially
performs a ratio adjustment for one group at a time, treating the results of the previous
ratio adjustment as the {dk}. The method recycles through the groups as necessary (in
practice four or fewer times) until a set of calibration weights is effectively found;
that is, the final weights satisfy the calibration equation within roundoff error. On rare
occasions, raking will fail to find a set of final calibration weights.

Deming and Stephan (1940) called raking “a least squares adjustment,” but it is not.
Nevertheless, it turns out that the calibration weights most often used in practice have
the linear form: wk = dk(1+ ckxkg) for some vector g and set of constants {ck|k ∈ S}.
These weights result from minimizing the “least-squares” distance function in Eq. (2)
subject to the calibration Eq. (1). Deville and Särndal observed that raking weights have
a different form:wk = dk exp(xkg). Nevertheless, when the xkg are small, these weights
are very close to the linear calibration weights, wk = dk(1+ xkg).

Section 2 develops the asymptotics needed for this chapter. The general framework
follows Isaki and Fuller (1982), but with a stronger focus on the relative mean squared
error of a calibration estimator. Section 3 discusses the randomization and model-based
properties of the so-called generalized regression (GREG) estimator (see, for example,
Särndal et al., 1989), which translates into the linear-calibration estimator with wk =
dk(1+ ckxkg).

In Section 4, we follow Estevao and Särndal (2000) and move away from Deville
and Särndal’s distance-function-based definition of calibration weighting. Linear
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calibration weights have the form: wk = dk(1 + hkg), where hk is a row vector with
the same dimension as xk. In addition to the calibration equation, the sampling design
and population values must be such that hkg tends to zero as the sample size grows
arbitrarily large.

The purely randomization-based “optimal” calibration estimator proposed by Rao
(1994; see also Tillé, 1999) can be put in the form of a linear-calibration estimator.
Montanari and Ranalli (2002) introduced the useful concept of a design-balanced vari-
able when treating a randomization-optimal estimator as a calibration estimator.

Section 5 follows Särndal et al. (1989) and Kott (1990, 2005) in developing estimators
for the model variance and randomization mean squared error of a linear-calibration esti-
mator simultaneously. It then addresses ways to reduce the model bias of this variance-
estimation strategy even further.

Section 6 discusses potentially nonlinear calibration weights of the form: wk =
dkf(hkg). In some applications, however, f(.) may be a truncated linear function, trun-
cated to prevent the calibration weights from being too large or too small. Huang and
Fuller (1978) provided an early example of this.

Folsom and Singh (2000) showed how calibration weighting could be used to com-
pensate for unit nonresponse or coverage errors. In Section 7 this quasi-randomization
framework, ρ(hkγ) = 1/f(hkγ) is the probability of element k being covered by the
frame or responding to the survey, where ρ(.) is known but the governing parameter γ

is not. Folsom and Singh also introduced a flexible form for f(.) (and thus ρ(.)) called
the “general exponential model.”

In Folsom and Singh, hk = xk. That was not the case in Lundström and Särndal
(1999), but like in Fuller et al. (1994) before it, only linear f(.) were treated. We will
follow Kott (2006) and allow a not-necessarily-linear f(.) to be a function of variables
other than the benchmark variables.

Section 8 concludes with a brief discussion of other approaches and other issues,
many of that are treated elsewhere in this volume.

2. Randomization consistency and other asymptotic properties

The estimator t based on a sample of n elements is said to be a consistent estimator
for a finite value, T , when p limn→∞(t) = T . Fuller (1976, Chapter 5) showed that a
sufficient condition for consistency is limn→∞{E

[
(t − T)2]} = 0. This means that both

the bias and the mean squared error of t vanish as the sample size grows arbitrarily
large.

The definition of consistency has to be modified when T is a finite-population total.
For one thing, the population size,N, needs to grow along with the expected sample size,
n. Because T itself will usually also be growing, an estimator t is said to be randomiza-
tion consistent when its relative error, (t−T )/T , has a probability limit of 0 as n grows
arbitrarily large (and N along with it). A sufficient condition for randomization consis-
tency is that the relative mean squared error of t, E[(t − T)2]/T 2=E{[(t − T )/T ]2},
has an asymptotic limit of zero.

For convenience, we focus on a single survey variable and assume that all yk ≥ 0
and zak ≥ 0, where zk = (z1k, . . . , zQk) is a vector of values associated with element k,
andQ ≥ P . Moreover, we assume the sampling design and population are such that as
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the population size, N, and expected sample size, n, grow arbitrarily large,

0 < Ly ≤
∑
k∈U

yδk
/
N ≤ By <∞, δ = 1, . . . , 4; (4)

0 < Lza ≤
∑
k∈U

zδak
/
N ≤ Bza <∞, δ = 1, . . . , 4; for all a, (5)

where (n/N )π−1
k is one of the components of zk. Unlike Isaki and Fuller, we allow

the possibility that N grows at an asymptotically faster rate than n. Notice that our
framework also allows the realized sample size, nS , for a particular sample S to be
random.

Under the regularity conditions mentioned earlier, it is not hard to show that for
sampling designs where E

(
IkIj

) = πkj ≤ πkπj when k 	= j,
Ty = O(N), and

VarI
(
tEy
) =∑

k∈U

∑
j∈U

(
πkj − πkπj

) yk
πk

yj

πj
≤
∑
k∈U

(
1

πk
− 1

)
y2
k = O

(
N2/n

)
.

(by definition, πkk =πk). The last step makes use of Schwartz’s inequality (i.e.,∑
y2
k

/
πk ≤

√∑
y4
k

∑
1
/
π2
k ). Because the expansion estimator is randomization unbi-

ased, its relative randomization mean squared error is the same as its relative random-
ization variance, which is O(1/n). Thus, tEy is randomization consistent with a relative
error of OP(1/n1/2).

The joint selection probabilities in many element sampling plans satisfy πkj ≤
πkπj whenever k 	= j. Simple random sampling, stratified simple random sam-
pling, and Poisson sampling are among them. Asok and Sukhatme (1976) showed that
πkj = n−1

n
πkπj [1+O(n/N)] under Sampford sampling and Goodman–Kish sampling

(systematic unequal probability sampling from a randomly order list). Consequently,
both sampling plans are in this class when n is sufficiently large and N ≥ O(n3/2)
(stating the last inequality more formally, limn→∞ n3/2/N =C, where C is finite and
possibly 0).

In many multistage sampling plans, when elements k and j are in the same primary
sampling unit (PSU), πkj will usually exceed πkπj . To extend asymptotic properties to
multistage samples whereπkj ≥ πkπj need hold only when k and j are in different PSUs,
we first divide the population into PSUs, and assume that the number of these PSUs,N1,
grows proportionally withN. We similarly assume that the expected number of PSUs in
the first-stage sample, n1, grows proportionally with n. We add the assumption that the
individual population size for each PSU i is bounded. Finally, we replace Eqs. (4) and (5)
with PSU-level analogues, letting, for example, ty(i) be the sum of the y-values across all
the elements in i. Eq. (5) can be replaced by 0 < Ly′ ≤∑

tδy(i)/N1 ≤ By′ <∞, where
the summation is over the N1 PSUs. The proof is left to the reader who should note that

πkj ≤ max{πk, πj}, which implies
(
πkj − πkπj

)
/
(
πkπj

) ≤ max
{
π−1
k , π

−1
j

}
− 1.

One common sampling plan that does not lead to randomization consistent estimation
is systematic sampling from an ordered list. The problem is that given any element k,
the number of other elements j such that πkj > πkπj grows at the same rate as the
(expected) sample size.
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3. The GREG estimator

It is common to call the randomization-consistent regression estimator the “general(ized)
regression” or “GREG estimator.” For our purposes, it has the form:

tGREG
y = tEy +

(
Tx −

∑
k∈S

dkxk

)(∑
k∈S

ckdkx′kxk

)−1 ∑
k∈S

ckdkx′kyk, (6)

where xk is a row vector composed of components of zk in Eq. (5), dk = 1/πk for k ∈ S
(as before), ck is also a component of zk, which may or may not be a function of xk,
and limN→∞

∑
U ckx

′
kxk/N = � is positive definite matrix. This last condition means

that
∑

S ckdkx
′
kxk will usually be invertible in practice. We will assume that it is always

invertible for convenience.
Sometimes the ck within Eq. (6) are assumed to be proportional to the inverses of

E
(
ε2
k

)
. We do not make that assumption here.

Let b = (∑
S ckdkx

′
kxk

)−1 ∑
S ckdkx

′
kyk, and B = (∑

U ckx
′
kxk

)−1 ∑
U ckx

′
kyk. The

GREG estimator can be written as tGREG
y = tEy +

(
Tx −∑

S dkxk
)

b, which is close to
the idealized general difference estimator:

tGDIF
y = tEy +

(∑
k∈U

xkB−
∑
k∈U

dkxkB

)
,

where xkB (which cannot be computed with survey data only) plays the role of the scalar
xk in the standard difference estimator. The general-difference estimator is randomiza-
tion unbiased.

The GREG estimator in Eq. (6) can be rewritten in calibration form as tGREG
y =∑

S wkyk, where

wk = dk +
⎛
⎝Tx −

∑
j∈S

djxj

⎞
⎠
⎛
⎝∑
j∈S

cjdjx′jxj

⎞
⎠
−1

ckdkx′k (7)

Strictly speaking, the wk are functions of the realized sample, S, and the ck, but we
suppress that in the notation for convenience.

The most common benchmark variables in practice are group-membership indicators.
Let upk = 1 when element k is in group p, and 0 otherwise. Similarly, let uk = 1 for all
elements in the population. When the groups are exhaustive (every element is in some
group) and mutually exclusive, xk = (u1k, . . . , uPk), and all ck = 1, the group-mean-
model estimator results with (as noted in the introduction) wk =

(
Np/

∑
S djupj

)
dk

when k is in group p.
In this example, each calibration weight must be positive, although it is possible for

some calibration weights to be to less than unity, especially when certainty selections
(element k is a certainty selection when πk = 1) are grouped with noncertainties. More
generally, if the benchmark variables are not all mutually exclusive group-membership
indicators, then there is no guarantee that every wk will be nonnegative. Computer
packages often cannot handle negative weights.

Many find less-than-unity calibration weights troubling. An element with such a
weight does not appear to fully represent itself. This can be particularly irksome when
that element has a positive value for some y-variable, whereas most of the other sampled
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elements have zero values. We will return to the issue of negative and less-than-unity
calibration weights in Section 3.4.

3.1. The randomization-based properties of the GREG estimator

Let us assume that the regularity conditions and sample plan are such that
tEy − Ty=OP

(
N/n1/2

)
,
∑

S dkxk − Tx=OP

(
N/n1/2

)
and

∑
S ckdkx

′
kfk −

∑
U ckx

′
kfk

= OP

(
N/n1/2

)
, where fk can be xk oryk. Define ek = yk − xkB= yk−xk

(∑
U cjx

′
jxj

)− 1

∑
U cjx

′
jyj so that

∑
U ckx

′
kek = 0. This equality makes

∑
S ckdkx

′
kek =OP

(
N/n1/2

)
.

As a result, we can express the error of tGREG
y as

tGREG
y − Ty =

∑
k∈S

wkyk−
∑
k∈U

yk

=
∑
k∈S

wkek−
∑
k∈U

ek

(8)

=
∑
k∈S

dkek −
(
Tx −

∑
k∈S

dkxk

)(∑
k∈S

ckdkx′kxk

)−1

×
∑
k∈S

ckdkx′kek −
∑
k∈U

ek

=
∑
k∈S

dkek−
∑
k∈U

ek +OP

(
N
/
n
)
.

Because |ek| ≤ yk + |xkB|, it is not hard to see the GREG estimator is randomization
consistent with a relative randomization bias and mean squared error of asymptotic
order 1/n. The randomization bias is an asymptotically insignificant contributor to the
mean squared error, mse, when p limn→∞

(
n ·mse/N2

)
> 0, a mild condition violated

when nearly all the ek in the population are zero, which we assume not to be the case
for convenience.

3.2. Model-based properties of the GREG estimator

Suppose the yk are random variables that satisfy the linear model in Eq. (3). In addi-
tion, assume E

(
εk|{xg, Ig; g ∈ U}

) = E
(
εkεj|{xg, Ig; g ∈ U}

) = 0 for k 	= j, and
E
(
ε2
k|{xg, Ig; g ∈ U}

) = σ2
k < ∞. The σ2

k need not be known. Moreover, there is no
reason that Ig cannot be a function of the components of zg.

It is easy to see that as long as the regression weights satisfy the calibration equation,∑
S wkxk = Tx, tGREG

y will be model unbiased. Its model variance, as well as the model
variance of any calibration estimator, is (suppressing the conditioning on xg and Ig for
notational convenience)

Eε

[(
tGREG
y − Ty

)2
]
= Eε

⎡
⎣(∑

k∈S
wkεk −

∑
k∈U

εk

)2
⎤
⎦

=
∑
k∈S

w2
kσ

2
k − 2

∑
k∈S

wkσ
2
k +

∑
k∈U

σ2
k
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=
∑
k∈S

w2
kσ

2
k −

∑
k∈S

wkσ
2
k −

(∑
k∈S

wkσ
2
k −

∑
k∈U

σ2
k

)
(9)

=
∑
k∈S

w2
kσ

2
k −

∑
k∈S

wkσ
2
k +OP

(
N/n1/2

)
,

under mild conditions, in particular, those calibration estimators where wk = dk[
1+OP

(
1/n1/2

)]
, and

∑
S dkσ

2
k −

∑
U σ

2
k =OP

(
N/n1/2

)
. Notice that we are using

randomization-based asymptotic results in a model-based context. We are not, how-
ever, averaging over all possible samples, which is what randomization-based theory
routinely does.

If σ2
k has the form xkζ for some not-necessarily-specified vector ζ, then

∑
S wkσ

2
k =∑

S wkxkζ =
∑

U xkζ = ∑
U σ

2
k , and the model variance of tGREG

y collapses to∑
S

(
w2
k − wk

)
σ2
k exactly. Whether or not σ2

k can be expressed as xkζ, when N ≥
O(n3/2) and πk = O(n/N) < 1, the model variance is dominated by

∑
S w

2
kσ

2
k .

For a multistage sample it makes sense to allow the possibility that εk and εj are
correlated when k and j are in the same PSU, but not otherwise. Under the regularity
conditions discussed previously for a multistage sample, if πkj ≤ πkπj for j and k
from different PSUs and N ≥ O(n2), it is not hard to show that the model variance of

the GREG estimator is dominated by
∑

i∈S1
Eε

[(∑
k∈Si wkεk

)2
]
, where Si is the set of

sampled elements in PSU i and S1 is the set of PSUs selected for the sample.

3.3. The anticipated variance

Let us return to the model with no correlation among the elements. The model variance
of tGREG

y is OP(N2/n) under mild conditions we assume to hold. If we are willing to
drop OP(N2/n3/2) terms (so that wk ≈ 1/πk and

∑
S dkσ

2
k −

∑
U σ

2
k ≈ 0), the model

variance of tGREG
y can be approximated byEε

[(
tGREG
y − T )2

]
≈∑

S

(
σ2
k

/
π2
k

)
(1− πk).

The randomization expectation of the model variance of tGREG
y is then

EI

{
Eε

[(
tGREG
y − T )2

]}
≈
∑
k∈U

σ2
k

πk
(1− πk). (10)

The right-hand side of Eq. (10) was called the asymptotic “anticipated variance” of the
GREG by Isaki and Fuller (1982), although the equation goes back considerably further
in the literature and “anticipated mean squared error” would have been better. They used

it to mean Eε
{
EI

[(
tGREG
y − T )2

]}
, the randomization mean squared error anticipated

under the model. The expectation operators can be switched because
(
tGREG
y − T )2

exists
and is bounded under the assumptions in Eqs. (4) and (5).

Notice that the joint selection probabilities have no effect on the asymptotic antici-
pated variance expressed by the right-hand side of Eq. (10). Similarly, the choice for ck
does not matter in this context.

Given an expected sample size n, one can find a set of selection probabilities mini-
mizing the asymptotic anticipated variance of tGREG

y subject to n = E (∑
U Ik

) =∑
U πk

by solving a Lagrangian. The solution has the form, πk = nσk
/∑

U σj , provided that
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this value is bounded by 1 for all k. The asymptotic-anticipated-variance-minimizing πk
are called “Brewer-selection probabilities” (see Brewer, 1963). Brewer-selection prob-
abilities also result from minimizing the expected sample size given a target asymptotic
anticipated variance.

Given a vector of survey variables of interest, each with its own target asymptotic
anticipated variance, a variant of Chromy’s (1987) method can be used to minimize the
(expected) sample size, provided (again) that no optimal πk > 1. A suboptimal approach
called “maximal Brewer selection” simply computes a univariate Brewer selection prob-
ability for each survey variable and takes the maximum of those values. See Kott and
Bailey (2000). It should be noted that, unlike Brewer selection, maximal Brewer selec-
tion is not designed to limit asymptotic anticipated variances given an expected sample
size.

3.4. An example

The National Agricultural Statistics Service of the U.S. Department of Agriculture
(USDA) uses Poisson sampling and maximal Brewer selection to draw state samples
for the June Agricultural survey. We will focus on one example. For the June 2005 sur-
vey in Pennsylvania, 1436 names were selected from the USDA list of 25,935 potential
agricultural places.

USDA used the same set of 13 variables both for determining the Poisson selection
probabilities and as benchmarks for calibration weighting in Pennsylvania. The element
values for these variables were constructed from previous survey information. They and
their statewide population totals are displayed in Table 1.

Table 2 displays some summary statistics about the calibration weights for three
alternative choices for ck in Eq. (7): ck = 1, ck = 1 − πk, and ck = (1− πk) /πk.
Following a suggestion in Brewer (1994), the USDA sets each ck to 1− πk rather than
the more common setting of unity to limit the number of calibration weights less than 1.

Table 1
List of benchmark variables for the 2006 June
Agricultural Survey in Pennsylvania

Benchmark Variable Frame Total

Number 25,935 names
Alfalfa 707,466 acres
Barley 81,458 acres
Calculated cropland 2,102,285 acres
Storage capacity 110,467,674 bushels
Corn 1,290,289 acres
Reported cropland 4,752,217 acres
Oats 176,338 acres
Other hay 1,010,729 acres
Rye 76,455 acres
Soybeans 390,659 acres
Sorghum 16,175 acres
Winter wheat 166,200 acres
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Table 2
Comparing the calibration weights of GREGs with different values for the ck

ck = 1 ck = 1− πk ck = 1− πk
πk∑

S |wk − dk|∑
S dk

0.0408 0.0433 0.0675

Max{wk}
Max{dk} 1.0500 1.0560 1.2416

Max

{
wk

dk

}
1.5290 1.4166 1.3486

Min {wk} −1.0846 0.6132 1.0000

Min

{
wk

dk

}
−0.0587 0.3321 0.6496

Percent of wk < 1 (number) 0.6964 (10) 0.0696 (1) 0.0000

Percent of wk ≤ 0 (number) 0.0696 (1) 0.0000 0.0000∑
S w

2
k −

∑
S wk∑

S d
2
k −

∑
S wk

1.0748 1.0797 1.1834

∑
S w

2
kxk −

∑
S wkxk∑

S d
2
k xk −

∑
S wkxk

1.0357 1.0332 1.0110

Note: xk , calculated cropland.

Using ck = (1− πk) /πk would have resulted in “randomization-optimal” calibration,
as we will see in Section 4.2.

The original sampling weights (the dk) ranged from 1 to 250. There were 44 certainty
selections. The first row of the table provides a measure of the average absolute change in
the weights from dk towk. Even though there were 13 benchmark variables subject to cal-
ibration and a random sample size, the average change was less than 7% no matter which
method was used, with the average change attaining its minimum, close to 4%, when ck
equaled 1. The other values for ck did a better job keeping the wk above both 0 and 1.

The maximum calibration weight occurred when ck equaled (1− πk) /πk, which
was still less than 25% higher than the largest original weight. The largest upward
calibration adjustment (wk/dk), slightly less than 1.53, occurred when ck equaled 1. It
appears that setting ck = 1 did a better job controlling the number of elements with
larger-than-average calibration weights, whereas the setting ck = (1− πk) /πk did a
better job controlling the number of elements with larger calibration adjustments.

The last two rows of the table provide a relative measure of the model variances under
the assumption that the σ2

k were equal or, alternatively, that they were proportional to
calculated cropland – the sum of the control acres for all survey crops except hay, a
benchmark variable that serves here as an omnibus size measure (recall that both unity
and calculated cropland were calibration variables). Each of the relative-model-variance
measures are asymptotically unity and thus independent of the choice for ck. In the finite
world of the June Agricultural Survey in Pennsylvania, however, setting the ck equal to
1 minimized the model variance among the three choices when the σ2

k were assumed
equal, whereas setting the ck equal to (1− πk) /πk was the best of the three when the
σ2
k were assumed proportional to calculated cropland.
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4. Redefining calibration weights

4.1. Instrumental variables

In their original definition of calibration weights, Deville and Särndal (1992) required
that the set of calibration weights, {wk|k ∈ S}minimize some distance function between
the members of the set and the original sampling weights, the dk, subject to satisfying
the calibration equation. As a result, the calibration estimator, tCAL

y = ∑
S wkyk, was

both unbiased under the model in Eq. (3) and usually randomization consistent.
We can remove the limitation that the calibration weights minimize a distance func-

tion, and require only that the wk need satisfy the calibration equation and be of the
functional form:

wk = dk(1+ hkg), (11)

where hk = (h1k, . . . hPk) is a row vector such that
∑

S dkh
′
kxk is invertible, and g is a

column vector of the same dimension hk. This is a generalization of the GREG where
hk effectively replaces ckxk.

It is not hard to see that g = (∑
S dkx

′
khk

)−1 (
Tx −∑

S dkxk
)′

. Moreover, if the |hpk|
are components of zk in Eq. (4), the regularity conditions hold, and

∑
S dkh

′
kxk

/
N is

invertible both for the realized N and in the probability limit, then tCAL
y = ∑

S wkyk =∑
S dkyk +

(
Tx −∑

S dkxk
) (∑

S dkh
′
kxk

)−1 ∑
S dkh

′
kyk is randomization consistent

whenever tEy is.
This suggests an alternative definition of calibration weights: a set of weights, {wk|k ∈

S}, such that

(1) The wk satisfy the calibration equation
∑

S wkxk =
∑

U xk, and,
(2) tCAL

y =∑
S wkyk is randomization consistent whenever tEy is under mild condi-

tions.

That is the definition we will use.
Calibrations estimators with weights satisfying Eq. (11) will be called “linear cali-

bration estimators.” The components of hk that are not linear combinations of the bench-
mark variables (i.e., the components of xk) are sometimes called “instrumental variables”
(for example, see Brewer, 1995).

When each hpk is a function of the xg (g ∈ U), then the linear calibration estimator
is unbiased under the prediction model in Eq. (3) as long as E

(
εk|{xg, Ig; g ∈ U}

) = 0
for all k ∈ U, which is what we assumed before. Otherwise, we may need to further
assume E

(
εk|{hg; g ∈ U}

) = 0 to establish the model unbiasedness of the calibration
estimator.

A linear calibration estimator can be put in projection form, tCAL
y = Txbh, where

bh =
(∑
k∈S

dkh′xk

)−1 ∑
k∈S

dkh′yk,

when
∑

S dkyk−
∑

S dkxk
(∑

S dkh
′
kxk

)−1 ∑
S dkh

′
kyk = 0. This will happen when there

is a vector θ such that hkθ = θ′h′k = 1 for all k ∈ S (to see why, rewrite
∑

S dkxk in∑
S dkyk −

∑
S dkxk

(∑
S dkh

′
kxk

)−1 ∑
S dkh

′
kyk as

∑
S dkθ

′h′xk); that is to say, when
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a linear combination of the components of hk (or a single component) is unity. For
example, in the ratio estimator, tCAL

y = Tx
(∑

S dkxk
)−1 ∑

S dkyk = Tx
(
tEy
/
tEx
)
, xk is

the scalar xk ≥ 0 with at least one positive value in the sample, and hk = 1. The
calibration weight for element k can be rendered wk = dk

(
Tx/

∑
S dixi

)
. The ratio

estimator can also be expressed as a GREG with ck = 1/xk, but only when all the xk in
the sample are positive.

Apopular extension of the ratio estimator is the group-ratio-model estimator in which
xk = xk(u1k, . . . , uPk), where the upk are group-membership indicators, the P groups
are exhaustive and mutually exclusive, and xk is a nonnegative scalar. If Tx is known and
there is a positive sampled x-value in each group, then setting hk = (u1k, . . . , uPk) yields

an estimator expressible in projection form with wk = dk

(∑
U∩p dixi/

∑
S∩p dixi

)
for

each k in group p. When the groups are design strata, the group-ratio-model estimator
is also called a “separate ratio estimator.”

Another common example of a linear calibration estimator expressible in projection
form is the GREG estimator with ck = 1 and uk = 1 as a component of xk.

A linear calibration estimator can be put in prediction form, tCAL
y = ∑

S yk+∑
U−S xkbh, when

∑
S (dk − 1) yk −∑

S (dk − 1) xk
(∑

S dkh
′
kxk

)−1 ∑
S dkh

′
kyk = 0.

This will happen when there is a vector θ such that hkθ = θ′h′k = (dk − 1) /dk =
1−πk for all k ∈ S (to see why, replace

∑
S (dk − 1) xk in

∑
S (dk − 1) yk −∑

S (dk − 1) xk
(∑

S dkh
′
kxk

)−1 ∑
S dkh

′
kyk with

∑
S (dk − 1) θ′h′xk [dk/ (dk − 1)]).

This implies that a linear combination of the components of hk (or a single compo-
nent) is 1−πk. “Prediction form” gets its name because effectively the y-value for each
population element k not in the sample is predicted by xkbh.

When xk is the scalar xk ≥ 0 and hk the scalar 1 − πk, the linear calibration
weight for element k can be rendered wk = 1 + (dk − 1)

[∑
U−S xi

/∑
S (di − 1) xi

]
,

which is never less than unity if at least one sampled k has a positive (dk − 1) xk
value.

In a multivariate setting, ifuk is a component of xk, then setting hk equal to (1− πk) xk
results in a linear calibration estimator expressible in prediction form. This is the same
as the GREG estimator with ck = 1− πk.
4.2. Randomization-optimal calibration

Consider the following possibilities for hk in Eq. (11):

h(1)k =
∑
j∈S

(
πkj − πkπj

)
πkjπj

xj, and

(12)

h(2)k =
∑
j∈U

(
πkj − πkπj

)
πkπj

xj

Under many designs,
∑

S dkh
′
(m)kxk is a randomization consistent estimator for VarI

(
tEx
)

when m = 1 or 2. Moreover, using either variable, tCAL
y is asymptotically identical to

the optimal difference estimator:

tODIF
y = tEy +

(
Tx − tEx

) [
VarI

(
tEx
)]−1

CovI
(
tEx , t

E
y

)
,
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that is, the estimator that minimizes the randomization variance of tEy +
(
Tx − tEx

)
b for

some fixed b. We will call the version of tCAL
y using either h(1)k or h(2)k in Eq. (12)

a “randomization-optimal” calibration estimator, with the former denoted ROCE1 and
the latter ROCE2.

Observe that when πkj = πkπj , both h(1)k and h(2)k collapse to [(1− πk) /πk] xk.
Thus, setting ck in Eqs. (6) or (7) to (1− πk) /πk produces a randomization-optimal
calibration estimator under Poisson sampling.

There are two problems with the randomization-optimal calibration estimator under a
more general sampling design. First, VarI

(
tEx
)
will be singular when the sampling design

is such that a component xpk of xk is design balanced; that is,
∑

S xpk
/
πk = ∑

U xpk.
Any such component has to be removed from xk. Similarly, if a linear combination of
components of xk are design balanced, then (at least) one of the components must be
removed from xk. Second, each h(m)k may change as the sample and population grow
arbitrarily large. Consequently, the regularity conditions in Eq. (4) cannot be made
directly relevant for such a variable.

We can flesh out these issues with two examples. Consider first a probability propor-
tional to size sampling scheme with πk = n xk

/∑
U xj ≤ 1 for all k. Suppose xk is the

lone component of xk. If the sampling design has a fixed sample sizen, thenxk is a design-
balanced variable. After it is removed from xk, the randomization-optimal calibration
estimator collapses into the expansion estimator: tEy =

∑
S yk

/
πk = n−1 ∑

S yk
/
xk,

which is also called “the mean of ratios.”
Note that under Poisson sampling, which has a random sample size, the

randomization-optimal calibration estimator is

tRO
y =

∑
k∈S

yk

πk
+
(
Tx −

∑
k∈S

xk

πk

)[∑
k∈S

x2
k

π2
k

(1− πk)
]−1 ∑

k∈S

ykxk

π2
k

(1− πk)

=
∑
k∈S

yk

πk
+ Tx

(
1− nS

n

) ∑
k∈S

yk
xk
(1− πk)∑

k∈S
(1− πk) .

This is not identical to the more widely-used ratio/mean-of-ratios estimator,

tRATIO
y =

∑
k∈S

yk

πk
+
(
Tx −

∑
k∈S

xk

πk

) ∑
k∈S

yk
πk∑

k∈S
xk
πk

= Tx

∑
k∈S

yk
πk∑

k∈S
xk
πk

= 1

nS

∑
k∈S

yk

xk
.

Next consider a stratified simple random sample with Sα, Uα, nα, and Nα, denoting
respectively the sample, population, sample size, and population size in stratum α, and
A the number of strata. Equation (12) becomes

h(1)k =
A∑
α=1

Nα (xk − xαS)
nα − 1

, where xαS = 1

nα

∑
j∈Sα

xj, and

h(2)k =
A∑
α=1

N2
α (xk − xαU)
Nα − 1

, where xαU = 1

Nα

∑
j∈Uα

xj.
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Note that one can compute h(2)k, but not h(1)k, when Nα > nα = 1 and k ∈ Sα. Nev-
ertheless, h(1)k (and ROCE1) has been used more often in practice.

It is easy to see that each stratum-membership indicator,uαk, is design balanced.There
are thus up to A such linearly independent components that will need to be removed
from the x-vector, one for each stratum.

For a randomization-optimal calibration estimator to be randomization consistent
whenever tEy is, we can assume the regularity conditions in Eq. (4) as before and add
that

∑
S dkh

′
(m)kxk

/
N (m = 1 or 2) is invertible both for the realized N and in the

probability limit. In addition, when A is fixed as the sample and population sizes grow
arbitrarily large, we assume that the stratum population means of the x-vector implicit in
the computation of h(2)k converges to a vector of positive constants that are components
of zk.

Let xk denote the original P-vector benchmark variables, x̃k the P̃-vector with all

design-balanced benchmark-variables removed, and ˜̃xk the ˜̃P-vector including all com-
ponents in x̃k as well as the A stratum indicators. When every nα ≥ 2, we can rewrite
the calibration weights for ROCE1,

wk = dk +
(
Tx −

∑
i∈S

dix̃i

)(∑
i∈S

dih′(1)ix̃i

)−1

dkh′(1)kx̃′k,

as

wk = dk +
(
Tx −

∑
i∈S

di ˜̃xi
)(∑

i∈S
cidi

˜̃
x′i ˜̃xi

)−1

ckdk
˜̃
x′k,

where ck = [nα/ (nα − 1)] (1− πk) /πk = [Nα/ (nα − 1)] [1− (nα/Nα)] for k ∈ Sα.
With this in mind (and assuming the nα were large), Bankier (2002) calls using ck =
(1− πk) /πk “pseudo [randomization] optimal” calibration weighting.

Despite its name, Montanari and Ranalli (2002) shows that the randomization-optimal
calibration estimator employing these weights does not always have the least empirical
mean squared error among calibration estimators based on the benchmark variables in
x̃k and some combinations of the stratum-indicator variables. The problem is that the
optimality of a randomization-optimal calibration estimator is asymptotic. In a finite
world, effectively adding a dummy variable to the model for every stratum can be
wasteful.

From a purely randomization point of view, b̃h(1) =
(∑

S dkh
′
(1)kx̃k

)−1 ∑
S dkh

′
(1)kyk

may be a consistent estimator for B̃h =
(∑

U h′(2)kx̃k
)−1 ∑

U h′(2)kyk =
[
VarI

(
tEx̃

)]−1

CovI
(
tEx̃ , t

E
y

)
, but it is not B̃h itself. Furthermore, ˜̃b =

(∑
S dk

˜̃x′k ˜̃xk
)−1 ∑

S dk
˜̃x′kyk is not

a randomization consistent estimator for ˜̃B =
(∑

U
˜̃x′k ˜̃xk

)−1 ∑
U
˜̃x′kyk when the popu-

lation mean for one or more stratum-indicator variable approaches 0 as the population
grows arbitrarily large, violating a regularity condition in Eq. (5).

Why should anyone be concerned about the population mean for a stratum-indicator
variable tending toward 0 as the population grows large? Because that is the sensible way
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to set up the asymptotics when there is deep stratification: many strata and few sampled
units per stratum. The sample sizes within strata stay fixed as the overall sample size

and the number of strata grow. Consequently, ȳαS , a component of
∑

S dk
˜̃x′yk, does not

converge to yαU as the sample grows arbitrarily large.
When nα is small, uαk should not be treated as a benchmark variable in calibration,

although there may still be some potential gains from pseudo randomization optimal
calibration weighting. What “small” means depends on the population and variable of
interest. Popular rules of thumb range from under 6 to under 20. Even when “nuisance”
strata are stripped of any effect on calibration weighting, they still play a part in variance
estimation, as we shall see.

5. Variance estimation

We saw in the last section that under mild conditions the properties of the GREG extend
to more general calibration estimators such as those having weights expressible in the
form of Eq. (11). These properties include the anticipated variance of an estimation
strategy (an estimator coupled with a sampling design) employing linear-calibration
weighting. The value of anticipated variance as a measure of a strategy’s accuracy
diminishes after the sample has been drawn, however. If the model is correct, then
the model variance should be estimated given the sample actually drawn rather than
averaged over all possible samples. If the model fails, only the randomization mean
squared error is relevant.

Suppose the model in Eq. (3) holds, and the element errors are uncorrelated with
E
(
ε2
k

) = σ2
k , then Eq. (11) tells us that under certain conditions (when either N ≥

O(n3/2) or σ2
k has the form xkζ for some ζ), the model variance of an estimator in

calibration form is (approximately) VM = ∑
S

(
w2
k − wk

)
σ2
k . This suggests the foll-

owing estimator for the model variance of the linear-calibration estimator:

vM = vM
(
tCAL
y

) =∑
k∈S

(
w2
k − wk

)
r2
k , (13)

where rk = yk − xkb is a sample residual, and b is any model-unbiased estimator for
the model parameter, β.

Under mild assumptions similar to the regularity conditions in Eqs. (5) and (6),
Eε

(
r2
k

) = σ2
k + OP(1/n), and Eε (vM) = VM [1+OP (1/n)]; that is to say, vM is

nearly unbiased under the model (more formally,vM is an asymptotically model unbiased
estimator of the model variance of tCAL

y ) when mild regularity conditions hold and either
N = O(n3/2) or σ2

k has the form xkζ for some ζ.

5.1. Poisson sampling

From Eq. (10), we can conclude that randomization mean squared error of the linear-
calibration estimator under Poisson sampling is approximately V =∑

U (dk − 1) e2
k . If

wk = dk
[
1+OP

(
1/n1/2

)]
, then vM is also a reasonable randomization mean-squared-

error estimator when r2
k ≈ e2

k .
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Let rk = yk − xkbh and ek = yk − xkBh, where bh =
(∑

S dkh
′
kxk

)−1 ∑
S dkh

′
kyk,

and Bh =
(∑

U h′kkxk
)−1 ∑

U h′kyk. Because b = B
[
1+OP

(
1/n1/2

)]
under mild con-

ditions we assume to hold, r2
k = e2

k +OP
(
1/n1/2

)
. Thus, vM is simultaneously a nearly

unbiased estimator for the model variance of a linear calibration estimator tCAL
y and

a nearly unbiased estimator for its randomization mean squared error. Replacing the
dk within bh by wk has no effect on the aforementioned arguments.

Observe that the relative model bias of vM is OP (1/n), whereas its relative ran-
domization bias is OP (1/n1/2). Nevertheless, Kott and Brewer (2001) discuss ways for
even this small model bias to be removed. We will introduce two of them later in the
section.

5.2. Some other sampling designs

The desirable model-based properties of vM are unchanged when we move from Poisson
sampling to an alternative element-sampling design. Unfortunately, the same cannot be
said about its randomization-based properties.

Consider instead

v1 = vM +
∑
k,j∈S
k 	=j

(
1− πkπj

πkj

)
rk

πk

rj

πj

=
∑
k∈S

(
w2
k − wk

)
r2
k +

∑
k,j∈S
k 	=j

(
1− πkπj

πkj

)
rk

πk

rj

πj
, (14)

which mimics

vRAN =
∑
k∈S

(1− πk)
(
ek

πk

)2

+
∑
k,j∈S
k 	=j

(
1− πkπj

πkj

)
ek

πk

ej

πj
,

an unbiased estimator for the randomization variance of the idealized general differ-
ence estimator, tDGIF

y = tEy +
(
Tx − tEx

)
Bh = tCAL

y + OP (N/n). The right-hand side
of Eq. (14) equals vM under Poisson sampling. If the sampling design is such that∑

k,j∈S |1−
(
πkπj/πkj

) | isO(n), then the regulatory conditions in Eqs. (4) and (5) assure
that the model expectation of this summation is ignorably small (at mostO(N2/n2), while
v1 itself is O(N2/n)). The randomization expectation of the difference between v1 and
vRAN is likewise asymptotically ignorable.

An unfortunate property of the model variance/randomization mean-squared-error
estimator v1 is that it can be negative for some samples under certain designs. The same
problem, to a lesser extent, plagues the weighted residual variance estimator in Särndal
et al. (1989),

vSSW =
∑
k,j∈S

(
1− πkπj

πkj

)
wkrkwjrj,

which does not collapse into vM under Poisson sampling.
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The weighted residual variance estimator is guaranteed to be nonnegative under
stratified simple random sampling. By contrast,

v1 = vM +
∑
k,j∈S
k 	=j

(
1− πkπj

πkj

)
rk

πk

rj

πj

= vM−
A∑
α=1

[(
Nα
nα

)2 − Nα
nα

]⎡⎣
(∑
k∈Sα

rk

)2

− ∑
k∈Sα

r2
k

⎤
⎦

nα − 1
, (15)

can be negative.
Observe that v1 will certainly be nonnegative when all

∑
Sα
rk = 0. The equal-

ity obtains when all the stratum-indicator variables are components of hk (because∑
S dkh

′
krk =

∑
S dkh

′
k

[
yk − xk

(∑
S djh

′
jxj

)−1 ∑
S djh

′
jyj

]
= 0). For the regularity

conditions to be sensible under this scenario, effectively each of the nα/n should con-
verge to a positive constant as the sample size grows arbitrarily large, that means, the
number of strata should be relatively small compared to n and the sample size within
each relatively large.

More generally, by replacing theNα/nα in Eq. (15) by the appropriate asymptotically-
identical wk, we have the alternative variance/mean-squared-error estimator

v2 =
A∑
α=1

[∑
k∈Sα

(
w2
k − wk

)
r2
k

]
−

A∑
α=1

( ∑
k∈Sα
(w2

k−wk)1/2
rk

)2

−∑
k∈Sα
(w2

k−wk)r2k
nα−1

=
A∑
α=1

⎡
⎣ nα
nα−1

∑
k∈Sα

(
w2
k − wk

)
r2
k − 1

nα

(∑
k∈Sα

(
w2
k − wk

)1/2
rk

)2
⎤
⎦,

(16)

which will be nonnegative as long as nowk falls between 0 and 1. This is another reason
for wanting the calibration weights to be bounded below by unity.

When finite population correction can be ignored (i.e., when allNα � nα and almost
all wk � 1), Eq. (16) can be approximated by

v3 =
A∑
α=1

nα

nα − 1

⎡
⎢⎢⎢⎢⎢⎣
∑
k∈Sα

w2
kr

2
k −

(∑
k∈Sα

wkrk

)2

nα

⎤
⎥⎥⎥⎥⎥⎦.

This same variance equation we can use in practice for many stratified designs with
unequal selection probabilities within each strata if all the selection probabilities are
small or the sampling is with replacement.

Turning to a multistage sample, let n1α be the size of the PSU sample from stratum α,
now denoted S1α, and Si be the element subsample from PSU i. The multistage analogue
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of the last equation is

v3 =
A∑
α=1

n1α

n1α − 1

⎡
⎢⎢⎢⎢⎢⎣
∑
i∈S1α

⎛
⎝∑
k∈Si

wkrk

⎞
⎠

2

−

( ∑
i∈S1α

∑
k∈Sαi

wkrk

)2

n1α

⎤
⎥⎥⎥⎥⎥⎦. (17)

The estimator is nearly unbiased for the randomization mean squared error of the linear
calibration estimator when

[
π1ig/

(
π1iπ1g

)] − [(n1α − 1) /n1α] is ignorably small for
any distinct pair of PSUs i and g in stratum α. It is easy to see that v3 is also nearly
unbiased for the model variance of the linear calibration estimator as an estimator for∑

U xkβ.
We can generalize the error structure of the model. Instead of requiring E

(
εkεj

)
to

be zero when k and j are different elements, we now require only that this covariance be
bounded when the two are from the same PSU. When k and j are from different PSUs,
E
(
εkεj

)
is again assumed to be zero.

The new error structure allows elements within the same PSU to be correlated in
complex patterns, which need not be specified. Correlations can differ across PSUs
and even within PSUs when there are additional levels of clustering (e.g., individuals
within households, households within blocks, and blocks with PSUs). Observe that

under this more general error structure both Eε (v3) and Eε
[(
tCAL
y −∑

U xkβ
)2
]

are

(asymptotically in the case of the former) equal to
∑A

α=1

∑
i∈S1α

Eε

[(∑
k∈Si wkεk

)2
]
.

Thus, v3 retains its model-based properties under the more general error structure.

5.3. Reducing the model bias even further

We have restricted our attention to estimators with good randomization-based prop-
erties because the linear model in Eq. (3) can fail. When the survey is designed to
collect information on a set of variables, as is usually the case in practice, the linear
model in Eq. (3) may be very reasonable for some survey variables, but not so for
others.

The good randomization-based properties of a calibration estimator are asymptotic,
but the world we live in is finite. That is why it is helpful to employ models. They effec-
tively “speed up” the asymptotics. In Eqs. (15)–(17), we have good estimators for both
the model variance and randomization mean squared error of the linear calibration esti-
mator. Under certain conditions, the model bias of these as model-variance estimators
is of a smaller asymptotic order than its randomization counterpart. Variance/mean-
squared-error estimators possessing this smaller model bias have been shown empiri-
cally to produce confidence intervals with closer to nominal coverage properties (see,
for example, Wu and Deng, 1983).

We can potentially reduce the model bias of the three variance estimators even further
under by replacing each with

vca = vc
Eε

[(
tCAL
y − Ty

)2
]

Eε (vc)
, (18)
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where c = 1, 2, or 3. Even assuming the εk are uncorrelated, we would need to further
assume the σ2

k are known to take the two model expectations in (18) (more generally, we
could assume that E[(ε1, . . . , εN )′ (ε1, . . . , εN )] =
 is a known block diagonal matrix,
but only the simpler diagonal-
 variant will be discussed here). Both the numerator and
denominator are linear in the σ2

k . As a result, we only need to assume these values up to
a constant to compute vca.

A method that does not depend on an assumption about the relative sizes of the σ2
k

follows from the observation that

E
(
r2
k

) = σ2
k

⎡
⎣1− 2xk

(∑
S

djh′jxj

)−1

dkh′k

⎤
⎦

+ xk

(∑
S

djh′jxj

)−1 ∑
S

d2
j σ

2
jh′jhj

(∑
S

djx′jhj

)−1

x′k

= σ2
k

⎡
⎣1− xk

(∑
S

djh
′
jxj

)−1

dkh′k

⎤
⎦

+ xk

(∑
S

djh′jxj

)−1 ∑
S

d2
j σ

2
jh′jhj

(∑
S

djx′jhj

)−1

x′k

− xk

(∑
S

djh′jxj

)−1

dkh′kσ
2
k ,

where the last two terms on the right-hand side are OP (1/n) and tend to have opposite
signs. This suggests an ad hoc alternative to Eq. (18): replacing the rk in the three
variance estimators by

r̃k = rk 1√
1− xk

(∑
S

djh′jxj
)−1

dkh′k

. (19)

It is not hard to see that using either method of model-bias reduction or their combination
(first changing the rk using Eq. (19) and then applying Eq. (18) assuming values for the
σ2
k up to a constant) has no affect on the asymptotic randomization-based properties

of the resulting estimators. How effective these methods are in practice awaits broad
empirical evaluation, although using Eq. (19) worked well in a small study described in
Kott (2006).

6. Nonlinear calibration

6.1. The not-necessarily-linear calibration estimator

We can generalize the linear form for the calibration weights in Eq. (11) to

wGEN
k = dkf (hkg), (20)
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where f is a monotonic, twice-differentiable function with bounded second derivatives
everywhere, f(0) = 1, f ′(0) = 1 (f ′(0) is the first derivative of f (.) evaluated at 0),
and g is chosen so that the calibration equation holds.

Strictly speaking, there should be an additional symbol on wGEN
k (and later on wLIN

k )
to denote the particular choice of hk. It has been dropped for convenience. An extension
of Eq. (8) allowing fk(.) to vary across the sampled elements, as we will do in subsequent
subsections, is straightforward but adds nothing to the discussion immediately following.

A solution, g, to Eq. (20) can be approached iteratively. One can start with
g(0) = 0; that is,

∑
S w

(1)
k yk =

∑
S w

LIN
k yk + OP(N/n) = Ty [1+OP(1/n)], where

w
(0)
k = dkf(0) = dk. For r = 1, 2,…, one then sets g(r) = g(r−1) + [∑

S f
′(

hkg(r−1)
)
dkh′kxk

]−1
(
Tx −∑

S w
(r−1)
k xk

)′
, and w(r)k = dkf

(
hkg(r)

)
. Iteration stops at

r* when Tx =∑
S w

(r∗)
k xk for all practical purposes.

Note that g(1) equals the g in wLIN
k = dk (1 + hkg). A Taylor expansion around

zero reveals f(hkg(1)) = 1 + hkg(1) +OP(1/n) under our usual regularity conditions,
so

∑
S w

(1)
k yk =

∑
S w

LIN
k yk + OP(N/n) = Ty [1+OP(1/n)]. Furthermore, it is not

difficult to see that wGEN
k = wLIN

k [1+OP(1/n)], an equality that proves helpful in
variance estimation. One should be aware, however, that there may not be a set of
weights that can be expressed in the form of Eq. (20) while satisfying the calibration
equation.

The most common example in practice of a nonlinear f is f (hkg) = exp(hkg),
where hk = xk = uk is a vector made up entirely of group-membership indicator vari-
ables, some linear combination of which is unity. The groups themselves need not
be mutually exclusive. The standard way of computing calibration weights with this
form uses Deming and Stephan’s iterative proportional fitting. One striking advantage
of the alternative routine described here is that, unlike iterative proportional fitting, it
can be used even when some of the components of xk are continuous. Note that the
resulting generalized-raking calibration weights, if they can be found, will always be
nonnegative.

Another nonlinear f that always yields positive calibration weights, at least when
hk is equal to xk, is f(xkg) = (1 + xkg)−1. This method, which grows out of pseudo
empirical likelihood theory, is discussed in depth in Chapter 30.

Returning to the general case, because wGEN
k = wLIN

k [1+OP(1/n)] under con-
ditions we assume to hold, it is not hard to show that the variance estimators in
Section 5 apply equally well to the calibration estimator based on the wGEN

k with

rk = yk − xkbh, and bh =
(∑

S dkh
′
kxk

)−1 ∑
S dkh

′
kyk. This is asymptotically unchan-

ged if bh is replaced by bhf =
(∑

S dkf (hkg) h′kxk
)−1 ∑

S dkf (hkg) h′kyk or bhf ′ =(∑
S dkf

′(hkg) h′kxk
)−1 ∑

S dkf
′(hkg) h′kyk since f(0) = f ′(0) = 1.

6.2. Truncated linear calibration

A common version of nonlinear calibration is truncated linear calibration, which puts
restrictions on the range of the calibration weights. Allowing a potentially different f
for each element, truncated linear calibration takes the form:

fk(δ) =
⎧⎨
⎩
Lk for δ < Lk − 1

1+ δ for Lk − 1 ≤ δ ≤ Uk − 1
Uk for δ > Uk − 1

, (21)
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where Uk = ∞ when f (δ) has no lower bound and Lk = −∞ when f (δ) has no lower
bound.

Setting Lk = L and Uk = U for all k in Eq. (21) puts bounds on the relative weight
adjustment (L ≤ wk/dk ≤ U, as in Jayasuriya and Valliant, 1996). Similarly, setting
Lk = L/dk or Uk = U/dk, puts bounds on the weights themselves (e.g., wk ≥ L, as in
Brewer, 1999b). Finally, setting Uk = U/(dkτk), where τk is a measure for the size of
element k, assures that the weighted size of the element,wkτk, is no greater thanU. This
can be helpful in establishment surveys where an element with a high wkτk may have
an unreasonably large influence on the estimate for Ty.

Although fk(δ) in Eq. (21) is no longer twice differentiable everywhere, our weight-
computing algorithm still applies by treating f ′k(δ) at the breakdown points (Uk and Lk)
as 0. The literature contains other equally-good methods for finding truncated linear
calibration weights. Singh and Mohl (1996) describes many of them.

6.3. The example

Using the USDAdata from Section 3.4,Table 3 contrasts truncated linear calibration with
ck = 1 and weights bounded from below by zero with generalized-raking calibration.
Both versions of calibration assured that no calibration weight was negative. The first
was very similar to linear calibration with ck = 1, also displayed, which only produced
one (of 1436) negative weight.

The minimum and maximum calibration weights were larger with generalized-raking
calibration than the other two calibration methods as was the maximum calibration
adjustment.

Nonetheless, the three methods produced very similar results. This is not surprising
because for values of xkg close to zero, f(xkg) ≈ 1 + xkg for all three. Formally,
if xkg is OP(1/n1/2), then f(xkg) = 1 + xkg + OP(1/n) under all three weighting
schemes.

Table 3
Comparing the calibration weights under different forms of general calibration

GREG with ck = 1 GREG with ck = 1 wk = dkexp(xkg)
and Weights Truncated at 0

∑
S |wk − dk|∑

S dk
0.0408 0.0408 0.0421

Max {wk}
Max {dk} 1.0500 1.0502 1.0533

Max

{
wk

dk

}
1.5290 1.5288 1.6546

Min {wk} −1.0846 0.0000 0.5596

Min

{
wk

dk

}
−0.0587 0.0000 0.3028

Percent of wk < 1 (number) 0.6964(10) 0.6964(10) 0.4875(7)
Percent of wk ≤ 0 (number) 0.0696(1) 0.0000 0.0000∑

S w
2
k −

∑
S wk∑

S d
2
k −

∑
S wk

1.0748 1.0748 1.0776

∑
S w

2
kxk −

∑
S wkxk∑

S d
2
k xk −

∑
S wkxk

1.0357 1.0356 1.0340

Note: xk , calculated cropland.
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7. Calibration and quasi-randomization

7.1. Unit nonresponse

One popular way of handling unit (whole-element) nonresponse is to treat response as an
additional phase of Poisson sampling. This type of response modeling is called “quasi-
randomization,” because it treats the model as if it were part of the sample selection
mechanism.

Under quasi-randomization, each element k in the original sample, now denoted S0,
is assumed to have a probability of response, pk. The probability of jointly “choosing”
elements k and j is pkpj , and the magnitude of pk is independent of whether k is chosen
for the original sample. It is often possible to construct a set of weights so that the
calibration estimator is randomization consistent under the quasi-randomization model.

We are interested here in a particular way of constructing those weights. To this end,
we assume that the quasi-random response model is correct. Each element has attached
to it a row vector of benchmark variables, xk, for which Tx = ∑

U xj is known. In
addition, each response propensity pk is assumed to have the form:

pk = ρ(hkγ) = 1/f(hkγ), (22)

where γ is unknown, hk is a row vector with the same dimension as xk, and the matrix∑
S dkf(hkγ)h

′
kxk/N, where S now denotes the “subsample” of respondents, is invert-

ible both for the realized N and in the probability limit. The function f is assumed to
be monotonic and twice differentiable with bounded second derivatives everywhere. Its
functional form is known, but the value of the governing parameter, γ, is not. Unlike in
the previous section, f(0) and f ′(0) need not be unity.

Using the iterative method described in Section 6.1 to find g, we will often be able to
uncover a row vector, g, such that Tx =∑

S dkf(hkg)xk. As a result, estimating Ty with
tCAL
y =∑

S wkyk, where the adjusted calibration weights have the form,wk = dkf(hkg),
may have good properties under the linear prediction model, yk = xkβ+ εk, when each
hpk is a function of the xg(g ∈ U), andE

(
εk|{xg, Ig; g ∈ U}

) = 0 for all k ∈ U. Note that
Ig is now an indicator that g is in both the original sample and the respondent subsample.
In this context, prediction-model unbiasedness is simply a result of the weights satisfying
the calibration equation (the prefix “prediction” is needed to distinguish this model from
the quasi-random one).

Whether or not tCAL
y can reasonably be called prediction-model unbiased has no

effect on its quasi-randomization-based properties. Because Tx =∑
S dkf (hkg) xk, our

assumptions and the mean value theorem reveal

Tx =
∑
k∈S

dkf (hkγ) xk +
∑
k∈S

dkf
′(θk) [hk (g − γ)]xk = OP

(
N

n1/2

)

for some θk between hkg and hkγ (recall f (.) is monotonic). From this we see that if∑
S dkf

′(hkγ)h′kxk/N is invertible both for the realized N and at the probability limit,
then

(g − γ)′ =
[∑
k∈S

dkf
′(hkγ) h′kxk

]−1 [
Tx −

∑
k∈S

dkf (hkγ) xk

]
+OP

(
1

n

)
.
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The estimator tCAL
y has an error of

tCAL
y − Ty =

∑
k∈S

dkf (hkg)yk −
∑
k∈U

yk

=
∑
k∈S

dkf (hkg)ek −
∑
k∈U

ek,

where ek = yk − xk
(∑

U f
′(hjγ)pjh′jxj)−1 ∑

U f
′(hjγ)pjh′jyj , and pj = 1/f(hjγ)

so
∑

S f
′(hkγ) h′kek = OP

(
N/n1/2

)
. Continuing:

tCAL
y − Ty =

∑
k∈S

dkf (hkγ)ek −
∑
k∈U

ek +
∑
k∈S

dk[f (hkg)− f (hkγ)]ek

=
∑
k∈S

dkf (hkγ)ek −
∑
k∈U

ek +
∑
k∈S

dkf
′(hkγ) hk (g − γ)ek +OP

(
N

n

)

=
∑
k∈S

dkf (hkγ)ek −
∑
k∈U

ek + (g − γ)′
∑
k∈S

dkf
′(hkγ) h′kek +OP

(
N

n

)

=
∑
k∈S

dkf (hkγ)ek −
∑
k∈U

ek +OP
(
N

n

)
.

(23)

Thus, tCAL
y is quasi-randomization consistent under mild conditions whenever t =∑

S dkf (hkγ) yk is.
To estimate the quasi-randomization mean squared error of tCAL

y (i.e., the estimator’s
randomization mean squared error under the quasi-random response model), we first note
that the probability that distinct elements k and j are both in the respondent subsample is
π̈kj = πkjpkpj . Let π̈k = πkpk, and recall that dk = 1/πk and 1/pk = dkf(hkγ). From
Eq. (23), we see that the randomization mean squared error of tCAL

y is approximately

EI

[(
tCAL
y − Ty

)2
]
≈
∑
k∈U

∑
j∈U

(
π̈kj − π̈kπ̈j

) ek
π̈k

ej

π̈j

=
∑
k∈U

(1− π̈k) e
2
k

π̈k
+
∑
k,j∈U
j 	=k

(
πkj − πkπj

) ek
πk

ej

πj
,

which can be estimated by v1 in Eq. (15), where now

rk = yk − xkbhf ′

= yk − xk

⎛
⎝∑
j∈S

djf
′(hjg) h′jxj

⎞
⎠
−1 ∑

j∈S
djf

′(hjg) h′jyj. (24)

This serves as both a reasonable estimator for the prediction-model variance and
quasi-randomization mean squared error under mild conditions, since wk ≈ 1/π̈k and
rk ≈ ek.
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When the actual sample is multistage, and the first stage selection probabilities are
ignorably small, v3 in Eq. (17) can be used as the variance/mean-squared-error estimator
with rk defined once more by Eq. (24).

Observe that when there is no nonresponse, γ= 0, so that f ′
(
hjg

) = f ′(0)+ f ′′(0)
hjg + OP(1/n) = f ′(0) + OP

(
1/n1/2

)
. As a result, the f ′-terms in Eq. (24) are all

asymptotically identical and can be removed from the definition of rk without altering
the asymptotics of the variance/mean-squared-error estimators.

When f is linear, f ′(δ) = f ′(0) = 1 for all δ, and the rk in Eq. (24) are computed as
if there were no nonresponse. The same holds true for the variance/mean-squared-error
estimators v1, v2, and v3. For generalized-raking calibration, f ′(.) = f(.) = exp(.), and
the rk are computed accordingly.

7.2. Coverage adjustment

We can also use calibration weighting to adjust for undercoverage. In this context, the
sampling frame itself is assumed to be a quasi-random sample from a hypothetical
complete population. The actual sample is treated as the second phase of a two-phase
design. The frame becomes S0, whereas the hypothetical complete population is U.
Attached toU is the known vector Tx. The probability element k ∈ U is in S0 is assumed
to be modeled correctly by Eq. (22). If the first (fromU to S0) and second (from S0 to S)
phases of sampling are independent, then all the theory developed for using calibration
weighting to handle nonresponse carries over to handling undercoverage.

Overcoverage (duplication) or a combination of under and overcoverage can be
handled in the same way. The definition of pk in Eq. (22) becomes the expected number
of times k is in the frame, which can now exceed 1 due to potential duplication.

We have seen that the calibration weights described in this section can produce esti-
mators with good prediction-model-based properties [under Eq. (3)] when the prediction
model is correct (in particular, E

(
εk|{xg, Ig; g ∈ U}

) = 0 and each hpk is a function of
the xg), and good quasi-randomization properties when the response or coverage model
[in Eq. (21)] is correct. In some sense, one model provides protection against the failure
of the other. See Kott (1994).

7.3. The general exponential model

In the general exponential model or GEM, the fk (δ) are again defined for each individual
element and have the flexible form:

fk(δ) = Uk (Ck − Lk) exp(δ)+ Lk (Uk − Ck)
(Uk − Ck)+ (Ck − Lk) exp(δ)

, (25)

where Lk ≥ 0, 1 < Uk ≤ ∞, and Lk < Ck ≤ Uk are predetermined constants. Observe
that if Ck = 1, Uk = ∞, and Lk = 0, then fk(δ) = exp(δ), while pk = 1/fk(δ) =
exp(−δ). Similarly, if Ck = 2, Uk = ∞, and Lk = 1, then pk = [1+ exp(δ)]−1; that is
to say, the probability of element response (or coverage) is logistic. The values Lk and
Uk serve as bounds on the calibration adjustment, fk(δ), while Ck = fk(0) is effectively
its center.
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Although it is tempting to set all the fk(δ) to [1 + exp(δ)]−1 so that the response
model can be logistic, it is not practical to do so in the calibration context. The lack
of an upper bound may allow some elements to have an unreasonable impact on the
estimated total, which can result in an unacceptably large mean squared error. Perhaps
even more problematic, when some element or elements has a probability of response
very close to 1, the lower limit on f (δ) can make finding a calibration weight, wk,
impossible.

The (U.S.) National Survey on Drug Use and Health (formerly the National House-
hold Survey on Drug Abuse) is based on a sample of dwelling units and a subsample
of individuals. GEM modeling is employed independently within nine mutually exclu-
sive domains. Weights are calibrated at various phases of the estimation process. When
adjusting the weights of a respondent subsample to full-sample benchmark totals, the
Lk in Eq. (25) are set at 1, the Ck at the inverse of the overall domain response rate, and
the Uk by trial and error depending on the original size of the sample weights. Further
details can be found in Chen et al. (2000).

7.4. Prediction and response model variables

Consider the popular group-ratio-model estimator discussed in Section 4. Recall xk =
(u1kxk, . . . , uPkxk), where xk is a nonnegative scalar, and the P groups for which
the upk are indicator functions are exhaustive and mutually exclusive. Setting hk =
uk = (u1k, . . . , uPk) and f(δ) = 1+ δ yields the group-ratio-model estimator, which is

expressible in calibration form with the weight wk = dk

(∑
U∩p djxj

/∑
S∩p djxj

)
for

each k in the sample and group p. Because f(ukg) = f(gp) when element k is in group
p, the choice of f does not matter with this hk except, perhaps, when the range f(δ)
is limited; for example, f(δ) = [1+ exp (δ)]−1 cannot be less than 1.

In the presence of nonresponse (or coverage error), this linear calibration is unbiased
under the prediction model where for every element in the group p, yk = βpxk+εk, and
E
(
εk|{xg, Ig; g ∈ U}

) = 0. It is also quasi-randomization consistent under the response
model in which the response propensity, pk, is constant within each group. Observe that
the predictor model variable is xk, whereas the response model variable is uk, where
each upk = (xpk)0. If either model is correct, the group-ratio-model estimator is in some
sense (nearly) unbiased.

It is possible to extend this to a generalized-raking calibration estimator where the
upk are indicators of not-mutually-exclusive groups, and some linear combination of the
groups is unity. Using business survey data cross-classified by industry and expected
size, Hidiroglou and Patak (2006) compute calibration weights satisfying

∑
S wkxk =∑

U xk of the form wk = dk exp(ukg) (now the choice of f matters) using a variant of
iterative proportional fitting. The routine in Section 6.1 would have worked as well.
Again, in the presence of nonresponse, the xk serves as the prediction-model variable
while uk is the response-model variable. That is to say, the expected value of yk/xk
under the prediction model is the sum of the parameters associated with the two groups
containing k (a size group and an industry group) whereas the probability of the element
responding under the response model is the product of the probabilities (the exp(γp))
associated with those groups (since exp (ukγ) =∏P

p=1 exp
(
upkγp

))
.
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Table 4
Comparing different versions of calibration weighting for nonresponse

GREG with ck = 1 wk = dk exp(xkg) wk = dk exp(hkg)
and Weights Truncated at 0 and hpk = (xpk)1/2

Weight characteristics
Max {wk}
Max {dk} 1.4178 1.4190 1.4722

Max

{
wk

dk

}
2.5363 2.8703 2.5130

Min {wk} 0.0000 0.7972 1.0000

Min

{
wk

dk

}
0.0000 0.3350 0.8685

Some estimated total
planted acres (and
their estimated CVs)
Corn 1,199,257 (2.38) 1,198,278 (2.39) 1,193,302 (2.45)
Alfalfa 126,850 (7.43) 127,046 (7.43) 127,141 (7.49)
Winter wheat 140,455 (6.04) 140,748 (6.10) 141,213 (6.32)

7.5. The example

Table 4 displays three different ways of using calibration to adjust for the unit nonre-
sponse in the June 2005 Quarterly Agricultural Survey in Pennsylvania. Of the 1436
sampled potential agricultural places selected for the sample, 1015 fully responded to
the crops section of the survey.

Two of the calibration methods featured in the new table extends what was done for
the whole sample in Table 3 to the respondent subsample. Not surprisingly, the average
calibration adjustment increased under both methods, but the maximum still fell below
3. Again, generalized-raking calibration produced larger minimum and maximum cali-
bration weights and a larger maximum weight adjustment than truncated-from-below-
at-zero linear calibration with ck = 1. The actual estimated totals for three typical survey
crops were very similar, as were their estimated coefficients of variation computed using
vM in Eq. (13) with rk from Eq. (24) (applying the adjustment in Eq. (18) usually had
no visible effect).

Table 4 also displays a variant of generalized raking where the components of the
response-model variable, hk, were equal to the square-roots of the components of the
benchmark (and prediction-model) variable, xk. Because all the elements in the frame
had reported cropland, setting all hpk =

(
xpk

)0
, as in the last subsection, would have

lead to a singularity in the
∑

S dkf
′(hkg) h′kxk/N matrix.

This variant produced calibration adjustments in a narrower range than the other two
and estimators with slightly higher estimated CVs. The estimated totals themselves were
very similar, however.

8. Other approaches, other issues

This chapter showed how calibration weighting combines linear prediction modeling
and random sampling. Although several important contributions from the literature
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were noted, better reviews contrasting and combining the model and randomization-
based approaches to survey sampling can be found elsewhere. See, for example, Brewer
(1994) and Fuller (2002). Chapter 23 discusses the model-based approach in depth, with
Chapter 29 doing so from a Bayesian viewpoint.

Some maintain that it is misleading to connect, as was done here, calibration weight-
ing with the linear prediction model. Calibration, in this view (apparently now held by
Särndal himself; see the interview in Kott et al., 2005), is a purely randomization-based
technique. Auxiliary information on benchmark variables can be used to reduce the
randomization mean squared error of many survey variables while, at worst, marginally
increasing the randomization mean squared errors of a few others.

There is another approach worth considering. Suppose the model is correct in the pop-
ulation, but the sampling design is not ignorable; in particular, the linear model in Eq. (3)
holds under the assumption E

(
εk|{xg; g ∈ U}

) = 0 but not E
(
εk|{xg, Ig; g ∈ U}

) = 0.
As a result, taking expectations first under the sampling mechanism and then the predic-
tion model makes sense. This framework, more suitable for estimating model parameters
than finite population totals, is explored in Chapter 39. Estimating model parameters is
the subject of Chapter 24.

In the discussion of variance estimation in Section 5, we moved quickly from Pois-
son sampling to stratified simple random sampling and then to situations where finite
population correction can be ignored entirely. Chapter 2 deals with a variety of unequal
probability sampling schemes. Some of these have been developed to produce samples
under which the calibration equation (nearly) holds.

From the randomization point of view, the calibration estimator is nonlinear; that
is to say, tCAL

y is a nonlinear function of the Ik. Effectively, the randomization mean-
squared-error estimators discussed here are based on a linearization of this nonlinear
estimator. Chapter 28 discusses how to use resampling techniques instead. Kott (2006)
describes a jackknife analogue of v3 in Eq. (17).

Although Section 6 dealt with nonlinear calibration, the prediction model itself was
always linear. Chapter 27 discusses nonlinear prediction modeling.

In Section 6, we saw how calibration can be used to adjust for unit nonresponse by
treating the respondent subsample as if it resulted from a two-phase sampling process.
A more thorough treatment of when and how to adjust for unit nonresponse can be
found in Chapter 9. Adjustments for item nonresponse are discussed in Chapter 10.
Chapter 3 gives a full treatment of two-phase sampling and estimation.

An excellent text by Särndal and Lundström (2005) discusses many of the practical
issues in using linear calibration to adjust for nonresponse and coverage errors. The
awkward form of the response propensities in linear calibration (i.e., pk = [1+hkγ]−1)
is excused as a useful approximation. This leads to quasi-randomization mean-squared-
error estimation that is, at best, ad hoc.

It has been noted in this chapter, but not addressed, that the iterative procedure
in Section 6.1 may fail to converge to a solution. Sometimes when convergence
fails after a large number of iterations, replacing some g(r) = g(r−1) + [∑

S f
′(

hkg(r−1)
)
dkh′kxk

]−1
(
Tx −∑

S w
(r−1)
k xk

)′
with the half step: g(r)= g(r−1)+1/2

[∑
S f

′
(
hkg(r−1)

)
dkh′kxk

]−1
(
Tx −∑

S w
(r−1)
k xk

)′
will prove effective. For a thorough discus-

sion of computational methods, see Gentle (1998).
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A simple alternative when convergence fails is either to alter the calibration-weight
range restrictions or to drop some benchmark variables (and an equal number of compo-
nents of hk). More generally, Rao and Singh (1997) propose an algorithm for balancing
the requirements of the calibration equations and the range restrictions.

Chang and Kott (2007) discusses the calibration for nonresponse when there are more
benchmark variables than response-model variables. They also treat the possibility that
one of the survey variables is a response-model variable. The theory underlying the
quasi-random response model is unaffected, but prediction-modeling as described in
this chapter fails because E

(
εk|{hg; g ∈ U}

) 	= 0.
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Estimating Functions and Survey Sampling

V. P. Godambe and Mary E. Thompson

1. Introduction

In statistical inference, the estimation of parameters plays an important role. Often, a
parameter estimator is chosen to maximize or minimize some “objective function” of the
data and the parameter: maximum likelihood estimation and least squares estimation are
two examples. The point estimate is then the solution of an estimating equation, of which
the left-hand side (the estimating function) is the derivative of the objective function
with respect to the parameter, and the right-hand side is 0. The concept of an estimating
function unifies the discussion of estimation in parametric and semiparametric contexts.

Both the maximum likelihood estimating equation and the least squares (normal) esti-
mating equations are unbiased, in the sense that the corresponding estimating functions
have expectation 0 under the motivating models. This unbiasedness is the fundamental
property to be retained in all extensions and generalizations because it generally leads
to consistency of the estimators.

The first results in estimating function theory (Durbin, 1960; Godambe, 1960) were
optimality theorems. Godambe (1960) showed that among all unbiased estimating func-
tions for a scalar parameter θ indexing a parametric family, the best in a certain sense
was the score function, the derivative of the log likelihood function. This result and its
successors guide the choice of estimating function in a wide variety of contexts. Bera
et al. (2006) have provided a very thoughtful survey paper.

An estimating function can be viewed both as a vehicle for estimation and as a way
of defining a parameter, the object of estimation.

For example, if ξ is a distribution for a random variable Y and ξ has parameter θ, let
E denote expectation with respect to ξ, and suppose

Eφ(Y, θ) = 0. (1)

Then, if Y1, . . . , YN each have distribution ξ,

E
⎛
⎝ N∑
j=1

φ(Yj, θ)

⎞
⎠ = 0;

83



84 V. P. Godambe and M. E. Thompson

the equation
∑N

j=1 φ(Yj, θ)= 0 is an unbiased estimating equation for θ, and the function

N∑
j=1

φ(yj, θ)

is an unbiased estimating function for θ. We solve the estimating equation to obtain a
point estimate of θ.

In other contexts, φ can define the parameter θ = θ(ξ) as the value of θ which solves
the Eq. (1) for any given ξ. For example, if φ(Y, θ) = Y − θ, Eq. (1) defines the mean
of the distribution ξ.

This dual role of estimating functions is seen in another aspect in survey sampling
theory. To continue the same example, in survey sampling theory, a finite population
mean is the solution of the census estimating equation

N∑
j=1

(Yj − θ) = 0 (2)

or its realization
N∑
j=1

(yj − θ) = 0.

The Eq. (2) is unbiased also for estimation of the mean θ(ξ) of a hypothetical superpop-
ulation distribution ξ for population values Y1, . . . , YN .

As will be seen in Section 2, many finite population quantities of interest are mean-
ingfully thought of as roots of estimating functions for superpopulation parameters.
A notable exception is the finite population total

Ty =
N∑
j=1

yj.

But whenever we try to improve the estimation of Ty by thinking of it asNμy, where μy
is the finite population mean, or as TxB, where Tx is a vector of totals and B is a vector
of finite population regression coefficients, it is useful to return to estimating functions
or systems for the auxiliary parameters μy or B.

In the following, sections we will elaborate on these definitions, discuss optimality of
estimating functions in survey sampling, set forth some of their asymptotic properties,
and outline their role in interval estimation. We will conclude with some remarks on
bootstrapping, on multivariate and nuisance parameters, and on imputation of estimating
functions.Amoredetailed treatment of someof theparts is provided inThompson (1997).

2. Defining finite population and superpopulation parameters through
estimating functions

We begin by considering finite population parameters that are defined implicitly by a
population equation of the form

N∑
j=1

φj(yj, xj, θN) = 0. (3)
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Here yj and xj are values of observable variates, the φj are known p-dimensional
functions, and θN is a p-dimensional quantity defined by (3).

Example 2.1. Several important finite population quantities are naturally defined as
in (3):

(i) the population mean μy of y is defined by

N∑
j=1

(yj − θN) = 0; (4)

(ii) if y and x are real, the population ratio R of y to x is defined by

N∑
j=1

(yj − θNxj) = 0; (5)

(iii) if y is real, its population cumulative distribution function (c.d.f.) evaluated
at a real number y is defined by

N∑
j=1

(I(yj ≤ y)− θN) = 0, (6)

where

I(yj) = 1 if yj ≤ y,
= 0 if yj > y;

(iv) if y is real, its population median can be defined as the least value of θN
such that

N∑
j=1

(I(yj ≤ θN)− 1/2) ≥ 0, (7)

and this is approximately of the form (3).

In general, a population γth quantile is obtained from the definition (7) with 1/2
replaced by γ .

3. Design-unbiased estimating functions

Adesign-based methodology for estimating θN was first set out in general form by Binder
(1983). It starts from the observation that the estimating function (3) can be estimated
in an unbiased manner from the sample, using a Horvitz–Thompson form (Horvitz and
Thompson, 1952). Thus, when a population function or parameter is defined by (3), an
estimator for it can be defined as a solution of the sample estimating equation∑

j∈s
φj(yj, xj, θ)/πj = 0, (8)
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where πj denotes the probability of inclusion of unit j. For any sampling design, even
a so-called informative design where πj depends on the responses y even after condi-
tioning on x, the left-hand side of (8) is design-unbiased for the left-hand side of (3).
Thus, we may expect a solution θ̂s of (8) to be close to θN for large samples in typical
applications.

Example 3.2. In example (i) of Section 2, Eq. (8) is
∑

j∈s(yj − θ)/πj = 0 and the
resulting estimator of μy has the form

θ̂s =
(∑
j∈s
yj/πj

)/(∑
j∈s

1/πj

)
. (9)

For any design with equal inclusion probabilities, even one which is not of fixed
size, this estimator is the sample mean ys. In general, the estimator (9) need not be
design-unbiased; however, for any choice of inclusion probabilities πj , the estimator
is error-free when all components of y= (y1, . . . , yN) are the same—a property not
shared by the unbiased estimator

(∑
j∈s yj/πj

)
/N. It can therefore be expected to

be relatively efficient when the responses y are homogeneous, as they would be if
generated from an independent and identically distributed (i.i.d) model or mixture of
i.i.d. models. The estimator (9) is sometimes called the Hájek estimator since it was
proposed in Hájek (1971).

In examples (ii)–(iv), we obtain similarly the estimator

R̂s =
(∑
j∈s
yj/πj

)/(∑
j∈s
xj/πj

)
(10)

for the population ratio, the estimator

F̂s(y) =
[∑
j∈s
I(yj ≤ y)/πj

]/(∑
j∈s

1/πj

)
(11)

for the value of the population c.d.f. at y, and the estimator

F̂−1
s

(
1

2

)
(12)

for the population median, if we interpret (12) as the least value of y for which
F̂s(y) ≥ 1/2.

Note that F̂s(y) of (11) is a true distribution function, in that it increases from 0 to
1 as y increases; this would not always be the case if

∑
j∈s 1/πj in the denominator

were replaced by N.
An example of an informative design is length-biased sampling, where πj is pro-

portional to yj . This design is seldom implemented precisely but can be a useful
approximation. For example, the approximation might apply when yj is the waiting
time for person j for a certain medical procedure, and the sampling design is to take
all population members waiting for the procedure at a certain date. Alternatively, the
yj might be the area of underground deposits detected by testing in random locations.
In the length-biased sampling case, we obtain as estimator of the population c.d.f.

F̂s(y) =
[∑
j∈s
I(yj ≤ y)/yj

]/[∑
j∈s

1/yj

]
. (13)
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In estimation from large-scale surveys, the inverse inclusion probability weights
1/πj are typically replaced by survey weightswj that are sample dependent, incorpo-
rating adjustments for nonresponse and auxiliary information. The sample estimating
equations in (8) are then replaced by the approximately unbiased∑

j∈s
wjφj(yj, xj, θ) = 0,

and these are also intended to yield approximately unbiased point estimates for θN .

4. Optimality

The sample estimating functions of (8) in Section 3 are natural but they are by no means
the only design-unbiased estimators of the census estimating functions. Thus, it is of
interest to see whether there is a sense in which they are optimal. The following describes
a possible framework.

Suppose we have a superpopulation model describable in terms of a class C = {ξ} of
distributions ξ for the population array Y = (Y1, . . . , YN). Let θ = θ(ξ) be a superpop-
ulation parameter, namely a real- or vector-valued function defined on C. If Y1, . . . , YN
are independent under distributions in C, then in many practically important cases, an
optimal (in terms of the model) estimating function (system) for θ exists in the form

�∗(y, θ) =
N∑
j=1

φj(yj, xj, θ), (14)

where each φj has the dimension of θ, and

E{φj(Yj, xj, θ(ξ))} = 0 for all ξ ∈ C. (15)

We then seek an optimal sample estimating function (system) to correspond. Godambe
and Thompson (1986a) have discussed the relevant optimality criteria in detail. For
simplicity, let us take θ to be real, and suppress possible dependence onx, in the following
outline.

When �∗ of (14) is optimal for estimating θ, we regard θN , defined by

N∑
j=1

φj(yj, θN) = 0, (16)

as the finite population parameter associated with θ. We then consider estimating θN
from the sample by solving equation

g(χs, θ) = 0, (17)

where

χs = {(j, yj) : j ∈ s} (18)

represents the sample data. When the data are being obtained via a randomized sam-
pling design p, it is natural to require design unbiasedness for the estimating function,
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namely, that

Ep{g(χs, θ)} =
N∑
j=1

φj(yj, θ) (19)

for each population array y and parameter value θ. Here, Ep denotes expectation under
the sampling design. In particular, if the inclusion probabilities πj are all positive,
j = 1, . . . , N, then the function

g∗(χs, θ) = φs(θ) =
∑
j∈s

φj(yj, θ)

πj
(20)

satisfies (19).
As anticipated,g∗ of (20) is optimal in certain senses, as seen in the following theorem.

Theorem 1. (Godambe and Thompson, 1986a): If Y1, . . . , YN are independent and
the estimating function terms are unbiased as in (15), and if the sampling design
is independent of Y, then among all g satisfying (19), g∗ can be shown to minimize
each of

EEpg2/

(
EEp ∂g

∂θ

)2

, EEpg2, and EEp
⎛
⎝g− N∑

j=1

φj(Yj, θ)

⎞
⎠

2

(21)

for all ξ ∈ C.

The independence of Y and the sampling design is important, in that the proof
requires that

Eφ(Yj/πj) = 0

for each j, a condition that might be violated if πj depends on Yj . For example, the
estimating function leading to (13) does not satisfy the conditions of the theorem.

The independence of the Y1, . . . , YN is required only because it implies the orthog-
onality (under the model) of Yj/πj and candidate estimating functions evaluated for
samples not containing j. It can be relaxed in specific cases.

Note that the estimators resulting from optimal estimating functions need not them-
selves be unbiased. For example, the usual estimator under simple random sampling
of a population ratio R is not design unbiased but nevertheless comes from an optimal
unbiased estimating function under the criteria of the theorem.

The corresponding theorem for a multivariate parameter is a straightforward exten-
sion. For p-dimensional g satisfying (19), let J(χs, θ) be the matrix with abth element
∂ga/∂θb. Let J∗(χs, θ) be the corresponding matrix for g∗ of (20).

Theorem 2. Assume that Y1, . . . , YN are independent, with distribution depending on
a p-dimensional parameter θ. Assume that (15) holds and that the sampling design is
independent of Y. Then for the matrix version of each criterion in THEOREM 1, the
difference between the criterion value for g and its value for g∗ is non-negative definite
for all θ.
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For example, corresponding to the first criterion,

(EEpJ )−1[EEpggτ](EEpJτ)−1 − (EEpJ∗)−1[EEpg∗g∗τ](EEpJ∗τ)−1

is non-negative definite, where τ denotes transpose.

Example 4.3. Suppose that under the model ξ, the model for Y is a regression model,
expressible as

Y = Xβ + ε, (22)

where the components of X are fixed and the components of ε are independent and
identically distributed with mean 0. The optimal census estimating equations for β are

N∑
j=1

xj(Yj − xτjβ) = 0, (23)

the root of which defines the population or census regression parameter BN or B.
The optimal sample estimating equation system is easily seen to be

∑
j∈s

xj(Yj − xτjβ)
πj

= 0, (24)

and the corresponding estimator for β and B is

B̂s =
(∑
j∈s

(xjx
τ
j)

πj

)−1 ∑
j∈s

(xjyj)

πj
.

At the same time, it is clear from (23) that if the first component of x is constant,
then

Ty = TxB, (25)

and hence that the regression estimator TxB̂s of Ty may be regarded as optimal under
the given model and the sampling design.

Thus, whenever the survey weights are determined so as to make the estimators
of population totals regression estimators, the resulting estimates can be thought of as
optimal in the sense of the theorems when the model (22) is correct.

5. Asymptotic properties of sample estimating functions and their roots

5.1. Single parameter case

Let us introduce the notation φs(θ) for the left-hand side of the sample estimating
equation ∑

j∈s
φj(yj, xj, θ)/πj = 0;

and let θ̂s denote the solution when it exists. The first part of the following discussion is
taken from Thompson (1997), Chapter 4.
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The key to establishing properties of consistency and asymptotic normality for the

estimator θ̂s is the Taylor series expansion

−φ̃s(θ) = φ̃s(θ̂s)− φ̃s(θ) = ∂φ̃s

∂θ
(θ̂s − θ)+ 1

2

∂2φ̃s

∂θ2
|θ (θ̂s − θ)2, (26)

where φ̃s(θ) = φs(θ)/N and θ is some value between θ̂s and θ. This expansion can be
formed when φs and ∂φs/∂θ are continuous in θ and where ∂2φs/∂θ

2 exists in the region
of interest. The region of interest might be a bounded region of the parameter space
known to contain all θN in its interior. Suppose it can be shown in some asymptotic
framework that θ̂s eventually exists uniquely and that

(1) (θ̂s − θN)/θN → 0 in probability,
(2) for θ in the region of interest, Varp{φ̃s(θ)} and Varp(∂φ̃s/∂θ) are of orderO(n−1)

for some measure of sample size n,
(3) ∂φ̃s/∂θ and its expectation approach a continuous function A(θ) �= 0 for θ in

that region, and
(4) ∂2φ̃s/∂θ

2 is uniformly bounded in probability near θN .

In applications to complex designs, the measure of sample size n would not nec-
essarily be the actual number of units in the sample but would be assumed to grow
proportionally to the amount of information in the sample. Then by solving (26) at
θ = θN for θ̂s − θN , we can see that

θ̂s − θN is of order Op(n
−1/2)

(which is a stronger assertion than condition 1 in the sense of giving an order of con-
vergence) and

θ̂s − θN = −φ̃s(θN)
Ep(∂φ̃s/∂θ) |θ=θN

+Op(n
−1). (27)

Then, since φs(θN) has expectation 0, the bias in θ̂s is of order O(n−1) while its root
mean squared error is of orderO(n−1/2). Thus, it is generally the case in this framework
that θ̂s is asymptotically design-unbiased, in the sense that

Ep(θ̂s − θN)/
√
Ep(θ̂s − θN)2

approaches 0 asymptotically. Moreover, if conditions are right for the asymptotic nor-
mality of the sample sum φ̃s, we can conclude that

√
n(θ̂s−θN) is asymptotically normal,

with mean 0 and approximate variance nVarp(φ̃s(θN))/[Ep∂φ̃s/∂θ]2 |θ=θN . This is the
basis of the common practice of estimating the mean squared error of θ̂s by

v(φs)/(∂φs/∂θ)
2 (28)

evaluated at θ = θ̂s, where v(.) is the form of a design-unbiased or design-consistent
estimator of the variance of a Horvitz–Thompson sample sum.

The condition that (θ̂s−θN)/θN → 0 in probability is a design-consistency condition.
It would follow, for example, if it could be shown that φ̃s(θN)/θN approaches 0 in
probability (a consequence of condition 2 if θ−1

N is bounded) and that the convergence
to the nonstochastic limit in condition 3 is uniform (so that a first-order Taylor series
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expansion suffices). See Yuan and Jennrich (1998) for a discussion of conditions for
estimating function asymptotics.

Suppose θ = θ(ξ) is a parameter of a superpopulation distribution under which
Y1, . . . , YN are independent, and suppose the terms of the census estimating function∑N

j=1 φj(Yj, θ) = 0 are unbiased with respect to ξ. Let the sampling design be inde-
pendent of Y. Then, the sample estimating function φs(θ) is also an unbiased estimating
function for θ. Under regularity conditions on the development of the model and the
sampling design, the same expansion as in (26) applies. We can conclude that under the
model, or the model and design combined,

√
n(θ̂s − θ) is asymptotically normal, with

mean 0 and approximate variance nE(φ̃2
s (θ)/[E∂φ̃s/∂θ]2. The model mean squared error

of θ̂s as an estimator of θ can be estimated by an expression like (28), where v(.) is the
form of a model-based estimator of variance. Rubin-Bleuer and Schiopu Kratina (2005)
have given a formal treatment of the asymptotics in a two-phase framework.

But even if the sampling design is not independent of Y, the sample estimating
function φs(θ) is unbiased under the combined expectation EEp. It is not difficult to see
that the expression in (28) is in that case a justifiable estimator for the approximation
(from linearization) of the mean squared error

EEp(θ̂s − θN)2.
(An adjustment would be required to estimate the mean squared error EEp(θ̂s− θ(ξ))2.)
To the extent to which the design-based and model-based estimators of variance are
close to each other, the use of estimating functions leads naturally to inferences which
are valid in both frameworks.

The theory does not apply directly to the estimation of the population distribution
function and quantiles because the estimating function for the distribution function is not
continuous in θ. The most natural approach for quantiles is to assume that as N →∞,
the population c.d.f. FN(y) uniformly (with error O(N−1/2)) approaches a c.d.f. F(y),
which is continuous, and has a continuous positive derivative f in the neighborhood of
the quantile of interest. The next step is to establish a Bahadur representation for the
sample quantile θ̂s:

θ̂s − θN = 1

f(θN)
[F̂s(θN)− FN(θN)] + op(n−1/2). (29)

Francisco and Fuller (1991) have given sufficient conditions for the representation (29)
to hold.

The theory also needs some modification to deal with sample estimating functions
where the inverse inclusion probability weights are replaced by sample-dependent
weights, since such sample estimating functions are not design-unbiased in general
and since assumptions on the construction or evolution of the weights must be incorpo-
rated in the asymptotic framework. Rao et al. (2002) have set out linearization variance
estimation and some asymptotic theory for estimating functions with poststratification
weights.

5.2. Multivariate parameter case

The same theory is applicable in the multivariate case as in the univariate case. Under
analogous conditions, the quantities

√
n(θ̂s − θN) and

√
n(θ̂s − θ) are asymptotically
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p-variate normal with 0 mean. If we here define the matrix Js(θ) to have abth element
∂φas/∂θb, then the sandwich estimator

Js(θ)
−1v(φs)J

τ
s (θ)

−1 (30)

(analog of (28)) is a robust estimator of the variance–covariance matrix of θ̂s as an
estimator of θN or θ, with proper choice of the estimator form v(.).

6. Interval estimation from estimating functions

6.1. Interval estimation from approximate normality

Let θ be a real parameter. In the notation of previous sections, we have seen that under
appropriate conditions, in large samples, we can take

φs(θ)−∑N
j=1 φj(yj, xj, θ)√
v(φs)

to be approximately standard normal, where v(φs) is a design-consistent estimator of
the variance of φs(θ). This fact suggests two possibilities for constructing interval esti-
mates for the finite population parameter θN .

For one possibility, let v̂(φs) be v(φs)with θ replaced by θ̂s so that it is calculable from
the sample. If φs is a monotone function of θ, we can construct limits for an approximate
two-sided 100(1− 2α)% confidence interval for θN as the values of θ satisfying

φs(θ) = ±z1−α
√
v̂(φs), (31)

where z1−α is the (1− α) quantile of the standard normal distribution.
The second possibility is to retain the dependence on θ in v(φs) and to try to find

limits that satisfy

φs(θ)√
v(φs)

= ±z1−α. (32)

This method will not be applicable so generally because (32) is less likely than (31) to
have exactly two solutions in θ. It is suggested here because the left-hand side of (32)
may in some cases have a distribution closer to normality than φs(θ)/

√
v̂(φs). This is

partly because the bias tends to be smaller and partly because the distribution may be
narrower. Analogously, as pointed out by Godambe and Thompson (1999), if Yj, j ∈ s
are i.i.d. N(θ, σ2), then the pivot

τ =
∑

j∈s(Yj − θ)√∑
j∈s(Yj − θ)2

is closer to N(0, 1) than is the t-statistic, since Var(τ) = 1, and the kurtosis of τ is
3− 6/(n+ 2).

In both cases, the interval for θN consists of values θ for which the hypothesis H :
θN = θ would not be rejected by a corresponding two-sided significance test at level
2α, assuming the approximate normality of the corresponding root or pivot.
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Example 6.4. If θN is a population ratio R, there are several approximate confidence
intervals to be considered for use with simple random sampling. Confidence intervals
corresponding to (31) would come from the pivot

φs(R)√
v̂(φs)

=
∑

j∈s(yj − Rxj)√(
1− n

N

)
n

n−1

∑
j∈s(yj − R̂xj)2

. (33)

Confidence intervals corresponding to (32) could come from the pivot

φs(R)√
v(φs)

=
∑

j∈s(yj − Rxj)√(
1− n

N

)
n

n−1

∑
j∈s(zj − zs)2

, (34)

or alternatively

φs(R)√
v(φs)

=
∑

j∈s(yj − Rxj)√
N

N−1

(
1− n

N

)∑
j∈s z

2
j

, (35)

where zj = yj −Rxj . It is shown by Thompson (1997, p. 101) that the design expec-
tation of (34), where R is retained in the denominator, is closer to 0 than the design
expectation of (33), where R is replaced by an estimate in the denominator.

Thus, for particular populations, the distribution of (34) and (35) may be closer to
standard normal than the distribution of (33). The approximate confidence intervals
based on the first two quantities are, respectively,

R̂s ± z1−α
√
v(ys)− 2R̂scov(ys, xs)+ R̂2

s v(xs)/xs (36)

and

R̂s − z2bs

1− z2as
± z

√
z2(b2

s − ascs)+ cs − 2bsR̂s + asR̂2
s

1− z2as
, (37)

where z = z1−α, as = v(xs)/x2
s , bs = cov(xs, ys)/x

2
s , cs = v(ys)/x2

s .

The limits in (37) were used by Fieller (1932) and have been discussed in a sampling
context by Cochran (1977, p. 156).

The next example deals with estimation of the corresponding superpopulation
parameter.

Example 6.5. Suppose under the superpopulation model ξ, we have

Yj = βxj + εj
for all j = 1, . . . , N, where xj is real, and εj has mean 0 and variance σ2xj . The
optimal census estimating function for β is well known to be

N∑
j=1

(yj − βxj),
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and thus the corresponding census parameter is the population ratio R. Under the
model, the pivot

φs(β)√
v(φs)

=
∑

j∈s(yj − βxj)√∑
j∈s(yj − βxj)2

(38)

is approximatelyN(0, 1), in a manner that is robust to misspecification of the variance
function. At the same time, if the design is simple random sampling, the same pivot
is approximately N(0, 1) under the combined model of ξ and the design, and it is
thus suitable for providing confidence intervals for β. The similarity between (35)
and (38) can reinforce the validity of both.

6.2. Interval estimation from inverse testing

Certain improvements to interval estimation are available, depending on more refined
approximations than normality. They can be described in an inverse testing formulation.
For simplicity, in this section, we suppose that the design is simple random sampling
and that φj is not dependent on j.

The inverse testing method works by excluding from the confidence set for θN all
values of θ, which would be rejected by a level-α significance test of the hypothesis
θN = θ. For a given value of θ, if the hypothesis were true, the population arrays x, y
would satisfy

N∑
j=1

φ(yj, xj, θ) = 0. (39)

As already mentioned, the intervals from (31) and (32) have inverse testing interpre-
tations.

Thus, the first step is to imagine artificial population arrays x(θ), y(θ) which are
consistent with the sample values, which satisfy (39), and which have an associated
distribution close to the one found in the sample. This enables the conceptual imputa-
tion of φ(yj(θ), xj(θ), θ) for the unseen units of the population. The second step is to
approximate the simple random sampling distribution of φs(θ) in this artificial popula-
tion by an appropriate approximation or by simulation. In particular, we approximate
the probability that φs(θ) differs from zero by more than its observed sample value φ0

s ,
given the artificial population. If this probability is less than or equal to α, the value of
θ is excluded. Thus, if φs(θ) were decreasing in θ, an upper confidence limit θ̂U would
satisfy

P(φs(θ̂U) ≤ φ0
s (θ̂U) | x(θ̂U), y(θ̂U)) = α,

whereas a lower confidence limit θ̂L would satisfy

P(φs(θ̂L) ≥ φ0
s (θ̂L) | x(θ̂L), y(θ̂L)) = α,

approximately. The two limits together would define a 100(1− 2α)% two-sided confi-
dence interval.

One way of constructing the population arrays x(θ), y(θ) would be as follows. Sup-
pose for simplicity that y is real and x is a scalar constant. Let y1, . . . , yr be the distinct
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sampled values ofy, occurring, respectively,a1, . . . , ar times. Define population weights
w1, . . . , wr with the intention that in the array y(θ), there should be wi occurrences of
yi for 1 ≤ i ≤ r. Thus, we would aim to have the weights wi = wi(θ) satisfy

r∑
i=1

wi = N, (40)

r∑
i=1

wiφ(y
i, θ) = 0. (41)

We would then require that the population distribution of y be close to the sample
distribution in some sense. For example, suppose we require that the Kullback–Leibler
distance

∑r
i=1wi log(wi/ai) be minimized. Then,

wi = Nqi/
r∑
i=1

qi, (42)

where

qi = ai exp{tφ(yi, θ)} (43)

and t = t(θ) is a solution of

r∑
i=1

aiφ(y
i, θ)etφ(y

i,θ) = 0. (44)

For another example, we could require that the empirical likelihood be maximized and
that would correspond to minimizing

∑r
i=1 ai log(ai/wi), yielding

wi = Nqi/
r∑
i=1

qi, (45)

where

qi = ai/(1+ tφ(yi, θ)) (46)

and t = t(θ) is a solution of

r∑
i=1

aiφ(y
i, θ)/(1+ tφ(yi, θ)) = 0. (47)

The weights satisfying (42)–(47) exactly will not in general correspond to an array y(θ);
the weights actually used would be approximations of these which fulfilled the further
condition of being positive integers greater than the corresponding sample frequencies.

Related ideas are seen in some formulations of the finite population bootstrap (see
Section 7), but more closely in the ‘scale load’ approach of Hartley and Rao (1968). An
empirical likelihood approach for single stage complex designs has been developed in
several papers including Chen and Sitter (1999) and Wu and Rao (2006). In the simple
context above, an empirical likelihood ratio would be defined from the probabilities
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wi/N and a chi-squared approximation to its distribution would be used for testing
and estimation.

7. Bootstrapping estimating functions

The bootstrap t method (see, e.g., DiCiccio and Romano, 1988) would aim to find an
approximate distribution for

φs(θ)/
√
v(φs) (48)

or for

φs(θ)/
√
v̂(φs) (49)

by resampling. The resampling could take place from an imagined artificial population,
as in Section 6.2, or from the sample in a manner adjusted for the sizes of the sample
components. The method would then solve for θ equations of the form (31) or (32) with
±z1−α replaced with Ĥ−1(1−α) and Ĥ(α), the 1−α and α quantiles of the resampling
distribution. If the equations had unique solutions, these would serve as endpoints for
an approximate confidence interval for θN .

The estimating function bootstrap of Hu and Kalbfleisch (2000), originally proposed
for independent sampling, finds the approximate distribution of the pivot by resampling
from the terms of φs at the point estimate θ̂s, then proceeds in a similar manner with the
pivot of (48).

For application to complex surveys, it is important to note that for the bootstrap
to work, the denominator v(φs) need not be a consistent estimator of the variance of
φs. However, if it differs from a consistent estimator by a close-to-constant factor, the
resulting confidence intervals will be better.

The most commonly used bootstrap method for complex survey designs is the Rao
and Wu (1988) method. A review of its application to estimating functions is given by
Rao (2006). An earlier paper by Rao and Tausi (2004) investigated a jackknife version
of the Hu and Kalbfleisch estimating function resampling. The Rao–Wu bootstrap is
valid for stratified multistage designs and is implemented through the provision of sets
of bootstrap weights. Each set of weights is to yield a point estimate of θ so that the user
can estimate (usually a little conservatively) the variance of θ̂s as the variance in the
ensemble of point estimates. Letting b index the bootstrap samples, it has been found
that numerically stable point estimates can be obtained from the first Newton–Raphson
iteration of the solution as

θ̃(b) = θ̂s − [Js(θ̂s)]−1φsb(θ̂s),

and the variance-covariance of θs can be estimated as

B−1
B∑
b=1

[θ̃(b)− θ̂s][θ̃(b)− θ̂s]τ

– or effectively as a transformed bootstrap variance–covariance of the components of
φs(θ) evaluated at θs.
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See also Roberts et al. (2006) for an application to survey weighted Generalized
Estimating Equation estimation in the (longitudinal) National Population Health Survey
of Statistics Canada.

8. Multivariate and nuisance parameters

For simultaneous estimation of the components of a multivariate parameter without
resampling point estimates, the considerations in Sections 6 and 7 can be extended in
a straightforward manner to produce confidence regions based on chi-squared or other
approximations to the distribution of the pivot

φτs (θ)v
−1(φs)φs(θ), (50)

where v is an estimated variance–covariance matrix for φs(θ).
The estimating function approach can also be extended to the estimation of quantities,

which need other parameters, or “nuisance parameters,” and a system of estimating
functions for their definition.

Example 8.6. The variance σ2
N =

∑N

j=1(yj − μy)
2/N satisfies

N∑
j=1

[(yj − λN)2 − σ2
N ] = 0 (51)

N∑
j=1

(yj − λN) = 0; (52)

here, λN = μy, another parameter which must be estimated and which may be
regarded as a nuisance parameter.

Example 8.7. The mean of a stratified population can be written as

θN =
H∑
h=1

Whθh, (53)

with stratum mean parameters θh satisfying the system

N∑
j=1

δjh(yj − θh) = 0, h = 1, . . . , H. (54)

The indicator δjh = 1 if j ∈ Sh, or δjh = 0 otherwise. Viewing θN as the quantity
of interest and θh, h = 1, . . . , H − 1, as a vector-valued nuisance parameter can lead
naturally to a justification of poststratification (Binder and Patak, 1994).

Example 8.8. The regression coefficients BN and AN satisfy

N∑
j=1

xj(yj − BNxj − AN) = 0 (55)

N∑
j=1

(yj − BNxj − AN) = 0; (56)
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here, it might be the case that BN is of interest, while AN is a nuisance parameter.
In general, let us think of a system of population estimating functions

N∑
j=1

φ1j(yj, xj; θN, λN) = 0 (57)

N∑
j=1

φ2j(yj, xj; θN, λN) = 0 (58)

with (52) and (53) having the dimensions of θN and λN , respectively. Typically, these
equations would have the form of population maximum likelihood equations for θN
and λN . Suppose that θN is the parameter of interest, while λN is a nuisance parameter.

The sample version of this estimating function system at a general parameter value
(θ, λ) is

φ1s(θ, λ) =
∑
j∈s

φ1j(yj, xj; θ, λ)
πj

(59)

φ2s(θ, λ) =
∑
j∈s

φ2j(yj, xj; θ, λ)
πj

. (60)

If λ̂θ satisfies φ2s(θ, λ̂θ) = 0, then the estimating equation system to be solved for the
estimate θ̂s of θN becomes the profile estimating function

φ1s(θ, λ̂θ) = 0. (61)

Binder and Patak (1994) have shown that to a first-order approximation (for real θ), the
MSE of φ1s(θ, λ̂θ) can be estimated by

v

⎛
⎝∑
j∈s

zθj

πj

⎞
⎠,

where v is a variance estimator form and

zθj = φ1j(yj, xj; θ, λ̂θ)− Ĵ1λĴ
−1
2λ φ2j(yj, xj; θ, λ̂θ), (62)

with

Ĵiλ =
∑
j∈s

1

πj

∂

∂λ
φij(yj, xj; θ, λ) |λ̂θ , i = 1, 2.

Note that
∑

j∈s(zθj/πj) is the combination of the estimating functions in (59) and (60)

that changes least as the nuisance parameter λ changes, near λ̂θ̂ . Interval estimates for
θN are then obtainable from an N(0, 1) approximation to the distribution of

φ1s(θ, λ̂θ)√
v(

∑
j∈s zθj/πj)

. (63)
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This approximation is likely to be particularly effective if φ2s(θ, λ) is linear in λ. In some
situations where the numerator of (63) is significantly biased as an estimating function
for θ, improvements may be expected from modifications that reduce the bias.

A further alternative would be to use a N(0, 1) approximation to the distribution of

φ1s(θ, λ̂θ)√
v(

∑
j∈s z̃j/πj)

, (64)

where z̃j is zθj evaluated at θ̂. See Hu and Kalbfleisch (2000) for a discussion of the rel-
ative merits of pivots like (63) and (64), and prescriptions for associated bootstrapping.

Example 8.9. Consider the estimation of population variance σ2
N .

Since λ̂σ = λ̂ = T̂y/N̂ = μ̂y, then

φ1s(σ, λ̂σ) =
∑
j∈s
((yj − μ̂y)

2 − σ2)/πj;

σ̂2 =
[∑
j∈s
(yj − μ̂y)

2/πj

]
/N̂;

Ĵ1λ = 0, Ĵ2λ = −N̂;
zθj = (yj − μ̂y)

2 − σ2; z̃j = (yj − μ̂y)
2 − σ̂2.

According to the prescription above, interval estimates of σ2 are obtained by set-
ting (63) or (64) equal to N(0, 1) quantiles and solving.

At the same time, correcting the profile likelihood equation for bias is likely to
produce improved accuracy. For example, if the design is simple random sampling,
the corrected estimating function

φ1cs(σ, λ̂σ) =
∑
j∈s

N

n

(
(yj − μ̂y)

2 − σ2 + N − n
N − 1

σ2

)

is unbiased and can be used as a starting point for inference.

9. Estimating functions and imputation

We conclude with a note on estimating functions and missing data.
It is well known that in cases of unit nonresponse, an unbiased estimator of the com-

plete data estimating function can be obtained by inverse response probability weight-
ing of the observed data estimating function. Godambe and Thompson (1986b) have
provided an optimality theorem for this case. Although it tends to be inefficient for
parametric models (Lawless et al., 1999), this form is widely used in biostatistics for its
simplicity and robustness (see, e.g., Robins et al., 1995).

However, item nonresponse invites imputation, practically or conceptually. Beau-
mont (2005) and Haziza and Rao (2006) have taken an estimating function approach to
imputation for regression estimation of a population total. In particular, they have made
use of systems of estimating equations for joint estimation of the response probability
parameters, the regression parameters, and the imputed estimator.
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Imputation becomes relatively simple when estimation of a finite population
parameter involves solution of an estimating equation with terms that are superpop-
ulation unbiased. Suppose that some terms in the equation are missing because the
corresponding observations are incomplete. Suppose that the absence of these terms
does not change the fact that the terms that are present have superpopulation expec-
tation 0. Then, if we impute 0 for each of the missing terms, the resulting estimating
equation is still superpopulation unbiased.

Suppose also that the terms of the complete data estimating function are independent
and that the absence of certain terms does not change the lack of correlation of the
terms remaining, under the superpopulation model ξ. (The conditions of unchanged
mean 0 and unchanged lack of correlation constitute an estimating function version of
missingness at random.) Then, a quantity such as∑

j∈s φj(Yj, θ)√∑
j∈s φ

2
j (Yj, θ)

(65)

is still an approximately standard normal pivot under the superpopulation model if we
impute 0 for each of the missing terms. Moreover, the imputed estimating function is
optimal in a certain sense: it is closest to the complete data estimating function in terms
of superpopulation variance of the difference. (Godambe and Thompson, 2006).

By an extension, classical mean imputation and regression imputation can be regarded
as examples of the imputation of 0 for missing estimating function terms. For the esti-
mation of a population total, consider the system

TY −
N∑
i=1

xiβ −
∑
i∈s

(Yi − xiβ)
πi

= 0,

∑
i∈s

xi(yi − xiβ)
πi

= 0,

where β is the regression coefficient of y on x. The first equation defines a regression
estimator for TY with unknown parameter β; the second is an estimating equation system
for β itself. The terms in the estimating functions are independent. If some of the sample
yis are missing and we impute the corresponding elementary estimating functionsyi−βxi
and xi(yi − βxi) with 0s, we are effectively imputing for missing yi the value xiβ in
the estimating equations and the value xiB̂s′ in the estimates, where s′ is the part of the
sample with complete observations. The justification for this as presented depends on the
correctness of the model. Indeed, under a nonresponse model, the sampling expectation
of the left-hand side of the first equation is not 0 but could be regarded as

N∑
i=1

(1− αi)(Yi − xiβ),

where αi is the probability that unit i, if sampled, is observed.
If we impute 0 for missing terms in an approximate pivot from a finite population

sample, such as (33)–(35), we are effectively assuming that the imputed census esti-
mating function is very close to 0 at the true census parameter. This would be true, for
example, if those in the population who would have responded constitute a fairly large
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Bernoulli sample of the whole. Other conditions more suited to complex designs can
also be formulated.

More generally, in terms of the superpopulation model, often the most natural impu-
tation of a missing estimating function term is its conditional expectation under ξ, given
the data which are present (McLeish, 1984). In fact, if the complete data estimating
function is a score function, its conditional expectation is also a score function and is
optimal. Wang and Chen (2006) have considered the case, sometimes applicable in sam-
pling theory, where independent observations are of form (X, Y ), and Y is sometimes
missing. They propose a method of multiple estimation of each missing estimating func-
tion term from a kernel smoothed estimate of the conditional distribution of Y given
X. The imputed terms are then used to produce an empirical likelihood ratio statistic.
The distribution of the empirical likelihood ratio is estimated through resampling with
a bootstrap that incorporates the imputation method, and confidence intervals for θ are
obtained by the inversion of an empirical likelihood ratio test.

At the same time, as is well known, imputation via projection does not fulfill all pur-
poses. Consider a superpopulation model in which Y1, . . . , YN form the initial segment
of an AR(1) time series with mean 0 and variance 1, and the census estimating equation
for the parameter θ is

N∑
j=2

Yj−1(Yj − θYj−1) = 0.

The left-hand side is a martingale, and the estimating function for θN from a sample is
most naturally a martingale also:

n∑
i=2

ai(θ)Yji−1(Yji − θ(ji−ji−1)Yji−1),

where j1, . . . , jn is the sample in order, and the ai are determined for maximum effi-
ciency. In a sense, we can think of the terms in the sample estimating function as imputing
the sums of unseen terms in the census estimating function, but it is not obtained by
conditional expectation of the unseen terms given the terms which are present.
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Nonparametric and Semiparametric Estimation
in Complex Surveys

F. Jay Breidt and Jean D. Opsomer

1. Introduction

1.1. Nonparametric and semiparametric methods

Nonparametric and semiparametric methods are rich classes of statistical tools that
have gained acceptance in most areas of statistics. They make it possible to analyze data,
estimate trends and conduct inference without having to fully specify a parametric model
for the data. In the survey context, their use is much less widespread. In this chapter, we
will focus on nonparametric and semiparametric methods in two important statistical
areas: estimation of densities and estimation of regression functions. Both of these areas
have applications in survey estimation, for both descriptive and analytical uses.

We begin with a necessarily brief overview of the main nonparametric and semi-
parametric methods relevant to survey estimation. In this section, we describe them for
the case of independent and identically distributed (iid) data to introduce the methods.
Subsequent sections will deal with the situation in which the observations are obtained
from a complex survey.

We would like to note that the terms “nonparametric” and “semiparametric” have
not been used consistently in the statistical literature, so there is no agreement on which
methodsexactly fall intoeachof these twocategories.Generally speaking,nonparametric
methods are those that do not assume a parametric form for the main features of interest
in the data (though there might be parametric assumptions on some of the “nuisance
features,”e.g., thevariance in thecaseof regression). Incontrast, semiparametricmethods
use a combination of parametric and nonparametric specification for the main features of
interest. Clearly, these descriptions are somewhat subjective and open to interpretation,
so one person’s nonparametric method is another person’s semiparametric approach.

1.2. Kernel methods

Kernel methods are used for both density estimation and regression.We begin by describ-
ing the kernel density estimator and restrict ourselves to the univariate case. Suppose we
observeX1, . . . , Xn and we assume these xi are iid from an unknown density fx(·). The

103
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density is assumed to be a smooth function of x but otherwise unspecified.Kernel density
estimationmethods aim to estimate the density fx(·) nonparametrically. Wand and Jones
(1995) give a good introduction to these methods, and we only describe the main idea
here. For a given value x, a simple kernel density estimator f̂x(x;h) is defined as

f̂x(x;h) = 1

n h

n∑
i=1

K

(
xi − x
h

)
, (1)

whereK(·) denotes the kernel function and the constant his referred to as the bandwidth.
To estimate the density function fx(·) using (1), f̂x(·;h) is computed at each value x for
which an estimator is needed, for instance on a dense grid of x-values, which can then
be plotted or interpolated.

The kernelK(·) is usually a symmetric probability density, with the standard normal
density being a common choice, but other functions can be used as well. The crucial
feature of the kernel function is that it determines distance-based weights for the sample
observations, to be used in the construction of (1). The bandwidth h determines the
smoothness of the estimator f̂x(x;h), with small values of h leading to more “wiggly”
estimates and large values resulting in smoother estimates. More precisely, the band-
width determines the bias-variance trade-off for the kernel density estimator f̂x(x;h),
with large h having potentially larger bias but smaller variance than small h. A large
literature is devoted to the determination of the best value for the bandwidth, and we
will briefly return to this issue in later sections.

We now turn to the kernel-based regression estimation problem. Suppose that we have
a data set with observations (X1, Y1), . . . , (Xn, Yn), and we are interested in estimating
the function m(·) in the model

Yi = m(xi)+ εi, (2)

where m(·) is smooth but not further specified, and for simplicity, we assume that
the εi are iid with mean 0 and variance σ2. The most commonly used kernel method
of nonparametric estimation of m(·) is local polynomial regression, with local linear
regression a popular choice.

Let q represent the degree of the local polynomial regression. For a given value x, the

estimator m̂(x) is defined as β̂0, where β̂0, . . . , β̂q are found by solving the following
weighted least squares problem:

min
β

n∑
i=1

K

(
xi − x
h

) (
Yi − β0 − β1 (xi − x)− · · · − βq (xi − x)q

)2
.

This estimator can be written in matrix notation as

m̂(x) = eT1
(
XT
xWx(h)Xx

)−1
XT
xWx(h)Y , (3)

with e1= (1, 0, . . . , 0)T ,Y = (Y1, . . . , Yn)
T ,Wx= diag{K((x1 − x)/h), . . . , K((xn −

x)/h)}, and

Xx =
⎡
⎢⎣

1 x1 − x · · · (x1 − x)q
...

...
...

1 xn − x · · · (xn − x)q

⎤
⎥⎦. (4)
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As was the case with kernel density estimation, the function m(·) is estimated by
computing m̂(x) for any value x where an estimator of the function is needed. The
bias-variance tradeoff for m̂(x) also again depends on the bandwidth h. It is clear from
(3) that the local polynomial estimator can be written as a linear combination of the
Yi, m̂(x) =∑

wi(x)Yi, which will be useful when applying this nonparametric method
in the survey context. We refer to Wand and Jones (1995) for further information on
local polynomial regression, including its theoretical properties.

1.3. Spline methods and other methods

While kernel methods span both density and regression function estimation, spline
methods are typically only used for the latter problem. We therefore again consider a data
set with observations (X1, Y1), . . . , (Xn, Yn), which are assumed to follow the model (2)
with iid errors. While the functionm(·) in (2) is still assumed to be smooth but otherwise
unspecified, we now make the additional assumption that it is well approximated by a
spline function. Polynomial spline functions are defined as

m(x;β) = β0 + β1x+ · · · + βpxp +
J∑
j=1

βp+j(x− κj)p+, (5)

where p ≥ 1 is the order of the spline, κ1, . . . , κJ are a set of pre-specified breakpoints
called knots and the function (·)p+ denotes

(x− κ)p+ =
{
(x− κ)p if x > κ

0 otherwise.

The linear (p = 1) and cubic (p = 3) spline models are common choices in practice.
The linear splines are simple and continuous, and the cubic splines match up with
a common type of smoothing splines, the natural cubic splines, which arise from a
penalized optimization with penalty on the squared second derivative of the function.
Other formulations of the spline functionm(x;β) are possible, in which the set of basis
functions {1, x, . . . , xp, (x − κ1)

p
+, . . . , (x − κJ)p+} are replaced by a different set. For

instance, B-splines (de Boor, 2001) are a widely used set of basis functions with better
numerical properties than polynomial splines. Most of these formulations, including
B-splines, can be equivalently rewritten into the above polynomial spline, so that we
will restrict our attention to (5).

A number of different spline regression methods exist, but we will focus here on
penalized spline regression because of its ease of use and relevance to the applications
in survey estimation.An excellent overview of this method and its applications in a wide
range of regression contexts is provided in Ruppert et al. (2003). It is clear from (5) that
m(x;β) is essentially a parametric function (albeit a complicated one), and deviations
from a global pth order polynomial can only occur at the knots so that the flexibility of
the spline as a representation of an unknown function is determined by the number and
location of the knots. To ensure thatm(x;β) is sufficiently flexible, the penalized spline
approach sets the number of knots J to be large, say as high as J = n/4, and places
them at the appropriate quantiles of the xi.

Fitting of the spline model to the observations is done by least squares minimization
but with a penalty added to ensure the existence of a solution and to reduce the potential
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increase in variance due to the large number of parameters needing estimation. Specifi-

cally, the estimator of m(·) is m(·; β̂) using expression (5), where β̂ is the minimizer of

n∑
i=1

⎛
⎝Yi − β0 − β1xi − · · · − βpxpi −

J∑
j=1

βp+j(xi − κj)p+
⎞
⎠

2

+ λ
J∑
j=1

β2
p+j

(6)

and λ is a fixed penalty. The penalty λ plays an analogous role to the bandwidth h in
the kernel regression methods, in that it determines the bias-variance trade-off for the

estimator m(·; β̂), with large values of λ resulting in potentially larger bias and smaller
variance than small values. Since only the nonpolynomial part of the spline coefficients
is penalized in (6), λ determines the amount of deviation from a pth degree polynomial
function.

Because of the very flexible nature of the spline function (5) and the presence of
the penalty λ that serves as a tuning constant, penalized spline regression is typically
considered a nonparametric method. Nevertheless, it also shares many characteristics
of parametric regression because the number of parameters is fixed (at J + p+ 1) and
the estimator is found as a solution to a global least squares problem.

Other spline regression methods are (unpenalized) spline regression and smoothing
spline regression. In the former, a spline function with a small number of knots is
specified and the function is fitted without penalization so that careful attention needs to
be paid to knot placement to avoid bias. In smoothing spline regression, the formulation
of the approach is different from the above, but the estimator is essentially equivalent to
a polynomial spline as in (5) but with a knot at every observation point xi and a penalty
term on the derivative of the function. We do not pursue these methods further here and
instead refer to Ruppert et al. (2003, Chapter 3).

Other important classes of nonparametric methods are available, many of which
could be adapted for use in survey estimation. Orthogonal decompositions, in partic-
ular wavelet decomposition (Vidakovic̀, 1999), is a nonparametric regression method
with good statistical properties that is applicable in situations where the mean func-
tion is not necessarily smooth. Neural networks (Ripley, 1996) are a class of methods
conceptually related to penalized spline regression, in which the parameters are found
by nonlinear regression. Finally, methods based on classification such as classification
and regression trees (Breiman et al., 1984) and multivariate adaptive regression splines
(Friedman, 1991) can be used as nonparametric regression methods.

1.4. Fitting more complex models

So far, we have discussed the situation in which the xi are univariate observations.
In surveys, the number of variables is typically large, so we would like to be able to
apply nonparametric and semiparametric methods for multivariate data. In principle, it
is indeed possible to directly extend all the methods from the previous sections to the
multivariate case, but a number of constraints make this impractical for more than two
or three dimensions. One issue is the so-called “curse of dimensionality,” which implies
that model flexibility has to decrease as the dimension of the covariate space increases
to obtain satisfactory fits. This could be done by increasing the amount of smoothing
(by using a larger bandwidth or penalty) or using a reduced number of knots (in the case
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of splines), but more useful approaches are to replace the fully nonparametric model
itself by more restricted model specifications. We discuss two important special cases
of such models here: additive models and semiparametric models.

Let Xi = (X1i, . . . , XiD)
T represent a vector of D covariates. In additive models,

model (2) is replaced by

Yi = m1(X1i)+ · · · +mD(XDi)+ εi, (7)

where the functions md(·) are (typically) univariate and smooth but otherwise not
restricted to belong to a specific parametric family. This model was made popular by
Hastie and Tibshirani (1990), who proposed estimation methods based on backfitting.
This approach, which is implemented in S-Plus and R, relies on iteratively applying
one-dimensional methods such as local polynomial regression or spline regression to
the residuals from the fits with respect to the other covariates. While other methods for
fitting model (7) have since been proposed, backfitting remains popular today. When
penalized spline regression is used as the fitting method, it is possible to fit model (7)
without iterating by writing it as a penalized multiple regression problem, from which
the spline parameters can be estimated directly (see Ruppert et al., 2003, for details).
The package SemiPar (Wand et al., 2005) implements this approach in R.

In a semiparametric model, a nonparametric term is combined with parametrically
specified components. Let Zi = (Z1i, . . . , ZPi)

T represent the additional covariates to
be modeled parametrically. A typical example of a semiparametric model is

Yi = m(Xi)+ ZTi β + εi, (8)

where the nonparametric term m(Xi) could itself be multivariate and modeled as an
additive model. Backfitting can be applied to fit model (8) as well, but other methods
specially designed for semiparametric models are available. The semiparametric model
is particularly useful when some of the covariates in a data set are categorical, which
by definition cannot be smoothed.

In addition to nonparametric regression for multivariate data, another important
extension is for models with more complex mean structures, including nonparamet-
ric equivalents of generalized linear models. The generalized additive model (GAM)
described in Hastie and Tibshirani (1990) has mean structure

E(Yi|Xi,Zi) = g
(
m1(X1i)+ · · · +mD(XDi)+ ZTi β

)
, (9)

which combines a known link function g(·) with a mean additive model or a semipara-
metric model. This model makes it possible to perform common types of regression such
as Poisson or logistic regression nonparametrically. The most common fitting method
for this type of model is an iterative algorithm called local scoring, a combination of
Fisher scoring and backfitting. Just like for additive models, this method uses univariate
regression methods such as local polynomial and spline regression for the component
functions.

2. Nonparametric methods in descriptive inference from surveys

We now consider the use of nonparametric methods in making inference about a
finite, labelled population U ={1, . . . , i, . . . , N}. Associated with each label i are study
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variables yi, zi, etc (possibly vector-valued), which can in principle be observed without
error if label i were sampled. Assume that for each i ∈ U, an auxiliary vector xi
is observed. Let tx = ∑

i∈Uxi. A probability sample s ⊂ U is drawn according to
a fixed-size sampling design p(·), where p(s)= Pr [sample s is selected]. Let πi =
Pr [i ∈ s] =∑

s:i∈s p(s) > 0 and πij = Pr [i, j ∈ s] for all i, j ∈ U.
We first consider descriptive inferences for this finite population, often done in terms

of a point estimate and an associated confidence interval for a finite population parameter
such as a total ty =∑

i∈U yi or mean yU = N−1ty. A proportion is a special case of the
mean, with yi equal to an indicator on some event. In particular, the finite population
distribution function, denoted Fy(z) = N−1 ∑

i∈U I{yi≤z} with I{A} = 1 if the event A is
true, and 0 otherwise, is a proportion for each fixed z. Other interesting finite population
parameters include ratios

∑
i∈U yi

/∑
i∈U zi and vectors of regression coefficients,

B =
(∑
i∈U

xTi xi

)−1 ∑
i∈U

xiyi.

Each of these examples is built up from finite population totals, and so a canonical
problem of interest is estimation of the population total for a generic study variable y.

The Horvitz–Thompson estimator of ty,

t̂y =
∑
i∈s

yi

πi
, (10)

(Horvitz and Thompson, 1952) provides an unbiased estimator for the population total
ty, with variance under the sampling design

Varp
(
t̂y
) = ∑

i,j∈U

(
πij − πiπj

) yi
πi

yj

πj
(11)

(see Chapter 1). If auxiliary variables are available for a survey, it might be possible to
obtain estimators that are more efficient than t̂y.

It is of interest to improve upon the efficiency of the Horvitz–Thompson estimator
by using the auxiliary information xi. Motivation for such estimators is often provided
by modeling the finite population of yi as a realization from an infinite superpopulation,
ξ, relating xi to yi via

yi = μ(xi)+ εi, (12)

where εi is an independent sequence of random variables with mean zero and vari-
ance ν(xi). Standard superpopulation models are parametric, and typically linear, that
is μ(xi) = xTi β. The potential disadvantage of estimators motivated by a superpopula-
tion model is inefficiency under model misspecification. If the regression model does
not fit the data well, there is no improvement over a simple Horvitz–Thompson esti-
mator and potentially even a loss of efficiency. To avoid the consequences of model
misspecification, it is natural to replace the parametric specification by a nonparametric
specification, in which μ(·) is a smooth function of x and ν(·) is smooth and strictly
positive.

Once the model (whether parametrically or nonparametrically specified) is fitted to
the sample data, there are at least two ways to incorporate its predictions into estimation
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of the finite population total. The first is a model-based approach, in which model-fitted
values μ̃(xi) are used to predict only the nonsampled values of y:

t̂MB =
∑
i∈U\s

μ̃(xi)+
∑
i∈s
yi. (13)

Typically, model-based estimators of this type are asymptotically model unbiased and
highly efficient when μ(xi) and ν(xi) are correctly specified but biased and even incon-
sistent if the model is wrong. Inspired by the general applicability of nonparametric
models, Kuo (1988), Dorfman (1992), and Chambers et al. (1993) have developed
model-based estimators using nonparametric regression.

The second way to incorporate model predictions is model-assisted and avoids the
potential problems of model misspecification through a design bias adjustment. Model-
assisted estimation relies on a model-fitted prediction μ̂i for all the population elements
but then corrects the possible design bias in that prediction. The resulting model-assisted
regression estimator is of the form

t̂MA =
∑
i∈U

μ̂i +
∑
i∈s

yi − μ̂i
πi

. (14)

An intuitive explanation of the design properties of the model-assisted regression esti-
mator proceeds as follows. Let μi represent the regression fit for μ(xi) if the entire
population were observed. If these μis were known, then an exactly design-unbiased
estimator of ty would be the generalized difference estimator

t∗y =
∑
i∈U

μi +
∑
i∈s

yi − μi
πi

(15)

(see Särndal et al. (1992), p. 221, for the parametric case). The design variance of the
estimator would be

Varp
(
t∗y
) = ∑

i,j∈U

(
πij − πiπj

)yi − μi
πi

yj − μj
πj

, (16)

which we would expect to be smaller than (11) because the yis should be “close to” the
μi’s for any reasonable smoothing procedure under the superpopulation model.

In practice, the μi are not known, but they are well-defined “parameters” of the finite
population that can be estimated by the μ̂is even if the superpopulation model (12)
does not hold. As will be discussed further below, the resulting nonparametric model-
assisted estimator can share many properties of linear model-assisted estimators familiar
to survey statisticians, including design consistency.

As noted at the beginning of this section, the finite population distribution function
FN(z) = N−1 ∑

i∈U I{yi≤z} for each z is a special case of a population mean. The
nonparametric model-based and model-assisted methods discussed below can thus be
used without further modification to improve the precision of estimators of the finite
population distribution function. The advantage of doing so is that the same survey
weights can be used for estimating FN(z) for any z as well as the population mean
yU , for all the survey variables. This approach is discussed in Johnson et al. (2008).
However, a number of special estimation methods have also been developed that take
advantage of the special structure ofFN(z). We refer to Dorfman (Chapter 36) for further
information on this topic.



110 F. J. Breidt and J. D. Opsomer

2.1. Nonparametric survey regression estimation using kernels

We now describe a number of ways in which nonparametric estimation can be imple-
mented for descriptive inference. We begin by considering local polynomial regression
(LPR) for scalar xi, as in Section 1.2. Let ys = [yi]i∈s be the vector of yi’s in the sample
and define the local design matrix

Xsi =
[
1 xj − xi · · · (xj − xi)q

]
j∈s, (17)

corresponding to the design matrix in (4) evaluated at x = xi, and the diagonal weighting
matrix

Wsi = diag

{
1

h
K

(
xj − xi
h

)}
j∈s
.

The unweighted LPR estimator of μ(xi) is then given by the intercept in the local,
weighted least squares fit of the polynomial:

μ̃(xi) = (1, 0, . . . , 0)
(
XT
siWsiXsi

)−1
XT
siWsiys. (18)

Plugging these model fits into (13) then yields the model-based kernel regression esti-
mator of Dorfman (1992).

One approach to producing a model-assisted estimator begins instead with the finite
population local polynomial fit. Let yU = [yi]i∈U be the vector of yis for the entire finite
population. Define the N × (q+ 1) matrix

XUi =
[
1 xj − xi · · · (xj − xi)q

]
j∈U

and define the N ×N matrix

WUi = diag

{
1

h
K

(
xj − xi
h

)}
j∈U

.

The finite population local polynomial fit is then given by

μi = eT1
(
XT
UiWUiXUi

)−1
XT
UiWUiyU, (19)

as long as XT
UiWUiXUi is invertible. The μi are the quantities that would be used in the

difference estimation (15) if they were available. Since they are generally not available,
they are estimated by design-weighted estimators μ̂i, constructed by letting

Wsiπ = diag

{
1

πjh
K

(
xj − xi
h

)}
j∈s

and

μ̂i = eT1
(
XT
siWsiπXsi

)−1
XT
siWsiπys, (20)

provided XT
siWsiπXsi is invertible. Plugging these fits into (14) then yields the model-

assisted LPR estimator of Breidt and Opsomer (2000).
Breidt and Opsomer (2000) discuss the theoretical design and model properties of

the local polynomial estimator, showing that the LPR estimator is design consistent
and asymptotically design unbiased under a mild set of regularity conditions that we
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hereafter assume to hold. Asymptotically, the design mean squared error of t̂MA under
LPR is equivalent to the variance of the generalized difference estimator,

MSEp
(
t̂MA

) = Ep
(
t̂MA − ty

)2 ≈
∑
i,j∈U

(yi − μi)
(
yj − μj

)πij − πiπj
πiπj

, (21)

recalling that the μi have been defined as (unknown) finite population parameters. A
design consistent and asymptotically design unbiased estimator of MSEp

(
t̂MA

)
is

V̂
(
t̂MA

) = ∑
i,j∈s

(
yi − μ̂i

)(
yj − μ̂j

)πij − πiπj
πiπj

1

πij
. (22)

Because each of the smoothed values μ̂i is a linear combination of the yi in the sample,
the LPR model-assisted estimator (14) can also be written in the same form, that is,
t̂MA =∑

sωisyi with ωis not involving the yi. It is readily checked that the weights ωis
are calibrated for the population size as well as for the totals of powers of the xi up
to degree q : ∑s ωisx

p

i =
∑

U x
p

i for 0 ≤ p ≤ q. The LPR model-assisted estimator
shares this property with the generalized regression estimators.

In simulation experiments reported in Breidt and Opsomer (2000), the LPR estima-
tor was competitive with the classical survey regression estimator when the popula-
tion regression function was linear but dominated the regression estimator when the
regression function was not linear. The estimator also performed well relative to other
parametric and nonparametric estimators, both model-assisted and model-based. It gen-
erally dominated the Horvitz–Thompson estimator and it dominated cubic regression
and poststratification estimators, provided it was not oversmoothed. It was sometimes
much better and never much worse than two competing model-based nonparametric esti-
mators. Though the efficiency of the nonparametric estimator depended on the choice of
bandwidth parameter, the results were fairly insensitive to this choice, suggesting that
large gains in efficiency can be attained for a variety of bandwidths.

The local polynomial method can be applied in virtually all situations where gen-
eralized regression estimation is used, as long as the value of auxiliary variable xi is
available for every element in the population and it is a continuous (not categorical) vari-
able. Examples of the type of generalizations that are possible are provided by Deville
and Goga (2004), who applied LPR to improve the efficiency of survey estimators
when samples are taken on two occasions, and by Aragon et al. (2006), who considered
quantile estimation.

2.2. Nonparametric survey regression estimation using splines

We next consider nonparametric survey regression estimation using splines, focusing on
the special case of penalized regression splines with scalar xi. For the superpopulation
model (12), we assume now that the mean functionμ(·) can be written as in (5).We define
xTi =

(
1, xi, . . . , x

q

i , (xi − κ1)
q
+, . . . , (xi − κj)q+

)
,Xs =

[
xTi

]
i∈s ,XU =

[
xTi

]
i∈U , and

�s = diag{πi}i∈s. Further, define the diagonal matrix Aλ = diag{0, . . . , 0, λ, . . . , λ},
with q + 1 zeros on the diagonal followed by J penalty constants λ, corresponding to
the J truncated polynomial terms in (5).



112 F. J. Breidt and J. D. Opsomer

The unweighted sample spline estimator of μ(xi), corresponding to the solution to
the penalized least squares minimization (6), is then

μ̃(xi) = xTi
(
XT
s Xs + Aλ

)−1
XT
s ys. (23)

Using xi = πi in (23) and plugging it into (13), Zheng and Little (2003) have proposed
a model-based survey regression estimator that uses penalized splines to account for the
effect of nonignorable design weights. They have further extended the penalized spline
model-based survey regression estimator to the case of two-stage sampling in Zheng
and Little (2004).

A model-assisted survey regression estimator based on penalized splines begins by
first defining the population fit

μi = xTi
(
XT
UXU + Aλ

)−1
XT
UyU

and then estimates this finite population parameter with a sample-weighted version,

μ̂i = xTi
(
XT
s �

−1
s Xs + Aλ

)−1
XT
s �

−1
s ys.

Plugging these design-weighted fits into (14) yields the penalized spline model-assisted
survey regression (PSP) estimator proposed by Breidt et al. (2005).

This estimator has theoretical properties similar to those of the LPR estimator dis-
cussed above, including calibration for population totals of powers of xi up to degree q,
design consistency, and asymptotic design unbiasedness (under mild conditions), and
its design mean squared error can also be written as in (21). In simulation experiments
reported in Breidt et al. (2005), it is shown that the PSP estimator is most often very
similar to the LPR estimator. However, penalized spline regression offers a number of
advantages over kernel-based methods that make it an attractive smoothing method in
the model-assisted context. Incorporating multiple covariates as well as combinations of
categorical variables, parametric and nonparametric terms, is straightforward, as shown
in Aerts et al. (2002). Another important advantage is the relative ease with which PSP
estimators can be computed, even for large data sets or data sets with regions of sparse
data. Finally, an important practical consideration is that, since they are more closely
related to parametric models, estimators based on spline models are easier to implement
in existing survey estimation procedures.

Another class of nonparametric model-assisted estimators based on splines has been
studied by Goga (2004, 2005). In both of these papers, Goga uses unpenalized regression
splines for which the domain of the auxiliary variable is divided by a number of knots,
a B-spline basis function is associated with each knot, and the number of knots goes
to infinity so that the B-splines become dense on the domain. Goga (2005) shows that
the regression spline estimator is asymptotically design-unbiased and consistent, pro-
poses a design-based variance approximation, and shows that the anticipated variance
is asymptotically equivalent to the Godambe–Joshi lower bound. Simulations show that
the regression spline estimator has good properties. Goga (2004) applies this method-
ology to construct model-assisted estimators in the case of sampling on two occasions,
with complete auxiliary information available on each occasion.

2.3. Other smoothing methods for survey regression estimation

While the estimators of Sections 2.1 and 2.2 can, in principle, be generalized directly
to handle multivariate xi, the modeling approaches described in Section 1.4 are likely
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to be more useful in practice. Breidt et al. (2007) extend the LPR estimator to the
semiparametric model (8) and show that the semiparametric model-assisted estimator
is design consistent and asymptotically normal. They also show that it is calibrated for
the population totals of the auxiliary variables in both the parametric and nonparametric
portions of the model.

Montanari and Ranalli (2005) proposed neural networks as a multivariate smoothing
technique for model-assisted estimation. Opsomer et al. (2008) considered the gener-
alized additive model (9) as a multivariate superpopulation model specification and
fitted it by local scoring. One issue with both methods is that they do not lead to esti-
mators calibrated to population totals of the auxiliary variables. In addition, the local
scoring estimator for GAM is not a linear function of the yi so that the resulting model-
assisted estimator cannot be written as a weighted sum, making it difficult to integrate
GAMs into the usual survey estimation context. Both Montanari and Ranalli (2005)
and Opsomer et al. (2008) applied model calibration, originally proposed by Wu and
Sitter (2001) as a way to obtain calibrated weighted forms for their estimators. Let-
ting μ̂i denote the fits obtained by either neural network fitting or local scoring, model
calibration uses the same expression as the model-assisted estimator t̂MA in (14) but

replaces the μ̂i by μ̂∗i = μ̂iβ̂, with β̂ the estimated coefficient from regressing the
yi on the μ̂i using design-weighted least squares regression. The resulting estimator
is then calibrated for

∑
U μ̂i. In Opsomer et al. (2008), the idea of model calibra-

tion is further extended by combining the μ̂i from the GAM with additional covari-
ates into a multivariate linear model, with the resulting estimator calibrated for all
the variables included in that linear model. This estimator can again be written as a
weighted sum of the observations (ignoring the fact that the μ̂i themselves depend on
the yi).

2.4. Smoothing parameter selection

Nonparametric regression applications require the specification of one or several
smoothing parameters, such as the bandwidth in kernel regression or the penalty in
spline regression. Selecting the “right” amount of smoothing is a challenging topic in
the model-assisted context, further complicated by the fact that in a typical survey appli-
cation, a single set of survey regression weights is applied to all the survey variables.
Because the best smoothing parameter choice depends on the variable being smoothed,
no single parameter value (and hence single set of survey weights) will be optimal for
all variables in the survey. Nevertheless, it is of interest to have a method to select the
amount of smoothing for those cases when precision for a single variable or a small set
of them can justify the development of a specifically targeted estimation procedure.

Opsomer and Miller (2005) proposed an automated bandwidth selection method for
the LPR estimator that estimates the bandwidth h minimizing the design mean squared
error (21).They note that minimizing the traditional estimator of the design mean squared
error, V̂

(
t̂MA

)
in (22), tends to pick bandwidths that are much too small and instead

propose a cross-validation-based estimator. The estimator is the minimizer of

CV(h) =
∑
i,j∈s

(
yi − μ̂(−)i

)(
yj − μ̂(−)j

) πij − πiπj
πiπj

1

πij
,
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where μ̂(−)i is the LPR fit computed as in (20) but with observation i removed from the
sample. The criterion CV(h) is a complicated function of h that needs to be evaluated
numerically to find its minimum. Computations can be greatly simplified because μ̂(−)i

is easily written as a function of μ̂i so that it is only necessary to fit the LPR once for
each value of h. Simulations in Opsomer and Miller (2005) show that the minimizer
of CV(h) is able to successfully adjust the amount of smoothing to the characteristics
of the underlying function μ(·), even for moderate sample sizes. Smoothing parameter
selection for the other nonparametric model-assisted estimators described in this sec-
tion has not been formally studied, but the principle of using a cross-validation-based
criterion based on the design mean squared error should apply for the PSP estimator, as
well as the more complicated GAM and neural network cases as well.

3. Nonparametric methods in analytic inference from surveys

In contrast to descriptive inferences about the current state of a real, finite population,
analytic inferences are about model parameters for a hypothetical, infinite population
considered to be a generating mechanism for the current state of the finite population.
Analytic inference from surveys using nonparametric methods is relatively rare in the
literature and not always cleanly divided from descriptive inference. Both nonparametric
density estimation and regression estimation have been used in analytic inferences.

3.1. Nonparametric density estimation

Because no probability density function exists for a finite population, density estima-
tion must be regarded as asymptotic descriptive inference about a limiting sequence of
finite populations (i.e., the finite population distribution function FN(z) defined above is
assumed to converge to a differentiable function F(z) as N →∞) or as analytic infer-
ence about an infinite superpopulation. We focus here on the case of analytic inference,
in which the goal is to estimate the hypothetical probability density function generating
the realized y-values in the finite population.

Bellhouse and Stafford (1999) consider both asymptotic descriptive inference and
analytic inference. Using a design-based approach, they compute design-weighted ker-
nel smooths from sample data as estimates of the corresponding finite population
smooths. They also consider a binned version of the problem, with the range of y
divided into equally-sized bins, leading to a histogram estimate. Finally, they consider
a smoothed version of the histogram. They informally develop asymptotic integrated
mean square errors of the various estimators under model and design and illustrate with
data from the Ontario Health Survey.

Breunig (2001) takes a purely model-based approach to density estimation in the
context of survey data from a clustered design. This work accounts for the correlation
structure induced by the clustering but ignores all other design features.

Buskirk and Lohr (2005) extend earlier work of Buskirk (1998, 1999) to a thorough
exploration of design-weighted kernel density estimation in design-based, model-based,
and combined settings. They develop asymptotic theory in these various settings, discuss
bandwidth selection and density estimation near boundaries, and apply the methods to
data from the U.S. National Crime Victimization Survey and from the U.S. National
Health and Nutrition Examination Survey III.
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3.2. Nonparametric regression estimation

One particular type of analytic inference for which nonparametric methods are well-
suited is exploratory data analysis, in which nonparametric scatterplot smoothers are
used to suggest the functional form of the regression relationship between y and x. Korn
and Graubard (1998) use LPR to smooth survey microdata, accounting for complex
design. They do not describe the theoretical properties of this methodology. Bellhouse
and Stafford (2001) use LPR in the same context of exploratory studies. Their goal
is to make inference about the infinite population regression function m(·) from (2).
They take a design-based approach to this inferential problem by constructing bins on
the x-variable and by using the design weights to estimate bin proportions in the finite
population and the y-means within bins. If xi denotes the x-value characterizing the ith
bin, with estimated bin proportion p̂i and bin mean ŷi, then the functionm(·) is estimated
using weighted LPR of ŷi on xi, with the usual kernel weights modified by multiplying
by p̂i . The authors approximate the design expectation and variance of the resulting
estimator and illustrate with data from the Ontario Health Survey.

Smith and Njenga (1992) take a different approach to incorporating nonparametric
regression into analytic inference. They begin by discussing robustness under both
design and model-based inference and propose new methods for robust model-based
analytic inference by using smoothing techniques. Specifically, they suggest kernel
regression of multivariate y study vectors on covariates x to estimate conditional mean
vectors, followed by kernel regression of the resulting multivariate residuals on x to
estimate conditional covariance matrices. These nonparametric estimates are robust
to model misspecification and can be used for analytic inferences about regression
coefficients or for multivariate analyses about the relationships among components of
the y vector.

Yet another approach to employing nonparametric regression in analytic inference
is proposed by Chambers et al. (2003). This approach builds on the corresponding
parametric approach developed in Pfeffermann and Sverchkov (1999). The idea of that
article is to avoid the potential bias caused by nonignorable sampling designs by using
the sample distribution of the sample measurements in maximum likelihood estimation.
This sample distribution is related to the conditional distribution of the study variable
and the conditional distribution and conditional mean of the sample selection probabi-
lities. These quantities are estimated parametrically in Pfeffermann and Sverchkov
(1999) and nonparametrically in Chambers et al. (2003) under various data scenar-
ios. The simplest of these scenarios, for example, leads to an estimator that uses a
design-weighted version of the Nadaraya–Watson estimator.

The demand for flexible, robust procedures in all aspects of inference from complex
surveys suggests that nonparametric methods have great potential in this area. The three
approaches described in this section have tapped some of that potential, but it is clear
that much further work remains to be done, and this should be a fruitful area of future
research.

4. Nonparametric methods in nonresponse adjustment

In Section 2, nonparametric methods were used to improve the efficiency of survey esti-
mators by taking advantage of the relationship between auxiliary variables available for
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the population and the survey variables. In this section, we describe how nonparametric
methods can also be used to adjust survey estimators for the presence of nonresponse,
when the response mechanism is related to an auxiliary variable available for the original
sample. We focus here on the case of unit nonresponse.

Nonresponse is pervasive in surveys and can induce bias if it is not properly accounted
for. In the context of unit nonresponse, the most commonly used approach is to adjust the
weights of the responding observations by incorporating estimates of the probabilities
that the units are respondents. This can be done implicitly, as in the weighting cell
estimator, or explicitly by specifying and fitting a response probability function and
obtaining new weights. In both cases, the response process can be viewed here as a
second phase of sampling, with unknown probability mechanism. This nonresponse
phase follows the first phase of sampling, which is determined by the original sampling
design. Särndal and Swensson (1987) formally describe the two-phase framework for
nonresponse and the types of approaches that can be used to adjust survey estimators
for nonresponse.

Suppose that we have a sampling design p(·) with corresponding inclusion proba-
bilities πi, i ∈ U, and that, in the absence of nonresponse, we were planning to estimate
the population total ty by the Horvitz–Thompon estimator in (10) based on the sample s.
Because of nonresponse, we only observe r ⊆ s. Since the random process generating
r is typically unknown, we need to assume a model for the response mechanism. Let
Ri = 1 if i ∈ r and 0 otherwise. As is often done in the nonresponse modeling context,
we will assume that the Ri are independent Bernoulli random variables with

Pr{Ri = 1} = φi, 0 < φi ≤ 1, ∀i ∈ U (24)

(see also Chapter 8 or 25).
For the weighting cell estimator, the population is divided intoG cells,U = ∪Gg=1Ug,

and in each cell, the (average) response probability is estimated by the fraction of the
sampled respondents in cell g. This fraction is usually computed as

∑
rg
wi/

∑
sg
wi,

where sg = s ∩ Ug; rg = r ∩ Ug, with either wi = 1/πi or wi = 1. In what follows, we
will only consider the former case. The weighting cell estimator for ty is defined as

t̂wc =
G∑
g=1

(∑
sg
wi∑

rg
wi

)∑
rg

wiyi. (25)

From this expression, it is easy to see that in each cell, the estimator of the cell total is
ratio-adjusted by the inverse of the weighted proportion of respondents in the cell.

A number of authors have studied the properties of the weighting cell estimator,
including Oh and Scheuren (1983), Särndal et al. (1992, p.578) (using the term “response
homogeneity group” for the cells), and Kim and Fuller (1999).Acommon assumption in
the study of the design-based properties of t̂wc is that the cells are correctly specified, in
the sense that they correspond to well-defined and known population groups in which the
response indicators Ri are independent and identically distributed with Pr {Ri = 1} =
φg, i ∈ Ug. Although these authors showed that t̂wc is consistent under this assumption,
it was not clear what happens when the cells are not correctly specified.

Da Silva and Opsomer (2004) investigate the theoretical behavior of t̂wc using
nonparametric methodology. Instead of assuming that the cells correspond to known
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response categories in the population, they consider the situation in which the response
probability φi = φ(xi), with xi an auxiliary variable observed for all elements in the
sample andφ(·) an unknown smooth function. The weighting cells are formed by sorting
the sample on the xi and dividing the range of xi into G groups. Under this scenario,
the grouping can be thought of as a very simple form of smoothing, with the unknown
function φ(·) approximated by a piecewise constant fit, and G a “smoothing parame-
ter” similar to the bandwidth h or the penalty λ in the previous sections. Da Silva and
Opsomer (2004) prove that t̂wc is a consistent estimator of ty under quasi-randomization
(i.e., the combination of the sampling design and the response mechanism) under mild
conditions, provided that G is allowed to increase as the sample size increases. Unlike
the previous authors studying the weighting cell estimator, they do not require the cells
to be correctly specified.

While the weighting cell estimator can be considered a simple nonparametric estima-
tor, it is possible to construct nonresponse adjusted estimators that incorporate nonpara-
metric regression methods more fully. This type of estimator will be based on explicit
estimation of the unknown response probability function φ(·) and the ideas of two-phase
estimation. Starting again from the Horvitz–Thompson estimator in (10), suppose the
response probability function φ(·) were known. The two-phase estimator

t̂φ =
∑
r

yi

πiφ (xi)
(26)

is unbiased and consistent under quasi-randomization. This estimator is infeasible so
that it is replaced by

t̂̂φ =
∑
r

yi

πiφ̂i
, (27)

with φ̂i an estimate of φ(xi).
Many authors have considered parametric specifications for φ(·), including Kim and

Kim (2007). We discuss the nonparametric case here. The use of kernel-type smoothing
methods in the nonresponse context was first proposed by Giommi (1984, 1987) and
further discussed by Niyonsenga (1994, 1997). Neither of these authors provided formal
theoretical results on their nonparametric estimators. Recently, Da Silva and Opsomer
(2006) studied the properties of the estimator in (27) with the response probability
functionφ(·) estimated by a sample-weighted kernel regression estimator of the response
indicators. The estimator is a special case of the estimator in (20), with ys replaced by
the vector of response indicatorsRi in the sample and the degree of the local polynomial
q = 0, that is, the local design matrix in (17) replaced by a vector of ones. The resulting
estimator can be written as

φ̂i =
⎛
⎝∑
j∈s
K

(
xj − xi
h

)
1

π j

⎞
⎠
−1 ∑

j∈s
K

(
xj − xi
h

)
Rj

πj
. (28)

The results of Da Silva and Opsomer (2006) for the estimator (27) with φ(xi) esti-
mated by (28) show that the nonparametric nonresponse adjusted estimator is quasi-
randomization consistent for ty under mild conditions. They also found that t̂̂φ does not
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have the same asymptotic distribution as t̂φ, but that the estimation of the response
probability function φ(·) contributes additional terms in the asymptotic approximation.
This implies that if the estimated response function is treated as if it were known for
the purpose of inference, it is likely that the variance will be incorrectly estimated. Kim
and Kim (2007) found a similar result in the parametric case.

5. Nonparametric methods in small area estimation

As a final application of nonparametric methods in the survey context, we discuss appli-
cations in small-area estimation. Cowling et al. (1996) present two applications of spatial
smoothing in a small-area estimation context. The first use of smoothing is in making
small-area estimates less variable. The procedure adjusts the original weights to allow
for deviations from benchmark totals, then the modified weights are spatially smoothed
via a kernel over geographic neighborhoods to get less spatial variability in the weights.
The result is more stable small-area estimates. The second application uses design-
weighted kernel smooths to get maps of estimates of the characteristic over a spatial
domain. No properties are derived for either of these methodologies.

In two recent developments, nonparametric methods are brought directly into clas-
sical methods for small-area estimation. Mukhopadhay and Maiti (2004) propose an
extension of the area-level model in which the linear mean function is replaced by
a nonparametric function to be estimated by kernel regression, while Opsomer et al.
(2008) consider an element-level model and use penalized spline regression.

Suppose the population contains T small areas of interest, indexed by t. The non-
parametric area-level model studied by Mukhopadhay and Maiti (2004) is

yt = m(xt)+ ut + εt, (29)

where ut and εt are distributed independently as N (
0, σ2

u

)
and N (0,Dt)withDt known.

Ifm(·) is a linear function, this model is usually called the Fay–Herriot model (Fay and
Herriot, 1979). The purpose of small-area estimation methods for model (29) is to predict
ỹt = m(xt)+ut , and in the linear model case, empirical best linear prediction (EBLUP)
methods or hierarchical Bayesian methods are typically used. The prediction procedure
starts by estimating m(·) by the LPR estimator (3) with q = 0 so that the matrix Xx in
(4) is replaced by a vector of ones (as was done in Section 4). The small-area variance
σ2
u is estimated by σ̂2

u =
∑T

t=1

{
(yt − m̂ (xt))2 −Dt

}
/T , possibly adjusted to ensure

non-negativity, and the predictor for ỹt is defined in analogy to the EBLUP as

ŷt = γ̂tyt + (1− γ̂t) m̂ (xt) (30)

with γ̂t = σ̂2
u

/(̂
σ2
u +Dt

)
. Mukhopadhay and Maiti (2004) derive an asymptotic approx-

imation to the prediction mean squared error of ŷt, E
(̂
yt − ỹt

)2
, and a plug-in estimator

for that quantity.
Because of close connections between EBLUP and penalized spline regression

(see Wand, 2003), penalized splines provide a convenient approach for integrating
nonparametric models into small-area estimation. Opsomer et al. (2008) extend the
linear element-level mixed model small-area estimation approach described in Battese
et al. (1988) to the setting in which the mean function can be nonparametrically (or
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semiparametrically) specified. The model is

yi = m(xi)+ dTi u+ εi, (31)

where di = (d1i, . . . , dTi)
T is a vector of indicators with dti = 1 if element i is

in the small-area t and zero otherwise, u = (u1, . . . , uT )
T is a vector of mutually

independent small-area effects with mean 0 and variance σ2
u, and εi is the random error

with mean 0 and variance σ2
ε , independent of u. The nonparametric function m(·) is

expressed as a spline function as in (5). Following Wand (2003), we rewrite this as
m(xi) = xTi β+ zTi γ , with xi=

(
1, xi, . . . , x

p

i

)T
, zi=

(
(xi − κ1)

p
+ , . . . , (xi − κJ)p+

)T
,β

a vector of unknown parameters, and γ a vector of independent random variables with
mean 0 and variance σ2

γ . The full model is therefore

yi = xTi β + zTi γ + dTi u+ εi. (32)

The term zTi γ is a random deviation from the fixed linear trend in the population, and
dTi u is the random effect for small-area i. The goal of the small-area estimation is now
the prediction of ỹt = xTt β + zTt γ + ut , where we assume that xt and zt are known.

The critical point of the formulation (32) is that we have once again expressed the
model as a linear element-level mixed effect model so that the full range of EBLUP
methods can be applied. Opsomer et al. (2008) propose restricted maximum likelihood
estimation to estimate the parameters β, σ2

γ , σ
2
u, σ

2
ε , and predict ỹt by

ŷt = xTt β̂ + zTt γ̂ + ût, (33)

with

β̂ = (
XT V̂−1X

)−1
XT V̂−1Y

γ̂ = σ̂2
γZ

T V̂−1
(
Y −Xβ̂

)
û = σ̂2

γD
T V̂−1

(
Y −Xβ̂

)
,

where X= (x1 . . . , xn)
T and Y , Z, and D are defined analogously. Further, V̂ is the

estimated variance–covariance matrix of Y obtained by plugging the REML estimates
of the variance parameters in the variance–covariance matrix of Y . The asymptotic
approximation to the prediction mean squared error of ŷt is shown to directly generalize
that obtained in the absence of the spline random effect, and a bias-corrected estimator
for the prediction mean squared error is provided. Opsomer et al. (2008) also discuss
likelihood ratio testing for the variances of the random effects and propose a simple
nonparametric bootstrap for inference.
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Resampling Methods in Surveys

Julie Gershunskaya, Jiming Jiang and P. Lahiri

1. Introduction

Much of the sample survey theory has been developed since the 1930s. Neyman (1934)
laid the foundation of the randomization or design-based approach for inference in
finite population sampling. Neyman’s article prompted the publication of a number of
influential papers on design-based methods in the late 30s and 40s. See Rao (2005a) for
a detailed history on the development of sample survey theory and applications. Under
the randomization approach, the probability sampling mechanism that is used to draw
a sample from the finite population forms the basis of inference, and the values of the
characteristic of interest for the finite population are viewed as nonstochastic.

The model-based and model-assisted approaches for inference from a finite popula-
tion have more recent origins, although the use of a superpopulation in finite population
sampling can be traced back to Cochran (1939). Under the model-based prediction
approach, the finite population is assumed to be a realization from a hypothetical super-
population characterized by a probability distribution, a model serving all inferential
purposes. Details of the prediction approach to finite population sampling can be found
in Bolfarine and Zacks (1992), Valliant et al. (2000), and Chapter 23 of this volume. The
Bayesian approach for inferences from a finite population also assumes a superpopu-
lation model. It differs from the prediction approach in that a prior distribution on the
parameters of the superpopulation model is assumed and the posterior distribution – the
conditional distribution of the finite population parameter of interest given the sample –
is used for all inferences. We refer the readers to Ghosh and Meeden (1997) and Chapter
29 for details on the Bayesian approach to finite population sampling.

The uncertainty associated with a survey estimate is commonly expressed in terms of
its standard error estimate or a measure related to the standard error estimates, such as
estimated coefficient of variation or a confidence interval. For a linear survey estimator,
the estimation of its design-based standard error for a simple probability sample design
is straightforward and involves obtaining an exact expression of the true design-based
variance and then estimating the true design-based variance by a design-based unbiased
estimator. However, the application of such direct approach is quite complicated for
a complex sample design, which typically involves multiple stages of sampling and
stratification at various stages.
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In the context of jute acreage surveys conducted in Bengal, the Indian scientist
P. C. Mahalanobis developed the method of interpenetrating subsamples to estimate the
total variance of a survey estimator in presence of measurement errors (Mahalanobis,
1946). The method involves a random assignment of half-samples, drawn directly from
the population, to two independent groups of interviewers. The interpenetrating subsam-
pling technique is probably the first attempt to simplify variance estimation in complex
surveys.

Replicated samples (Deming, 1956) and ultimate cluster technique in multistage
sample design (Hansen et al., 1953) exploit ideas similar to that of Mahalanobis’ inter-
penetrating subsamples method. The methods, commonly referred to as random group
methods, involve either drawing two or more subsamples from the finite population
or splitting the original sample into several random subgroups, constructing separate
estimate of the parameter of interest from each subsample and an estimate from the
pooled sample, and computing the variance among the several estimates. Thus, the ran-
dom group methods offer several subsamples from which to draw inferences, a minor
hurdle being that the estimates from the replicated subsamples are not independent
unless subsamples are being replaced into the population before each draw. The appeal
of the simple variance estimation for any estimator using several smaller subsamples is
diminished because of the loss of efficiency. If the number of random groups is small,
then variance estimation becomes unstable. On the other hand, with an increased num-
ber of random groups, the replicated subsamples become small and yield less efficient
estimates than the original (or pooled) sample.

One possible remedy for the practical difficulty associated with the random group
methods is to consider resampling methods, which are similar to the random group
methods in terms of constructing variance estimates from the variation of the estimates
for the subsamples, but differ in that they use subsamples that overlap. There are different
resampling methods considered in the literature. The major difference among them is
the way the subsamples are formed. The challenge of a resampling technique in surveys,
for the most part, lies in its ability to resample from the original sample in such a way
as to account for the original sample design.

The design-based variance estimation becomes more complex as one considers non-
linear estimators such as ratio, correlation coefficient, etc. for complex sample designs.
There are several approaches for estimating the design-based variances of nonlinear
estimators. The Taylor series method (also called the delta method) is one of them.
Essentially, the method obtains an estimator of the design-based variance of a linear
approximation to the nonlinear estimator by one of the methods available for estimat-
ing variances of linear estimators, including resampling methods. The delta method is
widely used for simple nonlinear smooth estimators and is available in many software
packages. However, this approach cannot be used for nonsmooth statistics.

A practical inconvenience of the Taylor linearization approach is that the form of
variance estimator changes with the change of the nonlinear estimator. In contrast,
resampling methods are available for obtaining a consistent estimator of the design-
based variance for any estimator. The resampling methods are versatile in the sense
that the same method can be applied for both smooth and nonsmooth statistics and for
any complex survey design. In addition, the method remains the same in computation
of the prediction variance of any estimator under the prediction approach to the finite
population sampling.
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One important application of resampling methods is in the small area estimation to
estimate the mean squared errors of empirical best predictors (EBP) under nonlinear
mixed models, where the Taylor series method is hard to apply, one reason being the
complex derivative computations.

In Section 2, we use a simple setting to introduce two of the most common resampling
plans used in survey sampling – the jackknife and the bootstrap. In Section 3, we describe
modifications of the techniques to adjust for more complex situations of a stratified
multistage design and more complex estimators. Section 4 considers variance estimation
in presence of imputation for missing values. In Section 5, we review methods for the
two-phase sample design. In Section 6, we consider resampling methods to compute the
prediction variance of nonlinear predictors under prediction approach to finite population
sampling. Section 7 contains a discussion on the application of the resampling techniques
in the small area estimation.

2. The basic notions of bootstrap and jackknife

Consider a finite population of N units labeled by U = {1, . . . , N}. Let yi denote
the value of a study variable for the ith unit of U (i = 1, . . . , N). Suppose we are
interested in estimating the population total Y = ∑i∈U yi. Let s = {i1, . . . , in} denote
a sample of size n drawn from the finite population U. In this section, using a sim-
ple random sampling (SRS) setting, we explain the basic concepts of the bootstrap
and jackknife and explore how these methods relate to the traditional direct analytic
method.

Under the simple random sampling, an unbiased estimator of Y is given by Ŷ =
(N/n)

∑
i∈s yi =

∑
i∈s wiyi, where wi = N/n, commonly referred to as the sampling

weight, is the number of population units represented by the ith sampled unit. Note
that Ŷ is the well-known Hansen–Hurwitz estimator (Hansen and Hurwitz, 1943) for
SRS with replacement (SRSWR), or unrestricted random sample design, and Narain-
Horvitz-Thompson estimator (Horvitz and Thompson, 1952; Narain, 1951) for SRS
without replacement (SRSWOR) design. We can write Ŷ = ∑i∈U wikiyi, where ki is
the number of times the population unit i appears in the sample.

The variance of Ŷ under a SRSWR design has an explicit simple form

VarWR
(
Ŷ
) = N (N − 1)

n
S2, (1)

where S2 = (N − 1)−1∑
i∈U (yi − Y)2, the finite population variance, and Y =

N−1∑
i∈U yi, the finite population mean.

Note the following relationship between the variances under SRSWOR and SRSWR
designs:

VarWOR
(
Ŷ
) = N − n

N − 1
VarWR

(
Ŷ
)

(2)

(see, e.g., Cochran, 1977).
Let y = n−1∑

i∈s yi and s2 = (n − 1)−1∑
i∈s (yi − y)2 be the sample mean and

variance, respectively. Note that under the SRSWR sampling, the expectation of s2 is
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(N − 1)N−1S2. Hence, an unbiased estimator of VarWR(Ŷ ) is given by

varwr
(
Ŷ
) = N2

n
s2 (3)

The aim of the following subsections is to investigate the extent to which one can
reproduce the variance estimator varwr using resampling procedures.

2.1. The bootstrap

The bootstrap, as introduced by Efron (1979), is perhaps the most natural and simple
resampling method. The algorithm consists of SRSWR from the original sample, the
resample size being usually equal to that of the original sample. The sample obtained
at one iteration of the algorithm is called the bootstrap sample, and is denoted s(b). Let
k
(b)
i be the number of times a unit i from the original sample appears in the bootstrap
sample s(b). Define the bootstrap weights as w(b)i = wik(b)i , for i ∈ s. Then the bootstrap
estimate of the total is given by

Ŷ (b) =
∑
i∈s
w
(b)
i yi. (4)

Consider the distribution of Ŷ (b) over the nn possible bootstrap samples. The formula
for the exact bootstrap variance Var∗ with respect to this distribution is analogous to (1):

Var∗
{
Ŷ (b)
} = n(n− 1)

n

1

n− 1

∑
i∈s

(
N

n
yi − N

n
y

)2

= (n− 1)

n
varwr

(
Ŷ
)
. (5)

Hence, the bootstrap underestimates the true variance by the factor (n− 1)/n.
In practice, resampling procedure stops after B Monte Carlo iterations, and the

bootstrap variance estimate is obtained as

vB
(
Ŷ
) = 1

B

B∑
b=1

{
Ŷ (b) − Ŷ

}2
. (6)

In (6) the replicate average Ŷ
(b) = B−1∑B

b=1 Ŷ
(b) is often used in place of Ŷ ; this alter-

native variance formula, however, provides a variance estimate that is less conservative
than vB

(
Ŷ
)
.

Two alternatives to the aforementioned bootstrapping strategies are now presented.
Plan A. Subsamples of size m �= n are selected with replacement from the original

sample.
The bootstrap weights are adjusted to w(b)i,m = λ

(b)
i wik

(b)
i , where λ(b)i = n/m, is an

adjustment factor needed to maintain the unbiasedness of the replicate estimates. The
bootstrap replicate estimate is given by Ŷ (b)m,wr =

∑
i∈s w

(b)
i,myi (subscripts in Ŷ (b)m,wr index

the size of subsample and the subsampling mechanism). Similar to (5), the exact variance
of Ŷ (b)m,wr over all possible such replicated subsamples is given by

Var∗
{
Ŷ (b)m,wr

}
= n

m
Var∗

{
Ŷ (b)n,wr

}
,
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and

varwr

(
Ŷ
)
= m

n− 1
Var∗

{
Ŷ (b)m,wr

}
. (7)

Thus, with-replacement resampling with m = n− 1 yields the unbiased estimate of
variance.

Plan B. Subsamples of size m < n are drawn without replacement.
The bootstrap variances of replicate estimates obtained under the without-

replacement bootstrap scheme relate to the similar estimates obtained from the with-
replacement sampling as follows:

Var∗
{
Ŷ (b)m,wor

}
= n−m
n− 1

Var∗
{
Ŷ (b)m,wr

}
.

This is analogous to (2), after replacing the population and sample counts by n and
m, respectively. Therefore,

varwr

(
Ŷ
)
= m

n−mVar∗
{
Ŷ (b)m,wor

}
. (8)

It is interesting to note that the delete-one and delete-d jackknife schemes considered
later in this chapter correspond to m = n − 1 and m = n − d, d > 1 of the bootstrap
Plan B, respectively.

Remark. In the bootstrap reweighting scheme described in both Plan A and Plan B,
for the bootstrap sample b, the original weight is multiplied by an adjustment factor
λ
(b)
i = n/m if the original sampled unit is selected in the bootstrap sample and zero

otherwise. In other words, the omitted original sampled units are removed at the time of
estimation from the bootstrap sample. It is, however, possible to develop an alternative
bootstrap weighting scheme that uses all the original sampled units. It can be shown
that the following adjustment factors meet the desirable properties that (1) the resulting
bootstrap estimator Ŷ (b)m is an unbiased estimate of Y and (2) the bootstrap variance
matches varwr(Ŷ ):

(i) If the bootstrap samples are selected with replacement,

λ
(b)
i,wr =

{
1− ( m

n−1

)1/2 + ( m
n−1

)1/2 n
m
, if i ∈ s(b),

1− ( m
n−1

)1/2
, if i /∈ s(b);

(9)

(ii) If the bootstrap samples are selected without replacement,

λ
(b)
i,wor =

{
1+ ( n−m

m

)1/2
, if i ∈ s(b),

1− ( m
n−m
)1/2

, if i /∈ s(b).
(10)

2.2. The jackknife

The original idea of the method can be attributed to Quenouille (1949) who used this
method to reduce the bias of an estimator of the serial coefficient. In a follow-up article,
Quenouille (1956) examined the properties of this bias reduction method in the context
of infinite population. Tukey (1958) noted that the same approach could be used for
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the variance estimation and gave it the name “jackknife.” Durbin (1959) was the first to
consider the application of jackknife in the design-based approach to the finite population
sampling.

The delete-one-unit jackknife samples are constructed from the original sample by
omitting one unit at a time. Let s(j) denote a jackknife sample obtained by deleting the
jth original sampled unit. Because the jackknife sample size is n− 1, smaller than the
original sample size, the sampling weights need to be adjusted.

The jackknife weights are defined as follows:

w
(j)

i =
{
win(n− 1)−1, if i ∈ s(j)
0, otherwise.

Define the jackknife replicate estimates of Y as Ŷ (j) = ∑
i∈s w

(j)

i yi (j = 1, . . . , n).
Then, the jackknife estimator of the design-based variance of Ŷ is given by

vJK(Ŷ ) = n− 1

n

n∑
j=1

{
Ŷ (j) − Ŷ

}2
. (11)

Note that for the simple linear estimator, Ŷ , we get identical jackknife variance estimator
if Ŷ , in (11), is replaced by n−1∑n

j=1 Ŷ
(j) because Ŷ = n−1∑n

j=1 Ŷ
(j). Unlike the boot-

strap estimate, the jackknife formula (11) is not a result of Monte Carlo simulations, but
is an exact variance of the jackknife replicate estimates over all n possible subsamples.
It follows directly from (8) and (11) that varwr

(
Ŷ
) = vJK

(
Ŷ
)
.

