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Preface to Handbook 29A

Thirty five years ago, the Central Bureau of Statistics in Israel held a big farewell party
for the then retiring Prime Minister of Israel, Mrs Golda Meir. In her short thank you
speech, the prime minister told the audience: “you are real magicians, you ask 1,000
people what they think, and you know what the whole country thinks”. Magicians or
not, this is what sample surveys are all about: to learn about the population from a (often
small) sample, dealing with issues such as how to select the sample, how to process and
analyse the data, how to compute the estimates, and face it, since we are not magicians,
also how to assess the margin of error of the estimates.

Survey sampling is one of the most practiced areas of statistics, and the present
handbook contains by far the most comprehensive, self-contained account of the state
of the art in this area. With its 41 chapters, written by leading theoretical and applied
experts in the field, this handbook covers almost every aspect of sample survey theory
and practice. It will be very valuable to government statistical organizations, to social sci-
entists conducting opinion polls, to business consultants ascertaining customers’ needs
and as a reference text for advanced courses in sample survey methodology. The hand-
book can be used by a student with a solid background in general statistics who is
interested in learning what sample surveys are all about and the diverse problems that
they deal with. Likewise, the handbook can be used by a theoretical or applied researcher
who is interested in learning about recent research carried out in this broad area and
about open problems that need to be addressed. Indeed, in recent years more and more
prominent researchers in other areas of statistics are getting involved in sample survey
research in topics such as small area estimation, census methodology, incomplete data
and resampling methods.

The handbook consists of 41 chapters with a good balance between theory and
practice and many illustrations of real applications. The chapters are grouped into
two volumes. Volume 29A entitled “Design, Methods and Applications” contains
22 chapters. Volume 29B entitled “Inference and Analysis” contains the remaining
19 chapters. The chapters in each volume are further divided into three parts, with
each part preceded by a short introduction summarizing the motivation and main devel-
opments in the topics covered in that part.

The present volume 29A deals with sampling methods and data processing and
considers in great depth a large number of broad real life applications. Part 1 is
devoted to sampling and survey design. It starts with a general introduction of alter-
native approaches to survey sampling. It then discusses methods of sample selection
and estimation, with separate chapters on unequal probability sampling, two-phase and
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vi Preface to Handbook 29A

multiple frame sampling, surveys across time, sampling of rare populations and random
digit dialling surveys. Part 2 of this volume considers data processing, with chapters on
record linkage and statistical editing methods, the treatment of outliers and classifica-
tion errors, weighting and imputation to compensate for nonresponse, and methods for
statistical disclosure control, a growing concern in the modern era of privacy conscious
societies. This part also has a separate chapter on computer software for sample sur-
veys. The third part of Volume 29A considers the application of sample surveys in seven
different broad areas. These include household surveys, business surveys, agricultural
surveys, environmental surveys, market research and the always intriguing application
of election polls. Also considered in this part is the increasing use of sample surveys for
evaluating, supplementing and improving censuses.

Volume 29B is concerned with inference and analysis, distinguishing between meth-
ods based on probability sampling principles (“design-based” methods), and methods
based on statistical models (“model-based” methods). Part 4 (the first part of this volume)
discusses alternative approaches to inference from survey data, with chapters on model-
based prediction of finite population totals, design-based and model-based inference on
population model parameters and the use of estimating functions and calibration for
estimation of population parameters. Other approaches considered in this part include
the use of nonparametric and semi-parametric models, the use of Bayesian methods,
resampling methods for variance estimation, and the use of empirical likelihood and
pseudo empirical likelihood methods. While the chapters in Part 4 deal with general
approaches, Part 5 considers specific estimation and inference problems. These include
design-based and model-based methods for small area estimation, design and inference
over time and the analysis of longitudinal studies, categorical data analysis and infer-
ence on distribution functions. The last chapter in this part discusses and illustrates the
use of scatterplots with survey data. Part 6 in Volume 29B is devoted to inference under
informative sampling and to theoretical aspects of sample survey inference. The first
chapter considers case-control studies which are in common use for health and policy
evaluation research, while the second chapter reviews several plausible approaches for
fitting models to complex survey data under informative sampling designs. The other
two chapters consider asymptotics in finite population sampling and decision-theoretic
aspects of sampling, bringing sample survey inference closer to general statistical theory.

This extensive handbook is the joint effort of 68 authors from many countries, and
we would like to thank each one of them for their enormous investment and dedication
to this extensive project. We would also like to thank the editorial staff at the North-
Holland Publishing Company and in particular, Mr. Karthikeyan Murthy, for their great
patience and cooperation in the production of this handbook.

Danny Pfeffermann
C. R. Rao
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Introduction to Part 1

Sharon L. Lohr

1. Importance of survey design

Sample surveys have many possible objectives: to estimate changes in unemployment
rates over time, to study through election polls how the public views political candidates,
or to estimate the number of gila monsters in Arizona. In all surveys, however, the major
goal is to estimate characteristics of a static or dynamic population using data from
a sample. Mahalanobis (1965, p. 45) summarized the advantages of sample surveys:
“…large scale sample surveys, when conducted in the proper way with a satisfactory
survey design, can supply with great speed and at low cost information of sufficient
accuracy for practical purposes and with the possibility of ascertainment of the margin
of uncertainty on an objective basis.” The key to attaining these advantages is the
“satisfactory survey design.”

Part 1 of this Handbook focuses on issues in survey design. For the purposes of this
book, survey design means the procedure used to select units from the population for
inclusion in the sample. Designing a survey is the most important stage of a survey since
design deficiencies cannot always be compensated for when editing and analyzing the
data.Asample that consists entirely of volunteers, such as a web-based poll that instructs
visitors to “click here” if they wish to express opinions about a political candidate or
issue, is usually useless for the purpose of estimating how many persons in a population
of interest share those opinions.

The classical building blocks of survey design for probability samples, including
simple random sampling, stratification, and multistage cluster sampling, were all devel-
oped with the goal of minimizing the survey cost while controlling the uncertainty
associated with key estimates. Much of the research on these designs was motivated
by methods used to collect survey data in the 1930s and 1940s. Data for many surveys
were collected in person, which necessitated cluster sampling to reduce travel costs. At
the same time, auxiliary information that could be used to improve design efficiency
was sometimes limited, which reduced potential gains from stratification. Mahalanobis
(1946) also emphasized the need for designs and estimators with straightforward com-
putations so that additional errors would not be introduced by the people who served as
computers.

Stratification and multistage sampling are still key design features for surveys. New
methods of data collection and more available information for population units, how-
ever, can and should be factored into design choices. In addition, new uses of survey
data lead to new demands for survey designs. While straightforward computations are

3



4 S. L. Lohr

less essential now than in 1946, conceptual simplicity of designs and estimators is still
valuable for accuracy as well as public acceptance of survey estimates.

Section 2 of this introduction reviews the underlying framework of survey design
and outlines how inferential approaches influence design choice. Section 3 then presents
contemporary design challenges that are discussed in Part 1 of the Handbook.

2. Framework and approaches to design and inference

A finite population U is a set of N units; we write U = {1, 2, . . . , N}. A sample S is
a subset of U. Unit i has an associated k-vector of measurements yi. One wishes to
estimate or predict functions of y1, . . . , yN using the data in S. Of particular interest is
the population total, Y =∑N

i=1 yi.
Sometimes auxiliary information is available for units in the population before the

sample is selected. Some countries have population registers with detailed information
about the population; in other cases, information may be available from administrative
records or previous data collection efforts. Let xi denote the vector of auxiliary informa-
tion available for unit i. The auxiliary information may be used in the survey design, in
the estimators, or in both. The fundamental design problem is to use the available aux-
iliary information to achieve as much precision as possible when estimating population
quantities of interest.

Although Part 1 concerns survey design, it begins with a chapter by Brewer and
Gregoire on philosophies of survey inference. This is appropriate because the approach
that will be taken for inference has implications for the choice of design in the survey.
Approaches to inference are treated in more detail in Chapters 23 and 24, but here we
give a brief outline to show the relation to survey design.

Neyman (1934) promoted stratified random sampling in association with randomi-
zation-based, or design-based, inference. In randomization-based inference, the values
yi are considered to be fixed, but unknown, quantities. The random variables used
for inference are Z1, . . . , ZN , where Zi represents the number of times that unit i is
selected to be in the sample. If sampling is done without replacement, Zi = 1 if unit
i is included in the sample, and Zi = 0 if unit i is not included in the sample. The
inclusion probability is πi = P (Zi = 1) and the probability that a particular sample S
is selected is P (S) = P (Zi = 1, i ∈ S and Zj = 0, j �∈ S}. The Horvitz–Thompson
(1952) estimator of the population total is

ŶHT =
∑
i∈S

yi

πi

=
N∑

i=1

Zi

yi

πi

with

V(ŶHT) =
N∑

i=1

N∑
j=1

(πij − πiπj)
yi

πi

yj

πj

,

where πij = P(Zi = 1, Zj = 1). The variance of ŶHT depends on the joint probability
function of the Zi—the actual measurement of interest, yi, is considered to be a constant
for inferential purposes.

In model-based inference, also called prediction-based inference, the values
y1, . . . , yN in the finite population are assumed to be realizations of random vectors
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that follow a stochastic model. Adopting the notation in Chapter 1, we let Yi represent
the random variable generating the response for unit i. (Note that following standard
usage Y = ∑N

i=1 yi is still the finite population total.) For a univariate response, the ratio
model

Yi = βxi + Ui (1)

is occasionally adopted, where the errors Ui are assumed to be independently distributed
with mean 0 and variance xiσ

2. A prediction estimator of the population total using this
model is

ŶPRED =
∑
i∈S

yi +
∑
i�∈S

β̂xi, (2)

where β̂ =∑i∈S Yi/
∑

i∈S xi is the best linear unbiased estimator of β under the model.
In a model-based approach, the variance of ŶPRED depends on the joint probability
distribution, specified by the model, of the Ui for units in the sample: the method used to
select the sample is irrelevant for inference because presumably all relevant information
is incorporated in the model.

What are the design implications of the inferential approach chosen? For the pre-
diction estimator in (2), the model-based optimal design is that which minimizes the
variance of β̂ under the assumed model, namely a design that purposively selects the n

population units with the largest x values to be the sample.
For randomization-based inference, one approach would be to incorporate the aux-

iliary information into the design through stratification based on the x variable. If y

is positively correlated with x and the variability increases with x, consistent with the
model in (1), then the optimal stratification design will have larger sampling fractions
in the strata with large x and smaller sampling fractions in the strata with small x.
Alternatively, with probability proportional to x sampling, the inclusion probability πi

is defined to be proportional to xi; methods for selecting such a sample are described in
Chapter 2. Both of these designs exploit the assumed population model structure in (1)
and will reduce the randomization-based variance of ŶHT if the model approximately
holds. They both lead to samples that are likely to contain proportionately more units
with large values of xi than a simple random sample would contain, and in that sense are
similar to the optimal design under the prediction approach. Stratification and unequal
probability sampling are often used in tandem. For example, in business surveys, dis-
cussed in Chapter 17, it is common to first stratify by establishment size and then to
sample with probability proportional to size within each stratum.

The optimal designs using stratification or unequal probability sampling have an
important difference from the optimal design under the model-based approach: the
randomization-based designs have positive probability of inclusion for every unit in the
population. Although the stratified design has small sampling fraction in the stratum
with the smallest values of x, it does prescribe taking observations from that stratum.
The optimal model-based design, by contrast, takes no observations from that stratum,
and data from that design are inadequate for checking the model assumptions.As Brewer
and Gregoire point out in Chapter 1, if the model does not hold for unsampled population
units, estimates using data from the optimal model-based design may be biased. For that
reason, Royall and Herson (1973) suggested using balanced sampling designs, in which
sample moments of auxiliary variables approximately equal the population moments of
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those variables. This provides a degree of robustness against the model assumptions for
the variables included in the balancing. To achieve additional robustness with respect to
other, perhaps unavailable, potential covariates, one of the possible balanced samples
can be selected using randomization methods.

A probability sampling design is balanced on an auxiliary variable x if the
Horvitz–Thompson estimator of the total for x equals the true population total for x.
Berger and Tillé, in Chapter 2, describe methods for designing samples that are approx-
imately balanced with respect to multiple auxiliary variables. These auxiliary variables
can include stratum indicators so that stratified sampling is a special case of balanced
sampling; they can also include continuous variables from a population register such
as age or educational attainment that cut across the strata. The cube method for select-
ing samples presents an elegant geometric view of the balanced design problem. The
balanced sampling methods presented in Chapter 2 yield probability sampling designs;
randomization methods are used to select one of the many possible samples that satisfy
the balancing constraints.

With stratification and unequal probability sampling, auxiliary information is used
in the design. Alternatively, or additionally, auxiliary information about units or groups
of units in the population can be incorporated into the estimator. For example, the ratio
estimator ŶR = ŶHT(X/X̂HT) adjusts the Horvitz–Thompson estimator of Y by the ratio
X/X̂HT. If a simple random sample is taken, ŶR has the same form as ŶPRED from (2);
the ratio estimator is motivated by the model in (1), but inference about ŶR is based
on the distribution of the design variables Zi, while inference about ŶPRED depends on
the distribution of the model errors Ui. The ratio estimator calibrates (see Chapter 25)
the Horvitz–Thompson estimator so that the estimated population total of the auxiliary
variable coincides with the true total, X = ∑N

i=1 xi. A stratified design achieves such
calibration automatically for the auxiliary variables indicating stratum membership; in
stratified random sampling, the Horvitz–Thompson estimator of each stratum size is
exact. Balanced sampling extends this precalibration to other variables.

Note that data from a randomization-based design may later be analyzed using model-
based inference, provided that relevant design features are incorporated in the model.
Indeed, models are essential for treating nonresponse and measurement errors, as will
be discussed in Part 2. But data that have been collected using a model-based design
must be analyzed with a model-based approach; if no randomization is employed,
randomization-based inference cannot be used.

Brewer and Gregoire, in Chapter 1, argue that the prediction and randomization
approaches should be used together. In survey design, they can be used together by
tentatively adopting a model when designing a randomization-based probability sample.
The resulting design will use the auxiliary information to improve efficiency but will
be robust to model misspecification. This approach is largely the one adopted in the
chapters in Part 1 on specific design problems.

3. Challenges in survey design

The framework given in Section 2 is, in a sense, an idealized version of survey design.
We assumed that a complete sampling frame exists, that auxiliary information use-
ful for design is available for all units, and that any desired design can be imple-
mented. Chapters 3–7 in the Handbook treat specific problems in survey design in
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which some of these assumptions are not met. The designs are all developed from the
randomization-based perspective but strive to use auxiliary information as efficiently as
possible.

Sampling designs are most efficient if they exploit high-quality auxiliary information.
Sometimes, though, highly correlated auxiliary information is not available before sam-
pling but can be collected relatively inexpensively in a preliminary survey. In a health
survey, for example, one might wish to oversample persons at high risk for coronary
heart disease but it is unknown who those persons are before the sample is collected.
A phase I sample can be collected in which respondents are asked over the telephone
about risk factors and grouped into risk strata on the basis of the verbal responses. In a
phase II sample, subsamples of the original respondents are given medical examinations,
with higher sampling fractions in the high-risk strata. The efficiency gained by using a
two-phase sample depends on the relative costs of sampling in the two phases as well as
the efficiency of the stratification of the phase-I respondents. Legg and Fuller, in Chap-
ter 3, discuss recent results in two-phase sampling, including methods for incorporating
additional auxiliary information in the estimators and methods for variance estimation.
For two-phase samples, designs need to be specified for both phases, and the proportion
of resources to be devoted to each phase needs to be determined.

With the introduction of new modes for collecting survey data, in some situations it
is difficult to find one sampling frame that includes the entire population. Random digit
dialing frames, for example, do not include households without telephones. In other
situations, a complete sampling frame exists but is expensive to sample from; another
frame, consisting of a list of some of the units in the population, is much cheaper to
sample but does not cover the entire population. Chapter 4 discusses the theory and
challenges of multiple-frame surveys, in which the union of two or more sampling
frames is assumed to cover the population of interest. Sometimes the incomplete frames
can be combined, omitting duplicates, to construct a complete sampling frame for the
population. Alternatively, independent samples can be selected from the frames, and the
information from the samples can be combined to obtain general population estimates.
Often, one frame has more auxiliary information available for design purposes than other
frames. A list of farms from a previous agricultural census may also have information
on farm size, types of crops grown at the census time, and other information that may
be used in stratifying or balancing the survey design. If independent samples are taken
from the frames, each sample design can fully exploit the auxiliary information available
for that frame. As with two-phase sample design, the design of a multiple-frame survey
needs to include designs for each frame as well as the relative resources to be devoted
to each sample.

Design decisions for surveys in which we are interested in changes over time are dis-
cussed in Chapter 5. Kalton distinguishes between surveys designed to estimate changes
in population characteristics over time, for example, the change in the national unem-
ployment rate between year 1 and year 2, and surveys designed to estimate gross changes,
for example, how many persons move from unemployed status at time 1 to employed
status at time 2. A repeated cross-sectional survey, sampling different persons each year,
can be used to estimate the change in unemployment from 2010 to 2011, but it cannot
be used to answer questions about persistence in unemployment among individuals.
A longitudinal survey, following the same persons through repeated interviews, can be
used to estimate yearly trends as well as persistence. A longitudinal survey design needs
to consider possible attrition and measurement errors that may change over time.
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Rare populations, the subject of Chapter 6, are those in which the individuals of inter-
est are a small part of the population, for example, persons with a rare medical condition,
or a special type of flower in a forest. In many situations, the auxiliary information that
would be most useful for designing the sample, namely, information identifying which
units of the sampling frame are in the rare population, is unfortunately unavailable.
Thus, as in two-phase sampling, auxiliary information that could greatly improve the
efficiency of the survey is unknown before sampling. Christman summarizes several
methods that can be used to design surveys for estimating the size and characteristics
of a rare population. Auxiliary information that can be used to predict membership in
the rare population may be used for stratification. The units can be stratified by their
likelihood of belonging to the rare population, and the strata with higher expected mem-
bership rates can then be sampled with higher sampling fractions. If that information is
not available in advance, two-phase sampling can be used to collect information about
rare population membership in phase I, as discussed in Chapter 3.

Christman also describes adaptive sampling designs, in which sampling is done
sequentially. An initial sample is used to modify the inclusion probabilities of subse-
quently selected units. Adaptive sampling designs are particularly useful when the rare
group is clustered within the population. In adaptive cluster sampling, clusters adjacent
to those with high concentrations or counts of the population of interest receive higher
probabilities for inclusion in subsequent sampling. In these adaptive designs, auxiliary
information is collected sequentially.

Wolter, Chowdhury, and Kelly, in Chapter 7, update the uses and challenges of
random-digit dialing surveys. Since auxiliary information may be limited to demo-
graphic summary statistics for the area codes (and even that may not be available if a
survey of cellular telephone numbers is taken, where an individual may reside outside
of the area code assigned to his/her cell number), the efficiency gained by stratification
may be limited and much of the auxiliary information about the population can only
be used in the estimation stage. Random-digit dialing surveys face new challenges as
landline telephones are being replaced by other technology, but many of the methods
used to design a random-digit dialing survey can carry over to newer modes such as
cellular telephones and internet surveys.

Many design features described in Part 1 can be used together to improve the effi-
ciency and quality of samples. Wolter, Chowdhury, and Kelly describe how random-digit
dialing can be used as one sample in a multiple-frame survey; additional frames, such
as a frame of cellular telephone users, can improve the coverage of the population.
Multiple-frame surveys can also be used to combine information from surveys taken
with different designs and for different purposes. For sampling rare populations, one
frame might be a list of persons thought to belong to the rare population, and another
frame might be that used for an adaptive cluster sample. In two-phase sampling, the
auxiliary information gathered in phase I can be used to design a balanced sample for
phase II.

Mahalanobis (1946) and Biemer and Lyberg (2003) emphasized the importance of
designing surveys to minimize errors from all sources. The chapters in Part 1 discuss
strategies to meet this challenge in new settings. Chapters 1–3 concentrate primar-
ily on using auxiliary information to reduce the sampling variability of estimators.
Chapters 4–7 discuss in addition how to handle anticipated effects of nonresponse and
measurement errors in the survey design.
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Introduction to Survey Sampling

Ken Brewer and Timothy G. Gregoire

1. Two alternative approaches to survey sampling inference

1.1. Laplace and his ratio estimator

At some time in the mid-1780s (the exact date is difficult to establish), the eminent
mathematician Pierre Laplace started to press the ailing French government to conduct
an enumeration of the population in about 700 communes scattered over the Kingdom
(Bru, 1988), with a view to estimating the total population of France. He intended to
use for this purpose the fact that there was already a substantially complete registration
of births in all communes, of which there would then have been of the order of 10,000.
He reasoned that if he also knew the populations of those sample communes, he could
estimate the ratio of population to annual births, and apply that ratio to the known number
of births in a given year, to arrive at what we would now describe as a ratio estimate
of the total French population (Laplace, 17831, 1814a and 1814b). For various reasons,
however, notably the ever-expanding borders of the French empire during Napoleon’s
early years, events militated against him obtaining a suitable total of births for the entire
French population, so his estimated ratio was never used for its original purpose (Bru,
1988; Cochran, 1978; Hald, 1998; Laplace, 1814a and 1814b, p. 762). He did, however,
devise an ingenious way for estimating the precision with which that ratio was measured.
This was less straightforward than the manner in which it would be estimated today but,
at the time, it was a very considerable contribution to the theory of survey sampling.

1.2. A prediction model frequently used in survey sampling

The method used by Laplace to estimate the precision of his estimated ratio was not
dependent on the knowledge of results for the individual sample communes, which

1 This paper is the text of an address given to the Academy on 30 October 1785, but appears to have been
incorrectly dated back to 1783 while the Memoirs were being compiled. A virtually identical version of this
address also appears in Laplace’s Oeuvres Complètes 11 pp. 35–46. This version also contains three tables of
vital statistics not provided in the Memoirs’ version. They should, however, be treated with caution, as they
contain several arithmetical inconsistencies.

9
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would normally be required these days for survey sampling inference. The reason why
it was not required there is chiefly that a particular model was invoked, namely one
of drawing balls from an urn, each black ball representing a French citizen counted in
Laplace’s sample, and each white ball representing a birth within those sample com-
munes in the average of the three preceding years. As it happens, there is another model
frequently used in survey sampling these days, which leads to the same ratio estimator.
That model is

Yi = βXi + Ui, (1a)

which together with

E(Ui) = 0, (1b)

E
(
U2

i

) = σ2Xi (1c)

and

E(UiUj) = 0 (1d)

for all j �= i can also be used for the same purpose.
Equation (1a) describes a survey variable value Yi (for instance the population of

commune i) as generated by a survey parameter, β, times an auxiliary value, Xi, (that
commune’s average annual births) plus a random variable, Ui. Equation (1b) stipulates
that this random variable has zero mean, Eq. (1c) that its variance is proportional to the
auxiliary variable (in this case, annual births), and Eq. (1d) that there is no correlation
between any pair of those random variables.

Given this model, the minimum variance unbiased estimator of β is given by

β̂ =

n∑
i=1

Yi

n∑
i=1

Xi

, (2)

which in this instance is simply the ratio of black to white balls in Laplace’s urn.

1.3. The prediction model approach to survey sampling inference

While, given the model of Eqns. (1), the logic behind the ratio estimator might appear to
be straightforward, there are in fact two very different ways of arriving at it, one obvious
and one somewhat less obvious but no less important. We will examine the obvious one
first.

It is indeed obvious that there is a close relationship between births and population.
To begin with, most of the small geographical areas (there are a few exceptions such as
military barracks and boarding schools) have approximately equal numbers of males and
females. The age distribution is not quite so stable, but with a high probability different
areas within the same country are likely to have more or less the same age distribution,
so the proportion of females of child-bearing age to total population is also more or less
constant. So, also with a reasonable measure of assurance, one might expect the ratio of
births in a given year to total population to be more or less constant, which makes the
ratio estimator an attractive choice.
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We may have, therefore, a notion in our minds that the number in the population
in the ith commune, Yi, is proportional to the number of births there in an average
year, Xi, plus a random error, Ui. If we write that idea down in mathematical form, we
arrive at a set of equations similar to (1) above, though possibly with a more general
variance structure than that implied by Eqns. (1c) and (1d), and that set would enable
us to predict the value of Yi given only the value of Xi together with an estimate of the
ratio β. Laplace’s estimate of β was a little over 28.35.

The kind of inference that we have just used is often described as “model-based,”
but because it is a prediction model and because we shall meet another kind of model
very shortly, it is preferable to describe it as “prediction-based,” and this is the term that
will be used here.

1.4. The randomization approach to survey sampling inference

As already indicated, the other modern approach to survey sampling inference is more
subtle, so it will take a little longer to describe. It is convenient to use a reasonably
realistic scenario to do so.

The hypothetical country of Oz (which has a great deal more in common with
Australia than with Frank L. Baum’s mythical Land of Oz) has a population of 20 million
people geographically distributed over 10,000 postcodes. These postcodes vary greatly
among themselves in population, with much larger numbers of people in a typical urban
than in a typical rural postcode.

Oz has a government agency named Centrifuge, which disburses welfare payments
widely over the entire country. Its beneficiaries are in various categories such as Age
Pensioners, Invalid Pensioners, and University Students. One group of its beneficiaries
receives what are called Discretionary Benefits. These are paid to people who do not
fall into any of the regular categories but are nevertheless judged to be in need of and/or
deserving of financial support.