For variance estimation for a general estimator θ̂ in the infinite population context,
Tukey (1958) introduced the concept of pseudo values. Here, the pseudo values are
defined as:

θ̃(j) = nθ̂ − (n− 1)θ̂(j), j = 1, . . . , n,

where θ̂(j) is similar to the definition of Ŷ (j). Treating θ̃(j)(j = 1, . . . , n) as iid, Tukey
proposed the following estimator of the variance of θ̂:

vJK(θ̂) = 1

n(n− 1)

n∑
j=1

(θ̃(j) − θ̃(.))2

= n− 1

n

n∑
j=1

(θ̂(j) − θ̂(.))2,

where θ̃(.) = n−1∑n
j=1 θ̃

(j) and θ̂(.) = n−1∑n
j=1 θ̂

(j).A replacement of θ̂(.) in vJK(θ̂) by

θ̂ results in an alternative variance estimator that is more conservative than vJK(θ̂). Note
that for the linear estimator Ŷ , vJK(Ŷ ) is obtained as a special case of Tukey’s formula.

3. Methods for more complex survey designs and estimators

3.1. Variance estimation in stratified multistage sampling

Consider a finite population in which elements are grouped into primary sampling units
(PSU) and the PSUs are grouped into H mutually exclusive and exhaustive strata with
Nh PSUs in stratum h(h = 1, . . . , H ). At the first stage, a sample sh of nh PSUs is
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selected from stratum h with varying selection probabilities and without replacement.
At the subsequent stages, elements or clusters of elements are sampled independently
from each sampled PSU. Let yhik be the value of the characteristic y associated with
the ultimate unit (hik) in the sample s, that is, the sampled element k belonging to the
ith selected PSU in stratum h. Let whik denote the corresponding basic weight, which
is simply the inverse of the inclusion probability for the ultimate unit (hik). The basic
design-unbiased estimator of the population total Y is then given by:

Ŷ =
∑
(hik)∈s

whikyhik.

The direct analytic unbiased estimation of the design-based variance of Ŷ is com-
plicated. For the purpose of variance estimation, it is convenient to assume with-
replacement sampling at the first stage, even though actual sampling is usually done
without replacement. The following simplifying formula for variance estimation is gen-
erally used:

var
(
Ŷ
)
=

H∑
h=1

1

nh(nh − 1)

nh∑
i=1

(
yhi − yh

)2
,

where yhi =∑k∈(hi) nhwhikyhik and yh = n−1
h

∑nh
i=1 yhi. The variance estimator var(Ŷ )

generally results in overestimation, but the relative bias is negligible provided that the
first stage sampling fractions nh/Nh are small.

We now describe the resampling schemes suitable for the stratified multistage
sampling.

3.1.1. The delete-one-cluster jackknife in stratified multistage design
To obtain the delete-one-PSU jackknife estimator, one PSU is omitted at a time from
the original sample. Let s(gj) be a jackknife sample obtained after removing PSU j from
stratum g. The original basic weights are modified as follows:

whik(gj) =

⎧⎪⎨
⎪⎩
whiknh(nh − 1)−1, if h = g, i �= j,
0, if h = g, i = j,
whik, if h �= g.

The jackknife variance estimator for the unbiased estimator Ŷ is then given by

vJK

(
Ŷ
)
=

H∑
h=1

nh − 1

nh

∑
j∈sh

{
Ŷ (hj) − Ŷ h

}2
.

where Ŷ (gj) =∑(hik)∈s whik(gj)yhik, and Ŷ g =∑j∈sg Ŷ
(gj)/ng.

For a nonlinear function of population totals, θ = g(Y), Rao and Wu (1985) consid-
ered different variations of vJK(θ̂) and found them to be asymptotically equivalent. For
example, θ̂h in

vJK(θ̂) =
H∑
h=1

nh − 1

nh

∑
j∈sh

{
θ̂(hj) − θ̂h}2
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may be replaced by n−1
H∑
h=1

∑
j∈sh

θ̂(hj) or H−1
H∑
h=1

θ̂h.

3.1.2. The balanced half samples
The balanced half samples (BHS), also called the balanced repeated replications (BRR),
is another popular method for variance estimation in sample surveys. The basic idea of
the balanced half samples method can be attributed to the work of Hurwitz, Gurney,
and others in the late 1950s and early 1960s in the context of estimating variances of
estimators from the Current Population Survey conducted by the U.S. Census Bureau.
The notion of balancing in the method was formalized by McCarthy (1969) who also
coined the name “pseudoreplication” for the procedure of resampling from the original
sample.

First, consider a stratified design when two elements are selected from each stratum
using SRSWR. Under this sampling design, an unbiased estimator of the population
total Y is given by Ŷ =∑H

h=1 (wh1yh1 + wh2yh2), where wh1 = wh2 = Nh/2.
The variance of Ŷ is

Var
(
Ŷ
) = 1

2

H∑
h=1

Nh(Nh − 1)S2
h,

where S2
h = (Nh − 1)−1∑

i∈Uh (Yhi − Yh)2 and Yh = N−1
h

∑
i∈Uh Yhi.

An unbiased estimator of the variance is

varwr(Ŷ ) = 1

2

H∑
h=1

N2
hs

2
h,

with s2h =
∑

i∈sh (yhi − yh)2 and yh = (yh1 + yh2)/2.
The BHS method consists of drawing replicate subsamples s(α) such that every sub-

sample contains exactly one of the two elements from each stratum. Each subsample s(α)

obtained this way has half the original sample size, and hence the name “half-samples.”
The weight of each unit selected into the sample is, therefore, doubled:

w
(α)

hi =
{

2whi, if i ∈ s(α)h ,
0, otherwise,

where s(α)h denote the set of elements chosen from stratum h in the αth pseudoreplicate.
The αth BHS pseudoreplicate estimate of Y is given by Ŷ (α) =∑H

h=1w
(α)

hi yhi.
The variance of Ŷ (α) over all possible 2H half-samples is equal to the estimate of

variance,

Var∗
{
Ŷ (α)

}
= varwr

(
Ŷ
)
,

which follows immediately from (7).
Note that the total number of replicates increases rapidly with the increase of the

number of strata. The word “balanced” in the name of the method refers to an innovative
technique used to substantially reduce the number of required replications.The reduction
is achieved by using a Hadamard matrix, an orthogonal matrix whose entries are either
+1 or −1.
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A thorough discussion of BHS for complex sampling designs can be found in Wolter
(1985). We only give an outline of the procedure.

The PSUs are first randomly divided into two groups so that each random group
contains exactly one PSU from each stratum. Let δhi = +1 if the unit (hi) is in the
first group and −1 otherwise. Each stratum is ascribed to a column of the Hadamard
matrix of a specific dimension. Rows of the Hadamard matrix define the contents of
replicate half-samples. Let H(α, h) denote the element in the αth row and hth column
of the Hadamard matrix. The replicate half-sample s(α) consists of the units (hi) for
which δhi andH(α, h) are of the same sign. To achieve the full orthogonal balance, any
H columns of the Hadamard matrix can be used except for the column with all+1. The
full orthogonal balance guarantees a desirable property that the average of the replicate
estimates of a linear estimator equals the full sample estimator. The Hadamard matrices
are necessarily of order 1, 2, or a multiple of 4. Thus, the dimension of the Hadamard
matrix applied toH strata is to be betweenH+1 andH+4. This means that the number
of required replications, say A, for the BHS method of the variance estimation can be
reduced to H + 1 ≤ A ≤ H + 4.

The exact variance Var∗
(
Ŷ (α)

)
, based on A replicates, is given by

vBHS

(
Ŷ
)
= 1

A

A∑
α=1

{
Ŷ (α) − Ŷ

}2
.

In case some strata have more than two PSUs, adjustments to the basic BHS plan
are necessary. One approach is to form two random groups of PSUs in each stratum
and apply the BHS to the grouped PSUs as if they were one PSU. This method is
called the grouped BHS (GBHS). The method, however, leads to inefficient variance
estimators (Wu, 1991) and does not produce consistent variance estimators, in a sense
that vGBHS(Ŷ )/varwr(Ŷ ) does not converge to 1 in probability as the strata sample sizes
nh go to infinity (Rao and Shao, 1996).

Rao and Shao (1996) proposed a modification to the GBHS. After the GBHS esti-
mate is computed, PSUs are regrouped into new random groups and the procedure
is repeated. After R such iterations of the GBHS, an average of the R estimates,
vRGBHS = R−1∑R

r=1 vGBHS,r, provides an asymptotically consistent estimator of vari-
ance when R and strata sample sizes increase. This method is called the repeatedly
grouped BHS (RGBHS).

Another modification to the basic BHS method, due to Fay (Judkins, 1990), is partic-
ularly useful when deleting half of the observations could lead to inefficient estimates.
Instead of doubling or zeroing the original weights, as is done in the basic BHS method,
the Fay’s approach perturbs the weights as follows:

w
(α)

hi =
{
(1+ ε)whi, if i ∈ s(α)h ,
(1− ε)whi, otherwise,

where ε is a predefined constant factor. The final formula for the modified or Fay’s, as
the method is often called, BHS (MBHS or FBHS) needs to be adjusted:

vMBHS

(
Ŷ
)
= 1

Aε2

A∑
α=1

{
Ŷ (α) − Ŷ

}2
. (12)

The usual choice for ε is 1/2.
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Rao and Shao (1999) studied the properties of the MBHS for various choices of ε.
They considered a more general case where the sizemh of a replicate sample in stratum
h is not necessarily half of the original sample. Using result (10),

w
(α)

hi =

⎧⎪⎪⎨
⎪⎪⎩

1+ ε
(
nh−mh
mh

)1/2
whi, if i ∈ s(α)h ,

1− ε
(

mh
nh−mh

)1/2
whi, otherwise,

and thus the final formula reduces to (12).

3.1.3. The bootstrap in stratified multistage design
The naïve version of the bootstrap, if applied without adjustments independently in
each stratum, may significantly underestimate the variance. As we observe in (5), the
bootstrap underestimates by the factor (n− 1)/.n. If the sample size nh in stratum h

is small, the underestimation becomes noticeable, and when there are many strata with
small samples, the bias rapidly accumulates. To overcome this problem, several methods
have been considered in the literature.

Rao and Wu (1988) proposed to draw mh PSUs independently from each stratum h

using SRSWR and modify the bootstrap estimates of means using a special adjustment.
Rao et al. (1992) later enhanced the method by rescaling the bootstrap weights instead
of the initially proposed adjustment to values yhik. The bootstrap weights are defined as

w
(b)

hik =
[{

1−
(

mh

nh − 1

)1/2
}
+
{(

mh

nh − 1

)1/2
nh

mh

}
m
(b)

hi

]
whik, (13)

where m(b)hi is the number of times PSU (hi) is selected in the bootstrap sample b,∑
(hi)∈s m

(b)

hi = mh (see result (9) for motivation of the weight adjustment). This method
is called the rescaling bootstrap. In case mh = nh − 1, the formula for weights reduces
to w(b)hik =

{
nh
nh−1

}
m
(b)

hi whik. The method gives consistent estimator of variance of the

estimator θ̂ = g(Ŷ), a smooth function of Ŷ .
In the linear case, when nh > 3 , the choice of mh = (nh − 2)2/(nh − 1) leads

to a bootstrap distribution (i.e., the distribution of the bootstrap estimates) whose third
moment equals the unbiased estimate of the third moment of the estimator. The same
choice ofmh, in case when strata variances σ2

h are known, ensures that the second-order

term of the Edgeworth expansion of Z = (Ŷ − Y)/σ (where σ2 is the true variance of

Ŷ ) matches the second-order term of the bootstrap distribution of this statistic, as the
number of strata increases to infinity.

For smooth functions of population means, Rao and Wu (1988) obtained bootstrap-t
confidence intervals. The idea is to approximate the distribution of t = (θ̂ − θ)/s(θ̂) by
the bootstrap estimates t∗ = (θ̂∗ − θ̂)/ŝ(θ̂∗), where the estimate of s(θ̂∗) can be obtained
using, for example, jackknife variance estimation. The confidence intervals are obtained
using the resulting bootstrap histogram of t∗.

3.2. Bootstrap methods for without replacement sampling

In devising various bootstrap methods, special attention was given to accounting for non-
negligible sampling fractions fh= nh/Nh. Gross (1980) proposed a without-replacement
bootstrap (BWO) method for variance estimation in case of SRSWOR. The method
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consists of generating a pseudo population by replicating each sample measurement k
times, where k = N/n is assumed to be an integer. The SRSWOR of sizen are repeatedly
drawn from the pseudo population a large number (say, B) of times, and the variance is
estimated using the usual bootstrap formula. Unfortunately, this method does not yield
the unbiased variance estimator even for the linear estimator under SRSWOR design.
However, extensions of this method that yield unbiased variance estimates for the linear
case under a variety of sampling designs have been proposed in the literature (Bickel
and Freedman, 1984; McCarthy and Snowden, 1985; Sitter, 1992b).

Rao and Wu (1988) developed variation of their rescaling bootstrap method that
can be applied to sampling with unequal probabilities and without replacement. Sitter
(1992a) proposed a method known as mirror-match bootstrap. We describe it for the
single-stage stratified sampling, extentions are possible for the two-stage design and the
Rao–Hartley–Cochran (1962) method of pps sampling. From each stratum h, SRSWOR
of size n

′
h < nh are drawn independently kh times. After each draw, resamples are

replaced into the original sample. The number of times the resamples are drawn is
kh = nh

(
1− f ∗h

)
/nh

′(1 − fh), where f ∗h = nh
′/nh. The resulting bootstrap sample

size is n∗h = nh
(
1− f ∗h

)
/(1− fh). In case kh is not an integer, Sitter suggested to use

randomization between bracketing integers. The method yields a consistent variance

estimator for θ̂ = g(Ŷ). For linear statistics, when fh ≥ 1/nh, the choice of n
′
h = fhnh

(hence, f ∗h = fh, and the name, “mirror-match”, of the procedure) ensures that the
bootstrap histogram matches the Edgeworth expansion as the number of strata increases
to infinity.

For a multistage design with SRSWOR and with nonnegligible sampling fractions,
Funaoka et al. (2006) proposed a bootstrap method that yields consistent variance
estimates for smooth and nonsmooth statistics. They called this method the Bernoulli
bootstrap. To form a bootstrap sample, at each stage of the design, a unit is either
kept in the bootstrap sample with some preassigned probability or replaced by a ran-
domly selected unit from the sample. The procedure is repeated multiple times and the
bootstrap estimate of variance is obtained using the standard bootstrap formula. The
appeal of the method is its simplicity. The algorithm can be easily applied to sam-
pling designs with three or more stages. In addition, the size of a bootstrap sample
equals the original sample size, which is a desirable property in the case of impu-
tation and the necessity to account for the variability associated with the imputation
procedure.

3.3. More complex estimators

The estimator θ̂ is a linear estimator if it can be expressed as a linear function of the
sample indicators. The sample indicator for a population unit takes the value 1 if the unit
is sampled and 0 otherwise. Methods and the exact properties of variance estimators,
considered in the previous sections, are readily extendable to the class of all linear
estimators, but the main attraction of the replication methods is that the algorithm and
the final formula can be applied without changes to more complex estimators.

Consider the class of nonlinear smooth functions of linear estimators. This class will
be of interest when, for example, the target population quantity is a smooth function of
a vector Y of population totals θ = g(Y). An estimator of θ is given by θ̂ = g(Ŷ), where
Ŷ is a linear design-based unbiased estimator of Y. For this class of estimators, Krewski
and Rao (1981) established the consistency of the variance estimators obtained by the



132 J. Gershunskaya, J. Jiang and P. Lahiri

Taylor linearization, jackknife, and BHS methods when the number of strata increases.
In the previous subsection, we already mentioned that the rescaling bootstrap method
of Rao, Wu, and Yue and the mirror-match approach of Sitter also yield consistent
estimators of the variances for a nonlinear smooth functions of linear estimators (Rao
and Wu, 1988; Sitter, 1992a) .

3.3.1. Delete-d jackknife for nonsmooth statistics
In many situations, we are interested in nonsmooth statistics such as, for example, the
estimator of population quantiles. It is known (see Efron, 1982; Miller R.G., 1974b)
that the delete-one-unit jackknife does not produce consistent estimators of variances
for nonsmooth estimators. To treat this limitation of the jackknife, Shao and Wu (1989)
proposed a modification called the delete-d jackknife. Instead of deleting one unit at
a time, the delete-d procedure omits d observations. The variance is computed by for-
mula (8) withm = n− d. The factor in formula (8) depends on the number d of deleted
observations, and d can be chosen according to a measure of smoothness of the estima-
tor to adjust the factor so that the final formula could produce a consistent estimator.
In spirit, the delete-d jackknife is very similar to a particular form of bootstrap. The
computations intensify with the increase of d. To reduce the number of replications,
Shao and Wu proposed a balanced subsampling scheme. Motivated by the results, Rao
et al. (1992) suggested that, in case of a multistage design, the delete-one-PSU jack-
knife might perform somewhat similar to the delete-d and better than the delete-one-unit
jackknife for the iid case.

3.3.2. The generalized regression estimator
The generalized regression (GREG) estimator of Y is given by

ŶGREG =
∑
(hik)∈s

w∗hikyhik,

where

w∗hik = whikghik,
ghik = 1+ xThikÂ−1

(
X− X̂

)
,

X̂ =
∑
(hik)∈s

whikxhik,

Â =
∑
(hik)∈s

whikxhikx
T
hik,

xhik being a vector of auxiliary variables with known population totals X (see also
Chapter 25).

The following model-assisted variance estimator of ŶGREG has been suggested by
Särndal et al. (1989):

var(ŶGREG) =
H∑
h=1

1

nh(nh − 1)

nh∑
i=1

(
e∗hi − e∗h

)2
,
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where e∗hi =
∑

k∈(hi) nhw
∗
hikehik, ehik = yhik − xThikB̂, B̂ = Â−1b̂, b̂ =∑(hik)∈s whikxhik

yhik, and e∗h = n−1
h

∑nh
i=1 e

∗
hi.

The jackknife estimator for ŶGREG can be constructed as follows. Define the jackknife
variance replicate estimate when PSU (gj) is deleted as

Ŷ
(gj)

GREG =
∑
(hik)∈s

w∗hik(gj)yhik,

where w∗hik(gj)=whik(gj)ghik(gj), and ghik(gj) is obtained from ghik when Â and X̂ are

replaced by Â(gj) and X̂(gj) respectively. The definitions of Â(gj) and X̂(gj) are exactly
the same as Â and X̂ respectively, except that whiks are replaced by whik(gj).

The jackknife estimator is

vJK

(
ŶGREG

)
=

H∑
h=1

nh − 1

nh

∑
j∈sh

{
Ŷ
(hj)

GREG − ŶGREG

}2
.

Yung (1996) established asymptotic equivalence of vJK(ŶGREG) and var(ŶGREG)

of Särndal et al. (1989) to the higher order term for the stratified paired selection
design. Yung and Rao (1996) linearized the jackknife variance estimator vJK(ŶGREG)

and obtained the jackknife linearization variance estimator that is identical to
var(ŶGREG).

The computation of the jackknife variance estimator vJK(ŶGREG) requires the inver-
sion of the matrix Â(gj) for each replicate. This can be avoided by applying the following
approximation to ghik(gj) that uses the inverse of the full sample matrix Â:

g̃hik(gj) = 1+(whik/whik(gj)) xThikÂ−1
(
X− X̂(gj)

)
.

The resulting variance estimator is identical to the standard linearization variance estima-
tor, which is obtained from var(ŶGREG) when w∗hik is replaced by whik in the definitions
of e∗hi, and e∗h.

3.3.3. Estimating function approach
Most often the goal of a survey is to estimate descriptive characteristics of a finite
population, for example, population means, totals, functions of population totals, etc.
In other cases, when more complex interrelationships of population measurements are
of interest, a specific model is assumed for the population, and the aim of the survey is
to estimate the parameters of a model. Whether there is an assumed model or not, most
finite population parameters of interest, θ, can be formulated as a solution to population
estimating equations

U(θ) =
∑

(hik)∈U
uhik(θ) = 0. (14)

See Binder (1983), Godambe and Thompson (1986a), and Chapter 26 of this volume.
The problem reduces to the estimation of the finite population totals U(θ) by Û(θ) =∑
(hik)∈s whikuhik(θ) and solving for θ the sample estimating equations Û(θ) = 0.
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In general, the solution to the estimating equations is obtained using iterative algo-
rithms. For example, at the rth step of the Newton–Raphson algorithm

θ̂r = θ̂r−1 +
{
Ĵ
(
θ̂r−1

)}−1
Û
(
θ̂r−1

)
,

where Ĵ (θ̂r−1) is Ĵ (θ) = −∂Û(θ)/∂θ evaluated at θ̂r−1.
The customary jackknife or bootstrap variance estimator uses replicate estimates θ̂(b)

that are solutions to corresponding replicate sample estimating equations

Û(b)(θ) =
∑
(hik)∈s

w
(b)

hikuhik(θ) = 0,

where w(b)hik are the corresponding replication weights. The one-step Newton–Raphson
estimator is obtained as

θ̂(b) = θ̂ +
{
Ĵ (b)(θ̂)

}−1
Û(b)

(
θ̂
)

(15)

by using the full-sample estimate of θ as a starting value. The problem is that matrix
Ĵ (b)(θ̂) in (15) is not always invertable for every replicate. The replicate estimates can
be obtained by using Ĵ (θ̂) that is based on the full sample (Rao and Tausi, 2004):

θ̃(b) = θ̂ +
{
Ĵ (θ̂)

}−1
Û(b)

(
θ̂
)
,

thus avoiding the need to invert every replicate matrix Ĵ (b)(θ̂). See also Rao (2006).

4. Variance estimation in the presence of imputation

Nonresponse is a common persistent problem in surveys. Missing responses are often
filled in or imputed using different imputation methods. It is important to account for
the added uncertainty in the data whenever imputation is used. Ignoring the fact that
part of the data is imputed rather than observed and treating the approximate data as true
observed values leads to an underestimation of the variance. Therefore, adjustments to
the replication procedure need to be considered.

One approach to account for the additional uncertainty due to imputation is the
multiple imputation (MI) technique proposed by Rubin (1978). This method entails
construction and analyzing multiple sets of independently imputed data. One important
requirement for the design-based validity of MI is that the method used for the imputation
must be “proper” (as defined in Rubin, 1987, pp. 118–119). However, for various reasons,
imputation methods commonly used in practice are “improper.” Resampling procedures
reviewed in this section can deal with improper imputation methods.

Technical precondition necessary for the ability to implement resampling methods
is that the data set with the originally imputed data must contain information on the
response status and imputation class. The usual assumption about the response mecha-
nism within each imputation class is that probability of response is the same for all units,
and events of nonresponse occur independently (the uniform response mechanism).

In choosing a replication strategy, it is important to distinguish two major types of
imputation: deterministic and random. Under the former, an imputed value is nonrandom



Resampling Methods in Surveys 135

given a set of reported values and it equals the expectation with respect to the impu-
tation model. Examples include ratio, regression, and mean imputation. A commonly
used method of weight adjustment to account for unit nonresponse can be viewed as a
particular case of implicit deterministic imputation. In this case, the mean of the reported
values within each weight adjustment class is implicitly used to impute for the missing
values.

Under the random imputation method, an imputed data is a random variable and can
be viewed as its expectation under the imputation model plus a random noise. Hot-deck
imputation is an example of random imputation. Other examples are random ratio or
random regression methods, where the imputed value is constructed by adding, to the
model expectation, a random term drawn from a set of residuals.

Intuitively, a natural way to account for imputation is to reimpute values indepen-
dently for each replicate sample in the same way as the original sample data are imputed.
Burns (1990) applied it to jackknife replication for a stratified multistage design. Repli-
cate estimates, derived after the reimputation, were used in the standard jackknife
formula

vJK
(
θ̂
) = n− 1

n

∑
j∈s

{
θ̂(j) − θ̂

}2
. (16)

However, Rao and Shao (1992) showed that, in the case of a random imputation, this
method leads to an overestimation of the variance. This is because the original sample
estimate θ̂, customarily used in the standard jackknife formula, is itself random when
random imputation method is used. Saigo et al. (2001) noted that, with random reim-

putation, it is necessary to use average of the replicate estimates, θ̂ = n−1∑
j∈s θ̂(j), in

the final formula:

vJK
(
θ̂
) = n− 1

n

∑
j∈s

{
θ̂(j) − θ̂

}2
.

As an alternative to reimputation, Rao and Shao (1992) proposed an adjustment to
the imputed value when a responding unit is omitted from the jackknife sample. The
imputed values are adjusted using the difference in expectations under the imputation
model, E(j)∗ y∗i − E∗y∗i , as follows:

y
(j)

i =
{
yi, i ∈ sr,
y∗i + E(j)∗ y∗i − E∗y∗i , i /∈ sr,

(17)

where y(j)i is the value ascribed to unit iwhen unit j is omitted, sr is a set of respondents,
y∗i is the originally imputed value;E∗y∗i andE(j)∗ y∗i are expectations under the imputation
model given the original and the jackknife sets of respondents, respectively. When unit
i /∈ sr is omitted, E∗y∗i = E(j)∗ y∗i , and no adjustment is made. The jackknife variance
estimator is given by the standard formula and is consistent as the sample size increases.

Next, we describe an important application of the adjusted jackknife to the weighted
hot-deck imputation considered in Rao and Shao (1992). For a stratified multistage sam-
pling design, the hot-deck imputation procedure itself needs adjustment. Suppose that
the sample is divided into imputation classes and that a uniform response mechanism is
assumed within each class. These imputation classes may comprise of a mixture of
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strata. The weighted hot-deck method of imputation chooses donors independently
within each imputation class, I, from a set of respondents, Ir ⊂ I, with probabilities
whik

/∑
(hik)∈Ir whik using with replacement sampling. Under this imputation scheme,

the expectation of imputed value y∗ over the imputation class I is given by

EI∗y∗ =
∑

(hik)∈Ir
whikyhik

/∑
(hik)∈Ir

whik.

If a unit j ∈ Ir that belongs to stratumg is omitted, the expectation based on the remaining
respondents inside the imputation class I, is given by

E
(gj)

I∗ y
∗ =

∑
(hik)∈Ir

w
(gj)

hik yhik

/∑
(hik)∈Ir

w
(gj)

hik ,

where w(gj)hik are the jackknife replicate weights.
For the imputed value y∗h′i′k′ of a unit (h′i′k′) from the imputation class I, the adjusted

jackknife value is given by

y
(gj)

h′i′k′ = y∗h′i′k′ +
∑

(hik)∈Ir
w
(gj)

hik yhik∑
(hik)∈Ir

w
(gj)

hik

−
∑

(hik)∈Ir
whikyhik∑

(hik)∈Ir
whik

,

and the resulting jackknife estimator is given by the standard formula. The described
methodology also finds its application in the two-phase sampling context considered in
the next section.

Rao (1996) reviewed adjusted jackknife replication for various commonly used
imputation methods, under stratified simple random sampling and multistage designs.
Shao et al. (1998) used similar adjustments for BRR. The BRR has the advantage of pro-
ducing consistent variance estimators for sample quantiles. This is important for random
imputation methods that are often applied because they provide better approximations
to the distributional characteristics, such as sample quantiles, than the deterministic
methods do.

The operational advantage of the aforementioned value adjustment methods is quite
important for the random imputation method. Reimputation for deterministic imputation
does not present technical problems. If a program for the original imputation already
exists, it is not difficult to adjust it for repeated applications and, with modern computer
power, nonrandom type of reimputation is not a significant obstacle. Random reimpu-
tation, on the other hand, would entail repeated selection of random samples of donors
from the replicated set of respondents, a much more computer intensive procedure than
the non-random variant.

For bootstrap, adjustments similar to those of Rao and Shao (1992) are not always
appropriate: the method does not provide valid estimators of variances for sample quan-
tiles (Shao and Sitter, 1996). Efron (1994) proposed a bootstrap application with imputed
data for simple random sampling, and Shao and Sitter (1996) studied reimputation with
the bootstrap under stratified multistage design. The bootstrap procedure is straightfor-
ward. Under the assumption of uniform response mechanism within strata, bootstrap
samples of size nh− 1 are selected with replacement from the original sample, inde-
pendently across different strata; reimputation is performed for each bootstrap sample
using the original imputation method and resulting bootstrap estimates are used in the
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standard formula. Shao and Sitter (1996) showed the consistency of the estimator for
large stratum sample sizes.

Saigo et al. (2001) extended the bootstrap approach when the stratum sample sizes
are very small. They proposed a method called the repeated half sample bootstrap that
can be described as follows. When the stratum sample size nh is an even number, the
sample is randomly divided into halves, and one of them is selected. Instead of doubling
the weights, each selected record is repeated twice (hence the name of the method). The
trick of the repetition is the key for the method to work properly for random imputation
methods. When nh is odd, the procedure is adjusted using the following method (1) with
probability 1/4 and method (2) with probability 3/4 for selecting bootstrap samples from
a given stratum h:

(1) select a sample of size (nh − 1)/2, duplicate the selected observations and draw
one more observation from the sample that has just been selected in order to
obtain nh observations in total;

(2) select a sample of size (nh + 1)/2, duplicate the selected observations and ran-
domly delete one observation to obtain nh observations in total.

Saigo et al. (2001) also proposed similar procedures of repeated replications for the
BRR method.

5. Resampling methods for sampling designs in two phases

In two-phase sampling, or double sampling, some variables are observed in a large first
phase sample. These variables are then used to construct a sampling plan for selecting
the second phase units out of the first phase sample. Some additional variables, whose
measurement can typically be costly, are observed on the second phase units. The theory
available for the two-phase sampling can be adapted to survey nonresponse theory, under
certain assumptions about the response mechanism and conditional on the number of
respondents, if a set of respondents is viewed as a second-phase sample.

Rao and Sitter (1995) considered the ratio estimator and Sitter (1997) studied linear
regression estimator under two-phase sampling, where SRSWOR is used to draw the
first-phase sample as well as a subsample from the first-phase sample. Jackknife repli-
cates are created by omitting one unit in turn from the larger first-phase sample, and the
resulting estimator is obtained by the standard formula:

vJK = n1 − 1

n1

∑
j∈s1

{
θ̂(j) − θ̂

}2
,

where n1 is the first-phase sample size, and the replicate estimate θ̂(j) is defined as usual
analog to the full-sample estimate θ̂. This “full-sample” jackknife variance estimator
requires n1 replicates.

The first-phase sample is often much larger than the second-phase sample. In this
case, it is desirable to reduce the number of replications. Fuller (1998) proposed to
accomplish this under certain assumptions. Kim and Sitter (2003) extended his ideas.
They decomposed the jackknife formula into two parts: in the first part the variance is
based on the replicates constructed by omitting units that belong to the smaller sample
and in the second part the omitted units belong to the complement of the second-phase
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sample. The first part requires n2 replicates, the number of units in the smaller sample.
However, for the second part, in many common situations, it is possible to use much
fewer replicates than n1−n2, the number of units in the complement to the smaller sam-
ple. The resulting variance estimator has similar properties as the full-sample estimator.
Kim et al. (2006) considered the situation when the first-phase sample information is
used to define strata for the second phase of sampling.They proposed variance estimators
for the double-expansion estimator (DEE) and for the reweighted expansion estimator
(REE) (also considered by Kott, 1990; Kott and Stukel, 1997). This REE approach is
analogous to the weighted hot-deck imputation approach considered in Rao and Shao
(1992) and reviewed in Section 4, and the adjusted jackknife variance works in this
setting. Kim et al. (2006) noted that DEE can be viewed as particular case of REE and
proposed a variance estimator for this case.

6. Resampling methods in the prediction approach

The jackknife variance estimators given in this section follow from Valliant et al. (2000,
Chapter 11) when the superpopulation model is a linear model. The consistency of the
jackknife variance estimators discussed in this section follows from Jiang et al. (2002).
Consider a finite population ofN elements. Let yi and xi be the values of the dependent
and auxiliary variables for unit i of the finite population (i = 1, . . . , N). We assume that
the values of the auxiliary variable are known for all units of the finite population. Let
s be a sample drawn from the finite population. To illustrate the prediction approach,
assume that the values of the dependent variable for the finite population are generated
from the following superpopulation model:

yi = βxi + ei, (18)

where ei are uncorrelated with zero means and variances σ2xi. Our goal is to estimate
the finite population mean, Y = N−1∑N

i=1 yi. It can be shown (see Chapter 23) that the
best linear unbiased predictor (BLUP) of Y is given by

Y
BLUP = N−1

(∑
i∈s
yi + β̂

∑
i/∈s
xi

)
= y

x
X,

where y = n−1∑
i∈s yi and x = n−1∑

i∈s xi are the sample means of the dependent
and auxiliary variables, respectively; X = N−1∑N

i=1 xi is the population mean of the
auxiliary variable; β̂ = y/x is the weighted least squares estimator ofβ under model (18).
It is interesting to note that here we do not need information on the auxiliary variable on
all the unobserved units of the finite population. So, in this case the prediction approach
yields the usual ratio estimator, which is approximately unbiased and consistent for large
sample size n under the usual design-based framework irrespective of the model.

The prediction variance is defined as Var(Y
BLUP − Y), where the variance is with

respect to the assumed linear model. Note that

Var
(
Y

BLUP − Y
)
= Var

{
(1− f)Xnsβ̂ − (1− f)Y ns

}
= Var

{
(1− f)Xnsβ̂

}
+ Var

{
(1− f)Y ns

}
,
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where f = n/N, the sampling fraction,Xns = (N−n)−1∑
i/∈s xi and Y ns = (N−n)−1∑

i/∈s yi means of the auxiliary and the dependent variables for the finite population
units that are not sampled. Because the population size N is usually much larger than
the sample size n, the order of the second term (O[(N − n)−1]) is much smaller than
that of the leading term (O(n−1)). Thus, essentially we are interested in estimating
Var{(1− f )Xnsβ̂}, that is the variance of a linear function of the weighted least square
estimator of β. Thus, a jackknife estimator of the prediction variance is given by

vJ = (1− f)2X2
ns

n

n− 1

n∑
k=1

(
β̂−k − β̂

)2
,

where β̂−k is the weighted least square estimator of β obtained by deleting the kth
observation.

Valliant et al. (2000, Chapter 11) considered the prediction of a smooth nonlinear
function of predictors of finite population totals for several variables and proposed
a jackknife estimator of the prediction variance of their predictor under a two-stage
sample design. Their superpopulation model allows for a general but known within
PSU correlation structure. For certain covariance matrix structures such as a block
diagonal structure, which is reasonable for a clustered finite population, Lahiri (2008)
presents consistent jackknife variance estimators of empirical best predictors (EBP) of
finite population means when the covariance matrix is unknown.

Now consider the case when the dependent variable is binary. In this case the linear
model for the superpopulation is not appropriate. We assume that the dependent variable
for the finite population is generated from the following logistic model:

logit{P(yi = 1)} = βxi
for i = 1, . . . , N. In this case, an EBP of the finite population mean is given by:

Y
EBP = N−1

{∑
i∈s
yi +

∑
i/∈s

exp(β̂xi)

1+ exp(β̂xi)

}

= fy + (1− f)h(β̂),
where h(β̂) = (N − n)−1∑

i/∈s exp(β̂xi)/[1+ exp(β̂xi)] and β̂ is a consistent estimator
of β. We note that here we need the values of the auxiliary variable for every unit of the
finite population. In this case, the prediction variance is given by

Var
(
Y

EBP − Y
)
= Var

{
(1− f)h(β̂)

}
+ Var

{
(1− f)Y ns

}
≈ Var

{
(1− f)h(β̂)

}
,

because the order of the second term is much smaller than the leading term. Using the
general theory of Jiang et al. (2002), a jackknife estimator of the prediction variance is
given by empirical best predictors (EBP):

vJ = (1− f)2 n

n− 1

n∑
k=1

{
h(β̂−k)− h(β̂)

}2
.
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Following the two examples given in this section, it is possible to obtain a jack-
knife estimator of the prediction variance under the fairly general set-up of Jiang et al.
(2002). See Valliant et al. (2000) for a discussion of the BRR method in the prediction
theory.

7. Resampling methods in small area estimation

In a large scale sample survey, sample design is usually developed to provide reliable
design-based estimators of parameters of interest for the survey finite population or
certain large subgroups of the survey population. Estimation of small subgroups of the
survey population is also of interest, but the survey data typically provide small samples
or even no sample for small subgroups of the survey population resulting in either highly
unstable design-based estimates or no design-based direct estimate. Meza et al. (2003)
provide an example where the overall sample size of a statewide telephone survey in
Nebraska, USA, is about 4300, which is large enough to produce reliable design-based
estimates of the prevalence of alcohol abuse for the entire state and large counties or
state level large demographic groups. However, the sample sizes are very small for some
small counties or demographic subgroups within counties. For example, in the Boone
county the sample size is 14 and there is only one white female in the age-group of
25–44. The estimation problem that arises due to small sample sizes for subgroups of
a survey population is referred to as the small area (domain) estimation problem in the
sample survey literature. Small area statistics are needed in regional planning and fund
allocation in many government programs and thus the importance of producing reliable
small area statistics cannot be over-emphasized.

To reduce the sampling errors in the traditional design-based direct estimators for the
small areas, one can combine information from the sample survey, various administra-
tive/census records, and even previous surveys using suitable models.Anatural question
is: how effective are the linear models that are typically used in the prediction approach
to finite population sampling? Lahiri (2008) offers a detailed explanation for the prob-
lem caused by a linear (fixed effects) model in the small area estimation. To this end,
let yij and xij be the values of the dependent and auxiliary variables for unit j of the ith
area (i=1, . . . , m; j=1, . . . , Ni). We are interested in estimating the small area finite
population means Yi=N−1

i

∑Ni
j=1 yij based on a stratified SRS sample swith areas as the

strata and known totals for the auxiliary variables Xi=N−1
i

∑Ni
j=1 xij, (i = 1, . . . , m).

We can assume the superpopulation model (18) with either a common slope parameter
β for all areas or area specific fixed slope parameters βi for the areas. Under the pre-
diction approach to finite population sampling, the standard empirical best predictors
in both cases are unbiased for Yi under their respective assumed linear models. The
predictors are design-unbiased for their respective small area means in the latter case
when xij=1, (i = 1, . . . , m; j=1, . . . , Ni). However, the predictors are design-biased
in general and the bias depends on the sample size and the extent of heterogeneity
across the small areas in the former case and the sample size in the latter case. In the
former case, the predictors are usually stable in terms of both design-based and pre-
diction variances, the order being O(n−1), under certain mild regularity conditions.
In contrast, in the latter case the predictors are generally unstable, both in terms of the
design-based and prediction variances, the order beingO

(
n−1
i

)
, under certain regularity

conditions.
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Acompromise between the two versions of the linear models is a linear mixed model:

yij = βixij + eij, (19)

where βi and eij are uncorrelated with βi ∼ N
[
0, σ2

β

]
and eij ∼ N

[
0, xijσ2

e

]
. Under this

linear mixed model, the best predictor (BP) is given by

Y
BP
i = N−1

i

⎛
⎝∑
j∈si

yij + β̂i
∑
j /∈si

xij

⎞
⎠,

where si is the set of units in area i that belongs to the sample s,

β̂i = (1− di)yi
xi
+ diβ, di =

σ2
e /
∑

j∈s xij
σ2
β + σ2

e /
∑

j∈s xij

An EBP of Yi, say Y
EBP
i , is obtained when consistent estimators of the model parameters

β, σ2
β, and σ2

e are plugged in the Y
BP
i formula. The EBP Y

EBP
i generally outperforms the

EBP derived from a linear model; see Lahiri (2008) for details.
Model (19) is referred to as a unit level model in the small area estimation literature.

However, in many small area estimation problems, it is not possible to use the unit level
model simply because of the unavailability of the unit level information. Chen et al.
(2007) used the following area level model:

yi = θi + ei = x′iβ + vi + ei, i = 1, . . . , m, (20)

where vi and ei are all uncorrelated with vi∼[0, A] and ei∼[0,Di]; [a, b] denotes a
distribution with mean a and variance b; the sampling variances Di are assumed to be
known.

In the aforementioned model, ei is used to account for the sampling variability of the
regular survey estimates yi of true small area means θi = x′iβ. The area specific random
effects vi link the true small area means θi to a vector of p known auxiliary variables xi,
often obtained from various administrative and census records. The parameters β andA
of the linking model are generally unknown and are estimated from the available data.
To estimate the sampling variability Di, Fay and Herriot (1979) employed generalize
variance function (GVF; see Wolter, 1985) method that uses some external information
from the survey. See Hinrichs (2003), and Gershunskaya and Lahiri (2005) for recent
developments on variance estimation for the domains.

The well-celebrated Fay–Herriot model (Fay and Herriot, 1979) is obtained as a
special case of the model (20) when normality is assumed for both vi and ei. Fay and
Herriot (1979) used the area specific random effect vi to relate the true per-capita income
(θi) to the auxiliary variables (xi) obtained from the census, housing and Internal Revenue
Service records. In other words, Fay and Herriot (1979) used random effects to capture
the additional area specific effects not explained by the area specific auxiliary variables.
This is achieved at the expense of an additional unknown variance component A to be
estimated from the data. In contrast, the corresponding regression model fails to capture
this additional area specific variability. Using the U.S. census data, Fay and Herriot
(1979) demonstrated that their EB estimator (also an EBLUP) performed better than
the direct survey estimator and a synthetic estimator used earlier by the U.S. Census
Bureau.
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Under the Fay–Herriot model, the BP of θi is given by:

θ̂i(yi;φ) = (1− Bi)yi + Bix′iβ,
where Bi=Di/(Di + A), φ= (β,A)′. Replacing β by the weighted least square
estimator

β̂(A) =
(

m∑
i=1

xix
′
i

Di + A

)−1 m∑
i=1

xiyi

Di + A,

we get the following BLUP of θi:

θ̂i(yi;A) = (1− Bi)yi + Bix′iβ̂(A).
Replacing A by Â, a consistent estimator of A, we get θ̂i(yi; Â), an EBLUP of θi.

The unit level model and the area level model are two examples of the mixed models,
which are particularly suitable for small area estimation because of their flexibility in
effectively combining different sources of information and explaining different sources
of errors. Mixed models typically incorporate area-specific random effects that explain
the additional between area variation in the data not explained by the fixed effects
part of the model. In contrast, an implicit regression model that motivates a synthetic
estimation method assumes no between area variation other than those explained by the
area-specific auxiliary variable(s).

The EBP method has been extensively used in small area estimation (e.g., Rao, 2003;
Jiang and Lahiri, 2006). Although EBP is fairly easy to obtain, the problem of providing
a suitable estimate of its uncertainty measure that accounts for all sources of variation
is a highly nontrivial problem and has sparked a huge volume of research over the
last couple of decades. The traditional design-based mean squared error, unconditional
(over the joint distribution of the observations and random effects) mean squared error,
and different types of conditional model-based mean squared errors are of interest.
In defining the conditional model-based mean squared error, both conditioning on the
area specific random effects and conditioning on the area specific observations have
been considered. Using a few illustrative simple examples, Lahiri (2008) points out the
difficulty in obtaining stable estimators of design-based mean squared errors of small
area estimators, although achieving good design-bias property is usually not a problem.

For the Fay–Herriot model, Prasad and Rao (1990) obtained a second-order unbiased
or nearly unbiased estimator of the MSE (i.e., unconditional MSE) defined as E(θ̂i −
θi)

2, where the expectation is taken over the joint distribution of observations yi and
random effects vi. Rivest and Belmonte (1999) proposed an unbiased estimator of the
conditional model-based mean squared error, defined as: E{(θ̂i − θi)

2|θ}, where the
expectation is taken over the observations yi given θ. Hwang and Rao (1987; unpublished
work) obtained a similar unbiased estimator earlier and, using a Monte Carlo simulation
study, showed that the estimator is more unstable than the Prasad–Rao estimator of the
unconditional mean squared error. Interestingly, their simulation results showed that the
Prasad–Rao MSE estimator tracks the conditional mean squared error very well even
under a moderate derivation from the model on the random effects. However, in terms
of the conditional bias, the Prasad–Rao mean squared error estimator could perform
poorly compared to the unbiased estimator of the conditional mean squared error for



Resampling Methods in Surveys 143

an outlying small-area. See Rao (2003, Chapter 4) for more discussion on this type of
conditional mean squared error estimation. We can also define conditional model-based
MSE asE[(θ̂i−θi)2|yi],where the expectation is taken over the random effects vi given
the area specific observartions yi. Chatterjee and Lahiri (2007) put forward a parametric
bootstrap method to estimate such conditional MSE for a fairly general mixed model,
which includes the Fay–Herriot model as a special case. Fuller (1990b) use aTaylor series
method to estimate this conditional MSE whereas Booth and Hobert (1998) proposed a
bootstrap method, which is different from that of Chatterjee and Lahiri (2007).

Extensive research has been conducted to estimate the unconditional mean squared
error of EBPand a major portion of the research centered around linear mixed models. In
the context of the linear mixed model, a naïve MSE estimator is given by the MSE of the
BLUP with the model variance components replaced by suitable consistent estimators.
But, it usually underestimates the true MSE of EBLUP mainly for two reasons. First,
it fails to incorporate the extra variability incurred because of the estimation of the
variance components and the order of this underestimation isO(m−1), for large number
of small areas m. Second, the naïve MSE estimator underestimates even the true MSE
of the BLUP, The order of the underestimation being O(m−1). In a pioneering article,
Prasad and Rao (1990) demonstrated the importance of accounting for these two sources
of underestimation, and using a Taylor linearization method produced a second-order
unbiased (or nearly unbiased) MSE estimator of EBLUP when the variance components
are estimated by a simple method of moments. The bias of that MSE estimator is of
order o(m−1). In other words, this is a second-order unbiased or nearly unbiased MSE
estimator. Following the work of Prasad and Rao (1990), a huge volume of articles on
second-order unbiased MSE estimation has been written. Here we focus our review on
resampling methods. Readers interested in the Taylor linearization methods are referred
to Rao (2003), and Jiang and Lahiri (2006).

An early application of the parametric bootstrap method to obtain second-order unbi-
ased MSE estimators of EBLUP’s can be found in Butar (1997).The research on paramet-
ric boostrap MSE estimation has been followed up in different directions by a number of
researchers, including Booth and Hobert (1998), Butar and Lahiri (2003), Pfeffermann
and Glickman (2004), Pfeffermann and Tiller (2005), Hall and Maiti (2006b), and oth-
ers. A comprehensive theory of second-order MSE estimation using jackknife method
was put forth by Jiang et al. (2002), although similar jackknife methods were explored in
special cases by Lahiri (1995) and Chattopadhyay et al. (1999). For alternative jackknife
methods, see Rao (2003) and Lohr and Rao (2003). As noted by Bell, W. (2001), the
jackknife estimator of Jiang et al. (2002) could take negative values. Chen and Lahiri
(2003), however, noticed that this is not a severe problem and can be easily rectified.
They also considered a weighted jackknife version of the Jiang–Lahiri–Wan jackknife,
which improved the efficiency in certain situations. In the context of the normal lin-
ear mixed model, Chen and Lahiri (2008) proposed a linearized weighted jackknife,
which cuts down the computations and performed well compared to the corresponding
jackknife of Jiang et al. (2002) in their simulation. But, we note that the development
of the Jiang-Lahiri-Wan jackknife method does not require any specific distributional
assumptions other than the ones necessary to obtain the BP. In simulations, jackknife
method has been found to be very robust in comparison to other MSE estimators (see,
e.g., Fabrizi et al., 2007). There has been some effort to robustify the bootstrap method as
well. See, for example, Pfeffermann and Glickman (2004) and Hall and Maiti (2006a).
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We now explain some of the resampling methods for the Fay–Herriot model since
this model has been studied extensively in the small area estimation literature. Lahiri
(2003b) considered a comparison of different measures of uncertainty under this model.
By the Kackar–Harville identity (Kackar and Harville, 1984), we have

MSE
{
θ̂i(yi; Â)

}
= g1i(A)+ g2i(A)+G3i(A), (21)

where

g1i(A) = ADi

A+Di

,

g2i(A) = D2
i

(A+Di)2
x′i

⎛
⎝ m∑
j=1

1

A+Dj

xjx
′
j

⎞
⎠
−1

xi,

G3i(A) = E
{
θ̂i(yi; Â)− θ̂i(yi;A)

}2
,

where g1i(A)+g2i(A) is the MSE of the BLUP andG3i(A) is the additional uncertainty
due to the estimation of the variance component A.

A naïve MSE estimator is obtained by estimating the MSE of BLUP and is given by:

mseN
i = g1i(Â)+ g2i(Â).

Intuitively, this naïve MSE estimator is likely to underestimate the true MSE because it
fails to incorporate the additional uncertainty due to the estimation of A. In fact, Prasad
and Rao (1990) showed that the order of this underestimation is O(m−1) under certain
regularity conditions. Interestingly, the naïve MSE estimator even underestimates the
true MSE of the BLUP, the order of underestimation being O(m−1).

Prasad and Rao (1990) proposed the following MSE estimator when A is estimated
by the usual method of moments:

msePR
i = g1i(Â)+ g2i(Â)+ 2g3i(Â),

where g3i(Â) =
{
2D2

i /m
2(Â+Di)

3
}∑m

j=1(Â+Dj)
2. Under the same regularity con-

ditions, the bias of msePR
i is of the order o(m−1).

For the Fay–Herriot model, the jackknife MSE estimator, proposed by Jiang et al.
(2002), reduces to:

mseJLW
i = g1i(Â)− m− 1

m

m∑
u=1

{
g1i(Â−u)− g1i(Â)

}

+ m− 1

m

m∑
u=1

{
θ̃i(yi; Â−u)− θ̂i(yi; Â)

}2
,

where Â−u is obtained from Â after deleting the uth small area data and

θ̃i(yi; Â−u) = Di

Â−u +Di

x′iβ̂−u +
Â−u

Â−u +Di

yi,

β̂−u =
⎛
⎝∑
j �=u

Dj

Â−u +Dj

xjx
′
j

⎞
⎠
−1∑

j �=u

Dj

Â−u +Dj

xjyj.
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For the Fay–Herriot case, the weighted jackknife MSE estimator suggested by Chen
and Lahiri (2003) is given by:

mseCL
i = g1i(Â)+ g2i(Â)

−
m∑
u=1

wu

[
g1i(Â−u)+ g2i(Â−u)− {g1i(Â)+ g2i(Â)}

]

+
m∑
u=1

wu{θ̂i(yi; Â−u)− θ̂i(yi; Â)}2.

Chen and Lahiri (2003) suggested two choices of wu = (m − 1)/m and wu =
x′u
(∑m

j=1 xjx
′
j

)
xu. Note that mseCL

i is different from mseJLW
i in two respects. First,

Chen and Lahiri (2003) used more exact calculations by exploiting the Kackar–Harville
identity, which is valid for the normality assumption. Second, the method also adjusts
the g2i(Â) term for bias. Although in the standard second-order asymptotic sense this
adjustment is not needed, we may not ignore this bias correction when the relative
contribution from g2i(A) is significant.

Butar and Lahiri (2003) proposed the following parametric bootstrap MSE estimator:

mseBL
i = g1i(Â)+ g2i(Â)− E�[g1i(Â

�)+ g2i(Â
�)− {g1i(Â)+ g2i(Â)}]

+ E�{θ̂i(yi; Â�)− θ̂i(yi; Â)}2.
Similar parametric bootstrap methods can be found in Butar (1997) and Pfeffermann
and Glickman (2004). In the aforementioned discussion, E� is the bootstrap expectation,
that is, the expectation with respect to the Fay–Herriot model with β and A replaced by
β̂ and Â, respectively. We obtain Â� using the formula for Â with the original sample
replaced by the bootstrap sample. In practice, Monte Carlo methods are employed to
approximate the bootstrap expectations. Note that because of the bias correction term
the jackknife and parametric bootstrap methods could produce negative estimates. This
was first observed by Bell, W. (2001) in the context of jackknife MSE estimator. But
this can be easily corrected as noted by Chen and Lahiri (2003) who recommended the
following MSE estimator in case mseCL

i yields a negative value:

mseACL
i = g1i(Â)+ g2i(Â)+ D2

i

(Â+Di)3
vWJ + D2

i

(Â+Di)4
r2
i vWJ.

where ri = yi − x′iβ̂, the residual for the ith area, and vWJ = ∑m
u=1wu(Â−u − Â)2, a

weighted jackknife variance estimator of Â.
Alternatively, Chen and Lahiri (2008) suggested the linearized weighted jackknife

mseACL
i as a new MSE estimator. Similar corrections can be made to mseJLW

i and mseBL
i .

In the parametric bootstrap context, different nonnegative second-order unbiased MSE
estimators were considered by Hall and Maiti (2006b) and Chatterjee and Lahiri (2007).
All the MSE estimators, except the naïve one, has the same second-order bias prop-
erty under the same regularity conditions. However, in different simulation studies, the
performances of different MSE estimators varied depending on several factors such as
the value of m, Di/A, variations in Di/A, presence of an outlier in Di/A, leverage
hi = xTi (XTX)−1xi, and the method of estimation of A.

For a special case of the Fay–Herriot model whenDi = D and x′iβ = μ(i = 1, . . . ,
m), Butar and Lahiri (2003) showed that their parametric bootstrap MSE estimator
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is identical to a measure of uncertainty proposed by Morris (1983b) up to the order
O(m−1) if an unbiased estimator of B = D/(A+D) is chosen in the EBLUP formula.
This is also true for the Chen–Lahiri jackknife MSE estimator. Thus, the parametric
bootstrap and the Chen–Lahiri jackknife MSE estimators are close to a Bayesian solution
since Morris (1983b) obtained his uncertainty measure by approximating the posterior
variance using flat uniform priors on μ and B. For the aforementioned model and the
standard untruncated unbiased quadratic estimator of A, Lahiri (1995) appoximated
mseJLW

i up to the order OP(m
−1) and obtained the following result:

mseJLW
i

.= g1(Â)+ g2(Â)+ D2

m(Â+D)(b2 − 1)

+ D2

m(Â+D)2 (b2 − 1)r2
i −

2D2

m(Â+D)3/2
√
b1ri,

where b1 = m2
3/(Â + D)3, b2 = m4/(Â + D)2, and ri = yi − y. Here b1 and b2 can

be viewed as estimated skewness and kurtosis for the marginal distribution of yi. Under
normality, b1 ≈ 0 and b2 ≈ 3 and so in this case mseJLW

i reduces to

mseJLW
i

.= g1(Â)+ g2(Â)+ 2D2

m(Â+D) +
2D2

m(Â+D)2 r
2
i .

It is reasonable to expect that, in this case, mseJLW
i is identical to mseCL

i and mseBL
i

correct up to the order OP(m
−1).

Chatterjee and Lahiri (2007) obtained second-order unbiased, nonnegative, condi-
tional, and unconditional MSE estimators, and allowed the hyperparameter dimension
to grow with the sample size, thus bringing in the dimension asymptotic effect of esti-
mating the hyperparameters. Their method retains the basic simplicity of the bootstrap
methodology in which laborious analytical calculations are replaced by computer-
oriented simple techniques. The Chatterjee–Lahiri parametric bootstrap methods use
a double bootstrap strategy as in Booth and Hobert (1998) and Hall and Maiti (2006b).
However, apart from being applicable to a much broader collection of problems, the
Chatterjee–Lahiri one-step (conditional or unconditional) MSE estimator methodology
is not driven by stepwise calibration ideas. In each scenario, the resampling technique
and the MSE estimate formula are exactly the same for all situations; the method does
not require problem specific corrections.

Because of the excellent prospect of wide applicability of the Chatterjee–Lahiri para-
metric bootstrap method, we describe the method in detail. Let yi be the ni×1 vector of
observations for the ith area (i = 1, . . . , m). The dimension of yi can be arbitrary, and
may or may not depend on m and i. Consider the following two-level model:

Level 1: yi|θi ∼ fi(·; θi, ξ), i = 1, . . . , m;
Level 2: θi ∼ gi(·; ξ), i = 1, . . . , m,

where ξ ∈  ⊆ Rd and the parameter space is an open set inRd . The dimension of θi is
arbitrary and can also depend onm and i. The pairs {(yi, θi), i = 1, . . . , m} are assumed
to be independent. However, because there is no restriction on the dimension of yi, the
independence of the observations across different areas is not a strong assumption in
most small area applications, and is a matter of nomenclature.As explained by Chatterjee
and Lahiri (2007), the aforementioned model covers a wide variety of small area models.
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The conditional mean squared prediction error (CMSE) of θi(yi, ξ̂), an EBP of θi, is
defined as the conditional expectation

CMSE(yi, ξ) = E[{θi − θi(yi, ξ̂)}2 |yi].
The unconditional mean squared prediction error (MSE) of θi(yi, ξ̂) is defined as

MSE(ξ) = E[θi − θi(yi, ξ̂)]2,
where E denotes expectation with respect to the joint distribution of y = (y1, . . . , ym)

and θ = (θ1, . . . , θm).

A two-level parametric bootstrap algorithm for generating resamples is given
below:

1. Resample y∗ = (y∗1, . . . , y∗m) using the following two-level model:

Level 1∗: y∗i | θ∗i ∼ fi
(
·; θ∗i , ξ̂

)
;

Level 2∗: θ∗i ∼ gi(·; ξ̂),
i = 1, . . . , m. The expectation at this step, which is conditional on y, is denoted
by E∗.

2. Obtain ξ̂∗ = ξ̂(y∗), the estimator of ξ based on the resample y∗, using the same
technique used to obtain ξ̂(y).

3. Resample y∗∗ = (y∗∗1 , . . . , y
∗∗
m

)
from y∗ using the following two-level model:

Level 1∗∗: y∗∗i | θ∗∗i ∼ fi
(
·; θ∗∗i , ξ̂∗

)
;

Level 2∗∗: θ∗∗i ∼ gi
(
·; ξ̂∗

)
,

i = 1, . . . , m. The expectation at this step, conditional on y and y∗, is denoted
by E∗∗.

4. Define

M1a = E∗
{
θ∗i − θi

(
yi, ξ̂

∗
)}2

,

M2a = E∗E∗∗
{
θ∗∗i − θi

(
yi, ξ̂

∗∗
)}2

,

M3a = E∗
{
θ∗i − θi

(
y∗i , ξ̂

∗
)}2

,

M4a = E∗E∗∗
{
θ∗∗i − θi

(
y∗∗i , ξ̂

∗∗
)}2

,

ξ̂∗∗ = ξ̂(y∗∗). The conditional and unconditional MSE estimators are given by:

M̂SEa = H(M1a,M2a −M1a),

M̃SEa = H(M3a,M4a −M3a),

respectively. Chatterjee and Lahiri (2007) considered the following choice of H(.):

H(x, b) = 2x/(1+ exp{2b/x}).
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Chatterjee and Lahiri (2007) examined the higher order asymptotic properties of
both unconditional and conditional MSE estimators. They also studied the small sample
properties of these MSE estimators by Monte Carlo simulations.

Let us now turn our attention to the prediction interval problem. Again, for illus-
tration, we shall restrict ourselves to the Fay–Herriot model. Cox (1975) initiated the
idea of developing the empirical Bayes confidence intervals. In the current context, his
suggestion generates the following prediction interval:

ICi (α) : θ̂i(yi; Â)± zα/2
√
g1i(Â).

When m is large, under certain regularity conditions, P(θi ∈ ICi (α)) = 1 − α +
O(m−1). Thus, this prediction interval attains the desired coverage probability asymp-
totically, but the coverage error is of order O(m−1), not accurate enough in most small
area applications. Intuitively, this could be due to the fact that the construction of the
prediction interval does not take into account the additional errors incurred by the esti-
mation of model parameters. See Jiang and Lahiri (2006) and Chatterjee et al. (2008)
for a review of different methods for improving the coverage errors. We now review the
parametric bootstrap method for constructing the prediction interval for θi.

The utility of parametric bootstrap prediction interval in small area estimation was
first recognized by Chatterjee and Lahiri (2002) [also see Lahiri (2003a)] who developed
the method for the Fay–Herriot model. The method was later extended to a general
linear mixed model by Chatterjee et al. (2008). Their 100(1 − α)% prediction interval
is given by:

IPBi (α) : θ̂i(yi; Â)− b1i

√
g1i(Â), θ̂i(yi; Â)+ b2i

√
g1i(Â),

where b1i and b2i are such that

P∗
[
θ∗i < θ̂i(y

∗
i ; Â�)− b1i

√
g1i(Â�)

]
= α1

P∗
[
θ∗i > θ̂i(y

∗
i ; Â�)+ b2i

√
g1i(Â�)

]
= α2,

and α1 + α2 = α. The method can provide both equal-tailed and the shortest length
small area accurate prediction intervals.

Chatterjee et al. (2008) showed that, under certain mild regularity conditions,

P
[
θi ∈ IPB

i (α)
] = 1− α+O(d3m−1.5),

where d = p + 1 and p is the dimension of β. An alternative parametric bootstrap
method was proposed by Hall and Maiti (2006b). As noted by Rao (2005b), the method
proposed by Hall and Maiti (2006b), unlike Chatterjee and Lahiri (2002) or Chatterjee
et al. (2008), does not utilize area specific data. For the prediction interval method of
Chatterjee et al. (2008), it is important to use strictly positive estimates of the variance
components. However, the standard variance component estimators such as method of
moments, maximum likelihood, and residual likelihood methods are all subject to zero
estimates for the variance components. A naïve solution is to take a small positive value
of the variance component when the estimate is zero. Li (2007) noticed the importance
of this truncation point in the performance of the prediction interval for the Fay–Herriot
model and developed certain adjusted density maximization method, which improved
the performance of the parametric bootstrap prediction interval to a great extent.
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8. Discussion

We have attempted to cover various applications of resampling methods in sample
surveys from both the design-based and model-based perspectives. Our emphasis on
design-based variance estimation, prediction variance estimation, and mean square error
estimation of EBP for small area estimation reflects the importance of these topics
given in the survey literature. Certainly, resampling methods could also be used for
more complex inferential problems such as the confidence interval problem which we
reviewed to a much lesser extent. The development of the Sections 2–5 follows the
traditional design-based approach in that the design-based variances are of interest and
properties of the variance estimators are studied under the design-based framework,
assuming the values of the study variable for the finite population to be nonstochastic.
In these sections, asymptotics are the usual design-based asymptotics; for details on
such asymptotics, we refer to Shao (1996) and Chapter 40.

In theory, the Taylor linearization and resampling methods are similar for large sam-
ples for full response. To compare different plans, Rao and Wu (1985) obtained second-
order expansions of the different variance estimators. They found that different variants
of the jackknife variance estimators are equivalent up to the second-order. The jackknife
and a version of BHS are in general first-order equivalent and in the special case of two
PSU’s per stratum, the jackknife estimator is identical to theTaylor linearization variance
estimator up to the second-order. These results suggest that the choice between the two
estimators should depend more on the operational rather than statistical considerations.
The empirical findings of Kovar et al. (1988) were in agreement with the analytical
results of Rao and Wu (1985). For a detailed account on the asymptotic set-up and a
review of asymptotic comparisons of different resampling methods, see Shao (1996).

Using data from the Current Population Survey conducted by the U.S. Census Bureau,
Kish and Frankel (1974) described an empirical evaluation study that examines the rel-
ative performances of the Taylor linearization, BRR, and jackknife variance estimation
methods. Each of the three methods was used to estimate variances of ratio means,
simple correlations, and multiple regression coefficients. For partial and multiple cor-
relation coefficients, only the two replication methods were applied. Relative biases,
mean squared errors, and coverage properties were used as criteria for the evaluation.
The study showed that the methods were equally good when used to estimate vari-
ances of ratio means, coefficients of regression, and of simple or partial correlation
coefficients, whereas the results for coefficients of multiple correlation were poor on all
criteria. The coverage error was reported to be the smallest for the BRR method, and the
jackknife performed better than the linearization estimator; these results were especially
noticeable for simple and partial correlation coefficients and could be associated with
the negative relative biases of the mean squared errors of the jackknife and linearization
methods. On the other hand, the variability was consistently the lowest for the lineariza-
tion method and the highest for the BRR. Kish and Frankel (1974) concluded that none
of the three methods was consistently better than the others; therefore, the choice of the
method can be based on such practical criteria as relative cost and simplicity.

Using the UK Labor Force survey data, Canty and Davison (1999) conducted a Monte
Carlo simulation study to demonstrate the usefulness of resampling-based methods in
capturing variability due to calibration, in addition to the usual sampling variability.
Their results show the following: (i) the traditional Taylor linearization design-based
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method could severely underestimate the true variability; (ii) bootstrap and jackknife
linearization methods provide more reliable standard estimates than do the jackknife
and BRR; (iii) although the linearized jackknife has a slight edge over the bootstrap in
terms of computational burden and reliability, in practice bootstrap may be preferred
because it avoids all the analytical work that goes with jackknife linearization. Using a
simulation study, Valliant (2004) demonstrated the utility of a suitable jackknife method
in capturing the variability incurred due to calibration performed at different stages in
the standard survey operation. Asymptotic theory for jackknife is mostly available for
the basic design weights. One exception is the paper by Yung and Rao (1996) who
showed that vJK(ŶGREG) is asymptotically equivalent to var(ŶGREG).

In the small area estimation framework, the Taylor series, jackknife, and parame-
teric bootstrap methods for unconditional mean squared error estimation all enjoy the
same second-order unbiasedness property. As explained by Chatterjee et al. (2008), it is
difficult, if not impossible, to produce a purely nonparametric bootstrap satisfying the
second-order unbiasedness property.This is primarily because of the difficulty in produc-
ing a consistent estimator of the conditional distribution function of the random effects
given the data. Because of the scarcity of data at the small area level, the importance
of parametric bootstrap in small area estimation problems cannot be overemphasized.
Some versions of a semiparametric bootstrap were proposed by Pfeffermann and Glick-
man (2004) and Hall and Maiti (2006a). The stability of MSE estimators, in terms of the
MSE of MSE estimators, has not been studied analytically for the Taylor series and the
jackknife methods, although Chatterjee and Lahiri (2007) provided analytical results
for the parametric bootstrap for a very general case.

Most of the simulation results are available for different particular cases of the
Fay–Herriot model and the nested error model and often times the studies examine
the performances of different MSE estimators in estimating the unconditional MSE,
although there is a growing interest in evaluating different MSE estimators in estimat-
ing conditional MSEs. For the Fay–Herriot model, there is no conclusive evidence about
the uniform superiority of one MSE estimator over another in estimating the uncondi-
tional MSE. The results are mixed and depend on various factors, including the relative
magnitude of model variance to the sampling variances, magnitude and variability of the
sampling variances, number of small areas, and the distribution of the random effects.
The Prasad–Rao Taylor linearization estimator has a tendency of overestimating the
unconditional MSE and sometimes the overestimation can be severe. The resampling
methods, particularly the parametric bootstrap, have exhibited relatively robust results
in terms of relative bias against variations of different factors, compared to the Taylor
series method, at the cost of increasing the variance.

For the nested error model, Hall and Maiti (2006a) showed better performances of
their nonparametric bootstrap over the naive estimator in terms of relative bias. They
compared their method with the jackknife method of Jiang et al. (2002) in a simula-
tion study, which showed that the jackknife method performed better in terms of the
relative bias but inferior in terms of the coefficient of variation, relative to their nonpara-
metric bootstrap method. Under the same simulation set-up, the simulation results of
Ganesh (2007) and Tang (2008) show better performance of the normality-based Taylor
series method compared to the nonparametric bootstrap results reported in Hall and
Maiti (2006a), whereas Tang (2008) showed similar performance of the Taylor series
method compared to the jackknife method of Jiang et al. (2002).The simulation results of
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Pfeffermann and Glickman (2004) show good performance of parametric bootstrap and
linearized jackknife method of Chen and Lahiri (2008). Lahiri and Rao (1995) showed
the insensitivity of the normality-based Prasad–Rao Taylor series method against the
variation of the distribution of the random effects when the variance components are
estimated by the method of moments. However, this result does not extend to situations
where sampling distribution is nonnormal or the variance components are estimated by
the Fay–Herriot method of moments. Ganesh (2007) showed that the normality-based
Prasad–Rao MSE estimator is not second-order unbiased against the violation of the
normality assumption even when the sampling distribution is normal and the variance
components are estimated by the method of moments. The parametric bootstrap of Chat-
terjee and Lahiri (2007) designed to estimate the conditional MSE performed well in
their simulation study, compared to the other rival MSE estimators, in terms of bias even
to estimate the unconditional MSE.

Results from different simulation studies have been documented in Prasad and Rao
(1990), Lahiri and Rao (1995), Datta and Lahiri (2000), Jiang et al. (2002), Chen and
Lahiri (2003), Hall and Maiti (2006a,b), Chatterjee and Lahiri (2007), Chen and Lahiri
(2008), Li (2007), Tang (2008). Fabrizi et al. (2007) evaluated different MSE estimators
using simulations with data from the European Social Survey. They concluded the
jackknife method due to Jiang et al. (2002) performed better than the Taylor linearization
method. Molina et al. (2007) conducted a simulation study using UK Labor force data to
compare the Taylor linearization method and parametric bootstrap and concluded that
parametric bootstrap outperformed the Taylor linearization method.

The literature on resampling methods in surveys is huge and is steadily growing.
Hence, it is almost impossible to give a comprehensive review of the topic in such
a limited space. For further readings on resampling methods in surveys, we refer the
readers to the textbook by Wolter (1985) and excellent review papers by Rust (1985),
Rust and Rao (1996), Shao (1996).
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Bayesian Developments in Survey Sampling

Malay Ghosh

1. Introduction

Sample surveys are widely used to gather information about various characteristics of
a finite population such as the total or the mean of a response variable, or some other
parameter of interest. One of the fundamental inference problems in survey sampling is
to obtain estimate the total or the mean, and find also the associated measure of precision
such as the variance, or more generally the mean squared error.

The classical approach towards this inferential problem is design-based, which
includes the selection probabilities of the different sampling units. In contrast, there
is a model-based approach that views the finite population as a sample from a hypo-
thetical superpopulation, and inference for finite poulation parameters are model-based.
On occasions, people have recommended methods that are hybrid of the two, that is,
model-assisted design-based estimates or design-assisted model-based estimates (e.g.,
Prasad and Rao, 1999).

Both design- and model-based approaches can be frequentist, where such procedures
do not make an explicit use of priors either for the finite population or the superpopula-
tion parameters. In contrast, the Bayesian approach assumes that the response variable
associated with any unit is the realization of a random variable following some specified
distribution based on prior information.

Prior information always exists in survey sampling in the form of auxiliary variables,
often found through administrative records. The Bayesian approach utilizes this auxil-
iary information explicitly through prior distributions for finite population parameters,
distributions which relate these parameters and the auxiliary variables.

Little (2004), in a very elegant review article, has pointed out a sevenfold advan-
tage of superpopulation or Bayesian models. First, such models enable one to integrate
inference in finite population sampling with the mainstream statistics inference. Sec-
ond, with noninformative priors, it is possible to match the design-based inference
with model-based inference. Third, the Bayesian method is particularly well-suited to
handle complex sampling designs such as those involving stratification and clustering.
Fourth, often Bayesian methods provide better inferential procedures than their fre-
quentist counterparts, especially for small samples. The reason behind is that though
classical frequentist procedures often rely heavily on asymptotics requiring a very large
sample size for its success, a Bayesian approach with an appropriate prior can yield
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meaningful inference even in such situations. Fifth, because the Bayesian methods use
two sources of information, namely, the likelihood and the prior, the resulting inference
often provides greater precision than one which uses only one or the other. Sixth, the
Bayesian procedures, unlike most frequentist procedures, do not violate the likelihood
principle. Finally, even from asymptotic considerations, Bayesian methods enjoy the
same efficiency as the maximum likelihood method.

Superpopulation modeling has been around for a long time in the survey sam-
pling literature. Among others, we may refer to Royall (1970b), Thompson (1997),
and Valliant, et al. (2000) (See the review article by Valliant in Chapter 23 of this
book). The frequentist approach usually relies on estimation of superpopulation param-
eters. The Bayesian approach, on the other hand, assigns prior distributions to these
parameters.

The objective of this chapter is to provide a review of Bayesian developments in
survey sampling. In Section 2, we introduce the basic notation and a brief description
of the “sufficiency principle” and the “likelihood principle” in the context of finite
population sampling. Many view these principles as forming the cornerstone of any
statistical inference. In finite population sampling, though the Bayesian paradigm obeys
these principles, a design-based approach often violates the same. As a result, many find
the Bayesian approach as an attractive alternative.

The Bayesian paradigm is introduced in Section 3 of this chapter, and is illus-
trated with the estimation of the finite population mean when a simple exchangibility
assumption holds among the units in the population. Section 4 introduces linear Bayes
estimators for estimation of the finite population mean. Section 5 addresses the same
estimation problem for more complex models. Section 6 contains estimation of strata
means and their application in domain estimation. Hierarchical Bayesian estimation for
generalized linear models is discussed in Section 7. Some final remarks are made in
Section 8.

2. Notation and preliminaries

In finite population sampling we deal with a population of N units labeled 1, 2, . . . , N.
These units, for example, may be households in a city, or farms in a county, or schools
in a certain school district, etc. We denote the finite population by U and assume that the
population size N is known. Let yi denote the unknown value of some characteristic of
interest for unit i, i = 1, . . . , N. For simplicity, we consider the yi to be scalar, although
they can be vector-valued as well. Often, in addition, a vector of auxiliary characteristics
for unit i, say, xi is also available. The components of xi, and their possible relationship
to the yi, summarize the prior information about the population. In finite population
sampling, y = (y1, . . . , yN)

T is regarded as an unknown parameter belonging to Y, a
suitable subset of RN , the N-dimensional Euclidean space.

To infer about y, or some suitable function of it, we need to select a sample from the
population U. We will assume that the value of y on a sampled unit is known, that is, we
will not consider here presence of any nonresponse, response bias, or measurement error.
We closely follow Ghosh and Meeden (1997, Chapter 1) to define our notation later. We
select a sample s which is a subset of U. Let n(s) denote the number of elements in s
which consists of the units i1, . . . , in(s), that is s = {i1, . . . , in(s)}. Let S denote the
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(countable) set of all possible samples. A sampling design is given by a probability
functionp(·) defined on S, that is,p(s) ≥ 0 for all s ∈ S and

∑
s∈S p(s) = 1. We assume

sampling without replacement so that the labels of the units in a sample s = {i1, . . . , in(s)}
are ordered 1 ≤ i1 < · · · < in(s) ≤ N. For a population vector y ∈ Y and a sample s,
we denote the sampled vector by y(s) = (yi1 , . . . , yin(s) )T .

Given a parameter space Y and design p, a typical sample point is the set of labels
of the units in the selected sample along with their values of the characteristic of inter-
est. For a sample s = {i1, . . . , in(s)}, we denote the data point by z = (s, zs) where
zs is y(s), the vector of values of the characteristic of the units in s. For simplicity,
we denote zs by (z1, . . . , zn(s))

T . For the remainder of this section, we closely follow
Meeden (1992).

For a given sample s, let sc = U−s, be the set of labels associated with the unsampled
units. The main objective of finite population sampling is inference about y(sc) given
z where y(sc) = (yj1 , . . . , yjN−n(s) )

T and j1 < · · · < jN−n(s) are such that jk ∈ sc, k =
1, . . . , N−n(s). The likelihood principle (see, e.g., Ghosh and Meeden, 1997, p. 7) says
that in finite population sampling given the observed data z, one just learns the values
of zs, and that y(sc) must come from a y which is consistent with zs. Note that for a
given design p the sample space is given by

Z(Y, p) ≡ Z = {(s, zs) : p(s) > 0 and zs = y(s) for some y ∈ Y}.
So for a fixed y ∈ Y the probability function over Z is given by

Py(z) = Py(s, zs) = p(s) if zs = y(s)
= 0 otherwise. (1)

Define a subset of the parameter space Y by

Yz = {y|Py(z) > 0}
= {y|y(s) = zs},

Yz is determined by the sample z. The likelihood function Lz(y) for y based on the data
z is given by Lz(y) = Py(z). From (1) it follows that

Lz(y) =
{
p(s) if y ∈ Yz
0 elsewhere.

(2)

The standardized likelihood function defined as L̄z(y) = Lz(y)/ sup
y
Lz(y) is given by

L̄z(y) =
{

1 if y ∈ Yz
0 elsewhere.

(3)

Clearly, the standardized likelihood function L̄z(y) is independent of the design proba-
bility p(s).

The sufficiency and likelihood principles are two widely accepted principles in sta-
tistical inference. The sufficiency principle states that if two samples z and z′ lead to
the same value of a sufficient statistic, then the inference about y should be the same
whether one obtains the sample z or z′. This principle does not say anything about the
nature of the information or how to measure information supplied by the sample z.
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It is the likelihood principle that states that the information supplied by z is measured
by the standardized likelihood function L̄z(y). Meeden (1992) noted that the mapping
z→ L̄z(·) induces a minimal sufficient partition of Z.

Because L̄z(y) is constant over Yz, maximum likelihood method is of no use to
estimate y. All we learn from the observed data z = (s, zs) is that the true y must have
no conflict with the observed data, that is, we must have y(s) = zs.

The main objective of finite population sampling is drawing inference about y(sc)
given z. The two principles aforementioned state that given the observed data z one just
learns about the values of zs and that y(sc)must come from a y which is consistent with
zs.To be specific, for example, if our interest is the finite population total γ(y) =∑N

i=1 yi,
then we write γ(y) as

∑
i∈s zi+

∑
j∈sc yj and it is enough to draw inference for the total

of the unsampled (or unseen) units based on the sampled (or seen) units in s.
Obviously, one gains nothing about y(sc) from zs alone without further assumption

relating these vectors. In the Bayesian approach to this problem, a statistician relates
y(sc) to zs using a suitable prior distribution π(y) on y and draws inference based on
the posterior distribution of y(sc) given the data zs. On the other hand, a frequentist
achieves this by using the design p along with the unbiasedness requirement.

3. The Bayesian paradigm

As we have discussed in the last section, the main objective of finite population sampling
is to infer about the unobserved units in the population given the observed sampled data.
The Bayesian paradigm is particularly attractive to meet this goal. Let π(y) denote the
prior density or probability function of a Bayesian statistician to summarize prior beliefs
about y. Using (2) or (3), because the likelihood function for y is constant on Yz the
posterior density π(y|z) is given by

π(y|z) =
{

π(y)
πy(s)(zs)

for y ∈ Yz,
0, otherwise,

(4)

where πy(s)(zs) is the marginal prior density of y(s) evaluated at the observed data zs.

Remark 3.1. From (4), it is clear that the posterior density does not depend on the
design p; it depends on the sample only through zs. Hence from now on we denote the
posterior density by π(y|zs), which is just the prior density π(y)with the sampled values
zs inserted in their appropriate places and renormalized, so that π(y|zs) integrates to one
over Yz.

We note that in contrast with the Bayesian thinking, the frequentist approach uses the
design probability and unbiasedness requirement in drawing inference for y based on the
observed data z. It is demonstrated by Basu (1969) [see also Eq. (3) mentioned earlier]
that the likelihood principle implies that the design probability should not be considered
in analyzing the data after the sample has been observed. Thus, the frequentist approach
requiring design unbiasedness violates the likelihood principle. Godambe (1966), a
pioneer in statistical foundation of survey sampling, also noted this phenomenon.
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In view of the sufficiency principle and the likelihood principle, one certainly finds the
Bayesian paradigm obeying these principles attractive. However, in high-dimensional
inference problems such as in finite population sampling it is often a formidable task
to specify a sensible prior distribution to perform Bayesian analysis. For such problems
one cannot carry out Bayesian analysis without some simplifying model assumptions.
Avariety of models can be employed to handle various amounts of prior knowledge. In a
pioneering article on foundation of survey sampling, Hartley and Rao (1968) discussed a
Bayesian approach to survey sampling.At about the same time Ericson (1969a) proposed
in an important article a subjectivist Bayesian approach to finite population sampling.
Some of this work is reviewed later.

In Bayesian approach to finite population sampling the goal is to obtain the conditional
distribution of y given the data zs. This is tantamount to find the conditional distribution
of unobserved values y(sc) given the sampled values zs. This is really a prediction
problem when the goal is to predict the unobserved y(sc) based on its posterior density
π(y(sc)|zs). We consider some simple Bayesian models in the following sections.

3.1. A simple exchangeable model

The most important quantity of interest in finite population sampling is usually the
population total or the population mean. Because the population total γ(y) is the sum
of the observed zs values plus the sum of the unobserved y(sc) values, under squared
error loss the Bayes estimator of γ(y) is given by

Eπ[γ(y)|zs] =
∑
i∈s
zi +

∑
j∈sc

Eπ[yj|zs], (5)

where Eπ[·|zs] denotes the posterior expectation.
If one naively assumes a priori that y1, . . . , yN are independent with a mean φ, then

from (5)

Eπ[γ(y)|zs] =
∑
i∈s
zi + (N − n)φ,

where n is the sample size. Clearly, the above is not a very good estimate because the
observed units do not carry any information about the unobserved units. To relate the
unobserved units to the observed units, the strong independence assumption is replaced
by the exchangeability assumption of Hartley and Rao (1968), Hill (1968), and Ericson
(1969a). The exchangeability assumption for the joint prior density, described later,
is the Bayesian analog of simple random sampling without replacement in frequentist
approach.

Suppose θ is a real-valued parameter. Assume that (i) yi|θ, i = 1, . . . , N are i.i.d.
with a probability density function g(·|θ), and (ii) θ has a prior density h(θ). Then the
marginal density of y is given by

π(y) =
∫ N∏

i=1

g(yi|θ)h(θ)dθ. (6)

Some people refer to (i) as a superpopulation model and (ii) as a prior, whereas others
refer to (i) and (ii) as two stages of a hierarchical prior where θ is a hyperparameter. This
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distinction, though often conceptually important, is not necessary from an operational
point of view. The important point is that based on the given model, the conditional or
the predictive distribution of y(sc) given zs is

π(y(sc)|zs) = π(y(sc), zs)

π(zs)

=
∫ ∏

j∈sc g(yj|θ)
∏
j∈s g(zj|θ)h(θ)dθ∫ ∏

j∈s g(zj|θ)h(θ)dθ
=
∫ ∏

j∈sc
g(yj|θ)h(θ|zs)dθ, (7)

where

h(θ|zs) =
∏
j∈s g(zj|θ)h(θ)∫ ∏
j∈s g(zj|θ)h(θ)dθ

(8)

denotes the posterior density of θ. Clearly the denominator of (8) is the marginal density
of the sampled data.

As an illustration of the aforementioned setup we consider an important special case.
Suppose that y1, . . . , yN |θ are i.i.d. N(θ, σ2) and θ ∼ N(φ, τ2), where σ2(> 0), φ real,
and τ2(> 0) are all known. The parameters σ2, φ, and τ2 are interpreted respectively as a
guess at the amount of variability in the population, the prior guess about the mean of the
population, and the measure of how certain one is about the choice of the prior mean. In
this case, the posterior distribution of y(sc) given zs is multivariate normal. To determine
the mean vector and the variance–covariance matrix of the predictive distribution, we
first obtain the posterior distribution of θ. Note that elementary calculations yield

h(θ|zs) ∝ exp

⎡
⎣− 1

2σ2

n∑
j=1

(zj − θ)2 − (θ − φ)2
2τ2

⎤
⎦

∝ exp

[
− (θ − η)

2

2δ2

]
, (9)

where

η = Eπ[θ|zs] = (1− B)z̄s + Bφ, (10)

δ2 = Vπ[θ|zs] = σ2

n
(1− B), (11)

z̄s = n−1∑n
i=1 zi = sample mean and B = n−1σ2/(n−1σ2 + τ2).

Using iterated formulas for expectation and variance, in conjunction with (10) and
(11), we get for j, j′ ∈ sc that

Eπ[yj|zs] = Eπ[Eπ(yj|θ, zs)|zs]
= Eπ[θ|zs]
= (1− B)z̄s + Bφ, (12)
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covπ(yj, yj′ |zs) = Eπ[covπ(yj, yj′ |θ, zs)|zs]
+ covπ[Eπ(yj|θ, zs), Eπ(yj′ |θ, zs)|zs]

= σ2δjj′ + σ2

n
(1− B), (13)

where δjj′ = 0 if j 
= j′ and δjj′ = 1 if j= j′. We now use (5), (12), and (13) to
find the posterior mean and the posterior variance of the finite population mean
μ(y)=N−1∑N

j=1 yj . By (5) and (12),

Eπ[μ(y)|zs] = N−1[nz̄s + (N − n){(1− B)z̄s + Bφ}]
= (1− fB)z̄s + fBφ, (14)

where f = (N − n)/N denotes the finite population correction. In a leading article
that is most likely the first article on Bayesian approach to survey sampling, Hartley
and Rao (1968, p. 552) obtained a similar representation of the Bayes estimator of the
finite population mean. Note that the Bayes estimate of the finite population mean is the
usual weighted average of the sample mean and the prior mean. A simple comparison
between (10) and (14) reveals that the Bayes estimate of finite population mean assigns
more weight to the sample mean than the Bayes estimate of the population mean θ
does. However, for an infinite population, f → 1 as N →∞, and the estimate in (14)
approaches to the estimate in (10).

Using (13),

Vπ

[
N−1

N∑
i=1

yi|zs
]
= N−2Vπ

⎡
⎣∑
j∈sc

yj|zs
⎤
⎦

= N−2

⎡
⎣∑ ∑

j,j′∈sc

{
σ2δjj′ + σ2

n
(1− B)

}⎤⎦

= N−2

[
(N − n)σ2 + σ2

n
(1− B)(N − n)2

]

= fσ2N−1

[
1+ (N − n)τ2

σ2 + nτ2

]

= fσ2N−1 σ
2 +Nτ2

σ2 + nτ2

= fB
(
τ2 + σ2

N

)
= fBVπ

(
N−1

N∑
i=1

yi

)
(15)

because Vπ
(
N−1∑N

i=1 yi

)
= τ2 + σ2

N
is the prior variance of N−1∑N

i=1 yi.

Remark 3.2. Note that if τ2 → ∞, θ will have a uniform prior over (−∞,∞) and
since the shrinking factor B→ 0, the Bayes estimator of μ(y) approaches the classical
estimator z̄s. In this case, the associated posterior variance approaches fσ2/n, which is
very similar to the measure of uncertainty associated with the classical estimator z̄s.
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Remark 3.3. We can rewrite the shrinking factorB asB = σ2/(σ2+nτ2) = n−1σ2(1−
B)/τ2 = Vπ(θ|zs)/Vπ(θ). Thus, B is the ratio of the posterior and the prior variance of
θ. The extent of shrinking depends on the prior variance. For finite population mean,
the ratio of the posterior variance to the prior variance is fB; the appearance of f is due
to finite population correction. Also, because of the finite population correction factor,
the Bayes estimator of finite population mean shrinks less towards the prior mean than
the Bayes estimator of θ does.

3.2. Generalizations

The results derived earlier under the normality assumptions can be generalized easily
to the regular one-parameter exponential family with conjugate priors. Suppose that
y1, . . . , yN |θ are i.i.d. with a common pdf

g(y|θ) = exp{θy − ψ(θ)}c(y), (16)

while θ has a prior density given by

h(θ) ∝ exp{αθ − νψ(θ)}. (17)

This leads to the posterior

π(θ|zs) ∝ exp{(nz̄s + α)θ − (n+ ν)ψ(θ)}. (18)

Note that E(yi|θ)=ψ′(θ), and V(yi|θ)=ψ′′(θ). Let Eh(·) denote expectation
with respect to h(θ). Using Eh[∂ log h(θ)/∂θ]= 0, Eh[−∂2 log h(θ)/∂θ2] =
Vh[∂ log h(θ)/∂θ], ∂ log h(θ)/∂θ = α − νψ′(θ) and ∂2 log h(θ)/∂θ2 = −νψ′′(θ), we
get Eh[ψ′(θ)] = α/ν and Vh[ψ′(θ)] = ν−1Eh[ψ′′(θ)]. Also, note that Eh[V(z̄s|θ)] =
n−1Eh[ψ′′(θ)] = (ν/n)Vh[ψ′(θ)]. Again using iterated expectation formula for j ∈ sc
Eπ[yj|zs] = Eπ[ψ′(θ)|zs] and Vπ[yj|zs] = Eπ[ψ′′(θ)|zs] + Vπ[ψ′(θ)|zs]. Noting the
similarity between (17) and (18), we get in the same way, from (18) that

Eπ[ψ′(θ)|zs] = (nz̄s + α)/(n+ ν),
= (nz̄s + νφ)/(n+ ν), (19)

where φ = α/ν is the prior mean of ψ′(θ). Also follows, by a similar comparison, that

Vπ[ψ′(θ)|zs] = (n+ ν)−1Eπ[ψ′′(θ)|zs]. (20)

Note that the posterior expectation of ψ′(θ) in (19) is linear in z̄s, the sufficient statistic
for θ based on the model given by (16). It is possible to express the posterior mean of
ψ′(θ) alternatively as

z̄sVh[ψ′(θ)] + (α/ν)(ν/n)Vh[ψ′(θ)]
Vh[ψ′(θ)] + (ν/n)Vh[ψ′(θ)]

= z̄sVh[ψ′(θ)] + Eh[ψ′(θ)]Eh[V(z̄s|θ)]
Vh[ψ′(θ)] + Eh[V(z̄s|θ)] . (21)

The aforementioned result was obtained by Ericson (1969b) under less restrictive condi-
tions. Ericson (1969b) did not use any distributional assumptions in deriving this result,
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but instead used posterior linearity assumption. Posterior linearity is discussed in the
next section.

Note that as in (10) the posterior mean of ψ′(θ) given by (19) can be expressed as
(1 − B)z̄s + Bφ with 1 − B = n/(ν + n), that is, B = ν/(ν + n). In this setup, it
can be checked that as in (14), Eπ[μ|zs] = (1− fB)z̄s + fBφ holds. However, in this
case, the result given by (15) changes to Eπ{Vπ(μ|zs)} = fBVπ(μ). The expectation
on the left-hand side is necessary because in general the posterior variance, unlike in
the normal model, depends on the sampled observations.

A very important subfamily of the regular one-parameter natural exponential family
(NEF) is the natural exponential family with a quadratic variance function (NEF-QVF)
introduced in Morris (1982, 1983a). For such a distribution,

ψ′′(θ) = v0 + v1ψ
′(θ)+ v2{ψ′(θ)}2, (22)

where v0, v1, and v2 are free from θ and not all zeroes such that the quadratic function v0+
v1x+v2x

2 is nonnegative. Morris (1982) gives a complete characterization of the NEF-
QVF family of distributions. He shows that there are only six families of distributions
having the NEF-QVF structure. Among them, the normal, gamma, binomial, Poisson,
and negative binomial are the most widely used distributions in statistical applications.
It immediately follows that though the variance is a constant function of the mean for the
normal distribution, it involves only the linear term for the Poisson distribution, only the
quadratic term for the gamma distribution, and both the linear and the quadratic terms
for the binomial and the negative binomial distributions. Note that while two of these
members, namely, the normal and gamma are continuous distributions, the other three
are examples of discrete distributions.

From (22), and the result Vh[ψ′(θ)] = ν−1Eh[ψ′′(θ)], it follows that Vh[ψ′(θ)] =
(ν−v2)

−1[v0+v1Eh{ψ′(θ)}+v2{Eh(ψ′(θ))}2] and v2 < ν. For the NEF-QVF subfamily,
from (20)

Vπ[ψ′(θ)|zs] = (n+ ν)−1Eπ[ψ′′(θ)|zs]
= (n+ ν)−1Eπ[v0 + v1ψ

′(θ)+ v2{ψ′(θ)}2|zs]
= (n+ ν)−1[v0 + v1Eπ(ψ

′(θ)|zs)
+ v2{Vπ(ψ′(θ)|zs)+ (Eπ(ψ′(θ)|zs))2}],

which leads to

Vπ[ψ′(θ)|zs] = (n+ ν − v2)
−1[v0 + v1Eπ{ψ′(θ)|zs} + v2(Eπ{ψ′(θ)|zs})2].

(23)

It follows from (18) and (23) that with a one-parameter exponential likelihood, and
an NEF-QVF conjugate prior, the posterior also preserves the NEF-QVF structure.
Furthermore, for n = 0 (no data problem), the posterior variance (23) reduces to the
prior variance.

4. Linear Bayes estimator

In the last section, the derivation of the Bayes estimator requires full specification of the
prior distribution π(y). One can also obtain the estimator of the finite population total
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derived earlier through a linear Bayes approach. This approach relies on the specification
of the lower order moments, typically the first two moments, of the prior distribution,
and is often preferable to the fully Bayesian approach because the latter approach needs
complete specification of the prior distribution, which may be difficult.

For the normal or natural exponential hierarchical models with conjugate priors,
we noted that the posterior expectation of the population mean is a linear function of
the sampled data. Actually, under the exchangeable model, the posterior expectation
of the finite population mean is a linear function of the sample mean. One can extend
the results of the last section by assuming posterior linearity, a concept introduced by
Ericson (1969b) in deriving the linear Bayes estimator of the population mean. Indeed,
the linear Bayes estimator has been independently discovered and rediscovered by many
researchers; notably among them are Ericson (1969b) and Hartigan (1969). Linear Bayes
idea was further developed in a series of articles by Goldstein (1975a,b). To derive the
linear Bayes estimator we will first prove the following lemma, which is also important
in deriving the best linear unbiased predictor. This lemma is a restatement of Result 3.1
of Ericson (1988).

Lemma 4.1. LetW1(n1× 1) andW2(n2× 1) be jointly distributed random vectors with
mean vectors μ1 and μ2, respectively, and variance covariance matrix

� =
(
�11 �12

�21 �22

)

which is finite and positive definite.

Then under a matrix loss the best linear approximation of E(W1|W2) is given by
P∗W2 + q∗ in the sense that

E
[{E(W1|W2)− PW2 − q}{ }T

]− E[{E(W1|W2)− P∗W2 − q∗}{ }T
]

is nonnegative definite for any matrix P(n1 × n2) and vector q(n1 × 1) not depending
on W2 where

P∗ = �12�
−1
22 and q∗ = μ1 −�12�

−1
22 μ2. (24)

Furthermore,�11.2−E[V(W1|W2)] is n.n.d. It is a null matrix if and only ifE(W1|W2)

is a linear function of W2 with probability 1. Here �11.2 = �11 − �12�
−1
22 �21, and {}T

indicates the transpose of the vector that appears immediately ahead.

Proof. It is easy to verify that

E[{E(W1|W2)− PW2 − q}{ }T ]
= �11.2−E{V(W1|W2)}+ (P − P∗)�22(P − P∗)T + (μ1 − Pμ2 − q)( )T .

(25)

By (24) and (25), it easily follows that

E
[{E(W1|W2)− P∗W2 − q∗}{ }T

] = �11.2 − E{V(W1|W2)}. (26)
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From (25) and (26), it follows that

E
[{E(W1|W2)− PW2 − q}{ }T

]− E[{E(W1|W2)− P∗W2 − q∗}{ }T
]

= (P − P∗)�22(P − P∗)T + (μ1 − Pμ2 − q)( )T
is nonnegative definite. The difference will be a null matrix provided P = P∗ and
μ1 − Pμ2 − q = 0, that is, P = P∗ and q = q∗. From (26), nonnegative definiteness
of �11.2 − E{V(W1|W2)} follows. It follows further that the difference will be a null
matrix if E(W1|W2) = P∗W2 + q∗, that is E(W1|W2) is a linear function of W2 with
probability 1. �

Remark 4.2. IfE(W1|W2) = PW2+q thenP and q are given by (24). Note that in this
case the expressions for E(W1|W2) and E[V(W1|W2)] are exactly the same as those
under multivariate normal joint distribution.

Corollary 4.3. Under sum of squared error loss, the best linear approximation of
E(W1|W2) is given by P∗W2 + q∗, where P∗ and q∗ are as in (24).

Proof. Proof follows easily by noting that for a vector a, aTa = tr(aaT ).
We have pointed out earlier in this section that it is possible to derive the linear Bayes

estimator of the finite population total using posterior linearity, which does not require
completely specifying the prior distribution unlike in Section 3. The concept of posterior
linearity is described later.
Suppose E(yi|θ) = κ(θ) for all i, and θ has a prior distribution under which

E[κ(θ)|zs] = αz̄s + β, (27)

where α and β do not depend on the zi. The aforementioned condition is referred to
as the condition of posterior linearity. The posterior linearity holds even outside expo-
nential models using conjugate priors. For example, in nonparametric estimation of a
distribution function F of iid random variables y1, . . . , yN by assigning F a Dirichlet
process prior, posterior linearity holds. Ericson (1969b) explicitly derived expressions
for α and β to obtain the posterior mean in (27). He proved the following result. We
omit the proof which can be derived from Lemma 4.1. �

Result 4.4. Let E(yi|θ) = κ(θ) for all i, and E[κ(θ)|zs] = αz̄s + β where α, β do not
depend on yi’s. Also, let 0 < V(yi) < ∞ for all i. If E[κ(θ)] = φ and V [κ(θ)] = τ2,
then

E[κ(θ)|zs] = τ2z̄s + φE[V(z̄s|θ)]
τ2 + E[V(z̄s|θ)] . (28)

In Result 4.4 if it is assumed that yi|θ, i = 1, . . . , N are iid with E[V(yi|θ)] = σ2, then
(28) can be reexpressed as

E[κ(θ)|zs] = (1− B)z̄s + Bφ,
whereas in (11) B = n−1σ2/(n−1σ2 + τ2). Moreover, from Lemma 4.1, because
E[κ(θ)|zs] is a linear function of zs, it follows after some simplification that
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E[V {κ(θ)|zs}] = (1− B)σ2/n. For the finite population mean μ(y) = N−1∑N
i=1 yi, it

can be checked as in (14) and (15) that

E[μ(y)|zs] = (1− fB)z̄s + fBφ
and

E[V(μ(y)|zs)] = fB
(
τ2 + σ2

N

)
. (29)

Remark 4.5. In the special case of a regular one-parameter exponential family with
conjugate priors considered in Section 3, Ericson’s formula (28) reduces to equation
(19) obtained earlier. We may note here that the regular one-parameter exponential
family along with natural conjugate priors leads to posterior linearity of the population
mean. Diaconis and Ylvisaker (1979) showed under mild regularity conditions that the
regular one-parameter exponential family along with posterior linearity implies a natural
conjugate prior.

Remark 4.6. It is well-known (cf. Basu, 1971) that Bayesian inference in finite popula-
tion sampling is independent of the choice of the sampling design, because the posterior
distribution remains invariant with respect to the choice of the sampling design [see
Eq. (4)]. However, there is a Bayesian way for selecting sampling designs based on
minimizing Bayes risk. Under squared error loss, the Bayes risk of the Bayes estimator
of the finite population mean is given by E[V(μ(y)|zs)]. It follows from (15) or (29) or
the similar expression for E[V(μ(y)|zs)] in NEF setup (given in the paragraph follow-
ing (21)), the Bayes risk is the same irrespective of the choice of sampling units. The
intuitive reason for this is the basic exchangeability assumption. Thus, from a Bayesian
point of view, it does not matter which units are selected. The sampling design could for
example be a simple random sampling, or it could be purely purposive. Though in this
context it is clear that randomization has no role, Basu (1980, p. 594) advocated pre-
randomization of units to address the concern so that a statistician is not falsely accused
of doctoring his data. We will see in the next section that in the presence of auxiliary
information, the design resulting from the minimization of Bayes risk is different from
a simple random sampling design.

5. Bayes estimators of the finite population mean under more complex models

We continue finding Bayes estimators of the finite population mean under more complex
models. In particular, we consider appropriate Bayesian models to incorporate auxiliary
information and to handle multistage sampling.

5.1. Bayesian models in the presence of auxiliary information

Bayesian models considered so far are mainly built on the idea of exchangeability among
the different population units. However, these models, as such, are not appropriate in
the presence of auxiliary information, and need to be suitably modified. Most sample
surveys include auxiliary information, which when judiciously used, can lead to better
estimates of the population characteristics.
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We first consider a simple and yet fairly general Bayesian model which can be
used to accommodate a number of interesting special cases. The model is described
below.

(i) yi|θ are independent N(θai, σ2
i );

(ii) θ ∼ uniform (−∞,∞),
where ai and σ2

i (> 0), i = 1, . . . , N, are all known. A sample s of fixed size n is
drawn. Our first objective is to find the posterior distribution of y(sc) given zs. Let
a(sc) = (aj1 , . . . , ajN−n )

T . We state the following theorem without a proof which is
straightforward.

Theorem 5.1. Under the model given in (i) and (ii), the joint posterior distribution of
y(sc) given zs is an (N − n)-variate normal with mean vector θ̂a(sc), and variance–
covariance matrix

Diag(σ2
j1
, . . . , σ2

jN−n )+ d−1a(sc)aT (sc),

where

θ̂ = �saiσ−2
i yi/d, d = �sa2

i σ
−2
i .

Remark 5.2. It can be easily checked that the posterior distribution of θ given zs is
N(θ̂, d−1).

Remark 5.3. From Theorem 5.1, it can be derived that the posterior distribution of∑N
i=1 yi given zs is

N

(
�syi + θ̂

N−n∑
k=1

ajk ,

N−n∑
k=1

σ2
jk
+ (�sai)2d−1

)
. (30)

Thus, the Bayes estimator of finite population total γ(y) =∑N
i=1 yi under squared error

loss is given by

γ̂B = �syi + θ̂
N−n∑
k=1

ajk . (31)

A traditional estimator of the finite population total is given by the Horvitz–Thompson
estimator γ̂HT =∑s yi/πi where πi denotes the inclusion probability of the ith unit. We
shall see now how this estimator can also be viewed as a Bayes estimator. Following
Ghosh and Sinha (1990), taking ai = πi, and σ2

i = σ2π2
i /(1− πi), one finds from (31)

that

γ̂B = �syi +
∑

s(1− πi)π−1
i yi∑

s(1− πi)
�scπj.

But since
∑

sc πj =
∑N

1 πi −
∑

s πi = n−
∑

s πi =
∑

s(1− πi), it follows that

γ̂B = �syi +�s(1− πi)π−1
i yi = �syi/πi = γ̂HT.
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Apart from motivating the Horvitz–Thompson estimator as a model-based estimator,
the model-based approach provides also an interpretation of the inclusion probabilities
πi. To see this, note that the coefficient of variation of the ith unit σi/θai ∝ (1−πi)−1/2,
which is monotonically increasing in πi. Thus, units with larger coefficients of varia-
tion have bigger probabilities of being included in the sample. This seems appropriate
because these are the units that are more difficult to predict from the other observed
sampled units.

Little (2004) provided an alternate model-based formulation under which yi/πi|θ are
iid N(0, σ2). Then the MLE or UMVUE of θ is given by θ̂L = n−1∑

i∈s yi/πi, and the
finite population total γ(y) is now estimated by

γ̂L = γ̂HT +
∑
i∈s
(yi − θ̂Lπi)

which is not quite the same as γ̂HT, but the difference between γ̂L and γ̂HT converges
in probability to zero if the sampling fraction n/N converges to zero. Continuing with
this idea, Little (2004) provided also a model-based interpretation of the generalized
regression estimator.

We will now derive ratio-type estimators as special cases of the Bayes estimator
in (31). Royall (1970b) discussed such estimators very extensively using a frequentist
model-based approach. Taking ai = xi and σ2

i = σ2v(xi), the Bayes estimator γ̂B takes
the form

γ̂B = �syi +
(
�sv

−1(xi)xiyi/�sv
−1(xi)x

2
i

)
�scxi. (32)

For the special choice v(xi) = xi, (32) simplifies to

E

[
N∑
1

yi|zs
]
= (�syi/�sxi)

N∑
1

xi, (33)

which is the ratio estimator. The other choice v(xi) = x2
i leads to

E

[
N∑
1

yi|zs
]
= �syi + n−1(�syi/xi)�scxi, (34)

an estimator discussed very extensively in Basu (1971). This estimator is intuitively
very appealing because it can be motivated by assuming that the unobserved ratios
yi/xi behave very much like the corresponding observed ratios. The admissibility
of this estimator was proved by Meeden and Ghosh (1983) using a stepwise Bayes
approach.

5.2. Choice of design

In Remark 4.6 we noted that under the exchangeability assumption, the Bayes estimator
of the finite population total has the same Bayes risk for any choice of a sample. Hence
the sampling design plays no role. This is not so in the presence of auxiliary information
as discussed below.
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For a sampling design p, the Bayes risk (under squared error loss) of the finite
population total based on the model described in Section 5.1 is given by

E

⎡
⎣
(

N∑
i=1

yi −�Syi − θ̂�Scaj
)2

|θ
⎤
⎦ = E[{�Sc(yj − θaj − (θ̂ − θ)aj)}2|θ]

=
∑
s

p(s)
[
�scσ

2
j + (�scaj)2

(
�sa

2
i σ
−2
i

)−1
]
.

(35)

The aforementioned Bayes risk, fortunately, does not depend on any unknown parameter.
One selects those units i that minimize the aforementioned Bayes risk with respect to
the ai.

We now study the special case of Horvitz–Thompson estimator taking ai = πi and
σ2
i = σ2π2

i /(1 − πi). It can be checked that the Bayes risk, which is free from the
parameter θ, simplifies to σ2∑

S p(s)
∑

sc πj/(1−πj). Clearly, this is minimized w.r.t.
p(s) by selecting those units for which πj/(1−πj) is the largest, that is, πj is the largest.
Because the coefficient of variation, as noted earlier, is increasing inπi, the units with the
largest coefficient of variation should purposively be selected in the sample. Attaching
arbitrary selection probabilities to the units in the population can often be disastrous as
the following example shows. This hilarious example is due to Basu (1971).

Example 5.4. The circus owner is planning to ship his 50 adult elephants and so needs
a rough estimate of the total weight of the elephants. As weighing an elephant is a
cumbersome process, the owner wants to estimate the total weight by weighing just
one elephant.Which elephant should he weigh? So the owner looks back on his records
and discovers a list of the elephants’ weights taken 3 years ago. He finds that 3 years
ago Sambo, the middle-sized elephant was the average (in weight) elephant in the herd.
He checks with the elephant trainer who reassures the owner that Sambo may still be
considered to be the average elephant in the herd. Therefore, the owner plans to weigh
Sambo and take 50y (where y is the present weight of Sambo) as an estimate of the
total weight γ ≡ γ(y) = y1+· · ·+ y50 of the 50 elephants. But the circus statistician
is horrified when he learns of the owner’s purposive sampling plan. “How can you get
an unbiased estimate of γ this way?” protests the statistician. So, together they work
out a compromise sampling plan. With the help of a table of random numbers they
devise a plan that allots a selection probability of 99/100 to Sambo, and equal selection
probabilities of 1/4900 to each of the other 49 elephants. Naturally, Sambo is selected
and the owner is happy. “How are you going to estimate γ?” asks the statistician.
“Why? The estimate ought to be 50y of course”, says the owner. “Oh! No! That cannot
possibly be right”, says the statistician. “I recently read an article in the Annals of
Mathematical Statisticswhere it is proved that the Horvitz–Thompson estimator is the
unique hyperadmissible estimator in the class of all generalized polynomial unbiased
estimators.” “What is the Horvitz–Thompson estimate in this case?” asks the owner
duly impressed. “Because the selection probability of Sambo in our plan was 99/100,”
says the statistician, the proper estimate of γ is 100y/99 and not 50y.” “And, how
would you have estimated γ ,” inquires the incredulous owner, “if our sampling made
us select, say, the big elephant Jumbo?” “According to what I understand of the
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Horvitz–Thompson estimation method,” says the unhappy statistician, “the proper
estimate of γ would then have been 4900y, where y is Jumbo’s weight.” That is how
the statistician lost his circus job and perhaps became a teacher of statistics.

Remark 5.5. Basu’s example clearly demonstrates that unless one uses the design prob-
abilities judiciously, the Horvitz–Thompson estimate can be meaningless. Indeed, our
result suggests that if the circus owner has to select one elephant, he should select Jumbo,
the big-sized elephant with probability 1. Even if one is hesitant to accept this extreme
view of purposive sampling, assigning 1/4900 probability to Jumbo is clearly wrong,
and it is no wonder that the statistician lost his circus job.

We will now consider the design issue for the ratio estimator of the total given by (32).
In this case, ai = xi, σ2

i = σ2v(xi) and the expression of Bayes risk given in (35) simpli-
fies to

σ2
∑
s

p(s)
[
�scv(xj)+ (�scxj)2/�sx2

i v
−1(xi)

]
. (36)

When v(xi) = xi, that is, the Bayes estimator is the ratio estimator, the expression given
in (36) reduces to

σ2
∑
s

p(s)

(
N∑
1

xi

)
(�scxj)/(�sxi). (37)

From (37), it is clear that one should select those units i with the largest xi values. For
v(xi) = x2

i , the expression given in (36) simplifies to

σ2
∑
s

p(s)
[
�scx

2
j + n−1(�scxj)

2
]
. (38)

Once again, select those units i with the largest xi values. Clearly, the recommendation
of selecting Jumbo in the elephant example is meaningful in light of (37) and (38).

Remark 5.6. It is interesting to note that the results of Section 5.1 can also be obtained
using a frequentist model-based approach. This idea has been put forward by Royall
(1970b, 1971).Assume the model under which y1, . . . , yN are independent withE(yi) =
θai, V(yi) = σ2

i . Then the best linear unbiased estimator of θ is given by θ̂ defined in
Theorem 5.1. Consequently, the best linear unbiased predictor of

∑N
1 yi is given by∑

s yi + θ̂
∑

sc aj . This is the same as the Bayes estimator in (31). Also, the frequentist
risk is the same as the Bayes risk (conditional on θ) derived earlier. Thus, there appears
to be a synthesis between the Bayesian and the frequentist methods of inference. Indeed,
the frequentist model-based approach yields identical point estimates without involving
any distributional assumptions. The Bayes procedure, however, has its advantages when
one wants to construct credible sets for functions of y1, . . . , yN because one can then
use the normal posterior distribution.

5.3. Multistage sampling

Multistage sampling is frequently used in sample surveys. For example, within a given
state, at Stage 1, a sample of counties is chosen. At Stage 2, a sample of blocks is chosen
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from each selected county, while in Stage 3, a sample of dwellings is selected from each
chosen block. This is an example of three-stage sampling. On the other hand, for a fixed
county, this is an example of two-stage sampling.

For simplicity of exposition, we shall consider only the two-stage sampling. To
be specific, suppose there are M clusters or primary sampling units (PSU) labeled
1, . . . ,M. The ith cluster contains Ni elements. The values associated with the Ni units
in the ith PSU are denoted by yi1, . . . , yiNi , i = 1, . . . ,M. In the first stage, only a
sample ofm clusters is selected. In the second stage, a sample of ni distinct elements is
selected from the Ni elements in the ith sampled cluster. For simplicity of notation, we
relabel the clusters and the units within the clusters so that we can denote the sampled
clusters by 1, . . . , m, and the values of the sampled units within the ith selected cluster
by yi1, . . . , yini . It is well known that the special case ni = Ni for all i = 1, . . . , m
corresponds to the cluster sampling.

The Bayesian analysis of two-stage sampling was first carried out by Scott and Smith
(1969). They considered the following Bayesian model:

Model 5.1.

I. Conditional on θ1, . . . , θM , for i = 1, . . . ,M, yi1, . . . , yiNi are independent and
for each i yi1, . . . , yiNi are iid N

(
θi, δ

2
i

)
;

II. θ1, . . . , θM are iid N(ν, τ2).

Throughout this section δ2
1, . . . , δ

2
m and τ2 are assumed known.

Although the aforementioned model does not use an exchangeable prior (due to
different δ2

i ) for the entire population, it uses an exchangeable prior for θ1, . . . , θM , and
conditional on θi, an exchangeable prior for yi1, . . . , yiNi within a PSU. Our objective is
to infer about yi,ni+1, . . . , yiNi (i = 1, . . . , m) and yi1, . . . , yiNi (i = m+1, . . . ,M) given
y(s) = (y11, . . . , y1n1 , . . . , ym1, . . . , ymnm)

T . In particular, we may be interested in the
finite population meanμi(y) = N−1

i

∑Ni
j=1 yij of the ith PSU or in the overall population

meanμ(y) = N−1∑M
i=1

∑Ni
j=1 yij , whereN =∑M

i=1Ni.The derivation of the predictive

distribution proceeds as follows. Let Bi = n−1
i δ

2
i

/(
n−1
i δ

2
i + τ2

)
, i = 1, . . . , m. Now,

it is immediate that θ1, . . . , θM |y(s) are mutually independent. As in (9) and (10), for
1 ≤ i ≤ m,

θi|y(s) ∼ N((1− Bi)ȳis + Biν, τ2Bi), (39)

where ȳis = n−1
i

∑ni
j=1 yij . For m+ 1 ≤ i ≤ M,

θi|y(s) ∼ N(ν, τ2). (40)

Hence, conditional on y(s), the joint posterior of yi,ni+1, . . . , yiNi (i = 1, . . . , m) and
yi1, . . . , yiNi (i = m + 1, . . . ,M) is multivariate normal with the first two moments
calculated as follows.

Let θ = (θ1, . . . , θm)
T . Then, for j = ni + 1, . . . , Ni, 1 ≤ i ≤ m,

E[yij|y(s)] = E[E{yij|θ, y(s)}|y(s)]
= (1− Bi)ȳis + Biν; (41)
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V [yij|y(s)] = V [E{yij|θ, y(s)}|y(s)] + E[V {yij|θ, y(s)}|y(s)]
= V [θi|y(s)] + E[δ2

i |y(s)]
= τ2Bi + δ2

i . (42)

Also, for ni + 1 ≤ j 
= j′ ≤ Ni, 1 ≤ i ≤ m,

Cov[yij, yij′ |y(s)] = Cov[E{yij|θ, y(s)}, E{yij′ |θ, y(s)}|y(s)]
+ E[Cov{yij, yij′ |θ, y(s)}|y(s)]

= V [θi|y(s)] + E[0|y(s)]
= τ2Bi. (43)

Next, for m+ 1 ≤ i ≤ M, 1 ≤ j ≤ Ni,
E[yij|y(s)] = E[yij] = ν, (44)

V [yij|y(s)] = V(yij) = τ2 + δ2
i . (45)

Also, for m+ 1 ≤ i ≤ M, 1 ≤ j 
= j′ ≤ Ni,
Cov[yij, yij′ |y(s)] = Cov[θi, θi|y(s)] = τ2. (46)

Finally, for m+ 1 ≤ i 
= i′ ≤ M, 1 ≤ j ≤ Ni, 1 ≤ j′ ≤ Ni′ ,
Cov[yij, yi′j′ |y(s)] = 0. (47)

Hence, for the ith cluster (1 ≤ i ≤ m),

E

⎡
⎣N−1

i

Ni∑
j=1

yij|y(s)
⎤
⎦ = N−1

i

⎡
⎣ ni∑
j=1

yij +
Ni∑

j=ni+1

E{yij|y(s)}
⎤
⎦

= N−1
i [niȳis + (Ni − ni){(1− Bi)ȳis + Biν}]

= (1− fiBi)ȳis + fiBiν, (48)

where, analogous to the definition of f , fi = (Ni − ni)/Ni is the finite population
correction for the ith cluster. Also, calculations similar to (15), for 1 ≤ i ≤ m, lead to

V

⎡
⎣N−1

i

Ni∑
j=1

yij|y(s)
⎤
⎦ = fiBi (N−1

i δ2
i + τ2

)
. (49)

On the other hand, for m+ 1 ≤ i ≤ M,

E

⎡
⎣N−1

i

Ni∑
j=1

yij|y(s)
⎤
⎦ = ν, (50)

V

⎡
⎣N−1

i

Ni∑
j=1

yij|y(s)
⎤
⎦ = N−1

i δ2
i + τ2. (51)
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Note that (50) and (51) correspond, respectively, to (48) and (49) by taking ni = 0 and
noting that in that caseBi = 1 and fi = 1. It easily follows that the posterior distribution
of finite population mean μ(y) = N−1∑M

i=1

∑Ni
j=1 yij is given by normal with mean

E [μ(y)|y(s)] = N−1E

⎡
⎣ m∑
i=1

ni∑
j=1

yij +
m∑
i=1

Ni∑
j=ni+1

yij +
M∑

i=m+1

Ni∑
j=1

yij|y(s)
⎤
⎦

= N−1

[
m∑
i=1

niȳis +
m∑
i=1

(Ni − ni){(1− Bi)ȳis + Biν} +
M∑

i=m+1

Niν

]

= N−1

[
m∑
i=1

Ni{(1− fiBi)ȳis + fiBiν} +
M∑

i=m+1

Niν

]
. (52)

Clearly, the posterior mean given earlier is a weighted average of the posterior means
of the PSU means (cf. (48) and (50)), the weights being proportional to the sizes of the
PSUs.

Finally, by (49) and (51), the posterior variance of the finite population mean is
given by

V [μ(y)|y(s)] = N−2

[
m∑
i=1

N2
i fiBi

(
N−1
i δ2

i + τ2
)+ M∑

i=m+1

N2
i

(
N−1
i δ2

i + τ2
)]

= τ2N−2

[
m∑
i=1

N2
i fiBi +

M∑
i>m

N2
i

]
+N−2

[
m∑
i=1

NifiBiδ
2
i +

M∑
i>m

Niδ
2
i

]
.

(53)

Remark 5.7. As in Section 4, it is possible to derive the posterior mean of μ(y) based
only on the assumption of posterior linearity, that is retain the moment assumptions as
given in I and II of Model 5.1, but instead of assuming normality, assume only that

E[θi|y(s)] =
ni∑
j=1

aijyij + bi, i = 1, . . . , m. (54)

Then applying Lemma 4.1 one can obtain expressions for E
[
N−1
i

∑Ni
j=1 yij|y(s)

]
, i =

1, . . . ,M or forE[μ(y)|y(s)] that match corresponding expressions under the normality
assumption. Also, it follows from this lemma that the expected value of the conditional
variance V [μ(y)|y(s)] will match the right-hand side of (53).

The results derived so far do not take into account any interrelationship among the
clusters. In fact, we obtain separate estimates of the means from the different clusters,
and take their weighted average to obtain an estimate of the finite population mean.
However, Scott and Smith (1969) extended Model 5.1 and introduced a hierarchical
Bayes model that builds correlations among the clusters. The hierarchical model of
Scott and Smith (1969) is as follows.
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Model 5.2.

I. Conditional on θ1, . . . , θM and ν, for i = 1, . . . ,M, yi1, . . . , yiNi , are indepen-
dent and yi1, . . . yiNi are iid N(θi, δ

2
i ), i = 1, . . . ,M;

II. Conditional on ν, PSU means θ1, . . . , θM are iid N(ν, τ2);
III. ν ∼ uniform (−∞,∞).

Here δ2
1, . . . , δ

2
m and τ2 are assumed known.

The objective is once again to find the joint posterior distribution of yij(j = ni +
1, . . . , Ni, i = 1, . . . , m) and yij(j = 1, . . . , Ni, i = m + 1, . . . ,M) given y(s). The
joint distribution is once again multivariate normal with

E[yij|y(s)] = E[E{yij|θ, ν, y(s)}|y(s)]
= E[θi|ν, y(s)]
= (1− Bi)ȳis + BiE[ν|y(s)], (55)

for j = ni + 1, . . . , Ni, i = 1, . . . , m, while for j = 1, . . . , Ni, i = m+ 1, . . . ,M,

E[yij|y(s)] = E[θi|ν, y(s)]
= E[ν|y(s)]. (56)

In fact to derive the posterior mean and posterior variance expressions, we need
E[ν|y(s)] and V [ν|y(s)] in conjunction with results derived in (48)–(53). Note that
y(s)|ν is multivariate normal with E[y(s)|ν] = ν

(
1Tn1
, . . . , 1Tnm

)T
and V [y(s)|ν] =

⊕mi=1

(
δ2
i Ini + τ2Jni

)
, is a block diagonal matrix and Jni = 1ni1

T
ni

. Now, since in our case
p(ν|y(s)) ∝ p(y(s)|ν), it implies that the posterior distribution of ν is normal with

E[ν|y(s)] = ȳws and V [ν|y(s)] = v∗, (57)

where

ȳws =
∑m

i=1(1− Bi)ȳis∑m
i=1(1− Bi)

and v∗ = τ2

[
m∑
i=1

(1− Bi)
]−1

.

Using (48)–(53) and (55)–(57), it can be checked that for 1 ≤ i ≤ m

E

⎡
⎣N−1

i

Ni∑
j=1

yij|y(s)
⎤
⎦ = (1− fiBi)ȳis + fiBiȳws, (58)

V

⎡
⎣N−1

i

Ni∑
j=1

yij|y(s)
⎤
⎦ = fiBi(N−1

i δ2
i + τ2

)+ f 2
i B

2
i v
∗, (59)

and for m+ 1 ≤ i ≤ M,

E

⎡
⎣N−1

i

Ni∑
j=1

yij|y(s)
⎤
⎦ = ȳws, (60)
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V

⎡
⎣N−1

i

Ni∑
j=1

yij|y(s)
⎤
⎦ = N−1

i δ2
i + τ2 + v∗, (61)

and

E[μ(y)|y(s)] = N−1

[
m∑
i=1

Ni{(1− fiBi)ȳis + fiBiȳws} +
M∑

i=m+1

Niȳws

]
,

(62)

V [μ(y)|y(s)] = Right side of (53) +N−2

[
m∑
i=1

NifiBi +
M∑

i=m+1

Ni

]2

v∗.

(63)

The estimators of μi(y) or μ(y) in (58) or (62) are known as HB estimators.

Remark 5.8. The only difference between the formula given in (62) and the one given
in (52) is that ν is replaced by ȳws. Thus, units in the unsampled clusters are estimated
by a weighted average of the sample means instead of the second stage prior mean. The
estimator given in (62) is, therefore, more adaptive than the one given in (52). Also,
as expected, the estimator in (62) is more variable than the one in (52). This is evident
from the posterior variance expression in (63).

Remark 5.9. The unknown mean ν of the population of cluster means in Model 5.1 was
given a uniform (−∞,∞) prior in Model 5.2. Instead of assigning a uniform prior to ν,
one can estimate it from the data based on the marginal distribution p(y(s)|ν) of y(s),
which is multivariate normal given earlier. It easily follows based on this distribution
that ȳws is the MLE as well as the UMVUE of ν. If we replace the unknown ν appearing
in the Bayes estimates (48) or (52) by this estimate, the resulting estimates are known
as empirical Bayes (EB) estimates (see Berger, 1985, Section 4.3; or Carlin and Louis,
1996, Section 3.1). In this example and for this estimate of ν, the resulting EB estimates
of μi(y) or μ(y) are identical to the corresponding HB estimates given by (58) or
(62). Although such exact coincidence of EB and HB estimates occurs only for normal
hierarchical models, in general, these estimates are very similar. However, if we use the
quantities in (49) or (53) as the associated measure of uncertainty for the EB estimator, we
can clearly see from (59) or (63) that such measures will result in the underestimation
of the true uncertainty. Posterior variance (49) or (53) are often termed as naive EB
measures of uncertainty. Though the posterior variance formulas in (59) or (63) for the
HB estimators automatically account for the uncertainty due to estimation of ν, this is
not so for the corresponding EB measures. This is definitely a clear advantage of the HB
procedure over the EB procedure. To derive an accurate measure of uncertainty of an
EB estimator, we need to ascertain in a nonnaive way the contribution of the unknown ν.
An early application is due to Morris (1983b). This point is further elaborated in the
sequel.

Remark 5.10.The extension of the hierarchical model of Scott and Smith (1969) to three-
stage sampling is given in Malec and Sedransk (1985). Interpretation of the estimator
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of Scott and Smith (1969) using a model-based prediction approach is given in Royall
(1976). The latter also provides alternative model-based estimators of the finite popu-
lation mean.

6. Stratified sampling and domain estimation

A useful concept in finite population sampling is stratification. In stratified sampling,
the population ofN units is first divided into subpopulations ofN1, . . . , Nm units respec-
tively, where

∑m
i=1Ni = N. These subpopulations are called strata. Samples of sizes

n1, . . . , nm are available from thesem strata or domains. Often theNi and ni are known
in advance. In other instances, a sample of size n is drawn from the entire population,
and then one finds out the sample sizes n1, . . . , nm for the m strata. This is known as
poststratification. In this chapter, we will not consider poststratification.

Stratified sampling is often used to facilitate the administration of a survey. There
may be several field offices located in different regions that will conduct the survey.
From cost and other considerations it is meaningful to subdivide the entire population
into several regions and draw independent samples from each of them. Another reason
for using stratified sampling is to improve the precision of the estimator of the population
total by dividing a heterogeneous population into several homogeneous strata.

In certain surveys, one may be required to produce estimates of known precision for
some or all of the subdivisions. In such case, it is better to treat each such subdivisions
as a population. This is similar to small area estimation problem treated in a sequel to
this chapter.

In Bayesian approach to survey sampling, stratification is a useful concept in spec-
ifying prior information for a finite population where the exchangeability assumption
is less tenable for the whole population. In such case, one stratifies the population such
that the exchangeability assumption holds, at least approximately, within each stratum.
This is similar to stratification in traditional sampling where the goal is to reach within
stratum homogeneity.

We will assume that there are m strata Uk, k = 1, . . . , m, partitioning the population
U. Let hi denote the stratum membership of the ith unit. Here we will assume that
the vector h = (h1, . . . , hN)

T and the strata sizes N1, . . . , Nm and the corresponding
sample sizes n1, . . . , nm are completely known and positive. For discussion of the case
where h is not completely known, one may refer to Chapter 3 of Ghosh and Meeden
(1997).

Let ykj , j = 1, . . . , Nk, be the value of the variable of interest for the jth unit
in the kth stratum, k = 1, . . . , m. Also, let yk = (yk1, . . . , ykNk )

T , and the finite
population mean and finite population variance of the kth stratum be μk and Vk
where

μk = N−1
k

Nk∑
j=1

ykj and Vk = N−1
k

Nk∑
j=1

(ykj − μk)2, k = 1, . . . , m.

Obviously, the overall finite population mean μ is given by μ = ∑m
k=1Nkμk/N.

For simplicity of notation, we denote the sample values from the kth stratum by zkj ,
j = 1, . . . , nk, k = 1, . . . , m.
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Before we start our discussion on EB and HB prediction of stratum means in the
following subsections, we would like to mention that we will not consider the choice of
Bayesian optimal designs in stratified sampling. For interesting discussion on this issue
we refer to Ericson (1965) and Rao and Ghangurde (1972).

6.1. EB estimation in stratified sampling

Ghosh and Meeden (1997) discussed EB and HB estimation of the stratified mean vector
μ = (μ1, . . . , μm)

T . Their normal theory EB approach for solving this problem is based
on the model given in the following sections.

Model 6.1.

I. Conditional on θ1, . . . , θm, for j= 1, . . . , Nk, k= 1, . . . , m,ykj are independently
normally distributed with E(ykj|θ1, . . . , θm) = θk and V(ykj|θ1, . . . , θm) = σ2;

II. θ1, . . . , θm are iid N(ν, τ2).

Let z denote the sample vector and z̄k = n−1
k

∑nk
j=1 zkj , the kth stratum sample mean.

Denote the ratio σ2/τ2 of the variance components by λ and let Bk = λ/(λ + nk).
As in Section 5, one can derive that the joint posterior distribution of ykj , j = nk +
1, . . . , Nk, k = 1, . . . , m is multivariate normal. From this result, it easily follows
that

E[μk|z] = N−1
k [nkz̄k + (Nk − nk){(1− Bk)z̄k + Bkν}], (64)

V [μk|z] = N−1
k (Nk − nk)Bk

(
τ2 +N−1

k σ2
)
, (65)

Cov[μk, μ′k|z] = 0 for k 
= k′ = 1, . . . , m. (66)

Because both λ and ν are unknown, in an EB analysis they are estimated from the
marginal distribution of the data. As mentioned earlier, it can be seen that marginally
y1, . . . , ym are independent with yk distributed as N

(
ν1Nk , σ

2
(
INk + λ1Nk1

T
Nk

))
.

Let nT =∑m
k=1 nk and z̄ = n−1

T

∑m
k=1 nkz̄k. Define

MSB = (m− 1)−1
m∑
k=1

nk(z̄k − z̄)2, (67)

MSW = (nT −m)−1
m∑
k=1

nk∑
j=1

(zkj − z̄k)2. (68)

Also, let h = nT −∑m
k=1 n

2
k/nT . Note that to estimate Bk = (1+ λ−1nk)

−1, appearing
in the Bayes estimator (64), we need to estimate λ−1. Ghosh and Meeden (1997) used
the following ANOVA estimator of λ−1 given by

λ̂−1 = max[0, {(m− 1)MSB/((m− 3)MSW)− 1}(m− 1)h−1], (69)

assuming m ≥ 4.
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To estimate ν, for known λ, Ghosh and Meeden (1997) have shown that the MLE of
ν is given by

ν̃(λ) =
m∑
k=1

(1− Bk)z̄k
m∑
k=1

(1− Bk)

=
m∑
k=1

nk
(
1+ λ−1nk

)−1
z̄k

/ m∑
k=1

nk
(
1+ λ−1nk

)−1
. (70)

By (69) and (70), an estimator of ν is given by

ν̂ =
{∑m

k=1(1− B̂k)z̄k/
∑m

k=1(1− B̂k) if λ̂−1 > 0∑m
k=1 nkz̄k/nT if λ̂−1 = 0.

(71)

This estimator of ν is slightly different from the one proposed by Ghosh and Meeden
(1997); see their Eq. (4.19). They defined for λ̂−1 = 0, ν̂ = m−1∑m

k=1 z̄k. Substituting
the estimators of ν̂ and B̂k respectively for ν and Bk, it follows from (64) that an EB
predictor of μk is given by

μ̂k,EB = N−1
k [nkz̄k + (Nk − nk){(1− B̂k)z̄k + B̂kν̂}]. (72)

A naive measure of uncertainty associate with (72) can be obtained from

V̂ (μk|z) = N−1
k (Nk − nk)B̂kσ̂2(λ̂−1 +N−1

k ),

where σ̂2 = MSW. This usually underestimates the true measure of uncertainty because
it ignores the estimation error associated with the parameters σ2, τ2, and ν. The above
measure of uncertainty is accurate only to the first order. In contrast, we will see in
subsection 6.3 that HB measures of uncertainly take into account all sources of error
in estimating the hyperparameters. More accurate (second-order accurate) measures
of uncertainty associated with the EB predictors as the number of strata increases are
available. We will not discuss them here because these problems are very much similar
to accurate estimation of the mean squared error of EBLUPs in small area estimation
treated in a sequel of this chapter. This similarity is due to the fact that one can treat a
stratum as a small domain. However, such mean squared error estimation will not be
valid unless the number of strata is large.

In this context, it is worthwhile to mention tht the EB predictors of the strata means
are optimal in certain sense. In Section 4.3, Ghosh and Meeden (1997) have shown that
under average squared error loss and the Model 6.1, the difference of the Bayes risks
of the EB predictors μ̂k,EB and the Bayes predictors in (69) goes to zero as m goes to
infinity.

In stratified sampling, one is usually interested in the finite population mean μ. An
EB predictor of μ is given by μ̂EB = N−1∑m

k=1Nkμ̂k,EB along with a naive measure of
uncertainty given byN−2∑m

k=1N
2
k V(μk|z). Note that to the first order of approximation

of the estimated measure of uncertainty, the EB predictors μ̂k,EB are uncorrelated.
Little (2004) considered a model similar to Ghosh and Meeden (1986) except that

in Part I of the model, he allowed different error variances σ2
i (i = 1, . . . , m) for dif-

ferent strata. He considered independent vague priors π
(
θi, σ

2
i

) = σ−2
i , i = 1, . . . , m.

Although the resulting posterior does not come out in a closed form, it is easy to draw
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samples from this posterior by the standard Markov chain Monte Carlo numerical inte-
gration technique, and the resulting inference can easily be based on these Monte-Carlo
samples.

6.2. Linear Bayes estimation of stratum means

In the last section, we have considered EB estimation of the finite population stra-
tum means assuming a normal superpopulation model. In this section, we will relax
the normality assumption made in Model 6.1, and replace it by the posterior linearity
assumption introduced in Section 4. We assume the following model.

Model 6.2.

I. Conditional on θ1, . . . , θm, for j = 1, . . . , Nk, k = 1, . . . , m, ykj are mutually
independent with E(ykj|θ1, . . . , θm) = θk and V(ykj|θ1, . . . , θm) = μ2(θk), k =
1, . . . , m;

II. θk are iid with mean ν and variance τ2;
III. 0 < σ2 = E[μ2(θk)] <∞.

We also assume the posterior linearity that says that

E[θk|z] =
nk∑
j=1

akjzkj + bk, k = 1, . . . , m, (73)

where the akj and the bk are constants not depending on the y. Because conditionally
ykj , j = 1, . . . , nk are iid for given θ1, . . . , θm, it follows from Goldstein (1975a) or
from Result 4.4 that (73) leads to

E(θk|z) = akz̄k + bk, k = 1, . . . , m, (74)

where ak are constants. In fact, by Resut 4.4, we get that

ak = 1− Bk, bk = Bkν, and Bk = n−1
k σ

2
/(
n−1
k σ

2 + τ2
)
.

Hence, as in Ghosh and Meeden (1997, p. 173) under the average squared error loss, the
Bayes estimator of μ = (μ1, . . . , μm)

T is given by μ̂B = (μ̂1,B, . . . , μ̂m,B)
T , where

μ̂k,B = E[μk|z]

= N−1
k

⎡
⎣nkz̄k + Nk∑

j=n+1

E(ykj|z)
⎤
⎦

= N−1
k

⎡
⎣nkz̄k + Nk∑

j=nk+1

E{E(ykj|θ, z)|z}
⎤
⎦

= N−1
k [nkz̄k + (Nk − nk)E(θk|z)]

= N−1
k [nkz̄k + (Nk − nk){(1− Bk)z̄k + Bkν}]

= (1− fkBk)z̄k + fkBkν
= z̄k − fkBk(z̄k − ν), (75)

where fk = (Nk − nk)/Nk denotes the finite population correction factor for stratum k.
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6.3. HB estimation in stratified sampling

In this section, we will consider a hierarchical model to develop HB estimates of stratum
means. The hierarchical model, given later, adds another stage to the Model 6.1 by
assigning a prior distribution to the unknown mean ν and variance parameters σ2 and τ2.
We reparameterize σ2 = r−1 and τ2 = (rλ)−1. We assign a uniform prior distribution
to ν and independent inverse gamma distributions to σ2 and τ2. We use the notation
Gamma(a/2, b/2) to denote a gamma distribution with mean b/a and variance b/a2.
We also note that a p-variate t-ditribution with location vector a, positive definite scale
matrix � and degrees of freedom d is given by the pdf

f(x) ∝ [1+ (x− a)T�−1(x− a)/d]−(d+p)/2, x ∈ Rp.

Model 6.3.

I. Conditional on θ1, . . . , θm, ν, σ2 and τ2, for j= 1, . . . , Nk, k= 1, . . . , m, ykj
are independently normally distributed with E(ykj|θ1, . . . , θm) = θk and
V(ykj|θ1, . . . , θm) = σ2;

II. Conditional on ν, σ2, and τ2, θ1, . . . , θm are iid N(ν, τ2);
III. Marginally, ν, σ2, and τ2 are independently distributed with ν ∼ uniform

(−∞,∞), (σ2)−1 ∼ Gamma(a/2, b/2), and (τ2)−1 ∼ Gamma(c/2, d/2).

The following theorem provides the predictive distribution of y(sc) given z. A proof
of this theorem, omitted here, is available in Ghosh and Meeden (1997, pp.227–235) or
Datta and Ghosh (1991, p. 1754).

Theorem 6.1. Under the hierarchical model mentioned earlier, the predictive distribu-
tion of y(sc) given z is given in two steps.

(i) conditional on λ and z, the joint distribution of y(sc) is multivariate-t with
location vector[⊕mi=11Ni−ni

] [(1− B1(λ))z̄1 + B1(λ)ν(λ), . . . , (1− Bm(λ))z̄m + Bm(λ)ν(λ)]T ,
degrees of freedom nT + b+ d − 1 and scale matrix

(nT + b+ d − 1)−1[a+ cλ+Q0(λ)]G(λ),
where

Q0(λ) =
m∑
k=1

nk∑
j=1

(zkj − z̄k)2 + λ
m∑
k=1

(1− Bk(λ))(z̄k − ν(λ))2,

and

G(λ) = ⊕mi=1

[
INi−ni + (λ+ ni)−1JNi−ni

]

+
[

m∑
i=1

(1− Bi(λ))
]−1 [

B1(λ)1TN1−n1
, . . . , Bm(λ)1TNm−nm

]T
× [B1(λ)1TN1−n1

, . . . , Bm(λ)1TNm−nm
] ;
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(ii) the conditional pdf of λ given z is given by the pdf

f(λ|z) ∝
m∏
k=1

Bk(λ)
1/2

{
m∑
k=1

(1− Bk(λ))
}−1/2

× {a+ cλ+Q0(λ)}− 1
2 (nT+b+d−1).

From Theorem 6.1, the HB predictor of μ is given by μ̂HB = (μ̂1,HB, . . . , μ̂m,HB)
T ,

where

μ̂k,HB = z̄k − fkE[Bk(λ)(z̄k − ν(λ))|z], (76)

k = 1, . . . , m. Also, the posterior variance of μk is given by

V(μk|z) = E[V(μk|λ, z)|z] + V [E(μk|λ, z)|z]
= E[(nT + b+ d − 3)−1{a+ cλ+Q0(λ)}Gkk(λ)|z

]
+ f 2

k V [Bk(λ)(z̄k − ν(λ))|z]. (77)

Similarly, the posterior covariance between μi and μk for i 
= k is given by

Cov(μi, μk|z) = fifkcov[Bi(λ)(z̄i − ν(λ)), Bk(λ)(z̄k − ν(λ))|z]. (78)

Using (76)–(78), an HB predictor of μ is given by μ̂HB = N−1∑m
k=1Nkμ̂k,HB and the

associated posterior variance is given by

V(μ|z) = N−2

⎡
⎣ m∑
k=1

N2
k V(μk|z)+

∑
i
=k

NiNkCov(μi, μk|z)
⎤
⎦.

To evaluate the HB estimates and the posterior variances we usually need numerical
integration method.

7. Generalized linear models

The hierarchical and empirical Bayes estimation techniques discussed in the previ-
ous chapters has mainly concentrated on continuous-valued variates. Often the survey
data are discrete or categorical, for which the HB or EB analysis suitable for con-
tinuous variates is not appropriate. In the past few years, work has begun to appear
on the Bayesian analysis of discrete survey data. Dempster and Tomberlin (1980) and
MacGibbon and Tomberlin (1989) obtained small area estimates of proportions via EB
techniques, whereas Malec et al. (1993) found the predictive distributions of a linear
combination of binary random variables using a HB technique. Stroud (1991) devel-
oped a general HB methodology for binary data, whereas Nandram and Sedransk (1993)
suggested Bayesian predictive inference for binary data from a two-stage cluster sam-
ple. Subsequently, Stroud (1994) provided a comprehensive treatment of binary survey
data encompassing simple random, stratified, cluster and two-stage sampling, as well
as two-stage sampling within strata.

The binary models constitute a subclass of generalized linear models that are often
used for a unified analysis of both discrete and continuous data. Ghosh et al. (1998) and
Ghosh and Natarajan (1999) developed HB generalized linear models with applications
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to small area estimation. On the other hand, Raghunathan (1993) suggested a quasi-
empirical Bayes method to address small area problems.

The HB model considered by Ghosh et al. (1998) is as follows. Suppose there are m
strata or local areas. LetYik denote the minimal sufficient statistic (discrete or continuous)
for the kth unit within the ith stratum (k = 1, . . . , ni; i = 1, . . . , m). The Yik are assumed
to be conditionally independent with pdf

f(yik|θik, φik) = exp
[
φ−1
ik (yikθik − ψ(θik))+ ρ(yik;φik)

]
(79)

(k = 1, . . . , ni; i = 1, . . . , m). Such a model is referred to as a generalized linear model
(McCullagh and Nelder, 1989, p. 28). The density (79) is parameterized with respect to
the canonical parameters θik and the scale parameters φik(> 0). It is assumed that the
scale parameters φik are known.

The natural parameters θik are first modeled as

h(θik) = bTikβ + ui + εik (k = 1, . . . , ni; i = 1, . . . , m), (80)

where h is a strictly increasing function; the xik (p × 1) are known design vectors,
β (p×1) is the unknown regression coefficient, ui are the random effects, and εik are the

errors. It is assumed that the ui and the εik are mutually independent with ui
iid∼ N

(
0, σ2

u

)
and εik

iid∼ N(0, σ2).
It is possible to represent (79) and (80) in a hierarchical framework. Let ru = σ−2

u

and r = σ−2.Also, let θ = (θ11, . . . , θ1n1 , . . . , θm1, . . . , θmnm)
T andu = (u1, . . . , um)

T .
Then the hierarchical model is given by

(I) conditional on θ,β,u, ru, and r,Yik are independent with densities given in (79);

(II) conditional on β,u, ru, and r, h(θik)
ind∼ N(xTikβ + ui , r−1);

(III) conditional on β, ru, and r, ui
ind∼ N(0, r−1

u ).
To complete the hierarchical model, we assign the following prior toβ, ru and r:

(IV) β, ru, and r are mutually independent with β ∼ uniform(Rp), (p < m), ru ∼
Gamma

(
1
2a,

1
2b
)
, and r ∼ Gamma

(
1
2c,

1
2d
)
.

The main objective is to find the joint posterior distribution of g(θik) where g is a
strictly increasing function, given the data y = (y11, . . . , y1n1 , . . . , ym1, . . . , ymnm)

T ,
and in particular in finding the posterior means, variances, and covariances of these
parameters. In typical applications, g(θik) = ψ′(θik) = E(Yik|θik).

First, however, one needs to ensure that the joint posterior distribution of θik given
y is proper. A theorem is proved to this effect. In what follows, the support of θik is the
open interval (θik, θik), where the lower endpoint of the interval can be −∞, the upper
endpoint can be +∞, or both.

A few notations are needed before stating the theorem. Let Iik = ∫ θik
θik

f(yik|θik)h′(θik)dθik, and S = {(i, k)|Iik < ∞}. We denote by θ∗ the vector of θik
which belong to S. The cardinality of S is denoted by s. Also, let XT

∗ denote the matrix
consisting of the column vectors xik, where (i, k) ∈ S. Further, let m∗ denote the num-
ber of local areas i that have at least one unit k for which (i, k) ∈ S. We now have the
following theorem.
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Theorem 7.1. Assume (i) a > 0, c > 0, (ii) s ≥ p, s+ b > p, (iii) rank(X∗) = p, (iv)
m∗ + b > 0, and (v) f(yik|θik) is bounded for all (i, k). Then the joint posterior of θik’s
given y is proper.

This theorem is a stronger version of the one given in Ghosh et al. (1998).
Two special cases are of interest. In the first case,Yik|θik ∼ Bin(nik, exp(θik)/(1+ exp

(θik))). Suppose now h is the identity function, that is, the link is canonical. Then writing
wik = exp(θik)/[1 + exp(θik)], the condition that Iik < ∞ reduces to

∫ 1
0 w

yik−1
ik (1 −

wik)
n−yik−1dwik <∞. As long as this happens for p pairs (i, k), and the other conditions

of the theorem hold, that is the prior is not too ill-behaved, one has the propriety of
the posterior. In particular, when p = 1, Iik < ∞ for one pair (i, k) amounts only to
the requirement that not all outcomes are either successes or failures. In the second
case, Yik|θik ∼ Poisson(exp (θik)). Then, if h is the canonical link, the condition that
Iik < ∞ reduces to

∫∞
0 ζ

yik−1
ik exp(−ζik)dζik < ∞. This condition needs to hold once

again only for p pairs (i, k). For p = 1, all one requires is that yik is not zero for at least
one (i, k).

Direct evaluation of the joint posterior distribution of g(θik) given y involves
high-dimensional numerical integration, and is not computationally feasible.
Instead, we use the Gibbs sampler (Gelfand and Smith, 1990). Its implementa-
tion requires generating samples from certain conditional posterior distributions.
Write h(θ)= (h(θ11), . . . , h(θ1n1), . . . , h(θm1), . . . , h(θmnm))

T , andX= (x11, . . . , x1n1 ,
. . . , xm1, . . . , xmnm)

T . Assume XTX is nonsingular. The necessary conditional distri-
butions based on (I)–(IV) are as follows:

(i) β|θ,u, ru, r, y ∼ N
(
(XTX)−1

(
XTh(θ)−∑i ui

∑
k xik
)
, r−1(XTX)−1

)
;

(ii) ui|θ,β, ru, r, y ind∼ N
(
(rni + ru)−1r

∑
k

(
h(θik)− xTikβ

)
, (rni + ru)−1

)
;

(iii) r|θ,β,u, ru, y∼Gamma
(

1
2

(
c+ ∑i

∑
k

(
h(θik) − xTikβ − ui

)2)
, 1

2

(
d+ ∑m

1 ni
))

;

(iv) ru|θ,β,u, r, y ∼ Gamma
(

1
2

(
a+∑i u

2
i

)
, 1

2

(
b+∑m

1 ni
))

;

(v) π(θik|θjl, (j, l) 
= (i, k), β,u, ru, r, y)
∝ exp

[
(yikθik − ψ(θik))φ−1

ik −
r

2
(h(θik)− xTikβ − ui)2

]
h′(θik).

It is easy to generate samples from the normal and gamma distributions given in
(i)–(iv). On the other hand, as evidenced in (v), the posterior distribution of θik given
β,u, ru, r, and y is known only up to a multiplicative constant, and accordingly one
has to use a general accept–reject algorithm to generate samples from this pdf. In the
special case where h is the identity function, the task becomes much simpler due to the
following lemma that establishes log-concavity of π(θik|β,u, ru, r, y). In such cases,
one can use the adaptive rejection sampling scheme of Gilks and Wild (1992).

Lemma 7.2.When h(z) = z for all z, logπ(θik|β,u, r, ru, y) is a concave function of θik.

Proof. logπ(θik|β,u, r, ru, y) = −φ−1
ik ψ

′′(θik) − r
2 , and the result follows since

V(Yik|θik) = φikψ′′(θik) and φik > 0. �
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Inference for θ will be based on (i)–(v). Indeed, based on (v), one can also find
E(θik|y), V(θik|y), and Cov(θik, θi′k′ |y) (i, k) 
= (i′, k′)based on Monte Carlo integration
techniques and formulas for iterated conditional expectations and variances.

The aforementioned method is different from that of Albert (1988), applied to binary
survey data by Stroud (1994). Albert’s method when applied to the present setting first
uses independent conjugate priors

π(θik|mik, ζ) = exp [ζ(mikθik − ψ(θik))+ g(mik; ζ)] (81)

for the θik. Next, he assumes h(mik)= xTikβ for some known monotone function h.
Subsequently, he assigns distributions (possibly diffuse) to the hyperparameters β and
ζ. In contrast, the present HB model does not need the conjugacy of the prior, and
models monotone functions of θik instead of monotone functions of mik = E[ψ′(θik)].
Moreover, Albert (1988) suggests approximation to the Bayes procedure by one or the
other of the following methods: (i) Laplace’s method, (ii) quasi-likelihood approaches.
These approximations are not utilized here. Instead, the MCMC numerical integration
technique will be used.

The log-concavity idea is used slightly differently in Dellaportas and Smith (1993)
where the prime objective is inference about β in generalized linear models, and θik are
modeled as functions of β without any error. In addition, their method does not include
the εik, the uncertainty in specifying the model.

We now examine how the previous results can be generalized for the analysis of
multicategory data. Consider m strata labeled 1, . . . , m. Within each stratum, several
units are selected, and suppose that the responses of individuals within each selected unit
are independent, and can be classified into J categories. For the kth selected unit within
the ith stratum, letpijk denote the probability that an individual’s response falls in the jth
category (j = 1, . . . , J; k = 1, . . . , ni). Then within the kth selected unit within the ith
stratum, Zijk(j = 1, . . . , J ) have a joint multinomial (tik; pi1k, . . . , piJk) distribution,
where tik =∑j Zijk. Using the well-known relationship between the multinomial and
Poisson distributions, (Zi1k, . . . , ZiJk) has the same distribution as the joint conditional
distribution of (Yi1k, . . . , YiJk) given

∑J
j=1 Yijk = tik where the Yijk(j = 1, . . . , J ) are

independent Poisson(ζijk) and pijk = ζijk/∑J
j=1 ζijk (j = 1, . . . , J ).

Let θijk = log ζijk, and let θ be the vector whose elements are θijk. One can also model
θijk as

h(θijk) = xTijkβ + uij + εijk. (82)

Also, it is assumed that uij and the εijk are mutually independent with uij
iid∼ N

(
0, σ2

u

)
and εijk

iid∼ N(0, σ2).
Then the hierarchical model (which is closely related to (I)–(IV)) is given by

(A) Yijk|θ,u,β, ru, r are independent with

f(yijk|θ,u,β, ru, r) = exp
[
φ−1
ijk (yijkθijk − ψ(θijk))+ ρ(yijk;φijk)

]
;

(B) h(θijk)|u,β, ru, r ind∼ N
(
xTijkβ + uij, r−1

)
;
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(C) uij|β, ru, r ind∼ N
(
0, r−1

u

)
;

(D) β, ru, and r are mutually independent with β∼ uniform(Rp), ru∼Gamma(
1
2a,

1
2b
)
, and r ∼ Gamma

(
1
2c,

1
2d
)
.

We are interested in the posterior means, variance, and covariances of the pijk =
exp(θijk)/

∑J
j=1 exp(θijk) (k = 1, . . . , ni; i = 1, . . . , m; j = 1, . . . , J). The necessary

posterior distributions for doing these calculations are given by

(a) β|θ,u, ru, r, y ∼
N

((∑
i,j,k xijkx

T
ijk

)−1(∑
i,j,k xijk(h(θijk)− uij)

)
, r−1

(∑
i,j,k xijkx

T
ijk

)−1
)

;

(b) uij|θ,β, ru, r, y ind∼ N
(
(rni + ru)−1r

∑
k

(
h(θijk)− xTijkβ

)
, (rni + ru)−1

)
;

(c)
r|θ,β,u, ru, y ∼ Gamma

(
1
2

(
c +∑i,j,k

(
h(θijk)− xTijkβ − uij

)2
)
,

1
2

(
d + J∑i ni

));
(d) ru|θ,β,u, r, y ∼ Gamma

(
1
2

(
a+∑i

∑
j u

2
ij

)
, 1

2 (b+mJ)
)
;

(e) π(θijk|β,u, ru, r, y)
∝ exp

[
(yijkθijk − ψ(θijk))φ−1

ijk − r
2

(
h(θijk)− xTijkβ − uij

)2
]
h′(θijk).

Once again posterior inference about g(θijk)’s is performed using (e) and iterated for-
mulas for posterior moments.

The discussion so far has concentrated on small area estimation based on specific
HB generalized linear models. Often, there are situations where there is no clearcut
choice among several models. In such situations, one can find the posterior probabilities
of the different models, pick the one with the highest posterior probability and find
small area estimates and standard errors based on that model. Another option is not
to report estimates and standard errors based on a single model, but report estimates
which are weighted averages of estimates based on the different contemplated models,
the respective weights being proportional to the posterior probabilities of these models.
Similar views are expressed, for example, in Raftery (1996).This method, being adaptive
in nature, has intrinsic appeal, especially in situations when one particular model does not
outperform the rest. Moreover, in finding the standard errors associated with the small
area estimates, there is an extra layer of uncertainty due to the choice of models. This
results in larger standard errors associated with the estimates, but the procedure seems
worthwhile especially when none of the contemplated models emerges as a clearcut
winner.

To be specific, suppose there are K contemplated models labeledM1, · · · ,MK. Sup-
pose the data is y and the parameter of interest is �. Then

P(�|y) =
K∑
k=1

P (�|y,Mk)P(M = Mk|y). (83)

This leads to

E(�|y) =
K∑
k=1

E(�|y,Mk)P(M = Mk|y); (84)
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V (�|y) = E(�2|y)− (E(�|y))2

=
K∑
k=1

E(�2|y,Mk)P(M = Mk|y)− [E(�|y)]2

=
K∑
k=1

V(�|y,Mk)P(M = Mk|y)

+
K∑
k=1

(E(�|y,Mk))
2P(M = Mk|y)− E(�|y)2. (85)

Clearly, the first term in the right-hand side of (85) represents the expectation of the
conditional variance of � given the data and the model, whereas the second and the
third terms when combined represents the variance of the conditional expectation of�
given the data and the model. Raftery (1996) contains a discussion of multiple models.

We present here the idea of mixing the models using the general description of the
HB GLMs and later illustrate this idea with an example. For simplicity of the discussion
we assume there are two possible models labeled M1 and M2.

Let Yik denote the minimal sufficient statistic (discrete or continuous) for the kth
unit within the ith stratum(k = 1, . . . , ni; i = 1, . . . , m) and Yik are assumed to be
conditionally independent with pdf

f(yik | θik) = exp
[
φ−1
ik (yikθik − ψ(θik))+ ρ(yik;φik)

]
(86)

(k = 1, . . . , ni; i = 1, . . . , m). Under modelM1 the canonical parameter θik is modeled
as

θik = x(1)Tik b
(M1)

1 + x(2)Tik b
(M1)

2 + ui + εik, (87)

and under model M2, θik is modeled as

θik = x(1)Tik b
(M2)

1 + ui + εik, (88)

where ui and εik are mutually independent with ui iidN(0, r−1
u ), while εik iidN(0, r−1).

Notice that it is important to distinguish between b(M1)

1 and b(M2)

1 in the two models,
as they carry different interpretations. However, either model will cause estimates of the
θik to borrow strength from other strata, as well as other cells within a given stratum.

Since, this case involves finding posterior probabilities or the Bayes factor of the two
models along with small area estimates, if one assigns a diffuse prior to the regression
coefficients, then the posterior distribution of M (the indicator variable for the model)
given the data becomes improper. Hence, one needs to assign a proper prior to b.

The full hierarchical model is described in the following sections. For modelM1,

(I) conditional on θ, b(M1)

1 , b
(M1)

2 ,u, Ru = ru, and R = r, Yik are independent with
pdf (86);

(II) conditional on b(M1)

1 , b
(M1)

2 ,u, ru, and r,

θik
ind∼ N

(
x
(1)T

ik b
(M1)

1 + x(2)Tik b
(M1)

2 + ui, r−1
)
;

(III) conditional on b(M1)

1 , b
(M1)

2 , ru, and r, ui
ind∼ N

(
0, r−1

u

)
;
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(IV) b(M1)

1 , b
(M1)

2 , ru, and r are mutually independent with

b(M1) =
(
b
(M1)

1

b
(M1)

2

)
∼ N

((
0
0

)
,

(
η2

1I 0
0 η2

2I

))
,

ru ∼ Gamma
(

1
2a,

1
2g
)

and r ∼ Gamma
(

1
2c,

1
2d
)
.

We have chosen η2
1 to be large and η2

2 to be small, to reflect the strong belief that
b
(M1)

2 is close to 0 but attach a small amount of uncertainity to this belief. The near
diffuseness of the prior on b(M1)

1 reflects the vagueness in its choice in conformity with
earlier models.

Model M2 sets b(M2)

2 = 0. Other than that, the remainder of the Model M2 remains
the same as in Model M1. Also, we assign P(M = M1) = π.

On notations, superscriptsMj, j = 1, 2 for u, ru, and r indicates that samples were
observed from their respective full conditional distributions based on modelMj, j=1,2.

The full conditional distributions based on model M1 are given by

(i) b(M1)|θ(M1),u(M1), r(M1)
u , r(M1),

y ∼ N

((
r(M1)XTX+

(
η−2

1 I 0
0 η−2

2 I

))−1

r(M1)XT
(
θ(M1) −�iu(M1)

i �xik

)
,

(
r(M1)XTX+

(
η−2

1 I 0
0 η−2

2 I

))−1
)

;

(ii) u(M1)
i |θ(M1), b(M1), r(M1)

u , r(M1), y ∼ N

((
r(M1)ni + r(M1)

u

)−1
r(M1)

∑
k

(
θ
(M1)

ik −

xTikb
(M1)
)
,
(
r(M1)ni + r(M1)

u

)−1
)
;

(iii) r(M1)|θ(M1), b(M1),u(M1), r(M1)
u , y ∼ Gamma

(
1
2

(
c+∑i

∑
k

(
θ
(M1)

ik − xTikb(M1)−

u
(M1)
i

)2 )
, 1

2

(
d +∑m

1 ni
))

;

(iv) r(M1)
u |θ(M1), b(M1),u(M1), r(M1), y ∼ Gamma

(
1
2

(
a+ u(M1)

T

u(M1)
)
, 1

2

(
g+∑m

1 ni
))

;

(v) θ(M1)

ik |b(M1),u(M1), r(M1)
u , r(M1), y

ind∼ �i,k(θ
(M1)

ik |b(M1),u(M1), r(M1)
u , r(M1), y) ∝

exp

[{
yikθ

(M1)

ik − ψ(θ(M1)

ik

)}
φ−1
ik − 1

2 r
(M1)
(
θ
(M1)

ik − xTikb(M1) − u(M1)
i

)2
]
;

For the full conditionals based on M2, replace M1 by M2, X by X(1), xik by x(1)ik , and(
η−2

1 I 0
0 η−2

2 I

)
by η−2

1 I.

Finally, the full conditional for the model indicator variable M is given by

P
(
M = M1|θ(M1), θ(M2), b

(M1)

1 , b
(M1)

2 , b
(M2)

1 ,u(M1), r(M1)
u , r(M1) ,

u(M2), r(M2)
u , r(M2), y

)
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= π exp

[
− r

(M1)

2

∑
i

∑
k

(
θ
(M1)

ik − xTikb(M1) − u(M1)
i

)2

− η−2
1

2
||b(M1)

1 ||2 − η−2
2

2
||b(M1)

2 ||2
]

÷
{
π exp

[
− r

(M1)

2

∑
i

∑
k

(
θ
(M1)

ik − xTikb(M1) − u(M1)
i

)2

− η−2
1

2
||b(M1)

1 ||2 − η−2
2

2
||b(M1)

2 ||2
]

+ (1− π) exp

[
− r

(M2)

2

∑
i

∑
k

(
θ
(M2)

ik − x(1)Tik b
(M2)

1 − u(M2)
i

)2

− η−2
1

2
||b(M2)

1 ||2
]}

.

Ghosh et al. illustrated this idea with a dataset related to job satisfaction based on 1981
survey of employees of a large national corporation.

Raghunathan (1993), on the other hand, advocated a quasi-likelihood approach that
does not require any distributional assumptions, but involves specification of the first two
sample moments in terms of certain parameters. A quasi-likelihood can be constructed
based on these parameters. The next step is to model the means and variances of these
prior means in terms of some other parameters, and subsequently generate a quasi prior
density. Estimation of the prior parameters now takes place on the basis of the score
functions constructed from the marginal quasi-likelihood.

8. Summary

This chapter revisits the Bayesian developments in survey sampling, and traces much of
the earlier history beginning with the sufficiency and likelihood principles. The Bayesian
methods are illustrated primarily through the normal examples and its variants. Some
duality between model- and design-based estimators commonly used in finite popula-
tion sampling are also pointed out. This chapter discusses also at some length Bayesian
methods in the presence of auxiliary information, stratification, and multistage sam-
pling. Also, Bayesian inference based on generalized linear models is discussed in a
hierarchical Bayesian setting.

There are many issues that are not addressed much in this chapter. A very important
one is the role of sampling weights in survey inference. Other than a brief account
in the beginning of Section 5 of viewing some of the popular estimators such as the
Horvitz–Thompson estimator and the ratio estimator from a Bayesian angle, the chapter
has not gone into an in-depth study of design-based estimators that make explicit use
of survey weights. Although Bayesian inference typically does not recognize the need
for these weights, their importance cannot but be underscored, especially when one
is seeking some degree of robustness in inference, especially for protection against
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model misspecification (see for example, Dumouchel and Duncan, 1983; Korn and
Graubard, 1999; Little, 1991; Pfeffermann, 1993; Smith, 1988, among others). Little
(1991, 2004) has demonstrated how to incorporate these weights in a model-based
framework. More recently, there are attempts for design-assisted model-based small
area estimation, (Prasad and Rao, 1999; Ghosh and Maiti, 2004), which can accomodate
survey weights for inferential purposes. Pfeffermann et al. (1998b) have demonstrated
how to use survey weights in multilevel models through Horvitz–Thompsonization of
score functions in a very natural manner (see Chapters 23 and 24 of this volume).

Another very important issue is that of nonresponse. If the nonreponse is ignorable,
then the Bayesian methods with some simple modifications can be directly used. How-
ever, nonignorable missingness requires further modeling, and the Bayesian approach
is very natural in this case as is found in the classic text of Little and Rubin (2002) (see
Chapter 8 of this Volume).

A final thing which is gaining momentum in recent years is confidentiality and dis-
closure of survey data (see Chapter 15 of this Volume). Bayesian methods have just
started being applied in this context, but much remains to be done.
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Empirical Likelihood Methods

J.N.K. Rao and Changbao Wu

1. Likelihood-based approaches

Let U = {1, 2, . . . , N} be the set of units in the finite population and yi and xi be,
respectively, the values of the study variable y and the vector of the auxiliary variables
x attached to the ith unit. In this chapter, we restrict our discussion to the estimation
of the population total Y = ∑N

i=1 yi, the population mean Y = Y/N, or the population
distribution functionFN(t) = N−1 ∑N

i=1 I(yi ≤ t) using a survey sample {(yi, xi), i∈ s},
where s is the set of sample units selected by the probability sampling design, p(s),
and I(y ≤ t) is the indicator function. The population totals X = ∑N

i=1 xi or means
X = X/N may also be available and can be used at the estimation stage.

Likelihood-based estimation methods in survey sampling do not follow as special
cases from classical parametric likelihood inferences. Under the conventional design-
based framework, values of the study variable for the finite population, {y1, y2, . . . , yN},
are viewed as fixed. The only randomization is induced by the probability sampling
selection of units. In the design-based setup, an unbiased minimum variance esti-
mator or even an unbiased minimum variance linear estimator of Y does not exist
(Godambe, 1955; Godambe and Joshi, 1965). If we consider a class of linear estimators
of Y in the form of

∑
i∈s ciyi where the weight ci depends only on i, then the unique

unbiased estimator in the class is the well-known Horvitz–Thompson (HT) estimator
ŶHT = ∑

i∈s yi/πi, where πi = P(i ∈ s) is the first-order inclusion probability for unit
i. The HT estimator, therefore, is often treated as a baseline estimator for inferences
concerning Y .

One of the early attempts in formulating a likelihood-based approach was the flat
likelihood function (Godambe, 1966). The population vector of parameters is specified
as ỹ = (ỹ1, ỹ2, . . . , ỹN)

′, where the tilde indicates that each yi is treated as an unknown
parameter. The likelihood function of ỹ is the probability of observing the sample data
{yi, i ∈ s} for the given ỹ. For a given sampling design, we can write down the likelihood
function as

L(ỹ) = P(yi, i ∈ s|ỹ) =
{
p(s) if yi = ỹi for i ∈ s,

0 otherwise,
(1)
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where p(s) denotes the probability of selecting the sample s under the design. Although
the likelihood function L(ỹ) is well defined, it is uninformative in the sense that all
possible nonobserved values yi, i /∈ s lead to the same likelihood. This difficulty arises
because of the distinct labels i associated with the units in the sample data that make
the sample unique.

To circumvent the difficulty associated with Godambe’s flat likelihood, one possible
resolution is to take a Bayesian route (Ericson, 1969). Given a joint N-dimensional
prior on ỹ with probability density function g(ỹ) and assume that the sampling design
is independent of ỹ, the posterior density is given by

h(ỹ|yi, i ∈ s) =
{
g(ỹ)/g(ỹs) if yi = ỹi for i ∈ s,

0 otherwise,

where ỹs = {ỹi, i ∈ s} andg(ỹs) is the marginal prior density of ỹs.Any informative prior
will lead to an informative posterior distribution of ỹ given the sample data. A popular
choice of g(·) is the so-called exchangeable prior which basically states that the labels i
carry no information regarding the associated yi and the finite population is effectively
randomized. However, in addition to the difficulty of choosing a prior, inferences under
the Bayesian formulation are independent of the sampling design, an undesirable feature
under the design-based framework.

Hartley and Rao (1968) took a different route in searching for a likelihood-based
approach. In their proposed scale-load approach, some aspects of the sample data are
ignored to make the sample nonunique and in turn the likelihood informative. The basic
feature of the Hartley–Rao approach is to assume that the variable y is measured on a
scale with a finite set of known scale points y∗t , t = 1, 2, . . . , T . The number of scale
points, T , is only conceptual and inferences do not require the specification of T .

LetNt be the number of units in U having the value y∗t . It follows thatN =∑T
t=1Nt

and Y = ∑T
t=1Nty

∗
t , which is completely specified by the population “scale-loads”

N = (N1, N2, . . . , NT )
′. Let n be the total sample size and nt be the number of units

in the sample having the value y∗t . The sample data is effectively reduced to the
observed scale-loads n= (n1, n2, . . . , nT )

′, with nt ≥ 0 and n= ∑T
t=1 nt . Under sim-

ple random sampling without replacement, the likelihood based on the reduced sample
data is given by the multi-hypergeometric distribution that depends on the popula-
tion parameter N, unlike the flat likelihood of (1) based on the full sample data. If
the sampling fraction is negligible, the likelihood may be approximated by using the
multinomial distribution with the log likelihood given by l(p)= ∑T

t=1 nt log(pt), where
p = (p1, . . . , pT )

′ and pt = Nt/N. Without using any auxiliary information, the maxi-
mum likelihood estimator of Y =∑T

t=1 pty
∗
t is the sample mean y =∑T

t=1 p̂ty
∗
t , where

p̂t = nt/n.
The scale-load approach also provides an effective method for using known popula-

tion meanX of an auxiliary variable x in estimating Y . Denoting the scale points of x as
x∗j , j = 1, . . . , J , and the scale load of (y∗t , x∗j ) as Ntj , we have Y = ∑T

t=1

∑J
j=1 ptjy

∗
t

and X= ∑T
t=1

∑J
j=1 ptjx

∗
j , where ptj =Ntj/N and

∑T
t=1

∑J
j=1 ptj = 1. The sample

data reduces to the observed frequencies ntj for the scale points (y∗t , x∗j ) such that∑T
t=1

∑J
j=1 ntj = n.The scale-load estimator ofY is computed as Ŷ =∑T

t=1

∑J
j=1 p̂tjy

∗
tj ,

where p̂tj maximize the log likelihood
∑T

t=1

∑J
j=1 ntj log(ptj) subject to constraints
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∑T
t=1

∑J
j=1 ptj = 1 and

∑T
t=1

∑J
j=1 ptjx

∗
tj = X. Hartley and Rao (1968) showed that

Ŷ is asymptotically equivalent to the customary regression estimator of Y . This result
was later “rediscovered” when Chen and Qin (1993) applied Owen’s 1988 formulation
of the empirical likelihood (EL) method to the same settings. Section 2 provides more
details.

Hartley and Rao (1969) generalized the scale-load approach to unequal probability
sampling with replacement where selection probability is proportional to size (PPS).
If yi is approximately proportional to the size xi, then it is reasonable to consider the
scale points of ri = yi/xi, say r∗t , and the resulting scale-load estimator of Y is equal
to the customary unbiased estimator in PPS sampling with replacement. Extending the
scale-load approach to unequal probability sampling without replacement does not seem
to be straightforward, and confidence intervals based on the likelihood ratio function
were not studied under the scale-load approach.

2. Empirical likelihood method under simple random sampling

The scale-load approach of Hartley and Rao (1968, 1969) based on a multinomial dis-
tribution has the same spirit as EL proposed later by Owen (1988). Let y1, y2, . . . , yn be
an independent and identically distributed (iid) random sample from y with cumulative
distribution function F(·). Let pi = P(y = yi) = F(yi) − F(yi−) be the probability
mass assigned to yi. The EL function defined by Owen (1988) is L(p) = ∏n

i=1 pi.
Maximizing l(p) = log{L(p)} = ∑

i∈s log(pi) subject to pi > 0 and
∑n

i=1 pi = 1
leads to p̂i = 1/n, the maximum empirical likelihood (MEL) estimator of F(u) is
given by F̂ (u) = ∑n

i=1 p̂iI(yi ≤ u) = Fn(u), where I(·) is the indicator function and
Fn(u) = n−1 ∑n

i=1 I(yi ≤ u) is the empirical distribution function based on the iid
sample.

There have been many important contributions to the development of the EL method
in mainstream statistics since Owen’s 1988 paper on the asymptoticχ2 distribution of the
ELratio statistic for the meanμ = E(y). This is evident from Owen’s (2001) monograph
on EL. Among other results, the work by Qin and Lawless (1994), which showed that
side information in the form of a set of estimating equations can be used to improve the
maximum EL estimators and the EL ratio confidence intervals, is particularly appealing
for inference from survey data in the presence of auxiliary information.

The first formal use of the EL method in survey sampling was presented by Chen and
Qin (1993) under simple random sampling with or without replacement. The sampling
fraction is assumed to be negligible in the case of without replacement sampling so that
Owen’s EL function for iid cases can be directly used. Let {(yi, xi), i ∈ s} be the sample
data and θ0 = N−1 ∑N

i=1 g(yi)be the population parameter withg(·)being a known func-
tion.The known population auxiliary information is in the form ofE{w(x)} = 0 for some
knownw(·). The log-likelihood function is given by l(p) = log{L(p)} =∑

i∈s log(pi).
The MEL estimator of θ is defined as θ̂ =∑

i∈s p̂ig(yi), where p̂i maximizes l(p) sub-
ject to pi > 0,

∑
i∈s pi = 1, and

∑
i∈s piw(xi) = 0. The MEL estimator has no closed

form expression. It can be shown that the solution is given by p̂i = {n(1+ λw(xi)}−1,
where the Lagrange multiplier λ is the solution to

∑
i∈s w(xi)/{1 + λw(xi)} = 0. We

give further computational details in Section 5. For now, we note that the choice of
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g(yi) = yi gives θ0 = Y and incorporating the known population mean X translates
into w(xi) = xi − X and

∑
i∈s pixi = X. The MEL estimator is uniquely defined

when X is an inner point of the convex hull formed by {xi, i ∈ s}. This happens with
probability approaching one as n → ∞. For cases where x is univariate, the convex
hull becomes (x(1), x(n)), where x(1) = mini∈s xi and x(n) = maxi∈s xi. Let Fx(t) be
the distribution function of x and assume simple random sampling with replacement,
then P{x(1) < X < x(n)} = 1 − {1 − Fx(X−)}n − {Fx(X)}n, which goes to one at an
exponential rate. The MEL estimator of Y is equivalent to the scale-load estimator of
Hartley and Rao (1968).

By letting g(yi) = I(yi ≤ t) for a fixed t, we get the MEL estimator of the population
distribution function FN(t) = N−1 ∑N

i=1 I(yi ≤ t) as F̂N(t) = ∑
i∈s p̂iI(yi ≤ t). The

estimator F̂N(t) is a genuine distribution function, that is, it is monotone nondecreasing
and is confined within the range [0, 1]. Consequently, MEL estimators of population
quantiles can be obtained through direct inversion of F̂N(t).

The EL approach provides nonparametric confidence intervals through the profiling
of EL ratio statistics, similar to the parametric case. For θ0 = Y and in the absence of any
auxiliary information, the log EL ratio function is given by r(θ) = −2

∑
i∈s log(np̂i),

where p̂i maximizes the ELfunction l(p) subject to constraintspi > 0,
∑

i∈s pi = 1, and∑
i∈s piyi = θ for a fixed value of θ. It can be shown that under some moment conditions

on y for the finite population and a suitable asymptotic framework that allows n and N
simultaneously go to infinity whilen/N goes to zero, the ELratio function r(θ) converges
in distribution to a χ2 random variable with one degree of freedom when θ = θ0. A 1−α
level EL confidence interval for θ0 = Y is then given by Cel = { θ | r(θ) ≤ χ2

1(α)},
where χ2

1(α) is the upper α-quantile of the χ2 distribution with one degree of freedom.
Finding such an interval involves profiling. Section 5 again contains the computational
detail. Unlike the symmetric interval based on the normal approximation (NA) to the
Z-statistic (θ̂0− θ0)/{var(θ̂0)}1/2, the orientation of the EL interval Cel is determined by
the data and the range of the parameter space is fully preserved.

Section 4.3 contains results from a limited simulation study on the EL interval for
θ0=FN(t). The results demonstrate several advantages of the EL intervals. One of them
is that the upper and lower bounds of the EL intervals are always within the range of
[0, 1], which is not the case for the conventional normal theory intervals.

Under simple random sampling, Chen et al. (2003) compared EL intervals with
several alternatives for the population mean of populations containing many zero values.
Such populations are encountered, for instance, in audit sampling, where the response
variable y denotes the amount of money owned to the government and the population
mean Y is the average amount of excessive claims. Most of the claims are legitimate,
with corresponding y being zeros, but a small portion of claims may be excessive. The
lower bound (LB) of the 95% confidence interval on Y is often used to compute the
total amount of money owned to the government. Since the total number of claims
selected for auditing is usually not large, the NA confidence intervals perform poorly
in terms of the lower tail error rate and the average LB. Parametric likelihood ratio
intervals based on parametric mixture distributions for the y variable have been used in
auditing, but the performance of such intervals depends heavily on the validity of the
assumed parametric model. The EL intervals exhibit behavior similar to intervals based
on a correctly specified mixture model. More importantly, they perform better than the
intervals based on incorrectly specified mixture models. That is to say, the EL intervals
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Table 1
95% Confidence intervals for Y under PPS sampling

ρ Zeros (%) CI CP L U LB

0.30 95 NA 86.0 0.3 13.7 −0.01
EL 91.0 2.4 6.6 0.09

90 NA 87.3 0.5 12.2 0.13
EL 91.4 2.5 6.1 0.26

80 NA 92.0 1.0 7.0 0.58
EL 93.6 2.5 3.9 0.72

70 NA 93.0 1.6 5.4 1.11
EL 94.5 2.7 2.8 1.23

0.80 95 NA 84.1 0.4 15.5 0.00
EL 92.8 3.1 4.1 0.10

90 NA 89.6 1.3 9.1 0.17
EL 92.1 3.3 4.6 0.27

80 NA 92.9 1.6 5.5 0.65
EL 94.3 2.6 3.1 0.73

70 NA 93.8 2.1 4.1 1.18
EL 94.9 2.8 2.3 1.24

provide lower error rates at least as close to the nominal values while the intervals based
on incorrectly specified mixture models lead to lower error rates much smaller than
the nominal values. As a result, EL intervals have larger LB, and methods that respect
nominal error rates and at the same time provide larger LBs are regarded as desirable
ones.

Under unequal probability sampling, the use of any parametric mixture model for
such populations becomes difficult to justify. The EL intervals, however, are still avail-
able using the pseudo EL formulation described in Section 4.3. Table 1 reports the
performance of the pseudo EL confidence intervals for the population mean from a
simulation study. The finite population is first generated through Model I used by Wu
and Rao (2006), with the correlation coefficient between the design variable zi and the
response variable yi indicated by ρ, and a random portion of the yis is then set to be
zeros. Information on the design variable z is not further used in constructing the EL
confidence intervals. The interval based on NAis included for comparison. The reported
results on coverage probability (CP), lower (L) and upper (U) tail error rates, and the
average LB are based on 1000 simulated samples of size n = 60, selected by the PPS
sampling method of Rao (1965) and Sampford (1967). While intervals based on NAs
are clearly inappropriate, the EL interval maintains the same desirable performance
observed under simple random sampling, with the lower tail error rates close to the
nominal value and larger LB for all cases considered.

3. Stratified simple random sampling

Stratified simple random sampling is commonly used when list frames within strata
are available, as in many business surveys. Let {(yhi, xhi), i ∈ sh, h = 1, . . . , L} be a
stratified simple random sample, where yhi and xhi are, respectively, the values of the



194 J.N.K. Rao and Changbao Wu

study variable y and the vector of auxiliary variables x associated with the ith element
in stratum h, L is the total number of strata in the population, and sh is the set of nh
sampled units from stratum h. Let Nh be the stratum size, Wh = Nh/N be the stratum
weight, and N =∑L

h=1Nh is the overall population size. Zhong and Rao (1996, 2000)
studied EL inferences on Y when the vector-valued population meanX is known but the
stratum means Xh are unknown. Assuming negligible sampling fractions within strata
and noting that samples from different strata are independent, the log EL function under
stratified simple random sampling is given by l(p1, . . . ,pL) =

∑L
h=1

∑
i∈sh log(phi),

where ph = (ph1, . . . , phnh)
′ and phi is the probability mass assigned to yhi, i ∈ sh,

h = 1, . . . , L. The MEL estimator of Y is defined as Ŷ =∑L
h=1Wh

∑
i∈sh p̂hiyhi, where

the p̂hi maximize l(p1, . . . ,pL) subject to phi > 0,
∑

i∈sh phi = 1, h = 1, . . . , L, and∑L
h=1Wh

∑
i∈sh phixhi = X. For fixed L and large sample sizes nh with negligible

sampling fraction within strata, the MEL estimator is asymptotically equivalent to the
randomization optimal linear regression estimator (Kott, Chapter 25; Zhong and Rao,
2000). While most design-based estimators can only be justified under unconditional
repeated sampling, the optimal estimator leads to valid conditional inferences, with
negligible conditional relative bias given the stratified mean xst = ∑L

h=1Whxh, where
xh = n−1

h

∑
i∈sh xhi (Rao, 1994). Zhong and Rao (2000) also studied the EL ratio

confidence intervals on Y . An efficient computational algorithm was proposed by Wu
(2004b) with simple R/SPLUS functions and codes available in Wu (2005). We will
describe some of the details in Sections 4.3 and 5. Note that the constrained maximization
problem here is more involved than in the case of simple random sampling (Section 2)
because it is not possible to impose separate constraints of the form

∑
i∈sh phixhi = Xh,

h = 1, . . . , L when the strata means Xh are unknown. The case of deep stratification
(large L and small nh within each stratum h) is not covered by Zhong and Rao (2000)
and it had not been studied in the EL literature.

4. Pseudo empirical likelihood method

One of the major difficulties for the EL inferences under general unequal probability
sampling designs is to obtain an informative EL function for the given sample. The like-
lihood depends necessarily on the sampling design and a complete specification of the
joint probability function of the sample is usually not feasible under any without replace-
ment sampling. Because of this difficulty, Chen and Sitter (1999) proposed a pseudo
EL approach using a two-stage argument. Suppose the finite population {y1, . . . , yN}
can be viewed as an iid sample from a superpopulation, then the population (or “cen-
sus”) log EL would be lN(p) = ∑N

i=1 log(pi), the population total of the log(pi). For
a given sample, the design-based Horvitz–Thompson estimator of lN(p) is given by
lHT(p) = ∑

i∈s di log(pi), where di = 1/πi, and πi = P(i ∈ s) are the first-order
inclusion probabilities. Chen and Sitter termed lHT(p) the pseudolog EL. Under simple
random sampling and ignoring a multiplying constant, lHT(p) reduces to l(p) used by
Chen and Qin (1993).

The pseudo EL function lHT(p) involves only the first-order inclusion probabilities
and does not catch the design effects under general unequal probability sampling without
replacement. Wu and Rao (2006) defined the pseudo empirical log-likelihood (PELL)
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function under nonstratified (ns) sampling designs as

lns(p) = n
∑
i∈s
d̃i(s) log(pi), (2)

where d̃i(s) = di/
∑

i∈s di. The pseudo EL function (2) has likelihood-based motiva-
tion but is directly related to the “backward” Kullback–Leibler distance (DiCiccio and
Romano, 1990) between p = (p1, . . . , pn)

′ and d(s) = (d̃1(s), . . . , d̃n(s))
′ in the form

of D(d(s),p) = ∑
i∈s d̃i(s) log(d̃i(s)/pi). Since D(d(s),p) = ∑

i∈s d̃i(s) log(d̃i(s)) −
lns(p)/n, minimizing the Kullback–Leibler distance with respect to pi subject to a set
of constraints is equivalent to maximizing the pseudo EL function subject to the same
set of constraints.

The PELL function given by (2) differs from lHT(p) used by Chen and Sitter (1999)
in the sense that the normalized weights d̃i(s), also called the Hajek weights (Hajek,
1971), are used instead of di. But maximizing (2) subject to a set of constraints on the
pi is equivalent to maximizing lHT(p) subject to the same set of constraints, and the
resulting maximum pseudo empirical likelihood (MPEL) estimators remain the same.
However, it is shown in Section 4.3 that lns(p) allows for simple adjustment for the
design effect in constructing pseudo EL ratio confidence intervals.

For stratified (st) sampling with an arbitrary sampling design within each stratum,
the PELL function of Wu and Rao (2006) is defined as

lst(p1, . . . ,pL) = n
L∑
h=1

Wh

∑
i∈sh

d̃hi(sh) log(phi), (3)

where d̃hi(sh) = dhi/
∑

i∈sh dhi are the normalized weights within each stratum with
dhi = π−1

hi denoting the design weights, πhi = P(i ∈ sh) the hth stratum unit inclusion
probabilities, n =∑L

h=1 nh, and nh the stratum sample sizes. Note that lst(p1, . . . ,pL)

does not reduce to the empirical log-likelihood function
∑L

h=1

∑
i∈sh log(phi) under

stratified simple random sampling (Zhong and Rao, 2000) unless nh = nWh, that is, the
stratum sample sizes are proportionally allocated.

In the absence of auxiliary information, maximizing lns(p) subject to pi > 0 and∑
i∈s pi = 1 gives p̂i = d̃i(s). The resulting MPEL estimator of Y , defined as ŶEL =∑
i∈s p̂iyi, is given by the Hajek estimator ŶH =∑

i∈s d̃i(s)yi, and the MPEL estimator
of the distribution function FN(t) is given by F̂H(t) =∑

i∈s diI(yi ≤ t)/
∑

i∈s di.
The Hajek estimator of Y , however, can be less efficient than the Horvitz–Thompson

estimator ŶHT = N−1 ∑
i∈s diyi under PPS sampling without replacement when the

response variable y is highly correlated with the size variable. For designs with fixed
sample size, Wu and Rao (2006) suggested a more efficient estimator by imposing the
constraint∑

i∈s
piπi = n

N
. (4)

Equation (4) is the same as
∑

i∈s pizi=Z, where zi is the size variable and Z is the
population mean. The resulting MPELestimator, which is a special case of the estimators
discussed in Section 4.1, is equivalent to a regression type estimator with variance
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depending on the residuals. The Hajek estimator of FN(t) at a fixed t, on the other hand,
is very efficient since the indicator variable I(yi ≤ t) is weakly correlated with the size
variable, and F̂H(t) itself is a genuine distribution function.

4.1. Pseudo empirical likelihood approach to calibration

Suppose the population mean X of a vector of auxiliary variables x is known. In this

case, the MPEL estimator of Y is given by ŶEL =∑
i∈s p̂iyi, where p̂i maximize lns(p)

subject to pi > 0,
∑

i∈s pi = 1, and∑
i∈s
pixi = X. (5)

Using the Lagrange multiplier method, we can show that p̂i = d̃i(s)/(1+ λ′ui), where
ui = xi −X, and λ is the solution to

g(λ) =
∑
i∈s

d̃i(s)ui

1+ λ′ui = 0. (6)

Constraints such as (5) are often referred to as benchmark constraints or calibra-

tion equations. A calibration estimator for Y can be defined as ŶC = N−1 ∑
i∈s wiyi,

where the calibrated weights wi minimize a distance measure �(w, d) between w =
(w1, . . . , wn)

′ and the basic design weights d = (d1, . . . , dn)
′ subject to

∑
i∈s wixi = X.

The simple chi-squared distance �(w, d) = ∑
i∈s(wi − di)2/(diqi) with prespecified

qi provides closed-form solutions to wi, leading to a generalized regression (GREG)
estimator of Y (Särndal et al., 1992), but the resultingwi can take negative values under
unbalanced sample configurations. Other distance measures that force the weights to
be positive are available, but most of them suffer computational inefficiencies or other
undesirable features.

There are several attractive features with the pseudo empirical likelihood approach
to calibration estimation. First, the weights p̂i are intrinsically positive and normalized,
that is, p̂i > 0 and

∑
i∈s p̂i = 1. This is particularly appealing for the MPEL estimator

of FN(t) computed as F̂EL(t) = ∑
i∈s p̂iI(yi ≤ t). Like the MEL estimator in the

iid setting, it is a genuine distribution function, and quantile estimates can be obtained
through a direct inversion of F̂EL(t). Second, for the major computational task of finding
the Lagrange multiplier λ as the solution to (6), a modified Newton–Raphson algorithm
(Chen et al., 2002), which guarantees fast convergence, is available as we show in
Section 5. Third, the pseudo EL ratio confidence intervals, described in Section 4.3,
have several advantages over the conventional normal theory intervals.

If confidence intervals are not of major interest and the focus is on reporting standard

errors, the approximate design-based variance and a variance estimator on ŶEL are
also readily available. Under regularity conditions C1–C3 described in Section 4.3,
we have λ = (∑

i∈s diuiu
′
i

)−1 ∑
i∈s diui + op

(
n−1/2

)
and p̂i

.= d̃i(s)(1− λ′ui), which
lead to

ŶEL = ŶH + B̂′
(
X− X̂H

)
+ op

(
n−1/2

)
, (7)
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where ui = xi − X̂H, B̂ = (∑i∈s diuiu
′
i)
−1 ∑

i∈s diuiyi, X̂H =∑
i∈s d̃i(s)xi, and ŶH +

B̂
′(
X − X̂H

)
is a GREG estimator of Y . It follows from (7) that linearization variance

estimation techniques for GREG estimators can be applied to ŶEL. Similarly, for F̂EL(t)

by changing yi in (7) to I(yi ≤ t).
In practice, one might wish to restrict the range of the calibrated weights so that

c1≤wi/di≤ c2 for some prespecified 0<c1< 1<c2. Under the pseudo EL approach,
this amounts to imposing

c1 ≤ pi/d̃i(s) ≤ c2 , i ∈ s . (8)

Chen et al. (2002) suggested a simple computational procedure to achieve (8) through
a minimal relaxation of the benchmark constraints (5). If the MPEL solutions p̂i using
(5) do not satisfy (8), we replace (5) by∑

i∈s
pixi = X+ δ(X̂H −X)

for some δ ∈ [0, 1] in finding the MPEL solutions p̂i. The choice of δ = 0 (i.e., no
relaxation from (5)) corresponds to the the initial MPEL solution. At the other end,
the value of δ = 1 gives p̂i = d̃i(s), which always satisfy (8). For any prechosen
c1 < 1 < c2, the smallest value of δ with the corresponding MPEL solutions satisfying
(8) can be found through a simple bisection search method (Chen et al., 2002).

There are two major motivations behind any type of calibration estimation method,
including the MPEL method: (i) internal consistency, achieved through the benchmark

constraints (5); (ii) efficiency, due to the asymptotic equivalence of ŶEL to the GREG
estimator, as shown from (7). But using (5) for the estimation of Y may not be very
efficient when the underlying relationship between y and x does not approximate a linear
model. Wu and Sitter (2001a) proposed a model-calibrated pseudo EL method when
the underlying superpopulation model, linear or nonlinear, is specified as Eξ(yi|xi) =
μ(xi, θ) and Vξ(yi|xi) = v(xi)σ2, where ξ denotes the superpopulation model, θ and σ2

are model parameters, μ(·, ·) and v(·) are known functions. The traditional constraints
(5) are replaced by

∑
i∈s
piμ̂i = N−1

N∑
i=1

μ̂i , (9)

where the calibration variable μ̂i=μ(xi, θ̂) is the predicted value of yi based on the
model, and θ̂ is a design-based estimator of θ. The PELL function (2) is maximized
subject to the calibration constraint (9), leading to the model-calibrated MPEL estimator
of the mean Y .

Note that when μ(xi, θ) has a nonlinear form, constraint (9) requires that complete
information on x, that is, x1, . . . , xN , be known. Under the linear modelμ(xi, θ) = x′iθ,
the “population mean” N−1 ∑N

i=1 μ̂i reduces to X
′
θ̂, so only X is needed in (9) in this

case. The resulting model-calibrated MPEL estimator of Y using (9) is asymptotically
equivalent to the MPEL estimator using (5), under the linear model.
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The model-calibrated MPEL estimator of Y is asymptotically optimal in the class of

MPEL estimators Ŷ u = ∑
i∈s piyi satisfying the calibration constraint

∑
i∈s piu(xi) =

N−1 ∑N
i=1 u(xi), where u(·) is an arbitrary function satisfying finite moment condi-

tions and μ(·, θ) is assumed to belong to this class (Wu, 2003). That is, the choice

u(xi) = μ(xi, θ) minimizes the anticipated asymptotic variance EξAV(Ŷ u), where AV
denotes the asymptotic design variance. One immediate application of this result is the
optimal calibration estimator of the distribution function FN(t) at a fixed t. The optimal
calibration variable that should be used in (9) is given by Eξ{I(yi ≤ t)} = P(yi ≤ t).
Chen and Wu (2002) compared the efficiency of the optimal model-calibrated MPEL
estimator of FN(t) to several alternative estimators and also discussed the related quan-
tile estimation problem.

The model-calibrated MPEL estimation method can be extended to cover quadratic
population parameters in the form of T = ∑N

i=1

∑N
j=i+1 φ(yi, yj), which includes the

population variance, the covariance, and the variance of a linear estimator as special
cases (Sitter and Wu, 2002). The basic idea is to view T as a total over a synthetic
finite population, that is, T = ∑N∗

α=1 tα, where α = (ij) is relabelled from 1 to N∗ =
N(N − 1)/2 and tα = φ(yi, yj). The synthetic sample consists of all the pairs from
the original sample and the “first-order” inclusion probabilities under this setting are
πij = P(i, j ∈ s). The “basic design weights” are dij = 1/πij . The extended pseudolog
EL function for quadratic parameters is defined as

l∗(p) =
∑
i∈s

∑
j>i

dij log(pij),

where pij is the probability mass assigned to the pair (i, j). The model-calibrated MPEL
estimator of T is defined as

T̂EL = N∗
∑
i∈s

∑
j>i

p̂ijφ(yi, yj),

where the p̂ij maximize l∗(p) subject to

∑
i∈s

∑
j>i

pij = 1 and
∑
i∈s

∑
j>i

pijuij = 1

N∗

N∑
i=1

N∑
j=i+1

uij.

The optimal calibration variable uij is given by uij = Eξ{φ(yi, yj)}. For the pop-
ulation variance S2 = (N − 1)−1 ∑N

i=1(yi − Y)2, which can be expressed as
{N(N − 1)}−1 ∑N

i=1

∑N
j=i+1(yi − yj)

2, the optimal calibration variable is given by
uij = Eξ{(yi − yj)2} = {μ(xi, θ)− μ(xj, θ)}2 + {v(xi)+ v(xj)}σ2 under the assumed
model. In applications, the unknown model parameters θ and σ2 will have to be replaced
by suitable design-based estimators. The resulting model-calibrated MPEL estimator of
T remains consistent under mild conditions.

4.2. Pseudo empirical likelihood alternative to raking

Raking ratio estimation can be viewed as a special application of the calibration method,
where the auxiliary information is in the form of known marginal totals of a contingency
table of two or more dimensions. Unfortunately, the number of benchmark constraints
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involved is often very large and the related computational procedures can be problem-
atic. The pseudo EL alternative to raking offers a major advantage in computational
efficiency and stability. Like raking, and unlike standard linear calibration approaches,
the successful completion of pseudo EL will always produce positive weights. More-
over, convergence is guaranteed and fast. Confidence intervals can be constructed using
either the pseudo ELratio function to be described in Section 4.3 or the linearization vari-
ance estimator and NA. Auxiliary population information other than the marginal totals
and features of complex sampling designs can also be incorporated into the estimation
procedure.

We first describe the EL alternative to raking under the classical setting of Deming
and Stephan (1940). Suppose the finite population is cross-classified into r × c cells
with a total number of Nij units in the (i, j)th cell, i = 1, . . . , r, j = 1, . . . , c. Let
N = ∑r

i=1

∑c
j=1Nij be the total population size. The marginal totals Ni· = ∑c

j=1Nij ,
i = 1, . . . , r and N·j = ∑r

i=1Nij , j = 1, . . . , c are known. The cell totals Nij are
unknown and need to be estimated. Let n be the size of a simple random sample drawn
from the population and nij be the sample frequency for the (i, j)th cell. Noting that
Ni·, N·j , and N are all known, we could estimate Nij by nij(N/n) or nij(Ni·/ni·) or
nij(N·j/n·j), where ni· = ∑c

j=1 nij and n·j = ∑r
i=1 nij . But none of these estimators

will necessarily match the known marginal totals in both dimensions (i.e., equal Ni·
when summed across the rows and N·j when summed across the columns).

The classical raking ratio estimator ofNij in the form ofmij(N/n), obtained through
the so-called iterative proportional fitting procedure (IPFP) (Deming and Stephan, 1940),
was initially conceived to minimize the least square distance � = ∑r

i=1

∑c
j=1(mij −

nij)
2/nij subject to the set of constraints

c∑
j=1

mij = Ni·n/N , i = 1, . . . , r, (10)

r∑
i=1

mij = N·jn/N , j = 1, . . . , c − 1. (11)

Although the mij obtained through the IPFP satisfy (10) and (11), they do not
minimize the least square distance � (Stephan, 1942). Ireland and Kullback (1968)
showed that the estimates p̂ij =mij/n in fact minimize the “forward” discrimination
information (also called the “forward” Kullback–Leibler distance by DiCiccio and
Romano, 1990)

I(p, q) =
r∑
i=1

c∑
j=1

pij log

(
pij

qij

)

with respect to pij subject to (10) and (11), where qij = nij/n are the observed cell
proportions.

Our proposed EL alternative to raking, under simple random sampling, is to estimate
the cell proportions Nij/N by the p̂ij that maximize the EL function

l0(p) =
r∑
i=1

c∑
j=1

nij log(pij)
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subject to

r∑
i=1

c∑
j=1

pij = 1, (12)

c∑
j=1

pij = Ni·/N, i = 1, . . . , r − 1, (13)

r∑
i=1

pij = N·j/N, j = 1, . . . , c − 1. (14)

The EL function l0(p) is related to the “backward” discrimination information

I(q,p) =
r∑
i=1

c∑
j=1

qij log

(
qij

pij

)
=

r∑
i=1

c∑
j=1

qij log(qij)− 1

n
l0(p) .

It is apparent that minimizing I(q,p) with respect to pij is equivalent to maximizing
l0(p)with respect topij . The EL function l0(p) is indeed the true multinomial likelihood
function under simple random sampling with replacement.

The use of “forward” discrimination information I(p, q) for classical raking ratio
estimation is equivalent to the multiplicative method described in Deville et al. (1993)
and Deville and Särndal (1992). The resulting p̂ij are guaranteed to be positive but
often contain some extremely large values compared to qij . Deville et al. (1993) also
discussed other alternative distance measures that force the ratio pij/qij to be con-
fined within certain range. The major challenge in using these alternative methods, as
well as the multiplicative method, is the computational implementation. Efficient algo-
rithms are not available and the convergence of the involved iterative procedures is not
guaranteed.

The most important feature of the EL approach, however, is the availability of
a simple and efficient algorithm for the constrained maximization problem. Let
x(1)ij , . . . , x(r−1)ij be the first r − 1 row indicator variables and xij(1), . . ., xij(c−1) be
the first c − 1 column indicator variables. For instance, x(1)ij = 1 if i = 1 and zero
otherwise. Let

xij = (x(1)ij, . . . , x(r−1)ij, xij(1), . . . , xij(c−1))
′

and

X =
(
N1·
N
, . . . ,

N(r−1)·
N

,
N·1
N
, . . . ,

N·(c−1)

N

)′
.

The two sets of constraints (13) and (14) can be rewritten as

r∑
i=1

c∑
j=1

pijxij = X . (15)

Using the standard Lagrange multiplier method, it can be shown that the p̂ij which
maximize the pseudo EL function l0(p) subject to the normalization constraint (12) and
the benchmark constraint (15) are given by p̂ij = nij/{n(1+λ′uij)}, whereuij = xij−X,
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and the vector-valued Lagrange multiplier λ is the solution to

g0(λ) =
r∑
i=1

c∑
j=1

nijuij

n(1+ λ′uij) = 0 . (16)

A unique solution to (16) exists if none of the observed sample marginal totals ni· or n·j
is zero. If a particular sample cell frequency nij = 0, we set p̂ij = 0 for that cell, and
this does not change the existence and uniqueness of the solution. On the other hand,
the classical raking ratio algorithm may not converge if some nij = 0. The solution to
(16) can be found using the same algorithm of Chen et al. (2002) for solving (6).

Under a general probability sampling design and with known population meanZ on a
vector of auxiliary variables z in addition to known marginal totals in, for instance, a two-
dimensional contingency table, a pseudo EL alternative to raking is as follows. Let πijk
be the inclusion probability and dijk = 1/πijk be the basic design weight associated with
the kth unit in the (i, j)th cell, k = 1, . . . , Nij . Let zijk be the additional vector-valued
auxiliary variable observed only for units in the sample but with known population
mean Z. The population size N is also known from the contingency table. The goal is
to estimate the population total Y = ∑r

i=1

∑c
j=1

∑Nij
k=1 yijk, or equivalently the mean

Y = Y/N, of a study variable y. Estimation of the cell totals Nij is a special case of Y ,
where y is the (i, j)th cell indicator variable.

Under the current setting, the nonstratified pseudo EL function is defined as

l1(p) =
r∑
i=1

c∑
j=1

nij∑
k=1

dijk log(pijk),

where pijk is the probability mass assigned to the kth unit in the (i, j)th cell and the pijk
are subject to

r∑
i=1

c∑
j=1

nij∑
k=1

pijk = 1. (17)

The MPEL estimator of Y is computed as

Ŷ =
r∑
i=1

c∑
j=1

nij∑
k=1

p̂ijkyijk,

where the p̂ijk maximize the pseudo EL function l1(p) subject to (17) and the set of
benchmark constraints

r∑
i=1

c∑
j=1

nij∑
k=1

pijkxijk = X. (18)

The vector-valued xijk consists of the first r − 1 row indicator variables and the first
c− 1 column indicator variables as well as zijk. It is very important to note that the row
and column indicator variables used here are defined at the unit level while those used
in (15) are defined at the (i, j) cell level. For instance, the first row indicator variable
used in (18) is defined as x(1)ijk = 1 if i = 1 and zero otherwise. The population mean
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X used in (18) consists of the first r − 1 marginal row proportions Ni·/N and the first
c − 1 marginal column proportions N·j/N, as well as the mean Z.

It can be shown that the p̂ijk are given by p̂ijk = d̃ijk(s)/(1+λ′uijk), where d̃ijk(s) =
dijk/

∑r
i=1

∑c
j=1

∑nij
k=1 dijk are the normalized design weights over the sample s, uijk =

xijk −X, and λ is the solution to

g1(λ) =
r∑
i=1

c∑
j=1

nij∑
k=1

d̃ijk(s)uijk

1+ λ′uijk = 0. (19)

Aunique solution to (19) exists if none of the observed sample marginal totals ni· or n·j is
zero andZ is an inner point of the convex hull formed by the zijk observed in the sample.
One of the major features of the pseudo EL approach under the above formulation is
that g1(λ) = 0 is very well structured and can be solved using the same algorithm of
Chen et al. (2002).

The cell totals Nij are estimated by N̂ij = N∑nij
k=1 p̂ijk. It is apparent that

c∑
j=1

N̂ij = Ni· , i = 1, . . . , r and
r∑
i=1

N̂ij = N·j , j = 1, . . . , c.

Under simple random sampling and without the additional auxiliary variables zijk, we
have dijk = N/n and the probability mass pijk take the same value for all the units k in
the same (i, j)th cell. Apart from a multiplying constant, the pseudo EL function l1(p)
reduces to the EL function l0(p) used for the classical simple random sampling setup.

4.3. Pseudo empirical likelihood ratio confidence intervals

One of the major attractive features of the EL approach is the nonparametric confidence
intervals constructed through profiling the EL ratio function. With designs other than
simple random sampling, the pseudo EL ratio statistic needs to be adjusted for the design
effect. The exact definition of the design effect depends not only on the probability
sampling design but also on the auxiliary information used. We consider pseudo EL
intervals for the population mean Y and the distribution function FN(t) and discuss
three scenarios.

For a nonstratified sampling design, the PELL ratio function for Y without using any
auxiliary information at the estimation stage is given by

rns(θ) = −2{lns(p̂(θ))− lns(p̂)}, (20)

where the p̂i = d̃i(s) maximize lns(p) given by (2) subject to pi > 0 and
∑

i∈s pi = 1,
and the p̂i(θ) are the values of pi obtained by maximizing lns(p) subject to∑

i∈s
pi = 1 and

∑
i∈s
piyi = θ (21)

for a fixed θ. The design effect (abbreviated deff) in this case is associated with the

estimator ŶH and is defined as

deffH = Vp(ŶH)/(S
2
y/n), (22)
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where S2
y is the population variance and Vp(·) denotes the variance under the specified

design p(s). Under regularity conditions C1–C3 specified below, the pseudo EL ratio
function rns(θ) converges in distribution to a scaled χ2 random variable with one degree
of freedom when θ = Y , where the scale factor is equal to the design effect deffH (Wu
and Rao, 2006). Hence, the adjusted pseudo EL ratio function

r[a]ns (θ) = {rns(θ)}/deffH (23)

converges in distribution to a χ2 random variable with one degree of freedom when
θ = Y . The regularity conditions are as follows:

C1: the sampling design p(s) and the study variable y satisfy maxi∈s |yi| = op(n1/2),
where the stochastic order op(·) is with respect to the sampling design p(s).

C2: the sampling design p(s) satisfies N−1 ∑
i∈s di − 1 = Op(n−1/2).

C3: the HT estimator θ̂HT = N−1 ∑
i∈s diyi of θ0 = Y is asymptotically normally

distributed.

A (1− α)-level confidence interval on Y can be constructed as {θ | r[a]ns (θ) ≤ χ2
1(α)},

where χ2
1(α) is the upper α quantile of the χ2

1 distribution. Finding such an interval,
however, involves profile analysis described in Section 5.

For nonstratified sampling designs and a vector of auxiliary variables with known
population means X, the PELL ratio function for Y is similarly defined as rns(θ) given
in (20) but with the benchmark constraints (5) included in finding both p̂i and p̂i(θ).

The design effect under this scenario is associated with the estimator ŶGR and is
defined as

deffGR = Vp(ŶGR)/(S
2
r /n), (24)

where Vp(ŶGR) = Vp{∑i∈s d̃i(s)ri}, ri = yi−Y−B′ui,B = (
∑N

i=1 uiu
′
i)
−1 ∑N

i=1 uiyi,
ui = xi−X, and S2

r = (N− 1)−1 ∑N
i=1 r

2
i . Under conditions C1–C3 and assuming that

C1 and C3 also apply to the components of x, the adjusted PELL ratio statistic

r(a)ns (θ) = {rns(θ)}/deffGR (25)

is asymptotically distributed as χ2
1 when θ = Y (Wu and Rao, 2006).

Under stratified sampling and with known overall population meanX =∑L
h=1WhXh

but unknown strata means Xh, the pseudo EL ratio function of Y is defined as

rst(θ) = −2{lst(p̂1(θ), . . . , p̂L(θ))− lst(p̂1, . . . , p̂L)}, (26)

where p̂hi maximize lst(p1, . . . ,pL) defined by (3) subject to the set of constraints

∑
i∈sh

phi = 1 , h = 1, . . . , L and
L∑
h=1

Wh

∑
i∈sh

phixhi = X, (27)

and p̂hi(θ) maximize lst(p1, . . . ,pL) subject to (27) plus an additional constraint

L∑
h=1

Wh

∑
i∈sh

phiyhi = θ
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for a fixed θ. Under suitable regularity conditions on the sampling design and variables
involved within each stratum, the adjusted pseudo EL ratio statistic

r
[a]
st (θ) = {rst(θ)}/deffGR(st)

is asymptotically distributed as χ2
1 when θ = Y (Wu and Rao, 2006). The design effect

deffGR(st) is defined through an augmented vector of variables and is given in Section 5.
For each of the three scenarios discussed above, the design effect is defined as a

population quantity and needs to be replaced by sample-based estimates for the con-
struction of the pseudo EL ratio confidence intervals. The asymptotic coverage level
remains valid if the design effect is consistently estimated; see Wu and Rao (2006) for
details on the estimation of design effects.

Pseudo empirical likelihood ratio confidence intervals on F(t) for a given t can be
obtained by simply changing yi to I(yi ≤ t). Table 2 contains results on 95% confidence
intervals on θ0 = FN(t) at the qth population quantile t = tq for selected values of q.
This was part of an extensive simulation study originally reported in Wu and Rao (2006).
The well-known Rao–Sampford unequal probability sampling method is used and the
sample size is n = 80. Three types of confidence intervals were examined: normal
approximation (NA) interval in the form of (θ̂0−1.96{var(θ̂0)}1/2, θ̂0+1.96{var(θ̂0)}1/2)
with truncation of the LB at 0 or upper bound at 1 if necessary; pseudo EL ratio interval
(EL1) without using any additional auxiliary information; and pseudo EL ratio interval
(EL2) using the constraint (4). The performance of these intervals is measured in terms
of simulated coverage probability (CP), lower (L) and upper (U) tail error rates, and
average length (AL).

The message conveyed by Table 2 highlights the advantages of the pseudo EL ratio
confidence intervals. For q = 0.50 and t = t0.5, the population median, the sampling
distribution of θ̂0 = F̂EL(t0.5) is nearly symmetric. In this case, the NA interval usually
performs well in terms of coverage probabilities and balanced tail error rates. But for
small or large population quantiles (q = 0.10 or 0.90) where the underlying sampling
distribution of θ̂0 is skewed, NA intervals perform poorly: coverage probabilities are
lower than the nominal level and tail error rates are not balanced. The EL-based intervals
EL1 and EL2, on the other hand, perform well in all cases in terms of coverage probabil-
ities and tail error rates, and EL2 gives shorter average length than EL1. In addition, both
the LB and the upper bound of the EL-based intervals automatically locate within the

Table 2
95% confidence intervals for the distribution function

q CI CP L U AL

0.10 NA 90.7 0.2 9.1 0.134
EL1 94.1 1.7 4.2 0.134
EL2 94.5 1.9 3.6 0.127

0.50 NA 95.3 2.4 2.3 0.212
EL1 95.5 2.4 2.1 0.208
EL2 95.4 2.8 1.8 0.187

0.90 NA 93.9 5.0 1.1 0.116
EL1 95.2 2.7 2.1 0.115
EL2 93.5 4.0 2.5 0.110
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range of the parameter space, (0, 1), which is not always the case for the conventional
NA intervals.

5. Computational algorithms

There are three major computational tasks for implementing the EL-based methods: (i) to
find the Lagrange multiplier λ as the solution to (6) with a single nonstratified sample;
(ii) to obtain the MPEL solutions for stratified sampling, raking ratio estimation, and
other “irregular” cases; and (iii) to construct the pseudo EL ratio confidence intervals
through profiling.

We assume that the population mean X is an inner point of the convex hull formed
by the sample observations {xi, i ∈ s} so that a unique solution to (6) exists. Chen et al.
(2002) proposed a simple algorithm for solving (6) with guaranteed convergence if the
solution exists. The uniqueness of the solution and the convergence of the algorithm
are proved based on a duality argument: maximizing lns(p) with respect to p subject to
pi > 0,

∑
i∈s pi = 1, and the benchmark constraints (5) is a dual problem of maximizing

H(λ) = ∑
i∈s d̃i(s) log(1 + λ′ui) with respect to λ with no restrictions on λ. In both

cases, the solution λ solves the equation system (6). Since H(λ) is a concave function
of λ with the matrix of second-order derivatives negative definite, a unique maximum
point to H(λ) exists and can be found using the Newton–Raphson search algorithm.
Denoting xi−X by ui, the algorithm of Chen et al. (2002) for solving (6) is as follows.

Step 0: Let λ0 = 0. Set k = 0, γ0 = 1, and ε = 10−8.
Step 1: Calculate �1(λk) and �2(λk), where

�1(λ) =
∑
i∈s
d̃i(s)

ui

1+ λ′ui and �2(λ) =
{
−

∑
i∈s
d̃i(s)

uiu
′
i

(1+ λ′ui)2
}−1

�1(λ).

If ‖�2(λk)‖ < ε, stop the algorithm and report λk; otherwise go to Step 2.

Step 2: Calculate δk = γk�2(λk). If 1 + (λk − δk)′ui ≤ 0 for some i, let γk = γk/2
and repeat Step 2.

Step 3: Set λk+1 = λk − δk, k = k + 1, and γk+1 = (k + 1)−1/2. Go to Step 1.

It turns out that this modified Newton–Raphson algorithm for a single nonstratified
sample is also applicable to stratified samples and a variety of other “irregular” cases
after suitable reformulation. Under stratified sampling with knownX, the basic problem
is to maximize lst(p1, . . . ,pL) subject to (27). If we useX

∗
to denote the augmentedX

to includeW1, . . . ,WL−1 as its first L− 1 components and x∗hi to denote the augmented
xhi to include the first L− 1 stratum indicator variables, then the set of constraints (27)
can equivalently be rewritten as (Wu, 2004b)

L∑
h=1

Wh

∑
i∈sh

phi = 1 and
L∑
h=1

Wh

∑
i∈sh

phix
∗
hi = X∗ . (28)

This reformulation makes all the steps for maximization under nonstratified sampling
applicable to stratified sampling. The difference between nonstratified and stratified
sampling is simply a matter of single or double summation. Maximizing (3) subject to
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(27), or equivalently (28), gives p̃hi = d̃hi(sh)/(1+ λ′u∗hi), where u∗hi = x∗hi −X∗ and
the vector-valued λ is the solution to

L∑
h=1

Wh

∑
i∈sh

d̃hi(sh)u
∗
hi

1+ λ′u∗hi
= 0 ,

which can be solved using the same algorithm of Chen et al. (2002). Using the aug-
mented variables x∗i andX

∗
, the design effect deffGR(st) required for the pseudo EL ratio

confidence intervals discussed in Section 4.3 is defined as

deffGR(st) =
{

L∑
h=1

W2
h Vp

(∑
i∈sh

d̃hi(sh)rhi

)}/(
S2
r

n

)
,

where rhi = (yhi − Y) − (B∗)′(x∗hi − X∗), B∗ is the population vector of regression
coefficients similarly defined as B for deffGR given by (24) but using x∗i and X

∗
, and

S2
r = (N − 1)−1 ∑L

h=1

∑Nh
i=1 r

2
hi.

The pseudo EL alternative to raking discussed in Section 4.2 involves finding solu-
tions to (16) or (19), which has the same structure as (6) and can be solved using the
same algorithm. Other “irregular” EL-based methods include combining information
from multiple surveys (Wu, 2004a), where the algorithm of Chen et al. (2002) once
again is the fundamental piece for computational procedures.

Construction of the pseudo EL ratio confidence intervals for θ0=Y involves two
steps: (i) calculate r[a](θ) for a given θ; (ii) find the lower and upper bounds for
{θ | r[a](θ) ≤ χ2

1(α)}. The first step invokes no additional complications since, for
instance, the constraint

∑
i∈s piyi= θ for a given θ can be treated as an additional com-

ponent for the benchmark constraints
∑

i∈s pixi=X. For the second step, the lower and
upper bounds of the interval can be found through a simple bisection search method
since the interval is confined in between y(1)= mini∈s yi and y(n)= maxi∈s yi, and the

adjusted pseudo EL ratio function r[a](θ) is monotone decreasing for θ ∈ (y(1), ŶEL)

and monotone increasing for θ ∈ (ŶEL, y(n)). Wu (2005) contains the detailed argu-
ment and also provides R/SPLUS functions and codes for several key computational
procedures.

6. Discussion

The EL and PEL approaches are flexible enough to handle a variety of other problems. In
particular, data from two or more independent surveys from the same target population
can be combined naturally through the PEL approach and efficient point estimators,
and pseudo EL ratio confidence intervals for the population mean can be obtained. For
example, suppose {(yi, x1i, zi), i ∈ s1} are the sample data from the first survey and
{(x2j, zj), j ∈ s2} are the data from the second survey, where the auxiliary variables x1

and x2 have known population meansX1 andX2 but the population mean of the “com-
mon” auxiliary variable z is unknown. The goal here is to make inference on the popula-
tion mean Y associated with the first survey, taking advantage of the supplementary data
from the two sources. The maximum PEL estimator of Y is obtained by maximizing
a combined PELL function l(p1,p2) based on the two independent samples subject
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to the following normalization, benchmarking, and internal consistency constraints
(Wu, 2004a):∑

i∈st
pti = 1,

∑
i∈st

ptixti = Xt , t = 1, 2, and
∑
i∈s1

p1izi =
∑
i∈s2

p2izi .

The estimator is given by Ŷ =∑
i∈s1 p̂1iyi, where the p̂ti (t = 1, 2) maximize l(p1,p2).

Similarly, the PEL ratio confidence intervals for Y can be obtained. The above approach
can be extended to handle data from independent samples taken from two or more
incomplete frames together covering the population of interest. The PEL approach is
flexible in combining data from different sources as demonstrated above. Depending on
what is available, new constraints can be added to and existing ones can be removed
from the system of constraints.

Another problem of interest is to make inference on the population parameters of
interest in the presence of imputation for item nonresponse. Again, the EL and pseudo
EL approaches can be applied in a systematic manner to handle imputed data and any
auxiliary population information. Recent work has focused on EL inference on the
mean, distribution function, and quantiles of a variable of interest y, assuming that
an iid sample {(yi, xi), i = 1, . . . , n} subject to missing yi is available. The missing
y-values are imputed using regression imputation, assuming a missing at random
response mechanism and a linear regression model (Qin et al., 2006; Wang and Rao,
2002a). The EL inference using kernel regression imputation, assuming only that the
conditional expectation of y given x is a smooth function of x, has likewise been stud-
ied (Wang and Chen, 2006; Wang and Rao, 2002b). Various extensions have also been
analyzed. The pseudo EL approach can be applied to extend the above work to survey
data.

In conclusion, the EL and pseudo EL approaches have several advantages over the
traditional approaches to inference from survey data. The advantages include (i) likeli-
hood based motivations; (ii) intrinsic positive weights and efficient point and interval
estimation taking account of benchmark and other constraints naturally; (iii) orientation
of the confidence intervals is determined by the data and the range of the parameter space
is fully preserved, unlike the customary normal theory intervals; and (iv) flexibility in
handling a variety of problems in a systematic manner. However, the true empirical like-
lihood is not available for unequal probability sampling without replacement and other
complex designs, and the rationale in Section 4 for using a pseudo empirical likelihood
to overcome this problem is not entirely appealing from a theoretical point of view.
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Introduction to Part 5

Gad Nathan and Danny Pfeffermann

1. Preface

The rapid development of sample survey theory and practice over the past 50 years is
well represented in this volume. The development has been particularly rapid during
the last 20 years, as can be seen by comparison of this volume with its predecessor,
Krishnaiah and Rao (1988). Although advances have been made in all aspects of sample
surveys during these past 20 years, one of the major developments has been the rapid
integration of model-based ideas in mainstream theory and practice of sample survey
inference. Twenty years ago, the fundamental divide between advocates of classical
design-based inference and design, and those who preferred basing both the sample
design and inference only on models was still at its zenith and the controversies of the
two previous decades, exemplified by Brewer and Mellor (1973), were raging. The early
randomization-based approach, developed by the pioneers of classical design-based
sampling theory, was challenged by the study of the logical foundations of estimation
theory in survey sampling, for example, Godambe (1955), and by early advocates of
pure model-based design and inference, for example, Royall (1970). Although these
controversies continued to be fiercely discussed well into the 1980s, see, for example,
Hansen et al. (1983), the extreme views have mellowed considerably over the past two
decades, and sample survey theory and practice are currently based on a variety of
combined approaches, such as model-assisted methods, which integrate models with a
randomization-based approach.

The “hybrid” approaches, which are based on both randomization ideas and on mod-
els, are well represented in many chapters of this volume, and especially with respect to
inference from sample surveys, in Parts 4–6. The introductions to Part 4 and to Part 6
provide a brief survey of the various modes of inference in current use, which are then
discussed and exemplified in the different chapters contained in these parts.

While the chapters of Part 4 and Part 6 deal with general methods and approaches
to inference from survey data, those of Part 5 consider the application and extension
of these general methods to special problems of estimation and inference. The prob-
lems considered cover estimation for small areas or domains, the design and analysis
of repeated and longitudinal surveys, the analysis of categorical data, inference on
distribution functions and quantiles, and graphical presentation of data. This eclectic
collection of problems is treated, under a variety of approaches. They range from a
pure randomization-based approach (but possibly model-assisted), such as in Lehtonen
and Vaijanen (Chapter 31), to pure model-based approaches in Datta (Chapter 32) and
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Nathan (Chapter 34). The other four chapters provide examples of a mixed mode
approach. Thus, Graubard and Korn (Chapter 37) propose modifications of standard
scatter plots by use of randomization weights, but also propose model-assisted meth-
ods, such as polynomial regression and kernel smoothing, to improve the graphical
display of survey data. Dorfman (Chapter 36) considers both design-based and model-
based estimation of distribution functions, emphasizing the necessity for good model
diagnostics to ensure robustness to model misspecification. Singh (Chapter 35) con-
siders both pure likelihood-based and quasi-likelihood methods to analyze categorical
data, but also their modification by randomization weights to obtain weighted quasi-
likelihood inference. Similarly, Steel and McLaren (Chapter 33), who discuss primarily
the design of repeated surveys under a randomization approach, also consider the use of
time series models, linear models, and correlation models, for the estimation of cross-
sectional means and totals, and of sampling errors. We mention in this regard that Kalton
(Chapter 5) also deals with the design and analysis of panel surveys and their use for
cross-sectional estimation and for estimation of changes, under a design-based approach.
This chapter addresses some special issues of panel surveys, such as the effects of
changing modes of collection, and the use of weight adjustments for attritions and wave
nonresponse.

2. Overview of chapters in Part 5

The first two chapters of Part 5 treat the rapidly developing topic of estimation for
small domains or areas, for which only small samples or no samples are available.

Lehtonen and Vaijanen (Chapter 31) consider mostly the estimation of domain totals,
but also the estimation of ratios and quantiles, from a design-based (randomization-
based) perspective. The emphasis is on the use of design-consistent estimators for which
the bias and variance under the randomization distribution tend to zero as the domain size
increases. Estimators are obtained by use of calibration techniques, and model-assisted
methods via generalized regression estimation (GREG). The first approach is largely
model free while the second approach uses a “working model” for the construction of
the estimators. A good performance of the estimators under either approach requires
the availability of sufficient auxiliary information, preferably at the unit or domain
level. Most of the working models considered in this chapter are fixed effects models,
but generalizations to generalized linear mixed models with random effects are also
considered. The authors distinguish between direct estimators, which only use the data
observed for the response variable in the domain of interest and at the time period of
interest, and indirect estimators, which use data on the response variable from other
domains or time periods. The use of a direct, model-assisted estimator requires fitting
the working model for each domain separately. Note that direct estimators are generally
design-unbiased or nearly design-unbiased, but often with large design variances, due
to the small sample sizes, in which case the requirement for design consistency is of
little relevance. Indirect estimators have often a much smaller design variance, because
they use observations from many domains, but they may be design biased, such as when
using a composite estimator, defined as a linear combination of a GREG and a synthetic
estimator that is based on the underlying working model.

The chapter reviews a large number of plausible direct and indirect estimators, as
derived under the two general approaches mentioned earlier, with appropriate variance
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estimators that take the sampling design into account. An interesting compromise
between direct and indirect estimators, obtained by the use of indirect estimators within
groups of domains is also considered. The pros and cons of the use of these estimators
are discussed and illustrated using real and simulated populations, and the readers are
directed to computer software, such as SAS and SUDAAN, where these estimators can
be computed.

Datta (Chapter 32) discusses the use of model-based methods for small area estima-
tion. The use of a model defines in an optimal or approximately optimal manner the
amount of information borrowed from other areas or past surveys for the construction
of the indirect estimators. Unlike in Chapter 31, no adjustments are made to make the
estimators approximately design-unbiased over repeated sampling, and the measures of
error reflect the error under the model, given the selected sample. In fact, model-based
small area estimation generally ignores the sampling design, assuming that the model
holding for the sample data also holds for the population from which the sample is
taken. The use of a model permits predicting the unknown quantities of interest for
areas with no samples, which cannot be taken care of under the design-based approach.
Model-based small area estimation can generally be implemented using a frequency-
based approach, the full Bayesian approach, or some sort of a “compromise” between
the two approaches, known as empirical Bayes. The Bayesian approach is more flexible
computationally in terms of the complexity of models that it can accommodate, via the
use of Markov Chain Monte Carlo (MCMC) simulations. On the other hand, the reliance
on models (and possibly prior distributions) raises the question of the robustness of the
estimators to possible model misspecification.

The chapter distinguishes between area-level models that only use area-level values
of the auxiliary variables, (e.g., the true area means of these variables), and unit-level
models that use unit-level values for at least some of the auxiliary variables (e.g., individ-
ual demographic and socio-economic information). Models considered include linear
mixed models (including univariate and multivariate cross-sectional time-series mod-
els), for which the response variables are continuous, and the more general family of
generalized linear mixed models that are used for modeling categorical or count data.
Both classes of models incorporate area random effects that account for the variation of
the area quantities of interest, not explained by the auxiliary variables. The optimal pre-
dictors under the various models in the case of known model parameters are presented,
along with the corresponding prediction mean square errors (MSE). When the model
parameters are unknown, the corresponding empirical predictors are obtained by replac-
ing the unknown parameters by suitable sample estimates. (Replacing the parameters of
the prior distributions for the unknown parameters appearing in the sample distribution
by sample estimates in the Bayes predictor, yields the corresponding empirical Bayes
predictor.) The use of empirical predictors requires special techniques for estimating
the corresponding prediction MSE, and several model-based and resampling proce-
dures are considered. Alternatively, one can use the full Hierarchical Bayes approach
that requires in addition fully specified prior distributions for the unknown hyperpa-
rameters governing the prior distributions of the parameters appearing in the sample
distribution. Application of this approach produces the whole posterior distribution of
the small area quantities of interest, so that the prediction MSE and credibility inter-
vals are obtained straightforwardly. The chapter concludes with some brief remarks
on other important topics in model-based small area estimation, not covered in this
chapter.
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Steel and McLaren (Chapter 33) overview the main issues involved in the
design and analysis of surveys that are repeated over time. The authors concentrate
on the effects of the inter-period correlation structure on the design and analysis of
repeated surveys with sample overlap, such as rotating panel surveys and split panel
surveys. They consider primarily the extent of the overlap for the estimation of changes
in the population level over time and of current means and totals, rather than for the esti-
mation of individual microlevel changes, such as measures of gross flows. In deciding
on the extent of the sample overlap and the rotation pattern, conflicting considerations
of efficiency and practical considerations have to be balanced. For example, for estimat-
ing change, a fixed panel without rotation is the most efficient design from a variance
point of view. However, in practice, it is usually necessary to limit the number of times
that a person or business is surveyed, to spread the respondent burden and to maintain
response rates and the quality of the reported data. Other considerations that need to be
taken into account are the additional costs of sampling new units and the necessity to
deal with population changes over time. The relative importance of measuring changes
over time, versus estimating cross-sectional means for given time points must also be
taken into account when designing the overlap and rotation patterns.

As mentioned above, the basic approach in this chapter is design-based. Thus, the
randomization variance of linear combinations of estimators for different survey peri-
ods, covering measures of change and long-term moving or simple averages, is the basic
criterion proposed for evaluating the impact of different rotation patterns. The initial
methods of estimation proposed for repeated surveys, BLUE, GREG, and composite
estimates, are model-assisted, but are considered in a design-based context. However,
the difficulty in obtaining stable randomization-based estimates of the correlation struc-
ture leads to the use of ANOVA and time-series models to obtain smooth estimates,
which are required for the efficient design of the rotation pattern. For estimation from
repeated surveys, a state-space Basic Structural Model, with the associated Kalman filter
is proposed. Finally, the case of direct interest in the time series structure of the data is
discussed. Methods for the estimation of the trend or the seasonally adjusted series, as
well as estimates of the variances of these components, are proposed.

Nathan (Chapter 34) discusses various aspects of the analysis of longitudinal surveys
under a model-based approach. In longitudinal surveys, the same units are investigated
on several occasions over extensive periods of time. The different modes of collec-
tion of longitudinal data, such as prospective measurement, retrospective measurement,
observational studies and intervention studies, and the specific problems involved in
their implementation and subsequent analysis are discussed. The predominant method
of analysis for longitudinal data is based on the fitting of generalized linear models
and the use of generalized estimating equations, for estimating the model parameters.
Multilevel modeling, often used to describe the hierarchical structure of a population,
can be extended to describe the time series relationships between repeated measure-
ments, with the random effects accounting for the variability of higher-level groups,
such as households. A model is proposed, which combines standard multilevel models
operating at given points in time with a state-space model that represents the time series
relationships of the random effects and of the individual measurements. Other general
methods of analysis applicable to longitudinal studies and considered in the chapter are
as follows: extensions of path analysis, such as graphical chain modeling and structural
equation modeling, which provide pictorial representations of the association between
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variables, to identify direct and indirect effects of one variable on another; structured and
unstructured ante-dependence models, which deal with the inherent nonstationarity of
longitudinal data; event history analysis to model the movement of individuals between
states; and multivariate counting processes, a flexible framework for modeling event
histories.

Chapter 34 considers also special aspects of nonresponse in longitudinal data.
Although repeated requests for information from the same individuals or households
may lead to attrition and wave nonresponse, the existence of observations for other
points in time for the same unit suggests that this information can assist in dealing
efficiently with the effects of nonresponse, by considering plausible relationships over
time between individual measurements. In this chapter, the focus is on the treatment of
missing data resulting from wave nonresponse, where data are available for some points
in time and missing for others, rather than on complete nonresponse, which can be dealt
with similarly to the ways used for dealing with nonresponse in cross-sectional surveys.
In the sample survey context, the effects of nonresponse in a longitudinal survey are
accounted for by modifications of the hierarchical linear model, described previously,
and by the combined use of time series structures with hierarchical modeling, based
on an augmented regression method or on a state-space model. Finally, the chapter
examines the effects of informative sampling designs and proposes an extension to lon-
gitudinal surveys of a general method of inference on the population distribution under
informative sampling, developed for cross-sectional samples.

Singh (Chapter 35) considers methods by which standard quasi-likelihood and quasi-
score methods, used for the analysis of categorical data under simple random sam-
pling can be modified, primarily by weighting, to take into account complex sample
designs. The methods are evaluated with respect to four basic aspects of data anal-
ysis, which are considered throughout the chapter: model selection, model diagnos-
tics, inferential estimation, and inferential testing. The chapter focuses on the quadratic
score statistic and its relationship to Pearson’s chi-square statistic, rather than on the
maximum-likelihood ratio test, in view of the usefulness of the former statistic for
the quasi-likelihood approach. Neyman’s version of the score function – the nuisance
parameter adjusted score – is likewise emphasized to deal with nested hypotheses. Also
reviewed are the use of Cholesky residuals to obtain Pearson-type residuals at the cell
level, and R2-type measures of model goodness-of-fit. Next, the results are generalized
to the quasi-likelihood framework. This is carried out primarily by the construction
of appropriate quasi nuisance parameter adjusted score functions, again considering
the four basic aspects of analysis, mentioned above. The semiparametric framework of
quasi-likelihood estimation is especially helpful for the analysis of categorical data under
a complex sampling design, because it does not require the specification of moments
beyond the first two.

To extend the results to the analysis of categorical data obtained under complex
sampling, an underlying two-phase randomization scheme is assumed. The first phase
generates a finite population from a conceptual super-population model. The second
phase selects the sample from the finite population. The weighted quasi-score function
is then derived by applying sample weights to the sample estimating function, to obtain
an estimate of the finite population estimating function. This leads to the problem of
possible instability of the covariance matrix of the weighted quasi-score function. Use
of a suitable working covariance matrix followed by Rao–Scott corrections for testing
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purposes, and the use of generalized design effects to smooth the covariance matrix for
estimation purposes, are reviewed. When covariates are available at the unit level, the
use of unit level models is better than the use of aggregate level models from the point of
view of estimation efficiency. Likelihood-based methods, quasi-likelihood methods, and
weighted quasi-likelihood methods are developed for unit-level models, in a similar way
to the methods proposed for aggregate-level models. In particular, for model diagnostics,
a Rao–Scott type chi-square approximation to the distribution of the commonly used
Hosmer–Lemeshow goodness-of-fit statistic for unit-level models is obtained.

Dorfman (Chapter 36) emphasizes the importance of estimating the finite popula-
tion distribution function. The distribution function underlies many important statistics,
such as quantiles, and is very useful in assessing and comparing finite populations. The
predominant approach is design-based, but model-based and model-assisted methods
are also considered, with emphasis on protecting the inference against model misspeci-
fication. Many desirable properties of estimators of the distribution function are listed:
estimation by a proper distribution function satisfying boundary conditions; simplicity
and invertibility; calibration to correlated auxiliary variables; efficiency, consistency,
and robustness; and simplicity of variance estimation. Although these properties are not
entirely compatible, attempts are made to consider them with appropriate priorities. The
design-based estimators considered are the well-known weighted Hájek estimator and
several alternatives, based on weighted averages of several estimators and on linearly
interpolated estimators. When unit level auxiliary information is available, a model-
dependent method for estimating the population distribution function is proposed by
Chambers and Dunstan (1986). This method is based on estimating the expectation of
the distribution function under a hetroscedastic regression model. An alternative model-
dependent, design-consistent estimator, designed to protect against possible model mis-
specification, is the difference estimator of Rao et al. (1990), also constructed with
reference to a specific linear regression model. Other alternatives proposed, based on
these two approaches, attempt to further robustify the estimation against model misspec-
ification and to enhance diagnostic capabilities. These include weighted averages of the
aforementioned estimators, nonparametric regression-based estimators, calibration and
GREG estimators, and pseudolikelihood estimators. The performance of these estima-
tors are compared with respect to their variance, consistency, robustness, and diagnostic
capabilities. The possibility of using the estimators when only partial auxiliary infor-
mation, such as means or totals is available, is also discussed.

The primary way of estimating quantiles is by inverting any of the proposed esti-
mates of the distribution function. However, a number of direct estimators, which do
not require explicit expressions for the estimates of the distribution function are also
proposed. The chapter ends with remarks on the possibilities for variance estimation
and the construction of confidence intervals for distribution functions and for quan-
tiles, based on the previously proposed estimators. Variance estimators considered are
based on three basic approaches: (1) plug-in model based estimators, (2) design-based
estimators, and (3) estimators obtained by replication methods such as the bootstrap
and jackknife. Additional remarks relate to the effect of independence assumptions on
quantile estimation, and to the effect of measurement error in the variable of interest.

Graubard and Korn (Chapter 37) discuss modifications of standard scatterplots for
representing complex survey data. The usefulness of simple scatterplots for data col-
lected in a survey is limited by several factors: individuals in the sample represent
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different numbers of individuals in the population; the use of imputations for item
nonresponse; the large sample sizes; and intraclass correlations due to cluster sampling.
Scatterplots that ignore these features can be misleading. Several modifications to deal
with these issues are discussed. In “bubble plots,” single dots are replaced by circles
with areas that are proportional to the sample weights. Bubble plots are better than a
simple scatterplot in describing the population distribution and in identifying influential
points. However, for moderate-to-large sample sizes, a bubble plot can be difficult to
interpret because of overlapping bubbles. A “sampled scatterplot” is proposed, where
the subsample units are selected from the original sample with probabilities that are
proportional to the weights, yielding a dataset that represents the population distribu-
tion without weighting. Overlapping bubbles can pose a problem in large samples when
the data are rounded. A possible solution is “jittering” the data by adding random noise
to each data point before plotting. Nonresponse in survey data can affect its graphi-
cal presentation. For unit nonresponse, a nonresponse adjustment to the base sample
weights can be accounted for in the scatterplot. When there is item nonresponse, which
is handled by imputing values for the missing values, a proper variability of the imputed
values can be achieved by adding a random error to each imputed value. It is important
to distinguish visibly between imputed and nonimputed values in graphical displays.

Displaying smooth curves through a scatterplot that reveal the underlying X–Y struc-
tural relationship are useful to the analyst. The large number of observations in surveys
allows the use of less model-dependent approaches for fitting these curves. For example,
“strip box plots” can be used to show conditional percentiles for data grouped along the
x-axis where each box plot displays the sample-weighted percentiles. A more pleasing
plot removes the boxes and generates smooth curves through the percentiles using a
piecewise cubic spline to fit third degree polynomials. Smooth conditional percentiles
curves can be estimated more directly using the original ungrouped data. The primary
method is the kernel method, which is first introduced for estimating the conditional
mean of the variable of interest, yi, given the value of an auxiliary variable x. The
conditional mean is estimated by a weighted mean of the yi whose corresponding xi val-
ues are near x. The weights used for this estimator incorporate the sample weights. The
choice of the bandwidth, which is critical in determining the smoothness of the resulting
conditional mean curve, is discussed. Extensions of the kernel method for estimating
the conditional percentiles of y given x are proposed. In addition, a median correction
is used to reduce the bias involved in estimating conditional percentiles. Finally, the
authors propose several approaches for obtaining standard errors of kernel estimators
based on replication methods for variance estimation, such as balanced half-samples
and the jackknife.
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Design-based Methods of Estimation for Domains
and Small Areas

Risto Lehtonen and Ari Veijanen

1. Introduction

This chapter is devoted to the estimation for population subgroups or domains. Regional
areas constructed by administrative criteria, such as county or municipality, are typical
domains of study (Yates, 1949), also called domains of interest. Estimation for domains,
or domain estimation for short, refers to the estimation of population quantities, such
as totals or means, for the desired population subgroups. Domain estimation will be
examined in the context of design-based estimation. Design-based methods for domain
estimation are frequently used in many areas of empirical research and official statistics
production.

Design-based estimation for a finite population quantity refers to an estimation
approach where the randomness is introduced by the sampling design. Thus, the
approach also is called randomization approach. In design-based estimation, it is empha-
sized that estimators should be design consistent and, preferably, essentially (or nearly)
design unbiased at least in medium-sized samples.

Some early milestones of design-based estimation for domains areYates (1953, 1960)
and Durbin (1958). Hartley (1959) introduced the so-called domain-specific variables
for domain estimation with standard design-based estimators of population quantities.
This technique has appeared fruitful for example in software development for domain
estimation.

We focus on the estimation of population totals for domains. Totals are chosen
because of their fundamental role in survey sampling and because more complex param-
eters can often be expressed as functions of totals. The estimation of ratios and quantiles,
such as median, is also discussed. The availability of high-quality auxiliary information
is crucial for reliable estimation for domains. The reason for incorporating auxiliary data
in a domain estimation procedure is obvious: improved accuracy is attained if strong
auxiliary data are available for domain estimation.

Different types of auxiliary data can be used in design-based estimation for domains.
The available auxiliary data can be aggregated at the population level, at the domain
level, or at an intermediate level. Aggregates are often taken from reliable auxiliary
sources such as population census or other official statistics; this case is common, for

219



220 R. Lehtonen and A. Veijanen

example in North America. If the auxiliary data are included in a sampling frame, as is
the case in many European countries, notably in Scandinavia, the necessary auxiliary
totals can be aggregated at the desired level from unit-level data sources.

Calibration techniques and model-assisted methods using aggregated auxiliary data
offer efficient tools for design-based domain estimation. Calibration is discussed, for
example, in Deville and Särndal (1992) and Kott (2003). Särndal (2007) provides a
comprehensive treatment of the calibration approach in survey theory and practice. An
overview on calibration weighting is given in Chapter 25. Calibration methods were
developed for domain estimation in Estevao and Särndal (1999, 2006). The proposed
approach to calibration is sometimes called linear or model-free calibration. Model-
assisted methods using generalized regression (GREG) estimators were extensively
discussed in Särndal et al. (1992). GREG estimation was introduced for domain estima-
tion in Särndal (1981, 1984), Hidiroglou and Särndal (1985), and Särndal and Hidiroglou
(1989) and were developed further (including computational tools) in Estevao et al.
(1995). We elaborate to some extent these developments; it will appear that the level at
which the auxiliary data are used is crucial: efficiency tends to improve when the aggre-
gation level comes close to the domain level when compared to the use of higher-level
aggregates.

A statistician also can be in a favorable position to use unit-level auxiliary data for
domain estimation. These data are incorporated in the estimation procedure by unit-level
statistical models. We illustrate various members of the family of GREG estimators for
these cases. For this purpose, we assume that register data (such as population census
register, business register, different administrative registers) are available as frame popu-
lations and sources of auxiliary data, and the registers contain unique identification keys
that can be used in merging at microlevel data from registers and sample surveys. Known
domain membership for all population elements is often assumed. Many countries, both
in Europe and elsewhere, are progressing in the development of reliable population and
business registers that can be accessed for statistical purposes. Obviously, access to
micromerged register and survey data provides great flexibility for domain estimation.
In GREG estimation, this view has been adopted, for example, in Lehtonen and Veijanen
(1998), Särndal (2001), Lehtonen et al. (2003, 2005), and Hidiroglou and Patak (2004).
Wu and Sitter (2001a) use unit-level auxiliary information in their model calibration
method.

Design-consistent estimation for domains contrasts with model-dependent estima-
tors, which can have desirable properties under the model but whose design bias does not
necessarily tend to zero with increasing sample size (Hansen et al., 1978, 1983; Lehto-
nen et al., 2003; Särndal, 1984). Design-consistent domain estimators also have been
proposed in the context of model-based estimation. Model-based and model-dependent
methods falling under the headline of small-area estimation may be required for the
smallest domains (with a small sample size in a domain), where design-based esti-
mators often fail. The methods include a variety of model-based techniques such as
synthetic and composite estimators, empirical best linear unbiased predictor (EBLUP)
type estimators and various Bayesian techniques. The monograph by Rao (2003a) pro-
vides a comprehensive treatment of model-based small-area estimation. Model-based
small-area estimation is discussed in Chapter 32.

In design-based estimation, the existence of a model is not necessarily recognized.
For example in model-free calibration, an explicit model is not present but exists in
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the model calibration method. An assisting or “working” model is postulated in model-
assisted estimation. In GREG estimation, the main goal is to obtain favorable design-
based properties, such as small design bias. These design-based properties should hold
even when the model is misspecified. If our model fits well, decreased design variance is
expected for a GREG estimator. Thus, a model is used as an assisting tool in constructing
the estimator, which is then modified to meet the desired design-based properties. For
example, a GREG estimator for a domain total is often constructed by adding a bias
correction term to the sum of fitted values calculated over the population domain. The
bias correction term is obtained as a weighted sum of the sample residuals over the
domain.

In this chapter, we do not address design-based techniques for nonresponse adjust-
ment (see Chapter 8). Calibration approach to nonresponse treatment is discussed in
Särndal and Lundström (2005). Additional topics that are not covered include informa-
tive sampling in the context of domain estimation (e.g., Pfeffermann and Sverchkov,
2007) and estimation for domains in the presence of outliers (see Chapter 11).

This chapter is organized as follows. Theoretical framework, terminology, and nota-
tion are introduced in Section 2. Section 3 discusses direct estimation for domains by the
Horvitz–Thompson (HT) estimator, calibration and GREG estimators. In these cases,
domains are often considered as strata in the sampling design. We extend in Section 4
our discussion to more general estimator types and domain structures that are often
encountered in practice. GREG estimators for domains are discussed extensively; we
also address composite estimation from a design-based perspective. In all these cases,
auxiliary information is needed at an aggregated level. Extensions are discussed in
Section 5, where a number of empirical examples based on simulation experiments are
presented. In these cases, access to unit-level auxiliary data is assumed. Section 6 sum-
marizes some properties of selected software products that can be used for design-based
domain estimation.

2. Theoretical framework, terminology, and notation

2.1. Design-based inference at the population level

Let us consider a collection of random variables (Y1, Y2, . . . , Yk, . . . , YN)with unknown
values (y1, y2, . . . , yk, . . . , yN) of a variable of interest y in a fixed and finite population
U = {1, 2, . . . , k, . . . , N}, where k refers to the label of population element. The fixed
population is said to be generated from a superpopulation. For practical purposes, we are
interested in one particular realized population U with (y1, y2, . . . , yN), not in the more
general properties of the model explaining how the population evolved. This is important
especially in national statistical agencies, which attempt to describe the current state of
the population of a country.

In the design-based approach, the values of the variable of interest are regarded as
fixed but unknown quantities. The only source of randomness is the sampling design,
and our conclusions should apply to hypothetical repeated sampling from the fixed
population.

In estimation for the whole population, we are mainly interested in the total
t = ∑

k∈U yk or mean ȳ = ∑
k∈U yk/N of the variable y. Notation

∑
k∈U refers to

summation over all population units k ∈ U. In practice, the values yk of y are observed
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in an n element sample s ⊂ U, which is drawn at random by a sampling design giv-
ing probability p(s) to each sample s. The sampling design can be complex involving
stratification and clustering and several sampling stages.

The design expectation of an estimator t̂ of population total t is determined by the
probabilities p(s): let t̂(s) denote the value of estimator that depends on y observed in s.
Then the expectation is E(t̂) =∑

s p(s)t̂(s). A design unbiased estimator has E(t̂) = t.
Design variance is defined as Var(t̂) =∑

s p(s)
(
t̂(s)− E(t̂))2

. An estimator of design
variance is denoted by V̂ (t̂).

An estimator is design consistent if its design bias and variance tend to zero as the
sample size increases.An estimator isnearly designunbiased if its bias ratio (bias divided
by standard deviation) approaches zero with orderO(n−1/2) when the total sample size
n tends to infinity (Estevao and Särndal, 2004). For a nearly design unbiased estimator,
the design bias is, under mild conditions, an asymptotically insignificant contribution
to the estimator’s mean squared error (MSE) (Särndal, 2007, p. 99).

Variance estimators are derived in two steps. First, the theoretical design-based vari-
ance Var(t̂) (or its approximation if the theoretical design variance is intractable) is
derived. Second, the derived quantity is estimated by a design unbiased or design-
consistent estimator V̂ (t̂).

When the estimator is a weighted sum of observations over sample, it is practical
to derive expectation and variance using inclusion probabilities. An observation k is
included in the sample with probability πk = P{k ∈ s}. The inverse probabilities are
called design weights ak = 1/πk. A useful tool is a sample membership indicator
Ik = I{k ∈ s} with value 1 if k is in the sample and 0 otherwise, E(Ik) = πk. In
variances, we have to consider inclusion of pairs of observations: the probability of
including both k and l(k �= l) is πkl = E(IkIl) with inverse akl = 1/πkl, and akl = ak
when k = l. The covariance of Ik and Il is Cov(Ik, Il) = πkl − πkπl; this quantity is
needed in constructing design variances and their estimators, especially for without-
replacement type designs.

2.2. Basic features of design-based inference for domains

2.2.1. Planned and unplanned domain structures
In domain estimation, we are mainly interested in totals or averages of a variable of
interest y over D nonoverlapping domains Ud ⊂ U, d = 1, 2, . . . , D, with possibly
known domain sizes Nd . As an example, consider the population of a country divided
into D domains by regional classification, with Nd households in domain Ud , and the
aim is to estimate statistics on household poverty for the regional areas. A domain total
is td = tdy = ∑

k∈Ud yk, where yk refers to measurement for household k, and domain
mean is ȳd = td/Nd , d = 1, . . . , D.

Corresponding to population domains, the sample s is divided into subsamples sd ,d =
1, . . . , D. Sampling design may be based on knowledge of domain membership of units
in population. If the sampling design is stratified, domains being the strata, the domains
are called planned (Singh et al., 1994) or primary domains (Hidiroglou and Patak,
2004); sometimes also design domains (Kish, 1980) or identified domains (Särndal,
2007). For planned domain structures, the population domains Ud can be regarded as
separate subpopulations. Therefore, standard population estimators are applicable as
such. The domain size Nd in every domain Ud is often assumed known and the sample
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size nd in domain sample sd ⊂ Ud is fixed in advance. Stratified sampling in connection
to a suitable allocation scheme such as optimal (Neyman) or power (Bankier) allocation
is advisable in practical applications to obtain control over domain sample sizes (e.g.,
Lehtonen and Pahkinen, 2004). Singh et al. (1994) describe allocation strategies to attain
reasonable accuracy for small domains, still retaining good accuracy for large domains.
Falorsi et al. (2006) propose sample balancing and coordination techniques for cases with
a large number of different stratification structures to be addressed in domain estimation.
If the domain membership is not incorporated into the sampling design, the sizes nsd of
domain samples sd = s ∩ Ud will be random. The domains are then called unplanned
or secondary domains. Unplanned domain structures typically cut across design strata.
The property of random domain sample sizes introduces an increase in the variance of
domain estimators. In addition, extremely small number (even zero) of sample elements
in a domain can be realized if the domain size in the population is small. Unplanned
domain structures are commonly encountered in practice because it is impossible to
include all relevant domain structures into the sampling design of a given survey.

2.2.2. Extended domain variables of interest
A general tool for domain estimation is the extended domain variable of interest yd
defined as ydk = yk for k ∈ Ud and ydk = 0 for k /∈ Ud (Hartley, 1959). In other words,
ydk = I{k ∈ Ud}yk. Because td = ∑

k∈Ud yk =
∑

k∈U ydk, we can estimate the domain
total of y by estimating the population total of ydk (e.g., Estevao et al., 1995; Estevao and
Särndal, 1999; Hidiroglou and Patak, 2004). Consequently, any population total or mean
estimator applied to ydk is usable as a corresponding domain estimator. Extended domain
variables are useful for estimation for unplanned domains because the contribution of
extra variance caused by random domain sample sizes can be easily incorporated in
variance expressions. The technique of extended domain variables allows building of
generally applicable software for domain estimation and is implemented, for example,
in survey sampling oriented SAS procedures and the GES software of Statistics Canada
(Estevao et al., 1995).

Extended domain variables can be incorporated in a model-assisted estimation pro-
cedure. However, a model fitted to the whole sample is not always going to fit well
because most of the ydk are zeroes. But when using extended domain variables, the
main interest is not necessarily in the goodness of fit; the primary objective is to attain
a single set of weights for all domains. Moreover, the estimates are additive: their sum
over the domains equals the estimate for the whole population (Estevao et al., 1995).
This can be considered as a benefit of practical importance, especially for routine official
statistics production. On the other hand, possible efficiency gains might not be attained
and therefore, we usually attempt to derive estimators using the original yk values.

2.2.3. Direct and indirect estimators
It is advisable to separate direct and indirect estimators for domains. A direct estima-
tor uses values of the variable of interest only from the time period of interest and
only from units in the domain of interest (Federal Committee on Statistical Method-
ology, 1993). A HT type estimator t̂d = ∑

k∈sd yk/πk provides a simple example of
direct estimator. In model-assisted estimation, direct estimators are constructed by using
models fitted separately in each domain; an example is a model Yk = x′kβd + εk,
k ∈ Ud , with domain-specific auxiliary x-data and a vector of regression coefficients
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βd , d = 1, . . . , D. A direct domain estimator can still incorporate auxiliary data outside
the domain of interest. This is relevant if accurate population data about the auxiliary
x-variables are only available at a higher aggregate level.

An indirect domain estimator uses values of the variable of interest from a domain
and/or time period other than the domain and time period of interest (Federal Committee
on Statistical Methodology, 1993). For example, if a linear model Yk = x′kβ+εk, k ∈ U,
with a common vector β is used as an assisting model, the resulting domain estimator
will be indirect. In general, indirect estimators are attempting to “borrow strength” from
other domains and/or in a temporal dimension. The concept of “borrowing strength”
is often used in model-based small-area estimation (e.g., Rao, 2003a). Indirect model-
assisted estimators for domains are discussed in the literature (e.g., Estevao and Särndal,
1999; Hidiroglou and Patak, 2004; Lehtonen et al., 2003, 2005). Estevao and Särndal
(2004) have argued in favor of direct estimators in the context of design-based estimation
for domains.

2.2.4. Conditional design-based inference for domains
For unplanned domain structures, observed domain sample sizes can be taken into
account in estimation and in theory. We are interested in the average properties of
estimators in samples with observed domain sample sizes n = (n1, n2, . . . , nd, . . . nD)

′.
In conditional design-based inference for domains (Falorsi et al., 2000; Hidiroglou and
Patak, 2004; Särndal and Hidiroglou, 1989) given n, the hypothetical repeated sampling
yields only samples swith n(s) = n. This subset of samples,Sn = {s∗ ⊂ U : n(s∗) = n},
is based on observed information, so it has been considered more relevant than the set
of all possible samples. By using conditional probabilities pc(s) = p(s)/P{n(s∗) = n},
if n(s) = n, and pc(s) = 0 otherwise, the conditional expectation of an estimator is
defined as E(t̂d |n(s) = n) = ∑

s:n(s)=n pc(s)t̂d(s). The conditional MSE and variance
are defined in the same way.

We prefer conditionally unbiased estimators to conditionally biased ones. We do
not encounter estimators that are conditionally unbiased but unconditionally biased
because the unconditional expectation is an average over conditional expectations. The
conditional approach may also result in changes in a domain estimation procedure. For
example, Falorsi et al. (2000) introduced a HT type estimator and a ratio estimator
incorporating conditional inclusion probabilities. Park and Fuller (2005) used condi-
tional inclusion probabilities for a calibrated GREG estimator.

The estimator of the conditional variance is, in general, different from the estima-
tor of the unconditional variance. Conditional variance estimate yields a conditional
confidence interval. In repeated sampling from the subset Sn, the conventional t-based
conditional confidence interval covers the true value approximately at a given rate if
the estimator is approximately normally distributed. Because this holds for all values of
n, the conditional confidence interval is also an unconditional confidence interval with
the same coverage rate. If the model is only approximately correct, a model-assisted
method does not always yield conditionally valid inference. It can be argued (Rao, 1997)
that model-assisted approach should be restricted to methods with good conditional
properties. Conditional inference has been based on other properties besides domain
sizes; there are examples of conditioning on strata sample sizes (Holt and Smith, 1979)
and on HT estimates of the auxiliary variables (Montanari and Ranalli, 2002; Rao,
1985).
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2.2.5. Design-based properties of domain estimators
Known design-based properties related to bias and accuracy of model-assisted estimators
are summarized in Table 1. For comparison, design-based properties of corresponding
model-dependent estimators are also included in the table. Model-assisted estimators
such as GREG are design consistent or nearly design unbiased by definition, but their
variance can become large in domains where the sample size is small. Model-dependent
estimators such as synthetic and EBLUP estimators are design biased: the bias can
be large for domains where the model does not fit well. The variance of a model-
dependent estimator can be small even for small domains, but the accuracy can be
poor if the squared bias dominates the MSE, as shown, for example, by Lehtonen et al.
(2003, 2005). For a model-dependent estimator, the dominance of the bias component
together with a small variance can cause poor coverage rates and invalid design-based
confidence intervals. For design-based model-assisted estimators, on the other hand,
valid confidence intervals can be constructed. Typically, model-assisted estimators are
used for major or not-so-small domains, and model-dependent estimators are used for
small domains where model-assisted estimators can fail.

Table 1 indicates that small domains present problems in the design-based approach.
Purcell and Kish (1980) call domain a minidomain when Nd/N < 1%. In such small
domains, especially, direct estimators can have large variance. Small domains are the
main reason to prefer indirect model-based estimators to design-based estimators (Rao,
2005). By proper planning of the sampling strategy, it is possible to decrease the variance
of a design-based estimator in the small domains. Singh et al. (1994) and Marker (2001)
give examples of such strategies.

In practice, there are two main approaches to design-based estimation for domains:
direct estimators that are usually applied for planned domain structures and indirect
estimators whose natural applications are for unplanned domains. The two main
approaches are discussed in Sections 3 and 4, respectively.

Table 1
Design-based properties of model-assisted and model-dependent estimators for domains and small areas

Design-based model-assisted methods Model-dependent methods

GREG and calibration estimators Synthetic and EBLUP estimators

Bias Design unbiased (approximately) by the
construction principle

Design biased
Bias does not necessarily
approach zero with increasing
domain sample size

Precision (Variance) Variance may be large for small domains
Variance tends to decrease with
increasing domain sample size

Variance can be small even for
small domains
Variance tends to decrease with
increasing domain sample size

Accuracy (MSE) MSE = Variance (or nearly so) MSE = Variance + squared bias
Accuracy can be poor if the bias
is substantial

Confidence intervals Valid design-based intervals can be
constructed

Valid design-based intervals not
necessarily obtained
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3. Direct estimators for domain estimation

The HT type estimator does not incorporate auxiliary information. GREG estimation is
assisted by a model fitted at the domain level and uses auxiliary data from the domain.
Calibration incorporates auxiliary data from the domain of interest or from a higher-
level aggregate. All these estimators are direct because the y-values are taken from the
domain of interest. When domain membership is known for all population elements,
domain sizes Nd are also known.

3.1. Horvitz–Thompson estimator

The basic design-based direct estimator of the domain total td is the HT estimator, also
known as the Narain-Horvitz-Thompson (NHT) and the expansion estimator:

t̂dHT =
∑
k∈Ud

Ikyk/πk =
∑
k∈sd

yk/πk =
∑
k∈sd

akyk (1)

(Horvitz and Thompson, 1952; Narain, 1951; notation as in Section 2.1). HT estimates
of domain totals are additive: they sum up to the HT estimator t̂HT = ∑

k∈s akyk of
the population total. As E(Ik) = πk, the HT estimator is design unbiased for td . Under
mild conditions on the πk, the corresponding mean estimator t̂dHT/Nd is also design
consistent (Isaki and Fuller, 1982). The estimator t̂dHT has design variance

Var
(
t̂dHT

) = E
⎛
⎝∑
k∈Ud

Ik − πk
πk

yk

⎞
⎠

2

=
∑
k∈Ud

∑
l∈Ud

E(Ik − πk)(Il − πl) yk
πk

yl

πl

=
∑
k∈Ud

∑
l∈Ud

(πkl − πkπl) yk
πk

yl

πl
=

∑
k∈Ud

∑
l∈Ud

(akal/akl − 1)ykyl. (2)

From aklE(IkIl) = 1, we see that an unbiased estimator for the design variance is

V̂
(
t̂dHT

) = ∑
k∈Ud

∑
l∈Ud

aklIkIl(akal/akl − 1)ykyl =
∑
k∈sd

∑
l∈sd

(akal − akl)ykyl.

(3)

An alternative Sen–Yates–Grundy formula for fixed sample size designs is (Sen,
1953; Yates, 1953):

V̂
(
t̂dHT

) = −∑
k∈sd

∑
l<k;l∈sd

akl(πkl − πkπl)(akyk − alyl)2

=
∑
k∈sd

∑
l<k;l∈sd

(akl/akal − 1)(akyk − alyl)2.

These variance estimators are impractical because they contain second-order inclu-
sion probabilities πkl whose computation is often laborious for practical purposes.
Hájek (1964) and Berger (2004, 2005b) proposed approximations to πkl. Särndal (1996)
developed efficient strategies with simple variance estimators under fixed sample size
probability proportional-to-size (πPS) schemes, including a combination of Poisson
sampling or stratified simple random sampling without replacement (SRSWOR) with
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GREG estimation. Berger and Skinner (2005) proposed a jackknife variance estima-
tor and Kott (2006a) introduced a delete-a-group jackknife variance estimator for πPS
designs. The SAS procedure SURVEYSELECT is able to compute πkl under certain
unequal probability without-replacement sampling designs. Some software products can
incorporate the πkl into variance estimation procedures; an example is the SUDAAN
software. The SAS macro CLAN includes the Sen–Yates–Grundy formula. Such esti-
mators are discussed in Chapter 2.

ManyπPS designs allow using of Hájek approximation (Berger, 2004, 2005b; Hájek,
1964) of second-order inclusion probabilities byπkl ≈ πkπl

[
1− (1− πk)(1− πl)m−1

d

]
for k �= l, where md = ∑

i∈Ud πi(1− πi). The approximation is used in a simple

variance estimator V̂
(
t̂dHT

) = ∑
k∈sd cke

2
k , where ci = nd(nd − 1)−1(1 − πi) and

ek = akyk −
(∑

i∈sd ci
)−1 ∑

i∈sd ciaiyi.
For unequal probability sampling designs, the variance of the ordinary HT estimator

has been approximated under a with-replacement (WR) assumption, leading to Hansen–
Hurwitz (1943) type variance estimator (Lehtonen and Pahkinen, 2004, p. 228, and SAS
procedure SURVEYMEANS) given by

V̂A(t̂dHT) = 1

nd(nd − 1)

∑
k∈sd

(ndakyk − t̂dHT)
2. (4)

For unplanned domains, the variance estimator for HT should account for random
domain sizes. An approximate variance estimator applied, for example, in SAS proce-
dure SURVEYMEANS contains extended domain variables ydk:

V̂U(t̂dHT) = n

n− 1

∑
k∈s
(akydk − t̂d/n)2, (5)

where n is the total sample size. Under SRSWOR, an alternative to (5) is

V̂srswor(t̂dHT) = N2
(
1− n

N

)(1

n

)
pdŝ

2
dy

(
1+ qd

c.v2
dy

)
,

where pd = nsd /n, qd = 1 − pd , variance estimator is, ŝ2dy =
∑

k∈sd (yk − ȳd)2/(nsd−1), and estimated coefficient of variation is c.vdy = ŝdy/ȳd for ȳd =∑
k∈sd yk/nsd .

The HT estimator can be regarded as a model-dependent estimator under a model
Yk = βπk + πkεk (Zheng and Little, 2003). HT is nearly optimal estimator among
weighted sums of Y values when Y depends on scalar x asE(Yk) = βxk, the variance of
errors is proportional to x2

k , and the sampling design assigns πk proportional to xk. On
the other hand, HT is very inefficient when the intercept of the model is far from zero.
Disastrous results are possible in HT estimation, as the famous example of Basu (1971)
shows (e.g., citation in Little, 2004).

If the domain size Nd is known, we expect better results with a “Hájek” type direct
estimator t̂dH(N ) = Nd ˆ̄yd (e.g., Hidiroglou and Patak, 2004; Särndal et al., 1992, p. 391)
derived from the domain mean ˆ̄yd = ∑

k∈sd akyk/N̂d with N̂d = ∑
k∈sd ak. This is a

special case of ratio estimation (Section 4.3.1). The variance of t̂dH(N ) is estimated by

V̂ (t̂dH(N )) =
(
Nd

N̂d

)2 ∑
k∈sd

∑
l∈sd

(akal − akl)(yk − ˆ̄yd)(yl − ˆ̄yd). (6)
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3.2. Population fit regression estimator

The population fit regression estimator is a theoretical tool used in approximating real-
world estimators. We first consider difference estimators (Särndal, 1980; Särndal et al.,
1992, p. 221). If known values y0

k are close to yk, we write the estimable population
total as

t =
∑
k∈U

yk =
∑
k∈U

y0
k +

∑
k∈U

(yk − y0
k).

A difference estimator is defined by estimating the second sum using HT:

t̂DIFF =
∑
k∈U

y0
k +

∑
k∈s
ak(yk − y0

k).

As the y0
k are constants, t̂DIFF is unbiased for t.

Consider a regression superpopulation model Yk = x′kβ + εk, where xk = (1, x1k,

. . . , xJk)
′ is the vector of auxiliary x-variables, β = (β0, β1, . . . , βJ )

′ is the vector of
regression coefficients, and εk are the residuals with variances σ2

k = Var(εk). Hypothet-
ically, we can fit the model to the population by calculating generalized least squares
(GLS) estimator B = β̂ as

B =
(∑
k∈U

xkx′k
σ2
k

)−1(∑
k∈U

xkyk
σ2
k

)
.

In practice, the error variance Var(εk) = σ2
k can often be assumed constant, σ2

k = σ2,
and then it cancels out. When the variance varies between observations, the σ2

k should
be included in the estimators. Straightforward cases are known σ2

k or an assumption that
the variances differ by known constants ck such that σ2

k = ckσ2. A special case is when
ck = 1 for all k ∈ U. For more details on the treatment of σ2

k , see, for example, Särndal
et al. (1992, p. 229 and Chapter 7).

A difference estimator with fitted values ŷ0
k = x′kB defines the population fit regres-

sion estimator,

t̂REG =
∑
k∈U

ŷ0
k +

∑
k∈s
ak(yk − ŷ0

k).

If an estimator t̂ can be well approximated by t̂REG, then Var(t̂) can be estimated by
a sample-based estimator of

Var(t̂REG) = Var

(∑
k∈s
akEk

)
=

∑
k∈U

∑
l∈U

(akal/akl − 1)EkEl,

whereEk = yk− ŷ0
k are the population fit residuals. To estimate Var(t̂REG) from sample,

we replace the Ek by corresponding sample residuals ek = yk − x′kB̂. If B̂ is nearly
unbiased for B, we can verify using E(aklIkIl) = 1 that a nearly unbiased estimator for
Var(t̂REG) is

V̂ (t̂REG) =
∑
k∈s

∑
l∈s
(akal − akl)ekel. (7)
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One approach to estimate B is to plug in HT estimators of both of its sum components.
When σ2

k is constant, we use a weighted least squares (WLS) estimator

B̂ =
(∑
k∈s
akxkx′k

)−1 (∑
k∈s
akxkyk

)
.

This estimator is only approximately unbiased due to its nonlinearity. Another
approach is to consider the population maximum likelihood (ML) estimator maximizing
f(β) = −∑

k∈U
(
yk − x′kβ

)2
/σ2. As only the sample is available, we use an estimated

log-likelihood, the so-called pseudolikelihood, instead (Binder, 1983; Godambe and
Thompson, 1986a; Nordberg, 1989). The function f(β) is estimated by an unbiased HT
type estimator f̂ (β) = −∑

k∈s ak
(
yk − x′kβ

)2
/σ2. This function is maximized by B̂.

Robust alternatives are presented in Beaumont and Alavi (2004).
Särndal et al. (1992) and Estevao and Särndal (2006) have approximated GREG

and calibration estimators (Sections 3.3 and 3.4) by Taylor linearization yielding a
population fit regression estimator. Because many approximations are involved, the
resulting variance estimators are at least slightly biased.

3.3. GREG estimators

The GREG estimator is a sample-based substitute for the population fit regression esti-
mator (Section 3.2). A direct type GREG estimator of domain total td is assisted by a
regression model Yk = x′kβd + εk, Var(εk) = σ2

k . Assuming constant error variance σ2
k ,

the domain-specific parameter Bd of the population fit defined for Ud is estimated as in
Section 3.2 by

B̂d =
⎛
⎝∑
k∈sd

akxkx′k

⎞
⎠
−1⎛

⎝∑
k∈sd

akxkyk

⎞
⎠,

and the fitted values ŷk = x′kB̂d and residuals ek = yk − ŷk are incorporated into the
GREG estimator

t̂dGREG =
∑
k∈Ud

ŷk +
∑
k∈sd

ak(yk − ŷk) =
∑
k∈Ud

ŷk +
∑
k∈sd

akek (8)

(Särndal, 1980; Särndal et al., 1992). The first part in t̂dGREG, the population sum of
fitted values over the domain, is sometimes called a synthetic estimator (Särndal, 1984).
When compared with direct GREG, it may have smaller variance but possibly large
design bias. The weighted sum of residuals tends to correct for the design bias. In some
cases, however, the weighted sum of the residual terms is zero. This happens when the
model contains an intercept.

Rearranging the terms of GREG we obtain the traditional regression estimator

t̂dGREG = t̂dHT + (tdx − t̂dx)′B̂d,

where tdx = ∑
k∈Ud xk =

(
Nd,

∑
k∈Ud x1k, . . . ,

∑
k∈Ud xJk

)′
and t̂dx = ∑

k∈sd akxk. By
Taylor linearization, t̂dGREG is approximated by a population fit regression estimator
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t̂dREG = t̂dHT + (tdx − t̂dx)′Bd applied in Ud . The estimator t̂dREG is unbiased for td , and
so the GREG estimator is nearly unbiased. Although GREG incorporates a model, it is
model-assisted, not model-dependent, because the model only yields a fixed population
quantity Bd , and GREG is nearly design unbiased even when the model is not valid. By
(7), the variance of t̂dGREG can be estimated using sample residuals ek = yk − x′kB̂d :

V̂1(t̂dGREG) =
∑
k∈sd

∑
l∈sd

(akal − akl)ekel. (9)

The GREG estimator can be written as a weighted sum of observations incorporating
so-called g-weights:

t̂dGREG =
∑
k∈sd

akgdkyk; gdk = Idk + Idk(tdx − t̂dx)′M̂−1
d xk,

where M̂d = ∑
i∈sd aixix

′
i and Idk = I{k ∈ Ud} is the domain membership indicator.

The g-weights are used in a variance estimator

V̂2(t̂dGREG) =
∑
k∈sd

∑
l∈sd

(akal − akl)gdkekgdlel (10)

(Hidiroglou and Patak, 2004; Särndal et al., 1989 and 1992, p. 235). In practice, V̂1 and
V̂2 often yield similar results but V̂2 in (10) is preferable (Fuller, 2002; Särndal et al.,
1989).

3.4. Calibration estimators

Calibration is based on information about known totals of auxiliary variables xk, also
called benchmark variables, at an aggregate level. In model-free calibration (Särndal,
2007) discussed here, it is not necessary to impose a model on the data. Suppose the
population is divided into calibration groupsUc (c = 1, 2, . . . , C) so that every domain
Ud is contained within one of the groups and the population totals tcx = ∑

k∈Uc xk of
auxiliary variables are known. The domain totals tdx are not required. Direct calibration
estimator of the domain total td is a weighted sum of observations:

t̂dCAL =
∑
k∈sd

wkyk,

where the calibration weights wk have to satisfy the calibration equations∑
k∈sc

wkxk =
∑
k∈Uc

xk = tcx

for every calibration group. It follows immediately that calibration estimator applied to
the auxiliary data yields the known totals. We therefore expect that the weighted sum
of y over sd is close to td .

There are two main approaches to calibration, one based on a distance measure and
the other based on instrument vectors (Chapter 25). In the distance measure approach,
the weights wk minimize a distance to the design weights ak, subject to the calibra-
tion equations (Deville and Särndal, 1992; Singh and Mohl, 1996). An example of a
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calibration estimator incorporating an instrument vector zk is

t̂dCAL =
∑
k∈sd

ak(1+ λ′zk)yk,

where λ′ = (tcx− t̂cx)′
(∑

k∈sc akzkx
′
k

)−1
. It should be noted that the values of instrument

z-variables need to be known only for the sample (or need to be estimated); they are not
necessarily treated as proper auxiliary information in the same manner as the auxiliary
x-variables. For practical purposes, a natural choice is zk = xk; an optimal choice is
discussed in Estevao and Särndal (2004).

As in (7), the variance of t̂dCAL is estimated by

V̂ (t̂dCAL) =
∑
k∈sc

∑
l∈sc

(akal − akl)(ydk − x′ckB̂cd)(ydl − x′clB̂cd),

where xck = I{k ∈ Uc}xk (Estevao and Särndal, 2006), and

B̂cd =
⎛
⎝∑
k∈sc

akzkx′ck

⎞
⎠
−1⎛

⎝∑
k∈sc

akzkydk

⎞
⎠.

WhenUc is much larger thanUd , the variance can become large. Therefore, we should
attempt to find a calibration group that agrees closely with the domain of interest.

Our GREG estimator of Section 3.3 is actually a special case of calibration, some-
times called linear calibration estimator, as the weights akgdk minimize a certain chi-
square distance to design weights ak, subject to domain-level calibration equations∑

k∈sd akgdkxk = tdx.
Calibration is contrasted with GREG estimation in Särndal (2007). Särndal and

Lundström (2005) discuss calibration in the context of adjustment for unit nonresponse
in sample surveys.

3.5. Computational example with direct estimation under a planned domain structure

In this section, we demonstrate with real data the direct Horvitz–Thompson, Hájek,
and GREG estimation of totals for domains. The data set contains disposable income
of households in D= 12 regions of Western Finland. The population consists of N =
431,000 households. In addition to the income data, the record of a household shows
the number of household members who had higher education (variable EDUC) and
the number of months in total the household members were employed (EMP) during
last year. All three variables were determined using administrative registers. For this
computational exercise, we had access to population level information on all variables.
This gives a possibility to compare sample estimates to the known population values.

We were interested in the yearly total disposable income td =∑
k∈Ud yk in the regions

Ud(d = 1, . . . , D). A sample of 1000 households was drawn from the population by
using stratified πPS (without-replacement type probability proportional to size sam-
pling) with household size as the size variable. To demonstrate estimation for planned
domains, we interpret here the sample as a stratified sample where the regions constitute
the strata. Thus, the domain structure is of planned type, where the regional sample sizes
are considered fixed by the sampling design. In Section 4.2, we use the same sample
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in estimation for unplanned domains, where the regional sample sizes are considered
random.

In Table 2, we grouped the domains by sample size into minor (8 ≤ nd ≤ 33),
medium-sized (34 ≤ nd ≤ 45) and major (46 ≤ nd ≤ 277) domains, where nd is the
observed domain sample size in domain Ud . There were four domains in each domain
size class.

Results are shown in Table 2. The absolute relative error of an estimator in domain
d is calculated as |t̂d − td |/td and domain group’s MARE is the mean of absolute rel-
ative errors over domains in the group. Correspondingly, MCV is the mean coefficient
of variation of the estimate over domain group. The coefficient of variation is calcu-
lated as s.e(t̂d)/t̂d , where s.e refers to the estimated standard error of an estimator. For
variance estimation, we approximated the design by with-replacement type probability-
proportional-to-size sampling (PPS). The variance estimators for ordinary HT (column
1) and the Hájek type estimator (column 2) were defined by (4) and (6), respectively.
The Hájek estimator, which contains the known domain sizes Nd , yielded better results
than ordinary HT.

A calibration estimator, the direct GREG estimator with linear assisting model,

Yk = β0d + β1dEMPk + εk(column 3) or

Yk = β0d + β1dEMPk + β2dEDUCk + εk(column 4),

and variance estimator (10) incorporated the known domain sizes and domain totals
of EMP (column 3) and EDUC (column 4). The model parameters were estimated by
WLS with weights ak = 1/πk. By GREG, we obtained clearly smaller MARE and MCV
figures than by HT.

Adding information in the estimation procedure improved the results until the assist-
ing model contained both EMP and EDUC: inclusion of EDUC in GREG decreased
MCV but average errors did not always decrease. In large domains, the average error
and MCV were usually smaller than in small domains.

Table 2
Mean absolute relative error (MARE) and mean coefficient of variation (MCV) of direct HT, Hájek, and
calibration (GREG) estimators of totals for minor, medium-sized, and major domains by using various amounts
of auxiliary information in a planned domains case

HT Hájek Calibration (GREG)

1 2 3 4
Auxiliary
Information

None Domain Sizes Domain Sizes and
Domain Totals of

EMP

Domain Sizes and
Domain Totals of
EMP and EDUC

Domain sample
size class

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

Minor
8 ≤ nd ≤ 33

11.5 11.9 5.3 10.9 5.8 7.7 6.4 6.8

Medium
34 ≤ nd ≤ 45

7.6 9.0 6.4 9.0 3.7 8.0 3.6 8.1

Major
46 ≤ nd ≤ 277

12.5 5.2 4.7 5.6 4.3 4.7 5.2 3.7
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4. Indirect estimators in domain estimation

4.1. Generalized regression estimators

4.1.1. Linear GREG
Indirect estimators use y-values also from other domains than the domain of interest.
While direct estimators can be derived from corresponding estimators for population,
indirect estimators require new results. This holds for unplanned domain structures in
particular, but the methodology below applies also to planned domains when indirect
estimators are used, for example, when the GREG estimator is assisted by a model fitted
to the whole sample. Thus, direct estimators can be treated as a special case of indirect
estimators. If the auxiliary information is not available at the domain level but at a higher
aggregate level, or if the population frame does not include domain membership data,
the calibration approach might be preferred to GREG.

We first assume a common linear fixed-effects regression model Yk = x′kβ + εk for
all domains. The corresponding population fit parameter B (Section 3.2) is estimated as
in Section 3.2. The linear GREG estimator of domain total td incorporates fitted values
ŷk of the common model:

t̂dGREG =
∑
k∈Ud

ŷk +
∑
k∈sd

ak(yk − ŷk), (11)

where ŷk = x′kB̂. In general, this is an indirect estimator, since all y-values in the sample

contribute.
There is a whole spectrum of model types describing various assumptions about

differences between domains (e.g., Lehtonen et al., 2003). If the domains are assumed
similar enough, the model may contain only intercept and slopes common to all domains.
At the other end of the spectrum, the model is equivalent to a set of separate models for
each domain, and all estimators are of direct type. A more parsimonious model might
have separate parameters for the largest domains and common parameters for the small
domains. It is also possible to use a model formulation with domain-specific intercepts
and common slopes or nonlinear model formulations (e.g., Lehtonen et al., 2005). These
extensions are discussed in Section 5.

In (11), unit-level auxiliary information about xk, also including known domain
membership, for all population units is assumed. Actually, since the assisting model
for (11) is linear, GREG estimation does not require unit-level information on xk. It is
enough to have access to the vector tdx of domain totals of auxiliary variables in the
population and the corresponding HT estimates t̂dx in the sample. This can be seen by
writing the GREG estimator in the standard textbook form,

t̂dGREG = t̂dHT + (tdx − t̂dx)′B̂.

An alternative calibration form incorporates g-weights:

t̂dGREG =
∑
k∈s
akgdkyk,

where gdk = Idk + (tdx − t̂dx)′M̂−1xk , Idk = I{k ∈ Ud}, and M̂ = ∑
i∈s aixix′i. The

g-weights are often small outside domain sample sd .
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The variance of t̂dGREG is estimated by a double sum over the whole sample s:

V̂ (t̂dGREG) =
∑
k∈s

∑
l∈s
(akal − akl)gdkekgdlel (12)

(Särndal et al., 1992, p. 401). Alternatively, the sum extends only over the domain
sample sd (Hidiroglou and Patak, 2004). For the direct estimator, these two forms are
identical. These variance estimators do not take into account that the sample size nsd for
an unplanned domain is random. To account for the randomness, we might apply GREG
assisted by a model fitted to the extended domain variables ydk = I{k ∈ Ud}yk (Estevao
et al., 1995). It has also been proposed to fit the model to the original yk and replace the
residuals ek in the variance estimator by “extended residuals” edk = I{k ∈ Ud}yk − ŷk
(Lehtonen and Pahkinen, 2004, p. 202; Särndal, 2001, p. 39).

The basic direct and indirect GREG estimators and their variance estimators for the
case of planned domains, discussed this far, are presented inTable 3 below. In both GREG
estimators, access to domain-level auxiliary totals of x-variables is assumed. A key
difference is in the model formulation: the direct GREG estimator employs domain-
specific assisting models, whereas a model common for all domains is postulated for
the indirect GREG estimator. Direct GREG estimation uses domain sample data in
variance estimation; the data use extends to the whole sample in indirect GREG.

The GREG estimator (11) has been modified to take into account the domain sizeNd
when known:

t̂dGREG(N ) =
∑
k∈Ud

ŷk + (Nd/N̂d)
∑
k∈sd

ak(yk − ŷk) =
∑
k∈s
akgdk(N)yk, (13)

where gdk(N) = (Nd/N̂d)Idk + (tdx − (Nd/N̂d)t̂dx)′M̂−1
xk and N̂d = ∑

k∈sd ak. This
estimator has smaller variance than the estimator (11) because the weighted mean of the
residuals is more stable. The variance estimator of t̂dGREG(N ) contains the weights gdk(N)
instead of gdk. If inference is conditional on observed sample domain sizes, t̂dGREG(N )

is conditionally nearly unbiased, whereas the ordinary GREG is conditionally biased
(Hidiroglou and Patak, 2004; Särndal and Hidiroglou, 1989). Therefore, t̂dGREG(N ) yields
better conditional confidence intervals. On the other hand, domain estimators (13) are
not additive; their sum is not usually equal to the GREG estimator of the population
total.

Table 3
The basic direct and indirect GREG estimators and their variance estimators for the planned domains case

GREG Estimator Type

Direct Indirect

Model
formulation

Yk = x′kβd + εk Yk = x′kβ + εk

GREG
estimator

t̂dGREG = t̂dHT +
(
tdx − t̂dx

)′B̂d t̂dGREG = t̂dHT +
(
tdx − t̂dx

)′B̂
Variance
estimator

V̂ (t̂dGREG) = ∑
k∈sd

∑
l∈sd

(akal − akl)gdkekgdlel V̂ (t̂dGREG) = ∑
k∈s

∑
l∈s
(akal − akl)gdkekgdlel
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4.1.2. Composite estimation for domains
As noted in Section 2.2.5, domains with small sample size can present problems in
design-based estimation. This also holds for the GREG estimator (11). For example,
the GREG estimate for a small domain is not necessarily bounded within an acceptable
range. Even when only positive y-values are valid, the GREG estimate may be negative
for a small domain when a negative residual is associated with a large weight ak. In
addition, although the GREG estimator (11) is nearly design unbiased, its design vari-
ance becomes large for a small domain. Composite or combined estimators have been
proposed to overcome these kinds of problems.

Consider a composite estimator t̂dCOMB = λd t̂dGREG + (1− λd)t̂dSYN, which is con-
structed as a weighted sum of the design-based GREG estimator (11) and a model-
based synthetic estimator t̂dSYN =∑

k∈Ud ŷk =
∑

k∈Ud x′kB̂. The domain-specific weight
λd(0 ≤ λd ≤ 1) is chosen such that λd is close to one for large domains and approaches
zero with decreasing domain sample size nsd . Thus, for small domains, the estimator
t̂dCOMB will be close to the synthetic estimator t̂dSYN; the GREG estimator (11) will be
obtained when the domain sample size is large. Different strategies in choosing λd are
possible, leading to composite estimators of optimal type or sample size dependent type
(see Rao, 2003a, Section 4.3).

The rationale behind composite estimation is obvious. The composite estimator can
be written as t̂dCOMB = t̂dSYN+λd ∑k∈sd ak(yk − ŷk), reproducing the GREG estimator
(11) with λd = 1. The design variance is of orderO(n−1) for the synthetic term t̂dSYN and
of order O

(
n−1
sd

)
for the bias correction term

∑
k∈sd ak(yk − ŷk). If the domain sample

size nsd is large, the weight λd should be close to one and a sufficiently small variance
will be obtained for t̂dCOMB. For a small domain, the variance of the correction factor
of the GREG will be large and it is beneficial to decrease the value of λd because the
variance of the component t̂dSYN tends to be small. This is an example of “trading bias
against variance”: by suitable choice of λd , a balance between the potential design bias
of the synthetic estimator and the instability of the GREG estimator is achieved. The
price to be paid for the variance reduction is increased design bias because the synthetic
estimator t̂dSYN is generally design biased. The MSE of the composite estimator will be
smaller than the MSE of the GREG estimator if the underlying model is not too bad for
the given domain. However, with a poor-fitting model, the bias component of the MSE
can dominate, leading to increased MSE.

An example of a sample size dependent composite estimator is provided by the
GREG estimator (13), with λd = Nd/N̂d . We noted in Section 4.1.1 that the GREG
estimate (13) is not necessarily bounded within an acceptable range. The likelihood
of this occurrence is reduced when Nd/N̂d is replaced by N̂d/Nd in a domain where
nsd <

∑
k∈Ud πk (Hidiroglou and Särndal, 1985). Further, Särndal and Hidiroglou (1989)

proposed an estimator called dampened regression estimator given by

t̂dDRE =
∑
k∈Ud

ŷk + (N̂d/Nd)c−1
∑
k∈sd

ak(yk − ŷk),

where c = 0 if N̂d ≥ Nd and c = 2 if N̂d < Nd .
Variants of composite estimators have often been used in practice. Examples of early

references are Schaible et al. (1977), and Kumar and Lee (1983). A method called
regression composite estimation is discussed in the context of repeated surveys, such
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as a Labour Force Survey, in Singh et al. (1994), Bell (2001), Fuller and Rao (2001),
Gambino et al. (2001), and Singh et al. (2001). Design-based composite estimation,
including MSE estimation, is discussed more extensively in Rao (2003a). Model-based
composite estimation is treated in Chapter 32.

4.1.3. Model groups approach
Instead of using a common model fitted to the whole sample, it is sometimes more
convenient to consider a set of regression models defined for nonoverlapping subsets
Up(p = 1, 2, . . . , P) of the population called model groups (Estevao et al., 1995). In
regional classification, there is often a hierarchy of regions, and model groups are larger
regions composed of domains. More generally, the boundaries of the setsUp do not have
to agree with domain boundaries, and interleaving is allowed. In model group Up, we
define a model Yk = x′kpβp + εk; k ∈ Up. Here, the vectors xkp may contain different
variables in different groups Up. Naturally, this ensemble of models is equivalent with
a single regression model Y = Xβ + ε, where X = diag(X1,X2, . . . ,XP) and β =
(β′1,β′2, . . . ,β′P)′. The general theory of the GREG estimator applies, but the X matrix
is perhaps impractically large. It is easier to consider the separate models. For that
purpose, the sample is divided into subsets sp = Up∩s and further into sets spd = sp∩sd .
If we know the auxiliary totals tdpx =∑

k∈Up∩Ud xkp, estimated by t̂dpx =∑
k∈spd akxkp,

the domain total GREG estimator (11) can be written as

t̂dGREG =
∑
p

∑
k∈spd

ŷk +
∑
p

∑
k∈spd

ak(yk − ŷk) = t̂dHT +
∑
p

(tdpx − t̂dpx)′B̂p,

where B̂p is obtained by fitting the regression model in model group Up:

B̂p = M̂
−1
p

∑
i∈sp

aixipyi (14)

and M̂p =∑
i∈sp aixipx′ip.

The model groups approach can be generalized by the use of overlapping sets Up(d)
that are defined for each domainUd so thatUd ⊂ Up(d). In regional statistics, an example
ofUp(d) is the neighborhood of a regionUd , the union ofUd and all neighboring regions
sharing a common border with the region. This makes sense if the neighboring regions
are similar due to spatial correlations (e.g., D’Alo et al., 2006; Petrucci et al., 2005).
Since there is no single regression model that is equivalent to the ensemble of separate
regression models, the estimators are not necessarily additive.

When the models are defined separately for each domain (Up = Ud), the resulting
estimator is direct. In small domains, the direct estimator typically has large variance.
Therefore, it has been common to use indirect estimator assisted by a model fitted in
a larger subset of the sample. Design-based estimation with an indirect estimator is
challenged by Estevao and Särndal (2004) but indirect estimation might be useful at
least for the small domains. Hidiroglou and Patak (2004) note that an indirect estimator
(13) incorporating N̂d may be preferred to a corresponding direct estimator when the
domain sample size is very small.
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The auxiliary totals are not always known in every domain but only in the model
groups Up. This situation can be addressed by calibration. An alternative is the
calibration-type GREG estimator discussed in Estevao et al. (1995). It is necessary
to fit the regression models to the extended domain variables ydk = I{k ∈ Ud}yk:

t̂dGREG(G) =
∑
k∈s
akydk+

∑
p

(tpx − t̂px)′B̂p(d), (15)

where the auxiliary total over Up is denoted by tpx, its HT estimate by t̂px, and B̂p(d) =
M̂−1
p

∑
i∈sp aixipydi. Only model groups Up that intersect the domain are included in

(15). An alternative expression for unit-level auxiliary data is

t̂dGREG(G) =
∑
k∈U

ŷdk+
∑
k∈s
ak

(
ydk − ŷdk

)
,

where ŷdk = x′kpB̂p(d) for k ∈ Up. The calibration equations hold at the model group
level, that is, the total estimates of auxiliary variables agree with the known totals over
Up. This approach is adopted, for example, in GES and CLAN software packages.

The variance estimator for (15) is calculated using all residuals edk = ydk−x′kpB̂p(d):

V̂ (t̂dGREG(G)) =
∑
k∈s

∑
l∈s
(akal − akl)gp(k)kedkgp(l)ledl, (16)

with gpk = 1+ (tpx − t̂px)′M̂−1
p xkp and k ∈ Up(k) (Estevao et al., 1995; Hidiroglou and

Patak, 2004). Obviously, the regression models fitted to ydk will not fit the data well
in a large model group and the residuals are often large. This inflates the variance; the
problem is often met if a model group contains several domains.

4.1.4. A general class of domain estimators
Estevao and Särndal (2004) define a general class of estimators including both GREG
estimators and calibration estimators based on an instrument vector: suppose the aux-
iliary totals are known over sets Up, called calibration groups or model groups. For
practical purposes, we again assume that the error variance σ2

k is constant. The regres-
sion parameter is estimated using subpopulations Um and Ul:

B̂ml =
(∑
k∈s
akzkImkx′k

)−1 (∑
k∈s
akzkIlkyk

)
,

where Imk = I{k ∈ Um} and Ilk = I{k ∈ Ul}, and zk is an instrument vector, in GREG
chosen as zk = xk. The domain estimator for Ud ⊂ Up is t̂d = t̂dHT + (tpx − t̂px)′B̂ml,
where the estimators t̂dHT and t̂px are HT estimators of the population totals of ydk and
xkp = I{k ∈ Up}xk, respectively. As special cases, the calibration estimator based on
the instrument vectors zk has Um = Up and Ul = Ud , as well as the GREG estimator
incorporating model groups Up. The ordinary GREG (11) has Um = Ul. In GREG, the
regression model is fitted to the whole sample (when Ul = U), to each domain (when
Ul = Ud) or to calibration groups (when Ul = Up). All these estimators are design
consistent, and their relative bias tends to zero as O(n−1/2).
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Estevao and Särndal (2004) show that the design variance of the estimator is mini-
mized by choosing Um = Up, Ul = Ud , and zk = ∑

l∈U (akal/akl − 1)Iplxl. These
instrument variables are estimated by zk = a−1

k

∑
l∈s (akal − akl) Iplxl. The resulting

estimator is then essentially identical with the so-called optimal estimator (Montanari,
1987; Montanari and Ranalli, 2002; Rao, 1994), which minimizes the design variance
(Estevao and Särndal, 2004, p. 656)

Var(t̂d) = Var(t̂dHT + (tpx − t̂px)′B)

= Var(t̂dHT)+ B′Var(t̂px)B− 2B′Cov(t̂dHT, t̂px)

with respect to B. Unfortunately, the optimal estimator is often unstable, especially for
designs more complex than SRS (Estevao and Särndal, 2004, p. 657). In practice, we
should probably use zk = Ipkxk instead. Then the estimator is the GREG estimator
based on model groups. Note that the optimal estimator is a direct estimator using the
y-values only from the given domain (Ul = Ud). The ordinary GREG estimator has
approximately the same asymptotic variance as the optimal calibration estimator only if
Up = Ud . Andersson and Thorburn (2005) discuss optimality of a calibration estimator
in relation to GREG estimation.

4.1.5. One-stage and two-stage designs
In addition to element-level sampling designs discussed so far, we can define GREG
estimators for clusters (Estevao et al., 1995). In single-stage cluster sampling, a sample
sC of clusters is first drawn with design weights aCi and all elements in each sample
cluster are surveyed. Clusters are grouped into model groups Cp(p = 1, 2, . . . , P).
Consider a cluster i ∈ Cp with elements si and auxiliary data xi. A regression model is
defined for the sum yCdi of y-variables ydk = Idkyk over the cluster:

yCdi =
∑
k∈si

ydk = x′iβp + εi,

where the error variance is Var(εi) = σ2
i . The regression parameter is estimated for

group Cp by

B̂p = M̂
−1
p

∑
i∈sC∩Cp

aCi xiyCdi/σ
2
i ,

where yCdi =
∑

k∈si ydk and M̂p =∑
i∈sC∩Cp a

C
i xix′i/σ2

i .

The error variance Var(εi) can hardly be assumed constant, but, for example, it can
often be assumed to be proportional to the size ni of the cluster: σ2

i = niσ
2. Then the

unknown σ2 cancels out from B̂p.

Using known auxiliary totals tCpx =
∑

i∈Cp xi and their estimates t̂
C

px =
∑

i∈sC∩Cp
aCi xi, we estimate td by

t̂dGREG(C) =
∑
p

∑
i∈sc∩Cp

aCi g
C
piy

C
di,

where gCpi = 1+
(

tCpx − t̂
C

px

)′
M̂
−1
p xi/σ2

i .
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The variance of t̂dGREG(C) is estimated using residuals edi = yCdi − x′iB̂p and the
inclusion probabilities of clusters:

V̂ (t̂dGREG(C)) =
∑
i∈sC

∑
j∈sC

(aCi a
C
j − aCij )gCp(i)iedigCp(j)jedj

with i ∈ Cp(i) and j ∈ Cp(j).
In two-stage sampling, the first-stage sample consists of primary sampling units

(PSU), such as clusters. Then in each sample PSU, a sample of elements is drawn. The
design weight of element k is a product ak = aCi ak|i of the weight aCi of PSU i and
the conditional design weight ak|i of element k within PSU i. This generalizes to more
stages. If the model groups are defined at the PSU level, the regression models define
how the PSU totals depend on auxiliary variables. However, the PSU totals are not
known, and we use their HT estimates t̂di =∑

k∈si ak|iydk instead. The GREG estimator
of the domain total is

t̂dGREG(2) =
∑
p

∑
i∈sc∩Cp

aCi g
C
pit̂di

but variance estimation requires more complex derivations (e.g., Estevao et al., 1995).
Falorsi et al. (2000) discuss some simple estimation methods under two-stage sampling
and Estevao and Särndal (2006) discuss calibration under two-stage and two-phase
sampling.

4.2. Computational example with direct and indirect estimation under
an unplanned domain structure

Domain totals are estimated here by direct Horvitz–Thompson and indirect GREG
estimators. We use the same sample as in Section 3.5. This allows a comparison of
results with the case of direct estimation for planned domains. There were D = 12
regions (domains) in our population. To demonstrate domain estimation for unplanned
domains, we recognize that the regional sample sizes nsd are not fixed in the sampling
design but are random (in Section 3.5, we assumed a case of planned domains with
domain sample sizes fixed by stratification).

In addition to the income data for households, the sample data set includes the vari-
ables EDUC (number of household members who had higher education) and EMP (the
number of months in total the household members were employed during last year). We
again estimate the domain totals of disposable income of households in the 12 regions.
We use the same auxiliary data as in Section 3.5. In addition to direct HT, we computed
two indirect GREG estimates. Results are shown in Table 4. MARE is the mean absolute
relative error and MCV is the mean coefficient of variation of the estimate over domain
group.

The variance of ordinary HT (column 1 in Table 4) was estimated by V̂U(t̂dHT) (5).As
expected, in the present case of unplanned domains, the HT estimator had larger MCV
than in the case of planned domains (column 1 in Table 2). The random domain sample
size increased the variance of domain estimators.

In GREG, we first illustrate the model groups approach. We assumed that the popula-
tion sizeN and the population total of EMPonly were known.We thus had a single model
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Table 4
Mean absolute relative error (MARE) and mean coefficient of variation (MCV) of HT and indirect GREG
estimators of totals for minor, medium-sized, and major domains by using various amounts of auxiliary
information in an unplanned domains case

HT GREG

1 2 3
Auxiliary
Information

None Population Size
and EMP Total

Domain Sizes and
Domain Totals of

EMP

Domain
sample size
class

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

MARE
(%)

MCV
(%)

Minor
8 ≤ nsd ≤ 33

11.5 28.3 11.5 28.3 7.6 9.0

Medium
34 ≤ nsd ≤ 45

7.6 20.3 7.4 20.3 3.8 8.1

Major
46 ≤ nsd ≤ 277

12.5 9.6 12.5 9.4 4.1 5.0

group, that is, the whole population. The indirect GREG estimator (15) was assisted by
model

Ydk = β0 + β1EMPk + εk.
We thus did not use domain-level auxiliary information. For each domain, we fitted

the model to the extended domain variables ydk = I{k ∈ Ud}yk. The variables ydk were
also included in the variance estimator (16). This GREG estimator (column 2) did not
yield smaller errors or MCVthan the HTestimator.The population level information was
not powerful for domain estimation in this case, confirming the argument of favoring the
use of lower level aggregates of auxiliary variables if available (Estevao and Särndal,
2004).

The second indirect GREG estimator (column 3) was assisted by a common model

Yk = β0 + β1EMPk + εk
fitted to the whole sample, and domain sizes and domain totals of EMP were assumed
known. The variance was estimated using (12). This estimator outperformed the other
three estimators. The MCV was larger than in the comparable direct GREG estimator for
planned domains (column 3 in Table 2), as expected. The use of extended domain resid-
uals edk = ydk− ŷk in the variance estimator would have affected the MCV only slightly.
Increasing the number of auxiliary variables in GREG did not yield further improve-
ment. The size correction with known domain size (13) resulted in small decrease in
average errors, but MCV increased slightly.

We did have access to several cross-sectional yearly data sets of the survey and the
corresponding auxiliary data. With two last year’s data, the domains were defined by
cross classification of year and region, yielding altogether 24 domains. We fitted models
containing the year and interactions of year with EMP and EDUC, but the results did not
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improve. A model fitting the whole sample better does not necessarily fit better for the
data in domains of interest, and even if it did, a better fitting model does not guarantee
better GREG estimates in one particular sample although improvement is expected on
an average.

The problem of model choice is discussed in Lehtonen and Veijanen (1998), Este-
vao and Särndal (1999), Hedlin et al. (2001), Lehtonen et al. (2003, 2005), and
Hidiroglou and Patak (2004). We address model choice in GREG estimation further
in Sections 5.1 and 5.2.

4.3. Ratios and percentiles for domains

4.3.1. Ratios and means
Consider estimating the ratio Rd = tdy/tdz of two unknown totals tdy = ∑

k∈Ud yk and
tdz =∑

k∈Ud zk. An example is the unemployment rate, which is the ratio of the number
of unemployed and the size of the labor force in the domain. Another example is the
proportional area of fields allocated to, say, wheat in a region, estimated using data
obtained from each farm k; we only need to know (yk, zk) for units in the sample from
area d. A simple, nearly unbiased estimator of Rd is R̂d = t̂dy/t̂dz. We denote the ratio
of two HT estimators by R̂dHT and the ratio of two GREG estimators by R̂dGREG.

In a case of planned domains, the variance estimators for the ratios of direct HT and
GREG estimators are defined as follows (Särndal et al., 1992, p. 178, 296):

V̂ (R̂dHT) = 1

t̂2dzHT

∑
k∈sd

∑
l∈sd

(akal − akl)(yk − R̂dHTzk)(yl − R̂dHTzl),

V̂ (R̂dGREG) = 1

t̂2dzGREG

∑
k∈sd

∑
l∈sd
(akal − akl)gdk(eyk − R̂dGREGezk)

× gdl(eyl − R̂dGREGezl),

where the residuals eyk = yk−x′kB̂dy and ezk = zk−x′kB̂dz are obtained from regression
models fitted in the domain to yk and zk, respectively, and the g-weights are common to
both models. In the case of indirect GREG,

V̂ (R̂dGREG) = 1

t̂2dzGREG

∑
k∈s

∑
l∈s
(akal − akl)gdk(eyk − R̂dGREGezk)

× gdl(eyl − R̂dGREGezl),

where eyk = yk− x′kB̂y and ezk = zk− x′kB̂z are residuals of models fitted in the whole
sample.

With unplanned domains, we can estimate the domain ratio by the ratio of two
population level estimators using extended domain variables ydk = I{k ∈ Ud}yk and
zdk = I{k ∈ Ud}zk. In the case of HT, this ratio is actually identical with R̂dHT defined
above:

R̂d(e) =
∑

k∈s akydk∑
k∈s akzdk

.
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Moreover, V̂ (R̂d(e)) = V̂ (R̂dHT). In contrast, the variance estimator of a ratio of two
GREG estimators incorporating the extended domain variables is

V̂ (R̂dGREG) = 1

t̂2dzGREG

∑
k∈s

∑
l∈s
(akal − akl)gdk(eydk − R̂dGREGezdk)

× gdl(eydl − R̂dGREGezdl),

where eydk = ydk − ŷdk and ezdk = zdk − ẑdk are from models fitted to the extended
domain variables.

Domain mean ȳd = td/Nd can be estimated by ˆ̄yd = t̂d/Nd when the domain size
Nd is known. The variance estimator is correspondingly V̂ (t̂d)/N2

d . An alternative is
to interpret the domain mean as a ratio Rd = td/tdz, where tdz = ∑

k∈Ud zk = Nd is
defined for zk = Idk = I{k ∈ Ud}. The estimator t̂dz is an estimator of the domain
size: t̂dz = N̂d = ∑

k∈sd ak. This is applicable also when Nd is unknown. The mean

estimator is then R̂d = t̂d/t̂dz, and the variance is estimated by the formula for V̂ (R̂d)
with zk = Idk. Comparison of estimators of domain means is studied in Särndal et al.
(1992), p. 412.

The ratio estimator is an estimator of td based on R̂d and a known total tdz: t̂dR =
tdzR̂d . It is nearly unbiased for td and its variance is estimated by t2dzV̂ (R̂d). If the domain
size Nd is known, a ratio estimator of td derived from an estimator of the domain mean
is t̂d(N) = Nd ˆ̄yd . If ˆ̄yd is estimated by ˆ̄yd = t̂dHT/N̂d , then t̂d(N) is a special case of the
Hájek type estimator. The estimates t̂d(N) do not, in general, add up to the estimate of
the population total.

4.3.2. Percentile estimation for domains
Percentiles, such as median and quartiles, are important in certain surveys, notably
surveys of income statistics including median household income, income deciles, and
derived poverty measures. The percentiles can be estimated using an estimated dis-
tribution function (Chambers and Dunstan, 1986; Chambers and Tzavidis, 2006; Rao
et al., 1990; Tzavidis et al., 2007); recently, calibration has been used (Rueda et al.,
2007a; Särndal, 2007; Wu and Sitter, 2001a). Harms and Duschene (2006) use known
percentiles of auxiliary variables. These studies have not considered estimation of
domain percentiles, but most population estimators can be apparently generalized for
domain estimation. We also suggest straightforward application of the estimation equa-
tion approach of Binder and Patak (1994). Percentile estimation is discussed also in
Chapter 36.

The distribution function is defined for a finite population domain Ud of size Nd as

Fd(t) =
∑
k∈Ud

I(yk ≤ t)/Nd,

where the indicator function I(yk ≤ t) equals 1 when yk ≤ t and 0 otherwise. The
pth percentile is θ = θ(p) = inf {t : Fd(t) ≥ p}, that is, we find the smallest value
θ for which proportion p of the yk are smaller than or equal to θ. In the finite
population, we choose percentiles among the values yk. Then the percentile is θ =
min{yk : Fd(yk) > p; k ∈ Ud}. It is useful to restate the problem as follows: the solu-
tion of Fd(θ) = p satisfies an estimating equation defined for u(y, θ) = I(y ≤ θ)− p:
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Wd(θ) =
∫∞
−∞ u(y, θ)dFd(y) = 0. As Fd is a step function, the equation is

Wd(θ) =
∑
k∈Ud

u(yk, θ)/Nd =
∑
k∈Ud

(I(yk ≤ θ)− p)/Nd = 0.

When using a sample without auxiliary information, we estimate Wd(θ) by HT and
use equation

Ŵd(θ) =
∑
k∈sd

ak(I(yk ≤ θ)− p)/Nd = 0.

This has the same form as the optimal estimating function of Godambe and Thomp-
son (1986a), although their theory seems to require differentiable u(y, θ). The solution
satisfies

F̂dHT(θ) =
∑
k∈sd

akI (yk ≤ θ)/N̂d = p.

The function F̂dHT(θ) is interpreted as an HT estimator of the distribution function. It
is monotone, nondecreasing, and bounded in [0, 1]. This simplifies finding the percentile.
The smallest value yk for which F̂dHT(y) > p is found from sorted data in the same way
as in the binary search algorithm. Percentile searching can be more complicated if the
estimated distribution function is not monotone. Rao et al. (1990) have suggested that
a monotone distribution function estimate is derived by tracking maxima. Rueda et al.
(2007a) have presented a calibration-based monotone and nondecreasing estimator of
the distribution function.

Särndal et al. (1992, p. 203) give an approximate variance estimator of F̂dHT(θ):

V̂F̂ (θ) = V̂ (F̂dHT(θ)) = 1

N̂2
d

∑
k∈sd

∑
l∈sd
(akal − akl)(I(yk ≤ θ̂)− p)(I(yl ≤ θ̂)− p).

Under the assumption of normality of F̂dHT(θ) close to p, a 95% confidence interval
forFd(θ) is [p−1.96V̂F̂ (θ)

1/2, p+1.96V̂F̂ (θ)
1/2].Aconfidence interval for θ is obtained

from the equivalent equalityP
{
F̂−1
dHT(p− 1.96V̂F̂ (θ)) ≤ θ ≤ F̂−1

dHT(p+ 1.96V̂F̂ (θ))
} =

0.95.
When auxiliary data are available, Binder and Patak (1994) have proposed a general-

ization of the estimating equation containing α(x,β, θ) = E (u(y, θ)|x) under a model
with parameter β:

∞∫
−∞

α (x,β, θ) d[FX;d(x)− F̂X;d(x)] +
∞∫

−∞
u(y, θ)dF̂d(y) = 0,

where FX;d is the distribution function of x in domain d. In the case of percentile
estimation, α(x,β, θ) = P{Y ≤ θ|x;β}−p. Let us denote the probability P{Y ≤ θ|x =
xk;β} by pk. The estimating equation is

∑
k∈Ud

1

Nd
(pk − p)−

∑
k∈sd

1

N̂d
ak (pk − p)+

∑
k∈sd

1

N̂d
ak (I(yk ≤ θ)− p) = 0.
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When we substitute estimated probabilities p̂k for pk (see below), we obtain an
equation

F̂dGREG(θ) = p with F̂dGREG(θ) = 1

Nd

∑
k∈Ud

p̂k + 1

N̂d

∑
k∈sd

ak(I(yk ≤ θ)− p̂k).

This is interpreted as a GREG estimator (13) of the distribution function; the indica-
tors I(yk ≤ θ) are the observations and p̂k are the fitted values. This estimator is similar
to a difference estimator defined in Rao et al. (1990). It is indirect if the probabilities p̂k
are estimated from the whole sample, and then the percentile should be searched using
all observations of the sample, but variance is still probably large in a small domain. We
can estimate the variance of F̂dGREG(θ) using the ordinary variance estimator V̂ of GREG
(13). This would yield a confidence interval with end points F̂−1

dGREG(p− 1.96V̂ 1/2) and
F̂−1
dGREG(p+ 1.96V̂ 1/2), but its properties are not known yet.
The estimates p̂k are obtained from a logistic regression model fitted to the indicators

I(yk ≤ θ) in the sample, preferably by maximizing a pseudolikelihood that contains
design weights.Alternatively, one can obtain p̂k using the empirical distribution function
F̂ê of the standardized residuals êk = (yk−x′kβ̂)/σ̂ in the sample; p̂k = F̂ê((θ−x′kβ̂)/σ̂),
or by using the fitted values ŷk in the population; p̂k = I

(
ŷk ≤ θ

)
(Rao et al., 1990; Wu

and Sitter, 2001a). In domain estimation, it is an open question whether to use only the
data in the domain or a larger data set to obtain possibly better estimates p̂k.

5. Extended GREG family for domain estimation

5.1. Assisting models

A fixed-effects linear model is often chosen as an assisting model for a GREG estimator
of direct or indirect type; this was the case in Sections 3 and 4. When the model does
not fit well in a domain, the population fit residuals Ek = yk − ŷk in that domain can
be large, inflating the estimator’s variance. Nonlinear models may fit better, especially
if the variable of interest is binary or multinomial. Mixed models can offer an interest-
ing alternative for direct and indirect GREG estimators with fixed-effects type assisting
models. By introducing suitable random components in the model, flexible accounting
for the domain differences is allowed. The extended GREG family of domain estimators
refers to GREG type estimators where the assisting model is a member of the family of
generalized linear mixed models (GLMM; e.g., Breslow and Clayton, 1993; McCulloch
and Searle, 2001). Lehtonen and Veijanen (1998) and Lehtonen et al. (2003, 2005) have
introduced GREG estimators of the form (11) assisted by logistic, multinomial logistic,
and mixed models. This approach might be attractive at least from a modeller’s point of
view. Torabi and Rao (2008) compare the MSE behavior of an EBLUP estimator with
a GREG estimator assisted by a mixed model, introduced in Lehtonen and Veijanen
(1999).

Access to reliable auxiliary information is essential for accurate domain estima-
tion. In Sections 3 and 4, we worked with aggregate-level auxiliary data. Now, we
assume access at unit-level auxiliary data. Let us assume that the auxiliary vector value
xk = (1, x1k, . . . , xjk, . . . , xJk)

′ and domain membership is known and specified in the
frame for every unit k ∈ U. Consider first a generalized linear fixed-effects model,
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Em(Yk) = f(xk;β) for a given function f(· ;β), where β requires estimation, and Em
refers to the expectation under the model. Examples of f(· ;β) are a linear functional
form or a logistic function. The model fit to the sample data {(yk, xk); k ∈ s} yields the
estimate B̂ of B, a finite population counterpart of β. Using the estimated parameter
values, the vector value xk, and the domain membership of k, we compute the predicted
value ŷk = f(xk; B̂) for every k ∈ U, which is possible under our assumptions.

A similar reasoning applies for a generalized linear mixed model involving random
effects in addition to the fixed effects. The model specification isEm(Yk|ud) = f(x′k(β+
ud)), where ud is a vector of random effects defined at the domain level. Using the
estimated parameters, predicted values ŷk = f(x′k(B̂+ ûd)) are computed for all k ∈ U.

An example of a mixed model formulation is a multinomial logistic mixed model
for a binary or polytomous y-variable. In addition to domains Ud , a second subdivision
of U arises: for an m-class polytomous variable, the population is also subdivided into
classes denoted Ui, i = 1, . . . , m. For class Ui, denote the response variable as yi with
value yik = 1 if k ∈ Ui and yik = 0 otherwise. We want to estimate the class frequencies
or totals tid = ∑

k∈Ud yik, i = 1, . . . , m, for all domains Ud . For a binary y-variable
(m = 2), the domain totals are td = ∑

k∈Ud yk. The multinomial logistic mixed model
is of the form

Em(yik|ud) = P{yik = 1|ud} = exp(x′k(βi + uid))
1+∑m

r=2 exp(x′k(βr + urd))

for k ∈ Ud , i = 1, . . . , m, d = 1, . . . , D, where xk is a known vector value for every k ∈
U,βi is a vector of fixed effects common for all domains, ud = (u′1d, . . . ,u′id, . . . ,u′md)

′,
and uid is a vector of domain-specific random effects, defined for the classes of the
y-variable. To avoid identifiability problems, we set β1 = 0. Lehtonen et al. (2005) give
special cases of the model.

Obviously, the possible nonlinearity of the model complicates the method. For exam-
ple, we cannot express the sum of fitted values using the sum of auxiliary variables; in
general,

∑
k∈Ud ŷk �=

(∑
k∈Ud xk

)′
B̂. As a consequence, the GREG estimator cannot be

written using the totals of auxiliary variables.The representation incorporatingg-weights
is also invalid, and the variance estimator with g-weights is not appropriate. For a given
model specification, the GREG estimator of domain total td =∑

k∈Ud yk remains the one
given by (11), that is, the form t̂dGREG =∑

k∈Ud ŷk +
∑

k∈sd ak(yk − ŷk), d = 1, . . . , D.
The latter component in GREG, an HT estimator of the residual total, aims at correcting
for the bias of the synthetic part.

We could use a simpler variance estimator (9), but it is probably negatively biased.
A resampling-based variance estimator might be preferred. Stukel et al. (1996) discuss
jackknife type variance estimation for calibration estimators.

For simplicity, we concentrate now on linear models (Lehtonen et al., 2003). The
model specification of a linear mixed model is Em(Yk|ud) = x′k(β + ud) = (β0 +
u0d) + (β1 + u1d) x1k + · · · + (βJ + uJd) xJk, where ud = (u0d, u1d, . . . , uJd)

′ is a
vector of random effects defined at the domain level. The random effects are assumed
to have common distribution. In estimation, they are often shrunken towards zero. The
random components of ud represent deviations from the corresponding coefficients of
the fixed-effects part of the model. In practice, not all components are treated as random;
for some j, ujd = 0 for every d. A simple example is a model that includes domain-
specific random intercepts u0d as the only random term. If all components of ud are set
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to zero, a fixed-effects model is attained. The mixed model is usually estimated by using
ML and restricted or residual maximum likelihood (REML) methods (e.g., Goldstein,
2002; McCulloch and Searle, 2001). Using the estimated parameters, predicted values
ŷk = x′k(B̂ + ûd) are computed for all k ∈ U. The predictions {ŷk; k ∈ U} differ from
one model specification to another.

An additional possible direction for extension of the GREG concept is explored in
Breidt and Opsomer (2000). These authors use nonparametric regression techniques to
obtain the fitted values necessary for a GREG type estimator. Zheng and Little (2003,
2004) use penalized spline nonparametric mixed models for a similar purpose. Non-
parametric and semiparametric estimation is discussed in Chapter 27. By using suitable
mixed models, Jiang and Lahiri (2006) introduce a model-assisted empirical best
prediction approach for domain means.

5.2. Computational example for extended GREG family estimators

We compare empirically the design bias and accuracy of model-assisted GREG type esti-
mators of domain totals of a continuous y-variable for different linear assisting models
(fixed-effects, mixed). Results are based on Monte Carlo simulation experiments, where
repeated systematic probability proportional-to-size samples (πPS design) were drawn
from an artificially generated fixed and finite population. The inclusion probabilities
were πk = nx1k

/∑
k∈U x1k. The weights ak = 1/πk varied between 54.5 and 599.8. We

used unit-level auxiliary data.
In the Monte Carlo experiment, for an estimate t̂d(sv) obtained for sample sv; v =

1, 2, . . . , K, we computed for each domain Ud the absolute relative bias (ARB;
defined as the ratio of the absolute value of bias to the true value), given by∣∣(1/K)∑K

v=1 t̂d(sv)− td
∣∣/td , and relative root mean squared error (RRMSE), defined

as the ratio of the root MSE to the true value, given by
√
(1/K)

∑K
v=1 (t̂d(sv)− td)2

/
td .

There were D = 100 domains in the population. The size of domain Ud was pro-
portional to exp(qd), where qd was simulated from U(0,2.9). We had 47 domains with
minor sample sizes, 19 domains with medium sample sizes, and 34 domains with major
sample sizes. These three size classes were defined on the basis of expected sample
size n(tdx1/tx1) in domain Ud , where x1 is the size variable used in πPS sampling. The
domain size classes were less than 70, 70–119, and 120 or more units. The smallest
domain of the generated population had 1721 units and the largest had 28,614.

The auxiliary variable x1 was simulated from uniform distribution U(1,11). Another
auxiliary variable x2, unrelated to the sampling design, was simulated from U(−5, 5).
The random effects ud and random slopes νid , i = 1, 2, were simulated for each domain
from multinormal distribution with variances Var(ud) = 1, Var(νid) = 0.125 and
correlations Corr(ud, νid) = −0.5; Corr(v1d, ν2d) = 0. The error term ε was generated
from N(0,100). Values of the y-variable were simulated as yk = 1 + (1 + ν1d)x1k +
(1+ ν2d)x2k + ud + εk. Correlations of the variables in the population were as follows:
corr(y, x1) = 0.44, corr(y, x2) = 0.45, and corr(x1, x2) ≈ 0. Domain means of the
y-variable were approximately equal but the totals differed considerably: The means
of domain totals were 50,977 for minor domains, 131,776 for medium domains, and
263,979 for major domains.
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Our population size was N = 1,000,000 and sample size n = 10,000.K = 1000
independent samples were selected. The following assisting models (groups A, B, C,
and D) were considered:

Model A1, Yk = β0d + εk, k ∈ Ud , producing a direct estimator GREG-A1.

ModelA2, Yk = β0+ud+εk, k ∈ U, producing an indirect estimator MGREG-A2.

Model B1, Yk = β0d + β2x2k + εk, k ∈ U, producing an indirect estimator
GREG-B1.

Model B2, Yk = β0 + ud + β2x2k + εk, k ∈ U, producing an indirect estimator
MGREG-B2.

Model C1, Yk = β0d + β1x1k + εk, k ∈ U, producing an indirect estimator
GREG-C1.

Model C2, Yk = β0 + ud + β1x1k + εk, k ∈ U, producing an indirect estimator
MGREG-C2.

Model D1, Yk = β0d +β1x1k +β2x2k + εk, k ∈ U, producing an indirect estimator
GREG-D1.

Model D2, Yk = β0 + ud + β1x1k + β2x2k + εk, k ∈ U, producing an indirect
estimator MGREG-D2.

A-models did not contain auxiliary information. In B-models, the auxiliary variable
x2 was used, whereas the πPS size variable x1 was included in C-models. Both auxiliary
variables were included in D-models. Note that for the models A1, A2, B1, and B2, the
sampling is informative (see Chapter 39), because the values of the y-variable depend
on x1 but the predictor is not included in the model. In models A1, B1, C1, and D1,
the domain differences were accounted for by domain-specific fixed effects β0d , and in
A2, B2, C2, and D2 by domain-specific random intercepts β0 + ud . We incorporated
the design weights ak in the estimation procedures of model parameters, including the
mixed models. This facilitates the condition of “internal bias calibration” (a proper
combination of model formulation and estimation procedure under a given sampling
design) proposed, for example, by Firth and Bennett (1998). The design weights were
included in a REML method introduced in Saei and Chambers (2004) by modifying
matrix products of X, y, the Z matrix whose columns are domain indicators, and e, the
vector of residuals: for example, the sample-based X′sXs in the original algorithm was
replaced by X′sWXs, where W is the diagonal matrix of design weights. X′sWXs is an
estimate of the corresponding product X′UXU defined in the population.

The design bias of GREG estimators remained negligible for all model formulations
considered (Table 5). In model groups A, B, C, and D, a mixed model formulation
yielded slightly better results than fixed model formulation. Accuracy improved when
incorporating in B-type assisting models the auxiliary variable x2 (which was unrelated
to the sampling design). GREG-C1 and GREG-C2 outperformed the A-type and B-type
estimators. Best accuracy was obtained for the D-models. Thus, the inclusion of the πPS
size variable x1 in C-type and D-type assisting models appears powerful in this case.
This strategy facilitates “double use” (Särndal, 1996) of the auxiliary information (i.e.,
to use it both in the sampling design and in the estimation phase).
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Table 5
Average absolute relative bias (ARB) and average relative root mean squared error (RRMSE) of GREG
estimators of domain totals for minor, medium-sized, and major domains of the generated population

Model and
Estimator

Average ARB (%) Average RRMSE (%)

Domain Size Class Domain Size Class

Minor
(20− 69)

Medium
(70−119)

Major
(120+)

Minor
(20− 69)

Medium
(70−119)

Major
(120+)

Model A1 Yk = β0d + εk
GREG-A1 1.2 0.7 0.3 20.2 11.9 8.5

Model A2 Yk = β0 + ud + εk
MGREG-A2 0.5 0.5 0.3 19.9 11.8 8.5

Model B1 Yk = β0d + β2x2k + εk
GREG-B1 1.2 0.6 0.3 18.3 10.7 7.7

Model B2 Yk = β0 + ud + β2x2k + εk
MGREG-B2 0.5 0.4 0.2 18.0 10.6 7.7

Model C1 Yk = β0d + β1x1k + εk
GREG-C1 0.4 0.3 0.2 17.5 10.3 7.5

Model C2 Yk = β0 + ud + β1x1k + εk
MGREG-C2 0.3 0.3 0.2 17.3 10.2 7.5

Model D1 Yk = β0d + β1x1k + β2x2k + εk
GREG-D1 0.4 0.3 0.2 15.3 8.8 6.5

Model D2 Yk = β0 + ud + β1x1k + β2x2k + εk
MGREG-D2 0.3 0.3 0.2 15.1 8.7 6.5

5.3. Other extensions

A class of extended generalized regression estimators (EGRE) has been introduced
by Montanari and Ranalli (2002) but it has not been applied in domain estimation
yet. Calibration has been generalized in various ways. Wu and Sitter (2001a) discuss
model calibration approach by defining the calibration equations for the fitted values:∑

k∈s wksŷk =
∑

k∈U ŷk. This approach works well with nonlinear models but auxil-
iary information is needed at unit level. Nonparametric model calibration by neural
networks is studied in Montanari and Ranalli (2005), who assumed access to unit-level
auxiliary information. Lehtonen et al. (2008) compared model calibration and GREG
in the context of domain estimation.

6. Software

6.1. SAS applications and macros

SAS procedure SURVEYMEANS can be used in HT estimation for domains
(STRATA and DOMAIN statements) under unequal probability sampling. SAS pro-
cedure SURVEYFREQ is available for domain analysis of frequency tables. With some
additional programming, SAS procedure SURVEYREG yields GREG estimates for
domains. Extended domain variables yd with ydk = Idkyk = I{k ∈ Ud}yk can be used
for unplanned domain structures. Variance estimation is based on Taylor linearization.
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CALMAR (CALibration on MARgins) and CALMAR 2 are calibration-oriented
SAS macro programs of INSEE (Caron and Sautory, 2004; Le Guennec and Sautory,
2003). Methods of Deville and Särndal (1992) and Deville et al. (1993), for example,
are implemented.

CLAN is a freely available SAS macro developed at Statistics Sweden (Andersson
and Nordberg, 1998). CLAN contains GREG and different calibration methods.Variance
estimation is based on Taylor linearization.

GES, Statistics Canada’s Generalized Estimation System is a domain estimation
package including GREG and calibration estimation (Estevao et al., 1995). The same
g-weights can be applied to different y-variables and different domains. Variance is
estimated by Taylor linearization or jackknife.

Computer software for sample surveys is discussed further in Chapter 13.

6.2. Application Domest

Domest is an interactive Java application developed for the estimation of totals or means
for domains and small areas. It uses methods described in Lehtonen et al. (2003) and Saei
and Chambers (2004). Domest provides both model-based and design-based domain
estimators. Mixed models are incorporated into EBLUP, synthetic estimator, and pseudo
EBLUP (Rao, 2003a). Design-based methods include HT and most GREG methods
presented in this chapter. GREG estimation is assisted by fixed-effects regression models
or mixed models, fitted with or without design weights. Currently, GREG variance
estimation allows SRSWOR, Poisson sampling, and πPS with approximated second-
order inclusion probabilities (Berger, 2004, 2005b; Hájek, 1964).

A linear regression model is fitted by OLS or WLS, and a mixed model is fitted by ML
or REML (Saei and Chambers, 2004). When the fitting of a mixed model incorporates
design weights in the same way as in pseudolikelihood estimation, the design bias of
EBLUP seems to decrease.

The mixed model can include both area and time effects. The area effects are then
assumed independent and time effects have AR(1) correlations. In a mixed model with
spatially correlated random effects, the correlation of the random effects associated with
regions a and b distance dab apart is Corr(ua, ub) ∝ exp(−dab). Spatial correlations may
improve the predictive power of a synthetic domain estimator. In a domain missing from
the sample, the correlation structure yields a nonzero estimate of the associated random
effect.

SAS data or text files can be imported into Domest and output tables are saved as
text files or added incrementally to an HTML file.

Domest is developed at Statistics Finland by Ari Veijanen with Risto Lehtonen. It is
freely available from the authors.
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Model-Based Approach to Small Area Estimation

Gauri S. Datta

1. Introduction

Sample surveys have long been used as cost-effective means for data collection. Such
data have been effectively used to provide suitable statistics not only for the population
targeted by the survey but also for a variety of subpopulations, often called domains
or areas. Domains may be geographical areas such as states, or socio-demographic
groups (for example, white male) or other subpopulations. A domain or an area is
considered a large or a major domain if the domain sample is sufficiently large so that
the domain sample can provide a “direct” estimate of the domain parameter (for example,
the mean) with adequate precision. On the other hand, a domain or an area is regarded
as “small” if the domain-specific sample is not large enough to produce a direct estimate
with reliable precision. In the survey sampling literature, areas or domains with small
sample are referred to as “small areas.” Small areas are also often referred to as “small
domains,” “local areas,” “subdomains,” “substates,” etc. (cf. Rao, 2003a). Following
the title of the book by Rao (2003a), in this chapter we will stick to the popular usage
“small area.”

Research on small area estimation has experienced a rapid growth in the last 25 years.
Small area estimation methods are enjoying increasing popularity in survey sampling
because of the growing demand for reliable small area estimates both from public and
private sectors. In the United States, Canada, and other countries there is an “increasing
government concern with the issues of distribution, equity, and disparity” (Brackstone,
1987). For example, there may exist underprivileged geographical subgroups within a
given population that are far below the average in many respects, and need an uplift. To
implement remedial program, it is necessary to identify such regions, and accordingly,
one must have suitable statistical data for these regions. Government agencies, both at
the national level and local level, use small area statistics for distribution of government
funds and planning for welfare and service. In the private sector, businesses make
decisions based on local income, population, and environmental data to evaluate markets
for new products and to determine areas for location, expansion, and contraction of their
activities.

251
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To make better policy decision and to address emerging or existing social issues,
many governments have passed laws requiring regular production of reliable and up-to-
date small area estimates. For example, the U.S. Congress has passed a law requiring
the Secretary of Commerce to produce and publish at least every 2 years, beginning in
1996, current data related to poverty. Specifically, the law requires that “to the extent
feasible,” the Secretary shall produce estimates of poverty for states, counties, and local
jurisdictions of government and school districts. For school districts, estimates are to
be made of the number of poor children in the 5–17 years age interval. It also specifies
production of state and county estimates of the number of poor persons aged 65 and over.
These estimates will be used by a broad range of customers including policy makers at
the state and local levels as well as the private sector. This includes allocation of federal
and state funds, federal funds annually being nearly $100 billion in the recent years.

There are many more important applications of small area estimation encountered
by various government agencies. For many examples and case studies in small area
estimation one may refer to Ghosh and Rao (1994), Rao (2003a), and Longford (2005).
Schaible (1996) has an excellent account describing the use of indirect estimation,
in particular, small area estimation in many U.S. Federal programs. In our treatment
of model-based small area estimation we have mostly ignored the sampling design.
Sverchkov and Pfeffermann (2008) in Chapter 39 present a treatment on small area
estimation under informative sampling of areas and within the areas. For a design-based
treatment of domain and small area estimation, we refer to Chapter 31 by Lehtonen and
Veijanen (2008).

Indirect estimates of small area means that borrow strength from other areas are
referred to as cross-sectional estimates. On the other hand for a survey which is repeated
regularly, one can obtain indirect estimates of small area means by borrowing strength
both from other areas and the time series. The latter estimates are referred to as cross-
sectional time series estimates. The remainder of the chapter is structured as follows.
Section 2 deals with a systematic development of frequentist model-based small area
estimation. It begins with the development of synthetic and composite estimators in
Section 2.1. This is followed by small area estimators based on mixed linear models
in Section 2.2. Such estimators are viewed as empirical best linear unbiased predictors
(EBLUPS). Second-order accurate mean squared error (MSE) approximation of the
EBLUPs and second-order unbiased estimators of the accurate MSE approximations
are also given. Small area estimators based on multivariate data are also derived in this
section. Section 2.3 introduces cross-sectional time series small area estimators based on
time series data, while Section 2.4 discusses empirical Bayes (EB) small area estimators
for generalized linear mixed models (GLMM). Section 3 discusses hierarchical Bayesian
(HB) methods for small area estimation. It begins in Section 3.1 with Bayesian normal
theory small area estimation methods for unit-level models. Multivariate HB methods
suitable for area-level and unit-level data are discussed in Section 3.2. Section 3.3
discusses both EB and HB methods for area-level data that exhibit correlated sampling
errors. The cross-sectional time series approach to small area estimation is discussed in
Section 3.4. HB small area estimation in GLMM is discussed in Section 3.5. Some final
remarks including some open problems are made in Section 4.

We conclude this section by briefly describing and comparing an EB estimator and
an HB estimator. In the Bayesian approach one needs to specify a prior distribution
on the parameter appearing in the sampling distribution, namely the distribution of the
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data conditional on the parameter. If this prior distribution is completely specified then
one can use the conditional distribution of the parameter given the data, which is also
known as the posterior distribution of the parameter. One can obtain the Bayes estima-
tor from this posterior distribution. Often, however, the prior distribution itself involves
some unknown parameter known as hyperparameter. In such situation, one cannot use
the Bayes estimator because it involves the unknown hyperparameter. One can either
estimate the hyperparameter from the marginal (by integrating out the parameter) distri-
bution of the data or can assign another prior distribution (which is completely known),
known as hyperprior, on the hyperparameter. In the first case, one simply replaces the
hyperparameter by its estimator (obtained from the marginal distribution) in the Bayes
estimator to get the EB estimator. In the second case, one integrates out the unknown
hyperparameter in the Bayes estimator with respect to posterior distribution of the hyper-
parameter. The resulting estimator is known as the HB estimator. An EB estimator is
essentially treated as a frequentist estimator. Indeed for a normal mixed linear model,
the EBLUP and EB predictors of small area means are identical. However, the EB has
wider applicability than the EBLUP approach because the former can be applied also to
nonlinear or generalized linear models. We present EB procedures under the frequentist
approach.

2. Model-based frequentist small area estimation

2.1. Synthetic and composite estimation

Much of the popularity and usefulness of small area estimation methods can be attributed
to the model-based approach developed in the past three decades. A direct estimate of
a small area mean is based on the sample from that area alone. It is often unreliable
due to small sample from that area. Model-based methods in small area estimation are
now in extensive use to compute indirect estimates of small area means. These methods
facilitate “borrowing strength” from neighboring areas using suitable linking models
that explicitly connect the direct estimators from the small areas.

Prior to developments of model-based small area estimates, synthetic estimates were
used in many government agencies (see Gonzalez, 1973).According to Gonzalez (1973),
“an unbiased estimate is obtained from a sample survey for a large area; when this
estimate is used to derive estimates for subareas under the assumption that the small
areas have the same characteristics as the large area, we identify these estimates as
synthetic estimates.” The NCHS (1968) in the U.S. proposed synthetic estimates to
calculate at the state level the estimates of long- and short-term physical disabilities
from the National Health Interview Survey data. According to Ghosh and Rao (1994),
the popularity of synthetic estimates results from their simplicity, wide applicability
to general sampling designs, and potential of producing more accurate estimates by
implicitly borrowing strength from similar small areas.

Synthetic estimates are quite popular among practitioners because they do not use
explicit models. However, such estimates can be justified through models. At unit-level
let yij denote the value for the jth unit in the ith small area, with j = 1, . . . , Ni,
i = 1, . . . , m, where Ni is the size of the finite population corresponding to the ith
small area, and m is the number of small areas. Let γi = N−1

i

∑Ni
j=1 yij denote the
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finite population mean for the ith small area. We use μi to denote this quantity when
the population is infinite, that is, when Ni goes to∞. For notational simplicity let j =
1, . . . , ni be the sample from the ith small area. Let the vector y(s) denote the sampled
values from all the areas. In our treatment of the model-based approach we mostly ignore
the sampling design. For exception, see the Fay–Herriot model discussed later, and the
pseudo EBLUP, discussed, for example, in Rao (2003a, Chapter 7, and also Chapter 10).
A direct estimate for γi is the corresponding sample mean ȳis = n−1

i

∑ni
j=1 yij , provided

ni > 0.
To develop reliable estimates of the small area means it is important that we have

useful auxiliary information. An auxiliary variable for which information is available
at the population level and correlated with a response variable may be used to develop
reliable indirect small area estimates. If the correlation is high, the auxiliary variable will
explain a significant portion of the variability of the response variable. We now discuss
synthetic and composite estimation in the presence of such a scalar auxiliary variableX.
Let xij denote the value ofX associated with the jth unit of the ith small area. Let X̄i =
N−1
i

∑Ni
j=1 xij , x̄is = n−1

i

∑ni
j=1 xij , and x̄s = ∑m

i=1 nix̄is/
∑m

i=1 ni. A direct estimator
of the finite population mean γi is the ratio estimator (ȳis/x̄is)X̄i. The “ratio synthetic
estimator” of γi is given by γ̂i

RS = (ȳs/x̄s)X̄i. A composite estimator of γi is given by
γ̂i
∗ = (ni/Ni)ȳis + (1 − ni/Ni)γ̂iRS. If X̄∗i = (Ni − ni)−1 ∑Ni

j=ni+1 xij , an alternative

composite estimator of γi is given by γ̂i
C = (ni/Ni)ȳis + (1 − ni/Ni)(ȳs/x̄s)X̄∗i . For

a model-based justification of γ̂i
C suppose yij are independent with mean bxij , and

variance σ2xij (assuming xij > 0). Since under this model

E[γi|y(s)] = (ni/Ni)ȳis + (1− ni/Ni)bX̄∗i , (1)

and the best linear unbiased estimator (BLUE) of b is b̂ = ȳs/x̄s, the estimator γ̂Ci
is obtained by substituting b̂ for b in (1). This estimator is proposed in Holt et al.
(1979). A Bayesian interpretation of this estimator is presented in Section 3 of this
chatper. To conclude this subsection, we refer the reader to Rao (2003a, Chapter 4)
for an authoritative discussion on synthetic and composite estimation of small area
means.