Centrifuge staff, being human, sometimes mistakenly make payments over and above
what their beneficiaries are entitled to. In the Discretionary Benefits category, it is more
difficult than usual to determine when such errors (known as overpayments) have been
made, so when Centrifuge wanted to arrive at a figure for the amounts of Overpayments
to Discretionary Beneficiaries, it decided to do so on a sample basis. Further, since it
keeps its records in postcode order, it chose to select 1000 of these at random (one tenth
of the total) and to spend considerable time and effort in ensuring that the Overpayments
in these sample postcodes were accurately determined. (In what follows, the number of
sample postcodes, in this case 1000, will be denoted by n and the number of postcodes
in total, in this case 10,000, denoted by N.)

The original intention of the Centrifuge sample designers had been to use the same
kind of ratio estimator as Laplace had used in 1802, namely

Ŷ =

N∑
i=1

δiYi

N∑
i=1

δiXi

N∑
i=1

Xi, (3)

with Yi being the amount of overpayments in the ith postcode and Xi the corresponding
postcode population. In (3), δi is a binary (1/0) indicator of inclusion into the sample
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of size n: for any particular sample, all but n of the N elements of the population will
have a value of δ = 0 so that the sum of δiYi over i = 1 . . . N yields the sum of just the
n values of Yi on those elements selected into the sample.

However, when this proposal came to the attention of a certain senior Centrifuge
officer who had a good mathematical education, he queried the use of this ratio estimator
on the grounds that the relationship between Overpayments (in this particular category)
and Population in individual postcodes was so weak that the use of the model (1) to
justify it was extremely precarious. He suggested that the population figures for the
selected postcodes should be ignored and that the ratio estimator should be replaced by
the simpler expansion estimator, which was

Ŷ = (N/n)

N∑
i=1

δiYi. (4)

When this suggestion was passed on to the survey designers, they saw that it was
needed to be treated seriously, but they were still convinced that there was a sufficiently
strong relationship between Overpayments and Population for the ratio estimator also
to be a serious contender. Before long, one of them found a proof, given in several
standard sampling textbooks, that without reliance on any prediction model such as
Eqns. (1), the ratio estimator was more efficient than the expansion estimator provided
(a) that the sample had been selected randomly from the parent population and (b) that
the correlation between the Yi and the Xi exceeded a certain value (the exact nature
of which is irrelevant for the time being). The upshot was that when the sample data
became available, that requirement was calculated to be met quite comfortably, and in
consequence the ratio estimator was used after all.

1.5. A comparison of these two approaches

The basic lesson to be drawn from the above scenario is that there are two radically
different sources of survey sampling inference. The first is prediction on the basis of a
mathematical model, of which (1), or something similar to it, is the one most commonly
postulated. The other is randomized sampling, which can provide a valid inference
regardless of whether the prediction model is a useful one or not. Note that a model can
be useful even when it is imperfect. The famous aphorism of G.E.P. Box, “All models
are wrong, but some are useful.” (Box, 1979), is particularly relevant here.

There are also several other lessons that can be drawn. To begin with, models such
as that of Eqns. (1) have parameters. Equation (1a) has the parameter β, and Eq. (1c)
has the parameter σ2 that describes the extent of variability in the Yi. By contrast, the
randomization-based estimator (4) involves no estimation of any parameter. All the
quantities on the right hand side of (4), namely N, n, and the sample Yi, are known, if
not without error, at least without the need for any separate estimation or inference.

In consequence, we may say that estimators based on prediction inference are para-
metric, whereas those based on randomization inference are nonparametric. Parametric
estimators tend to be more accurate than nonparametric estimators when the model on
which they are based is sufficiently close to the truth as to be useful, but they are also
sensitive to the possibility of model breakdown. By contrast, nonparametric estimators
tend to be less efficient than parametric ones, but (since there is no model to break
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down) they are essentially robust. If an estimator is supported by both parametric and
nonparametric inference, it is likely to be both efficient and robust. When the correlation
between the sample Yi and the sample Xi is sufficiently large to meet the relevant con-
dition, mentioned but not defined above in the Oz scenario, the estimator is also likely
to be both efficient and robust, but when the correlation fails to meet that condition,
another estimator has a better randomization-based support, so the ratio estimator is no
longer robust, and the indications are that the expansion estimator, which does not rely
upon the usefulness of the prediction model (1), would be preferable.

It could be argued, however, that the expansion estimator itself could be considered
as based on the even simpler prediction model

Yi = α + Ui, (5)

where the random terms Ui have zero means and zero correlations as before. In this
case, the parameter to be estimated is α, and it is optimally estimated by the mean
of the sample observations Yi. However, the parametrization used here is so simple
that the parametric estimator based upon it coincides with the nonparametric estimator
provided by randomization inference. This coincidence appears to have occasioned
some considerable confusion, especially, but not exclusively, in the early days of survey
sampling.

Moreover, it is also possible to regard the randomization approach as implying its
own quite different model. Suppose we had a sample in which some of the units had
been selected with one chance in ten, others with one chance in two, and the remainder
with certainty. (Units selected with certainty are often described as “completely
enumerated.”) We could then make a model of the population from which such a sample
had been selected by including in it (a) the units that had been selected with one chance
in ten, together with nine exact copies of each such unit, (b) the units that had been
selected with one chance in two, together with a single exact copy of each such unit,
and (c) the units that had been included with certainty, but in this instance without any
copies. Such a model would be a “randomization model.” Further, since it would be a
nonparametric model, it would be intrinsically robust, even if better models could be
built that did use parameters.

In summary, the distinction between parametric prediction inference and nonpara-
metric randomization inference is quite a vital one, and it is important to bear it in
mind as we consider below some of the remarkable vicissitudes that have beset the
history of survey sampling from its earliest times and have still by no means come to a
definitive end.

2. Historical approaches to survey sampling inference

2.1. The development of randomization-based inference

Although, as mentioned above, Laplace had made plans to use the ratio estimator as early
as the mid-1780s, modern survey sampling is more usually reckoned as dating from the
work of Anders Nicolai Kiaer, the first Director of the Norwegian Central Bureau of
Statistics. By 1895, Kiaer, having already conducted sample surveys successfully in his
own country for fifteen years or more, had found to his own satisfaction that it was
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not always necessary to enumerate an entire population to obtain useful information
about it. He decided that it was time to convince his peers of this fact and attempted
to do so first at the session of the International Statistical Institute (ISI) that was held
in Berne that year. He argued there that what he called a “partial investigation,” based
on a subset of the population units, could indeed provide such information, provided
only that the subset had been carefully chosen to reflect the whole of that population in
miniature. He described this process as his “representative method,” and he was able to
gain some initial support for it, notably from his Scandinavian colleagues. Unfortunately,
however, his idea of representation was too subjective and lacking in probabilistic rigor to
make headway against the then universally held belief that only complete enumerations,
“censuses,” could provide any useful information (Lie, 2002; Wright, 2001).

It was nevertheless Kiaer’s determined effort to overthrow that universally held belief
that emboldened Lucien March, at the ISI’s Berlin meeting in 1903, to suggest that
randomization might provide an objective basis for such a partial investigation (Wright,
2001). This idea was further developed byArthur Lyon Bowley, first in a theoretical paper
(Bowley, 1906) and later by a practical demonstration of its feasibility in a pioneering
survey conducted in Reading, England (Bowley, 1912).

By 1925, the ISI at its Rome meeting was sufficiently convinced (largely by the report
of a study that it had itself commissioned) to adopt a resolution giving acceptance to
the idea of sampling. However, it was left to the discretion of the investigators whether
they should use randomized or purposive sampling. With the advantage of hindsight, we
may conjecture that, however vague their awareness of the fact, they were intuiting that
purposive sampling was under some circumstances capable of delivering accurate esti-
mates, but that under other circumstances, the underpinning of randomization inference
would be required.

In the following year, Bowley published a substantial monograph in which he pre-
sented what was then known concerning the purposive and randomizing approaches to
sample selection and also made suggestions for further developments in both of them
(Bowley, 1926). These included the notion of collecting similar units into groups called
“strata,” including the same proportion of units from each stratum in the sample, and
an attempt to make purposive sampling more rigorous by taking into account the cor-
relations between, on the one hand, the variables of interest for the survey and, on the
other, any auxiliary variables that could be helpful in the estimation process.

2.2. Neyman’s establishment of a randomization orthodoxy

A few years later, Corrado Gini and Luigi Galvani selected a purposive sample of 29 out
of 214 districts (circondari) from the 1921 Italian Population Census (Gini and Galvani,
1929). Their sample was chosen in such a way as to reflect almost exactly the whole-of-
Italy average values for seven variables chosen for their importance, but it was shown
by Jerzy Neyman (1934) that it exhibited substantial differences from those averages
for other important variables.

Neyman went on to attack this study with a three pronged argument. His criticisms
may be summarized as follows:

(1) Because randomization had not been used, the investigators had not been able to
invoke the Central Limit Theorem. Consequently, they had been unable to use
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the normality of the estimates to construct the confidence intervals that Neyman
himself had recently invented and which appeared in English for the first time
in his 1934 paper.

(2) On the investigators’own admission, the difficulty of achieving their “purposive”
requirement (that the sample match the population closely on seven variables)
had caused them to limit their attention to the 214 districts rather than to the
8354 communes into which Italy had also been divided. In consequence, their
15% sample consisted of only 29 districts (instead of perhaps 1200 or 1300
communes). Neyman further showed that a considerably more accurate set of
estimates could have been expected had the sample consisted of this larger num-
ber of smaller units. Regardless of whether the decision to use districts had
required the use of purposive sampling, or whether the causation was the other
way round, it was evident that purposive sampling and samples consisting of far
too few units went hand in hand.

(3) The population model used by the investigators was demonstrably unrealistic and
inappropriate. Models by their very nature were always liable to represent the
actual situation inadequately. Randomization obviated the need for population
modeling.2 With randomization-based inference, the statistical properties of an
estimator are reckoned with respect to the distribution of its estimates from all
samples that might possibly be drawn using the design under consideration.
The same estimator under different designs will admit to differing statistical
properties. For example, an estimator that is unbiased under an equal probability
design (see Section 3 of this chapter for an elucidation of various designs that
are in common use) may well be biased under an unequal probability design.

In the event, the ideas that Neyman had presented in this paper, though relevant for
their time and well presented, caught on only gradually over the course of the next
decade. W. Edwards Deming heard Neyman in London in 1936 and soon arranged for
him to lecture, and his approach to be taught, to U.S. government statisticians. A crucial
event in its acceptance was the use in the 1940 U.S. Population and Housing Census of
a one-in-twenty sample designed by Deming, along with Morris Hansen and others, to
obtain answers to additional questions. Once accepted, however, Neyman’s arguments
swept all other considerations aside for at least two decades.

Those twenty odd years were a time of great progress. In the terms introduced by
Kuhn (1996), finite population sampling had found a universally accepted “paradigm”
(or “disciplinary matrix”) in randomization-based inference, and an unusually fruitful
period of normal science had ensued. Several influential sampling textbooks were pub-
lished, including most importantly those by Hansen et al. (1953) and by Cochran (1953,
1963). Other advances included the use of self-weighting, multistage, unequal proba-
bility samples by Hansen and Hurwitz at the U.S. Bureau of the Census, Mahalanobis’s
invention of interpenetrating samples to simplify the estimation of variance for complex
survey designs and to measure and control the incidence of nonsampling errors, and the
beginnings of what later came to be described as “model-assisted survey sampling.”

2 The model of Eqns. (1) above had not been published at the time of Neyman’s presentation. It is believed
first to have appeared in Fairfield Smith (1938) in the context of a survey of agricultural crops. Another early
example of its use is in Jessen (1942).
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A lone challenge to this orthodoxy was voiced by Godambe (1955) with his proof of the
nonexistence of any uniformly best randomization-based estimator of the population
mean, but few others working in this excitingly innovative field seemed to be concerned
by this result.

2.3. Model-assisted or model-based? The controversy over prediction inference

It therefore came as a considerable shock to the finite population sampling establishment
when Royall (1970b) issued his highly readable call to arms for the reinstatement of
purposive sampling and prediction-based inference. To read this paper was to read
Neyman (1934) being stood on its head. The identical issues were being considered, but
the opposite conclusions were being drawn.

By 1973, Royall had abandoned the most extreme of his recommendations. This was
that the best sample to select would be the one that was optimal in terms of a model
closely resembling Eqns. (1). (That sample would typically have consisted of the largest
n units in the population, asking for trouble if the parameter β had not in fact been
constant over the entire range of sizes of the population units.) In Royall and Herson
(1973a and 1973b), the authors suggested instead that the sample should be chosen to
be “balanced”, in other words that the moments of the sample Xi should be as close as
possible to the corresponding moments of the entire population. (This was very similar
to the much earlier notion that samples should be chosen purposively to resemble the
population in miniature, and the samples of Gini and Galvani (1929) had been chosen
in much that same way!)

With that exception, Royall’s original stand remained unshaken. The business of a
sampling statistician was to make a model of the relevant population, design a sample
to estimate its parameters, and make all inferences regarding that population in terms of
those parameter estimates. The randomization-based concept of defining the variance of
an estimator in terms of the variability of its estimates over all possible samples was to
be discarded in favor of the prediction variance, which was sample-specific and based
on averaging over all possible realizations of the chosen prediction model.

Sampling statisticians had at no stage been slow to take sides in this debate. Now the
battle lines were drawn. The heat of the argument appears to have been exacerbated by
language blocks; for instance, the words “expectation” and “variance” carried one set of
connotations for randomization-based inference and quite another for prediction-based
inference. Assertions made on one side would therefore have appeared as unintelligible
nonsense by the other.

A major establishment counterattack was launched with Hansen et al. (1983). A small
(and by most standards undetectable) divergence from Royall’s model was shown nev-
ertheless to be capable of distorting the sample inferences substantially. The obvious
answer would surely have been “But this distortion would not have occurred if the sam-
ple had been drawn in a balanced fashion. Haven’t you read Royall and Herson (1973a
and b)?” Strangely, it does not seem to have been presented at the time.

Much later, a third position was also offered, the one held by the present authors,
namely that since there were merits in both approaches, and that it was possible to
combine them, the two should be used together. For the purposes of this Handbook
volume, it is necessary to consider all three positions as dispassionately as possible.
Much can be gained by asking the question as to whether Neyman (1934) or Royall
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(1970b) provided the more credible interpretation of the facts, both as they existed in
1934 or 1970 and also at the present day (2009).

2.4. A closer look at Neyman’s criticisms of Gini and Galvani

The proposition will be presented here that Neyman’s criticisms and prescriptions were
appropriate for his time, but that they have been overtaken by events. Consider first his
contention that without randomization, it was impossible to use confidence intervals to
measure the accuracy of the sample estimates.

This argument was received coolly enough at the time. In moving the vote of thanks
to Neyman at the time of the paper’s presentation, Bowley wondered aloud whether
confidence intervals were a “confidence trick.” He asked “Does [a confidence interval]
really lead us to what we need—the chance that within the universe which we are
sampling the proportion is within these certain limits? I think it does not. I think we
are in the position of knowing that either an improbable event had occurred or the
proportion in the population is within these limits. . . The statement of the theory is not
convincing, and until I am convinced I am doubtful of its validity.”

In his reply, Neyman pointed out that Bowley’s question in the first quoted sentence
above “contain[ed] the statement of the problem in the form of Bayes” and that in
consequence its solution “must depend upon the probability law a priori.” He added “In
so far as we keep to the old form of the problem, any further progress is impossible.”
He thus concluded that there was a need to stop asking Bowley’s “Bayesian” question
and instead adopt the stance that the “either. . .or” statement contained in his second
quoted sentence “form[ed] a basis for the practical work of a statistician concerned with
problems of estimation.” There can be little doubt but that Neyman’s suggestion was
a useful prescription for the time, and the enormous amount of valuable work that has
since been done using Neyman and Pearson’s confidence intervals is witness to this.

However, the fact remains that confidence intervals are not easy to understand.
A confidence interval is in fact a sample-specific range of potentially true values of
the parameter being estimated, which has been constructed so as to have a particular
property. This property is that, over a large number of sample observations, the propor-
tion of times that the true parameter value falls inside that range (constructed for each
sample separately) is equal to a predetermined value known as the confidence level. This
confidence level is conventionally written as (1 − α), where α is small compared with
unity. Conventional choices for α are 0.05, 0.01, and sometimes 0.001. Thus, if many
samples of size n are drawn independently from a normal distribution and the relevant
confidence interval for α = 0.05 is calculated for each sample, the proportion of times
that the true parameter value will lie within any given sample’s own confidence interval
will, before that sample is selected, be 0.95, or 95%.

It is not the case, however, that the probability of this true parameter value lying
within the confidence interval as calculated for any individual sample of size n will
be 95%. The confidence interval calculated for any individual sample of size n will, in
general, be wider or narrower than average and might be centered well away from the
true parameter value, especially if n is small. It is also sometimes possible to recognize
when a sample is atypical and, hence, make the informed guess that in this particular
case, the probability of the true value lying in a particular 95% confidence interval differs
substantially from 0.95.
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If, however, an agreement is made beforehand that a long succession of wagers is
to be made on the basis that (say) Fred will give Harry $1 every time the true value
lies inside any random sample’s properly calculated 95% confidence interval, and Harry
will give Fred $19 each time it does not; then at the end of that long sequence, those two
gamblers would be back close to where they started. In those circumstances, the 95%
confidence interval would also be identical with the 95% Bayesian credibility interval
that would be obtained with a flat prior distribution over the entire real line ranging from
minus infinity to plus infinity. In that instance, Bowley’s “Bayesian question” could be
given an unequivocally affirmative answer.

The result of one type of classical hypothesis test is also closely related to the confi-
dence interval. Hypothesis tests are seldom applied to data obtained from household or
establishment surveys, but they are frequently used in other survey sampling contexts.

The type of classical test contemplated here is often used in medical trials. The
hypothesis to be tested is that a newly devised medical treatment is superior to an
existing standard treatment, for which the effectiveness is known without appreciable
error. In this situation, there can never be any reason to imagine that the two treatments
are identically effective so that event can unquestionably be accorded the probability
zero. The probability that the alternative treatment is the better one can then legitimately
be estimated by the proportion of the area under the likelihood function that corresponds
to values greater than the standard treatment’s effectiveness. Moreover, if that standard
effectiveness happens to be lower than that at the lower end of the one-sided 95%
confidence interval, it can reasonably be claimed that the new treatment is superior to
the standard one “with 95% confidence.”

However, in that situation, the investigators might well wish to go further and quote
the proportion of the area corresponding to all values less than standard treatment’s
effectiveness (Fisher’s p-statistic). If, for instance, that proportion were 0.015, they
might wish to claim that the new treatment was superior “with 98.5% confidence.”
To do so might invite the objection that the language used was inappropriate because
Neyman’s α was an arbitrarily chosen fixed value, whereas Fisher’s p was a realization
of a random variable, but the close similarity between the two situations would be
undeniable. For further discussions of this distinction, see Hubbard and Bayarri (2003)
and Berger (2003).

The situation would have been entirely different, however, had the investigation
been directed to the question as to whether an additional parameter was required for
a given regression model to be realistic. Such questions often arise in contexts such
as biodiversity surveys and sociological studies. It is then necessary to accord the
null hypothesis value itself (which is usually but not always zero) a nonzero proba-
bility. It is becoming increasingly well recognized that in these circumstances, the face
value of Fisher’s p can give a grossly misleading estimate of the probability that an
additional parameter is needed. A relatively new concept, the “false discovery rate”
(Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001; Efron et al., 2001;
Sorić, 1989), can be used to provide useful insights. To summarize the findings in these
papers very briefly, those false discovery rates observed empirically have, more often
than not, been found to exceed the corresponding p-statistic by a considerable order of
magnitude.

It is also relevant to mention that the populations met with in finite population sam-
pling, and especially those encountered in establishment surveys, are often far removed
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from obeying a normal distribution, and that with the smaller samples often selected
from them, the assumption of normality for the consequent estimators is unlikely even
to produce accurate confidence intervals!

Nevertheless, and despite the misgivings presented above, it is still the case that
randomization does provide a useful basis for the estimation of a sample variance. The
criterion of minimizing that variance is also a useful one for determining optimum
estimators. However, we should not expect randomization alone to provide anything
further.

Neyman’s second contention was that purposive sampling and samples consisting of
fewer than an adequate number of units went hand in hand. This was undoubtedly the
case in the 1930s, but a similar kind of matching of sample to population (Royall and
his co-authors use the expression “balanced sampling”) can now be undertaken quite
rapidly using third-generation computers, provided only that the matching is not made
on too many variables simultaneously. Brewer (1999a) presents a case that it might be
preferable to choose a sample randomly and use calibrated estimators to compensate
for any lack of balance, rather than to go to the trouble of selecting balanced samples.
However, those who prefer to use balanced sampling can now select randomly from
among many balanced or nearly balanced samples using the “cube method” (Deville
and Tillé, 2004). This paper also contains several references to earlier methods for
selecting balanced samples.

Neyman’s third contention was basically that population models were not to be
trusted. It is difficult here to improve on the earlier quote from George Box that “All
models are wrong, but some models are useful.” Equations (1) above provide a very
simple model that has been in use since 1938. It relates a variable of interest in a sample
survey to an auxiliary variable, all the population values of which are conveniently
known.

In its simplest form, the relationship between these variables is assumed to be basi-
cally proportional but with a random term modifying that proportional relationship for
each population unit. (Admittedly, in some instances, it is convenient to add an intercept
term, or to have more than one regressor variable, and/or an additional equation to model
the variance of that equation’s random term, but nevertheless that simple model can be
adequate in a remarkably wide set of circumstances.)

As previously mentioned, such models have been used quite frequently in survey
sampling. However, it is one thing to use a prediction model to improve on an existing
randomization-based estimator (as was done in the Oz scenario above) and it is quite
another thing actually to base one’s sampling inference on that model. The former, or
“model-assisted” approach to survey sampling inference, is clearly distinguished from
prediction-based inference proper in the following quotation, taken from the Preface to
the encyclopedic book, Model Assisted Survey Sampling by Särndal et al. (1992, also
available in paperbook 2003):

Statistical modeling has strongly influenced survey sampling theory in recent years.
In this book, sampling theory is assisted by modeling. It becomes simple to explain
how the auxiliary information in a given survey will lead to a particular estimation
technique. The teaching of sampling and the style of presentation in journal articles
have changed a great deal by this new emphasis. Readers of this book will become
familiar with this new style.
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We use the randomization theory or design-based point of view. This is the tra-
ditional mode of inference in surveys, ever since the sampling breakthroughs in the
1930s and 1940s. The reasoning is familiar to survey statisticians in government and
elsewhere.

As this quotation indicates, using a prediction model to form an estimator as Royall
proposed, without regard to any justification in terms of randomization theory, is quite
a different approach. It is often described as “model-based,” or pejoratively as “model-
dependent,” but it appears preferable to use the expression, “prediction-based.”

A seminal paper attacking the use of a prediction model for such purposes was
that by Hansen et al. (1983), which has already been mentioned; but there can be no
serious doubt attached to the proposition that this model provides a reasonable first
approximation to many real situations. Once again, Neyman’s contention has been
overtaken by events.

2.5. Other recent developments in sample survey inference

A similarly detailed assessment of the now classic papers written by Royall and his
colleagues in the 1970s and early 1980s is less necessary, since there have been fewer
changes since they were written, but it is worth providing a short summary of some
of them. Royall (1970b) has already been mentioned as having turned Neyman (1934)
on its head. Royall (1971) took the same arguments a stage further. In Royall and
Herson (1973a and 1973b), there is an implicit admission that selecting the sample that
minimized the prediction-based variance (prediction variance) was not a viable strategy.
The suggestion offered there is to select balanced samples instead: ones that reflect the
moments of the parent population. In this recommendation, it recalls the early twentieth-
century preoccupation with finding a sample that resembled the population in miniature
but, as has been indicated above, this does not necessarily count against it.

Royall (1976) provides a useful and entertaining introduction to prediction-based
inference, written at a time when the early criticisms of it had been fully taken into
account. Joint papers by Royall and Eberhardt (1975) and Royall and Cumberland
(1978, 1981a and 1981b) deal with various aspects of prediction variance estima-
tion, whereas Cumberland and Royall (1981) offer a prediction-based consideration
of unequal probability sampling. The book by Valliant et al. (2000) provides a com-
prehensive account of survey sampling from the prediction-based viewpoint up to that
date, and that by Bolfarine and Zacks (1992) presents a Bayesian perspective on it.

Significant contributions have also been made by other authors. Bardsley and
Chambers (1984) offered ridge regression as an alternative to pure calibration when
the number of regressor variables was substantial. Chambers and Dunstan (1986) and
Chambers et al. (1992) considered the estimation of distribution functions from a
prediction-based standpoint. Chambers et al. (1993) and Chambers and Kokic (1993)
deal specifically with questions of robustness against model breakdown. A more con-
siderable bibliography of important papers relating to prediction-inference can be found
in Valliant et al. (2000).

The randomization-based literature over recent years has been far too extensive to
reference in the same detail, and in any case comparatively little of it deals with the
question of sampling inference. However, two publications already mentioned above
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are of especial importance. These are the polemical paper by Hansen et al. (1983) and
the highly influential text-book by Särndal et al. (1992), which sets out explicitly to
indicate what can be achieved by using model-assisted methods of sample estimation
without the explicit use of prediction-based inference. Other recent papers of particular
interest in this field include Deville and Särndal (1992) and Deville et al. (1993).

Publications advocating or even mentioning the use of both forms of inference simul-
taneously are few in number. Brewer (1994) would seem to be the earliest to appear
in print. It was written in anticipation of and to improve upon Brewer (1995), which
faithfully records what the author was advocating at the First International Confer-
ence on Establishment Surveys in 1993, but was subsequently found not to be as effi-
cient or even as workable as the alternative provided in Brewer (1994). A few years
later, Brewer (1999a) compared stratified balanced with stratified random sampling and
Brewer (1999b) provided a detailed description of how the two inferences could be
used simultaneously in unequal probability sampling; also Brewer’s (2002) textbook
has provided yet further details on this topic, including some unsought spin-offs that
follow from their simultaneous use, and an extension to multistage sampling.

All three views are still held. The establishment view is that model-assisted
randomization-based inference has worked well for several decades, and there is insuf-
ficient reason to change. The prediction-based approach continues to be presented by
others as the only one that can consistently be held by a well-educated statistician. And
a few say “Why not use both?” Only time and experience are likely to resolve the issue,
but in the meantime, all three views need to be clearly understood.

3. Some common sampling strategies

3.1. Some ground-clearing definitions

So far, we have only been broadly considering the options that the sampling statistician
has when making inferences from the sample to the population from which it was
drawn. It is now time to consider the specifics, and for that we will need to use certain
definitions.

A sample design is a procedure for selecting a sample from a population in a specific
fashion. These are some examples:

• simple random sampling with and without replacement;
• random sampling with unequal probabilities, again with and without replacement;
• systematic sampling with equal or unequal probabilities;
• stratified sampling, in which the population units are first classified into groups or

“strata” having certain properties in common;
• two-phase sampling, in which a large sample is drawn at the first phase and a

subsample from that large sample at the second phase;
• multistage sampling, usually in the context of area sampling, in which a sample of

(necessarily large) first-stage units is selected first, samples within those first-stage
sample units at the second stage, and so on for possibly third and fourth stages; and

• permanent random number sampling, in which each population unit is assigned
a number, and the sample at any time is defined in terms of the ranges of those
permanent random numbers that are to be in sample at that time.
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This list is not exhaustive, and any given sample may have more than one of those
characteristics. For instance, a sample could be of three stages, with stratification and
unequal probability sampling at the first stage, unstratified unequal probability sampling
at the second stage, and systematic random sampling with equal probabilities at the third
stage. Subsequently, subsamples could be drawn from that sample, converting it into a
multiphase multistage sample design.

A sample estimate is a statistic produced using sample data that can give users an
indication as to the value of a population quantity. Special attention will be paid
in this section to estimates of population total and population mean because these
loom so large in the responsibilities of national statistical offices, but there are many
sample surveys that have more ambitious objectives and may be set up so as to
estimate small domain totals, regression and/or correlation coefficients, measures
of dispersion, or even conceivably coefficients of heteroskedasticity (measures of
the extent to which the variance of the Ui can itself vary with the size of the auxiliary
variable Xi).

A sample estimator is a prescription, usually a mathematical formula, indicating how
estimates of population quantities are to be obtained from the sample survey data.

An estimation procedure is a specification as to what sample estimators are to be
used in a given sample survey.

A sample strategy is a combination of a sample design and an estimation procedure.
Given a specific sample strategy, it is possible to work out what estimates can be
produced and how accurately those estimates can be made.

One consequence of the fact that two quite disparate inferential approaches can be
used to form survey estimators is that considerable care needs to be taken in the choice of
notation. In statistical practice generally, random variables are represented by uppercase
symbols and fixed numbers by lowercase symbols, but between the two approaches, an
observed value automatically changes its status. Specifically, in both approaches, a
sample value can be represented as the product of a population value and the inclusion
indicator, δ, which was introduced in (3). However, in the prediction-based approach,
the population value is a random variable and the inclusion indicator is a fixed number,
whereas in the randomization-based approach, it is the inclusion indicator that is the
random variable while the population value is a fixed number. There is no ideal way to
resolve this notational problem, but we shall continue to denote population values by,
say, Yi or Xi and sample values by δiYi or δiXi, as we did in Eq. (3).

3.2. Equal probability sampling with the expansion estimator

In what follows, the sample strategies will first be presented in the context of
randomization-based inference, then that of the nearest equivalent in prediction-based
inference, and finally, wherever appropriate, there will be a note as to how they can be
combined.

3.2.1. Simple random sampling with replacement using the expansion estimator
From a randomization-based standpoint, simple random sampling with replacement
(srswr) is the simplest of all selection procedures. It is appropriate for use where (a) the
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population consists of units whose sizes are not themselves known, but are known not
to differ too greatly amongst themselves, and (b) it has no geographical or hierarchical
structure that might be useful for stratification or area sampling purposes. Examples
are populations of easily accessible individuals or households, administrative records
relating to individuals, households, or family businesses; and franchise holders in a large
franchise.

The number of population units is assumed known, say N, and a sample is selected
by drawing a single unit from this population, completely at random, n times. Each
time a unit is drawn, its identity is recorded, and the unit so drawn is returned to the
population so that it stands exactly the same chance of being selected at any subsequent
draw as it did at the first draw. At the end of the n draws, the ith population unit appears
in the sample νi times, where νi is a number between 0 and n, and the sum of the νi over
the population is n.

The typical survey variable value on the ith population unit may be denoted by Yi.
The population total of the Yi may be written Y . A randomization-unbiased estimator of
Y is the expansion estimator, namely Ŷ = (N/n)

∑N
i=1 νiYi. (To form the correspond-

ing randomization-unbiased estimator of the population mean, Ȳ = Y/N, replace the
expression N/n in this paragraph by 1/n.)

The randomization variance of the estimator Ŷ is V(Ŷ) = (N2/n)S2
wr, where S2

wr =
N−1∑N

i=1 (Yi − Ȳ )2. V(Ŷ) is in turn estimated randomization-unbiasedly by (N2/n)Ŝ2
wr,

where Ŝ2
wr = N−1∑N

i=1 νi(Yi − Ȳ )2. (To form the corresponding expressions for the
population mean, replace the expression N2/n throughout this paragraph by 1/n. Since
these changes from population total to population mean are fairly obvious, they will not
be repeated for other sampling strategies.) Full derivations of these formulae will be
found in most sampling textbooks.

There is no simple prediction-based counterpart to srswr. From the point of view of
prediction-based inference, multiple appearances of a population unit add no informa-
tion additional to that provided by the first appearance. Even from the randomization
standpoint, srswr is seldom called for, as simple random sampling without replacement
(or srswor) is more efficient. Simple random sampling with replacement is considered
here purely on account of its extremely simple randomization variance and variance
estimator, and because (by comparison with it) both the extra efficiency of srswor and
the extra complications involved in its use can be readily appreciated.

3.2.2. Simple random sampling without replacement using the expansion estimator
This sample design is identical with srswr, except that instead of allowing selected
population units to be selected again at later draws, units already selected are given no
subsequent probabilities of selection. In consequence, the units not yet selected have
higher conditional probabilities of being selected at later draws. Because the expected
number of distinct units included in sample is always n (the maximum possible number
under srswr), the srswor estimators of population total and mean have smaller variances
than their srswr counterparts. A randomization-unbiased estimator of Y is again Ŷ =
(N/n)

∑N
i=1 νiYi, but since under srswor the νi take only the values 0 and 1, it will be

convenient hereafter to use a different symbol, δi, in its place.
The randomization variance of the estimator Ŷ is V(Ŷ) = (N − n)(N/n)S2, where

S2 = (N − 1)−1∑N
i=1(Yi − Ȳ )2. The variance estimator V(Ŷ) is in turn estimated
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randomization-unbiasedly by (N − n)(N/n)Ŝ2, where Ŝ2 = (n − 1)−1∑N
i=1 δi

(Yi −ˆ̄Y)2. The substitution of the factor N2 (in the srswr formulae for the variance and
the unbiased variance estimator) by the factor N(N − n) (in the corresponding srswor
formulae) is indicative of the extent to which the use of sampling without replacement
reduces the variance.

Note, however, that the sampling fraction, n/N, is not particularly influential in
reducing the variance, even for srswor, unless n/N is an appreciable fraction of unity.
An estimate of a proportion obtained from an srswor sample of 3000 people in, say,
Wales, is not appreciably any more accurate than the corresponding estimate obtained
from a sample of 3000 people in the United States; and this is despite the proportion of
Welsh people in the first sample being about 1 in 1000 and the proportion of Americans
in the second being only 1 in 100,000. For thin samples like these, such variances are
to all intents and purposes inversely proportional to the sample size, and the percentage
standard errors are inversely proportional to the square root of the sample size. Full
derivations of these formulae will be again be found in most sampling textbooks.

Since srswor is both more efficient and more convenient than srswr, it will be assumed,
from this point on, that sampling is without replacement unless otherwise specified.
One important variant on srswor, which also results in sampling without replacement, is
systematic sampling with equal probabilities, and this is the next sampling design that
will be considered.

3.2.3. Systematic sampling with equal probabilities, using the expansion estimator
Systematic sampling, by definition, is the selection of sample units from a comprehensive
list using a constant skip interval between neighboring selections. If, for instance, the
skip interval is 10, then one possible systematic sample from a population of 104 would
consist of the second unit in order, then the 12th, the 22nd, etc. up to and including the
102nd unit in order. This sample would be selected if the starting point (usually chosen
randomly as a number between 1 and the skip interval) was chosen to be 2. The sample
size would then be 11 units with probability 0.4 and 10 units with probability 0.6, and
the expected sample size would be 10.4, or more generally the population size divided
by the skip interval.

There are two important subcases of such systematic selection. The first is where
the population is deliberately randomized in order prior to selection. The only sub-
stantial difference between this kind of systematic selection and srswor is that in the
latter case, the sample size is fixed, whereas in the former it is a random variable.
Even from the strictest possible randomization standpoint, however, it is possible to
consider the selection procedure as conditioned on the selection of the particular ran-
dom start (in this case 2), in which case the sample size would be fixed at 10 and the
srswor theory would then hold without any modification. This conditional randomiza-
tion theory is used very commonly, and from a model-assisted point of view it is totally
acceptable.

That is emphatically not true, however, for the second subcase, where the population
is not deliberately randomized in order prior to selection. Randomization theory in that
subcase is not appropriate and it could be quite dangerous to apply it. In an extreme
case, the 104 units could be soldiers, and every 10th one from the 3rd onwards could
be a sergeant, the remainder being privates. In that case, the sample selected above
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would consist entirely of privates, and if the random start had been three rather than
two, the sample would have been entirely one of sergeants. This, however, is a rare and
easily detectable situation within this nonrandomized subcase. A more likely situation
would be one where the population had been ordered according to some informative
characteristic, such as age. In that instance, the sample would in one sense be a highly
desirable one, reflecting the age distribution of the population better than by chance.
That would be the kind of sample that the early pioneers of survey sampling would
have been seeking with their purposive sampling, one that reflected in miniature the
properties of the population as a whole.

From the randomization standpoint, however, that sample would have had two
defects, one obvious and one rather more subtle. Consider a sample survey aimed at
estimating the level of health in the population of 104 persons as a whole. The obvi-
ous defect would be that although the obvious estimate based on the systematic sample
would reflect that level considerably more accurately than one based on a random sample
would have done, the randomization-based estimate of its variance would not provide
an appropriate measure of its accuracy.

The more subtle defect is that the randomization-based estimate of its variance would
in fact tend to overestimate even what the variance would have been if a randomized
sample had been selected. So the systematic sample would tend to reduce the actual
variance but slightly inflate the estimated variance! (This last point is indeed a subtle
one, and most readers should not worry if they are not able to work out why this
should be. It has to do with the fact that the average squared distance between sample
units is slightly greater for a systematic sample than it is for a purely random sample.)

In summary, then, systematic sampling is temptingly easy to use and in most cases
will yield a better estimate than a purely randomized sample of the same size, but the
estimated variance would not reflect this betterment, and in some instances a systematic
sample could produce a radically unsuitable and misleading sample. To be on the safe
side, therefore, it would be advisable to randomize the order of the population units
before selection and to use the srswor theory to analyze the sample.

3.2.4. Simple prediction inference using the expansion estimator
Simple random sampling without replacement does have a prediction-based counterpart.
The appropriate prediction model is the special case of Eqns. (1) in which all the Xi

take the value unity. The prediction variances of the Ui in (1c) are in this instance all
the same, at σ2. Because this very simple model is being taken as an accurate refection
of reality, it would not matter, in theory, how the sample was selected. It could (to
take the extreme case) be a “convenience sample” consisting of all the people in the
relevant defined category whom the survey investigator happened to know personally,
but of course, in practice, the use of such a “convenience sample” would make the
assumptions underlying the equality of the Xi very hard to accept. It would be much
more convincing if the sample were chosen randomly from a carefully compiled list,
which would then be an srswor sample, and it is not surprising that the formulae relevant
to this form of prediction sampling inference should be virtually identical to those for
randomization sampling srswor.

The minimum-variance prediction-unbiased estimator of Y under the sim-
ple prediction model described in the previous paragraph is identical with the
randomization-unbiased estimator under srswor, namely Ŷ = (N/n)

∑N
i=1 δiYi. Further,
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the prediction variance of Ŷ is V(Ŷ) = (N − n)(N/n)σ2. A prediction-unbiased estima-

tor of V(Ŷ) is V̂(Ŷ ) = (N − n)(N/n)σ̂2, where σ̂2 = (n − 1)−1∑N
i=1(δiYi − ˆ̄Y)2 where

ˆ̄Y = Ŷ/N. Note that although the prediction variance is typically sample-specific, in this
instance it is the same for all samples. However, the estimated prediction variance does,
as always, vary from sample to sample.

3.3. Equal probability sampling with the ratio estimator

So far, we have been using estimators that depend only on the sample observations
Yi themselves. More often than not, however, the sampling statistician has at hand
relevant auxiliary information regarding most of the units in the population. We have
already noted that Laplace, back at the turn of the 19th century, had access (at least
in principle) to annual birth registration figures that were approximately proportional
to the population figures that he was attempting to estimate. To take a typical modern
example, the population for a Survey of Retail Establishments (shops) would typically
consist mainly of shops that had already been in existence at the time of the most recent
complete Census of Retail Establishments, and the principal information collected at
that Census would have been the sales figures for the previous calendar or financial
year. Current sales would, for most establishments and for a reasonable period, remain
approximately proportional to those Census sales figures.

Returning to the model of Eqns. (1), we may equate the Yi with the current sales of
the sample establishments, the Xi with the Census sales of the sample and nonsample
establishments, and the X with the total Census sales over all sample and nonsample
establishments combined. It may be remembered that “Centrifuge’s” ratio estimators
worked well both when the model of Eqns. (1) was a useful one and also in the weaker
situation when there was a comparatively modest correlation between the Yi and the
Xi. In a similar fashion, the corresponding ratio estimator for this Survey of Retail
Establishments tends to outperform the corresponding expansion estimator, at least until
it is time to conduct the next Census of Retail Establishments, which would typically
be some time in the next 5–10 years.

It was stated above that the population for a Census of Retail Establishments would
typically consist mainly of shops that had already been in existence at the time of the
most recent complete Census. Such shops would make up the “Main Subuniverse” for
the survey. In practice, there would usually be a substantial minority of shops of which
the existence would be known, but which had not been in business at the time of that
Census, and for these there would be a separate “New Business Subuniverse,” which
for want of a suitable auxiliary variable would need to be estimated using an expansion
estimator, and in times of rapid growth there might even be an “Unlisted New Business
Provision” to allow for the sales of shops that were so new that their existence was
merely inferred on the basis of previous experience. Nevertheless, even then, the main
core of the estimate of survey period sales would still be the sales of shops in the Main
Subuniverse, these sales would be based on Ratio Estimation, and the relevant Ratio
Estimator would be the product of the β̂ of Eq. (2) and the Total of Census Sales X.

The modern way of estimating the variance of that ratio estimator depends on whether
the relevant variance to be estimated is the randomization variance, which is based on
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the variability of the estimates over all possible samples, or whether it is the prediction
variance, which is sample specific. (For a discussion of the difference between the
randomization and prediction approaches to inference, the reader may wish to refer
back to Sections 1.3 and 1.4.)

The most common practice at present is to estimate the randomization-variance,
and for that the procedure is as follows: denote the population total of the Yi by Y , its
expansion estimator by Ŷ , and its ratio estimator by ŶR. Then the randomization variance
of ŶR is approximated by

V(ŶR) ≈ V(Ŷ) + β2V(X̂) − 2βC(Ŷ, X̂), (6)

where β is the same parameter as in Eq. (1a), V(Ŷ) is the randomization variance of the
expansion estimator of Y, V(X̂) is the variance of the corresponding expansion estimator
of X, based on the same sample size, and C(Ŷ, X̂) is the covariance between those two
estimators.

The approximate randomization-variance of ŶR can therefore be estimated by

V̂(ŶR) = V̂(Ŷ ) + β̂2V̂(X̂) − 2β̂Ĉ(Ŷ , X̂), (7)

where V̂(Ŷ ) is the randomization-unbiased estimator of V(Ŷ), given in Subsection 3.2.2,
V̂(X̂) is the corresponding expression in the X-variable, Ĉ(Ŷ , X̂) is the correspond-
ing expression for the randomization-unbiased estimator of covariance between them,
namely (N − n)(N/n)

∑N
i=1 δi(Yi − Ȳ )(Xi − X̄), and β̂ is the sample estimator of β, as

given in Eq. (2).

3.4. Simple balanced sampling with the expansion estimator

An alternative to simple random sampling is simple balanced sampling, which has
already been referred to in Section 2.3. When the sample has been selected in such a
way as to be balanced on the auxiliary variables Xi, in the way described in that section,
the expansion estimator is comparable in accuracy to that section’s ratio estimator itself.
This is because the expansion estimator based on the balanced sample is then “calibrated”
on those Xi. That is to say, the expansion estimate of the total X is necessarily without
error; it is exactly equal to X. It is easy to see that in the situation described in the
previous subsection, ŶR was similarly “calibrated” on the Xi, that is, X̂R would have
been exactly equal to X.

It is a matter of some contention as to whether it is preferable to use simple random
sampling and the ratio estimator or simple balanced sampling and the expansion esti-
mator. The choice is basically between a simple selection procedure and a relatively
complex estimator on the one hand and a simple estimator with a relatively complex
selection procedure on the other. The choice is considered at length in Brewer (1999a). It
depends crucially on the prior choice of sampling inference. Those who hold exclusively
to randomization for this purpose would necessarily prefer the ratio estimation option.
It is only those who are prepared to accept prediction inference, either as an alternative
or exclusively, for whom the choice between the two strategies described above would
be a matter of taste.

For a further discussion of balanced sampling, see Sections 2.3 and 2.4.
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3.5. Stratified random sampling with equal inclusion probabilities within strata

If any kind of supplementary information is available that enables population units
to be grouped together in such a way that they are reasonably similar within their
groups and reasonably different from group to group, it will usually pay to treat these
groups as separate subpopulations, or strata, and obtain estimates from each stratum
separately. Examples of such groups include males and females, different descriptions
of retail outlets (grocers, butchers, other food and drink, clothing, footwear, hardware,
etc.), industries of nonretail businesses, dwellings in urban and in rural areas, or in
metropolitan and nonmetropolitan areas.

It takes a great deal of similarity to obtain a poorer estimate by stratification, and
the resulting increase in variance is almost always trivial, so the default rule is “Use all
the relevant information that you have. When in doubt, stratify.” There are, however,
several exceptions to this rule.

The first is that if there are many such groups, and all the differences between all
possible pairs of groups are known to be small, there is little to gain by stratification,
and the business of dealing with lots of little strata might itself amount to an appreciable
increase in effort. However, this is an extreme situation, so in most cases, it is safer to
stick with the default rule. (In any case, do not worry. Experience will gradually give
you the feel as to when to stratify and when not to do so.)

The remaining exceptions all relate to stratification by size. Size is an awkward crite-
rion to stratify on because the boundaries between size strata are so obviously arbitrary.
If stratification by size has already been decided upon, one useful rule of thumb is that
size boundaries such as “under 10,000,” “10,000–19,999,” “20,000–49,999,” “50,000–
99,999,” “100,000–199,999,” and “over 200,000” (with appropriate adjustments to take
account of the scale in which the units are measured) are difficult to improve on appre-
ciably. Moreover, there is unlikely to be much gain in forming more than about six size
strata.

Another useful rule of thumb is that each stratum should be of about the same order of
magnitude in its total measure of size. This rule can be particularly helpful in choosing
the boundary between the lowest two and that between the highest two strata. Dalenius
(1957) does give formulae that enable optimum boundaries between size strata to be
determined, but they are not recommended for general use, partly because they are
complicated to apply and partly because rules of thumb and common sense will get
sufficiently close to a very flat optimum. A more modern approach may be found in
Lavallée and Hidiroglou (1988).

Finally, there is one situation where it might very well pay not to stratify by size at
all, and that is where PRN sampling is being used. This situation will be seen later (in
Section 3.9).

3.5.1. Neyman and optimal allocations of sample units to strata
Another important feature of stratification is that once the strata themselves have been
defined, there are some simple rules for allocating the sample size efficiently among
them. One is “Neyman allocation,” which is another piece of sampling methodology
recommended by Neyman in his famous 1934 paper that has already been mentioned
several times. The other, usually known as “Optimum allocation,” is similar to Neyman
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allocation but also allows for the possibility that the cost of observing the value of a
sample unit can differ from stratum to stratum.

Neyman allocation minimizes the variance of a sample estimate subject to a given
total sample size.3 Basically, the allocation of sample units to a stratum h should be
proportional to NhSh, where Nh is the number of population units in the hth stratum and
Sh is the relevant population standard deviation in that stratum.4

Optimum allocation is not very different. It minimizes the variance of a sample
estimate subject to a given total cost and consequently allocates units in a stratum to
sample proportionally to NhSh/

√
Ch, where Ch is the cost of obtaining the value Yi for

a single sample unit in the hth stratum. Since, however, it is typically more difficult
to gather data from small businesses than from large ones, the effect of using Optimal
rather than Neyman allocation for business surveys is to concentrate the sample toward
the larger units.

Strangely, Optimum allocation seems seldom to have been used in survey practice.
This is partly, perhaps, because it complicates the sample design, partly because (for
any given level of accuracy) it results in the selection of a larger sample, and partly
because it is not often known how much more expensive it is to collect data from
smaller businesses.

3.5.2. Stratification with ratio estimation
Since the effect of stratification is effectively to divide the population into a number of
subpopulations, each of which can be sampled from and estimated for separately, it is
theoretically possible to choose a different selection procedure and a different estimator
for each stratum. However, the arguments for using a particular selection procedure and
a particular estimator are usually much the same for each stratum, so this complication
seldom arises.

A more important question that does frequently arise is whether or not there is any
point in combining strata for estimation purposes. This leads to the distinction between
“stratum-by-stratum estimation” (also known as “separate stratum estimation”) and
“across-stratum estimation” (also known as “combined stratum estimation”), which
will be the principal topic of this subsection.

The more straightforward of these two options is stratum-by-stratum estimation, in
which each stratum is regarded as a separate subpopulation, to which the observations
in other strata are irrelevant. The problem with this approach, however, is that in the
randomization approach the ratio estimator is biased, and the importance of that bias,
relative to the corresponding standard error, can be large when the sample size is small.
It is customary in some statistical offices to set a minimum (say six) to the sample size
for any stratum, but even for samples of six, it is possible for the randomization bias

3 We are indebted to Gad Nathan for his discovery that Tschuprow (or Chuprov) had actually published the
same result in 1923, but his result was buried in a heap of less useful mathematics. Also, it was Neyman who
brought it into prominence, and he would presumably have devised it independently of Tschuprow in any
case.

4 A special allowance has then to be made for those population units that need to be completely enumerated,
and the question as to what is the relevant population standard deviation cannot be answered fully at this
point, but readers already familiar with the basics of stratification are referred forward to Subsection 3.5.2.
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to be appreciable, so the assumption is made that the estimation of the parameter β in
Eq. (1a) should be carried out over all size strata combined. That is to say, the value of
β is estimated as the ratio of the sum over the strata of the expansion estimates of the
survey variable y to the sum over the strata of the expansion estimates of the auxiliary
variable x. This is termed the across-stratum ratio estimator of β, and the product of this
with the known sum over all sampled size strata of the auxiliary variable X is termed
the across-stratum estimator of the total Y of the survey variable y.

This across-stratum ratio estimator, being based on a larger effective sample size than
that of any individual stratum, has a smaller randomization bias than the stratum-by-
stratum ratio estimator, but because the ratio of y to x is being estimated over all size
strata instead of separately for each, there is the strong probability that the randomization
variance of the across-stratum ratio estimator will be greater than that of the stratum-by-
stratum ratio estimator. Certainly, the estimators of variance yield larger estimates for
the former than the latter. So there is a trade-off between unestimated (but undoubtedly
real) randomization bias, and estimated randomization variance.

When looked at from the prediction approach, however, the conclusion is quite differ-
ent. If the prediction models used for the individual size strata have different parameters
βh, say, where h is a stratum indicator, then it is the across-stratum ratio estimator that
is now biased (since it is estimating a nonexistent common parameter β) while the
stratum-by-stratum ratio estimator (since it relies on small sample sizes for each) may
have the larger prediction variance. If however, the prediction models for the different
size strata have the same parameter β in common, the stratum-by-stratum ratio estima-
tor is manifestly imprecise, since it is not using all the relevant data for its inferences,
and even the across-stratum ratio estimator, while prediction-unbiased, is not using the
prediction-optimal weights to estimate the common parameter β.

It therefore appears that looked at from either approach, the choice between these
two estimators is suboptimal, and if viewed from both approaches simultaneously, it
would usually appear to be inconclusive. The underlying fact is that stratification by
size is at best a suboptimal solution to the need for probabilities of inclusion in sam-
ple to increase with the size of the population unit. We shall see later (Section 3.9)
that a more logical approach would be to avoid using size as an axis of stratification
entirely and to use unequal probabilities of inclusion in sample instead. While this
does involve certain complications, they are nothing that high-speed computers can-
not cope with, whereas the complications brought about by frequent transitions from
one size stratum to another within the framework of PRN sampling are distinctly less
tractable.