2.2. Linear mixed models in small area estimation

Synthetic and composite estimates of small area means presented in the last subsection do
not employ explicit models.These estimates are proposed based on some implicit models
that link a number of small areas using auxiliary information. Although it is relatively
easy to get point estimates of small area means using synthetic or composite estimates,
a lack of a model makes it difficult often to realize the rationale behind these estimates
and to derive suitable measure of uncertainty associated with them. The approach to
small area estimation based on explicit models, particularly, linear mixed models has
played a key role in the tremendous growth of small area estimation research. In this
chapter, we consider both univariate and multivariate small area estimation problems.
In the univariate case the dependent variable is a scalar measuring a single characteristic
of a unit, and in the multivariate case the dependent variable is a vector consisting of
measurements of multiple charcteristics.
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2.2.1. Frequentist model-based small area estimation: Univariate case
In this subsection, we consider a number of popular linear mixed models in small
area estimation when the characteristic variable or dependendent variable is univariate.
Depending on the extent of information for auxiliary variables available for the pop-
ulation units, there are two basic types of small area models: area-level models and
unit-level models (cf. Rao, 2003a, Chapter 5). Area-level models are useful when only
area-level summary of auxiliary variable is available and unit-specific auxiliary data is
unavailable. Using auxiliary data at the area-level, a linear mixed model is proposed
for the traditional direct estimators. A basic area-level model, popularly known as the
Fay–Herriot model, was first proposed by Fay and Herriot (1979) to produce estimates
of per capita income for small places in the United States. On the other hand, unit-level
models use unit-specific auxiliary data to build a model for the values of the response
variable for all the units in the population. The nested error regression model is a popular
unit-level model that was proposed by Battese et al. (1988) to estimate the crop areas
under corn and soybeans for certain counties of Iowa.

Prasad and Rao (1990) and Datta and Lahiri (2000) considered the following general
normal linear mixed model in small area estimation:

Y i = Xiβ + Zivi + ei, i = 1, . . . , m, (2)

where Xi(ni × p) and Zi(ni × bi) are known matrices, vi and ei are independently dis-

tributed with vi
ind∼ N(0,Gi) and ei

ind∼ N(0,Ri). The vector Y i is ni × 1 corresponding
to the sampled units in the unit-level model, and it is a scalar denoting a direct estimator
corresponding to an area-level model. Though ei models the sampling error, vi explicitly
models the area specific random effects. One important difference between synthetic
estimation and model-based small area estimation is in the inclusion of an area specific
random effect term that accounts for between area variation not explained by the aux-
iliary variables included in Xi. We assume that Gi = Gi(ψ) and Ri = Ri(ψ) possibly
depend on ψ = (ψ1, . . . , ψq)

T , a vector of variance components. Using the notation
of Prasad and Rao (1990), write Y = col1≤i≤mY i, e = col1≤i≤mei, X = col1≤i≤mXi,
Z = diag1≤i≤mZi, G(ψ) = diag1≤i≤mGi, v = col1≤i≤mvi, and R(ψ) = diag1≤i≤mRi.
We assume that X has full column rank p. Let n = ∑m

i=1 ni and b = ∑m
i=1 bi, and

�(ψ) = R(ψ) + ZG(ψ)ZT , the variance–covariance matrix of Y . With this notation
we can rewrite (2) as

Y = Xβ + Zv+ e, (3)

where v and e are independently distributed with v ∼ Nb(0,G) and e ∼ Nn(0,R). This
model covers the following two important small area models.

Fay–Herriot Model: In their first application of this area-level model in (4) below, to
improve the direct estimator Yi for estimating the per capita income of small places,
denoted by μi, Fay and Herriot (1979) assumed that a p-vector of auxiliary variables xi
was available for each area i. They assumed

Yi = μi + ei, μi = xTi β + vi, i = 1, . . . , m, (4)

where vi and ei are independent with ei
ind∼ N(0,Di) and vi

iid∼ N(0, σ2
v ). Sampling

variances Di are assumed to be known, but the variance component σ2
v for the random
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effect vi is unknown. We are interested in estimating μi. Here, ni = bi = 1, Zi = 1,
ψ = σ2

v , Ri = Di, and Gi = σ2
v .

In reality the sampling variances Di are unknown, and they are estimated from the
sample. Because an estimate of Di based on the sample from the i-th small area may
be unreliable (due to small sample), Di are obtained by smoothing the direct estimates
of sampling variances. Smoothing is based on certain model assumptions and provides
stability to the Di. Though in our treatment we will consider Di is known, Rivest
and Vandal (2003) and Wang and Fuller (2003) considered the case of estimating μi
when Di is also unknown. Although in the Fay–Herriot model we typically have a
diagonal error covariance matrix, this is not necessarily the case since in applications
small areas may not be strata (see Subsection 3.3 where correlated sampling errors are
considered).

Nested Error Regression Model: This is a unit-level model proposed by Battese et al.
(1988) to estimate areas under corn and soybeans for each of 12 counties in North-Central
Iowa. The nested error regression model is given by

Yij = xTijβ + vi + eij, j = 1, . . . , ni, i = 1, . . . , m, (5)

where xij is a p×1 vector of auxiliary variables, vi and eij are independently distributed

with vi
iid∼ N(0, σ2

v ) and eij
ind∼ N(0, σ2

e ), j = 1, . . . , ni, i = 1, . . . , m. Here, Y i =
(Yi1, . . . , Yini )

T , Xi = col1≤j≤nixTij , Zi = 1ni , ei = (ei1, . . . , eini )
T , ψ = (σ2

e , σ
2
v )
T ,

Ri(ψ) = σ2
e Ini ,Gi(ψ) = σ2

v , where Id is a d×d identity matrix and 1d is a d×1 vector
of ones. Let X̄i = N−1

i

∑Ni
j=1 xij . If Ni is large so that N−1

i

∑Ni
j=1 eij ≈ 0, a predictor of

γi may be approximated by a predictor of

μi = X̄T

i β + vi. (6)

Random Regression Coefficients Model: The random regression coefficients model of
Dempster et al. (1981) has been adapted in small area estimation for unit-level data.
Although Datta and Ghosh (1991) in the Bayesian formulation of the small area estima-
tion problem discussed the more general random regression coefficients model, Prasad
and Rao (1990) in the frequentist formulation used a simplified version with a single
auxiliary variable. The model used by Prasad and Rao (1990) is given by

Yij = βixij + eij = βxij + vixij + eij, j = 1, . . . , Ni, i = 1, . . . , m, (7)

where βi = β + vi and vi and eij are the same as in the nested error model in (6).
Note that p = 1. As in the nested error regression model, here X(1)

i = (xi1, . . . , xini )
T ,

Z
(1)
i = X(1)

i . The other entities are the same as in the nested error model. Noting that X̄i
is a scalar, the finite population mean γi for the ith area, assuming that Ni is large, may
be approximated by

μi = X̄iβ + X̄ivi. (8)

2.2.2. Best linear unbiased predictor (BLUP) and estimated BLUP
Prasad and Rao (1990) and Datta and Lahiri (2000) under the linear mixed model (3)
discussed prediction of a general mixed effect η = hTβ + λT v, where h and λ are
known vectors. For example, if we take the ith component of λ equal to 1 and all other
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components zero, and if we take h = X̄i, then η reduces to μi in (6). With the same
λ, and h = xi, the η reduces to μi in (4). For the known variance components case,
Henderson (1975) derived the BLUP of η given by

η̃(ψ,Y) = hT β̃ + λTGZT�−1(Y −Xβ̃), (9)

where β̃ = β̃(ψ) = (XT�−1X)−1XT�−1Y is the generalized least squares (GLS) esti-
mator of β. The normality assumption is not needed to derive the BLUP. Indeed, β̃ is
the BLUE of β and ṽ = GZT�−1(Y − Xβ̃) is the BLUP of v. Under the normality
assumption mentioned earlier, Henderson et al. (1959) showed that β̃ and ṽ can be
obtained by maximizing {−(Y −Xβ−Zv)TR−1(Y −Xβ−Zv)− vTG−1v} (see also,
Rao, 2003a, p. 97). This can be viewed as the posterior mode of β and v where the
Bayesian model is completed by putting independent prior distribution on v and β with
v ∼ Nb(0,G) which is deemed as a random effect and a uniform improper prior on
β, which is deemed as a fixed effect in the standard linear model Y = Xβ + Zv + e.
Because the joint posterior distribution of β and v is multivariate normal, the BLUE of
β and the BLUP of v are also the posterior expectations. Thus the BLUP possesses a
Bayesian interpretation.

From (9), for the Fay–Herriot model, with δi = σ2
v (σ

2
v + Di)

−1, the BLUP of μi
is given by μ̃i(ψ,Y) = xTi β̃ + δi(Yi − xTi β̃). The BLUP of μi for the nested error
regression model simplifies to

μ̃i(ψ,Y) = X̄i
T
β̃ + δi(Ȳis − x̄Tisβ̃), (10)

where x̄is is the sample mean of xij for the ith area and δi = σ2
v (σ

2
v+σ2

e n
−1
i )

−1. Under the
superpopulation approach if the model given by (5) holds for all the Ni units, following
Prasad and Rao (1990) one can show that the BLUPof the finite population meanγi under
the nested error regression model is given by γ̃i(ψ,Y) =fiȲis + (1 − fi)μ̃i(u)(ψ,Y),
where fi = ni/Ni, μ̃i(u)(ψ,Y) is given by (10), with X̄i replaced by x̄i(u), the mean of
xij’s for the Ni − ni unsampled units from the ith area.

The BLUP of η, or in particular, the BLUP of the small area mean γi usually depends
on the ratios of the variance components, in which practice will be unknown. Replacing
the unknownψ in η̃(ψ,Y) by an estimator ofψ leads to a two-stage estimator of η, which
is more popularly known as an empirical or estimated BLUP, or EBLUP. We denote an
EBLUP of η by η̂(Y), which is the same as η̃(ψ̂,Y). For simplicity of notation, we will
often denote the EBLUP by η̂. In particular, for the nested error model, the EBLUP
of μi is given by μ̃i(ψ̂,Y) = X̄i

T
β̃(ψ̂) + δiψ̂(Ȳis − x̄Tisβ̃(ψ̂). In practice, some of the

small areas may have no sample (that it, ni = 0 for some i). For such an area with no
sample, the EBLUP of μi (or, equivalently, of γi) is given by the model-based estimator
X̄i

T
β̃(ψ̂). In contrast with the design-based approach where there is no estimator of a

small area mean if the area sample size is zero, a model-based estimator exists. This is
an advantage of the model-based approach to small area estimation.

Kackar and Harville (1984) and Harville (1985) showed that if ψ̂ is an even function
of y (that is ψ̂(y) = ψ̂(−y)), and ψ̂ is a translation invariant function of y (that is
ψ̂(y − Xa) = ψ̂(y) for all p-component vectors a), then the EBLUP is an unbiased
predictor of η provided the EBLUP has finite expectation. Most reasonable estimators
of ψ satisfy these assumptions.
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2.2.3. Second-order approximation to MSE of EBLUP
To obtain an EBLUP various methods of estimating variance components have been
considered. These methods have been carefully reviewed by Rao (2003a, Chapter 6).
Customarily, the variance component vectorψ is estimated by some consistent (for large
m) estimator ψ̂. To derive the EBLUP Prasad and Rao (1990) used method of moments
approach via the method of fitting constants, more popularly known as Henderson’s
method 3, to get variance components estimates (also known as ANOVA estimates).
On the other hand, Datta and Lahiri (2000) considered both the maximum likelihood
(ML) and the residual maximum likelihood (REML) methods of estimating the vari-
ance components in small area estimation setup (see also Cressie, 1992, for REML
estimation in an application of small area estimation). Unlike the other methods of esti-
mating variance components to be discussed here,ANOVAestimators have closed-form
expressions.

Prasad and Rao (1990) to obtain unbiased estimators for variance components in
the nested error regression model first computed êij, ûij, j = 1, . . . , ni, i = 1, . . . , m,
where {êij, j = 1, . . . , ni, i = 1, . . . , m} are the residuals from the ordinary least squares
regression ofYij−Ȳis on {xij−x̄is} and ûij are the residuals from the ordinary least squares
regression of Yij on xij . Differences Yij− Ȳis are free from the random effects vi and thus
depend only on the error variance componentσ2

e . Ifn∗ = n−tr[(XTX)−1 ∑m
i=1 n

2
i x̄isx̄

T
is],

and p∗ is equal to the number of linearly independent vectors in the set {xij − x̄is, j =
1, . . . , ni, i = 1, . . . , m}, the unbiased estimators are

σ̂2
e = (n−m− p∗)−1

m∑
i=1

ni∑
j=1

ê2
ij, and σ̂2

v = n−1
∗

⎡
⎣ m∑
i=1

ni∑
j=1

û2
ij − (n− p)σ̂2

e

⎤
⎦.
(11)

For the Fay–Herriot model Prasad and Rao (1990) show that the ANOVA esti-
mator of σ2

v , an unbiased quadratic estimator, is given by σ̂2
v = (m − p)−1

[∑m
i=1

û2
i −

∑m
i=1Di{1− xTi (XTX)−1xi}

]
, where ûi = Yi − xTi β̂ and β̂ = (XTX)−1XTY .

Because Di is approximately known, even if their true values are unknown, it can be
checked that if supi≥1Di is finite and m−1 ∑

Di has a limit, this estimator of σ2
v is

consistent.
If theANOVAestimator of σ2

v for the aforementioned models turns out to be negative,
Prasad and Rao (1990) suggested truncating the negative estimate at zero. They have
also shown that the probability of having a negative estimator of σ2

v goes very fast to
zero as m→∞. In this context, instead of taking the estimator as zero, one may also
consider an alternative proposal due to Wang and Fuller (2003, eq. (17)).

Fay and Herriot (1979) suggested the unbiased estimating equation

m∑
i=1

(Yi − xTi β̃)2
Di + σ2

v

= m− p, (12)

to estimate σ2
v in their model. The equation is iteratively solved subject to the condition

σ2
v ≥ 0, where β̃ is given earlier. Datta et al. (2005) have studied this estimator exten-

sively. See Torabi (2006) for an extension of Fay and Herriot (1979) estimating function
approach in the nested error regression model.
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The MSE of an EBLUP measures the accuracy of the point estimator. The MSE of an
EBLUP η̂, denoted by MSE(η̂) is given byE[η̂−η]2. Kackar and Harville (1984) showed
under normality that for a translation-invariant estimator of the variance components ψ
that depends only on |Y | the MSE of an EBLUP η̂ can be decomposed as

MSE(η̂) = MSE(η̃)+ E[η̃(ψ̂)− η̃(ψ)]2, (13)

where the first term on the right-hand side of (13) is the MSE of the BLUP η̃ and the
second term accounts for the estimation of the variance components. Although the first
term has a closed-form expression, the second term usually has no explicit form. Without
the normality assumption and the assumption on the variance components estimators, a
cross-product term will also appear on the right-hand side of (13).

Using Henderson’s (1975) general result on MSE of the BLUP, or from Prasad
and Rao (1990) and Datta and Lahiri (2000), it follows that MSE[η̃(ψ)] = g1(ψ) +
g2(ψ), where g1(ψ) = λTG(ψ)λ − λTG(ψ)ZT�−1(ψ)Z G(ψ)λ, g2(ψ) = [h −
XT s(ψ)]T (XT�−1(ψ)X)−1[h−XT s(ψ)] and s(ψ) = �−1(ψ)ZG(ψ)λ. If η = μi, for
the nested error model Prasad and Rao (1990) show that g1(ψ) = (1− δi)σ2

v = g1i(ψ)

(say), g2(ψ) = (X̄i − δix̄is)T× (XT�−1(ψ)X)−1(X̄i − δix̄is) = g2i(ψ) (say). Simil-
arly, for the Fay–Herriot model these two terms are g1i(ψ) = (1 − δi)σ

2
v , and

g2i(ψ) = (1− δi)2xTi (XT�−1(ψ)X)−1xi, respectively.
The second term in (13) is usually of the orderO(m−1) and a naive approximation to

the MSE of EBLUP by ignoring this term may be a serious underestimate of the correct
MSE. The leading term in η̃(ψ̂)− η̃(ψ) is {s(ψ̂)− s(ψ)}TY . Using Taylor’s expansion
on the leading term, Prasad and Rao (1990) and Datta and Lahiri (2000) showed a
second-order accurate approximation to E[η̃(ψ̂)− η̃(ψ)]2 is given by

E[η̃(ψ̂)− η̃(ψ)]2 = tr[var(L(ψ)Y (1))var(ψ̂)] + o(m−1), (14)

where o(m−1) denotes the neglected terms are of lower order than m−1, and L(ψ) =
col1≤d≤qLTd (ψ) with Ld(ψ) = ∂

∂ψd
s(ψ). The first term in the right-hand side of (14) is

of order O(m−1). Denoting this term by g3(ψ), it follows from (13) that

MSE[η̂] = g1(ψ)+ g2(ψ)+ g3(ψ)+ o(m−1). (15)

Derivations of the second-order approximations mentioned earlier need certain reg-
ularity assumptions; see Prasad and Rao (1990) and Datta and Lahiri (2000). Note that
while the first two terms of the MSE approximation in (15) mentioned earlier remain
the same and do not depend on the variance components estimation method, the last
term, namely the g3(ψ) term depends on the estimator of the variance components.
Derivation of the MSE approximation requires

√
m-consistent estimators of the vari-

ance components. Jiang (1996) showed consistency of the REML estimators. Prasad
and Rao (1990) proved

√
m-consistency of the ANOVA estimators. Because Datta and

Lahiri (2000) showed that the asymptotic variances of the ML and REML estimators
of the variance components are the same up to the order of O(m−1) terms, both these
methods lead to the same g3 term. In fact, in the class of consistent estimators of the
variance components, since the ML estimators have the “smallest” asymptotic variance,
it follows from (14) and (15) that an EBLUP based on the ML/REML estimators of the
variance components will have the smallest approximate MSE. This was noted by Datta
et al. (2005) in the special case of Fay–Herriot model.
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To evaluate the g3 term for some useful small area models such as the nested error
model and the Fay–Herriot model, Prasad and Rao (1990) provided asymptotic variance–
covariance matrix of the ANOVA estimators of the variance components. Datta and
Lahiri (2000) did the same both for the ML and REML estimators (in this context, see
also Das et al., 2004, for a rigorous proof). Prasad and Rao (1990) showed for the nested
error regression model that associated with the EBLUP of μi in (6), the third term of
(15) is g3i(ψ) = n−2

i (σ
2
v + σ2

e /ni)
−3var(σ2

v σ̂
2
e − σ2

e σ̂
2
v ). For the Fay–Herriot model for

area-level data, under the regularity assumption 0 < inf i≥1Di ≤ supi≥1Di < ∞, the
third term of the MSE approximation, from Prasad and Rao (1990) and Datta and Lahiri
(2000) is g3i(ψ) = D2

i (σ
2
v + Di)

−3var(σ̂2
v ). First two terms, g1i and g2i, are provided

earlier.
For the Fay–Herriot model, Datta et al. (2005) derived the second-order approxima-

tion of the MSE of the EBLUP using the method of moments (MOM) estimator (cf.
(12)) of the variance component suggested by Fay and Herriot (1979) in their classic
paper. For the Fay–Herriot model Datta et al. (2005) showed that the g3i term is the
largest for the Prasad-Rao method, is the smallest for the ML/REML method, and is in
between these two for the MOM suggested by Fay and Herriot (1979).

Often we may be interested in the prediction of a linear combination of several
small area means γi, e.g., we may be interested in γ1 − γ2. Although the EBLUP
of the linear combination is given by the corresponding linear combination of the
EBLUPs of γi, the MSE is not simply a function of the component MSEs of the
γi. To cover this general case we consider prediction of η = Hβ + �v, a vector
of linear combinations of β and v. Let η be a u × 1 vector, with the ath rows of
H and � are denoted by hTa and λTa , respectively. Let η̃ be the BLUP of η. Then

η̃(ψ,Y) = Hβ̃ + ST (Y −Xβ̃), (16)

where S ≡ S(ψ) = �−1(ψ)ZG(ψ)�T . Let η̂ be the EBLUP given by η̂ = η̃(ψ̂,Y).
Then a second-order approximation of the MSE (the matrix of mean squareds error and
the mean products error) of the EBLUP is given by

MSE(η̂) = E[(η̂− η)(η̂− η)T ] = MSE(η̃)+G3(ψ)+ o(m−1), (17)

MSE(η̃) = G1(ψ) + G2(ψ), G1(ψ) = �G(ψ)�T − �G(ψ)ZT�−1(ψ)ZG(ψ)�T ,
G2(ψ) = [H − S(ψ)TX](XT�−1(ψ)X)−1[H − S(ψ)TX]T , and the (a, b)th element
of G3(ψ) is given by

g3,(a,b)(ψ) = tr[cov(L(a)(ψ)Y ,L(b)(ψ)Y)var(ψ̂)]. (18)

In the above, L(a)(ψ) is obtained from the definition of L(ψ) with λT replaced by λTa ,
the ath row of �. Note that L(ψ) is defined immediately following (14).

Now, we evaluate the components of (17) and (18) for the Fay–Herriot model for
η = (μ1, μ2)

T . By simple matrix calculations, we get G1 = σ2
vDiag(1 − δ1, 1 − δ2)

(recall δi = σ2
v (σ

2
v +Di)

−1. So G1 is a diagonal matrix with the diagonal elements g1i,
i = 1, 2, given earlier. The matrixG2 typically is not diagonal. Its two diagonal elements
g2i, 1 = 1, 2, are given earlier. The off-diagonal element of G2 is (1 − δ1)(1 − δ2)

xT1 (X
T�−1X)−1x2. Similarly, it can be shown that G3 is a diagonal matrix with its

diagonal elements given by g3i for i = 1, 2. Thus, the off-diagonal element of the MSE
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matrix is non-zero if and only if the off-diagonal element of G2 is non-zero. More
generally, it can be shown that if the components of η are small area means, then for
the nested error regression model, the Fay–Herriot model and the random regression
coefficients model, off-diagonal elements of G1 and G3 are all zeros. The (i, j)th off-
diagonal element of the MSE matrix corresponds to the mean product error in prediction
for the ith and the jth areas. Lahiri and Rao (1995) obtained an approximate expression
of this term in a robust version of the Fay–Herriot model.

2.2.4. Estimator of MSE approximation
In this section, we now obtain second-order unbiased estimators of the MSE of the
EBLUP η̃(ψ̂) for various methods of estimating the variance components. We say
that an estimator mse(η̃(ψ̂)) is second-order unbiased estimator if E[mse(η̃(ψ̂)) −
MSE(η̃(ψ̂))] = o(m−1). Let b(ψ̂;ψ) be the asymptotic bias of ψ̂ up to the order of
o(m−1). Denote the gradient vector of g1(ψ), namely the vector of partial derivatives
of g1(ψ) with respect to ψ by ∇g1(ψ). From Theorem A.2 of Datta and Lahiri (2000)
we get

E[g1(ψ̂)] = g1(ψ)+ bT (ψ̂;ψ)∇g1(ψ)− g3(ψ)+ o(m−1). (19)

Also, since g2(ψ) and g3(ψ) are of order O(m−1), it follows that

E[g2(ψ̂)] = g2(ψ)+ o(m−1), E[g3(ψ̂)] = g3(ψ)+ o(m−1). (20)

From (19) and (20) it follows that the naive estimator mseN(η̃(ψ̂)) = g1(ψ̂) + g2(ψ̂)

as well as the “plug-in” estimator g1(ψ̂) + g2(ψ̂) + g3(ψ̂) are biased to the order of
O(m−1) in estimating MSE(η̃(ψ̂)). However, by (15), (19), and (20),

mse(η̃(ψ̂)) = g1(ψ̂)+ g2(ψ̂)+ 2g3(ψ̂)− bT (ψ̂; ψ̂)∇g1(ψ̂) (21)

is a second-order unbiased estimator of MSE(η̃(ψ̂)), where b(ψ̂; ψ̂) is the estimated
bias of ψ̂.

In particular, for the ANOVA estimators ψ̂A of the variance components Prasad and
Rao (1990) noted for the important small area models that the asymptotic bias b(ψ̂A;ψ)
is zero. From (21) it follows that (see Prasad and Rao, 1990, for details)

mse(η̃(ψ̂A)) = g1(ψ̂A)+ g2(ψ̂A)+ 2g3(ψ̂A) (22)

is a second-order unbiased estimator of MSE[η̃(ψ̂A)].
For the REML estimator ψ̂RE ofψ Datta and Lahiri (2000) noted for the model given

by (3) that the asymptotic bias b(ψ̂RE;ψ) is o(m−1). Again from (21)

mse(η̃(ψ̂RE)) = g1(ψ̂RE)+ g2(ψ̂RE)+ 2g3(ψ̂RE) (23)

is a second-order unbiased estimator of MSE[η̃(ψ̂RE)]. Even though the ML and the
REML estimators have the same asymptotic variances, using a similar expression
obtained from (23) after replacing ψ̂RE by ψ̂ML does not hold for the ML estimators
since these estimators are biased. For more details we refer to Datta and Lahiri (2000).
In particular, for the Fay–Herriot model they have shown that the MLE of the vari-
ance component is negatively biased, and use of the expression in (23) by replacing the
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REML estimator ψ̂RE by the MLE ψ̂ML will underestimate the true MSE. For the MLE
it follows from (21) that a second-order unbiased estimator of MSE[η̃(ψ̂ML)] is

mse(η̃(ψ̂ML)) = g1(ψ̂ML)+ g2(ψ̂ML)+ 2g3(ψ̂ML)− bT (ψ̂ML; ψ̂ML)∇g1(ψ̂ML).

(24)

Since ψ̂ML−ψ̂RE = b(ψ̂ML; ψ̂ML)+op(m−1) (cf. Datta and Lahiri (2000)) the right-hand
sides of (23) and (24) differ from each other by op(m−1).

From Datta et al. (2005) and Torabi (2006, Section 4.6), O(m−1) bias terms of
MOM estimators of variance components are usually non-zeros. Although Torabi
(2006) obtained the first-order bias terms for the nested error regression model, Datta
et al. (2005) derived a similar expression for the Fay–Herriot model. While the
bias terms are fairly complicated for the nested error model, the first-order asymp-
totic bias of σ̂2

v,FH, the MOM estimator in the Fay–Herriot model is b
(
σ̂2
v,FH; σ2

v

) =
2
[
m

∑m
i=1(σ

2
v +Di)

−2 − {∑m
i=1(σ

2
v +Di)

−1
}2

]
/
{∑m

i=1(σ
2
v +Di)

−1
}3+ o(m−1). For

the balanced Fay–Herriot model, where all the sampling variances Di are equal, the
first-order bias reduces to zero. In fact, in this case the MOM estimator and the ANOVA
estimator are identical. Using b(σ̂2

v,FH; σ̂2
v,FH) in (21) we get the second-order unbiased

estimator of the MSE of the EBLUP of η [see Eq. (16) of Datta et al. (2005)].
We will now provide an expression of a second-order unbiased estimator of the MSE

matrix of the EBLUP vector η̂. Denoting the estimator by mse(η̂) and generalizing (21),
the second-order unbiased estimator is given by

mse(η̂) = G1(ψ̂)+G2(ψ̂)+ 2G3(ψ̂)−Q(ψ̂), (25)

where the (a, b)th element of Q(ψ̂) is given by bT (ψ̂; ψ̂)∇G1ab(ψ̂), with G1ab(ψ)

denoting the (a, b)th element of G1. On the basis of the discussion in the paragraph
following Eq. (18), if components of η correspond to small area means, then a second-
order accurate expression of the mean product error will involve only the second term
in the right-hand side of (25).

Estimation of the MSE of EBLUP outlined earlier is based on Taylor’s expansion.
Alternatively, a resampling-based approach may be used to estimate the MSE. See
Chapter 28 for a discussion.

2.2.5. Multivariate models for small area estimation
A multivariate approach in small area estimation was advocated by Fay (1987) to accu-
rately estimate median income for four-person families for all the U.S. states. Using
the Current Population Survey (CPS) estimates of median income for three-, four-, and
five-person families, Fay (1987) suggested the multivariate area-level model to produce
more accurate estimates for the four-person families at the state level. These state-level
median income estimates are obtained from the Annual Demographic Supplement to
the March CPS sample. He recommended an empirical Bayes approach and used data
from the U.S. decennial census and other administrative records as covariates. Fuller
and Harter (1987) considered a finite population approach based on unit-level records
to develop EBLUP of the finite population mean vector of multiple characteristics at
the small area level. Their model is a multivariate extension of the univariate nested
error regression model in Battese et al. (1988). Datta et al. (1999a) also considered this
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mulitivariate problem. Although the estimator of the small area mean of a component
variable in a multivariate approach is intuitively expected to be more reliable than the
corresponding estimator based on a univariate model, Datta et al. (1999a) showed that in
the bivariate case the gain actually depends on the strengths and signs of the correlations
in the two covariance matrices in the Model M given later.

We here consider a model suitable for unit-level data. A multivariate model for area-
level data is similar, and an application of this model is considered in the next section.
Suppose there are Ni units in the small area i with Y ij denoting the s × 1 vector of
response variables and cij , a d-component vector of fixed covariates associated with
the jth unit in the ith small area, j = 1, . . . , Ni, i = 1, . . . , m. Datta et al. (1999a)
considered prediction of γi = N−1

i

∑Ni
j=1 Y ij for i = 1, . . . , m based on the following

model.

Model M: (a) Conditional on vi, Y ij ∼ Ns(Bcij+vi,�e) independently for j = 1, . . . ,
ni, i = 1, . . . , m; (b) vi ∼ Ns(0,�v) independently for i = 1, . . . , m, whereB = ((btu))
is an s × d matrix of regression coefficients, vi is an s-component vector of small area
effects, �e(s × s) is a matrix of sampling variance, and �v(s × s) is the variance–
covariance matrix of vi.

Let U = (Y 11, . . . ,Y 1n1 , . . . ,Ym1, . . . ,Ymnm), A = (v1, . . . , vm), FT = ⊕mi=11Tni ,
and CT = (c11, . . . , c1n1 , . . . , cm1, . . . , cmnm) where ⊕mi=1 denotes the Kronecker sum
of matrices. Using this notation Datta et al. (1999a) expressed (a) and (b) of Model M
as a multivariate linear mixed model given by

U = BCT +AFT +E, (26)

where E = (e11, . . . , e1n1 , . . . , em1, . . . , emnm), with eij being iid with Ns(0,�e) and
independent of v1, . . . , vm.

Under Model M, γi = μi + ēi where μi = Bc̄i(P) + vi can be interpreted as the
conditional mean vector of the ith small area given the values of covariates cij and the
realized small area effect vi. Here ēi = N−1

i

∑Ni
j=1 eij and c̄i(P) = N−1

i

∑Ni
j=1 cij . For

large Ni if ēi ≈ 0, a predictor of the mixed effect vector μi may also be appropriate
for predicting γi. Datta et al. (1999a) considered prediction of a mixed effect vector
Bh + Aλ for given h and λ based on the model (26). If Y = col1≤i≤m(col1≤j≤niY ij),
e = col1≤i≤m(col1≤j≤nieij), β = col1≤u≤d(col1≤t≤sbtu), v = col1≤i≤mvi, X = C ⊗ Is,
Z = F ⊗ Is, H = hT ⊗ Is, and � = λT ⊗ Is, the model in (26) can be written as the
linear mixed model in (3)

Y = Xβ + Zv+ e, (27)

with e ∼ Nns(0,R(ψ)) independently of v ∼ Nns(0,G(ψ)), where n =∑m
i=1 ni. Here

ψ = (ψTv ,ψTe )T is an s(s+ 1)-component vector of variance parameters in �v and �e.
Note that R(ψ) = In ⊗�e, G(ψ) = Im ⊗�v, Bh = Hβ, and Aλ = �v.

We assume the matrix C is of rank d. Then the matrix X is of full column rank ds.
Because the prediction of Bh + Aλ is equivalent to prediction of Hβ + �v based on
the model in (27), we can get BLUP and EBLUP using Eq. (16). The MSE of the BLUP
and a second-order accurate approximation to the MSE of the EBLUP can be obtained
from Eqs. (17) and (18). A second-order unbiased estimator of the MSE matrix may be
obtained from (25).
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2.3. Cross-sectional time series estimation

In this section we consider small area methods to produce indirect estimates, both
time-indirect and domain-indirect, which borrow strength from areas and time. Since
many national surveys are repeated in time, it is possible to use both time series and
cross-sectional data in production of small area estimates. For example, the CPS in the
United States is a monthly household survey that is implemented as a 4-8-4 rotating
panel survey. In this survey sampled units are partially replaced every month where a
group of households first time selected in the sample remains in the sample for four
consecutive months, is eliminated from the sample for the next eight months, enters
the sample again for four more consecutive months, and finally replaced in the sample
by a group of nearby households. Similarly, the Canadian Labor Force Survey (CLFS)
is a monthly household survey where a selected household is retained in the sample
for six consecutive months and then is dropped out of the sample. In repeated surveys,
considerable gain in efficiency of the small area estimates is possible by borrowing
strength across both small areas and time. An early application of cross-sectional and
time series model in small area estimation is by Pfeffermann and Burck (1990) where
they considered estimation of housing price indices.

All the papers on time series approach to small area estimation deal with area-
level model by suitable extension or modification of the Fay–Herriot model to bring
in the time series component. Pfeffermann and Burck (1990) used the sampling
model

Yit = θit + eit, t = 1, . . . , T ; i = 1, . . . , m, (28)

where they assumed the sampling error series eit within each area is serially uncorrelated
and normally distributed with known sampling variances.The true mean θit was specified
by a linear model with regression coefficient vector βit , which were allowed to vary
with respect to i and t. The regression coefficients were modeled through a state-space
approach. An important feature of this model is that corresponding components of βit−
Tβi,t−1 pertaining to different areas were allowed to be correlated, where T is a state
matrix.

Rao and Yu (1992) used the sampling model (28) and suggested the following linking
model

θit = xTitβ + vi + αit. (29)

Here Yit is the direct estimator for small area i at time t. Let Y i = (Yi1, . . . , YiT )
T ,

θi = (θi1, . . . , θiT )T , and Y denote the vector obtained by stacking the columns Y i, i =
1, . . . , m. Rao and Yu (1992, 1994) assumed that the sampling error model is given
by Y i|θi ∼ N(θi,	i), i = 1, . . . , m independently, where 	i is a known sampling
variance–covariance matrix. As in the standard Fay–Herriot model, it is assumed that
the small area random effects vi are independent of the sampling error terms and are i.i.d.
N(0, σ2

v ). The time series aspect of the series θit is captured through the αit terms that are
assumed to be independent of the sampling error terms and the small area effects terms.
Rao and Yu (1994) proposed for each small area a common stationary AR(1) model

αit = ραi,t−1 + ξit, |ρ| < 1 with ξit
iid∼ N(0, σ2

ξ ).Another time series generalization of
the Fay–Herriot model was proposed by Singh et al. (1994).
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Datta et al. (2002) and You (1999) used the model of Rao and Yu but replaced the
AR(1) time series model by a random walk model. In their application of EB estimation
of four-person family state median income Datta et al. (2002) assumed that αi0 = α for
all i and that there is no intercept term included in xTitβ. These conditions are needed to
make all the model parameters identifiable. Note that under the Rao and Yu (1994) and
Datta et al. (2002) model, the variance–covariance matrix ofY is a block diagonal matrix
with the ith block given by �i = 	i + σ2

v11T + var(λi), where λi = (αi1, . . . , αiT )
T .

The variance–covariance matrix of αi for the Rao–Yu model is a T × T matrix with the
(t, s)th element given by σ2

ξ ρ
|t−s|/(1 − ρ2). For the random walk model of Datta et al.

this matrix is given by σ2
ξ



T , where 
 is a T × T lower triangular matrix with all the
diagonal elements and the non-zero off-diagonal elements being one.

It is interesting to compare the model of Datta et al. (2002) with the univariate version
of the model proposed by Ghosh et al. (1996) (details presented in Section 3). Although
Datta et al. (2002) and Rao and Yu (1994) models have the small area specific random
effects vi, the model of Ghosh et al. (1996) does not have this term. Also, they assumed
the common time series component αit = αt for all the areas. Thus, their model is subject
to overshrinkage problem.

By expressing their model described earlier as a linear mixed model Rao and Yu
(1992, 1994) and Datta et al. (2002) obtained the EBLUP or EB predictor of θiT , the
small area mean at the current time T . We denote all the variance components (and,
also the autocorrelation parameter in Rao–Yu model) by ψ. Assuming ψ known, by
applying the BLUP theory described earlier, it is easy to write down the BLUP of θiT .
From Equation (4.2) of Datta et al. (2002) or Eq. (8.3.2) of Rao (2003a) the BLUP
is given by θ̃iTBLUP(ψ) = wiT yiT + (1 − wiT )xTiT β̃ +

∑T−1
t=1 wit(yit − xTit β̃), where β̃

is the GLS estimator of β. For the random walk model the weights wit are given by
(wi1, . . . , wiT ) = (σ2

v1T + σ2
ξgT )

T�−1
i and gT is the T -th column of 

T . Although

the vector gT for the random walk model does not depend on any parameter, its coun-
terpart for the AR(1) model in Rao and Yu (1994) depends on the unknown autocorre-
lation parameter. To get the weights for the Rao–Yu model, we need to replace gT by
(1− ρ2)−1(ρT−1, ρT−2, . . . , 1)T . Assuming ρ known Rao and Yu (1994) estimated the
variance components by the method of fitting constants. For the random walk model
Datta et al. (2002) estimated the variance components by the REML method. In both
the cases, by applying the MSE approximation results these authors obtained the MSE
approximation of the EBLUPof θiT . Datta et al. (2002) provided a second-order unbiased
mse estimator of the EBLUP of θiT .

Through simulations Rao and Yu (1994) showed that for known autocorrelation
parameter there is considerable reduction in the mse of the EBLUP in the cross-sectional
and time series model compared to the mse of the EBLUP in the Fay–Herriot model.
For a summary of the simulation, readers may refer to Rao (2003a, p. 160).

Datta et al. (2002) used the random walk error model described earlier to estimate
the four-person family annual median income estimates for the 50 U.S. states and
Washington, DC. They used the annual CPS direct estimates of median income of four-
person families for these 51 small areas for 9 years (1981–89) to produce estimates for
the year 1989. Once again we emphasize that the state-level median income estimates
are obtained annually from the Annual Demographic Supplement to the March CPS
sample. The year 1989 was chosen since the corresponding values were available from
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the Census that were believed to be very accurate and were used to compare the EBLUP
estimates proposed earlier with a few rival estimates. In this example, the covariates
consisted of an intercept and the adjusted census median income. Including the intercept
term there are only two regression parameters (dimension of β) in the model.

We compare using the CVs the CPS estimates, the univariate HB time series estimates
(HB1) of Ghosh et al. (1996) (see Section 3), and the EBLUP estimates of Datta et al.
(2002) both for ML and REML estimates of the variance components ψ. For normal
linear model the EBLUP is identical to the EB estimator. The EB estimates emerge as
the best estimates among all the rival estimates. Note that because the estimated MSE
used to compute the CV of the EBLUP is second-order unbiased, the reported CVs do
not underestimate the true CVs. Although the CPS estimates have CV more than 6% for
38 states, the (HB1) estimates of Ghosh et al. (1996) have four states and EB estimates
have zero state with CV more than 6%. The EB estimates produce CV between 2% and
4% for 49 states, whereas the (HB1) estimates have 10 states and the CPS estimates
have only six states in this category.

Datta et al. (2002) compared different estimators on the basis of average absolute
relative deviation, average squared relative deviation, average absolute deviation, and
average squared deviation described later. Let eiTR denote the true median income for
the ith state, and ti is any estimate of eiTR, i = 1, . . . , 51. Then

ARD = average relative deviation = (51)−1
51∑
i=1

|ti − eiTR|e−1
iTR,

ASRD = average squared relative deviation = (51)−1
51∑
i=1

(ti − eiTR)
2e−2
iTR,

AAD = average absolute deviation = (51)−1
51∑
i=1

|ti − eiTR|,

ASD = average squared deviation = (51)−1
51∑
i=1

(ti − eiTR)
2.

These numbers were computed using the 1989 census median income estimates as
the true parameters. Table 1 reports these four measures for CPS estimates, Census
Bureau’s (BOC) estimates, univariate time series HB estimates (HB1) of Ghosh et al.
(1996), and the EB estimates. It is clear that the EB estimates are better than the CPS
and HB1. The EBLUP estimates compare very well with the Census Bureau’s estimates.

Table 1
A Comparison of estimates under four different criteria

Estimate ARD ASRD AAD ASD

CPS 0.0735 0.0084 2,928.82 13,811,122
Bureau 0.0296 0.0013 1,183.90 2,151,350
HB1 0.0338 0.0018 1,351.67 3,095,736
EB(ML) 0.0278 0.0014 1,119.00 2,339,959
EB(REML) 0.0291 0.0014 1,125.70 2,368,397
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The BOC estimates are composite estimates derived essentially as an EB procedure using
an adhoc estimate of the model variance based on the univariate model. The composite
estimates were obtained by constraining the EB estimates so that they do not deviate
from CPS sample estimates by more than one standard deviation. So the BOC estimates
are analogous to the “limited translation estimates” as discussed in Fay and Herriot
(1979). It should be noted that the EB/EBLUP estimates based on ML estimates of the
variance components performs better than the estimates based on REML estimates. The
HB methods that combine both time series and cross-sectional data to produce estimates
of small area means will be discussed in the next section. In particular, we review the
HB methods of Ghosh et al. (1996) and Datta et al. (1999b) dealing with estimation of
annual median income and monthly U.S. unemployment rates, both at the state level,
respectively.

2.4. Empirical Bayes small area estimation in GLMMs

We have considered so far small area estimation problems only for continuous-valued
response variable based on normal linear mixed models. However, sometimes the
response variable is categorical or binary in nature. For example, in the SAIPE pro-
gram the U.S. Census Bureau is interested in estimating the poverty rates among school
children at the state and county levels. The response variable in this case is binary: it
takes the value 1 if the child is in poverty, and it takes 0 otherwise. More generally,
the response variable may take values in multiple categories. In the context of disease
mapping the response is a discrete variable counting the number of occurrences of an
event. Generalized linear models (GLMs) play an important role in analyzing this kind
of data.

The EB approach has played an important role in developing small area estimates for
binary and discrete data. Dempster andTomberlin (1980) and MacGibbon andTomberlin
(1989) obtained small area estimates of proportions based on EB techniques. Dempster
and Tomberlin (1980) used logistic regression to estimate proportion of census under-
counts. They proceeded by finding first the Bayes predictor (under squared error loss)
of the predictand assuming that all the fixed model parameters are known. Then the
fixed model parameters are estimated from the marginal distribution of the data and are
replaced by their estimates in the Bayes predictor. Rao (2003a, Chapters 5, 9, and 10)
has an excellent account of small area estimation in GLMs.

To fix ideas suppose for a unit-level model the response variable Yij corresponding to
the jth unit in the ith area is a binary variable taking values 0 or 1. Let pij = P(Yij = 1).
Then the finite population mean γi = ∑Ni

j=1 Yij/Ni is equal to Pi, the proportion of
units in the ith small area having the particular characteristic. If we let φ denote all the
model parameters, the Bayes predictor P̃B

i (φ) ofPi under squared error loss is the condi-
tional expectation of the unsampled response given the observed data in the area, and is
given by

P̃Bi (φ) =
∑ni

j=1 yij +
∑Ni

j=ni+1 p̃
B
ij(φ)

Ni
= fiȳis + 1

Ni

Ni∑
j=ni+1

p̃Bij(φ) (30)

where, as before for simplicity of notation, we are denoting the sampled units from the
ith area by yi1, . . . , yini , and p̃Bij(φ) = E[Yij|yi,φ]. Here ȳis is the sample proportion
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and fi = ni/Ni is the sampling fraction. Associated with the Bayes predictor P̃B
i (φ), let

MB
1i(φ) denote the MSE of Pi. This MSE is calculated based on the joint distribution of

Yi1, . . . , YiNi .
In the absence of any covariate, Yi1, . . . , Yini are i.i.d Bernoulli (pi). Martuzzi and

Elliott (1996) assumed an exchangeable prior for the pi and derived a shrinkage estima-
tor of pi by minimizing the total squared loss. They estimated the mean and the variance
parameter of the distribution of pi’s from the marginal distribution of the data. They
applied their method to estimate prevalence of respiratory symptoms in school children
in 71 small areas in Huddersfield, Northern England. An alternative to the aforemen-
tioned approach is given by assuming pi coming from a common beta distribution with
parameters a and b. Here the prior distribution is conjugate leading to a beta-binomial
marginal distribution of

∑ni
j=1 Yij . The parameters a and b of the prior distribution are

estimated from the marginal distribution of the data. For various methods of estimation
of the parameters, one may refer to Rao (2003a, Section 9.4).

In the presence of covariates, to obtain the EB predictor ofPiMacGibbon andTomber-
lin (1989) suggested the following logistic regression model for pij

logit(pij) = xTijβ + vi, (31)

where vi
iid∼ N(0, σ2

v ) with unit-level covariate vector xij . Here φ = (βT , σ2
v )
T .

Note that under the above mentioned model, unlike in normal linear mixed model,
the Bayes predictor P̃B

i (φ) does not have a closed-form expression. In fact, as in Rao
(2003a, p. 203) for the jth unsampled unit the Bayes predictor of Yij is given by p̃Bij(φ) =
E[pij exp(hi)]/E[exp(hi)],where the expectations are with respect to a standard normal
random variableZwith hi =∑ni

j=1 yijx
T
ijβ+niȳisσvZ−

∑ni
j=1 log[1+exp(xTijβ+σvZ)]

and pij = 1/{1+ exp(−xTijβ− σvZ)}. Thus to evaluate the Bayes predictor we need to
evaluate several one-dimensional integrals numerically. The same thing is true for the
MSE MB

1i(φ) of Pi.
To obtain the EB estimator of Pi it is necessary to estimate the model parameters φ.

In the absence of covariates Jiang (1998) and Jiang and Zhang (2001) suggested MOM
approach based on estimating equation. Because the marginal distribution of the data
does not have a closed-form, the ML method is not straightforward. In this setup numer-
ical quadrature and optimization, the EM algorithm and an MCMC algorithm, play
important roles. An EB estimation of Pi in the presence of covariates was discussed by
Farrell et al. (1997). See also Jiang and Lahiri (2006).

Because the response variable in many problems may not be binary but may be
discrete or categorical in nature it is important to consider models appropriate for such
data. To this goal, Ghosh et al. (1998) proposed the following GLMM. In their model
specification, in the first step they assumed that Yij, j = 1, . . . , Ni, i = 1, . . . , m are
conditionally independent with pdf

f(yij|θij, wij) = exp[w−1
ij {yijθij − ψ(θij)} + ρ(yij;wij)]. (32)

The above model is referred to as a generalized linear model (McCullagh and Nelder,
1989, p. 28). If the scale parameterswij are considered known, which is the case in Ghosh
et al. (1998), the distribution in (32) is a one-parameter exponential family expressed in
terms of the canonical parameter θij . The above family of distributions includes normal,
Poisson, Bernoulli, and gamma as special cases.
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Ghosh et al. (1998) proposed a linear mixed model for r(θij) for some known strictly
increasing link function r(.). A special case of their model is given by

r(θij) = xTijβ + vi, j = 1, . . . , Ni, i = 1, . . . , m, (33)

where vi’s are iid N(0, σ2
v ). Equations (32) and (33) together specify a GLMM.

Note that the model given by (30) and (31) is a special case of (32) and (33). The
usefulness of GLMM with canonical link (that is, r(x) = x) cannot be overemphasized
(see McCullagh and Nelder, 1989; McCulloch and Searle, 2001). In particular, the
Poisson regression model has been quite popular in disease mapping.

For the GLMM, as in the case of binary response model, once again we may want
EB predictor for the finite population γi. Again, for known φ under squared error loss
the Bayes predictor γ̃B

i is

γ̃B
i = fiȳis +

1

Ni

Ni∑
j=ni+1

Ỹij(φ, yi) = ki(yi,φ), say, (34)

where for j = ni + 1, . . . , Ni, Ỹij(φ, yi) = E[Yij|φ, yi] = E[ψ′(θij)|φ, yi], that is,

Ỹij(φ, yi) =
E{ψ′(r−1(xTijβ + σvZ))ti(φ, yi, Z)}

E{ti(φ, yi, Z)}
,

where ψ′(x) denotes the derivative of ψ(x) w.r.t. x, and the expectation E[.] is with
respect to the distribution of Z ∼ N(0, 1) and

ti(φ, yi, Z) =
ni∏
j=1

exp[w−1
ij {yijr−1(xTijβ + σvZ)− ψ(r−1(xTijβ + σvZ))}].

Usually, under GLMM the Bayes predictor ki(yi,φ) of γi, outside the normality setup,
has no closed-form expression. Not surprisingly, in this scenario, the MSE of the pre-
dictor, which we denote by M1i(φ, yi), has no closed-form expression either.

2.4.1. Estimation of MSE of the EB predictor
An EB predictor of γi, denoted by γ̂EB

i = ki(yi, φ̂), is obtained by replacing φ by its
estimate φ̂ in the Bayes predictor γ̃B

i . The marginal distribution of the data is used to get
the estimate φ̂. A naive estimate of the MSE of the EB predictor is given byM1i(φ̂, yi).
As in the case of the normal linear mixed models, the error in this approximation to
the estimate of MSE is of the order O(m−1). In general, it is quite challenging as in
Section 2.2.3 to derive a second-order accurate approximation to the MSE of the EB
predictor by ignoring all o(m−1) terms. Similarly, a second-order unbiased estimate of
the MSE is also complicated. The MSE of the EB predictor γ̂EB

i can be decomposed as

MSE(γ̂EB
i ) = E[γ̂EB

i − γi]2 = E[M1i(φ̂,Y i)] + E[γ̂EB
i − γ̃B

i ]2
= g1i(φ)+ g2i(φ), say. (35)

The jackknife method of Jiang et al. (2002), which is computer intensive, can be applied
to estimate the MSE. Denoting by φ̂l, an estimator of φ obtained by excluding the
lth area in its computation, let γ̂EB

i,−l = ki(Y i, φ̂l). A reasonable estimator of g2i(φ)
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is given by ĝ2i = m−1
m

∑m
l=1

(
γ̂EB
i,−l − γ̂EB

i

)2
. Further, an estimator of g1i is given by

ĝ1i = M1i(φ̂,Y i) − m−1
m

∑m
l=1[M1i(φ̂−l,Y i) −M1i(φ̂,Y i)]. Putting these two estima-

tors together a jackknife estimator of the MSE is given by mseJ (γ̂EB
i ) = ĝ1i + ĝ2i.

Jiang (1998) and Jiang and Zhang (2001) obtained jackknife estimate of mse of the
EB predictor of binary response probability without any covariate. They estimated the
parameter φ by estimating equation. For the binary response model without covariate,
using Taylor’s expansion, Jiang and Lahiri (2001) obtained a second-order accurate mse
estimator of the EB predictor. Ghosh and Maiti (2004) obtained EB predictors of small
area means for the general natural exponential family with quadratic variance function
(NEF-QVF) family of distributions based on the theory of optimal estimating functions.
For a lucid presentation on the estimation of the MSE of the EB predictor of small area
mean for binary response data readers may refer to Rao (2003a, Section 9.4). One may
also refer to Jiang and Lahiri (2006) for a recent review of the work in this area. For a
general discussion on estimation of the parameters in generalized linear mixed models
the readers may refer to McCulloch and Searle (2001, Chapter 10).

3. Bayesian approach to small area estimation

The Bayesian inference is based on the predictive (more specifically, posterior pre-
dictive) distribution of the unobserved y values given in the observed data. We first
provide a Bayesian interpretation of the composite estimator in (1). Corresponding
to a positive-valued covariate X, we consider the superpopulation model given by

Yij
ind∼ N(bxij, σ

2xij), j = 1, . . . , Ni, i = 1, . . . , m. Under squared error loss the Bayes
estimator of γi is given by (1). Also, if we use an improper uniform prior for b over
(−∞,∞), the Bayes estimator of b is given by ȳs/x̄s, the overall sample mean. The
above simple model provides a Bayesian model-based interpretation of the synthetic
estimator γ̂Ci in Section 2.1. In the discussion later, various realistic useful Bayesian
models are presented for model-based estimation of small area means.

3.1. Hierarchical Bayes small area estimation for unit-level data: Univariate case

We start with the hierarchical Bayesian (HB) model of Datta and Ghosh (1991) that
they put forward for unit-level data for all the units in the population. (a) Conditional
on β = (β1, . . . , βp)

T , v,φ = (φ1, . . . , φt)
T , and τ, let Y ∼ N(Xβ + Zv, τ−1�),

(b) conditional on φ and τ, let v ∼ N(0, τ−1(φ)), and (c) β, τ and φ have a joint prior
distribution, proper or improper.

Stages (a) and (b) of the above HB model can be written as a linear mixed model

Y = Xβ + Zv+ e, (36)

where e(N × 1) and v(b × 1) are mutually independent, with e ∼ N(0, τ−1�) and
v ∼ N(0, τ−1(φ)). The matrices X(N × p) and Z(N × b) are known design matri-
ces. The matrix � is a known positive definite (p.d.) matrix, and (φ) is a q × q p.d.
matrix that is structurally known except possibly for some unknown φ. In the above
model τ and φ are related to t + 1 variance components denoted by σ2

0 , σ
2
1 , . . . , σ

2
t of

the linear mixed model. To simplify representation of the HB model, we denote the
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inverses of these variance components by τ, τφ1, . . . , τφt , respectively. Indeed, in the
examples to follow, φ involves the ratios of the variance components. For simplicity
sometimes we will denote(φ) simply by. In Bayesian approach since all the param-
eters, be it β, v, τ, or φ, are random, it makes little sense calling (36) a mixed effects
model.

We now partition Y , X, Z, and e corresponding to the sampled and nonsampled
units. Note that for the sampled units the linear model in (36) corresponds to the general
linear mixed model given by (3). We write Y (1) = col1≤i≤mY (1)i , where Y (1)i is the
ni × 1 vector corresponding to the sampled units from the ith small area. Similarly,
Y (2) = col1≤i≤mY (2)i , where Y (2)i is the (Ni − ni) × 1 vector corresponding to the
nonsampled units from the ith small area. The Bayesian inference is carried out via the
predictive distribution of Y (2) given Y (1) = y(1).

From our discussion in Section 2.3 and Eq. (36) it is immediate that the HB model
given here provides an HB model for the nested error regression model and the random
regression coefficients model. Datta and Ghosh (1991) have shown that certain cross-
classification models, two-stage and multi-stage sampling models with covariates are
some of the other important special cases of this HB model.

In our discussion later, we need the density of a multivariate t-distribution. A random
vector W is said to have a p-variate t-distribution with location parameter β, scale
metrix �, and degrees of freedom ν if the density f(w) is given by f(w) ∝ [ν + (w−
β)T�−1(w−β)]−(ν+p)/2. To derive the required predictive distribution we will complete
the hierarchical model by specifying the prior distribution in stage (c).

(c) We assign independent priors on β, τ, τφ1, . . . , τφt with an improper uniform(Rp)
prior for β, and τ ∼ gamma(a0/2, g0/2), τφk ∼ gamma(ak/2, gk/2), k = 1, . . . , t,
with a0 ≥ 0, g0 ≥ 0, ak > 0, gk ≥ 0, k = 1, . . . , t.

In this discussion, we use the notation gamma(a, b) to denote a gamma density pro-
portional to exp(−ax)xb−1. Allowing a0 = 0 and some of the gk’s 0, some improper
gamma distributions are included as priors. In principle, from the prior distribution of
τ, τφ1, . . . , τφt through transformation it is possible to obtain the joint prior distribu-
tion of τ, φ1, . . . , φt , and hence, express the joint prior of τ, φ1, . . . , φt hierarchically
using the conditional distribution of τ given φ1, . . . , φt and the (joint) marginal distri-
bution of φ1, . . . , φt . In the latter representation, the parameters φ1, . . . , φt are called
hyperparameters, and their prior distribution a hyperprior.

Let ϒ ≡ ϒ(φ) = �+ Z(φ)ZT and partition ϒ as ((ϒij))i,j=1,2 corresponding to
the sampled and nonsampled units. In the following matrices, we suppress that they are
functions of φ. Define ϒ22.1 = ϒ22 −ϒ21ϒ

−1
11 ϒ12, and

K = ϒ−1
11 −ϒ−1

11 X
(1)

(
X(1)Tϒ−1

11 X
(1)

)−1
X(1)Tϒ−1

11 , (37)

M = ϒ21K +X(2)
(
X(1)Tϒ−1

11 X
(1)

)−1
X(1)Tϒ−1

11 , (38)

PT =
[
ϒ−1

11 X
(1)

(
X(1)Tϒ−1

11 X
(1)

)−1
, KZ(1)

]
, (39)

G = ϒ22.1 +
(
X(2) −ϒ21ϒ

−1
11 X

(1)
) (
X(1)Tϒ−1

11 X
(1)

)−1 (
X(2) −ϒ21ϒ

−1
11 X

(1)
)T
(40)
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and T = ((T ij))i,j=1,2, where T 11 = (X(1)Tϒ−1
11 X

(1))−1, T 12 = −T 11X
(1)Tϒ−1

11 Z
(1)

 = T T21, and T 22 = −Z(1)TKZ(1).
In the theorem later, we provide the posterior distribution ofY (2) and that of (βT , vT )T

in two steps. Although the conditional distribution of Y (2) given y(1) and φ has a closed
form, the posterior distribution of Y (2) (integrating out φ) does not have a closed form
expression. A derivation of the posterior distribution of Y (2) is given in Datta and Ghosh
(1991), and that of (βT , vT )T is given in Datta (1992).

Theorem 1. Consider the model given in (36) and the prior distribution specified in
stage (c). Assume that ν∗ = n+∑t

k=0 gk − p > 2. Then,

(i) conditional on φ and y(1), the distribution of Y (2) is multivariate-t with degrees of
freedom ν∗, location parameterMy(1), and scale matrix (n+∑t

k=0 gk−p)−1[a0+∑t
k=1 akφk + y(1)TKy(1)]G;

(ii) conditional on φ and y(1), the distribution of (βT , vT )T is multivariate-t with
degrees of freedom ν∗, location parameter Py(1), and scale matrix (n + ∑t

k=0
gk − p)−1[a0 +∑t

k=1 akφk + y(1)TKy(1)]T ;
(iii) the unnormalized posterior density f(φ|y(1)) of φ is proportional to

|ϒ11|−1/2|T 11|−1/2

[
t∏

k=1

φ
gk/2−1
k

][
a0 +

t∑
k=1

akφk + y(1)TKy(1)
]−ν∗/2

. (41)

Using the first two moments of a mulitivariate-t distribution, we get from (i) that
E[Y (2)|φ, y(1)] = My(1) and V [Y (2)|φ, y(1)] = {

a0 +∑t
k=1 akφk + y(1)TKy(1)

}
G/ν∗.

Now, by iterated expectation and variance it follows that

E
[
Y (2)|y(1)] = E [

E
{
Y (2)|φ, y(1)} |y(1)] = E [

My(1)|y(1)] , (42)

V
[
Y (2)|y(1)] = V [

E
{
Y (2)|φ, y(1)} |y(1)]+ E [

V
{
Y (2)|φ, y(1)} |y(1)]

= V [
My(1)|y(1)]+ E

[{
a0 +∑t

k=1 akφk + y(1)TKy(1)
}
G|y(1)]

ν∗
.

(43)

Conditional on Y (1) = y(1) for suitable known vectors ai(n× 1) and bi((N−n)× 1)
the ith small area finite population mean γi can be written as γi = aTi y

(1) + bTi Y (2).
Using (42) and (43) we can easily obtain the posterior mean and the posterior variance
of γi. For known hyperparameter φ it follows from the first part of Theorem 3.1 that the
Bayes predictor of γi, denoted by γ̂B

i , under quadratic loss is given by (ai+MTbi)
Ty(1).

The posterior variance associated with the Bayes predictor of γi is gB
i (φ), where

gB
i (φ) =

(
n+

t∑
k=0

gk − p− 2

)−1 {
a0 +

t∑
k=1

akφk + y(1)TKy(1)
}
bTi Gbi.

Note that both the Bayes predictor γ̂B
i and the posterior variance gB

i (φ) typically involve
φ. Datta and Ghosh (1991) showed that for known φ the Bayes predictor γ̂B

i is also the
BLUP of γi. The HB predictor of γi, denoted by γ̂HB

i , is obtained by integrating γ̂Bi
with respect to the posterior distribution of the hyperparameter φ. In an EB approach
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instead of assigning a prior distribution to the hyperparameter φ, it is estimated by some
estimator φ̂ using the marginal distribution of the data. The EB predictor is obtained by
replacing φ by φ̂ in γ̂B

i . If we denote the EB predictor of γi by γ̂EB
i , then γ̂EB

i = γ̂Bi (φ̂).
Because the Bayes predictor γ̂B

i is also the BLUP, it immediately follows that the EB
predictor γ̂EB

i is also an EBLUP of γi.
If the HB variance of γi is VHB

i , then it follows from (42) and (43) that

VHB
i = E [

gB
i (φ)|y(1)

]+ V (
γ̂B
i |y(1)

)
. (44)

The second term in the right-hand side of the above mentioned expression measures the
contribution of unknown φ to the posterior variance. Its relative magnitude with respect
to the first component depends both on the variability of the Bayes predictor γ̂B

i as a
function of φ and on the spread of the posterior density f(φ|y(1)). Although sometimes
the contribution of this term to the total posterior variance is negligible, it is not always
so. Associated with the EB predictor γ̂EB

i a naive measure of uncertainty is given by
gB
i (φ̂). This measure in comparison with the HB variance VHB

i usually overstates the
accuracy because it effectively ignores the second term of (44). Underestimation of the
measure of uncertainty can be nonnegligible, if the the second term on the right side of
(44) is large. Although there is usually not much difference between the HB predictor
and the EB predictor, the naive measure of uncertainty of the EB predictor typically
underestimates the true variance.

From the mixed effects model (36) it is immediate that γi can be expressed as a linear
combination of β, v, and components of the sampling error vector e. In predicting γi,
if the finite population size Ni of the ith area is large, the linear combination of the
sampling error vector e is ignored. In that case, the problem of HB prediction of γi boils
down to the prediction of a linear combination β and v. The HB solution to this problem
follows as before using parts (ii) and (iii) of the theorem mentioned earlier.

Because the finite population mean γi for the ith small area involves a linear function
of Y (2), using (42) and (44) we can compute the posterior mean and posterior variance
of γi. It is evident from (41) that the posterior distribution of φ is fairly complicated and
to obtain the posterior moments of γi, one needs to perform numerical integration. If the
dimension of φ is small, the numerical integration can be performed via quadrature for-
mula. Otherwise, it is more convenient to use Monte Carlo methods such as importance
sampling (Berger, 1985, Chapter 4) or Gibbs sampling (Gelfand and Smith, 1990). For
extensive discussion on Gibbs sampling one may refer to Gelman et al. (2004), Carlin
and Louis (2000), and Rao (2003a, Chapter 10).

Datta and Ghosh (1991) applied the HB method discussed earlier to analyze several
datasets. In particular, they had analyzed the Iowa crop area data of Battese et al. (1988)
and another data appropriate for two-stage sampling model in small area estimation.
Details are omitted to save space and may be found in Datta and Ghosh (1991). The HB
method for area-level data using the Fay–Herriot model is presented in Section 3.2. The
reader may also refer to Chapter 10 of Rao (2003a) for some other examples.

3.2. Bayesian multivariate approach to small area estimation

ABayesian multivariate approach to small area estimation is available both for unit-level
data and area-level data. First we consider area-level models. Multivariate HB model for
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unit-level data is considered later in this section. Following Fay (1987), Datta et al. (1991,
1996) considered the HB model for the multivariate version of Fay–Herriot model for
area-level data. Authors of these papers considered Bayesian estimation of state median
income of four-person families for 50 states of the United States and Washington, DC.
The U.S. Department of Health and Human Services (HHS) needs estimates of four-
person family state median income to implement an energy assistance program to low-
income families.The Bureau of the Census (BOC) has provided such estimates for nearly
30 years. Initially, the BOC has used a multiple linear regression by regressing less
accurate estimates of median income data from the CPS on auxiliary information on per
capita income from the Bureau of EconomicAnalysis (BEA) and census median income
from the last census to produce the estimates for the HHS. Later on the BOC replaced this
linear regression methodology by a more sophisticated EB methodology using the Fay–
Herriot (1979) model. Because data on three-person and five-person families income by
the states are also collected in the CPS, and these variables are strongly correlated with
the main variable of interest. Fay (1987) suggested a multivariate modification of the
Fay–Herriot EB approach to exploit this strong correlation to generate more accurate
estimates of four-person family median income.

Using Fay’s (1987) idea described earlier, Datta et al. (1991, 1996) considered both
HB and EB analyses for this problem using a multivariate version of Fay–Herriot (1979)
models based on area-level data. Fay (1987) considered only point estimates. Datta et al.
(1991, 1996) considered both point estimates and measures of accuracy of the estimates.
Let μi denote an s-component vector of interest for the ith small area (here state) with
the corresponding sample estimate Y i, i = 1, . . . , m, the direct estimate based on the ith
small area sample. As in the univariate Fay–Herriot model, for the multivariate model
we assume that the sampling variance–covariance matrix associated with Y i is known
and given by Di. Datta et al. (1996) considered the following HB model:

(i) Y i|μi ind∼ N(μi,Di), i = 1, . . . , m;

(ii) μi|β,A = a ind∼ N(Xiβ, a), i = 1, . . . , m;

(iii) Marginally β and A are independent apriori with π(β, a) ∝ 1.

For the median income estimation problem Datta et al. (1996) considered both bivari-
ate and trivariate hierarchical linear models. In the trivariate case, the basic data is
Y i = (Yi1, Yi2, Yi3)

T , i = 1, . . . , 51, where Yi1, Yi2, and Yi3 are the sample median
incomes of four-, three-, and five-person families in state i. The true median corre-
sponding to Yij is μij and μi = (μi1, μi2, μi3)

T . We also write Y = (Y 1, . . . ,Y 51)
T ,

μ = (μ1, . . . ,μ51)
T . Analogously, in the bivariate case using any of three- or five-

person or any linear combination of these two with the four-person family, Y i and μi
are two-component vectors.

Let xi1 = (1, xi11, xi12)
T , xi2 = (1, xi21, xi22)

T , xi3 = (1, xi31, xi32)
T , X(b)

i = (xi1,

xi2)
T , and X(t)

i = (xi1, xi2, xi3)
T , where xijk is the value of the covariate xjk corre-

sponding to the ith state, j = 1, 2, 3, k = 1, 2. Here xj1 = BEA PCI(c)
BEA PCI(b) × xj2, and xj2

corresponds to the census median income for jth family size household for the base year
b from the most recently available decennial census, j = 1 corresponds to three-person
household, j = 2 corresponds to four-person household, and j = 3 corresponds to five-
person household. The variables BEA PCI(b) and BEA PCI(c) correspond respectively
to BEA per capita income for the base and current years. For the trivariate case, in the
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above HB model the design matrix Xi = I3 ⊗ X
(t)
i . In this case, β = (β1, . . . , β9)

T

is the vector of regression coefficients. In the bivariate case, Xi = I2 ⊗ X(b)
i and β is

a six-component vector. In the univariate case, Xi = xTi2 and β is a three-component
vector.

For the above HB model the Bayes estimates, given by the posterior means, and
measures of accuracy of the estimates given by the posterior variances are computed
using Gibbs sampling. Datta et al. (1996) obtained estimates of the median incomes
for four-person families in 1979 by states, using the 1969 census figures as the base-
year figures. We report here three types of HB estimates, namely, HB1, HB2, and HB3,
based on univariate, bivariate, and trivariate HB analyses. They also computed the EB1

estimates, the EB estimates of four-person family based on the univariate, that is, the
standard Fay–Herriot model. The estimates based on the univariate setup do not utilize
information corresponding to three- and five-person families. Various estimates have
been compared by Datta et al. (1996) against the 1980 census figures (corresponding to
1979 income based on a much bigger sample), treating the census figures as the “truth.”
To perform the comparison, Datta et al. (1996) used the four deviation crietria introduced
in Section 2.3.

In addition to the four estimates of four-person family median income given earlier,
Datta et al. (1996) also included the sample estimates (direct survey estimates from
the CPS data) and the estimates provided by the BOC to the HHS in the comparison.
These results are given in Table 2. Under all four criteria, the sample medians from
the CPS have the worst performance. Table 2 very clearly demonstrates that any EB
or HB procedure that allows borrowing strength from other small areas has a distinct
advantage over the direct CPS estimates as well as the BOC estimates. However, among
the competing EB and HB procedures there is very little advantage of using one in
preference to the other.

Datta et al. (1996) did not report the standard errors associated with EB and HB
estimates. However, they discussed that a naive measure of uncertainty that is often
used for EB procedure grossly underestimates the standard errors because it fails to
incorporate the uncertainty due to estimation of the model variance parameter. The HB
methods do not suffer from this drawback.At the same time the HB procedures introduce
significant reduction in standard errors when compared to the sample estimates. Also,
the multivariate HB models seem to have a distinct advantage over the univariate HB
model.

For unit-level data Datta et al. (1998) considered HB analysis using the following
multivariate extension of the nested error regression model. In the setup of Section 2.2.5,
the authors considered HB prediction of γi = N−1

i

∑Ni
j=1 Y ij for i = 1, . . . , mwhere Y ij

Table 2
Avg. relative deviation, avg. squared relative deviation, avg. absolute deviation, and avg. squared deviation
of the estimates

Estimates BOC CPS EB1 HB1 HB2 HB3

100×ARD 3.246 4.984 2.042 2.074 2.044 2.022
1000×ASRD 1.65 3.40 0.68 0.69 0.68 0.67
AAD 722.84 1090.41 450.63 458.73 452.47 447.35
ASD 835,710 1,631,203 334,231 346,085 341,070 336,966
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is an s× 1 vector of response variables. The multivariate HB model, denoted below by
MHB, is specified by defining the prior distribution of the model parameters in Model
M given in Section 2.2.5.

Model MHB:
(I) Conditional on B, v1, . . . , vm, �e, and �v, Y ij ∼ Ns(Bcij + vi,�e) indepen-

dently for j = 1, . . . , Ni, i = 1, . . . , m;
(II) Conditional onB,�v, and�e, vi ∼ Ns(0,�v) independently for i = 1, . . . , m;

(III) Marginally, B, �v, and �e are independently distributed with a uniform prior
on B, an inverse Wishart prior W−1

a (�v) for �v, and an inverse Wishart prior
W−1
a (�e) for �e, where W−1

a (.) denotes an inverse Wishart distribution with
a degrees of freedom, �v and �e are known scales of the respective inverse
Wishart distribution.

A random p.d. matrix T (s × s) has an inverse Wishart distribution with p.d. scale
matrix (s× s) and degrees of freedom d if it has a density of the form

p(T ) ∝ |T |−(d+s+1)/2 exp

{
−1

2
tr(T−1)

}
, d ≥ s.

We denote it by T ∼ W−1
d (). Note that an inverse Wishart is a conjugate prior distri-

bution for a multivariate normal covariance matrix.
Using the notation and observation of Section 2.2.5, γi = μi + ēi and a predictor of

μi will be appropriate to predict γi if Ni is large. Since μi is a linear function of B and
vi, Datta et al. (1998) considered HB predictor of Bh+Aλ. The HB predictor and the
associated posterior variance of an individual small area mean were computed by Datta
et al. (1998) using Gibbs sampling. The corresponding posterior is proper under mild
conditions on n,m, s, and d, which are satisfied for the example of crop area estimation
for the counties of North Central Iowa. The full conditional distributions to implement
the Gibbs sampling are all standard distributions such as multivariate normal and inverse
Wishart.

Instead of using proper priors for �v and �e, it is possible to use improper priors as
well. Datta et al. (1998) showed that an improper prior of the form

π(B,�v,�e) ∝ |�v|− av
2 |�e|− ae

2 (45)

with suitable known av and ae can be used. Again, note that for this prior the full con-
ditional distributions for the Gibbs sampling are all standard distributions, multivariate
normal and inverse Wishart. Though for not all choices of av and ae the posterior distri-
bution will be proper, Datta et al. (1998) showed that the posterior distribution will be
proper if and only if (i) n + ae + av − 3s − d − 1 > 0, (ii) −t + 2s < av < 2, where
t = rank(C|F )− rank(C), where the matrices C and F appear in (26), and are defined
earlier (26).

3.3. HB and EB estimation with correlated sampling errors

The standard Fay–Herriot model that is widely used in small area estimation for area-
level data assumes independence of sampling errors corresponding to small areas.
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However, in some applications the assumption of independent sampling errors does
not hold. One such example is adjustment of the U.S. Decennial Census counts for var-
ious cross-classifications based on demographic and georgraphic categories. To adjust
the census counts, the U.S. Census Bureau conducted a Post Enumeration Survey (PES)
3 or 4 months after the Census and produced dual system estimates of adjustment fac-
tors θi = Ti/Ci, where Ti denotes the true count and Ci is the census count for the ith
poststratum. Poststrata were defined based on geographical region, race, sex, age, and
housing arrangement. The Census Bureau developed a poststratum level model using
the PES estimates Yi and poststratum level covariates xi. The poststrata estimates are
ordinarily correlated and the variance-covariance matrix of poststrata estimates vari-
ances are estimated and smoothed by variance function modeling. By treating the esti-
mated poststrata variance–covariance matrix as the true variance–covariance matrix,
Isaki et al. (1991) discussed EBLUP estimation of adjustment factors using a poststra-
tum level model for the PES estimates Yi. Many other articles dealing with modeling
of the census adjustment factors have been published in the literature. See for example
Ericksen and Kadane (1985), Freedman and Navidi (1986), and Cressie (1992).

Following the work of Isaki et al. (1991), Datta et al. (1992) considered HB
and EB estimation of census adjustment factors for 84 poststrata based on the 1988
Missouri Dress Rehearsal Data from test sites in Missouri. Of the m = 84 poststrata
covering two geographical regions, 48 are defined for St. Louis and 36 are for East
Central Missouri. The poststrata estimates within St. Louis and within East Central
Missouri are correlated but the estimates from St. Louis are assumed uncorrelated with
the estimates from the East Central Missouri. Let Yi = DSEi/Ci, where DSEi is the
dual system estimate of Ti. Denoting the vector of Yi by Y and the sampling variance–
covariance matrix byD, Datta et al. (1992) considered the following HB model. Define
θ = (θ1, . . . , θm)

T .

(I) Y |θ,β, σ2
v ∼ N(θ,D), where D is a known m×m p.d. matrix;

(II) θ|β, σ2
v ∼ N(Xβ, σ2

vI);
(III) β and σ2

v are independently distributed with a uniform(Rp) distribution for β
and a uniform(0,∞) for σ2

v .

For the application above the sampling variance–covariance matrix is a block diagonal
matrix consisting of two blocks of dimensions 48× 48 and 36× 36. By variable selec-
tion method, from a set of 22 potential explanatory variables a set of 10 explanatory
variables were selected that defined the design matrixX. For further description of these
explanatory variables one may refer to Datta et al. (1992).

If we write � = D + σ2
vI and W = �−1 − �−1X(XT�−1X)−1XT�−1, it follows

from (I)–(III) that

θ|y, σ2
v ∼ N

(
y −DWy,G1

(
σ2
v

)+G2
(
σ2
v

))
, (46)

where G1
(
σ2
v

) = D−D�−1
(
σ2
v

)
D, G2

(
σ2
v

) = D�−1X
(
XT�−1X

)−1
XT�−1D and

the marginal posterior density of σ2
v is given by

π
(
σ2
v |y

) ∝ |�|−1/2|XT�−1X|−1/2 exp

(
−1

2
yTWy

)
. (47)
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It follows from the last two equations by iterated formulas for expectation and variance
that the posterior mean and posterior variance of θ are given by

θ̂HB = E(θ̂B|y), VHB = E{D−DWD|y} + V(θ̂B|y) (48)

where θ̂B = y −DWy and the expectations are evaluated with respect to the posterior
density (47). Datta et al. (1992) evaluated the HB estimator and the posterior variance
by numerical integration.

Instead of integrating out σ2
v in the Bayes estimator θ̂B, if we replace σ2

v by a suitable

estimate σ̂2
v obtained from the marginal distribution of the data based on (I) and (II) of

the aforementioned HB model, the resulting estimator is the EB or EBLUP of θ. Let
�̂ = D+ σ̂2

vI. Plugging �̂ for � in G1 and G2 will result in an underestimation of the
MSE of the EB or EBLUP, where the MSE is computed on the basis of the marginal
distribution of the data using (I) and (II). The underestimation is due to ignoring the
second term in (48) which accounts for the estimation error in estimating σ2

v . Datta et al.
(1992) also provided a second-order approximation to the MSE of the EB estimator θ̂EB

given by MSE(θ̂EB) = G1(σ
2
v )+G2(σ

2
v )+G3(σ

2
v ), whereG3(σ

2
v )) = DW3Dvar(σ̂2

v ).
Rao (2003a, Section 8.2) gives a second-order unbiased estimator of the MSE given by
mse(θ̂EB) = G1(σ̂2

v )+G2(σ̂2
v )+ 2G3(σ̂2

v ), where σ̂2
v is an unbiased estimator of σ2

v .

3.4. Cross-sectional time series estimation

In Subsection 2.3, we review some applications of frequentist approach to small area
estimation from time series and cross-sectional data. Here we review a few applications
based on an HB approach.

Ghosh et al. (1996) were the first to develop HB estimation of small area means
based on time series and cross-sectional data. They proposed their model for estimating
the median income of various family sizes for the fifty U.S. states and Washington, DC
based on CPS direct estimates, which are annual estimates. Although they considered
the more general multivariate approach, for simplicity of presentation and comparison
with the EBLUP methods of Datta et al. (2002) we will consider the univariate version
of the Ghosh et al. (1996) model.

(I) Yit|θit ind∼ N(θit, ψit)(i = 1, . . . , m, t = 1, . . . , T ) where, as in the other mod-
els, the sampling variances ψit are taken as known;

(II) θit|β, bt , τt ind∼ N(xTitβ + zTitbt , τt)(i = 1, . . . , m, t = 1, . . . , T );
(II) bt|bt−1,W

ind∼ N(bt−1,W)(t = 1, . . . , T );
(IV) Marginally, β, τ1, . . . , τT ,W are independently distributed with a uniform(Rp)

prior for β, an inverse gamma prior for τt and an inverse Wishart prior for W .

In (II) above, xit and zit are known vectors of covariates. The vector xit is the same as the
one used by Datta et al. (2002). As pointed out earlier, the above model in comparison
with Datta et al. (1999b) or Rao and Yu (1994) model does not include a random small
area effects term. Unlike Pfeffermann and Tiller (2006) this model assumes the same
vector bt for all the areas.

Ghosh et al. (1996) used Gibbs sampling to obtain the HB estimators of the state
median income and the associated posterior variances. For the above HB model the
Gibbs sampling is straightforward because all the full conditional distributions are either



Model-Based Approach to Small Area Estimation 279

multivariate normal, inverse gamma, or inverse Wishart. The HB(1) estimator used in
the comparison in Table 2 was computed by Ghosh et al. (1996) based on the above
HB model. Actually, the HB model of Ghosh et al. (1996) is more general than the one
we presented earlier. They considered a multivariate model for estimating three-person,
four-person, and five-person family median income. The above model of Ghosh et al.
(1996) assumes that the direct CPS estimators are uncorrelated over time. Since as noted
before the CPS estimators are highly correlated because of the rotation pattern (4-8-4) of
the underlying sampling design. Ghosh et al. (1996) have also considered several AR(1)
models forYit−θit with known autocorrelation. The estimates under these models turned
out to be quite different from their original model. They have documented comparison
of the estimates from various models in Table 8 of their article. They concluded that
the independence assumption provides better estimates on an average than the AR(1)
models.

Datta et al. (1999b) considered HB estimation of monthly unemployment rates for
49 U.S. states and Washington, D.C. based on time series cross-sectional data on unem-
ployment rates using monthly CPS estimates. Estimates of unemployment rates for 48
months starting in January 1985. This data was also analyzed by Tiller (1992) who used
a time series approach and did not borrow strength from the other states. Pfeffermann
and Tiller (2006) used a similar model to Tiller (1992) but imposed benchmarking con-
straints such that resulting estimators borrow strength cross-sectionally as well. Both
these articles used a frequentist state-space modeling approach. Since the CPS estimates
yit are not seasonally adjusted, unlike Tiller (1992) and Pfeffermann and Tiller (2007)
who modeled the seasonal components, Datta et al. (1999b) accounted for the season-
ality with year and month effects. In particular, let fitu be an indicator variable for the
uth month, defined as fitu = 1 if t = u mod 12, fitu = 0, otherwise; and fit12 = 1 if
t = 12, 24, 36, 48, fit12 = 0 otherwise. Similarly, let gitw be an indicator variable for
the wth year, defined as gitw = 1 if 12(w − 1) < t ≤ 12w, gitw = 0 otherwise. They
used the following as part of their hierarchical model:

θit = xitβi + vi +
12∑
u=1

fituγiu +
4∑

w=1

gitwζiw + αit,

i = 1, . . . , 50(= m), t = 1, . . . , 48(= T ), (49)

where vi and βi are the state specific intercept and slope, respectively, and αit is an error
term that is needed to account for the variation not explained by the other components
identified in (49). The usual restrictions, γi12 = −∑11

u=1 γiu and ζi4 = −∑3
w=1 ζiw have

been imposed to have a full rank linear model. The auxiliary variable xit is a scalar
representing the monthly state unemployement insurance claims rate. In this model the
random effects vi account for cross-sectional variation, and the regression coefficients
βi are all the same for all the time points.

Let Y i = (Yi1, . . . , YiT )
T , θi = (θi1, . . . , θiT )

T , γi = (γi1, . . . , γi11)
T , and ζi =

(ζi1, . . . , ζi3)
T . With the model for θit given above, in the first step of the HB model they

used the sampling model

Y i|θi ind∼ N(θi,	i)(i = 1, . . . , m), (50)

where, as in the other models, sampling variance–covariance matrix 	i for the ith area
is taken as known and includes autocorrelation to account for the serial dependence
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of the CPS estimators. Alternatively, to account for this sampling error autocorrelation
Pfeffermann and Tiller (2006) used an AR(15) model. Datta et al. (1999b) completed
the HB model by specifying

vi
iid∼ N

(
v, r−1

v

)
, βi

iid∼ N
(
β, r−1

β

)
, γi

iid∼ N11
(
γ,W−1

1

)
, ζi

iid∼ N3
(
ζ,W−1

2

)
,

(51)

where vi, βi, γi, and ζi are mutually independent, i = 1, . . . , 50. Specification (51)
allows for correlation among yit for different states. They assumed that the error terms
in (49), that is, αit follow a random walk model given by

αit|αi,t−1 ∼ N(αi,t−1, r
−1
α ), (52)

where t = 2, . . . , 48, independently for i = 1, . . . , 50. This is in contrast with Rao
and Yu (1994), who assumed a stationary model for αit . Finally, the following improper
prior distribution is assumed for the hyperparameters:

f(v, β, γ, ζ, rv, rβ,W1,W2, rα) ∝ r
1
2 b−1
v e−

1
2 arv × r 1

2 d−1
β e−

1
2 crβ

× |W1| k−11−1
2 e

− 1
2 tr

(
S1W 1

)
|W2| l−3−1

2 e
− 1

2 tr
(
S2W 2

)

× r 1
2 f−1
α e−

1
2 erα , (53)

where S1 = �1I11, S2 = �2I3, k = 12, l = 4, �1 and �2 are large positive numbers,
b = d = f = 2, and a, c, e are small positive numbers.

Datta et al. (1999b) obtained the HB estimates of the current unemployment rates θiT
via Gibbs sampling. The associated posterior standard deviation of the HB estimate was
considerably smaller than the sampling standard deviation of the corresponding CPS
estimate. For more on the HB analysis of this problem we refer the readers to the article
by Datta et al. (1999b).

You et al. (2003) applied HB time series and cross-sectional modeling to estimate
Canadian unemployment rates for 62 Census Agglomerations (CA) in Canada. Their
setup was similar to the setup of Datta et al. (1999b). Unlike Datta et al., You et al. mod-
eled the αit term by both a stationaryAR(1) model with known autoregressive parameter
and a random walk model as in Datta et al. (1999b). You et al. used unemployment data
from the CLFS for 6 months during January 1999 to June 1999. Their choice of T = 6
was motivated by the fact that the serial correlation of the direct estimates weakens after
a lag of 6 months due to the rotation pattern of six months in and then out underlying the
CLFS design. A comparison of all the models considered by You et al. (2003) based on
some model diagonistic criterion showed that the random walk model had the superior
performance. For more details readers may refer to the article by You et al. (2003) (for
an excellent summary one may read Section 10.8 of Rao, 2003a). Pfeffermann (2002,
Section 5) reviews other applications of time series cross-sectional model for small area
estimation.

3.5. Hierarchical Bayes small area estimation in GLMMs

We discussed in Section 2.4 the importance of small area estimation methods for discrete
and categorical data using GLMM. There we considered an EB approach to this problem
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and noticed that second-order unbiased estimation of the MSE of the EB predictor is
rather challenging.Availability of fast computing has made it possible to use HB methods
for complex models.

Several authors have proposed HB estimation of small area proportion with binary
response data. We discussed in Section 2.4 EB estimation in the absence of covariate
based on a beta-binomial model. He and Sun (1998) carried out an HB analysis of this
model by assigning proper priors on a and b, the parameters of the beta distribution.
They used this method to obtain HB estimates of success probabilities of hunting wild
turkeys for 115 counties of Missouri.

The beta-binomial model is not quite flexible to include covariates in modeling the
small area proportions. To include covariates the logistic regression model has been
extended by including a random intercept term that represents a random small area
effect. In particular, a logit-normal model by assuming a normal distribution for the
small area effects has been used by many authors. Although this type of model given
by (31) has been used by MacGibbon and Tomberlin (1989) in an EB approach, Farrell
(2000) considered an HB approach for this model. Farrell (2000) used the uniform prior
for the fixed logistic regression coefficients and a diffused inverse gamma prior for
the small area variance parameter σ2

v . Using griddy-Gibbs sampler the author applied
the HB method to a data selected using 1% sample from a United States Census for
estimating local labor force participation rates.

As an alternative to this model, Malec et al. (1997) proposed a two-level model for
estimating the proportion of persons at the state or substate level who have visited a
physician in the year preceding the interview based on data from the U.S. National
Health Interview Survey (NHIS). At the first level of their logistic regression model
they assumed a random regression coefficients model given by

Yij ∼ Bernoulli(pij), logit(pij) = xTijβi, j = 1, . . . , ni, i = 1, . . . , m,

(54)

and at the second level βi is modeled as

βi = Ziα+ vi, (55)

with vi
iid∼ N(0,�v). In this model, xij is the unit-level covariate and the p×qmatrix Zi

is the design matrix based on area-level covariate, and α is a q× 1 vector of regression
coefficients corresponding to the second level. They used a uniform prior for α and
�v. In another article, Malec et al. (1993) considered the HB estimation of small area
proportions using data from NHIS. Nandram and Sedransk (1993) suggested Bayesian
predictive inference for binary data from a two-stage cluster sample. Stroud (1991)
proposed an HB methodology for small area estimation with binary response data.
Subsequently, Stroud (1994) considered a comprehensive Bayesian treatment of binary
survey data for various sampling designs.

As mentioned earlier, estimation of MSE of the EB predictors for GLMMs is quite
challenging. Given the recent advances in the development of computational algorithm
and computational power it makes sense to apply a fully Bayesian approach to the
small area estimation problems involving GLMMs. Ghosh et al. (1998) introduced
the following HB model for small area estimation problems in a generalized linear
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model setup. Let Yij denote the response of the jth unit in the ith small area. Also, let
θ = (θ11, . . . , θ1n1 , . . . , θm1, . . . , θmnm)

T , v = (v1, . . . , vm)
T , R = σ−2, and Rv = σ−2

v .
Their HB model is as follows:

(I) Conditional on θ,β, v, Rv = rv, and R = r, the responses Yij are independent
with densities given by (32).

(II) Conditional on β, v, Rv = rv, and R = r, h(θij) ind∼ N
(
xTijβ + vi, r−1

)
.

(III) Conditional on β, Rv = rv, and R = r, vi iid∼ N
(
0, r−1

v

)
.

(IV) β, Rv, R are mutually independent with β ∼ uniform(Rp), Rv ∼
gamma

(
1
2a,

1
2b

)
and R ∼ gamma

(
1
2c,

1
2d

)
.

Ghosh et al. (1998) were interested in finding the joint posterior distribution of func-
tions g(θij)’s, given the data y = (y11, . . . , y1n1 , . . . , ym1, . . . , ymnm)

T , where g(.) is a
known strictly increasing function. In typical applications, g(θij) = ψ′(θij) = E(Yij|θij).
The posterior distribution is typically summarized through its moments, such as means,
variances, and covariances.

A large number of Bayesian applications involve the use of some type of objective
priors, which are often diffused, the idea being the large number of sampled areas a
diffused prior will let the data dominate the inference. With the use of improper priors
it may happen that posterior distribution is likewise improper. It is thus important to
ensure that in the presence of an improper prior, the resulting posterior distribution is
proper. Under the assumptions that a > 0, c > 0,

∑m
i=1 ni−p+ d > 0, andm+ b > 0,

Ghosh et al. (1998, Theorem 1) proved the propriety of the posterior distribution. In
particular, for the variance components σ2 and σ2

v standard objective prior for scale
parameter given by π(σ2) ∝ σ−2 or π(σ2

v ) ∝ σ−2
v will lead to an improper posterior.

One may note that π(σ2
v ) ∝ σ−2

v would be obtained as the Jeffreys’prior calculated from
the distribution of vi’s.

Because the posterior distribution is high-dimensional and it is not a standard dis-
tribution, one can get samples from the posterior distribution via MCMC simulations.
For the HB model Ghosh et al. (1998) used all the full conditional distributions required
to sample in Gibbs sampling are standard distributions such as normal or gamma dis-
tribution, except the conditional distribution of θij given the other parameters and the
data. Under the assumption of a canonical link function, that is h(z) = z, the authors
showed that this conditional density is log-concave and can be sampled via the adaptive
rejection sampling scheme of Gilks and Wild (1992).

We have mentioned earlier that Ghosh et al. (1998) were interested in drawing infer-
ence on some functions of the parameters θij . However, it is possible to use the posterior
sample generated in Gibbs sampling to make predictive inference. In particular, if the
goal is to obtain Bayes estimate of the finite population mean γi = N−1

i

∑Ni
j=1 Yij , under

squared error loss, the Bayes estimate is the posterior mean, which can be computed as
follows. We first specify the superpopulation distribution by modifying (I) and (II) of
the above HB model.

(I) Conditional on θ,β, v, Rv = rv, and R = r, responses Yij are independent with
densities given by (32), j = 1, . . . , Ni.

(II) h(θij) = xTijβ + vi + uij , where uij
iid∼ N(0, r−1), j = 1, . . . , Ni.
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Second, for any unsampled unit Yij , compute

E[Yij|y] = E[ψ′(θij)|y] = E[s(xTijβ + vi + uij)|y],
where s(x) = ψ′(h−1(x)). So along with β, vi, rv, and r, one will also need to generate
sample for uij from N(0, r−1

u ) to get an estimate of E[Yij|y].
The HB model of Ghosh et al. (1998) is more general than similar GLMM considered

by other authors. In step (II) of their HB model they considered h(θij) = xTijβ+vi+uij ,
where vi is the random small area effect and uij explains possible lack of fit to the model
specified by xTijβ + vi. In the GLMM formulation or in logit-normal specification for
binary response, many authors such as Breslow and Clayton (1993), Zeger and Karim
(1991), MacGibbon and Tomberlin (1989), and Farrell (2000) did not use the error term
uij in their models. Ghosh et al. (1998) model has greater flexibility due to this additional
error term and it can account for overdispersion which may not otherwise be captured
by a model without this term.

Ghosh et al. (1998) generalized the HB model given above to model data with multiple
categories. This is a generalization of the logit-normal model for binary response with
two categories to more than two categories. They applied their model to real datasets.
One of the datasets has responses to the question “Have you experienced any negative
impact of exposure to health hazards in the workplace?” based on a 1991 sample of all
persons in 15 geographic regions of Canada. For each region, workers were classified
by age (≤ 40 or > 40) and gender. The responses were classified into four categories
as follows: (1) yes, (2) no, (3) not exposed, and (4) not applicable or not stated. They
estimated the proportion of workers in each of the four categories for the 60 groups
(small areas). The HB estimates of the cell probabilities borrow strength from other
cells and geographic regions. Shrinkage of the sample cell proportions toward the grand
mean was achieved adaptively.

Ghosh et al. (1998) also proposed a spatial generalization of their HB model. In
particular, they replaced the iid assumption for the small area effects (the vi) by a
multivariate normal model appropriate to capture spatial dependence. They suggested
as a joint distribution of vi given by the density

p(v1, . . . , vm) ∝ rm/2v exp

⎡
⎣− rv

2

m∑
i,l=1

qil(vi − vl)2
⎤
⎦,

where the qil are strictly positive if the areas i and l are contiguous, and zero otherwise.
Note that the above density, being a function of only the differences of the vi, is not
a proper density. However, the posterior distribution will be proper. In the context of
disease mapping, datasets often show a strong spatial pattern. The above modification
is useful to model spatial dependence. We refer to Datta et al. (2000) for a survey of
EB and HB approaches to disease mapping. Ghosh et al. (1998) applied this modi-
fied HB model to the analysis of a Missouri lung cancer dataset. In disease mapping,
the response variable is a count, usually the number of deaths in a region from a par-
ticular cause, and is modeled by a Poisson distribution. In their application, Ghosh
et al. used a log-linear mixed model with spatial random effects. For a detailed discus-
sion of the analysis of the Missouri lung cancer data, we refer to the paper by these
authors.
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4. Concluding remarks

In this chapter, we have reviewed some of the recent developments in small area estima-
tion. For other recent reviews of this literature readers may refer to Pfeffermann (2002)
and Rao (1999, 2003b, 2006). We conclude this chapter with some brief remarks on some
topics that we have not considered so far. We note first that results from a model-based
inference depend on the goodness of fit of the model used. Naturally, it is of critical
importance to check if the working model is validated by the data and if it produces
sensible predictions. These issues are rather broad and are substantively discussed in
Rao (2003a). This book considers both frequentist and Bayesian solutions for model
selection. We also refer to the work of Ghosh et al. (1998) for model diagnostics of their
HB GLMM models in small area estimation. A few other important issues are listed in
the following sections.

4.1. Unknown sampling error variances

An important assumption to compute model-based estimates based on area-level data
using the Fay–Herriot model and its various univariate, multivariate, and time series
extensions, is that the sampling variances and covariances associated with the direct
estimators are known. However, these known sampling variances are actually estimated
from data. In two recent articles Rivest and Vandal (2003) and Wang and Fuller (2003)
obtained the EBLUP of the small area mean when the sampling variances are also
estimated. The authors have also obtained approximations to the MSE of the EBLUP
and derived estimators of the MSE.

4.2. Confidence intervals

A bulk of the small area estimation research focuses on the estimation of MSE of the
EBLUP and EB point estimates. However, the construction of EB confidence inter-
vals has been very sparse. Even conventional t-based confidence intervals utilizing a
second-order unbiased estimator of MSE do not always achieve target coverage proba-
bilities that are accurate up to second-order. Such an interval is not second-order accurate
because the the expansion of its coverage probability differs from the target coverage
by a O(1/m) term. Confidence intervals that utilize a naive MSE estimator tend to
be too short because of the underestimation of the MSE, and will usually fail to meet
the target coverage probabilities. An early solution to produce second-order accurate
confidence intervals is due to Smith (2001). Datta et al. (2002b) provided a rigorous
derivation of second-order accurate confidence intervals for the balanced Fay–Herriot
model. Nandram (1999) developed confidence intervals for small area means for a type
of unit-level small area model not considered here. Ghosh and Maiti (2008) developed
empirical Bayes confidence intervals for small area means based on Edgeworth expan-
sions. For a parametric bootstrap approach to confidence intervals one may refer to
Chapter 28.

In a fully Bayesian approach (HB approach) one can obtain a Bayesian credible inter-
val based on MCMC samples. Using suitable sample percentile points from the MCMC
sample one can construct a credible interval satisfying approximately the targeted poste-
rior coverage probability, also called credible level. However, the frequentist coverage
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probability of a Bayesian credible interval may be quite different from the credible
level. Datta et al. (2002b) obtained a rigorous expansion of the frequentist coverage
probability of a Bayesian credible interval for the balanced Fay–Herriot model.

4.3. Constrained EB/HB estimation

EBLUP, EB, and HB methods have been extensively used to develop estimates of small
area means. However, one may be interested in subgroup analysis where the problem is
not only to estimate individual small area means, but also to identify small areas whose
true means are either below or above certain cut-off point. One may also be interested
in generating the histogram of the small area means, or estimating the ordered small
area means or the ranks of the individual small area means. For detailed descriptions
and solutions to these problems we refer to Ghosh (1992) and Shen and Louis (1998).
Typically, the EBLUP, EB, or HB predictors overshrink the direct estimates of small area
means to their regression estimates. This results in a histogram of these model-based
small area estimates (for example, the HB estimates) that is too concentrated compared
to the histogram of the true small area means. Indeed, the sample variance of the HB
estimates (under squared error loss) of the small area means is smaller than the posterior
expectation of the sample variance of the true small area means. (Note that the first
sample moment of the HB estimates agrees with the posterior expectation of the sample
mean of the true small area means.) One way to rectify this deficiency is to modify
the HB estimates so that the first two sample moments agree with the corresponding
posterior expectations of the first two sample moments of the true small area means by
putting appropriate constraint (hence the name). A similar argument has been made for
EB/EBLUP estimates. The resulting constrained estimates put more weight to the direct
estimates (and hence, less weight to the regression estimates) compared to the usual
model-based (HB, EB/EBLUP) estimates.

Apractically important issue in which some sense is related to constrained estimation
is benchmarking, where it is often required that the small area estimates when aggregated,
agree with direct estimate in a broader area where it can be trusted (for example, at the
national level where the sample size is sufficiently large.This is important for consistency
of publications. It also warrants some model robustness. with the national level direct
estimate. For comments related to Bayesian and frequentist approaches to this problem,
one may refer to Singh (2006, Section 2.5). One may also refer to Pfeffermann and
Barnard (1991) and Pfeffermann and Tiller (2006).

4.4. Conditional MSE

In our discussion of EBLUP or EB predictors of small area means, we considered MSE
of these estimators based on the distribution specified jointly by the sampling model and
the linking model. Second-order approximations to the MSE and second-order unbiased
estimation of the MSE are based on the marginal distribution of the data (e.g., the direct
estimators). For the Fay–Herriot model, Rivest and Belmonte (2000) to evaluate certain
shrinkage estimators (such as EBLUP or EB estimator) of small area mean θi, derived
MSE of a small area estimator conditional on θ. They also obtained an exact unbiased
estimator of the MSE by applying Stein’s identity. Fuller (1989) suggested conditional
MSE of an estimator of the area mean θi conditional on the direct estimator Yi. This
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MSE measure is a compromise between unconditional MSE and the posterior variance
in the HB approach. In this context, we refer the reader to Booth and Hobert (1998),
Singh et al. (1998) and an unpublished report by this author with two collaborators.

4.5. Pseudo EBLUP and pseudo HB estimators of small area means

For unit-level models, for example, the nested error regression model, the EBLUP or
the HB predictor of the small area mean completely ignores the survey weights wij
attached to the jth unit in the ith small area. These estimators are not design-consistent
and may be highly biased if the linking model is not correct. Design-consistent model-
based small area estimators are appealing to survey practitioners (Kott, 1989; Prasad
and Rao, 1999), because they provide protection against model failures as the small
area sample size, ni, increases. Using the survey weighted induced area-level model,
Prasad and Rao (1999) and You and Rao (2002a) obtained pseudo EBLUP of the small
area mean (see also Kott, 1989). Similarly, as an alternative to the HB predictor, You
and Rao (2003) developed a pseudo HB predictor. Both pseudo EBLUP and pseudo HB
predictors are design-consistent. For a different approach of incorporating the survey
weights see Section 6.3 of Chapter 39.

4.6. Small area estimation with covariates measured with error

One or more auxiliary variables in model-based small area estimation may be subject
to measurement error. In two recent articles Ghosh and Sinha (2007) and Ghosh et al.
(2006) considered estimation of small area means for the nested error regression model
with a single covariate subject to measurement error. They have considered both the
functional and structural measurement error models. In their nested error model they
assumed that the the true value of covariate (say, xi) remains the same for all the units
in a small area, and it is measured with error as Xij for the jth sampled unit in the ith
small area. In the functional approach, they proposed a one-way ANOVA model with
fixed effects for the Xij . In the structural approach, they proposed a one-way ANOVA
model with random effects for the Xij . To obtain the EB or HB predictor of the small
area means first they obtained, assuming the model parameters known, the usual Bayes
predictor using the predictive distribution of the unsampled y values given the values
of the sampled y. They obtained their EB predictors by estimating the unknown model
parameters from the joint distribution of the sampled y and the sampledX values. Noting
that the Bayes predictor of Ghosh et al. (2006) did not condition also on the sampled
X values, this author with two collaborators suggested a modification of Ghosh et al.
(2006) by conditioning on the X values as well which resulted in a better predictor.
The new EB predictor has a smaller MSE than the MSE of the EB estimator by Ghosh
et al. (2006). In a different context for the area-level data, Ybarra and Lohr (2008) in a
recent article considered small area estimation for the Fay–Herriot model with certain
covariates measured with error. Details are omitted due to lack of space.

4.7. Small area estimation with unmatched sampling and linking models

For area-level data in the Fay–Herriot model given by (4), the direct estimator Yi esti-
mates μi and a normal regression model on μi is proposed. In this model, typically,
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for the sampling error a normal distribution is used. However, sometimes, a normal
regression model on g(μi) for some nonlinear function g(·) is more appropriate. As an
example, in estimating a small area proportion μi, a logistic regression model for the
probability of success is better suited than a linear regression model. Another example
is a log-linear model in estimating small area counts. These are examples of unmatched
linking model where the nonlinear linking model does not match with the sampling
model for the direct estimator. You and Rao (2002b) used an unmatched linking model
in estimating Canadian census undercoverage by using the HB approach. Although an
unmatched linking model is more computer intensive than a standard Fay–Herriot model
with a matched linking model, the former model provides a more realistic model. For
further discussion one may refer to Rao (2003a, p. 243). It should be noted that the
unmatched sampling and linking models are analogous to a Bayesian model where one
uses a nonconjugate prior distribution.

4.8. Comparison of the frequentist and Bayesian approaches

In this chapter we have reviewed both frequentist and Bayesian approaches to model-
based small area estimation. Although the frequentist approach is still more popular
among practitioners, the Bayesian approach is also gaining popularity and acceptability.
Though a frequentist or a Bayesian approach is a matter of personal choice, the Bayesian
approach is based on probability calculus and conceptually straightforward where one
uses conditional probability calculations to update a prior probability to a posterior
probability in light of the data.

The difficulty in the Bayesian approach is prior specification and computation.
Although the former is still a difficult issue, we have made enormous progress in recent
years on computational issues. It is worthwhile to point out that frequentist solutions
based on jackknife or bootstrap are also computer intensive. To resolve the issue of prior
specification one need to study sensitivity analysis (see for example, Berger, 1985).
Bayesian analysis is often performed based on objective priors. Objective Bayesian
procedures, as they are called, often possess good frequentist properties. There is a
large literature on this issue (see for example, Datta and Mukerjee, 2004). In small area
estimation context Datta et al. (2005) obtained a Bayesian solution where the posterior
variance is also a second-order unbiased estimator of the MSE. Such dual interpretation
makes a Bayesian method very desirable. For an extension of the result of Datta et al.
(2005) for the Fay–Herriot model, one may refer to Ganesh and Lahiri (2008).

One advantage with the Bayesian approach is that it automatically incorporates all
sources of uncertainty associated with an inference problem. For example, the estimation
error for the unknown hyperparameters (which are often variance components in small
area estimation) is automatically taken into account. On the other hand in an EB or an
EBLUP approach one needs to be careful to account for the estimation error associated
with the hyperparameters. Laird and Louis (1987) suggested a bootstrap approach to
provide a more accurate measure of uncertainty, measured by the MSE, associated
with the EB estimator. Second-order accurate estimator of the MSE of the EBLUP is
already extensively discussed in Section 2, and to achieve better approximation one
needs heavy algebraic manipulations. A fully Bayesian approach is more flexible in
handling complicated models such as GLMMs. Using Gibbs sampling, and intensive
computing depending on the complexity of the Bayesian model, it is relatively routine to
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obtain numerous copies of samples from the posterior distribution. From the posterior
samples, it is relatively straightforward to calculate the posterior means, variances,
and Bayesian credible intervals (based on the ordered posterior sample values) of the
small area means. Although the Bayesian approach is more flexible than its frequentist
counterpart, its relative disadvantage is in specifying the joint prior distribution on the
model parameters.
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Design and Analysis of Surveys Repeated over Time

David Steel and Craig McLaren

1. Overview of issues for repeated surveys

Many surveys are repeated on several occasions, and the associated estimates are used
to analyze changes in variables over time. Major social and economic surveys, such a
labor force and retail trade surveys (RTS), are conducted monthly or quarterly to identify
changes in the level or rate of change of variables, including turning points. Repeated
surveys can produce time series of estimates, which will be analyzed using estimates for
several time periods. Examination of the change in estimates between two consecutive
periods or the same period in the previous year is common. Seasonal effects can be
estimated and removed to produce seasonally adjusted estimates. Seasonally adjusted
series can be volatile and to assist in analyzing the underlying pattern of change moving
averages or some form of trend estimation may be applied.

Many repeated surveys involve overlap in the sample between different time periods.
The sample overlap induces a correlation structure in the sampling errors of the time
series of estimates, which affects the analysis of changes in them and may be exploited
in producing estimates. The correlation of the sampling errors affects the variability of
the time series of survey estimates and seasonally adjusted and trend estimates produced
from them. Population changes can contribute to the change in variables over time and
so it is important that the population sampling frame is updated to incorporate changes
in the population as quickly and regularly as possible.

The design of a sample over time needs to consider the frequency of sampling and
the pattern of inclusion of selected units over time. The frequency of sampling depends
on the purpose of the survey, how quickly changes are likely to occur and associated
decisions are needed. Common frequencies for surveys are monthly, quarterly, and
annual, although more frequent sampling may be adopted, for example in opinion polls
leading up to an election or monitoring television ratings. A key design issue is whether
to use overlapping or nonoverlapping samples over time. For overlapping samples, the
precise pattern of overlap must be designed.

Repeated, panel and longitudinal surveys, rotating panel surveys, split panel surveys,
and rolling samples are surveys that are designed to permit analysis over time.

289
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In a panel or longitudinal survey, an initial sample is selected and at each occasion
that the survey is conducted an attempt is made to include all the members of the ini-
tial sample, even if they move. Longitudinal surveys are developed to permit analysis
of changes at the individual level. These surveys can provide estimates of change at
the population level for variables for which information is collected at each occasion,
provided strategies are used to keep the sample representative of the population at each
time period. Analysis of net change using aggregate estimates may hide important gross
changes occurring at the individual level, which may be revealed from longitudinal
data. Longitudinal analysis can help determine the relationships between variables and
looking at causes of change through examining the temporal sequences of events. Lon-
gitudinal survey data can be used for a variety of analyses, including survival analysis,
event history analysis, and analysis of transition probabilities. Multilevel models that
take account of the repeated nature of the data are being used increasingly used (Skinner
and Holmes, 2003). Analysis of longitudinal studies is discussed in Chapter 34 of this
volume.

In a repeated survey, there is not necessarily any overlap of the sample for the different
occasions. When the emphasis is on estimates for the population and major subpopu-
lations, an independent sample may be used on each occasion, which is often the case
when the interval between the surveys is large. An alternative is to try to use the same
sample at each occasion, with some additions to ensure that the sample estimates refer
to the current population. For regular monthly or quarterly surveys, the sample is often
designed so that there is considerable overlap in the sample between successive surveys.
This can be done using rotating panel surveys that use a sample that is followed over
time, but a proportion of sample units is removed from the survey at some time periods
and replaced by other units. Usually units that move location are not followed. Having
overlap in the sample will reduce the sampling variance of estimates of change. Cost
savings often arise because on the first time a person or business is included in the survey
there are higher setting-up costs than on subsequent occasions. Sampling variances of
estimates of change are reduced because the variation due to including different units
is reduced. The reduction in variances depends on the correlation of the variable at the
individual level over time and the degree of sample overlap. If the correlation is low,
then the reduction is small. The correlation needs to be positive for a reduction to apply.
A negative correlation will increase sampling variances, although such cases are not
common.

These considerations would lead to maximizing the sample overlap at each time
period, with the only change in the sample arising from the need to update it to represent
units moving in and out of the population. However, such a design would lead to selected
units being included in the survey indefinitely. In practice, a limit needs to be placed
on how many times a person or business is surveyed, to spread the reporting load and
maintain response rates and the quality of the reported data. In deciding the degree of
sample overlap these considerations need to be balanced. The degree of sample overlap
between any two time periods is determined by the rotation pattern, which is the pattern
of selected units’ inclusion in the survey over time. A rotation sampling design can
be implemented using rotation groups and panels. The sample will consist of several
rotation groups. A panel is the set of selected units that enter and leave the sample at the
same time. When a panel leaves the sample it is replaced by one from the same rotation
group.
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In a rotating panel survey, the focus is on aggregate estimates of change. However,
any overlapping sample can also be used to analyze change at the micro-level. For
example, a table can be produced from the matched sample showing the change of a
variable between two time periods. An important example is when a table of change in
status is produced, which is referred to as a Gross Flows table. Longitudinal data can
be created from rotating panel surveys, but the length of the total time period and the
time interval between observations are determined by the rotation pattern used. Also,
the resulting sample of individuals for which a longitudinal data are available will be
biased away from people who move permanently or are temporarily absent.

An alternative to a rotating panel survey is a split panel survey that involves a panel
survey supplemented on each occasion by an independent sample. This design permits
longitudinal analysis from the panel survey for more periods than would be possible
in a rotating panel design but also produces cross-sectional estimates from the entire
sample.

In deciding on the sample design, in general the three dimension of space, time, and
variables need to be considered (Kish, 1987, 1998). A survey may be conducted contin-
uously, but the sample size in any time period may not be sufficient to provide reliable
estimates for that period, at least for subnational estimates. However, by cumulating
the sample over several time periods reasonably reliable estimates may be produced.
In this approach sample overlap is detrimental. The sample design can be developed
so that it is a rolling sample with nonoverlapping samples that over time cover many
areas and, eventually, all areas. This approach can be useful in producing subnational
and small area estimates.Amajor example of this approach is theAmerican Community
Survey (Alexander, 2002). A related approach is rolling estimates. For example in the
U.K. Labor Force Survey, a nonoverlapping sample is interviewed in each week of a
quarter. Each month estimates based on an average of the latest 13 weeks are produced
(Caplan et al., 1999; Steel, 1997). Further discussion of the issues associated with the
design of surveys over time is given in Chapter 5 of this volume.

In a repeated survey, the estimates for a particular period can be calculated using
only data for that period using standard sample weighting methods, such as calibration
or generalized regression estimation (see Chapter 9 and Chapter 25 in this volume).
When there is sample overlap it is possible to exploit the correlation structure for dif-
ferent rotation groups to produce estimates of levels and changes with smaller sampling
variances using composite estimators and Best Linear Unbiased Estimates (BLUEs).

Repeated surveys can provide estimates for each time period, yt, t = 1, . . . N. When
a monthly or quarterly survey has been conducted for several years then a time series
can be produced and analyzed. Seasonally adjusted estimates are often produced to
help interpretation of the time series, giving the series SAt, t = 1, . . . N. To assess
the underlying pattern of change trend estimates can also be produced, which raises the
question of what is trend? In some cases, it is taken to be�(s)yt = yt−yt−s or�(s)SAt and
for s = 1 these will be volatile.TheAustralian Bureau of Statistics (ABS) publishes trend
estimates using Henderson moving averages applied to the seasonally adjusted series
(Australian Bureau of Statistics, 1993). Other options are available and are discussed in
Section 8. Even if trend estimates are not calculated an informal analysis of trend in a
monthly series may involve examining �(s)yt or �(s)SAt for s = 1, 2, 3, 6, 12.

Smith (1978) distinguishes between primary analysis that uses the individual sample
observations, yit , for i ∈ st, t ∈ τi and secondary analysis, which uses survey estimates
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of the population total or mean, yt, t = 1, . . . N. Here, st is the sample at time t,and τi
is the set of time periods for which population unit i is included. Analysis may also be
based on elementary estimates calculated at a level below the overall population based
on subsamples, where typically the subsamples correspond to panels in the sample.

At each time period, complex sample design may be used, possibly involving stratifi-
cation, multistage sampling, and unequal selection probabilities. The estimates may be
calculated using weighting to account for different selection probabilities and incor-
porate adjustments for nonresponse and calibration to known population data (See
Chapter 25 in this volume). The effects of the complex design and estimation are usually
taken into account in the estimation of sampling variances for levels and simple changes
in survey estimates for the population using standard methods of variance estimation.
An alternative approach is to include the population structure in the analysis through
techniques, such as multilevel modeling if primary survey data are available. However,
for analysis of the time series of estimates, there are different approaches to taking the
complexities of the sample design and estimation into account and the effects of sample
overlap. The approach will depend on the level of analysis (primary, elementary, sec-
ondary), the approach to the time series analysis, and the targets of inference. Primary
analysis is rarely undertaken in repeated surveys, although it is used in longitudinal
surveys.

Elementary estimates may be used for several reasons. They can be used in the
analysis in ways that automatically estimate and reflect the variance and covariances
of the sampling errors. This means that the structure of the sampling errors is directly
included in the analysis. This can be done in a design-based approach using BLUEs and
composite estimation (see Section 4) or in a model-based approach using state-space
models (SSMs) (see Section 7). Also, use of the elementary estimates allows direct
exploitation of the different correlation structure of different panels at each time point
using weighted estimates that reflect the possible complex sample design and account
for missing data, and changes in population composition through standard approaches,
whereas a primary analysis would have to incorporate these in the analysis and modeling.

In this chapter, we assume that we are not directly interested in analysis of changes
at the individual or micro level, even if we are using individual level data. We are
concerned with situations in which the targets of inference are at the population level.
We may perform a primary analysis but only because it offers some advantage in our
inferences about population level behavior.

Duncan and Kalton (1987), Binder and Hidiroglou (1988), Kalton and Citro (1993),
and Steel (2004) reviewed the issues in the design and analysis of repeated surveys.
Holt and Skinner (1989) considered the various components that affect estimates of
change obtained from repeated surveys. This chapter will focus on developments since
Binder and Hidiroglou (1988). We will also consider the key design issue of deciding on
the rotation pattern to use in a rotating panel survey, as well as approaches to analysis.
Section 2 sets out some of the basic theory, Section 3 reviews rotation patterns, and
Section 4 considers BLUE and composite estimation. Correlation models for survey
errors are reviewed in Section 5 and the impact of different rotation patterns on the
variances of key estimates are described in Section 6. Time series methods for estimation
are described in Section 7. Seasonally adjusted and trend estimates are briefly described
in Section 8 and variance estimation for these estimates are described in Section 9.
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The issue of the effect of the design of rotation patterns on seasonally adjusted and trend
series is explored in Section 10.

2. Basic theory of design and estimation for repeated surveys

Corresponding to the survey estimate for time t there is the population value Yt and we
can write

yt = Yt + et, (1)

where et is the sampling error. If the survey estimate is unbiased, then E[et |Yt] =
0. Properties of yt and �(s)yt can be obtained using the sampling or randomization
distribution to give the design-based expectations and variances.

A major value of repeated surveys is their ability to provide estimates of change.
The simplest analysis of change is the estimate of one period change, yt − yt−1. In
a monthly survey, this corresponds to 1-month change, and for a survey conducted
annually, it corresponds to annual change. In general, the change s time periods apart
can be estimated, using yt − yt−s = �(s)yt . The focus is often on s = 1, but for a survey
repeated on a monthly basis changes for s = 2, 3, 12 are also commonly examined.
Having sample overlap at lag s will usually lead to a positive correlation between the
estimates. Since

Var(�(s)yt) = Var(yt)+ Var(yt−s)− 2
√

Var(yt)
√

Var(yt−s) Corr(yt, yt−s) (2)

this overlap reduces the variance of �(s)yt compared with having no sample overlap.
If comparisons are made with time periods for which there are no sample units in

common, then the variance of the estimate of change will be the sum of the variances,
which will often be approximately twice the variance of the estimate of the level for
a particular time period. These considerations result in designing the sampling so that
there is overlap between the samples for time periods between which the movements
are of major interest. So if there is strong interest in monthly movement, then there
should be high sample overlap between successive months. If there is also interest in
changes 12 months apart, then consideration should be given to designs that induce
sample overlap at this lag. However, for many variables the individual level correlation
12 months apart may not be high enough for there to be appreciable gains from doing so.
If there is interest in 3 month change, then sample overlap at 3 months lag is desirable.
There may also be interest in changes in the rate of change, such as�(s)yt −�(s)yt−k =
yt − yt−s − (yt−k − yt−k−s). If s = k, this becomes yt − 2yt−s + yt−2s.

Equation (1) shows that for the estimation of the change between two time periods
t − s and t a key factor is the correlation between the two estimates, Corr(yt, yt−s). In
general, for complex designs and estimators, this correlation will also be complex and
will depend on the design and the correlation between values for the same unit over
time. In the traditional design-based approach, the variance under consideration is the
sampling variance due to sampling errors only and so is the correlation. In Section 7,
we also include and exploit variability due to the stochastic process generating the time
series of population means or totals.
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If the samples are independent between the two time periods, then Corr(yt, yt−s) = 0.
In general, there will be overlap between the samples and the degree of overlap is

a factor influencing the correlation. Consider the simple situation of a stable popula-
tion (i.e., no births and deaths), and simple random sampling with negligible sampling
fractions. Let nt be the sample size at time t, nt,t−s is the size of the sample in common
between the two time periods, kt,t−s = nt,t−s

nt
is the proportion of the sample at time t

that is common between periods t and t − s, and kt−s,t = nt,t−s
nt−s is the proportion of the

sample at time t − s that is common between periods t and t − s. Then

Corr(yt, yt−s) =
√
kt,t−skt−s,trt,t−s,

where rt,t−s is the individual level correlation between values at time t and t − s. The
correlation between the estimates will be zero if nt,t−s = 0 irrespective of the individual
level correlation or if rt,t−s = 0 irrespective of the sample overlap and equals rt,t−s only
if kt,t−s = kt−s,t = 1. Tam (1984) and Laniel (1987) gave more general results.

Many rotation patterns are designed so that kt,t−s= kt−s,t = k(s), giving
Corr(yt, yt−s)= k(s)rt,t−s. If the patterns of changes at the individual level do not vary
over time, then rt,t−s= r(s). If Var(yt) does not change, that is, there are no major
changes to the sample design or the population structure, then the sampling errors are
weakly stationary. Under these conditions

Var(�(s)yt) = 2Var(yt)(1− k(s)r(s)). (3)

Usually, we would expect the unit level correlation to be positive. These results sug-
gest that the higher the sample overlap the higher the correlation between the estimates
and this leads to designs with high sample overlap between periods for which the change
is of interest. For analysis of one period changes high overlap between adjacent peri-
ods is desirable. More complex models for the correlation of the sampling errors are
considered in Section 5.

The conditions for weak stationarity of the sampling errors involve characteristics of
the population, namely rt,t−s = r(s) and relevant population variances, such as stratum
or cluster population variances, and aspects of the design, such as sample overlap and
sample size, and allocation to strata or stages in a multistage design. In a long running
survey, there can be major redesigns of the sample that change the sampling variance.
Periodically, a completely new sample may be selected, for example, after a census pro-
vides new information on the population, leading to a break in the sampling error series.

Moving averages and rolling estimates can be applied to the estimates produced from
a repeated survey. This is a method of analysis that can be applied to any design, although
it is particularly suited to rotation patterns that result in no sample overlap for the periods
over which the averages are calculated. Consider 3 month moving averages in a monthly
survey. There are two variants, nonoverlapping and overlapping. The nonoverlapping
approach estimates 3 month on 3 month change. For example, it compares the average
of December, January, and February with the average of March, April, and May. This
is equivalent to the average of the 3 months changes. In general, the nonoverlapping
approach calculates

yt + yt−1 + yt−2

3
− yt−3 + yt−4 + yt−5

3
= 1

3
[(yt − yt−3)+ (yt−1 − yt−4)

+ (yt−2 − yt−5)].
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The overlapping approach estimates average change over the last 3 months, for
example, it compares the average of February, March, and April with the average of
March,April, and May, which is equivalent to the difference between May and February
divided by three. In general, the overlapping approach calculates

yt + yt−1 + yt−2

3
− yt−1 + yt−2 + yt−3

3
= 1

3
(yt − yt−3).

This approach produces more up-to-date information than quarterly release of quar-
terly averages, but it is not as up-to-date as analysis of monthly estimates.

More generally, moving averages of the form ỹ(2k+1)
t = yt+k+...yt+...yt−k

2k+1 may be applied
to smooth the often volatile series of estimates that are obtained from a repeated survey.
Such averages can be regarded as crude trend estimates, but better methods of trend
analysis are available as discussed in Section 8.

Positive correlations increase the variance of averages over time. For example, the
average of three consecutive months would have variance

Var

(
yt+1 + yt + yt−1

3

)
= 1

9

⎡
⎢⎣

Var(yt+1)+ Var(yt)+ Var(yt−1)

+2Cov(yt+1,yt)+ 2 Cov(yt,yt−1)

+2Cov(yt+1,yt−1)

⎤
⎥⎦ .

If the sample overlap depends only on the gap between two periods and the series of
sampling errors are weakly stationary so that Corr(yt, yt−s) = k(s)r(s) = R(s), then

Var

(
yt+1 + yt + yt−1

3

)
= Var(yt)

9
[3+ 4R(1)+ 2R(2)].

Similar reasoning for the change in nonoverlapping quarterly averages gives

Var
(
ỹ
(3)
t − ỹ(3)t−3

)
= Var(yt)

9
[6+ 6R(1)+ 0R(2)− 6R(3)− 4R(4)− 2R(5)]

and for the change in adjacent overlapping averages,

Var
(
ỹ
(3)
t − ỹ(3)t−1

)
= Var

(
yt+1 − yt−2

3

)
= Var(yt)

9
[2− 2R(3)].

These results suggest that for analysis based on three period averages and the changes
in them having no sample overlap at lags 1 and 2 so thatR(1) andR(2) are zero or small
and having overlap at lag 3 so R(3) is appreciable would be beneficial.

Averaging of estimates can be used to produce more stable estimates when the orig-
inal estimates have high sampling variances, for example, for small subgroups in the
population, such as estimates for small geographic areas. However, averaging over time
changes the length of the time period to which the estimate refers and will hide any
variation within the period over which the average is calculated. Time series methods
are available to help combine data across time and space to produce small area estimates
from rotating panel surveys. Small area estimation is considered in Chapter 31 and in
Chapter 32 of this volume.

In general, for an estimator that is a linear combination of the estimates, l′yN , where
yN = (y1, . . . yN)

′ is the vector containing the values of the time series up to time
N, and l = (l1, . . . , lN)

′ is a vector of fixed coefficients, Var(l′yN) = l′Var(yN)l. For
example, the change in the most recent nonoverlapping 3 month averages corresponds to
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l = (
0, 0, . . . , 0,− 1

3 ,− 1
3 ,− 1

3 ,
1
3 ,

1
3 ,

1
3

)′
. In an evaluation of options for a U.K. Monthly

Labor Force Survey, Steel (1996) used this approach to consider the impact of different
rotation patterns for estimates of (i) the current month’s level, (ii) the changes between
months for s = 1, 3, 12, (iii) the 3 month averages (iv) 1 and 3 month changes in 3 month
averages, (v) 12 month averages, and (vi) 1 and 12 month changes in 12 month averages.
In general to determine the variance of l′yN we need to know, estimate or model Var(yN),
which is considered in Section 5. For simple averages and differences, we only need to
know those elements of Var(yN) corresponding to nonzero coefficients in l.

3. Rotation patterns

An overlapping sample design can be implemented using a rotation pattern to manage
the sample over time. Rotation patterns can be developed that have the same proportion
of the sample in common between any two time periods the same time apart and the
same proportion of sample rotated out and into the sample at each period. The rotation
sample design should ensure that the cross-sectional estimates are unbiased and reduce
the cost of the survey and the sampling variances on important estimates of change.
A rotation pattern would usually ensure that at each time point the sample is balanced
according to the number of times a person or business has been included in the survey
because of the effect that the number of times a person has been included in the survey
has on the data reported (Bailar, 1975).

Overlap in the sample may occur at different stages in a multistage design. Rotation is
often carried out within primary sampling units (PSUs) for cost reasons.This can produce
a small, secondary correlation between estimates even when there are no sample units in
common. For example, in the Australian Labor Force Survey, the PSUs are allocated to
eight rotation groups. In a particular month, the dwellings in one of the rotation groups
are rotated out of the survey and replaced by a sample of dwellings in the same PSU.

A further aspect of the design is the level of information collected, which is the
number of time periods for which information is collected on a particular occasion. For
example, in a monthly survey, information may be collected from a unit for the current
month and the previous month.

There are many different rotation patterns in use and more that can be considered.
Consider a monthly survey. The simplest rotation pattern is when a unit is included for
a months. Rao and Graham (1964) considered rotation patterns in which units remain
in the sample for a time periods, leave for b, and then return for a further a time periods.
This pattern is repeated until the unit is included for a total of m months. This can be
denoted as an a-b-a(m) rotation pattern. They found that for a composite estimators
using a = 2 and b = ∞ gave maximum gain for estimating levels, but for estimating
change a should be as large as possible, which suggests no rotation. This illustrates the
trade-off between rotation pattern and target of analysis. For example, the U.S. Current
Population Survey (CPS) uses a 4-8-4(8) rotation pattern, whereas the Australian Labor
Force Survey uses an in-for-8 rotation pattern, which can be denoted 8(8). The Canadian
Labor Force Survey uses an in-for-6 rotation pattern. These surveys use one level, so
that information is collected referring to 1 month. More generally, a pattern of the form
a1-b1-a2-b2-. . . ap(m) can be considered, where the number of months included and
excluded from the survey varies.
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Different rotation schemes lead to different overlap patterns. An in-for-m scheme
leads to a 1-s/m overlap between samples s months apart, for s = 1, . . . , m-1 and
no overlap for months m or more months apart. Unless m exceeds 12, there will be no
sample overlap for months a year apart. The 1-2-1 (m) pattern leads to no sample overlap
between months 1 or 2 months apart, but an overlap of 1-s/3m for s = 3, 6, . . . , 3m. The
sample overlap between months a year apart is 1-4/m provided m is five or more. The
4-8-4(8) rotation scheme leads to sample overlap of 1-s/4 for months s months apart,
for s = 1, 2, 3. For s = 12, the overlap factor is 4/8 and the overlap is 4/8-abs(s-12)/8
for s = 9, . . . , 15. The 6-6-6(12) scheme leads to sample overlap of 1-s/6 for months
s months apart, s = 1, . . . , 5. For s = 12, the overlap factor is 6/12 and the overlap
is 6/12-abs(s-12)/12 for s = 7, . . . , 17. Chapter 5 gives more details of rotating panel
surveys.

Yansaneh and Fuller (1998) considered the impact of the 4-8-4-(8), in-for-8 and in-
for-6 rotation patterns and composite estimators for the current level of the series and
changes up to 12 periods. The U.S. unemployed person and civilian labor force series
were considered. A similar study was conducted by Cantwell and Caldwell (1998) who
examined the revisions in U.S. monthly retail and wholesale surveys under different rota-
tion patterns. Bell (1999) considered the effect of the 4-8-4(8), 1-2-1(8), 2-2-2(8), and
in-for-8 rotation patterns on direct and composite estimators of monthly level and move-
ment, quarterly level and movement in the original series and the level and movement
of the Henderson moving average-based trend. McLaren and Steel (2000) considered
the impact of the following rotation patterns on the level and 1-month movement in
seasonally adjusted and trend estimates: 1-2-1(m),m = 5, 8; 1-1-1-(6); 2-2-2(8); 2-10-
2(4); 3-3-3 (6), 4-8-4(8), 6-6-6(12), in-for-m, m = 6, 8. Further rotation patterns were
considered in Steel and McLaren (2002). In a study considering a monthly retail survey,
Steel and McLaren (2000a) considered the following: 1-2-1(m),m = 4, 8, 12; in-for-m,
m = 1, 2, 3, 6, 12, 24, 36 and quarterly rotation patterns in which selected businesses
were included for between 3 and 36 months. Section 6 provides comments on the impact
of different rotation patterns on various estimates.

Park et al. (2001) presented a general class of rotation patterns that are balanced
in terms of the time in sample and rotation groups and an algorithm to construct these
designs for surveys in which respondents provide data for only the current period, which
they call a two-way balanced one-level design. Park et al. (2003) extended this approach
to also include balance on recall time when respondents provide data for l periods to
produce three-way balanced l-level designs.

4. Best linear and composite estimation

Smith (1978), Binder and Hidiroglou (1988), and Binder and Dick (1989a) reviewed
estimation methods for repeated surveys under a classical approach where population
means or totals are considered to be fixed quantities and a time series approach where
the population means or totals are considered to be random variables generated by
some stochastic process. Fuller (1990) also provided a review of some of the issues
associated with estimation in repeated surveys. In this section, we will consider the
classical approach and consider the time series methods in Section 7.
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The sampling variance of the survey estimates can be reduced by exploiting the
correlations over time between the estimates from each rotation group through various
forms of least squares and composite estimation methods. These methods enable us to
exploit the data from previous time periods through the correlation, effectively increasing
the sample on which the estimate is based.

Estimators can be developed that use data for all N time periods and the correlation
structure induced by the rotation pattern. We focus on rotation designs in which the
sample in any period consists of G panels. When a panel is rotated out of the survey
it is replaced by another panel. The set of panels related in this way is referred to as
a rotation group. In a particular period, elementary estimates can be calculated from
each panel in the survey as discussed by Gurney and Daley (1965), Smith (1978), and
Wolter (1979). As in Yansaneh and Fuller (1998), we consider rotation patterns that are
balanced in terms of the number of times units have been included in the survey.

Suppose we can calculate an estimate from each rotation group at time t, ytg, which is
unbiased forYt , the finite population value of interest, so thatE(ytg) = Yt . Stacking the G
rotation group estimates gives the data vector yRG = (y11, . . . , yN1, . . . , y1G,, . . . yNG)

′.
Then E(yRG) = XYN , where YN = (Y1, . . . , YN)

′ is the vector containing the series of
population values and X = 1G ⊗ IN with 1G = (1, . . . , 1)′, IN is the N × N identity
matrix, and ⊗ indicates the Kronker product, so that X = [IN, . . . , In]′.Var(yRG) = V
which depends on the rotation pattern and the population correlations.

The BLUE of YT is then (X′V−1X)−1X′V−1y, which has variance (X′V−1X)−1.
We need to determine or estimate V to calculate the BLUE. If we use a matrix of
fixed values W instead of V, in the calculation of the BLUE, then its variance is
(X′W−1X)−1X′W−1VW−1X(X′W−1X)−1. In practice, V has to be estimated or a work-
ing value has to be used.

The BLUE involves storing elementary estimates for the entire length of the series
and inversion of a NG × NG matrix. So for a monthly series of 40 years involving
eight rotation groups the matrix is 3640× 3640 and computation of the BLUE becomes
complicated as the number of periods increases. Methods that approximate the full
BLUE can be used.

Yansaneh and Fuller (1998) developed a recursive regression estimator to produce
an estimate equivalent to the BLUE based on estimates for m periods that avoids the
complexity of the direct BLUE approach. Another way to reduce the computational
burden associated with the BLUE approach is to restrict the calculation to the last m
periods. They compared the sampling variances of the CPS composite estimation with
the restricted BLUE with m = 12 and 16 and the recursive estimation for estimates of
level and s month change, for s = 1, . . . , 12 for employment and unemployment. Sev-
eral rotation patterns were considered, including 4-8-4(8), in-for-6 and in-for-8 rotation
patterns. They commented that m = 36 gave virtually the same efficiency as the recur-
sive restricted estimator. The results suggest that for 4-8-4(8) rotation pattern useful
gains can be made using BLUEs and that m = 16 is almost as efficient as the recursive
regression estimator.

Bell (1999) also considered restricted window BLUEs with m= 7 and 1-2-1(8),
2-2-2-(8), and 4-8-4(8) rotation patterns. He found that m= 7 gave nearly all the avail-
able gains but that smaller windows gave noticeable higher standard errors. The eval-
uation considered a range of estimators for employment and unemployment: level,
1 month movement, quarterly average, nonoverlapping movement in quarterly average,
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seasonally adjusted, and 1 month movement in seasonally adjusted estimates, trend esti-
mates at the end of the series, 1 month movement in the trend estimates at the end of the
series and revision of the movement in trend. The evaluation was based on a correlation
model for employment that allowed correlations within PSUs. Although the model was
used to construct the elements of the matrix V, the evaluation used a delete a group
jack-knife applied to real survey data to estimate variances, so any inefficiencies due to
errors in the value of V were reflected in the evaluation.

In applying the BLUE or restricted window version, the standard survey weighting
has to be applied to calculate the rotation group or panel estimates. This can lead to
problems as the sample size in each rotation group will be smaller, possibly resulting in
instability in the generalized regression estimator (GREG). One approach is to use less
covariates in the GREG, for example, by using broader categories. Bell (2001) suggested
an alternative using panel estimates obtained by applying the inverse of the selection
probabilities as weights, which is the Horvitz–Thompson estimator, and then applying
the standard GREG weighting to the these values. This method has been introduced for
the Australian Labor Force Survey (Australian Bureau of Statistics, 2007). The revision
strategy also has to be considered, since as data for additional periods are added the
estimates for previous periods change.

Composite estimation also avoids the complexity of storing all the elementary esti-
mates and inversion of large matrices. In composite estimation, the sample for the
previous time periods is used along with the sample for the current period. In its sim-
plest form, the estimate for the current period is obtained by updating the estimate of the
previous period using an estimate of the change in which the matched and nonmatched
samples are given different weights. However, issues of time in survey bias need to be
considered (Bailar, 1975).

Composite estimation methods have been investigated extensively. Jensen (1942)
considered sampling on two successive occasions with partial overlap. Yates (1949)
extended the approach to sampling on more than two occasions. Patterson (1950) gener-
alized this approach and found that matching 50% of the sample on successive occasions
gave optimal gain in efficiency for estimating level and 75% was good for estimating
change and still gave good efficiency for estimation of the mean. Ecker (1955) consid-
ered higher order rotation designs where information is collected at a particular occasion
for two or more successive occasions. Gurney and Daley (1965) generalized the results
of Patterson (1950) to a linear model framework and obtained the minimum variance
linear unbiased estimators.

Composite estimation methods have mainly been applied in monthly labor force sur-
veys. Wolter (1979) developed composite estimation for the two-level schemes formerly
used in the U.S. RTS in which selected businesses report every 3 months giving data
for the current and the previous months.

The basic approach is to consider two estimates for the current month; the first is the
estimate calculated from the data collected in the month, yt and the second is obtained by
taking the estimate from the previous month,yKt−1 and adding an estimate of change based
on the panels that have not been rotated between the two periods, yKt−1 +

(
yMt − yMt−1

)
,

where yMt is the estimate for time t calculated from the matching sample. A weighted
average of the two estimates is then calculated,

yKt = (1−K)yt +K
(
yKt−1 +

(
yMt − yMt−1

))
. (4)
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This is the composite estimator which was initially used in the U.S. CPS withK = 0.5.
An additional term is also added to further reduce variance and ameliorate the impact of
the times in survey effect, which is the difference between the estimates for the current
month based on the new panel, yUMt , and the panels matching to the previous month,
yMt giving the AK estimator.

yAKt = (1−K)yt +K
(
yKt−1 +

(
yMt − yMt−1

))+ A (
yUMt − yMt

)
(5)

withK = 0.4 andA = 0.2. (Cantwell and Ernst, 1993; Gurney and Daley, 1965; Huang
and Ernst, 1981).

Bailar (1975) found that for estimates of month-to-month change in the original series
the use of a composite estimator gave smaller variance on average than a ratio estimator.
Bailar (1975, 1978) studied the effect of rotation group bias on the estimates of level
and change in the U.S. CPS. Huang and Ernst (1981) extended these results to 4-8-
4(8) and 3-9-3(6) rotation patterns for the CPS for two different composite estimators.
They assumed a constant variance and covariance over all observations and calculated
that an optimal AK composite estimator had greater efficiency than a simple compos-
ite estimator for the level and 1 month change in the original series and also annual
average.

The recursive nature of the composite estimator means that it is implicitly using
the elementary estimates for the entire length of the series and therefore using some
information from samples that have been rotated out of the sample.Although the implicit
weights given to each elementary estimate are not the same as would be obtained from
the BLUE, the efficiency can be close.

The values of A and K can be chosen to minimize the variance of yKt . In general,
they depend on the variable and compromise values are chosen based on analysis of the
impact of different values on key estimates. Relevant variance formulas are given in
Cantwell (1990). Higher values are better for estimating employment levels because of
the higher correlation over time. Lent et al. (1996) suggested K = 0.4 and A = 0.3 for
estimating unemployment and K = 0.7 and A = 0.4 for estimating employment and
the civilian labor force.

A refinement is composite weighting in which the values of A and K are chosen
separately for the estimation of employment and unemployment to produce marginal
totals. The standard GREG weights are then adjusted so that the estimates agree with
the margins obtained from the AK estimator (Lent et al., 1996).

The generalized composite estimator (Breau and Ernst, 1983; Cantwell, 1990) is

yGCE
t =

G∑
g=1

agytg − ω
G∑
g=1

bgyt−1,g + ωyGCE
t−1 . (6)

The coefficients are constrained so that 1′a = 1′b = 1. This estimator allows differ-
ent coefficients for the rotation group estimates, which gives more scope for variance
reduction. Park et al. (2001) presented the general theory for choosing a and b for fixed
ω when estimating four types of quantities; the current level, the change between levels,
aggregates of several time periods, and changes in aggregates. Kim et al. (2005) con-
sidered generalized composite estimator for l-rotation system in which selected units
report data for the one most recent periods.
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The Canadian LFS also uses a version of composite estimation that can be imple-
mented in a standard GREG estimation system by clever supplementation of the standard
demographic auxiliary variables already used with new additional auxiliary variables.
The method is referred to as modified regression estimation (Singh et al., 2001). Imple-
mentation is described by Gambino et al. (2001). See also Fuller and Rao (2001) and
Bell (2001).

There are two versions corresponding to two choices of the auxiliary variables. For
two consecutive time periods, t and t − 1, let Mt,t−1 denote the theoretically matching
sample andUt,t−1 is the unmatched sample. The choice of auxiliary variables correspond
to (i) z(1)i = yi,t−1 for i ∈ Mt,t−1 and z(1)i = ȳc

t−1
for i ∈ Ut,t−1, where ȳc

t−1
is the composite

estimate of the population mean for t − 1or and (ii) z(2)i = yi,t + k−1(yi,t−1 − yi,t) for

i ∈ Mt,t−1 and z(2)i = yi,t for i ∈ Ut,t−1, where k=
∑

i∈Mt,t−1
wi∑

i∈St wi
≈ 5

6 for the in-for-6 rotation

pattern used. The control total used in the GREG is last month’s estimate. Imputation
has to be used for units in Mt,t−1 for which data on both months is not available.

Use of z(1)i is good for estimating level and use of z(2)i is good for estimating change.
Fuller and Rao (2001) noted that use of z(2)i can lead to a drift problem where the modified
regression estimator can deviate from the direct survey estimate over a long time period
and suggest a compromise choice of zi = (1− α)z(1)i + αz(2)i . The value α = 2

3 is used
as a compromise for estimating level and change for the key estimates.

The gains from using composite estimation need to be evaluated for any particular
survey and variables and may be small if the sample overlap is high or the unit level
correlation is low. Attention is usually focused on the estimate of level for the most
recent period and the movement between the two most recent time periods, although
other estimates should be considered. The gains for estimates of levels are greatest when
the degree of overlap is moderate and the correlation is high. For estimates of movement,
high sample overlap is still preferred.

5. Correlation models for sampling errors

Development and estimation of realistic autocorrelation models for the sampling error
series taking into account the sample design is an important issue. For a particular survey
using a specified rotation pattern, the issue is how to account for the sampling error in
estimation and analysis. When considering different options for the rotation pattern at
the design stage, we need models for the sampling correlations that allow the impact of
different rotation patterns to be assessed.

The correlation structure of the sampling error series can be directly estimated from
the primary survey data, if that is available. If a standard variance estimation system is
available, then it may be used to calculate Vâr(yt − yy−s) and estimate Cov(yt, yt−s) by
1
2 (Vâr(yt − yt−s) − Vâr(yt) − Vâr(yt−s)). The resulting correlation estimates include
both the effect of the rotation pattern used as well as the correlation of the population
values over time. This approach was used by Lee (1990) for example.

If the sample is composed of rotation groups from which elementary estimates can
be calculated, then it is useful to distinguish the correlation over time for those estimates
when no rotation has occurred (first-order correlations) and those that are present when
rotation has occurred (second-order correlations). The second-order correlations arise
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because rotation will usually take place within a PSU or geographic area. Kumar and
Lee (1983) and Park et al. (2001) showed that the second-order correlations should not
be ignored when considering the variance of estimators.

Adam and Fuller (1992) used an analysis of variance approach using data for repli-
cates to estimate the sampling autocorrelations. Pfeffermann et al. (1998) used panel
estimates to calculate pseudo errors defined as ê(j)t = y(j)t − yt = e(j)t − et for panel j
at time t, where y(j)t is the elementary estimate for panel j and e(j)t is the associated
sampling error.

Once the correlations of the sampling errors have been estimated they can be used
in conjunction with the variance estimates to produce an estimate of Var(yN), which
can then be used to estimate the variance of any linear function of yN . By estimating
the first- and second-order correlations separately, it is possible to assess the impact of
different possible rotation patterns.

Empirical evidence shows that the autocorrelations are higher for employment than
unemployment and the autocorrelations decay over time, that is as s increases.Although
there can be slight peaks as s = 12 because of seasonal effects.

The estimates of the autocorrelations and considerations of the lags where the sample
overlap occurs for the rotation pattern can be used to suggest and estimate the parameters
of convenient models for the sampling errors.The analysis of sampling error is simplified
if the series of sampling errors has a stable autocorrelation structure. Bell and Wilcox
(1993) noted that the sample overlap occurs for finite time and if the nonoverlapping
sample are independent, then the sampling errors can be approximated by a moving
average model of appropriate order. Often, it is assumed that the survey errors follow a
stationary autoregressive moving average (ARMA) (p, q) process of the form φ(B)et =
θ(B)at , where at is a white noise process andB is the backshift operator,Bet = et−1, and
φ(B) and θ(B) polynomials of degree p and q, respectively (see Hillmer and Trabelsi,
1987). This model can be generalized to allow for a seasonal component in the survey
errors. The choice for the parameters will depend on the series being investigated. This
method concentrates on the estimation of the parameters of the model and includes an
effect for the rotation pattern used in the surveys.

Cholette and Dagum (1994) summarized some of the ARMA models used for the
sampling errors in various surveys. Hillmer and Trabelsi (1987) used (1− 0.8B)et = at
for the U.S. monthly retail sales of hardware stores An ARMA(3, 6) model was used by
Binder and Dick (1989b) for the in-for-6 rotation pattern used in the Canadian LFS,

(1− 0.2575B + 0.3580B2 + 0.6041B3)et = (1+ 0.1847B + 0.5873B2 − 0.3496B3

− 0.0647B4 − 0.0982B5 − 0.0347B6)at.

Trabelsi and Hillmer (1990) considered a model that accounts for the rotation pattern
and composite estimation for the U.S. RTS:
(1 − φ1B)(1 − φ3B

3)(1 − φ12B
12)et = (1 − θB)at,with φ1 = 0.75 to account for

the composite estimation used for this survey. The remaining parameters depend on the
series, which can be estimated from estimates of the sampling autocorrelation. They
considered φ3 = 0.3, 0.6 and φ12 = 0.3, 0.6. Bell and Hillmer (1990) estimated φ3 =
0.635, 0.664, φ12 = 0.723, 0.714, and θ = −0.130, − 0.134 for retail sales of eating
and drinking places, respectively, after a log transformation. Bell and Wilcox (1993)
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also considered a model for the U.S. RTS (1− 0.75B)(1− 0.70B3)(1− 0.75B12)et =
(1+0.10B)at . These models account for the use of composite estimation and the rotation
design for the RTS, which involved three panels each providing data every 3 months
leading to sample overlap at lags at multiples of 3 months. The parameters can be
estimated from the autocorrelation using least squares methods. Hausman and Watson
(1985) considered a survey error model ARMA(1,15) for the U.S. CPS based on the 4-
8-4(8) rotation pattern and use of composite estimation. Pfeffermann and Tiller (2006)
used an autoregressive (AR)(15) process for the sampling errors in the U.S. CPS to
approximate the ARMA(2, 15) process that results from the sum of an moving average
(MA)(15) and AR(2) process, the former arising from the rotation pattern leading to
sample overlap up to lag 15 and the latter arising from the rotation of the sample within
the same census tracts.

To examine the impact of different rotation patterns, a model for the autocorrelation
that explicitly includes the sample overlap is required so that the impact of differ-
ent overlap factors can be gauged. For a single-stage sample, Steel (1996) used the
model Corr(yt, yt−s)=R(s)= k(s)h(s)ρ(s), where k(s) is the theoretical sample over-
lap between the samples at t and t − s. The factor h(s) = αβs reflects the reduction
in overlap because of nonresponse and movement of households and ρ(s) is the unit
level correlation, which was estimated from gross flows tables using matching house-
holds in the U.K. LFS for employment and unemployment. The assumption that the
variances and autocorrelation of the sampling error series are constant implies that no
major changes in the sample design or population structure occur over the length of the
series. The model implies no correlation when there is no overlap of the sample at the
household level.

Assume that the estimator at time t is, at least approximately, the average of the
estimates from each rotation group yt = 1

G

∑G
g=1 ytg and the estimates from different

rotation group are independent. Panels from the same rotation group will not necessarily
be independent because rotation occurs with the same PSU. Let Corr(ytg, y(t−s)g) =
RNR(s) if no rotation has occurred and Corr(ytg, y(t−s)g) = D(s) if rotation has occurred,
then Corr(yt,yt−s) = R(s) = D(s) + k(s) (RNR(s)−D(s)). Scott et al. (1977) gave a
similar model.

Bell (1999) estimated RNR(s) and D(s) for the Australian LFS using the panel esti-
mates. For values of s > 8 he used a model obtained by least squares estimation for
estimates of employment and unemployment. Lee (1990) provided values of RNR(s)
and D(s) for the Canadian LFS using panel estimates. Adam and Fuller (1992) and
Gunlicks et al. (1997) gave results for the U.S. CPS.

Changing variance and covariance have been considered by Bell and Hillmer (1990),
Tiller (1992), Cholette and Dagum (1994), and Bell and Kramer (1999). For example,
changing variances can be accommodated by starting with a series of survey errors
e∗N = (e∗t , . . . , e∗N)′ with constant variance, and the same autocorrelation structure as
eN = (e1, . . . , eN)

′. The original stable survey errors can be considered transformed
et = gte

∗
t , so that Var(eN) = GVar(e∗N)G′, where G = diag(gt). Breaks in the sample

due to the introduction of a new sample imply zero correlation between estimates before
and after the break and is reflected in a block diagonal structure for Var(eN). McLaren
(1999) investigated variation in the unit level correlation at lag 1 using gross flows from
the Australia LFS, based on the relationship that for estimates of a proportion using a
simple random sample Cov(yt,yt−1) = Pt,t−1 − PtPt−1, where Pt is the proportion in
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the category of interest as time t and Pt,t−1 is the proportion in the category at times
t and t − 1. For employment, the correlation varied between 0.86 and 0.92, and for
unemployment, it varied from 0.57 to 0.69 over a 13-year period.

6. Rotation patterns and sampling variances

In general, the higher the sample overlap between two time periods the lower the stan-
dard error on estimates of change between them. For averages of estimates, positive
correlation between the survey estimates involved will increase the sampling variance.
It is better to average uncorrelated estimates, which can be obtained from independent
or nonoverlapping samples. If both averages and differences of estimates are of interest,
then the relative importance of each type of estimate has to be considered and the impact
of different options assessed on both types. To assess the impact of different rotation
patterns on various estimates, some information or assumptions about the covariances
involved are needed.

In looking at different rotation schemes and the resulting overlap patterns, a range
of estimates that may be used by analysts can be considered. For example, in a monthly
survey, the following may be of interest:

• Monthly levels, yt .
• The change in the monthly level for months s months apart yt − yt−s. Particular

interest might be in s = 1, 3 and 12.
• Average of 3 months’ level estimates, ỹ(3)t .
• Change between 3 monthly averages with centres s months apart, ỹ(3)t −ỹ(3)t−s. Setting
s = 1 gives change in the overlapping “rolling” estimates, s = 3 gives the change
in nonoverlapping 3 monthly periods, and s = 12 this gives the change between 3
monthly averages a year apart.

• Average of 12 months’ level estimates, ỹ(12)
t .

• Change in the 12 month averages a year apart ỹ(12)
t − ỹ(12)

t−12.

The variance of these different estimates will be determined by the overlap pattern and
the correlations between estimates.

Blight and Scott (1973) looked at optimal design in terms of minimizing the consec-
utive difference of level estimates and found that complete overlap was best. Based on
where the sample overlap is concentrated, we should expect that the in-for-8 rotation
pattern would be good for estimating changes for s = 1, 2, 3.The 4-8-4(8) pattern should
be good for changes when s = 1, 12 and better than in-for (8) for quarterly averages.
A 1-2-1(8) pattern would be poor for changes when s = 1, 2, but good for changes when
s = 3, 6 and reasonable for change for s = 12, provided the individual level correlation
at lag 12 is high. Results suggest the lag 12 correlation is low for unemployment and
moderate for employment. This pattern is very good for three average monthly and
changes in them using overlapping or nonoverlapping averages. The 2-10-2(8) rotation
pattern gives theoretical overlap of k(s) = 0.5 for s= 1,12 and this level of monthly
overlap is good for composite estimation of level. Bell (2001) noted that 2-2-2(8) pro-
vides a compromise between estimating short-term movements and analyses looking at
medium or long-term movements as measured by quarterly averages of trend estimates.
McLaren and Steel (2000) gave similar results.
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To compare the effects of different rotation schemes on each type of estimate Steel
(1996, 1997) gave the ratio of the variance of each estimate relative to the variance of
the estimate of level for the different rotation schemes considered for a monthly UK
LFS for estimates of unemployment and employment, respectively. These results show
that for estimating monthly change the higher the monthly overlap the better, although
the further gains diminish as the overlap increases and, because of the higher monthly
correlation, the gain from having monthly overlap is higher for employment estimates.
For estimating quarterly averages and the changes in them the 1-2-1(m) patterns are
better than the in-for-m patterns because they result in independent monthly samples
within the quarter and the overlap is concentrated at a 3 month lag. The 4-8-4(8) design
is worse than the in-for-6 design for monthly change, but better for annual changes in
monthly estimates.

To decide on a rotation pattern we must decide on the relative importance of different
estimates. Steel (1997) compared the in-for-6, 1-2-1(5), and 4-8-4(8) in more detail. For
the monthly change in unemployment, the 1-2-1(5) and 4-8-4(8) schemes had variance
2.30 and 1.13 times larger than the in-for-6 scheme. For the 3 month change in the
quarterly average unemployment, the in-for-6 and 4-8-4(8) schemes had variance 1.98
and 2.3 times larger than the 1-2-1(5) scheme. For the 12 monthly change in unemploy-
ment, the 1-2-1(5) and in-for-6 schemes had variance 1.10 and 1.16 times larger than
the 4-8-4(8) scheme.

The impact of rotation pattern and BLUE or composite estimation can be considered
simultaneously. See results from Yansaneh and Fuller (1998), Bell (1998, 2001), and
McLaren and Steel (2001).

7. Time series methods for estimation in repeated surveys

Composite estimation and BLUE seek to exploit the correlation structure in the sampling
errors and treat the finite population values Yt as fixed. In some situations, there may be
reasons to go beyond treating the population values Yt as fixed and postulate a stochastic
time series model for them. Even if there is no direct interest in time series analysis,
using a time series model may help in estimation of Yt and changes in these values, such
as �(s)Yt , which is the focus of this section.

Blight and Scott (1973), Scott and Smith (1974), and Scott et al. (1977) developed
the time series approach to estimation of Yt from repeated surveys. Jones (1980) unified
the time series approach into a general form for the minimum mean squared estimator
(MMSE) using elementary estimates, which involves large matrix calculations. A key
result is that if E[YN ] = μN , then the MMSE of YN based on yRG is YN = μN +
[X′V−1X+Var(YN)]−1X

′
V−1(yRG −XμN). Binder and Hidiroglou (1988) simplified

this approach by using SSMs and the Kalman filter to allow efficient computation.
In time series analysis, the usual approach is to consider the population values to

follow a basic structural model (BSM) with components corresponding to the trend-
cycle, Lt , seasonal effects, St , and an irregular term, It . For an additive model, this can
be written as

Yt = Lt + St + It, (7)

which leads to

yt = Lt + St + It + et. (8)
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Multiplicative models can also be used, especially for economic data. A detailed
description of the BSM and associated Kalman filter is given in Harvey (1989). See
also Binder and Dick (1989a). Feder (2001) reviewed the application of the state-space
approach to repeated surveys. The trend is often modeled by

Lt = Lt−1 + Rt−1 + ηt , where ηt ∼ N(0, σ2
η) (9)

Rt = Rt−1 + ζt,where ζt ∼ N(0, σ2
ζ ). (10)

Which describes a local linear trend with local rate of change Rt . Seasonality can be
modeled as either a trigonometric model or dummy variable model. All stochastic terms
in the population BSM are assumed to be independent of one another and serially inde-
pendent. Dependence between the population values is reflected in the Eqs (9) and (10).

The general multivariate formulation of a SSM consists of an observation equation
relating the vector of estimates yt to an unobserved state vector αt:

yt = Ztαt + εt . (11)

And a transition equation that describes how the state vector evolves over time:

αt = Ttαt−1 + ηt , (12)

where Var(εt)=Ht and Var(βt)=Qt . The error vectors are assumed to be serially
uncorrelated, which is an important feature of the approach. For a repeated survey
with sample overlap the sampling errors are autocorrelated and hence to use the SSM
approach the sampling errors are usually included in the state vector. For secondary anal-
ysis based on aggregated series the form of the model for the sampling errors will be
based on consideration of the rotation pattern and estimation and modeling of variances
and correlations as described in Section 5. For elementary estimates, the panel estimates
can be used and the state vector includes the panel sampling errors (see Pfeffermann,
1991).

Once a model has been expressed as a SSM, it can be analyzed by applying the Kalman
filter and the Kalman smoother. The Kalman filter provides the optimal estimator of the
state vector using data up to time t. The Kalman smoother provides the optimal estimator
of the state vector for previous time periods.

Equation (11) has been written in terms of the estimates and since the observation
errors are assumed to be independent over time, one approach is to include the sample
errors in the state vector. For example, Feder (2001) considered the case when the sam-
pling error follows an AR(1) process, so that et = ρet−1+ δt . For a univariate quarterly
series, the estimate is a scalar, the state vector is αt = (Lt, Rt, St, St−1, St−2,et)

′,

Zt = (1, 0, 1, 0, 0, 1)′, ηt = (et, ηt, ζt, 0, 0, δt)′, and Tt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0

0 1 0 0 0 0

0 0 −1 −1 −1 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 ρ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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The form of model for the sampling errors will depend on the overlap pattern, the
sample design and the individual level covariances, as discussed above. AR(1) models
were used by Blight and Scott (1973) and AR(2) by Pfeffermann et al. (1998). Feder
(2001) gave a multivariate example in which the estimates of the number of households
in four size categories from the Canadian LFS are of interest and the sampling errors
are assumed to follow a vector AR(3) process. Again, the survey errors are included in
the state vector.

The state-space approach produces estimates of each of the components in (7) from
which estimates can be produced of the population value, Ŷt = L̂t + Ŝt + Ît . They
can also be to produce estimated of the local trend, L̂t and the seasonally adjusted
estimates, ŜAt = Ŷt − Ŝt = L̂t + Ît . In each case, the estimated sampling error has
been removed.Also, the Kalman filter produces estimates of the variances of each of the
estimated components. Pfeffermann and Tiller (2005) noted that replacing parameters
by estimates in the theoretical prediction mean square error (PMSE) of state vector
predictors underestimates the true PMSE and propose parametric and nonparametric
bootstrap methods that account for the use of estimated model parameters.

A SSM is used to produce monthly employment and unemployment estimates by
the U.S. Bureau of Labor Statistics (Tiller, 1992). The population model is expanded
to include a covariate term x′tβt , where βt is modeled as a random walk. The sampling
error is assumed to be an AR(15) process, which is an approximation of the sum of a
MA(15) process and an AR(2) process. This model arises from the design of the CPS in
which there is overlap at lags 1–3 and 9–15. The AR(2) process arises from the fact that
rotation of the sample occurs within the same census tract. Harvey and Chung (2000)
considered an example of estimating the number of people unemployed using the count
of people claiming unemployment benefit as a covariate.

In some situations independent information is available, for example, from a census
or large annual survey, which can be used to used to benchmark a monthly or quarterly
survey (see Durbin and Quenneville, 1997; Hillmer and Trabelsi, 1987). Pfeffermann
and Tiller (2006) consider benchmarking of monthly model-based estimates for states
and census divisions obtained from the U.S. CPS to annual design-based estimates for
the census divisions.

Bell (2004) described a general time series model that involves a regression term and
several unobserved components called a RegComponent model,yt = x′tβ+

∑C
c=1 hctεct ,

where hct are known scale factors, the independent unobserved components εct follow
ARIMA models of the form φc(B)δc(B)zct = θc(B)act , δc is a difference operator,
and act is a white noise process. This model includes as special cases the regression
ARIMA model, (C= 1) and the BSM (C= 3). Sampling error can be included as a
further component but the parameters of the sampling error component are estimated
separately from estimated sampling variances and autocorrelations. These parameters
are then held fixed as the RegComponent model is fitted to the observed data. A similar
approach is suggested by Pfeffermann et al. (1998) because of the potential identification
problem between the sampling error components and other components in the BSM.
The U.S. Bureau of the Census’s REGCMPT computer program uses a state-space
formulation for estimation of this model.

The use of panels in a survey induces the correlation structure of the sampling errors
but can also be used to estimate and remove their effect. Pfeffermann et al. (1998)
used the idea of pseudo panel-survey errors to estimate and then remove the effect of
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the correlated sampling error. They noted that the use of a panel design may introduce
spurious short-term trends in the observed series. Applying this method to estimates,
the autocorrelations of the sampling errors for the Australian LFS data they decided
that an AR(2) model is a good approximation to the survey errors. The standard X11
trend filter, which is based on assumption of uncorrelated sampling errors, reacts to the
short-term trends that such a process produces. Pfeffermann et al. (1998) proposed a
two-step procedure. The first step estimates the parameters of the model for the survey
errors by using the sampling variances and autocorrelations from the panel estimates
and then solving the Yule–Walker equations to estimate the parameters of the AR(2)
process and the associated residual variance. In the second step, the parameters of the
BSM for the population values are estimated by maximum likelihood using the Kalman
filter with the parameters of the survey error model held fixed at their estimated values.
This approach enables the separation of the autocorrelation structure of the sampling
errors and the true series by using the sample to estimate the former. This approach
is used rather relying on the standard estimation approach for BSM that includes the
sampling errors because the form of the autocorrelation of the sampling errors is close
to that associated with the evolving trend, which can lead to problems for identification
of parameters. The empirical results show how the resulting trend series is smoother and
not affected by the spurious short terms trends induced by the correlated survey errors.
Pfeffermann and Tiller (2006) developed an alternative filtering algorithm for the SSM,
which allows for correlated measurement error by directly including the covariance
matrix of the errors in the procedure. For filter-based methods, McLaren and Steel (2001)
suggested modifications that directly incorporate the covariance matrix of the sampling
errors.

Most surveys will produce a range of estimates leading to multivariate methods. A
particular case is when there is interest in a set of estimates that are categories of the
variable, such as employment status, so that the estimates are proportions that sum to
one. Separate analysis of the component series ignores this constraint. Brunsdon and
Smith (1998) and Silva and Smith (2001) considered this issue and developed methods
based on the additive log transformation. Brunsdon and Smith (1998) used a Vector
ARIMA (VARMA) modeling approach and Silva and Smith (2001) used BSM and
VARMA approaches.

There is a strong thread relating the approaches discussed thus far. When the pop-
ulation values are fixed, the autocorrelation of the sampling errors can be exploited to
produce efficient estimates of these values using the BLUE. To avoid the large matrix
inversion and storage of a large number of estimates, recursive methods, such as com-
posite estimation, recursive regression estimation, or restricted window BLUE, can be
used. When the true values are regarded as random variables extra components of vari-
ability are included, this leads to the MMSE. The use of SSM allows the estimation to
be undertaken using recursive methods in a way that incorporates the autocorrelation
structure of the sampling errors. There are four approaches proposed to account for the
autocorrelations in the sampling errors: (i) incorporate the sampling errors in the state
vector in a secondary analysis based on yN using a model for the sampling errors; (ii)
incorporate the panel sampling errors in the state vector in an analysis based on ele-
mentary estimates; (iii) separately estimate the autocorrelations from panel estimates
and hold them fixed in an analysis using yN ; and (iv) place the covariance matrix of the
sampling errors directly in the estimation algorithm.
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In this section, we have assumed that Yt is the target of inference. More generally, Lt
and SAt will be of interest as discussed in Section 8.

8. Seasonal adjustment and trend estimation

This section considers situations in which there is direct interest in the time series struc-
ture of the series Yt, t = 1, . . . N and if we had these values we would have undertaken
time series analysis of them. The sampling error is then a source of measurement error
with a correlation structure arising from the overlapping sample design, which if ignored
can lead to biases in the estimates of the parameters and components of the time series
model.

For monthly or quarterly surveys, seasonal adjustment may be used to remove the
impact of regular systematic- and calendar-related influences. Producing seasonally
adjusted estimates helps assess the underlying direction or trends in the series by allow-
ing comparability from month-to-month, identify turning points as well as assisting in
short-term forecasting and in relating time series to other series or extreme events. The
assessment of trends is usually based on seasonally adjusted series and may be done
informally or through the calculation of trend estimates.

Decomposing a time series as in the BSM given by (7) can highlight important
features of the data, helps in monitoring time series, aids in forecasting and making
policy decisions, as we can separate out the different components and gauge how each
term is contributing. Decomposition will not necessarily be unique and can include other
components, such as trading day components.

The trend component reflects the underlying movement in a time series. It can be
due to influences, such as population growth, price inflation, and general economic
development and contains the long-term business cycle. There is no unique definition
of trend.

Seasonality is any effect that is reasonably stable with respect to annual timing,
consistent in direction and of predictable magnitude. It may be caused by the timing
of public holidays, calendar events, and weather. Seasonality can evolve slowly over
time due to social and economic changes and government policy, and it can also evolve
abruptly over time, resulting in a seasonal break.

Time series values tend to oscillate around a general trend level. The irregular compo-
nent consists of short-term fluctuations, neither systematic nor predictable. On occasions,
the degree of irregularity is unusually large, resulting in extreme values. Irregularity can
be caused by real world events in relation to different holidays, inclusion of additional
supplementary surveys. If the sample error is ignored, the estimated irregular can be
affected by the nature of sampling, which may be related to the rotation pattern.