3.6. Sampling with probabilities proportional to size with replacement

As we have just seen, there are now serious arguments for using Unequal Probability
Sampling within the context of surveys (chiefly establishment surveys) for which the
norm has long been stratification by size and equal inclusion probabilities within strata.
However, the genesis of unequal probability sampling, dating from Hansen and Hurwitz
(1943), occurred in the very different context of area sampling for household surveys.
The objective of Hansen and Hurwitz was to establish a master sample for the con-
duct of household surveys within the continental United States. It was unreasonable
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to contemplate the construction of a framework that included every household in
the United States.5

Because of this difficulty, Hansen and Hurwitz instead constructed a multistaged
framework. They started by dividing the United States into geographical strata, each
containing roughly the same number of households. Within each stratum, each household
was to have the same probability of inclusion in sample and to make this possible the
selection was carried out in stages. The first stage of selection was of Primary Sampling
Units (PSUs), which were relatively large geographical and administrative areas. These
were sometimes counties, sometimes amalgamations of small counties, and sometimes
major portions of large counties.

The important fact was that it was relatively easy to make a complete list of the PSUs
within each stratum. However, it was not easy to construct a complete list of PSUs that
were of more or less equal size in terms of numbers of households (or dwellings or
individuals, whatever was the most accessible measure of size). Some were appreciably
larger than others, but the intention remained that in the final sample, each household
in the stratum would have the same probability of inclusion as every other household.
So Hansen and Hurwitz decided that they would assign each PSU in a given stratum a
measure of size; that the sum of those measures of size would be the product of the sample
interval (or “spacing interval” or “skip interval”) i and the number of PSUs to be selected
from that stratum, say n, which number was to be chosen beforehand. Then, a random
number r would be chosen between one and the sample interval, and the PSUs selected
would be those containing the size measures numbered r, r + i, r + 2i . . . r + (n − 1)i

(see Table 1).
Clearly, the larger the size of a PSU, the larger would be its probability of inclusion

in sample. To ensure that the larger probability of selection at the first stage did not
translate into a larger probability of inclusion of households at the final stage, Hansen
and Hurwitz then required that the product of the probabilities of inclusion at all sub-
sequent stages was to be inversely proportional to the probability of selection at the
first stage. So at the final stage of selection (Hansen and Hurwitz contemplated up
to three such stages), the population units were individual households and each had
the same eventual probability of inclusion in sample as every other household in the
stratum.

To ease the estimation of variance, both overall and at each stage, Hansen and Hur-
witz allowed it to proceed as though selection had been with replacement at each stage.
Since the inclusion probabilities, even at each stage, were comparatively small, this
was a reasonable approximation. One of the great simplifications was that the over-
all variance, the components from all stages combined, could be estimated as though
there had been only a single stage of selection. Before the introduction of comput-
ers, this was a brilliant simplification, and even today the exact estimation of variance
when sampling is without replacement still involves certain complications, considered
in Section 3.7.

5 Conceptually, it might be easier to think of this as a list of every dwelling. In fact, the two would have
been identical since the definition of a dwelling was whatever a household was occupying, which might for
instance be a share of a private house. A household in turn was defined as a group of people sharing meals on
a regular basis.
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Table 1
Example of PSU selection with randomized listing

Sample fraction 1/147 Number of sample PSUs 2 Cluster size 32.8

PSU No. No. of No. of Cumulated Selection Within-PSU
Dwellings Clusters Clusters Number Sample Fraction

1 1550 47 47
10 639 20 67
7 728 22 89
5 1055 32 121 103 1/32
9 732 22 143
2 911 28 171
6 553 17 188
3 1153 35 223
4 1457 44 267 250 1/44
8 873 27 294

Total 9651 294

Note: The number of clusters in PSU number 10 has been rounded up from 19.48 to 20 in order for the
total number of clusters to be divisible by 147. Note also that the selection number 103 lies in the interval
between 90 and 121 while the selection number 250 lies in the interval between 224 and 267.

3.7. Sampling with unequal probabilities without replacement

The transition from sampling with replacement to sampling without replacement was
reasonably simple for simple random sampling but that was far from the case for sam-
pling with unequal probabilities. The first into the field were Horvitz and Thompson
(1952). Their estimator is appropriately named after them as the Horvitz-Thompson
Estimator or HTE. It is simply the sum over the sample of the ratios of each unit’s sur-
vey variable value (yi for the ith unit) to its probability of inclusion in sample (πi). The
authors showed that this estimator was randomization unbiased. They also produced
a formula for its variance and a (usually unbiased) estimator of that variance. These
last two formulae were functions of the “second-order inclusion probabilities,” that is,
the probabilities of inclusion in sample of all possible pairs of population units. If the
number of units in the population is denoted by N, then the number of possible pairs is
N(N −1)/2, so the variance formula involved a summation over N(N −1)/2 terms, and
even the variance estimation formula required a sum over n(n − 1)/2 pairs of sample
units.

Papers by Sen (1953) and by Yates and Grundy (1953) soon followed. Both of these
made use of the fact that when the selection procedure ensured a sample of predetermined
size (n units), the variance was both minimized in itself and capable of being estimated
much more accurately than when the sample size was not fixed. Both papers arrived at the
same formulae for the fixed-sample-size variance and for an estimator of that variance
that was randomization unbiased, provided that the joint inclusion probabilities, πij ,
for all possible pairs of units were greater than zero. However, this Sen–Yates–Grundy
variance estimator still depended on the n(n−1)/2 values of the πij so that the variance
could not be estimated randomization-unbiasedly without evaluating this large number
of joint inclusion probabilities.
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Many without-replacement selection schemes have been devised in attempts to
minimize these problems. One of the earliest and simplest was randomized systematic
sampling, or “RANSYS,” originally described by Goodman and Kish (1950). It involved
randomizing the population units and selecting systematically with a skip interval that
was constant in terms of the size measures. After 1953, dozens of other methods fol-
lowed in rapid succession. For descriptions of these early methods, see Brewer and
Hanif (1982) and Chaudhury and Vos (1988). However, it seemed to be generally true
that if the sample was easy to select, then the inclusion probabilities were difficult to
evaluate, and the converse also holds.

Poisson sampling (Hájek, 1964) is one such method that deserves a special mention.
Although in its original specification, it did not ensure samples of fixed size, it did
have other interesting properties. To select a Poisson sample, each population in turn
is subjected to a Bernoulli trial, with the probability of “success” (inclusion in sample)
being πi, and the selection procedure continues until the last population unit has been
subjected to its trial. The achieved sample sizes are, however, highly variable, and
consequently, Poisson sampling in its original form was not an immediately popular
choice. However, several modified versions were later formulated; several of these and
also the original version are still in current use.

One of the most important of these modified versions was Conditional Poisson Sam-
pling or CPS, also found in Hájek (1964) and discussed in detail by Chen et al. (1994). For
CPS, Poisson samples with a particular expected sample size are repeatedly selected, but
only to be immediately rejected once it is certain that the eventual sample will not have
exactly that expected sample size. One notable feature of CPS is that it has the maximum
entropy attainable for any population of units having a given set of first-order inclusion
probabilities πi.6 Several fast algorithms for using CPS are now available, in which the
second-order inclusion probabilities are also computed exactly. See Tillé (2006).

In the meantime, however, another path of investigation had also been pioneered by
Hájek (1964). He was concerned that the estimation of variance for the HTE was unduly
complicated by the fact that both the Sen–Yates–Grundy formula for the randomization
variance and their estimator of that variance required knowledge of the second-order
inclusion probabilities. In this instance, Hájek (and eventually others) approximated the
fixed sample size variance of the HTE by an expression that depended only on the first-
order inclusion probabilities. However, initially these approximations were taken to be
specific to particular selection procedures. For instance, Hájek’s 1964 approximation
was originally taken to be specific to CPS.

In time, however, it was noted that very different selection procedures could have
almost identical values of the πij . The first two for which this was noticed were
RANSYS, for which the πij had been approximated by Hartley and Rao (1962), and
the Rao–Sampford selection procedure (J.N.K. Rao, 1965; Sampford, 1967), for which

6 Entropy is a measure of unpredictability or randomness. If a population is deliberately arranged in order
of size and a sample is selected from it systematically, that sample will have low entropy. If however (as with
RANSYS) the units are arranged in random order before selection, the sample will have high entropy, only
a few percentage points smaller than that of CPS itself. While low entropy sample designs may have very
high or very low randomization variances, high entropy designs with the same set of first-order inclusion
probabilities all have more or less the same randomization variance. For a discussion of the role of entropy
in survey sampling, see Chen et al. (1994).
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they had been approximated by Asok and Sukhatme (1976). These were radically dif-
ferent selection procedures, but the two sets of approximations to the πij were identical
to order n3/N3. Although both procedures produced fixed size samples, and the pop-
ulation units had inclusion probabilities that were exactly proportional to their given
measures of size, it appeared that the only other thing that the two selection procedures
had in common was that they both involved a large measure of randomization. Entropy,
defined as

∑M
k=1[Pk − log(Pk)], where Pk is the probability of selecting the kth out

of the M possible samples, is a measure of the randomness of the selection. It there-
fore appeared plausible that all high-entropy sampling procedures would have much the
same sets of πij , and hence much the same randomization variance. If so, it followed that
approximate variance formulae produced on the basis of any of these methods would
be valid approximations for them all, and that useful estimators of these approximate
variances would be likely also to be useful estimators of the variances of the HTE for
all high-entropy selection procedures.

Whether this is the case or not is currently a matter of some contention, but Preston
and Henderson (2007) provide evidence to the effect that the several randomization
variance estimators provided along these lines are all reasonably similar in precision
and smallness of bias, all at least as efficient as the Sen–Yates–Grundy variance esti-
mator (as measured by their randomization mean squared errors MSEs), and all a great
deal less cumbersome to use.

In addition, they can be divided into two families, the members of each family having
both a noticeable similarity in structure and a detectable difference in entropy level from
the members of the other family. The first family includes those estimators provided by
Hájek (1964), by Deville (1993, 1999, 2000; see also Chen et al., 1994) initially for
CPS, and by Rosén for Pareto πps (Rosén, 1997a, 1997b). The second family, described
in Brewer and Donadio (2003), is based on the πij values associated with RANSYS
and with the Rao–Sampford selection procedure. These two procedures have slightly
smaller entropies and slightly higher randomization variance than CPS, but both Preston
and Henderson (2007) and Henderson (2006) indicate that the Hájek-Deville family of
estimators should be used for CPS, Pareto πps and similar selection procedures—thus
probably including Tillé (1996)—while the Brewer-Donadio family estimators would
be appropriate for use with RANSYS and Rao-Sampford.

It is also possible to use replication methods, such as the jackknife and the bootstrap,
to estimate the HTE’s randomization variance. The same Preston and Henderson paper
provides evidence that a particular version of the bootstrap can provide adequate, though
somewhat less accurate, estimates of that variance than can be obtained using the two
families just described.

Finally, it is of interest that the “anticipated variance” of the HTE (that is to say
the randomization expectation of its prediction variance, or equivalently the prediction
expectation of its randomization variance; see Isaki and Fuller, 1982) is a simple function
of the πi and independent of the πij . Hence, for any population that obeys the model of
Eqns. (1), both the randomization variance and the anticipated variance of the HTE can
be estimated without any reference to the πij .

3.8. The generalized regression estimator

Up to this point, it has been assumed that only a single auxiliary variable has been
available for improving the estimation of the mean or total of a survey variable. It
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has also been assumed that the appropriate way to use that auxiliary variable was by
using Eq. (1a), which implies a ratio relationship between those two variables. More
generally, the survey variable could depend on a constant term as well, or on more than
a single auxiliary variable, or both. However, that relationship is seldom likely to be
well represented by a model that implies the relevance of ordinary least squares (OLS).

One case where OLS might be appropriate is where the survey variable is Expenditure
and the auxiliary variable is Income. The relationship between Income and Expendi-
ture (the Consumption Function) is well known to involve an approximately linear
dependence with a large positive intercept on the Expenditure axis. But OLS assumes
homoskedasticity (the variance of Expenditure remaining constant as Income increases)
while it is more than likely that the variance of Expenditure increases with Income, and
in fact the data from the majority of sample surveys do indicate the existence of a mea-
sure of heteroskedaticity. This in itself is enough to make the use of OLS questionable.
Eq. (1c) allows for the variance of the survey variable to increase linearly with the aux-
iliary variable, and in fact it is common for this variance to increase somewhat faster
than this, and occasionally as fast as the square of the auxiliary variable.

A commonly used estimator of total in these more general circumstances is the gen-
eralized regression estimator or GREG (Cassel et al., 1976), which may be written as
follows:

ŶGREG = ŶHTE +
p∑

k=1

(Xk − X̂HTEk)β̂k, (8)

or alternatively as

ŶGREG =
p∑

k=1

Xkβ̂k +
(

ŶHTE −
p∑

k=1

X̂HTEkβ̂k

)
. (9)

In these two equations, ŶHTE is the HTE of the survey variable, X̂HTEk is the HTE
of the kth auxiliary variable and β̂k is an estimator of the regression coefficient of the
survey variable on the kth auxiliary variable, where the regression is on p auxiliary
variables simultaneously. One of those auxiliary variables may be a constant term, in
which case there is an intercept estimated in the equation. (In that original paper, β̂k was
a generalized least squares estimator, but this was not a necessary choice. For instance,
Brewer (1999b) defined β̂k in such a way as to ensure that the GREG was simultaneously
interpretable in the randomization and prediction approaches to sampling inference, and
also showed that this could be achieved with only trivial increments to its randomization
and prediction variances).

In the second of these two equations, the first term on the right-hand side is a prediction
estimator of the survey variable total, but one that ignores the extent to which the HTE
of the survey variable total differs from the sum of the p products of the individual
auxiliary variable HTEs with their corresponding regression estimates. Särndal et al.
(1992) noted that the first term (the prediction estimator) had a randomization variance
that was of a lower order of magnitude than the corresponding variance of the second
term and therefore suggested that the randomization variance of the GREG estimator
be estimated by estimating only that of the second term. It is true that as the sample size
increases, the randomization variance of the prediction estimator becomes small with
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respect to that of the second term, but when the sample size is small, this can lead to a
substantial underestimate of the GREG’s randomization variance.

This is not an easy problem to solve wholly within the randomization approach, and in
Chapter 8 of Brewer (2002, p. 136), there is a recommendation to estimate the anticipated
variance as a substitute. (The anticipated variance is the randomization expectation of
the prediction variance.). This is obviously not a fully satisfactory solution, except
in the special case considered by Brewer, where the GREG had been devised to be
simultaneously a randomization estimator and a prediction estimator, so more work
on it seems to be called for. Another alternative would be to estimate the GREG’s
randomization variance using a replication method such as the jackknife or the bootstrap,
but again this alternative appears to need further study. For more information regarding
the GREG, see Särndal et al. (1992).

3.9. Permanent random number (PRN) sampling

One of the important but less obvious objectives of survey sampling is to be able to
control intelligently the manner in which the sample for a repeating survey is allowed to
change over time. It is appropriate for a large sample unit that is contributing substantially
to the estimate of total to remain in sample for fairly long periods, but it is not so
appropriate for small population units to do the same, so it is sensible to rotate the
sample around the population in such a way that the larger the unit is, the longer it
remains in sample. One of the ways of doing this is to assign each unit a PRN, say
between zero and unity, and define the sample as consisting of those population units
that occupy certain regions of that PRN space. Units in a large-size stratum might
initially be in sample if they had PRNs between zero and 0.2 for the initial survey,
between 0.02 and 0.22 for the second, 0.04 and 0.24 for the third, and so on. In this
way, each unit would remain in sample for up to 10 occasions but then be “rested” for
the next 40. Those in a small-size stratum would remain occupy a smaller region of the
PRN space, say initially between zero and 0.04, but the sample PRN space would be
rotated just as fast so that units would remain in sample for no more than two occasions
before being “rested.”

From the data supplier’s point of view, however, it is particularly inappropriate to be
removed from the sample and then included again shortly afterwards. This can easily
happen, however, if a population unit changes its size stratum, particularly if the change
is upward. Consequently, it is inconvenient to use PRN sampling and size stratification
together. Moreover, as has already been indicated in Section 3.5, stratification by size
is a suboptimal way of satisfying the requirement that the larger the unit, the greater
should be its probability of inclusion in sample.

Hence, when attempting to control and rotate samples using the PRN technique, it
becomes highly desirable, if not indeed necessary, to find a better solution than strati-
fication by size. Brewer (2002) (Chapter 13, pp. 260–265), provides a suggestion as to
how this could be done. It involves the use of a selection procedure known as Pareto
πps sampling, which is due to Rosén (1997a, 1997b). This is a particular form of what
is known as order sampling, and is very similar in its πij values to CPS sampling, so
it is a high-entropy sample selection procedure. It is, however, somewhat complicated
to describe and therefore inappropriate to pursue further in this introductory chapter.
Those who wish to pursue the possibility of using PRN sampling without stratification
by size are referred to those two papers by Rosén and to Chapter 13 of Brewer (2002).
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4. Conclusion

From the very early days of survey sampling, there have been sharp disagreements as
to the relative importance of the randomization and prediction approaches to survey
sampling inference. These disagreements are less severe now than they were in the
1970s and 1980s but to some extent they have persisted into the 21st century. What
is incontrovertible, however, is that prediction inference is parametric and randomiza-
tion nonparametric. Hence the prediction approach is appropriate to the extent that the
prediction models are useful, whereas the randomization approach provides a robust
alternative where they are not useful. It would therefore seem that ideally both should
be used together, but there are many who sincerely believe the one or the other to be
irrelevant. The dialogue therefore continues.

Both the randomization and the prediction approaches offer a wide range of manners
in which the sample can or should be selected, and an equally wide range of manners
in which the survey values (usually, but not exclusively consisting of population totals,
population means, and ratios between them) can be estimated. The choices among them
depend to a large extent on the natures of the populations (in particular, whether they
consist of individuals and households, of establishments and enterprizes, or of some
other units entirely) but also on the experience and the views of the survey investigators.
However, there are some questions that frequently need to be asked, and these are the
ones that have been focussed on in this chapter. They include, “What are the units
that constitute the population?” “Into what groups or strata do they naturally fall?”
“What characteristics of the population need to be estimated?” “How large a sample is
appropriate?” (or alternatively, “How precise are the estimates required to be?”) “How
should the sample units be selected?” and “How should the population characteristics
be estimated?”

In addition, there are many questions that need to be answered that fall outside the
scope of the discipline of survey sampling. A few of them would be as follows: “What
information are we seeking, and for what reasons?” “What authority, if any, do we have to
ask for this information?” “In what format should it be collected?” “What organizational
structure is required?” “What training needs to be given and to whom?” and not least,
“How will it all be paid for?”

So those questions that specifically relate to survey sampling always need to be
considered in this wider framework. The aim of this Chapter will have been achieved
if the person who has read it has emerged with some feeling for the way in which the
discipline of survey sampling can be used to fit within this wider framework.
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Sampling with Unequal Probabilities

Yves G. Berger and Yves Tillé

1. Introduction

Since the mid 1950s, there has been a well-developed theory of sample survey design
inference embracing complex designs with stratification and unequal probabilities
(Smith, 2001). Unequal probability sampling was first suggested by Hansen and Hurwitz
(1943) in the context of sampling with replacement. Narain (1951), Horvitz and Thomp-
son (1952) developed the corresponding theory for sampling without replacement.
A large part of survey sampling literature is devoted to unequal probabilities sampling,
and more than 50 sampling algorithms have been proposed. Two books (Brewer and
Hanif, 1983; Tillé, 2006) provide a summary of these methods.

Consider a finite population U of size N. Each unit of the population can be identified
by a label k = 1, . . . , N. A sample s is a subset of U. A sampling design p(.) is a
probability measure on all the possible samples so that

p(s) ≥ 0, for all s ∈ U, and
∑
s∈U

p(s) = 1.

Let n(s) denote the size of the sample s. When the sample size is not random, we denote
the sample size by n. An unequal probability sampling design is often characterized
by its first-order inclusion probabilities given by πk = p(k ∈ s). The joint inclusion
probabilities of unit k and � are defined by πk� = p(k ∈ s and � ∈ s).

Suppose we wish to estimate the population total

Y =
∑
k∈U

yk

of a characteristic of interest y, where yk is the value of a unit labeled k. An estimator of
Y is given by the π-estimator (Horvitz and Thompson, 1952; Narain, 1951) defined by

Ŷπ =
∑
k∈s

yk

πk

.

This estimator is design unbiased provided that all the πk > 0.

39
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Under unequal probability sampling, the variance of Ŷπ may be considerably smaller
than the variance under an equal probability sampling design (Cochran, 1963), when
the correlation between the characteristic of interest and the first-order inclusion prob-
abilities is strong. Alternative estimators when this correlation is weak are discussed in
Section 3.

It is common practice to use inclusion probabilities that are proportional to a known
positive size variable x. In this case, the inclusion probabilities are computed as follows

πk = nxk

X
, (1)

where X = ∑
k∈U xk, assuming nxk ≤ X for all k. If nxk > X, we set πk = 1 and we

recalculate the πk using (1) on the remaining units after substituting n with n subtracted
by the number of πk equal to 1.

Another application of unequal probability sampling design is with multistage sam-
pling, where the selection of primary units within strata may be done with unequal
probability. For example, self-weighted two-stage sampling is often used to select pri-
mary sampling units with probabilities that are proportional to the number of secondary
sampling units within the primary units. A simple random sample is selected within each
primary unit.

The variance of the π-estimator plays an important role in variance estimation, as
most estimators of interest can be linearized to involve π-estimators (see Section 5).
The sampling variance of Ŷπ is given by

var (Ŷπ) =
∑
k∈U

∑
�∈U

(πk� − πkπ�)
yky�

πkπ�

.

Horvitz and Thompson (1952) proposed an unbiased estimator of var (Ŷπ):

var (Ŷπ) =
∑
k∈s

∑
�∈s

πk� − πkπ�

πk�

yky�

πkπ�

. (2)

If the sample size is fixed, Sen (1953), Yates and Grundy (1953) proposed another
estimator of var (Ŷπ):

v̂ar (Ŷπ) = 1

2

∑
k∈s

∑
�∈s

πkπ� − πk�

πk�

(
yk

πk

− y�

π�

)2

. (3)

This estimator is design unbiased when πk� > 0 for all k, �∈ U. It can take negative
values unless πkπ� − πk� ≥ 0, k �= � ∈ U. However, it is rarely used because the joint
inclusion probabilities are sometimes difficult to compute and because the double sum
makes (3) computationally intensive. In Section 4, we show that, in particular cases, the
variance can be estimated without joint inclusion probabilities.

2. Some methods of unequal probability sampling

2.1. Poisson sampling

Poisson sampling was proposed by Hájek (1964) and discussed among others in Ogus
and Clark (1971), Brewer et al. (1972, 1984), and Cassel et al. (1993a, p. 17). Each unit
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of the population is selected independently with a probability πk. The sample size n(s)

is therefore random. All the samples s ⊂ U have a positive probability of being selected
and there is a non-null probability of selecting an empty sample. The sampling design
is given by

P(s) =
[∏

k∈s

πk

1 − πk

][∏
k∈U

(1 − πk)

]
, for all s ⊂ U.

Since the units are selected independently, we have that πk� = πkπ�, for all k �= �.

The variance of the π-estimator, given in (2), reduces to

var
(
Ŷπ

) =
∑
k∈U

1

πk

(1 − πk)y
2
k,

which can be unbiasedly estimated by

v̂ar
(
Ŷπ

) =
∑
k∈s

(1 − πk)
y2

k

π2
k

.

The estimator of variance is simple because it does not involve joint inclusion probabil-
ities. Note that the Poisson sampling design maximizes the entropy (Hájek, 1981, p.29)
given by

I(p) = −
∑
s⊂U

p(s) log p(s), (4)

subject to given inclusion probabilities πk, k ∈ U. Since the entropy is a measure of
randomness, the Poisson sampling design can be viewed as the most random sampling
design that satisfies given inclusion probabilities.

Poisson sampling is rarely applied in practice because its sample size is random
implying a nonfixed cost of sampling. This design is, however, often used to model
nonresponse. Moreover, Poisson sampling will be used in Section 2.7 to define the
conditional Poisson sampling design which is also called the maximum entropy design
with fixed sample size. The use of design that maximizes the entropy is useful because
it allows a simple estimation for the variance.

2.2. Sampling with replacement

Unequal probability sampling with replacement is originally due to Hanssen and
Hurwitz. Properties of this design are widely covered in the literature (Bol’shev, 1965;
Brown and Bromberg, 1984; Dagpunar, 1988; Davis, 1993; Devroye, 1986; Ho et al.,
1979; Johnson et al., 1997; Kemp and Kemp, 1987; Loukas and Kemp, 1983; Tillé,
2006).

Consider selection probabilities pk that are proportional to a positive size variable
xk, k ∈ U; that is,

pk = xk∑
�∈U x�

, k ∈ U.

A simple method to select a sample with unequal probabilities with replacement con-
sists in generating a uniform random number u in [0, 1) and selecting unit k so that
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vk−1 ≤ u < vk, where

vk =
k∑

�=1

p�, with v0 = 0.

This process is repeated independently m times. Note that there are more efficient algo-
rithms that may be used to select a sample with replacement with unequal probabilities
(Tillé, 2006, p. 75).

Let ỹi denote the value of the characteristic of the ith selected unit and p̃i, its associated
selection probability. Note that, under sampling with replacement, the same unit can be
selected several times. The ratios ỹi/p̃i are n independent random variables. The total
Y can be estimated by the Hansen–Hurwitz estimator

ŶHH = 1

m

m∑
i=1

ỹi

p̃i

.

This estimator is design unbiased as

E
(
ŶHH

) = 1

m

m∑
i=1

E

(
ỹi

p̃i

)
= 1

m

m∑
i=1

Y = Y.

The variance of ŶHH is given by

var (ŶHH) = 1

m

∑
k∈U

pk

(
yk

pk

− Y

)2

,

which can be unbiasedly estimated by

v̂ar (ŶHH) = 1

m(m − 1)

m∑
i=1

(
ỹi

p̃i

− ŶHH

)2

. (5)

The Hansen–Hurwitz estimator is not the best estimator as it is not admissible because
it depends on the multiplicity of the units (Basu, 1958, 1969; Basu and Ghosh, 1967).
Nevertheless, the Hansen–Hurwitz variance estimator can be used to approximate the
variance of the Horvitz–Thompson estimator under sampling without replacement when
m/N is small.

Sampling without replacement may lead to a reduction of the variance compared to
sampling with replacement (Gabler, 1981, 1984). A design without replacement with
inclusion probabilities πk is considered to be a good design if the Horvitz–Thompson
estimator is always more accurate than the Hansen–Hurwitz estimator under sampling
with replacement with probabilities pk = πk/n. Gabler (1981, 1984) gave a condi-
tion under which this condition holds. For example, this condition holds for the Rao–
Sampford design given in Section 2.4 and for the maximum entropy design with fixed
sample size (Qualité, 2008).

2.3. Systematic sampling

Systematic sampling is widely used by statistical offices due to its simplicity and effi-
ciency (Bellhouse, 1988; Bellhouse and Rao, 1975; Berger, 2003; Iachan, 1982, 1983).
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This sampling design has been studied since the early years of survey sampling (Cochran,
1946; Madow, 1949; Madow and Madow, 1944). There are two types of systematic
design: a systematic sample can be selected from a deliberately ordered population or
the population can be randomized before selecting a systematic sample. The latter is
often called randomized systematic design.

A systematic sample is selected as follows. Let u be a random number between 0 and
1 generated from a uniform distribution. A systematic sample is a set of n units labeled
k1, k2, . . . , kn such that π

(c)

k�−1 < u + � − 1 ≤ π
(c)

k�
, where � = 1, . . . , n and

π
(c)

k =
∑
j∈U
j≤k

πj.

In the special case where πk = n/N, this design reduces to the customary systematic
sampling design, where every ath unit is selected and a = 	N/n
.

In many practical situations, it is common practice to let the population frame have a
predetermined order. For example, a population frame can be sorted by a size variable,
by region, by socioeconomic group, by postal sector, or in some other way. In this case,
systematic sampling is an efficient method of sampling (Iachan, 1982). Systematic sam-
pling from a deliberately ordered population is generally more accurate than randomized
systematic sampling (Särndal et al., 1992, p. 81), especially when there is a trend in the
survey variable y (Bellhouse and Rao, 1975).

The systematic design with a deliberately ordered population suffers from a seri-
ous flaw, namely, that it is impossible to unbiasedly estimate the sampling variance
(Iachan, 1982), and customary variance estimators given in (3) are inadequate and can
overestimate significantly the variance (Särndal et al., 1992, Chapter 3).

Systematic sampling from a randomly ordered population consists in randomly
arranging the units, giving the same probability to each permutation, since random
ordering is part of the sampling design. This design was first suggested by Madow
(1949). Hartley and Rao (1962) developed the corresponding asymptotic theory for
large N and small sampling fraction. Under randomized systematic sampling, Hartley
and Rao (1962) derived a design unbiased variance estimator (see Section 4).

For the randomized systematic design, the joint inclusion probabilities are typically
positive and the variance can be unbiasedly estimated (Hájek, 1981; Hartley and Rao,
1962). With a deliberately ordered population, alternative estimators for the variance
can be used (Bartolucci and Montanari, 2006; Berger, 2005a; Brewer, 2002, Chapter 9).

2.4. Rao–Sampford sampling design

The Rao–Sampford sampling design (Rao, 1965; Sampford, 1967) is a popular design
used for unequal probability sampling without replacement. It is implemented by select-
ing the first unit with drawing probabilities pk = πk/n. The remaining n − 1 units are
selected with replacement with drawing probabilities that are proportional toπk/(πk−1).
The sample is accepted if the n units drawn are all distinct, otherwise, it is rejected and
the process is repeated. The first-order inclusion probabilities are exactly given by πk.

Sampford (1967) derived an exact expression for the joint inclusion probabilities πk�.
The main advantage of this design is its simplicity. It also has a simple expression for

the variance (see Section 4). However, this design is not suitable when the πk are large,
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as we would almost surely draw the units with large πk at least twice and it would not be
possible to select one Rao–Sampford sample. For example, consider N = 86, n = 36,
and πk proportional to (k/100)5 + 1/5. The probability that all the units drawn from
subsequent independent draws will be distinct is approximately 10−36 (Hájek, 1981,
p. 70), which is negligible. Nevertheless, Tillé (2006, p. 136) and Bondesson et al. (2006)
suggested several alternative algorithms to implement the Rao–Sampford design.

2.5. Sampling by the splitting method

The splitting method, proposed by Deville and Tillé (1998), is a general class of sampling
designs without replacement with fixed sample size and unequal probabilities. First, each
inclusion probability is split into two or more quantities. Secondly, one of these sets of
quantities is randomly selected in such a way that the overall inclusion probabilities are
equal to πk. These steps are repeated until a sample is obtained.

This method can be implemented as follows. First, πk is split into two quantities π
(1)

k

and π
(2)

k , which satisfy the following constraint:

πk = λπ
(1)

k + (1 − λ)π
(2)

k ,

with

0 ≤ π
(1)

k ≤ 1 and 0 ≤ π
(2)

k ≤ 1,∑
k∈U

π
(1)

k =
∑
k∈U

π
(2)

k = n,

where λ is any constant such that 0 < λ < 1.

The method consists of choosing{
π

(1)

k , k ∈ U, with a probability λ or
π

(2)

k , k ∈ U, with a probability 1 − λ.

After this first step, any design can be used to select a sample with inclusion probabilities
π

(1)

k or π
(2)

k . If some of the π
(1)

k or π
(2)

k are all equal to 0 or 1, we would sample from a
smaller population. The splitting can in turn be used to select a sample with probabilities
π

(1)

k or π
(2)

k . We could also choose π
(1)

k in such a way that the π
(1)

k are all equal. In this
case, simple random sampling without replacement can be used.

This approach can be generalised to a splitting method into M sets of inclusion
probabilities. First, we choose the π

(j)

k and the λj in such a way that

M∑
j=1

λj = 1,

where

0 ≤ λj ≤ 1, j = 1, . . . , M,

M∑
j=1

λjπ
(j)

k = πk,
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0 ≤ π
(j)

k ≤ 1, k ∈ U, j = 1, . . . , M,∑
k∈U

π
(j)

k = n, j = 1, . . . , M.

We then select one of the set of quantities of π
(j)

k , k ∈ U, with probabilities λj , j =
1, . . . , M. Secondly, any design can be used to select a sample with inclusion probabil-
ities π

(j)

k or the splitting step can be applied again.
Deville and Tillé (1998) showed that the splitting method defines new sampling

designs such as the minimum support design, the splitting into simple random sampling,
the pivotal method, and the eliminatory method (Tillé, 2006).

2.6. Brewer sampling design

Brewer (1963) proposed a design for selecting a sample of size n = 2. The properties of
this design were studied by Rao and Bayless (1969), Rao and Singh (1973), Sadasivan
and Sharma (1974), and Cassel et al. (1993a). Brewer (1975) generalised this design
to any sample size (Brewer and Hanif, 1983, p. 26). This method is a draw by draw
procedure, that is, a sample can be selected in n steps. In this section, we show that this
design is a particular case of the splitting method.

For simplicity, only the first step of the method is given. Consider

λj =
{

N∑
k=1

πk(n − πk)

1 − πk

}−1
πj(n − πj)

1 − πj

.

and

π
(j)

k =
⎧⎨⎩

πk(n − 1)

n − πj

if k �= j

1 if k = j.

The first-order inclusion probabilities are indeed given by πk because

N∑
j=1

λjπ
(j)

k = πk.

At each step of the method, a unit is selected. Moreover, it is not necessary to compute
all the π

(j)

k , as only the selected π
(j)

k , k ∈ U, need to be computed.

2.7. Maximum entropy or conditional Poisson sampling design

The maximum entropy design (Hájek, 1981) and the conditional Poisson design are the
same design obtained from two different perspectives. The maximum entropy design
is the design with fixed sample size that maximizes the entropy given in (4) for all the
samples of fixed sample size n subject to given inclusion probabilities πk, k ∈ U. Hájek
(1981) proposed to implement it by using a Poisson rejective procedure, that is, by
reselecting Poisson samples until a fixed sample size is obtained. A rejective procedure
consists in conditioning Poisson sampling design with respect to a fixed sample size.
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Consider a Poisson sampling design with inclusion probabilities π̃k and a random sample
size ñ. This sampling design can be written as follows:

P(s) =
[∏

k∈s

π̃k

1 − π̃k

][∏
k∈U

(1 − π̃k)

]
.

The conditional Poisson sampling design is then given by

p(s) = P(s|̃ns = n) = P(s)∑
s∈Sn

P(s)
, s ∈ Sn,

where n is fixed and Sn is the set of all the samples of size n.
Conditional Poisson sampling can be implemented by using a rejective sampling

procedure. Samples are selected with Poisson sampling and inclusion probability π̃k

until a fixed sample size n is obtained. However, more efficient algorithms, such as a
draw by draw procedure or a sequential procedure, are described for instance in Tillé
(2006, pp. 90–95).

The main difficulty is that the inclusion probabilities πk of the design are differ-
ent from the π̃k. Hájek (1964) proposed approximations for the inclusion probabilities
(see also Brewer and Hanif, 1983, p. 40). Chen et al. (1994) proposed an algorithm
that allows us to derive the inclusion probabilities of the conditional Poisson sampling
πk from the inclusion probabilities of the Poisson sampling design π̃k. In an unpub-
lished manuscript available from the author, Deville (2000) improved this algorithm
and derived the following recursive formula:

πk(π̃, n) = n
π̃k(1 − π̃k)

−1 [1 − πk(π̃, n − 1)]∑
�∈U π̃�(1 − π̃�)−1 [1 − π�(π̃, n − 1)]

,

where π̃ is the vector of inclusion probabilities π̃k.

This recursive equation allows us to compute πk from π̃k easily. Deville (2000) also
proposed that a modified Newton-Raphson method be used to compute the π̃k from the
given inclusion probability vector π = (π1, . . . , πN). The recursive equation is given by

π̃(i+1) = π̃(i) + π − π(π̃, n), for i = 0, 1, 2, . . . ,

where π̃(0) = π.
Deville (2000) also proposed a recursive relation for computing the joint inclusion

probabilities:

πk�(π̃, n)

= n(n − 1)exp λk exp λ� [1 − πk(π̃, n − 2) − π�(π̃, n − 2) + πk�(π̃, n − 2)]∑
i∈U

∑
j∈U

i�=j
exp λi exp λj

[
1 − πi(π̃, n − 2) − πj(λ, Sn−2) + πij(π̃, n − 2)

] ,
Additional developments on conditional Poisson sampling are given in Chen et al.
(1994), Chen and Liu (1997), Chen (1998, 2000), Deville (2000), Jonasson and Nerman
(1996), Aires (1999, 2000), Bondesson et al. (2004), Traat et al. (2004), and Tillé (2006).

2.8. Order sampling

Order sampling designs, developed by (Rosén 1997a, 1997b), are based upon an idea
introduced by Ohlsson (1990a). The advantage of order sampling designs is their
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simplicity. Let πk be the target first inclusion probability of unit k. Consider a positive
size variable xk > 0 known for the whole population. The target inclusion probability
πk is proportional to xk and computed as in (1). We generate N uniform random num-
bers ωk in [0,1] and the n units that have the smallest values ωk/πk are selected. Other
distributions for generating the random numbers can also be used, such as exponen-
tial distribution (Hájek, 1964) or Pareto (Rosén 1997a, 1997b) distribution. The main
drawback of the method is that the inclusion probabilities are not exactly equal to πk.

Additional development on order sampling are given in Aires (1999, 2000), Ohlsson
(1998), Rosén (2000), Matei and Tillé (2007), and Rosén (1995).

3. Point estimation in unequal probability sampling without replacement

We are often interested in estimating population totals of several characteristics of inter-
est. It is therefore possible that some characteristics may not be related to the inclusion
probabilities πk. In this situation, Rao (1966) recommended the use of the following
unweighted estimator

Ŷu = N

n

∑
k∈s

yk. (6)

The design bias of this estimator is

bias(Ŷu) = N

n

∑
k∈U

ykπk −
∑
k∈U

yk = N2

n

1

N

∑
k∈U

(
yk − Ŷu

N

)(
πk − n

N

)
,

which is proportional to the covariance between yk and πk. Thus, this bias is zero when
yk and πk are uncorrelated. Rao (1966) showed that Ŷu is on average more accurate than
Ŷπ because the average variance of Ŷu is smaller under the following superpopulation
model ξ,

yk = μ + εk, (7)

with E ξ(εk|πk) = 0, E ξ(ε
2
k|πk) = σ2, and E ξ(εkε�|πk) = 0, where E ξ(.) denotes the

expectation under the superpopulation model ξ.
Amahia et al. (1989) considered the following linear combination of Ŷu and Ŷπ

Ŷa = (1 − ρ)Ŷu + ρŶπ,

where ρ is the observed correlation between yk and πk. This estimator gives more weights
to Ŷπ when yk and πk are highly correlated.

The Hájek (1971) estimator, given by

ŶH = N

(∑
k∈s

1

πk

)−1∑
k∈s

yk

πk

, (8)

is an alternative estimator often used in unequal probability sampling. The estimator ŶH

is approximately design unbiased. It should be used when yk and πk are uncorrelated
because its variance may be small when yk follows model (7) (Särndal et al., 1992,
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p. 258). This estimator is often used in practice because it is a weighted average with
the sum of weights equal to N. This property is particularly useful for the estimation
of counts that have to add up to a given constant. Note that with count estimation, the
characteristic of interest might not be correlated with πk.

When yk and πk are correlated, Ŷu may not be efficient and therefore the π-estimator
should be used instead. When yk and πk are uncorrelated, Ŷu and ŶH should be used.
Therefore, the choice of a point estimator should be driven by the correlation between
yk and πk and the π-estimator should not be blindly used. Basu (1971) gave a famous
example, where a circus owner wants to estimate the total weight of his 50 elephants.
A sample of size one is selected with inclusion probabilities that are uncorrelated with
the weight of each elephant: π1 = 99/100 for Dumbo, the average elephant, and πk =
1/4900 for the other elephants. Not surprisingly, Dumbo is selected. Let y1 denote its
weight. To estimate the total weight, a sensible estimator is ŶH = Ŷu = Ny1, which is
different from the π-estimator Ŷπ = y1100/99.

Note that the variance estimator in (3) can be used to derive variance estimators
for Ŷu, Ŷa, and ŶH. By substituting ykπkN/n for yk in (3), we obtain a design unbiased
estimator for the variance of Ŷu when πk� > 0. By substituting ykπk/(n/N(1−ρ)+ρπk)

for yk in (3), we obtain an approximately design unbiased estimator for the variance of
Ŷa when πk� > 0. By substituting yk − ŶH for yk in (3), we obtain a approximately
design unbiased estimator for the variance of ŶH when πk� > 0.

The choice of the size variable should be driven by the correlation between the
variable of interest and the size variable. Ideally, the size variable should be highly
correlated with the variable of interest. However, in practice, we have several variables
of interest and the size variable might be not correlated with all the variables of interest.
In this situation, we recommend to use the simple mean (6) or the Hájek estimator (8)
to estimate a total.

4. Variance estimators free of joint inclusion probabilities

Exact joint inclusion probabilities may be difficult or impossible to calculate. Futher-
more, the double sum in (3) makes the Sen–Yates–Grundy estimator computationally
intensive when the sample size is large. It is also inconceivable to provide these prob-
abilities in released data sets, as the set of joint inclusion probabilities is a series
of n(n − 1)/2 values. Suppose that the sampling design uses single-stage stratified
sampling with unequal probabilities within each stratum. Let U1, . . . , UH denote the
strata. Suppose that a sample sh of size nh is selected without replacement within
each stratum Uh of size Nh. In this situation, we can estimate the variance of Ŷπ

approximately by

v̂ar ∗ (Ŷπ

) =
∑
k∈s

αk̂e
2
k , (9)

which is free of the πl�. The êk are the residuals of weighted least squares given by

êk = yk

πk

−
H∑

h=1

B̂hzkh,
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and B̂h is the weighted least squares regression coefficient given by

B̂h =
(∑

k∈s

λkz
2
kh

)−1∑
k∈s

λkzkh

yk

πk

,

where zkh = 1 if k ∈ Uh and otherwise zkh = 0. The choice of αk and λk depends on the
value of nh and on the sampling design implemented. Several choices are possible for
the constants αk and λk. A simple choice is αk = λk = 1, which gives the naive variance
estimator under sampling with replacement given in (5). However, this approach usually
leads to overestimation of the variance for large sampling fraction. When αk = 1 −
πk(nh − 1)/nh for k ∈ Uh and λk = 1, (9) reduces to the Hartley and Rao (1962) variance
estimator. When αk = λk = (1 − πk)nh/(nh − 1), for k ∈ Uh, (9) reduces to the Hájek
(1964) variance estimator.

For the randomized systematic sampling method, Hartley and Rao (1962) showed
that var (Ŷπ) reduces to

var (Ŷπ) ≈
H∑

h=1

∑
k∈Uh

πk

(
1 − nh − 1

nh

πk

)(
yk

πk

− Y

n

)2

(10)

for fairly large Nh and for small sampling fractions. Therefore, (9) will be a consistent
estimator of (10) under the randomized systematic design, when αk = 1−πk(nh−1)/nh

for k ∈ Uh, λk = 1. This choice is recommended when nh is small and Nh is large, or
when nh is large and nh/Nh is negligible.

Assuming dh = ∑
�∈Uh

π�(1 − π�) → ∞, Hájek (1964) derived an approximation
to πk� under maximum entropy sampling. By substituting this expression into (3), we
have

var (Ŷπ) =
∑
k∈U

πk(1 − πk)e
2
k,

with

ek = yk

πk

−
H∑

h=1

Bhzkh,

where Bh is the following population weighted least squares regression estimate

Bh =
(∑

k∈U

(1 − πk)z
2
khπk

)−1∑
�∈U

(1 − π�)z�hy�π�.

Therefore, (9) will be a consistent estimator of (10) under maximum entropy sampling,
when αk = λk = 1 − πk and dh → ∞. This choice is recommended when nh is large
and the sampling fraction is not small. Berger (2007) showed that this choice gives a
consistent estimator for the variance under the Rao–Sampford sampling design when
dh → ∞, H is bounded, and none of the πk less than 1 approach 1 asymptotically.
Berger (2005a) showed that this choice is suitable for the Chao (1982) sampling design.

Other choices for αk and λk have been proposed in literature. When αk = λk =
(1 − πk) log(1 − πk)/πk, (9) reduces to the Rosén (1991) estimator. When αk =
(1 − πk)nh(nh − 1)

∑
k∈sh

(1 − πk)
(∑

k∈Uk
πk(1 − πk)

)−1
, (9) gives the Berger (1998)
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estimator. If αk = λk = (1 − πk)
−1
[
1 − d−2

h

∑
�∈sh

(1 − π�)
]

for k ∈ Uh, (9) gives the
Deville (1999) variance estimator. Brewer (2002, Chapter 9) proposed two alternative
choices for αk and λk. Simulation studies by Brewer (2002), Haziza et al. (2004), Matei
and Tillé (2005), and Henderson (2006) showed that (9) is an accurate estimator for var-
ious choices of αk and λk. The variance estimator (9) may have a smaller mean square
error than the exactly unbiased Sen–Yates–Grundy estimator in (3).

Berger (2005a) showed that (9) can be easily computed when αk = λk, as (9) reduces
to v̂ar ∗(Ŷπ) = nσ̂2

ε , where σ̂2
ε is the observed residual variance of the regression

y∗
k =

H∑
h=1

βhz
∗
�h + εk

fitted with ordinary least squares, where the εk are independent normal random variables
with mean 0 and variances σ2

ε , y∗
k = ykπ

−1
k α

1/2
k and z∗

k = zkπ
−1
k α

1/2
k .

5. Variance estimation of a function of means

Assume that the parameter of interest θ can be expressed as a function of means of
Q survey variables, that is, θ = g(μ1, . . . , μQ), where g(.) is a smooth differentiable
function (Shao and Tu, 1995, Chapter 2), and μq is the finite population mean of the
qth survey variables. This definition includes parameters of interest arising in common
survey applications such as ratios, subpopulation means, and correlation and regression
coefficients. It excludes parameters such as L-statistics (Shao, 1994) and coefficients of
logistic regression, which cannot be expressed as function of means. The parameter θ̂

can be estimated by the substitution estimator θ̂ = g(μ̂1H, . . . , μ̂QH), in which μ̂qH is
the Hájek (1971) estimator of a the qth mean.

The variance of θ̂ can be estimated by the linearized variance estimator (Robinson
and Särndal, 1983) given by

v̂ar(̂θ)l = ∇(μ̂)′�̂∇(μ̂),

where

�̂ = 1

N2

∑
k∈s

∑
�∈s

(
πk� − πkπ�

πkπ�πk�

)
(yk − μ̂) (y� − μ̂)′,

∇(x) =
(

∂g(μ)

∂μ1
, . . . ,

∂g(μ)

∂μQ

)′

μ=x

,

yk = (y1k, . . . , yQk)
′, ∇(x) denotes the gradient of g(·) at x ∈R

Q, μ̂ = (μ̂1H, . . . , μ̂QH)′,
and μ = (μ1, . . . , μQ)′.

Customary jackknife variance estimators (Shao and Tu, 1995; Wolter, 1985) are not
always consistent under unequal probability sampling without replacement (Demnati
and Rao, 2004). Campbell (1980) proposed a generalised jackknife variance estimator
that allows us to estimate the variance for unequal probability sampling and stratification.
Campbell’s generalised jackknife is given by

v̂ar (̂θ) =
∑
k∈s

∑
�∈s

πk� − πkπ�

πk�

uku�,
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where

uj = (1 − wj)(̂θ − θ̂(j)),

wj = π−1
j

(∑
k∈s

π−1
k

)−1

,

θ̂(j) = g(μ̂1H(j), . . . , μ̂QH(j)),

μ̂qH(j) = N

(∑
k∈s

δkj

πk

)−1∑
k∈s

δkjyk

πk

,

and δkj = 1 if k = j and δkj = 0 otherwise. Berger and Skinner (2005) gave regularity
conditions under which the generalised jackknife is consistent. They also showed that
the generalised jackknife may be more accurate than the customary jackknife estimators.
Berger (2007) proposed an alternative consistent jackknife estimator that is free of joint
inclusion probabilities.

Many surveys use single imputation to handle item nonresponse. Treating the imputed
values as if they were true values and then estimating the variance using standard
methods may lead to serious underestimation of the variance when the proportion of
missing values is large (Rao and Shao, 1992; Särndal, 1992). One can use the Rao–Shao
method which consists of adjusting the imputed values whenever a responding unit is
deleted. Berger and Rao (2006) showed that this method gives a consistent generalised
jackknife variance estimator under uniform response.

6. Balanced sampling

6.1. Definition

A design is balanced if the π-estimators for a set of auxiliary variables are equal to the
known population totals of auxiliary variables. Balanced sampling can be viewed as
a calibration method embedded into the sampling design. Yates (1949) advocated the
idea of respecting the means of known variables in probability samples. Yates (1946)
and Neyman (1934) described methods of balanced sampling limited to one variable
and to equal inclusion probabilities. The use of balanced sampling was recommend by
Royall and Herson (1973) for protecting inference against misspecified models. More
recently, several partial solutions were proposed by Deville et al. (1988), Deville (1992),
Ardilly (1991), and Hedayat and Majumdar (1995). Valliant et al. (2000) surveyed some
existing methods.

The cube method (Deville and Tillé, 2004) is a general method of balanced sampling
with equal or unequal inclusion probabilities. Properties and application of this method
were studied in Deville and Tillé (2004), Chauvet and Tillé (2006), Tillé and Favre
(2004, 2005), Berger et al. (2003), and Nedyalkova and Tillé (2008). The cube method
was used to select the rotation groups of the new French census (Bertrand et al., 2004;
Dumais and Isnard, 2000; Durr and Dumais, 2002) and the selection of the French
master sample (Christine, 2006; Christine and Wilms, 2003; Wilms, 2000). Deville and
Tillé (2005) proposed a variance estimator for balanced sampling. Deville (2006) also
proposed to use balanced sampling for the imputation of item nonresponse. The cube
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method can be implemented in practice by SAS® or R procedures (Chauvet and Tillé,
2005; Rousseau and Tardieu, 2004; Tardieu, 2001; Tillé and Matei, 2007).

Balancing is used when auxiliary information is available at the design stage. When
balanced sampling is used, the Horvitz–Thompson weights are also calibration weights.
Calibration after sampling is therefore not necessary. Balancing also provide more stable
estimators as these weights do not depend on the sample.

6.2. Balanced sampling and the cube method

Suppose that the values of p auxiliary variables x1, . . . xp are known for every unit of
the population. Let xk = (xk1 · · · xkj · · · xkp)′ be the vector of the p auxiliary variables on
unit k. For a set of given inclusion probabilities πk, a design p(.) is balanced with respect
to the auxiliary variables x1, . . . , xp, if and only if it satisfies the balancing equations
given by ∑

k∈s

xk

πk

=
∑
k∈U

xk. (11)

Balanced sampling generalises several well-known methods. For instance, if xk = πk,

then (11) is a fixed size constraint. It can be shown that, if the auxiliary variables are the
indicator variables of strata, a stratified sampling design is balanced on these indicator
variables.