There are four decomposition models which are generally used: additive, log-
additive, multiplicative, and pseudoadditive. The model which gives the more stable
seasonal component is generally the more appropriate one to fit to the series. We will
focus on the additive decomposition.

The additive model assumes that the seasonal and irregular components are inde-
pendent of the trend component. The trend of an additive series can fluctuate, but the
magnitude of seasonal spikes remains about same. The seasonal component remains
stable from year-to-year and seasonal fluctuations average out to zero over the year. It is
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used if the seasonal effects are the same from year-to-year or change slowly over time.
In a multiplicative model, as trend increases, the amplitude of the seasonal influences
increases and the variance of irregular component is directly proportional to the seasonal
and trend cycles.

The seasonally adjusted data can be produced by estimating and removing the sys-
tematic calendar-related effects from the original data. In the additive case, the estimated
seasonally adjusted value ŜAt = Yt − Ŝt ≈ Lt + It , if the seasonal factor has been esti-
mated well by Ŝt . Seasonally adjusted estimates should contain only trend and irregular
influences. Trend estimates are closely related to the seasonally adjusted data but have
tried to eliminate or reduce the influence of the irregular influences.

There are two broad approaches to seasonal adjustment and estimating trends; model-
or filter-based methods. Model-based approach involve the BSM,ARIMAmodeling, and
SSMs. These approaches are implemented in the TRAMO-SEATS programs (Gomez
and Maravall, 1997), the STAMP program (Koopman et al., 2000), and REGCOMPT
(Bell, 2004). Nonparametric filter-based methods as embedded in X11 and X12 (Findley
et al., 1998).

In model-based methods, the unobserved trend, seasonal and irregular components
of the original series are modeled. Parameter estimates for each of the components
can be estimated simultaneously, and the irregular component is assumed to be white
noise in the model-based approach and the trend component follows a local linear
model. Business cycles can also be modeled with the trend. The seasonal component is
a stochastic process with its own noise and allows evolving seasonality. The correlation
structure of the components is well described by the model. We can explicitly include
particular models for the impact of the sampling error produced by the rotation pattern
and other known effects, as considered in Section 7.

Model-based seasonal adjustment is based on formulating a model, such as anARIMA
model or SSM. Often, trigonometric expressions are used for seasonality. The ARIMA-
based approach to seasonal adjustment was developed by Burman (1980), and Hillmer
and Tiao (1982) who gave the details of the canonical decomposition of ARIMA models
into component form. This results in the model yt = x′tβ + zt , where the independent
unobserved components zt followARIMAmodels of the formφ(B)δ(B)zt = θ(B)at and
δ is a difference operator and at is a white noise process. This is the basis of the signal
extraction in ARIMA time series (SEATS) program, which decomposes the observed
seriesintotrend,seasonal,andirregularcomponents.SEATSisusuallyusedinconjunction
with the time series with ARIMA Noise, Missing Observations and Outliers (TRAMO)
program. These are used extensively by EUROSTAT and the European Central Bank.

Seasonal adjustment is often carried out by government statistical agencies using
X11 (Shiskin, 1967), or its extensions, X11ARIMA (Dagum, 1988) and X12ARIMA
(Findley et al., 1998). The ABS produces and publishes trend estimates, obtained
by applying Henderson moving averages, for all its major series (ABS, 1993). It
encourages users to base their analysis of the series on these estimates (Linacre and
Zarb, 1991). Other government agencies produce trend estimate using a variety of
method (Knowles, 1997). However, many statistical agencies do not publish trend
estimates because of the revisions that may be made to them as estimates for later time
periods are added to the series.

In filter-based methods, filters (moving averages) are applied in an iterative way to
decompose the original series into its trend, seasonal, and irregular components and
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usually ignore the sampling error. The estimated irregular component does not always
display white noise characteristics particularly if the data comes from a survey with
sample overlap. Pfeffermann (1994) exploited this to produce estimates of the variance
of the seasonally adjusted estimates.

In the filter-based approaches, the trend component is defined as having cycles longer
than a certain length.The seasonal component is the band around the seasonal harmonics.
Seasonal adjustment aims to remove all spectral power at the seasonal frequencies, and
the irregular component is defined as the residual or what is left over from the original
once the trend and seasonal components have been removed.

Filter-based approaches use standard ratio to moving average approach. The basic
steps are initial estimate of the trend, remove the trend leaving seasonal and irregular,
then estimate the seasonal component. Seasonality cannot be identified until the trend
is known. An estimate of the trend cannot be found until the series has been seasonally
adjusted and so an iterative approach is adopted, as in the X11 methodology.

Extremes can distort the estimation of the components of the time series. Correcting
extremes improves the estimation of the time series components of trend, seasonal, and
irregular. There are different types of extremes that are represented in a time series.
Variability associated with sampling can cause extreme values to occur for estimates
based on small samples. In practice, extremes caused by sampling error may occur for
more than one time period. This is because of sample rotation where that sample remains
in the survey for a number of time periods.

A key issue is that the time series model for the population model will involve
autocorrelation and the sample design, in particular the pattern of sample overlap, will
lead to autocorrelation in the sampling errors. If the autocorrelation in the sampling error
is ignored, it will affect the modeling of the population model and may partly appear
in the estimated trend component. Hence there is a need to account for the correlation
structure of the sampling error in the time series analysis, especially if sampling error is
substantial. In model-based approaches, this can be done by including a component for
the sampling error, the parameters for which are estimated from the sampling variances
and autocorrelations, or incorporated in the state vector in a SSM. In X11, the sampling
error is often ignored, although Pfeffermann et al. (1998) suggested separately estimating
the sampling errors using a SSM and subtracting them for the original series and then
applying X11.

Although X11 was developed as a somewhat ad-hoc, nonparametric approach,
Maravall (1985) found that X11 could be approximated under a BSM with appropriate
parameters. Burridge and Wallis (1985) also considered a Kalman filter approximation
to X11 and used this to calculate the variance of seasonally adjusted series. Knowles
and Kenny (1997) compared a Kalman filter-based approach to X11 for trend estimation
and found that by appropriate choice of parameters the Kalman filter could approximate
the Henderson trend filters closely. At the ends of the series, the Kalman filter gave a
higher noise variance and they concluded that the Henderson moving average (HMA)
were more appropriate as trend filters.

9. Variance estimation for seasonally adjusted and trend estimates

Variance estimates are needed to measure the uncertainty for any type of estimate and
produce confidence intervals. There is well-established theory for calculating variance
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estimates for original estimates derived from a sample survey. We also need to consider
the variance of estimates obtained by time series analysis, in particular seasonally
adjusted estimates and trend estimates.

Variances are easily obtained from model-based approaches, for example, under the
BSM and the Kalman filter, the variance of the time series component estimates are
produced as part of the estimation process. Many agencies use a filter-based approach
and so much of the attention has been focused on methods for calculating variances for
this type of approach.

For filter-based seasonal adjustment, such as X11, a simple approach treats the pop-
ulation values as fixed. If the X11 seasonal adjustment process is approximated by a set
of weights, then ŜAt|N ≈ w′t|NyN , where ŜAt|N is the seasonally adjusted estimate to
time t based on a time series of data going to time T, where t ≤ N. This estimate can
be treated as an estimate of w′t|NYN , which is the seasonally adjusted value that would

be obtained if there was no sampling error. This implies that the error in ŜAt|N is
taken to be w′t|N(yN − YN) = w′t|NeN and the sampling variance is Var(ŜAt|N) ≈
w′t|NVar(yN)wt|N . A practical issue is the estimation of the variance matrix Var(yN),
which under this approach is the covariance matrix of the sampling errors as discussed
in Section 5. Wolter and Monsour (1981) used this approach for the sampling variance of
the seasonally adjusted series, and it can be applied to trend estimates by using suitable
definitions of the weights. McLaren and Steel (2000) used this approach to assess the
impact of different rotation patterns for both seasonally adjusted and trend estimation.
In this framework, it is simple to consider variance estimates for different measures, for
example, for 1 month movement, by redefinition of the weight matrix. There are many
approaches to linearization of the X11 process, including Young (1968), Wallis (1974),
Cleveland and Tiao (1976), Ghysels and Perron (1993), and Dagum et al. (1996).

This approach is estimating the sampling variance of the ŜAt|N and does not include
the effect of irregular terms or other components of Yt or revisions as estimates for later
time periods become available. More generally, the variance arising from the seasonal
and trend components can also be included. Bell and Kramer (1999) also included the
revision error when assessing the variations of ŜAt|N .

Pfeffermann (1994) considered the variance of ŜAt − SAt , ŜAt − Lt , and L̂t −
Lt , where SAt =Yt − St and ŜAt = yt − Ŝt , assuming Ŝt and L̂t are unbiased, so that
they extract the corresponding components with no error. The method uses a linear
approximation to seasonal adjustment that developed an estimate of sampling error
directly from the estimated time series using the estimated irregulars, which includes
the variability due to the sampling error and also the irregular component of the time
series. This approach does not explicitly model the time series of the sampling errors and
has the advantage that it does not require estimation of the sampling covariances, only
the sampling variance. Scott et al. (2004, 2005) provided a summary of the approach
and empirical results. For trend estimation, the same approach can be used.

Bell (2005) reviewed issues and approaches to variances for seasonal adjustment
and considered alternative definitions for model- and X11-based seasonal adjustment.
When the stochastic nature of the components of the time series are recognized, then
the relevant definition of the error associated with seasonal adjustment needs to be
considered and include ŜAt − (yt − St) = St − Ŝt and SAt − (L̂t + Ît).

A spectral approach has also been considered by Chen et al. (2003).
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Despite the progress that has been made the most appropriate way to achieve standard
errors for seasonally adjusted and trend estimates for filter based is still being researched.
Currently, no government agency which uses the filter-based approach is publishing
variance estimates for seasonally adjusted or trend estimates.

10. Rotation patterns and seasonally adjusted and trend estimates

Different rotation patterns produce different correlation structures in the sampling errors
over time, which can affect the properties of seasonally adjusted and trend estimates.
Using linear approximations to the seasonally adjusted and trend estimates produced
by X11 and X11 ARIMA McLaren and Steel (2000), considered the impact of different
rotation patterns on the sampling variance of seasonally adjusted and trend estimates
obtained by applying Henderson moving averages to the seasonally adjusted estimates.
Steel and McLaren (2002) provided further evaluation of the impact of different rotation
patterns. They found that the popular rotation designs that focus on obtaining high
sample overlap between adjacent time periods are good for the estimates of changes
between consecutive periods in the original and seasonally adjusted estimates. However,
for the level and 1 month and 3 month change in trend estimates and the level and 3
month change in seasonally adjusted estimates, rotation pattern with little or no monthly
overlap, such as 2-2-2(8) and 1-2-1(8), give considerable gains. Steel and McLaren
(2000b) reached similar conclusions for the mean squared error of the revision of trend
estimates. These results arise because trend estimation effectively involves averaging
over several time periods and examining changes over more than the just the two latest
periods. We noted in Section 2 that it is beneficial to have no little or no sample overlap
within the relevant window used to calculate an average and that for examining change
over longer periods the sample overlap is best concentrated at longer lags.

The Henderson moving averages were derived assuming that the original series has
an independent error structure. McLaren and Steel (2001) developed an approach for
constructing trend filters that takes into account the correlation of structure of the series
and showed that the benefit of such designs for trend estimates is still applied.
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The Analysis of Longitudinal Surveys

Gad Nathan

1. Introduction

In the past few decades, economists, sociologists, and other social scientists have become
increasingly interested in longitudinal surveys and their analysis, in their attempts to
understand the dynamics of economic and social processes. Previously, single-time
cross-sectional surveys and their analysis formed the primary basis for empirical inves-
tigations in the social sciences. Longitudinal surveys, in which the same units are inves-
tigated on several occasions, over extensive periods of time, are expensive undertakings
and are complex operationally and methodologically. Even when longitudinal data are
theoretically available, for example, from repeated panel surveys, not designed for longi-
tudinal analysis, such as the Labor Force Survey in the United Kingdom and the Current
Population Survey in the United States, technical and methodological problems consid-
erably reduce their usefulness for longitudinal analysis at the micro- or individual level.
In addition, their overall time span for a single unit is relatively short (usually no more
than about 2 years), and their panel design is primarily geared to increase the efficiency
of cross-sectional estimates and estimates of change at the aggregate or macro level,
rather than to that of the analysis of gross changes and flows or of other developments
over time at the individual level.

However, in recent years, longitudinal surveys have become of prime importance as a
basis of empirical research in the social sciences. They are now being used increasingly
for longitudinal analysis, and in many cases, longitudinal surveys are carefully designed
to permit the derivation of sophisticated analyses of the long-term dynamics of social
and economic processes. Thus, the Panel Study of Income Dynamics (PSID), carried out
by the Survey Research Center, Institute for Social Research, University of Michigan,
since 1968, is a longitudinal study of a representative sample of U.S. individuals and the
family units in which they reside. It emphasizes the dynamic aspects of economic and
demographic behaviors. Similarly, the British Household Panel Survey (BHPS), carried
out on a continuous basis since 1991 by the Economic and Social Research Council
(ESRC) Research Centre on Micro-Social Change at Essex University, has as its aims
“to further understanding of social and economic change at the individual and household
level in Britain, and to identify, model and forecast such changes and their causes and
consequences in relation to a range of socio-economic variables” – University of Essex
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(2006). Similar household panel surveys are the U.S. Survey of Income and Program
Participation (SIPP), the Canadian Survey of Labor and Income Dynamics (SLID), and
the European surveys conducted under the European Union Statistics on Income and
Living Conditions (EU-SILC) regulations – further details on the design of these surveys
are provided by Kalton (Chapter 5). For some insight on the various analytical uses of
panel surveys, in the social sciences see Solon (1989) and Heckman and Robb (1989).

Although in some cases, longitudinal surveys are designed to also produce cross-
sectional estimates for each point of time, we consider, in this chapter, only the analysis
of the dynamic aspects of longitudinal surveys, under a model-based approach. It should
be noted that the terms “longitudinal surveys” and “panel surveys” are often used inter-
changeably (sometimes due to differences in U.S. and U.K. usage). In this chapter, we
consider longitudinal analysis as that which relates to any data collected for the same
units over a series of time points (or even continuously), usually over a considerable
length of time. Although the emphasis is on the analysis of data from sample surveys,
we shall also consider methods of analysis developed or used for other types of data
(e.g., administrative data, census data, or experimental data), in as far as they can be
applied also for the analysis of survey data. Other chapters in this volume deal with
various related aspects of longitudinal surveys and panel surveys. Thus, Kalton (Chap-
ter 5) deals with the design and analysis of panel surveys, primarily those with short
periods of repetition and rotating panels, and their use for cross-sectional estimation
and for estimation of change, under a design-based approach. The chapter also deals
with special issues of panel surveys, such as the effects of changing modes of collec-
tion and weighting adjustments for attrition and wave nonresponse. Steel and McLaren
(Chapter 33) consider inference over time on the basis of repeated survey data, pri-
marily under a design-based approach and using time series methods. Finally, Singh
(Chapter 35) describes some approaches and recent developments in the analysis of
longitudinal categorical data, under a model-based approach, as well as joint modeling
for cross-sectional and longitudinal analysis of categorical data.

In the following section, we consider the various types of longitudinal surveys and
the problems they pose. Section 3 reviews general and specific models used for the
analysis of longitudinal data, primarily those applicable to survey data. In Section 4, we
consider some model-based methods for the treatment of wave nonresponse, attrition,
and misclassification errors. Finally, Section 5 deals with the effects of complex and
informative sample design on longitudinal analysis and their treatment for purposes of
analysis.

2. Types and problems of longitudinal surveys

Longitudinal data can be derived from a wide range of sources and by a variety of collec-
tion methods. In the following, we shall examine the main modes by which longitudinal
data are obtained and examine the possible ramifications of the methods used on the
way in which the data can be analyzed.

The prevalent method of collection of data for a longitudinal survey is prospective
measurement, in which a sample of respondents is followed forwards in time and data
are collected on their current situation at a series of points in time. This is the method
used in the important set of birth cohort studies, such as the U.K. 1970 British Cohort
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Study (BCS70). This was based on a sample of all births in Great Britain occurring
during one week in 1970, followed up in four subsequent waves over a period of 20
years, to study the medical, physical, educational and social developments of the cohort
and to investigate the forces and patterns that shape their lives – Butler et al. (1997).
This pioneering project has now been replaced, since 2000, by the similarly designed
Millennium Cohort Study (MCS) – Smith and Joshi (2002). The major disadvantage
of the prospective method of collection is the long lead time required until a sufficient
body of longitudinal data are available for analysis. Other practical problems involve the
difficulties of follow-up for dynamic populations and the inherent cumulative attrition,
with its implications for nonresponse bias – see Nathan (1999).

The retrospective method of measurement collects information at the current time
on past events, based on recollection or records. This is the widely used method for
case-control studies, sometimes termed retrospective sampling, in which subjects are
recruited according to their disease status and their past exposure to risk factors is
examined – see Scott and Wild (Chapter 38). However, retrospective measurement has
also been increasingly used in longitudinal sample surveys, often in conjunction with
prospective measurement. Thus, in the sixth wave of the BHPS of 1996, all respon-
dents were asked about their family structure during childhood (i.e., whether they lived
with one or both parents or other family members during childhood) – Francesconi
(2005). Although the retrospective method of collection overcomes the problem of
attrition, it is associated with possible acute effects of response error, when it relies on
memory. Several studies have indicated the serious problems associated with memory
effects in retrospective surveys. For instance, Kazemian and Farrington (2005) com-
pared the validity of retrospective reports with that of prospective reports and official
records on the age of onset for criminal offences and found that retrospective reporting is
unsuitable for a wide range of research questions. Similarly, Smith and Thomas (2003)
found, by test-retest reliability methods, that the quality of long-term recall reports on
migration histories may be poor, though they do propose steps that can be taken to
improve it.

Although the prospective and retrospective methods differ with respect to their non-
sampling errors, standard methods for their longitudinal analysis are basically the same.
Thus, a classic result of Prentice and Pyke (1979) shows that prospective and retro-
spective logistic models applied to case-control data give equivalent results. Similar
results for Bayesian analysis are obtained by Seaman and Richardson (2004). However,
when observations are clustered, such as in case-control studies with covariate variables
obtained from family members, Neuhaus et al. (2002) showed that in some cases the
prospective and retrospective analyses differ.

An important category of longitudinal studies is that of observational studies, that is,
experimental studies in which no random assignment to treatments is possible. These
could be retrospective observations on covariate data, obtained from historical adminis-
trative or medical records, to supplement data obtained from a prospective longitudinal
sample survey. For instance, in the MCS, mentioned previously, interview reports on
children were linked to birth register and hospital maternity records (after request-
ing informed consent – obtained for 92% of respondents), to investigate relationships
between current status and birth data – see Tate et al. (2006). In other cases, the observa-
tional study is carried out prospectively on a sample of patients, for which case-control
studies are difficult or impossible to implement. In particular, this has been the favored
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research mode for a wide range of longitudinal studies of the effects of therapeutic
interventions and environmental factors on the progression of human immunodeficiency
virus infection, in which the natural histories of cohorts of those infected are observed
over a length of time – see, for instance, Ko et al. (2003). Since treatments in these
studies are not randomly assigned and to overcome the problem of the confounding
of treatment-response relationships by time-varying variables, specialized methods of
analysis, such as those based on marginal structural models, intensity scores, and inverse
probability weighting are required – see, for instance, Gill and Robins (2001), Brumback
et al. (2003), and Hogan and Lee (2004).

Another form of longitudinal study in which the effects of different treatments are
studied is that of intervention studies. In this type of study, an intervention for a medical
or social process is initiated after the start of the longitudinal data collection, and subjects
are selected for the new intervention on the basis of their previous measurements. Thus,
in a study described by Lin and Hughes (1997), historical data on a marker for disease
progression define whether subjects are chosen to receive a new treatment. A similar
longitudinal intervention study in the economic area is described by Heckman and
Robb (1985). They considered the analysis of the effect of training on earnings when
enrollment into training is the outcome of a nonrandom selection process.

3. General models for analysis of longitudinal data

3.1. Repeated measures models and generalized estimating equations

The predominant method of analysis for longitudinal data has long been based on the
application of generalized linear models (GLMs) – McCullagh and Nelder (1999) – to
repeated measures and the use of generalized estimating equations (GEEs) to estimate
the model parameters – see, for instance, Diggle et al. (1994). The GLM describes the
conditional distribution of the outcome, given its past, where the distribution parameters
may vary across time and across units as a stochastic process, according to a mixing
distribution. Two different approaches to longitudinal analysis are dealt with by means of
similar GLMs. In the “subject-specific” approach, sometimes referred to as the random
effects model, the heterogeneity between subjects is explicitly modeled, whereas in
the “population-average” approach, sometimes referred to as the marginal model, the
average response is modeled as a function of the covariates, without explicitly accounting
for subject heterogeneity. To set ideas, consider the following set-up:

Let yit be the value of the outcome random variable and xit be a p × 1 vector of
fixed covariates for unit i at time t. The times, t, are not necessarily equally spaced, but
it is assumed that all units are observed for all time periods. Let zit be a fixed q × 1
vector of covariates associated with the random effect vector, bi. Let uit = E(yit|bi) and
μit = E(yit) be the conditional and unconditional expectations of the outcome variable,
respectively. Then, the mixed GLM, under the subject-specific approach, is defined by

h(uit) = x′itβ+ z′itbi; var(yit|bi) = g(uit) · φ, (1)

where bi is independently distributed with the distribution, F , and the functions h
and g are the link and variance functions, respectively. Under the population-average



The Analysis of Longitudinal Surveys 319

approach, the marginal expectation is modeled, without the random effect, as

h∗(μit) = x′itβ
∗; var(yit) = g∗(μit) · φ∗. (2)

Estimation of the model parameters is obtained, under both models, by solving appropri-
ate generalized estimating equations – see details in Zeger et al. (1988), which includes
an example of the analysis of longitudinal data from the Harvard Study of Air Pollution.
Further extensions of these models to Markov transition models and examples of their
application, primarily in the health sciences, may be found in Diggle (1994).

3.2. Multilevel models

Frequently, longitudinal sample surveys deal with hierarchical populations, such as
individuals within households or employees within establishments, for which multi-
level modeling is appropriate. On the other hand, Goldstein et al. (1994) considered the
analysis of repeated measurements using a two-level hierarchical model, with individ-
uals as second levels and the repeated measurements as the first levels. Thus, denoting
yit as above, they proposed the following two-level model:

yit =
p∑
k=1

xitkβk +
p2∑
�=1

z2�ite2�i +
p1∑
m=1

z1mite1mit, (3)

where the first term denotes fixed effects and the last two terms denote random effects
at the higher level (individuals) and at the lower level (measurements), respectively.
This is similar to the subject-specific model (1), with the addition of the measurement
(time) random effect. Assuming multivariate normality and standard assumptions on
covariances, they obtained maximum likelihood estimates of the parameters by the use
of an Iterative Generalized Least Squares algorithm. The results are extended to discrete
first-order and second-order autoregressive time series models and to continuous time
models. A small data set of nine height measurements for each of a sample of boys over
5 years, with age (and its exponents) as the fixed effect, provides an example of the
analysis.

Skinner and Holmes (2003) considered a random effects model, in which permanent
individual random effects, ui, are the higher level effects and transitory random effects,
vit , are the lower level effects, which may be correlated over time. As an example they
set up a basic hierarchical model for the log earnings, yit , of individual i at wave t, for
data from the BHPS, as:

yit = βt + ui + vit, t = 1, . . . , T, (4)

where the transitory random effects, vit , follow a first-order autoregressive model
AR (1):

vit = ρvit−1 + εit, t = 1, . . . , T. (5)

The random variables ui and εit are assumed to be mutually independent with E(ui) =
E(εit) = 0 and var(ui) = σ2; var(εit) = σ2

ε .
Similar models are used by Rao and Yu (1994) for small area estimation, where the

unit, i, is the small area.
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Fitting of the models and estimation of the parameters can be carried out by two alter-
native methods. The first is a covariance structure approach, in which the observations
on the T waves are treated as a multivariate outcome with individuals as “single level”
units. The second approach treats the data as hierarchical, with the lower level units as
the waves, t = 1, . . . , T , and the higher level units as the individuals, i.

Feder et al. (2000) considered a model that encompasses both the hierarchical nature
of many human populations and the time series relationships between repeated measure-
ments and random effects of higher-level groups. In the following, higher-level groups
will be called “households” and lower level units “individuals.” The proposed model
combines standard multilevel mixed linear models (Goldstein, 1986, 1995), operating
at given points in time with a state-space model that represents the time series relation-
ships of the random group effects and the individual measurements. Basic notation and
assumptions are as follows:

Let yhjt define the value of the response variable at time t = 1, . . . , T , for individ-
ual j = 1, . . . , nh, belonging to household h = 1, . . . N. The measurements yhjt are
assumed to follow the hierarchical two-level linear model:

yhjt = x′hjtbt + z′htvt + z′htuht + ehjt, (6)

where xhjt is a p-dimensional vector of individual level explanatory variables values; zht
is a q-dimensional vector of household level explanatory variables; bt and vt are fixed
vector coefficients of appropriate orders; uht is a (q×1) vector of household level random
effects and ehjt is an individual level random residual.The individual and household level
random errors are assumed to follow independent first-order autoregressive models,

uht = Auht−1 + dht; dht ∼ N(0q,D) (7)

ehjt = ρehjt−1 + εhjt; εhjt ∼ N
(
0, σ2

ε

)
. (8)

For convenience, A and D are assumed to be diagonal, implying independence of the
random group level effects. We also assume |Aii| < 1 and |ρ| < 1 to ensure stationarity.
It follows from (7) and (8) that for a given time, t, the marginal distributions are as
follows:

uht ∼ N(0q,D∗) (9)

ehjt ∼ N
(
0, σ2

e

); σ2
e = (1− ρ2)−1σ2

ε (10)

where D∗ = (1− A2)−1D.
Thus, the models operating at given time points are standard multilevel models with the
above variances for the random first- and second-level effects.

Although the likelihood of this model is easily constructed by using the time series
properties of the combined model, the large number of parameters to be estimated results
in unstable estimates, if direct maximization of the likelihood is used. Rather a two-stage
estimation procedure is proposed. At the first stage, a separate two-level model is fitted
for each time point, yielding estimates for the fixed effects and for the variances. At
the second stage, the time series likelihood is maximized to yield estimates of the time
series model parameters.

The methods are illustrated by a simulation study and an empirical application to
data from the Israeli Labor Force Survey. In this application, the outcome variables
are weekly hours worked, whereas years of education and gender serve as individual
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level explanatory variables and the number of employed persons in the household as a
household level explanatory variable.

3.3. Other methods of analysis

Path analysis has long been a preferred method of modeling complex relationships
between large numbers of variables in cross-sectional analysis of structured data sets in
the social sciences. Its generalization to modeling longitudinal data has been primarily
by means of Graphical Chain Modeling (GCM) and Structural Equation Modeling
(SEM). Both approaches provide pictorial representations of the association between
variables which are ordered, usually temporally, with the aim of identifying the direct
and indirect effects of one variable on another. Although the GCM approach builds up a
model for the complete system by fitting a sequence of sub-models, the SEM approach
specifies a single model for the complete system of variables being studied.

The GCM approach is based on the construction of a causal diagram which represents
the investigator’s understanding of the major causal influences among the measurable
quantities involved. A basic conditional independence graph is constructed to character-
ize the conditional independence structure of the data. Each vertex of the graph represents
a variable and two vertices are connected if there is a direct association between the
variables, whereas unconnected vertices represent variables that are conditionally inde-
pendent, given all the other variables. The graphs may be used to formulate research
hypotheses about indirect relations in an association structure, under the assumption
that the set of direct relations is sufficient to understand all associations in the system
and that it cannot be further reduced without destroying such association. For further
details on how graphical chain models help identify analogies and equivalences between
different models and to provide a unifying concept for many statistical techniques used
in the analysis of longitudinal data, see Wermuth and Lauritzen (1990). For an interest-
ing example of the application of GCM to the study of the determinants of neonatal and
postneonatal mortality in Malaysia, see Mohamed et al. (1998). The method allows both
the examination of the effects of direct association of each determinant on mortality and
the pathways by which intermediate socio-economic determinants affect mortality.

The SEM approach extends standard regression models to include multiple outcomes,
sometimes called endogenous variables, and unobservable latent variables. The basic
structural model is a set of regression equations relating each endogenous variable with
other endogenous variables and with exogenous variables or covariates. A second com-
ponent of the SEM is a measurement model, which relates observed study variables to
unobservable underlying constructs, represented by one or more latent variables. For a
thorough review of the SEM approach, its relationship to latent variable models for mul-
tivariate outcomes and to measurement theory, as well as applications to environmental
epidemiology, see Sánchez et al. (2005). An interesting application of structural equa-
tion modeling to longitudinal data from the U.K. National Child Development Study,
which studies simultaneously six different pathways hypothesized to link education and
health to other variables, is given by Chandola et al. (2006). They find by applying SEM
methods that the association can be explained by a combination of mechanisms, such
as adolescent and adult health behaviors and adult and parental social class.

Among a variety of other models used for the analysis of longitudinal data, the role
of Antedependence Models in dealing with nonstationarity deserves special attention.
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The idea of antedependence, first formulated by Gabriel (1962), relates to a set of
ordered variables, such as longitudinal observations, which are defined as being s-th
order antedependent if each variable, given at least s immediate antecedent variables,
is independent of all other preceding variables. Núñez-Antón and Zimmermann (2000)
considered unstructured and structured antedependence models for longitudinal data.
The unstructured normal model is defined by

y1 = x′1β+ ε1; yt = x′tβ+
s∗∑
k=1

ϕtk
(
yt−k − x′t−kβ

)+ εt; (t = 2, . . . , T ), (11)

where s∗ = min(s, t − 1), εt are independent normal random variables with mean zero
and possibly time-dependent variances, σ2

t > 0 and {ϕtk} are unrestricted parameters.
The model is unstructured in the sense that the (s+ 1)(2T − s)/2 parameters {ϕtk} and{
σ2
t

}
cannot be expressed as functions of a smaller set of parameters.

Structured antedependence models follow the same basic model above, but relation-
ships are assumed between the parameters, resulting in more parsimonious models. An
example is a model in which correlations over the same time lags are equal and are just
monotonic decreasing functions of the time lag. Núñez-Antón and Zimmermann (2000)
used several empirical data sets to compare structured and unstructured antedepen-
dence models with unstructured covariance models, Autoregressive Integrated Moving
Average (ARIMA) models, and random coefficient models.

Another widely used method for the analysis of data from longitudinal surveys and
from epidemiological studies is that of event history analysis, which models the move-
ment of individuals between states. Basically, this extends survival analysis to several
types of failure or competing risks with transitions between them. A flexible framework
for statistically modeling such problems is given by multivariate counting processes –
see, for example, Keiding (1999). Further methods for the modeling of change and of
event occurrence are surveyed in Singer and Willet (2003).

4. Treatment of nonresponse

The problems posed by nonresponse in longitudinal surveys have much in common with
those occurring in cross-sectional surveys. However, there are some special aspects of
nonresponse in longitudinal data, which must be considered. On the one hand, the fact
that the same individuals or households are repeatedly requested to provide information
on repeated occasions obviously leads to attrition and wave nonresponse, due to fatigue
and to difficulties in tracing sample units which are often highly mobile, see, for example,
Nathan (1999). On the other hand, the existence of observations for some points in time
for the same unit suggests that this information can assist in dealing efficiently with
the effects of nonresponse, by considering plausible relationships over time between
individual measurements. In the following, we focus on the treatment of missing data
resulting from wave nonresponse, where data are available for some points in time and
missing for others, rather than complete nonresponse, which can be dealt with similarly
to the ways used for dealing with nonresponse in cross-sectional surveys. Different
patterns of wave nonresponse to be considered are attrition (no observations from some
time point onwards), missing for a single time or for a continuous period and intermittent
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dropout. The relationships between the missing data mechanism and the missing and
observed data need to be specified. An important distinction is between the mechanisms
of missing completely at random (MCAR), missing at random (MAR), and not missing
at random (NMAR) or informative missingness – Little (1995), Little and Rubin (2002).

The design-based treatment of wave nonresponse in panel surveys has been addressed
in papers by Kalton (1986) and Lepkowski (1989) and in this volume by Kalton (Chapter
5). The methods proposed use imputation and weighting based on regression models,
incorporating known auxiliary data, including response to other waves, and taking into
account cross-sectional and longitudinal interrelationships.

Model-based treatment of nonresponse in longitudinal data has been considered pri-
marily in the context of experimental science applications. Thus, Diggle and Kenward
(1994) proposed a modeling framework for longitudinal data with informative dropouts,
which explicitly considers MCAR and MAR dropout as sub-models. Under a general
multivariate normal model, they specify a logistic regression model for the dropout
process, which allows dependence of the dropout probability on missing observations.
They show how to construct likelihood for the unknown model parameters from para-
metric specifications of the measurement process and of the dropout process. The model
parameters are then estimated by maximum likelihood and examples are given for appli-
cations to data from milk protein trials, for milk yields, and from multicentre clinical
trials in the study of depression. Rotnitzky et al. (1998) considered the use of semi-
parametric regression for the treatment of informative nonresponse. They proposed a
class of augmented inverse probability of response-weighted estimators of the model
parameters, which are consistent and asymptotically normal under parametric modeling
of the response probabilities. Their estimation procedure can be viewed as an extension
of the GEE method that allows for informative nonresponse.

In the sample survey context, Skinner and Holmes (2003) considered the effects of
nonresponse in a longitudinal survey, under the models described in Section 3, Eqs (4)
and (5), by modifying the standard estimator of the finite population covariance matrix,
so that it is based on all “attrition samples,” st , those responding until and including
time t. However, this does not deal with the problem of informative nonresponse. Miller
et al. (2001) developed a method for analyzing the categorical outcomes obtained from
longitudinal survey samples, with outcomes subject to multiple-cause nonresponse,
within the framework of weighted GEEs. They assumed a model that combines different
multivariate link functions to permit fitting Markov models to an outcome with cate-
gories represented by a mixture of ordinal success states and multiple failure states. They
extended the missing data approach of Rotnitzky et al. (1998) to the use of multiple-logit
models, to model the probability of multiple reasons for missing success or failure
outcomes, assuming that the probability of nonresponse depends only on observed
responses and on covariates specified in the missing data. Taylor series and jackknife
variance estimators are developed for parameters estimated from these models and are
presented within the context of adjusting for survey considerations and multiple-cause
nonresponse. The results are applied to disability data obtained from the U.S. Longi-
tudinal Study of Aging (LSOA). A similar approach is proposed by Gong et al. (2003).

Pfeffermann and Nathan (2001) used the time series structures with hierarchical mod-
eling, described in Section 3, Eqs (6)–(10), to deal with informative nonresponse in lon-
gitudinal surveys. They considered two methods based on these models, an augmented
regression method and one based on a state-space model. The augmented regression
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prediction extends standard regression prediction by adding a correction term that takes
into account the existing correlations between the observed and the missing data, so
that imputation of missing data is based on all observations for all the time periods, as
follows:

Let Ỹhj = (yhj1, . . . , yhjT )′ represent the generic vector of complete values (observed
and missing) for individual j in household h, with variance-covariance (V-C) matrix,
Sh (which is a known function of the unknown parameters contained in A,D,
ρ, σ2

e , but does not depend on j). Let Qhj define the response indicator matrix of size
thj × T , corresponding to unit hj, (thj is the number of times that unit hj is observed),
such that the observed values are Yhj = QhjỸhj . Similarly, denote by Qhj the indicator
matrix for the missing values, of size t̄hj × T , (t̄hj = T − thj), such that the missing
values are Y(m)

hj = QhjỸhj .
The imputed values, based only on data for the same individual are the augmented

Best Linear Unbiased (BLU) regression predictions (Pfeffermann, 1988):

Ŷ(m)

hj = QhjỸ
(p)

hj +QhjShQ′
hj

(
QhjShQ′

hj

)−1
(

Yhj −QhjỸ
(p)

hj

)
, (12)

where Ỹ(p)

hj =
(
y
(p)

hj1, . . . , y
(p)

hjT

)
is the complete vector of simple regression predictions,

defined by y(P)hjt = x′hjtbt+z′htvt ,QhjShQ′
hj = Cov

(
Y(m)

hj ,Yhj

)
, and QhjShQ′

hj = V(Yhj).
Similar augmented regression predictions can be based on all the observed data for all
the individuals in the household.

The state-space method is based on the formulation of the model. (6)–(10) in a state-
space form, as follows:

The observation equation is defined as

[QhtYht] = [QhtX̃ht]β̃
t
+ [QhtZ̃ht]αht (13)

and the transition equation is defined as

αht = Thαh,t−1 + vht, (14)

where [QhtYht] denotes the observed values for household h at time t (Yht defines the
generic vector of complete values for all the individuals in household h, of order nh
and Qht is the corresponding response indicator matrix), [QhtX̃ht] and [QhtZ̃ht], with

X̃ht =
⎛
⎜⎝

x′h1t z′ht
...

...

x′hnht z′ht

⎞
⎟⎠ and Z̃ht =

⎛
⎜⎝

z′ht
... Inh

z′ht

⎞
⎟⎠, are the design matrices of the explana-

tory variables; β̃
t
= (

b′t , v′t
)′

is the (p+q)×1 vector of fixed parameters;αht =
(
u′ht, e′ht

)′
is the (q+nh)×1 state vector with eht =

(
eh1t , . . . , ehnht

)′
; Th = A⊕ρInh is the transition

matrix (a block-diagonal matrix with A and ρInh as the two blocks), and vht =
(
d ′ht, ε

′
ht

)′
is a vector of random errors with V-C matrix: V(vht) = Rh = D⊕ σ2

ε Inh .
Under the model (with known parameters), the random components can be predicted,

either by application of the Kalman filter, if only current and past observations are
available, or by an appropriate smoothing filter, if data for subsequent time periods are
known. Estimation of the unknown model parameters is obtained by iterative generalized
least squares for the augmented regression prediction and by the method of scoring for
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the state-space method. A simulation study and an empirical example, based on Israeli
Labor Force data, compared the performances of the proposed methods favorably with
those of conventional imputation methods, which do not consider NMAR nonresponse,
such as mean imputation (within homogenous groups), nearest neighbor imputation,
and simple regression imputation.

5. Effects of informative sample design on longitudinal analysis

Standard analysis of longitudinal survey data often fails to account for the complex nature
of the sampling design, such as the use of unequal selection probabilities, clustering,
poststratification, and other kinds of weighting used for the treatment of nonresponse.
Thus, it does not incorporate all the design variables in the analysis model. This may
be due to a variety of reasons: there might be too many of them; they might not be
of substantive interest; or their values might be unknown, either because the analyst
does not have access to them or because they are latent variables, such as in the case
of nonresponse. However, if the sampling design is informative, in the sense that the
outcome variable is correlated with design variables not included in the model, even
after conditioning on the model covariates, standard estimates of the model parameters
can be severely biased, leading possibly to false inference.

Sample survey data may be viewed as the outcome of three processes: the process
that generates the values of units in the finite population, often referred to as the super-
population model; the process of selecting the sample units from the finite population,
known as the sample selection mechanism; and the process of response. Analytic infer-
ence from repeated survey data refers to inference about the superpopulation model
parameters, rather than to inference about finite population parameters. When the sam-
ple selection probabilities depend on the values of the model response variable, even
after conditioning on auxiliary variables, the sampling mechanism becomes informative
and the selection effects need to be accounted for in the inference process. This holds,
similarly, for the effects of the response mechanism.

Pfeffermann et al. (1998a) proposed a general method of inference on the population
(model) distribution under informative sampling that consists of approximating the
parametric distribution of the sample measurements for given population distributions
and first-order sample selection probabilities. The (marginal) sample distribution is
defined as the conditional distribution, given that unit i is in the sample, that is, as the
conditional distribution of the observed data. By application of Bayes’ theorem, they
obtained the following relationship between the sample distribution, fs(yi|θ), and the
population distribution, fp(yi|θ), as follows:

fs(yi|θ) = fp(yi|θ, i ∈ s) = Ep(πi|θ, yi)
Ep(πi|θ) fp(yi|θ), (15)

where πi = Pr(i ∈ s) is the inclusion probability, which may depend on yi. Under infor-
mative sampling, that is, when Ep(πi|θ, yi) �= Ep(πi|θ), this distribution is different
from the corresponding population distribution. For further details see also, Pfeffermann
and Sverchkov (Chapter 39).

Eideh and Nathan (2006) extended these results to study the case of longitudinal
panel sample observations under informative sampling, by fitting time series models
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and, in particular, an autoregressive model of order one, for longitudinal survey data,
when the sampling design is informative, as follows:

Under previously defined notation, assume that the observed measurements, yit ,
follow the first-order AR model; that is

yit − μ = φ(yit−1 − μ), i = 1, . . . , N; t = 1, . . . , T , (16)

where the errors {εit} are normally distributed with zero mean and variance σ2, and
|φ|< 1, and that the errors {εit} pertaining to the same unit and between units are
independent. The sample is assumed to be a panel sample selected at time t = 1 and all
units remain in the sample till time t = T . Then, if the sample design is informative, it is
intuitively reasonable to assume that the first-order inclusion probabilitiesπi = Pr(i ∈ s)
depend on the population values of the response variable at the first occasion only, yi1.
Pfeffermann et al. (1998a) considered two alternative approximation models for the
population conditional expectations of the inclusion probabilities:

(a) Exponential inclusion probability model:Ep(πi|yi1) = exp(a0 + a1yi1).
Under this model, the sample log likelihood function is given by

le
(
μ, ϕ, σ2, a1

) = −nT
2

log(σ2)+ n

2
log(1− ϕ2)

−1− ϕ2

σ2

∑
i∈s

(
yi1 − μ− a1σ

2

1− ϕ2

)2

+
∑
i∈s

[
− 1

2σ2

T∑
i=2

{yit − μ− ϕ(yit−1 − μ)}2
]
. (17)

This implies that the sample pdf belongs to the same family as the pop-
ulation pdf but differs only in the mean of yi1, which changes from μ to
μ+ a1σ

2
/
(1− ϕ2).

(b) Linear inclusion probability model:Ep(πi|yi1) = b0 + b1yi1.
Under this approximation, assuming that yi1 ≥ 0, the sample log likelihood

function is given by

le
(
μ, ϕ, σ2, b0, b1

) = −n log(b0 + b1μ)− nT

2
log(σ2)

+n
2

log(1− ϕ2)− 1− ϕ2

σ2

∑
i∈s
(yi1 − μ)2

+
∑
i∈s

[
− 1

2σ2

T∑
i=2

{yit − μ− ϕ(yit−1 − μ)}2
]
. (18)

The methods of estimation proposed for cross-sectional data, such as the two-step
method (Pfeffermann et al., 1998; Pfeffermann and Sverchkov, 1999) and the pseu-
dolikelihood method (Binder, 1996, Skinner, 1989a), can be extended to longitudinal
survey data. Eideh and Nathan (2006) proposed a two-step method of estimation and two
versions of the pseudolikelihood method for the estimation of the unknown parameters
of the above population models. A simulation study shows that the estimators based on
the sample distribution differ from those obtained under the assumption that the sample
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design is not informative, but that their performances are relatively robust to the choice
of model and method of estimation.

Finally, the above results can be extended to incorporate both the effects of informa-
tive sample design and those of informative nonresponse. This can be done by assuming
a model for the response propensity, such as the logistic model for informative dropout
proposed by Diggle and Kenward (1994). By considering both the dropout process and
the informative sample design, the joint sample distribution for the incomplete sequence
of observations can be obtained and its parameters can be estimated by the methods pro-
posed in Eideh and Nathan (2008).
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Categorical Data Analysis for Simple and Complex
Surveys

Avinash C. Singh

1. Introduction

Categorical data analysis (CDA) is a fascinating area of statistics being full of theoretical
challenges. The main difference from modeling with continuous response or outcome
variables is that CDArequires nonlinear models (such as generalized linear) for the mean
function to satisfy range restrictions, for example, the range [0, 1] for a binary variable.
This also implies that the variance of the model error depends on the mean and hence
on unknown mean parameters. As a result, the usual least squares theory is no longer
appropriate for best linear unbiased estimation. One could always use the large sample
theory of maximum likelihood (ml) estimation if a suitable parametric model were
available. However, practitioners often prefer making light assumptions in modeling for
prediction, such as specifying only the first two moments in a semiparametric framework.
In fact, count data often exhibit overdispersion (McCullagh and Nelder, 1989, Chapter 4)
due to clustering, as in the case of correlated binomial outcomes, which makes it difficult
even to specify second moments, let alone choosing an appropriate parametric model.As
an alternative to ml-estimation, the large sample quasi-likelihood (ql) estimation theory
of Wedderburn (1974) and the more general theory of optimal estimating functions
(EFs) of Godambe (1960), and Godambe and Thompson (1989), also referred to as
ql-estimation by Godambe and Heyde (1987), can be used, which turns out to be quite
powerful as well as practical (see also McCullagh and Nelder, 1989, Chapter 9).

In traditional CDA with contingency tables where the data are in the form of counts
cross-classified by levels of factors of interest, log-linear models for studying structural
relationship among factors or logit models for studying the effects of factors on another
factor treated as response are used. For example, in the Canadian Community Health
Survey (CCHS), a survey referred to throughout this chapter, the data can be grouped by
age-gender domains corresponding to subpopulations (or domains) of the total Canadian
population of individuals (aged 12 and older). A binary response variable (y) of interest
might correspond to one of the healthy life style indicators such as smoking (y = 1
for regular, y = 0 for nonregular—never or sometimes) and basic covariates (among
others) collected for each sampled individual k are age (x1k—a categorical variable or
factor with five levels, say, 12–19, 19–24, 25–34, 35–54, 55+) and gender (x2k—also a
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categorical variable). In the case of smoking outcome variable, another useful covariate
(x3k)might be the indicator variable for an individual with asthma. While the log-linear
and logit models are at the domain (or aggregate) level in the sense that all the covariates
considered are at the domain level (even the individual level covariates such as age and
gender are common for all units in the same domain as it is defined by the age-gender
factors), unit level models (e.g., logistic) with at least one unit level covariate such as
x3k or age defined at a level finer than the age factor level used in the contingency table
cross-classification can provide more effective use of the data as well as more efficient
estimates; here some covariates in the unit level model could still be at an aggregate
level. The method of ql-estimation can be used for all such problems. The main purpose
of this chapter is to review the application of ql-estimation to CDA for survey data.

If the sampling design is simple random sampling (with replacement), then we say
we have data from a simple survey and all the standard results on CDA based on
ql-estimation go through. Even if the design were without replacement, the standard
results remain approximately valid because the sample size is typically much smaller
than the population size. However, often the design is not simple but complex due to
stratification, multistage selection, clustering, and unequal probability sampling used
mainly for sample efficiency, although techniques such as stratification and unequal
probability sampling are used for estimation efficiency as well. For such designs, if we
can incorporate the design variables as covariates in the model, then the design can be
ignored in the modeling process (see Pfeffermann, 1993; Pfeffermann and Sverchkov,
2003, and Chapter 39 of this handbook) and therefore can be treated as simple for the
analysis. In practice, however, it is not feasible to include all the important design vari-
ables in the model for the simple reason of parsimony, lack of data availability, and
because the resulting model may not be of interest to the analyst. On the other hand,
ignoring the design in the analysis may introduce serious selection bias.Astriking exam-
ple of selection bias induced by the design comes from case-control studies where the
cases are oversampled while the controls are sampled at much lower sampling rates
from the control population (generally stratified by one or more of the model covari-
ates). Since the sample may look very different from the population, the analysis could
be quite misleading, in general, unless the sampling weights are used to reflect varying
selection probabilities (See Scott, 2006 and Chapter 38 of this handbook).

For complex surveys, it turns out that a weighted version of the ql-approach (referred
to hereafter as wql) can be applied for CDA and this is what is emphasized in this
chapter. The present chapter contains a detailed treatment of the wql-approach and thus
complements the earlier excellent reviews by Rao and Thomas (1989, 2003). An impor-
tant point to note for complex surveys is that for estimating finite population quantities
(FPQs) such as subpopulation or domain totals, large sample consistent estimators of
FPQs are easily obtained using Horvitz–Thompson (H-T) type estimators, usually after
some calibration. However, the second moments of these estimators around FPQs are
generally not available due to unknown second-order inclusion probabilities. There-
fore, nonoptimal ql-estimation with correct specification of only the first moment and
a working assumption about the second moment as in the generalized estimating equa-
tions framework of Liang and Zeger (1986), and corresponding quasi (q-) score tests
(see, e.g., Boos, 1992) form a natural starting point. For complex surveys, we will use
the term wql-estimation to refer to the method of survey weighted estimating functions
developed by Godambe and Thompson (1986) with desirable theoretical properties; see
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also Thompson (1997, Chapter 5) and Chapter 26 of this handbook. In this context,
the important initial contributions are due to Fuller (1975) in the case of linear regres-
sion models and Binder (1983) in the case of generalized linear models, for develop-
ing appropriate FPQ estimation framework, although optimality was not considered.
Analogous to Boos (1992) who considered simple surveys, weighted quasi (wq) score
tests were developed by Binder and Pathak (1994) for the test inversion method used
for interval estimation and by Rao et al. (1998) as a general approach to analysis of
survey data.

Before reviewing wql-estimation and wq-score tests, the traditional ml-estimation
and ml-score tests for CDA are reviewed in Section 2 to provide the background and
to fix the ideas and notation. Here, we consider four broad aspects of CDA, namely,
model selection, model diagnostics, inferential testing, and inferential estimation in that
order. Although some amount of parameter estimation is needed for inferential testing,
inferential estimation is presented after testing to compute point, variance, and interval
estimates for model parameters (identified as significant after testing) as well as for
other parameters defined as functions of domain means. More emphasis is placed on
the quadratic score statistic (Q) and its relation to Pearson’s X2 than on the ml-ratio test
statistic (usually denoted by G2) because of its need later for the ql-approach. We also
emphasize on the Neyman or nuisance parameter adjusted score (nscore for short) func-
tion in view of its need to deal with nested hypotheses. Since the asymptotic distribution
of the nscore statistic is independent of consistently estimated nuisance parameters, it
makes it convenient to treat the estimated parameter in the nscore statistic as known.
The nscore statistic plays an important role in specifying the Rao–Scott (henceforth,
R-S) corrections of the X2 statistic for survey data. In reviewing ml-based methods
for interval estimation, we consider the use of test inversion based on score tests as an
alternative to Wald’s method and the use of observed information instead of expected
information (Efron and Hinkley, 1978) in the distribution of parameter estimates so as to
improve finite sample properties. We also consider applications of recently introduced
Cholesky residuals (Houseman et al., 2004) for obtaining independent Pearson-type
residuals at the cell level and Estrella’s (1998) R2-type measures for assessing model fit
in CDA.

Next in Section 3, we review ways of generalizing the ml-based results to results under
the ql-framework with only first moment assumptions. Construction of the q-nscore
function is reviewed as it is key to obtaining results for the ql-approach when applied
to model selection, model diagnostics, inferential testing, and inferential estimation in
CDA. In Section 4, we consider complex survey data, the main focus of this chapter
and show how wq-score functions (and hence wq-nscore functions) can be obtained
as estimates of FPQs defined by population (census) q-score functions corresponding
to the model under consideration. Here, the instability in the χ2 approximation to the
asymptotic null distribution of the Q statistic based on the wq-nscore function is dis-
cussed. This is due to the instability in the estimated covariance matrix of the wq-nscore
statistic in the sense of having high relative variance of each element of the matrix. In
such situations, a well-known approach in practice is to use a working but stable covari-
ance matrix which is based on a simplified version (not completely arbitrarily chosen
though) of the original complex design, and then correct the asymptotic distribution.
This is an intriguing but a rather counter-intuitive idea that has been used successfully in
other statistical problems and was used by Rao and Scott (1984) for CDA leading to the



332 A. C. Singh

well-known R-S corrections, a review of which is provided in this section. In particular,
a proportionality condition relating the working covariance of the vector of wq-score
functions to the expected wq-information matrix of parameters is made explicit in order
for the wq-score statistic with a working covariance to have the form of a X2-type
statistic. The limiting distribution of this statistic is, however, not χ2 but only a linear
combination of independent χ2

1-variables. The R-S first- and second-order corrections
to the test statistic can be used to obtain approximate χ2 distributions. Also, whenever
the test statistic is based on wq-nscore functions with a working covariance matrix, a
simple form for defining the generalized design effects (g-deffs) needed for the R-S cor-
rections is provided in terms of the eigenvalues of the product of the actual covariance
and the inverse working covariance matrices of the wq-nscore functions. Moreover, we
consider use of g-deffs in smoothing the covariance matrix for standardizing residuals
for model diagnostics and for inferential estimation.

In Section 5, we consider unit-level models for CDA. Basically, all the results of
aggregate-level modeling presented earlier go through except for residual analysis. In
particular, we review the uncertainty in the degrees of freedom associated with the
Hosmer–Lemeshow’s (1980) chi-square statistic, which uses a X2-type goodness-of-
fit statistic after grouping the individuals based on ranking the predicted means. It
turns out that the Hosmer–Lemeshow statistic uses nscore functions but with incorrect
(like working) covariance matrix, so its asymptotic null distribution can be obtained
as a linear combination of χ2

1-variables. This implies that the R-S corrected Hosmer–
Lemeshow statistic can be approximated by a χ2 distribution. For survey data, these
results carry over by defining suitable FPQs corresponding to groupings based on
weighted empirical distribution function of predicted means as in Roberst, Ren, and
Rao (2008). Finally, summary and a brief discussion of special topics are presented in
Section 6.

2. Likelihood-based methods

For the CCHS example mentioned in the introduction, consider a three-dimensional
table of counts {zaij}1≤a≤A,1≤i≤I,1≤j≤J , where zaij is the observed count of individuals in
category a of the answer to the smoking question withA = 2 categories (a = 1 denotes
a regular smoker while a = 2 a nonregular or nonsmoker), category i of the age variable
with I = 5 categories, and category j of the gender variable with J = 2 categories.
Denoting by n the total sample size, we therefore have

∑A
a=1

∑I
i=1

∑J
j=1 zaij = n. We

assume that the sample is simple random which implies that the distribution of the
counts {zaij} is multinomial. Let yaijk be the random indicator variable that unit k in
the sample falls in the category aij and μaij denote the mean of yaijk, that is, μaij is
the probability that yaijk = 1. Thus,

∑nij
k=1 yaijk = nijyaij = zaij , nij being the sample

size for domain ij. Now, treating the smoking status indicator of an individual k in
the age-gender domain defined by ij as the binary response variable and the age and
gender variables as explanatory, consider a saturated logit model for the mean μ1ij as
follows.

Logit Model: logitμ1ij ≡ log
(
μ1ij/

(
1− μ1ij

)) = v+ v1(i) + v2(j) + v12(ij),

(1)
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where v is the intercept, v1(i), v2(j) are main or one-factor effects due to age and gender
covariates at levels i, j, respectively, and v12(ij) are interactions or two-factor effects.
The v-parameters satisfy the constraints

∑I
i=1v1(i) = 0,

∑J
j=1v2(j) = 0,

∑I
i=1v12(ij) = 0,

and
∑J

j=1v12(ij) = 0. Thus, there are I-1 linearly independent v1-parameters, J-1 inde-
pendent v2-parameters, and (I-1)(J-1) independent v12-parameters with a total of IJ ,
the maximum possible including the intercept. In practice, interest lies in finding a par-
simonious nonsaturated model such as the one with no interactions, that is, v12(ij) = 0
for all (i, j), which implies, in particular, that

(
μ1i1(1− μ1i1)

−1/μ1i2(1− μ1i2)
−1
)
, the

odds ratio over the two genders is the same for every age category i.
We can also express the model (1) as a nonlinear regression model that may be con-

venient for understanding. For this purpose, denote the domain ij as d (d = 1, 2, . . . , D,
where D = IJ), and the lth covariate for the domain d by Ax(l),d , which is the average
of the lth covariate xl (l = 1 to p) over the individuals in domain d with subpopulation
sizeNd . Here, xl is 1 or 0 depending on whether the corresponding age-gender covariate
category belongs to the domain d or not while for the intercept it is always equal to 1.
Thus, for example, the covariate Ax(l),d for the parameter v1(i) is zero except when the
domain d and the variable xl do represent the age category i. Now the model (1) can be
rewritten for d = 1 to D, in the familiar regression form as,

logitμ1d = A′x,dβ, (2)

where β is the vector of v-parameters of dimension p (equals IJ in the saturated case)
and Ax,d is the corresponding vector of p-covariates.

Next we consider the four main parts of data analysis as mentioned in the introduction.
It is assumed that the sample size is large enough for applicability of approximate
frequentist methods.

2.1. Model selection under likelihood-based methods

2.1.1. Stepwise covariate selection
This is usually carried out by first splitting the data into two parts of training and
validation samples, selecting the model based on the training sample, and confirming
the selection based on the validation sample. For this purpose, one can define a baseline
(B) model with parameter dimension pB and a full (F) model with parameter dimension
pF so that the final reduced model (R) with parameter dimension pR is somewhere in
between the two and is obtained by a suitable stepwise selection (backward or forward)
procedure. This is typically done under a hierarchy principle of covariate inclusion
in the sense that if a higher order interaction is in the model, then all the lower order
interactions and main effects are also included in the model.The baseline model basically
consists of the overall intercept term and some main effects deemed mandatory based
on past experience and subject matter considerations, while the full model consists of
all the potential covariates and the important interactions. For our CCHS example, the
full model is simply the saturated (S) model (1) with maximum number of parameters
being equal to pS(=D). Now, with categorical covariates, one can define a hierarchy of
importance in including covariates corresponding to 1-factor effects, 2-factor effects, and
so on. For example, we have one 1-factor effect of gender having two levels, four 1-factor
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effects of age having five levels, and four genders by age interactions or 2-factor effects.
A useful practical strategy might be a combination of moving forward a block (of factor
effects) and then backward within a block as follows. One starts with a baseline model
consisting of a block of all 1-factor or main effects. Now within this block, one could
perform a backward selection to see which one can be dropped in a stepwise manner
based on significance probabilities in the presence of remaining covariates.Alternatively,
it may be desirable to retain all of them based on subject-matter considerations. After
selecting the first block of covariates, one goes forward to add the second block of
2-factor effects and then goes backward within this block to select significant covariates
in a stepwise manner. This process is continued until all the covariates under the full
model are tested.

2.1.2. Testing covariate significance
To check significance of any covariate or a group of them in the presence of others, a
number of asymptotically equivalent large sample χ2 tests such as the ml-ratio testG2,
the score test Qml, Pearson’s chi-square test X2, and Wald’s test QW (also quadratic
but in ml-estimators and not score functions) can be used (see, e.g., Cox and Hinkley,
1974, Chapter 9). Before we define them, we need to compute the ml-estimator β̂ml

[p]
of β[p], where β[p] denotes the vector parameter (βl)1≤l≤p. In the following, a square-
bracketed subscript [p] of a vector β will be used to denote the parameter dimension
while the unbracketed subscript l simply denotes the lth element of the vector. The
vector β[p1−p2] will be used to denote the last [p1 − p2] elements of β[p1] partitioned
as β[p1] = (β′[p2], β

′
[p1−p2])

′. However, depending on the context, we may not always
need this subscript. Now, the likelihood for the counts {zad}1≤a≤2,1≤d≤D is multinomial
and can be expressed as the product of the marginal likelihood of the domain counts
or sample sizes {nd}1≤d≤D and the conditional likelihood of {zad}1≤a≤2,1≤d≤D given
{nd}1≤d≤D, which are sufficient for the nuisance parameters defining the distribution
of {nd}1≤d≤D. It follows that the conditional likelihood has all the information about
the parameters β[p]of interest and has the form of product binomial. The log-likelihood
given {nd}1≤d≤D under model (2) is obtained as

logL=
∑
d

(
z1d logμ1d + (nd − z1d) log(1− μ1d)

)+ const

=
∑
d

[(
A′x,dβ

)
z1d − nd log

(
1+ eA′x,dβ

)]
+ const

. (3)

Note that the above likelihood does not change even if the counts were generated by
a Poisson sampling scheme because the additional sufficient statistic, namely the total
count n, can also be conditioned. There would be no need of conditioning the likelihood
if the counts were indeed generated under a product multinomial sampling scheme with
domains d as strata and we get the same likelihood. It follows that the p-vector of score
functions for the β[p] parameters conditional on {nd}1≤d≤D is given by

φβ[p] ≡ ∂ logL/∂β =
∑
d

Ax,d(z1d −m1d)

=
∑
d

Ax,dnd
(
y1d − μ1d(β)

); m1d = ndμ1d(β).
(4)
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An efficient algorithm to estimate β̂ml
[p] is the Newton–Raphson iterative procedure.

For iteration (ν + 1), we have

β
(ν+1)
[p] = β(ν)[p] + J−1

β[p]
∑
d

Ax,d(z1d − ndμ1d(β))

∣∣∣β(ν)[p]
= J−1

β[p]
∑
d

Ax,d
[
z1d −

{
ndμ1d(β)− ndu1d(β)A

′
x,dβ
}]∣∣∣β(ν)[p] , (5)

where Jβ[p] is the observed information matrix defined as
(−∂φβ[p]/∂β′[p]), equaling∑

d ndu1d(β)Ax,dA
′
x,d , and u1d(β) denotes μ1d(β)(1− μ1d(β)). Note that in the above

iterative procedure, it is not necessary to choose an initial value β(0)[p], which turns out
to be particularly convenient in practice. One can directly use the observed proportion
n−1
d z1d or y1d for μ(0)1d and hence to obtain log it μ(0)1d . Alternatively, one can also use

instead (ndy1d + 0.5)(nd + 1)−1 in case y1d is 0 or 1 (see McCullagh and Nelder, 1989,
p. 117). The relation logitμ1d = A′x,dβ makes it possible to bypass β(0)[p] for the above
iterations by directly finding the initial value of A′x,dβ[p] for each d without having

to define β(0)[p] separately. We can now describe various tests of significance for model
selection as follows:

G2 Test : For the logit model (2), suppose we wish to testH2 : β[p1] ∈ �2 nested within
H1 : β[p1] ∈ �1, where �1 is an open subset of Rp1 , β[p1] is the vector (βl)1≤l≤p1 , and
�2 is a subset of �1 such that β[p1] =

(
β′[p2], β

′
[p1−p2] = 0

)′
, 1 ≤ p2 < p1. That is, the

model under H1 is given by

logitμ1d
(
β[p1]

) = A′x[p1],dβ[p1] = A′x[p2],dβ[p2] + A′x[p1−p2],dβ[p1−p2], (6)

and the null hypothesis is simplyH2 : β[p1−p2] = 0. Under suitable regularity conditions,
the large sample (in the sense of nds being large whileD remains bounded) ml-ratio test
using (3) is reject H2 in favor of H1 if

G2(H2|H1) ≡ −2
{
logL

(
β̂ml
[p2]
)
− logL

(
β̂ml
[p1]
)}

= 2
∑
d

∑
a

zad log
{
m̂
(1)
ad

/
m̂
(2)
ad

}
>χ2

p1−p2,α
, (7)

where m̂(1)ad , m̂(2)ad are the ml-estimates of the expected count for cell (a, d) underH1 and
H2 respectively, and χ2

p1−p2,α
is the upper α-point of the χ2 distribution with degrees

of freedom equal to the difference in the dimension of β under H1 and H2, that is,
p1 − p2 (see, e.g., Fienberg, 1980, Chapter 6). Note that if H1 is replaced by the sat-
urated model denoted by HS, then m̂(1)ad is simply zad , and G2(H2|HS) simplifies to
2
∑

d

∑
a zad log

{
zad
/
m̂
(2)
ad

}
taking the well-known form of 2

∑
O log(O/E), whereO

denotes the observed count zad and E denotes the estimated expected count m̂(2)ad . Also,
G2(H2|H1) can be expressed asG2(H2|HS)−G2(H1|HS). In the case of log-linear mod-
els (see below), the expression (7) simplifies further to 2

∑
d

∑
am̂

(1)
ad log

{
m̂
(1)
ad

/
m̂
(2)
ad

}
for hierarchical models but not in general (see, e.g., Fienberg, 1980, Chapter 4).

For the CCHS example, if the response variable of smoking status is polytomous
with possible values of three categories, say, regular, nonregular, and nonsmoker, then
the logit model (1) can be modified to incorporate two logits: one for the odds of regular
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smoker against nonsmoker and the other for nonregular smoker against nonsmoker.
The regression formulation (2) can be suitably modified and the above description of
ml-estimation for the new expanded β-vector andG2 tests for corresponding hypotheses
easily carry over.

If the categorical data are such that there is no distinction between response and
explanatory variables as in the case of contingency tables, then one can test for structural
relationship via log-linear models (see Bishop et al., 1975, Chapter 3). In particular, for
the CCHS example, if the smoking status is not treated as a dependent variable, then a
saturated log-linear model for the mean μaij of the indicator variable yaijk for the kth
individual to fall in the cell aij is defined as

Log-Linear Model: logμaij = u+ u1(a) + u2(i) + u3(j) + u12(ai)

+ u13(aj) + u23(ij) + u123(aij), (8)

where the u-parameters satisfy the usual restrictions, that is, the main or one-factor
effects u1(a)s satisfy

∑
a u1(a) = 0, the two-factor effects u12(ai)s satisfy

∑
a u12(ai) = 0,∑

i u12(ai) = 0, and so on. For the saturated model, the total number of u-parameters is
now AIJ , all independent under Poisson sampling but totaling one less (AIJ-1) under
multinomial, implying that the intercept u acts like a normalizing constant. Moreover,
under product multinomial sampling, there are more restrictions on the u-parameters
corresponding to fixed margins. The model (8) can also be expressed as a regres-
sion model analogously to (2) by treating the indicator variable yaijk as response,
the cell aij as the domain d and defining the corresponding d-level covariates Ax,d
as coefficients of u-parameters now treated as β-parameters. Under multinomial sam-
pling of size n, the ml-equations for the β-parameters under the log-linear model are
given by

D∑
d=1

Ax,d(zd −md) = 0; md = nμd, D = AIJ, (9)

which can be solved by Newton–Raphson as before; similar to the solution of (4) for
logit models. For models having “sufficient” configurations (see Bishop et al., 1975,
Chapter 3), a well-known traditional algorithm of iterative proportional fitting can
also be used to solve (9). The use of this algorithm produces the estimated expected
counts md directly, without having to first solve for the β-estimates. In particular, for
the hypothesis of no three-factor interactions in model (8), the ml-estimates of {maij}
are obtained by solving via iterative proportional fitting the equations (in the traditional
notation)

zai+ = m̂ai+, za+j = m̂a+j, and z+ij = m̂+ij, (10)

where zai+, for example, denotes
∑

j zaij . However, the above iterative method is gen-
erally not as efficient as Newton–Raphson and also not as applicable. The ml-equations
(9) for log-linear models under other sampling schemes such as Poisson sampling do
not change by considering the conditional likelihood given the total count n, a suffi-
cient statistic, and also not for product multinomial sampling by forcing appropriate
u-parameters in the model corresponding to the margins to be fixed under the sampling
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design. TheG2 tests can also be defined for log-linear models in a manner analogous to
their definition in the case of logit models. It may be noted that, in practice, logit models
are generally preferable in view of their substantive interpretability representing the
effect of other categorical variables on a response variable and because of parameter
parsimony. Moreover, since more than one log-linear models may give rise to the same
logit model (see Fienberg, 1980, Chapter 6) and if the ultimate interest lies in logit mod-
els, it may be better to fit them directly rather than obtaining them indirectly through
log-linear models. However, log-linear models are useful for general understanding of
interactions among various categorical variables.

Going back to the discussion of G2 tests, we observe that G2 has the desirable
property of being invariant under one-to-one nonlinear parameter transformations as
it is not based on the explicit form of ml-estimators. However, it requires parameter
estimates under both H1 and H2, which may not be desirable in practice.

Score Test Qml: Following Cox and Hinkley (1974, Chapter 9), the score test statistic
for the logit model (2) can be defined as follows. LetQ(φβ[p]) denote the quadratic form

Q
(
φβ[p]

) = φ′β[p]	−1
φ[p]φβ[p]; 	φ[p] = Cov

(
φβ[p]

)
(p× p). (11)

For the logit model (2) with φβ[p] defined in (4), 	φ[p] is given by
A′xdiag{ndu1d(β)}1≤d≤DAx

(=∑d ndu1d(β[p1])Ax,dA′x,d
)
, where Ax =

(
A′x,d

)
1≤d≤D is

the D × p matrix of model covariates, and u1d(β) is μ1d(β)(1− μ1d(β)) as defined
earlier in (5). Now the score test rejects H2 in favor of H1 if

Qml(H2|H1) = Q(φβ[p1])
∣∣∣
β[p1 ]=

(
β̂′ml
[p2],β[p1−p2 ]=0

)′ > χ2
p1−p2,α

, (12)

where the ml-estimator β̂ml
[p2] needs to be computed only under H2. The test (12) is also

known as the C.R. Rao’s score test. If H1 is the saturated model HS, then the D × D
matrix Ax[pS] is nonsingular, and Qml for H2 is given by

Qml(H2|HS) = Q(φβ[pS])
∣∣∣
β[pS ] =

(
β̂′ml[p2 ],β

′[pS−p2 ]=0
)′

= (A′x[pS](z1 −m1)
)′(
A′x[pS]Diag

{
n−1
d m1d(nd −m1d)

}
Ax[pS]

)−1

× (A′x[pS](z1 −m1)
) ∣∣∣
β[pS ]=

(
β̂′ml[p2 ],β[pS−p2 ]=0

)′ ,

=
D∑
d=1

nd(z1d −m1d)
2

m1d(nd −m1d)

∣∣∣
β[pS ]=

(
β̂′ml[p2 ],β[pS−p2 ]=0

)′

=
D∑
d=1

2∑
a=1

(zad −mad)2
mad

∣∣∣
β[pS ]=

(
β̂′ml[p2 ],β[pS−p2 ]=0

)′
(13)

which coincides with the usual Pearson’s X2 test statistic of the form
∑
(O− E)2/E.

It may be of interest to note that with the log-linear model (8) for the table of counts
{zad}under multinomial sampling, the covariance matrix of the score vector of dimension
pS = AD is singular. In this case, using a g-inverse in defining the quadratic form gives
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rise to the usual X2 as in (13) or alternatively, we can define the score statistic with
just pS − 1 score functions by arbitrarily dropping one; (see Cox and Hinkley, 1974, p.
316). An equivalent alternative test (known as C(α), C in honor of Cramér and α for the
significance level) using nscore (nuisance parameter adjusted score mentioned earlier
in Section 1) function φβ[p1−p2|p2] was developed by Neyman and is given by

Q
c(α)

ml (H2|H1)= Q
(
φβ[p1−p2|p2]

)∣∣∣
β[p1 ]=

(
β̂′ml[p2 ],β

′[p1−p2 ]=0
)′ ;

φβ[p1−p2 |p2] = φβ[p1−p2] −	φ[p1−p2,p2]	
−1
φ[p2]φβ[p2],

(
φβ[p1] = (φ′β[p2], φ

′
β[p1−p2])

′
)
,

≡ Fφβ[p1],
(
F = (−	φ[p1−p2,p2]	

−1
φ[p2], I(p1−p2)×(p1−p2)

))
,

(14)

whereQ(.) and	φ[p1] are defined as in (11). The nscore function φβ[p1−p2 |p2], obtained
after adjusting φβ[p1−p2], is orthogonal (i.e., uncorrelated) to the score function φβ[p2] for
nuisance parameters because the projection of φβ[p1−p2] on the linear space generated
by φβ[p2] (under the covariance norm) is subtracted from it. Using the covariate matrices
Ax[p2],d , Ax[p1−p2],d defined in (6), 	φ[p1] can be partitioned as(

	φ[p2] 	φ[p2,p1−p2]
	φ[p1−p2,p2] 	φ[p1−p2]

)

=

⎛
⎜⎜⎝
∑
d

ndu1d(β)Ax[p2],dA
′
x[p2],d

∑
d

ndu1d(β)Ax[p2],dA
′
x[p1−p2],d∑

d

ndu1d(β)Ax[p1−p2],dA
′
x[p2],d

∑
d

ndu1d(β)Ax[p1−p2],dA
′
x[p1−p2],d

⎞
⎟⎟⎠,
(15)

where 	φ[p2,p1−p2], for example, is the covariance between φβ[p2] and φβ[p1−p2].
The covariance 	φ[p1−p2 |p2] needed for the nscore function φβ[p1−p2 |p2] is then

obtained as

	φ[p1−p2 |p2] = F	φ[p1]F
′ = 	φ[p1−p2] −	φ[p1−p2, p2]	

−1
φ [p2]	φ[p2,p1−p2]. (16)

Using a decomposition of Q(φβ[p1]), Neyman’s Qc(α)

ml of (14) can also be expressed as

Q
c(α)

ml (H2|H1) = Q
(
φβ[p1]

)−Q (φβ[p2]
) ∣∣∣
β[p1 ]=

(
β̂′ml[p2 ],β

′[p1−p2 ]=0
)′ . (17)

Now with the ml-estimate β̂ml
[p2], the second term with the negative sign in (17) drops

out and the form of the Neyman’s score statistic coincides with Rao’s. However, a prac-
tical advantage of the test statistic of (17) is that it is valid for any

√
n-consistent estimate

of β[p2] under H2 and remains applicable when the ml-estimates may be intractable or
computationally difficult. Note that with alternative estimators β̂[p2], the second term in
(17) with the negative sign does not drop out. In this chapter, the term score statistic will
be used to refer to the quadratic formQ(.) regardless of whether the argument inQ(.) is
the score function vector φβ[p1] of dimensionp1 or the nscore function vector φβ[p1−p2|p2]
of dimension p1 − p2, although the former corresponds to Rao’s score statistic while
the latter to Neyman’s statistic.
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X2 Test: It follows from (13) that for testingH2 givenH1 = HS, the usual Pearson’s X2

test is identical to the score testQml(H2|HS). Now for testing the nested hypothesisH2

given H1, the X2(H2|H1) test is defined by rejecting for large values of

X2(H2|H1) ≡ X2(H2|HS)− X2(H1|HS)

=
D∑
d=1

2∑
a=1

(
zad − m̂(2)ad

)2
m̂
(2)
ad

−
D∑
d=1

2∑
a=1

(
zad − m̂(1)ad

)2
m̂
(1)
ad

,
(18)

by referring to theχ2
p1−p2

distribution, where m̂(2)ad and m̂(1)ad denote the estimated expected

counts under H2 and H1, respectively. Note that if H1 = HS, then m̂(1)ad = zad and the
second term in X2(H2|H1) drops out as expected. The form of X2(H2|H1) defined above
is convenient for computation but it requires two ml-estimates, and unfortunately, it is
also not necessarily positive unlike the score statistic and the G2 statistic for nested
hypotheses.An alternative and asymptotically equivalent form due to Rao (1973, p. 398),
which is positive by construction, is given by

X2
R(H2|H1) =

D∑
d=1

2∑
a=1

(
m̂
(1)
ad − m̂(2)ad

)2
m̂
(2)
ad

. (19)

The two tests X2(H2|H1) and Qc(α)

ml (H2|H1) of (17) are asymptotically equivalent
because

Q
c(α)

ml (H2|H1) ≈ Qml(H2|HS)

∣∣∣
β[pS ]=

(
β̂′ml[p2 ] ,β

′[pS−p2 ]=0

)′ (20)

−Qml(H1|HS)

∣∣∣
β[pS ]=

(
β̂′ml[p1 ] ,β

′ [pS−p1 ]=0

)′ .

Wald Test QW: First observe that the asymptotic normality of β̂ml
[p], the solution of the

score equation (4), follows from that of φβ[p] because by Taylor expansion,

φβ[p] ≈ Jβ[p]
(
β̂[p] − β[p]

)
; Jβ[p] = −∂φβ[p]/∂β′[p], (21)

and Jβ[p] is the observed information matrix defined earlier for (5). It follows that the
asymptotic distribution of β̂ml

[p] is given by

β̂ml
[p] − β[p] ∼approx N

(
0, 
β[p]

)∣∣∣β=β̂ml[p]
;
β[p] = J−1

β[p]	φ[p]J
′−1
β[p]. (22)

The covariance matrix 
β[p] in our case reduces to I−1
β[p], where Iβ[p] = E(Jβ[p]),

the expected information matrix because Iβ[p] = Jβ[p] for the canonical link function
of logit, and the expected information matrix Iβ[p] equals the covariance 	φ[p] for an
optimal EF such as the score function. The Wald statistic QW(H2|H1) is defined by a
quadratic form in the unrestricted (i.e., underH1) ml-estimator β̂uml

[p1−p2] of test parameters
β[p1−p2] and is given by

QW(H2|H1) = Q
(
β̂uml
[p1−p2]

)
=
(
β̂uml
[p1−p2] − 0

)′

̂−1
β[p1−p2]

(
β̂uml
[p1−p2] − 0

)
,

(23)
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where the estimated covariance matrix 
̂β[p1−p2] of the quadratic form is obtained as the
lower (p1 − p2) × (p1 − p2) principal submatrix of 
β[p1] evaluated at β[p1] = β̂ml

[p1].
Observe thatQW(H2|H1) depends on the functional form of the ml-estimator of the test
parameter directly.

The Wald test rejects for large values of QW by referring to the χ2
p1−p2

distribution.
We remark that although the Wald test is in common use, it does not share the desir-
able property of invariance to nonlinear parameter transformations with the other tests.
Moreover, the finite sample behavior of the χ2 approximation is invariably not very sta-
ble due to a lack of representation in general of β̂ml

[p1] as a linear function of independent
terms unlike the case with φβ[p1] or the log likelihood function, which helps in faster
convergence to normality.

2.1.3. Asymptotic functional linear regression approach
We conclude this subsection by describing a simplified linear model approach for large
nds, which provides the basis for one of the early strategies for analyzing data from
complex surveys (see Section 4.1). By a central limit theorem, conditional on nds,

y1d∼approx N
(
μ1d, n

−1
d y1d

(
1− y1d

))
, (24)

and so by the delta method, we have

logit y1d∼approx N
(
logitμ1d,

(
ndy1d

(
1− y1d

))−1
)
. (25)

Now, we can write an approximate functional linear regression model (Bishop et al.,
1975, p. 353; Grizzle et al., 1969) for logit y1d as

logit y1d ≈ A′x,dβ + δd, δd ∼ N
(
0,
(
ndy1d

(
1− y1d

))−1
)
. (26)

It follows that the standard weighted least squares estimation method for linear mod-
els can now be used. Although this approach is attractive because of its simplicity,
the transformation bias induced by linearization may seriously affect the finite sample
behavior.

2.2. Model diagnostics under likelihood-based methods

We consider two types of diagnostics: informal (graphical plots) and formal (measures
of model fit and their significance via testing).

2.2.1. Informal diagnostics (residual and quantile-quantile plots)
The standardized residuals based on the difference between observed and expected
counts (like Pearson residuals under the selected model) provide an effective means
of model checking. With aggregate level modeling, it is natural to look at domain
level residuals, r1d = nd

(
y1d − μ1d

(
β̂ml
[pR]
)) (

y1d = n−1
d z1d

)
, for the final reduced model

HR because Pearson’s χ2 involves these residuals. The correlations among residuals
{r1d}1≤d≤D are due to two possible sources: one is the assumed correlation structure
among model errors (y1dk − μ1d(β)) at the unit level, and the other source is the use of
model parameter estimates β̂ml

[pR], which induces correlations even if model errors are
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uncorrelated. In the usual regression diagnostics for noncategorical data, impact of the
second source is negligible for large sample sizes. If this were the case for CDA, then
with independent model errors, it would have been reasonable to treat the standardized
residuals, {r∗1d},

r∗1d = r1d/se(r1d); Cov(r1d)1≤d≤D = R(β) diag{ndu1d(β)}R′(β)
∣∣
β̂ml[pR ]
; (27)

R(β) = ID×D − diag{ndu1d(β)}AxJ−1
β[pR]A

′
x,

approximately as iid N(0, 1) under correct model specification, where se(r1d)s as usual
are square roots of the diagonal elements of Cov(r1d)1≤d≤D, the Taylor linearization of
the residual vector (r1d)1≤d≤D is R(β)(nd(y1d − μ1d(β))1≤d≤D, Jβ[pR] is as in (22), and
Ax or (A′x,d)1≤d≤D as in (2) defined under HR. Now, the residual plot could be checked
for possible nonrandom pattern such as the one under dependence or heteroscedasticity.
However, for CDA use of the estimate β̂ml

[pR] in computing the standardized residuals
{r∗1d} may introduce non-negligible correlations, which make it difficult to check for
independence. Such dependence among {r∗1d} may be serious even for a large overall
sample size n because the residuals are based on grouped or domain level data having
large sample sizes nd while the total number D of groups or domains remains bounded
in general.

It follows that it might be better to first transform the residuals so that asymptoti-
cally, they behave the same whether or not β[pR] is estimated. We can then transform
them further to obtain Cholesky residuals (Houseman et al., 2004), which make their
covariance matrix diagonal for ease in interpretation. For this purpose, we first con-
sider the saturated model HS with number of parameters pS(=D) by introducing extra
parameters β[pS−pR] of dimension (pS − pR) via construction of aD×(pS − pR)matrix
Ax[pS−pR] such that the augmented matrix

(
Ax[pR], Ax[pS−pR]

) ≡ Ax[pS] has full rank pS.
The subscript x[pS − pR] denotes new (pS − pR) covariates with values given by the
rows of Ax[pS−pR] for each d while theD×pR matrix Ax[pR] is similar to the old matrix
Ax of (2). A simple way to constructAx[pS−pR] is to choose its (pS − pR) columns as any

subset of the D rows of
(
ID×D − Ax[pR]

(
A′x[pR]Ax[pR]

)−1
A′x[pR]

)
(which are orthogonal

to columns ofAx[pR] by being part of a projection matrix on the orthocomplement space)
such that A′x[pS−pR]Ax[pS−pR] is nonsingular. Thus, the model for μ1d under HS is given
by (analogous to (6))

logitμ1d
(
β[pS]

) = A′x[pR],dβ[pR] + A′x[pS−pR],dβ[pS−pR] = A′x[pS],dβ[pS]. (28)

Next to make the asymptotic dependence of
{
r1d = nd

(
y1d − μ1d

(
β̂ml
[pR]
))}

1≤d≤D on

β̂ml
[pR] negligible, we perform a nonsingular linear transformation using the formula

(4) to obtain the score vector φβ[pS] =
(
φ′β[pR], φ

′
β[pS−pR]

)′
evaluated at β[pS] =

(
β′ml
[pR],

β′[pS−pR] = 0′
)′

; here, the firstpR score functionsφβ[pR] are 0 atβ[pS] =
(
β′ml
[pR], β

′
[pS−pR] =

0′
)′

. The transformed residuals (r̃1d)pR+1≤d≤pS , where r̃1=φβ[pS−pR] evaluated at

β[pS] =
(
β′ml
[pR], β

′
[pS−pR] = 0′

)′
, do not depend on β̂ml

[pR] asymptotically because at β[pS] =(
β′ml
[pR], β

′
[pS−pR] = 0′

)′
, φβ[pS−pR] equals φβ[pS−pR |pR] defined from the formula (14)

for nscore functions. Thus, the dimension of the transformed residuals is reduced to
(pS − pR) due to estimation of the unknown model parameters β[pR]. The residuals
{r̃1d}pR+1≤d≤pS can be transformed further by a lower triangular matrix–inverse of the
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left Cholesky root of the covariance matrix 	φ[pS−pR |pR] defined similarly to (16). The
corresponding standardized residuals {r̃∗1d}pR+1≤d≤pS are approximately iid N(0, 1) and
plotted to check for the existence of any nonrandom pattern. Further, a Q-Q (quantile-
quantile) plot of quantiles of the empirical residual distribution against those of the
standard normal distribution can be used to check for normality.

2.2.2. Informal diagnostics (influential points)
Following Pregibon (1981) and Roberts et al. (1987), influential points could be identi-
fied using diagonals of the hat matrix corresponding to the linearized regression problem,
analogous to that used in the Newton–Raphson iterations (5); that is, for the adjusted
dependent variable y∗1d defined below, consider the approximate linear regression
model

y∗1d ≡ y1d − [μ1d(β̂[pR])− u1d(β̂[pR])A
′
x,d β̂[pR]] (29)


 u1d(β̂[pR])A
′
x,dβ + δ1d, δ1d ∼approx N(0, n

−1
d u1d(β̂[pR])).

Now denoting the design matrix of the above linear regression by X = (X′d)1≤d≤D,
whereXd is u1d(β̂[pR])Ax,d , and the error covariance matrix diag

{
n−1
d u1d

(
β̂[pR]

)}
by	δ,

the covariance matrix of the residuals
{
y∗1d −X′dβ̂[pR]

}
is obtained as	1/2

δ (I −H)	1/2
δ ,

where H is the hat matrix 	−1/2
δ X

(
X′	−1

δ X
)−1

X′	−1/2
δ , whose diagonal elements are

between 0 and 1. These diagonal values can be plotted to check for possible high values
that would indicate extreme points in the factor space. Next, the influence of these
extreme points is checked by estimating the change in model parameters in the absence
of each domain corresponding to the point deemed to be extreme.

2.2.3. Formal diagnostics (tests for model adequacy)
We assess model adequacy by computing p-values corresponding to tests of significance-
of-fit (sof ) and goodness-of-fit (gof ). For assessing sof, we check the overall significance
of predictors in the final model by computing the test statistic for the baseline modelHB

(with dim β = pB) given the final modelHR (with dim β=pR). For instance, the score
test from (12) is

Qml(sof)(HB|HR) = Q(φβ[pR])
∣∣∣
β[pR ]=

(
β̂′ml[pB ],0

)′ . (30)

The p-value is computed by referring to the upper tail of the χ2
pR−pB

distribution. This
test is expected to be highly significant because significant predictors were selected in
the modeling process. For assessing gof, we check the overall nonsignificance of the
omitted predictors in an enlarged full model (such as the saturated model) by computing,
for example, the score test statistic

Qml(gof)(HR|HF) = Q
(
φβ[pF]

)∣∣∣
β[pF ]=

(
β̂′ml[pR ],0

)′ . (31)

The p-value is computed by referring to the upper tail of the χ2
pF−pR

distribution. This
test is expected to be highly insignificant if the model is adequate.

2.2.4. Formal diagnostics (measures of model fit and their significance levels)
In addition to the above tests for model adequacy, it would be useful to compute the
corresponding measures of model fit and their significance levels or p-values for tests
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based on them. For this purpose, we follow Estrella’s (1998) generalization of R-square
to nonlinear models. It is based on likelihood ratio tests for nested models and reduces to
the usual R-square for linear models. For nested models such asHB ⊂ HR corresponding
to the sof test and the likelihood (3) for product binomial data consisting of AD counts
{ndyad} with number of linearly independent terms {nd(yad −μad)} being onlyD when
A = 2, the Estrella’s measure R2

e (between 0 and 1) is defined as

R2
e = 1− (e∗R/e∗B)e

∗
B; e∗R = −2D−1 logL

(
β̂ml
[pR]
)
,

e∗B = −2D−1 logL
(
β̂ml
[pB]
)
, e∗B > e∗R. (32)

If the term e∗B is relatively large, then the measure can be simplified to R2∗
e =

1−exp(−(e∗B−e∗R)), approximately. It may be instructive to note thatR2∗
e coincides with

the usual expression of R2 for a normal linear model. More specifically, for the linear
model (with only the intercept under HB), yi = x′iβ+ εi, εi∼iid N(0, σ2), i = 1, . . . , n,
we have

−2n−1 logL
(
β̂ml
[p]
)
= 1+ log(2π)+ log σ̂2, σ̂2 = n−1

n∑
i=1

(
yi − x′iβ̂ml

[p]
)2
,

(33)

which implies that e∗B − e∗R = log n−1∑n
i=1(yi − y)2 − log n−1∑n

i=1

(
yi − x′iβ̂ml

[p]
)2

.
Similarly, for the final reduced model nested within the full model (i.e., HR ⊂ HF),

corresponding to gof test, a secondR2
e measure can be defined. For each measure, signifi-

cance level corresponding to a suitable F -test statistic can be computed. For example,
in the case of HB ⊂ HR, the test statistic

(
R2
e/(pR − pB)

)((
1− R2

e

)/(
D− pR

))−1
is

referred to the upper tail of the FpR−pB,D−pR distribution to compute the significance
level.

2.3. Inferential testing under likelihood-based methods

2.3.1. Testing significance of regression parameters
Often in data analysis, the model is selected based on a training sample, and we may
wish to confirm significance of factor effects included in the final model through the
validation sample. Also, it may be of interest to compute significance of certain factor
effects or a group of them given the final model HR since this may not be available as
part of the stepwise selection procedure for model covariates. In any case, suppose we
wish to test a hypothesis (denoted by HT) nested within the final model HR. For this
purpose, we can, for example, use the score test from (12) to defineQml(HT|HR), which
has a χ2

pR−pT
distribution.

2.3.2. Testing significance of difference between two domain means
Suppose we wish to test the significance of the difference between μd(β) and μd ′(β)
under HR for domains d and d ′. For example, in the case of CCHS, the two domains
may correspond to two age-gender groups. If we wish to use the score test, we first
transform the parameter vector from β[pR] to θ[pR] as follows:

θ1 = μd(β)− μd ′(β), θl = βl, l = 2, . . . , pR. (34)
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Now with φθ = P ′φβ, P = (∂β/∂θ′), and	φ(θ) = P ′	φ(β)P , and givenHR, the score
test for testing HT : θ1 = 0 with θ[pR−1] unspecified, can be easily obtained from (12).
We could also use the Wald test for this problem, which would certainly be simpler in
practice. However, as mentioned earlier, the score test would be preferable from the
point of view of stability of the χ2-approximation.

2.4. Inferential estimation under likelihood-based methods

2.4.1. Estimation of model parameters
Given the final modelHR, point and variance estimates of the model parameters (β) are
given, respectively, by β̂ml

[pR] and 
β[pR] as defined by (22) and evaluated at β̂ml
[pR]. For

interval estimation of a subset of β-parameters, β[pR−pT], that are under test while β[pT]
being nuisance (as defined by the test model HT ⊂ HR), we can use Wald confidence
intervals for a scalar parameter or confidence regions for a vector parameter based on
the Wald statistic derived from the asymptotic distribution (22) under HR. The use of
observed information in the covariance matrix 
β[pR] is preferable in general to the
expected information in view of its anticipated improved finite sample performance
(see Efron and Hinkley, 1978). Incidentally, the issue of lack of invariance to parameter
transformation with the observed information matrix becomes mute when the goal is to
estimate parameters and not hypothesis testing.

Improved confidence regions for test parameters β[pR−pT] can be obtained by the
test inversion method based on the score statistic Qc(α)

ml (HT|HR) defined in (14), where
suitable estimates of the nuisance parameters β[pT] need to be substituted because the
idea of test inversion basically consists of finding the region in the space of β[pR−pT]
that fall in the acceptance region rather than setting the test parameters β[pR−pT] to zero
under the null hypothesis. Here, use of a profile ml-estimator of β[pT] as a function of
β[pR−pT] is desirable (see Godambe, 1991). However, in practice, we can use for conve-
nience appropriate pT-elements of the unrestricted ml-estimator β̂ml

[pR] as mentioned in
Thompson (1997, Chapter 4, p. 138).

2.4.2. Estimation of domain means
For estimating a domain mean μ1d(β) under HR, the point estimator is easily obtained
as inv logit

(
A′x,d β̂

ml
[pR]
)
. The variance estimator is obtained by using Taylor lineariza-

tion of the inverse logit function, and the asymptotic variance of A′x,d β̂
ml
[pR] is given

by A′x,d
β[pR]Ax,d
(
and evaluated at β̂ml

[pR]
)
, where 
β[pR] defined in (22) reduces to

I−1
β[pR]. More specifically, the variance estimator of inv logit

(
A′x,d β̂

ml
[pR]
)

is given by

u2
1d(β[pR])A′x,dI

−1
β[pR]Ax,d and evaluated at β̂ml

[pR], where u1d(β) is defined as in (5). For
interval estimation, one can use the logit-Wald method where a symmetric normality
based interval is first obtained from the asymptotic distribution

A′x,d
(
β̂ml
[pR] − β[pR]

)
∼approx N

(
0, A′x,d
β[pR]Ax,d

)∣∣∣β=β̂ml[pR ]
, (35)

and then the asymmetric interval is obtained by the inverse logit transformation, see
Newcombe (2001) for some comments on the logit-Wald method. As an alternative to
avoid possible instability of the Wald method in the above normal approximation, we
can use test inversion based on the score statisticQml(HT|HR), where nowHT represents
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the transformed test parameter θpR (defined by μ1d(β)) while the nuisance parameters
are defined simply as θ[pR−1] = β[pR−1], similar to (34).

2.4.3. Estimation of contrasts and odds ratio
For estimating a contrast μd1(β) − μd2(β) and the odds ratio μd1(β)

(
1− μd1(β)

)−1/
μd2(β)

(
1− μd2(β)

)−1
, the point and variance estimates can be obtained along the lines

for μd1(β), while for interval estimation, we can either use Wald (logit-Wald for odds
ratio) or test inversion based on the score test.

3. Quasi-likelihood methods

The semiparametric framework of ql-estimation is conducive for analysis with complex
survey data (to be discussed in the next section) as it does not require specification
beyond the first two moments (for optimal estimation) and only first moments (for
nonoptimal estimation) because in survey sampling, even the second moment of an esti-
mate of the finite population total is generally not available due to too many unknown
parameters consisting of second-order inclusion probabilities. In fact, even for the case
of infinite populations, it may be difficult to specify the second moment such as in the
case of correlated binomial observations when the data is at the cluster level (see, e.g.,
McCullagh and Nelder, 1989, Chapters 4 and 9). For the CCHS example, individuals
from the same cluster (e.g., neighborhood) may have correlated responses that will lead
to the correlated Binomial case. It may be remarked that in the interest of parsimony, the
analyst often prefers a simple model, and in the process, he may omit from the model
some known (and not to mention the unknown) covariates as well as some random clus-
ter effects. This implies that the covariance matrix (conditional on the covariates in the
model) may not be correctly specified. In practice, this can be corrected approximately
by introducing an overdispersion parameter as a multiplicative factor in the error covari-
ance structure (see, e.g., McCullagh and Nelder, 1989, Chapters 4 and 9). Correction
for overdispersion is especially important for categorical data because overdispersion
cannot be easily subsumed within the error variance that is functionally dependent on
the mean.

Unlike the previous subsection, the unit level data, {yadk}1≤k≤nd,1≤d≤D,1≤a≤A, are not
independent due to intracluster correlations, and without making any further assumptions
about the intracluster dependence, it is not feasible to specify the joint likelihood. In
this section, although the model is at the aggregate level, we prefer to work with the
unit level data to be able to incorporate later on the sampling weights at the unit level in
q-score functions when dealing with survey data. For the CCHS example considered in
the previous section, the unit-level covariates xdk (indicating age or gender factors) take
the common value of 1 if unit k lies in the domain d and if the age or gender indicated
by the x-variable matches with that defined by d, and it takes the value of 0 otherwise.
Thus, xdk = Ax,d for all k in d, and the logit model (2) can be reformulated at the unit
level without complete specification of the covariance structure as follows.

Obs. Eqn. y1dk = μ1dk + ε1dk, y1dk ∼ Ber(μ1dk),

y1dk
′s may be cluster-correlated

Link Eqn. logitμ1dk ≡ log
{
(1− μ1dk)

−1μ1dk
} = A′x,dβ. (36)
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The above model is simply a unit-level version of the aggregate level model because
μ1dk = μ1d , that is, the mean is common for all k in the domain d subpopulation since
xdk = Ax,d . In the following, we consider as before the four parts of data analysis under
ql-estimation that will be of two types, nonoptimal if the covariance structure is not
completely specified, and optimal if it is.

3.1. Model selection under quasi-likelihood

3.1.1. Quasi-score functions
All the results from Subsection 2.1 basically go through when the score function φβ[p]
is replaced by the q-score function φql(β[p]) defined below. Following Liang and Zeger
(1986) on generalized estimating equations under the working independence assumption
of y1dks, the ql-estimator β̂ql

[p] for the model (36) is obtained as a solution of the q-score
function φql(β[p]) set to zero. The vector of q-score functions is given by

φql(β[p]) ≡
D∑
d=1

nd∑
k=1

Ax,d(y1dk − μ1dk(β)) =
∑
d

Ax,dnd
(
y1d − μd(β)

)
, (37)

which turns out to be identical to the score function (4). Note that the above q-score
function is not optimal in the sense of Godambe and Thompson (1989) because of the
use of the working covariance matrix, see Godambe and Kale (1991), Singh and Rao
(1997), and Chapter 26 of this handbook for simple reviews of optimal EFs. For (37)
to be optimal, it should take the form of E(−∂ψ/∂β′)′	−1

ψ ψ, where ψ = nd(y1d −
μ1d(β))1≤d≤D,E(−∂ψ/∂β′) = Ax, which is a (D× p)matrix, and	ψ is the covariance
matrix of elementary d-level EFsψ, which, in fact, is not specified under (36).Although
the term ql-estimator was originally introduced by Wedderburn (1974) and later by
Godambe and Heyde (1987) for general optimal EFs, here we will use the qualifier
“optimal” for ql-estimation (oql, for short) when we want to emphasize the optimality,
else we will simply use the term ql-estimation in a broad sense.

The optimality of EFs refers to the property that in the class of all EFs defined by
linear combinations of elementary EFs ψ, the asymptotic covariance 
̃ql(β[p]) of the
resulting estimator

(

̃ql(β[p]) having a sandwich form like 
̂ql(β[p])of (39) given below

except that Jql(β[p]) is replaced by Iql(β[p])
)

is minimized for the optimal EF under the
partial order of non-negative definite matrices (see, Godambe and Heyde (1987) and
McCullagh and Nelder, 1989, Section 9.5). The optimal EF also has an important finite
sample property in terms of maximizing the information in EFs as defined by Godambe
(1960) and Godambe and Thompson (1989). To compute 
̂ql(β[p]), a robust consistent
variance estimator of φql(β[p]) is first obtained using the commonly used technique of
independent clusters (like the with replacement assumption of primary sampling units
(PSUs) in survey sampling), see Liang and Zeger (1986) in the context of longitudinal
data and Bieler and Williams (1995) in the context of cluster-correlated data. Suppose
that the number of clusters in each stratum h (such as a subprovincial area 1 ≤ h ≤ L)
is ch with cluster sample sizes nhr for the rth cluster. Then, φql(β[p]) is a sum of L
independent strata totals φql(β[p],h), where φql(β[p],h) itself is a sum of ch independent
cluster totals φql(β[p],hr). Assuming that the total number of clusters c

(= ∑n ch
)

is large
(the cluster sample sizes nhr are typically small but the number of sampled individuals
nh
(= ∑ch

r=1 nhr
)
for each stratumhmay be large), a consistent estimate of the covariance
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	ql(φ[p]) can be obtained as

	̂ql(φ[p]) =
L∑
h=1

ch

ch−1

ch∑
r=1

(
φql(β[p],hr) − φql(β[p],h)

)(
φql(β[p],hr) − φql(β[p],h)

)′ ∣∣∣β̂ql
[p]
;

φql(β[p],h) = c−1
h

ch∑
r=1

φql(β[p],hr), φql(β[p],hr) =
D∑
d=1

nhr∑
k=1

Ax,d(y1dk − μ1d(β))1dk(hr),

(38)

where 1dk(hr) is the indicator function taking the value of 1 if the unit k of domain d is in
cluster r of stratum h, and 0 otherwise. It follows from (37) that the covariance matrix

ql(β[p]) of β̂ql

[p] can be estimated via Taylor expansion in a sandwich form, analogous to
(22) as


̂ql(β[p]) = J−1
ql(β[p])	̂ql(φ[p])J ′

−1
ql(β[p])

∣∣
β̂

ql
[p]
; Jql(β[p]) = −∂φql(β[p])/∂β′[p]. (39)

The matrix Jql(β[p]) for the q-score function (37) is identical to that for the score
function (4) and is given in (5). It can be termed as the observed q-information matrix
(see, e.g., Fahrmeier and Tutz, 2001, p. 441). However, due to nonoptimality of the
q-score φql(β[p]), there is no information unbiasedness, that is, 	ql(φ[p]) is not equal to
the expected q-information matrix Iql(β[p])(= E(Jql(β[p]))), unlike the case of φβ[p] of
Section 2. In fact, the true covariance matrix 	ql(φ[p]) is not even specified.

3.1.2. Optimal quasi-score functions
Here, we need to assume a more restrictive sampling scheme to specify second moments.
Suppose the clusters r do not cut across domains d so that domains can be treated as
strata by conditioning on nds. Now, as in the product binomial case of Section 2, if for the
model (36), we also assume independence of cluster totals within and between domains
and that for each domain d, the functional form of the variance of the cluster totals
ndry1dr(r = 1, . . . , cd) as σ2

0u1d(β), where ndr is the number of observations in domain
d from cluster r, and σ2

0 is the overdispersion parameter (McCullagh and Nelder, 1989,
Chapter 4). Then the oq-score function (oq for optimal quasi) based on the elementary
EFs ndr(y1dr − μ1d(β)) (it turns out that it is sufficient to work with cluster level totals
within each domain) is given by

φoql(β[p]) = σ−2
0

∑
d

Ax,dnd
(
y1d − μ1d(β)

)
, (40)

which is identical to the q-score φql(β[p]) of (37), except for the multiplicative factor due
to the overdispersion parameter. Its covariance, however, can now be estimated more
efficiently than in the nonoptimal case and is given by

	̂oql(φ[p]) = σ̂−2
0

∑
d

ndu1d (β)Ax,dA
′
x,d

∣∣∣β̂oql
[p]
;

σ̂2
0 =

1

c − p
D∑
d=1

cd∑
r=1

ndr
(
y1dr − μ1d(β)

)2
u1d(β)

∣∣∣β̂oql
[p]
,

(41)
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where, as before, c is the total number of clusters and the estimator β̂oql
[p] is defined as

the solution of the optimal EF φoql(β[p]) set to zero, which is solved by the Newton–
Raphson iterative procedure as in (5). The above method of moments estimator of the
overdispersion parameter σ2

0 follows from McCullagh and Nelder (1989, Chapter 4).

The approximate covariance of the optimal estimator β̂oql
[p] is now given by


oql(β[p]) = J−1
oql(β[p])	oql(φ[p])J ′

−1
oql(β[q]); Joql(β[p]) = −∂φoql(β[p])/∂β′[p], (42)

which reduces to inverse of the expected information matrix, I−1
oql(β[p]), because of

Joql(β[p]) being equal to Ioql(β[p]) for the logit model and information unbiasedness of
the optimal q-score function. Note that the matrix Joql(β[p]) is simply σ−2

0 times Jql(β[p])
of (5).

A useful simplified alternative to (40) and (41), although not equivalent, was sug-
gested by Rao and Scott (1992) in the context of clustered binary data. Here, the domain
total z1d and the domain size nd are adjusted by a domain-specific factor (like the
design or dispersion effect of y1d) so that the adjusted total z̃1d behaves approximately
(for large nd) like a Binomial variable with mean μ1d(β) and the index parameter ñd ,
the adjusted domain size. This may be quite appealing in practice as a multipurpose
technique. However, the estimated covariance matrix (41) of the oql method is likely
to be more stable as it combines information over all the domains. A similar simplified
approach for clustered Poisson data was also suggested by Rao and Scott (1999).

3.1.3. Tests for nested hypotheses
For testing the nested model H2 ⊂ H1, we can easily define a q-score test statistic
Qql(H2|H1) based on q-nscore function similar to (14) along the lines of Boos (1992).
More specifically, we rejectH2 in favor ofH1 for large values ofQql(H2|H1) by referring
to the upper tail of the χ2

p1−p2
distribution, where

Qql(H2|H1) = Q(φql(β[p1−p2|p2]))
∣∣∣
β[p1 ]=

(
β̂
′ ql
[p2 ],β̂

′ ql
[p1−p2 ]=0

)′ ;
φql(β[p1−p2 |p2]) = φql(β[p1−p2]) − Iql(β[p1−p2,p2])I

−1
ql(β[p2])φql(β[p2])

≡ Fqlφql(β[p1])(Fql = (−Iql(β[p1−p2,p2])I
−1
ql(β[p2]), I(p1−p2)×(p1−p2))),

(43)

and where the expected q-information matrix Iql(β[p]) = E(Jql(β[p])) is partitioned as

Iql(β[p1]) =
(

Iql(β[p2]) Iql(β[p2,p1−p2])
Iql(β[p1−p2,p2]) Iql(β[p1−p2])

)
. (44)

In (44), Jql(β[p]) is defined by (39), and the off-diagonal term Iql(β[p2,p1−p2]), for
example, isE(Jql(β[p2,p1−p2])), Jql(β[p2,p1−p2]) being−∂φql(β[p2])/∂β′[p1−p2]. Moreover, the
covariance of φql(β[p1−p2|p2]) is given by 	ql(φ[p1−p2|p2]) = Fql	ql(φ[p1])F ′ql. Note that, as
with the nscore function in (14), the q-nscore function φql(β[p1−p2|p2]) in (43) evaluated at
any

√
n-consistent estimator β̂[p2] behaves asymptotically as if β[p2] is known. It may be

remarked that with q-score tests, it is not possible in general to write an asymptotically
equivalent version as a difference of twoQql-tests, that is,Qql(H2|HS)−Qql(H1|HS),
analogous to (20), unless 	ql(β[p]) is proportional to Iql(β[p]). However, with the optimal
q-score function (40) under second-moment assumptions, this is possible due to
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information unbiasedness (i.e., Iql(β[p]) = 	ql(φ[p])) because a decomposition like (17) is
then feasible. The Wald test can, of course, be defined as in (23) based on the asymptotic
normality result,

β̂
ql
[p1] − β[p1] ∼approx N(0, 
ql(β[p1]))

∣∣∣β̂ql
[p1 ]
, (45)

where 
ql(β[p1]) is defined similar to (39). In practice, it may be of interest to include
other domain or cell-level covariates not defined by the cross-classifying variables used
for the contingency table (such as the average number of hospital admissions for domain
d with asthma as the main diagnosis for the CCHS example, which can be obtained from
administrative sources) for improved prediction. The regression-type formulation (2) for
logit models easily accommodates such covariates unlike the traditional formulation (1).

3.2. Model diagnostics under quasi-likelihood

For informal diagnostics based on residuals under the final reduced model
HR, we can use the asymptotic normality of Cholesky residuals obtained from
r1d = nd

(
y1d − μ1d

(
β̂

ql
[pR]
))

as in Section 2.2. Other informal diagnostics based on Q-Q
plots and influential points also carry over. In terms of formal diagnostics for tests of
model adequacy, q-score tests for both sof (HB ⊂ HR) and gof (HR ⊂ HF) can be easily
constructed analogous to (30) and (31). For Estrella’sR2 measures of model fit, however,
we need the likelihood. For this purpose, consider the approximate Gaussian likelihood
of the vector of summary statistics β̂ql

[pS] under the saturated model (these summary
statistics could be deemed as quasi-sufficient under the quasi-likelihood analogous to
the asymptotic sufficiency of ml-estimators under likelihood) which is given by

β̂
ql
[pS] − β[pS] ∼approx N

(
0, 
ql(β[pS])

)∣∣∣β=β̂ql
[pS ]
. (46)

TheR2∗
e measure of (32) for the baseline model nested within the final reduced model

(i.e.,HB ⊂ HR) from the normal likelihood based on summary statistics β̂ql
[pS] is given by

1− exp

{
−D−1

(
Q
(
β̂

ql
[pS] − β[pS]

)∣∣∣
β[pS ]=

(
β̂
′ql
[pB ],β[pS−pB ]=0

)′

−Q
(
β̂

ql
[pS] − β[pS]

)∣∣∣
β[pS ]=

(
β̂
′ql
[pR ],β[pS−pR ]=0

)′
)}
, (47)

wherepS = D, and for convenience, the common covariance matrix
ql(β[pS])
(
evaluated

at β̂ql
[pS]
)

is used for the two quadratic forms in (47), which explains why only the kernel
of the Gaussian log-likelihood shows up and not the other terms. For large nds, the
exponent term in (47) can also be expressed equivalently as the usual Wald statistic
for nested models, QW(HB|HR) from (23) based on β̂ql

[pR] under HR, or a more stable
version for finite samples given by the q-score statisticQql(HB|HR) as defined in (43).
Similarly, a secondR2∗

e measure for the final reduced model nested within the full model,
that is, HR ⊂HF, can also be defined.

3.3. Inferential testing and estimation under quasi-likelihood

As was described in Section 2.3 under likelihood-based methods, all the tests of sig-
nificance of a single model parameter or groups of them, and tests for significance of



350 A. C. Singh

difference between domain means can be carried out when the score test is replaced by
the q-score test under the present quasi-likelihood approach.

For estimating model parameters β[R] under HR, the main difference from the
likelihood-based methods is that the covariance of the point estimator β̂ql

[pR] has the
sandwich form (39) unless the q-score function is optimal. For interval estimation via
test inversion based on the q-score statistic for a test model HT nested within HR, we
consider the q-nscore function as in (43) with the obvious interpretation of β[pR−pT]
as test parameters and β[pT] as nuisance parameters. For point, variance, and interval
estimation of domain means and their contrasts, results from Subsection 2.4 carry over
with natural modifications for ql-estimation.

4. Weighted quasi-likelihood methods

So far we considered CDA for simple surveys. The example of CCHS is actually a
complex survey with subprovincial areas as strata and multistage cluster sampling of
households within strata followed by selection of one individual per household. As
mentioned in the introduction, it is important to take the design into account to avoid
selection bias in model parameter estimates. It is known that large sample consistent
estimators of FPQs such as subpopulation totals can be obtained from H-T estimators
or calibrated versions of design-weighted sample sums. To define suitable FPQs for
estimating model parameters from complex survey data, we consider two phases of
randomization: first, the ξ-randomization for the generation of the finite population
from a conceptual infinite superpopulation (the population model) and second, the π-
randomization for the generation of the sample from the finite population. It is assumed
that the sample size n is much smaller than the population sizeN. Consider the following
aggregate-level model for the binary data {y1dk}1≤k≤nd, 1≤d≤D expressed at the unit level
to incorporate unit-level sampling weights in the weighted quasi- or wq-score functions
defined below.

Phase I (ξ–randomization for the finite population U of size N):

y1dk = μ1dk + ε1dk, logitμ1dk = A′x,dβ, y1dk ∼ind Ber(μ1dk),

1 ≤ k ≤ Nd, 1 ≤ d ≤ D, (48)

Phase II (π–randomization for the sample s of size n): An arbitrary complex design
with first order inclusion probabilities πdk (=Pr(k ∈ s|k ∈ Ud), known atleast for the
sampled units), and positive but possibly unkown second order inclusion probabilities,
πdk,d ′l(= Pr(k, l ∈ s|k ∈ Ud, l ∈ Ud ′)), where Ud,Ud ′ denote respectively domains d
and d ′.

For the above model, define the q-score function (or census EF, the subscriptU below
denotes the finite universe) at phase I and wq-score function (or sample EF) at phase II
as an H-T estimator of the FPQ defined by the census EF as follows:

Census EF: φql(β[p],U) =
D∑
d=1

Nd∑
k=1

Ax,d(y1dk − μ1d(β))

=
D∑
d=1

Ax,dNd(Ay1,d − μ1d(β)), (49a)
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Sample EF: φwq(β[p])=
D∑
d=1

nd∑
k=1

wdkAx,d(y1dk −μ1d(β))

=
D∑
d=1

Ax,dN̂d(y1dw−μ1d(β)), (49b)

where Nd is the domain population size and Ay1,d is the domain average (Y 1d being
the traditional notation) analogous to Ax,d of Section 2. The sampling weight for the
kth sampling unit in domain d is wdk defined as the inverse of the sample inclusion
probability πdk or a calibrated version of it like the poststratified weight (see Kott,
Chapter 25). The estimator N̂d is simply the estimated domain population count obtained
as
∑nd

k=1wdk and y1dw = N̂−1
d

∑nd
k=1 y1dkwdk. It is assumed that for large n, the domain

sample size nd > 0 for all d with high probability.
The q-score function (49a) is an optimal EF (defined in Section 3.1) under

ξ-randomization, but the wq-score function (49b) is not an optimal EF under
the compound πξ-randomization because it only uses correct mean specification
of N̂d(y1dw − μ1d(β)), in that it is zero in expectation under πξ-randomization.
However, it uses the identity matrix as the working covariance of the vector
(N̂d(y1dw − μ1d(β)))1≤d≤D and not the correct covariance which, in fact, is not avail-
able. Nevertheless, the wq-score function has theoretically desirable properties as shown
by Godambe and Thompson (1986). Note that one may also use the pseudo ml approach
(see, e.g., Binder, 1983; Skinner, 1989, p. 80) as an alternative to the wq-score function.
The use of the latter approach generally gives identical results depending on the speci-
fication of the finite-population (or the census) likelihood. In the pseudo ml approach,
the census log-likelihood is first estimated using sampling weights, and then the esti-
mated log-likelihood (termed pseudo as it is not the likelihood) is maximized to obtain
pseudo ml estimators. On the other hand, the wql-approach starts with census EF (under
only first two moment assumptions), which is then estimated using sampling weights
to obtain sample EF. It turns out that all the results of Section 3 essentially carry over
to complex surveys except for some important nuances as described below under each
part of data analysis. The review is based on the works of Binder and Pathak (1994) and
Rao et al. (1998).

4.1. Model selection under weighted quasi-likelihood

4.1.1. wq-score tests
For the wq-score function given by (49b), the covariance matrix 	wq(φ[p]) under the
compound πξ-distribution can be expressed as a sum of two parts, (here, V(.) denotes
the variance–covariance operator under the distribution denoted by the subscript)

	wq(φ[p]) = EξVπ(φwq(β[p]))+ VξEπ(φwq(β[p]))
= EξVπ(φwq(β[p]))+ Vξ(φq(β[p],U)), (50)

where the second part is of much smaller order than the first part under the usual condition
that the sampling fraction at the unit level is small although the sample size is assumed
to be large; in the case of cluster sampling, the condition of a small sampling fraction
at the cluster level is needed (Pfeffermann, 1993). So, under regularity conditions, a



352 A. C. Singh

consistent estimate of 	wq(φ[p]) is given by a consistent estimate of the design-based
covariance Vπ(φwq(β[p])), to be denoted by 	̂wq(φ[p]). Now, under the usual assumption
of with replacement sampling of PSUs within each stratum such as in stratified multistage
unequal probability cluster sampling, a consistent estimator,	̂wq(φ[p]), of the covariance
of the wq-score function (see, e.g., Wolter, 2007, Chapter 2, p. 47) is given below,
which is similar to (38) for the q-score function except that clusters are replaced by
PSUs selected in the design stratum h and q-scores by wq-scores, all evaluated at β̂wql

[p] ,
the solution of the wq-score function. We have

	̂wq(φ[p]) =
L∑
h=1

ch

ch − 1

ch∑
r=1

(
φwq(β[p],hr) − φwq(β[p],h)

)
× (φwq(β[p],hr) − φwq(β[p],h)

)′ ∣∣∣β̂wql
[p]
;

φwq(β[p],h) = c−1
h

ch∑
r=1

φwq(β[p],hr),

φwq([p],hr) =
D∑
d=1

nhr∑
k=1

Ax,d(y1dk − μ1d(β[p]))wdk1dk(hr), (51)

where the wq-score equation (49b) is solved by the Newton–Raphson iterative method
to obtain β̂wql

[p] analogous to (5). Note that by using the Taylor expansion under regularity
conditions,

φwq(β[p]) ≈ Jwq(β[p])
(
β̂

wql
[p] − β[p]

)
, where Jwq(β[p]) = −∂φwq(β[p])/∂β′[p],

(52)

where Jwq(β[p]) is the observed wq-information matrix. For the wq-score function (49b),
Jwq(β[p]) equals

∑
d N̂du1d(β)Ax,dA

′
x,d , which is essentially the same as the one in (5)

except for the introduction of sampling weights, that is, nd is replaced by N̂d . It follows
that the asymptotic distribution of β̂wql

[p] is given by

β̂
wql
[p] − β[p] ∼approx N

(
0, 
̂wq(β[p])

); 
̂wq(β[p]) = J−1
wq(β[p])	̂wq(φ[p])

× J ′−1
wq(β[p])

∣∣∣β=β̂wql
[p]
. (53)

4.1.2. Instability of the estimated covariance matrix 	̂wq(φ[p])
With the above results, it would seem that all the results on ql-estimation from Sec-
tion 3 should carry over to wql-estimation. However, the covariance matrix 	̂wq(φ[p]) is
typically unstable with a high condition number (defined by the square root of the ratio
of maximum and minimum eigenvalues) due to high variability in eigenvalues, but it
is the small eigenvalues that cause extreme values of the test statistic. This instability
has a serious effect on the matrix inversion required for the test statistic and renders the
test liberal by inflating the Type I error rate. The problem can be explained by noting
that for complex surveys, the degrees of freedom for the estimator 	̂wq(φ[p]) in (51)
is often not large as it is equal to the total number of psus (c) minus the total num-
ber of strata (L) among those having nonempty intersection with the subpopulation or
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domain corresponding to the wq-score function. In practice, typically L is large for
good representation of the sample and ch per stratum is small for sample efficiency.
For testing nested hypotheses H2 ⊂ H1, the instability of 	̂wq(φ[p]) affects in general
the stability of the covariance 	wq(φ[p1−p2 |p2])(= Fwq	wq(φ[p1])F ′wq) of the wq-nscore
function appearing in the wq-score statisticQwq(H2|H1), which is defined analogously
to (43) as

Qwq(H2|H1) = Q
(
φwq(β[p1−p2|p2])

)∣∣∣
β[p1 ]=

(
β̂
′wql
[p2 ],β

′ [p1−p2 ]=0′
)′ ;

φwq(β[p1−p2|p2]) = φwq(β[p1−p2]) − Iwq(β[p1−p2|p2])I
−1
wq(β[p2])φwq(β[p2])

≡ Fwqφwq(β[p1])(
Fwq =

(− Iwq(β[p1−p2|p2])I
−1
wq(β[p2]), I(p1−p2)×(p1−p2)

))
, (54)

where the expected wq-information matrix Iwq(β[p])(= E(Jwq(β[p]))) is defined below in
(55). The possible instability of 	̂wq(φ[p1−p2|p2]) results in unstable finite sample behavior
ofQwq(H2|H1), such as inflatedType I error rate and reduced power suitably adjusted for
size due to inflated Type I error rate (Thomas and Rao, 1987). Note that the instability
in 	̂wq(φ[p1−p2 |p2]) results in both relatively large and small eigenvalues, but the test
behavior is affected more by small ones because they cause more cases of rejection
of the null hypothesis than acceptance caused by large eigenvalues. To overcome this
problem, a way out is to use a suitable working covariance 	∗wq(φ[p1−p2|p2]) obtained by
modifying the estimated covariance matrix under a simplified design such that it is stable
regardless of c-L being large or not and then correct for bias in the null distribution of
the corresponding test statistic Q∗wq(H2|H1) as suggested by Rao and Scott (1984) and
shown below.

Note that here the use of the working covariance is motivated not because of
unavailability of the actual covariance matrix as in ql-estimation but because of insta-
bility of the estimated covariance matrix. However, the original motivation of Rao and
Scott (1984) in using a working covariance was to be able to use χ2-type tests for sec-
ondary analysis from published tables when the microlevel information required for
computing design-based covariance matrix was not available. The qualifier “suitable”
for the working covariance matrix is used in the sense that, although it is computed under
a simplified design, some important design features are preserved through the use of
sampling weights in parameter estimation. For example, for the wq-score function (49b),
under the working assumption of stratified simple random sampling with domains as
strata, N̂d equals Nd , the design-based variance is

∑
d Ax,dA

′
x,dN

2
dAy1,d(1− Ay1,d)/nd

ignoring the finite-population correction (Nd − 1)−1(Nd − nd). The unknownAy1,d can
be consistently estimated by y1dw or μ1d(β̂

wql) and Nd by N̂d if it were unknown. For
	∗wq(φ[p1]), we use μ1d(β̂

wql) and not y1dw, and replace nd by ñd = n(Nd/N) to satisfy a
proportionality condition explained below.Auseful alternative motivation for the above
choice of 	∗wq(φ[p1]) is as follows. Observe that the covariance matrix of the census EF
vector is equal to the corresponding expected information matrix

∑
d Ndu1d(β)Ax,dA

′
x,d

because of its optimality. Therefore, the anticipated covariance matrix (with respect to
the joint πξ-randomization) of the sample EF vector under the simplified assumption
of simple random sampling is given by N/n times the covariance matrix of the census
EF-vector which, indeed, coincides with 	∗wq(φ[p1]).
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4.1.3. Null distribution ofQ∗wq(H2|H1) as a linear combination of independent
χ2

1-variables
For testingH2⊂H1, consider the wq-score statisticQ∗wq(H2|H1) based on the wq-nscore
function φwq(β[p1−p2|p2]) and its working covariance 	∗wq(φ[p1−p2|p2]). Observe that if
the working covariance matrix 	∗wq(φ[p1]) for the full p1-vector of wq-score functions
φwq(β[p1]) is chosen such that it is proportional to the expected wq-information matrix

Iwq(β[p1]) evaluated at β[p1] =
(
β̂
′wql
[p2] , β

′
[p1−p2] = 0

)′
, which is given by

Iwq(β[p1]) = E(Jwq(β[p1]))

= E
(∑

d

N̂du1d(β)Ax,dA
′
x,d

)
=
∑
d

Ndu1d(β)Ax,dA
′
x,d,

(55)

then the wq-nscore function of (54) will not change if Iwq(β[p]) is replaced by 	∗wq(φ[p])
because Iwq(β[p1−p2 |p2])I

−1
wq(β [p2]) equals	∗wq(φ[p1−p2 |p2])	

∗−1
wq(φ [p2]). Thus, the wq-nscore

function is similar to the nscore function of (14) with 	 replaced by 	∗ and therefore
can also be obtained from φwq(β[p1−p2]) by subtracting its projection on φwq(β[p2]) under a
working covariance norm.The above proportionality condition, implicit in Rao and Scott
(1984), is sufficient to express Q∗wq(H2|H1) as a difference of two X2-type statistics. It
follows that the decomposition like (17) holds forQ∗wq(H2|H1), and therefore, along the
lines of the argument used in (20) where the stronger sufficient condition of information
unbiasedness (Iβ[p1] = 	φ[p1]) is satisfied, we can express the test statistic as

Q∗wq(H2|H1) = X2∗(H2|HS)−X2∗(H1|HS), (56)

whereX2∗(H2|HS), for example, is
∑

d ñdu
−1
1d (β)(y1dw − μ1d(β))

2 evaluated at β[p2] =
β̂

wql
[p2] and β[pS−p2] = 0. Note that it may be tempting to use nd in the above X2∗ statistic

instead of ñd but that would not satisfy the required proportionality condition.
It follows from Rao and Scott (1984) that the asymptotic null distribution of

Q∗wq(H2|H1) is not χ2
p1−p2

but a linear combination
∑p1−p2

i=1 δiχ
2
1i of independent χ2

1
variables. This result requires that the test statistic be based on nscore functions defined
in (54) so that even after substitution of consistent estimates for the unknown nui-
sance parameters β[p2], they can be treated as known asymptotically. The non-negative
coefficients δis, known as g-deffs (generalized design effects; Skinner, 1989, p. 43),
are the eigenvalues of the design effect matrix �wq(φ[p1−p2|p2]) defined as the prod-
uct	∗−1

wq(φ[p1−p2|p2])	̂wq(φ[p1−p2|p2]) associated with the wq-nscore function. The working
covariance matrix 	∗wq(φ[p1−p2|p2]) for the wq-nscore function can be easily computed

from (16) after replacing	 by	∗, while 	̂wq(φ[p1−p2|p2]) is computed asF ∗	̂wq(φ[p1])F ∗′,
where F ∗ is defined as Fwq of (54) with Iwq(β[.]) replaced by	∗wq(φ[.]) (F ∗ and Fwq being
identical under the proportionality condition). The matrix �wq(φ[p1−p2|p2]) is identical
to the design effect matrix of Rao and Thomas (1989, eqn. 4.36) defined for nested
hypotheses under log-linear models. Note that for testing nested hypotheses under log
linear models, the expression for the design effect matrix given in Rao and Thomas
(1989, eqn. 4.36) may seem somewhat different, but is indeed identical to the matrix
�wq(φ[p1−p2|p2]) presented here.
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4.1.4. Rao–Scott first- and second-order corrections
In practical applications of the above test, it is convenient to make simple χ2 approxi-
mations to the linear combination by correcting the test statistic for bias by suitable
scaling. A first-order correction toQ∗wq(H2|H1) is obtained by dividing it by δ, the aver-

age of (p1 − p2) eigenvalues δis, and then treating δ
−1
Q∗wq(H2|H1) as a χ2

p1−p2
variable

under the null hypothesis. A more accurate second-order correction to Q∗wq(H2|H1) is

obtained by dividing it by δ(1+ a2), where a is the coefficient of variation of the δis

(CV(δ) = ∣∣∑i δi|−1
√
(p1 − p2)

∑
i (δi − δ)2) and then treatingQ∗wq(H2|H1)/δ(1+ a2)

as a χ2 variable with degrees of freedom equal to (p1 − p2)(1+ a2)−1 under the null
hypothesis. If the coefficient of variation of δis is small, then the simple first-order cor-
rection would be adequate. The second-order correction gives a better control on size of
the test as it is more conservative than the first-order correction. The first-order correc-
tion is motivated from the desire to match the first moment of the reference distribution
with that of the χ2

p1−p2
distribution, while the second-order correction, also known as

Satterthwaite’s approximation, attempts to match the first two moments. Notice that
under the null hypothesis, we have

E
[
Q∗wq(H2|H1)/δ

(
1+ a2

)] 
 (p1 − p2)/(1+ a2),

Var
[
Q∗wq(H2|H1)/δ

(
1+ a2

)] 
 2(p1 − p2)/(1+ a2).

(57)

Also note that both corrections can be obtained directly from �φ[p1−p2|p2]without
having to compute the eigenvalues (Skinner, 1989, Chapter 2, p. 44) since

(p1 − p2) δ = tr
(
�wq(φ[p1−p2|p2])

)(= p1−p2∑
i=1

δi

)
,

(p1 − p2)δ
2 (

1+ a2
) = tr

(
�2

wq(φ[p1−p2|p2])

)(
=

p1−p2∑
i=1

δ2
i

)
, (58)

using the spectral decomposition of �φ[p1−p2|p2]. For illustrative applications of
R-S corrections to the Canada Health Survey, see Hidiroglou and Rao (1987). In
practice, for the first-order R-S correction, tr(�wq(φ[p1−p2|p2])) can also be more
conveniently computed as tr

(
	∗−1

wq(φ[p1])	̂wq(φ[p1])
) − tr

(
	∗−1

wq(φ[p2])	̂wq(φ[p2])
)

(compare

with eqn. 4.31 of Rao and Thomas, 1989) because tr
(
	∗−1

wq(φ[p1])	̂wq(φ[p1])
)

equals

tr
[(
C∗	∗wq(φ[p1])C

∗′)−1(
C∗	̂wq(φ[p1])C∗′

)]
, where C∗ is a nonsingular matrix defined as

(G′, F ∗′)′,G = (Ip2×p2 ,Op2×(p1−p2)

)
, F ∗ already defined earlier in this section, and the

fact that tr
[(
C∗	∗wq(φ[p1])C

∗′)−1(
C∗	̂wq(φ[p1])C∗′

)]
is sum of tr

(
	∗−1

wq(φ[p2])	̂wq(φ[p2])
)

and
tr(�wq(φ[p1−p2|p2])) due to a block diagonal structure of C∗	∗wq(φ[p1])C

∗′.

4.1.5. F-based versions
It was mentioned earlier that the behavior of the wq-score statistic is unstable in the
sense of being liberal or having inflated size because the degrees of freedom (taken
as f = c − L) for estimating the covariance 	wq(φ[p1−p2|p2]) is usually not large. To
improve stability, a conservative F -version of the Qwq(H2|H1) statistic of (54) can be
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used, which treats [(f − ν + 1)/ν](Q/f) as an F -variable with ν and (f − ν + 1)
degrees of freedom when Q is asymptotically χ2

ν(ν = p1 − p2) (see Rao et al., 1998;
Korn and Graubard, 1990). It is motivated from heuristic arguments based on Hotelling’s
T 2(∼ Fp,n−p) for testing a p-dimensional mean of a multivariate normal with a ran-
dom sample of size n, where (n− 1) corresponds to f as the degrees of freedom in
estimating the covariance matrix and p corresponds to ν. However, for R-S corrected
Q∗wq(H2|H1) statistics, somewhat different scaling adjustments are required for con-
servative F -versions (see Thomas and Rao, 1987 for a heuristic motivation). For the

first-order correction, δ
−1
Q∗wq/ν is treated as Fν,fν, while for the second-order correc-

tion, δ
−1
Q∗wq/ν is treated as Fν(1+a2)−1,fν(1+a2)−1 since

(
δ(1+ a2)

)−1
Q∗wq

/(
ν(1+ a2)−1

)
reduces to δ

−1
Q∗wq/ν.

4.1.6. Alternative tests
Here, we consider only methods due to Fay (1985) and Singh (1985, see also Kumar
and Singh, 1987). Some important early studies among others are due to Fellegi (1980),
Nathan and Holt (1980) and Holt et al. (1980). Fay proposed an innovative jackknifed
adjustment to the usual Pearson’s X2 and likelihood ratio statistic G2 for complex
samples whenever a replication method such as the jackknife provides a consistent
estimate of the covariance of the domain level estimates; see Rao and Thomas (2003)
for a good summary of Fay’s test. The basic idea underlying Fay’s method is to develop a
correctionK (based on the variability ofQ∗wq over jackknife replicates) as an alternative

to δ so that the test statistic K
−1
Q∗wq has a better control on size than the R-S first-

order corrected statistic δ
−1
Q∗wq when the coefficient of variation of δis is not small.

Thus, Fay’s test statistic provides an alternative to R-S second-order correction, but
its asymptotic null distribution is given by a function of weighted linear combinations
of independent χ2

1 variables, weights being functions of δis or g-deffs used for R-S
corrections. Empirically, it was found that the distribution of the Fay’s statistic can be
well approximated by

√
2
{√
χ2
ν −

√
ν
}

obtained under the working condition that δis
are same where ν is the degrees of freedom under the null hypothesis.

The method proposed by Singh is based on the idea of collapsing the full pS-vector
of wq-score functions φwq(β[pS]) by means of a T × pS transformation matrix compris-
ing T principal components of 	̂wq(φ[pS]) corresponding to the T largest eigenvalues,
T < pS. The T principal components are chosen such that the proportion of total vari-
ance retained after dropping small eigenvalues is at least 1− ε for a prespecified small
positive constant ε. The wq-score statistic is constructed analogous to (54) but with
the transformed vector φ(T )wq(β[pS]) of reduced dimension T . The resulting test (denoted
by Q(T)) attempts to avoid the problem of instability caused by small eigenvalues of
the estimated covariance 	̂wq(φ[pS]). In the simulation study of Thomas et al. (1996) for
testing independence in two-way tables from cluster samples, Fay’s test performs well
with respect to size and power when the number of clusters is greater than 30 but is
overly liberal for small number of clusters. The F-version ofQ(T) (although in the study
the quadratic statistic based on the Wald test for the log-linear model was used instead
of the wq-score statistic) with ε = 0.05 performed well for small number of clusters
in terms of controlling Type I error but had reduced power. However, in comparison
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to Fay’s Jackknifed χ2, Singh’s Q(T), and other related tests, the F-versions of Rao–
Scott’s second-order corrected χ2 test provided a reasonable control on Type I error and
adequate power over a wide range of situations.

4.1.7. Asymptotic functional linear regression approach
Some earlier attempts (see, e.g., Koch et al., 1975) on CDA from complex surveys are
based on the asymptotic functional linear regression approach of Grizzle et al. (1969)
for simple random samples. Here, the link function-based nonlinear transformation of
the domain-level sample weighted averages (y1dw)1≤d≤D is assumed to follow approxi-
mately a linear model along the lines of (25) for simple surveys, and then the standard
analysis based on weighted least squares is used. This approach is generally not satis-
factory because of the poor Gaussian approximation of the nonlinearly transformed
domain-level data.

4.2. Model diagnostics under weighted quasi-likelihood

4.2.1. Covariance smoothing
Unlike testing in model selection where the working covariance 	∗wq(φ[p]) can be used,

we do need a stable version of the correct covariance 	̂wq(φ[p]) for other parts of the
data analysis such as standardization in residual diagnostics, measures of model fit, and
variance and interval estimation. For this purpose, by analogy with R-S corrections, we
observe that if the coefficient of variation of the g-deffs is small, then the R-S first-
order correction is adequate, that is, the average g-deff times the working covariance
of the wq-score statistic provides a smoothed (and hence stable) version of the cor-
rect covariance. It follows that for the full vector of wq-score functions φwq(β[pS]), a
smoothed version 	wq(φ[pS]) of 	̂wq(φ[pS]) is given by λ	∗wq(φ[pS]), where λis are simply

the eigenvalues of 	∗−1
wq(φ[pS])	̂wq(φ[pS]) because 	∗wq(φ[pS]) is assumed to be stable. This

smoothing would be reasonable if the coefficient of variation of the λis is small as in
R-S first-order corrections. We remark that for smoothing, we could also use alterna-
tive choices of a stable working covariance matrix without requiring the proportionality
condition. For instance, one could use the high entropy variance to approximate the
variance of H-T estimators (Brewer and Donadio, 2003; Deville, 1999), which does not
require second-order inclusion probabilities (πkl). The term “high entropy” here refers to
sampling designs for which πkl is close to πkπl for k �= l, as in the case of simple random
sampling without replacement and randomized systematic probability proportional to
size sampling.

The idea of smoothing based on R-S first-order correction was generalized by Singh
et al. (2005), see also You (2008) for a further application, using the simultaneous
decomposition (Rao, 1973, p. 41),

	̂wq(φ[pS]) =
pS∑
i=1

λ̃i(M̃Pi)(M̃Pi)
′
, 	̃wq(φ[pS]) =

pS∑
i=1

(M̃Pi)(M̃Pi)
′, (59)

where 	̃wq(φ[pS]) is a suitable choice of a working covariance matrix not necessarily equal
to 	∗wq(φ[pS]), M̃ (a lower triangular matrix) is the left Cholesky root of 	̃wq(φ[pS]), that is,
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	̃wq(φ[pS]) = M̃M̃ ′, λ̃is are eigenvalues of M̃−1	̂wq(φ[pS])(M̃ ′)−1 (same as the eigenval-
ues of 	̃−1

wq(φ[pS])	̂wq(φ[pS])), and Pis are the corresponding eigenvectors. Now, since the

working covariance 	̃wq(φ[pS]) is assumed to be stable, the instability in 	̂wq(φ[pS]) can
be alleviated by reducing variability in λ̃is. This is done by dividing the eigenvalues into
K homogeneous subgroups or classes of sizes {mc : 1 ≤ c ≤ K} using clustering algo-
rithms, if necessary, and then replacing λ̃is by the average λc of the subgroup it belongs
to obtain an improved version of 	wq(φ[pS]). Thus, the desired smoothed covariance is
given by

	wq(β[pS]) =
K∑
c=1

λc

mc∑
i=1

(M̃Pi)(M̃Pi)
′
. (60)

In the simulation study of Singh et al. (2005) in the context of small-area estimation,
it was found that the small domain or area estimates with the above smoothed error
covariance of the input vector of direct domain or area-level estimates performed very
well compared with the unsmoothed case even for very small sample sizes with respect
to mean square error and coverage properties.

Now using the smoothed covariance 	wq(φ[pS]), the Cholesky residuals from rd =
N̂d
(
y1dw − μ1d

(
β̂

wql
[pR]
))

under the final modelHR can be obtained similarly to Subsection
3.2. Other informal diagnostics such as Q-Q plots and detection of influential points can
also be performed as before. For tests of sof and gof under formal diagnostics, we can use
the wq-score tests Q∗wq involving the working covariance along with R-S corrections.

ForR2-type measures of model fit, we can invoke the asymptotic normality of β̂wql
[pS] under

the saturated model and then define these measures based on wq-score test statistics as
in Subsection 3.2 with the covariance 	̂ql(φ[pS]) replaced by 	wq(φ[pS]).

4.3. Inferential testing and estimation under weighted quasi-likelihood

Similar to Subsection 2.3, all the tests of significance of single-model parameters or
groups of them, and tests of significance for difference between domain means can
be carried out by the wq-score test involving working covariances followed by R-S
corrections. For estimation, the results here are also similar to those in Subsection 2.3.
The main difference is that the point estimator β̂wql

[pR] is now the wql-estimator, which is
asymptotically normally distributed with a sandwich covariance given by (53), except for
the use of the smoothed covariance	wq(φ[pS]). For interval estimation via test inversion,
we follow essentially the same steps as in Subsection 2.4, employing the smoothed
covariance. Also for point, variance, and interval estimation of domain means and their
contrasts, all the results go through with natural modifications for wql-estimation.

We end this subsection by providing an illustrative application of the wql-approach
to the two traditional problems of testing a simple gof of weighted-cell proportions
to a completely specified distribution and testing complete independence in a three-
dimensional contingency table of weighted counts. It would be helpful to first consider
score and q-score tests for simple surveys to highlight the modifications needed for com-
plex surveys. Consider a regression model formulation in terms of β-parameters of the
log-linear model (8) with u-parameters under multinomial sampling as mentioned in
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Section 2. The first testing problem of interest is HT1 : β = β(0) with no nuisance
parameters because the distribution under test is completely specified, and there is a
1-1 correspondence between the true-cell proportions μds (D = AIJ) and u-or β[D]-
parameters under the saturated model. For example, for the two-dimensional table
(Bishop et al., 1975, p. 24), u = (IJ)−1l++, u1(i) = J−1li+ − (IJ)−1l++, and so
on, where lij = logμij . Now, the score vector φβ[D−1] is A′x[D−1]diag{md}Cov−1(zd)

(zd −md)1≤d≤D−1, where zd is the observed count for the dth cell, md = nμd(β)

is the expected count, and Cov(zd)1≤d≤D−1 is the multinomial covariance matrix
n
(
diag{μd(1− μd)}1≤d≤D − μμ′

)
without the last row and column because the ele-

ments of the full D-vector (z−m) are linearly dependent due to the constraint∑D
d=1 (zd −md) = 0 under multinomial sampling. Equivalently, the score vector

φβ[D−1] with the additional EFs
∑D

d=1 (zd −md) can be simplified after a nonsin-
gular linear transformation to obtain the D-dimensional score vector φβ[D] given by
A′x[D](zd −md)1≤d≤D, which happens to coincide with score vector under Poisson sam-
pling where the total sample size n is not fixed. It follows from (13) that the score statistic
Qml(HT1|HS) is the usual Pearson’s statistic

∑D
d=1 (md(β

(0)))−1(zd −md(β(0)))2, which
rejects HT1 : β = β(0) by referring to the upper tail of χ2

D−1 distribution.
For the q-score test for simple surveys, we allow for unspecified intracluster cor-

relations. With only first-moment assumptions and a working Poisson or multinomial
covariance matrix, the q-score vector φql(β[D]) is identical to the score vector φβ[D],
but with a different covariance matrix 	̂ql(φ[D]) similar to the one given by (38). Here,

	̂ql(φ[D]) is singular for fixed sample size because 1′D×1

(
A′x[D]

)−1
φql[β[D]] = 0, Ax[D]

being nonsingular. So using a g-inverse of 	̂ql(φ[D]), the q-score statistic Qql(HT1|HS),
as given in (43), can be defined although it is much simpler because there is no nui-
sance parameter adjustment needed here. To avoid singularity of 	̂ql(φ[D]), we can
alternatively define the q-score test with just (D− 1) q-score functions by arbitrarily
dropping one.

For complex surveys, the census EF-vector φql(β[D],U) under the assumption
of independent Bernoulli observations ydks (here, the cell or the domain d is
defined by (a, i, j) instead of just (i, j) for the logit model), analogous to (49a),
is
∑D

d=1Ax,dN(Ay,d − μd(β[D])), and the corresponding sample EF-vector φwq(β[D]),
analogous to (49b), is

∑D
d=1Ax,dN̂(ydw − μd(β[D])). The estimated covariance matrix

	̂wq(φ[D]), obtained as in (51), is singular as in the case of q-score functions, and so
is the working covariance matrix A′x[D]N2n−1(diag{μd(1− μd)} − μμ′)Ax[D] moti-
vated from multinomial counts. However, we can use instead Poisson-motivated work-
ing covariance matrix 	∗wq(φ[D]) defined as A′x[D]N2n−1Diag{μd}1≤d≤DAx[D] to make
it nonsingular or we can use the wq-score vector φwq(β[D−1]) after dropping one EF.
Now, it follows from (56) that the wq-score test Q∗wq(HT1|HS) has a Pearson’s form
X2∗(HT1|HS), which has approximately a χ2 distribution after R-S corrections. We note
an important observation by Rao and Scott (1984) that under certain conditions, only a
set of design effects (such as cell deffs for the problem considered here) are needed (and
not the full specification of the design-based covariance matrix 	̂wq(φ[D])) for comput-
ing the sum of g-deffs required for the R-S first-order correction. This is useful when
analyzing published tables from survey data where the full design information is usually
not available. For example, as in the study by Rao and Thomas (1989, eqn. 4.15), the
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first-order correction factor δ for Q∗wq(HT1|HS) is given by

(D− 1)δ = tr
(
	∗−1

wq(φ[D])	̂wq(φ[D])
)
= tr

(
	∗−1

wq(ψ[D])	̂wq(ψ[D])
)

=
∑
d

V̂π

(
N̂ydw

) (
N2n−1μd

(
β(0)
))−1

=
D∑
d=1

(deffd)ydw(1− ydw)/μd(β(0)),

(61)

whereψwq[β[D]] =
(
A′x[D]

)−1
φwq[β[D]] = N̂(ydw − μd(β[D]))1≤d≤D, a nonsingular trans-

formation of φwq[β[D]] and deffd is the design effect of N̂ydw defined as the dth diagonal
element of 	̂wq(ψ[D]) divided by N2n−1ydw(1− ydw).

For the second problem of testing complete independence in a three-dimensional
table of counts under a log-linear model, the null hypothesis using the traditional nota-
tion is defined as HT2 : u12(ai) = u13(aj) = u23(ij) = u123(aij) = 0 for all (a, i, j). The
ml-equations for the model parameters (or the nuisance parameters forHT2) under multi-
nomial or Poisson sampling, similar to (10), are given by za++ = m̂a++, z+i+ = m̂+i+,
and z++j = m̂++j , which have a closed form solution for m̂aij as za++z+i+z++j/n2. The
corresponding estimates of pT2 u-parameters (pT2 = 1+ (A− 1)+ (I − 1)+ (J − 1)),
although not needed for testing purposes, can be obtained from the estimates m̂aij . Using
an equivalent regression model formulation forHT2, the score functions φβ[pT2] have the
standard form, that is, A′x[pT2](zd −md)1≤d≤D, which are set to zero to obtain model

parameter estimates denoted by β̂ml
pT2

. Next, analogous to (13), Qml(HT2|HS) is given

by
∑D

d=1

(
md
(
β̂ml
[pT2]
))−1(

zd −md
(
β̂ml
[pT2]
))2

with its asymptotic null distribution χ2
D−pT2

,
D− pT2 equals (A− 1)(I − 1)(J − 1). Now, for the q-score test, the EFs φql(β[pT2]) do
not change under the working multinomial or Poisson assumption, but 	̂ql(φ[pT2]) based
on (38) does. We can, therefore, compute the statistic Qql(HT2|HS) as in (43).

For the wq-score test of complete independence, the EFs φwq(β[pT2]) are given by
A′x[pT2]N̂(ydw − μd(β[pT2]))1≤d≤D and need to be adjusted for nuisance parameters to
obtain the wq-nscore function φwq(β[pS−pT2|pT2]) as in (54). Now to compute the test
statisticQ∗wq(HT2|HS) asX2∗(HT2|HS) (analogous to (56) but the term to be subtracted
becomes zero because H1 coincides with HS), we can choose the working covariance
matrix 	∗wq(φ[pS]) as A′x[pS]N

2n−1Diag{μd}1≤d≤DAx[pS], which is clearly proportional to
the wq-information matrix Iwq(β[pS]) given by A′x[pS]Ndiag{μd}1≤d≤DAx[pS]. Note that
	∗wq(φ[pS]) for Q∗wq(HT2|HS) is identical to the one chosen for Q∗wq(HT1|HS) because
the enlarged models for both problems are same and given by HS. For R-S corrections,
eigenvalues of 	∗−1

wq(φ[pS−pT2|pT2])	̂wq(φ[pS−pT2|pT2]) are computed. For the first-order cor-

rection, it follows from Rao and Scott (1984) that δ can be more conveniently computed
as (see also Rao and Thomas, 1989, eqn. 4.28) follows:

(D− pT2)δ = tr
(
	∗−1

wq(φ[pS])	̂wq(φ[pS])
)
− tr
(
	∗−1

wq(φ[pT2])	̂wq(φ[pT2])
)

= tr
(
	∗−1

wq(ψ[pS])	̂wq(ψ[pS])
)
− tr
(
	∗−1

wq(ψ[pT2])	̂wq(ψ[pT2])
)
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=
D∑
d=1

(deffd)ydw(1− ydw)μd
(
β̂

wql
[pT2]
)−1

(62)

−
⎡
⎣ D1∑
d1=1

(deffd1)(1− yd1w
)+

D2∑
d2=1

(deffd2)(1− yd2w
)

+
D3∑
d3=1

(deffd3)(1− yd3w
)

⎤
⎦,

where the generic notations for cells of the three one-dimensional margins are d1,
d2, and d3 along with D1, D2, and D3 for the corresponding total number of cells.
The D (or pS) EFs ψwq(β[D]) are as in (61) except that β[D] is now β[pT2], the pT2

EFs ψwq(β[pT2]) are a simplified version after a nonsingular transformation of the
original EFs φwq(β[pT2]) (for obtaining β̂ml

pT2
) and are defined by differences between

observed and expected counts for one-dimensional and lower order margins; that is,
for 1 ≤ d1 ≤ D1 − 1, 1 ≤ d2 ≤ D2 − 1, 1 ≤ d3 ≤ D3 − 1, N̂(yd1w

− μd1w
(β[pT2])),

N̂(yd2w
− μd2w

(β[pT2])), N̂(yd3w
− μd3w

(β[pT2])), and N̂(yw − μw(β[pT2])), wherepT2 =
1+ (D1 − 1)+ (D2 − 1)+ (D3 − 1); one EF is dropped for each one-dimensional mar-
gin in the interest of linear independence. Here, yd1w

and μd1w
, for example, are the

weighted averages of ydk and μdk over all units k belonging to domains d within the cell
d1 of the first one-dimensional margin. The deffd is as in (61), while deffd1 , for example,
is the design effect of N̂yd1w

and defined as the dst
1 diagonal element of 	̂wq(ψ[D1]) divided

by N2n−1yd1w
(1− yd1w

), where ψwq(β[D1]) is N̂(yd1w
− μd1w

(β[pT2]))1≤d1≤D1 . Note that

in (62), (deffd1)(1− yd1w
) is identical to (deffd1)yd1w

(1− yd1w
)μd
(
β̂

wql
[pT2]
)−1

because all
the one-dimensional margins are satisfied by the wql-estimator under HT2.

5. Unit-level models

As mentioned in the introduction, it is better in the interest of estimation efficiency to use
unit-level models if some or all the covariates are available at the unit level; that is, they
may not take common values for all the units in the same domain d defined by the cross-
classification. For example, for analyzing data from CCHS, the age covariate category
at the unit level used for predicting the smoking prevalence may be finer than the broad
five categories used for the count table or may even be treated as a continuous variable.
In such cases, the data can not be summarized in terms of domain-level totals as was the
case in previous sections for aggregate-level models because of certain covariates not
taking common values for all the units in the domain. Here, the data analysis problem
is still categorical because the response or the outcome variable of smoking status is
categorical. Note that although we only considered aggregate-level models so far, we
did express in Section 3 the aggregate-level model as a unit-level model to incorporate
later on in Section 4 the unit level sampling design weights.

We note that the results of Section 3 on ql-estimation are sufficiently general in that
they remain applicable to unit-level modeling. However, the main difference lies in
the model diagnostics aspect. This occurs because the individual-level residuals are not
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particularly useful for binary response variables or polytomous indicators. To overcome
this problem, an important idea of grouping for unit-level models was proposed by Hos-
mer and Lemeshow (1980) following Truett et al. (1967) and a generalization by Horton
et al. (1999). Here, the data are first divided into G groups sg of size ng, 1 ≤ g ≤ G
using percentiles of the empirical distribution function of the estimated predictive mean
for each unit. Next, as in Horton et al. (1999), group indicators can be used to enlarge
the set of covariates, and the resulting q-score functions corresponding to new regres-
sion parameters in the enlarged model turn out to be differences between observed and
estimated expected counts for each group. These group-level residuals, like Pearson
residuals, are approximately normal (assuming large ng for all g) under the model and
can be checked for any departures from iid N(0, 1) after suitable standardization.

For complex surveys, unit-level residuals are even more problematic due to poten-
tial selection bias. For residual plots, the presence of sampling weights with unit-
level residuals can be represented as bubbles (see Korn and Graubard, 1999, p. 80)
to signify that the weighted residuals are needed for consistent estimation of FPQs
such as residual totals for groups (which have mean zero under the model), when
the finite population is divided into Hosmer–Lemeshow-type groups (Note that the
weighted unit-level residual by itself is not meaningful as an estimate of an FPQ.).
This is the basic idea underlying the weighted quasi-likelihood approach for unit-level
models but before that, results for likelihood-based methods and quasi-likelihood are
reviewed. In the following, we restrict, for convenience, our attention to only logis-
tic models for the unit level (which is a natural analogue of logit models for the
aggregate level) although all the results after suitable modifications remain applica-
ble to other generalized linear models such as probit and complementary log-log for
the Binomial distribution, and log-linear for Poisson and Multinomial distributions
(see McCullagh and Nelder, 1989, Chapter 2).

5.1. Likelihood-based methods for unit-level models

Consider the unit-level logistic model for a simple random sample. We have, for each
sampled unit k in domain d,

Obs. Eqn. y1dk = μ1dk + ε1dk, y1dk ∼iid Ber(μ1dk)1 ≤ k ≤ nd, 1 ≤ d ≤ D,

Link Eqn. logitμ1dk ≡ log
{
(1− μ1dk)

−1μ1dk
} = x′dkγ =

p∑
l=1

xl,dkγl,

(63)

where the covariates xl,dks are unit level for each unit k in domain d. Then, by condi-
tioning on the domain sample sizes {nd}, the log-likelihood (3) for the aggregate-level
model is modified to the unit level as

logL =
D∑
d=1

nd∑
k=1

[
(x′dkγ)y1dk − log(1+ ex′dkγ )

]
+ const. (64)

The score function, denoted by ϕγ[p] (open phi notation to contrast with closed phi
used for aggregate-level models in Section 2), for the regression parameters γ[p] is
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given by

ϕγ[p] ≡ ∂ logL/∂γ ′ =
∑
d

∑
k

xdk(y1dk − μ1dk(γ)). (65)

Under usual regularity conditions, the ml-estimator γ̂ml
[p], which solves ϕγ[p] = 0 has

the asymptotic normal distribution

γ̂ml
[p] − γ[p] ∼approx N

(
0, 
γ[p]

) ∣∣
γ=γ̂ml[p] ; 
γ[p] = J−1

γ[p]	ϕ[p]J
′−1
γ[p], (66)

where Jγ[p] is the observed information matrix analogous to the definition in (22) and
given by

∑
d

∑
k u1dk(γ)xdkx

′
dk, while	ϕ[p] is the covariance matrix of the score vector

ϕγ[p], which turns out to be identical to Jγ[p]. For our model, since ϕγ[p] is an optimal
EF in the sense defined in Section 3.1, we have 	ϕ[p] equal to the expected information
Iγ[p] which, for the canonical link, is identical to Jγ[p]. Moreover, for computing γ̂ml

[p],
an analog of the Newton–Raphson algorithm (5) for the unit-level model can be used.
We now consider the four aspects of data analysis.

5.1.1. Model selection
All the results for the aggregate-level model of Subsection (2.1) carry through based on
the new score function ϕγ[p]. The quadratic function of the score statistic will now be
denoted as Q(ϕγ[p]). However, for testing H2 ⊂ H1, we cannot express the score test
statistic approximately as a difference of X2-type statistics as in the case of aggregate-
level modeling (see (20)) because in the case of unit level models, the score function is
not a linear function of domain level differences between observed and expected counts.
Also, for the same reason, the simplified asymptotic functional regression approach of
Grizzle et al. (1969) is not directly applicable to the unit-level case.

5.1.2. Model diagnostics
We first define data groups as suggested by Hosmer and Lemeshow (1980) based on
ranking of the estimated proportions μdk

(
γ̂ml
[p]
)

and then using the percentiles as group
boundaries. In practice, typically, the number of groups chosen is 10 corresponding to
deciles. In general, with G groups, as mentioned earlier, the group residuals can also
be obtained as new EFs for the enlarged model obtained from (63) by adding indicator
covariates for the new groups. The G new EFs are

φγ(g) = ng(y1g − μ1g(γ)), 1 ≤ g ≤ G, (67)

where ng denotes the gth group sample size, and y1g and μ1g denote the group-level

averages, y1g = n−1
g

∑D
d=1

∑nd
k=1 y1dk(g)1dk(g), where 1dk(g) indicates the membership of

the (dk)th unit in the gth group and μ1g is similarly defined. It will be assumed, and this
is generally the case, that all the new EFs except for one (typically due to the presence
of an intercept term in the model (63)) are linearly independent of the original EFs
ϕγ[p] of (65). Note that the EFs (67) are obtained from EFs (65) by simply replacing the
vector xdk by (1dk(g))1≤g≤G. We denote the enlarged vector of EFs by ϕγ[p+] of dimension
p+ = p+G− 1, where one of the new EFs, say ϕγ(G), is dropped. Thus,

ϕγ[p+] =
(
ϕ′γ[p], ϕ

′
γ[p+−p]

)′
, ϕγ[p+−p] = (ϕγ(g))1≤g≤G−1. (68)
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The enlarged vector ϕγ[p+] is the score vector for the following model, which is
analogous to the saturated model (28) withpS replaced byp+ and obvious modifications
for the unit-level model and is given by

logitμ1dk(γ[p+]) = x′dk[p]γ[p] + x′dk[p+−p]γ[p+−p] = x′dk[p+]γ[p+], (69)

where the new (p+ − p) (= G− 1) covariates xdk[p+−p] correspond to the indicators
1dk(g), 1 ≤ g ≤ G − 1. Here we assume without loss of generality that the covariate
matrix Xn×p+ for the model (69) is of full rank p+. It is important to note that although
the group boundaries are random, they can be treated as fixed for the asymptotic normal
distribution of ng(yg − μg(γ)) for large ngs, see Moore and Spruill (1975) for the case
of continuous distributions and Kulperger and Singh (1982) for a modification needed
for discrete distributions.

Now, as in the Subsection 2.2, for the final selected model HR, we first obtain using
the Hosmer–Lemeshow grouping idea, the (p+ − pR)-vector of nuisance parameter
adjusted residuals r̃1(= ϕγ[p+−pR |pR]) evaluated at γ̂ml

[pR]. This makes use of the informa-
tion matrix Iγ[p+](= 	ϕ[p+]). We then obtain Cholesky residuals (r̃∗1g)1≤g≤G−1 using the
covariance 	ϕ[p+], which is defined as the matrix 	ϕ[p] of (66). Note that in this pro-
cess, the first pR EFs ϕγ[pR] are sacrificed for estimating γ[pR]. The Q-Q plots can also
be checked with G-1 approximately normal residuals (r̃∗1g)1≤g≤G−1. Regarding detect-
ing influential points, the hat matrix from the linearized regression with the adjusted
dependent variable in the case of unit level can be used as was done in (29). Also,
the R2

e measures for sof and gof of the model HR can be computed easily using the
likelihood (64).

For testing sof of HB given HR, we can compute the nscore test Qc(α)

ml (HB|HR)

as Q
(
ϕγ[pR−pB|pB]

)
evaluated at γ[pR] =

(
γ̂ml
[pB], γ

′
[pR−pB] = 0′

)′
, similar to what was

done in (14), but with the unit-level nscore function ϕγ[pR−pB|pB] adjusted for the nui-
sance parameters γ[pB], that is, ϕγ[pR−pB] −	ϕ[pR−pB, pB]	

−1
ϕ [pB]ϕγ[pB], where 	ϕ [pB] and

	ϕ[pR−pB,pB] are obtained by partitioning 	ϕ [pR] as in (15). Also, for testing gof of HR

given HF where the full model has pF(= p+R ) γ-parameters under the enlarged model
(69), a similar nscore testQc(α)

ml (HR|HF) can be constructed having the asymptotic null
distribution χ2

p+R−pR
with p+R − pR = G − 1. It may seem somewhat surprising at first

that with G groups, there is no loss of degrees of freedom despite the use of estimated
parameters except for one due to the obvious constraint that every individual always
belongs to one of theG groups, that is,

∑G
g=1 1dk(g) = 1. However, there is in fact a loss

in degrees of freedom (from pR +G− 1 toG− 1) because there is extra information in
the original unit-level score functions ϕγ[pR] that is consumed in estimating the nuisance
parameters γ[pR].

5.1.3. Hosmer-Lemeshow test for model fit
An alternative test for HR given HF, to be denoted by X2

HL, was proposed by Hos-
mer and Lemeshow (1980) which, based on an empirical study, exhibits a further loss
in degrees of freedom under the null hypothesis (i.e., degrees of freedom being less
than G − 1) along with an uncertainty in the asymptotic null distribution. It turns out
that X2

HL is asymptotically less powerful than the above nscore testQc(α)

ml (HR|HF) with
the null distribution having full degrees of freedom G − 1. We remark that although
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X2
HL is also based on the nscore statistic ϕγ[p+R−pR |pR], it uses the incorrect covariance

matrix	ϕ[p+R−pR ] instead of the correct matrix	ϕ[p+R−pR |pR], all evaluated at γ̂ml
[pR]. Now,

since the distribution of counts {ngy1g, ngy2g}1≤g≤G under simple designs is a product
of binomial distributions conditional on ngs (sample sizes in the groups) for a total
sample of size n, the X2

HL statistic resembles the Pearson’s X2 because ϕγ[p+R−pR |pR]
at γ̂ml

[pR] is simply of the form (O− E) corresponding to ϕγ(g) of (67), as the second
term in ϕγ[p+R−pR |pR], reflecting adjustments for nuisance parameters γ[pR], becomes
0 at γ̂ml

[pR], and 	ϕ[p+R−pR ] conditional on the ngs is basically a covariance matrix of
independent binomial variables as in the X2 test of (13). The X2

HL test statistic is
given by

X2
HL(HR|HF) =

G∑
g=1

(ng(y1g − μ1g(γ))
2)

ngμ1g(γ)(1− μ1g(γ))

∣∣∣γ̂ml{pR ]
. (70)

Note that in the quasi-likelihood framework, use of 	ϕ[p+R−pR ] instead of the actual
	ϕ[p+R−pR |pR] can be viewed as employing a working covariance, and by analogy with
results leading to Rao–Scott Corrections in Subsection 4.1, the asymptotic null distri-
bution of X2

HL is in fact a linear combination
∑G−1

i=1 ζiX
2
1,i of independent χ2

1 variables
with coefficients ζis between 0 and 1. The coefficients ζis are easily seen to be the
eigenvalues of the matrix 	−1

ϕ[p+R−pR ]	ϕ[p+R−pR |pR], which are between 0 and 1 because

	ϕ[p+R−pR ] −	ϕ[p+R−pR |pR] is positive definite. Thus, the null distribution of ζ
−1

X2
HL can

be treated as approximatelyχ2
G−1 by analogy with the R-S first-order correction, where ζ

is the average of ζis. Note also that the X2-type form of X2
HL is inherently different from

the χ2 statistics of (18) because of the lack of a meaningful definition of the saturated
model under unit-level modeling.

To further understand the above behavior of the Hosmer–Lemeshow statistic, it is
helpful to relate it to the earlier result of Chernoff and Lehmann (1954) in the context of
the traditional Pearson’s X2 test of gof to a given distribution after transforming to the
multinomial distribution by grouping the unit-level data. They showed that with K+ 1
groups and p unknown model parameters such that K + 1 > p, the asymptotic null
distribution is no longer χ2

K−p if the more efficient ungrouped data ml-estimators of the
model parameters are used instead of the grouped data ml-estimators. More specifically,
they showed that in this case, the Pearson’s X2 statistic behaves like χ2

K−p+
∑p

i=1 ωiχ
2
1,i

with independent χ2
1 variables and weights ωi satisfying 0≤ωi≤ 1. Equivalently, the

asymptotic null distribution can be expressed as that of
∑K

i=1 δiχ
2
1,i, where δis are suitable

eigenvalues similar to those in the problem requiring R-S corrections. Later, Rao and
Robson (1974) showed that the partial loss degrees of freedom (due toωis being between
0 and 1) in the Pearson’s X2 can be recovered by adding a suitable quadratic term to
it; see Singh (1987) for review and optimality of the Rao–Robson statistic as well as a
generalization to the case when ml-estimators are not easily available. These results on
traditional gof tests can be easily reconciled with the nscore statistic Qc(α)

ml (HR|HF) of
this section, which uses the nuisance parameter-adjusted covariance and thus exhibits
no loss of degrees of freedom.

Finally, for inferential testing and estimation, all the results of Subsections 2.3 and 2.4
carry over to the case of unit-level models.
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5.2. Quasi-likelihood methods for unit-level models

Here, the model (63) with the unit-level covariates is generalized to allow for unspecified
intracluster correlation, similar to (36) for the aggregate-level covariates.As in Section 3,
neither the likelihood nor even the covariance structure of the unit-level data due to
possible intracluster correlation is fully specified (see, e.g., McCullagh and Nelder,
1989, Chapter 9). Under the working independence assumption as in Subsection 3.1,
the q-score functions ϕql(γ[p]) are given by (65) and all the previous results with natural
adjustments for the q-score (such as the use of the information matrix and not the
covariance matrix in (43) for nuisance parameter adjustment) carry over. In particular,
for model selection, the q-score testQql(H2|H1), analogous to (43), can be constructed.
Formodel diagnostics, data are grouped as in the previous section to construct Cholesky
residuals, Q-Q plots, gof tests, and R2

e measures of model fit. Notice that in the absence
of the likelihood of the original data, we can use (as in Subsection 3.2) the approximate
Gaussian likelihood of the p+R -vector of quasi-sufficient statistics γ̂ql

[p+R ] under HS with

pS = p+R to construct the R2
e measures. For model fit, q-nscore tests can be constructed.

Note that if one were to use X2
HL(HR|HF) of (70) for testing gof, coefficients in the linear

combination of χ2
1-variables for the asymptotic null distribution are the eigenvalues of

	−1
ql(ϕ[p+R−pR ])	ql(ϕ[p+R−pR |pR]), which, unlike in Section 5.1, need not be between 0 and

1 unless	ql(ϕ[p+R−pR ])−	ql(ϕ[p+R−pR |pR]) is positive definite; here, a consistent estimate
of the covariance matrix 	ql(ϕ[p+R ]), similar to (38), is used for computing purposes.

The test statistic X2
HL(HR|HF) is a special case of the Horton et al. (1999) statistic for

longitudinal data.

5.3. Weighted quasi-likelihood methods for unit-level models

Here, the model is similar to (48) except that the aggregate-level covariates are replaced
by unit-level covariates and the regression parameters β by γ . Now as in Section 4,
the wq-score function ϕwq(γ[p]) and the corresponding asymptotically normal estimators

γ̂
wql
[p+R ] with a sandwich form of the covariance are obtained as in (53). The methods for

model selection can be applied as before except for the natural modification to R-S cor-
rections to suit unit-level models because of the absence of Pearson’s X2-type statistics
(see Rao andThomas, 2003). Note that here, as in Section 4, the unweightedq-score func-
tion ϕql(γ[p]) is replaced by the weighted q-score function ϕwq(γ[p])(= N̂g(y1gw − μ1gw)).
For model diagnostics, we create Hosmer–Lemeshow groups as before but with quan-
tiles based on the weighted empirical distribution after ordering the data by means of the
predictive means (see Roberts et al., 2008) and Cholesky residuals using the smoothed
covariance as in Subsection 4.2. The R2

e measures likewise use the smoothed version
of the covariance of γ̂wql

[p+R ]. For the gof test of HR against the enlarged model HF (where

pF = p+R as in (69)), in particular, the q-score test statistic with the working covariance
matrix under a simple design followed by R-S corrections would be preferable to the
q-score test statistic with the actual (but possibly unstable) estimated covariance used
by Graubard et al. (1997). Finally, all the other methods under inferential testing and
estimation continue to hold with appropriate modifications to suit sampling weights and
unit–level modeling as encountered earlier.
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6. Conclusions

The emphasis in this chapter is on the large sample quasi-likelihood (under only first
moment assumption) approach to CDA as it is amenable to data from complex surveys.
There are limitations with what is feasible with complex survey data, mainly due to
unavailability of second-order inclusion probabilities in general, which are required
for variance–covariance estimation. Therefore, we emphasized employing only correct
specification of first-order moment conditions and considered the use of a working
covariance matrix to define EFs, along with a nonparametric robust estimate of the
covariance matrix of them.