However, it is often not possible to find a sample such that (11) holds, for exam-
ple, when the right-hand side of (11) is an integer. Hence, an exactly balanced design
often does not exist. For example, if x1 = 1, x2 = 1, x3 = 1, x1 = 5, and πk = 1/2, for
i = 1, 2, 3, 4, the balancing equation becomes∑

k∈s

2xk =
∑
k∈U

xk = 11, (12)

which cannot hold. The aim is to select an exact balanced sample if possible, and an
approximately balanced sample otherwise.

The name “cube method” comes from the geometrical representation of a sampling
design. A sample can be written as a vector s = (s1, . . . , sN) ∈ R

N of indicator variables
sk that take the value 1 if the unit is selected and 0 otherwise. Geometrically, each
vector s can be viewed as one of the 2N vertices of a N-cube in R

N . A design consists
in allocating a probability p(.) to each vertex of the N cube in such a way that the
expectation of s is equal to the inclusion probability vector π, that is,

E(s) =
∑
s∈S

p(s)s = π,

where π ∈ R
N is the vector of inclusion probabilities. Thus, selecting a sample consists

in choosing a vertex (a sample) of the N-cube that is balanced.
The balancing equations in (11) can also be written as∑

k∈U

aksk =
∑
k∈U

akπk with sk ∈ {0, 1}, k ∈ U,
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where ak = xk/πk, k ∈ U. The balancing equations define an affine subspace in R
N

of dimension N − p denoted Q. The subspace Q can be written as π + KerA, where
KerA = {u ∈ R|Au} and A = (a1 · · · an · · · aN).

It is possible to geometrically represent the situation when (12) does not hold. When
the vertices of the intersection between the cube and Q are also vertices of the cube, as in
Fig. 1, a balanced sample can be selected. When the vertices of the intersection between
the cube and Q are not vertices of the cube, as in Fig. 2, it is not possible to select an
exact balanced sample. In this situation, only an approximately balanced sample can be
selected (see Section 6.4).

6.3. The flight phase

The cube method is made up of two parts: the flight phase and the landing phase. The
flight phase, described inAlgorithm 1 below, is a random walk which begins at the vector
of inclusion probabilities and remains in the intersection of the cube and the constraint
subspace Q. This random walk stops at a vertex of the intersection of the cube and the
constraint subspace. There are several ways to implement this algorithm. Chauvet and

(000) (100)

(101)
(001)

(010) (110)

(111)(011)

Fig. 1. Fixed size constraint of size 2: an exact balanced sample always exists.

(000) (100)

(101)
(001)

(010) (110)

(111)(011)

Fig. 2. The balanced constraints are such that an exact balanced sample does not exist.
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Tillé (2006) proposed a fast algorithm whereby the calculation time increases linearly
with the population size.

Algorithm 1: Flight phase of the cube method

First initialize with π(0) = π.

Next, at time t = 1, . . . . , T,

1. Generate any vector u(t) = [uk(t)] �= 0 so that
(i) u(t) is in the kernel of matrix A
(ii) uk(t) = 0 if πk(t) is an integer.

2. Compute λ∗
1(t) and λ∗

2(t), the largest values so that
0 ≤ π(t) + λ1(t)u(t) ≤ 1,

0 ≤ π(t) − λ2(t)u(t) ≤ 1.

3. Compute π(t + 1) =
{
π(t) + λ∗

1(t)u(t) with a proba q1(t)

π(t) − λ∗
2(t)u(t) with a proba q2(t),

where q1(t) = λ∗
2(t)/{λ∗

1(t) + λ∗
2(t)} and q2(t) = 1 − q1(t)}.

6.4. Landing phase

The landing phase begins at the end of the flight phase. If a sample is not obtained at
the end of the flight phase, a sample is selected as close as possible to the constraint
subspace. At the end of the flight phase, Algorithm 1 stops on a vertex denoted π∗ of
the intersection between the cube and Q. It is possible to show that

card U∗ = card
{
k ∈ U|0 < π∗

k < 1
} = q ≤ p,

which means that the number of noninteger elements of π∗ is smaller or equal to the
number of balancing variables. The aim of the landing phase is to find a random sample
s so that E (s|π∗) = π∗ and which is almost balanced.

Two solutions can be used to select the sample. The first solution consists of enumer-
ating all the samples that are consistent with π∗, a sample s being consistent if sk = π∗

k

when π∗
k is an integer. Then, a cost C(s) is attached at each sample. This cost is equal

to zero when the sample is balanced and which increases when the sample moves away
from the subspace Q. Deville and Tillé (2004) proposed several C(s). By a method of
linear programming, it is possible to find a sampling design on the consistent samples
that satisfies the inclusion probability π∗ and which minimizes the average cost. Finally,
a sample is selected at random, following this sampling design. This method can be
used with a number of balancing variables that are less than 15 because it is necessary
to enumerate the 215 samples.

The second method can be used when the number of auxiliary variables is too large
for the solution to be obtained by a simplex algorithm. At the end of the flight phase, an
auxiliary variable can be dropped out. Next, one can return to the flight phase until it is
no longer possible to “move” within the constraint subspace. Thus, the constraints are
successively relaxed until the sample is selected.
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Two-Phase Sampling

Jason C. Legg and Wayne A. Fuller

1. Introduction

Two-phase sampling is typically used when it is very expensive to collect data on the
variables of interest, but it is relatively inexpensive to collect data on variables that are
correlated with the variables of interest. For example, in forest surveys, it is very difficult
and expensive to travel to remote areas to make on-ground determinations. However,
aerial photographs are relatively inexpensive and determinations on, say, forest type are
strongly correlated with ground determinations (see Breidt and Fuller, 1993; Schreuder
et al., 1993).

Two-phase sampling was called double sampling by Neyman (1938) in the seminal
article. Neyman states that the problem was posed to him at the U.S. Department of
Agriculture. A survey was to be conducted to estimate the total of a characteristic y.
The determinations were very costly, but another variable, say x, was known to be
correlated with y and was cheap to observe. Neyman’s solution was to spend some
of the available funds to make many cheap observations, divide the large sample into
groups (second-phase strata) based on observed x’s, and select a sample from each of
the groups.

To develop a formal description of two-phase sampling, let UN denote the set of
indices for the finite population containing indices 1 to N. Let FN be the finite pop-
ulation of all elements indexed in UN . An initial, often large, sample of size n1N is
selected from FN . Let A1N be the set of indices in the first-phase sample. A second-
phase sample of size n2N is selected from A1N . Let A2N be the set of indices in the
second-phase sample. Often, only x is observed on elements in A1 and both x and y are
observed for elements in A2. For large sample approximations, we assume a sequence
of finite populations and samples indexed by N, where each FN is a sample from an
infinite superpopulation with finite eighth moments. The subscript of N will often be
suppressed.

In Neyman’s original formulation, the vector xi = (x1i, . . . , xGi) is the vector of
indicators for G groups, where the groups are also called second-phase strata. Let the
first-phase sample be selected with inclusion probabilities π1i = Pr(i ∈ A1|FN) and let
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the first-phase weights be w1i = π−1
1i . Let

x1 = N−1
∑
i∈A1

w1ixi

=: (x11, . . . , x1G)

(1)

be the mean of x from the first phase. The mean x1 estimates the fraction of the popula-
tion in the groups. The second-phase sample in Neyman’s problem is selected by taking
samples within each group. Let the conditional second-phase inclusion probability for
element i be π2i|1i = Pr(i ∈ A2|i ∈ A1, FN) and the conditional second-phase weight
be w2i|1i = π−1

2i|1i. An estimator of the mean for y is

y2,st = N−1
G∑

g=1

∑
i∈A2g

w2i|1iw1iyi, (2)

where A2g is the set of indices for the second-phase sample in group g. Estimator (2)
can be written as

y2,st =
G∑

g=1

x1gy2g, (3)

where

y2g =
⎛⎝∑

i∈A1g

w1i

⎞⎠−1 ∑
i∈A2g

w2i|1iw1iyi, (4)

and A1g is the first-phase sample in group g. The form (3) is that of the usual stratified
mean estimator with the population group sizes replaced by first-phase estimators.
Estimator (2) was named the double expansion estimator (DEE) by Kott and Stukel
(1997).

1.1. Double expansion estimator

The DEE is the building block for more complicated two-phase estimators. The DEE
for a total is

T̂y,2 =
∑
i∈A2

w2i|1iw1iyi. (5)

The DEE is not the standard Horvitz–Thompson estimator because π2i|1iπ1i is not, in
general, the same as π2i = Pr(i ∈ A2|FN). Often, π2i is unknown. If π2i|1i depends
on A1, then the composition of all first-phase samples is needed to determine π2i.
However, conditional on A1, The DEE is a Horvitz–Thompson estimator for the first-
phase Horvitz–Thompson total estimator

T̂y,1 =
∑
i∈A1

w1iyi. (6)
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The properties of the DEE are derived by applying the properties of Horvitz–Thompson
estimators conditional on A1. The DEE is unbiased because

E{T̂y,2|FN} = E{E[T̂y,2|A1, FN ]|FN} = E{T̂y,1|FN} = Ty, (7)

where Ty is the population total for y. The variance of the DEE is often expressed as

V {T̂y,2|FN} = E{V [T̂y,2|A1, FN ]|FN} + V {E[T̂y,2|A1, FN ]|FN}
= E{V [T̂y,2|A1, FN ]|FN} + V {T̂y,1|FN}.

(8)

The first term on the right side of (8) can be estimated using the Horvitz–Thompson
variance for a sample from A1 of w1iyi with inclusion probabilities of π2i|1i. Denote
this estimated conditional variance by V̂ {T̂y,2|A1, FN}. Using the arguments used to
construct the total estimator, an estimator of the Horvitz–Thompson first-phase variance
estimator is

V̂ {T̂y,1|FN} =
∑
i∈A2

∑
j∈A2

π−1
2ij|1ijπ

−1
1ij (π1ij − π1iπ1j)π

−1
1i yiπ

−1
1j yj, (9)

where π2ij|1ij = Pr{(i, j) ∈ A2|(i, j) ∈ A1, FN}. See Särndal et al. (1992, Chapter 9).
A second approach to variance estimation is to estimate each of the two terms of (8).
Typically, V {T̂y,1|FN} is more difficult to estimate than the conditional variance. We
illustrate estimation of V {T̂y,1|FN} using method of moments estimators.

Example Suppose the first-phase sample is a stratified random sample with H strata,
the first-phase sample is stratified into G strata, and a second-phase sample is selected
using a stratified random sample design. Then,

V {T̂y,1|FN} =
H∑

h=1

Nh(Nh − nh)n
−1
h S2

yh, (10)

where

S2
yh = (Nh − 1)−1

∑
i∈Uh

(yi − yNh)
2, (11)

yNh is the population mean for stratum h, Uh is the set of indices in stratum h, and Nh

is the number of elements in stratum h. An estimator of S2
yh is

Ŝ2
yh =

[∑
i∈B2h

wB2hi
(1 − wB2hi

)

]−1 ∑
i∈B2h

wB2hi
(yi − yB2,h)

2, (12)

where

wB2hi
=
⎛⎝∑

j∈B2h

w2i|1iw1i

⎞⎠−1

w2i|1iw1i, (13)
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yB2,h =
(∑

i∈B2h

w2i|1iw1i

)−1 ∑
i∈B2h

w2i|1iw1iyi, (14)

B2h = A1h

⋂
A2, and A1h is the set of indices in the first-phase sample in stratum h.

The estimator V̂ {T̂y,1|FN} is formed by substituting (12) into (10). A conditional
second-phase variance estimator is the variance estimator for the estimated total of
the sample of w1iyi. The conditional variance is

V {T̂y,2|A1, FN} =
G∑

g=1

n1g(n1g − n2g)n
−1
2g S2

1wy,g, (15)

where

S2
1wy,g =

∑
i∈A1g

(n1g − 1)−1(w1iyi − y1w,g)
2, (16)

y1w,g =
∑
i∈A1g

n−1
1g w1iyi, (17)

A1g is the portion of the first-phase sample in second-phase stratum g, n1g is the number
of elements in the first-phase sample in second-phase stratum g, and n2g is the sample
size in second-phase stratum g. The conditional variance estimator V̂ {T̂y,2|A1, FN} is
constructed by replacing the S2

1wy,g and y1w,g in (15) and (16) with their sample
estimators

Ŝ2
1wy,g = (n2g − 1)−1

∑
i∈A2g

(w1iyi − y2w,g)
2 (18)

and

y2w,g = n−1
2g

∑
i∈A2g

w1iyi. (19)

The sum of V̂ {T̂y,2|A1, FN} and V̂ {T̂y,1|FN} estimates V {T̂y,2|FN}. �
Variance estimation is considered further in Section 2.4. Also see Kott, 1990.

1.2. Costs for one- and two-phase designs

Two-phase sampling attempts to reduce the variance of the estimated total by using
the correlation between x and y in constructing a total estimator. However, two-phase
sampling is not always superior to one-phase designs. Given a fixed cost, selecting a
first-phase sample reduces the number of observations on the response variable y. The
relative cost between first- and second-phase observations, correlation between first-
and second-phase observations, and the variance of the response variable determines
whether a two-phase design is superior to a single-phase design.

For example, consider a first-phase sample selected using simple random sampling
without replacement. Let the second-phase sample be a stratified random sample with
proportional allocation. Let σ2

y be the population variance of y and σ2
w be the within
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second-phase strata variance of y. Let σ2
b = σ2

y − σ2
w. Assume each first-phase

observation costs c1 and each second-phase observation costs c2. Ignoring the first-
phase finite population correction,

V {N−1T̂y,2|FN} = n−1
1 σ2

y + (n−1
2 − n−1

1 )σ2
w = n−1

1 σ2
b + n−1

2 σ2
w. (20)

For a fixed total cost of C,

n1 =
(

c1 + c2

√
c−1

2 c1σ
−2
b σ2

w

)−1

C (21)

and

n2 = c−1
2 (C − c1n1) (22)

minimize (20).
Suppose we have 10,000 units to spend, the cost for a first-phase unit is one, the

cost for observing y is three, σ2
y = 100, and σ2

w = 40. The n1 of (21) is 4141 and the
n2 of (22) is 1953. The two-phase variance in (20) is 0.035. As an alternative design,
consider selecting a simple random sample of size 3333 and observing y on the selected
sample. The variance of the alternative design is 0.030. Therefore, the proposed two-
phase design is less efficient than using only the first-phase design as a single phase. In
order for two-phase sampling to be beneficial, the within strata variance must be smaller
or (and) c−1

2 c1 must be smaller than those of the example.
Suppose the cost of observing y is increased from 3 to 100. Then the optimal sample

sizes are n1 =1100 and n2 =89. The two-phase variance of the mean estimator is 0.504.
If we use the simple random sample design, the variance of the mean is one. Therefore,
the two-phase design is nearly twice as efficient as simple random sampling. If we keep
the cost of observing y at three and decrease σ2

w to 20, the optimal two-phase sample
sizes are n1 = 5359 and n2 = 1547, the two-phase variance in (20) is 0.028, and the
variance of the simple random sample mean is 0.030.

1.3. Uses for the two-phase sampling structure

Two-phase designs and estimators were introduced as a way to reduce the variance of
estimated parameters relative to single-phase sampling. The two-phase framework can
be applied in missing data problems, sampling at multiple occasions, and situations
without a good frame. For missing data in a survey, the first-phase sample is analogous
to the target sample. The second-phase sample is the set of elements in the target
sample that are observed, but the inclusion probabilities for the second-phase design are
generally unknown and need to be estimated. A common assumption is that the second-
phase sample is a stratified Bernoulli sample, where the strata are defined by known
characteristics of the elements in the target sample.

For studies with multiple time observations, the first-phase sample can be considered
to be the set of all units that will be observed at some time point. The sample observed
at a particular time is a second-phase sample from that of first-phase sample. Estimators
can be constructed that combine two-phase estimators across the two-phase samples.
For example, see Breidt and Fuller (1999).
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When studying rare, remote, or otherwise previously uncataloged populations, good
quality sampling frames may not exist. A large sample can be used to identify a set
of units in the population. Then a sample can be selected from the identified set. One
approach is to use an area sample for the first phase, listing all units contained within
the selected areas. A second-phase sample is then selected using the list.

2. Using auxiliary information in estimation

The DEE uses first-phase information in the conditional Horvitz–Thompson estimator.
The observations on x can be used to construct other estimators. Ratio and regression
estimators used in single-phase sampling have analogous two-phase forms. Typically,
two-phase estimators are constructed by replacing known population quantities with
their corresponding first-phase estimators. We shall focus on the two-phase regression
estimator, which includes the two-phase version of the ratio estimator as a special case.
Other forms of estimators have been suggested. See Shabbir and Gupta (2007) and
Samiuddin and Hanif (2007).

2.1. Reweighted expansion estimator

In stratified sampling at the second phase, an important estimator is

T̂y,r,2 =
G∑

g=1

N̂1gy2rg, (23)

where g = 1, 2, . . . , G are the second-phase strata,

N̂1g =
∑
i∈A1g

w1i (24)

and

y2rg =
⎛⎝∑

i∈A2g

w1i

⎞⎠−1 ∑
i∈A2g

w1iyi. (25)

Estimator (23) is called the reweighted expansion estimator (REE) by Kott and Stukel
(1997). Variance estimation for the REE has been studied by Rao and Shao (1992) and
Kim et al. (2006). We call estimators of the form (25) Hájek mean estimators.

Under mild assumptions (Kim et al., 2006), the variance of the REE is

V {T̂y,r,2|FN} = V {T̂y,1|FN} + E

⎧⎨⎩
G∑

g=1

n2
1g(r

−1
g − n−1

1g )S2
1we,g|FN

⎫⎬⎭+ o(n−1
1 N2),

(26)

where rg = π2i|1in1g is the second-phase sample size for stratum g,

S2
1we,g = (n1g − 1)−1

∑
i∈A1g

w2
1ie

2
ig, (27)
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eig = yi − yNg, and yNg is the population mean of y in group g. In the proof of (26),
it is assumed that π2i|1i is constant for all i ∈ A1g. The REE is a weighted sum of ratio
estimators, therefore the REE is subject to ratio bias. For equal probability first-phase
samples, the REE is equal to the DEE and therefore the REE is unbiased (Cochran,
1977, Chapter 12). Under the assumptions used in computing the order of the variance
approximation, the bias is negligible in large samples. The variance of the REE is small
when the y’s within a group are homogeneous, whereas the variance of the DEE is small
when w1iyi’s are homogeneous within a group.

2.2. Two-phase regression estimator

Let the vector xi be observed for all elements in A1. In the case of the stratified estimator
for a stratified second-phase sample, xi is a vector of stratum indicators. A two-phase
regression estimator of the mean is

y2,reg = y2π + (x1π − x2π)β̂2π,y,x, (28)

where

(y2π, x2π) =
(∑

i∈A2

w2i|1iw1i

)−1∑
i∈A2

w2i|1iw1i(yi, xi), (29)

x1π =
(∑

i∈A1

w1i

)−1∑
i∈A1

w1ixi, (30)

β̂2π,y,x =
(∑

i∈A2

w2i|1iw1i(xi − x2π)′(xi − x2π)

)−1∑
i∈a2

w2i|1iw1i(xi − x2π)′yi,

(31)

and w2i|1i = π−1
2i|1i. The two-phase regression estimator adjusts the direct estimator, y2π,

by a multiple of the difference between first- and second-phase estimators for the mean
of x. An alternative to the regression coefficient β̂2π,y,x is

β̂2π,egls,x,y = [V̂ (x2π|FN)]−1Ĉ(x2π, y2π|FN), (32)

where the two estimators on the right side of (32) are design consistent estimators for
V(x2π|FN) and C(x2π, y2π|FN), respectively. Often, β̂2π,egls,x,y is difficult to evaluate.

2.3. Approximations for two-phase regression estimators

Since the two-phase regression estimator is a nonlinear function of first- and
second-phase DEEs, we consider a Taylor linearization approximation to the error in
y2,reg. To obtain the order of the approximation and a limiting distribution, we adopt
the population and sample framework of Fuller (1975). Let {yi, xi} be a sequence of iid
random variables with 4 + δ moments. Let {FN, A1N} be a sequence of populations and
first-phase samples. Suppose the first- and second-phase designs are such that

E{|x2π − xN |2|FN} = Op(n−1
1 ), (33)

E{|x1π − xN |2|FN} = Op(n−1
1 ), (34)
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and

E{|β̂2π,y,x − βy,x,N |2|FN} = Op(n−1
1 ), (35)

where xN is the finite population mean and

βy,x,N =
[

N∑
i=1

(xi − xN)′(xi − xN)

]−1 N∑
i=1

(xi − xN)′(yi − yN). (36)

Then,

y2,reg − yN = e2π + (x1π − xN)βy,x,N + Op(n−1
1 ), (37)

where

e2π =
(∑

i∈A2

w2i|1iw1i

)−1∑
i∈A2

w2i|1iw1iei (38)

and eNi = yi − yN − (xi − xN)βy,x,N.

The variance of the approximating variable in (37) is

V {e2π+(x1π−xN)βy,x,N |FN} = V {e2π|FN} + V {(x1π − xN)βy,x,N |FN}
(39)+ 2C{e2π, (x1π − xN)βy,x,N |FN}.

If the regression coefficient β̂2π,y,x is a consistent estimator of

βGLS = [V(x1π − xN)]−1C(y1π, (x1π − xN)′), (40)

the covariance term is zero. Also, the covariance is zero if both phases are stratified
samples with the same sampling units and if indicators for the first-phase strata are
elements of x.

2.4. Variance estimation

We consider two approaches for estimating the variance of y2,reg. In the first approach,
the terms in the variance of the linearized variance are replaced with sample quantities.
The second variance estimator is a replication variance estimator. A replication variance
estimator is useful when the data set is released to practitioners and when different
sampling units are used at different phases, whereas the linearization variance is often
easier to compute when only a few quantities are of interest.

A variance estimator for y2,reg − yN when C{e2π, (x1π − xN)βy,x,N |FN} is approxi-
mately zero is

V̂ {y2,reg|FN} = β̂′
2π,y,xV̂1{x1π|FN}β̂2π,y,x + V̂ {e2π|FN}, (41)

where V̂1{x1π|FN} is an estimator of the variance of the first-phase mean of x and
V̂ {e2π|FN} is an estimator of the variance of the second-phase mean of ei con-
structed with the estimated errors êi = yi − xiβ̂2π,y,x. The construction of V̂ {e2π|FN}
requires the unconditional joint probabilities and can be difficult for some designs. In
some cases, it is reasonable to treat the second-phase sampling as Poisson sampling.
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Then, the unconditional joint probability, πij , is the first-phase joint probability, π1ij

multiplied by the product π2i|1iπ2j|1j . Alternatively, one can use the variance expres-
sion for the DEE to construct V̂ {e2π|FN}. For the variance of the DEE, one approxi-
mates E[V {e2π|A1, FN}|FN ] with an estimator of the conditional second-phase vari-
ance V̂ {e2π|A1, FN} and adds an estimator of V {e1π|FN}. See Särndal et al. (1992, pp.
347–350).

There are as many consistent replication variance estimators for the variance of
the regression estimator as there are replicate variance estimators for the first-phase
estimated mean of x. Let a replication variance estimator for the variance of the first-
phase total estimator of x be

V̂1{T̂x,1} =
L∑

k=1

ck

(
T̂

(k)

x,1 − T̂x,1

)′(
T̂

(k)

x,1 − T̂x,1

)
, (42)

where T̂
(k)

x,1 is the kth replicate of the estimated total, T̂x,1 is the Horvitz–Thompson
first-phase total estimator, L is the number of replicates, and ck, k = 1, 2, . . . , L, are
constants determined by the replication method and sample design. Note that the jack-
knife, bootstrap, and balanced repeated replication procedures have replication variance
estimators of the form (42). Assume the first-phase replication variance estimator is
design consistent,

E

{[(
V {T̂z,1|FN}

)−1
V̂1{T̂z,1} − 1

]2

|FN

}
= op(1), (43)

where z is any variable with bounded fourth moments. Let a replicate for the two-phase
sample be created from a replicate of the first-phase estimator by applying the first-phase
replicate creation rules to the second-phase elements. Thus, if a first-phase replicate is
created by deleting a first-phase primary sampling unit, all second-phase units that were
in the removed first-phase unit are removed from the second-phase sample. Then, a
replicate of the two-phase regression estimator for the mean is

y
(k)

2,reg = y
(k)

2π + (x
(k)

1π − x
(k)

2π )β̂
(k)

2π,y,x, (44)

where (y
(k)

2π , x
(k)

2π , β̂
(k)

2π,y,x) is computed using the second-phase sample of replicate k,

and x
(k)

1π is computed from the first-phase sample of replicate k. The replicate variance
estimator is

V̂2{y2,reg} =
L∑

k=1

ck

(
y

(k)

2,reg − y2,reg

)2
, (45)

where the ck is that of (42).
Under mild assumptions on the first-phase design and given second-phase fixed-rate

stratified sampling, the replication variance estimator satisfies

V̂2{y2,reg} = V {y2,reg|FN} − N−2
N∑

i=1

w2i|1i(1 − w2i|1i)e
2
i + op(n−1

1N), (46)
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where ei = yi − yk − (xi − xk)βN . The second term on the right side of (46) is small
relative to V {y2,reg|FN} if the first-phase sampling rate is small. The second term on
the right side of (46) can be estimated using a DEE replacing ei with êi or by creating
additional replicates.

To prove (46), it is convenient to consider the second-phase sample to have been
identified prior to selecting the first-phase sample. Fay (1996) describes this concep-
tual framework for the case of missing data. See Shao and Steel (1999) and Rao and
Shao (1992) for applications of this framework. Let {a2i} be the second-phase sample
indicators, where a2i = 1 if element i is to be in the second-phase sample and a2i = 0
otherwise. Let the first-phase sample be selected from the population of (a2i, a2iyi, a2ixi)

vectors. Write the variance as

V1{y2,reg|FN} = E{V1[y2,reg|(a2, FN)]|FN} + V {E[y2,reg|(a2N, FN)]|FN},
(47)

where a2N is the N dimensional vector of second-phase sample indicators. By (43), for
second-phase Poisson sampling, and under regularity conditions, the first term on the
right side of (47) is consistent for the variance of y2,reg. The second term on the right
side of (47) is responsible for the second term on the right of the equality in (46). Using
the arguments of Hájek (1960), result (46) for Poisson sampling can be extended to
stratified second-phase sampling. Kim et al. (2006) provide details. for the DEE and
REE.

2.5. A central limit theorem

Consistent variance estimation requires moments for the variables and some restric-
tions on the design. Additional assumptions are required to obtain a central limit the-
orem for two-phase estimators. Let {(yi, xi)} be a sequence of iid random variables
with fifth moments, where the xi contains a set of G second-phase stratum indicators.
Let {Fk, A1k} be a sequence of populations and first-phase samples such that Fk ⊂
Fk+1, A1k ⊂ A1,k+1, and Fk contain the first Nk elements of {yi, xi}. Simple random
sampling, Poisson sampling, and stratified random sampling can satisfy the postulated
framework.

Assume[
V1{(y1π, x1π)|Fk}

]−1/2 {(y1π, x1π) − (yk, xk)}|Fk
L−→ N(0, I) a.s., (48)

where the almost sure convergence is with respect to the sequence of populations and
samples. Assume the first-phase probabilities satisfy

KL < n−1
1k Nkπ1ik < KM, (49)

where KL and KM are positive constants. To ensure that the variance of the second-phase
mean converges almost surely, assume the first-phase design is such that

lim
k→∞

N−1
k

∑
i∈A1k

π−1
1i (1, xiyi, y

2
i )

′(1, xiyi, y
2
i ) = H a.s., (50)
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for some matrix of constants H . Then,[
V1{y2,st|Fk}

]−1/2
(y2,st − yk)

L−→ N(0, 1), (51)

where y2,st is defined in (2) and N−2
k

[
V1{y2,st|Fk}

]
is the variance of the DEE in (5).

The variance in (51) can be replaced by a consistent estimator such as the replication
variance estimator. The central limit theorem can be extended to the regression estimator
since the regression estimator is a smooth function of first- and second-phase means.
See Legg (2006) for an extension to a generalized least squares estimator. See Chen and
Rao (2006) for a proof under alternative assumptions.

3. Three-phase sampling

The ideas and estimators for two-phase sampling can be extended to three or more phases.
Let A3 be the set of indices selected from A2 with conditional inclusion probabilities
π3i|2i = Pr(unit i ∈ A3|unit i ∈ A2

⋂
A1). Let w3i|2i = π−1

3i|2i. The DEE is generalized
to a triple expansion estimator by multiplying the double expansion weight by w3i|2i to
obtain a three-phase expansion estimator for a total,

T̂y,3 =
∑
i∈A3

w3i|2iw2i|1iw1iyi. (52)

The two-phase regression estimator can be extended to three or more phases by
using a sequence of regression estimators. Suppose (1, u1) is observed on the first-phase
sample, (1, u, x) is observed on the second-phase sample, and (1, u, x, y) is observed
on the third-phase sample. The first- and second-phase samples can be used to construct
a regression estimator for the mean of x. Let

x2,reg = x2π + (u1π − u2π)β̂2π,x,u, (53)

where

β̂2π,x,u =
[∑

i∈A2

(ui − u2π)′w2i|1iw1i(ui − u2π)

]−1∑
i∈A2

(ui−u2π)′w2i|1iw1i(xi−x2π),

(54)

x2π and u2π are second-phase Hájek means, and u1π is a first-phase Hájek mean.
A regression coefficient for the regression of (u, x) on y using third-phase observa-
tions is then

β̂3π,y,(u,x) =
[∑

i∈A3

d ′
3iw3i|2iw2i|1iw1id3i

]−1∑
i∈A3

d ′
3iw3i|2iw2i|1iw1i(yi − y3π),

(55)

where d3i = (ui − u3π, xi − x3π) and u3π, x3π, and y3π are three-phase Hájek means.
The three-phase regression estimator for the mean of y is

y3,reg = y3π + (u1π − u3π, x2,reg − x3π)β̂3,y,(u,x). (56)
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The variance of the three-phase regression estimator can be expressed using condi-
tional expectations and variances. The variance of y3,reg is

V {y3,reg|FN} = V {E[E(y3,reg|FN, A1, A2)|FN, A1]|FN}
+E{V [E(y3,reg|FN, A1, A2)|FN, A1]|FN}
+E{E[V(y3,reg|FN, A1, A2)|FN, A1]|FN}.

(57)

The first two terms on the right side of the variance expression are difficult to estimate
since they involve variances of unobserved means. As with the two-phase variance
estimator, under certain designs, forms for the first two terms in (57) exist for which
method of moments estimators from the third-phase sample can be used. The third term
in the variance expression can be directly estimated using the conditional third-phase
variance. Alternatively, variance estimators can be formed by extending the replication
variance estimator to three phases or by estimating the terms in a Taylor linearization
expression for (57).

For a linearization procedure, write the error in y3,reg as

y3,reg − yN = e3π + (u1π − uN, a2π)β3,y,(u,a),N + Op(n3)
−1, (58)

where aN = 0,

eNi = yi − yN − (ui − uN, xi − xN)β3,y,(u,a),N, (59)

aNi = xi − xN − (ui − uN)β2,x,u,N, (60)

and β3,y,(u,a),N and β2,x,u,N are population regression coefficients. If the three residual
means, e3π, u1π, and a2π, are uncorrelated,

V {y3,reg − yN |FN} = V {e3π|FN} + β′
y,u,NV {u1π|FN}βy,u,N

+β′
y,a,NV {a2π|FN}βy,a,N,

(61)

where β′
y,(u,a),N = (β′

y,u,N, β′
y,a,N). For variance estimation, the regression coefficients

and residuals are replaced by their sample estimators. As with two-phase variance
estimation, Poisson sampling approximations or the conditional variance approximation
from the DEE can be applied.

For more than three phases, one can create a regression estimator for each of the
auxiliary variables using the largest data set for which the auxiliary variable is fully
observed. The regression estimator for the mean of y is then the Hájek mean estima-
tor for y adjusted by the differences between the regression estimators and the Hájek
mean estimators of the auxiliary variables. An important special case of the three-phase
estimator is that in which the first-phase sample is the finite population.

4. Two-phase estimation illustration

We use data from the U.S. National Resources Inventory (NRI) to illustrate some statis-
tics associated with two-phase sampling. The NRI is conducted by the U.S. Natural
Resources Conservation Service in cooperation with the Iowa State University Center
for Survey Statistics and Methodology. The survey is a panel survey of land use and was
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conducted in 1982, 1987, 1992, 1997, and has been conducted yearly since 2000. Data
are collected on soil characteristics, land use, land cover, wind erosion, water erosion,
and conservation practices. The sample is a stratified area sample of the United States,
where the primary sampling units are areas of land called segments. Data are collected
for the entire segment on such items as urban lands, roads, and water. Detailed data
on soil properties and land use are collected at a random sample of points within the
segment. The sample for 1997 contained about 300,000 segments with about 800,000
points. The yearly samples are typically about 70,000 segments. See Nusser and Goebel
(1997) for a more complete description of the survey.

The data in Table 1 are second-phase data for a county in Missouri for the year
2003. In Missouri, segments are defined by the Public Land Survey System. Therefore,
most segments are close to 160 acres in size, but there is some variation in size due to
variation in sections defined by the Public Land Survey System and due to truncation
associated with county boundaries. The segment size in acres is given in column
three of the table. Typically three points are observed in each segment. The points are
classified using a system called broaduse, where example broad uses are urban land,
cultivated cropland, pastureland, and forestland. Some of the broad uses are further
subdivided into categories called coveruses, where corn, cotton, and soybeans are some
of the coveruses within the cropland broaduse. In this example, we estimate acres of
cultivated cropland. Segments were placed into first-phase strata based on location.
We aggregated several first-phase strata to form the three first-phase strata identified

Table 1
Second-phase sample data

1997 2003 1997
Segment Cultivated Cultivated Federal

h g Size w1i w2i|1i Cropland Cropland

1 1 161 33 2.200 53.67 0.00 0.00
1 1 148 33 2.200 49.33 49.33 0.00
1 1 163 33 2.200 0.00 0.00 0.00
1 2 164 33 3.400 109.33 109.33 0.00
1 2 161 33 3.400 0.00 0.00 107.33
1 3 164 33 4.875 109.33 109.33 0.00
1 3 161 33 4.875 53.67 53.67 0.00
1 3 323 33 4.875 107.67 107.67 0.00
1 4 167 33 3.250 0.00 0.00 0.00
2 1 165 35 2.200 110.00 55.00 0.00
2 3 154 35 4.875 102.67 102.67 0.00
2 3 161 35 4.875 161.00 161.00 0.00
2 3 159 35 4.875 53.00 0.00 0.00
2 3 163 35 4.875 108.67 108.67 0.00
3 1 160 26 2.200 0.00 0.00 0.00
3 2 161 26 3.400 0.00 0.00 0.00
3 2 164 26 3.400 54.67 54.67 0.00
3 2 164 26 3.400 0.00 0.00 0.00
3 3 156 26 4.875 52.00 52.00 0.00
3 4 165 26 3.250 0.00 0.00 110.00
3 4 100 26 3.250 0.00 0.00 50.00
3 4 176 26 3.250 0.00 0.00 0.00
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in column one of the table. The 1997 sampling weights are given in column four of
the table. The inverses of the first-phase weights are small. Therefore, the first-phase
finite population corrections can be ignored. The estimated segment acres of cropland
for 1997 are given in column six. This number is the fraction of the points that are
cultivated cropland multiplied by the segment size.

The 2003 NRI sample is a stratified second-phase sample selected from the 1997
sample. The segments in the 1997 sample were placed in strata for the second-phase
(2003) sample on the basis of characteristics such as broaduses in the segment. For the
purposes of this example, we use four second-phase strata. The second-phase stratum
of segment i is given in column two of Table 1. The population and sample segment
counts for the first-phase sample are given in Table 2. The (n1g, n2g) for the second-phase
strata are (11, 5), (17, 5), (39, 8), and (13, 4) for g = 1, 2, 3, and 4, respectively. The
objective is to estimate the total acres of cultivated cropland for the county in 2003 and
the change in acres of cultivated cropland from 1997 to 2003. Estimates of totals are
given in thousands of acres.

The DEE estimate of 2003 cultivated cropland is 138.6 thousand acres. We compute
an estimate of the variance of the DEE following the example in Section 1.1. The vector
of first-phase estimated population variances computed by (12) is (Ŝ2

y1, Ŝ2
y2, Ŝ2

y3) =
(2.278 × 10−3, 3.190 × 10−3, 0.599 × 10−3). The estimated variance of the first-
phase total is 204.1. The estimated variances defined in (16) are (Ŝ2

1wy,1, Ŝ2
1wy,2, Ŝ2

1wy,3,

Ŝ2
1wy,4) = (0.957, 2.495, 3.112, 0.000). Then, V̂ {T̂2,y|A1, FN} = 584.7, and the stan-

dard error of the DEE is 28.1. The DEE of change in acres of cultivated cropland from
1997 to 2003 is −17.2 with a standard error of 10.5.

The REE for 2003 cultivated cropland is computed as a two-phase regression esti-
mator, where the vector of auxiliary variables is the vector of second-phase stratum
indicators. That is,

xgi =
{

1 if segment i is in second-phase stratum g

0 otherwise,
(62)

for g = 1, 2, 3, 4. Let xi be (x1i, x2i, x3i, x4i). The estimated regression coefficient is

β̂2,y,x = (∑i∈A2
w2i|1iw1ix

′
ixi

)−1∑
i∈A2

w2i|1iw1ix
′
iyi

= (22.2, 34.9, 88.0, 0.0)′,
(63)

where β̂2,y,x is the vector of second-phase stratum weighted means. The first-phase total
estimator for x is (366, 519, 1282, 420) segments. The REE for 2003 cultivated cropland
is 139.0. To compute the variance of the REE, we treat the REE as an estimator of the

Table 2
First-phase counts

Stratum Nh n1h n2h

1 990 30 9
2 1155 33 5
3 442 17 8
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first-phase Horvitz–Thompson total. Let

êri = yi − xiβ̂2,y,x (64)

be the residual from the two-phase regression. The variance estimator is

V̂ {T̂y,r,2} = V̂ {T̂y,1|FN} + V̂ {T̂e,r,2|A1, FN}, (65)

where T̂e,r,2 is the DEE of êri. The V̂ {T̂y,1|FN} component is the same as for the DEE. The
V̂ {T̂e,r,2|A1, FN} component is estimated using the same procedure as for the conditional
variance component in the DEE variance estimator replacing w1iyi − y2w,g with w1iêri.

The estimate V̂ {T̂e,r,2|A1, FN} is 739.4, which gives a standard error of the REE of 27.2.
For change in cultivated cropland, the REE is −17.4 and the standard error of the REE is
10.4. For this very small illustration, there is a modest difference between the standard
errors of the REE and the DEE.

The estimated segment acres of cultivated cropland in 1997 is highly correlated with
the estimated segment acres of cultivated cropland in 2003. Therefore, we consider
the regression estimator formed by adding 1997 cultivated cropland to the x vector
used in the REE. The first-phase total estimate for cultivated cropland in 1997 is 153.7,
and the regression estimate for cultivated cropland in 2003 is 136.2. The variance is
computed using the same procedure used for the REE, where residuals for the expanded
regression are used for the conditional variance component. The standard error for the
2003 cultivated cropland regression estimator is 16.7. For change in cultivated cropland,
the regression estimate is −17.5 with a standard error of 10.3. Only three segments in
the second-phase sample have a change in cultivated cropland. Therefore, including
1997 cultivated cropland in the regression model affects estimates of change much less
than it affects estimates of level.

The acres of federal land and total acres in the county are known and used as
controls in the NRI. For our county, the total acres of federal land is 27.2 and the total
acres is 437.1. We incorporate the control totals into the regression estimator using the
three-phase regression procedure. The first-phase is the population, but the calculations
are a special case of three-phase estimation. We first create a regression estimate of the
totals of the x vector composed of second-phase stratum indicators and 1997 cultivated
cropland. Let u be the vector of first-phase stratum indicators, segment acres, and
federal acres. Using first-phase data and weights w1i, we construct the regression
estimator of the total of x using u as the vector of auxiliary variables. The estimated
totals are (392, 520, 1282, 393, 156.9), where 156.9 is the estimate for 1997 acres
of cultivated cropland. Let z be the vector of second-phase stratum indicators, 1997
cultivated cropland, segment acres, and federal acres. Using the second-phase sample
and weights w2i|1iw1i, we regress y on z to obtain β̂3π,y,z. The regression estimate for
2003 cultivated cropland is T̂y,reg,3 = (392, 520, 1282, 393, 156.9, 437.1, 27.2)(−29.98,
−7.00, −15.59, −6.07, 1.02, 0.038, 0.0075)′ = 138.8.

We construct a variance estimator that is comparable to that used for the two-phase
regression estimators. Because the regression estimator is used for the first-phase totals,
the relevant variance for the complete first-phase sample is that of the deviation from
the regression of y on u. Let ê1reg,i be the residual from regressing y on u using second-
phase data and w2i|1iw1i weights. The relevant deviation for the second-phase conditional
variance is the residual from regressing y on z using w2i|1iw1i weights, denoted by ê2reg,i.



70 J. C. Legg and W. A. Fuller

Then, an estimator for the variance of T̂y,reg,3 is

V̂ {T̂y,reg,3|FN} = V̂ {T̂e,1reg,1|FN} + V̂ {T̂e,2reg,2|A1, FN}, (66)

where T̂y,reg,3 is the estimator of the total, V̂ {T̂e,1reg,1|FN} is the estimated variance of
the first-phase total of e, and V̂ {T̂e,2reg,2|A1, FN} is the estimated conditional variance
of the second-phase total of e,

ei = yi − uiβ1, (67)

and

β1 =
(∑

i∈U

u′
iui

)−1∑
i∈U

u′
iyi. (68)

The first-phase component for 2003 cultivated cropland is

V̂ {T̂e,1reg,1|FN} =
∑

i∈A2

[
(n2gi)(n2gi − 1)−1(n2 − 3)(n2 − 5)−1

]
w2i|1iw

2
1iê

2
1reg,i

= 166.2, (69)

where n2gi is the second-phase stratum sample size for the stratum containing seg-
ment i and n2 is the sum of the second-phase stratum sample sizes. The estimator
is nearly equal to the variance estimator obtained from using only first-phase strata.
The V̂ {T̂e,2reg,2|A1, FN} component is constructed in the same manner as the condi-
tional variance for the REE with ê2reg,i in place of êr,i. For 2003 cultivated cropland,
V̂ {T̂e,2reg,2|A1, FN} = 73.7 and the standard error of T̂y,reg,3 is 15.5. The inclusion of
the control variables in the regression model reduces the variance only slightly. The
segment acres and federal land provide little information on 2003 cultivated cropland
beyond that in 1997 cultivated cropland. However, the regression weights from the
three-phase regression give correct total “estimates” for total acres and federal acres.
Also, the second-phase regression weights reproduce the first-phase estimate of 1997
cultivated cropland.
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Multiple-Frame Surveys

Sharon L. Lohr

1. What are multiple-frame surveys, and why are they used?

Suppose you want to take a survey of statisticians in the United States. One approach
might be to use the membership directory of the American Statistical Association (ASA)
as a sampling frame and to take a probability sample of the persons on the membership
list. Most of the persons contacted in this sample would likely be statisticians, so the
frame would be cost-effective for contacting statisticians. However, many statisticians
in the United States do not belong to the ASA, and you will have undercoverage of the
population of statisticians if you sample only from the ASA membership directory.

You could improve coverage by taking an additional sample from a second sampling
frame, such as the membership directory of the Institute of Mathematical Statistics
(IMS). Thus, you could take a probability sample from frame A (the ASA directory),
and independently take a probability sample from frame B (the IMS directory). The
two frames overlap, since many statisticians belong to both organizations. As shown in
Fig. 1, there are three population domains: domain a consists of the population units
that are in frame A but not in frame B, domain b consists of the population units in frame
B but not in frame A, and domain ab consists of the population units that are in both
frames A and B.

Frames A (the ASA membership directory) and B (the IMS membership directory)
have better coverage of the population but still do not include all statisticians. In this
case, a three-frame survey could be used, where frame C might be a frame of the entire
adult population. The population structure with three frames is shown in Fig. 2. This
multiple-frame design has four domains: domain c is the part of the population in the
complete frame C but not in either membership directory.

Since frame C contains the entire population, you might ask why you would go
to the extra work of taking a multiple-frame survey: why wouldn’t you just take a
sample from frame C? The answer is because of cost: frame C, containing the entire
population, is very expensive to sample from. Since most adults are not statisticians,
many sampling designs from frame C will yield very few statisticians. Frames A and B,
by contrast, are much less expensive to sample from. But they do not include the entire
population of interest. By combining samples from frames A, B, and C, you can exploit
the inexpensiveness of frames A and B while avoiding bias by including the missing
part of the population—domain c—in frame C.

71
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BA

ba ab

Fig. 1. Overlapping frames A and B and three domains.

A

B
C

c

bc

abc

ac

Fig. 2. Frame C contains the entire population; frames A and B overlap and are both contained in frame C.

There are several reasons to consider using a multiple-frame survey for data col-
lection. Multiple-frame surveys can greatly improve efficiency of data collection when
sampling a rare population. A rare population is a subgroup of interest that comprises
only a small part, usually 10% or less, of the full population. In the example discussed
above, statisticians are a small segment of the adult population; by supplementing the
general population survey with samples from the membership directories, the number
of statisticians in the data set is increased. A survey concerned with a specific population
such as persons with a rare disease may obtain a larger sample size by sampling from
additional frames that contain a high concentration of persons in the desired category.
Other methods used for sampling rare populations are discussed in Chapter 6.

Multiple-frame surveys can be used when different modes of data collection must
be used to reach segments of the population; for example, frame A in Fig. 1 might be a
frame of landline telephones and frame B might consist of cellular telephone numbers.
Hartley (1962), when introducing the theory of multiple-frame surveys, wrote that the
main reason to consider a multiple-frame survey is to reduce data collection costs while
still sampling from the entire target population:

In sample survey methodology one often finds that a frame known to cover
approximately all units in the population is one in which sampling is costly while
other frames (e.g. special lists of units) are available for cheaper sampling methods.
However, the latter usually only cover an unknown or only approximately known
fraction of the population. This paper develops a general methodology of utilizing
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aba

B
A

Fig. 3. Frame B is a subset of frame A.

any number of such frames without requiring any prior knowledge as to the extent of
their mutual overlap. (Hartley, 1962, p. 203)

The situation considered by Hartley (1962) is depicted in Fig. 3. This is the most
common situation for which multiple-frame sampling is used. Often, frame B is a list
frame; for example, in an agricultural survey, frame B might be a list of the large farms in
a country. The list may be out of date, however, and not include farms that were recently
established. In addition, the list will not include smaller agricultural holdings. Although
efficient data collection methods can be used in frame B, the incomplete coverage of
the population means that estimates of the total amount of land planted to soybeans
using only the sample from frame B will likely be too small. Using an area frame for
frame A gives complete coverage of farms in the country. In an area frame, the country
is divided into geographical areas and area segments are sampled. Interviewers travel
to each selected segment and collect data from every agricultural holding within the
boundaries of the segment. The area frame thus includes all farms in the country, but
data collection is much more expensive than in the list frame.

The U.S. Survey of Consumer Finances (Bucks et al., 2006) is one example of a
dual-frame survey that accords with Fig. 3. One sample (the frame A sample) is selected
from the U.S. population using an area frame with a stratified multistage sampling
design. However, the U.S. Federal Reserve Board is also interested in characteristics of
households who own investments such as tax-exempt bonds, and the sample from the
complete frame will likely contain few households who own rarer asset types. Thus,
a second sample is taken from a list frame (frame B) of records constructed from tax
return information.

1.1. Screening multiple-frame surveys

Consider the situation in Fig. 3, in which frame A contains the entire population and
frame B contains only a subset of the population. In some instances, it is possible to
determine which population units in frame A are in the overlap domain ab and remove
them from frameAbefore sampling. In a dual-frame agricultural survey, a farm in the list
frame would not be interviewed in the area frame sample. This situation, in which dupli-
cated units in the sampling frames are removed before data collection so that the sampling
frames are disjoint, is called a screening multiple-frame survey. González-Villalobos and
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Wallace (1996) discuss examples and estimation methods in screening multiple-frame
surveys.

Because the sampling frames have no overlap, population totals are easily estimated
in screening multiple-frame surveys by summing the estimated population totals from
each frame. Hansen et al. (1953) mentioned an early use of a screening dual-frame
survey. They called it “joint sampling from a list and one- or two-stage area sampling”
(p. 327), in which there is an incomplete, and possibly outdated, list of members of the
target population. The list frame is considered to be stratum 1. The units in the list frame
are then removed from the area frame so that the stratum 2 consists of population units
that are not in stratum 1. A multistage sample is taken from stratum 2. As Hansen et al.
(1953) pointed out, this sampling design is a special case of stratified sampling: every
unit in the population is in exactly one stratum, and sampling is carried out independently
in the two strata. Optimal allocation methods from stratified sampling can be used to
determine the sample sizes in the two strata.

Screening can be done at any stage of data collection. One of the earliest dual-frame
surveys was the Sample Survey of Retail Stores, conducted by the U.S. Census Bureau
in 1949 (Hansen et al., 1953, p. 516). Primary sampling units (psus) were chosen using
a stratified sample of groups of counties. Within each psu, it was not feasible to obtain
a complete enumeration of current retail stores because of the high volatility of small
businesses. Within each psu, a census of retail firms on a list compiled from the records
of the Old Age and Survivors Insurance Bureau was taken; and an area sample was taken
of firms not on the list. In this case, a dual-frame design was used within each selected
psu. The sampling designs for the two frames were not independent, however, since the
two samples shared the same psus. Thus, the estimator of total sales summed the two
estimators within psus.

The National Survey of America’s Families (Brick et al., 2002) has two components:
a random-digit dialing survey of households with telephones and an area sample of
households without telephones. Since a primary goal of the survey is to collect data on
children in low-income households, it is important to include nontelephone households
in the sample: low-income households are disproportionately likely to lack a telephone.
After the area sample is selected, households are screened for the presence of a telephone;
only households without a telephone are interviewed in frame A. As a result of the
screening, frame A consists of households that are not found in frame B.

Even when the frames overlap, a multiple-frame survey can be analyzed as a screening
multiple-frame survey by deleting records in the overlap domains. The U.S. National
Science Foundation (2003) surveys used in the Scientists and Engineers Statistical Data
System (SESTAT) are collected as overlapping three-frame surveys but analyzed as if
they were screening three-frame surveys. The target population is noninstitutionalized
U.S. residents under age 75 who (1) have at least a bachelor’s degree and (2) either
have a degree in science or engineering, or are working as a scientist or engineer. The
SESTAT data are based on three-component surveys: (1) The National Survey of College
Graduates (NSCG), with a sampling frame derived from the U.S. Census long form,
which includes persons with at least a bachelor’s degree; (2) the National Survey of
Recent College Graduates (NSRCG), with a sampling frame of educational institutions,
which samples persons who received a degree in science or engineering within the last
two years; and (3) the Survey of Doctorate Recipients (SDR), which samples people
who received doctoral degrees from a U.S. institution in science or engineering. The
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sampling frame for the SDR is constructed from the Survey of Earned Doctorates, which
is a census of all doctoral degree recipients in the United States.