We present a unified and practical framework that covers past and recent solutions
to different problems arising from aggregate and unit-level models for simple and com-
plex sampling designs. For each case, four main aspects of data analysis are discussed,
namely, model selection, model diagnostics, inferential testing, and inferential estima-
tion. We show for each aspect how the standard methods can be modified to suit survey
data, using tools based on quasi-likelihood estimation and quasi-score tests. Potential
applications of logit (logistic in the case of unit level) models to the binary data from
the CCHS are used to motivate various analysis methods.

In the case of unit-level models, the commonly used technique of grouping data sug-
gested by Hosmer–Lemeshow is considered to define gof tests based on discrepancies
between observed and expected counts and also for residual diagnostics. The idea of
grouping for defining residuals not only fits in well with categorical data but is also nat-
ural for survey data with sampling weights because weighted unit-level residuals are not
really meaningful as estimates of residual totals for subpopulations in the design-based
context. Since model diagnostics are an important part of any data analysis, we pro-
pose the use of Cholesky residuals for obtaining uncorrelated residuals for diagnostics
(which are especially important for categorical data because of non-negligible correla-
tion among group data residuals induced by estimated model parameters), the use of
generalized design effects to smooth the covariance matrix under complex designs for
standardizing residuals, and the use of a generalized R-square measure developed by
Estrella (1998) for model fit.

For point estimation, robust variance estimates of quasi-scores are proposed to
counter possible misspecification of second moments under the model. The method of
test inversion based on q-nscore (Neyman or nuisance parameter adjusted quasi-score)
test statistics is considered for interval estimation as an alternative to the commonly
used Wald statistics for improved stability.

In the process of reviewing existing methods, some suggestions toward their enhance-
ment are also made. In particular, it is observed that the asymptotic null distribution of
the well-known Hosmer–Lemeshow statistic for gof tests with unit-level models for
binary data is in fact a linear combination of independent χ2

1-variables with coefficients
between 0 and 1. It is also observed that the partial loss of degrees of freedom in the
above test due to coefficients being less than 1 can be recovered by using appropriate
quasi-score tests but then it no longer has the form of Pearson’s X2.

There are important topics that are not a traditional part of CDA that we could not
cover in the interest of limiting the scope of this review. For instance, mixed categor-
ical models arise in situations when there is a large number of domains with domain-
specific factor effects being modeled by random effects, and the interest lies in marginal
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means and variance components (see, e.g., Jiang and Zhang, 2001; Singh and Wu, 1998;
Sutradhar and Rao, 2003). Models for longitudinal categorical data with time-varying
covariates but time-independent parameters come up with repeated observations or sur-
veys over time (see, e.g., Horton et al., 1999; Liang and Zeger, 1986; Roberts et al.,
2008; Singh and Sutradhar, 1989, Nathan in Chapter 34) of this handbook. Finally,
we also mention models for combined longitudinal and cross-sectional categorical data
with time-dependent parameters (see, e.g., Singh and Roberts, 1992 and the book by
Fahrmeier and Tutz, 2001).

We conclude this by briefly discussing the special topics of sparse tables, gross flows,
missing data, and ordered categorical data, which are a traditional part of CDA but are
not considered in this chapter. The problem of sparse tables arises if cell counts are small.
For example, in CCHS, for the outcome variable of regular drinking, the observed counts
for the younger age groups such as 12–19 is very small as expected. Some cell counts
may also be zero, which may affect the existence of ml-estimators; see, Fienberg (1980,
Appendix IV) and Haberman (1974) for conditions for the existence of ml-estimators. It
turns out that the parameter estimation may not be affected as much by the presence of
empty cells or small counts as the sampling distribution of gof test statistic, which may
be more seriously affected. The empirical results of Koehler and Larnz (1986) show
that for gof tests, the Pearson’s X2 statistic tends to perform better than the likelihood
ratio statistic G2, which turns out to be too liberal for the 5% level, that is, rejects the
null hypothesis more often. They also considered an interesting normal approximation
(instead of chi-square) to the distribution of the G2 test statistic when the number of
cells increases at the same rate as the number of observations.

The problem of estimation of gross flows arises in longitudinal surveys when one
is interested in estimating the transition rates between categories from one time point
to the other in the presence of classification errors. Often the transition rates of interest
are very small, for example, the proportion of individuals in a domain changing status
from regular smoker to nonsmoker in consecutive cycles of CCHS or the proportion
of individuals in a domain changing employment status from one month to the next
in the monthly Canadian Labour Force Survey. Even with a very small probability
of misclassification in response and a negligible bias in the estimated margins (i.e., the
separate state proportions), there could be considerable bias in the estimated gross flows.
Using validation data such as reinterview data, several authors proposed adjustments to
estimated gross flows under fairly weak set of assumptions except for the assumption of
independent classification errors from one time to other, (see, e.g., the papers by Abowd
and Zellner, 1985; Poterba and Summers, 1986; Chua and Fuller, 1987; Singh and Rao,
1995). When validation data are not available, an interesting alternative method was
suggested by Pfeffermann et al. (1998) who used auxiliary variables at the unit level
to model true state transition probabilities and classification error probabilities relating
the observed state with the true state, thus avoiding the assumption of independent
classification errors.

It is assumed implicitly throughout this chapter that the sample data is complete.
However, in practice, this is seldom the case. In the case of unit nonresponse, the sam-
pling weights can be adjusted under a nonresponse model and then the covariance matrix
of the EF-vector can be adjusted for nonresponse, similar to the problem of estimating
population totals adjusted for nonresponse (see Chapter 8 of this handbook). For item
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nonresponse, on the other hand, the data could be completed using an appropriate impu-
tation method (see Chapter 10), but then the problem of adjusting the covariance matrix
of the EF-vector based on imputed values is more difficult, see, for example, the multiple
imputation methodology of Rubin (1996), some alternative methods more suitable for
survey data considered by Rao and Fay in their discussions, and a more recent method
using fractional imputation due to Kim and Fuller (2004); see also the discussion in
Chapter 10 of this handbook. A general alternative without making any adjustments for
nonresponse is to perform the analysis in the presence of missing data under a suitable
response model (see the book of Little and Rubin, 2002), although with large-scale
multipurpose survey data, it is preferable in practice, for the sake of convenience, to be
able to use analysis methods for complete data after being adjusted for unit and item
nonresponse.

The last special topic we mention is that of ordinal categorical data commonly arising
in sociological studies, where the values of the outcome variable are ordered categories.
Here, cumulative link models (such as cumulative logit) are often considered (see,
e.g., Agresti, 2002). If some of the covariates are also ordinal, then by assigning suitable
scores to covariate categories (actually what is needed essentially is the distance between
ordered categories), more degrees of freedom in parameter estimation could be secured
by taking advantage of the parsimony of parameters due to the extra information provided
by the category scores (see, Fienberg, 1980, Chapter 4).
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Inference on Distribution Functions and Quantiles

Alan H. Dorfman

1. Introduction

The focus of this chapter is on the estimation of the finite population distribution function,
on the basis of a sample taken. The subject is important: the distribution function is
a basic statistic underlying many others (Serfling, 1980, Section 2.1); for purposes of
assessing and comparing finite populations it can be more revealing than means and totals
(Sedransk and Sedransk, 1979). Intimately tied to distribution functions are quantiles,
and we shall be concerned with their estimation as well, which are typically estimated
by the inversion of estimates of the distribution function. Note: the distribution function
is also known as the cumulative distribution or the cumulative distribution function. For
shorthand purposes, we shall adopt cdf, lest anyone arriving in the middle of the chapter
think we are talking about degrees of freedom.

In some important respects, research on the estimation of finite population cdfs from
survey samples is relatively young, and there is a good deal which is uncertain. We
will suggest some avenues for further investigation explicitly in the last section and
implicitly in the course of the chapter with the phrase “it is not clear that…”, “it would
be of interest to see…”, or similar expressions.

1.1. Definitions

The distribution function, also known as the empirical distribution function, of a variable
y for a finite population U having N units is defined by

FN(t) = N−1
N∑
i=1

I (yi ≤ t) , −∞ < t <∞,

where I(u) is the indicator function (or “truth function”) defined by I(u) = 1, if u is
true, I(u) = 0, if not. In words, for a given value of t, FN(t) is the proportion of y in
the population not exceeding t. An alternate symbolism sometimes employed in the cdf
literature is FN(t) = N−1 ∑N

i=1H(t − yi), whereH(u) is the Heaviside function, given
by H(u) = 1, u ≥ 0 and H(u) = 0, u < 0, and sometimes represented using � instead
ofH . In this chapter we will stick to the indicator function notation. It will occasionally
be convenient to use a shorthand zi = I(yi ≤ t).

371
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From the definition immediately follows the basic properties: (a) FN(t) is monotonic
nondecreasing in t, (b)FN(t) is a step function with step sizeN−1, and (c) 0 ≤ FN(t) ≤ 1.

If the yi’s are regarded as realizations of independent random variables Yi each gene-
rated from a probability distribution having distribution function F(t), then FN(t) is
an unbiased and strongly consistent estimator for F(t) (Serfling, 1980, pp. 56–57). For
0 ≤ p ≤ 1, the pth quantile is defined by Q(p)= min{t : F(t) ≥ p}. In the case
where F is monotonic strictly increasing, Q(p)=F−1(p), in the ordinary sense of
function inversion. We shall use this notation even when we do not have strict mono-
tonicity, when we wish to identify the distribution function from which the quantile is
derived.

Estimation of the distribution function leads to estimates of quantiles, Q(p) by
QN(p) = min{t : FN(t) ≥ p}. In this chapter, we shall be concerned with the transition
from sample to finite population, and ignore the further question of estimating the under-
lying generating distribution function. It can be safely assumed, however, that a good
job of estimating FN(t) typically implies a good job of estimating F(t), and vice versa.
From this point on, for notational convenience, we will write F(t) ≡ FN(t), dropping
the subscript N, with, we hope, no confusion.

Estimating the finite population distribution function F(t) is in some respects easier
and in others more difficult than estimating a population total or mean. On the one
hand, for fixed t, F(t) is simply a mean of 0’s and 1’s. As such it should show no more
complication than estimating a mean, and sometimes can be eased using a transformed
version of y (see Remark 1.1). On the other hand, (a) we typically want to estimate F(t)
for more than one value of t and these estimates need to be coordinated, especially if we
have a further interest in estimating quantiles, and (b) where y is related to an auxiliary
variablex, it becomes a question how to use this information, since now we are concerned
with z ≡ I(y ≤ t) and not y itself, which is what usually gets modeled on x.

Remark 1.1. If u = g(y) is a strictly monotone increasing function of y, then one
readily sees that estimating the cdf for u is equivalent to estimating the cdf for y:
FY(t) = P(Y ≤ t) = P(g(Y) ≤ g(t)) = FU(g(t)). In some cases, it may help to use
the relation to auxiliary information x of a transformed version of y rather than y itself.
Compare for example Section 3.4.

1.2. The design-based and model-based perspectives

In this chapter, we will be referring to “design-based” and “model-based” estimators,
alluding to two different perspectives on sampling inference. Most basic sampling texts
adhere to the design-based (or “probability sampling”) approach, for example, Cochran
(1977), Särndal et al. (1992). Valliant et al. (2000) describe the model-based (or “pre-
diction”) approach. See also especially Chapters 1 and 23 of this volume.

In brief, the design-based approach bases inference on the probability distribution
generated by the activity of the survey sampler; the model-based approach, on a hypoth-
esized relation of the data in the sample to that in the population.

The design-based approach treats the finite population U ={(xi, yi), i =
1, 2, . . . , N} as a fixed large set of parameters, where y is the variable of interest and
x is the auxiliary variable, embodying extra information possibly relevant to y. The
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random variable on which inference rests is the indicator variable Ii, i ∈ U, which is 1
if unit i is chosen for the sample s, and 0 if i is in the “remainder” r = U − s. The
“inclusion probability” πi = prob (Ii = 1) plays a fundamental role in design-based
estimators, with the inverse of πi the default “weight” placed on the ith sample point.
Likewise the “second-order inclusion probabilities” πij = prob

(
Ii = 1 & Ij = 1

)
play

a role in variance calculations and in some estimators of the distribution function (see
Section 3.2).

The model-based approach regards the population values of y as realizations of
random variables that are generated according to some probability model - the “working
model.” Estimators are grounded in the model, and theπi (and even the random selection
of s) are not typically regarded as necessary ingredients for inference. At the same time,
efforts are made to protect inference against model misspecification (see Chapter 23).
This turns out to be intrinsically more difficult in the case of estimating distribution
functions than for totals and means (see Section 3.1).

Thus there is more emphasis in the case of distribution functions on model diag-
nostics (Section 3.5), on estimators that seek to automatically adjust for model failure
(Section 3.6.2), and on weakening the model (Section 3.7).

Model-assisted estimation is a form of design-based estimation that incorporates
both the inclusion probabilities πi and a model, attempting “to provide valid conditional
inferences under the assumed model and [to protect] against model misspecification
in the sense of providing valid design-based inferences irrespective of the population
y-values” (Rao, 1994). There is often a strong resemblance of these estimators to the
class of model-based estimators that seek to automatically adjust for model failure
(Section 3.6.2).

Most simulation studies, even those studying the behavior of model-based estimators,
are essentially constructed from a design-based perspective, looking at biases and mean
square error over repeated sampling from a single population. They may therefore be
regarded as slightly favoring design-based estimators.

1.3. Desirable properties of estimators of the distribution function

Many authors, notably Nascimento Silva and Skinner (1995), have advocated that a
sample based cdf estimator F̂ (t) should possess some or all of the following properties:

(1) F̂ (t) is itself a distribution function, satisfying

(a) the boundary condition, 0 ≤ F̂ (t) ≤ 1, and
(b) the monotonicity condition t < t′ ⇒ F̂ (t) ≤ F̂ (t′).

Of these, the boundary condition (a) is the more fundamental, because F̂ (t)
outside these bounds are necessarily off target. To achieve a quantile estimate
Q̂(p) by inverting F̂ (t) requires (b).

(2) F̂ (t) is simple,

(a) in form, for example, have a single set of weights wi applied to zi ≡
I (yi ≤ t) for all t,

(b) to calculate, and
(c) to understand.
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(3) F̂ (t) is readily invertible to get quantiles. This is perhaps a particular aspect
of 2(a).

(4) F̂ (t) is automatically constructed in all its details, that is, it does not require
choices (of for example, a particular model or bandwidths) or diagnostic acuity
on the part of the analyst.

(5) F̂ (t) is calibrated with respect to any auxiliary variables x that are correlated
with y. Typically, this means that if y is replaced by x, then F̂ (t) = F(t).

(6) F̂ (t) is efficient: its mean square error with respect to F(t) is smaller than com-
peting estimators – the mean square error is usually calculated across samples
from the same population, that is, with respect to the sample design. It makes
full use of available relevant auxiliary information.

(7) F̂ (t) is unbiased or nearly so: usually taken with respect to the sample design.

(8) F̂ (t) is consistent: F̂ (t) tends to be closer and closer to the target F(t), as the
sample size n gets larger and larger.

(9) F̂ (t) is robust: it stands up well against competing estimators under a variety
of conditions. If not invariably the most efficient, it is not much less efficient
than the best estimator for given circumstances.

(10) F̂ (t) has a readily formulated variance, and a readily calculated and simple
variance estimator.

These properties are not entirely compatible. For example, aiming at simplicity we
may pay a price in efficiency, and vice versa. They are also not equally important;
for example, it may suffice that an estimator be efficient and robust, without requiring
unbiasedness as well. Also, standard algorithms of isotonic regression, for example, the
pool-adjacent-violaters algorithm, can be used to make minor adjustments to a poten-
tially wayward F̂ (t) to guarantee Property 1, albeit at some sacrifice with respect to
Property 2.

Which properties to most emphasize will depend on circumstances. Large repetitive
government surveys will value property 4. A one time survey, with a statistically savvy
analyst who has time to explore the data, will perhaps put efficiency and robustness
considerations uppermost.

Different priorities (cdf or quantiles), different emphases on the aforementioned
properties, the different forms auxiliary information can take, as well as the tension
between model-based and design-based sampling ideas, perhaps account for the great
variety of cdf estimators that have been put forth in the recent years.

2. Estimating the distribution function with no auxiliary information

We assume a sample s of size n, perhaps selected by probability sampling with inclusion
probabilities πi. Although the inclusion probabilities inevitably rest on some auxiliary
information, that information may not be available to the data analyst. In this section,
we consider estimation lacking any data on an auxiliary variable x. All we have is the
sample y and possibly also the sample design weights di ≡ π−1

i . For the moment we do
not worry about second-order inclusion probabilities, which are rarely available, except
in simple random or stratified sampling.
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2.1. The Hájek estimator

A convenient estimator has the form

F̂w(t) =
∑
i∈s
wiI (yi ≤ t), (1)

where the weights wi satisfy 0 ≤ wi ≤ 1 and
∑

i∈s wi = 1. This estimator in general
satisfies Properties 1, 2, and 3 mentioned earlier. Assume the yi are listed in ascending
order. Then the corresponding quantile estimator, readily calculated, is

Q̂(p) = min

{
yi|

i∑
i′=1

wi′ ≥ p
}
.

Ifwi = di
/∑

i′∈s di′ , we get the Hájek estimator, the “customary design based estimator”

F̂π(t) =
∑
i∈s
π−1
i I (yi ≤ t)

/∑
i∈s
π−1
i =

∑
i∈s
dizi

/∑
i∈s
di (2)

which is design-consistent and approximately design-unbiased. This tends to be the
estimator against which other estimators of F(t) are (usually successfully) compared.

In the case of simple random sampling, F̂π(t) reduces to the sample empirical distri-
bution function or “naïve estimator”

F̂n (t) = n−1
∑
i∈s
I (yi ≤ t) = n−1

∑
i∈s
zi. (3)

When there are no preconditions on the values of the population yi, then F̂n is admissible
with respect to four standard loss functions for all sample designs (Cohen and Kuo,
1985a) and is minimax under simple random sampling for one of these loss functions
(Cohen and Kuo, 1985b).

Another special case of F̂π(t) is the stratification-based estimator studied by Sedransk
and Sedransk (1979).

Design-based variances and variance estimators for F̂π(t) use standard design-based
formulas with zi the variable of interest.

2.2. Alternatives to Hájek

Kuk (1988) compared three estimators, the Hájek as mentioned above, the Horvitz–
Thompson estimator F̂HT(t) = N−1 ∑

i∈s diI (yi ≤ t), and the “the complementary pro-
portion” F̂R(t) = 1−N−1 ∑

i∈s diI (yi > t). Neither F̂HT(t) nor F̂R(t) are cdf. He gives
theoretical reasons for preferring F̂R(t) or F̂π(t) to F̂HT(t). In an empirical study on
several populations, F̂R(t) showed best as basis for construction of medians. He also
considered a fourth estimator F̂λ̂(t) = λ̂F̂HT(t) + (1 − λ̂)F̂R(t), a weighted average
aimed at giving minimal mean square error. The weights are estimates based on the
population of x values. Thus properly speaking, this estimator belongs to Section 3
below. In simulations, it is often best, but, surprisingly, sometimes not as good as F̂R(t),
which does not require the auxiliary information.

For the sake of quantile estimation, Hyndman and Fan (1996) (henceforth HF) con-
sider linear interpolated alternatives to the naïve estimator F̂n(t) that are of the form
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F̂α,β(t)= λF̃ (yk) + (1 − λ)F̃ (yk+1), for yk ≤ t ≤ yk+1, where F̃ (yk) = (k − α)/
(n− α− β + 1), and λ = (yk+1 − t)/(yk+1 − yk), the yi being taken in an increasing
order. This estimator is continuous over the range of sample y values, and gives a readily
calculable quantile estimator Q̂α,β(p) = F̂−1

α,β(p) for F̃ (y1) ≤ p ≤ F̃ (yn).
There is some controversy as to the best values of α and β. The pair α = 0, β = 1

gives the standard naive estimator Fn above, interpolated. Other values yield estimators
with the property that F̂α,β (yi) < 1 for all sample yi, which may be desirable, because
it is unlikely that in srs the largest point in the sample is the largest possible. HF suggest
a list of desirable properties of quantiles and indicate which different values of α and
β satisfy them. We shall not go into detail here, except to note that HFs Property P2,
p.361, should be corrected to say that the counts of occurrences of the variable that are
less than or equal to Q̂(p) is no less than the floor of pn– the “floor” of a quantity being
the largest integer less than a quantity. This revised criterion is met if α ≥ 0 and β ≤ 1,
which replaces a statement in HF p.363 (Rob Hyndman, personal communication.) It
is an interesting question as to what the appropriate generalization of HF is in the case
where we seek an alternative to F̂w in general. Shah and Vaish (2006) give one approach
to this question.

Shuster (1973) and Modarres (2002) consider the case where the targeted cdf has a
known point of symmetry, so that F(θ+ t)+F(θ− t) = 1, for all t. Transforming so the
point of symmetry is at zero, an estimator that puts weight 1/2n at ±yi is a good deal
more efficient than the naïve estimator Fn.

3. Estimating the distribution function with complete auxiliary information

The groundbreaking paper for using population information on an auxiliary variable x
is that of Chambers and Dunstan (1986), described below. The papers that followed,
which we describe in this section, most immediately and notably the paper by Rao et al.
(1990) can be thought of us the responses to the fundamental property of the Chambers
Dunstan estimator: when the model it assumes is correct, it tends to be far and away
better than other estimators; when the model is incorrect, the estimator has an inevitable
bias, and it can do worse than even the naïve estimator.

3.1. The Chambers–Dunstan estimator

Chambers and Dunstan (1986) (henceforth CD) suppose a regression model holds
such as

Yi = xTi β + v1/2
i εi, (4)

where the errors εi∼G
(
0, σ2

)
are independent, having some (typically unknown) dis-

tribution functionG, with mean 0 and variance σ2. The auxiliary variables xi and vi are
assumed known for all units in the population. Then the central idea of CD is to estimate
zj = I

(
Yj ≤ t

)
, for j in the nonsample r, by an estimate of its expectation under the

model. From (4) we get that this expectation can be written

E
(
zj

) = G
(
t − xTj β
v

1/2
j

)
.
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Estimating this involves two steps using the sample data: (a) get a regression estimate
β̂ of β, and (b) use the (standardized) residuals

ε̂i =
(
yi − xTi β̂

)/
v

1/2
i (5)

to estimate G(u) by

Ĝ(u) = n−1
∑
i∈s
I
(
ε̂i ≤ u

)
. (6)

The result is the classic Chambers–Dunstan estimator

F̂CD(t) = N−1

⎧⎨
⎩
∑
i∈s
I (yi ≤ t)+

∑
j∈r
Ĝ

(
t − xTj β̂
v

1/2
j

)⎫⎬
⎭. (7)

= N−1

⎧⎨
⎩
∑
i

I (yi ≤ t)+n−1
∑
i

∑
j

I

(
ε̂i ≤

t − xTj β̂
v

1/2
j

)⎫⎬
⎭ (8)

We note:

(1) F̂CD is a distribution function, fulfilling both parts of Property 1.
(2) It is calibrated: if yi is any of the components xki of xi, then β̂ is 1 in the

kth place, 0 elsewhere, the residuals ε̂i are all zero, and the estimator reduces
to F(t).

(3) The model that CD focused on was the through the origin model

Yi = βxi + v1/2
i εi. (9)

However, they make it clear that their approach suits the more general
model (4).

(4) In the case of no auxiliary information, that is, in the case of the simple model
Yi = μ + εi, F̂CD reduces to the naïve estimator F̂n. However, if the model
is expanded slightly to Yi = μ + v1/2

i εi, the result is not an estimator of the
form (1).

(5) If the working model (4) holds, F̂CD has a strong tendency to be much more
efficient than F̂π and other estimators of the cdf. This has been verified in a great
variety of simulation studies. However, under unusual circumstances, unlikely,
we believe, to be encountered in practice, F̂CD can have a falling off of effi-
ciency, even if the model is correct (Chambers et al., 1992); see the discussion
in Section 3.3. From a practical point of view, this is probably not of much
consequence, but from a theoretical viewpoint it is quite intriguing. There is no
analogous property among standard model-based estimators of means and totals.
This suggests that indirect estimates of means using the cdf are unlikely always
to be competitive.

(6) More serious is the robustness question: what happens to F̂CD if the specific
regression model adopted as the “working model” is mistaken? CD show that
even if only the variance structure is misconstrued, biases can arise. This is a
more serious consideration from both the theoretical and practical standpoints,
and is, in large measure, the motivating force behind the development of a large
number of alternative estimators.
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3.2. The Rao–Kovar–Mantel estimator

An estimator that is design consistent, and which, in effect, compensates for model
misspecification, is the difference estimator of Rao et al. (1990) (henceforth RKM),
also constructed with reference to some specific linear regression model represented
generally by (4)

F̂RKM(t) = N−1

{∑
i∈s
diI (yi ≤ t)+

∑
k∈U

Ĝπ

(
t − xTk β̂π
v

1/2
k

)

−
∑
i′∈s

di′ĜπC

(
t − xTi′ β̂π
v

1/2
i′

)}
, (10)

Where β̂π is the weighted least squares estimate of β using weights di = π−1
i ,

Ĝπ(u) =
∑
i∈s
π−1
i I

(
êπi ≤ u

)
∑
i∈s
π−1
i

, with êπi = yi − xTi β̂π
v

1/2
i

, (11)

and

ĜπC (ui′) =
∑
i∈s
πi′π

−1
i′i I

(
êπi ≤ ui′

)
∑
i∈s
πi′π

−1
i′i

, for ui′ = t − xTi′ β̂π
v

1/2
i′

. (12)

We note:

(1) Because of the differencing, F̂RKM is not necessarily a distribution function: it
can fail both the boundary and monotonic aspects of Property 1. We do not regard
this as a serious concern. Algorithms such as the pool-adjacent-violaters exist to
make rectifications where needed. This should not be much of a problem.

(2) The estimator is calibrated (fulfills Property 5).
(3) The estimator is complicated. In particular, it incorporates second-order inclu-

sion probabilities, a fact that causes no problems in simple random or stratified
sampling, but in general is a nuisance.

(4) The estimator is design and model unbiased, and, if the model is even roughly
correct will tend to do better than F̂π. F̂RKM and simplified variants of F̂RKM will
do better than F̂CD under severe misspecification of the model.

(5) Nonetheless, if the working model holds true, then F̂RKM can be considerably
less efficient than F̂CD. Often, for a given not-well-modeled population, F̂RKM
will be considerably better than F̂CD for some values of t, and the reverse for
other values of t; for example, see Table 2 in RKM.

3.3. Asymptotic variances for CD and RKM estimators

Under the working model, both F̂CD and F̂RKM will have negligible bias. CD gave an
analytic expression for the variance of F̂CD under the model (9). Chambers et al. (1992)
(henceforth CDH) give expressions for the asymptotic variances of both F̂CD and F̂RKM.
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They assume a simple homoscedastic linear model Yi = a+ bxi + εi, where the errors
εi are independent and have distribution function G with mean 0 and variance σ2. The
density function g = G′ is assumed to exist. Sample and nonsample x are assumed to
have a common asymptotic density d(x), with μ and τ2 the corresponding mean and
variance of x.

They define four integrals:

I1 =
∫
(x− μ)g{t − (a+ bx)}d(x)dx

I2 =
∫ ∫

G
[{t − (a+ bx)} ∧ {t − (a+ bx∗)}] d(x)d(x∗)dxdx∗

(where a ∧ b = min(a, b)) (13)

I3 =
∫
G{t − (a+ bx)}d(x)dx

I4 =
∫ [

G{t − (a+ bx)} −G{t − (a+ bx)}2] d(x)dx,
and prove

var
(
F̂CD(t)− F(t)

)
= n−1(1− π) {τ−2σ2I2

1 + I2 − I2
3

}
+N−1(1− π)I4 + o

(
n−1

)
(14)

var
(
F̂RKM(t)− F(t)

)
= n−1(1− π)I4 +N−1(1− π)I4 + o

(
n−1

)
, (15)

where π = lim
(
N−1n

)
, as n,N →∞, assumed to exist.

Note that I1, etc. are more properly I1(t), etc, functions of t.

Comments

(1) The termN−1(1−π)I4, common to the two variances, is the limit of the variance
of the unknown, nonsample component N−1 ∑

j∈r I (yi ≤ t) of the target F(t).
As in the case of estimation of totals (see Chapter 23), the variance corresponding
to the nonsample term tends to be an order of magnitude less than the variance
of the sample component.

(2) CDH note that I2 ≤ I2
3 + I4, so that, except for the term with I1 in it,

var
(
F̂CD(t)− F(t)

)
≤ var

(
F̂RKM(t)− F(t)

)
. This term arises out of the fact

that we only have estimates of the parameters a and b, and leads to the surprising
fact that even when the working model is correct, F̂CD can do relatively badly for
some t. CDH constructed a population (“the CDH population”) to illustrate by
simulation such a situation. The population had a rather unusual configuration
of error and x distributions, which made I1 large for a particular value of t.

3.4. The weighted average estimator

On the basis of the asymptotic variances (14) and (15), Wang and Dorfman (1996)
(henceforthWD) construct a weighted average of the CD and RKM estimators: F̂WA(t) =
wF̂CD + (1 − w)F̂RKM. The weight w is a function of I1, . . . , I4 above, calculated to
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achieve minimal (asymptotic) mean square error of the resulting estimator, and estimable
from the available data. Note that w, like the I, depends on t. In simulation studies on
both real and artificial populations, F̂WA performs well compared to F̂CD and F̂RKM.
Table 1 gives results on root mean square error for samples of size 60 from the “Beef
Population,” abstracted from Tables 3 and 4 in WD.

Two sets of estimators are considered, one based on a linear model of y on x, which
fails adequately to capture the curvature in the data, the other modeling log(y) on
log(log(x)), which fits the data well (see Remark 1.1). The winner within each set is
in bold italics. F̂WA is never worse than second place, and is usually the winner or
nose-to-nose with the winner. This suggests it adapts well, even if the working model
is incorrect. There is another lesson to be gleaned from these results, noted in the next
to last paragraph of the next section.

3.5. The fundamental issue of diagnostics

One of the effects of the dominance of the design-based approach to survey sampling
has been the isolation of finite population estimation from mainstream statistics, which
is dominated by modeling and data exploration. One striking aspect of this is the unwill-
ingness of survey samplers to pay attention to the modeling process. This has spe-
cial importance for the estimation of finite population cdf. In the case of estimating
totals or means, there are interesting workarounds, combining balanced designs and
weighting, that mitigate the effects of model failure (see Chapter 26). This appears
to be impossible for the model-based CD estimator of a cdf. Thus the question of
model diagnostics, which plays such a prominent role in regression theory and prac-
tice and in statistical practice generally, may in the case of estimating cdf be very
important.

As noted earlier, the RKM estimator and its variants automatically adjust to model
misspecification, and can do a good deal better than CD if the working model is wrong (or
very peculiar, as in the CDH population.) On the other hand, if the model is reasonably
correct, CD will, as a rule, far outperform RKM.

Dorfman (1993) examines the issue and concludes that under the circumstance, of
say time constraints or analyst inexperience, where careful diagnostics and modeling
does not occur, the RKM estimator is the safer bet. On the other hand, it pays to do
such analysis, and great efficiencies tend to come from using the proper model-based
estimator F̂CD.

One can go a bit further. The degree of correctness of the model has an impact on
the RKM estimator itself. One sees that in Table 1, where RKM under the transformed
model does much better than RKM under the untransformed model; for example, in
estimating the median transformed RKM is 64% more efficient than RKM based on the
untransformed model. The same holds also for F̂WA. Thus even apart from the issue of
which estimator, diagnostics can be important for getting the best out of the estimator
of choice.

One open question is to what extent the diagnostic process can be automated, replac-
ing the analysts’ observations and decisions by a well designed sequence of testing.
It is not clear that this would improve on the results of automatic model adapta-
tion of nonparametric regression, the use of which for estimating cdf is described
in Section 3.8.
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Table 1
Root mean square error × 10,000, 500 random samples (n = 60) from the beef population (N = 410), from
Wang and Dorfman (1996)

p: 0.10 0.25 0.50 0.75 0.90

Untransformed
F̂π 335 529 609 523 383
F̂RKM 313 447 447 370 322
F̂CD 286 618 800 433 311
F̂WA 267 440 541 409 306

log(y + 1) versus log(log(x))
F̂π 358 505 604 533 371
F̂RKM 303 383 349 330 279
F̂CD 214 293 227 204 177
F̂WA 222 296 227 209 191

3.6. RKM-like and CD-like estimators

There exist several estimators that are variants on the CD and RKM estimators.

3.6.1. CD-like estimators
Instead of estimating G(u) using the sample residuals as in (5), Mak and Kuk (1993)
take G to be a normal (0, σ2) distribution, replacing Ĝ

((
t − xTj β̂

)/(
v

1/2
j

))
in the CD

estimator (7) mentioned earlier, by �
((
t − xTj β̂

)/(
σ̂v

1/2
j

))
, where σ̂ is the estimate of

standard deviation from the weighted regression fit.The main advantage of this is relative
ease of calculation. It is not clear how well this alternative, F̂CD,�, performs against CD
calculated as at (7,8).

CD had noted (see Section 3.1 mentioned earlier) that, unlike estimators of mean
or total, F̂CD was sensitive to departures from the working model for the variances
of the errors. Lombardía et al. (2005) construct a CD-like estimator based on nonspe-
cific variance structure, replacing the prespecified vj = v(xj) in (4) by nonparamet-
ric regression estimates of variances at the sample and nonsample points. They take
v̂(xj) = ∑

i∈s wij(b)r
2
i , where ri are the residuals from the fit of sample y on sample x

using the working model, and the wij(b) are nonparametric regression weights, larger
for sample units i with xi closer to xj , and b is a “bandwidth” which controls how flat
the weights are. Nonparametric regression is discussed further in Section 3.7; see also
Chapter 27. In a simulation study on several well-behaved populations, using the stan-
dard linear model Yi = α+ βxi + v1/2

i εi, their estimator F̂CD,v̂ does consistently better
than a standard CD estimator based on the homoscedastic assumption vi = 1.

Welsh and Ronchetti (1998) robustify the CD estimator against the presence of out-
liers (outliers in the sense of sharp local deviations of y from the working model) in two
ways: (1) they replace the standard least squares estimator of β by a robust estimator
(they choose the bi-weight estimator β̂R(for a discussion of outlier-robust estimation see
Chapter 11) and (2) they use robust estimation of the distribution functionG, replacing
the residuals ε̂i in (5) by the cσ̂ scaled Huberψ-function max{−cσ̂,min(ε̂i, cσ̂)}, which
puts bounds on how effectively large the contributing residuals can be. Here σ̂ is a robust
estimate of standard deviation equal to 1.4826 times the median absolute deviation of
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the ε̂i from their median value, and c is a positive tuning constant at the discretion of the
user. They suggest varying c with the quantile at which the cdf is being estimated and
give some tentative guidelines, recommending smaller values of c for t at the low end
of y range and larger at larger. In a simulation study on the Beef Population (which has
almost become the standard messy population in the finite population cdf literature), the
resulting estimators at the 0.5, 0.75, and 0.90 quantiles improve considerably on the CD
estimator with respect to mean square error.

A nonparametric version of the CD estimator is discussed in Section 3.7.3.

3.6.2. RKM-like estimators
Although F̂RKM originated as a design-based alternative to F̂CD, it can also be viewed
from a model-based perspective as an estimator that self corrects for model failure.
Dorfman (1993) strips away much of the π structure to get a variant of F̂RKM, which
may be termed the residual corrected estimator

F̂rc(t) = N−1

⎧⎨
⎩
∑
i∈s
I (yi ≤ t)+

∑
j∈r
Ĝ

(
t − xTj β̂
v

1/2
j

)
+

∑
i∈s

(
π−1
i − 1

)
Ri

⎫⎬
⎭,

= F̂CD(t)+N−1
∑
i∈s

(
π−1
i − 1

)
Ri (16)

where the upper level residuals Ri = I (yi ≤ t)− Ĝ
(
t−xTi β̂
v

1/2
i

)
, andG and β are estimated

as for the CD estimator. This is of the same form as Eq. (10), but avoids the design-
based components (11) and (12). A similar estimator can be found in Godambe (1989).
If the factors π−1

i − 1 are a reasonable reflection of the number of nonsample units that
are like the ith sample unit, then the residual adjustment term will give a measure of
the difference of what the working model is yielding and what it should yield, blown
up to nonsample size, yielding a kind of model-robustness. F̂RKM basically does the
same thing, but F̂rc has the advantage of avoiding extra π calculations, in particular the
second-order probabilities. In practice, F̂RKM and F̂rc will behave quite similarly (see
Tables 3 and 4 of Dorfman (1993)). Of course, if the model is correct, the third term
adds noise, and these estimators will not do as well as F̂CD.

Chambers et al. (1993) (henceforth CDW) take (16) one step further, replacing the
“a priori” factors π−1

i − 1 by weights derived from the relation of units in the particular,
chosen sample to those in the nonsample. Suppose we had the upper level residuals
Ri for all units in the population. Then F̂ ∗adj(t) = F̂CD(t) + N−1 ∑

j∈r Rj equals the
target cdf F(t) by the definition of the Ri. The nonsample Rj can be estimated using
nonparametric regression: R̂j =∑

i∈s wij(b)Ri, where the weights wij(b) are larger the
nearer xi is to xj . The bandwidth bmeasures how close an xi need be to xj to give much
weight to the ith sample unit. CDW describe one method for selecting b, but bandwidth
selection is always a difficult issue. Section 3.7 and also Chapter 27 further discuss
nonparametric regression. The resulting estimator takes the form

F̂CDW(t) = F̂CD(t)+N−1
∑
i∈s
wiRi, (17)
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where wi =∑
j∈r wij(b) represents the total contribution the ith sample point makes to

estimating the different nonsample Rj . This estimator appears to have some asymptotic
advantage over F̂RKM or F̂rc (see discussion, Section 3.7.3), but it is more complicated
to calculate, and a distinct advantage has not yet been shown in simulation studies. Like
F̂RKM, it is not necessarily a proper distribution function.

As with the CD estimator, there is a nonparametric regression version of the RKM
estimator, given in Section 3.7.3. Additionally, there is the family of calibration estima-
tors, described in Section 3.8, which bear a strong kinship to RKM.

3.7. Nonparametric regression-based estimators

It is an interesting fact that the first use of nonparametric regression in survey sampling
(discussed more broadly in Chapter 27) was for the purpose of estimating the distribu-
tion function. This is not entirely a historical accident. In estimating totals and means,
robustness against model failure can be achieved by adroit sampling with concomitant
weighting (see Chapter 23). This is not the case for the CD estimator of the cdf.Anatural
alternative to the model diagnosis of Section 3.5 is to weaken the model so its failure is
unlikely. Nonparametric regression assumes only that the expected value of the target
variable given x is a smooth function.

Dorfman and Hall (1993) (henceforth DH) describe three models in which nonpara-
metric regression can play a role:

Model 1. Conditional on x, y obeys a parametric model, such as the linear model (4).

Model 2. The expectation of y given x is a smooth function of unspecified form: yi =
m(xi)+ εi, with εi independent with a common distribution function G.

Model 3. The expectation of zi ≡ h (yi) ≡ I (yi ≤ t) given x is a smooth function of
unspecified form: E (zi) = H (xi).

It may be worth noting that in case 3, there are as many models implied as values t
of interest. They do not consider a 4th case:

Model 4. Conditional on x, zi ≡ h (yi) ≡ I (yi ≤ t) obeys a parametric model, such
as the logistic. To our knowledge, the possible use of this model for estimating cdf has
not been studied.

We have already seen a use of nonparametric regression in Model 1 by CDW
(Section 3.6.2) and Lombardía et al. (2005) (Section 3.6.1). The original nonparametric
regression estimator, due to Kuo (1988), relies on Model 3. The nonparametric CD and
RKM estimators, described later, rely on Model 2.

Consider Model 2. There are many methods for estimating m(xi), all coming under
the heading of nonparametric regression, and typically coming down to an estimate of
the form m̂(xj) =∑

i∈s wij (b) yi. Here xj may be a sample or nonsample point and the
wij(b) are weights that depend on the type of nonparametric regression and on a tuning
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parameter b that needs to be carefully selected. For example, we might take wij(b) to
be kernel weights

wij(b) = k
(
b−1

[
xi − xj

])
∑
i′∈s
k
(
b−1

[
xi′ − xj

]) , (18)

where k( ) is typically a symmetric density function with finite support such as the
Epanichnikov k(u) = 0.75

(
1− u2

)
I (|u| ≤ 1), and b is the bandwidth that controls

how flat and extensive the weights will be.
In using nonparametric regression the question arises as to what the role is of the

sampling weights. Traditional sampling would still seem to require their presence. The
other view, as is emphasized in the CDW study, is that nonparametric weights give an
alternative to sampling weights for tying the given sample units to the population units
they represent. We expect that as a rule adding in the sampling weights will not affect
results too much, for better or worse.

3.7.1. The Kuo estimator
Kuo (1988) suggested the following estimator

F̂Kuo(t) = N−1

⎧⎨
⎩
∑
i∈s
I (yi ≤ t)+

∑
j∈r
P̂

(
y ≤ t|xj

)⎫⎬⎭,
with P̂

(
y ≤ t|xj

) =∑
i∈s wij(b)I (yi ≤ t). Kuo actually used nearest neighbor weights:

the k units with x values nearest xj have equal weight, the remainder weight zero. The
implied model is Model 3 and H(x) = E (I(y ≤ t)|x) = P(y ≤ t|x). F̂Kuo is readily
seen to be of the form (1), with weights wi =∑

j∈r wij(b) that are necessarily positive,
and so readily yields quantile estimates. It is not calibrated with respect to x. Dorfman
and Hall (1993) (DH) give the asymptotic bias and variance of F̂Kuo; see Section 3.7.3.

3.7.2. Kuo alternatives
Kuk (1993) likewise employs nonparametric regression estimates of the conditional
distribution function P(Y ≤ t | x) and takes F̂kuk,np(t)= ∑

k∈U P̂ (Y ≤ t | xk), with
P̂(Y ≤ t | x) = ∑

s dik
(
b−1 [x− xi]

)
K

(
b−1 [t − yi]

)/∑
s dik

(
b−1 [x− xi]

)
, where k

is a selected density function and K the corresponding distribution function. This esti-
mator is conceived in the spirit of design-based sampling, and we note three differences
from the Kuo: (1) it uses the design weights di, (2) it estimates the known sample por-
tion of F(t), and (3) it replaces the indicator variables I by K. For the bandwidth, Kuk
uses b = Rx/n, where Rx is the population range of the x-values; also, Y is rescaled to
match its range to x, in order that b apply to both variables. The estimator is a cdf. In
simulations, it outperforms RKM for several modes of sampling on two populations. We
would expect it and F̂Kuo(t) to behave similarly. (Note: Kuk uses the logistic distribution
forK (and k). It might be safer to use a symmetric distribution, because a nonsymmetric
K can shift the estimate of mean entailed by F̂kuk,np by an additive term dependent on
the bandwidth.)

In the case where x is a vector, it may be appropriate to use a smoothing device which
appears in Durrant and Skinner (2006), namely to fit the sample y on the sample x and
use the resulting fitted values ŷk, k ∈ U, in place of the x to form the weights wij .
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DH considers a design-adjusted version of the Kuo, an analogue for Model 3 of the
RKM estimator:

F̂Kuo,adj(t) = N−1

⎧⎨
⎩
∑
i∈s
I (yi ≤ t)+

∑
j∈r
P̂
(
y ≤ t|xj

)+∑
i∈s

(
π−1
i − 1

)
Ri

⎫⎬
⎭,

where Ri = I (yi ≤ t) − P̂ (yi ≤ t|xi). Theorem 3 of DH suggests a subtle difference
between Kuo and Kuo-adjusted: when the sample and nonsample x densities are the
same their “I7” term goes out in the Kuo-adjusted. In empirical work on several artificial
populations, using nonparametric local linear regression, Johnson et al. (2004) find the
design-adjusted Kuo doing better than Kuo. Model 3 aforementioned actually fails
only in one of the seven populations they use, the “Jump” population. Thus “twicing”
(estimating and adding on an estimate of the error of one’s estimate) seems to be helpful
even when the assumed model is correct.

Nascimento Silva and Skinner (1995) suggest a poststratified estimator of F(t).
The range of x is partitioned into intervals of adjacent x, each interval correspond-
ing to a poststratum g, g = 1, . . . ,G. Then F̂ps(t) = ∑G

g=1
Ng
N
F̂πg(t), where F̂πg(t) =∑

i∈g∩s diI (yi ≤ t)
/∑

i∈g∩s di, and Ng is the number of population units in the gth
poststratum. The basic model here is the same as for the Kuo and Kuk estimators,
except that the underlying continuous P(Y ≤ t|x) is being estimated by a step function.
The choice of length and number of intervals defining the poststrata is analogous to the
choice of bandwidth. In simulations, F̂ps(t) with best stratification did well compared
to F̂Kuo(t) with a fixed b, but it is not known how they would compare under optimal
choice of bandwidth for the Kuo. F̂Kuo(t) can in general be expected to do somewhat
better, because the boundaries of the intervals in F̂ps(t) can prevent points with x near
to xi being used for estimation of P̂

(
y ≤ t|xj

)
. An exception would be the case where

the underlying P
(
y ≤ t|xj

)
really is a step function and the selected poststratification

matches it. On the other hand, the poststratified estimator has the advantage of simplicity
and familiarity to survey samplers. Modarres (2002) suggests a similar idea and offers
a modification in the special circumstance that F is known to have a point of symmetry.
(See discussion of cdf symmetry in Section 2.2.)

3.7.3. Nonparametric CD and RKM
Based on Model 2, DH derive analogues of the CD and RKM estimators (their F̂1

and


F 1, respectively). Let m̂ (xk) = ∑
i∈s wikyi be a nonparametric fit of y on x. They

define

F̂np,CD = N−1

⎡
⎣∑
i∈s
I (yi ≤ t)+

∑
j

Ĝ
(
t − m̂ (

xj
))⎤⎦

F̂np,RKM = N−1

⎡
⎣∑
i∈s
I (yi ≤ t)+

∑
j

Ĝ
(
t − m̂ (

xj
))+∑

i∈s

(
π−1
i − 1

)
Rnp,i

⎤
⎦,

where Rnp,i = I (yi ≤ t) − Ĝ
(
t − m̂ (xi)

)
with Ĝ(u) = n−1 ∑

i∈s I
(
ε̂i ≤ u

)
and ε̂i =

yi − m̂ (xi).
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DH analyze eight estimators which, aside from the naïve estimator F̂π, belong to two
classes: three for which a given chosen parametric (in fact, linear) model plays a role,
namely F̂CD, F̂RKM, and F̂CDW, and four nonparametric estimators (“the np group”) for
which it does not: F̂Kuo, F̂Kuo,adj, F̂np,CD, and F̂np,RKM, described earlier.

In the following description of variances and biases, we consider just the case where
the sample and nonsample densities for x are the same, as would arise under srs or
simple balanced sampling (see Chapter 23). Several formulas then simplify.

In terms of variance, the estimators fall into three categories: (a) estimators that have a

variance asymptotically equivalent to that of var
(
F̂π

)
≈ n−1(1−π)2I4, with I4 as in (13)

aforementioned (and referred to as I6 in DH), (b) var
(
F̂CD

)
as at (14) abovementioned,

and (c) var
(
F̂np,CD

)
, which is similar in structure to var

(
F̂CD

)
, except that τ−2σ2I2

1

is replaced by σ2I
(np)
1 , with I(

np)
1 = ∫ {g (t −m(x))− ∫

g(t −m(x))ds(x)}2ds(x)dx
(notated I3 in DH), where ds(x) is the density of x among sampled units. It is not

clear that this term makes var
(
F̂np,CD

)
more or less vulnerable to peculiar population

structure than τ−2σ2I2
1 makes var

(
F̂CD

)
. In any case this result suggests that F̂np,CD

will have efficiency close to that of F̂CD without the same vulnerability to model failure.
Provided the I(np)

1 term is not large, we would expect F̂np,CD to be more efficient than
the remaining estimators that DH consider, because of the inequality I2 ≤ I2

3 + I4 noted
earlier.

Bias (compare DH, Table 1): Under suitable bandwidth choice, the np group will
have bias that is o

(
n−1/2

)
, lower than the order of their standard deviation. The naïve

estimator F̂π has biasO
(
n−1/2

)
, same as the standard deviation. If the working model is

correct, then the model dependent estimators F̂CD, F̂RKM, and F̂CDW all have bias of order
O

(
n−1

)
. If the model fails, they have biasO(c),O

(
n−1/2

)
, and o

(
n−1/2

)
, respectively.

DH note the relative strength of the CDW estimator compared to RKM. It is not clear
from simulations under what circumstances their difference will be important. CDW
did not find there to be much difference between them in their empirical study.

DH note that empirical comparison of the np estimators requires a practical means of
selecting bandwidths. Lombardía et al. (2004) use a bootstrap methodology to estimate
the optimal bandwidth b for F̂np,CD. It would be of interest to apply their approach to
estimating bandwidths of other estimators as well, and to compare the resulting estimates
among themselves and to the parametric-based estimators.

Model 2 underlying F̂np,CD and F̂np,RKM is a homoscedastic model.We may expect that
in the nonparametric case, deviations from homoscedasticity will have minimal impact.
Nonetheless, this has not been investigated. We have noted the use of np regression by
Lombardía et al. (2005) to estimate the variance function for the CD estimator. It would
be of interest to carry out something parallel to this for F̂np,CD and see the effect.

3.8. Calibration estimators

Here we consider estimators that calibrate the estimate of the cdf with respect to the
auxiliary x in a variety of ways, with the twin goals of design consistency and some
degree of efficiency under a chosen model – protecting against the worst in case of
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model failure and improving on the usual design-based estimator in the case of model
correctness. Despite the name, not all members of this class of estimators are calibrated
in the sense of fulfilling Property 5 of Section 1. The estimators do bear a kinship to the
RKM estimator, often being asymptotically equivalent.

One set of methods for calibrating relies on the difference between a population total
and a weighted sample sum whose terms are some function g(.), possibly vector valued,
of x : �w (xU) = ∑

k∈U g (xk) −
∑

i∈s wig (xi); g can depend on the sample y, and
x other than the explicit xk, as well. There are at least three methodological schemes
for doing this: (a) explicit regression models (GREG) (see Chapter 25), (b) the use of
calibration weights (also Chapter 25), and (c) the use of pseudo empirical likelihood
(see Chapter 30).

For estimating the distribution function, all take the dependent variable as zi =
I (yi ≤ t).

(a) In the case of GREG, wi= di, and �d (xU) is an explicit compo-
nent of the estimator. The estimator can be written in the form
F̂GREG(t)=N−1

{∑
i∈s diI(yi ≤ t) +

{∑
k∈U g(xk)−

∑
i′∈s dig(xi)

}
B̂π

}
, where

B̂π =∑
i∈s di(g (xi)− ḡπ)I(yi ≤ t)

/∑
i∈s di(g (xi) − ḡπ)2 and ḡπ = ∑

i∈s
dig(xi)

/∑
i∈s di.

(b) In the case of calibration weights, the wi = pi are such as to satisfy (i)
�p (xU) = 0, (ii)

∑
i∈s pi = N and at the same time minimize a chosen function

measuring the distance between the sample wi and di. The estimator is of the
form F̂cal(t) = N−1 ∑

i∈s piI (yi ≤ t). In the particular case of the chi-square dis-
tance function D(w, d) = ∑

i∈s (wi − di)2/(qidi), (where the qi are some user
controlled weights, usually just a constant), the calibration estimator reduces to
the GREG, mentioned earlier. The pi need not be positive in this case.

(c) The pseudo empirical likelihood estimator can be regarded as exactly like
the calibration situation, except now the pi are such as maximize the empir-
ical likelihood l(p) = ∑

i∈s di logpi and there is an additional condition (iii)
0 < pi. (This follows by taking the standard formulation of pseudo empirical
likelihood as in Chapter 30 and multiplying the pi in that formulation by N.)
Then pseudolikelihood maximum likelihood estimators are, again, of the form
F̂pl(t) = N−1 ∑

i∈s piI (yi ≤ t), but now the pi are conveniently positive, and
satisfy Property 1a of Section 1.3. For some choices of g(x) the pi will depend
on t, so Property 1b is not necessarily satisfied in general.

For a given choice of g, the calibration and pseudolikelihood estimators are asymp-
totically equivalent, and they tend to behave similarly to each other in simulations.

Wu and Sitter (2001a) (henceforth WS) suggest taking g(xi)=
Ĝπ

((
t − xTi β̂π

)/
vi
)
, as in the RKM estimator. In that case we get: F̂GREG(t) =

N−1
{∑

i∈s diI
(
yi ≤ t

) + {∑
k∈U Ĝπ

((
t − xTk β̂

)/(
v

1/2
k

)) − ∑
i′∈s diĜπ

((
t − xTi′ β̂

)/
(
v

1/2
i′

))}
B̂π

}
where B̂π = ∑

i∈s di
(
Ĝi − Ḡπ

)
I
(
yi ≤ t

)/∑
i∈s di

(
Ĝi − Ḡπ

)2
, with Ĝi

shorthand for g
(
xi
) = Ĝπ

((
t − xTi β̂π

)/
vi
)

and Ḡπ = ∑
i∈s diĜi

/∑
i∈s di. [compare

WS, Eq. (19)]. The major difference between this and RKM is the B̂π [compare Eqs.
(10–12)].

Kovacevic (1997) suggests two calibration estimators. First, F̂KOV1 using g(x) = x

and with distance function D(w, d) other than the chi-square distance, designed to
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guarantee that the pi are nonnegative. This estimator does not require that all x in
the population be known, but only the population totals. A second estimator F̂KOV2

modifies F̂KOV1 by including a bias corrected term, which does require full population
information: F̂Kov2(t) = N−1 ∑

i∈s pi
{
zi +N−1 ∑

k∈U Ĝk − Ĝi

}
, with the Ĝi defined

as earlier. This estimator behaves very similarly to RKM.
Chen and Wu (2002) (henceforth CW) suggest three pseudolikelihood estimators.

The first relies on a model

yi = μ (xi, β)+ v1/2
i εi, (19)

which, of course, includes the linear Model (4), except that they posit that the cdf
of the errors is a normal distribution (cf. Kuk (1993), discussed in Section 3.7.2).

They take g (xi) = �
(
t0−μ(xi,β̂π)
v

1/2
i σ̂π

)
, where � is the standard normal distribution,

for some fixed suitable preselected value t0. The resulting estimator F̂pl,CW1(t) =
N−1 ∑

i∈s pi (t0)I (yi ≤ t) is asymptotically equivalent to a calibration estimator, satis-
fies Property 1b, and so is a distribution function. The estimator is design consistent for
all t. It is model unbiased for F(t0), but not necessarily for F(t), t �= t0, so there might
be some loss of efficiency if t is far from t0.

CW’s second estimator F̂pl,CW2(t) relies on a model for zi = I (yi ≤ t0). CW adopt in
particular a logistic model and take g(xi) = exp

(
xTi β̂π

)/(
1+ exp

(
xTi β̂π

))
. F̂pl,CW2(t)

has similar characteristics to F̂pl,CW1(t). Their third estimator F̂pl,CW3(t) returns to the
model (19) and takes g(xi) = I

(
ŷπi ≤ t0

)
, where ŷπi = μ

(
xi, β̂π

)
are the fitted values

from the regression. In a simulation study on artificial populations CW find F̂pl,CW1(t)

and F̂pl,CW2(t) outperforming F̂pl,CW3(t).
Rueda et al. (2007a) (hereafter RMMA) develop a calibration estimator, also based

on ŷπi and a fixed vector t∗ = (t1, t2, . . . tP )
T , with t1 < t2 < · · · < tP , leading to

a vector valued g(xi) = I
(
ŷπi ≤ t∗

) = [
I
(
ŷπi ≤ t1

)
, . . . , I

(
ŷπi ≤ tP

)]T
. RMMA use

the chi-square distance and show that, if qi = c, a constant, then the weights pk take a
surprisingly simple form and are positive (see RMMA, Section 4). If tP is taken large
enough, thenFcal,RMMA(t)→ 1, as t→∞. This estimator is a cdf. In simulation studies
on some actual populations, the estimator performs on a level with the CD estimator,
and better than RKM. It has not been established how robust it is to model failure.

Rueda et al. (2007b) replaces ŷπi = μ
(
xi, β̂π

)
in the above by a nonparametric

fit ŷπi = m(xi). See Section 3.7 described earlier for a discussion of nonparametric
regression.

Harms and Duchesne (2006) suggest a calibration estimator based on a population
x-quantile, as an intermediate step to estimating quantiles. Their estimator differs from
the above in replacing

zi = I (yi ≤ t) by ϕ (yk; t) =
{

t−yk−1

yk−yk−1
, yk−1 ≤ t < yk

I (yk ≤ t) else
.

The resulting estimator

F̂HD(t) = N−1
∑
s

wiϕ (yk; t) (20)
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is an interpolated continuous linear function in t. As in the above estimators the
weights minimize a distance function D(w, d). The constraints are

∑
i∈s wi=N and

Q̂HD,x (p0) = Qx (p0), where Qx (p0) is a chosen (or available) population quantile
on the x-variables. They allow x to be vectorial, and so in general Qx (p0) is a vector
of length J ≥ 1. The sample estimates are defined in terms of a sample cdf of the
form (20): Q̂HD,x (p0) = F̂−1

HD,x (p0). Their primary focus is on estimating quantiles; see
Section 5.2 below for further discussion.

Kuk and Mak (1994) (henceforth KM) replace the difference form of the abovemen-
tioned calibration estimators by a relation between distribution functions. They offer
two estimators, one which does not rely on an explicit model, the other, like F̂RKM,
which does. The first, the simple transformation model, is

F̂KM1(t) = G
(
Ĝ−1
π

(
F̂π(t)

))
whereG is the population distribution function for x, and Ĝπ is its Hajek estimator. They
suggest making both F̂π and Ĝπ continuous by linear interpolation before applying this
transformation. KM point out that there is a tacit weak model here, namely y being some
monotone increasing function of x. Where this condition is met, but an explicit working
model is false (e.g., the working model assumes linearity, but there is strong curvature)
this estimator can do considerably better than estimators like F̂RKM which incorporate
the model (cf. KM, Figure 1, and Table 1, Factory Population).

KMs second estimator is

F̂KM2(t) = H
(
Ĥ−1
π

(
F̂π(t)

))
,

whereH(t)= ∑
k∈U Ĝπ

(
t−xTk β̂π
v

1/2
k

)
and Ĥπ(t) =∑

i∈s diĜπ

(
t−xTi β̂π
v

1/2
i

)/∑
i∈s di. Especially

when the model is correct or nearly correct, this estimator behaves much like F̂RKM,
with the added advantage of being a strict distribution function.

4. Estimating the distribution function using partial auxiliary information

Several estimators of Section 3 can be applied with a limited amount of population
information on the auxiliary. The poststratified estimator F̂ps of Nascimento Silva and
Skinner (1995) requires only interval information. The calibration estimator F̂Kov1 of
Kovacevic (1997) requires only means or totals. The calibration estimator F̂HD of Harms
and Duchesne (2006) requires only knowledge of population quantiles.

Dunstan and Chambers (1989) adapt the CD estimator to the situation in which
group information is available on x. Assumed known is the number Nh of x in each
of H intervals [xhL, xhU] , h = 1, . . . , H , the boundaries themselves, as well as the
within interval means x̄h. Positing within interval cdf Ch(x) for the x, and conditioning
on the known residuals from the sample fit, they derive an expression for the expec-
tation of the double sum in (8) as

∑
h (Nh − nh)

{
1− n−1 ∑

i∈s �ht
(
ε̂i
)}

, where �ht
is the cdf of the transformed variable

(
t − β̂xhi

)/
v

1/2
hi , it being assumed that v1/2

hi is a
well-defined function of xhi. They work out details for the case where vhi = xhi and Ch
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is a split uniform distribution on [xhL, xhU] with mean x̄h. They also derive expressions
for variance estimation. In simulations on a population where the linear model holds
pretty well, behavior of the resulting estimator F̂CD,lim closely approximates that of F̂CD.
It would be interesting to see how their estimator compares to F̂ps, in the case where
just interval boundary information is available.

Kuk and Mak (1989) suggest an estimator of the population cdf which relies only
on knowing the population median Qx (1/2) of an auxiliary x. Break the sample into
two components: s1, those with xi ≤ Qx (1/2), and s2, those with xi > Qx (1/2).
(Under unequal probability sampling, these groups could be quite different in size.)
Let nx1 be the number of units in the first group and nx2, in the second, and
define F̂KM,Q(1/2)(t)= 1

2

(
F̂1(t)+ F̂2(t)

)
, where F̂l(t)= 1

nl

∑
i∈sl I (yi ≤ t). This is a well

defined cdf. Their primary concern is estimating the population median for y, which can
be readily gotten by inverting F̂KM,Q(1/2)(t). In simulations it does not do quite as well
as their direct “position” estimate of Qy(1/2) (see Section 5.2).

5. Quantile estimation

The primary way to get estimates of quantiles is by inverting estimates of distribution
functions, as we briefly describe in Section 5.1. In addition to estimates by inversion,
there are a number of direct estimates of quantiles suggested in the literature, described
in Section 5.2. Also, there is a class of what we shall here call “hinge estimates,” which
avoid extensive repeated calculations on a complicated cdf estimator by making use of
F̂π or other simply calculated estimator (Section 5.3).

5.1. Inversion of estimates of the distribution function

Estimates of quantiles are most readily achieved through inverting an estimate of the
distribution function. Thus all of the estimates F̂∗(t) of distribution function described
earlier yield a corresponding quantile estimate

Q̂∗(p) = min{t : F̂∗(t) ≥ p}. (21)

Basically, one gets a grid of values F̂∗ (tν), t1 < t2 < · · · < tν < · · · < tν∗ so that the
values F̂∗ (tν) surround p and takes the smallest of the tν satisfying (21). It is desirable
that the estimator have the monotonicity property: p < p′ ⇒ Q̂∗(p) ≤ Q̂∗(p′). This
requires that F̂∗(t) is a proper distribution function; in some cases this may require
isotonization.

The estimators F̂KM,Q(1/2) of Kuk and Mak (1989) and F̂HD of Harms and Duchesne
(2006) are specifically intended for quantile estimation (see comment in Section 5.2).

5.2. Direct estimates

By a direct estimate of quantile, we mean one that does not require an explicit expression
for the cdf, Q̂w(p) in the next paragraph being the prime example.

We have already noted that estimators of the form (1) with fixed positive wi are
particularly easy to invert: we order the sample y by size and take Q̂w(p) to be the
smallest yi such that

∑i
1wi′ ≥ p. Q̂n(p), the sample quantile when the weights are all
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equal, is especially simple. In the case of small samples, it may be worthwhile to inter-
polate between the sample y, effectively linearizing the estimate of cdf. Additionally,
one might want to modify slightly the weights themselves, to achieve analogues to the
quantile estimates available in standard software packages (compare Hyndman and Fan
(1996) and Section 2.2 earlier).

Rao et al. (1990) suggest readily calculated ratio and difference estimators:

Q̂rat(p) =
{
Q̂πt(p)

/
Q̂xπ(p)

}
Qx(p)

Q̂dif (p) = Q̂πt(p)+ β̂π
(
Qx(p)− Q̂xπ(p)

)
,

with β̂π = ∑
s diyi

/∑
s dixi. The ratio estimator requires that x be a scalar, but the

difference estimator readily generalizes to vector x (Kovacevic, 1997). In any case the
only information required beyond the sample is the appropriate population quantile for
x. It may noted that in neither is monotonicity guaranteed. In rare cases, one might have
to make adjustments. Empirical work suggests both do better than Q̂π(p). Harms and
Duchesne (2006) carried out an empirical study on several populations and under two
sampling plans, comparing Q̂π, Q̂rat, Q̂dif (p), Q̂HD = F̂−1

HD and Q̂CD = F̂−1
CD. Typically,

apart from the CD estimator, which could strongly lead or lag, the winners with respect
to mean square error were Q̂rat or Q̂HD. There were instances where Q̂rat was a good
deal worse than Q̂HD, but not the reverse, so overall Q̂HD performed well.

Kuk and Mak (1989) suggest a position estimator Q̂pos (1/2) of the population median
of y that relies on knowing only the population medianQx (1/2) of an auxiliary x. The
basic idea is this: there exists some p between 0 and 1 such that the sample distribution
function evaluated at the unknown population median is p : F̂n (Q (1/2)) = p. Thus, a
good estimate of p will yield a good estimate of Q(1/2). This is achieved as follows:
Break the sample into two components: s′1, those with xi ≤ Q̂x (1/2), the x sample
median, and s′2, those with xi > Q̂x(1/2). Let nx1 be the number of units in s′1 and
nx2, in s′2. Let p̂1|1 be the proportion of points in the first group s′1 for which y is less
than the sample median, and p̂1|2 be the like proportion of the points in s′2. Then p̂ =
n−1

(
nx1p̂1|1 + nx2p̂1|2

)
is an estimate of the fractionp of points i in the sample having yi

less than or equal toQy (1/2), and we take the position estimator Q̂pos (1/2) = Qn

(
p̂
)
,

the p̂th sample quantile. In simulations the position estimator does better than the straight
sample median, than a ratio-type estimator, and than an estimate based on F̂KM,Q(1/2).
Note that it makes no use of selection probabilities. It would be of interest to compare
it to the Hájek estimator Q̂π (1/2).

Meeden (1995) uses an urn model simulating a posterior distribution of nonsample
yi that rests on the idea of exchangeability of the ratios ri = yi/xi, as would hold under
the model

yi = βxi + xiεi. (22)

The method assumes availability of nonsample xj , which we can assume set out in
order xn+1, . . . , xN . A sample unit i is selected at random, r∗n+1 = ri recorded, the unit is
cloned, and both it and its clone returned to the urn. The process is repeatedN−n times
to get r∗n+j,j = 1, . . . , N − n, (the eventual size of the urn is N) and nonsample values
of y are taken as y∗n+j = r∗n+jxn+j . These, combined with the known sample values
gives one realization of a population of y compatible with the given data and assumed
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structure. The whole process is repeated R times and the average of the medians of
the R generated populations taken as the estimated Polya posterior median Q̂pp (1/2).
(Clearly, the same process supplies estimates of other quantiles as well, and these would
fulfill the monotonicity property.) In simulation studies on three real and several artificial
populations, Q̂pp (1/2) appears to be robust to failure of the model (22) and to perform
on a par with the inverse of the CD estimator.

5.3. Hinge estimates of quantiles

The following idea arises out of Mak and Kuk (1993). Suppose we have an estimator F̂∗,
typically based on the population values of an auxiliary x, and so presumed accurate, but
complicated enough that we might prefer not to calculate it repeatedly on an extensive
grid {tν} to get F̂−1∗ (p). Suppose available also a simple estimator F̂w, say F̂π. Then, as
in the rationale for the position estimator Q̂pos, described earlier, it would be enough to
determine q so that F̂w(Q(p)) = q, for then we can take Q̂adj(p) = F̂−1

w (q).
The difference� ≡ q−p can be written� = F̂w(Q(p))−F(Q(p)), the difference

between the value of the simple estimator and the actual population distribution evalu-
ated at the population quantile. It suffices to estimate�. This is done by replacingQ(p)
by an initial estimate such as Q̂w(p) and F by F̂∗, to yield a one-step adjusted estimator

Q̂
(1)
adj(p) = F̂−1

w

(
p+ F̂w

(
Q̂w(p)

)
− F̂∗

(
Q̂w(p)

))
= F̂−1

w

(
2p− F̂∗

(
Q̂w(p)

))
(23)

This requires calculation of F̂∗ at only one value of t. The process can be iterated,
replacing Q̂w(p) by Q̂(1)

adj(p) on the right in expression (23); this will require a calculation

of F̂∗ at a second value; and further iteration is possible. Mak and Kuk focus on F̂∗ =
F̂RKM, but there is no reason to limit the idea to this case and indeed in a slightly variant
version of this estimator, they take F̂∗ = F̂CD,� (see Section 3.6.1). It is neither clear
what the impact is of the choice of F̂∗ or of the degree of iteration, nor how close the
result would be to F̂−1∗ (α).

6. Variance estimation and confidence intervals for distribution functions

We shall not in this chapter pursue the possibilities for variance estimation in great detail.
Each of the estimators described earlier will require some particular corresponding
variance estimator, and it seems wisest to refer the reader to the originating papers.
Instead, we shall make some general remarks, focus on the CD and RKM estimators, and
point to one or two papers whose primary concern is variance estimation. In general, there
are three basic approaches: (1) plug-in model based, estimating asymptotic variances,
(2) design-based, and (3) replication methods, which are widely regarded as falling into
both the model-based and design-based camps.

All three are considered in Wu and Sitter (2001b) (henceforth WS). The model
assumption is the simple linear model yi = α + βxi + εi, and they get an estimate
vm = ˆvar

(
F̂CD(t)− F(t)

)
by plugging in sample estimates of the I terms in (14), replac-

ing the separate expressions I2 and I3 by an expression for I23 ≡ I2− I2
3 and estimating

that directly, for the sake of stability and positivity.
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WS suggest several jackknife estimates for the CD estimator, but best appears
to be a jackknife hybrid estimator which estimates the (less important) var(F(t))
component by a simple plug-in estimate of I4, and var

(
F̂CD(t)

)
by the jackknife

vJ1(t) = n−1
n

∑
i∈s

(
F̂CD,−i(t)− F̄ (t)

)2
, where F̂CD,−i(t) is F̂CD(t) computed without

making any use of the ith sample point, and F̄ (t) = n−1 ∑
i F̂CD,−i(t) (note that F̂CD(t)

itself would probably do as well.) We note that leave one out estimates of the necessary
parameters and residuals are readily available without needing complete recalculation
(Miller, 1974).

For the design-based RKM estimator WS take RKM design-based variance estimator
vd = vâr

(
F̂RKM

) = N−2 ∑
i∈s

∑
j>i

πiπj−πij
πij

{
ui(j)

πi
− uj(i)

πj

}
, where the residuals ui(j) =

I
(
yi ≤ t

)− Ĝic(j), with Ĝic(j) =
[∑

k∈s
πij
πijk
I{yk ≤ t − β̂π (xi − xk)}

]/∑
k∈s

πij
πijk

. Typ-
ically, simplifying assumptions will be necessary to calculate the higher order inclusion
probabilities.

WS give two variants of a jackknife estimator of var
(
F̂RKM(t)

) : vJd2, based on
F̂RKM,−i(t), as vJ1(t) was based on F̂CD,−i(t) and vJd1, slightly easier to calculate, based

on the full sample Ĝπ

(
t−xTk β̂π
v

1/2
k

)
and ĜπC

(
t−xT

i′ β̂π
v

1/2
i′

)
of (10), and using deleted versions

only of the weights.
In testing on artificial data, the plug-in estimator vm for CD was consistently less

variable than the hybrid jackknife (INST, WS, Table 1), and tended to be biased lower
(RB, WS, Table 1). This could lead, we suspect, to somewhat closer to nominal coverage
for the jackknife. For RKM, vJd1 and the design-based estimator vd were indistinguish-
able; vJd2 was consistently less variable than they were, and tended to be biased higher
(WS, Table 2). This should lead to better coverage for vJd2. It would be of interest to
assess coverage properties. WS avoided considering a model-based plug-in estimate for
var

(
F̂RKM(t)− F(t)

)
, but it would be interesting to see how the one given in Wang and

Dorfman (1996) compares empirically to vd and vJd2.
Lombardía et al. (2003) suggest a bootstrap methodology for generating bias and

variance estimates and confidence intervals for the CD estimator. The method involves
Monte Carlo generation of B bootstrap populations based on the fitted model and resid-
ual distribution from the sample, and R samples from each population, and assumes
homoscedasticity and that the working model is correct. It is not clear how robust the
methodology is to deviations from those conditions.

Lombardía et al. (2004) use a similar bootstrap methodology for generating estimates
of bias, variance, and mean square error, for the nonparametric CD estimator F̂np,CD, as
ingredients in a comprehensive bandwidth selection procedure (Section 3.7.3). Again,
homoscedasticity is assumed. It would be of interest to see how their methodology can
be adapted to other estimators, like the Kuo. It is very computer intensive.

Empirical likelihood confidence intervals for the distribution function are discussed
in Chapter 30.

7. Confidence intervals and variance estimates for quantiles

Woodruff (1952) describes a straightforward method for transforming estimates of pre-
cision for a cdf to estimates of precision for the corresponding quantiles. Assume a
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cdf estimator F̂ (t) is itself a cdf and that (1− α)100% two-sided confidence intervals(
F̂L(t),F̂U(t)

)
, based say on the normal assumption and an estimate of var

(
F̂ (t)− F(t)).

Suppose we want a (1− α)100% two-sided confidence interval for tp = Q(p), which
we have estimated by t̂p = F̂−1(p). Let tL = F̂−1

(
F̂L

(
t̂p
))

and tU = F̂−1
(
F̂U

(
t̂p
))

.
Then Woodruff argues that [tL, tU] is an approximate (1− α)100% confidence interval
for Q(p). It will not in general be symmetric about Q̂(p).

Francisco and Fuller (1991) (henceforth FF) offered an alternative construction, tak-
ing tL = F̂−1

U

(
F̂
(
t̂p
))

and tU = F̂−1
L

(
F̂
(
t̂p
))

. The resulting interval is basically a standard
calibration confidence interval in the sense of Carroll and Ruppert (1988), Section 2.9.3.
It is more complicated to calculate than the Woodruff, because it requires values of the
upper and lower bounds over a range of values of t near tp, as well as various transfor-
mations and smoothing operations.

The Woodruff has held up well in empirical studies, and there is little evidence of
an advantage to the FF. Sitter and Wu (2001) note that, especially at low or high p,
the actual coverage of the Woodruff interval for Q(p) can be better than that for the
corresponding interval for F [Q(p)]. (Consider small p; by the nature of a binomial
distribution p̂ = F̂ (Q(p)) is more likely than not to lie below p and because the
variance estimator of a binomial is monotonically increasing for small p, the variance
estimate associated with p̂ will be lower than it would have been had p̂ equaled p. This
can lead to low coverage of the corresponding confidence interval for the cdf. On the
other hand, on the same premise, working backwards, one can anticipate that Q̂(p) is
likely to lie above Q(p), with F̂

(
Q̂(p)

) ≥ F̂ (Q(p)) and the corresponding variance
estimate of the cdf, from which the Woodruff is generated, is larger than what it would
have been if Q̂(p) = Q(p).)

For low or high p, Shah and Vaish (2006) make adjustments to F̂ (t) and adopt
modifications of the variance estimate, due to Korn and Graubard (1998c), prior to
applying the Woodruff.

Dorfman and Valliant (1993) (DV), in the context of quantile estimation for domains,
some of them quite sparse, compare Woodruff and FF confidence intervals, as well as
confidence intervals derived from balanced repeated replication (BRR) variance estima-
tion applied directly to the quantile estimates. In terms both of bias for the actual mean
square error and coverage, BRR was better than Woodruff, which was better than FF.

Making use of the well known Bahadur (1966) representation Q̂n(p) − Q(p) ≈
F(Q(p))− F̂ (Q(p))/f(Q(p)), DV also base a variance estimator on the variance esti-
mate for the cdf: vâr{Q̂n(p)−Q(p)} ≈ vâr

{
F̂
(
Q̂(p)

)− F(
Q̂(p)

)}
/f̂

(
Q̂(p)

)2
, where

f̂
(
Q̂(p)

)
is estimated using nonparametric density estimation. The overall behavior of

the resulting estimator is somewhere between BRR and Woodruff. Chen and Wu (2002)
have further discussion of the Bahadur representation. Wheeless and Shah (1988) give
an alternate approach to estimating the density f .

Using Woodruff 1− α confidence intervals, Rao et al. (1990) suggest variance esti-
mates

(
Lα/2zα/2

)2
where Lα is the length of the interval and zα/2 is the α/2 percentile

of the standard normal distribution. Variance estimates for ratios, etc. can be built up
from these. DV offer a few modifications of this.
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8. Further results and questions

The CD and other estimators we have discussed assume independence of errors. This is
not always a safe assumption, particularly in cluster sampling. Mayor (2002) has made
a suggestion on estimation of the cdf for cluster sampling, using a Horvitz Thompson
type estimator, which, however, violates Property 1a. It is not clear how in general to
do cdf estimation in the presence of correlated errors.

Singh et al. (2001) discuss generic methods for estimating quantiles based on double
sampling. It might be expected that most of the methods of this chapter can be extended
to the double sampling situation, with the larger sample replacing the population in the
various formulas.

Ranked set sampling is an approach to double sampling designed to give an even
spread of the y among the sampled x. Lam et al. (2002) give an estimator of the cdf
appropriate to ranked set sampling patterned after the kernel method of Kuk (1993).

Stefanski and Bay (1996) consider the interesting situation of estimating the cdf when
there is measurement error in the variable of interest.

It would be interesting to combine the nonparametric regression estimation of vari-
ance structure (Section 3.7.1: Lombardía et al. (2005)) with nonparametric estimation
of the mean for a completely parameter free estimator of the cdf. It would be of interest
to compare the resulting estimator to the CD estimator with mean and variance structure
chosen by regression diagnostics.

There has been no comprehensive comparison of the many available alternatives
for cdf and quantile estimation. Such a study, breaking up estimators into comparison
groups based on auxiliary information used, carried out on the many real and artificial
populations found in the cdf literature, and tracking relative efficiencies and computing
times, would be very useful.
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Scatterplots with Survey Data

Barry I. Graubard and Edward L. Korn

1. Introduction

The scatterplot is one of the most useful graphical displays of bivariate data. It allows
one to see general trends and atypical points simultaneously, as well as other aspects
of the data. Data collected in a survey, however, have some additional features that can
make a simple scatterplot less useful. One such feature is that individuals in the sample
represent different numbers of individuals in the population. The sample weights of the
sampled individuals effectively estimate these numbers. A second feature of survey data
is that some of it may be imputed to account for item nonresponse. A third feature is that
the sample sizes can be large.Afourth feature is that the observations may have intraclass
correlation due to cluster sampling. As will be shown below, standard scatterplots that
are used for simple random samples that ignore these features can be misleading or hard
to interpret. We know of no “super plot” that will be as successful in the survey setting
as the simple scatterplot is in the nonsurvey setting. Instead, we present in this chapter
different modifications of the scatterplot, demonstrated by examples, that can improve
the presentation of survey data. By and large, these modified plots are not new, but their
application to survey data may not be well known. There has been little new literature
on scatterplots with complex survey data since Korn and Graubard (1998) and Korn and
Graubard (1999). Most of this chapter is taken from those two sources with some minor
updates.

2. Modifications of scatterplots for survey data

In this section, we present some techniques that can be used to modify a scatterplot to
incorporate various aspects of survey data. First, we describe the use of bubble plots in
which the sizes of the plotted circles are proportional to the sample weights of the points.
Examples are given showing that such bubble plots can perform better than a simple
scatterplot in (a) describing the population distribution and (b) identifying influential
points in a weighted analysis (which is typically used when analyzing survey data).
However, for moderate-to-large sample sizes, a bubble plot can be hard to interpret

397
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because of the overlapping bubbles. For this situation, we consider in Section 2.2 using
a “sampled scatterplot,” in which the sampled data is resampled proportionally to the
sample weights, yielding a data set that can be plotted without circles but still represents
the population distribution.

Plots of large data sets can be problematic because of overlapping plotted points. This
can especially be a problem when the raw data has been implicitly or explicitly rounded.
An example is given in Section 2.3, along with the possible solution of “jittering” the data,
that is, adding a small amount of random noise to the data before plotting. In Section 2.4,
we discuss scatterplots in which some of the plotted points represent imputed data values
to account for item nonresponse. In Section 2.5, we consider using conditional mean and
percentile curves constructed using kernel smoothing for nonparametrically displaying
the relationship between Y andXwhen the sample sizes are large. Finally, in Section 2.6,
a modeling alternative approach is considered that uses regression splines to investigate
relationships between Y and X.

2.1. Accounting for the sample weights: bubble plots

Survey designs typically specify that individuals are to be sampled with unequal prob-
abilities of selection. The sample weight associated with an individual is the inverse
of that individual’s probability of being included in the sample, adjusted, if necessary,
for nonresponse. There is often an additional poststratification to ensure that the sum
of the sample weights equals known population values for various subgroups (e.g.,
age/race/sex subgroups). The sample weights effectively represent the number of indi-
viduals in the population that the sampled individual represents.

Figure 1 is a scatterplot of daughter’s birthweight versus mother’s birthweight for
mothers aged 30–39 years at the time of birth; the data are from the 1988 National
Maternal and Infant Health Survey which sampled vital records corresponding to live
births, late fetal deaths, and infant deaths in the United States (Sanderson et al., 1991).
For the live birth component of the survey, mothers corresponding to sampled birth
certificates were mailed a questionnaire. The birthweight of the child was taken from
the birth certificate (reported in grams) and the birthweight of the mother was taken
from the mother’s questionnaire (reported in ounces, converted to grams for the plot).
Relationships between the birthweights of mothers and their children have been studied
previously using data from this survey (Wang et al., 1995). We restrict attention to first
births that were daughters, and mother-daughter pairs with nonmissing birthweights
(n= 225). Figure 1 is a misleading representation of the population because it ignores
the sample weights; this survey oversampled low birthweight babies and black babies
(Table 1) (Nonresponse and poststratification adjustments to the sample weights were
relatively small.). One possibility to more accurately reflect the population is displayed
by the bubble plot in Fig. 2; the areas of the circles are proportional to the sample
weights.

Another use for using the size of bubbles to designate sample weights is to help
identify influential points in an analysis. We now give an example using an analysis of
the association of developing cancer with baseline transferrin saturation values based
on women participating in the epidemiologic follow-up of the first National Health and
Nutrition Examination Survey (National Center for Health Statistics et al., 1987). This
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Fig. 1. Simple scatterplot based on data from mothers aged 30–39 surveyed in the 1988 National Maternal
and Infant Health Survey.

Table 1
Sampling strata and sampling rates of 1988 National Maternal and Infant Health Survey

Strata Sampling Rate

Race Birth Weight (grams)

Black <1500 1/14
1500–2499 1/55
≥2500 1/113

Nonblack <1500 1/29
1500–2499 1/160
≥2500 1/720

association has been previously studied by us Korn and Graubard (1995) and others
(Stevens et al., 1988). We follow the previous analyses and remove women from the
analysis who had cancer at the baseline or who developed it within four years of the
baseline survey; this leaves 197 women who developed cancer and 5073 who did not.
The sample weights ranged from 611 to 186,062 (coefficient of variation= 97%), with
the distribution being similar for the women who developed cancer and for those who
did not. We consider a logistic regression of the probability of developing cancer on
transferrin saturation and other covariates described in footnote 1 of Table 2. A classical
survey analysis uses weighted estimators; the weighted logistic regression coefficient
for transferrin saturation is given in the first line of Table 2.
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Fig. 2. Bubble plot of data plotted in Fig. 1; areas of circles are proportional to the sample weights.

Table 2
Weighted logistic regression coefficient (±standard error) for transferrin saturation from a multiple logistic
regression of the probability of developing cancer on transferrin saturation and other covariatesa, dropping
certain data points

Pointb Dropped from the Analysis Sample Size β± SEc

None 5270 .025± .014
Point A 5269 .009± .009
Point B 5269 .024± .014
Point C 5269 .028± .014

aCovariates included in the model are age at the baseline examination; smoking (never smoked,
former smoker, current smoker, and unknown); race (white and nonwhite); senior status (age ≥65 and
age <65 years); living in poverty census Enumeration District (yes, no); and family income (<$3000,
$3000–6999, $7000–9999, $10,000–14,999, and ≥$15,000).
bPoints are designated in Fig. 3.
cTo account for the complex sampling design, the computer program SUDAAN (Shah et al., 1995) was
used to calculate the standard errors.

An added variable plot, also known as a partial regression leverage plot, is useful for
identifying influential points in a multiple linear regression of Y onX and Z (Cook and
Weisberg, 1994, Chapter 12.1;Atkinson, 1985, Chapter 5.2-3). It is a plot of the residuals
from the regression of the dependent variableY on the covariate vectorZ (which includes
the intercept) versus the residuals from the regression of the independent variable cur-
rently under study (X) on Z. The slope of the least-squares line based on this plot is the
same as the regression coefficient forX in the multiple linear regression. For a multiple
logistic regression of a binary Y on X and Z, O’Hara Hines and Carter (1993) suggest

calculating the residuals from the linear regression of
√
p(1− p)

[
log p

1−p + Y−p
p(1−p)

]
on
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√
p(1− p)X and

√
p(1− p)Z and plotting these residuals against the residuals from

the linear regression of
√
p(1− p)X on

√
p(1− p)Z, where p is the predicted proba-

bility that Y = 1 based on the multiple logistic regression. The slope of the least-squares
line through this plot will equal the logistic regression coefficient ofX from the multiple
regression.

In our application, a weighted multiple logistic regression is used since the obser-
vations have sample weights. To account for this in the added variable plot, the linear
regressions used to obtain the residuals above need to be weighted linear regressions,
and the predicted values p need to be obtained from the weighted logistic regression.
With these modifications, the slope from a weighted least-squares regression through
the added variable plot will equal the regression coefficient of X from the weighted
logistic regression of Y on X and Z.

Figure 3 is the added variable plot for transferrin saturation; the areas of the cir-
cles are proportional to the sample weights. The dashed line in Fig. 3 is the weighted
least-squares line; its slope is .025, the same at the logistic regression coefficient for
transferrin saturation (Table 2). The mass of plotted points on the bottom left of the
plot is not aesthetically pleasing, but for the purpose of identifying influential points
is not troublesome. The point labeled A would appear to be highly influential. This
is confirmed by noting that when this point is dropped from the analysis, the logistic
regression coefficient for transferrin saturation changes from .025 to .009 (Table 2).
This point is also highly influential for estimating the standard error of the coefficient;
it changes from .014 to .009 with removal of the point.

A simple scatterplot without the circles would not be as successful as Fig. 3 in
identifying influential points. For example, without the circles, the point labeled B
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Fig. 3. Added variable plot for transferrin saturation based on weighted multiple logistic regression described
in Table 2. Dashed line is weighted least-squares line; labeled points are described in the text.
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might appear about as influential as point A. However, because of its small sample
weight, it has very little influence on the coefficient (Table 2). On the other hand, it is
not sufficient to ignore the plot and assume that observations with large sample weights
will be influential. For example, the observation above the label C in Fig. 3 has a larger
sample weight than point A. From its plotted position, however, we would not expect it
to be influential and it is not (Table 2).

2.2. Accounting for the sample weights: sampled scatterplots

An alternative strategy to using a bubble plot is to use a “sampled scatterplot.” The
idea is to sample the data with probabilities proportional to the sample weights; the
resulting sampled data is then approximately representative of the population and can
be plotted ignoring the sample weights. Figure 4 (n= 100) is a sampled scatterplot of
the data displayed in Fig. 2. The ith observation from the original data set was included
in Fig. 2 if a uniform (pseudo-)random number was less than wi/wmax, where wi is
the sample weight of the ith observation and wmax(= 1008.515) is the largest sample
weight of the 225 observations in Fig. 2. In general, one samples the ith data point
to be plotted an expected number of times equal to wi/(cwmax), where c is chosen to
control the expected sample size of the plot. In some cases, the same observations may
be sampled multiple times resulting in overlapping points on a plot. In these cases,
one might consider jittering the data in the plot to separate the overlapping points as
described in Section 2.3. The idea of resampling survey data to eliminate the effects of
the sample weights in further analysis has been used by Murthy and Sethi (1965) and
Hinkins et al. (1994) to use conventional nonsurvey methods of analysis for survey data.
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Fig. 4. Sampled scatterplot of data plotted in Fig. 2. Points were chosen for plotting with probability propor-
tional to their sample weights.
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There is no question that there is a loss of information in going from Fig. 2 to Fig. 4.
Therefore, Fig. 2 would be the preferred plot for data cleaning. Additionally, weighted
estimation using the full data set should be used for estimating population parameters.
However, as a visual display of the population, we prefer Fig. 4 to Fig. 2, and this
preference would become stronger if the sample size were larger, see the height/age
example given below.

For some applications, it may be useful to sample points for a sampled scatterplot
not just proportionally to the sample weights. For example, suppose we are interested
in the relationship of mother’s and daughter’s birthweights for black and nonblack
daughters. Only four of the data points in Fig. 4 correspond to black daughters, and
this is reflective of the population. Since black babies were oversampled in the survey,
there is much more information available. Figure 5 is a sampled scatterplot in which
data points corresponding to black daughters were sampled with probabilitywi/166.642
(166.642 is the largest sample weight corresponding to a black baby in the original data),
whereas data points corresponding to nonblack daughters were sample with probability
wi/1008.515. Therefore, although Fig. 5 is not representative of the population, it is
representative of the black and nonblack populations separately. It appears from Fig. 5
that there is a stronger positive correlation among the nonblack mother-daughter pairs
than among the black mother-daughter pairs. This can also be demonstrated numerically
by comparing the weighted correlations using all the sampled data for the nonblack and
black pairs: 0.32(n= 170) versus 0.07(n= 55), respectively.

Figure 5 also displays an additional characteristic of the data that may not have
been apparent before—there are many observations with mother’s birthweight equal
to 3175.133 grams, converted from 7 pounds, 0 ounces. A better representation of the
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Fig. 5. Sampled scatterplot of data plotted in Fig. 2. Black daughters (filled-in circles) were sampled for
plotting at approximately six times the rate as nonblack daughters (open circles).
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Fig. 6. Simple scatterplot of height versus age for boy aged less than 19 years sampled in the second National
Health and Nutrition Examination Survey.

population might be obtained by randomly jittering the data to account for the rounding
in the reporting (see Section 2.3 below).

Another application of the sampled scatterplot is when the sample size is large.
Figure 6 is a simple scatterplot of height versus age for the 3667 boys aged 2–19 years
sampled in the second National Health and Nutrition Examination Survey. The sample
weights for these boys ranged from 1359 to 47,385, with a coefficient of variation of
71%, see McDowell et al. (1981) for full details of this survey. Besides being an unap-
pealing plot because of the mass of points being plotted, the plot is also not representative
of the population because of the differing sample weights. In particular, boys aged five
years or younger were sampled in this survey at three times the rate of boys six years
or older. This is reflected in Fig. 6 in the increased density of plotted points for age less
than six. Because of the large number of plotted points, a bubble plot version of Fig. 6
would not be useful. We can solve the two problems of excessive density and represen-
tativeness at once by using a sampled scatterplot, see Fig. 7 in which n= 699 points are
plotted.

2.3. Accounting for overlap and rounding: jittering

In plotting a small number of observations, occasionally multiple observations will
have values so close (or identical) as to make their plotted points indistinguishable.
The easy solution to this problem is to displace by a small amount such points. With
larger data sets, the problem can become more acute. For example, Fig. 8 is a bubble
plot of systolic blood pressure versus the logarithm of blood lead values for 595 white
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Fig. 7. Sampled scatterplot of data plotted in Fig. 6. Points were chosen for plotting with probability propor-
tional to their sample weights.
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Fig. 8. Bubble plot based on data from white males aged 40–59 years sampled in the second National Health
and Nutrition Examination Survey; areas of circles are proportional to the sample weights. There are many

overlapping circles in this plot.
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males aged 40–59 years. The data are from the second National Health and Nutrition
Examination Survey, with the areas of the bubble being proportional to the sample
weights (range = 11601–79176, coefficient of variation= 41%). The relationship of
blood pressure and lead levels has been previously studied using these data by Pirkle
et al. (1985). The lattice pattern of Fig. 8 is because blood pressure was recorded to the
nearest mm Hg and blood lead values were recorded to the nearest microgram/deciliter.
The overlap of the circles gives a misleading impression of the distribution of values.
With this type of “rounding” of the data, a natural solution to the problem of overlapping
points is to jitter the data (Chambers et al., 1983, pp. 106–107). In this case, random
uniform (−1/2,+1/2) variates are added to the blood pressure and lead values before
plotting because it is reasonable to treat the observed values as if they had been
rounded to the nearest integer from true values. The jittered plot displayed in Fig. 9
not only avoids the overlap of plotted points but also gives a better representation of
the prerounded blood lead levels.

An alternative solution to the overlap problem is to sum the sample weights for
points that are plotted at the same location. Figure 10 is the bubble plot using these
summed sample weights. This approach has been suggested in the nonsurvey setting,
in which “sunflowers” (with the number of lines in the sunflowers equal to the num-
ber of data points at the location) are used instead of bubbles (Cleveland and McGill,
1984). Additionally, continuous data can be artificially rounded to apply this approach
(Cleveland and McGill, 1984). In the survey setting, this approach is less attractive
than jittering because one cannot distinguish in the plot single individuals with large
sample weights versus many individuals with small sample weights plotted at the same
location.
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Fig. 9. Jittered bubble plot of data plotted in Fig. 8.
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Fig. 10. Summed bubble plot of data plotted in Fig. 8. Areas of circles are proportional to the sum of the
sample weights of the individuals with the same data values to be plotted.

2.4. Accounting for missing data: imputation

Although missing data can be a problem in any data analysis, survey data are especially
susceptible because of the possibility of nonresponse. Data can be missing completely
from a sampled individual (unit nonresponse) or partially missing because some ques-
tions remain unanswered (item nonresponse). A nonresponse adjustment to the sample
weights is frequently used for unit nonresponse; the sample weights are adjusted upwards
for respondents with values of other variables similar to those of nonrespondents. The
sample weights can be accounted for in a scatterplot as described in Sections 2.1 and
2.2. Item nonresponse is sometimes handled by imputing values for the missing values.
There are many ways to do this (Little and Rubin, 2002, Chapters 4 and 5), one of which
is described below.

As a preliminary, it can be useful to plot the data without any imputations. Returning
to the mother-daughter birthweight data (Fig. 2), the full sample size is 286 of which 225
observations have both mother’s and daughter’s birthweight nonmissing. Sixty obser-
vations are solely missing mother’s birthweight and one observation is solely missing
daughter’s birthweight. Figure 11 displays the sampled scatterplot of Fig. 4, but now also
contains (modified) box plots for the estimated distributions of daughter’s birthweight
for observations not missing, and missing, mother’s birthweight (For plotting, the single
observation missing daughter’s birthweight is ignored.). For these box plots, the edges
of the boxes represent the 25th and 75th percentiles, the line in the box represents the
median, and the lines extending from the box represent the 10th and 90th percentiles.
These percentiles are estimated from using weighted percentiles of the complete samples
and not just the (re)sampled observations displayed on the left-hand side of Fig. 11. The
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Fig. 11. Sampled scatterplot of nonmissing data with weighted box plots of nonmissing and missing data.
Data are from mothers aged 30–39 surveyed in the 1988 National Maternal and Infant Health Survey.

box plots suggest that missingness of mother’s birthweight may be less prevalent for
high birthweight daughters, but the two-sided p-value for comparing the means is 0.18.
An alternative to using the box plots in Fig. 11 would be to display weighted histograms
of the distributions. As mentioned above, there are many ways for imputing values for
missing data. For graphical displays, it is important that the variability of the imputed
values should be consistent with the population variability. We will demonstrate the
point with the mother-daughter birthweight data (no imputed values were supplied by
the National Center for Health Statistics for mother’s birthweight). We use the regression
model

mother’s birthweight = α+ βM−HTXM−HT + βM−RACEXM−RACE

+ βD−BWXD−BW + error, (1)

whereXM−HT andXM−RACE denote mother’s height and race (1= nonblack, 2= black)
and XD−BW denotes the daughter’s birthweight. The regression coefficients in model
(1) are estimated using (sample-)weighted least-squares for those observations with
nonmissing mother’s birthweight (the one observation of missing daughter’s birthweight
was assigned the mean daughter’s birthweight). The fitted regression was

predicted mother’s birthweight =− 202+ 37.3XM−HT + 123XM−RACE

+ 0.270XD−BW. (2)

To impute a mother’s missing birthweight, we substitute the mother’s height and race
and her daughter’s birthweight into (2) to obtain the predicted mother’s birthweight, and
then add on an error term obtained as follows. The error terms for the imputed values
were obtained by sampling the residuals from the fitted model (2) using probability
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Fig. 12. Sampled scatterplot based on data from mothers aged 30–39 surveyed in the 1988 National Maternal
and Infant Health Survey (circles= imputed values, + = nonimputed values).

proportional-to-size sampling, where the inclusion probabilities were proportional to
the sampling weights. Figure 12 is a sampled scatterplot of the mother-daughter pairs
in which the pairs with imputed mothers’ birthweights are designated by o and the
nonimputed values by +. If one used for the imputed values the predicted mothers’
birthweights from (2) without adding the error term, the sampled scatterplot would be
Fig. 13. The spread of the imputed values is misleadingly small in Fig. 13, demonstrating
the importance of including an error term in the imputed values.

In both Figs. 12 and 13, the imputed values were highlighted by using a dramati-
cally different symbol in the plots. For many applications, we may want the distinction
between imputed and nonimputed values to be visible but not to overpower the display.
This can be accomplished by using different symbols that are somewhat similar. For
example, one could use x instead of o to denote the imputed values in Fig. 12.

2.5. Conditional mean and percentile curves: kernel smoothing

Although one might typically use a polynomial regression to display the X-Yrelationship
on a scatterplot of a small-to-moderate number of observations, the large number of
observations sometimes available with survey data allows for the consideration of less
model-dependent approaches.As a simple example, Fig. 14 is a strip box plot (Chambers
et al., 1983, pp. 87–91) of height as a function of age for boys aged 2–19 years sampled in
the second National Health and Nutrition Examination Survey, see Fig. 7 for a sampled
scatterplot of this data. Each box plot displays the sample-weighted 10th, 25th, 50th,
75th, and 90th percentiles of height of those individuals at a particular year of age at
the time of examination. The number of observations included for each year of age
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Fig. 13. Sampled scatterplot based on data from mothers aged 30–39 surveyed in the 1988 National Maternal
and Infant Health Survey (circles= imputed values without error included, + = nonimputed values).
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Fig. 14. Strip box plot of height versus age for data plotted in Fig. 6. Box plots show weighted 10th, 25th,
50th, 75th, and 90th percentiles for each year of age.
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Fig. 15. Cubic spline interpolation of weighted percentiles are shown in Fig. 14. Solid line is the median,
dashed lines are the quartiles, and outer dashed lines are the 10th and 90th percentiles.

range from 144 to 429. Figure 14 is not a particularly pleasing display of the percentiles
as a function of age. One can remove the boxes and generate smooth curves through
the percentiles for the different ages for a better plot. For example, Fig. 15 displays
a piecewise cubic spline (SAS, 1990) that fits third-degree polynomials through the
percentiles between adjacent years of age; this was the type of approach used in an
early presentation of growth curves by the National Center for Health Statistics (1976).
Guo et al. (1990) discuss alternative methods for smoothing percentiles for this type of
grouped data.

More direct approaches to estimating smooth conditional percentile or mean curves
are possible using the original ungrouped data. There are many different ways to do this
(Härdle, 1990); we briefly describe a kernel method. Let {(xi, yi, wi) | i= 1, . . . , n} be
the sampled (X, Y) data with their corresponding sample weights. The idea behind a
kernel estimator of the conditional mean of Y given X= x is to evaluate the weighted
mean of the yi whose corresponding xi are near x. The weights used for this weighted
mean incorporate the sample weights and can also weight points with xi close to xmore
than points xi further from x by the choice of a “kernel function.” We describe in the
next section how to incorporate the sample weights into a particular kernel smoother.
The end result is that one can express an estimator of the conditional mean as

mean(y|x) =
n∑
i=1

wLS
i yi, (3)

where the weights wLS
i incorporate the sample weights as well as the choice of the

kernel function, local regression smoothing, and bandwidth. Figure 16 is a replot of the
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Fig. 16. Replot of Fig. 7 with the local-linear kernel estimator of the conditional mean using a triangular
kernel with a bandwidth determined by a one-sided sample size of 350.

sampled scatterplot of Fig. 7 with the local-linear kernel estimator of the conditional
mean using a triangular kernel with a bandwidth determined by a one-sided sample size
of 350 (see the next section) (The conditional mean estimator uses the full sample of
size 3667 and not just the points plotted in Fig. 7.).

2.5.1. Details of kernel smoothing
Let the kernel function K(u) be a non-negative symmetric function that integrates to
one, for example, the triangular kernel K(u)= 1 − |u| for |u| ≤ 1 and 0 otherwise.
In the nonsurvey setting, one possible kernel estimator of the conditional mean is
given by

meanK(y|x) =
n∑
i=1

wKi yi, (4)

where wKi =K
(
x− xi
hx

)/∑n
j=1K

(
x− xj
hx

)
and hx is the bandwidth that essentially

determines how far the xi can be from x and still be included in the estimator meanK(y|x).
A potential problem with the curve meanK(y|x) is at the boundaries of the X data.
One way to avoid this problem is to use a locally weighted regression (Cleveland,
1979), with a local-linear smoother being a special case: instead of using the weighted
mean (4), one fits a weighted linear regression to the data around x using the wKi
weights. Then, one defines meanL(y | x) to be the predicted value of Y at X = x

from this regression. The estimator meanL(y | x) can still be defined as a weighted
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mean, namely,

meanL(y|x) =
n∑
i=1

wLi yi (5)

with weights equal to

wLi = wKi
[

1+
(
xi − xK

)(
x− xK)∑n

j=1w
K
j

(
xj − xK

)2

]
,

where xK =∑n
j=1w

K
j xj . The additional possibility of downweighting points with large

residuals (“lowess,” Cleveland, 1979) is not pursued here.
In the survey setting, to account for the sample weights (wi), one let

wKS
i = wiK

(
x− xi
hx

)/∑n

j=1
wjK

(
x− xj
hx

)

and

wLS
i = wKS

i

⎡
⎣1+

(
xi − xKS

)(
x− xKS

)
∑n

j=1w
KS
j

(
xj − xKS

)2

⎤
⎦,

where xKS =∑n
j=1w

KS
j xj . The local-linear smoother is then defined by (3). The use of

the sample weights implies that (3) is estimating what (5) would be estimating if all the
population values were available and used for the estimation.

Bellhouse and Stafford (2001, 2003) have proposed using local-polynomial regres-
sion to estimate a smooth conditional mean curve and have given asymptotic bias and
variance properties of their estimators. This approach is a generalization to the local-
linear smoother described above, where a weighted polynomial regression is used instead
of the weighted simple linear regression.

The choice of the bandwidth is critical in determining how smooth the resulting
conditional mean curve will be. There are various ways to choose the bandwidth (Härdle,
1990, Chapter 5; Ruppert et al., 1995). We describe two simple approaches here: one
approach is to fix hx to be a constant that is meaningful to the scale of the data at hand and
a second approach is to choose hx so that a certain minimum sample size is contained in
x ± hx, for example, 100 observations. A modification of this second approach, which
we prefer, is to choose hx so that a certain minimum sample size is contained in either
[x, x − hx] or [x, x + hx], for example, 50 observations. Without this modification, hx
will tend to increase as x approaches a boundary of the data.

A benefit of the development of the conditional mean estimator (3) as a weighted
mean of the yis is that the approach extends naturally to other functionals of the condi-
tional distribution of Y given X, for example, percentiles. This was suggested by Stone
(1977) and studied extensively by Owen (1987). The idea is to estimate the cumula-
tive distribution function (CDF) for Y using the yi, whose xi are near x. In the present
context, to estimate the conditional percentiles, one can use for each x the (weighted)
percentile estimated from the weighted empirical CDF of the yi using the wLS

i weights.
Unfortunately, this approach has a serious drawback for quantiles other than the median:
even if the relationship of the quantiles and x was linear (but not horizontal), the larger



414 B. I. Graubard and E. L. Korn

the bandwidth, the more the estimated quantiles will be biased away from the median.
This is because the changing values of the conditional percentiles as a function of x
causes the spread of y values to be larger when a larger bandwidth is considered.

To avoid this bias in the estimated conditional percentiles other than the median, we
modify the approach analogously to that used for estimating “upper and lower smooth-
ings” based on conditional means (Cleveland and McGill, 1984). We first estimate the
conditional median using the weighted CDF as described above, denote it by q50(y|x)
and let zi = yi−q50(y|xi). To estimate a conditional percentile greater than the median,
say the 90th percentile, use the weighted CDF approach to estimate the conditional 80th
percentile of the zs given x using only the data points for which zi > 0. If we denote
this conditional 80th percentile by q80(z|x), then the desired conditional 90th percentile
is estimated by q50(y|x) + q80(z|x). In general, one estimates the conditional ηth per-
centile for η> 50 by q50(y|x)+ qγ(z|x), where γ = 2η− 100. This modification works
for conditional percentiles less than the median in the obvious fashion. Figure 17 dis-
plays selected conditional percentiles for the height/age data using a local-linear kernel
estimator using a triangular kernel with a bandwidth determined by a one-sided sample
size of 350.

With large data sets, the discreteness of the scale of the measurement of Y can some-
times become noticeable in the conditional percentile curves. For example, consider the
blood lead data described in Section 2.3. A plot of the smoothed conditional percentiles
of blood lead versus age will take on only integer values since blood lead is recorded
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Fig. 17. Weighted conditional percentiles of height as a function of age of data plotted in Fig. 6. Solid line is the
median, dashed lines are the quartiles, and outer dashed lines are the 10th and 90th percentiles. Conditional
percentiles are estimated using a local-linear kernel estimator using a triangular kernel with a bandwidth

determined by a one-sided sample size of 350 (see text).
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to the nearest integer (plot not shown). If this is a problem, the weighted empirical
CDF calculated at each x can itself be smoothed before estimating the percentiles, see
Woodruff (1952) and Korn et al. (1997) for some simple methods of doing this.

The last issue we address is the calculation of standard errors for kernel estimators.
A simple approach is to use one of the replication methods of variance estimation (Korn
and Graubard, 1999, pp. 29–35). For example, with a balanced half-sample replication,
the kernel estimator would be calculated using the data from each half-sample of pri-
mary sampling units. The bandwidth used for the replicated kernel estimators should be
approximately the same as the bandwidth used for the kernel estimator for the original
data (at each x). In particular, if a variable-length bandwidth involving a minimum sam-
ple size was used for the original data, you should not use a variable-length bandwidth
involving the same minimum sample size for the replicates for a jackknife or a balanced
half-sample replication. Instead, for example, you should, for a balanced half-sample
replication, use a variable-length bandwidth involving half the minimum sample size
used for the estimator on the original data or fix the bandwidth for the replicates at the
value used for the original data.The rationale for this is that balanced half-sample replica-
tion or the jackknife is derived assuming that fewer observations are used in the replicate
estimators. For example, balanced half-sample replication yields a reasonable variance
estimator because the variability of the half-sample estimators is about twice that of the
full-sample estimator. It should be noted that jackknife variance estimators should not
be used for conditional percentile curves because they are not differentiable functions
of the data. However, jackknife estimators can be used for conditional mean curves.

We caution the reader when using standard errors for kernel estimators. Although
they can be interpreted as representing the variability one would see in the estimators
if they were calculated from repeated independent surveys of the population, they can-
not automatically be used to derive confidence intervals. This is because the smoothed
estimators are biased (This bias is hard to quantify because it depends on the amount of
smoothing and the curvature of the true curves.). This problem can become especially
noticeable when a variable-width bandwidth is used and the data are scarce in a region
of the horizontal axis. The bandwidth will be large in this region to capture a sufficient
sample size. Therefore, the replicated standard errors of the smoothed curve will be no
larger than at other regions of the curve where the data density is higher, presenting a
potentially misleading picture. With cautious interpretation, however, we still believe
that the presentation of the standard errors of kernel estimator is worthwhile. For exam-
ple, if they are large, then the kernel estimators are not useful no matter what the size
of the bias. If the sample size is so large that the bandwidth is quite small, then the bias
of the smoothed estimators will be small.

As an alternative to presenting standard errors, we present a different method for
examining whether a smoothed conditional mean or percentile curves is reflecting a
property of the underlying distributions rather than just noise. As an example, Fig. 18 is
a partial residual plot for the logarithm of blood lead from a (sample-) weighted multiple
linear regression of systolic blood pressure on log lead, age, and body mass index using
the data described previously. Partial residual plots for a particular independent variable
x1, also known as component-plus-residual plots, are plots of ri + β̂1xi1 versus x1,
where β̂1 and the residuals ri are estimated from the multiple linear regression model
(Atkinson, 1985, Chapter 5.4; Cook and Weisberg, 1994, Chapter 9). These plots are
useful for examining possible needed transformations of the independent variable. The



416 B. I. Graubard and E. L. Korn

90

80

70

60

50

40

30

20

10

0

210

220

230
1 2 3 4

LogLead

R
es

id
ua

l1
B

et
ah

at
*L

og
Le

ad

5

Fig. 18. Partial residual plot of the logarithm of blood lead (log lead) from a weighted regression of systolic
blood pressure on log lead, age, and body mass index using data from 595 white males aged 40–59 sampled in
the second National Health and Nutrition Examination Survey. Areas of circles are proportional to the sample
weights. Dashed line is the weighted least-squares line. Solid line is the local-linear kernel estimator of the

conditional mean using a triangular kernel with a fixed bandwidth of ±1.5 units of log lead.

dashed line in Fig. 18 is the weighted least-squares line; its slope is identical to the
estimated regression coefficient of log lead in the weighted multiple linear regression.
Analogous partial residual plots can also be constructed for other types of regression
analyses of complex survey data, including logistic regression and proportional hazard
regression (Korn and Graubard, 1999, pp. 111–113, 124–126).

The smooth curve in Fig. 18 is a local-linear kernel estimator of the conditional mean
using a triangular kernel with the fixed bandwidth of ±1.5 units of log lead. The curve
shows no great nonlinearity although there is the suggestion of a rise and then fall of
the curve for log lead values greater than 3.5. As an ad hoc check of the reality of this
nonlinearity, we simulated five data sets in which the linear regression model holds
exactly—the values of the independent variables and the sample weights were taken as
in the observed data set, and Y values were simulated with normal distributions around
the predicted values (with standard deviation equal to the residual standard deviation
from the observed data set computed without regard to possible sample weighting and
correlation from cluster sampling). There should be no structure in the residuals from
the weighted linear regressions using these simulated data sets. The top five curves in
Fig. 19 are the estimated conditional mean plots from the partial residuals from these
five simulated data sets; the bottom curve is a replot of the conditional mean curve from
Fig. 18. The structure seen in these curves is at least as great as that seen in the curve
calculated from the actual data, suggesting that the structure seen in the curve based on
the actual data can be safely ignored.
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Fig. 19. Replot of the kernel estimator of the conditional mean from Fig. 18 (solid curve) with kernel estimators
of the conditional mean based on five simulated data sets for which the conditional mean should be linear

(dashed and dotted curves, translated in the vertical direction to avoid overlapping curves).

Although this section has focused on using kernel smoothing to obtain conditional
means or quantiles in scatterplots with survey data, we note that there has been work in
kernel smooth methods for density estimation with survey data (Bellhouse and Stafford,
1999, 2003; Buskirk and Lohr, 2005). The density estimation work may help to frame
the theoretical basis for the kernel smoothing methods that we have presented. Finally,
in addition to Härdle (1990) other references on topic of kernel smoothing for simple
random samples are Wand and Jones (1995), Eubank (1999), and Simonoff (1996).

2.6. Regression splines

Regression splines is an alternative approach to kernel smoothing that use modeling
when investigating the functional relationship between an outcome Y and a variable X.
In the context of linear regression, the question is whether the simple inclusion of X
as an independent variable is sufficient to model the relationship. A common modeling
approach to this problem is to include powers of X as additional independent variables
to allow for a polynomial relationship. For example, inclusion ofX andX2 in the model
allows for Y to be a quadratic function of X and inclusion of X, X2, and X3 allows
for Y to be a cubic function of X, etc. Frequently, however, this approach does not
work because to adequately fit the data over the whole range of X may require a high-
degree polynomial.This would lead to a nonparsimonious model with many independent
variables involving X.

An alternative approach is to use a regression spline, which involves a fixed set of
“knots” t1< t2< · · · < tK in the range of X. The spline function of X is a piecewise
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polynomial that is smoothly joined at the knots. Spline functions can be fit to the data
by adding a small number of independent variables to the (linear) regression model.
A very convenient type of spline (and the one we will discuss) is called “restricted cubic
regression splines” (Stone and Koo, 1985), which are defined as follows: in between
each pair of adjacent knots, the function is a cubic polynomial, with possibly different
cubic functions between the different knot pairs. To the left of t1 and to the right of tK, the
spline is straight lines (These linear constraints rather than allowing cubic functions in
the tails are those that distinguish restricted cubic regression splines from ordinary cubic
regression splines.). The cubic and linear functions are constrained so that the functional
values and their first and second derivatives coincide at each knot; this ensures that the
spline is a continuous smooth function.

Typically, a small number of knots (e.g., 3–5) are sufficient to model most data.
Durrelman and Simon (1989) use knots at the following percentiles of the X data:
{5, 50, 95}, {5, 25, 75, 95}, and {5, 25, 50, 75, 95} for 3, 4, and 5 knots, respectively. In
survey data with sample weights, the knots can be placed at the weighted percentiles.

It is simple to express a restricted cubic regression spline in terms of functions of X
that are included as independent variables in a regression. Details of the construction
of these independent variables are given in Durrelman and Simon (1989) or Korn and
Graubard (1999, Appendix C). With 3 knots, besides X, one need only to include one
additional independent variable; with 4 knots, two additional independent variables; etc
(For details about other approaches to estimating splines in simple random samples see
Eubank, 1999.)

In most applications, there will be other independent variables in the model in addition
to X and the spline variables that are functions of X. The interpretation of the spline
function in these situations is the usual conditional one for a regression. A nice feature
of using regression splines is that one can easily test whether a linear relationship is
adequate by testing whether the estimated regression coefficients of the spline variables
are significantly different from zero. For the restricted cubic regression spline with 3
knots, this involves testing if one regression coefficient equals zero; with 4 knots, a
simultaneous test of whether two regression coefficients equal zero is used; etc. For
survey data, these tests can be performed by estimating the coefficients using a sample-
weighted regression and using a Wald statistic that incorporates the survey design.
Standard linear regression software for survey data can be used for the analysis (although
the analyst may be required to generate the spline variables).

When a linear relationship is inadequate to model the data, plotting the regression
spline can suggest alternative nonlinear relationships. With no other independent vari-
ables in the model, a plot of the predicted values versusX can be overlaid on a scatterplot
of the data. When there are other independent variables in the model (Z1, . . . , Zp), the
following procedure can be applied. For example, for multiple linear regression mod-
eling, suppose there are K knots with the corresponding K − 2 spline variables in X
being SK,1, SK,2, . . . , SK,K−2. Plot

α̂+ β̂XX+ γ̂K,1SK,1 + · · · + γ̂K,K−2SK,K−2 + β̂Z1c1 + · · · + β̂Zpcp
versus X, where {α̂, β̂X, γ̂K,1, . . . , γ̂K,K−2, β̂Z1 , . . . , β̂Zp} are the estimated regression
coefficients from the model including the spline variables, and c1, . . . , cp are a set
of constants representing possible values of Z1, . . . , Zp. This plot is interpreted as the
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predicted value for an individual with covariate valuesZ1= c1, . . . , Zp = cp andX = x,
as a function of x. A confidence band for this plot can be calculated using the estimated
covariance matrix of the estimated regression coefficients (The width of the confidence
band will depend on the particular values c1, . . . , cp chosen.). This plot can be overlaid
with a plot of α̃+ β̃XX+ β̃Z1c1+· · ·+ β̃Zpcp versusX (which is a straight line), where
{α̃, β̃X, β̃Z1 , · · · , β̃Zp} are the estimated coefficients from the linear regression model
without the spline variables. The resulting plot allows for a comparison of the linear and
spline-modeled associations of Y and X.

3. Discussion

In the nonsurvey setting, the simple scatterplot is an excellent overall graphical display
of bivariate data. In the survey setting, different purposes may be best suited by different
plots. For example, is the plot to describe the sample for data cleaning purposes or is
to describe the population for population inference? With large sample sizes, is the plot
to describe general trends or is to identify possible outliers and influential points? We
have given examples in this chapter of some modifications of the simple scatterplot that
we have found useful for displaying survey data. Other modifications are possible, and
may be advisable, depending on the survey and the purpose of the display.



Introduction to Part 6

Danny Pfeffermann

1. Motivation

A common perception of survey sampling is that it is solely engaged with inference on
finite population quantities such as means and proportions, with the inference based on
the randomization distribution over repeated sampling from the fixed, finite population
from which the original sample has been drawn. This perception is obviously false, as
easily concluded from just cursory reading of the many chapters of this volume.Although
inference about finite population quantities based on the randomization distribution is
still a major component of the work of government bureaus producing official statistics,
survey data are increasingly used for pure modeling purposes, and statistical models are
often used for estimating finite population quantities, such as in small area estimation,
a growing undertaking by statistical bureaus throughout the world (Chapter 32). The
use of statistical models is inevitable when dealing with nonsampling errors such as
coverage errors, nonresponse, and measurement errors, the focus of Chapters 8, 10, 12,
and 25.

The use of the randomization distribution for inference is generally conceived as being
robust, by not relying on an underlying statistical model assumed to generate the finite
population values, which, as stated above, are considered as fixed numbers. Thus, an
estimator T(s) is unbiased under the randomization distribution for the population total
T in a finite population U, if

∑
s Pr(s)T(s) = T , where Pr(s) denotes the probability

of drawing the sample s and the summation is over all the samples possibly drawn
under the sampling design used to draw the sample. The randomization variance of
the unbiased estimator T(s) is defined accordingly as, VarR[T(s)] = ∑

s Pr(s)[T(s) −
T ]2. Brewer and Särndal (1983) noted that the use of the randomization distribution is
“robust by definition.” “Since no model is assumed, there is no need to discuss what
happens under model breakdown.” However, for inference beyond point estimation,
such as the construction of a confidence interval, the use of this approach requires
having sufficiently large samples (and hence sufficiently large populations), such that
the randomization distribution of the estimator can be approximated by the normal
distribution, based on an appropriate version of the central limit theorem. This is so
because the exact randomization distribution of a sample statistic is generally unknown
as it depends on the unknown population values. Smith (1994) states that “without the
normal approximation there could be no randomization-based inference.” Chapter 40
in Part 6 examines the conditions under which randomization-based estimators can be
regarded as approximately normally distributed.

423
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The estimation of finite population quantities can alternatively be based on statistical
models assumed to generate the finite population values, which are now viewed as
random variables. See, for example, Chapters 23, 24, 32, 36, and 39. Under this approach,
the sampled units are considered fixed, and the estimation of the finite population total,
for example, turns into a prediction problem of predicting the unobserved values for
the nonsampled units under the assumed model. Denoting the population values by
{Yi, i ∈ U} and the model-based predictors of the Y -values for the nonsampled units
by {Ŷj, j /∈ s}, the “model-based” predictor of the finite population total is T̂ (s) =(∑

k∈s Yk +
∑

j /∈s Ŷj
)
. It is unbiased if EM

[(∑
j /∈s Ŷj −

∑
j /∈s Yj

) ∣∣S] = 0, where EM

defines the expectation under the model.The model-based prediction variance (assuming

model unbiasedness) is now EM

[(∑
j /∈s Ŷj −

∑
j /∈s Yj

)2 ∣∣S].

A third approach, often used for comparing different randomization-based strategies
(sampling design and estimator) when direct comparisons are not feasible, is to combine
the randomization and model distributions. For example, for comparing different ran-
domization variances, one may compare their model expectations, known as the anti-
cipated variance. Denoting a strategy for estimating the population total T by
[Pr(s), T(s)], where Pr(s) defines the sampling design and T(s) the (unbiased) esti-
mator, the anticipated variance is EMVarR[T(s)]=EM

{∑
s Pr(s)[T(s)− T ]2}. See

Chapter 24 and Chapters 39 and 41 in Part 6 for further discussion and uses of the
combined distribution.

The use of statistical models is in line with conventional statistical inference, and the
question arising is why survey sampling inference should be based on the randomization
distribution and thus be different from “mainstream” statistics. There are many articles
in the statistical literature discussing the pros and cons of the use of either one of the two
approaches for estimating finite population quantities, see, for example, Smith (1994,
1997) and Chapters 23, 24, 32, 36, and 39. A related interesting question, however,
with theoretical and practical implications, is whether randomization-based strategies
can be justified by classical statistical theory by being, for example, minimax or Bayes
rules. Recall in this respect the result of Godambe (1955) that states that no minimum
variance linear unbiased estimator with coefficients that depend on the sample exist
with respect to the randomization distribution for an arbitrary population. This result,
however, does not rule out the consideration of other optimality criteria, the topic of
Chapter 41 in Part 6. As mentioned earlier, this chapter considers also the combined
model-randomization distribution for inference.

There is an overall agreement even among proponents of randomization-based infer-
ence that the use of models is inevitable for dealing with nonsampling errors such
as coverage errors, nonresponse, and measurement errors, or in situations where the
samples are too small, producing estimators with unacceptable large randomization
variances and not allowing the use of asymptotic inference via the central limit the-
orem. Correspondingly, although model-based inference does not require in principle
random sampling, there seems to be an agreement among modelers that for survey sam-
pling inference, the sample should be selected at random, preferably within strata, either
because there is usually not sufficient prior information for selecting a more efficient
purposive sample, or because large scale surveys are practically always multipurpose,
and a purposive sample that could be suitable for one target variable might be very
inefficient for another variable. A more theoretical argument in favor of randomization
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is that randomization can be seen as a mixed strategy in game theoretic terminology,
and minimax results follow naturally, see Chapter 41. It is also often advocated that ran-
domization protects against possible selection bias effects when fitting models to data.
However, as discussed later, selection bias could be present even with random samples
if the sampling design is informative, and failure to account for it can bias the inference
very substantially, the focus of Chapters 38 and 39.

We considered so far the estimation (or prediction) of finite population quantities,
commonly referred to as descriptive inference, but in recent decades, survey data are
increasingly used for analytic inference about statistical models assumed to generate
the corresponding population values, without necessarily employing the models for
descriptive purposes. Familiar examples include the estimation of income elasticities
from household surveys, the analysis of labor market dynamics from labor force surveys,
and the study of the relationships between risk factors and disease incidence from health
surveys. How should statistical models be fitted to survey data selected by probability
sampling designs? Can the sample selection be ignored and the model be fitted as if
the sample was actually a census? Is there a role for randomization-based inference
when fitting models? Chapters 38 and 39 examine this issue in detail, with Chapter 39
reviewing several plausible approaches for fitting models to complex survey data and
Chapter 38 discussing modeling procedures for case–control studies; one of the most
common designs in health research.

To understand why modeling of complex survey data can be problematic, let us sup-
pose that the target model assumed to generate the population values (the census model)
is specified accurately. If the sampling design is simple random sampling and all the
sampled units respond, the same model can be assumed to hold also for the sample
data after selection, and it may be fitted using Bayesian, likelihood, or least squares
methods, as found appropriate. The goodness of fit of the census model can be tested
in this case using conventional techniques. But large scale surveys generally involve
multistage cluster sampling and unequal selection probabilities, at least at some stages
of the sampling process, with possibly not missing at random (NMAR) nonresponse.
Consequently, the model holding for the sample data (the sample model) can be very
different from the target population model, even if the ultimate sampling units are sam-
pled with equal probabilities. Failure to account for the difference between the sample
model and the census model can result in biased and inconsistent parameter estimators,
poor coverage of confidence intervals, wrong predictions, and ultimately erroneous
conclusions.

We illustrate the difference between the census model and the sample model, and
the possible implications of ignoring the sample selection by considering the fol-
lowing simple example taken from Chapter 39. Let the census model be Yi|i∈U ∼
Mult({pk},K), such that PrU(Yi = k) = pk, k = 1, . . . , K; ∑K

k=1 pk = 1, and sup-
pose that unit i ∈ U is sampled with probability Pr(i ∈ s|Yi = k) =πk. Assume for
convenience full response. Selection based on the values of the outcome variable
underlies the use of case–control studies considered in Chapter 38. By Bayes rule, the
sample model isYi|i∈ s∼Mult

({p∗k},K)
, wherep∗k =PS(Yi= k) = Pr(Yi= k|i ∈ S) =

πkpk
/∑K

j=1 πjpj . We conclude that the population and sample models are different,
unless the πk are the same for all k. A sampling design under which the sample selec-
tion probabilities depend on the values of the outcome variable is informative because
as we have just seen, under such designs the population and the sample distributions
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are different. Ignoring the sample selection in our example and estimating the popu-
lation probabilities {pk} by the “ordinary” estimates {p̂k = (nk/n)}, where nk is the
number of sampled units with Yi = k and n = ∑K

k=1 nk, yields in this case unbi-
ased estimators of p∗k , but biased estimators for the population probabilities pk. Note,
however, that for known selection probabilities πk, one can construct the estimator
p̃k =

(
p̂k/πk

)/∑K
j=1

(
p̂j/πj

)
, which is consistent for pk under mild conditions. See

Chapters 38 and 39 for further discussion.

2. Overview of chapters in Part 6

Chapter 38 considers case–control studies, which as mentioned earlier are used exten-
sively for health research. The problem discussed is the fitting of a logistic regression
model (the census model), with the response variable Y taking the value Y = 1 for a
“case,” (for example, an individual who contracted a certain disease), and the valueY = 0
for a “control” (who has not contracted the disease). It is assumed that the Y-values are
known for every unit in the population. The sampling designs considered in this chapter
consist of sampling independently from the subpopulations of cases and controls, and
then collecting the information on the unknown explanatory variables x in the model
for the sampled units. The samples of cases and controls are drawn by probability sam-
pling using standard sampling techniques that may involve complex stratified multistage
designs.

The major problem of case–control studies is that the sample selection probabilities
depend directly on the model response variable (the most important design variable and
often the only design variable), and the selection probabilities differ enormously between
the two subpopulations, often by several orders of magnitude. Thus, case–control stud-
ies are an extreme example of informative sampling and the sample selection cannot be
ignored at the inference process. In addition, when cluster sampling is involved, intra-
cluster correlation needs to be taken into account when computing standard errors that
are often used for the construction of confidence intervals or for testing hypotheses.

The first estimation procedure considered by the authors (and in many other
chapters of the volume, see, in particular, Chapters 24, 26, and 39) is the use of what
is known in the survey sampling literature as pseudolikelihood. The idea here is that
instead of solving the census model score equations that would be obtained in the case
of a census, one solves a randomization unbiased estimator of these equations. For
the logistic model considered in this chapter, the census model score equations are,∑N

i=1 xi[Yi−p1(xi;β)] = 0, where p1(xi;β)= exp
(
β0 + x′iβ1

)/[
1+ exp

(
β0 + x′iβ1

)]
.

The solution of these equations yields the maximum likelihood estimator (mle) of
β= (

β0, β
′
1

)′
. The pseudo maximum likelihood estimator (pmle) of β is obtained by

solving instead,
∑

k∈s wkxk[Yk − p1(xk;β)] = 0, where wk = 1/Pr(k ∈ s) is the base
sampling weight, possibly adjusted for nonresponse or poststratification. Thus, the ran-
domization distribution is seen to have a possible role even for analytic inference about
a population model!

The major problem with the use of this approach is that the pmle may have a very
large variance due to the extreme variability of the sampling weights. The authors con-
sider therefore other, more efficient estimation procedures that include semiparametric
maximum likelihood estimates and various ways of rescaling of the base weights. This is
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shown to improve the efficiency very significantly. In the rest of the chapter the authors
consider special sampling designs in common use for case–control studies and study
appropriate estimation procedures that take into account stratification and clustering.An
important feature of this chapter is that the authors show in some detail how available
computer software can be used for implementing the various estimation procedures,
taking into account the particular sampling designs used to collect the data. See also
Chapter 13.

Chapter 39 reviews several plausible approaches for fitting models to complex sur-
vey data, with emphasis on informative sampling designs. As illustrated earlier, under
informative sampling the population (census) model and the sample model (the model
holding for the sampled units) are different, requiring special methods for proper infer-
ence about the target census model. The chapter begins by examining the conditions
that warrant the ignorability of the sampling (response) process for likelihood, Bayesian,
or sampling distribution inference. As implied by these conditions, a possible way to
account for the sampling and response effects is to include among the model covariates
all the variables and interactions that determine the sample and response probabilities.
When this information is not available to the analyst fitting the model, as is often the
case, it may be possible to use instead the sampling weights. However, as discussed
in the chapter, for general (large scale) surveys, the sampling weights may not be an
adequate summary of the missing design information (or the variables determining the
response).

The main (commonly used) approach to deal with informative sampling is to weight
the sample observations by the sampling weights, often referred to as probability
weighting. For example, the probability weighted estimator of the simple regres-

sion slope coefficient is, β̂w=∑
i∈s wi

(
yi − ˆ̄YHT

)(
xi − ˆ̄XHT

)/∑
i∈s wi

(
xi − ˆ̄XHT

)2
,

where
( ˆ̄YHT,

ˆ̄XHT
)

are the familiar Horvitz–Thompson estimators of the population
means of Y and X. Chapter 39 reviews several variants of this approach for estimating
population model parameters with many examples, including the estimation of the fixed
parameters of two-level models under informative sampling of first and second-level
units.

Another approach discussed at length in Chapter 39 is the use of the sample distribu-
tion for inference. The sample distribution (model) is the distribution of the outcomes
given the selected sample of units and it is modeled as a function of the population
distribution (model) and the sample selection probabilities. See the example in the first
section of the introduction. Basing the inference on this distribution overcomes many of
the problems underlying the other approaches reviewed in this chapter, but it requires
modeling the expectations of the sampling and response probabilities as functions of the
observed data. Several models and estimation procedures of these expectations and sub-
sequent (or simultaneous) estimation of the population model parameters are reviewed
and illustrated in the chapter.

Two other important topics discussed in Chapter 39 are as follows: (i) the use of
the sample distribution for prediction, with application to small area estimation under
informative sampling of areas and within the selected areas, and (ii) testing the informa-
tiveness of the sample selection and response. For complex sampling designs in common
use, it is generally difficult and often impractical to check directly the conditions under
which the sampling process can be ignored, evoking the need for test procedures that
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can guide the analyst in determining whether the sampling process is ignorable for the
type of inference intended.

Chapter 40 examines the asymptotic properties of sample survey estimators under the
randomization distribution framework. The randomization distribution depends on the
particular sampling design chosen by the sampler, and so does generally the asymptotic
behavior of the estimator under consideration. The authors define the concept of a
U-statistic (of which the simple sample mean and variance as special cases), and state that
for simple random sampling without replacement (SRSWOR) and under very general
regularity conditions, theU-statistic has asymptotically a normal distribution around the
corresponding population parameter as the population and sample sizes grow to infinity.
Extensions of this result to vector U-statistics and to the case of stratified SRSWOR
are considered. Another interesting case is simple random sampling with replacement
(SRSWR), but with the estimators based only on the distinct units.

As pointed out earlier, the asymptotic normality of sample survey estimators under
the randomization distribution is crucial for probabilistic inference such as the construc-
tion of confidence intervals. Alternatively, the asymptotic distribution of U-statistics or
functions of them, such as the ratio or regression estimators can possibly be approxi-
mated by the jackknife or bootstrap distributions, and the authors examine conditions
that justify the use of these approximations. A somewhat different problem but often of
practical importance is the estimation of a population size. Here the familiar (Petersen)
method of “capture, mark, release, and recapture” is extended to more than one round
and the authors consider alternative estimators with identical asymptotic behavior. In
particular, the asymptotic normality of the estimators is established.

All the results mentioned so far basically assume simple random sampling designs
or simple extensions of them. Often, however, the sample is drawn with unequal proba-
bilities giving rise to the use of Horvitz–Thompson (HT) type estimators or functions of
these estimators. There are many procedures in common use for sampling with unequal
probabilities (see Chapter 2), and the authors study in detail many of these procedures,
stating the conditions under which the corresponding standardized HT estimator with
an appropriate standard deviation (SD) estimator converges to the standard normal dis-
tribution. The SD estimators considered do not generally require knowledge of the joint
selection probabilities. In the rest of the chapter the authors consider extensions to
stratified, multistage sampling designs.

Chapter 41 studies decision-theoretic aspects of strategies under the randomization
distribution, and under the combined model-randomization distribution. As pointed out
at the beginning of the chapter, “decision theory provides tools and insights for under-
standing, comparing, and selecting sampling and estimation procedures.” The emphasis
in the chapter is on optimality criteria, which when considering strategies, require opti-
mizing over both the estimator and the sampling design. For example, LetR(PS, tS; y) =
ER[L(tS, T )] denote the risk associated with a loss functionLwhen estimating the pop-
ulation total T =∑N

i=1 yi by the estimator tS, using the sampling design PS, (the expec-
tation of the loss under the randomization distribution). A strategy (P0S, t0S) is minimax
for a given class of strategies if sup

y

R(P0S, t0S; y) ≤ sup
y

R(PS, tS; y) for every other

strategy (PS, tS) in the class. The supremum is over all possible vectors y = (y1, . . . , yN)

of the finite target population, considered as a fixed unknown parameter in some param-
eter space. A minimax strategy guarantees the smallest risk for the worst possible y.
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The chapter proves and illustrates many interesting results on minimax strategies. For
example, it is shown that the strategy (SRSWOR, ȳS), where ȳS is the simple sample
mean is minimax with respect to a convex loss function L for estimating the population
mean ȳ in the class of unbiased strategies

(
P, ˆ̄y) having a fixed sample size. Some of

the results are extended to the case of stratified sampling and probability proportional
to size (PPS) sampling. The relationship between minimax estimators and Bayes esti-
mators (the posterior mean under a quadratic loss) is shown to yield further interesting
results, which are illustrated by considering the estimation of a proportion.

As stated earlier, no uniformly minimum variance unbiased estimator with weights
that depend on the sample exists under the randomization distribution. Consequently,
weaker optimality criteria have to be considered instead. We mentioned already the mini-
max that minimizes the maximum risk over the parameter space.The Bayes risk averages
the risk over the parameter space with respect to a prior distribution. Another weak
criterion discussed in Chapter 41 is admissibility. An estimator t0S is admissible in a
given class of estimators under a given sampling designPS0 if there is no other estimator
tS in the class satisfying R(PS0, tS; y) ≤ R(PS0, t0S; y) for all y, with strict inequality
for at least one y. Several results relating to admissibility are given in the chapter. For
example, it is shown that for any design, the familiar HT estimator is admissible in the
class of unbiased estimators.

Chapter 41 considers also the use of superpopulation models for survey sampling
inference. In superpopulation models the vector y = (y1, . . . , yN) of population val-
ues is considered as a random realization from some distribution g, and as mentioned
earlier, model-based inference uses this distribution for descriptive inference on finite
population quantities. The emphasis in the chapter, however, is on the use of the com-
bined model-randomization distribution, reviewing and proving several results related
to strategies that use the simple sample mean for estimating the population mean and to
linear estimators defined as linear combinations of the sample observations with weights
that may depend on the sample.
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Population-Based Case–Control Studies

Alastair Scott and Chris Wild

1. Introduction to case–control sampling

This chapter discusses the design and analysis of case–control studies conducted with a
view to fitting binary regression models. Let Y denote a binary response variable which
can take value Y = 1 (corresponding to a “case,” for example someone who contracts
a disease of interest) or Y = 0 (corresponding to a “control,” someone who does not),
and let x be a vector of explanatory variables or covariates. Our purpose is to fit binary
regression models of the general parametric form pr(Y = 1 | x) = p1(x;β) modeling
the probabilistic behavior of Y as a function of the observed values of the explanatory
variables recorded in x. We focus particularly on the logistic regression model because
this is the usual model of choice in applications.

Simple population-based case–control sampling is depicted in Fig. 1. In such studies,
separate samples are drawn independently from the case- and control-subpopulations
of a real, finite target population represented as the central element of Fig. 1. Covariate
information, x, is then ascertained for sampled individuals. Descriptive inferences about
the finite population itself are virtually never of interest, however. Instead, interest
centers on the process that turns some individuals into cases (e.g., they contract the
disease) and others into controls. This is represented on the left of Fig. 1. We behave as
if our data has been produced by the two-phase sampling process depicted by Fig. 1 as
a whole.

Case–control sampling is a cost-reduction device. If we could afford to collect data
on the whole finite population we would do so since that is the data we would really

Y51
(N1 Cases)

Y50
(N0 Controls)

Sample
n0
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Population

Case and control
samples

Measure x-variables
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N
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Stratify on Y

(n1)

(n0)

Fig. 1. Simple case–control sampling.
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like to have to fit our binary regression model. In other words, we are interested in
characteristics of models of the superpopulation. This has implications, in particular,
for the calculation of standard errors. Case–control data is special because the response
(outcome) variable is the most important design variable (so the design is not ignorable,
see Chapter 39), and because the selection probabilities typically differ enormously,
often by several orders of magnitude.

We note that there are other types of case–control studies that we will not deal with
here. In particular, we will not discuss matched case–control studies, in which each case
is individually matched with one or more controls (see Section 5 of Breslow, 1996).
Korn and Graubard (1999, p. 307) call this “set matching.” The subject of this chapter is
unmatched studies, in which the case and control samples are drawn independently, and
more particularly with population-based studies in which the controls (and occasionally
the cases as well) are selected using standard survey sampling techniques. Our treatment
will, however, accommodate loose “frequency matching” in which the control sample
is allocated across strata defined by basic demographic variables in such a way that
the distribution of these variables in the control sample is similar to their expected
distribution in the case sample. For discussion about where this might be desirable, see
Breslow (2005, pp. 298–302).

In principle, the most straightforward way of obtaining data from which to build
regression models for pr(Y | x) is to employ so-called prospective sampling designs. A
cohort of individuals is selected and their covariate information is ascertained. They are
then tracked through time and whether they become cases (Y = 1) or do not (Y = 0)
is recorded. With prospective sampling designs, observation proceeds from covariates
(explanatory variables) to response, corresponding to the logic underlying the modeling.
A case–control study is counterintuitive in that data collection takes place in the reverse
direction from response to covariate. Despite this, the case–control study is one of the
most common designs in health research. In fact, Breslow and Day (1980) described
such studies as “perhaps the dominant form of analytical research in epidemiology”
and since that time the rate of appearance of papers reporting on case–control studies
appears to have gone up by a factor of about 20. These designs are also used in other
fields under other names. In econometrics, for example, the descriptor “choice-based” is
used rather than “case–control” because the designs were developed in a research field
that grew out of the work of Nobel Prize-winner Daniel McFadden in the late 1960s and
1970s on discrete economic choices (e.g., choice of a mode of transport); see Manski
(2001).

There are several reasons for the popularity of case–control studies. The first two
reasons concern efficiency; efficiency of time and statistical efficiency.The former comes
from being able to use historical information immediately rather than having to follow
individuals through time and then wait to observe an outcome as in a prospective study.
We will not discuss this, or the attendant risks, but refer the reader to the first chapter of
Breslow and Day (1980). The statistical efficiency advantages can be huge. For example,
suppose that we have a condition that affects only 1 individual in 20 on average and we
wish to investigate the effect of an exposure that affects 50% of people. In this situation,
a case–control study with equal numbers of cases and controls has the same power for
detecting a small increase in risk as a prospective study with approximately five times as
many subjects. If the condition affects only one individual in 100 then the prospective
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study needs 25 times as many subjects, while if it affects one individual in 1000 over
the time period of interest then the prospective study needs 250 times as many subjects!
Thus, case–control based sampling designs are very efficient for investigating the effects
of explanatory variables on a comparatively rare response.

A third factor that has influenced the uptake of case–control studies is the simplicity
of analysis. When fitting a logistic regression model including an intercept term to
case–control data obtained from simple random samples, it is well known, following
the landmark papers of Anderson (1972) for discrete covariates, and Prentice and Pyke
(1979) for general x, that valid inferences about all coefficients except the intercept can
be obtained by fitting a logistic regression model using standard software as if it had
been obtained prospectively. The intercept is completely confounded with the relative
sampling rates of cases and controls but can be recovered using additional information
such as the finite population totals of cases and controls (see Scott and Wild, 1986, for
example).

Excellent well-referenced introductions to the strengths and potential pitfalls of case–
control sampling are given by Breslow (1996, 2005). One of the most important and
difficult challenges confronting anyone designing such a study is to ensure that controls
really are drawn from the same population, using the same protocols, as the cases. In
the words of Miettinen (1985), cases and controls “should be representative of the same
base experience.” Failure to ensure this adequately in some early examples led to case–
control sampling being regarded with some suspicion by many researchers. Because
the essence of survey sampling lies in methods for drawing representative samples
from a target population, it became natural at some stage to think about using survey
methods for obtaining controls. Increasingly over the last 25 years or so, studies are
being conducted in which the controls (and occasionally the cases as well) are drawn
using complex stratified multistage designs. A good history of this development can be
found in Chapter 9 of Korn and Graubard (1999) and more recent work is reviewed in
Scott (2006). These studies retain all the efficiency advantages of simple case–control
studies but the analysis is no longer quite so simple. It is this aspect that we want to
discuss here. We start with two examples to illustrate the sort of problem that we want
to handle.

Example 1. In 1977–78, the National Cancer Institute and the US Environmental
Protection Agency conducted a population-based case–control study to examine the
effects of ultraviolet radiation on nonmelanoma skin cancer over a 1-year period. This
is typical of many large scale studies conducted by the National Cancer Institute whose
personnel have been responsible for much of the development of population-based
case–control studies (see Hartge et al., 1984a,b who also give a description of a number
of other similar studies). The study was conducted at eight geographic locations
with varying solar ultraviolet intensities. Samples of patients with nonmelanoma skin
cancer aged 20 to 74 and samples of general population controls from each region
were interviewed by telephone to obtain information on risk factors.At each location,
a simple random sample of 450 patients and an additional sample of 50 patients in
the 20–49 age group were selected for contact. For the controls, 500 households
were sampled at each location using random-digit dialing. An attempt was made to
interview all adults aged 65–74 as well as a randomly selected individual of each sex
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aged from 20 to 64. In addition, a second telephone sample of between 500 and 2100
households was taken at each location and information gathered on all adults aged
65–74. After allowing for nonresponse, this resulted in samples of approximately
3000 cases and 8000 controls, with the sampling rate for cases being roughly 300
times the rate for controls, depending on age.

Example 2. The Auckland Meningitis Study was commissioned by the New Zealand
Ministry of Health and Health Research Council to study risk factors for meningitis
in young children, which was reaching epidemic proportions in Auckland at that time
(see Baker et al., 2000). The target population was all children under the age of nine
in the Auckland region in 1997.

All cases of meningitis in the target age group over the 3-year duration of the
study were included in the study, resulting in about 200 cases. A similar number
of controls was drawn from the remaining children in the study population using a
complex multistage design. At the first stage of sampling, 300 census mesh blocks
(each containing roughly 70 households) were drawn with probabilities proportional
to the number of houses in the block. At the second stage, a systematic sample of
20 households was selected from each chosen mesh block and children from these
households were selected for the study with varying probabilities that depended on
age and ethnicity and were chosen to match the expected frequencies among the cases.

Cluster sample sizes varied from one to eight and a total of approximately 300
controls was achieved. This corresponds to a sampling fraction of about 1 in 400 on
average, so that cases are sampled at a rate that is 400 times that for controls.

These two studies are fairly typical of the sort of study that we want to discuss. They
also illustrate the two main sampling methods used, namely random digit dialing and
area sampling. A lively discussion of the relative merits of these two strategies is given
in Brogan et al. (2001) and DiGaetano and Waksberg (2002). Note that the response
rates for telephone surveys have dropped substantially since 2002 so the outcome of that
discussion might well be different if repeated now. (See Chapter 7 for more on random
digit dialing.)

2. Basic results

2.1. Setup

We have a binary response variable, Y , with Y = 1 denoting a case and Y = 0 denoting
a control, and a vector of potential explanatory variables, x. We assume, as in Fig. 1, that
the value of Y is known for all N units in some target population but that at least some
components of x are unknown. We split the population into cases and controls, draw a
sample from each subpopulation using a sample design based on the variables that we
know for all units, and measure the values of the missing covariates for the sampled
units. We want to use the sample data to fit a binary regression model for the marginal
probability of being a case as a function of the covariates. The model used is almost
always logistic with

logit {pr(Y = 1|x)} = log

{
P(Y = 1|x)
P(Y = 0|x)

}
= β0 + xTβ1 (1)
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say, and we shall assume model (1) throughout the chapter. Extensions to more general
regression models are straightforward in principle (see Scott and Wild, 2001b) but the
resulting expressions can be considerably clumsier than those for the logistic model.

We are interested here in methods that allow for complex sampling, including strati-
fied multistage sampling, of cases and controls in Fig. 1. It is important, when complex
sampling is undertaken, that it should be taken into account in the analysis. Failure to do
so can lead to all the usual problems that arise from ignoring survey structure. Varying
selection probabilities can distort the mean structure if not taken into account and esti-
mates produced by standard programs may be inconsistent. The use of different strata
for cases and controls is an example of this type. In addition, intracluster correlation can
reduce the effective sample size so that methods that ignore this correlation can lead to
standard errors that are too small, confidence intervals that are too short, P-values that
are too low, and so on. One simple strategy that has been adopted by some researchers to
minimize the effect of intracluster correlation is to keep the numbers of subjects in each
cluster small (see Graubard et al., 1989, for example). This reduces the design effect
and hence the impact of clustering, but it can be a very expensive remedy.

For situations where it would make scientific sense to fit model (1) to data from
the whole finite population, the methods currently available for the estimation of data
obtained from complex sampling are variants of the standard weighted estimating equa-
tion approach discussed by Binder (1983) and now embodied in most modern packages
for analyzing survey data. We will now briefly review this approach as it applies to the
current context. (See Chapters 24 and 26 for a more detailed discussion of the general
approach.)

2.2. Basics of design-weighted estimation

If we wanted to to fit model (1) to the whole finite population, then we could estimate
β by solving the whole-population (or census) estimating equations

S(β) =
N∑
1

xi {Yi − p1(xi;β)} = 0, (2)

wherep1(x;β) = eβ0+xT β1
/(

1+eβ0+xT β1
)
andp0(x;β) = 1−p1(x;β).These equations

are the score equations from the log-likelihood if theN population Y -values are assumed
to be independent but the resulting estimators are consistent under much more realistic
population structures as long as model (1) holds marginally (see Rao et al., 1998, for
further discussion). For any fixed value ofβ, S(β) is simply a vector of population totals.
This means that we can estimate S(β) from the sample by

Ŝ(β) =
∑

sample

wixi {yi − p1(xi;β)} , (3)

where the design weight wi is the inverse of the selection probability, perhaps adjusted
for nonresponse and poststratification. Setting Ŝ(β) equal to 0 gives us our estimator,
β̂. We could use linearization or the jackknife directly on β̂ to get standard errors.
Alternatively, we can expand Ŝ(β̂) about the true value, β, and obtain as our estimated
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covariance matrix the “sandwich” estimator

Ĉov
{
β̂
}
≈ J(β̂)−1Ĉov

{
Ŝ(β̂)

}
J(β̂)−1, (4)

where J(β) = − ∂Ŝ
∂βT

= ∑
samplewip1(xi;β)p0(xi;β)xixTi . Here we are ignoring the

additional (lower order) error incurred by replacing the true value, β, by the estimate, β̂.
Because Ŝ(β) is a vector of totals, Ĉov

{
Ŝ(β)

}
should be available as a matter of course

for any standard design.
Most major statistical packages can now handle logistic regression with complex sam-

pling in this way. In this sense, then, producing weighted estimates of logistic regression
parameters and making associated inferences from case–control data, even with very
complex sampling, is now quite routine using widely available software packages –
modulo, of course, the myriad difficulties and subtleties of accurately characterizing
and describing any complex design to software, and adequately analyzing any large and
complex set of data. The aforementioned is the approach recommended by Korn and
Graubard (1999, Chapter 9) and it provides a very powerful and flexible set of tools as
an even cursory reading of that chapter will reveal. We note in passing that variance
estimation in standard software does not take account of the variation in the weights
wi that is due to the fact that the selection probabilities used are estimates obtained
using N1 and N0, the total number of cases and controls in the population, which are
themselves random rather than known fixed constants. In most cases the differences,
which are of order (1/N ), are negligible. Section 2.6 contains further discussion and
gives correction terms.

Unfortunately, design weighting used in this way can be very inefficient (see Scott
and Wild, 2001a, for example). A great deal of efficiency can be recaptured, however,
by a simple rebalancing of the relative weights given to cases and controls. We take the
weights that would normally be used in (3) and rescale them so that the weights given
to cases add to the number of cases sampled and likewise for the weights of controls.
We justify these statements in the following subsection.

The inefficiency of standard design weighting for case–control data should not be
unexpected. It is well known that weighting in general tends to be inefficient when the
weights are highly variable. In case–control studies, the variation in weights is about as
extreme as it can get and no experienced survey sampler would be surprised to find that
weighting is not very efficient under these circumstances. When estimating means, a
common measure of efficiency relative to the unweighted mean is e = 1/(1+c2), where
c is the coefficient of variation of the weights (see Korn and Graubard, 1999, p. 173,
for example). This works out to about e = 0.7 in Example 1 and e = 0.3 in Example 2.
Even lower values than this are common. The effect on more complex statistics such
as logistic regression coefficients tends to be smaller than for means but can still be
substantial.

2.3. Improving efficiency by reweighting

Where the case and control samples are simple random samples, maximum likelihood
estimates are available and easy to find. Scott and Wild (2002) simulated case–control
sampling from a model with logit{pr(Y = 1 | x)} = β0 + β1x, where x-values were
generated from a standard Normal distribution. They showed that, when the case to
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control ratio in the population was 1:400 and equal-sized random samples of cases
and controls are taken, the efficiency of design-weighted (DW) estimation could be
as low as 12% relative to that of maximum likelihood. Even with a 1:20 population
case–control ratio, relative efficiencies of around 50% are not uncommon. These and
other simulations showed that the relative efficiency of design weighting reduces as the
case-to-control ratio gets smaller and also as |β1| increases.

Suppose that we have a simple random sample of size n1 from the case stratum and
an independent simple random sample of size n0 from the control stratum. Here all units
in Stratum � have weight wi ∝ W�

n�
, where W� denotes the proportion of the population

in the stratum, for � = 0, 1.Thus, recalling that Yi = 1 for cases and Yi = 0 for controls,
the estimating equation (3) can be written in the form

W1

∑
cases

xip0(xi;β)
n1

−W0

∑
controls

xip1(xi;β)
n0

= 0, (5)

The likelihood for case–control data is based upon probabilities of the form pr(x | Y ),
which depend on the marginal distribution of x as well as the logistic regression
parameters β. The semiparametric maximum likelihood estimates of β are obtained by
maximizing this likelihood over both β and the marginal distribution of x treated
nonparametrically. Prentice and Pyke (1979) showed that, for all coefficients except
the constant term, the resulting estimates satisfy the ordinary prospective likelihood
equations ∑

sample

xi {yi − p1(xi;β)} = 0

which can be rewritten

ω1

∑
cases

xip0(xi;β)
n1

− ω0

∑
controls

xip1(xi;β)
n0

= 0, (6)

whereω� = n�

n
, with n = n1+n0, for � = 0, 1.Breslow et al. (2000) showed that this

leads to semiparametric efficient estimators (i.e., having the smallest possible variance
in the class of all consistent, asymptotically linear estimators).

Both (5) and (6) are special cases of the general set of estimating equations

λ1

∑
cases

xip0(xi;β)
n1

− λ0

∑
controls

xip1(xi;β)
n0

= 0. (7)

As n0, n1 →∞ the solution of (7) converges almost surely to the solution of

λ1E1
{
Xp0(X;β∗)

}− λ0E0
{
Xp1(X;β∗)

} = 0, (8)

where E�{·} denotes the conditional expectation given that Y = � for � = 0, 1. If
model (1) is true, then equation (8) has solution β∗1 = β1 and β∗0 = β0 + bλ with
bλ = log{λ1Q0/(λ0Q1)}, where Q� = pr(Y = �), for any positive λ� for � = 0, 1.
This can be seen directly by expanding (8). For simplicity, suppose thatX is continuous
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with density function f(x). Then the conditional density of X given that Y = � is
f(x | Y = �) = p�(x;β)f(x)/Q�, with Q� = p�(Y = �) and (8) is equivalent to

∫
xex

T β+bλf(x)
(1+ exT β∗)(1+ xTβ)dx =

∫
xex

T β∗f(x)

(1+ exT β∗)(1+ xTβ)dx

and the result follows immediately. Thus the solution to equation (7) produces consistent
estimators of all the regression coefficients, apart from the constant term, for any λ� > 0,
� = 0, 1.

It is easy to correct the inferences about the constant term by estimatingQ� withW�,
the proportion of cases in the population, provided that it is known. However, this is
not always necessary. In medical applications, interest is often centred on the relative
risks associated with whether or not an individual was exposed to a putative hazard or
with an increase in the value of a continuous x-variable. The elements of β1 are the log
odds-ratio parameters that tell us about the relative effects of changes in an x-variable.
For keeping all x-variables but the jth fixed (and dropping the others from the notation
for simplicity of exposition)

β1j = log
pr(Y = 1 | xj + 1)

pr(Y = 0 | xj + 1)
/

pr(Y = 1 | xj)
pr(Y = 0 | xj)

≈ log
pr(Y = 1 | xj + 1)

pr(Y = 1 | xj) if cases are rare.

The rightmost expression is the relative risk associated with a 1-unit increase in xj . If
we want to estimate absolute levels of risk we also need β0. If, however, we are content
to work with relative risks only (there is debate about whether this is really ever entirely
adequate) and have a mechanism for taking separate samples of cases and controls in
a way that they are both “representative of the same base experience,” we can use (7)
and (8) without correction and therefore any need to know anything about population
sizes. This is part of the reason that we have de-emphasized the superpopulation aspects
of Fig. 1.

We now adapt (7) and (8) to more complex sampling schemes. Because the left-hand
side of equation (8) just involves two subpopulation means, we can still estimate these
means for any standard survey design. This suggests an estimator, β̂λ say, for general
sampling schemes satisfying

Ŝλ (β) = λ1μ̂1(β)− λ0μ̂0(β) = 0, (9)

where μ̂�(β) is the sample estimate of the subpopulation mean E� {X(1− p�(X;β))},
� = 0, 1. The covariance matrix of β̂λ can then be obtained by standard linearization
arguments. This leads to an estimated (“sandwich”) covariance matrix

Ĉov
{
β̂λ

} ≈ Jλ(β̂λ)−1Ĉov
{
Ŝλ(β̂λ)

}
Jλ(β̂λ)−1, (10)

with Jλ(β) =
( − ∂Ŝλ(β)

∂βT

)
. Note that Ĉov

{
Ŝλ(β)

} = λ2
1Ĉov {μ̂1(β)} + λ2

0Ĉov {μ̂0(β)}
because the samples are taken independently from the case and control subpopulations.
Here, Ĉov {μ̂�(β)} denotes the usual survey estimate that should be available routinely
for any standard survey design since μ̂�(β) is just an estimated subpopulation mean.
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Estimation can also be carried out straightforwardly using any package that can
handle logistic regression for complex survey designs by specifying the appropriate
vector of weights. Suppose that

μ̂�(β) =
∑
i∈s�
wixi (yi − p1(xi;β))∑

i∈s�
wi

, (11)

where s1 denotes the case sample and s0 denotes the control sample. Then the estimating
equation (9) can be written in the form

Ŝλ (β) =
∑

sample

w∗i xi (yi − p1(xi;β)) = 0, (12)

with w∗i ∝ λ�wi∑
i∈s� wi

for units in sample s� (� = 0, 1). In other words, we scale the case

weights and control weights separately so that the sum of the case weights is proportional
to λ1 and the sum of the control weights is proportional to λ0 and put them, along with
the usual specification of the design structure (strata, primary sampling units), into
our program of choice. (This is a little oversimplified but adequate for most practical
applications – see Section 2.5). If

∑
i∈s� wi = N�, thenw∗i ∝ λ�wi

N�
. We assume this to be

true in the rest of this chapter.
We still have to decide on good values for λ1 and λ0. We can get consistent, and

sometimes very large, gains using λ�= n�
n

(i.e., w∗i ∝ n�wi
N�

), which are the maximum
likelihood weights for simple random sampling – we shall call these pseudo maximum
likelihood (PML) weights – compared to using design weights, λ�=W� (i.e., w∗i ∝wi).
Scott and Wild (2002) report efficiency gains of over 600% with a 1:300 case–control
ratio and a single regression variable, x. The gains became larger as strength of the rela-
tionship between Y and x increased, and as the effect of clustering increased. Moreover,
the coverage of confidence intervals was closer to the nominal value for PML weighting
than for design weighting in the simulations. This is consistent with having a larger
effective sample size.

These simulation results need to be treated with some caution, however. Korn and
Graubard (1999, p. 306) comment that, in their experience, the PML weighting strategy
rarely produces quite such big gains in efficiency in practice and the empirical results
for the meningitis study in the next section give some support to this comment. It seems
that the gains may depend on the particular problem under examination. More empirical
work is needed here and, until this has been done, it seems prudent to fit the model
using both PML weights and design weights routinely. If the coefficient estimates are
similar, then we can make a judgement based on the estimated standard errors. However,
substantial differences in the coefficient estimates may indicate that the model has been
misspecified. If we are unable to fix up the deficiencies in the model, then we need to
think very carefully about just what it is that we are trying to estimate. We look at this
again in Section 2.5.

Using PML weights is the most efficient possible strategy when we have simple
random samples of cases and controls but this is not necessarily true for more complex
schemes. We might, for example, expect weights based on some form of equivalent
sample sizes to perform better. We have done some limited simulation and this does
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indeed produce some gain in efficiency. However, the gains are relatively small, at least
when the control sample design effect is less than 2, because Cov

{
β̂λ

}
is very flat as

a function of λ near its minimum. Considerations of robustness that we discuss in the
next subsection are possibly more important in the choice of λ.

Although the weighted methods discussed in this subsection can cope with any form
of stratified sampling, we can gain still more efficiency in situations where the same
design variables are used in constructing sampling strata, or for poststratification, in
both the case and control samples. We return to this in Section 3.

2.4. Example: Auckland Meningitis Study

We illustrate by fitting a logistic model for the probability of contracting meningitis
during the 3-year period of the study to the data collected from theAuckland Meninigitis
Study (Example 2), using the DW and PML methods. More details of the study are given
in Baker et al. (2000). Estimated coefficients and their standard errors are given for the
modifiable risk factors in the table later. (Note that our model differs slightly from that
in the paper because some variables are no longer available.)

The estimates from the two schemes lead to the same general conclusions, with
the PML standard errors about 12% smaller than their DW equivalents on average.
The results from both methods suggest that household overcrowding (as measured by
the number of adults per room) and frequent attendance at large social gatherings are
both highly significant factors.

If we calculate the efficiency (e = 1/(1+c2)) for the two weighting schemes, we get
e = 0.31 for design weights and e = 0.63 for PML weights. This would correspond to a
30% reduction in the standard errors with PMLweighting compared to design weighting.
The reduction actually achieved is considerably less than this. Note that the efficiency
of the PML scheme is still relatively low here, with a fair amount of variability in the
control weights, which suggests that it might be possible to do better still. We look at
this again in Section 3.

If we had ignored the clustering, the calculated standard errors would be reduced
by about 5% so the effect of intracluster correlation is fairly small here. In part, this is
because the average cluster size was kept small deliberately in this study to minimize
the design effect. This made the sampling more expensive, of course, and it may have
been more efficient to sample more children in fewer clusters.

Table 1
Comparison of PML and DW estimates

Risk factor a PML(s.e.) DW(s.e.)

No. of adults/room 2.30 (0.56) 2.29 (0.57)
Attends substantial social gatherings 0.37 (0.16) 0.73 (0.25)
No. of smokers in usual HH 0.20 (0.13) 0.26 (0.19)
Shares food, drink or pacifier 0.39 (0.26) 0.24 (0.25)
Respitory infection in HH member 0.41 (0.25) 0.59 (0.28)
Bed sharing 0.51 (0.26) 0.45 (0.28)

a Base model includes age, ethnic group, year and month of interview, tertiary education of a parent, and
possession of a community services card.
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2.5. Reweighting and robustness

The analyses of the previous sections assume that the model we are using is true. Given
the trial-and-error processes used in arriving at a model, this will almost never be the
case. DW analyses have a certain type of robustness against model misspecification.
The question arises as to what price in terms of robustness do we pay for the gains in
efficiency made by using PML rather than design weights. How compelling the type of
robustness that design weighting confers in practical applications is also a question that
merits investigation.

By its construction, the DW estimator always estimates the linear-logistic approxi-
mation that we would get if we had data from the whole population. By contrast, what the
more efficient PML-weighted estimator is estimating depends on the particular sample
sizes used. We suspect that very few people would regard it as completely satisfactory
to have the target of their inference depend on the arbitrary choice of sample size.

Our general estimator β̂λ satisfying (9) converges to the solution of equation (8),
Bλ say, with λ = λ0/(λ0 + λ1), which depends on the true model and distribution of
the covariates, as well as on λ. Scott and Wild (2002) examined what happens to Bλ
under mild deviations from the assumed model. (Interest is centred on small-to-mild
deviations since large ones should be picked up by routine model-checking procedures
and the model then improved.) For simplicity, suppose that we fit a linear model with a
single explanatory variable for the log odds ratio but that the true model is quadratic, say

logit {P(Y = 1|x)} = β0 + β1x+ δx2 (13)

with δ small.
The slope of the function, β1 + 2δx, changes as we move along the curve and Bλ1

is equal to the actual slope at some point along the curve for any 0 < λ < 1. Denote
this value by x = xλ. Let x0 be the expected value of x in the control population
and let x1 be the expected value of x in the case population. We shall assume that β1 > 0
so that x0 < x1. It turns out that xλ always lies between x0 and x1 and that xλ increases
as λ increases from 0 to 1 (see Scott and Wild, 2002, for details of the proof). Recall
that design weighting corresponds to λ = W0 and PML weighting to λ = ω0 = n0/n.
Typically, W0 is much larger than ω0 so that design weighting gives an estimate of the
slope at larger values of x, where the probability of a case is higher, while the slope
estimated from PML weighting is closer to the slope at the average value of x in the
population. Figure 1, adapted from Scott and Wild (2002), illustrates the position in
two scenarios, one with positive curvature and one with negative, based roughly on the
meningitis example of the previous section. The value of δ is chosen so that it would be
detected with a standard likelihood ratio test about 50% of the time if we took simple
random samples of n0 = n1 = 200 from the population.

In both scenarios, the value ofβ0 is set so that the proportion of cases in the population
is 1 in 400, so thatW0 = 0.9975. The overall density of x is shown at the top of the graph
and the conditional densities for cases and controls are shown at the bottom. Values of
xλ andBλ1 are shown for λ = W0 (labeled “population”) and λ = 0.5 (labeled “equal”).
The latter value corresponds to PML weighting if we draw equal numbers of cases and
controls. Clearly, design weighting is estimating the appropriate slope for values of x
further out in the upper tail of the distribution (i.e., for individuals at higher risk) than
equal weighting in both scenarios.
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Fig. 2. Comparison of population and equal weights.

If we take simple random samples of n0 = n1 = 200 from the population in Fig. 2a,
it turns out that the relative efficiency of design weighting is only about 16%, and the
small sample bias is 0.24. In this case, even if we take the population value as our target,
design weighting leads to a larger mean squared error than PML weighting.

More results are given in Scott and Wild (2002) where we also look at the effect
of omitted covariates. This turns out to have a similar, but somewhat smaller, effect to
omitting a quadratic term.

Which is the right value of λ to use? That clearly depends on what we want to use
the resulting model for. If our primary interest is in using the model for estimating
odds ratios at values of x where the probability of a case is higher, and the sample is
large enough so that variance and small sample bias are less important, we might use
design weights. For smaller sample sizes, or if we are interested in values of x closer
to the population mean, PML weights would be better. A value intermediate between
design weighting and PML weighting might sometimes be a sensible compromise. For
example trimming the weights to 10:1 (i.e., setting λ ≈ 0.91) in the example, instead
of 1:1 (PML weighting) or 400:1 (design weighting), leads to an efficiency of 70% and
a small sample bias of 0.04. The corresponding values for design weighting were 16%
and 0.24. The value of x0.91 lies almost exactly half way between x0.5 and x0.9975.

2.6. Variance estimation for super-population parameters

Graubard and Korn (2002) point out that we have to take some care in deriving the
properties of DW estimators of β since the weights employed, wi = Ni/ni, involve
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N0 and N1 which are random variables in the super-population framework adopted
here rather than fixed constants as in the standard finite population set-up. In sampling
terminology, we can think of our situation as being equivalent to two-phase sampling
as depicted in Fig. 1. In the first phase, the finite population is generated as a random
sample of size N from an (infinite) super-population and N0 and N1 are recorded. In
the second phase we draw a simple random samples of size ni from the Ni units in the
Y = i stratum (i = 0, 1), with the values of n0 and n1 depending only on N0 and N1,
and we observe x. In Scott and Wild (2007) we use the results for two-phase sampling
developed by Rao (1973) to show that we can estimate Cov(β̂W) in a way that validly
accounts for this additional source of variation using

Ĵ−1

(∑
i

W2
i Ĉov {μ̂i}

)
Ĵ−1 + 1

N
Ĵ−1

(∑
i

Wi{μ̂i − μ̂}{μ̂i − μ̂}T
)

Ĵ−1,

where Ĵ = Ĵ(β̂), μ̂i = μ̂i(β̂), and μ̂ = ∑
Wiμ̂i/

∑
Wi. The first term, which is of

order 1
n
, is the variance estimate we would use if we assumed that theNi were fixed and

is what we get out of a standard survey regression program. The second term measures
the effect of not knowing theNi in advance. This second term, which is of order 1

N
, will

be negligible in most applications.
For other choices of λi in (7), such as PML weights λi = ni/n, the estimating

equations do not depend on the Ni. The estimates of all coefficients in β1 and their
covariances are thus unaffected and the variance estimate for β̂0 can be corrected by
adding (1/N1+1/N2). This extra variance component results from the estimated correc-
tion term, b̂λ = log{λ1W0/(λ0W1)} = const.+ log(N0/N1), which has to be subtracted
to correct the estimate of β0 obtained from the program output.

2.7. Related designs: Case-augmented studies

Case-augmented sampling designs, represented in Fig. 3, are closely related to the sim-
ple case–control design and can be treated as such when cases are rare. Here, a sample of
cases (represented in Fig. 3 as the lower sample) is supplemented by an independent sam-
ple from the parent population or process. In “Design 1” (called “case-supplemented”
by Cosslett, 1981) only information on x is collected from the whole-population sample
and Y is unobserved. In “Design 2” (called “case-enriched” by Cosslett, 1981) both Y
and x are observed for the whole-population sample.

Obviously there is very little difference between the designs if cases are rare in the
population, but one of the advantages of either of the case-augmented designs is that
they allow us to estimate relative risks without invoking the “rare disease” assumption.

Sample
n1

(n1)

(n2)

Process/
Population

Measure x-variables (Y 51 known)

Design 1: Measure x-variables only
Design 2: Measure both Y and x-variablesSample Cases only

n2

Fig. 3. Case-augmented sampling.



444 A. J. Scott and C. J. Wild

For, with a simple application of Bayes Theorem, we can write the risk at covariate
value x relative to that at some baseline, x0, as

pr(Y = 1 | x)
pr(Y = 1 | x0)

= g(x | Y = 1)

g(x0 | Y = 1)

/ g(x)

g(x0)
,

where g(x) denotes the marginal density of x, etc. Clearly, the first likelihood-ratio
on the right-hand side can be estimated directly from the case sample and the second
directly from the whole-population sample.

Examples of case-augmented sampling are widespread in medical studies. In fact,
many population-based case–control studies are really case-augmented designs, with
the cases in the reference sample either being transferred to the case sample (when
case status is recorded) or treated as controls otherwise. Rothman and Greenland (1998)
advocate the use of (what are essentially) case-augmented designs, partly because of
the ability to estimate relative risks directly, but more fundamentally because it helps
ensure that controls are drawn from the same population as the cases. Design 2 is
formally equivalent to a case-cohort study, where a simple random sample of a larger
cohort is selected for more intensive investigation at the beginning of the study and
the cases are added as they occur. The main emphasis in case-cohort studies is almost
always on survival analysis but, in his seminal paper on the subject, Prentice (1986)
also considered fitting a logistic regression to a binary response, and showed that the
maximum likelihood estimates of the regression coefficients (apart from the constant
term) are obtained by fitting an ordinary prospective model to the pooled sample, just
as in ordinary case–control studies.

Case-augmented sampling is also used in other fields. For example, Millar (1992)
describes a standard design in fisheries for investigating the size-selectivity of fishing
gear. In such studies, two nets are dragged behind a trawler. One net has a fine mesh that
lets no fish escape while the other has a coarser, test mesh designed to let smaller, imma-
ture fish escape. The object of the experiment is to estimate the relationship between fish
size (as measured by length) and the probability of capture in the coarse test-net. This
is an example of the first design (case-supplemented), in which the fish caught in the
coarse test-mesh are assumed to be a random sample of capture-cases (Y = 1) with their
size information (x) being observed, and the fine mesh net being regarded as a random
sample from the whole fish population giving us information on the marginal distribu-
tion of fish sizes but no information on Y . An example of the second (case-enriched)
design in ecology, is discussed by Manly et al. (2002). They consider a study to deter-
mine the factors that influence the selection of nest sites in fernbirds. Covariates were
measured on 24 nest sites and also on a random selection of 25 possible sites (clumps of
vegetation) in the same area. Several scenarios where case-augmented designs are used
in econometrics are discussed by Cosslett (1981).

When the case and reference samples are both simple random samples, efficient
semiparametric maximum likelihood procedures for both designs are derived in Lee
et al. (2006) using the profile likelihood obtained by maximizing over the unknown
distribution of x. These procedures are relatively simple to implement when the logistic
model (1) applies. For case-supplemented sampling (Design 1), the solution can be found
by treating all observations from the whole-population sample as controls and running
the data through a standard prospective binary regression program using the model p∗1
where, for the logistic model (1),p∗1(xi;φ) = eρ+xT β

1+exT β+eρ+xT β with ρ an additional nuisance
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parameter. For case-enriched sampling (Design 2), the procedure is even simpler: we
simply run the combined sample through a standard logistic regression program with a
fixed offset, ρ̂ = log(1+ n2/n1c) where n2 is the size of the case-only sample and n1c

is the number of cases in the whole-population sample.
In practice, it is relatively common to use a more complex survey design to draw

the whole-population sample in particular. In conventional survey terms, Design 2 can
be regarded as a dual frame survey, with one frame for the whole population and the
other for the subpopulation of cases. The methods of Chapters 24 and 26 can be then
used to estimate the census estimating equations, S(β) = 0, given in (2), and we can
proceed just as in Section 2.2. Design 1 is more difficult to handle in a conventional
survey framework because S(β) is not estimable from the resulting samples. The usual
strategy, if cases are rare, is to pretend that all observations in the whole-population
sample are controls and proceed as if we had a standard case–control sample.

The semiparametric maximum likelihood estimators are relatively simple to adapt to
more complex designs. In both cases, the estimator satisfies equations of the form

Ŝω(β, ρ) = ω1

∑
Sample 1

U1i(β, ρ)

n1
+ ω2

∑
Sample 2

U2i(β, ρ)

n2
= 0, (14)

where ω� = n�
n
, for � = 1, 2 and the form of U� depends on the design (see Lee et al.,

2006 for details). For case-supplemented sampling (Design 1)

U1 = ∂ logp∗0(x,φ)
∂φ

and U2 = ∂ logp∗1(x,φ)
∂φ

,

where p∗1(xi;φ) = eρp1(xi;β)
1+eρp1(xi;β) .

For case-enriched sampling (Design 2)

U1 = ∂
[
(1− y) logp∗∗0 (x,φ)+ y logp∗∗1 (x,φ)− yρ

]
∂φ

and

U2 = ∂
[
logp∗∗1 (x,φ)+ log(eρ − 1)− ρ]

∂φ
,

where p∗∗1 is logistic with logitp∗∗1 (xi;φ) = ρ + β0 + xTi β1. If we write φ = (βT , ρ)T
then, when model (1) is true, φ = (βT , ρ)T is the solution of

Sω(φ) = ω1E {U1(φ)} + ω2E1 {U2(φ)} = 0, (15)

where E {·} denotes the expectation over the joint distribution of (Y, x), E1 {·} denotes
the conditional expectation given that Y = 1. (The interpretation of ρ differs slightly
between the two designs but is basically the log of the relative sampling rates of cases
and controls. This means that its value depends upon the choice of ω�, � = 1, 2.)

Noting that (15) is a sum of population means, we can adapt (14) and (15) to more
complex sampling schemes, just as we did with case–control sampling, using an esti-
mator satisfying

Ŝω (φ) = ω1μ̂1(φ)+ ω2μ̂2(φ) = 0, (16)
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where μ̂1(φ) is the sample estimate of the population mean E {U1(φ)} and μ̂2(φ) is an
estimate of the case-stratum mean E1 {U2(φ)}. The estimated “sandwich” covariance
matrix is given by

Ĉov
{
φ̂ω

} ≈ Jω(φ̂ω)−1Ĉov
{
Ŝω(φ̂λ)

}
Jω(φ̂ω)−1,

with Jω(φ) =
(
− ∂Ŝω(φ)

∂φT

)
and Ĉov

{
Ŝω(φ)

} = ω2
1Ĉov {μ̂1(φ)} + ω2

2Ĉov {μ̂2(φ)} as the

samples in Fig. 3 are taken independently. Here, Ĉov {μ̂�(φ)} denotes the usual survey
estimate.

This is a relatively new area and much more work needs to be done on the relative
performance of these procedures.

2.8. Practical considerations

Case–control studies are observational studies and, as such, are subject to the biases and
difficulties of interpretation common to all observational studies. The historical nature
of the data means that problems with measurement errors, selection biases, and missing
data, especially when patterns of missingness are different for cases and controls, are
all likely to be more than usually acute. The possibility of important unmeasured con-
founders means that we have to interpret any observed associations with great caution.
Breslow (2005) has a very good account of the potential pitfalls and of steps that can
be taken to minimize their effects. Although Breslow (2005) is written in the context
of epidemiology, many of the considerations discussed there are critical in any case–
control study in which we wish to model the effects of x-variables on a subsequent
binary response.

Obtaining controls and cases from surveys can introduce additional problems. If dif-
ferent frames are used for the two surveys then it is vital to make sure that the survey
populations (as distinct from the target populations) are as similar as possible. For exam-
ple, if cases are drawn from a register and controls are obtained by random digit dialing,
then we would need to exclude cases that are not contactable by telephone. There are
special problems if controls are obtained from a survey that was originally designed
for some other purpose. Often the surveys will measure different sets of covariates and,
even when the same covariate appears to be measured in both surveys, the definitions
may differ significantly between the two. An excellent account of the special difficulties
with survey data is given in Chapter 9 of Korn and Graubard (1999). On the positive
side, survey statisticians are particularly sensitive to the problems of frame errors, non-
response, measurement and other nonsampling errors and have developed reasonably
effective methods for mitigating their effects. This means that many of the worst pitfalls
would be avoided routinely.

We note that there has been some waning of enthusiasm for traditional case–control
studies among epidemiologists in recent years with the increasing interest in molecular
markers for disease. If the disease itself affects the markers, then retrospective determi-
nation of their values is of limited usefulness. Instead, there has been more emphasis
in storing prediagnostic samples from cohorts or population-based surveys and then
using incidence-density sampling or case-cohort sampling. Breslow (2005) gives a good
introduction to such studies. We do not discuss incidence-density sampling, which is a
special case of matched sampling, but some aspects of case-cohort studies are covered
in Section 2.7.
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3. Two-phase case–control sampling

3.1. Motivation

Two-phase case–control sampling (more commonly called two-stage case–control
sampling in the biostatistics literature) is used to describe any of the three sampling
designs depicted in Fig. 4. The reweighting compromise suggested in Section 2.3 (i.e.,
use standard design weighting within subpopulations defined by case/control status but
combine the sub-populations using sample proportions) seems to work reasonably well
in practice in any of these situations, but we can do better if we take account of the spe-
cial structures shown in Fig. 4. Before going on to discuss analysis, however, we will
pause to motivate these designs and their growing importance in biostatistics. Virtually
all of the theory to date has been developed for simple stratified random sampling at
each phase.

The two-phase (two-stage) case–control design was introduced by White (1982) as
a design for studying an association between a binary response Y and a binary exposure
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Fig. 4. “Two-phase” case–control sampling.
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variableV (in our notation) adjusted for discrete covariates. Motivated by considerations
of cost-effectiveness, she proposed taking separate samples at phase two from the indi-
viduals in each of the four cells of the 2 × 2 cross-classification of Y and V , and
determining covariate information only for the subsampled individuals. She proposed
over-sampling small cells, for example, by taking equal sized subsamples from each of
the four cells. She noted that the first-phase Y × V -data could itself come either from
case–control sampling (Fig. 4c), or be from a cohort or cross-sectional study (either
could be of the form Fig. 4b, c).

By the end of the 1980s, following the work of Fears and Brown (1986), Breslow
and Cain (1988), Cain and Breslow (1988), and Breslow and Zhao (1988), methods of
analysis had been developed that could handle situations where x included continuous
covariates and V was included as a linear term, as opposed to a set of categories, in the
regression model. Indeed we could have a vector V of variables defining the V -strata,
provided all the variables were discrete. Cain and Breslow (1988) outlined a number of
situations where these methods can be useful. These include:

Efficiency: Cost savings can be obtained using a genuine two-phase design (e.g.,
Engels et al., 2005) and measuring covariates that are particularly expensive
or particularly invasive only for comparatively small subsamples. Such studies
are becoming increasingly useful, particularly as expensive new techniques for
extracting genetic information become more and more widely available.

Secondary analysis: Adding a second-phase sample provides a cost-effective way
of making an after-the-fact adjustment for a confounder that was not considered
in the original single-phase study.

Incorporating “whole population” information: There may be administrative or
other population Y × V -data available for all individuals in the finite popula-
tion(s) from which the cases and controls in a single-phase study were drawn.
Efficiency can be increased by considering the finite-population data as the first-
phase and the study data as the second phase.

Missing data: If, in a single-stage study, there are substantial numbers of missing
values among the covariates and we are willing to assume that they are missing
at random given Y - and the V -variables, then we can treat the data as coming
from a two-phase study with those for which x is observed considered as subsam-
ples within Y × V -cells. This is more defensible than a complete-case analysis,
especially when the “missingness” rates differ appreciably between the cells.

By making proper use of stratum-specific offsets, prospective logistic-regression pro-
grams can be used to obtain valid estimates of the parameters of a logistic regression
(Fears and Brown, 1986) fitted to data from a two-phase study in the full generality
described earlier. Substantial work is needed to correct the standard errors, however,
and the procedure is not in general either maximum likelihood (Breslow and Cain,
1988; Breslow and Zhao, 1988) or efficient (Scott and Wild, 1991). Semiparametric
maximum likelihood estimation for two-phase studies with a prospective first phase
was developed for general models by Scott and Wild (1991, 1997, 2001b), whereas
Breslow and Holubkov (1997) worked with logistic models and developed semipara-
metric maximum likelihood for a case–control first phase. They noted that the resulting
estimator was the same as the Scott and Wild (1997) estimator. This means that, just
as for simple case–control studies, when logistic models are fitted to two-phase data,
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whether the first phase is prospective or case–control only affects the overall intercept
β0. Semiparametric efficiency was established by Breslow et al. (2003) for a prospec-
tive first phase and random sample-size subsampling mechanism, and more generally in
Lee et al. (2007).

3.2. Analysis

As previously stated, the reweighting compromise suggested in Section 2.3 when we
have complex sampling (i.e., use standard design weighting within sub-populations
defined by case/control status but combine the sub-populations using sample propor-
tions) seems to work reasonably well in practice but we can do better for two-phase
case–control studies when simple random samples are drawn within strata using meth-
ods described in Scott and Wild (2001b) that are reasonably easy to implement.

We motivate the methods by starting with the situation in which our model has a
separate coefficient (intercept) term for each level of the stratifying phase one variable
V . In other words we have

logit {pr(Y = 1|x, Stratum h)} = β0h + xTβ1, (17)

and phase two sampling is of the form shown in Fig. 4a, b with simple stratified sampling,
rather than a more complex design. (Fig. 4c differs very slightly, but in an easily cor-
rected way.) Here fully efficient procedures are well-developed and easy to implement.
Ordinary unweighted logistic regression (with a simple adjustment for the stratum inter-
cepts if they are wanted) is the efficient semiparametric maximum likelihood procedure
(Prentice and Pyke, 1979). The estimating equations can be written in the form

∑
h

⎛
⎝ω1h

∑
cases

xip0h(xi;β)
n1h

− ω0h

∑
controls

xip1h(xi;β)
n0h

⎞
⎠ = 0,

where ωih ∝ nih. The stratified equivalent of the estimating equation (7) is

∑
h

⎛
⎝λ1h

∑
cases

xip0h(xi;β)
n1h

− λ0h

∑
controls

xip1h(xi;β)
n0h

⎞
⎠ = 0. (18)

and it is straightforward to extend this to more general stratified designs. As
n0h, n1h→∞, the solution of (18) converges almost surely to the solution of∑

h

[λ1hE1h {Xp0h(X;β)} − λ0hE0 {Xp1h(X;β)}] = 0, (19)

with the obvious extension of the notation from the unstratified case. If model (17) is true,

then equation (19) has solution β∗1 = β1 and β∗0h = β0h + bλh with bλh = log
(
λ1hW0h
λ0hW1h

)
.

Because equation (19) only involves stratum means, we can estimate them using survey
data, for example by

μ̂�h(β) =
∑
i∈S�h

wihxih {yih − p1(xih;β)}∑
i∈S�h

wih
.
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Substituting these estimators in place of the sample means in equation (18) leads to the
estimating equation

Ŝλ (β) =
∑
h

∑
i∈Sh

w∗ihxi {yi − p1h(xi;β)} = 0, (20)

with w∗ih ∝ λ�hwih/
∑

i∈S�h wih for units in S�h (� = 0, 1;h = 1, . . . , H ). This can be
fitted in any standard survey program by including these weights and the appropriate
design information. Note that we need to be careful about how we include the so-called
strata in the design specification. If primary sampling units are nested within the “strata,”
there is no problem and the strata should be included in the standard way. However, if
the primary sampling units cut across the strata, like the age groups in our first example
or the age × ethnic groups in our second example, then these are not strata in the usual
survey sampling sense. They should not be included in the design specifications but
simply handled through the weights.

Sometimes we want to model the contribution of the stratum variables using some
smooth parametric curve rather than dummy variables. For example, age is a common
stratifying variable in many studies and we might want to include a linear function
of age in our model. The DW and PML methods suggested in Section 2 both apply
directly and no new theory is needed. More efficient methods are not nearly so simple,
however. Fully efficient methods have been developed in the case where simple random
samples of cases and controls are drawn within each of the strata (see Breslow and
Holubkov, 1997; Scott and Wild, 1997), but the resulting estimating equations are not
linear combinations of stratum means and there is no obvious way of generalizing them
to more complex sampling schemes.There is a slightly less efficient way that does extend
easily, however. If we modify model (17) by including bλh = log{λ1hW0h/(λ0hW1h)}
as an offset (a known additive term), that is we set

logit
{
pr∗(Y = 1|x, Stratum h)

} = bλh + β0h + xTβ1, (21)

then equation (18) produces consistent, fully efficient, estimates of all the coefficients
including β0h (h = 1, . . . , H ). Including the same offsets in models where there is
no β0h term and the x vector includes functions of the stratifying variable produces
consistent estimators of all the coefficients with high (although not full) efficiency (see
Breslow and Cain, 1988; Fears and Brown, 1986). This generalizes to arbitrary designs
immediately. We just use equation (20) with p1h replaced by p∗1h defined by setting
logit(p∗1h) = bλh+ xTβ. Then any survey program that caters for offsets can be used to
fit the model and provide estimated standard error, etc.

How much extra efficiency over and above that already gained using PML weighting
do we get in this case? We have carried out a number of simulations, some of which
are reported in Scott and Wild (2002). Without any clustering, the gain in efficiency
from using the offset method (which is full maximum likelihood here) compared to the
PML procedure was never more than 10%. The relative efficiencies stayed about the
same as clustering that cut across strata was introduced. When clustering nested within
strata was introduced, the gains disappeared progressively as the design effect increased
and the PML procedure actually became more efficient than the offset method when the
design effect reached about 1.5.
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Table 2
Comparison of PML and offset (OS) estimates

Risk factor PML(s.e.) OS(s.e.)

No. of adults/room 2.30 (0.56) 1.93 (0.47)
Attends substantial social gatherings 0.37 (0.16) 0.38 (0.16)
No. of smokers in usual HH 0.20 (0.13) 0.25 (0.12)
Shares food, drink or pacifier 0.39 (0.26) 0.36 (0.22)
Respitory infection in HH member 0.41 (0.25) 0.37 (0.22)
Bed sharing 0.51 (0.26) 0.49 (0.24)

The meningitis study of Example 2 can be regarded as a two-phase study in which
age and ethnicity are measured at Phase 1 and the remaining variables measured on a
subsample stratified by these variables at Phase 2. Our base model has a linear term
in age and no age × ethnic group interaction so it does not include a complete set of
dummy variables for the first-phase strata. The effect of clustering was small here, with
a design effect of about 1.1, and the control weights were more variable than those in
our simulations, so we might expect somewhat larger improvements than we saw there.
This turns out to be the case. Table 2 shows the results for the offset approach fitted to
the model considered in Table 1, with the PML values repeated for comparison.

We see that the offset method does indeed work well here, giving a further 12%
reduction in the estimated standard errors on average.

As we stated earlier, it is possible to produce fully efficient semiparametric estimators
if we are willing to model the dependence structure within primary sampling units. We
have begun to carry out some simulations using random effects model. The early results
suggest that the extra work involved in the modeling will almost never be worth the
effort if we are only interested in the parameters of the marginal model (1). Our tentative
conclusion is that, the ad hoc partially weighted procedures (with PML weights) are
simple to use and work well enough for most practical purposes in the range covered
by our experience but this is another area where more empirical work is needed yet.
We note, however, that there are some problems, like the case–control family design
discussed in Section 4, where the within-cluster behavior is of interest in its own right.
These require more sophisticated methods.

4. Case–control family studies

If we are primarily interested in the parameters of the marginal model (1), then the meth-
ods that we have discussed in previous sections are simple to implement and reasonably
efficient. With cluster or multistage sampling, fully efficient methods require building
parametric models for the within-cluster dependence and the extra effort that this would
entail is rarely worthwhile. However, there are situations where the dependence struc-
ture is of interest in its own right. For example, it has become increasingly common
for genetic epidemiologists to augment data from a standard case–control study with
response and covariate information from family members, in an attempt to gain infor-
mation on the role of genetics and environment. This can be regarded as a stratified
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cluster sample, with families as clusters, and the intracluster structure is of the primary
focus of attention here. The following example is fairly typical.

Wrensch et al. (1997) conducted a population-based case–control study of glioma,
the most common type of malignant brain tumor, in the San Francisco Bay Area. They
collected information on all cases of glioma that were diagnosed in a specified time
interval and on a comparable sample of controls obtained through random digit dialing.
They also collected brain tumor status and covariate information from family members
of the participants in the original case–control sample. There were 476 brain cancer case
families and 462 control families in the study.

We could use the methods that we have been discussing to fit a marginal model for
the probability of becoming a glioma victim, but a major interest of the researchers was
the estimation of within-family characteristics. One way of approaching this would be
to fit a mixed logistic model with one or more random family effects.

Note that, strictly speaking, the original sampling scheme in this example is not
included in our case–control set-up. The stratification here is related to the response
variable but not completely determined by it. Stratum 1 contains the 476 families with a
case diagnosed in a particular small time interval while Stratum 2 contains the remaining
1,942,490 families, some of which contain brain cancer victims.

Neuhaus et al. (2006) develop efficient semiparametric methods for stratified multi-
stage sampling in situations where the stratification depends on the response, possibly in
an unspecified way that has to be modeled, and observations within a primary sampling
unit are related through some parametric model. The estimates require the solution of
p+H estimating equations, where p is the dimension of the parameter vector andH is
the number of strata. The covariance matrix can also be estimated in a straightforward
way using an analog of the inverse observed information matrix. The whole procedure
can be implemented using a general maximization routine but this still requires some
computing expertise.

We could also fit the same models using design weighted estimators, which has the
big advantage of requiring no specialist software. In our example, case families would
have weight 1 and control families would have weight 1,942,490/462 ≈ 4200. With
such a huge disparity, we might expect the weighted estimates to be very inefficient.
Unfortunately it turned out to be almost impossible to fit an interesting model for which
the weighted estimates converged. One problem is that the weighted estimates are based
almost entirely on the control sample and there is very little information about family
effects in the control families. (Another problem is that we did not have information on
age for family members and any model without age was grossly misspecified!) For this
reason, we had to resort to simulation that is far from complete at this stage. It seems,
however, that the efficiency of weighted estimates is less than 10% of the efficient
semiparametric estimates here. More details are given in Neuhaus et al. (2002, 2006).

Although our simulations are at a very early stage, it is possible to draw a few
tentative conclusions. The main one is that within-family quantities are very poorly
estimated, even using fully-efficient procedures. Case–control family designs, where
the information on family members is obtained as an add-on to a standard case–control
design, simply do not contain enough information to estimate the parameters of interest
to genetic epidemiologists unless the associations are extremely strong. More efficient
variants are possible, however. For example, if we can identify families containing
more than one case, then it is possible to get much greater efficiency by over-sampling
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such families. In essence, we would be taking the family as the sampling unit, defining a
“case family” as one containing multiple individual cases and then taking a case–control
sample of families. This is an important area where a lot of work still needs to be done.

5. Conclusion

The subject of this chapter is one of those areas where practice has forged ahead of
theory. One of the few books that discusses the topic in any depth is Korn and Graubard
(1999). One aspect that has received a reasonable amount of theoretical attention in the
literature is stratification. Efficient procedures for incorporating stratifying variables in
the analysis have been developed by Scott and Wild (1997), Breslow and Holubkov
(1997), and Lawless et al. (1999), among others, when the variables can take only a
finite set of values. Breslow and Chatterjee (1999) have considered how best to use such
information at the design stage. The extension of both analysis and design to situations
where we have information on continuous variables such as age for all members of
the population is an area that still needs work. Much less has been written on the
effect of clustering, even though multistage sampling is in common use. Exceptions are
Graubard et al. (1989), Fears and Gail (2000), Scott and Wild (2001a), and Scott (2006).
There has also been some work on the choice of sampling design (see Waksberg, 1998),
particularly on the relative merits of area sampling and random digit dialling (see Brogan
et al., 2001; DiGaetano and Waksberg, 2002, for example), but much needs to be done.
Because the essence of the problem boils down to estimating two population means [see
equation (8)], it should be possible to transfer a lot of standard survey expertise about
efficient design to this problem.
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Inference under Informative Sampling

Danny Pfeffermann and Michail Sverchkov

1. Introduction

1.1. Selection bias

Survey data are frequently used for analytic inference about statistical models holding
for the corresponding population data. By analytic inference we mean inference about
the model parameters or functions of them like expectations, variances, regression coeffi-
cients, etc; and the prediction of unobserved data. The inference ordinarily takes the form
of point estimation (and possibly prediction), confidence intervals, hypothesis testing,
or posterior distributions. Familiar examples include the estimation of income elastic-
ities from household surveys, the analysis of labor market dynamics from labor force
surveys, and the study of the relationships between risk factors and disease incidence
from health surveys. Sometimes, models are fitted to survey data for estimating known
functions of the finite population values, such as means, proportions, or correlations.
This is known as descriptive inference.

The data are usually collected for samples drawn by probability sampling. This
induces a set of base weights for the sampled units reflecting unequal selection prob-
abilities. Differential weighting can also result from a variety of adjustments, such as
the accounting for unit nonresponse and calibration. Chapters 9 and 25 of this hand-
book discuss such adjustments in great depth. We refer to the final set of weights as the
“sampling weights.”

When the sampling weights are related to the values of the model outcome variable
even after conditioning on the model covariates, the observed outcomes are no longer
representative of the population outcomes due to the sampling or response process and
the model holding for the sample data is then different from the model holding in the
population. In symbols, f(yi|xi, i ∈ s) �= f(yi|xi), where s defines the sample with obser-
vations, and (yi, xi) are the measured values of the dependent and covariate variables for
unit i. We say that the sampling and/or the response are informative in this case. Ignoring
an informative sample may yield large biases and erroneous inference. The books edited
by Kasprzyk et al. (1989) and Skinner et al. (1989) contain many examples illustrating
the effects of ignoring an informative sampling scheme in the inference process. See
also Pfeffermann (1993, 1996) and the more recent studies referenced in this chapter.
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Example 1.1. Consider a finite population U = {1, . . . , N} and suppose that for unit
i ∈ U, Yi ∼ Mult({pk},K), such that Pr(Yi = k) = pk, k = 1, . . . , K;∑K

k=1 pk = 1.
Let Pr(i ∈ s|Yi = k) = πk. Then, by Bayes rule, Ps(Yi = k) = Pr(Yi = k|i ∈ s) =
πkpk/

∑K

j=1 πjpj =p∗k , such that Yi|i ∈ s ∼ Mult({p∗k},K). Ignoring the sample
selection and estimating the population probabilities by the ordinary estimates
p̂k = nk/n, where nk is the number of sampled units with observation Yi = k

and n = ∑K

k=1 nk, yields unbiased estimators for p∗k , but biased estimators for pk,
unless πk = const. Note that for known selection probabilities, one can construct the
estimator p̃k = (p̂j/πk)/∑K

j=1 (p̂j/πj), which is consistent for pk under mild condi-
tions but not strictly unbiased under the sample probability function Ps(Yi = k).

We consider the sample data as the outcome of three random processes. The first
process generates a vector value of some random element for each of the N units in U.
The second process selects n units at random from U to the sample (n can be random).
The third process selects the responding units. This process is obviously not part of the
original sample design controlled by the survey statistician and is often the result of
“self selection,” although it could be caused by many other reasons. See Chapters 9 and
10 of this handbook for further discussion. In the most part of this chapter, we assume
full response but where appropriate, we discuss extensions to account for informative
nonresponse.

Let AU = {(y1, x1, z1, l1), . . . , (yN, xN, zN, lN)} define in general the N population
realizations of the stochastic element (Y,X,Z,L), where Y is the model outcome vari-
able of interest,X is a vector of model covariates, Z is a vector of design variables used
for the sample selection and L is a vector of latent variables determining the response.
The vector Z may contain some or all of the covariates X, and in special cases also
the vector Y , such as in a case-control study, see Chapter 38. The population values
ZU = {z1, . . . , zN} are known to the sampler who designs the sampling scheme, but
not necessarily to the analyst fitting the model. See Section 2. The vector L is seldom
known, although it may contain elements of Y,X, and Z.

Let Ii be the sample indicator such that Ii = 1 if unit i ∈ s and Ii = 0 otherwise,
and denote by πi = Pr(Ii = 1) the sample inclusion probability. In this chapter, we only
consider probability sampling such that πi > 0 for all i. The probabilities π1, . . . , πN
are known to the sampler drawing the sample. We assume that they are known also to the
analyst fitting the model for at least the sampled units. Let Ri be the response indicator
such that Ri = 1 if unit i ∈ s responds and Ri = 0 otherwise, and denote by r ⊆ s

the subset of respondents. The response probabilities Pr(Ri = 1|Ii = 1) are generally
unknown and can only be estimated under strict assumptions. Our interest in this chapter
is in situations where the design or the latent variables underlying the sample selection
and response probabilities are correlated with Y after conditioning on X, such that the
sampling and/or the response process are informative when modeling f(Y |X = x), the
target of the inference process.

In what follows we use the abbreviation pdf to define the probability density func-
tion when Y is continuous and the probability function when Y is discrete. Following
Pfeffermann et al. (1998a), the conditional marginal sample pdf fs(yi|xi) in the case of
full response is defined as the conditional pdf of Yi given that unit i is in the sample and
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the covariates xi. By Bayes theorem,

fs(yi|xi) = fU(yi|xi, Ii = 1) = Pr(Ii = 1|xi, yi)fU(yi|xi)
Pr(Ii = 1|xi) , (1)

where fU(yi|xi) is the corresponding population pdf. The probabilities Pr(Ii = 1|xi, yi)
are generally not the same as the sample inclusion probabilities πi, which may depend
on all the population values ZU . However, the use of the marginal sample pdf only
requires modeling Pr(Ii = 1|xi, yi). Note that Pr(Ii = 1|yi, xi)=EU(πi|yi, xi), where
EU(·) is the expectation under the population pdf (see Section 4.1).

It follows from (1) that unless Pr(Ii = 1|xi, yi) = Pr(Ii = 1|xi)∀yi, the sample pdf is
different from the population pdf, in which case the sampling design becomes informa-
tive and cannot be ignored at the inference process. In particular, it follows from (1) that

under an informative sampling scheme,Es(Yi|xi) = EU
[

Pr(Ii=1|xi,Yi)Yi
Pr(Ii=1|xi)

∣∣∣xi] �= EU(Yi|xi),
where Es(·) is the expectation under the sample pdf fs(yi|xi), illustrating that ignoring
an informative sampling scheme can bias the inference.

Example 1.2. Suppose that in the population Yi|xi ∼ N(β0 + x′iβ, σ2) and that
Pr(Ii = 1|yi, xi) = E(πi|yi, xi) = exp[A1yi + A2y

2
i + g(xi)], where A1 and A2 < 0

are constants and g(xi) is some deterministic function of the covariates. Simple alge-
bra using (1) shows that in this case, fs(yi|xi) = N[(β0 + A1σ

2 + x′iβ)/C, σ2/C],
where C = (1− 2σ2A2). Thus, although the sample values have again a normal
distribution, Es(Yi|xi) = (β0 + A1σ

2 + x′iβ)/C �= β0 + x′iβ = EU(Yi|xi), and the
variance of the residual terms is also changed. In the special case where A2 = 0,
the sample model slope coefficients (but not the intercept) and the residual variance
are the same as under the population model. If A1 = 0 as well, the inclusion in the
sample is noninformative and the population and sample models coincide.

Remark 1.1. The definition of the sample pdf (1) can be extended to account for non-
response by distinguishing between the sample selection and the response. Using the
response indicators Ri, the respondents pdf is defined as

fr(yi|xi) = f(yi|xi, Ii = 1, Ri = 1) (2)

= Pr(Ri = 1|yi, xi, Ii = 1) Pr(Ii = 1|yi, xi) fU(yi|xi)
Pr(Ri = 1|xi, Ii = 1) Pr(Ii = 1|xi) .

Remark 1.2. The pdfs (1) and (2) refer to the marginal distribution of the measurement
yi. This definition generalizes very naturally to the joint pdf of two ormoremeasurements
associated with different units. More generally, define for every subset s ⊂ U the sample
indicator As, such that As = 1 if the selected sample is s, and As = 0 otherwise, and
assume for convenience full response. Denote the data associated with s by (ys, xs). The
joint sample pdf of Ys|xs is then

fs(ys|xs) = fU(ys|xs, As = 1) = Pr(As = 1|ys, xs) fU(ys|xs)
Pr(As = 1|xs) . (3)
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The pdf fU(ys|xs) can be general, allowing in particular for correlated measurements,
but modeling the probability Pr(As = 1|ys, xs) is practically only feasible if the
sample can be decomposed into exclusive and exhausting subsets sk such that
Pr(As = 1|ys, xs) ≺∏k Pr(Ask = 1|ysk , xsk ) and Pr(Ask = 1|ysk , xsk ) satisfies the same
model in all the subsets (see Example 1.3). In particular, if the population outcomes are
independent given the covariates and Pr(As = 1|ys, xs) ≺ ∏

i∈s Pr(Ii = 1|yi, xi), (3)
takes the form,

fs(ys|xs) =
∏
i∈s

Pr(Ii = 1|yi, xi)fU(yi|xi)
Pr(Ii = 1|xi) =

∏
i∈s
fs(yi|xi), (4)

such that the sample outcomes are likewise independent.

Example 1.3. Consider the case of a clustered population U = ∪l Ul, with inde-
pendent measurements between clusters, such that fU(yU |xU) = ∏

l fU(yUl |xUl ),
where (yU, xU) defines the population measurements. Suppose that the sample
is drawn by a single-stage cluster sampling design with the clusters selected
independently with probabilities πl= r(yUl , xUl ) for some function r. Then,
Pr(As = 1|yU, xU) = ∏k∈s r(yUk , xUk )×

∏
j /∈s [1− r(yUj , xUj )]. Since (yUk , xUk ) =

(ysk , xsk ) for k ∈ s, it follows that Pr(As = 1|ys, xs) = C × ∏
k∈s r(ysk , xsk ) =

C×∏k∈s Pr(Ask = 1|ysk , xsk ), where for given covariates xUj , j /∈ s, C is a constant
satisfying,C = ∫ ∏j /∈s [1− r(yUj , xUj )]fU(yUj |xUj )dyUj . The case of a nonclustered
population with independent measurements and Poisson sampling of individual units
is a special case where each cluster consists of a single element, giving rise to the
sample pdf (4).

1.2. Distinction between the sample distribution and the randomization distribution

The sample distribution refers to the distribution of the sample measurements, as defined
by the population model and the sampling design, with the realized sample of respon-
dents held fixed. This implies, for example, that the sampled clusters under two-stage
sampling and the observed covariates, {xi, i∈ s}, are fixed under this distribution. The
same is true for the distribution of the responding units, which depends also on the
response process. The randomization distribution, on the other hand, conditions on the
population values {yi, xi, i ∈ U}, which are treated as fixed values, and the only stochas-
tic element used for inference is the random selection of the sample (or the respondents).
The use of this distribution does not permit therefore conditioning on the sampled clus-
ters or the observed covariates.

The use of the sample (respondents) distribution requires modeling Pr(Ii = 1|xi, yi)
(Eq. 1) and Pr(Ri = 1|yi, xi, Ii = 1) in the case of nonresponse (Eq. 2), but it per-
mits the computation of the conditional pdf of the sample measurements given the
covariates, and hence the use of classical inference tools, if the sample selection and
response are approximately independent between the units. As discussed and illus-
trated in Section 4.2, the latter requirement is often not binding. This is not possible
under the randomization distribution because the values of the outcome variable (and
often also the auxiliary variables) are unknown for units outside the sample, such that
the randomization distribution of any given statistic over all possible sample selec-
tions is generally unknown. Consequently, the use of this distribution for inference is
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restricted mostly to estimation problems, with probabilistic statements like confidence
intervals generally requiring asymptotic normality assumptions. Note also that the ran-
domization distribution cannot be used for predicting the outcome value of a unit out-
side the sample given the values of the auxiliary variables, even under noninformative
sampling.

The sample distribution is also different from the UD distribution (often referred
to as the ξp distribution), defined as the combined distribution over all possible real-
izations of the finite population measurements (the population U distribution) and all
possible sample values for given population values (the randomizationD distribution).
See Chapter 24. TheUD distribution is often used for comparing the precision of design-
based estimators in situations where direct comparison of the randomization variances
is not feasible. The obvious difference between the UD distribution and the sample dis-
tribution is that the sample distribution conditions on the observed sample of units, (and
the observed values of the auxiliary variables), whereas theUD distribution accounts for
all possible sample selections. In the case of nonresponse, the UD distribution should
be replaced by the UDR distribution; the combined distribution over all possible real-
izations of the finite population measurements, all possible samples and all possible
samples of respondents, given the selected sample.

2. Informative and ignorable sampling

In this section, we assume for convenience full response but extension of the results to
the case of nonresponse follows through. Thus far, we suppressed for convenience from
the notation the parameters underlying the population pdf and the sampling process.
Consider the sample pdf in (3). With added parameter notation, it can be written as

fs(ys|xs; θ, γ) = Pr(As = 1|ys, xs; γ) fU(ys|xs; θ)
Pr(As = 1|xs; θ, γ) . (5)

Thus, the population and sample pdf s of Ys|Xs = xs are the same when

Pr(As = 1|ys, xs; γ) = Pr(As = 1|xs; θ, γ) ∀ys. (6)

In this case, inference on θ can be achieved by fitting the population distribution to
the sample data, ignoring the sample selection. Note, that this conclusion refers to the
selected sample defined by the event As = 1.

The condition (6) is a strong condition. In a fundamental article on missing values,
Rubin (1976) establishes conditions under which the sampling process can be ignored
for likelihood, Bayesian, or sampling distribution (repeated sampling from a model)
inference, that is, conditions under which the population pdf fU(ys|xs; θ) can be used
for inference. Let Y ′U = (Y ′s, Y ′s̃) represent the random population outcomes with Ys̃
denoting the outcomes for the nonsampled units. Suppressing for convenience the condi-
tioning on the covariates, denote by γ the parameters governing Pr(As = 1|YU = yU; γ)
and let the symbol ⊥ define independence. Two fundamental conditions established by
Rubin (1976) are

(I) Data missing at random; for each γ,As⊥Ys̃|Ys for all possible Ys̃,
(II) Data observed at random; for each γ and Ys̃, As⊥Ys|Ys̃ for all possible Ys.
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Rubin shows that the sample selection process can be ignored for Bayesian- and
likelihood-based inferences when condition I holds and the parameters θ indexing the
population pdf are distinct from γ . However, for sampling distribution inference, both
the conditions I and II are required for ignoring the sample selection. The latter infer-
ence mode should be interpreted in this case as being conditional on the realized sample
(As = 1).

Little (1982) extended Rubin’s results by distinguishing between the original sample
selection and the response process.Another important distinction is that Little conditions
on the population values ZU of the design variables used for the sample selection, such
that the emphasis is on the conditional distribution of Ys given ZU , with Ys defining
all the fully and partially observed data in the case of item nonresponse. Inference on
the target population model fU(y; θ) (or more generally fU(y|xU; θ)) requires therefore
integrating the conditional pdf of Ys|ZU over the distribution of ZU . See Section 3.

Sugden and Smith (1984) established conditions under which a sampling pro-
cess that depends on design variables Z is ignorable given partial information on
the design. Let ds=Ds(ZU = zU) contain all the available design information from
knowledge of the selection scheme, the sample inclusion probabilities and any known
values or functions of zU . Using previous notation, a key condition for ignorability
of the sampling process given the design information is that As⊥ZU |ds, implying
Pr(As = 1|ZU = zU) = Pr(As = 1|ds) for all zU for which ds = Ds(ZU = zU). The
authors show that under this condition and if the parameters θ∗ governing the pdf
fU(yU |zU) are distinct from the parameters θz governing the pdf gU(zU), the sample
selection can be ignored for Bayesian- and likelihood-based inferences that condition
on ds. The condition As⊥ZU |ds is sufficient also for predictive inference in the sense
that the prediction of Ys̃ can be based in this case on fU(ys̃|ys, As, ds). However, for
sampling distribution inference, the stronger condition Ys⊥ZU |Ds; θ∗ for all θ∗ needs
to be satisfied.

Discussion

For large-scale multi-stage sample surveys with possibly many design variables, it is
generally difficult and often impractical to check directly the conditions that permit
ignoring the sample selection or nonresponse before conducting the inference. On the
other hand, even when the sample pdf is different from the population pdf, it does
not necessarily imply that the inference under consideration is wrong. For a simple
illustration consider the special case of Example 1.2 in Section 1, where A2 = 0. In this
case, the sample pdf is normal with the same slope coefficients and residual variance as
under the population pdf. Thus, for inference about the slope coefficients one can ignore
the sampling process even though the sample model intercept is different from the
population model intercept. A similar phenomenon is obtained for logistic models when
the sample selection depends on y but not on x. See Pfeffermann et al. (1998a). Keeping
this in mind, we review in Section 7 several test statistics proposed in the literature
for assessing whether ignoring the sample selection is justified for the inference under
consideration.

The aim of this chapter is to discuss ways of making valid inference when the sample
selection or the response mechanism cannot be ignored, as concluded either by checking
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directly the ignorability conditions or by application of test procedures. Many survey
analysts prefer basing the inference on methods that do not require sampling ignorability
even when the sample and response processes are deemed ignorable. In Sections 3–6,
we review and discuss the main approaches to inference that do not require ignorability
conditions.

3. Overview of approaches that account for informative
sampling and nonresponse

3.1. Including the design variables among the covariates

As implied by (6), the population model (pdf ), fU(ys|xs) and the sample model fs(ys|xs)
are the same when Pr(As = 1|ys, xs) = Pr(As = 1|xs)∀ys. By (2), the response process
can be ignored for inference when Pr(Ri = 1|yi, xi, Ii = 1) = Pr(Ri = 1|xi, Ii = 1)∀yi.
Thus, a possible way to account for the sampling and response effects is to include
among the model covariates all the variables and interactions determining the sample
and response probabilities. Denoting these variables by J = Z ∪ L with population
values JU , the use of this approach requires modeling,

fU(ys|xs, JU = jU) =
∫
fU(ys, ys̃|xU, jU)dys̃, (7)

assuming fU(ys|xU, jU) = fU(ys|xs, jU). Variants of this approach are considered by
DeMets and Halperin (1977), Holt et al. (1980), Nathan and Holt (1980), Jowell (1985),
Chambers (2003), and Gelman (2007).

Example 3.1. Suppose that one is interested in estimating the average effect of edu-
cation on wages and that this effect is different across different ethnicity groups.
Under a balanced sample for which the sampled (responding) proportions in the var-
ious ethnicity groups match the corresponding population proportions, the education
effect can be estimated by modeling the wages as a function of education. Suppose,
however, that because of the sampling design some of the ethnicity groups are mis-
represented in the sample. Ignoring the misrepresentation of the sample will clearly
bias the estimator of the education effect in this case. Accounting for the sampling
design can be achieved by including the ethnicity effects among the model covariates.
A simple example is the model,

Yijk = β0 + β1Edj + β2jk

[
Edj × Etk

]+ eijk, (8)

where the index i defines the individual, j the education level, and k the ethnic-
ity group (one of which serving as the “baseline” and hence dropped from the
equation). As pointed out by Gelman (2007), the interactions of education and
ethnicity define poststratification cells within which the sample selection can be
ignored. Estimating the “average” effect of education on wages over the various
ethnicities requires integrating out the ethnicity effects by “regressing” the right-
hand side of (8) against education using the population model relationship, that is,
EU(Y |Ed) = EU,Et|Ed[EU(Y |Ed,Et)]. More generally,

fU(ys|xs) =
∫
fU(ys|xs, jU)fU(jU |xs)djU. (9)
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Example 3.2. Suppose that a sample of size n is selected with probabilities defined by
the population values of a design variable Z, and that all the sampled units respond.
Let the population distribution of Y,X,Z be trivariate normal. The data available to
the analyst consists of the observed values of Y and X for the sampled units and
the population values of Z. Using properties of the multivariate normal distribution,
EU(Y |X) = β0+βyxX, but the ordinary least squares (OLS) estimator of βyx is biased
in this case because the sampling probabilities depend on Z, which is correlated with
Y and X. The maximum likelihood estimator (mle) of βyx based on the observations
(ys, xs) and the population values ZU is (DeMets and Halperin, 1977),

β̂yx =
{
sxy + syzsxz

s2z

(
σ̂2
z

s2z
− 1

)}/{
s2x +

s2xz

s2z

(
σ̂2
z

s2z
− 1

)}
, (10)

where suv= n−1
∑n

i=1 (ui − us)(vi − vs) and σ̂2
z = N−1

∑N

i=1 (zi − zU)2, with
(us, vs, zU) defining the corresponding sample and population means. The estima-
tor β̂yx reduces to the OLS estimator when σ̂2

z
∼= n−1

∑n

i=1 (zi − zs)2 (e.g., the sample
is selected by simple random sampling) or when sxz = 0. Holt et al. (1980) extended
this result to the case where Y,X,Z are vector variables. Nathan and Holt (1980)
established conditions under which β̂yx is consistent without the multivariate nor-
mality assumption. Pfeffermann and Holmes (1985) studied the robustness of the
estimator to certain model misspecifications.

Remark 3.1. The mle of the population mean of Y is μ̂y = ys + β̂OLS
yz (zU − zs), where

β̂OLS
yz is theOLS estimatorwhen regressingY againstZ in the sample. Clearly, the sample

mean, ys can be severely biased as an estimator of μy when the selection depends on Z
and Corr(Y, Z) �= 0.

Discussion

The use of this approach seems appealing, and it has the advantage of allowing classical
model-based inference methods once the design and response variables are included in
the model. Unfortunately, it is very limited for the following reasons:

(I) It requires knowledge of the population values of all the variables determining
the sample selection and response.Although the population values of the design
variables used for the sample selection are known to the sampler drawing the
sample, they may not be known to the analyst fitting the model because of
confidentiality restrictions or other reasons. In the case of nonresponse, both
the sampler and the analyst may have very limited information on which vari-
ables explain the nonresponse. Note also that knowledge of the population
values of the design variables is imperative when predicting unobserved val-
ues of the outcome variables under the extended model with the added design
variables.

(II) In large-scale surveys, including in the model all the geographic and operational
variables used for the sampling design may be formidable (Alexander, 1987).

(III) Including the variables determining the sample inclusion among the model
covariates may increase the prediction power of the model and thus be useful
for prediction purposes, but the resulting model may no longer have a scientific
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interpretation, requiring integrating them out from the model (Eq. 9). A simple
example taken from Holt et al. (1980) illustrates the problem. Suppose that it
is required to model the relationship between income and education based on
a fully responding sample selected with probabilities proportional to the taxes
paid on a previous year. Clearly, regressing income against education and the tax
value has no scientific meaning and the coefficient of the education variable will
most likely be highly insignificant, with all the variation in the income variable
explained by the tax variable. In this example, it may be relatively simple to
integrate out the tax variable, but in practice there may be many covariates
and many design variables, and modeling the relationship between the design
variables and the covariates to integrate out the effect of the design variables
can be very complicated.

(IV) The approach is not operational when the inclusion in the sample depends also
on the outcome values, that is, Z = {Y,Z∗} and Pr(As = 1|YU,XU,Z∗U) �=
Pr(As = 1|XU,Z∗U). See Pfeffermann (1996). A similar situation arises when
the nonresponse is not missing at random.

3.2. Using the sampling weights as surrogates for the design variables

For situations where there are too many design variables determining the sample selec-
tion to include them all in the model, or when some or all of these variables are unknown
to the analyst, it is often advocated to include in the model the sampling weights instead
of the design variables. Examples of the use of this approach can be found in DuMouchel
and Duncan (1983), Särndal and Wright (1984), Rubin (1985), Chambers et al. (1998),
and Wu and Fuller (2006).

Rubin (1985) defines the vector a = (a1, . . . , aN)
′ = a(ZU) to be an adequate

summary of Z if Pr(As = 1|ZU) = Pr(As = 1|a). The author shows that the vector
πU = (π1, . . . , πN) of the sample inclusion probabilities is the coarsest possible ade-
quate summary of Z. It follows from Section 2 that for sampling designs such that
Pr(As = 1|YU,ZU) = Pr(As = 1|ZU), if πU is an adequate summary, the sample selec-
tion can be ignored for inference on the distribution fU(ys|xs, πU).

Discussion

The use of this approach may require knowledge of the sample inclusion probabilities
for all the population units. Here again, this information may not be available to the
analyst fitting the model. Extension of the approach to the case of nonresponse is par-
ticularly problematic since the response probabilities are generally unknown and can at
best be estimated.Another major problem with this approach is that for general sampling
designs, the vector πU may not be an adequate summary of Z. Indeed, it is hard to con-
ceive that for large-scale multi-stage surveys, a single vector can summarize adequately
all the information entailed in many geographic and operational design variables. Sug-
den and Smith (1984) and Smith (1988) studied the necessary design information other
than the vector πU required to warrant sampling ignorability.

Remark 3.2. Although as just noted it is not generally true that by conditioning on πU
the sample inclusion process can be ignored in the sense that fU(ys|xs, πU,As = 1) =
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fU(ys|xs, πU), it is nonetheless true that the marginal distributions are the same,
that is, fs(yi|xi, πi) = fU(yi|xi, πi, Ii = 1) = fU(yi|xi, πi). See Skinner (1994) and
Remark 4.1 in this chapter.

3.3. Methods based on probability weighting

In the previous subsections, we considered methods requiring knowledge of the vari-
ables J determining the sample inclusion and response probabilities, or at least adequate
summary of them. The methods considered below only require knowledge of the sam-
ple inclusion probabilities or the sampling weights for the responding sampled units.
As such, they are restricted to situations of full response, or when the response proba-
bilities can be estimated sufficiently accurately, in which case the sampling weight for
a responding unit is the inverse of the product of the unit’s selection probability and its
estimated response probability. Often the sampling weights are slightly adjusted. One
common adjustment forces the probability-weighted estimators of the population totals
of some of the measured variables to equal the corresponding known population totals.
This adjustment, known as “calibration,” can also be used to estimate the parameters
governing the model for the response mechanism. It is discussed in detail in Chapter 25.

We introduce the technique of probability weighting with a simple example. Sup-
pose that the population Y -values are distributed with mean EU(Yi) = θ. A sample is
selected with probabilities πi = Pr(i ∈ s). Assume first full response and no weight
adjustments. It is desired to estimate θ. Consider the Horvitz and Thompson (1952) esti-

mator ŶHT = N−1∑
i∈s Yi/πi = N−1∑

i∈s wiyi, where wi = 1/πi. As is well known,

ŶHT is randomization (design) unbiased for the population mean YU = N−1∑N
j=1 Yj ,

that is, ED(ŶHT|YU = yU) = yU , where the randomization distribution is over all pos-
sible sample selections with the population y-values held fixed (see Chapter 2). Under

general conditions on the sampling design, ŶHT is also randomization consistent for

yU in the sense that plim
n→∞,N→∞

|ŶHT − yU | = 0, where “plim” defines the “limit in

probability” under the randomization distribution. See Chapter 40 for the concept of
consistency in finite population sampling.

Now, under very general conditions, the random population mean YU is model unbi-

ased and consistent for θ. We conclude, therefore, that ŶHT is consistent for θ. More

precisely, if (ŶHT − YU) isOp(n
−0.5) under the randomization distribution and (YU − θ)

isOp(N−0.5) under the population model, then (ŶHT − θ) = (ŶHT − YU)+(YU − θ) =
Op(n

−0.5) under the DU distribution, the distribution over all possible samples for a
given realization of the population values, and over all possible realizations of the pop-

ulation values. We may decompose the DU variance of ŶHT around θ as,

VarDU
(
ŶHT

)
= EU

[
VarD

(
ŶHT|YU

)]
+ VarU

[
ED

(
ŶHT|YU

)]
. (11)

For single-stage sampling and when n is much smaller thanN, as is usually the case, the
second term on the right-hand side of (11) is negligible compared with the first term, and

VarDU(ŶHT) can be estimated by the randomization variance estimator VârD(ŶHT|YU).
This result does not necessarily hold, however, for cluster sampling since in this
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case VarD(ŶHT|YU) is typically of order O(1/m), where m is the number of sampled

clusters, and under a suitable model, VarU[ED(ŶHT|YU)] is O(1/M), where M is the

number of population clusters. For VârD(ŶHT|YU) to be a proper estimator for

VarDU(ŶHT) in this case, m must be much smaller than M. See Pfeffermann (1993)
and Graubard and Korn (2002).

As noted above, the probability-weighting procedure can also be applied when not all
the sampled units respond, provided that the response probabilities can be estimated with
sufficient accuracy. In this case, the inclusion probability πi is the product of the unit’s
original sample-selection probability and its (estimated) probability of response. See
Chapter 9. When the sampling weights wi comprise the estimates of the unit response
probabilities or encompass other adjustments (such as calibration), the weighted esti-
mator N−1∑

i∈s wiyi remains nearly design unbiased and randomization consistent for
the population mean Y under mild conditions. As a result, using such weights is still
called “probability weighting.”

The probability-weighting procedure easily extends to the estimation of other model
parameters. Denoting σ2 = VarU(Yi) = EU(Y 2

i )− θ2 in the example above, aDU con-

sistent estimator for σ2 isN−1∑
i∈s y

2
i /πi− (ŶHT)

2. (One can add VârD(ŶHT|YU = yU)
to correct for the randomization bias of (ŶHT)

2 as an estimator of θ2, but this will increase
the variance of the resulting estimator of the variance.)

Example 3.3. Consider again the estimation of the average education effect on
wages considered in Example 3.1, but suppose now that the ethnicity affiliation
is unknown, making it impossible to fit the model (8). Denoting for convenience
by yi the wage of sampled unit i and by xi the corresponding education level,
the average education effect could possibly be estimated as, β̂w= ∑

i∈s wi(yi−
ŶHT)(xi − X̂HT)

/∑
i∈s wi(xi − X̂HT)

2. This estimator, however, isDU consistent for
the true education effect only if the relationship in the population between wages and
education is linear, which is not the case under the model (8). In the latter case, the
estimator β̂w will estimate the best linear approximation under a quadratic loss func-
tion for the true relationship between wages and education in the population under
consideration. See the discussion at the end of this subsection.

Remark 3.3. Beaumont (2008) proposed replacing the base weights wi = 1/πi by
their estimated conditional expectations ŵi = Ês(wi|yi), where the subscript s signifies
that the expectation is taken with respect to the model holding for the weights in the
sample. The author shows that under correct model specification, the “smoothed” H-T

estimator ŶHTS = N−1∑
i∈s ŵiyi is randomization consistent for yU and has a smaller

randomization variance than the standard H-T estimator that uses the original sampling
weights. The smoothed weights can be used in principle for enhancing other design-
based estimators in common use.

The methods reviewed thus far assume a known explicit form for the estimator
under consideration. Often, however, the explicit form of the estimator is unknown even
under ignorable sampling. For example, the mle of the regression coefficients in logistic
regression is the solution of a set of estimating equations (EE) that can only be solved
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iteratively (see Example 3.4 below). How can probability weighting be used in such
cases? One idea is to estimate the EE that would be obtained if all the population values
had been observed (hereafter, the “census” equations) by design-consistent estimators
and then solve the resulting EE. Clearly, the census equations are free of any sampling
effects.

Example 3.4. The logistic model with covariates xi assumes pi(xi) = PU(Yi =
1|xi) = exp(x′iβ)/[1+ exp(x′iβ)]. The corresponding census likelihood equations
are
∑N

k=1 [yk − pk(xk)]xk =
∑N

k=1 uk(xk) = 0.Adesign-unbiased estimator for these
equations is

∑
i∈s
wiui (xi) =

∑
i∈s
wi [yi − pi (xi)] xi = 0. (12)

The “probability-weighted” estimator for the vector coefficient β is obtained by solv-
ing the equations

∑
i∈s wiui(xi) = 0.

Remark 3.4. When the census equations are defined by the likelihood equations as in
Example 3.4, the estimator obtained by solving the probability-weighted EE is known
in the sampling literature as the “pseudo maximum likelihood estimator (pmle).” See
Binder (1983), Skinner et al. (1989), and Pfeffermann (1993) for discussion with many
examples.

Example 3.5. Consider the population two-level (random intercept) model:

At level 1 (say pupils), Yij = β0i + x′ijβ + εij, εij ∼ N
(
0, σ2

ε

)
, j = 1, . . . ,Mi;

At level 2 (say schools), β0i = l′iα+ vi, vi ∼ N
(
0, σ2

v

)
, i = 1, . . . , N,

(13)

where xij and li are known covariates and εij and vi are independent for all i and j. The
unknown parameters are the vectors of coefficients ϑ′ = (β′, α′) and the variances
τ ′ = (σ2

ε , σ
2
v ). Assume full response. Under ignorable sampling of second- and first-

level units, the mle of (ϑ′, τ ′) are computed most conveniently by iterating between
the estimation of ϑ for “known” τ, and the estimation of τ for “known” ϑ, with the
“known” values defined by the estimators obtained in the previous iteration. The two
sets of estimators on the r-th iteration are obtained as the solutions of the equations,
P(r)ϑ = q(r);R(r)τ = s(r), with appropriate definition of the matrices (P(r), R(r)) and
the vectors (q(r), s(r)), r = 1, 2, . . . , (Goldstein, 1986). If applied to all the population
values, these equations define the corresponding census equations.

Suppose now that second-level units are sampled with probabilities πi that are pos-
sibly related to the intercepts (random effects) β0i, and first-level units are sampled
with probabilities πj|i that are possibly related to the outcomes Yij . The pmle for this
model can be obtained by first expressing the elements of the matrices (P(r), R(r))
and the vectors (q(r), s(r)) as sums over second- and first-level units, and then esti-
mating each population total of the form

∑N

i=1 ti by the H-T estimator
∑

i∈s (ti/πi),
and each population total of the form

∑Mi
j=1 tij by the H-T estimator

∑
j∈si (tij/πj|i).

See Pfeffermann et al. (1998b). We return to multilevel modeling of survey data in
Section 6.2.
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The use of probability-weighted EE is not restricted to normal likelihood equations.
In general, if the left-hand side of the census equations has the form

∑N
k=1 u(yk, xk; θ),

then it can be estimated under the randomization distribution by
∑

i∈s wiu(yi, xi; θ). The
probability-weighted estimator, θ̂PW of θ is the solution of

∑
i∈s wiu(yi, xi; θ) = 0. For

example, if u(yk; θ) = [�(θ − yk)− FU(θ)] where FU(θ) is the cumulative population
distribution at θ and �(a) = 1(0) when a ≥ 0(a < 0), then the probability-weighted
estimator for FU(θ) is obtained by solving

∑
i∈s wiu(yi; θ) = 0, yielding F̂U,PW(θ) =∑

i∈s wi�(θ − yi)
/∑

i∈s wi, which is the familiar Hajek (1971a) estimator. Godambe
and Thompson (1986a) established optimality properties of estimators that solve EE
of the form

∑
i∈s wiu(yi, xi; θ) = 0. See Chapter 36 for the estimation of distribution

functions from complex survey data. The use of EE for sample survey inference is
considered in Chapter 26.

Discussion

Methods based on probability weighting are in broad use both for the estimation of
finite-population quantities (often referred to as “descriptive inference”) and for “ana-
lytic inference” on population model parameters. The main attraction of these methods
is that they are deemed to be “model free,” except perhaps when estimating the response
probabilities which are often based on models (sometimes implicitly), see Chapter
9. It is often argued, therefore, that probability weighting is more robust to possible
model misspecification than direct model-based inference, but this argument should be
cautioned.

Probability-weighted estimators are randomization consistent for the correspond-
ing descriptive population quantities (cdpq), defined as the (hypothetical) solu-
tions of the EE for the model parameters if all the population values had been
observed (Pfeffermann, 1993). However, if the population model is misspecified,
the target cdpq could be the wrong estimand. For example, the estimator β̂w =∑

i∈s wi(yi − ŶHT)(xi − X̂HT)
/∑

i∈s wi(xi − X̂HT)
2 estimates the cdpq B = ∑N

k=1

(yk − yU)(xk − xU)
/∑N

k=1 (xk − xU)2, which is generally consistent for the regression
coefficient β under the simple regression model EU(Yk|xk) = α + βxk, but if the true
population regression relationship is actually polynomial and contains x2 as a second
covariate, the use of the estimator β̂w may yield erroneous inference. See Pfeffermann
(1993) and Chapter 24 for further discussion and other examples.

Estimating the randomization variance of probability-weighted estimators is gen-
erally simple, using available techniques in finite population sampling considered in
many chapters of this handbook. Binder (1983) developed a general approach for esti-
mating the randomization variance of estimators obtained as the solution of probability-
weighted EE, see Chapters 24 and 26. Fuller (1975), Binder (1983), Chambles and Boyle
(1985), and Francisco and Fuller (1991) developed central limit theorems applicable to
probability-weighted estimators. In spite of these desirable properties of probability-
weighting, the method has some severe limitations (see also Chapter 24):

(1) It is restricted mostly to point estimation. Probabilistic inference like confi-
dence intervals or hypothesis testing requires large sample normality assump-
tions since the randomization distribution of weighted statistics depends on the
sampling design and it is generally unknown for small samples. Consequently,
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the randomization distribution does not lend itself to the use of classical inference
methods, such as likelihood-based inference or Bayesian statistics.

(2) The variances of probability-weighted estimators are computed with respect to
the randomization distribution and the use of this approach does not permit
conditioning on the selected sample, for example, conditioning on the observed
covariates or the selected clusters in a multilevel model.

(3) As often illustrated in the literature, probability-weighted estimators generally
have larger variances than model-based estimators, notably for small samples
and large dispersion of the sampling weights. See the references in Pfeffermann
(1993, 1996) and the more recent references in the next section.

(4) The use of the randomization distribution does not lend itself to prediction prob-
lems, such as the prediction of the dependent variable for given nonsampled
covariates under a regression model, or the prediction of small area means for
areas with no samples, in a small area estimation problem. This is true even for
simple random sampling. Small area estimation under informative sampling of
areas and within the selected areas is considered in Section 6.3.

4. Use of the sample distribution for inference

4.1. Definition and relationship to the population distribution

Basing the inference on the sample distribution of the sample outcomes overcomes
many of the problems underlying the approaches reviewed in Section 3. In particular, it
does not require knowledge of the design and latent variables determining the sample
selection and response probabilities and allows modeling directly the population or
sample pdf of Y |x. However, it requires modeling the sample and response probabilities
as functions of the observed data.

Consider first the case of full response. The marginal sample pdf is defined
then by (1). Note that Pr(Ii = 1|xi, yi) =

∫
Pr(Ii = 1|πi, xi, yi)fU(πi|xi, yi)dπi =∫

πifU(πi|xi, yi)dπi = EU(πi|xi, yi). Pfeffermann and Sverchkov (1999) showed that
for a general pair of vector random variables (v1, v2) measured for unit i ∈ U:

EU(v1i|v2i) = Es(wiv1i|v2i) /Es(wi|ν2i); (14)

EU(πi|v2i) = 1/Es(wi|v2i). (15)

Adding parameter notation, it follows that the sample pdf can be written alternatively as,

fs(yi|xi; θ, γ) = EU(πi|yi, xi; γ) fU(yi|xi; θ)
EU(πi|xi; θ, γ)

= Es(wi|xi; θ, γ) fU(yi|xi; θ)
Es(wi|yi, xi; γ) . (16)

Rearranging yields,

fU(yi|xi; θ) = Es(wi|yi, xi; γ) fs(yi|xi; θ, γ)
Es(wi|xi; θ, γ)

= Es(wi|yi, xi; γ) fs(yi|xi; θ∗)
Es(wi|xi; θ∗, γ) . (17)
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The expectations in the right-hand side of (16) and in (17) are with respect to the sample
pdf of the base weightwi = (1/πi). Thus, when the weights are known for the sampled
units, which is usually the case under full response, the expectation Es(wi|yi, xi; γ) can
be modeled and estimated by regressingwi against (yi, xi), using classical model fitting
procedures (see below). Similarly, the sample pdf fs(yi|xi; θ∗) can be identified and
estimated using classical procedures applied to the observed data. It follows, therefore,
from (17) that the population pdf fU(yi|xi; θ) can be estimated based on only the sample
outcomes and weights, without knowledge of the design variables values inZU or an ade-
quate summary of them. Moreover, for given (estimated) expectations Es(wi|yi, xi; γ),
the goodness of fit of the population model can be evaluated by testing the goodness of
fit of the sample model using classical techniques, since the sample model relates to the
observed outcomes. See Krieger and Pfeffermann (1997) for illustrations. By definition,
the sample pdf conditions on the selected sample and the observed covariates, unlike
probability weighting.

Remark 4.1. Skinner (1994) proposed to extract the population model in (17)
by using the following two identities: i) fU(yi|xi, wi) = fs(yi|xi, wi), (follows from
Eq. 1, see also Remark 3.2), and ii) fU(wi|xi) = wifs(wi|xi)/Es(wi|xi) (follows from
Eq. 17). Use of the two identities yields, fU(yi|xi) =

∫
fU(yi|xi, wi)fU(wi|xi)dwi =∫

fs(yi|xi, wi)wifs(wi|xi)Es(wi|xi) dwi. The last expression is the same as (17). Application of
this approach requires modeling fs(yi|wi, xi) and fs(wi|xi), rather than fs(yi|xi) and
Es(wi|yi, xi) in (17).
The relationships (16) and (17) can be extended to the case of nonresponse in two
ways. If the response probabilities can be estimated with sufficient accuracy, the inclu-
sion probability in the respondents sample can be estimated by the product of the
original sample-selection probability and the estimated response probability. Estimat-
ing the sampling weight by the inverse of the estimated inclusion probability in the
respondents sample yields then the Eqs. (16) and (17) as the marginal respondent
pdf s (with the index s replaced by r), and Remark 4.1 applies to this case as well.
Alternatively, the case of nonresponse can be treated by noting that (2) can be written
as, fr(yi|xi) = Pr(Ri = 1|yi, xi, Ii = 1)fs(yi|xi)/ Pr(Ri = 1|xi, Ii = 1), with fs(yi|xi)
defined by (16). This representation requires modeling Pr(Ri = 1|yi, xi, Ii = 1), but
the modeling process cannot be carried out by regressing Ri against (yi, xi) because
the outcome values (and possibly the covariates) are only known for the respondents
(Ri = 1). Nonetheless, for a given hypothesized model for the response probabilities,
the goodness of fit of the resulting respondent pdf can be tested by classical procedures
since it refers to the observed outcomes.

Following we assume that the weights wi are known. Suppose first that they are
continuous such as in probability proportional to size (PPS) sampling with a continuous
size variable. If the form of the population model is known, the expectationsEs(wi|yi, xi)
andEs(wi|xi) needed for estimating the sample pdf (Eq. 16) can be estimated by a three-
step procedure:

(1) Identify and estimate Ês(wi|yi, xi) = Es(wi|yi, xi; γ̂), using the sample data.
(2) Integrate

∫ [1/Es(wi|y, xi; γ̂)]fU(y|xi; θ)dy to obtainEU(πi|xi; θ; γ̂) as a func-
tion of θ (follows from 14).

(3) Compute Ês(wi|xi; θ, γ̂) = 1/EU(πi|xi; θ, γ̂) (follows from 15).
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On the other hand, if one is interested in estimating the population pdf using an estimate
of the sample pdf fs(yi|xi; θ∗) (Eq. 17) obtained by fitting a model to the sample data,
then the expectation Es(wi|xi; θ∗, γ) can be estimated by integrating Ês(wi|yi, xi; γ)
in Step 1 over the pdf fs(yi|xi; θ̂∗). See Pfeffermann and Sverchkov (1999, 2003) and
Pfeffermann et al. (2006) for examples and further discussion.

Thus far, we treated the case where the sample inclusion probabilities are continuous.
Estimation of the expectationsEs(wi|yi, xi; γ) andEs(wi|xi; θ, γ) in the case of discrete
inclusion probabilities is similar.

Example 4.1. Consider the case of multinomial-logistic regression with a discrete
covariate x and M possible values for the outcome variable Y . Assuming that
Es(wi|Yi = m, xi = k) is not a function of the model parameters, it can be estimated
bywmk, the mean of the weights in the cell (an application of the method of moments),
and π̂mk = P̂rU(i ∈ s|Yi = m, xi = k) = (1/wmk). Hence,

Prs (Yi = m|xi = k) = Pr (i ∈ s|Yi = m, xi = k) PrU (Yi = m|xi = k)
Pr (i ∈ s|xi = k)

∼= [PrU (Yi = m|xi = k) /wmk]
M∑

m∗=1
[PrU (Yi = m∗|xi = k) /wm∗k]

. (18)

The sampling weights feature in the sample model, but this is not an application of
classical probability weighting. Clearly, when wmk = const, (18) is the same as the
population model. See Pfeffermann and Sverchkov (2003) for the fitting of this model.
For an example of the evaluation of the expectationsEs(wi|xi)with discrete selection
probabilities but continuous outcome and explanatory variables, see Pfeffermann and
Sverchkov (1999).

4.2. Independence under the sample distribution

In subsequent sections, we use an independence result established in Pfeffermann et al.
(1998a). By this result, under some general regularity conditions and for many com-
monly used sampling schemes for selection with unequal probabilities, if the population
measurements are independent, the sample measurements are “asymptotically indepen-
dent” with respect to the sample model. The asymptotic framework requires that the
population size increases but the sample size is held fixed.

The restriction to independent population measurements is not as restrictive as it may
seem. To see why, consider again the two-level model of Example 3.5,

Level 1: Yij = β0i + x′ijβ + εij, εij ∼ N
(
0, σ2

ε

); j = 1, . . . ,Mi

Level 2: β0i = l′iα+ vi, vi ∼ N
(
0, σ2

v

); i = 1, . . . , N, (19)

where εij and vi are independent for all i and j. Suppose that n second-level units are
sampled with probabilitiesπi, and thenmi first-level units are sampled with probabilities
πj|i from selected second-level unit i. Denote by λ = (α′, σ2

v ) and θi = (β0i, β, σ
2
ε )

the second- and first-level parameters, respectively. By (16), the corresponding sample
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models are,

Level 1: fsi
(
yij|xij; θi, γ1

) = E
(
πj|i|yij, xij; γ1

)
fU
(
yij|xij; θi

)
E
(
πj|i|xij; θi, γ1

)
Level 2: fs(β0i|li; λ, γ2) = E (πi|β0i, li; γ2) fU (β0i|li; λ)

E (πi|li; λ, γ2)
. (20)

By the independence result, if Yij|θi are independent under the population model, then
they are asymptotically independent under the sample model. Similarly, if the random
intercepts β0i are independent under the population model, then they are asymptotically
independent under the sample model. Thus, the sample model defined by (20) is again
a genuine two-level model, although with different distributions and more parameters.
Fitting two-level models to survey data is considered in Section 6.2.

4.3. Estimation of model parameters

In what follows we assume that the sample outcomes are independent. By (16), the sam-
ple model contains the parameters θ governing the population model and the parameters
γ governing the sampling weight expectation Es(wi|yi, xi; γ). As argued previously,
the latter expectation can usually be estimated by regressing wi against (yi, xi), pro-
vided, of course, that the sampling weights are known. This would generally be the
case if all the sample units respond, or when the response probabilities can be esti-
mated sufficiently accurately. The estimates γ̂ obtained that way can be held fixed when
estimating θ. Alternatively, γ can be estimated jointly with θ, but it is important to
ascertain that the sample model is identifiable. Pfeffermann et al. (1998a) showed that
in Example 1.2 of this chapter not all the sample model parameters are identifiable. In
situations where the response mechanism is informative, the parameters γ∗ governing
the response probabilities Pr(Ri = 1|yi, xi, Ii = 1; γ∗) (Eq. 2) must be estimated along
with θ. In this case, the identifiability of the model can be more problematic, although
it is often resolved by not having the same covariates in the population model and the
model for the response probabilities, or by adding calibration constraints. In what fol-
lows we assume full response and that γ is known, and review methods for estimating
the parameters θ = (θ0, θ1, . . . , θk)

′ governing the population model fU(yi|xi; θ). We
consider the case of single-stage sampling and assume that the sample outcomes are
independent. Under mild conditions, θ is the unique solution of the equations,

WU (θ) =
∑
j∈U

EU
(
δj|xj

) = 0, (21)

where δj = (δj,0, δj,1, . . . , δj,k)
′ = ∂ log fU(yj|xj; θ)/∂θ is the j-th score. Pfeffermann

and Sverchkov (2003) considered three different approaches for estimating θ. The com-
mon feature of these approaches is that the only data used for estimation are the observa-
tions {(yi, xi, wi), i ∈ s}. In Section 4.4, we consider the use of the “full likelihood” that
assumes knowledge of the covariates {xj, j ∈ U} and possibly also additional design
information.

The first approach redefines the parameter equations with respect to the sample model.
Assuming that Es(wi|xi; θ, γ) is differentiable with respect to θ, the sample model
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parameter equations are

W1s (θ) =
∑
i∈s
Es{[∂ log fs (yi|xi; θ, γ) /∂θ] |xi}

(22)
=
∑
i∈s
Es{[δi + ∂ logEs (wi|xi; θ, γ) /∂θ] |xi} = 0.

The vector θ is estimated under this approach by solving the equations,

W1s,e (θ) =
∑
i∈s

[δi + ∂ logEs (wi|xi; θ, γ) /∂θ] = 0. (23)

Note that (23) defines the likelihood equations based on the sample model, which we
refer to as the sample likelihood.

The second approach of estimating θ applies the relationship (14) to the parameter
equations (21). For a random sample from the sample model, the parameter equations
are then,

W2s (θ) =
∑
i∈s
Es (qiδi|xi) = 0, (24)

where qi=wi/Es(wi|xi). The vector θ is estimated under this approach by solving the
equations,

W2s,e (θ) =
∑
i∈s
qiδi = 0. (25)

The third approach uses the property that if θ solves (21), then it solves also the equations,

W̃U(θ) = ∑j∈U EU(δj) = EX

[∑
j∈U EU(δj|xj)

]
= 0, where EX(·) is the expectation

of X with respect to the population distribution (viewed as random). Hence, by (14),
for a random sample from the sample model, the parameter equations are W3s(β) =∑

i∈s Es(wiδi) = 0, with EE,

W3s,e(β) =
∑
i∈s
wiδi = 0. (26)

Note that the Eqs. (26) are the pseudolikelihood equations (Remark 3.4).

Remark 4.2. The difference between the estimating Eqs. (25) and (26) is that the
latter use the sampling weights wi, where as the former use the adjusted weights
qi = wi/Es(wi|xi). When the sample selection probabilities depend on the covariates
in x, but not on the outcome variable Y , the sampling is ignorable. Hence, it is generally
only necessary to account for the net sampling effects on the target conditional pdf of
Yi|Xi = xi. This is achieved by using the weights qi. In contrast, the sampling weights
wi account for the sampling effects on the joint distribution of (Yi, Xi). As a result,
they tend to be more variable than the weights qi. Note, in particular, that when w is a
deterministic function of x (e.g., when all the variables determining the sample selec-
tion and response probabilities are included among the covariates, see Section 3.1),
wi = Es(wi|xi), qi = 1, and the Eqs. (25) reduce to the ordinary unweighted likelihood
equations

∑
i∈s δi = 0. Pfeffermann and Sverchkov (1999, 2003) illustrated that esti-

mating θ by solving the Eqs. (25) yields estimators with lower randomization variance
than estimating θ by solving the Eqs. (26).
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Example 4.2. Let the population model be, Yj = x′jβ + εj; EU(εj|xj) = 0,

EU(ε
2
j |xj) = σ2

ε . Solving (25) yields, β̂q =
[∑

i∈s qixix
′
i

]−1∑
i∈s qixiyi. Solving

(26) yields, β̂w = [∑i∈s wixix
′
i]−1

∑
i∈s wixiyi, which is the familiar “probability-

weighted” estimator. As easily verified, the use of the weights qi yields ran-
domization consistent estimators for the census regression coefficients B̃ ={∑

j∈U
[
xjx

′
j/Es(wj|xj)

]}−1∑
j∈U [xjyj/Es(wj|xj)], and hence consistent estima-

tors for β under the DU distribution, even when Es(wi|xi) is misspecified.

Pfeffermann and Sverchkov (2003) studied parametric and resampling estimators for
the variances of the estimators obtained under the three approaches considered above.
For the likelihood Eq. (23) and under some regularity conditions, the variances can be
estimated by the inverse information matrix, using familiar properties of mles. For the
estimating Eqs. (25) and (26), the variances can be estimated under similar regularity
conditions as,

V̂s

(
θ̂
)
=
[
Ẇks,e

(
θ̂
)]−1

{∑
i∈s

[
aiδi

(
θ̂
)] [

aiδi

(
θ̂
)]′}[

Ẇks,e

(
θ̂
)]−1

, (27)

where Ẇks,e(θ̂) = [∂Wks,e(θ)/∂θ]θ=θ̂ , with k = 2 and ai = qi in the case of (25), and
k = 3 and ai = wi in the case of (26). Alternatively, the variances can be estimated by
resampling methods, such as the bootstrap or the jackknife, since by the independence
result of Section 4.2 the sample observations are at least approximately independent.

Remark 4.3. The use of the adjusted weights qi can be justified by least squares esti-
mation. Consider the population model,

yj = gθ
(
xj
)+ εj, EU (εj|xj) = 0, EU

(
ε2
j |xj

)
= σ2v

(
xj
)
, (28)

where gθ(·) has a known form and the function v(x) > 0 is known. By

(14), for any θ̃ in the parameter space �, 1
n

∑
i∈s Es

{
qi
[Yi−gθ̃(xi)]2

v(xi)
|xi
}
= 1

n

∑
i∈s

Es

{
qi
[Yi−gθ(xi)+gθ(xi)−gθ̃(xi)]2

v(xi)
|xi
}
= σ2 + 1

n

∑
i∈s
{ [gθ(xi)−gθ̃(xi)]2

v(xi)

}
, with the expectation

Es(·) taken over the joint sample distribution of (w, Y)|x. It follows that,

θ = argmin
θ̃

1

n

∑
i∈s
Es

{
qi

[
Yi − gθ̃ (xi)

]2
v (xi)

}
. (29)

The vector θ can be estimated, therefore, by the generalized least square (GLS) estimator,

θ̂GLS = argmin
θ̃

1

n

∑
i∈s

{
q̂i

[
yi − gθ̃ (xi)

]2
v (xi)

}
,where q̂i = wi

Ês (wi|xi)
. (30)

Under mild regularity conditions, the estimator θ̂GLS is consistent for θ even when the
expectation Ês(wi|xi) in q̂i is misspecified.

Magee (1998) considered the case where gθ(x) in (28) is linear. The author showed
that in this case and under certain moment assumptions, any estimator θ̂h,α satisfying,
θ̂h,α = arg minθ̃

∑
i∈s {wi[yi − gθ̃(xi)]2/h(xi, α)}with positive h is consistent for θ. The
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weights h(xi, α) belong to a parameterized family of functions with the vector parameter
α chosen to minimize a scalar variance criterion, such as the determinant or the trace
of the asymptotic variance estimator V̂ [θ̂h,α]. The resulting “quasi-Aitken” estimator
is shown to have asymptotically a lower variance under the sample distribution than
the probability-weighted estimator β̂w defined in Example 4.2. See Eq. 13 of Magee
(1998) for the asymptotic variance estimator V̂ [θ̂h,α] used by the author. Generalization
of these results to nonlinear models, however, is not straightforward. See the discussion
in Kott (2007).

4.4. The full likelihood

Theoretically, a more efficient procedure of estimating the unknown parameters is to
base the likelihood on the joint pdf of the sample data and the sample membership
indicators, that is,

f (IU, ys|xs, xs̃; θ, γ) =
∏
i∈s

Pr(i ∈ s|yi, xi; γ) fU(yi|xi; θ)

×
∏
j /∈s

[
1− Pr

(
j ∈ s|xj; θ, γ

)]
, (31)

where IU = {I1, . . . , IN} is the vector of sample indicators and Pr(j ∈ s|xj) =∫
Pr(j ∈ s|yj, xj)fU(yj|xj)dyj is the “propensity score” for unit j. The pdf (31) assumes

that Pr(IU |yU, xU) = ∏
k∈U Pr(Ik|yk, xk) (Poisson sampling). The “full likelihood”

based on (31) has the advantage of accounting for the sampling probabilities of units
outside the sample, but it requires knowledge of the covariates of all the population units.
See, for example, Gelman et al. (2003), Pfeffermann and Sverchkov (2003), and Little
(2004). Modeling the joint distribution of the covariates for units outside the sample and
integrating them out of the likelihood can be very complicated and is formidable when
there are many of them. Pfeffermann et al. (2006) compared empirically the use of the
sample likelihood with the use of the full likelihood for multilevel models in a Bayesian
framework. The two approaches yielded similar results, but this of course may not be
the case in other applications.

Another way of defining the full likelihood is by application of the missing infor-
mation principle (MIP, Ceppellini et al., 1955; Orchard and Woodbury, 1972). The
basic idea is to express the sample score function as the conditional expectation of the
population score function, given the sample data. Following Chambers (2003), define
the full-sample likelihood as, Ls(λ) = f(ys, xs, IU, zU; λ), where (ys, xs) represent the
observed outcomes and covariates and zU is the known matrix of the population val-
ues underlying the sample selection (see Section 2). The corresponding full-population
likelihood is LU(λ) = f(yU, xU, IU, zU; λ), where yU = (ys, ys̃) and xU = (xs, xs̃).
The MIP principle states that

scs (λ) = (∂/∂λ) log [Ls (λ)] = EU [(∂/∂λ) logLU (λ) |ys, xs, IU, zU] . (32)

A similar identity defines the relationship between the population information matrix
and the sample information matrix.

Breckling et al. (1994) and Chambers et al. (1998) considered applications of the
MIP to complex survey data. In particular, Chambers et al. (1998) studied the use of the
MIP when only limited design information is available rather than the full information
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entailed inZU . The authors showed examples where the use of the MIP is more efficient
than the use of the sample likelihood (22), which does not use any design information
other than the weights {wi, i ∈ s}.

Remark 4.4. Sections 4.1 and 4.3 assume full response. As noted before, in the case of
nonignorable nonresponse, the parameters governing the response process need to be
estimated along with the parameters governing the population pdf, and possibly also
the parameters governing the sample-selection process (Eq. 2). An important advantage
of the use of “sample likelihood” or the “full likelihood” is that they do not require
in principle knowledge of the sample selection and response probabilities, although
they require in this case modeling the two selection processes as functions of all the
available data.

5. Prediction under informative sampling

5.1. The sample-complement distribution

In this section, we consider the prediction of outcome values for units outside the sample
with application to the prediction of finite population totals. Prediction of small area
means for sampled and nonsampled areas is considered in Section 6.3. Notice that under
informative sampling, the sample-complement, s̃ = U − s, is likewise an informative
sample and the model holding for units j ∈ s̃ is different in this case from the sample
model, and also from the population model, although as shown in Remark 5.1, the
latter difference can often be ignored when the population is large and the sampling
fraction is small. In what follows we assume single-stage sampling and full response,
but the definitions and results of this section can be extended to the case of nonresponse,
similarly to the extensions considered in previous sections.

Sverchkov and Pfeffermann (2004) defined the conditional marginal sample-
complement pdf for units outside the sample as,

fs̃ (yi|xi) def= fU (yi|xi, Ii = 0) = Pr (Ii = 0|yi, xi) fU (yi|xi)
Pr (Ii = 0|xi) . (33)

Using the relationships between the population pdf and the sample pdf in Section 4.1
and the equality Pr(Ii = 0|yi, xi) = 1 − Pr(Ii = 1|yi, xi) = 1 − EU(πi|yi, xi), the
marginal sample-complement pdf and its expectation can be written as,

fs̃ (yi|xi) = EU [(1− πi) |yi, xi] fU(yi|xi)
EU [(1− πi) |xi] = Es [(wi − 1) |yi, xi] fs(yi|xi)

Es [(wi − 1) |xi] ,

(34)

Es̃ (Yi|xi) = EU [(1− πi) Yi|xi]
EU [(1− πi) |xi] = Es [(wi − 1) Yi|xi]

Es [(wi − 1) |xi] . (35)

Remark 5.1. As with the population pdf, the sample-complement pdf is determined
by the sample pdf and the expectation Es(wi|yi, xi), both of which can be modeled
and estimated from the sample using classical inference techniques. Note that unless
EU(πi|yi, xi) = EU(πi|xi), the population, sample and sample-complement pdfs are all



476 D. Pfeffermann and M. Sverchkov

different. Nonetheless, for small sampling fractions such that πi < δ for all i ∈ U with
probability 1,

fs̃ (yi|xi) = fU(yi|xi)+ EU{[EU (πi|xi)− πi] |yi, xi}fU(yi|xi)
EU [(1− πi) |xi]

= fU(yi|xi) (1+�) , (36)

where −δ < � < δ/(1− δ). It follows from (36) that in the common case where δ is
very small, the difference between the population pdf and the sample-complement pdf is
also small, which of course is not surprising. This, however, is not always the case and
in small area estimation, for example, the number of selected areas may actually exceed
the number of unselected areas, implying that in this case predicting the area means
for nonsampled areas based on the population model can yield large biases. See Sec-
tion 6.3. Another example is informative nonresponse where the probability to respond
is ordinarily high and hence the distribution of the outcomes for the nonrespondents can
be very different from the population distribution. The imputation of the missing values
has to be based in this case on the distribution of the outcomes for nonresponding units.

Remark 5.2. The definition of the sample-complement pdf generalizes to the joint pdf
of two or more measurements associated with nonsampled units. In particular, defining
similarly to Section 1 by Ãs̃ the sample-complement indicator such that Ãs̃ = 1 if the
sample-complement is s̃ and Ãs̃ = 0 otherwise, and denoting the data associated with
s̃ by (Ys̃, Xs̃), the joint sample-complement pdf of Ys̃ for given Xs̃ = xs̃ is then,

fs̃(ys̃|xs̃) = fU
(
ys̃|xs̃, Ãs̃ = 1

)
=

Pr
(
Ãs̃ = 1|ys̃, xs̃

)
fU(ys̃|xs̃)

Pr
(
Ãs̃ = 1|xs̃

) . (37)

5.2. Prediction of finite population totals under informative sampling

Model-based prediction of finite population means or totals under noninformative sam-
pling is treated in Chapter 23. Let T = ∑N

j=1 Yj be the population total. Denote the
“design information” available for prediction by Ds = {(yi, wi), i ∈ s; (xj, Ij), j =
1 . . . N}, and let T̂ = T̂ (Ds) be a predictor of T . The mean square error (MSE) of T̂ |Ds

with respect to the population pdf is

MSE
(
T̂ |Ds

)
= EU

[(
T̂ − T

)2 |Ds

]
= EU

{[
T̂ − EU(T |Ds)

]2 |Ds

}
+ VU(T |Ds)

=
[
T̂ − EU(T |Ds)

]2 + VU(T |Ds) . (38)

It follows from (38) that MSE(T̂ |Ds) is minimized when T̂ = EU(T |Ds). Now,

EU (T |Ds) =
∑
i∈s
EU (Yi|Ds, Ii = 1)+

∑
j /∈s
EU

(
Yj|Ds, Ij = 0

)

=
∑
i∈s
yi +

∑
j /∈s
Es̃
(
Yj|xj

)
, (39)
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where the last equality assumes that Yj for j ∈ s̃ and Ds are uncorrelated given xj . The
prediction problem reduces, therefore, to the estimation of the expectations Es̃(Yj|xj),
which can be assessed by use of (35).

Let the sample-complement model take the general form,

Yj = Cβ
(
xj
)+ εj, Es̃

(
εj|xj

) = 0,

Es̃
(
ε2
j |xj

) = σ2v
(
xj
)
, Es̃

(
εkεj|xk, xj

) = 0, k �= j, (40)

where Cβ(x) is a known (possibly nonlinear) function of x that is governed by an
unknown vector parameter β. The variance function v(x)> 0 is assumed known. Under

mild conditions, the vector β satisfies, β = arg min
β̃

∑
i∈s Es̃

{ [Yi−Cβ̃(xi)]2
v(xi)

}
; where the

expectation is with respect to the sample-complement distribution of Y . By (35),

β = arg min
β̃

∑
i∈s Es

{
r̃i

[Yi−Cβ̃(xi)]2

v(xi)

}
; with r̃i = wi−1

Es(wi)−1 and the expectation taken with

respect to the joint sample distribution of (w, Y). Noting that Es(wj) = const, β can

be estimated as, β̂ = arg min
β̃

∑
i∈s (wi − 1)

[yi−Cβ̃(xi)]2
v(xi)

. The predictor of the population

total T is then, T̂ =∑i∈s yi +
∑

j /∈s Cβ̂(xj), where Cβ̂(xj) is obtained from Cβ(xj) by

substituting β̂ for β.

Example 5.1. An important special case of the predictor T̂ occurs when
Cβ(xj) in (40) is linear with an intercept and v(xj)= const. Let x′j = (1, x̃′j) and

β′ = (βs̃0, β′s̃). Denoting Ts̃(x̃)= ∑
i/∈s x̃i and [T̂s̃, T̂s̃(x̃)]= [(N − n)

/∑
i∈s (wi − 1)]

[∑i∈s (wi − 1)(yi, x̃i)], the predictor takes in this case the form, T̂Reg = ∑
i∈s yi +

T̂s̃ + B̃′s̃[Ts̃(x̃)− T̂s̃(x̃)], where B̃s̃ is a probability-weighted estimator for the vector
coefficient of βs̃, but with weights (wi − 1) instead of the base weights wi. As is eas-
ily verified, T̂Reg is randomization consistent for the realized population total T . This
predictor can be obtained also as a special case of the cosmetic predictors proposed
by Brewer (1999b), and it only requires knowledge of the sampled covariates and
their population mean, but notice that the development of the cosmetic predictors and
their MSE assumes noninformative sampling.

Remark 5.3. Under the sample-complement model (40) with some added mild condi-

tions, β satisfies also, β = arg min
β̃

1
n

∑
i∈s Es

{
ri
[Yi−Cβ̃(xi)]2

v(xi)

∣∣∣ xi}; where ri = (wi−1)
Es(wi|xi)−1

and the expectation is taken with respect to the joint sample distribution of (w, Y)|x
(follows similarly to the derivation of Eq. 29). A more efficient estimator of β is

therefore, β̂ = arg min
β̃

∑
i∈s

(
r̂i

[yi−Cβ̃(xi)]2

v(xi)

)
; with r̂i = (wi−1)

Ês(wi|xi)−1
. This estimator,

however, requires modeling and estimating the expectation Es(wj|xj). See the discus-
sion in Remark 4.2. Sverchkov and Pfeffermann (2004) considered other models and
corresponding predictors.

Next consider the case of no auxiliary variables (xk = 1 for all k). Then, by (39) and

(35), T̂ =∑i∈s yi + (N − n)Ês
[

wj−1

Ês(wj)−1
Yj

]
. Estimating the two sample expectations

in the second term by the respective sample means (an application of the method of
moments) yields the predictor, T̂ =∑i∈s yi+ (N−n)∑

i∈s (wi−1)

∑
i∈s (wi − 1)yi. For sampling
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designs such that
∑

i∈s wi = N for all s, or when estimating Ês(wi) = N/n, the latter
predictor reduces to the H-T estimator T̂H-T =∑i∈s wiyi.

Example 5.2. For small sampling fractions, it is often sensible to predict all the
population y-values by their expectation under the population distribution, rather
than just predict the y-values for the nonsampled units by their sample-complement
expectations. Consider again the case of no auxiliary variables. By (14), EU(Yi) =
Es(wiYi)/Es(wi). Estimating the two expectations by their sample means yields the
Hajek estimator, T̂Hajek =∑N

k=1 Êp(Yi) = N
∑

i∈s wiyi/
∑

i∈s wi.

5.3. Mean square error estimation

Estimating MSE(T̂ |Ds) = EU[(T̂ − T )2|Ds] for a predictor T̂ requires strict model
assumptions that may be hard to validate. To deal with this problem, Sverchkov and
Pfeffermann (2004) proposed replacing the model expectation by the randomization
expectation, that is, estimating instead MSEDs(T̂ ) = EDs [(T̂ − T )2|YU = yU, xU],
where EDs defines the randomization expectation over all possible realizations of Ds,
that is, over all possible sampled y-values and their corresponding x-values and base
weights, with the population values of x and y held fixed. Estimation of the randomiza-
tion MSE of the various predictors has the additional advantage of allowing their use
under the design-based approach.

Sverchkov and Pfeffermann (2004) considered the following two-step MSE estimator
(assuming, as before, single-stage sampling).

Step 1. Generate a single “pseudo population” by selectingwith replacement N units
from the original sample with probabilities proportional to wi = 1/πi, where N
is the population size. The justification for this step is given below. Denote by Tpp
the sum of the y-values in the pseudo population.

Step 2. Select independently a large number B of samples from the pseudo popula-
tion generated in Step 1, using the same sampling scheme as used for the selection
of the original sample and reestimate the population total.

Let T̂ represent any of the predictors and T̂ bpp the predictor obtained for sample b.
Estimate,

MŜEDs
(
T̂
)
= 1

B

B∑
b=1

(
T̂ bpp − Tpp

)2
. (41)

The performance of the estimator (41) in estimating the randomization MSE depends
on the “closeness” of the pseudo population generated in Step 1 to the actual popula-
tion from which the original sample was drawn. The closeness of the two populations
can be verified in part by noting that the marginal distribution of Yi|xi in the pseudo
population on any given draw is the same as in the original population. To see this, note
that the pseudo population generated in Step 1 is a sample with replacement from the
original sample with selection probabilities Cwi on each draw, where C = 1/

∑n
j=1wj .

Denoting by fpp(yi|xi) the marginal pseudo population pdf on a given draw, we obtain
by (16) and (15),

fpp (yi|xi) = Es(Cwi|yi, xi) fs (yi|xi)
Es(Cwi|xi) = EU(πi|xi) fs (yi|xi)

EU(πi|yi, xi) = fU(yi|xi). (42)
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Remark 5.4. As with the standard bootstrap method for variance estimation, a success-
ful application of this procedure requires that the original sample size is sufficiently large
and that the sample measurements are approximately independent (see Section 4.2).

Remark 5.5. Step 1 is similar and asymptotically equivalent to duplicating sample unit
i, wi times. Notice, however, that the use of the duplication procedure does not yield
pseudo populations of size N unless

∑n
i=1wi = N. It is also not clear how to establish

the relationship (42) when using this procedure.

6. Other applications of the sample distribution

In this section, we discuss more elaborate applications of the sample distribution, all
of which assuming full response. Where appropriate, we first review corresponding
probability weighting approaches.Another application, the analysis of longitudinal data,
is discussed in Chapter 32.

6.1. Nonparametric estimation under informative sampling

Nonparametric and semiparametric estimation with complex survey data are discussed in
Chapter 27. Chambers et al. (2003) considered two alternative classes of nonparametric
estimators for g(x) = EU(Yi|Xi = x) under informative sampling. The first class is
applicable for sampling designs where for each inclusion probability πi corresponds a
sizeable subsample of units, all selected with the same probability. Classical examples
are stratified or cluster sampling schemes with all the units in the same stratum or cluster
being selected with equal probabilities.

By (14) and repeated application of Bayes theorem,

g(x) = Es[wiEs(Yi|Xi = x,wi) fs(x|wi)]
Es[wifs(x|wi)] . (43)

Thus, for given Es(Yi|Xi = x,wi) and fs(x|wi), g(x) can be expressed as the ratio of
two sample-based expectations, where both expectations (the external expectation in the
numerator and the expectation in the denominator) are with respect to the sample pdf
fs(wi). The expectationEs(Yi|Xi = x,wi) is with respect to the sample distribution and
thus can be estimated from the sample data. The same is true for fs(x|wi)when for each
sampling weightwi corresponds a sizeable number of sampled units. For example, in the
case of stratified sampling, one can use a smooth nonparametric estimate f̂s(x|wi)within
each stratum. Estimating the external expectation in the numerator and the expectation
in the denominator by the corresponding sample means yields then the estimator

ĝ(x) =
∑
i∈s
wiÊs(Yi|Xi = x,wi) f̂s(x|wi)∑

i∈s
wif̂s(x|wi)

. (44)

The second class of estimators considered by Chambers et al. (2003) is obtained by
writing, using (14),

EU,e = EU[Yi − g(xi)] = Es{wi [Yi − g(xi)]}/Es(wi) = 0, (45)
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implying Es{wi[Yi − g(xi)]} = 0 since Es(wi) = const. Estimating Es{wi[Yi − g(xi)]}
by a kernel-based estimate with kernel K(·) and bandwidth b(x) defines the EE,

Ese =
∑
i∈s
wiK

[
x− xi
b(x)

]
[yi − g(x)] = 0, (46)

which in turn yields the nonparametric estimate,

ĝw(x) =
∑
i∈s
wiyiK

[
x− xi
b(x)

]/∑
i∈s
wiK

[
x− xi
b(x)

]
. (47)

Remark 6.1. An alternative estimator to (47) is obtained by writing, using again (14),

ẼU,e|x = EU{[Yi − g(xi)] |xi} = Es{qi[Yi − g(xi)] |xi} = 0, (48)

where, as before, qi=wi/Es(wi|xi). Following the same steps as above yields the alter-
native nonparametric estimator,

ĝq(x) =
∑
i∈s
qiyiK

[
x− xi
b(x)

]/∑
i∈s
qiK

[
x− xi
b(x)

]
. (49)

Simulation results show that the estimators (47) and (49) perform similarly, which
can be explained by the fact that the sample totals

∑
i∈s wiyiK

[
x−xi
b(x)

]
and

∑
i∈s wi

K
[
x−xi
b(x)

]
can be viewed as kernel-based estimates for Es[wiYi|xi] and Es[wi|xi],

respectively.

6.2. Multilevel modeling under informative sampling

Consider the following general two-level population model:

Level 1: Yij|
(
β0i, xij

) ∼ fU(yij|xij, β0i; θ1
)
, j = 1, . . . ,Mi

Level 2: β0i|li ∼ ϕU(β0i|li; θ2) , i = 1, . . . , N, (50)

where fU and ϕU denote the first- and second-level pdf s with known covariates xij and
li, and unknown hyperparameters θ1 and θ2, respectively. The model defined by (19) is
a special case of (50) by which fU and ϕU are normal densities with θ1 = (β, σ2

ε ) and
θ2 = (α, σ2

v ). The problem is to estimate θ = (θ1, θ2) under informative sampling of
first- and/or second-level units. Specifically, consider the following two-stage sampling
process. In the first stage, a sample sofn < N second-level units (say, schools) is selected
with probabilities πi= Pr(i ∈ s) that may be correlated with the random effects β0i

after conditioning on the covariates li. In the second stage, a subsample si of mi < Mi

first-level units (say, pupils) is sampled from each selected second-level unit i with
probabilities πj|i = Pr(j ∈ si|i ∈ s) that may be correlated with the outcomes Yij after
conditioning on the covariates xij .

In example 3.5, we described the computation of the pmle estimators proposed
by Pfeffermann et al. (1998a) for the model defined by (19). Grilli and Pratesi
(2004) applied a pmle approach to multilevel models of ordinal and binary outcomes.
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Both studies propose scaling the sampling weights to reduce the bias in the case
of small first-level sample sizes. More generally, Asparouhov (2006) proposed esti-
mating the model hyperparameters in (50) by maximizing the probability-weighted
likelihood,

l(θ1, θ2) =
n∏
i=1

⎧⎨
⎩
∫ ⎡
⎣ mi∏
j=1

fU
(
yij|xij, β0i; θ1

)wj|ic1i

⎤
⎦ϕU(β0i|li; θ2)dβ0i

⎫⎬
⎭

wic2i

, (51)

where wj|i = 1/πj|i and wi = 1/πi are the base weights and (c1i, c2i) are first- and
second-level scaling constants. The author compares several methods of weight scaling.
The estimators proposed by Pfeffermann et al. (1998a) and Grilli and Pratesi (2004) can
be viewed as special cases of the family of estimators obtained from maximizing the
likelihood (51) with specific choices of the scaling factors, but they applied different
maximization algorithms. Rabe-Hesketh and Skrondal (2006) extended the likelihood
(51) to more than two levels using adaptive quadrature for approximating the integrals in
the pseudolog likelihood. As in the previously cited articles, the authors studied the bias
of the pmle and proposed weight scaling for bias reduction. Korn and Graubard (2003)
considered the one-way random effects model Yij = β + β0i + εij , obtained from (19)
by dropping the covariates at both levels. The authors proposed estimating the variances
σ2
ν and σ2

ε by method of moments type estimators that require knowledge of the pair-
wise selection probabilities πjk|i= Pr(j, k ∈ si|i ∈ s) within the selected second-level
units.

We now turn to the use of the sample model for multilevel modeling under informative
sampling. The basic idea has already been outlined for the linear two-level model (19).
Rather than fitting the population model using probability weighting, one derives the
sample model at each level, using (20). The latter equations apply to any two-level
model with fU(yij|xij; θi) and fU(β0i|li; λ) defining the first- and second-level models,
respectively. As noted in Section 4.2, the model defined by (20) is a genuine two-level
model with approximately independent random effects under mild conditions, but it
generally has a more complicated structure and contains more unknown parameters
than its population counterpart.

Fitting the model (20) requires modeling E(πj|i|yij, xij; γ1) and E(πi|β0i, li; γ2).
Pfeffermann et al. (2006) considered the model (19) and illustrated the modeling of the
two expectations for a particular informative sampling design. The authors estimated
the model hyperparameters, including the parameters γ = (γ1, γ2) using a Bayesian
framework with Markov Chain Monte Carlo (MCMC) simulations. They compared the
Bayesian estimators with the pmle estimators of Pfeffermann et al. (1998a) by way of
a simulation study. The general conclusion of this study is that both procedures yield
approximately unbiased estimators for most of the parameters over repeated sampling
from theUD distribution (see Section 1.2), the exception being σ2

v . For a small number of
second-level units, both methods produce biased estimators for this variance component.
However, the bias when using the Bayesian methodology applied to the sample model
tends to be much smaller. Moreover, using the latter procedure generally yields better
credibility intervals than the conventional t-based confidence intervals obtained by use
of the pmle estimators and their standard errors. Recall, however, that the computation
of the pmle only requires specifying the population model.
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6.3. Small area estimation under informative sampling of areas and within areas

Model-based small area estimation uses multilevel models for the prediction of area
means or other quantities of interest. The use of a model overcomes the problem of
having small samples in at least some of the areas (and possibly no samples in other
areas) by linking the data in the various areas via the model equations. This allows
borrowing strength across the sampled areas and enables predicting the target quantities
for areas with no samples. See Chapter 32 for a comprehensive account of small area
models and inference methods in common use. Our interest in this section is in situations
where the selection of the sampled areas and/or the sampling schemes within the selected
areas are informative.

A possible way of handling informative sampling within the selected areas is by
modeling the direct, design-based probability-weighted estimators for the quantities of
interest instead of the individual (first-level) observations. For example, modeling the

randomization unbiased H-T estimators ŶHT,i =∑j∈si wj|iyij/Mi, where si defines the
sample from area i, Mi is the area size and wj|i are the unit level sampling weights.
Kott (1989), Arora and Lahiri (1997) and Prasad and Rao (1999) model probability-
weighted direct estimators using the random effects model θ̃i = θi + ei; θi = x′iβ+ β0i.
In this model θ̃i is the probability-weighted estimator of the true area mean θi, which
is linked to a vector of area level covariates xi with an added error (random effect)
β0i. This model is a special case of the two-level model (19) considered in previous
sections. See Chapter 32 for further discussion and uses of this model for small area
estimation.

Restricting to direct design-based estimators as the input data results in loss of
efficiency if first-level individual observations (yij, xij) are available. Malec et al.
(1999) considered informative sampling of unit-level observations and used a
“probability-weighted” marginal likelihood in a Bayesian framework for inference.
The authors used data from the U.S. health survey NHANES III (http://www.cdc.gov/
nchs/about/major/nhanes/nh3data.htm), for estimating overweight prevalence in coun-
ties. This is implemented by fitting logistic models with fixed age/race/gender effects
and correlated normal random race/gender effects. To account for informative sampling
within the selected counties, they estimated the sampling probabilities using the sam-
pling weights and used them for constructing the probability-weighted likelihood. The
county prevalence estimates are obtained by combining this likelihood with appropri-
ate prior distributions and applying the Bayesian methodology with the aid of MCMC
simulations for computing the county posterior proportions of overweights.

None of the preceding studies considers informative selection of areas. How can the
sample and sample-complement models be used for small area estimation under infor-
mative sampling of areas and within the selected areas? Suppose that the population is
divided intoN areas of which n areas are selected with probabilities πi = Pr(i ∈ s), and
that from each selected area i of sizeMi, a sample ofmi units is drawn with probabilities
πj|i= Pr(j ∈ si|i ∈ s). Denote by wi= 1/πi and wj|i= 1/πj|i the corresponding base
weights and let the population model have the general form (50). The target popula-
tion parameters are the true small area means, Yi =∑Mi

j=1 Yij/Mi for i = 1 . . . N, (the
means in sampled and nonsampled areas). We denote by Ds = {(yij, wj|i, wi), (i, j) ∈
s; xlm, (l, m) ∈ U} the known data used for estimation. The MSE of a predictor Ŷ i with
respect to the population pdf, given Ds and Ii (Ii = 1 if area i is sampled, Ii = 0
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otherwise) is

MSE
(
Ŷ i|Ds, Ii

)
= EU

[(
Ŷ i − Yi

)2 |Ds, Ii

]

=
[
Ŷ i − EU

(
Yi|Ds, Ii

)]2 + VU
(
Yi|Ds, Ii

)
, (52)

implying that the MSE is minimized when Ŷ i = EU(Yi|Ds, Ii).
Denote by fs(β0i|·), [(fs̃(β0i|·))] the conditional sample (sample-complement)

pdf of the random effects β0i, with expectation operator Es(Es̃), and by fsi(yij|·),
[fs̃i(yij|·)]. The conditional sample (sample-complement) pdf of the outcomes yij , with
expectation operator Esi(Es̃i). Assume the mild condition fs̃i(yil|Ds, β0i, Ii = 1) =
fs̃i(yil|xil, β0i, Ii = 1), (unobserved outcomes in a sampled area are independent of
the observed outcomes and their sampling weights when conditioning on the area ran-
dom effect and the covariates). Using (14) and (35), Pfeffermann and Sverchkov (2007)
showed that for area i in the sample:

EU
(
Yi|Ds, Ii = 1

) = 1

Mi

{∑
j∈si

yij +∑
l /∈si
Es [Es̃i(Yil|xil, β0i, Ii = 1) |Ds]

}

= 1

Mi

{∑
j∈si

yij +∑
l /∈si
Es

[
Esi
[(
wl|i − 1

)
Yil|xil, β0i, Ii = 1

]
Esi
[(
wl|i − 1

) |xil, β0i, Ii = 1
]
∣∣∣∣∣Ds

]}
.

(53)

For area i not in the sample:

EU
(
Yi|Ds, Ii = 0

) = 1

Mi

Mi∑
k=1

Es̃[EU (Yik|xik, β0i, Ii = 1) |Ds]

= 1

Mi

Mi∑
k=1

Es

[
(wi − 1)

Esi
(
wk|iYik|xik, β0i, Ii = 1

)
Esi
(
wk|i|xik, β0i, Ii = 1

) |Ds

]

Es[(wi − 1)|Ds]
. (54)

It follows from (53) and (54) that the computation of the predictors for sampled and non-
sampled areas requires modeling fsi(yij|xij, β0i, Ii = 1), Esi(wj|i|yij, xij, β0i, Ii = 1),
and fs(β0i|Ds), and estimating the unknown parameters featuring in these models.
All these densities and expectations refer to the sample data such that the model-
ing and estimation can be carried out using classical model fitting techniques. The
expectations Es(·) can be estimated by simple averaging over the selected areas.
Informative selection of areas occurs when the area sampling weights wi are cor-
related with the area random effects β0i, but no model is assumed relating the
two terms.

Pfeffermann and Sverchkov (2007) illustrated the computation of the predic-
tors (53) and (54) assuming that the sample model identified for the observed out-

comes is Yij = x′ijβ + β0i + eij; β0i|Ii = 1
ind∼ N(0, σ2

β

)
, eij|Iij = 1

ind∼ N(0, σ2
e

)
, and

Esi
(
wj|i|yij, xij, β0i, Ii = 1

) = ki exp
(
a′xij + byij

)
. The predictors for sampled and



484 D. Pfeffermann and M. Sverchkov

nonsampled areas in this case are

ÊU
(
Yi|Ds, Ii = 1

) = 1

Mi

{
(Mi −mi) θ̂i +mi

[
yi +

(
Xi − xi

)′
β̂
]
+ (Mi −mi) b̂σ̂2

e

}
,

(55)

ÊU
(
Yi|Ds, Ii = 0

) = X′iβ̂ + b̂σ̂2
e +

[∑
i∈s
(wi − 1) β̂0i

/∑
i∈s
(wi − 1)

]
, (56)

where (yi, xi) are the sample means of y and x in area i, Xi is the true area mean of x,

β̂0i = γ̂i

[
yi − x′iβ̂

]
; γ̂i = σ̂2

β

/[
σ̂2
β + σ̂2

e /mi
]
, and θ̂i = β̂0i + Xiβ̂ is the empirical best

linear unbiased predictor (EBLUP) of θi = X
′
iβ + β0i = Esi(Y i|Xi, β0i). The authors

estimated b by fitting the model Esi(wj|i|xij, yij, Ii = 1) = ki exp(a′xij + byij) to the
sample data, (σ̂2

β, σ̂
2
e ) by the method of moments and β̂ by GLS with the unknown

variances replaced by their estimators.
The terms {(Mi −mi)b̂σ̂2

e } in (55) and b̂σ̂2
e in (56) correct for sampling effects within

the selected areas, that is, the difference between the sample-complement expectation
and the sample expectation. Notice that for b = 0, the sampling within the selected areas
is ignorable, and the predictor (55) reduces to the EBLUPpredictor under noninformative
sampling (Chapter 32). The last term in (56) corrects for the fact that under informative
selection of areas, the mean of the random effects for areas outside the sample is different
from zero.

Pfeffermann and Sverchkov (2007) developed bootstrap MSE estimators for the
predictors (55) and (56). They also outlined the basic steps in computing the predictors
under a general two-level sample model fitted to the sample data, with continuous or
discrete outcomes and fixed and random effects, allowing for a general model relating
the unit sampling weights to the outcomes.

7. Tests of sampling ignorability

The methods described in this chapter involve the use of the sampling weights or other
design and response information with various degrees of complexity. It is clear, therefore,
that when the sample selection and response are in fact noninformative, the estimators
obtained by these methods are more entangled and often more variable than classical
model-dependent estimators that ignore the sample selection and nonresponse. For the
complex sampling designs in common use, it is generally difficult and often impractical
to check directly the conditions described in Section 2 that permit ignoring the sampling
process (the sample selection and response). This suggests the need for test procedures
that can guide the analyst whether the sampling process is ignorable for the type of
inference intended.

Several test procedures have been proposed in the literature, mostly in connection
to linear regression analysis. A common feature of these tests is that they compare
probability-weighted estimators for the target parameters with the ordinary (equally
weighted) estimators that ignore the sampling process. For instance, when estimating
the population regression model as in Example 4.2, one can use the test statistic,

λ =
(
β̂OLS − β̂w

)′ ∧
Var
(
β̂OLS − β̂w

)−1(
β̂OLS − β̂w

)
, (57)
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where β̂OLS and β̂w are the OLS and the probability-weighted estimators, respectively.
The null hypothesis that the sampling process can be ignored for estimating β can be
formulated as H0 : Es(Yi|Xi = xi) = x′iβ = EU(Yi|Xi = xi). Note that both estimators
are unbiased for β underH0, but whereas β̂w is consistent for β even under informative
sampling (follows from (26), see also Example 4.2), β̂OLS is generally only consistent
for β under noninformative sampling. For sufficiently large samples, the distribution of
the test statistic (57) under H0 can be approximated by the chi-square distribution with
f = dim(β)degrees of freedom. See, for example, Fuller (1984) for an application of this

test in the case of a stratified multistage sample with
∧

Var(β̂OLS − β̂w) computed under the
randomization distribution. DuMouchel and Duncan (1983) proposed testing the ignor-
ability of the sampling process for estimating β by i) augmenting the design matrix
Xs of the regression model by the columns WsXs, where Ws = Diag(w1, . . . , wn), ii)
fitting the unweighted regression Ŷs = Xsβ̂OLS+WsXsγ̂OLS and, iii) testingH0 : γ = 0
using the conventional F-statistic. Note that the use of this test assumes homoscedas-
tic, uncorrelated residuals. Nordberg (1989) extended the DuMouchel-Duncan test to
generalized linear models. Pfeffermann (1993) extended the use of the test statistic of
the form (57) to other models with unknown vector parameters. Chambers et al. (2003)
introduced similar tests for nonparametric estimation. Pfeffermann and Nathan (1985)
proposed simple test statistics based on cross-validation techniques.

Remark 7.1. Like with any other test procedures, nonrejection of the null hypothesis
could be a result of a type 2 error.Moreover, even if the sample selection and nonresponse
can be ignored for the estimation of a given vector parameter, it does not necessarily
imply that the sampling process has no effect on other features of the population model,
such as the distribution of the residuals. On the other hand, the null hypothesis can be
rejected even if the sampling process is ignorable, either because of a type 1 error or
because the population model is misspecified.

Next, we consider the use of the sample model for testing sampling ignorability.
Suppose first that we want to test whether the population and sample expectations of
Y |x are the same, that is,EU(Yi|xi) = Es(Yi|xi) or equivalently, Covs(Yi, wi|xi) = 0 (the
equivalence follows from Eq. 14). The equality of the two expectations can be assessed,
therefore, by testing Corrs(Yi, wi|xi) = 0. This can be implemented most conveniently
by regressingwi = δ0+h(xi, δx)+δyyi+ηi with some appropriate function h(x, δx) and
unknown coefficients δ = (δ0, δx, δy), and then testing δy = 0 using the conventional
t-statistic. The test refers to the sample distribution, such that the unknown coefficients
can be estimated using standard techniques like OLS.

Remark 7.2. By (16), fU(yi|xi) = fs(yi|xi) iff Es(wi|yi, xi) = Es(wi|xi), implying that
ifEs(wi|yi, xi) is correctly specified, testingEs(wi|yi, xi) = Es(wi|xi) actually tests the
more general hypothesis that the marginal population and sample pdfs are the same.

Pfeffermann and Sverchkov (2007) applied this test for testing the informativeness
of the sample selection in a small-area estimation context. Similar tests can be applied
for testing the equality of moments of the distribution of the population model residuals
and the corresponding moments of the distribution of the sample model residuals. This
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enables testing more closely whether the distribution of the population model residuals
is unaffected by the sampling process (see Remark 7.1). Note, however, that these tests
refer to the marginal distribution of the residuals. Pfeffermann and Sverchkov (1999)
applied such test procedures in the context of regression analysis. See Chambers et al.
(2003) for other similar tests.

Eideh and Nathan (2006) proposed testing the hypothesis Es(wi|yi, xi) = Es(wi|xi)
by using the Kullback-Leibler information measure. They applied the test for the case
whereEs(wi|yi, xi) = exp(a0 + axxi + ayyi). The Kullback-Leibler measure compares
two density functions. In classical applications, samples are available from the two den-
sities, but when applied for testing sampling ignorability, no data are directly observed
from the population density. Extension of this test to more general situations should be
investigated.

Another, more general test procedure uses the EE discussed in Section 4.3, comparing
the EE that ignore the sampling process with the EE that account for it. The results of
this testing procedure can guide the researcher which EE to use in practice. Consider
the population model parameter equations, WU(θ) = ∑

j∈U EU[δj|xj] = 0, where
δj = (δj,0, δj,1, . . . , δj,k)′ = ∂ log fU(yj|xj; θ)/∂θ is the jth score [Eq. (21)]. A plausible
method of accounting for the sampling process discussed in Section 4.3 uses instead the
sample-based analog,

∑
i∈s Es(qiδi|xi) = 0, where qi = wi/Es(wi|qi) [Eq. (24)]. Thus,

the sampling process can be ignored for the estimation of θ ifRn = n−1∑
i∈s R(xi) = 0,

where R(xi) = Es(δi|xi) − Es(qiδi|xi). Pfeffermann and Sverchkov (2003) proposed
testing H0 : Rn = 0 using the Hotelling statistic,

H(R̂) = n− (k + 1)

k + 1
R̂
′
nŜ
−1
n R̂n, (58)

with R̂n = n−1∑
i∈s R̂(xi), R̂(xi) = (δ̂i − q̂iδ̂i), Sn = n−1∑

i∈s(R̂(xi) − R̂n)

(R̂(xi) − R̂n)′, δ̂i = ∂ log fU(yi|xi; θ)/∂θ|θ=θ̂ and q̂i = wi/Ês(wi|xi). Under the null

hypothesis and for sufficienly large samples, H(R̂) ∼ Fk+1,n−(k+1). The estimator θ̂
needed for the evaluation of the score can be estimated under H0 by assuming sam-
pling ignorability. Pfeffermann and Sverchkov (2003) applied the statistic (58) for test-
ing the ignorability of the sampling process when fitting multinomial-logistic models.
Another test along these lines is proposed by Wu and Fuller (2005) for the case of
linear regression. The authors propose testing EU(Yi|xi) = Es(Yi|xi) using the rela-
tionship EU(Yi|xi) = Es(qiYi|xi), (follows from (14)). They showed that in this case
Es(Yi|xi) = x′iβ + qix′iγ and hence EU(Yi|xi) = Es(Yi|xi) iff γ = 0. The sampling
ignorability can be assessed, therefore, by testing the significance of γ̂OLS.

8. Brief summary

In this chapter, we discuss the approaches proposed in the literature to deal with infor-
mative probability sampling, commenting also on how they can possibly be extended to
account for informative nonresponse. The approaches differ in the kind of data required
for their application (knowledge of the population values of the design variables or ade-
quate summary of them, or just the sample observations and the sampling weights), the
level at which the model has to be specified (population model or the sample model),
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the extra modeling steps required, the use of the randomization distribution as part of
the inference process, the type of inference accommodated by them (point estimation,
prediction…), and of course, statistical efficiency. The different approaches differ also
in computation demands and intensity, and the skills and knowledge required from the
analysts applying them.

We find the use of the sample model (Sections 4–7) to be very flexible in terms of data
requirements (it only requires in principle knowledge of the sample data) and inference
possibilities, but it does require modeling the sampling and response probabilities as
functions of the observed data. Including the design variables among the covariates
allows using classical model-based methods, but the population values of these variables
are often unknown to the analyst fitting the model. The use of probability weighting
(Section 3.3), likewise only requires knowledge of the observed data, and it does not
require modeling the sample selection probabilities, but it is limited mostly to point
estimation of population model parameters. The use of this approach does not avoid
modeling the response probabilities. We strongly recommend experimenting with the
use of these approaches, applying them to the same data sets, to further study their
properties and advantages.
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Asymptotics in Finite Population Sampling

Zuzana Prášková and Pranab Kumar Sen

1. Introduction

In finite population sampling (FPS), the theory of objective or probabilistic sampling
plays a fundamental role in statistical inference. In practice, a set or collection of a
finite number (say, N) of objects or units comprise a population, and on the basis of
an objectively chosen subset of these units, called a sample, the task is to draw valid
statistical conclusions on various characteristics of the population. The population size
N, though finite, may typically be large, and the sample size, say n, though presumably
less than N, may or may not be small compared with N (i.e., the sampling fraction
(SF) n/N may not be very small). In survey sampling, the sampling frame defines the
units and the size of the survey population from which the sample is taken unambigu-
ously. It also reconstructs a population having an uncountable (or infinite) number of
natural units in terms of a finite population by redefining suitable sampling units. Thus,
given the sampling frame and units, one may like to draw inference on the population
through an objective sampling scheme. In some other cases, though the units are clearly
defined, the size of the population may not be known and needs to be estimated along
with its other characteristics. In either case, sampling is usually made without replace-
ment (WOR), generally, leading to relatively smaller margins of sampling fluctuations,
though, for sampling with replacement (WR), the theory is relatively simpler in form.
Again, in either scheme, the different units in the population may all have a common
probability for inclusion in the sample, leading to equal probability or simple random
sampling (SRS), or they may be stratified into some subsets, for each of which SRS may
be applied. In the extreme case, the units in the population, depending on their sizes or
some other characteristics, may possibly have different probabilities for inclusion in the
sample (i.e., varying probability sampling). There are other variations, such as cluster
sampling (possibly within strata), double sampling, inter-penetrating sampling, succes-
sive sampling, etc., which are all characterized by an objective procedure defined by a
probability law governing the drawing of the sample units. (See Part 1 of this handbook
for several alternative sampling methods.)

For small N, sampling distributions of statistics can be studied by direct enumer-
ation of all possible cases. However, for large N, as is typically the case in survey
sampling, this enumerational process generally becomes prohibitively laborious. Even
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if N is large, n/N may not be very small, and in such cases, there may be a profound
need to examine appropriate large sample approximations for sampling distributions
and related probability inequalities, incorporating them in applications. There may be
another scenario wherein N is large but not n, where the asymptotics could be different
from the case where the SF is not close to 0. These asymptotics in FPS constitute our
main objective. The asymptotic theory depends on the sampling design, and for diverse
schemes, diverse techniques have been used to achieve the general goals. It is intended
to provide here a general account of these asymptotics.

This chapter is a revisited and updated version of Sen (1988), published inHandbook
of Statistics, Volume 6. During the past 20 years, new developments have occurred in
this field that will be incorporated here. As such, we plan to present some results of
the earlier sections of Sen (1988) more succinctly, adding the later developments and
new sections. In Section 2, we start with the asymptotics in simple random sampling
without replacement (SRSWOR) schemes. ForU-statistics, containing the sample mean
and variances as special cases, asymptotic normality and related results are shortly
presented there. Asymptotics in stratified sampling WOR and some results from simple
random sampling with replacement (SRSWR) are also included. Some asymptotics
on probability inequalities in SRS are briefly appended to Section 2. In Section 3,
enlarged and updated, we deal with asymptotics in resamplingmethods in FPS.Capture-
mark-release-recapture (CMRR) techniques and asymptotic results on the estimation
of the size of a finite population are briefly presented in Section 4. Asymptotic results
on sampling with varying probabilities are treated in greater detail. Limit theorems
along with the allied coupon collector problem are kept in Section 5 that is completed
with latter results. Section 6 deals with asymptotics in maximum entropy, especially in
rejective (conditional Poisson) andorder, especially Pareto, sampling schemes. Section 7
is devoted to asymptotics arising in successive subsampling with varying probabilities
without replacement (SSVPWOR). In the concluding section, we shortly discuss results
that are not reviewed in the previous sections.

2. Asymptotics in SRS

SRSWOR is characterized by a population set AN = (a1, . . . , aN) with N units and a
sample Xn = (X1, . . . , Xn) of size n drawn WOR so that (X1, . . . , Xn) is a (random)
subset of AN , governed by the probability law

P{X1 = ai1 , . . . , Xn = ain} = N−[n] (1)

for every 1 ≤ i1 �= · · · �= in ≤ N, whereN−[n] = (N [n])−1 andN [n] = N · · · (N−n+1)
for n ≤ N (N [0] = 1). Based on Xn, we may be interested in the estimation of the
population mean and population variance

aN = N−1
N∑
i=1

ai and σ2
N = (N − 1)−1

N∑
i=1

[ai − aN ]2, (2)

among other characteristics of the population. The unbiased minimum variance estima-
tors based on Xn (viz., Nandi and Sen, 1963) are given by
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Xn = n−1
n∑
i=1

Xi and s2n = (n− 1)−1
n∑
i=1

(Xi −Xn)2, (3)

respectively, both being special cases of U-statistics, introduced as follows. For a func-
tion g(X1, . . . , Xm) symmetric in its m arguments, m ≥ 1, we define a (population)
parameter

θN = θ(AN) = N−[m]
∑

1≤i1 �=···�=im≤N
g(ai1 , . . . , aim). (4)

The corresponding sample function, viz.,

Un = n−[m]
∑

1≤i1 �=···�=im≤n
g(Xi1 , . . . , Xim) (5)

termed a U-statistic (with the kernel g of degree m) is an unbiased minimum variance
estimator of θN (Nandi and Sen, 1963). In fact, as g(·) is assumed to be symmetric
in its m ≥ 1 arguments, in (4) and (5), we may take 1 ≤ i1 < · · · < im ≤ N (and

1 ≤ i1 < · · · < im ≤ n) and replace N−[m] (and n[−m]) by
(
N

m

)−1
(and

(
n

m

)−1
). Note that

the Xi are not independent random variables (r.v.). Nevertheless, they are symmetric
dependent r.v. For known AN , the exact sampling distribution of Un may be obtained
by direct enumeration of all possible

(
N

n

)
samples of size n from AN . Obviously, this

process becomes prohibitively laborious for largeN (and n). As such, there is a genuine
need to provide suitable approximations to the large sample distribution when N and
n are both large, though n/N (the SF) needs not be very small. In this context, the
permutational central limit theorems (PCLT) play a vital role. For the particular case
of Xn, Madow (1948) initiated the use of PCLT in FPS, and since then, this has been
an active area of fruitful research. This has an immediate connection with linear rank
statistics, for which the most general PCLT is due to Hájek (1961). For a systematic
review of Hájek asymptotics in FPS and connection to the theory of linear rank test
statistics, we may refer to Sen (1995) or Prášková and Sen (1998). For general Un, the
asymptotic normality result for SRS has been studied by Nandi and Sen (1963), with
further generalizations due to Sen (1972), Krewski (1978), Majumdar and Sen (1978),
Zhao and Chen (1990), and others.

Though theoretically the asymptotic theory is justified for N indefinitely large, in
practice the asymptotic approximations work out quite well for N even moderately
large. It has been reported in detail that under very general regularity conditions (Nandi
and Sen, 1963), as N → ∞, n → ∞, and n/N → α,

√{n/(1 − α)}(Un − θN) has
closely a normal distribution with zero mean and variance which is itself a function
of the population elements. Actually, more general invariance principles have been
established, permitting the asymptotic normality even for random sample sizes. These
asymptotic results extend readily to (i) severalU-statistics (vector case) and (ii) functions
of severalU-statistics. In that generality, the case of stratified sampling plans (Bickel and
Freedman, 1984; Krewski and Rao, 1981), as well as the so-called ratio and regression
estimators (Fuller, 1975; Scott and Wu, 1981), studied as separate problems, is covered
by the asymptotic theory developed for U-statistics.
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We mention stratified sampling without replacement in more detail. Suppose that
a population AN of size N is divided into H disjoint strata AN1 , . . . ,ANH of sizes
N1, . . . , NH , N = N1 + · · · + NH . Let Xnh = (Xh1, . . . , Xhnh) be a sample of size nh
selected from the populationANh by SRSWOR. SamplesXnh are selected independently
from each stratum. The total sample size is n = n1 + · · · + nH . Let aNh and σ2

Nh
be the

mean and the variance in population ANh according to (2), and let Xnh and s2nh be their
sample counterparts as given in (3).

The stratified population mean θ = 1
N

∑H
h=1Nhanh =

∑H
h=1whanh,wherewh = Nh

N
,

can be estimated by θ̂ =∑H
h=1whXnh . The variance of this unbiased estimator is

τ2 = Var θ̂ =
H∑
h=1

w2
h Var (Xnh) =

H∑
h=1

w2
h

σ2
Nh

nh
· Nh − nh

Nh
, (6)

and an unbiased estimator of τ2 is

τ̂2 =
H∑
h=1

w2
h

s2nh

nh
· Nh − nh

Nh
. (7)

We can easily see that both θ̂ and τ̂2 are linear combinations of independent U-statistics
and thus the asymptotic theory developed for U-statistics could be applied. Bickel and
Freedman (1984) proceed in a rather direct way. They supposed that the number of
strataH and the population and sample sizes Nh and nh depend on an index ν such that
n(ν) = n1(ν) + · · · + nH(ν) → ∞ as ν → ∞ in any way whatsoever, for example,
many small samples or a few larger samples or some combinations of both are possible.
Assuming that 2 ≤ nh ≤ Nh − 1 for all h, they proved that both the standardized
stratified sample mean (̂θ− θ)/τ and the studentized version (̂θ− θ)/ τ̂ converge to the
standard normal distribution under a generalized Feller-Lindeberg condition∑H

h=1 αh
∑

j∈Bhε
(
ahj − a2

Nh

)
∑H

h=1 αh
∑Nh

j=1(ahj − aNh)2
→ 0 (8)

as ν→∞, where

Bhε =
{

1 ≤ j ≤ Nh : |ahj − aNh | ≥ ε
τnh

wh

}
(9)

andαh = Nh(Nh − nh)/nh(Nh−1). (We suppressed the dependence on ν for simplicity.)
Bickel and Freedman (1984) obtained the result for any linear combination of strata
means. CaseH = 1 (one stratum) coincides with earlier asymptotic results for SRSWOR
by Erdös and Rényi (1959) and Hájek (1960). It may be also remarked that in connection
with resampling methods, second-order asymptotics for the distribution of the stratified
sample mean were considered by Chen and Sitter (1993) as n→∞ and (i) H2 →∞
faster than nh for each h or (ii)H bounded orH2 →∞ but not faster than nh. Bloznelis
(2007) established a similar result for general U-statistics based on stratified sampling
WOR where H remains bounded.

We consider now the case of SRSWR where we have X1, . . . , Xn independent and
identically distributed (i. i. d.) r.v., and

P{X1 = ai} = N−1 for i = 1, . . . , N. (10)
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As such, the classical central limit theorems and weak convergence results for
U-statistics (see Hoeffding, 1948; Miller and Sen, 1972) remain applicable. However,
in SRSWR, the classical estimators of the population mean and variance, considered in
(3), are not optimal in the sense that there are other estimators (based on the distinct
units in the sample) which have smaller variance (or risk with a convex loss function).
In a SRSWR(N, n), let νn be the number of distinct units (so that 1 ≤ νn ≤ n), and let
X(νn) and s2(νn) be the sample mean and variance based on these distinct units. Then, it is
known that X(νn) has a smaller risk than Xn and a similar result holds for the variance
estimators, although s2(νn) is not an unbiased estimator of σ2 (but it can be made unbiased
by introducing a multiplicative factor c(n, νn)). The better performance characteristics
of these estimators are mainly due to the Basu (1958) sufficiency of the number of dis-
tinct units in SRSWR. We refer to Sinha and Sen (1989) for some deeper results in this
direction.

Further, we will discuss the asymptotics in SRSWR based on the distinct units in the
sample. First, we may note that in a SRSWR(N, n),

P{νn = k} = N−n
(
N

k

)
(�k0n) for k = 1, . . . , n, (11)

where �kaq = (a + k)q − (k1)(a + k − 1)q + · · · + (−1)k
(
k

k

)
aq for a ≥ 0, q ≥ 0 and

k ≥ 1. As such, it is easy to verify that for every n ≥ 1,

E(νn) = N{1− (1−N−1)n}, (12)

E(ν−1
n ) = N−n

N∑
k=1

(N − k + 1)n−1. (13)

Thus, if limN→∞(n/N) = α, 0 < α <∞, then

lim
N→∞{N

−1E(νn)} = 1− e−α, lim
N→∞{NE(ν

−1
n )} = (1− e−α)−1. (14)

If we put Zn = νn/E(νn), then from (12)–(14) we obtain that both EZn and E(Z−1
n )

converge to 1 as n increases. On the other hand, Zn is a positive valued r.v., and we
know that for every positive x, (x + x−1)/2 ≥ 1, where the strict equality holds only
for x = 1. Thus, noting that [EZn + EZ−1

n ]/2 → 1 as n increases, we immediately
conclude from the above inequality that Zn converges to 1 in probability, as n → ∞.
Consequently, we have for a SRSWR(N, n), as n/N → α, 0 < α <∞,

n−1νn
P→ (1− e−α)/α. (15)

In this context, we may note that

(1− e−α)/α < 1 for every α > 0, (16)

where for small values of α, the left-hand side of (16) is close to 1. Further, we may note
that the distribution of νn is independent of the population units {a1, . . . , aN} and hence,
given νn = k ≥ 1, the probability distribution of the distinct units (say, X′1, . . . , X

′
k) is

the same as in the SRSWOR(N, k). Thus, given νn = k, we are in a position to adapt
all the asymptotic results for the classical situation in SRSWOR(N, k). Finally, (15)
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ensures that n−1νn
P→ (1− e−α)/α as n (orN) increases with n/N → α > 0 so that we

can again use the central limit theorem for random sample sizes (and its ramifications
for U-statistics, discussed in Miller and Sen, 1972) and conclude that the asymptotic
results on the distribution of U-statistics for SRSWOR(N, n) all extend smoothly for
the distinct sample unit-based U-statistics, provided that we replace n/N(
 α) by
1− (1− N−1)n(
 1− e−α). In view of (16), we conclude that unless α is very small,
the use of the distinct units in SRSWR(N, n) generally leads to some increase in the
efficiency of the estimators.

One important application of the asymptotics in FPS discussed so far is in the area
of probability and moment inequalities for SRSWOR. These are discussed in detail
in Sen (1988), and hence, we present only a few important ones. Reverse martingale
property for SRSWOR (Sen, 1970) allows to derive the Hájek-Rényi-Chow inequality
for U-statistics in FPS without any extra condition. This enables us to prove asymp-
totic results like strong laws of large numbers and establishes strong consistency of
sample statistics (see, e.g., Sen and Singer, 1993, Chapter 2.4). Further, coupled with
invariance principles, it provides sharper asymptotic inequalities that are useful for
asymptotic analysis in other context, too. In particular, let us present the following: let
{dNi; 1 ≤ i ≤ N,N ≥ 1} be a triangular array of real numbers satisfying the normalizing
constraints

N∑
i=1

dNi = 0 and
N∑
i=1

d2
Ni = 1. (17)

Also, let q = {q(t) : 0 ≤ t ≤ 1} be a continuous, nonnegative, U-shaped, and square
integrable function inside I = [0, 1]. Finally, let Q = (Q1, . . . ,QN) take on each
permutation of (1, . . . , N) with the common probability (N!)−1. Then

P

{
max

1≤k≤N
q(k/N)|

k∑
i=1

dNQi
| ≥ 1

}
≤
∫ 1

0
q2(t)dt. (18)

Clearly, in SRSWOR,
∑k

i=1 dNQi
is a standardized sample sum of dNi = (ai − aN)/∑N

i=1(ai − aN)
2, and (18) may be used to provide a simultaneous (in k, 1 ≤ k ≤

N) confidence band for the population mean by choosing q in an appropriate way.
For a related inequality (exploiting the fourth moment but not the inherent martingale
structure), we may refer to Hájek and Šidák (1967, p. 185):

P

{
max

1≤k≤n
∣∣ k∑
i=1

dNQi

∣∣ ≥ t
}
≤ n

N

[
max

1≤i≤N
d2
Ni+3

n

N

] (
1− n

N

)−3
t−4(1+εN), (19)

where εN → 0 as N →∞.
Generally, we may obtain better bounds by exploiting the weak convergence results

in Section 2 of Sen (1988) for large values ofN. As in Sen (1972), we consider the case
of general U-statistics so that the case of sample means (or sums) can be obtained as a
particular one. Note that by virtue of the weak convergence result, stated after formula
(13) there, we have, for every t > 0 and n, n/N → α, 0 < α ≤ 1,

lim
N→∞P

{
max
m≤k≤n

k|Uk − θN | ≥ tm[Nζ1,N ]1/2
}
= P

{
sup

0≤u≤α
|Wo(u)| ≥ t

}
, (20)
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where Wo = {Wo(t), 0 ≤ t ≤ 1} is a Brownian bridge and ζ1,N is an estimable
parameter, explicitly defined in (2.7)–(2.8) in Sen (1988). We note that for m = 1
and g(x) = x, ζ1,N = (1 − n−1)σ2

N. In general, ζ1,N can be consistently estimated
by jackknifing from Un (Nandi and Sen, 1963). Noting that Wo(s/(s + 1)) = (s +
1)−1W(s), s ≥ 0, where W = {W(t), t ≥ 0} is a standard Brownian motion process on
[0,∞), we may rewrite the right-hand side of (20) as

P

{
sup

0≤u≤α/(1−α)
|(u+ 1)−1W(u)| ≥ t

}
. (21)

An upper bound for (21) is given by

P

{
sup

0≤u<∞
|(u+ 1)−1W(u)| ≥ t

}
= 2

∞∑
k=1

(−1)k+1 exp(−2k2t2). (22)

For small values of α as is usually the case encountered in practice, we may get a better
bound of (21):

P

{
sup

0≤u≤α/(1−α)
|(u+ 1)−1W(u)| ≥ t

}
≤ P

{
sup

0≤u≤α/(1−α)
|W(u)| ≤ t

}

≤ 4P{W(α/(1− α)) ≥ t} = 4[1−�(t(1/α− 1)1/2)], (23)

where�(·) is the standard normal d.f. In particular, for kernels of degree 1, (23) may be
compared with (19), and, as 1−�(x) converges to 0 exponentially, as x→∞, usually
(23) performs much better than (19). We conclude this section with the remark that for
moderate values ofN, the equality sign in (20) may generally be replaced by a less than
or equality sign so that we may have a conservative property for small values of N.

3. Resampling in FPS: Asymptotics

Resampling methods, including the jackknife and the bootstrap, can provide standard
error estimates and nonparametric confidence intervals for the parameters of interest
or approximate sampling distributions of statistics. Though originally developed for
i. i. d. r.v., they have been extensively studied in complex sample surveys.

In SRS or other sampling plans, regression or other estimators, jackknife was mainly
introduced to serve a dual purpose: to reduce the bias of estimators (which are typically of
the nonlinear form) and to provide an efficient and asymptotically normally distributed
estimator of the sampling variance of the (jackknifed) estimator. In the same setup as in
Section 2, for a general estimator Tn = Tn(X1, . . . , Xn) (containing U-statistics Un as a
special case), we may define the pseudovalues Tn,i = nTn− (n− 1)T (i)n−1, i = 1, . . . , n,

where T (i)n−1 = Tn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn). Then the jackknifed estimator of a
parameter θN is defined by

T ∗n = n−1(Tn,1 + · · · + Tn,n), (24)

and the Tukey (1958) form of the jackknifed variance estimator is given by

S2
n = (n− 1)−1

n∑
i=1

(Tn,i − T ∗n )2. (25)
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To motivate the jackknifed estimator, we may start with a possibly biased estimator Tn
for which we may have

ETn = θN + n−1a1(N)+ n−2a2(N)+ · · · , (26)

where the aj(N) are real numbers depending possibly on the population size N and the
set AN . Using n− 1 for n in (26) for each T (i)n−1 and (24), we obtain that under (26),

ET ∗n = θN − a2(N)/n(n− 1)+ · · · = θN +O(n−2). (27)

Thus, the bias of Tn is reduced from O(n−1) to that of O(n−2) for T ∗n . In addition to
this important feature of “bias reduction,” the variance estimator S2

n also plays a very
important role in drawing statistical conclusions on θN . Since in this chapter, we are
primarily concerned with the asymptotics in FPS, we shall mainly restrict ourselves to
the discussion of the large sample properties of T ∗n and S2

n.
Keeping in mind the ratio, regression, and other estimators (which are all expressible

as functions of some U-statistics), we conceive a general estimator Tn of the form
Tn = h(Un) where h(·) is a smooth function and Un is a vector of U-statistics, defined
as in Section 2. Also, we keep in mind the conditional (permutational) distribution
generated by the n! equally likely permutations of X1, . . . , Xn among themselves and
define Fn as the sigma-field generated by the order collection of X1, . . . , Xn. Then it
follows from the basic results in Majumdar and Sen (1978) that

T ∗n = Tn + (n− 1)E[(Tn − Tn−1)|Fn] ∀n > m, (28)

S2
n = n(n− 1)Var[(Tn − Tn−1)|Fn] ∀n > m. (29)

Thus, for both the jackknifed estimator T ∗n and the variance estimator S2
n, the inherent

permutational distributional structure provides the access for the necessary modifica-
tions. This theoretical justification for jackknifing has been elaborately studied in Sen
(1977). To fix the notations, we let μN = EUn, and (in a matrix setup) we assume
that

sup
N

E‖g(X1, . . . , Xm)‖4 <∞, m = max(m1, . . . , mp), (30)

where g(·) stands for the vector of kernels of degrees m1, . . . , mp. Further, we assume
that h(u) has bounded second-order partial derivatives with respect to u in some neigh-
borhood μN, and h(μN) is finite. Finally, let us define

σ2
Nn = E[(T ∗n − θN)2], n ≥ n0, where n0 ≥ m is finite, (31)

and assume that there exists a sequence {σ2
N} of positive numbers such that

nσ2
Nn − [(N − n)/(N − 1)]σ2

N → 0 as n→∞, limσ2
N > 0. (32)

Then, it can be proved (see Majumdar and Sen, 1978) that S2
n − σ2

N strongly converges
to 0 as n increases; this strong convergence is in the sense that for every ε > 0 and
δ > 0, there exists a positive integer n0 = n0(ε, δ) such that

P

{
max
n0≤n≤N

|S2
n − σ2

N | > ε

}
< δ, n ≥ n0.
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Further, it follows that for any (fixed) α, 0 < α ≤ 1, if n/N → α as N →∞ then, as
n→∞,

n1/2(T ∗n − θN)/Sn is asymptotically normal (0, 1− α). (33)

This is very useful in setting up a confidence interval for the parameter θN or to test a
null hypothesis H0 : θN = θ0 (specified).

As a simple illustration, consider a typical ratio-estimator of the form

Tn = U(1)n /U(2)n , U(j)n = n−1
n∑
i=1

gj(Xi), j = 1, 2, (34)

where the functions g1(·) and g2(·) may be of quite general form. In fact, we may even
consider some U-statistics for U(1)n and U(2)n . In such a setting, Tn is not generally an
unbiased estimator of the population parameter θN = μ

(1)
N /μ

(2)
N , though the U(j)n may

unbiasedly estimate the μ(j)N , j = 1, 2. Typically, the bias of Tn is of the form in (26),
and hence, jackknifing reduces the bias to the order n−2. Further, here h(a, b) = a/b so
that

∂2

∂a2
h(a, b) = 0,

∂2

∂a∂b
h(a, b) = −b−2,

∂2

∂b2
h(a, b) = 2b−2h(a, b).

Consequently, whenever μ(2)N is strictly positive and finite, for finite θN, the regularity
conditions are all satisfied; for some specific cases, we may refer to Majumdar and Sen
(1978) and Krewski (1978).

The basic advantage of using these results is that these asymptotics are readily
adaptable for FPS sequential testing and estimation procedures. Further, the asymptotic
inequalities discussed in the preceding section also remain applicable for the jackknifed
estimators. In particular, (20) through (23) also hold when we replace the U-statistics
and their variances by the T ∗k and the Tukey estimator of their variances. Finally, the
results can be easily extended to the case where the Tn are q-vectors, for some q ≥ 1. In
that case, we would have a tied-down Brownian sheet approximation (in law) and strong
convergence of the matrix of jackknifed variance-covariances. For the vector case, we
would have an analogous result involving a multivariate normal distribution.

In the discussions so far, we have mainly confined ourselves to SRS (WR or WOR).
Jackknifing is usable in other sampling schemes as well, see, for example, Krewski and
Rao (1981), Rao and Wu (1985), or Shao (1996) among others for asymptotic results on
jackknifing in stratified multistage sampling and comparison with asymptotic properties
of variance estimators obtained by other resampling techniques like balanced repeated
replication (BRR) or by linearization.An orthogonal decomposition by Hoeffding (1948)
can be also used to establish asymptotic properties of jackknife variance estimators
of nonlinear statistics in stratified samples (Bloznelis, 2003). The reverse martingale
structure underlying the jackknifed versions may not generally hold in unequal prob-
ability sampling schemes. Recently, however, Berger and Skinner (2005) proposed a
jackknife variance estimator for a smooth function of population mean which can be
applicable to a general class of unequal probability sampling designs. The approach is
based on an analogy between the jackknifing and linearization method. The consistency
and asymptotic normality are then obtained by using asymptotic theory developed for
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Horvitz–Thompson estimator and in accordance with the asymptotic theory explained
here and in the next sections of this chapter. Using Hájek (1964) variance approxima-
tion, Berger (2007) proposed a new jackknife variance estimator of a smooth function
of the population mean that is consistent under some regularity conditions in a general
unistage stratified sampling with unequal probabilities.

The popular bootstrap methodology innovated by Efron (1979) has the flexibility to
be used not only for variance estimation but also for the approximation of a distribution
and a confidence interval building, for data with imputed values and for small area
problems. Basically, it incorporates SRSWR resampling schemes and other variations
(while SRSWOR is more suitable for jackknife methodology). Let X1, . . . , Xn be
observed data and θ an unknown parameter of interest. Let θ̂n = Tn(X1, . . . , Xn) be an
estimator of θ. The standard inference on θ is based on a properly standardized version
of its sampling distribution or suitable analytical approximations if exact distribution is
not properly manageable; studentization and asymptotic normality being most common.
In bootstrapping, first we approximate the (usually unknown) probability distribution
of theX1, . . . , Xn by its empirical counterpart Fn(.) and generate a sampleX∗1, . . . , X

∗
n

from Fn(.) by selecting a SRSWR of size n from the original sample; this is a bootstrap
sample. In this model, θ∗ = θ̂n and θ̂∗n = Tn(X

∗
1, . . . , X

∗
n). Then the exact bootstrap

distribution of θ̂∗n and its characteristics can be developed. In practice, we generate,
say, B bootstrap samples X∗b1 , . . . , X

∗b
n , b = 1, . . . , B, compute θ̂∗bn in each sample

and estimate the distribution and other characteristics from values θ̂∗bn , b = 1, . . . , n.
The bootstrap is consistent if the bootstrap distribution, that is, the conditional distri-
bution of θ̂∗n given the original sample X1, . . . , Xn is asymptotically the same as the

asymptotic distribution of θ̂n. We refer to Shao and Tu (1995, Chapter 3), where general
theory and consistency results for bootstrap are explained in more detail. This theoretical
claim comes with a price tag: (i) results are asymptotic and need to be validated in
small samples by extensive simulation studies and (ii) if the asymptotic distribution
of θn is different from a Gaussian one, then there is no guarantee of this asymptotic
equivalence. (For example, if the underlying distribution is a stable one of index α < 2,
the bootstrap distribution will be asymptotically normal with large but finite variance,
while the actual asymptotic distribution will still be stable, but not normal and infinite
variance.)

If the sample X1, . . . , Xn is selected from a finite population of size N WR and
the bootstrap samples are also selected WR, then bootstrap provides asymptotically
valid results. On the other hand, if the original sample is selected WOR, we need to
be more careful. If the bootstrap sample is selected WR, then the bootstrap does not
provide an asymptotically valid approximation, if the SF n/N is not negligible.Without
replacement bootstrap, Gross (1980), is the following modification of the bootstrap
procedure. ForN = knwhere k is an integer, select a sampleX1, . . . , Xn of size n from
the original population WOR and replicate each element of the sample exactly k times
to create the bootstrap population of size N. From this population, select a bootstrap
sampleX∗1, . . . , X

∗
n of size nWOR. Then the SF is the same both in the original and the

bootstrap sample. The conditional expectation of the bootstrap sample mean X
∗
n given

X1, . . . , Xn is Xn and the conditional variance of X
∗
n is

s∗2n =
n− 1

n2
· N − n
N − 1

s2n, (35)
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where Xn and s2n are the sample mean and variance defined in (3). If N �= kn, a
randomization can be used as proposed by Bickel and Freedman (1984). The same
procedure can be applied to stratified sampling, independently for each stratum. Then,
if θ̂ = ∑H

h=1whX̂nh is the stratified sample mean as in Section 2 and τ2 its variance
given by (6), if θ̂∗ =∑H

h=1whX̂
∗
nh

is the bootstrap version of θ̂ and

τ∗2 =
H∑
h=1

w2
h

nh − 1

n2
h

· Nh − nh
Nh − 1

s2nh (36)

the bootstrap variance of θ̂∗, the (conditional) distribution of (̂θ∗ − θ̂)/τ∗ consistently
estimates the distribution of (̂θ− θ)/τ (Bickel and Freedman, 1984), see also Chao and
Lo (1985). On the other hand, the bootstrap variance (36) is not an unbiased estimator
of the variance (6) of θ̂, and if the sample sizes nh remain bounded and H →∞ (case
of many strata of small sizes), the bias of τ∗2 persists even if n = n1+ · · · + nH →∞.

Rao and Wu (1988) considered rescaled bootstrap WR that yields an unbiased vari-
ance estimator of the stratified sample mean when sampling within the strata is con-
sidered WR. They established the consistency of this procedure by the second-order
Edgeworth expansion for large number of strata. They extended their method to stratified
sampling WOR and two-stage cluster sampling and considered also unequal probability
sampling without replacement (UPSWOR).

Sitter (1992a) and Chen and Sitter (1993) considered another variant of the bootstrap
in stratified sampling called mirror-match bootstrap. The bootstrap sample in each stra-
tum h is generated in such a way that a subsample of size n′h is selected WOR from
the sample of size nh with the same SF fh as in the original sampling scheme. This is
done independently kh times, replacing the subsample each time to obtain a vector of
size nh. The value of kh = 1/fh is supposed to be an integer; otherwise a randomization
should be used as proposed by the authors. Due to independent subsamples, the method
yields unbiased variance estimator of the stratified sample mean. Asymptotic validity
and second-order correctness based on Edgeworth expansion are also proved in case
that the number of strata H → ∞ and nh remain bounded (Sitter, 1992a) and also in
case that H is bounded and nh →∞ for each h = 1, . . . , H , Chen and Sitter (1993).

Asymptotic results for bootstrap in sample surveys are further discussed in Booth
et al. (1994), Shao and Tu (1995), see also Shao (1996), Chaudhary and Sen (1998), and
Helmers and Wegkamp (1998). Some extension of bootstrap procedures to probability
proportional size (pps) sampling can be found in Sverchkov and Pfeffermann (2004).
The main developments and the practical impact of the bootstrap to survey sampling are
discussed in Shao (2003) and Lahiri (2003a). See also Chapter 28 in this handbook on
resampling methods in surveys that includes a discussion of asymptotics of resampling
methods in the context of small area estimation.

4. Estimation of population size: Asymptotics

The estimation of the total size of a population including, in particular, mobile pop-
ulations (such as the number of fish in a lake) is of great importance in a variety of
biological environmental and ecological studies. Of the methods available for obtaining
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information about the size of such populations, the ones based on capture, marking,
release and recapture (CMRR) of individuals, originated by Petersen (1896), have been
extensively studied and adapted in practice. The Petersen method is a two-sample exper-
iment and amounts to marking (or tagging) a sample of a given number of individuals
from a closed population of unknown size (N) and then returning it into the population.
The proportion of marked individuals appearing in the second sample estimates the pro-
portion marked in the population, providing in turn, the estimate of the population size
N. Schnabel (1938) considered a multisample extension of the Petersen method, where
each sample captured commencing from the second is examined for marked members
and then every member of the sample is given another mark before being returned to the
population. For this method, the computations are simple, successive estimates enable
the field worker to see the performance of his method as sampling progresses, and the
method can be adapted for a wide range of capture conditions.

For the statistical formulation of the CMRR procedure, we use the following nota-
tions. Let N be the total population size (finite and unknown), k ≥ 2 be the number of
samples, ni, i ≥ 1 the size of the ith sample,mi be the number of marked individuals in
the ith sample, ui = ni−mi, i = 1, . . . , k, andMi be the number of marked individuals
in the population just before the ith sample is drawn (i.e.,Mi =∑i−1

j=1 uj), i = 1, . . . , k.

Conventionally, we let M1 = u1 = 0 and Mk+1 = Mk + nk − mk = ∑k
j=1(nj − mj).

Now, the conditional distribution of mi, given Mi, and ni is given by

L
(i)
N (mi|Mi, ni) =

(
Mi

mi

)(
N −Mi

ni −mi
)/(

N

ni

)
, i = 2, . . . , k, (37)

so that the (partial) likelihood function is

LN(n1, . . . , nk) =
k∏
i=2

L
(i)
N =

k∏
i=2

{(
Mi

mi

)(
N −Mi

ni −mi
)/(

N

ni

)}
. (38)

Note that

LN/LN−1 = N−(k−1)

{
k∏
i=1

(N − ni)
}
(N −Mk+1)

so that

LN/LN−1 � 1 according to (1−N−1Mk+1) �
k∏
j=1

(1−N−1nj). (39)

Now, (39) provides the solution for the maximum likelihood estimator (MLE) of N.
For the Petersen scheme, that is, k = 2, (39) reduces to

LN/LN−1 � 1 according to N � n1n2/m2 (40)

so that [n1n2/m2] = N̂2 is the MLE of N. For k ≥ 3, in general, (39) needs an iterative
solution for locating MLE of N. Note that based on L(i)N , the MLE of N is given by
N̂i = [niMi/mi] for i = 2, . . . , k. It is of natural interest to study the relationship
between the MLE N̂ from (39) and the N̂j, j = 2, . . . , k, when k ≥ 3. Before doing so
we may note that, by virtue of (37),
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P(mi = 0|Mi, ni) =
(
N −Mi

ni

)/(
N

ni

)
> 0 for every i = 2, . . . , k,

so that the MLE N̂i do not have finite moments of any positive order. To eliminate this
drawback, we may proceed as in Chapman (1951) and consider the modified MLE

Ňi = (ni + 1)(Mi + 1)/(mi + 1)− 1 for i = 2, . . . , k. (41)

Asymptotically (as N →∞), both N̂i and Ňi behave identically and hence this modi-
fication is well recommended. Using the normal approximation to the hypergeometric
distribution, one readily obtains from (41) that

N−1/2(N̂2 −N) is asymptotically N(0, γ2(α1, α2)), (42)

whenever for some 0 < α1, α2 ≤ 1, n1/N → α1, and n2/N → α2 as N →∞, where

γ2(a, b) = (1−a)(1−b)/ab ≥ [(2−a−b)/(a+b)2], 0 < a, b ≤ 1, (43)

and where the equality sign in (43) holds when a = b.
For the case of k ≥ 3, a little more delicate treatment is needed for the study of the

asymptotic properties of the MLEs as well as their interrelations. Using some martingale
characterizations, such asymptotic studies have been made by Sen and Sen (1981) and
Sen (1982a,b). First, it follows from Sen and Sen (1981) that a very close approximation
N∗ to the actual MLE N̂ in (39) is given by the solution of

N∗ =
[

k∑
s=2

N̂sms/(N
∗ −Ms)(N

∗ − ns)
]/[

k∑
s=2

ms/(N
∗ −Ms)(N

∗ − ns)
]
, (44)

where the MLE N̂i are defined as in after (40). Two other approximations, listed in Seber
(1973), are given by

Ñ =
[

k∑
s=2

N̂sms/(Ñ −Ms)

]/[
k∑
s=2

ms/(Ñ −Ms)

]
(45)

and

˜̃N =
[

k∑
s=2

N̂sms

]/[
k∑
s=2

m2

]
. (46)

Ñ works out well when the nj, 2 ≤ j ≤ k, are all equal or N−1nj are all small, while ˜̃N
is quite suitable when in addition, the N−1Mi, i = 2, . . . , k are all small. For both (44)
and (45), an iterative solution works out very well, as discussed is Sen and Sen (1981).
If we let

ni = Nαi, 0 < αi ≤ 1, βi =
i∏

j=1

(1− αj), i = 1, . . . , k, (47)

then we have (see Sen and Sen, 1981)

N−1/2(N∗ −N) is asymptotically N(0, σ∗2) (48)
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where

σ∗2 =
[

k∑
s=2

αs(1− βs−1)/βs

]−1

.

Other estimators and asymptotic results parallel to (48) are given in Sen (1988).
In many situations when the nj are very small compared with N, the mj are also

very small (may even be equal to 0 with a positive probability). This may push up the
variability of the estimators considered earlier. For this reason, often an inverse sampling
scheme is recommended. In this setup, at the sth stage, the sample units are drawn one
by one until a preassigned number ms of the marked units appear so that the sample
size ns is a r.v. while ms is fixed in advance for s = 2, . . . , k. For this inverse sampling
scheme, parallel to (37), we have

L
(i)
N (ni|Mi,mi) =

(
N

ni − 1

)−1(
Mi

mi − 1

)(
N −Mi

ni −mi
)

× {(Mi −mi + 1)/(N − ni + 1)}
=
{
mi

(
Mi

mi

)(
N −Mi

ni −mi
)}/{

ni

(
N

ni

)}
, i = 2, . . . , k, (49)

and (38) can be modified accordingly. Note that (39) and (40) are not affected so that the
MLE remains the same. It follows from Bailey (1951) that Ňi = (Mi+1)ni/mi−1, i =
2, . . . k, are unbiased estimators of N. Note that the exact variance of Ň2 is equal to
(n1 −m2 + 1)(N + 1)(N − n1)/m2(n1 + 2) so that on letting m2 = α∗1 · α1N we have,
parallel to (42) and (43), that

N−1/2(Ň2 −N) is asymptotically N(0, (1− α1)(1− α∗1)/α1α
∗
1). (50)

Note that α∗1 plays the same role as α2 in (42) and (43). The main advantage of this
inverse sampling scheme is that the estimates have finite moments of positive orders,
although the amount of sampling (i.e., n2+· · ·+nk) is not predetermined (but is a r.v.).
Inverse sampling schemes are the precursors of sequential sampling tagging considered
by Chapman (1952), Goodman (1953), Darroch (1958), and others. Darling and Robbins
(1967) and Samuel (1968) have studied some related problems on stopping times arising
in sequential sampling tagging for the estimation of the population size N, and the
asymptotic theory plays a vital role in this context. Lack of stochastic independence of
the r.v. at successive stages of drawing and nonstationarity of their marginal distributions
call for a nonstandard approach for rigorous study of the asymptotic properties of the
MLE ofN in a multistage or sequential sampling procedure. Using a suitable martingale
characterization, this asymptotic theory has been developed in Sen (1982a,b, 1987).
These developments have been discussed in detail in Sen (1988). Applications to rare
species size estimation have also been discussed there.

5. Sampling with varying probabilities: Asymptotics

Hansen and Hurwitz (1943) initiated the use of unequal selection probabilities leading to
more efficient estimators of the population total. IfN and n stand for the number of units
in the population and sample, respectively, and if Y1, . . . , YN and y1, . . . , yn denote the
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values of these units in the population and sample, respectively, then one may consider
the following sampling WR scheme. Let P = (P1, . . . , PN) be positive numbers that
are normalized in such a way that P1 + · · · + PN = 1. Typically, one may consider a
measure Si of the size of the ith unit in the population and set Pi = Si/(

∑N
i=1 Si) for

i = 1, . . . , N. Now, corresponding to the sample entries y1, . . . , yn, the associated Ps
are denoted byp1, . . . , pn. Here, sampling is made WR and the jth unit in the population
is drawn with the probability Pj for j = 1, . . . , N. Then, the Hansen-Hurwitz estimator
of the population total Y = Y1 + · · · + YN is

ŶHH = n−1(y1/p1 + · · · + yn/pn). (51)

This estimator is unbiased and its sampling variance is given by

Var(ŶHH) = n−1

{
N∑
i=1

Y 2
i /pi − Y 2

}

= (2n)−1
∑

1≤i�=j≤N
PiPj{Yi/Pi − Yj/Pj}2. (52)

We may further note that

S2
nHH = [n(n− 1)]−1

n∑
i=1

(yi/pi − ŶHH)
2

= [2n2(n− 1)]−1
∑

1≤i�=j≤n
{yi/pi − yj/pj}2 (53)

is an unbiased estimator of Var(ŶHH). Since sampling is made WR and the yi/pi are
independent with mean Y and variance

∑N
i=1 Y

2
i /pi− Y 2(= σ2

NHH, say), standard large
sample theory is adoptable to verify that as n increases,

nS2
nHH/σ

2
NHH → 1 in probability, (54)

n1/2(ŶHH − Y) is asymptotically N(0, σ2
NHH), (55)

so that by (54) and (55),

n1/2(ŶHH − Y)/SnHH is asymptotically N(0, 1). (56)

The situation becomes quite different when sampling is made WOR. On one hand,
one has generally more efficient estimators; on the other hand, the exact theory becomes
so complicated that one is naturally inclined to rely mostly on the asymptotics. To
encompass diverse sampling plans (WOR), we identify the population with the set
S = {1, . . . , N} of natural integers and denote the sample by s. A sampling design may
then be defined by the probabilities P(s), s ⊂ S, associated with all possible samples.
In particular, we let

πi =
∑
s�i
P(s), i = 1, . . . , N, (57)

where the sum
∑

s�i extends over all s containing i. These πi are termed the first-
order inclusion probabilities. Similarly, the second-order inclusion probabilities are
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defined as

πij =
∑
s�i,j

P(s), i �= j = 1, . . . , N. (58)

The classical Horvitz–Thompson (1952) estimator of the population total Y is then
expressible as

ŶHT =
∑
i∈s
(Yi/πi). (59)

The variance of this unbiased estimator of Y is

V(ŶHT) = Var(ŶHT) =
N∑
i=1

(π−1
i − 1)Y 2

i +
∑

1≤i�=j≤N
(πij/πiπj − 1)YiYj. (60)

When the number of units (n) in the sample s is fixed, an alternative expression for
the variance in (60), due to Sen (1953) and Yates and Grundy (1953), is∑

1≤i<j≤N
(πiπj − πij)(Yi/πi − Yj/πj)2. (61)

Then, an unbiased estimator of V(ŶHT) is

V̂ (ŶHT) = 1

2

∑
i∈s

∑
j∈s
(πiπj/πij − 1)(Yi/πi − Yj/πj)2. (62)

It is clear that if the Yi are all (exactly or closely) proportional to the corresponding
πi, then (61) is (exactly or closely) equal to 0; this point advocates the choice of the
πi as proportional to the size of the units, and on that count, pps sampling is quite a
reasonable option.

Now, in the context of sampling (WOR) with varying probabilities, various sam-
pling designs have been considered by various authors; for a survey of such proce-
dures, see, for example, Brewer and Hanif (1983), Tillé (2006), or Chapter 2 in this
handbook.

Among these methods, rejective sampling may be defined as in Hájek (1964) as
sampling WR with drawing probabilities α1, . . . , αN at each draw, conditioned on the
requirement that all drawn units are distinct. The αi are positive numbers adding up to 1.
As soon as one obtains a replication, one rejects the whole partially built up sample and
starts completely new. In this scheme, the inclusion probabilities πi can be computed,
as in Hájek (1964), in terms of the αi.

A related sampling plan, known as Sampford sampling (Sampford, 1967), is defined
in a similar manner, where the first unit in the sample is drawn from the population with
the probabilities α(1)i = n−1πi, i = 1, . . . , N, and in the subsequent (n− 1) draws, one
samples the units with drawing probabilities α(∗)i = απi(1− πi)−1, i = 1, . . . , N WR,
where α is so selected that

∑N
i=1 α

(∗)
i = 1. Here also, a sample is accepted only if all

the selected units are distinct. For both these schemes, a rejection of the accumulating
sample is made when at any intermediate stage, a repetition occurs. On the contrary to
rejective sampling, where the inclusion probabilities are computed from the drawing
probabilities only approximatively, in Sampford sampling, the inclusion probabilities
take the values πi exactly.
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Chao (1982) proposed a general sampling procedure with unequal probabilities that
gives exact values of inclusion probabilities and that can be easily implemented by
statistical programs. Let S be a population ofN units and Sk a subpopulation of the first
k units, k ≥ n. At step k, a sample sk of size n is selected from the population Sk with
prescribed first-order probabilities π(k, i), i = 1, . . . , k. In the next step, unit k + 1 is
selected from the population Sk+1 with the probability π(k + 1, k + 1). If unit k + 1 is
not sampled, then sk+1 = sk, that is, the old sample is retained. Otherwise, one unit in
sk is replaced at random by unit k + 1. The procedure starts with sn and maintains the
fixed sample size n at each step; the final sample is s = sN . For this procedure, inclusion
probabilities of all orders can be easily computed. Asymptotic properties of the above
mentioned procedures will be discussed in the frame of asymptotic theory of Poisson
sampling in the next section. In a successive sampling plan, one draws units one by one
with drawing probabilities P1, . . . , PN, and, if a replication occurs at any draw, that
particular one is rejected, and the drawing is continued in this manner until one has the
prefixed number n of distinct units in the sample. Following Rosén (1972a,b, 1974), let
I1, . . . , In be the indices in the (random) order in which they appear in the sample of
size n, and let

�(r, n) = P(r ∈ s) = πr, r = 1, . . . , N (63)

be the inclusion probability of unit r in the sample of size n. For this scheme, the
Horvitz–Thompson estimator in (59) has the following form:

ŶHT =
∑
r∈s
Yr/�(r, n) =

n∑
i=1

YIi/�(Ii, n). (64)

We may remark that if P1 = · · · = PN = N−1, the �(r, n) all reduce to n/N so that
(64) is given by N(n−1∑

r∈S Yr), which is the standard estimator under the usual equal
probability sampling scheme (WOR). In the more general case where the Pi are not all
equal, the�(r, n) can be obtained (see Rosén, 1972a,b) as follows: for every n ≥ 1 and
r1, . . . , rn, 1 ≤ r1 �= · · · �= rn ≤ N, let

P(r1, . . . , rn) = Pr1 ×

⎧⎪⎨
⎪⎩

n∏
k=2

Prk

⎡
⎣1−

k−1∑
j=1

Prj

⎤
⎦
−1
⎫⎪⎬
⎪⎭ . (65)

Then,

�(r, n) =
n∑
j=1

⎧⎨
⎩
∑
(j)

P(r1, . . . , rn)

⎫⎬
⎭ , (66)

where the summation
∑

(j) extends over all permutations of (r1 . . . , rn) over (1, . . . , N),
subject to the constraint that rj = r, j = 1, . . . , n, for r = 1, . . . , N.

The varying probability structure and the complicated forms of the expressions in
(65) and (66) introduce certain complications in the study of the asymptotic distribution
theory of the Horvitz–Thompson estimator (or other estimators available in the litera-
ture). Rosén (1970, 1972a,b) considered an alternative approach (through the coupon
collector’s problem) and provided some deeper results in this context. To illustrate this
approach, we first consider a coupon collector problem. For N ≥ 1, let



506 Z. Prášková and P. K. Sen

�N = {(aN1, PN1), . . . , (aNN, PNN)} (67)

be a sequence of coupon collector’s situations, where the aNj and PNj are real numbers,
the PNj are positive and

∑N
j=1 PNj = 1. Consider also a (double) sequence {JNk, k ≥ 1}

of (row-wise) i. i. d. r.v., where, for each N ≥ 1, k ≥ 1,

P{JNk = s} = PNs for s = 1, . . . , N. (68)

Further, for k ≥ 1, put

XNk =
{
aNJNk if JNk /∈ {JN1, . . . , JNk−1, }
0 otherwise.

(69)

The r.v. BNn =∑n
k=1XNk is called bonus sum after n coupons. Further, denote

νNm = inf {k : number of distinct JN1, . . . , JNk = m, } m ≥ 1. (70)

Note that for each N, the νNm are positive integer-valued r.v. Then, as Rosén (1970,
1972a) has shown, with X∗Nnk = XNk/�(JNk, n),

ŶHT
D=

νNn∑
k=1

X∗Nnk = B∗NνNn, say, (71)

where
D= stands for equality in distributions and for a given n,B∗NνNn in (71) is the bonus

sum after νNn coupons in the collector’s situation�∗Nn = {(a∗N1, PN1), . . . , (a
∗
NN, PNN)},

where a∗Nj = aNJ/�(j,N), j = 1, . . . , N. Thus, the asymptotic normality of (randomly
stopped) bonus sums (for the reduced coupon collector’s situation) provides the same
result for the Horvitz–Thompson estimator. A similar treatment holds for many other
related estimators in successive sampling with varying probabilities (WOR).

Towards this goal, we may note as in Rosén (1972a) that under some regularity
conditions on the aNi and the PNi, as N increases,

�(s, n) = 1− exp{−PNst(n)} + o(N−1/2), s = 1, . . . , N, (72)

where the function t(·) = {t(x), x ≥ 0} is defined implicitly by

N − x =
N∑
k=1

exp{−t(x)PNk} x ≥ 0, (73)

and, therefore, depends on PN1 . . . , PNN . Given this asymptotic relation, we may write
for every s = 1, . . . , N,

a∗Ns = aNs/�(s, n) = (1− exp{−PNst(n)})−1aNs + o(N−1/2). (74)

It also follows from Rosén (1970) that under the same regularity conditions,

νNn/t(n)→ 1 in probability, (75)

whenever n/N is bounded away from 0 and 1. Consequently, if we define the bonus
sum for the reduced coupon collector’s situation by B∗Nnk =

∑k
i=1X

∗
Nni, k ≥ 1 then

we need to verify that (i) the normalized version of B∗Nnt(n) is asymptotically normal
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and (ii) n−1/2 max{|B∗Nnk − B∗Nnt(n)| : |k/t(n)− 1| ≤ δ} → 0 in probability. The latter
condition is known in the literature as theAnscombe (1952) “uniform continuity in prob-
ability” condition. A stronger result, which ensures both (i) and (ii), relates to the weak
convergence of the partial sequence {(B∗Nnk − EB∗Nnk)/{var(B∗Nnt(n))}1/2; k ≤ t(n), }; it
has been established by Sen (1979) through a martingale approach. For simplicity of
presentation, we consider the case of the original coupon collector’s situation (the same
result continues to hold for the reduced situation, too). Let us denote

�Nn =
N∑
s=1

aNs[1− exp{−nPNs}], n ≥ 0, (76)

d2
Nn =

N∑
s=1

a2
Ns exp{−nPNs}[1− exp{−nPNs}] (77)

− n
(

N∑
s=1

aNsPNs exp{−nPNs}
)2

, n ≥ 0.

Then, under the usual (Rosén) regularity conditions, it follows that d2
Nn = O(n) when-

ever n/N is finite and bounded away from 0 and

(BNn −�Nn)/dNn is asymptotically N(0, 1). (78)

See also Sen (1979, 1995) for martingale approach. For the reduced coupon collector’s
situation �∗N and for n replaced by t(n), we have, parallel to (77),

d∗2Nt(n) =
N∑
s=1

a∗2ns exp{−t(n)PNs}[1− exp{−t(n)PNs}]

− t(n)
[

N∑
s=1

a∗NsPNs exp{−t(n)PNs}
]2

=
N∑
s=1

Y 2
s exp{−t(n)PNs}/[1− exp{−t(n)PNs}]

− t(n)
[

N∑
s=1

YsPNs exp{−t(n)PNs}/(1− exp{−t(n)PNs})
]2

, (79)

where we may note that thePNs are all specified numbers so that by (73), t(n) is a known
quantity. As a result, we obtain that as N increases and n/N is bounded away from 0
(and is finite),

(ŶHT − Y)/d∗Nt(n) is asymptotically N(0, 1). (80)

Further, if we take the sample observations as yj (= YINj ), j = 1, . . . , n, and denote
by PNINj = pNj, j = 1, . . . , n, we may set

U
(1)
Nn = n−1

n∑
j=1

y2
j exp{−t(n)pNj}/[1− exp{−t(n)pNj}]2, (81)
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U
(2)
Nn = n−1

n∑
j=1

yjpNj exp{−t(n)pNj}/[1− exp{−t(n)pNj}]2, (82)

VNn = U(1)Nn − t(n)[U(2)Nn]2. (83)

Then it follows that as n increases, VNn/d∗2Nt(n) converges in probability to 1 so that in

(80), d∗N(t(n) may be replaced by V 1/2
Nn .

We may remark that if theaNs are all nonnegative, the bonus sumBNn is nondecreasing
in n so that we may define

UN(t) = min{k : BNk ≥ t} for every t ≥ 0. (84)

Then,UN(t) is termed thewaiting time to obtain the bonus sum t in the coupon collector’s
situation �N. Note that, by definition,

P{UN(t) > x} = P{BN�x� < t} for all x, t > 0, (85)

where �x� denotes the integer part of x. Therefore, the asymptotic distribution of the
normalized version of the waiting time can readily be obtained from (78). See also Rosén
(1970) and Sen (1988) for more detail.

Asymptotic results like (78) were extended to weak invariance principles for bonus
sums and waiting times in coupon collector’s problems by Sen (1979, 1980).Asymptotic
problems in successive sampling were also studied in Chaudhary and Sen (2002). These
results provide needed theoretical justification of assumption of asymptotic normality
and complement resampling results on variance estimation in complex sample survey,
see Sen (1995) and Chaudhary and Sen (1998, 2002).

Besides the sampling strategies considered so far, there are some others, considered
elsewhere. Among these, mention should be made of one special approach proposed
by Rao et al. (1962). They considered a simple procedure of UPSWOR leading to
an estimator having a smaller variance than in the case of sampling WR. Moreover,
their procedure provides an unbiased sample estimator of the variance that is always
positive. Both single-stage and two-stage designs were considered by them. In the single-
stage design, let pt be the probability of drawing the tth unit in the first draw from the
whole population for t = 1, . . . , N. They suggested that the population of N units be
first divided at random into n groups of sizes N1, . . . , Nn, respectively, where N =
N1 + · · · + Nn. Within each group, a sample of size one is drawn with probabilities
proportional to pt (for t belonging to the set of indices in the ith group), and this is
done independently for each of the n groups. Thus, if the tth unit falls in group i,
the actual probability that it will be selected is pt/πi where πi is the sum over all
values of pt, for which t belongs to the set of indices in the ith group. If y1, . . . , yn
denote the sampled units from the n groups, then the estimator of the population total
is Ŷn = π1y1/q1 + · · · + πnyn/qn, where q1, . . . , qn refers to the particular values of
the pt for these chosen units. Ŷn is an unbiased estimator of the population total, and the
sampling variance of Ŷn is given by

V(Ŷ) = [N(N − 1)]−1

(
n∑
i=1

N2
i −N

)(
N∑
t=1

Y 2
t /pt − Y 2

)
,
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where Yt denotes the value associated with the tth unit in the population (and Y =
Y1 + · · · + YN). It is clear from the above that this variance is a minimum when all the
Ni are equal (i.e., N/n = R is a positive integer and N1 = · · · = Nn = R). Thus, in
actual practice, theseNi should be taken as close to each other as possible. An estimator
of V(Ŷ) is given by

V̂ (Ŷ ) =
(
N2 −

n∑
i=1

N2
i

)−1 ( n∑
i=1

N2
i −N

)(
n∑
i=1

πi((yi/qi)− Ŷ )2
)
.

In the case of the two-stage design, the tth primary unit (t = 1, . . . , N) is composed of
Mt second-stage units (subunits) so that following the selection of n primary units as
in the single-stage design, for the tth primary unit selected, one draws a sample of mt
subunits WORs and with equal probabilities from the Mt subunits. Again, sampling is
done independently for the different groups. The estimator of the population total Y is
given by

n∑
i=1

⎧⎨
⎩πi(Mi/mi)

⎛
⎝ mi∑
j=1

Yij

⎞
⎠ /qi

⎫⎬
⎭ .

Parallel expressions for the sampling variance of this estimator and an estimator of this
sampling variance have also been provided by Rao et al. (1962). Thus, in either design,
the procedure has the advantage of exact variance formulae (and their estimators) for
any population size N and sample size n. When n, the number of groups, is large and
the groupings are made randomly (as has been prescribed by them), the asymptotic
theory developed earlier remains applicable under quite general regularity conditions.
However, this random division of theN units into n groups may introduce some uncon-
trolled feature, although from the efficiency point of view it leads to improved esti-
mators. Hartley and Rao (1962) have also considered an alternative sampling scheme
with UPSWOR. The N units in the population are listed in a random order and their xi
(sizes) are cumulated; a systematic selection of n elements from a “random start” is then
made on the cumulation. They were able to provide an asymptotic variance formula for
their estimator. Comparing the two procedures by Rao et al. (1962) and Hartley and
Rao (1962), we see that the former enjoys the advantage of exact variance formula for
any population size, while the latter assumes N to be large; but in terms of the sam-
pling variance, the former may lead to an estimator with a slightly larger variance than
the latter (in many situations). Ohlsson (1986) proved the asymptotic normality of the
Rao–Hartley–Cochran estimator of the population total by using a martingale approach.
He also introduced a class of unbiased variance estimators for the sampling procedure
by Rao et al. (1962) and established general conditions for their consistency (Ohlsson,
1989a). In Ohlsson (1989b), the asymptotic normality of the population total estimator
in a general setting is established, which includes a wide class of two-stage sampling
procedures.

Krewski and Rao (1981) considered general stratified multistage designs relating to
a sequence {�H } of finite populations (withH strata in�H ), by which the primary sam-
pling units are selected WR and independent subsamples are taken within those primary
sampling units selected more than once. The asymptotic normality of both linear and
nonlinear statistics is studied under the assumption thatH →∞, and in the same setup,
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the consistency of the variance estimators obtained by using the linearization, jackknif-
ing, and BRR methods is established. Because of the independence of the subsamples,
standard asymptotic theory, discussed before, remains applicable in this context.

Francisco and Fuller (1991) considered a sequence {�Hν} of stratified finite popula-
tions with Hν strata, where the population in each stratum is supposed to be a random
sample of a finite number of clusters selected from an infinite superpopulation with a
common distribution function F . Stratified random sample of clusters selected WOR
from the population�Hν is considered, and conditions under which the sample distribu-
tion function is asymptotically normal estimator of the population distribution function
are established as ν → ∞ (and Hν is increasing with ν). Asymptotic properties of the
sample quantiles were also studied. Shao (1994), under the same sampling design as
Krewski and Rao (1981), considered two general types of statistics for a complex survey,
namely, smooth L-statistics with weights generated by smooth functions (they include,
e.g., trimmed sample means or weighted deciles and variances) and sample quantiles.
He obtained asymptotic normality for the smooth L-statistics and derived that their
asymptotic variances can be consistently estimated by jackknifing. He also proposed an
estimator of the asymptotic variance of the sample pth quantile under weaker conditions
than Francisco and Fuller (1991).

Systematic procedures (random or ordered) for sampling with varying probabilities
were also considered by Madow (1949) and Hartley (1966), among others. Iachan (1983)
developed an asymptotic theory of systematic sampling from a finite population of r.v.
that arise from a second-order stationary process.

Besides the systematic procedures, there are other procedures due to Narain (1951),
Midzuno (1952), Yates and Grundy (1953), and Sen (1953), among others. Most of these
procedures work out well for small values of n (viz., for n ≤ 4), but as n increases, these
procedures become prohibitively cumbrous. We refer to Brewer and Hanif (1983) for
some detailed discussions of these procedures when n is not large. However, as regards
the asymptotic theory, a lot of work remains to be accomplished.

6. Large entropy and relative samplings: Asymptotic results

In this section, as before, S denotes a population of N units, s ⊂ S a sample and P
a probability distribution defined on the set of all subsets of S. The population units
take values Y1, . . . , YN . The probability of inclusion of unit i into the sample is πi =∑

s�i P(s) and the probability of inclusion of units i and j is denoted byπij =∑s�i,j P(s),
respectively. We will use the notation πi(P) and πij(P) to underline the dependence on
the sampling scheme P . Size of the sample is K = ∑N

i=1 Ii, where Ii denotes the
indicator of inclusion of unit i into sample s, that is, a r.v. with value 1 if s ∈ and 0
otherwise. Poisson sampling with parameters 0 < pi < 1, i = 1, . . . , N, by which
the population units are sampled independently with probabilities pi, is defined for any
s ⊂ S by the probability

Po(s) =
∏
i∈s
pi
∏
i∈S−s

(1− pi). (86)

The indicators of inclusion in Poisson sampling are independent r.v. satisfying
P(Ii = 1) = pi = 1 − P(Ii = 0), and the inclusion probabilities satisfy the identity
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πi(Po) = pi for i = 1, . . . , N. The sample size K is a r.v. with E (K) = ∑N
i=1 pi.

Poisson sampling plays an important role in defining and analyzing other sampling pro-
cedures. Assume that� is a set of all samples of fixed size n. Then for Poisson sampling
(86) with Po(�) > 0, the sampling design (plan)

R(s) = Po(s|�) = Po(s)

Po(�)
, s ∈ � (87)

= 0 otherwise

is called rejective sampling of size n or conditional Poisson sampling with inclu-
sion probabilities πi(R) =∑s�i R(s). The inclusion probabilities satisfy the condition∑N

i=1 πi(R) = n. It is known (Hájek, 1959), see also Hájek (1981, Theorem 3.4), that the
rejective sampling (87) maximizes the entropyH(P) = −∑s∈� P(s) logP(s) among all
sampling plans P on � (e.g., among all plans of fixed sample size n) with probabilities
of inclusion equal to πi(R). For two probability designs P1 and P2 defined on �, the
Kullback–Leibler divergence P1 from P2 is defined by

D(P1, P2) =
∑
s∈�

P1(s) log
P1(s)

P2(s)
. (88)

SinceD(P1, P2) ≥ 0 andD(P1, P2) = 0 if and only if P1(s) = P2(s) for all s ∈ �, any
sampling P on � will be close to the rejective sampling R if the divergence D(P,R)
from the rejective sampling is small.

If we define a sampling plan by conditional Poisson sampling (87), the problem arises
how to evaluate the probabilities of inclusion, because the parameters p1, . . . , pN may
not yield exact values of them. The same problem appears when the population S is
divided into strata S1, . . . ,Sm, and we consider conditional Poisson sampling given
fixed strata sample sizes nh, h = 1, . . . , m. For rejective sampling (87) of size n,
Hájek (1964) developed the following asymptotic approximation of πi(R) by means of
p1, . . . , pN . If we suppose that

d(p) =
N∑
i=1

pi(1− pi)→∞,

then

πi(R) = pi
[
1− ( ¯̄p− pi)(1− pi)

d(p)
+ o(d(p)−1)

]
, i = 1, . . . , N, (89)

where

¯̄p =
N∑
i=1

p2
i (1− pi)/d(p)

and o(d(p)−1) is a remainder term such that d(p)o(d(p)−1) → 0 uniformly for all
1 ≤ i ≤ N as d(p)→∞. Notice that d(p)→∞ implies n→∞ and N − n→∞.
For inclusion probabilities πij(R), Hájek (1964) established the approximation,

πij(R) = πi(R)πj(R)
[
1− (1− πi(R))(1− πj(R))

d(π)
+ o(d(π)−1)

]
,
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or equivalently,

πi(R)πj(R)−πij(R) = πi(R)(1− πi(R))πj(R)(1− πj(R))
d(π)

[1+o(1)], (90)

where d(π) is defined as d(p)with pi replaced by πi(R).Arratia et al. (2005) established
a general asymptotic expansion of the inclusion probabilities πi(R) and πij(R) around
pi in terms of decreasing powers of N. For the stratified conditional Poisson sampling,
an asymptotic relation between the inclusion probabilities πi, πij and the parameters
of Poisson sampling was conjectured in (Hájek, 1981, Conjecture 14.1) and justified
by Prášková (1995). Recently, algorithms and recursive procedures were developed to
compute the probabilities πi(R) and πij(R) from pi that enable to construct Horvitz-
Thomspon estimator (59) as well as variance estimators and compute their characteris-
tics, see, for example, Chen et al. (1994), Chen (2000), and Aires (1999, 2000). It was
remarked in the previous section that rejective sampling can be alternatively defined as
a conditional sampling WR given the condition that all the selected units are different.
Then

R(s) = c
∏
i∈s
αi, K(s) = n (91)

= 0 otherwise,

where 0 ≤ α1, · · · , αN ≤ 1,
∑N

i=1 αi = 1, are drawing probabilities and c is a constant
such that

∑
s⊂S R(s) = 1. Though there is one-to-one relation between the inclusion

probabilities in Poisson sampling and drawing probabilities in rejective sampling, that is,

αi = pi/(1− pi)∑N
j=1 pj/(1− pj)

, (92)

connection between αi and πi(R) remains on asymptotic level only (Hájek, 1981).
In the sequel, we will consider definition (87) of rejective sampling (i.e., as condi-

tional Poisson sampling) and review some asymptotic results. Before we do it, we shall
introduce the following notation. For any sample design P defined on� with inclusion
probabilities πi(P) denote

d(P) =
N∑
i=1

πi(P)(1− πi(P)), (93)

G(P) =
N∑
i=1

Yi(1− πi(P))/d(P), (94)

σ2(P) =
N∑
i=1

[Yi −G(P)πi(P)]2
(

1

πi(P)
− 1

)
, (95)

Aε = {i : |Yi −G(P)πi(P)| > επi(P)σ(P)}, (96)

L(ε) =
∑
i∈Aε
[Yi −G(P)πi(P)]2

(
1

πi(P)
− 1

)
/σ2(P), (97)

e = inf {ε : L(ε) ≤ ε}. (98)
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Notice that σ2(P) can be written as

σ2(P) =
N∑
i=1

[
Yi

πi(P)
−G(P)

]2

πi(P)(1− πi(P)) (99)

=
N∑
i=1

Y 2
i

(
1

πi(P)
− 1

)
− d(P)G2(P). (100)

Now, let us consider the Horvitz–Thompson estimator (59) and its variance (60) under
rejective sampling R. Utilizing relation (90) and inserting into (60), we get

VR(ŶHT) =
N∑
i=1

(Yi −G(R)πi(R))2
(

1

πi(R)
− 1

)
[1+ o(1)] (101)

= σ2(R)[1+ o(1)],
where o(1)→ 0 as d(R) = ∑N

i=1 πi(R)(1 − πi(R))→ ∞. Formula (101) enables us
to approximate the variance (60) in terms that do not depend on inclusion probabilities
πij(R).The result belongs to Hájek (1964). Hájek (1964) also established the asymptotic
normality of a linear estimator of the population total in the form ŶH = X

n

∑
i∈s

Yi
xi

with X = ∑N
i=1 xi, where xi are some constants. Such estimator can be considered

an approximation of the Horvitz–Thompson estimator (59) with inclusion probabilities
proportionate to nxi/X.

Víšek (1979), using the theory of characteristic functions and the asymptotic relations
(89) between the inclusion probabilities of Poisson and rejective sampling, developed the
asymptotic normality of the Horvitz–Thompson estimator in rejective sampling under
some conditions on the probabilities pi of the corresponding Poisson sampling and
under some centering conditions. Prášková (1984), using the same setup, obtained the
rate of convergence of the Horvitz–Thompson estimator to N(0, 1) with rateO(N−1/2)

asN →∞, n→∞ and with n/N bounded away from 0 and 1. Minimizing divergence
from the rejective sampling and utilizing Hájek results, Berger (1998a) established the
asymptotic normality of the Horvitz–Thompson estimator (59) for any sampling design
P of fixed size. More exactly, let ŶHT be the Horvitz–Thompson estimator (59) of the
population total Y under sampling scheme P , let D(P,R) be the divergence of P from
the rejective sampling R defined by (88) and

T(P) = ŶHT − Y
σ(P)

. (102)

Then, in the notation (93)–(98), as e → 0, d(P) → ∞, and D(P,R) → 0, T(P) is
asymptotically N(0, 1). Under the assumption that

N∑
i=1

(
Yi

πi(P)

)4

≤ b1N, σ2(P) ≥ b2N

for some positive constants b1, b2 (this implies that n/N remains bounded away from 0
and 1), Berger (1998a) also established the rate of convergence to the normal distribution
given by the inequality
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P(T(P) ≤ x)−�(x)| ≤ k

N
+ 2

√
D(P,R), (103)

where � denotes the distribution function of the standard normal distribution and k
is a positive constant. In his paper, he checked that the above conditions are satis-
fied for Sampford and successive sampling and completed and generalized results for
the Horvitz–Thompson estimator obtained by Prášková (1982, 1984), Víšek (1979), and
Rosén (1972a,b). Berger (2005a) also proved that the divergence from the rejective sam-
pling tends to zero for Chao’s (1982) sampling procedure, which implies the asymptotic
normality of the Horvitz–Thompson estimator for this sampling as well.

We have seen in (101) that the Hájek-type approximation (95) (resp. (100)) can be
considered as the asymptotic variance of the Horvitz–Thompson estimator for any sam-
pling designP of fixed sample size, close to rejective sampling in the sense of decreasing
Kullback–Leibler divergence. Berger (1998b) considered a slight modification of σ2(P),

σ2
0(P) =

N

N − 1

[
N∑
i=1

Y 2
i

(
1

πi(P)
− 1

)
− d(P)G2(P)

]
(104)

and an approximation of (62), obtained by replacing each total sum in σ2
0(P) by the

corresponding Horvitz–Thompson estimator,

σ̂2(P) = n

n− 1

[∑
i∈s

(
Yi

πi(P)

)2

(1− πi(P))− d̂(P)Ĝ2(P)

]

= n

n− 1

∑
i∈s

(
Yi

πi(P)
− Ĝ(P)

)2

(1− πi(P)), (105)

where

Ĝ(P) = 1

d̂(P)

∑
i∈s

Yi

πi(P)
(1− πi(P)), (106)

d̂(P) =
∑
i∈s
(1− πi(P)). (107)

It can be easily checked that σ2
0(P) and σ̂2(P) given in (104) and (105), respectively,

coincide with the variance (61) of the Horvitz–Thompson estimator of the population
total and its unbiased estimator (62) when SRSWOR is used. Berger (1998b) proved that
σ2(P) (resp. σ2

0(P)) well approximate the variance VP(ŶHT) for any sampling design P
with decreasing divergence from the rejective sampling. Moreover, for theYates-Grundy
estimator V̂P (ŶHT), see (62), and approximation σ̂2(P),

V̂P (ŶHT)

σ̂2(P)
→ 1 as D(P,R)→ 0

with a rate which does not depend on the sample,D(P,R) is divergence from the rejec-
tive sampling R defined by (88). The asymptotic results show that the Hájek variance
approximation is valid for Sampford and successive (Berger, 1998b) as well as for the
Chao sampling procedures (Berger, 2005a).
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We close this part concerning asymptotics in rejective sampling with some remarks
on convergence to Poisson distribution. Considering a sequence of sampling designs
(87), the νth of which refers to a population Yν1 , . . . , YνNν of size Nν and sample of size
nν, Prášková (1988) proved the convergence of the sample sum

∑
i∈s Yνi to the Poisson

distribution both in local and global sense, using a method of characteristic function.
The result was generalized by Rao et al. (1991) to conditional Poisson sampling from
populations of nonnegative r.v. Milbrodt (1987), considering the Hájek (1964) method
of correction of Poisson sampling, established a convergence of the Horvitz–Thompson
estimator (59) in rejective sampling to any infinitely divisible law under conditions
analogous to those formulated by Hájek (1960) for SRSWOR. More specifically, under
the assumption d(Pν)→∞, as ν→∞, where d(Pν) relates to Poisson sampling with
probabilities pν1, . . . , pνNν , and the assumptions

lim
ν→∞

Nν∑
j=1

Yνj = λ, lim
ν→∞

Nν∑
j=1

Y 2
νj

pνj
= λ, (108)

lim
ν→∞ max

1≤j≤Nν
pjν = 0, lim

ν→∞ max
1≤j≤Nν

Y 2
iν

piν
= 0, (109)

lim
ν→∞

∑
|Yiν /piν−1|>ε

Y 2
iν

piν
= 0, ε > 0, (110)

the limiting law of the corresponding Horvitz–Thompson estimators is the Poisson
distribution with parameter λ. The above assumptions imply that Nν → ∞, nν → ∞
but nν/Nν → 0.

Rosén (1997a) introduced a new class of sampling schemes with varying inclusion
probabilities called order sampling. Order sampling of size n is defined as follows: to
each unit i ∈ S there is associated a distribution function Fi on [(0,∞) with density
fi. Let Q1, . . . ,QN be independent r.v. with distributions F1, . . . , FN . The unit i is
included in the sample if the realized valueQi is among the n smallest realized values of
Q1, . . . ,QN .The sampling scheme withFi being the distribution function of the uniform
distribution on [0, θ−1

i ], θi > 0, i = 1, . . . , N, is called sequential Poisson sampling
(Ohlsson, 1995) or uniform sampling. Successive sampling of size n of units i1 <
i2 · · · < in can be obtained by order sampling scheme with exponential distributions,
that is, forFi(t) = 1−exp(−tθi), θi > 0, i = 1, . . . , N. Successive sampling is therefore
called exponential sampling, too. Rosén (1997a) established conditions for asymptotic
normality of the sample sum

∑
i∈s Yi for general order sampling as follows.

Let us consider stochastic processes Ji(s) = χ[Qi≤s], 0 ≤ s < ∞, i = 1, . . . , N,
where χ[A] denotes the indicator of set A. Then we have EJi(s) = Fi(s), VarJi(s) =
Fi(s)(1− Fi(s)), 0 ≤ s <∞. Let ξ > 0 be an arbitrary fixed real number,

N(t) =
N∑
i=1

Ji(tξ), L(t) =
N∑
i=1

YiJi(tξ), 0 ≤ t <∞,

and τn = inf {t:J(t) = n} be the hitting time to leveln. Then the distribution of the sample
sum

∑
i∈s Yi is the same as that of L(τn) and asymptotically normal with parameters μ
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and σ2 as n→∞, N − n→∞, where

μ =
N∑
i=1

YiFi(ξ), (111)

σ2 =
N∑
i=1

(Yi − φ)2Fi(ξ)(1− Fi(ξ)), (112)

φ =
N∑
i=1

Yifi(ξ)
/ N∑

i=1

fi(ξ), (113)

and ξ solves the equation
∑N

i=1 Fi(t) = n.
Since inclusion probabilities in order sampling are difficult to be computed, Rosén

(1997a) introduced the following estimator of the population total Y =∑N
i=1 Yi :

ŶOS =
∑
i∈s

Yi

Fi(ξ)
. (114)

This estimator is consistent and asymptotically normal with the mean Y and the variance

N∑
i=1

(
Yi

Fi(ξ)
− γ

)2

Fi(ξ)(1− Fi(ξ)), (115)

where

γ =
N∑
i=1

Yi

Fi(ξ)
fi(ξ)

/ N∑
i=1

fi(ξ). (116)

If Fi = F for all i = 1, . . . , N, then F(ξ) = n
N

and γ = 1
n
Y (and coincides with G(P),

see (94)) if SRSWOR is used. Similarly, a Hájek-type modification of the asymptotic
variance is

σ2(F) = N

N − 1

N∑
i=1

(
Yi

Fi(ξ)
− γ

)2

Fi(ξ)(1− Fi(ξ)). (117)

Clearly,N/(N−1)→ 1 asN →∞, and with this correction term, the formula (117) in
case Fi = F for all i yields the asymptotic variance of the Horvitz–Thompson estimator
in SRSWOR. Replacing each total sum in (117) by the estimator of type (114), we get
the following estimator of σ2(F),

σ̂2(F) = n

n− 1

∑
i∈s

(
Yi

Fi(ξ)
− γ̂

)2

(1− Fi(ξ)), (118)

where

γ̂ =
∑
i∈s

Yi

Fi(ξ)2
fi(ξ)

/∑
i∈s

fi(ξ)

Fi(ξ)
. (119)

Consistency of this variance estimator was justified in Rosén (1997a). From the asymp-
totic unbiasness and asymptotic normality, and the fact that the Horvitz–Thompson
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estimator is the unique unbiased linear estimator of the population total, Rosén (1997a)
formulated a conjecture that inclusion probabilities πi ≈ Fi(ξ), i = 1, . . . , N.

In Rosén (1997b), the order sampling is studied with fixed order distribution shape
H and intensities θ1 . . . , θN , that is, it is assumed that Fi(t) = H(θit) with θi > 0, i =
1, . . . , N, whereH is a distribution function with a density h such that h(t) ≥ 0, t ≥ 0.
For given λ1, . . . , λN, 0 ≤ λi ≤ 1,

∑N
i=1 λi = n (called target inclusion probabilities),

the order sampling with shape distributionH and intensities θi = H−1(λi) is considered.
Then, Fi(t) = H(tH−1(λi)) and the relation

∑N
i=1 Fi(ξ) = n is solved with ξ = 1,

which yields Fi(ξ) = λi.With this Fi(ξ), Rosén (1997b) proved that the optimal shape
distribution that minimizes the asymptotic variance (117) is the distribution,

H(t) = t

1+ t , 0 ≤ t <∞ with density h(t) = 1

(1+ t)2 . (120)

The distribution (120) is the standard Pareto distribution and the corresponding order
sampling scheme is called Pareto sampling.

With given target inclusion probabilities λ1, . . . , λN, the expressions (114), (116),
and (117) applied to Pareto sampling take the form

ŶR =
∑
i∈s

Yi

λi
, (121)

γ =
N∑
i=1

Yi(1− λi)
/ N∑

i=1

λi(1− λi), (122)

σ2(F) = N

N − 1

N∑
i=1

(
Yi

λi
− γ

)2

λi(1− λi) (123)

= N

N − 1

[
N∑
i=1

Y 2
i (λ

−1
i − 1)− γ2

N∑
i=1

λi(1− λi)
]
.

Notice that the expressions (122) and (123) coincide with (94) and (104), respectively,
with inclusion probabilities πi(P) replaced by the target inclusion probabilities λi. In
the same way,

γ̂ =
∑
i∈s

Yi

λi
(1− λi)

/∑
i∈s
(1− λi) (124)

coincides with Ĝ(P) in (106) and the variance estimator

σ̂2(F) = n

n− 1

∑
i∈s

(
Yi

λi
− γ̂

)2

(1− λi) (125)

coincides with (105). Then, conditions for asymptotic normality of the estimator (114)
of the population total in Pareto sampling can be reformulated and simplified as follows
from Rosén (1997b): for k = 1, 2 . . . , consider Pareto sampling of size nk with target
inclusion probabilities λk1, . . . , λkNk from a population of sizeNk on which the variable
Yk takes the values (Yk1, . . . , YkNk ). Let Ŷk be the estimator of the population total Yk in
accordance with (121), let σ2

k and γk be in accordance with (123) and (122), respectively.
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Then (Ŷk − Yk)/σk is asymptotically standard normal, as nk →∞ for k→∞, and

lim sup
k→∞

1

nk

Nk∑
i=1

λ2
ki < 1,

max
i

∣∣∣∣Ykiλki − γk
∣∣∣∣→ 0 as k→∞.

Rosén (2000) also studied the relation between the inclusion probabilities and the target
inclusion probabilities and showed that under general conditions, for Pareto, uniform and
exponential sampling, πi/λi → 1 as the size n of the sample increases. Some numerical
algorithms to find the exact inclusion probabilities in Pareto and other sampling schemes
and comparative simulations studies are given in Aires (1999, 2000), Aires and Rosén
(2005), and Ng and Donadio (2006).

As we have seen in the last two sections, the general asymptotics for UPSWOR
sampling schemes under the two approaches initiated by Hartley and Rao (1962) and
Hájek (1964) have gone through various extensions and generalizations. Basically, the
two approaches rest on somewhat different regularity assumptions and they also differ in
their methodological treatise. Chaudhary and Sen (2002) appraised these two apparently
different approaches with a view to eliminating some apparent anomalies, too. They
observed that the basic assumption for validating asymptotic normality in the approach
of Hartley and Rao (1962) along the probabilistic analysis of Hájek (1964) may be
reconciled under an extra condition which amounts to allowing only small variation in
the varying probabilities – a condition not totally needed for the Hájek (1964) approach.
Chaudhary and Sen (2002) also considered the estimation of the asymptotic variance of
linear estimators in UPSWOR with further justification for resampling methods for this
variance estimation problem.

7. Successive subsampling with varying probabilities: Asymptotics

Subsampling or multistage sampling is often adopted in practice and has a great vari-
ety of applications in survey sampling. Typically, we may consider a finite population
of N units with variate values aN1, . . . , aNN . Consider a successive sampling scheme
where items are sampled one after the other (WOR) in such a way that at each draw,
the probability of drawing item s is proportional to a number PNs if item s has not
already appeared in the earlier draws, for s = 1, . . . , N, where PN1 . . . , PNN are posi-
tive numbers, adding up to 1.We like to consider a multistage extension of this sampling
scheme. Here, each of the N items in the population (called the primary units) is com-
posed of a number of smaller units (subunits), and it may be more economic to select
first a sample of n primary units and then to use subsamples of subunits in each of these
selected primary units. Suppose that the sth primary unit has Ms subunits with variate
values bsj, j = 1, . . . ,Ms so that aNs = bs1 + · · · + bsM, for s = 1, . . . , N. For each
s, we conceive a set {P0

sj, 1 ≤ j ≤ Ms} of positive numbers (such that
∑Ms

j=1 P
0
sj = 1)

and consider a successive sampling scheme (WOR), where ms (out ofMs) subunits are
chosen. Then, as in (64), an estimator of aNs can be framed for each of the n selected
primary units. Finally, these estimates can be combined as in (64) to yield the estimator
of the total AN = aN1 + · · · + aNN. The procedure can be extended to the multistage
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case in a similar way. This scheme may be termed SSVPWOR. To study the asymptotic
theory, first we may note that a Horvitz–Thompson estimator of aNs is

âNs =
Ms∑
j=1

ω∗sjbsj/�
∗
s (j,ms), (126)

where the bsj are defined as before, ω∗sj is equal to 1 or 0 according to whether the jth
subunit in the sth primary unit belongs to the subsample of sizems or not, j = 1, . . . ,Ms,

and �∗s (j,ms) is the probability that the jth subunit belongs to the subsample of ms
subunits from the sth primary unit, 1 ≤ j ≤ Ms, s = 1, . . . , N. Combining (64) and
(126), we may consider the natural estimator

ÂN(HT) =
N∑
s=1

ωNŝaNs/�(s, n)

=
N∑
s=1

Ms∑
j=1

ωNsω
∗
sjbsj/[�(s, n)�∗(j,ms)], (127)

whereωNs is equal to 1 or 0 according to whether the sth primary unit is in the sample of n
primary units from the population s = 1, . . . , N, and the inclusion probabilities�(s, n)
are defined as in (63). Note that for each selected primary unit s, for the estimator âNs in
(126), one may use the theory discussed in Section 5. This, however, leads to a multitude
of stopping numbers and thereby introduces complications in a direct extension of the
Rosén approach to SSVPWOR. A more simple approach based on some martingale
constructions has been worked out in Sen (1980), and we present the basic asymptotic
theory as follows.

Our primary interest is to present the asymptotic theory of the estimator ÂN(HT) in
(127). In this context, as in earlier sections, we allow N to increase. As N → ∞,
we assume that n, the primary sample size, also increases, in such a way that n/N is
bounded away from 0 and 1, while the ms (i.e., the subsample sizes) for the selected
primary units may or may not be large. For this situation, the asymptotic theory rests
heavily on the structure of the primary unit sampling but allow the sampling scheme
for the subunits to be rather arbitrary (not necessarily a SSVPWOR), while we assume
that the primary units are sampled in accordance with a SSVPWOR scheme. A second
situation may arise where the number of primary units (i.e., N) is fixed or divided into
a fixed number of strata, and within each stratum a sample of secondary units is drawn
according to SSVWPOR scheme. This situation, however, is congruent to the stratified
sampling scheme under SSVPWOR, for which the theory in Section 5 extends readily.
Hence, we shall not enter into detailed discussions of this second scheme. With the
notations introduced before, we now set

a0
Ns = E(̂aNs) and σ2

Ns = Var(̂aNs) for s = 1, . . . , N; (128)

A0
N =

N∑
s=1

a0
Ns = E(ÂN(HT)). (129)

In order that A0
N = AN, it is therefore preferred to have unbiased estimators at the

subunit stage so that a0
Ns = aNs for every s. Otherwise, the bias may not be negligible.
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Also, for every N, we consider a nondecreasing function tN = {tN(x) : 0 ≤ x ≤ N} by
letting

N − x =
N∑
s=1

exp{−PNstN(x)}, x ∈ (0, N). (130)

Let, then,

δ2
Nn =

N∑
s=1

[a0
Ns]2 exp{−PNstN(n)}[1− exp{−PNstn(n)}]−1

+
N∑
s=1

σ2
Ns[1− exp{−PNstN(n)}]−1

− tN(n)
[

N∑
s=1

a0
NsPNs exp{−PNstN(n)}/(1− exp{−PNstN(n)})

]2

. (131)

Finally, we assume that the subunit estimators âNs satisfy a Lindeberg-type condition,
namely, that for every η > 0,

max
1≤s≤N

E[(̂aNs − a0
Ns)

2I(|̂aNs − a0
Ns| > ηN1/2)] → 0 as N →∞. (132)

The other regularity conditions are, of course, the compatibility of the probabilities
PN1, . . . , PNN and the sizes aN1, . . . , aNN (in the sense that for each sequence, the ratio
of the maximum to the minimum entry is asymptotically finite). Then, we have the
following result:

(ÂN(HT) − A0
N)/δNn is asymptotically N(0, 1). (133)

Actually, we may consider a stochastic process ξN = {ξN(t); c < t < 1} (where c > 0),
by letting ξN(t) = N−1/2(Â

(t)

N(HT) − A0
N), where Â(t)N(HT) is the estimator in (127) based

on the sample size n = [Nt] (for the primary sample), t ∈ [c, 1]. Then, the process
ξN converges in law to a Gaussian function on [c, 1]. The proofs of these results are
based on some asymptotic theory for an extended coupon collector’s problem, where in
(67) through (70), the real (nonstochastic) elements aNs are replaced by suitable random
variables XNs, s = 1, . . . , N. For details of these developments, we may refer to Sen
(1980).

Note that in the above development, apart from the uniform integrability condition
in (132), we have not imposed any restriction on the estimates âNs. Thus we are allowed
to make the subsample sizes ms arbitrary, subject to the condition that (132) holds. In
this context, we may note that if thems are also large, then the σ2

Ns defined by (128) will
be small, so that in (131) the second sum on the right-hand side will be of smaller order
of magnitude (compared with the first sum), and hence, in (133), δNn may be replaced
by d∗Nn defined by (79), where the Ys are to be replaced by a0

Ns. In this limiting case,
we therefore observe that subsampling does not lead to any significant increase of the
variance compared with SSVPWOR of the primary units and complete enumeration in
the second stage. Note, however, that in many practical problems, subsampling is more
suitable, because it does not presuppose the knowledge of the values of the primary
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units {aNs}, and a complete census within the selected primary units may be much more
expensive than use of the estimates {̂aNs}, based on a handful of subunits.

So far, we have considered sampling WOR. In SSVP sampling WR, the theory of
sampling with varying probabilities and WR, discussed in the beginning of Section 5,
readily extends. In (51), instead of the primary units yj , we need to use their estimates
ŷj derived from the respective subsamples. As in (131), this will result in an increased
variability due to the individual variances of the second-stage estimators. However,
when sampling WR, this strategy yields simplifications in the treatment of the relevant
asymptotic theory, and (55) and (56) both extend to this subsampling scheme without
any difficulty.

8. Conclusions

In this chapter, we have reviewed some recent results in finite population asymptotics.
We may remark that in FPS, the usual treatment for the asymptotic theory (valid for
independent r.v.) may not be directly applicable. But in most of these situations, by
appeal either to some appropriate permutation structures (for equal probability sam-
pling) or to some martingale theory (for sampling with varying probabilities as well),
the asymptotic theory has been established under quite general regularity conditions.
These provide theoretical justifications of the asymptotic normality of different esti-
mators (under diverse sampling schemes) when the sample size(s) may or may not be
nonstochastic. Many details of asymptotic results in FPS based on martingale theory
and permutation principles can be found in the article by Sen (1988).

We conclude this chapter with some brief remarks on topics that we have not consid-
ered so far. Some of them are discussed in other chapters of this handbook like two-phase
sampling that is described in detail in Chapter 3. We mention the paper by Chen and
Rao (2007) only, where asymptotic results for a class of estimators under various two-
sample designs are developed. We also did not discuss in detail higher order asymptotic
results based on Edgeworth expansions and saddle point approximations in FPS. We
may refer to the book by Thompson (1997) for an explanation of relevant asymptotic
theory and some basic references. What concerns (generalized) occupancy problems,
in view of the asymptotic normality results referred to in the text, both jackknifing
and bootstrap methods may be worked out conveniently. However, these require more
extensive methodological investigations, and we are to relegate such developments for
future research.

Small area estimation, particularly arising in spatial sampling problems, refers to
a large number of small subpopulations and small samples from them. The situation
is different from stratified sampling where the number of strata is generally small to
moderate while the sample sizes for the strata are generally not small. Since a direct
survey estimator based only on the data from the small area yields large standard errors,
a need exists to develop new procedures with the aim to increase the precision of small
area estimates. These statistical methods are reviewed in Chapter 32 of this handbook.
Asymptotic results obtained there concern the improvement of the estimation of the mean
square errors and covering accuracy of prediction intervals when the number of areas
increases to infinity while the sample sizes remain fixed. We also refer to the book by
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Rao (2003a) on small area estimations that provides a detailed account of all the results
developed until then, and to Chapter 28 of this handbook, where resampling methods
including for small area estimation are discussed. Second-order accurate nonnegative
estimators of mean squared prediction errors in small area estimation are developed in
Lahiri et al. (2007). Empirical and hierarchical Bayes methods have been found to be
very useful in small area estimation (for some asymptotic results see, e.g., Butar and
Lahiri, 2003), while for large samples there are general equivalence results for Bayes
and likelihood procedures. As such, we refer to Chapter 29.

Sampling procedures from populations, units of which are labeled by times or posi-
tions in space, are subject of intensive research in the last two decades. Asymptotic
theory for time dependent data, however, is beyond the scope and extent of this chapter
and we do not present it here.
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Some Decision-Theoretic Aspects of Finite
Population Sampling

Yosef Rinott∗

1. Introduction

Decision theory provides tools and insights for understanding, comparing, and selecting
sampling and estimation procedures. In this chapter, we present a small sample of the
extensive literature on decision-theoretic aspects of sampling from finite populations,
without attempting to give a comprehensive survey of the best possible results and
references.1 Technical details are sometimes omitted for the sake of simplicity.

The chapter is quite theoretical, dealing with the foundations of finite population
sampling and inference through simple designs and models rather than the complex
ones in modern use. It is hoped that a practitioner may find these basic ideas of interest,
albeit theoretical. However, it seems that a student or teacher of statistical decision theory
can definitely benefit from the wealth of ideas that exist in the area of finite population
sampling. It provides setups and examples that add an interesting perspective to the
standard illustrations given in most statistical decision theory courses, where a sample
is often restricted to mean i.i.d. observations.

The task of estimating the mean, say, of a given finite population of size N by
measuring n < N units does not seem to involve any probability structure, unlike other
statistical setups where it is assumed at the outset that the data consist of random or
noisy observations. By random sampling, statisticians introduce noise or randomness
that did not exist in the original problem. It is well known that the introduction of random
sampling can avoid biases and allow important notions such as unbiased estimation and
confidence intervals. While many statisticians (and most standard books on sampling)
take random sampling as so self-evident that questions like “why do statisticians use dice
or other random devices and add randomness or noise to the task” seem unwarranted2, it
is, in fact, an intriguing question that merits more than intuitive answers. Indeed, there is
a large body of literature showing formally and precisely that certain relevant optimality
criteria can only be achieved by random sampling designs.

∗ Partially supported by Israel Science Foundation grant 473/04.
1 For a scholarly survey of results until 1987 and numerous references, see Chaudhuri and Vos (1988).
2 but see Valliant et al. (2000) for a refreshing change.
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Emphasis in this chapter is placed on optimal inference. In the context of finite
populations, optimality is most often expressed in terms of minimax results, which in
general require random strategies. Other decision-theoretic notions such as loss and risk,
admissibility, sufficiency, completeness, unbiasedness, uniformly minimum variance
(UMV), Bayes procedures, and more, will also be discussed in connection with finite
population sampling.

2. Notations and definitions

The following notation will be used throughout the chapter. A list of main notations
appears in Section 8.

1. The population Y = (y1, . . . , yN) is a vector of values of some measurements
with index set N = {1, . . . , N}, where the population size N is assumed to be
known whenever it is needed. Here i ∈ N denotes the label of the i-th population
unit whose value is yi. In this chapter, we assume that Y ∈ R

N , so that each yi is
a univariate measurement (although in many applications more than one variable
is measured for each unit). Some of the ideas could be extended to more general
measurements, but this will not be done here. Y is an unknown parameter, and

so is any function θ(Y) such as Y = 1
N

∑N
i=1 yi, V(Y) = 1

N

∑N
i=1(yi − Y)2,

Max(Y) =Max1≤i≤Nyi, or Med(Y) =Median1≤i≤Nyi.
The set of possible Y’s is denoted byϒ, the parameter space; unless otherwise

stated (towards the end of Section 6), we shall always assume thatϒ is a symmetric
parameter space, that is, a symmetric subset of R

N in the sense that if Y =
(y1, . . . , yN) ∈ ϒ, then so does every permutation of Y. In particular, any set of
the formϒ = �×· · ·×�, a product of some setN times, satisfies this assumption.
The set�(Y) of all permutations of a given vector Y = (y1, . . . , yN) is, of course,
also symmetric. As usual, the parameter space ϒ is known to the statistician.

If the parameter θ(Y) remains constant under permutations of Y, we say that
it is a symmetric parameter. The above examples are all of this kind.

2. A sampling design P is a probability function on the space of all subsets S of
N. Unless otherwise stated, we assume noninformative sampling, also known as
ignorable sampling; that is, the probabilityP(S) does not depend on the parameter
Y. Formally, P(S |Y) = P(S). In the Bayesian or superpopulation context of
Section 6, Y is also random, P(S |Y) becomes a conditional probability, and
ignorability is equivalent to independence of S and Y.

In certain examples, we allow the design P to depend on known covariates
or auxiliary variables; see below. The inclusion probability of a unit is defined
by αi = P({i ∈ S}) = ∑

S:S � i P(S), the probability that unit i is in the sam-
ple S. Here S is the set of drawn labels (without order and repetitions). By a
simple sufficiency argument given in Remark 1 below, we can ignore designs
that take an order of the elements in the sampled set into account or allow repe-
titions.

The set S is called the sample, and its size, |S|, is the sample size. If P(S) > 0
implies |S| = n, then the design P is said to have a fixed sample size.
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Simple random sampling without replacement of size n, abbreviated SRS, is
denoted by Ps and satisfies Ps(S) = 1/

(
N

n

)
if |S| = n, and zero otherwise.

When auxiliary information is available in the form of positive values
(x1, . . . , xN), where xi is some known value of a variable pertaining to unit i ∈ N,
it can be used in the design and in estimation. For example, when xi > 0, the
design having a fixed sample size n, defined by Pppas(S) =∑

i∈S xi/
[
NX̄(

N−1
n−1

)]
if |S| = n, where X̄ = 1

N

∑N
i=1 xi, is of this kind (Lahiri, 1951). The notationppas

stands for probability proportional to aggregate size, in this case, to the aggre-
gate size of the auxiliary variables in S,

∑
i∈S xi. It can be implemented by first

choosing one unit from the population, say i, with probability xi/NX̄, and then
adding a subset of n− 1 additional units chosen from the remaining N − 1 units
uniformly, that is, with equal probabilities for all subsets of size n− 1. See Rao
and Vijayan (1977) and Hedayat and Sinha (1991) for details and references on
this design and a discussion of drawing mechanisms for design implementation,
and Cassel et al. (1977) for further references.

3. The data consist of the set of pairs {(i, yi) : i ∈ S}, that is, the y-values and their
labels for the units in the sample S. We set

D = D[S,Y ] = {(i, yi) : i ∈ S}. (1)

For S = {i1, . . . , in}, let YS be the multiset {yi1 , . . . , yin}, with equal y-values
listed separately provided that they have different labels. In other words, YS can
be viewed as the sequence (yi1 , . . . , yin ), where the order is ignored. For example,
if S = {1, 2, 3} and y1 = y2 = 13 and y3 = 7, then YS = {13, 13, 7} in any
order.

Remark 1. By sufficiency arguments (Basu, 1958) we shall consider the data D
as above, that is, without taking into account the order (if known) in which the
sample was drawn; when the sampling procedure allows repetitions of units, as
in sampling with replacement, repetitions will also be ignored and each repeated
unit will be counted once. Since the relevant data D consist only of the set of
drawn labels S and their y-values, we shall only consider designs P on the
space of (unordered) subsets (with no repetitions) of N. The sufficiency of D
is intuitively obvious: no information is added by measuring a unit more than
once, or specifying the order in which the measurements were taken. A formal
statement and proof follow. We denoted designs which ignore the order of labels
and repetitions by P and the corresponding data by D. In the proposition below,
we consider designs that are probability measures on ordered multisets of N, so
repetitions are allowed, and the data contain information on order and repetitions.
In this case, the sampling design anddata are denoted by bold-face lettersP andD,
respectively, and the sample is an ordered multiset (allowing repetitions) denoted
by S, distributed according to P.

Proposition 2. Let P be a sampling design on ordered multisets which we denote
by S, and consider the data D = {(i, yi) : i ∈ S}, a multiset that includes
information on the order and repetitions in the sample. Let S = r(S) = {i : i ∈ S};
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that is, S is the set formed from S when repetitions and order are ignored, and
let D = r(D) = {(i, yi) : i ∈ S}. Then D is a sufficient statistic for the para-
meter Y.

Proof. For a design P as above, the conditional probability of D = {(i, yi) :
i ∈ S} given D, where S is an ordered multiset and the parameter is Y, satisfies

P(D|D) =

⎧⎪⎨
⎪⎩

P(S)/
∑

S′ : r(S′)=S
P(S′) if r(D) = D

0 otherwise .

(2)

Since the right-hand side of Eq. (2) depends only onD and not on the parameter,
it follows that D is sufficient. �

4. An estimator t = t(D) = t({(i, yi) : i ∈ S}) is a function of the data. We use
various notations for t(D), namely t(D[S,Y ]), or t(S,Y). It should be emphasized
that t(S,Y) depends only on the data {(i, yi) : i ∈ S}, that is, the labels and the
labeled y-values in the sample. Note that when the sample size |S| is not fixed,
then implicit in the notation is the assumption that t is a function defined on
arguments of different dimensions.

If the estimator t(S,Y) = t(D[S,Y ]) can be expressed as a function of YS
alone, we write t(S,Y) = t(YS) and say that t is symmetric (or invariant). Such
an estimator depends on the y-values in the sample and not on their labels.

Examples of symmetric statistics are the sample mean ȳS = 1
|S|

∑
i∈S yi and

variance 1
|S|−1

∑
i∈S(yi− ȳS)2. However, the Horvitz–Thompson estimator tHT =∑

i∈S yi/αi does require knowledge of the labels associated with each y-value,
and, thus, it is not symmetric.

When auxiliary information (x1, . . . , xN) is available for every unit in the pop-
ulation, it can be used in the sampling design and in estimation. For example, con-
sider the ratio estimator of Ȳ defined by tR = (ȳS/x̄S)X̄, where x̄S = 1

|S|
∑

i∈S xi;
we denote it by tR since ȳS/x̄S is an estimator of the ratioR = Ȳ/X̄. The estimator
tR is not symmetric since the computation of x̄S requires knowledge of the labels
in S (but not their pairing with the y-values). Note that if X̄ is known, and the
population consists of the pairs, that is, Z = {z1 = (y1, x1), . . . , zN = (yN, xN)},
then tR is a symmetric estimator for the population Z.

In this chapter, we assume t ∈ R and any value in R is allowed, regardless
of the parameter space. For example, a proportion in a population of size N (see
Section 3.5.2) is necessarily a rational number of the form k/N, but we allow
an estimator t of this proportion to assume any real value; if certain values are
undesired, the loss function should reflect it.

5. A pair (P, t) consisting of a sampling design and an estimator is called a strategy.
A class of strategies consists of all pairs (P, t) such that P belongs to some class
of sampling designs and t belongs to some class of estimators.

6. A loss function L(τ,Y) represents a penalty paid in an estimation problem when
the estimator assumes the value τ, and the value of the parameter is Y. If θ = θ(Y)
is a parameter and t = t(S,Y) is an estimator of θ, we may use the notationL(t, θ)
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for the loss. A common example is L(t, θ) = (t− θ)2, the quadratic loss function
(= squared error loss). A loss function is said to be symmetric if L(τ,Y) remains
constant when Y is replaced by any permutation of its coordinates for any fixed
τ. Clearly, if θ(Y) is a symmetric parameter, that is, if it remains constant under
permutations of Y, then so does L(τ, θ(Y)), and the loss is symmetric.

7. The risk of a strategy (P, t) for the population Y is the expected loss defined by

R(P, t;Y) := EPL(t,Y) =
∑
S

P(S)L(t(D[S,Y ]),Y) (3)

where the sum extends over all subsets of N.
An important special case is R(P, t;Y) := MSE(P, t;Y) := EP(t − θ)2;

one reason for the interest in this measure is that by Chebychev’s inequality it
provides a lower bound on confidence interval coverage: P(|t − θ(Y)| ≤ c) ≥
1−MSE(P, t;Y)/c2 for each Y ∈ ϒ. For unbiased estimators, the MSE coincides
with the variance, which plays a role in the construction of confidence intervals
based on the normal approximation. It is well known that the MSE of an estimator
can be decomposed into the sum of its variance and the square of its bias.

8. The strategy (P, t) is said to be unbiased for θ = θ(Y) if

EPt :=
∑
S

P(S)t(D[S,Y]) = θ(Y) (4)

for all Y = (y1, . . . , yN) ∈ ϒ. In this case, we say that t is P-unbiased.
Note that if P satisfies αi = n/N for all i = 1, . . . , N, then the sample mean

ȳS = 1
n

∑
i∈S yi is unbiased for the population average Ȳ and, more generally for

any design P, so is the estimator tHT/N where tHT =∑
i∈S yi/αi is the Horvitz–

Thompson estimator, since by setting Ii to be the indicator of the event that i ∈ S
we have EPIi = αi and therefore,

EP[tHT/N] = EP
1

N

N∑
i=1

Iiyi/αi = 1

N

N∑
i=1

yiEPIi/αi = Ȳ. (5)

More generally, the estimator t= 1
N

∑
i∈S yici(S)/αc(i), where αc(i)= ∑

S:S � i

ci(S)P(S), is easily seen to be P-unbiased for Ȳ. When ci(S) ≡ 1 it reduces
to tHT.

Under SRS, the ratio estimator tR = (ȳS/x̄S)X̄ is, in general, not unbiased. On
the other hand, the strategy (Pppas, tR), with Pppas defined above as probability
proportional to

∑
i∈S xi sampling, is unbiased for Ȳ, since

Eppas tR =
∑
S

(∑
i∈S

xi

)/[
NX̄

(
N − 1

n− 1

)]
(ȳS/x̄S)X̄

=
(
N − 1

n− 1

)−1 1

N

∑
S

∑
i∈S

yi = Ȳ.

To compare the above notions for finite populations with standard statistical decision
theory, we give the following concise definitions, to be followed by a short discussion.
For further details see, for example, Ferguson (1967) and Lehmann and Casella (1998).
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Definition 3. • An observation is a random variable X ∼ Pθ (i.e., X has the
distribution Pθ), where θ ∈ �, the parameter space.

• Adecision rule δ(X) is a function taking values in a decision space A, or a distribu-
tion on A (which may depend on X) in which case δ is randomized. The decision
space is sometimes identical to the parameter space.

• L(a, θ) is the loss due to a decision a ∈ A, and if δ is randomized, we setL(δ, θ) =
EδL(a, θ) where a ∼ δ = δ(X). The risk is defined by R(δ, θ) = EL(δ(X), θ),
where the expectation is with respect to X ∼ Pθ . Given a prior distribution ρ for
θ, the Bayes risk is r(ρ, δ) = EρR(δ, θ) =

∫
R(δ, θ)dρ(θ).

• A decision rule δ0 is Bayes with respect to ρ if r(δ0, ρ) = inf δ r(δ, ρ). It is a
minimax rule if supθ R(δ0, θ) = inf δ supθ R(δ, θ). The rule δ0 has a uniformly
minimal risk among unbiased estimators of g(θ) if Eδ0(X) = g(θ), that is, δ0

is unbiased, and R(δ0, θ) ≤ R(δ, θ) for all θ ∈ � and any unbiased rule δ. In the
case of MSE risk, the latter δ0 has the UMV among Unbiased estimators (UMVU)
property.

In standard decision theory as given in Definition 3, the distribution of the data is
prescribed as part of the problem, and optimization is done only with respect to the
decision rule or the estimator. In contrast, when we study strategies in finite population
sampling, we attempt to optimize over both the estimator and the sampling design. The
latter determines the data collection method and the distribution of the data, and in this
sense optimality in finite population sampling is more comprehensive than classical
decision theory.

Remark 4. Henceforth, we consider only nonrandomized estimators unless otherwise
stated (as when we consider nonconvex loss in Section 3.4, and the Rao–Hartley–
Cochran strategy in Section 7.2). When the loss function L(a, θ) (or L(τ,Y) ) is convex
in the variable a (or τ), as in the quadratic loss case, then randomized estimators can
be replaced by nonrandom ones having a smaller risk. In fact, by Jensen’s inequality
the risk of a randomized estimator can only decrease when the estimator is replaced by
its expectation (assuming it is finite), which is a nonrandomized estimator.

One may now ask whether randomization in the sampling design can also be elim-
inated in a similar way under some convexity conditions, that is, can a design P be
replaced by a deterministic sample with a smaller risk. However, this cannot be done
since the relevant space is not convex: there is no “average” or “expected” set for a
given design.

3. Minimax strategies

3.1. Definitions and discussion

Definition 5. A strategy (P0, t0) is said to be minimax relative to a given class of
strategies if it belongs to this class, and

sup
Y∈ϒ

R(P0, t0;Y) ≤ sup
Y∈ϒ

R(P, t;Y) (6)

for every strategy (P, t) in the given class of strategies.
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The estimator t0 is said to be minimax under P in a class of estimators, if

sup
Y∈ϒ

R(P, t0;Y) ≤ sup
Y∈ϒ

R(P, t;Y) (7)

for any estimator t in the class.

In Eq. (6) and below, the sup may be replaced by max when the latter exists. With
quadratic loss function, supY∈ϒ R(P, t;Y) becomes supY∈ϒMSE(P, t;Y), which is
supY∈ϒVarP(t) for unbiased estimators.

A minimax strategy guarantees the lowest maximal risk, that is, the smallest risk in
the worst case or the worst possible Y. If we denote the left-hand side of Eq. (6) by
v0, then using the strategy (P0, t0), we are guaranteed a risk of at most v0 whatever the
population values Y are, and a lower value for all Y cannot be guaranteed.

It turns out that minimax strategies involve random sampling. Strategies that avoid
randomization are in general not minimax and hence may yield very poor estimates for
certain populations Y. Randomization guarantees that the sample “represents” the pop-
ulation (with probability that increases with the sample size).Any fixed sample could be
very biased relative to certain populations. For example, the mean of a sample consisting
of the first n labels from an ordered Y would be a poor estimate of the population mean,
and such poor samples are avoided with high probability by randomization. This is why
regulatory agencies insist on randomization, and perhaps also in order to prevent biased
experimenters who have some partial knowledge of Y from choosing a biased sample
that would prove their point rather than yield good estimates.

Minimax strategies are particularly relevant in zero-sum games, where maximiz-
ing one’s own gain is equivalent to minimizing one’s opponent’s gain. The view of
a statistical problem as a game between a statistician who chooses a strategy (P0, t0)

and nature which “chooses” the parameter value, appears in well-known texts such as
Blackwell and Girshick (1954) and Ferguson (1967). Random sampling is equivalent
to a mixed strategy of the statistician, that is, a strategy which chooses the action (in
this case, the sample S) at random according to a certain probability law (which in
our case is P). In general, minimax strategies are mixed strategies. Thus, the minimax
criterion leads naturally to random sampling. One may argue that nature should not
be considered a strategic player who uses the worst possible (for the statistician) or
least favorable Y as a player in a zero-sum game, and question the minimax approach
and the relevance of zero-sum games. However, the protection against a worst-case
population appears quite reasonable when prior knowledge of the populations is very
limited.

Brewer (1963) and Royall (1970b) present optimality results where the sup’s in
Eq. (6) are replaced by expectations with respect to a prior (superpopulation model) on
Y satisfying certain conditions that are expressed in terms of covariates. The resulting
optimal design, which may be very sensitive to the choice of a prior, is nonrandom:
averaging over a prior replaces the need for averaging by a random design. This approach
is analogous to average-case or probabilistic analysis of algorithms in computer science,
whereas the minimax approach pertains to worst-case evaluations.

While protecting against the worst case in the parameter space, minimax rules may
sometimes be relatively unsatisfactory in other parts of that space. An example is given
in Section 3.5.
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3.2. Some minimax results through symmetry (invariance)

Invariance or symmetry has a long history in statistics. Symmetrization of strategies (as
in Eq. (9) below) appears in Blackwell and Girshick (1954), and in Kiefer (1957) with
reference to work of Hunt and Stein from the 1940s.

The first step towards finding minimax strategies through symmetry is to show that
it suffices to search among strategies consisting of symmetric estimators and a (con-
ditional) SRS design. This is formulated in Proposition 6. Part of the notation below
follows Stenger (1979).

Let� denote the group of permutations of N = {1, . . . , N}, and for π ∈ �, S ⊆ N,
and Y = (y1, . . . , yN), define

πS = {π(i) : i ∈ S} , πY = (yπ−1(1), . . . , yπ−1(N)) . (8)

For a design P let

P̄(S) =
∑
π∈�

P(πS)/N! , t̄P(S,Y) = 1

N!P̄(S)
∑
π∈�

t(πS, πY)P(πS). (9)

Note that P̄(S) is a probability on subsets S of N. If the design P concentrates on sets
of size n, then P̄ is a uniform probability with P̄(S) = 1/

(
N

n

)
on such sets, that is,

P̄(S) = Ps(S), which is SRS. If P(|S| = m) = γm, m = 1, . . . , N, where |S| denotes
the size of S, then P̄(S) = γ|S|/

(
N

|S|
)
. In this case, P̄(S) is uniform over all sets of a

given size, and we call it a conditional SRS. Moreover, P̄ = P if and only if P is a
conditional SRS.

Let us now consider a random pair (π, S), consisting of a random permutation
and a random set having the joint distribution (π, S) ∼ P(πS)

N! . It is easy to see that∑
π

∑
S

P(πS)
N! = 1, and by Eq. (9) we have

∑
π

P(πS)
N! = P̄(S), the marginal distribution

of S. The conditional distribution of π given S is the ratio of the joint distribution P(πS)
N!

and marginal distribution P̄(S) of S. We summarize this notation as follows:

(π, S) ∼ P(πS)
N! , S ∼ P̄(S), π|S ∼ P(πS)

N!P̄(S) . (10)

Then, t̄P(S,Y) = E[t(πS, πY) | S] = Eπ|S[t(πS, πY)].
Note that D[πS, πY] = {(π(i), yπ−1π(i)) : i ∈ S} = {(π(i), yi) : i ∈ S}, and so

t̄P(S,Y) does not depend on y-values outside of YS . The same is true for any t(πS, πY)
with known π. Assume without loss of generality that S = {1, . . . , n} and use the
notation π(i) = ji for i ∈ S. From Eq. (9) we have

t̄P(S,Y) = c
∑

{j1,...,jn}
t({(j1, y1), . . . , (jn, yn)})P ({j1, . . . , jn}),

where c is a constant. The sum is over all subsets of size n and does not depend on S, and
it follows that t̄P(S,Y) depends on YS (and P), but not on S; that is, t̄P is a symmetric
estimator.

It is now easy to see that for a symmetric estimator t(YS) we have

t(πS, πY) = t(S,Y) and, therefore, t̄P(S,Y) = tP(S,Y). (11)
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From the definitions in Eq. (9) it is easy to see that if (P, t) is an unbiased strategy
for a symmetric parameter θ = θ(Y), that is, a parameter satisfying θ(πY) = θ(Y) for
all π ∈ �, then so is the strategy (P̄, t̄).

The following proposition (see Gabler (1990) and references therein for closely
related results) implies that for a minimax strategy relative to designs of fixed sample
size, it suffices to search among strategies (Ps, t), where t = t(YS) is symmetric and
Ps is SRS with the same sample size. More generally, it shows that for any strategy
(P, t) there is a strategy consisting of a conditional SRS design having the same dis-
tribution of sample size as P and a symmetric estimator t(YS) with a smaller maximal
risk. The proposition requires symmetry and convexity of L. A closely related result
that does not require convexity of the loss is Proposition 13. The latter proposition
provides an interpretation of the third expression in Eq. (13) below in terms of a ran-
domized estimator. We defer the discussion to Section 3.4 for the sake of simplicity at
this point.

Recall that a loss function L is symmetric if it remains constant under permutations
of Y; that is, L(τ,Y) = L(τ, πY). With the above definitions we have,

Proposition 6. Let L(τ,Y) be a symmetric loss function that is convex in τ for each
Y ∈ ϒ, a symmetric parameter space. Then for P̄, t̄ defined in Eq. (9),

sup
Y∈ϒ

R(P̄, t̄;Y) ≤ sup
Y∈ϒ

R(P, t;Y). (12)

Proof.

R(P̄, t̄;Y) =
∑
S

L(t̄(S,Y),Y)P̄(S) (0)≤
∑
S

∑
π

P(πS)
N!P̄(S)L(t(πS, πY),Y)P̄(S)

=
∑
S

∑
π

P(πS)
N! L(t(πS, πY),Y) (1)=

∑
π

∑
S

P(S)
N! L(t(S, πY),Y)

(2)= 1

N!
∑
π

∑
S

P(S)L(t(S, πY), πY) = 1

N!
∑
π

R(P, t;πY); (13)

�

Jensen’s inequality applied to the convexity of the loss functionL implies the inequality
marked by (0); a further explanation is given below. The equality (1) was obtained by
substituting S for πS (both range over all subsets of N under the summation on S) and
(2) follows because by symmetry L(τ,Y) = L(τ, πY).

Asimple way to understand the above inequality (0) is to note that under the definitions
of Eq. (10),

∑
S

∑
π

P(πS)
N!P̄(S)L(t(πS, πY),Y)P̄(S) = ES{Eπ|S[L(t(πS, πY),Y)]},

and the inequality becomes ESL(Eπ|S[t(πS, πY)], Y) ≤ ES{Eπ|S[L(t(πS, πY),Y)]}.
From Eq. (13) we haveR(P̄, t̄;Y) ≤ maxπ R(P, t;πY) since the maximum is larger

than the average, and by the symmetry (permutation invariance) of the parameter space
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ϒ, it follows that

sup
Y∈ϒ

R(P̄, t̄;Y) ≤ sup
Y∈ϒ

R(P, t;Y).

Note that for a (conditional) SRS design P we have P = P̄, and we conclude from
Proposition 6 that for such designs it suffices to consider symmetric estimators when the
goal is to minimize maximal risk with convex loss. This is formulated in the corollary
below, which appears in Royall (1970a).

Corollary 7. Let P be a conditional SRS design. Under the conditions of Proposition 6

sup
Y∈ϒ

R(P, t̄;Y) ≤ sup
Y∈ϒ

R(P, t;Y).

Our next goal is to establish a minimax result for unbiased strategies. First, we need
the following lemma on completeness, due to Royall (1968). As usual, completeness
will be used to obtain uniqueness of unbiased estimators. A function h(y1, . . . , yn) is
said to be symmetric if it is invariant under permutations of its arguments, that is, it
depends only on the set of (unordered) values {y1, . . . , yn}. We can then write h(YS),
since YS is a set of (unordered) y-values.

Lemma 8. Let ϒ be any product parameter space

ϒ = �N = �× · · · ×�, (14)

and let P be a design such that P(S) > 0 implies |S| = n. Then YS is complete; that is,
for any symmetric function h, EPh(YS) = 0 for all Y = (y1, . . . , yN) ∈ ϒ implies that
h(y1, . . . , yn) = 0 for any yi ∈ �, i = 1, . . . , n.

Proof. First consider Y = (a, . . . , a) ∈ ϒ (here, e.g., we use the structure of ϒ given
by Eq. (14)) and compute the expectation under this value of the parameter. Then
0 = EPh(YS) = ∑

S P(S)h(a, . . . , a) implies h(a, . . . , a) = 0. Assuming without
loss of generality that P(S) > 0 for S = {1, . . . , n} choose now Y = (b, a, . . . , a) ∈ ϒ.
Then 0 = EPh(YS) = ph(a, . . . , a) + qh(b, a, . . . , a) with q > 0, and we con-
clude that h(b, a, . . . , a) = 0. The result follows by continuing in the same manner
(induction). �

The next theorem shows that relative to the class of unbiased strategies, there exist
minimax strategies that involve SRS. For a closely related result see Theorem 3.10
in Cassel et al. (1977) and references therein. Remark 11 compares their result to
Theorem 9 below. Such a result is not true without restricting the class to unbiased strate-
gies (see Remark 11 below). Unbiasedness is ubiquitous in applications. This is quite
natural since avoiding bias is often given as a justification for random sampling. How-
ever, unbiasedness alone does not guarantee good estimation; see, for example, Basu’s
(1971) famous circus-elephants weighing example for a ridiculously poor unbiased
estimator.
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Theorem 9. Let ϒ be any product parameter space: ϒ = �N = � × · · · × �, and
let Ps denote SRS of size n. If there exists any unbiased strategy (P, t) for the param-
eter θ = θ(Y) with P having a fixed sample size n, then there exists a unique sym-
metric estimator t0 = t0(YS) depending only on YS , such that the strategy (Ps, t0) is
unbiased.

If θ = θ(Y) is a symmetric parameter, and the loss function L(τ, θ) is convex in τ for
each Y ∈ ϒ, then,

sup
Y∈ϒ

R(Ps, t0;Y) ≤ sup
Y∈ϒ

R(P, t;Y) (15)

for any unbiased strategy (P, t) for θ, having a fixed samples size n. In other words, the
strategy (Ps, t0) is minimax relative to the above class of strategies (P, t).

Proof. As mentioned after Eq. (11), if (P, t) is unbiased then so is (P̄, t̄). Since P
concentrates on sets of size n, we have P̄ = Ps. Lemma 8 implies that a symmetric
unbiased estimator is unique (take h in the lemma to be the difference between two
unbiased estimators to obtain that they are the same). It follows that the strategy (P̄, t̄)
is the same for all unbiased (P, t), and the result follows from (12) with t0 = t̄.

The sup’s in Eq. (15) may be infinite, in which case the result is uninteresting, and it
is empty if no unbiased strategies exist. �

Corollary 10. Let ϒ = �N . If θ = θ(Y) = 1
N

∑N
i=1 yi = Ȳ, the population mean,

and the loss function L(τ, θ) is convex in τ for each Y ∈ ϒ, then for the sample mean
ȳS = 1

n

∑
i∈S yi we have

sup
Y∈ϒ

R(Ps, ȳS;Y) ≤ sup
Y∈ϒ

R(P, t;Y) (16)

for any unbiased strategy (P, t) for θ, having a fixed sample size n. In other words, the
strategy (SRS, ȳS) is minimax relative to the above class of strategies (P, t).

For the population variance θ = V(Y) = 1
N

∑N
i=1(yi−Ȳ)2, set v = N−1

N(n−1)

∑
i∈S(yi−

ȳS)
2, an unbiased estimator. Then (SRS, v) is minimax relative to unbiased strategies

having sample size n.

Proof. The population mean θ = Ȳ is a symmetric parameter, and the sample mean ȳS
is a Ps-unbiased estimator, that is, it is unbiased for SRS of size n. The result follows
from Theorem 9. Similarly, v above is symmetric and a Ps-unbiased estimator of the
population variance, which is a symmetric parameter. �

Remark 11. Theorem 3.10 of Cassel et al. (1977) states a result similar to Theorem 9
for the special case of θ = Ȳ, the population mean, and for the quadratic loss function
(MSE). It states that in this case an unbiased strategy (P1, ȳS) with sample size n is
minimax relative to the class of unbiased strategies with sample size n, for any such
P1 satisfying αi = n/N for i = 1, 2, . . . , N, and it seems that all they require of the
parameter space is for it to be symmetric.

In the counterexamples below, we also consider quadratic loss and estimation of
the population mean. The first example shows that the assumption αi = n/N does not
suffice.
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Set N=4, n=2, and ϒ={0, 2a}4. Then for quadratic loss a straightforward calcu-
lation shows that maxY∈ϒ R(Ps, ȳS;Y) = a2/2 and the maximum is attained at Y =
(0, 0, 0, 2a). On the other hand, the design defined by P1({1, 2}) = P1({3, 4}) = 1/2
satisfies αi = n/N = 1/2, but forY = (0, 0, 2a, 2a) one easily getsR(P1, ȳS;Y) = a2

and clearly (P1, ȳS) is not minimax.
The next example shows that even in the case of SRS it is not enough to assume that

ϒ is symmetric. Set ϒ = �(1, 2, 3)
⋃
�(11, 12, 13), that is, the set consisting of the

two indicated vectors and all their permutations. HereN = 3. Then for SRS with n = 1
or n = 2, there clearly exists an (unbiased) estimator t which is always exactly correct,
and hence satisfies R(Ps, t;Y) = 0, whereas R(Ps, ȳS;Y) > 0, so that (Ps, ȳS) is
not minimax. This happens because one observation provides complete information
about the population up to permutations (recall that the parameter space is assumed
known).

Finally, we show by a simple example that the unbiasedness condition is not redun-
dant. (For MSE, this will become clear also in Section 3.5.) In fact, a biased estimate
t may satisfy maxY∈ϒ R(Ps, t;Y) < maxY∈ϒ R(Ps, ȳS;Y). Take N = 2,ϒ = {0, 1}2,
and n = 1. Then, maxY∈ϒ R(Ps, ȳS;Y) = (1/2)2. The (biased) estimator t defined by
t(0) = 1/4, t(1) = 3/4, satisfies maxY∈ϒ R(Ps, t;Y) = (1/4)2.

The restriction to unbiased estimators may be replaced by linearity and invariance
conditions and similar results to Theorem 9 still hold. Note that for the case of esti-
mating Ȳ, for example, the minimax strategy (SRS, ȳS) does not depend on ϒ. Without
unbiasedness or similar restrictions, the minimax strategy depends on ϒ, and finding it
may be difficult. For nonsymmetric parameter spaces the problem becomes even harder.
See Proposition 17 below for a minimax rule on symmetric product parameter spaces
for quadratic loss (MSE), without an unbiasedness condition.

3.3. Symmetric estimators and nonconvex loss

The next proposition is a special case of a general result on invariance, Theorem 8.6.4 of
Blackwell and Girshick (1954), who applied it in the context of sampling. It says that for
symmetric estimators the maximal risk is minimized by (conditional) SRS designs. In
particular, designs having a fixed sample size can be replaced by SRS. Since R(P, t;Y)
is linear in P (but not in t), convexity of the loss L is not required. Also, we require no
conditions on ϒ other than symmetry, which is always assumed. Recall that for a given
design P the corresponding P̄ is defined in Eq. (9).

Proposition 12. For any symmetric estimator t, design P, and symmetric loss fun-
ction L,

sup
Y∈ϒ

R(P̄, t;Y) ≤ sup
Y∈ϒ

R(P, t;Y).

If the design P has a fixed sample size, say n, then

sup
Y∈ϒ

R(Ps, t;Y) ≤ sup
Y∈ϒ

R(P, t;Y),

where, Ps denotes SRS of size n.
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Proof.

sup
Y∈ϒ

R(P̄, t;Y) = sup
Y∈ϒ

∑
S

P̄(S)L(t(S,Y),Y)

= sup
Y∈ϒ

∑
S

∑
π

P(πS)
N! L(t(S,Y),Y)

= sup
Y∈ϒ

∑
π

∑
S

P(S)
N! L(t(π

−1S,Y),Y)

(1)= sup
Y∈ϒ

∑
π

∑
S

P(S)
N! L(t(S, πY),Y)

(2)= sup
Y∈ϒ

∑
π

∑
S

P(S)
N! L(t(S, πY), πY)

≤ 1

N!
∑
π

sup
Y∈ϒ

∑
S

P(S)L(t(S, πY), πY)

= 1

N!
∑
π

sup
Y∈ϒ

R(P, t;Y) = sup
Y∈ϒ

R(P, t;Y); (17)

the equalities marked by (1) is obtained by the symmetry of t using the first part of
Eq. (11), and (2) follows from the symmetry of L; the rest is straightforward. The
second part of the proposition is a special case of the first, based on the fact that if P
has a fixed sample size n, then P̄ = Ps. �

It is easy to provide a counterexample to the above result for t that is not symmetric.
Take N = 3 and n = 2 and let t(S,Y) be an estimator that takes a huge and irrele-
vant value when 3 ∈ S. Clearly, one can choose values such that the design satisfying
P({1, 2}) = 1 will violate the second inequality of Proposition 12.

3.4. Asymmetric and randomized estimators and nonconvex loss

So far, we have considered loss functions L(τ,Y) that are convex in τ, with one excep-
tion, namely Proposition 12. In sample survey applications, unbiased or nearly unbiased
estimators are usually considered, and their variances or MSE are computed. This cor-
responds to quadratic loss, which is convex. In this section, we shall see (and it is well
known) that for nonconvex loss functions and certain optimality criteria of statistical
decision theory, randomized estimators become relevant, and we discuss them briefly in
the next paragraph. Nonconvex loss functions arise, for example, in specific areas such
as statistical classification, where a convex loss would tend to overemphasize misclas-
sification of outliers, and more generally, when one wants to allow bounded loss over
unbounded spaces. In this chapter, we treat general loss functions, including nonconvex
ones, because we think that they may be useful and relevant, and because their discus-
sion clarifies the analysis and shows what conditions are really needed, an issue that
may be hidden in explicit calculations with quadratic loss.

For randomized estimators, standard decision theory suggests taking expectation of
the loss over both the random estimator, and the design. This leads to the interpretation
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of the loss for randomized estimators as given in Definition 3: L(δ, θ) = EδL(a, θ)

where a ∼ δ = δ(X). This interpretation, which in certain situations leads to optimality
of randomized estimators as shown later, is perhaps relevant when a large number of
similar estimation problems are considered together, with (roughly) the same value of
the estimated parameter. The law of large numbers is then often used to justify the
expectation. Perhaps one may consider repeated estimation of employment rates in a
monthly Labor Force Survey to be such a situation. But in general, statistical agencies
do not use randomized estimators, and their discussion in our context is theoretical.3 The
latter fact indicates that this approach to loss and randomized estimators is debatable.
For example, when the randomization does not depend on the data, which is the case in
most of the examples given later, this interpretation seems to violate the conditionality
principle which many statisticians accept,4 since it takes into account possible estimators
which were not chosen to be used.

Like random sampling (which is, of course, used everywhere) randomized estimators
may be seen as mixed strategies in game theoretical terminology; see, for example,
Rubinstein (1991) and references therein for a discussion of the difficulty of interpreting
mixed strategies in game theory, which pertains to statistics as well.

Below is a simple example showing that without convexity, randomized estimators
must sometimes be taken into account. Consider for example the loss function of a
perfectionist defined by L(τ, θ) = 0 if τ = θ and = 1 otherwise,5 and let θ be the
population mean. Let n = 1,ϒ = {0, 1}2, that is,N = 2. Then under SRS, for example,
the randomized estimator t∗ with t∗(0) = 0 or = 1/2 with probability 1/2 each, and
t∗(1) = 1/2 or = 1, again with probability 1/2, is the minimax rule with risk = 1/2.
For convex loss function, a simple application of Jensen’s inequality implies that we
would achieve the same or smaller risk by averaging t∗ to obtain the estimator t with
t(0) = 1/4, t(1) = 3/4 (see Remark 11), which for quadratic loss is minimax. However,
for the perfectionist’s loss function the risk of t equals 1; it is an estimator that is never
exactly correct.

The next result says that for any symmetric loss function (convex or not) and any
strategy (P, t) having a fixed sample size n, one can find an estimator t∗ such that the
maximal risk of (Ps, t∗) is smaller than that of (P, t), where Ps denotes SRS of size n.
This suggests that for minimax purposes or when considering maximal risk (and with
the absence of auxiliary information), only SRS needs to be considered.

The estimator t∗ turns out to be randomized, and its construction is given explicitly
in Proposition 13 below. I cannot provide a reference for this proposition; it is probably
not new, but if it is, it may be because little or no attention has been paid to nonconvex
loss functions in finite population sampling. See Ferguson (1967 Theorem 4.3.1) for a
related result, where randomized rules play a similar role. The proposition shows that
the fact that SRS suffices for minimax considerations when estimating a symmetric
parameter (which implies symmetric loss) is not related to convexity.

Given an estimator t, let tπ(S,Y) = t({(π(i), yi) : i ∈ S} = t(πS, πY); see Eqs. (1)
and (8) for notations. For example, if t = tHT then tπ(S,Y) = ∑

i∈S yi/απ(i). For a

3 However, the Rao–Hartley–Cochran strategy mentioned in Section 7.2 is an example of a randomized
estimator.

4 See Helland (1995) for the history, a critical discussion, and references on the conditionality principle.
5 A smoothed version of this function could be studied in similar ways.
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strategy (P, t) with a fixed sample size, let t∗ be the randomized estimator defined for
a given S by

t∗(S,Y) = tπ(S,Y) = t(πS, πY) with probability
P(πS)
N!Ps(S) for π ∈ �,

(18)

where � is the permutation group over {1, . . . , N}. Clearly
∑

π
P(πS)
N!Ps(S)

= 1.

Proposition 13. LetL(τ,Y) be a symmetric loss function (convex or not) and as always
let ϒ be a symmetric parameter space. Given a strategy (P, t) with fixed sample size n,
let t∗(S,Y) be the randomized estimator of Eq. (18). Then

sup
Y∈ϒ

R(Ps, t∗;Y) ≤ sup
Y∈ϒ

R(P, t;Y). (19)

Proof. We just repeat part of the proof of Proposition 6. Using the notation of Eq. (8),
but see also Eqs. (9) and (13), we have

R(Ps, t∗;Y) =
∑
S

∑
π

P(πS)
N!Ps(S)L(tπ(S,Y),Y)Ps(S)

=
∑
S

∑
π

P(πS)
N! L(t(πS, πY),Y)

(1)=
∑
π

∑
S

P(S)
N! L(t(S, πY),Y)

(2)= 1

N!
∑
π

∑
S

P(S)L(t(S, πY), πY)

= 1

N!
∑
π

R(P, t;πY) ≤ max
π
R(P, t;πY), (20)

where the relations marked by (1) and (2) are explained under Eq. (13). The result now
follows easily (compare to the proof of Proposition 6). �

A similar result to the above holds when P does not have a fixed sample size, in
which case the left-hand side of Eq. (19) holds with Ps replaced by the conditional SRS
design P̄.

The relation between Propositions 13 and 6 is as follows. If the loss is convex, we can
replace t∗ in Eq. (19) by its expectation, and obtain a lower bound by Jensen’s inequality,
and Proposition 6 follows; this is true also when the sample size is random.

We stated Propositions 12 and 13 separately only because in the context of finite
population sampling, randomized estimators (which are needed to state Proposition 13)
are esoteric. We could have stated just Proposition 13, since it implies Proposition 12
readily. To see this it suffices to note that by Eq. (11), if the estimator t is symmetric,
then the estimator t∗ defined in Eq. (18) is in fact nonrandomized, and t∗ = t.
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3.5. Minimax and Bayes estimators

Minimax estimators can be obtained from Bayesian calculations. An example of this
approach concerning estimation of a proportion in a finite population is given with
the purpose of demonstrating the technique. While minimizing the maximal risk by
definition, the resulting minimax rule has a higher risk than the usual estimator, the
sample proportion, in parts of the parameter space, and we discuss the comparison
between the two estimators. Most of the following discussion and much more can be
found in Lehmann and Casella (1998) and the references therein.

The problem of estimating a proportion in a finite population of size N by a sample
of size n is first approximated by the standard decision-theoretic problem of estimating
the parameter p from a binomial distribution, that is, a sample of iid Bernoulli(p)
observations. The notation and terminology we need for the latter problem is that of
Definition 3.

3.5.1. The binomial case
ConsiderX ∼ Binomial(n, p) and a Bayesian structure with a prior p ∼Beta(a, b). For
quadratic loss, it is well known that the Bayes estimator is the posterior expectation
d(X) = E(p|X). A standard calculation shows that the estimator,

d(X) = X

n

√
n

1+√n +
1

2(1+√n) (21)

is Bayes with respect to the above prior when a = b = √n/2 and that it is an equalizer,
that is, its risk is constant and does not depend on p. In fact, E(d(X)−p)2 = 1

4(1+√n)2 .
The following proposition is well known (see, e.g., Ferguson (1967) or Lehmann and
Casella (1998)) and readily implies the minimax result of Corollary 15 below. For
definitions see Definition 3.

Proposition 14. A Bayes estimator δ0 having a constant risk (equalizer) is minimax.
If δ0 is uniquely Bayes with respect to a given prior, then it is the unique minimax
estimator.

Proof. Let δbe another estimator, and assume δ0 is Bayes with respect toρ.The estimator
δ0 satisfies r(δ0, ρ) =

∫
R(δ0, θ)dρ ≤ r(δ, ρ) = ∫

R(δ, θ)dρ. As R(δ0, θ) is a constant
not depending on θ, it follows that R(δ0, θ) ≤

∫
R(δ, θ)dρ ≤ supθ R(δ, θ) for all θ, and

δ0 is minimax. If another rule is minimax, then using the assumption of constant risk of
δ0, it is easy to see that it is also Bayes, and the uniqueness part follows. �

Corollary 15. The estimator d(X) of Eq. (21) is the unique minimax estimator of p
for quadratic loss.

For the estimator d∗(X) = X/n, which is UMVU, we have E(d∗(X) − p)2 =
p(1 − p)/n, and we see that around p = 1/2 the estimator d is slightly better than d∗
provided that n is not small, but d∗ has smaller risk when p is not close to 1/2. Thus
here, and in the developments below where a similar phenomenon occurs, one may
argue about the quality of the estimator obtained by the minimax criterion.
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3.5.2. Finite population sampling for proportion and mean
We now follow Lehmann and Casella (1998) and Hodges and Lehmann (1982). Related
results appear in Bickel and Lehmann (1981). In Corollary 16 and Proposition 17 below,
we obtain minimax results without restriction to unbiased estimators (compare to Corol-
lary 10).

Consider SRS from a population of size N whose values are either 0 or 1, and we
wish to estimate the parameterW/N whereW is the number of ones. In fact, in this case
W/N = Ȳ. Consider the prior on W , which is a mixture of binomials with Beta(a, b)
weights, that is,

P(W = w) =
∫ 1

0

(
N

w

)
pw(1− p)N−w �(a+ b)

�(a)�(b)
pa−1(1− p)b−1dp. (22)

A reader who wants to avoid the calculations can look at numbered equations only. Let
X be the number of ones drawn in an SRS of size n. Then X|W ∼ Hypergeometric,
that is, P(X = x|W) = (

W

x

)(
N−W
n−x

)
/
(
N

n

)
and with standard calculations we have for some

c = c(x),
P(W = w|X = x) = cP(X = x|W = w)P(W = w)

= c
∫ 1

0

(
N − n
w− x

)
pw+a−1qN−w+b−1dp

= c
∫ 1

0

(
N − n
k

)
pkqN−n−k · px+a−1qn−x+b−1dp ;

the last expression above is obtained by the substitution k = w − x where k = 0, . . . ,
N − n, and it is arranged so that under the integral we observe the Bin(N − n, p)

probability function in the variable k. It is now easy to see that c = �(n+a+b)/[�(x+
a)�(n− x + b)] is the normalizing constant so that P(W = w|X = x) is a probability
function. Using the Bin(N − n, p) expectation we get,

E(W − x|X = x) = c
∫ 1

0
(N − n)p · px+a−1qn−x+b−1dp = (N − n)(x+ a)

n+ a+ b ,

and, therefore, we obtain that the Bayes estimator is the linear estimator

d(x) = E(W/N|X = x) = (N + a+ b)x+ (N − n)a
N(n+ a+ b) . (23)

To compute the MSE of d, we use the relations E(X|W) = nW/N and Var(X|W) =
Wn(N−W)(N−n)N−2(N−1)−1 for the hypergeometric distribution ofX|W , and the
formula MSE(d) =Variance(d)+ [Bias(d)]2. We then choose a, bwhich make the MSE
constant (not dependent on W ). The resulting equalizer estimator is given in Eq. (24)
below and we obtain.

Corollary 16. Under SRS with sample size n and quadratic loss, the estimator

d(X) = AX/n+ B, where

A = 1/[1+√
(N − n)/(nN − n) ], B = (1− A)/2 (24)
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is minimax among symmetric estimators (depending only on X, the number of ones in
the sample) for the proportion W/N of ones in a finite population of zeros and ones.

We omit the calculations; clearly the obtained estimator is minimax, being an equal-
izer and Bayes. Naturally the estimator obtained in Eq. (24) converges to that of Eq. (21)
for large N, and has similar properties: it is worse than the usual sample mean whenW
is not near N/2, and it is somewhat better near N/2.

As already mentioned, for parameter spaces that are not symmetric, minimax esti-
mators depend on the parameter space, and their calculation may be difficult in the
absence of further restrictions on the decision rules. Corollary 16 provides a minimax
rule for estimating a proportion, in which case the parameter space is {0, 1}N . We show
next that for SRS on ϒ = �N and quadratic loss, Corollary 16 can be extended to
provide a minimax estimator for any interval � ⊂ R (and more general sets). As noted
by Lehmann and Casella (1998) (see references therein), this can be obtained from the
previous discussion. See also Gabler (1990) for generalizations.

Proposition 17. Let ϒ = �N , where � = [a, b] for some a ≤ b. Let Ȳ and ȳS denote
the population and sample means. Under Ps = SRS with sample size n, and quadratic
loss, the estimator d0 = (b− a)d((ȳS − a/(b− a))+ a, where d(z) = Az+ B with A
and B as defined in Eq. (24), is minimax for Ȳ relative to the class of all estimators. In
the case [a, b] = [0, 1] the minimax estimator is d0 = d(YS) = AȳS + B. Moreover,
the strategy (Ps, d0) is minimax (see Definition 5) relative to the class of all strategies
with a fixed sample size n.

Proof. We can assume first that � = [0, 1], and then apply a linear transformation. By
Corollary 7 we can restrict our attention to symmetric estimators t. By Corollary 16, the
estimator of (24) is minimax among symmetric estimators when the parameter space is
restricted to the set of extreme points of ϒ, which we denote by ϒe = {0, 1}N . Let E
below denote expectation with respect to the (prior) probability measure on ϒe defined
by P(Y = (y1, . . . , yN)) = P(W = w)/

(
N

w

)
for any vector (y1, . . . , yN) ∈ ϒe, where∑N

i=1 yi = w, w = 0, 1, . . . N, and the distribution of W is given in Eq. (22). Note that
the estimator d = AȳS + B is Bayes with respect to this prior and an equalizer on ϒe.
We have,

sup
Y∈ϒ

R(Ps, t;Y) ≥ sup
Y∈ϒe

R(Ps, t;Y)
(1)≥ ER(Ps, t;Y)

(2)≥ ER(Ps, d0;Y)
(3)= sup

Y∈ϒe
R(Ps, d0;Y) (4)= sup

Y∈ϒ
R(Ps, d0;Y);

inequality (1) holds because an average is smaller than the maximum, (2) holds because
d0 is Bayes with respect to the given prior, and (3) holds because d0 is an equalizer, that
is, R(Ps, d;Y) is constant on ϒe. Finally (4) follows from the fact that R(Ps, d;Y) =∑

S Ps(S)(d(YS)−Ȳ)2 is a convex function of Y and, therefore, its maximum is attained
at the set of extreme points.

Proposition 6 readily implies that the strategy (Ps, d0) is minimax as stated. �

It is easy to see that the above result holds for any bounded�⊂R satisfying {a, b} ⊆
� ⊆ [a, b] for some a, b ∈ R. By continuity arguments it also holds when � = (a, b).
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If � is not convex, the estimator may take a value that is not in the parameter space,
which is allowed, as our decision space is always R. Proposition 17 is trivial if � is
unbounded since the maximal risk is always infinite.

For the parameter space ϒ = {Y : ∑N
i=1(yi − Ȳ)2 ≤ M}, Bickel and Lehmann

(1981) proved that under simple random sampling, the sample mean is minimax for
quadratic loss. Since the variance of the sample mean is proportional to

∑N
i=1(yi− Ȳ)2,

this definition of the parameter space is equivalent to assuming that this variance is
bounded by a given constant. The proof uses invariance, and a reduction of the problem
to estimation of a translation parameter, and showing that the sample mean coincides
with the Pitman estimator. If the population is divided into given strata, then the usual
weighted average of the sample means in the strata is minimax when the parameter space
is defined by the condition that its variance is bounded by a given constant. Results on
optimal designs are also given.

Related results by Aggarwal (1959, 1966) for a superpopulation model are described
in Section 7.3.

4. UMVU estimators

It may be natural to hope to find estimators that have a uniformly smallest risk in an
interesting class of estimators. However, this short section describes a negative result,
which indicates that such uniformly best estimators do not exist in interesting cases.
This fact justifies “weaker” optimality criteria such as the minimax, which considers
the maximal risk rather than the risk at each value of the parameter, or the Bayes risk,
which averages the risk over the parameter space. For further references and discussions,
see Cassel et al. (1977).

UMVU estimators are unbiased estimators whose MSE is smaller than that of any
other unbiased estimator for each Y ∈ ϒ. We consider more general risk functions than
MSE but still use the term UMVU.

Definition 18. A P-unbiased estimator t∗ (of a parameter θ) that is in some class of
estimators, is said to be UMVU in this class, under the design P, if

R(P, t∗;Y) ≤ R(P, t;Y) for all Y ∈ ϒ (25)

for any P-unbiased estimator t of θ in this class.

We briefly discuss estimation of the population mean, and show that interesting cases
of UMVU estimators do not exist; the condition that Eq. (25) hold for all Y ∈ ϒ is too
strong.

Consider the so-called generalized difference estimator (Basu, 1971) defined for any
design P with inclusion probabilities αi > 0 for all i ∈ N by

tGD =
∑
i∈S

yi − ei
αi

+ ẽ, where ẽ =
N∑
i=1

ei,

(26)

with known but arbitrary constants e = (e1, . . . , eN). When e = 0, we obtain the
Horvitz–Thompson estimator. Note that for any e we have EP(tGD/N) = Ȳ.
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Proposition 19. Let P be a design such that αi > 0 for all i ∈ N and αi < 1 for some
i ∈ N, and let θ = Ȳ. Let ϒ = �N with � ⊆ R such that |�| ≥ 2. Consider a loss
function L(τ, θ) such that L(τ, θ) ≥ 0 for all τ and θ, and L(τ, θ) = 0 if and only if
τ = θ. Then no UMVU estimator in the class of unbiased estimators of the population
mean θ exists.

Proof. If e happens to coincide with some Y ∈ ϒ then tGD/N = Ȳ for any sampleS, and
R(P, tGD/N;Y) = 0. It follows that a UMVU estimator t must satisfy R(P, t;Y) = 0
for all Y ∈ ϒ. The result now follows readily. �

Since tGD is in the class of unbiassed linear (or affine) estimators (a linear combination
of the observations plus a constant), the proof shows that there is no UMVU estimator
in this class. This was shown by Godambe (1955). For further references see Godambe
and Joshi (1965).

Finally, we point out that among symmetric unbiased estimators there do exist UMVU
estimators in a trivial manner. For example, the completeness result of Lemma 8 shows
that ȳS is the unique unbiased estimator of Ȳ that is symmetric, that is, an estimator of
the form t = t(YS). Thus, ȳS is trivially UMVU among symmetric estimators. More
generally, if we restrict attention to the class of symmetric unbiased estimators of any
parameter, then at most one such estimator exists, and it is trivially UMVU in this class.

5. Admissibility

Definition 20. A strategy (P0, t0) is admissible in a class of strategies if there is no
strategy (P, t) in this class satisfying

R(P, t;Y) ≤ R(P0, t0;Y) for all Y ∈ ϒ with strict inequality for at least one Y.
An estimator t0 is admissible under a design P0 in a class of estimators if there is no
estimator t in this class satisfying

R(P0, t;Y) ≤ R(P0, t0;Y) for all Y ∈ ϒ with strict inequality for at least one Y.

If the first inequality in the above definition holds, we say that the strategy (P, t) dom-
inates (P0, t0), and if the second inequality holds, we say that t dominates t0 under
P0.

Admissibility is in some sense a minimal property. If a strategy (estimator) is inad-
missible, then there is a better strategy (estimator) that will perform better (or at least
as well) under any of the criteria mentioned in this chapter. But an admissible strategy
may still be very poor. For example, it is easy to construct a finite population estima-
tion problem such that an estimator which is a constant guess that ignores the sample
altogether is admissible in a wide class, but has an arbitrarily large risk on large parts
of the parameter space. Admissibility is called Pareto optimality in the terminology of
game theory.

The next two theorems, from Scott (1975), show that admissibility is a property of
the support of the design P defined by SP = {S ⊆ N : P(S) > 0}. In fact, if t0 is
admissible under a design P, then it is admissible under any design having the same or
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smaller support. Here convexity of the loss function and randomized rules play a role,
as will be seen in the precise statements and proofs.

Theorem 21. If an estimator t0 is admissible under a design P0 in the class of all
estimators including randomized ones, then the same holds for any design P satisfying
SP ⊆ SP0 .

Proof. Suppose to the contrary that there exists an estimator t1 that dominates t0 under
P. Using it, we will construct an estimator t∗ that dominates t0 under P0, contradicting
our assumption.

Let m = max{P(S)/P0(S) : S ∈ SP} and Q(S) = P(S)/mP0(S). Then, by the
conditions on the supports 1 ≤ m < ∞ and 0 < Q(S) ≤ 1. Here and in the next
proof, we use the abbreviation t(S) for t(S,Y), that is, we suppress the parameter Y.
Consider the following randomized estimator t∗: if S ∈ SP0\ SP, then t∗(S) = t0(S). If
S ∈ SP, then t∗(S) = t1(S) w.p. Q(S) and t∗(S) = t0(S) w.p. 1−Q(S). We claim that
t∗ dominates t0 under P0. Indeed,

R(P0, t
∗;Y )

=
∑
S∈SP

Q(S)P0(S)L(t1(S),Y )+
∑
S∈SP

[1−Q(S)]P0(S)L(t0(S),Y )+
∑

S∈SP0
\SP

P0(S)L(t0(S),Y )

= m−1
∑
S∈SP

P(S)L(t1(S),Y )+
∑
S∈SP

[1−Q(S)]P0(S)L(t0(S),Y )+
∑

S∈SP0
\SP

P0(S)L(t0(S),Y )

≤ m−1
∑
S∈SP

P(S)L(t0(S),Y )+
∑
S∈SP

[1−Q(S)]P0(S)L(t0(S),Y )+
∑

S∈SP0
\SP

P0(S)L(t0(S),Y )

=
∑
S∈SP

Q(S)P0(S)L(t0(S),Y )+
∑
S∈SP

[1−Q(S)]P0(S)L(t0(S),Y )+
∑

S∈SP0
\SP

P0(S)L(t0(S),Y )

= R(P0, t0;Y )
for all Y, with a strict inequality for at least one Y, where the inequality follows from
the assumption that t1 dominates t0 under P. Note that the estimator t∗ is randomized.
If L(τ,Y) is convex in τ, we can replace t∗ by its expectation, and thus assume that t∗
is nonrandomized. See Remark 4. In this case, Theorem 21 holds also for the class of
nonrandomized estimators. �

For the next result, we slightly generalize Scott’s (1975) formulation. Given a collec-
tion H of real valued functions defined on subsets of N and a corresponding collection
of constants C = {ch}h∈H , define the class of designs

DH,C = {P : EPh(S) = ch for all h ∈ H}.
For H consisting of the single function h(S) = |S|, and ch = n, we obtain the class of
designs with expected sample size= n. TakingH to be the set of indicator functions of
all sets of size = n, and ch = 0, we obtain the class of design having fixed sample size
n. These two classes were considered by Scott.

Given an estimator t0(S,Y) and parameter θ = θ(Y), the class of designs P under
which t0 is unbiased for θ is also of this kind. To see this define hY(S) = t0(S,Y), and
ch = cY = θ(Y), and set H = {hY : Y ∈ ϒ}.
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The class of designs of having sample size n in some interval, the class of conditional
SRS designs, see definition following Eq. (9), and other classes are of the above type,
as are their intersections.

Theorem 22. If a strategy (P0, t0) is admissible in a class of strategies having designs
in a given class D = DH,C and estimators in the class of all estimators including
randomized ones, then the same holds for any strategy (P, t0) such that P ∈ D, and
SP ⊆ SP0 .

Proof. For P as above, suppose to the contrary that there exist a design P1 in D,
and an estimator t1, such that the strategy (P1, t1) dominates (P, t0). Set P∗(S) =
P0(S) + m−1(P1(S) − P(S)), and note that P∗ ∈ D. Define T(S) = P1(S)/mP∗(S).
Since P0(S)−m−1P(S) ≥ 0, we have P∗(S) ≥ m−1P1(S), and therefore 0 ≤ T(S) ≤ 1.
Define the randomized estimator t∗(S) = t1(S) with probability T(S) and t∗(S) = t0(S)
with probability 1 − T(S). A calculation similar to the one in the proof of Theorem 21
shows that R(P∗, t∗;Y) dominates R(P0, t0;Y), a contradiction. �

Godambe and Joshi (1965) have shown that for any design, the Horvitz–Thompson
estimator is admissible in the class of all unbiased estimators of a finite population total.
The proof we give is essentially due to Ramakrishnan (1973), extended here from MSE to
a more general convex loss function. The requirement 0 ∈ � is discussed after the proof.

Theorem 23. Let P be any design with αi > 0 for i = 1, 2, . . . , N, and consider
the parameter space �N for some set � satisfying 0 ∈ �. The Horvitz–Thompson
estimator tHT(S,Y) =∑

i∈S yi/αi is admissible in the class of unbiased estimators for
the parameter θN =∑N

i=1 yi provided that the loss function L(t, θ) is strictly convex in
t and assumes its minimum, when t = θ.

Proof. We assume P(S) > 0 implies |S| > 0 to avoid trivialities. The proof is by
induction on N. For N = 1 clearly tHT = θ1, and the result is obvious. The induction
hypothesis is that for a population of size N, R(P, t;Y) ≤ R(P, tHT;Y) for all Y ∈
�N implies that t = tHT with P-probability 1, and it is easy to see that the desired
admissibility follows. Let (P∗, t∗) be an unbiased strategy for θN+1 on a population
of size N + 1 denoted by UN+1, and consider the population UN of size N obtained
by removing the last coordinate from UN+1. On the latter population, we construct a
strategy (P, t) by setting,

P(S) = P∗(S)+ P∗(S,N + 1), t(S,Y)
= 1

P(S) [P
∗(S)t∗(S,Y∗)+ P∗(S,N + 1)t∗((S,N + 1),Y∗)]

where, (S,N + 1) = S ∪ {N + 1}, Y = (y1, . . . , yN), and Y∗ = (y1, . . . , yN, 0). It is
easy to see that (P, t) is unbiased for θN . For now let tHT and t∗HT denote the Horvitz–
Thompson estimators for the designs P and P∗, respectively. We claim that,

R(P, tHT;Y) = R(P∗, t∗HT;Y∗). (27)

To see this, construct tHT and t∗HT on the same probability space (coupling) as follows.
When a set S ⊂ {1, . . . , N} or (S,N + 1) is chosen with probability P∗ as the sample
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for t∗HT , let S be the chosen set for tHT. It then follows that tHT = t∗HT, and Eq. (27)
follows. Next, we claim that,

R(P, t;Y) ≤ R(P∗, t∗;Y∗). (28)

It is easy to see that this follows by the convexity of L and Jensen’s inequality, given
that t is a convex combination of values of t∗. Moreover, the fact that L is strictly
convex implies strict inequality in Eq. (28), whenever t∗(S,Y∗) = t∗((S,N + 1),Y∗),
P∗(S) > 0, and P∗(S,N + 1) > 0.

Assume that R(P∗, t∗;Y∗) ≤ R(P∗, t∗HT;Y∗) for all Y∗ ∈ �N+1. Together with
Eqs. (27) and (28) we then have,

R(P, t;Y) ≤ R(P, tHT;Y) for all Y ∈ �N (29)

and so by the induction hypothesis,

t(S,Y) = tHT(S,Y) (30)

for any S with P(S) > 0. For such sets S ⊆ {1, . . . , N} we clearly have,

tHT(S,Y∗) = t∗HT(S,Y∗) for all Y∗ ∈ �N+1. (31)

Moreover, strict inequality would hold in Eq. (29) for any Y such that t∗(S,Y∗) =
t∗((S,N + 1),Y∗), P∗(S) > 0, and P∗(S,N + 1) > 0 for Y∗ = (y1, . . . , yN, 0). But
strict inequality is impossible since it would contradict the induction hypothesis, and
therefore if P∗(S) > 0 then either P∗(S,N + 1) = 0 or t∗(S,Y∗) = t∗((S,N + 1),Y∗).
In either case, we then have t(S,Y) = t∗(S,Y∗). This, together with Eqs. (30) and (31),
implies that

t∗(S∗,Y∗) = t∗HT(S
∗,Y∗) for all Y∗ ∈ �N+1 (32)

for any S∗ not containing N + 1 such that P∗(S) > 0. We can repeat the argument with
the label N + 1 replaced by any j, and obtain Eq. (32) for any set S∗ of size ≤ N + 1.
Finally, Eq. (32) for the set S∗ = {1, . . . , N + 1} follows from this equality for all other
sets S∗ and from the fact that t∗ and t∗HT have the same expectation. This completes the
induction step. �

The above result required 0 ∈ �. Unlike in the case of Proposition 17, we cannot
assume it “without loss of generality” by applying a linear transformation when 0 /∈ �.
Indeed, if � = {a} with a = 0, then the estimator t = a is better than tTH with
respect to any design such that Var

∑
i∈S 1/αi > 0. It is easy to construct less trivial

examples. However, for A = {0, 1} and using tHT/N for estimating a proportion, the
above admissibility result holds.

It is easy to construct examples with fixed or random sample size, where the Horvitz–
Thompson estimator tHT/N for a proportion is not in the interval [0, 1] with positive
probability (a trivial example is n = 1, 0 < αi < 1 and yi ≡ 1). In this case, it is clearly
not admissible in the class of all estimators. This does not contradict Theorem 23, which
requires unbiasedness (and allows designs with random sample size). For fixed-size
sample designs, the Horvitz–Thompson estimator is admissible among all estimators
when the parameter space is R

N ; see Joshi (1965, 1966). It follows that for SRS of any
size n, the sample mean is an admissible estimator of the population mean. By Theorem
21, it follows that the sample mean is admissible for any fixed-size design.
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The following example shows that if the sample size is random, tHT may not be
admissible in the class of all estimators: set N = 2 and P({1}) = P({1, 2}) = 1/2.
When the sample {1, 2} is selected, we have tHT = y1 + 2y2, and the (biased) estimator
obtained by instead using y1 + y2 shows that tHT is not admissible.

6. Superpopulation models

6.1. Background

In superpopulation models one assumes that the given population Y = (y1, . . . , yN)

is a realization of a random vector Y = (Y1, . . . , YN) having a distribution G. We shall
refer to G as the prior. Several possibilities arise: 1. G is completely known. 2. G belongs
to a class having some known parameters and properties, for example, distributions
with certain specified moments and possibly with some exchangeability properties. 3.
G depends on an unknown parameter φ, that is, G = Gφ.

Design-based inference on the population Y, as the name suggests, uses the sampling
design (randomization distribution) only. Pure model-based inference on the population
Y, the prior G, or the parameter φ, refers to inference where the sampling design plays
no role, and the risk, for example, is defined as expectation with respect to G of the
squared difference between the estimate and the estimand, conditioned on the sample.

A third approach combines the above two. Starting from the design-based risk
R(P, t;Y ), this approach studies the Bayes risk (see definition 3), that is, the expected
risk with respect to G, EGR(P, t;Y ). The optimization goal is to find a strategy (P, t)
that minimizes the latter expectation. For unbiased estimators and quadratic loss, this
expectation becomes EGVarPt, known in the sampling literature as the anticipated vari-
ance. It is often used to compare two design unbiased estimators when comparison of
the P-variances does not lead to clear conclusions.

It may happen that the superpopulation assumptions involve enough symmetry and
randomness to make the sampling design inessential. For example, if Y is exchange-
able under the superpopulation model and we use a symmetric estimator, then random
sampling may be redundant since the data are assumed to be given in a random order.

We have already used the Bayesian approach, and, in fact, Eq. (22) can be seen as
a prior of the above type; however, we used it only as a technical device to arrive at a
minimax estimator, noting that the minimax criterion does not depend on the Bayesian
structure.

We shall not discuss the philosophy and relevance of superpopulation models and
model-based optimality criteria here. Some discussions and references can be found, for
example, in Smith (1976), Särndal et al. (1992), Hedayat and Sinha (1991), and Cassel
et al. (1977); the latter two books also contain a discussion that is closely related to the
one that follows, with references and further results.

6.2. P-unbiased estimators
In the discussion below, we consider P-unbiased estimators of the population mean
Ȳ. We shall consider quadratic loss and MSE, and the Bayes risk, which is the MSE
integrated with respect to the prior G. Theorem 30 shows that for any exchangeable prior
(superpopulation model) the Bayes risk is minimized among P-unbiased strategies by
the strategy consisting of SRS (or any design with αi = n/N) and the sample mean. This
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is generalized in Theorem 31 to the case of exchangeability of a linear transformation
of the population values, and the optimal estimators are then the generalized difference
estimators (see Eq. (26)) of which Horvitz–Thompson estimators form a special case.
Note that these results involve P-unbiasedness, which is a design-based criterion, and
the Bayes risk, which is a model-based expectation over a design-based risk.

The results and techniques used next: sufficiency, completeness, and the Rao–
Blackwell approach are close to those that led to Theorem 9. However, many detail
are different. In particular, here the notions of sufficiency and completeness are with
respect to the prior G rather than the design as in Section 3.2.

When we think of the population as fixed we denote it by Y; when we want to
emphasize that under the superpopulation model it is random, we denote it by Y . We
used Ȳ and ȳS for the population and sample means; we denote them by Ȳ and ȲS , when
we want to emphasize that now the population is random, and when we take expectation
with respect to G. Given Y = (Y1, . . . , YN) and a sample S, YS denotes the multiset
containing all Yi-values arising from distinct labels i ∈ S, in analogy to YS in the fixed
population case. Similarly, we may express the data D[S,Y ]) as D[S, Y ]), and when
we want to describe an estimator, we may write t(S, Y ) instead of t(S,Y), etc.

Note that we now have two sources of randomness, the sample S ∼ P and the
population Y ∼ G. Therefore, notations like EP, EG, and EG,P for expectations will
be used, where EG,P = EGEP. Unless otherwise stated, we consider designs that are
noninformative or ignorable, that is P(S|Y ) = P(S), independent of Y . In words, the
design does not depend on the population values Y . This assumption allows interchange
of expectations with respect to G and P. We discuss it further in Section 6.3.

Recall that the strategy (P, t) is unbiased for Ȳ (the population mean) if t is
P-unbiased, that is, if for all Y ∈ ϒ,EPt :=∑

S P(S)t(D[S,Y ]) = Ȳ. Note that the lat-
ter expectation can also be interpreted as the conditional expectationE{t(D[S, Y ]) |Y =
Y}. Recall also that for S satisfying |S| = n, ȲS = 1

n

∑
i∈S Yi, that is, ȲS = 1

|S|
∑

i∈S Yi.
Let G denote the class of exchangeable distributions, that is, distributions that remain

unchanged under permutations of the components of the vector Y .

Lemma 24. Let (P, t= t(D[S,Y ]) ) be an unbiased strategy for Ȳ. Let Y = (Y1, . . . ,

YN)∼G∈G, and EGYi=μG. Then, EG,Pt(D[S, Y ]) :=EG
∑

S P(S)t(S, Y) = μG.
Also, EG,PȲS = μG.

Proof. The first part of the lemma is obvious. For the second part, note that for a general
sampling design P, ȲS is not necessarily P-unbiased, so the first part does not imply the
second. We have ȲS =∑N

i=1 YiIi/
∑N

j=1 Ij , where Ii = 1 if i ∈ S and 0 otherwise. Now

EG(Ȳ |S) = μG
∑N

i=1 Ii/
∑N

j=1 Ij = μG, and the result follows. �

The next two easy lemmas show completeness and sufficiency. The classical Rao–
Blackwell argument uses completeness and sufficiency as follows: given a statistic t(X)
which depends on some data X ∼ Pθ (see Definition 3), and a sufficient statistic for
θ, say W(X), the estimator t0 =E(t|W) is a statistic since it does not depend on θ by
sufficiency. Also, t0 has the same expectation as t but a smaller variance (by Jensen’s
inequality, or by a well-known variance decomposition formula). IfW is complete, then
t0 is the unique estimator with the same expectation as t. This proves that it is a UMVU
estimator of Et (see Definition 3). A version of this argument appears below, leading
to Theorem 30.
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Lemma 25. Let Y = (Y1, . . . , YN) ∼ G ∈ G and let S ∼ P. Consider the data D =
D[S, Y ]. Then YS is sufficient in the sense that P(D|YS) does not depend on G. (It does
depend on P, which is held fixed here.)

Proof. Just note that if |S| = n, then P(D|YS) = P(S)/n! , where the n! is due to
the n! equally likely (by exchangeability) ways of pairing the elements of S with those
of YS . �

For the next lemma, we need two new conditions, which will henceforth be assumed.
The first is that the parameter space is a product of the form ϒ = �N , and the second
is that the design P has a fixed sample size, say n.

Lemma 26. Let G denote the class of exchangeable distributions over a product space
�N , and let Y = (Y1, . . . , YN) ∼ G ∈ G, and S ∼ P, a given design with fixed sample
size n. Let YS denotes the multiset containing all Yi-values arising from distinct labels
i ∈ S. Then YS is complete; that is, for any symmetric (permutation invariant) function h
of n variables, if EG,Ph(YS) = 0 for all G ∈ G then PG,P(h(YS) = 0) = 0 for all G ∈ G.

Proof. The proof is similar to that of Lemma 8. For any a ∈ �, let G be the probability
measure concentrated on (a, . . . , a) ∈ �N . Then clearly for this G, EG,Ph(YS) = 0
implies h(a, . . . , a) = 0. Now, let G be the exchangeable probability measure which
concentrates on (b, a, . . . , a) ∈ �N and all its permutations. This is used to prove
h(b, a, . . . , a) = 0 as in the proof of Lemma 8, and so on. �

As usual, completeness implies uniqueness of unbiased estimators, since if there
existed two distinct unbiased estimators which are functions of YS , then their difference
hwould be a nonzero function whose expectation is zero, contradicting Lemma 26. The
following example shows that a fixed sample size is, indeed, needed in Lemma 26. If
the sample size is random with expectation n, then it is easy to see that the estimator
t= 1

n

∑
i∈S Yi, where we divide by the expected sample size n rather than |S|, satisfies

EG,Pt=μG. The same holds for the estimator ȲS = 1
|S|

∑
i∈S Yi by Lemma 24, and unless

the sample size is fixed, we have two distinct unbiased estimators of μG.
We shall now consider quadratic loss. Then,R(P, t;Y) =∑

S P(S)(t(S, Y)− Ȳ )2 =
VarP t, and EG,P(t−μG)2 = EG

∑
S P(S)(t(S, Y)−μG)2, where the sum extends over

all subsets S (of size n) of N. The following lemma shows that for unbiased estimation
of μG, the sample mean ȲS is optimal in the sense of minimizing EG,P(t−μG)2. In fact,
Lemma 27 holds for any convex loss function, but since quadratic loss is required in all
the subsequent lemmas and theorems, we use quadratic loss also here.

Lemma 27. Let ȲS = 1
n

∑
i∈S Yi, and let t = t(D[S, Y ]) be an estimator satisfying

EG,Pt(D[S, Y ]) = μG. Then,

EG,P(ȲS − μG)2 ≤ EG,P(t − μG)2. (33)

In particular this holds for any P-unbiased estimator t of the population mean Ȳ.
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Proof. The lemma follows by a standard Rao–Blackwell argument applied to the
quadratic loss function, and using the facts that YS is sufficient and complete for the
parameter G (see Lemma 26), and that EG,PȲS = μG. The latter equality and the last
part about P-unbiased estimators follow from Lemma 24. �

The next lemma is a standard variance decomposition. Recall the notation Ȳ =
1
N

∑N
i=1 Yi, and the fact that for a P-unbiased estimator of Ȳ, we have EP(t|Y ) = Ȳ .

Lemma 28. Let t be a P-unbiased estimator of Ȳ. Then, VarG,P t := EG,P(t − μG)2 =
EGVarPt+EG(Ȳ − μG)2 =EG

∑
S P(S)(t(S, YS)− Ȳ )2+EG(Ȳ − μG)2.

Lemmas 27 and 28 imply

Lemma 29. Let P be any design with fixed sample size n, t = t(D[S,Y ]) a P-unbiased
estimator of Ȳ, and let G be any exchangeable (prior) distribution on the population
Y = (Y1, . . . , YN). Then,

EGVarPȲS = EGR(P, ȲS;Y ) ≤ EGVarPt = EGR(P, t;Y ).

The above result compares a P-unbiased estimator t to the estimator ȲS , which
in general is not P-unbiased. In fact, the strategy (P, ȲS) is unbiased if and only if
αi = n/N. Note thatEGVarPȲS = EG

∑
S P(S)(ȲS−Ȳ )2 = EG

∑
π P(πS)(ȲπS−Ȳ )2 is

constant as a function of P for all designs having sample size n, since by exchangeability
ȲπS are identically distributed for all permutations π. Thus, we obtain the following
theorem that compares the Bayes risk of unbiased strategies.

Theorem 30. Any strategy (P0, ȲS) with fixed sample size n, and αi = n/N, is optimal
in the class of P-unbiased (for the population mean) strategies (P, t = t(D[S, Y ]))
having sample size n, in the sense that for any G ∈ G,

EGR(P0, ȲS;Y ) ≤ EGR(P, t;Y ). (34)

The above result can be generalized as follows. Suppose that we have reason to
believe that our units are not exchangeable. For example, they may have different known
average sizes ai, that is, μi := EGYi = ai and, more generally, μi = EGYi = aiμ+ bi
and perhaps also EG(Yi − μi)2 = a2

i σ
2. The known constants, ai, bi, can be viewed as

auxiliary information. This leads to Theorem 31 below, in which we assume that the
variables (Y1− b1)/a1, . . . , (YN− bN)/aN have an exchangeable prior (superpopulation
model) with known constants ai > 0 and bi. We set

∑N
i=1 ai = N without loss of

generality.

Theorem 31. Let ((Y1 − b1)/a1, . . . , (YN − bN)/aN) ∼ G ∈ G, and

tGD0 =
∑
i∈S

Yi − bi
αi

+ b̃ , where b̃ =
N∑
i=1

bi.
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Let P0 be any design having a fixed sample size n, and αi = ain/N. The strategy
(P0,

1
N
tGD0) is optimal in the class of P-unbiased (for the population mean) strategies

(P, t = t(D[S, YS]) ) having sample size n, in the sense that
EGR(P0,

1
N
tGD0;Y ) ≤ EGR(P, t;Y ). (35)

Proof. Define Zi = (Yi−bi)
ai

+ b̄, where b̄ = 1
N

∑N
i=1 bi, and Z = (Z1, . . . , ZN). Then

Z̄S := 1
n

∑
i∈S Zi = 1

N
tGD0 . The proof is the same as that of Theorem 30, applied to the

above Z. �

Theorem 31 is due to Cassel et al. (1977). The special case of bi = 0 shows
that Horvitz–Thompson strategies, that is, any strategy (P0,

1
N
tHT) with αi = ain/N

and the corresponding estimate 1
N
tHT = 1

N

∑
i∈S yi/αi, have a minimal Bayes risk

among P-unbiased (for the population mean) strategies for priors such that the vector
(Y1/a1, . . . , YN/aN) is exchangeable. In this case, the expectationsEYi are proportional
to some known constants, and any design of fixed sample size n with inclusion proba-
bilities that are proportional to those constants and a corresponding Horvitz–Thompson
estimator form an optimal strategy with respect to Bayes risk.

6.3. Linear prediction

We consider estimation of the population mean on the basis of a sample from the random
population Y , where Y ∼ G, to be specified later. Under such a superpopulation model,
the population mean Ȳ = 1

N

∑N
i=1 Yi is a random variable, which we are trying to predict.

From the relation Ȳ = n
N
ȲS + (1− n

N
)ȲSc , we see that when D[S, YS] is observed, our

task is to predict ȲSc = 1
N−n

∑
i∈Sc Yi, where n = |S| and Sc denotes the complement

of S. We consider momentarily the possibility that the design depends on the population
values, in which case the design is said to be informative, and write P(S|Y ) for the
probability of sampling S given that the population vector is Y . Let g(Y ), y ∈ R

N

denote a density of the prior G (which may depend on a parameter). Then the predictive
density of YSc , the unobserved part of Y given the data, is

f(ySc |S, yS) = P(S|yS, ySc )g(yS, ySc )/
∫

P(S|yS, ySc )g(yS, ySc )dySc .

The design is noninformative or ignorable if P(S|Y ) = P(S), independent of Y .
Adaptive designs satisfy P(S|Y ) = P(S|YS); that is, the sample may depend on the
observed y-values, but not on the unobserved ones. Such designs arise when the sam-
ple is selected sequentially: first some units are sampled, and the choice of the units
that are added to the sample depends on the y’s already observed; see Thompson
and Seber (1996) and references therein. In either the ignorable or the adaptive case,
we obtain

f(ySc |S, yS) = g(yS, ySc )/
∫
g(yS, ySc )dySc ,

and we see that the design does not play a role in the predictive density. It is, therefore,
not surprising that the predictive (model-based, Bayes) optimality result of Theorem 32
below is not stated in terms of a sampling design.
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We need some definitions. A statistic t = t(S, Y) is said to be a linear predictor (or
estimator) if it is of the form t(S, YS) = ∑

i∈S riYi + q, where the constants ri, q may
depend on S.

Let s be a given subset of N. Given a statistic t = t(S, YS) we can fix the set s, and
consider the random variable t(s, Ys) for the given fixed set s and Y ∼ G. The estimator
t is said to be a G-unbiased predictor of the population mean Ȳ if EG(t(s, Ys)− Ȳ ) = 0
for every fixed s ⊂ N. See, for example, Cassel et al. (1977). G-unbiased predictors of
other parameters are defined similarly.

The above definition and the theorem below are written in terms of a fixed set (or
nonrandom sample) s and expectations in the form EG[ · ], taken with respect to Y ∼ G.
An equivalent formulation would be to consider a random S and replace these expec-
tations by EG[ · |S = s] provided that Y and S are independent, which means that the
design P is ignorable. If EG[(t(s, Y)− Ȳ )|S = s] = 0 for an ignorable design P, then
we can now take expectation with respect to S ∼ P, to obtain EP,G,(t − Ȳ ) = 0.
Exchanging the order of the expectations, it is easy to see that a G-unbiased predictor t
satisfies EG,P(t− Ȳ ) = 0 for any ignorable design P. These operations cannot be done
if P is informative, that is, if it depends on Y .

On the other hand, for any design P (ignorable or not), a P-unbiased estimate t of Ȳ
satisfies EG,P(t − Ȳ ) = 0 for any G.

Theorem 32 below, which is one of many results on optimality in the class of
G- unbiased predictors, appears in Hedayat and Sinha (1991) with further references.
A closely related result appears in Royall (1970b). The auxiliary variables xi, bi below
are assumed to be known constants.

Theorem 32. Let Y ∼ G ∈ GL, where GL is a family of distributions such that Zi =
(Yi−bi)
xi

satisfy EGZi = μ, VarGZi = σ2, and CorrG(Zi, Zj) = ρ for all i = j for some
(unknown) (μ, σ, ρ) ∈ �, a parameter space which contains at least two distinct values
of μ, and let xi, bi be known. Let s ⊂ N be fixed and |s| = n, and consider the linear
predictor

t∗ = t∗(s, Ys) = n

N
Ȳs +

(
1− n

N

)(
Z̄s x̄sc + b̄sc

)
,

where, Ȳs = 1
n

∑
i∈s Yi, Z̄s = 1

n

∑
i∈s Zi, sc is the complement of s in N, x̄sc =

1
N−n

∑
i∈sc xi, and b̄sc = 1

N−n
∑

i∈sc bi. Then, t∗ is G-unbiased for any G ∈ GL, and

EG(t∗(s, Ys)− Ȳ )2 ≤ EG(t(s, Ys)− Ȳ )2

for any linear predictor t of Ȳ that is G-unbiased for all G ∈ GL.

Theorem 33. Under the conditions of Theorem 32, let now S be a random sample
satisfying S ∼ P, where P is any ignorable design. Then,

EG,P(t∗(S, YS)− Ȳ )2 ≤ EG,P(t(S, YS)− Ȳ )2

for any linear predictor t of the population mean Ȳ , that is G-unbiased for all G ∈ GL.

Proof Theorem 33. This follows from the inequality of Theorem 32 by taking P
expectation and exchanging the order of expectations as explained above for ignorable
designs. �
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Proof Theorem 32. The proof is almost the same as in Hedayat and Sinha (1991). We
can express any linear predictor in the form,

t(s, Ys) = n

N
Ȳs +

(
1− n

N

)
t̂(s, Ys), where t̂(s, Ys) =

∑
i∈s
ciYi + d.

We have Ȳ = n
N
Ȳs+(1− n

N
)Ȳsc , where Ȳsc = 1

N−n
∑

i∈sc Yi, and therefore t is G-unbiased

if and only ifEG(t̂− Ȳsc ) = 0, which is equivalent to
∑

i∈s ci(xiμ+ bi)+d = x̄scμ+ b̄sc .
The latter equality holds for two distinct values of μ if and only if,∑

i∈s
cibi + d = b̄sc , and

∑
i∈s
cixi = x̄sc . (36)

It suffices to minimize

EG(t̂ − Ȳsc )2 = VarG(t̂ − Ȳsc ) = VarG t̂ + VarGȲsc − 2 CovG(t̂, Ȳsc ).

Using Eq. (36), it is easy to calculate that CovG(t, Ȳsc ) = ρσ2x̄2
sc . Therefore, the above

minimization is achieved by finding t̂ satisfying Eq. (36), and having a minimal variance.
A straightforward expansion of the variance and Eq. (36) lead to

VarG t̂ = σ2
[
ρ
(∑
i∈s
cixi

)2 + (1− ρ)
∑
i∈s
c2
i x

2
i

]
= σ2

[
ρx̄2

sc + (1− ρ)
∑
i∈s
c2
i x

2
i

]
.

We can now use the Lagrange method to minimize
∑

i∈s c
2
i x

2
i subject to the constraint∑

i∈s cixi = x̄sc from Eq. (36). We readily obtain the solution ci = x̄sc/nxi. From
Eq. (36), we can now obtain d, and putting it all together with some simple calculations,
the result follows. �

It is now possible to write an explicit expression of EG(t∗(s, Ys)− Ȳ )2 for any set s,
and minimize over s of a given size, thus obtaining an efficient purposive (nonrandom)
sample. Such considerations led Royall (1970b) to advocate purposive rather than ran-
dom sample selection. This approach, and the concept of G-unbiasedness depend on the
superpopulation model, unlike man-made randomness and P-unbiasedness, where the
statistician controls the randomization procedure. The efficiency of purposive designs
constructed in the above manner is sensitive to the choice of the prior or superpop-
ulation model and, therefore, robustness issues arise; see, for example, Scott et al.
(1978), Hansen et al. (1983), and references therein. See also Valliant et al. (2000),
Mukhopadhyay (1998), and Chaudhuri and Stenger (1992) for further discussion and
references on the issues arising here, and in other parts of this chapter.

7. Beyond simple random sampling

We have so far concentrated on relatively simple models, and for many results (but
not all) on simple sampling designs, with emphasis on (conditional) simple random
sampling. We now discuss a few examples of results on various well-known sampling
designs, and more general models. Only parts of the results are proved, and other parts
are explained or stated without a proof. Here, as in the whole chapter, the results given
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constitute a sample and certainly not a survey. In all examples below, only quadratic
loss and the corresponding MSE are considered.

7.1. pps cluster sampling

Related results to Proposition 12, but for cluster sampling, with clusters of different
sizes and when the estimated parameter is a weighted average (by cluster size) of the
cluster means, were given by Scott and Smith (1975), and Scott (1977). They consider
Bernoulli sampling, that is, sampling n clusters with replacement, where unit i is drawn
with probability pi in each draw, and in particular the case of probability proportional
to size (pps) sampling, where pi are proportional to cluster size. They show that under
certain conditions, the pps strategy minimizes supYMSE for the pps- Horvitz–Thompson
estimator in the class of Bernoulli designs with expected sample size n. When the
conditions are relaxed, approximate minimaxity is derived.

7.2. Approximate minimax and the Rao–Hartley–Cochran strategy

We now describe results of Cheng and Li (1983, 1987) which extend the results of
Section 7.1. Further references can be found in these papers. Consider a population
Y = (y1, . . . , yN) satisfying yi = θxi + εi, i = 1, . . . , N, where εi = δig(xi) are
nonrandom errors, the xi’s and g are known, and δ = (δ1, . . . , δN) belongs to some
known set L, and θ ∈ �, some suitable parameter space, is an unknown nuisance
parameter.

Given a sample S, a linear estimator is of the form t(S, Y ) = ∑
i∈S rsi yi, that is, a

linear combination of the observations with weights that may depend on S. Let rts (rs)
denotes the row (column) vector rts = (rs1, . . . , rsN), where for i /∈ S we set rsi = 0.
For R = {rs : S ∈ 2N} we set tR(S, Y ) = ∑

i∈S rsi yi = rtsY . A strategy consists of a
pair (P, tR(S, Y ) ). Our goal is to estimate the population mean Ȳ =∑N

i=1 yi/N, using
the auxiliary information, and we look for a strategy that minimizes (approximately)
the risk

sup
θ∈�,δ∈L

∑
S

P(S)
(∑
i∈S

rsi yi − Ȳ
)2
.

Set xt = (x1, . . . , xN), 1 an N-vector of 1’s, X̄ =∑N
i=1 xi/N, and letG be the N ×N

diagonal matrix G = diag(g(x1), . . . , g(xN)). We have

∑
S

P(S)
(∑
i∈S

rsi yi −
N∑
i=1

yi/N
)2

=
∑
S

P(S)(θx +Gδ)t(rs − 1/N)(rs − 1/N)t(θx +Gδ),

and it is easy to see that if � is unbounded then the risk is bounded if and only
if (rs − 1/N)tx = 0. If we restrict our choice to such rs’s, then we guarantee that∑

i∈S rsi xi = X̄, so that the linear coefficients are calibrated for X̄. Such a strategy is
called representative.

In order to describe one of the results from Cheng and Li (1983), we now define
the Rao–Hartley–Cochran (RHC) strategy. In order to obtain a sample of size n, divide
the population at random (all partition having equal probabilities) into n groups of
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predetermined sizes Nj such that
∑n

j=1Nj = N. Let Xj be the sum of the xi’s in
group j. Draw one element from each group, so that if the ith unit is in the jth group, it
is drawn with probability xi/Xj , and denote its y-value by yj and its x-value by xj . The
RHC estimator for the population mean Y is then tRHC =∑n

j=1Xj yj/Nxj .
Note that this (P-unbiased) estimator is not of the type t(S,Y) considered in this

chapter, which are functions of the sampled set S and the corresponding y-values. The
quantities Xj are random since they depend on the random partition, with distribution
depending on the data D[S,Y] (actually, on S). Hence it is a randomized estimator.6

With convex loss, we could replaceXj byE(Xj|S) and by Jensen’s inequality the risk is
reduced (see Remark 4). This calculation is usually complex and, therefore, it is avoided.

For suitableL and g, and under assumptions relating n,N, and the xi’s which require
that n largest xi’s are not too large, Cheng and Li (1983) show that the risk of the RHC
strategy is bounded by 1+ ε times the maximal risk supθ∈�,δ∈L

∑
S P(S)(∑i∈S rsi yi −

Ȳ)2, where an explicit bound on ε in terms of the xi’s is given. Thus, the RHC strategy
is approximate minimax. The details will not be given here.

Cheng and Li (1987) show interesting relation between models as above and super-
population models where the εi’s are random variables. Such a superpopulation model
is considered in Section 7.3.

7.3. Minimax linear esimation in a superpopulation model

Our next discussion concerns a superpopulation model that is closely related to the
one given in Theorem 32. The results stated here are from Stenger (2002).

Consider a population Y = (Y1, . . . , YN) ∼ G (see the notation in Section 6.1)
generated according to the superpopulation model Yi = θxi + εi, where εi are random
variables satisfying Eεi = 0, Cov(εi, εj) = γuij , the xi’s are known, i, j ∈ N, γ is
unknown and the uij’s are discussed below. Our goal is to estimate the parameter θ on
the basis of a sample of size n. Writing Zi := Yi/xi = θ + εi/xi, we see the similarity
to the model of Theorem 32, where now we allow a more general covariance structure.

Parts of the discussion that follows are similar to that of Section 7.2; however, here we
are dealing with a superpopulation model. Given a sample S, a linear estimator is of the
form t(S, Y ) =∑

i∈S rsiYi, that is, a linear combination of the observations with weights
that may depend on S. For R = {rs : S ∈ 2N} we set tR(S, Y ) = ∑

i∈S rsiYi = rtsY,
where rts denotes the row vector (rs1, . . . , rsN), and for i /∈ S we set rsi = 0.

Let U denote the N × N matrix with entries uij . We assume that U ∈ B, some
(known) class of positive definite matrices. For S fixed, the usual MSE decomposition
to variance and bias squared yields

EG
(∑
i∈S

rsiYi − θ
)2 = γrtsUrs + θ2

(∑
i∈S

rsixi − 1
)
. (37)

A strategy consists of a pair (P, tR(S, Y )). We have

EG,P
(∑
i∈S

rsiYi − θ
)2 =

∑
S

P(S)EG
(∑
i∈S

rsiYi − θ
)2
,

6 Since the probabilities determining the randomization depend on S, tRHC is a behavioral estimator.
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and here we define a minimax strategy as the strategy (P, tR) minimizing

sup
θ∈R,U∈B

EG,P
(∑
i∈S

rsiYi − θ
)2
. (38)

In view of Eq. (37), the expression under the sup is arbitrarily large for large values of θ,
unless we set

∑
i∈S rsixi−1 = 0 for all S in the support of P. This condition is equivalent

to EG
∑

i∈S rsiYi = θ for such S, and hence the same holds for EG,P, and our estimators
are unbiased (see Section 6.3). If U is known, that is, |B| = 1, the problem reduces to
finding a set S that minimizes inf rs{rtsUrs :

∑
i∈S rsixi − 1 = 0}, and we conclude that

the minimax strategy is degenerate, concentrated at a minimizing set S. Thus for this
problem, random sampling is not required. Clearly the minimizing S depends on the
xi’s and U. Degenerate designs are called purposive sampling.

Next consider |B| > 1, and suppose that the covariance matrix U is in the set of
diagonal matrices B = {W = diag(w1, . . . , wN) : wi > 0 ∀i, ∑βiwi ≤ 1} for some
given β1, . . . , βN > 0. Since the matrices in B are diagonal, the εi’s are uncorrelated.
Assume αi := nβix2

i /
∑N

i=1 βix
2
i ≤ 1 for all i ∈ N. Stenger’s (2002) result is

Theorem 34.Aminimax strategy (P0, tR0(S, Y )), minimizing Eq. (38) among strategies
consisting of size n designs and linear estimators, is given by any size n designP0 having
inclusion probabilities αi = nβix2

i /
∑N

i=1 βix
2
i , and tR0 = 1

n

∑
i∈S Yi/xi.

Proof. By Eq. (37) and the discussion following Eq. (38), the problem of finding the
strategy (P, tR) minimizing Eq. (38), that is, the minimax strategy, is equivalent to
minimizing

sup
W∈B

∑
S

rtsWrsP(S) subject to rtsx− 1 = 0. (39)

For a given S, W , and x = (x1, . . . , xN), let θ̂S(W ) be the linear estimator
∑

i∈S rsiYi
derived by minimizing rtsWrs subject to rtsx− 1 =∑

i∈S rsixi − 1 = 0. Using Lagrange

multipliers, we obtain rsi = xi/wi∑
i∈S x2

i /wi
for i ∈ S, and therefore θ̂S(W ) =

∑
i∈S xiYi/wi∑
i∈S x2

i /wi
. It is

easy to see that for any P the same vectors rs also minimize
∑

S r
t
sWrsP(S) subject to

the condition rtsx− 1 = 0 holding for all S.
By compactness, the sup in Eq. (39) is attained at some V = diag(v1, . . . , vN) ∈ B,

and therefore the vectors rs minimizing Eq. (39) must satisfy rsi = rsi(V ) = xi/vi∑
i∈S x2

i /vi

for i∈ S. Note that for this rs = rs(V ) we have γrtsWrs = VarWθ̂S(V ), where VarW is
the variance with respect to the model G, when W is the true covariance matrix. It
follows that finding the minimax strategy is equivalent to finding a design P and V ∈ B
minimizing

sup
W∈B

∑
S

VarWθ̂S(V)P(S). (40)

Let V0 = diag(v1, . . . , vN) where vi = x2
i /

∑N
i=1 βix

2
i . Then for |S| = n, θ̂S(V0) =

1
n

∑
i∈S Yi/xi, VarUθ̂S(V0) = γ

n2

∑
i∈S uii/x

2
i , and VarV0 θ̂S(V0) = γ

n

(
1/

∑N
i=1 βix

2
i

)
,

which is independent of S; this will turn out to be useful in Eq. (41) below.
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Let P0 be any design with inclusion probabilities αi = nβix2
i /

∑N
i=1 βix

2
i . See Chaud-

huri and Vos (1988, Part B) for a survey of methods for construction of such designs.
Since αi =∑

S:S � i P(S), we have for all V,U ∈ B and any design P
∑
S

VarUθ̂S(V0)P0(S) = γ

n2

N∑
i=1

αiuii/x
2
i =

γ

n

N∑
i=1

βiuii
/ N∑
i=1

βix
2
i

≤ γ

n

(
1/

N∑
i=1

βix
2
i

)
= VarV0 θ̂S(V0) =

∑
S

VarV0 θ̂S(V0)P(S) (41)

≤
∑
S

VarV0 θ̂S(V)P(S) ≤ sup
W∈B

∑
S

VarWθ̂S(V)P(S),

where the first inequality holds because U ∈ B, and the second because V = V0

minimizes VarV0 θ̂S(V) by definition of θ̂S(W). It follows that for any V ∈ B and any
design P

sup
W∈B

∑
S

VarWθ̂S(V0)P0(S) ≤ sup
W∈B

∑
S

VarWθ̂S(V)P(S), (42)

and the strategy (P0, r(V0)) minimizes the expression in Eq. (40), and hence it is the
minimax strategy in the sense defined in Eq. (38). �

Unlike the result of Theorem 32, which concerns estimation or prediction of the
population mean Ȳ , the problem of estimating the regression parameter θ discusses
above and the sample selection based on the xi’s may be viewed as belonging to the area
of optimal regression design rather than sampling. Note in particular that even if the
whole population (Y1, . . . , YN) is observed, the parameter θ is not determined. Stenger
(2002) discusses also the problem of predicting Ȳ , under the same regression model,
and proves existence of minimax strategies. Again, purposive sampling suffices when
|B| = 1, and random sampling is required for |B|>1.

Returning to the problem of estimating the population mean under a superpopulation
model, we now discuss the seminal work of Aggarwal (1959, 1966). The population
Y = (Y1, . . . , YN) is distributed according to G ∈ H, where H is the class of distributions
G that are concentrated on a hyperplane in R

N of the form Y1 + . . . YN = constant, say
NμG, and subject to

EG
N∑
i=1

(Yi − μG)2 ≤ M (43)

for some M > 0. Setting EGYi = μG,i, and VarGYi = σ2
G,i, we can express that latter

condition as
∑N

i=1[σ2
G,i+(μG,i−μG)2] ≤ M. The goal is to estimate the population mean

Ȳ , which here equalsμG. Under Ps, simple random sampling of n observations, consider
the problem of finding the minimax estimator, that is, the estimator t minimizing the risk
supG∈H

EPs,G(t(S, Y )− Ȳ )2. Aggarwal (1959) uses Bayesian calculations (see Section
3.5) to show that the minimax estimator is the sample mean.

If the population is divided into given strata, and simple random sampling with a
given sample size is carried out in each stratum, and if in each stratum a superpopulation
model of the above kind holds (with the bound Mi instead of M of Eq. (43) for the ith
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stratum), then the usual weighted sum of the strata means is shown to be minimax. For
a statistician who can choose the sample sizes, and the cost of sampling is added to the
above risk, Aggarwal (1959) provides the minimax strategy,7 consisting of the same
weighted mean, and where naturally the sample sizes in the strata depend on the bounds
Mi, and the cost of sampling in each stratum.

Aggarwal (1966) provides similar results for two-stage sampling. Now the popula-
tion is divided into given subgroups called primary units (or clusters).Asimple random
sample of primary units (clusters) is selected in the first stage (whereas in stratified sam-
pling all strata are sampled), and a second-stage simple random sampling is carried
out in each of the selected clusters. The superpopulation model constrains the cluster
means to be on a hyperplane, as well as the Y ’s within each cluster, with conditions
similar to Eq. (43) within and between clusters, and suitable bounds replacingM. With
weights computed in terms of these bounds and the sample sizes, a weighted average
of the sample means in the sampled clusters is shown to be minimax for given sample
sizes. A minimax allocations of sample sizes that depends on the bounds and the sam-
pling costs is also given, which together with the above estimator comprise a minimax
strategy.7

8. List of main notations

Y = (y1, . . . , yN), a finite population of sizeN. N = {1, . . . , N}. S ⊆ N, a sample.

YS – the multiset containing all yi-values arising from distinct labels i ∈ S.

Y = (Y1, . . . , YN), a random finite population of size N under a superpopulation
model.

G – distribution of Y (prior or superpopulation model). G – class of exchangeable
priors.

YS – the multiset containing all Yi-values arising from distinct labels i ∈ S.

Ȳ = 1
N

∑N
i=1 yi, the population mean. Ȳ = 1

N

∑N
i=1 Yi, the population mean under

a superpopulation model.

ȲS = 1
n

∑
i∈S yi, the sample mean, where n = |S|. ȲS = 1

n

∑
i∈S Yi, the sample

mean under a superpopulation model.

D = D[S,Y] = {(i, yi) : i ∈ S}, the data.

t = t(D) = t({(i, yi) : i ∈ S}) – an estimator. We also use t(D[S,Y]), or t(S,Y).
Under a superpopulation model, we use t({(i, Yi) : i ∈ S}) or t(D[S, Y ]), etc.

P – a sampling design (probability over subsets S of N ). αi = P({i ∈ S}), inclusion
probabilities.

SRS= Ps – simple random sampling without replacement, also SRS.

tHT =∑
i∈S yi/αi – the Horvitz–Thompson estimator.

7 Among strategies based on simple random sampling.
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L(t,Y) – loss when the estimator takes the value t.

R(P, t;Y) := EPL(t,Y) =∑
S P(S)L(t(D[S,YS]),Y) – risk.

MSE (P, t;Y) = EP(t − θ)2
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Barbara Szyszkowicz

Volume 17. Order Statistics: Applications
Edited by N. Balakrishnan and C.R. Rao
1998 xviii + 712 pp.

1. Order Statistics in Exponential Distribution by Asit P. Basu and Bahadur Singh
2. Higher Order Moments of Order Statistics from Exponential and Right-

truncated Exponential Distributions and Applications to Life-testing Problems by
N. Balakrishnan and Shanti S. Gupta

3. Log-gamma Order Statistics and Linear Estimation of Parameters by N.
Balakrishnan and P.S. Chan

4. Recurrence Relations for Single and Product Moments of Order Statistics from a
Generalized Logistic Distribution with Applications to Inference and Generaliza-
tions to Double Truncation by N. Balakrishnan and Rita Aggarwala

5. Order Statistics from the Type III Generalized Logistic Distribution and Applica-
tions by N. Balakrishnan and S.K. Lee

6. Estimation of Scale Parameter Based on a Fixed Set of Order Statistics by Sanat
K. Sarkar and Wenjin Wang

7. Optimal Linear Inference Using Selected Order Statistics in Location-Scale Models
by M. Masoom Ali and Dale Umbach

8. L-Estimation by J.R.M. Hosking
9. On Some L-estimation in Linear Regression Models by Soroush Alimoradi and

A.K.Md. Ehsanes Saleh



630 Contents of Previous Volumes

10. The Role of Order Statistics in Estimating Threshold Parameters by A. Clifford
Cohen

11. Parameter Estimation under Multiply Type-II Censoring by Fanhui Kong
12. On Some Aspects of Ranked Set Sampling in Parametric Estimation by Nora Ni

Chuiv and Bimal K. Sinha
13. Some Uses of Order Statistics in Bayesian Analysis by Seymour Geisser
14. Inverse Sampling Procedures toTest for Homogeneity in a Multinomial Distribution

by S. Panchapakesan, Aaron Childs, B.H. Humphrey and N. Balakrishnan
15. Prediction of Order Statistics by Kenneth S. Kaminsky and Paul I. Nelson
16. The Probability Plot: Tests of Fit Based on the Correlation Coefficient by

R.A. Lockhart and M.A. Stephens
17. Distribution Assessment by Samuel Shapiro
18. Application of Order Statistics to Sampling Plans for Inspection by Variables by

Helmut Schneider and Frances Barbera
19. Linear Combinations of Ordered Symmetric Observations with Applications to

Visual Acuity by Marios Viana
20. Order-Statistic Filtering and Smoothing of Time-Series: Part I by Gonzalo R. Arce,

Yeong-Taeg Kim and Kenneth E. Barner
21. Order-Statistic Filtering and Smoothing of Time-Series: Part II by Kenneth E.

Barner and Gonzalo R. Arce
22. Order Statistics in Image Processing by Scott T. Acton and Alan C. Bovik
23. Order Statistics Application to CFAR Radar Target Detection by R. Viswanathan

Volume 18. Bioenvironmental and Public Health Statistics
Edited by P.K. Sen and C.R. Rao
2000 xxiv + 1105 pp.

1. Bioenvironment and Public Health: Statistical Perspectives by Pranab K. Sen
2. Some Examples of Random Process Environmental Data Analysis by David R.

Brillinger
3. Modeling Infectious Diseases – Aids by L. Billard
4. On Some Multiplicity Problems and Multiple Comparison Procedures in Biostatis-

tics by Yosef Hochberg and Peter H. Westfall
5. Analysis of Longitudinal Data by Julio M. Singer and Dalton F. Andrade
6. Regression Models for Survival Data by Richard A. Johnson and John P. Klein
7. Generalised Linear Models for Independent and Dependent Responses by Bahjat

F. Qaqish and John S. Preisser
8. Hierarchial and Empirical Bayes Methods for Environmental Risk Assessment by

Gauri Datta, Malay Ghosh and Lance A. Waller
9. Non-parametrics in Bioenvironmental and Public Health Statistics by Pranab

Kumar Sen
10. Estimation and Comparison of Growth and Dose-Response Curves in the Presence

of Purposeful Censoring by Paul W. Stewart
11. Spatial Statistical Methods for Environmental Epidemiology byAndrew B. Lawson

and Noel Cressie



Contents of Previous Volumes 631

12. Evaluating Diagnostic Tests in Public Health by Margaret Pepe, Wendy Leisenring
and Carolyn Rutter

13. Statistical Issues in Inhalation Toxicology by E. Weller, L. Ryan and D. Dockery
14. Quantitative Potency Estimation to Measure Risk with Bioenvironmental Hazards

by A. John Bailer and Walter W. Piegorsch
15. TheAnalysis of Case-Control Data: Epidemiologic Studies of FamilialAggregation

by Nan M. Laird, Garrett M. Fitzmaurice and Ann G. Schwartz
16. Cochran–Mantel–Haenszel Techniques: Applications Involving Epidemiologic

Survey Data by Daniel B. Hall, Robert F. Woolson, William R. Clarke and Martha
F. Jones

17. Measurement Error Models for Environmental and Occupational Health Applica-
tions by Robert H. Lyles and Lawrence L. Kupper

18. Statistical Perspectives in Clinical Epidemiology by Shrikant I. Bangdiwala and
Sergio R. Muñoz

19. ANOVA and ANOCOVA for Two-Period Crossover Trial Data: New vs. Standard
by Subir Ghosh and Lisa D. Fairchild

20. Statistical Methods for Crossover Designs in Bioenvironmental and Public Health
Studies by Gail E. Tudor, Gary G. Koch and Diane Catellier

21. Statistical Models for Human Reproduction by C.M. Suchindran and Helen P. Koo
22. Statistical Methods for Reproductive Risk Assessment by Sati Mazumdar, Yikang

Xu, Donald R. Mattison, Nancy B. Sussman and Vincent C. Arena
23. Selection Biases of Samples and their Resolutions by Ranajit Chakraborty and

C. Radhakrishna Rao
24. Genomic Sequences and Quasi-Multivariate CATANOVA by Hildete Prisco

Pinheiro, Françoise Seillier-Moiseiwitsch, Pranab Kumar Sen and Joseph Eron Jr
25. Statistical Methods for Multivariate Failure Time Data and Competing Risks by

Ralph A. DeMasi
26. Bounds on Joint Survival Probabilities with Positively Dependent Competing Risks

by Sanat K. Sarkar and Kalyan Ghosh
27. Modeling Multivariate Failure Time Data by Limin X. Clegg, Jianwen Cai and

Pranab K. Sen
28. The Cost–Effectiveness Ratio in the Analysis of Health Care Programs by Joseph

C. Gardiner, Cathy J. Bradley and Marianne Huebner
29. Quality-of-Life: Statistical Validation and Analysis An Example from a Clinical

Trial by Balakrishna Hosmane, Clement Maurath and Richard Manski
30. Carcinogenic Potency: Statistical Perspectives by Anup Dewanji
31. Statistical Applications in Cardiovascular Disease by Elizabeth R. DeLong and

David M. DeLong
32. Medical Informatics and Health Care Systems: Biostatistical and Epidemiologic

Perspectives by J. Zvárová
33. Methods of Establishing In Vitro–In Vivo Relationships for Modified Release Drug

Products by David T. Mauger and Vernon M. Chinchilli
34. Statistics in Psychiatric Research by Sati Mazumdar, Patricia R. Houck and Charles

F. Reynolds III
35. Bridging the Biostatistics–Epidemiology Gap by Lloyd J. Edwards
36. Biodiversity – Measurement and Analysis by S.P. Mukherjee



632 Contents of Previous Volumes

Volume 19. Stochastic Processes: Theory and Methods
Edited by D.N. Shanbhag and C.R. Rao
2001 xiv + 967 pp.

1. Pareto Processes by Barry C. Arnold
2. Branching Processes by K.B. Athreya and A.N. Vidyashankar
3. Inference in Stochastic Processes by I.V. Basawa
4. Topics in Poisson Approximation by A.D. Barbour
5. Some Elements on Lévy Processes by Jean Bertoin
6. Iterated Random Maps and Some Classes of Markov Processes by Rabi

Bhattacharya and Edward C. Waymire
7. Random Walk and Fluctuation Theory by N.H. Bingham
8. A Semigroup Representation and Asymptotic Behavior of Certain Statistics of the

Fisher–Wright–Moran Coalescent by Adam Bobrowski, Marek Kimmel, Ovide
Arino and Ranajit Chakraborty

9. Continuous-Time ARMA Processes by P.J. Brockwell
10. Record Sequences and their Applications by John Bunge and Charles M. Goldie
11. Stochastic Networks with Product Form Equilibrium by Hans Daduna
12. Stochastic Processes in Insurance and Finance by Paul Embrechts, Rüdiger Frey

and Hansjörg Furrer
13. Renewal Theory by D.R. Grey
14. The Kolmogorov Isomorphism Theorem and Extensions to some Nonstationary

Processes by Yûichirô Kakihara
15. Stochastic Processes in Reliability by Masaaki Kijima, Haijun Li and Moshe Shaked
16. On the supports of Stochastic Processes of Multiplicity One by A. Kłopotowski

and M.G. Nadkarni
17. Gaussian Processes: Inequalities, Small Ball Probabilities and Applications by

W.V. Li and Q.-M. Shao
18. Point Processes and Some Related Processes by Robin K. Milne
19. Characterization and Identifiability for Stochastic Processes by B.L.S. Prakasa Rao
20. Associated Sequences and Related Inference Problems by B.L.S. Prakasa Rao and

Isha Dewan
21. Exchangeability, Functional Equations, and Characterizations by C.R. Rao and

D.N. Shanbhag
22. Martingales and Some Applications by M.M. Rao
23. Markov Chains: Structure and Applications by R.L. Tweedie
24. Diffusion Processes by S.R.S. Varadhan
25. Itô’s Stochastic Calculus and Its Applications by S. Watanabe

Volume 20. Advances in Reliability
Edited by N. Balakrishnan and C.R. Rao
2001 xxii + 860 pp.

1. Basic Probabilistic Models in Reliability by N. Balakrishnan, N. Limnios
and C. Papadopoulos



Contents of Previous Volumes 633

2. The Weibull Nonhomogeneous Poisson Process by A.P Basu and S.E. Rigdon
3. Bathtub-Shaped Failure Rate Life Distributions by C.D. Lai, M. Xie and

D.N.P. Murthy
4. Equilibrium Distribution – its Role in Reliability Theory by A. Chatterjee and

S.P. Mukherjee
5. Reliability and Hazard Based on Finite Mixture Models by E.K. Al-Hussaini and

K.S. Sultan
6. Mixtures and Monotonicity of Failure Rate Functions by M. Shaked and

F. Spizzichino
7. Hazard Measure and Mean Residual Life Orderings: A Unified Approach by

M. Asadi and D.N. Shanbhag
8. Some Comparison Results of the Reliability Functions of Some Coherent Systems

by J. Mi
9. On the Reliability of Hierarchical Structures by L.B. Klebanov and G.J. Szekely

10. Consecutive k-out-of-n Systems by N.A. Mokhlis
11. Exact Reliability and Lifetime of Consecutive Systems by S. Aki
12. Sequential k-out-of-n Systems by E. Cramer and U. Kamps
13. Progressive Censoring: A Review by R. Aggarwala
14. Point and Interval Estimation for Parameters of the Logistic Distribution Based on

Progressively Type-II Censored Samples by N. Balakrishnan and N. Kannan
15. Progressively Censored Variables-Sampling Plans for Life Testing by

U. Balasooriya
16. Graphical Techniques for Analysis of Data From Repairable Systems by

P.A. Akersten, B. Klefsjö and B. Bergman
17. A Bayes Approach to the Problem of Making Repairs by G.C. McDonald
18. Statistical Analysis for Masked Data by B.J. Flehinger†, B. Reiser and E. Yashchin
19. Analysis of Masked Failure Data under Competing Risks by A. Sen, S. Basu and

M. Banerjee
20. Warranty and Reliability by D.N.P. Murthy and W.R. Blischke
21. Statistical Analysis of Reliability Warranty Data by K. Suzuki, Md. Rezaul Karim

and L. Wang
22. Prediction of Field Reliability of Units, Each under Differing Dynamic Stresses,

from Accelerated Test Data by W. Nelson
23. Step-Stress Accelerated Life Test by E. Gouno and N. Balakrishnan
24. Estimation of Correlation under Destructive Testing by R. Johnson and W. Lu
25. System-Based Component Test Plans for Reliability Demonstration: A Review and

Survey of the State-of-the-Art by J. Rajgopal and M. Mazumdar
26. Life-Test Planning for Preliminary Screening of Materials:ACase Study by J. Stein

and N. Doganaksoy
27. Analysis of Reliability Data from In-HouseAudit Laboratory Testing by R.Agrawal

and N. Doganaksoy
28. Software Reliability Modeling, Estimation and Analysis by M. Xie and G.Y.

Hong
29. Bayesian Analysis for Software Reliability Data by J.A. Achcar
30. Direct Graphical Estimation for the Parameters in a Three-Parameter Weibull

Distribution by P.R. Nelson and K.B. Kulasekera



634 Contents of Previous Volumes

31. Bayesian and Frequentist Methods in Change-Point Problems by N. Ebrahimi and
S.K. Ghosh

32. The Operating Characteristics of Sequential Procedures in Reliability by S. Zacks
33. Simultaneous Selection of Extreme Populations from a Set of Two-Parameter Expo-

nential Populations by K. Hussein and S. Panchapakesan

Volume 21. Stochastic Processes: Modelling and Simulation
Edited by D.N. Shanbhag and C.R. Rao
2003 xxviii + 1002 pp.

1. Modelling and Numerical Methods in Manufacturing System Using Control Theory
by E.K. Boukas and Z.K. Liu

2. Models of Random Graphs and theirApplications by C. Cannings and D.B. Penman
3. Locally Self-Similar Processes and their Wavelet Analysis by J.E. Cavanaugh,

Y. Wang and J.W. Davis
4. Stochastic Models for DNA Replication by R. Cowan
5. An Empirical Process with Applications to Testing the Exponential and Geometric

Models by J.A. Ferreira
6. Patterns in Sequences of Random Events by J. Gani
7. Stochastic Models in Telecommunications for Optimal Design, Control and Perfor-

mance Evaluation by N. Gautam
8. Stochastic Processes in Epidemic Modelling and Simulation by D. Greenhalgh
9. Empirical Estimators Based on MCMC Data by P.E. Greenwood andW.Wefelmeyer

10. Fractals and the Modelling of Self-Similarity by B.M. Hambly
11. Numerical Methods in Queueing Theory by D. Heyman
12. Applications of Markov Chains to the Distribution Theory of Runs and Patterns by

M.V. Koutras
13. Modelling Image Analysis Problems Using Markov Random Fields by S.Z. Li
14. An Introduction to Semi-Markov Processes with Application to Reliability by

N. Limnios and G. Oprişan
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