With the three sampling frames, a person can be included in more than one frame.
For example, a person who obtained a bachelor’s degree before the census year and
then completed a doctoral degree would be included in all three sampling frames. The
sampling frames for SESTAT are thus depicted in Fig. 2, with C the frame for the NSCG,
B the frame for the NSRCG, and A the frame for the SDR. The multiplicity is not used
in the analysis of the SESTAT data, however. Instead, a hierarchy is set up for inclusion
in one of the frames. A person sampled in the NSCG is removed from the data analysis
(assigned a weight of 0) if he or she could have been sampled in either the NSRCG or
the SDR. Similarly, a respondent to the NSRCG is given weight 0 if the respondent is
also in the sampling frame for the SDR. As a result, the combined SESTAT database is
essentially a stratified sample with three strata: the SDR frame, the part of the NSRCG
frame that is outside of the SDR frame, and the part of the NSCG frame that does not
overlap with the other two frames.

By deleting records in a hierarchical manner, one can analyze data from overlap-
ping multiple-frame surveys such as SESTAT as stratified samples. Such an approach,
however, reduces the sample size and discards data. In the SESTAT surveys, relatively
few units sampled in the NSCG are from the overlap domains, and so the loss in effi-
ciency is small. In surveys with greater overlap, however, it is much more efficient to
use all the information collected from the overlap domains when estimating population
characteristics. Overlapping multiple-frame surveys are discussed in the next section.

1.2. Multiple-frame surveys with overlap

In many multiple-frame surveys, the domain membership of a population unit is not
known in advance. For example, if frame A consists of landline telephone numbers and
frame B consists of cellular telephone numbers, it is unknown in advance whether a
household member sampled using one frame also belongs to the other frame (Brick
et al., 2006). The domain membership of a sampled person must be ascertained from
the survey questions. In other instances, it may be difficult to match units in the frames
and to ascertain whether a person in frame A is actually the same as a person with the
same name in frame B.

Haines and Pollock (1998) described the use of multiple-frame surveys to estimate the
size of a population and discussed the correspondence between multiple-frame surveys
and capture–recapture methods for estimating population size. They combined infor-
mation from incomplete list frames and an area frame to estimate the number of eagle
nests in a region. Iachan and Dennis (1993) used a multiple-frame design to sample the
homeless population, where frame A was homeless shelters, frame B was soup kitchens,
and frame C consisted of street locations. This situation is depicted in Fig. 4. Although
the union of the three frames still misses part of the homeless population, coverage is
improved by having more than one frame.

Sometimes independent samples are taken from the same frame so that frames A and
B coincide. This might occur if two sampling designs are desired. In a wildlife survey,
one sample might be taken using a stratified multistage sample and the other using a
sequential or adaptive sampling design.
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Fig. 4. Frames A, B, and C are all incomplete and overlap.

When the frames overlap, care must be taken when estimating quantities. Individuals
in the overlap domains such as ab can be selected in either or both surveys, so estima-
tors of population quantities must be adjusted to compensate for that multiplicity. In
Section 2, we summarize point estimators that have been proposed for multiple-frame
surveys.

2. Point estimation in multiple-frame surveys

Classical sampling theory considers a single frame. The universe U has N units. The
population total for a characteristic y is Y = ∑N

i=1 yi. A probability sampling design is
used to select a sample S from the frame. We denote πi = P(i ∈ S) as the inclusion
probability for the frame. The Horvitz–Thompson estimator of the population total is

ŶHT =
∑
i∈S

wiyi,

where wi = 1/πi is the sampling weight.
In this section, we discuss estimation methods for dual-frame surveys when indepen-

dent samples are taken from the two frames. We consider here the situation of Fig. 1, the
most general case. We still have yi as a characteristic of population unit i, and population
total Y =∑N

i=1 yi. But now two samples are taken, one from the NA units in frameAand
another sample from the NB units in frame B. Population units in the overlap domain
ab can be sampled in either survey or both surveys.

Let

δi(a) =
{

1 if unit i is in domain a

0 otherwise
,

δi(b) =
{

1 if unit i is in domain b

0 otherwise
,

and

δi(ab) =
{

1 if unit i is in domain ab

0 otherwise
.
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For the general overlapping dual-frame survey depicted in Fig. 1, we can write the
population total as the sum of the three domain totals:

Y = Ya + Yab + Yb

=
N∑

i=1

δi(a)yi +
N∑

i=1

δi(ab)yi +
N∑

i=1

δi(b)yi.

An estimator of Y can be formed by summing estimators of Ya, Yab, and Yb. Let
SA denote the sample from frame A, with probability of inclusion in SA denoted by
πA

i = P{i ∈ SA}; SA contains nA observation units. Corresponding quantities for frame
B are SB, πB

i = P{i ∈ SB}, and nB. Let wA
i be the sampling weight from frame A

and wB
i be the sampling weight from frame B. These weights can be the inverses of

the inclusion probabilities πA
i and πB

i or they can be the Hájek (1981) weights, with
wA

i = NA[πA
i

∑
j∈SA

(1/πA
j )]−1 and wB

i = NB[πB
i

∑
j∈SB

(1/πB
j )]−1. Using the weights,

we define domain estimators from the frame A sample:

ŶA
a =

∑
i∈SA

wA
i δi(a)yi

ŶA
ab =

∑
i∈SA

wA
i δi(ab)yi.

The corresponding estimators from the frame B sample are

ŶB
b =

∑
i∈SB

wB
i δi(b)yi

ŶB
ab =

∑
i∈SB

wB
i δi(ab)yi.

Under standard sampling theory results, each domain estimator is approximately unbi-
ased for the corresponding population quantity. Population sizes are estimated by taking
yi = 1 for all units, resulting in estimators N̂A

a , N̂A
ab, N̂B

ab, and N̂B
b

In a screening dual-frame survey, domain ab is empty and domains a and b can
be viewed as strata. The estimated total for the population in a screening dual-frame
survey is

Ŷ = ŶA
a + ŶB

b .

If the frames overlap and observations in the overlap domain ab can be selected in
either or both samples, we need to adjust for the multiplicity in ab. Combining both
samples, without adjustment, would give a biased estimator:

E
[
ŶA

a + ŶB
b + ŶA

ab + ŶB
ab

]
≈ Y + Yab.

We thus need to combine the information from the independent estimators ŶA
ab and ŶB

ab

to estimate Yab. The following sections describe some of the methods that can be used
to estimate the population total Y .
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2.1. Averaging the estimates from intersection domains

The simplest method to estimate the population total is to average the domain
estimators for domains that are sampled in more than one frame. For the dual-frame
survey in Fig. 1, ŶA

ab and ŶB
ab both estimate Yab. Thus, to avoid multiplicity problems,

we can estimate Y by

Ŷave = ŶA
a + 1

2

(
ŶA

ab + ŶB
ab

)
+ ŶB

b .

More generally, a weighted average can be used, as proposed by Hartley (1962):

Ŷ (θ) = ŶA
a + θŶA

ab + (1 − θ)ŶB
ab + ŶB

b , (1)

where 0 ≤ θ ≤ 1.
This estimator reduces the weight of each sampled unit in the intersection domain

ab to compensate for the multiplicity. Define new weights

w̃A
i = δi(a)wA

i + θδi(ab)wA
i

and

w̃B
i = δi(b)wB

i + (1 − θ)δi(ab)wB
i .

Then,

Ŷ (θ) =
∑
i∈SA

w̃A
i yi +

∑
i∈SB

w̃B
i yi.

Each domain estimator is approximately unbiased for estimating its population quan-
tity, so Ŷ (θ) is an approximately unbiased estimator of the population total Y . Since
frames A and B are sampled independently and θ is fixed, the variance of the estima-
tor is

V [Ŷ (θ)] = V
(
ŶA

a + θŶA
ab

)
+ V

[
(1 − θ)ŶB

ab + ŶB
b

]
. (2)

Note that Ŷ (0) = Ŷa + ŶB
ab + ŶB

b ; this corresponds to discarding the observations in
domain ab from the sample in frame A. Estimation in screening multiple-frame surveys
can thus be considered as a special case of the general situation.

2.2. Hartley’s estimator

The estimator in Section 2.1 is simple to compute but may lose efficiency relative to
other estimators. If the estimator ŶB

ab from frame B has much more precision than ŶA
ab

for estimating the domain total Yab, it would make sense to rely more heavily on ŶB
ab for

estimating Yab.
Hartley (1962, 1974) proposed choosing θ in (1) to minimize the variance of Ŷ (θ).

Because the frames are sampled independently, the variance of Ŷ (θ) is given in (2).
Thus, for general survey designs, the variance-minimizing value of θ is

θopt =
V(ŶB

ab) + Cov
(
ŶB

b , ŶB
ab

)
− Cov

(
ŶA

a , ŶA
ab

)
V
(
ŶA

ab

)
+ V

(
ŶB

ab

) . (3)



Multiple-Frame Surveys 79

Using θopt gives the minimum attainable variance:

V
[
Ŷ (θopt)

]
= V

(
ŶA

a + ŶB
b + ŶB

ab

)
− θ2

opt

[
V(ŶA

ab) + V(ŶB
ab)
]
.

It can be seen from (3) that the larger the V(ŶB
ab) is relative to V(ŶA

ab), the larger
θopt is. Note that if either Cov(ŶB

b , ŶB
ab) or Cov(ŶA

a , ŶA
ab) is large in absolute value,

it is possible for θopt to be smaller than 0 or greater than 1. When frame A and frame B
are the same, that is, domains a and b are empty, however, θopt is between 0 and 1.

In practice, the variances and covariances in (3) are unknown, so the optimal value
of θ must be estimated from the data. Let θ̂opt be the estimator of θopt that results when
estimators of the variances and covariances are substituted into (3). The adjusted weights
for Hartley’s method become

w̃A
i,H = δi(a)wA

i + θ̂optδi(ab)wA
i

and

w̃B
i,H = δi(b)wB

i + (1 − θ̂opt)δi(ab)wB
i .

Since θ̂opt depends on the variances and covariances of the particular response stud-
ied, the weight adjustments may differ for each response. This can lead to inconsisten-
cies among estimates. For example, suppose Ŷ1(θ̂opt,1) estimates total medical expenses
in the population over age 65, Ŷ2(θ̂opt,2) estimates total medical expenses in the pop-
ulation aged 65 or less, and Ŷ3(θ̂opt,3) estimates total medical expenses in the entire
population. If the surveys have complex design, it is likely that Ŷ1(θ̂opt,1)+Ŷ2(θ̂opt,2) �=
Ŷ3(θ̂opt,3).

2.3. The Fuller–Burmeister estimator

Fuller and Burmeister (1972) proposed modifying Hartley’s estimator by incorporating
additional information regarding the estimation of Nab. The estimator is

ŶFB(β) = ŶA
a + ŶB

b + β1Ŷ
A
ab + (1 − β1)Ŷ

B
ab + β2

(
N̂A

ab − N̂B
ab

)
. (4)

As with Hartley’s estimator, the parametersβ1 andβ2 are chosen to minimize the variance
of ŶFB(β); the optimal values are[

β1

β2

]
= −

[
V(ŶA

ab − ŶB
ab) Cov(ŶA

ab − ŶB
ab, N̂

A
ab − N̂B

ab)

Cov(ŶA
ab − ŶB

ab, N̂
A
ab − N̂B

ab) V(N̂A
ab − N̂B

ab)

]−1

×
[

Cov(ŶA
a + ŶB

b + ŶB
ab, Ŷ

A
ab − ŶB

ab)

Cov(ŶA
a + ŶB

b + ŶB
ab, N̂

A
ab − N̂B

ab)

]
.

As with the optimal Hartley estimator, these variances and covariances must be estimated
from the data; this results in a different set of weights being used for each response
variable.
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2.4. Single-frame estimator

Bankier (1986) and Kalton and Anderson (1986) proposed single-frame methods that
combine the observations into a single data set and then adjust the weights in the inter-
section domain for multiplicity. An observation unit i in domain ab can be selected in
SA and in SB, so the expected number of times unit i in ab is selected is πA

i + πB
i . The

Kalton and Anderson (1986) single-frame estimator uses 1/(πA
i + πB

i ) as the weight
for observation units in domain ab. Thus, if wA

i = 1/πA
i and wB

i = 1/πB
i , the adjusted

weight for sampled units in frame A is

w̃A
i,S =

{
wA

i if i ∈ a(
1/wA

i + 1/wB
i

)−1
if i ∈ ab .

The adjusted weights in frame B are defined similarly, with

w̃B
i,S =

{
wB

i if i ∈ b(
1/wA

i + 1/wB
i

)−1
if i ∈ ab .

Then, the single-frame estimator is

ŶS =
∑
i∈SA

w̃A
i,Syi +

∑
i∈SB

w̃B
i,Syi. (5)

If the frame population sizes NA and NB are known, the single-frame estimator may
be calibrated to those sizes using either raking ratio estimation (Bankier, 1986; Rao and
Skinner, 1996) or regression estimation (Lohr and Rao, 2000). The weights can be raked
by replacing w̃A

i,S in frame A by w̃A
i,S(N

A/
∑

j w̃A
j,S), then replacing the weight w̃B

i,S in
frame B by w̃B

i,S(N
B/
∑

j w̃B
j,S), and repeating for the weights in frames A and B until

convergence. Rao and Skinner (1996) showed that the raking procedure converges and
gave an expression for the final estimator.

Skinner et al. (1994) used single-frame estimation for a multiple-frame agricultural
sample. Several responses were of interest; each was correlated with one of the possible
stratification variables. Independent stratified random samples were selected from the
sampling frame using one stratification variable in each sample. With four independent
samples SA, SB, SC, and SD, the weight for unit j selected to be in, say, the sample from
frame A, was set to w̃A

j = (πA
j + πB

j + πC
j + πD

j )−1. The weights were then raked to the
common population size N as described in Skinner (1991).

If each sample is self-weighting, that is, all the weights for sampled units in SA

equal wA and all the weights for sampled units in SB equal wB, then ŶS is a special
case of the estimator in (1). In that case, ŶS = ŶA

a + θSŶ
A
ab + (1 − θS)Ŷ

B
ab + ŶB

b , with
θS = πA

i /(πA
i +πB

i ) = [wA(1/wA +1/wB)]−1. The single-frame estimator gives higher
weight to the estimator of Yab from the frame with the higher inclusion probabilities.
The sample from the frame with the higher inclusion probabilities does not always have
the smaller variance, though, so V(ŶS) ≥ V [Ŷ (θopt)], the Hartley estimator with optimal
value of θ.

Unlike the Hartley and Fuller–Burmeister estimators, the single-frame estimator does
not depend on estimated covariances for the response variable. It uses the same set of
weights for each response considered. Calculating the weights in domain ab, however,
requires knowledge of the inclusion probabilities for both frames, not just the frame
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from which a unit was selected. If one of the samples, say the sample from frame A, is
not self-weighting, then πA

i may be unknown for a unit selected in SB.

2.5. Pseudo maximum likelihood estimator

When NA and NB are known, Skinner and Rao (1996) proposed modifying an alternative
estimator proposed by Fuller and Burmeister (1972) for simple random samples to obtain
a pseudo maximum likelihood (PML) estimator that can be used with complex designs.
The PML estimator uses the same set of weights for all response variables and has the
form

ŶPML(θ) = NA − N̂PML
ab (θ)

N̂A
a

ŶA
a + NB − N̂PML

ab (θ)

N̂B
b

ŶB
b

+ N̂PML
ab (θ)

θN̂A
ab + (1 − θ)N̂B

ab

[
θŶA

ab + (1 − θ)ŶB
ab

]
, (6)

where N̂PML
ab (θ) is the smaller of the roots of the quadratic equation

[θ/NB + (1−θ)/NA]x2 −[1+θN̂A
ab/NB + (1−θ)N̂B

ab/NA]x+θN̂A
ab + (1 − θ)N̂B

ab = 0.

Fuller and Burmeister (1972) and Skinner (1991) argued that when a simple random
sample is taken in each frame, the estimator in (6) can be derived using maximum
likelihood principles and thus is asymptotically efficient. The PML estimator substitutes
design-consistent estimators of Nab, Yab, Ya, and Yb for the corresponding quantities in
the maximum likelihood estimator derived using simple random sampling. The PML
estimator is thus consistent under complex sampling designs; unlike the estimator in (4),
it does not depend on the variances of ŶA

ab and ŶB
ab. Although the PML estimator need

not be optimal under complex sampling designs, it often performs well in practice.
Skinner and Rao (1996) suggested using the value of θ = θP that minimizes the

asymptotic variance of N̂PML
ab (θ):

θP = NaNBV(N̂B
ab)

NaNBV(N̂B
ab) + NbNAV(N̂A

ab)
. (7)

The estimator in (6) adjusts the estimators of the three domain totals Ya, Yab, and Yb by
the optimal estimator of Nab. Note that calculation of θP in (7) requires all three domains
a, b, and ab to be nonempty and requires the variances of N̂A

ab and N̂B
ab to be positive.

Thus, a different method must be used to determine θ in (6) if, for example, the sample
from frame B is poststratified so that N̂B

ab = Nab and V(N̂B
ab) = 0. In such situations, a

value of θ can be calculated using average design effects for a fixed subset of important
variables (see Lohr and Rao (2006), for a discussion of this approach and references).

In practice, Na, Nb, V(N̂A
ab), and V(N̂B

ab) are estimated from the data so that an
estimator θ̂P of θP is substituted into (6). The adjusted weights are

w̃A
i,P =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
NA − N̂PML

ab (θ̂P )

N̂A
a

wA
i if i ∈ a

N̂PML
ab (θ̂P )

θ̂P N̂A
ab + (1 − θ̂P )N̂B

ab

θ̂P wA
i if i ∈ ab
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and

w̃B
i,P =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
NB − N̂PML

ab (θ̂P )

N̂B
b

wB
i if i ∈ b

N̂PML
ab (θ̂P )

θ̂P N̂A
ab + (1 − θ̂P )N̂B

ab

(1 − θ̂P ) wB
i if i ∈ ab .

Although θ̂P depends on the estimated variances of the overlap domain size, it does not
depend on covariances of other response variables. The PML estimator thus uses the
same set of weights for each response variable. Skinner and Rao (1996) and Lohr and
Rao (2006) found that the PML estimator has small mean squared error and works well
with a wide variety of survey designs.

2.6. Using adjusted weights to estimate population quantities

Each of the methods for estimating the population total discussed in this section pro-
duces a set of adjusted weights for the observations from frame A and a set of adjusted
weights for the observations from frame B. These weights may then be used to estimate
population totals and other quantities. For example, to estimate a ratio Y/X of two popu-
lation totals Y and X, adjusted weights are used to find Ŷ =∑i∈SA

w̃A
iyyi +∑i∈SB

w̃B
iyyi

and X̂ = ∑i∈SA
w̃A

ixxi +∑i∈SB
w̃B

ixxi. Then, Y/X is estimated by Ŷ/X̂. The Hartley and
Fuller–Burmeister methods, as noted above, allow the weight adjustments to depend
on which response is considered. This can lead to anomalies: if X is the total number
of engineers in the population and Y is the total number of male engineers, it is pos-
sible for the Hartley or Fuller–Burmeister weightings to result in Ŷ/X̂ > 1. The other
estimators—averaging, single frame, or PML—will not have that problem.

Other quantities can also be estimated using the adjusted weights. For the Survey of
Consumer Finances, discussed in Section 1, population medians are of interest as well
as population means and totals. The adjusted weights can be used to calculate medians,
percentiles, and other statistics by standard methods. To estimate the median value of
equity holdings for households that own equities, one can use the value of m solving∑

i∈SA

w̃A
i I(yi ≤ m) +

∑
i∈SB

w̃B
i I(yi ≤ m)∑

i∈SA

w̃A
i +

∑
i∈SB

w̃B
i

= 1

2
,

where I(yi ≤ m) = 1 if yi ≤ m and 0 otherwise.

2.7. Estimation with three or more frames

Most of the estimators discussed so far have been for the two-frame situation. All these
can be extended to the situation of Q frames. The simplest estimator, again, averages
the estimators for each domain. For the three-frame survey depicted in Fig. 4, this
estimator is

Ŷave = ŶA
a + ŶB

b + ŶC
c + 1

2
(ŶA

ab + ŶB
ab) + 1

2
(ŶA

ac + ŶC
ac) + 1

2
(ŶB

bc + ŶC
bc)

+ 1

3
(ŶA

abc + ŶB
abc + ŶC

abc). (8)
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Lohr and Rao (2006) developed and compared estimators for multiple-frame surveys
when Q ≥ 3. They found that with moderate sample sizes, the optimal Hartley and
Fuller–Burmeister estimators become less stable because they require estimating a large
covariance matrix. The PML estimator has good efficiency and performs well under a
wide range of conditions. The single-frame estimator with raking ratio estimation and
Ŷave perform well if the relative weightings of the domain estimators are close to the
optimal values.

2.8. Choice of estimator

Lohr and Rao (2000, 2006) compared the asymptotic efficiency of the estimators and
showed that the Fuller–Burmeister estimator has the greatest asymptotic efficiency
among the estimators discussed in this chapter. In practice, properties such as trans-
parency, robustness to assumptions, and appropriateness for the survey should be
considered in addition to efficiency. Although the Fuller–Burmeister estimator has the
greatest asymptotic efficiency among all linear estimators, the Fuller–Burmeister and
Hartley estimators both result in a different set of weights for each response variable
considered. In addition, with more than two frames, these two estimators can be unstable
because they depend on a high-dimensional matrix of estimated covariances.

In many situations, an investigator may want to use an estimator with fixed weightings
for the different domains, as described in Section 2.1. In the SESTAT data, for example,
persons in the Survey of Doctoral Recipients frame represent a small part of the frame
for the National Survey of College Graduates. The National Science Foundation uses
the estimator

Ŷ = ŶC
c + ŶA

ac + ŶB
bc + ŶA

abc.

Each domain total is estimated using exactly one of the surveys.

3. Variance estimation in multiple-frame surveys

Variance estimation can be more complicated for multiple-frame surveys than for a
single-frame survey. For the simplest estimator, that in Section 2.1, variance estimation
is straightforward. The estimator of the population total is

Ŷ (θ) = ŶA
a + θŶA

ab + (1 − θ)ŶB
ab + ŶB

b ,

where θ is a fixed value between 0 and 1. Under the assumption that the samples are
taken independently,

V [Ŷ (θ)] = V
(
ŶA

a + θŶA
ab

)
+ V

[
(1 − θ)ŶB

ab + ŶB
b

]
.

Each term in the expression for the variance can be estimated using the survey design,
and the two pieces added to obtain an estimator V̂ [Ŷ (θ)]. The same method can be
used to estimate the variance of the estimated population total using the single-frame
estimator.

Screening multiple-frame surveys were discussed above to be a special case of strat-
ified sampling. Consequently, standard methods for stratified samples can be used to
estimate variances.
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Variance estimation can be more complicated for other estimators. The adjusted
weights for the Hartley estimator of the population total depend on θ̂opt, which is a
function of the estimated covariances from both frames. Functions of totals, or other
statistics such as percentiles, also rely in a more complex way on estimators from both
samples.

Several methods can be used to estimate variances of estimated population quan-
tities in general multiple-frame surveys. These methods include Taylor linearization
techniques, jackknife, and bootstrap. The Taylor linearization and jackknife methods,
discussed in Lohr and Rao (2000), assume that a population characteristic of interest
τ can be expressed as a twice continuously differentiable function of population totals
from the frames. For Taylor linearization, the partial derivatives of this function are used
together with the estimated covariance matrix of the population totals estimated from
frame A and the estimated covariance matrix of the population totals estimated from
frame B, to give a linearized estimator of the variance of the estimator τ̂. For example,
τ = Y/X might be a ratio of two population totals from a dual-frame survey, with

τ̂ = Ŷ ( 1
2 )

X̂( 1
2 )

= ŶA
a + 1

2 ŶA
ab + 1

2 ŶB
ab + ŶB

b

X̂A
a + 1

2 X̂A
ab + 1

2 X̂B
ab + X̂B

b

,

for Ŷ ( 1
2 ) defined in (1). The estimated totals from frame A are (ŶA

a , ŶA
ab, X̂

A
a , X̂A

ab)

with estimated covariance matrix SA, and the estimated totals from frame B are
(ŶB

b , ŶB
ab, X̂

B
b , X̂B

ab) with estimated covariance matrix SB. The linearization estimator
of the variance is then

gT
ASAgA + gT

BSBgB,

where in this case gA = gB = [X̂(1/2)]−1(1, 1/2, −τ̂, −τ̂/2)T is the vector of deriva-
tives used in the linearization. Under regularity conditions, the linearization estimator
of the variance is consistent. It requires, however, that the derivatives be calculated
separately for each estimator that is considered.

The jackknife estimator of the variance relies on the property that independent
samples are taken from the two frames (Lohr and Rao, 2000). Suppose a stratified
cluster sample is taken from frame A and an independent stratified cluster sample is
taken from frame B. A jackknife variance estimator carries out the jackknife separately
in frames A and B. Let τ̂A

(hi) be the estimator of the same form as τ̂ when the observations
of sample psu i of stratum h from the frame-A sample are omitted from the data. Sim-
ilarly, let τ̂B

(lj) be the estimator of the same form as τ̂ when the observations of sample
psu j of stratum l from the frame-B sample are omitted. Then, if ñA

h is the number of
primary sampling units in stratum h of the sample in frame A and ñB

l is the number of
primary sampling units in stratum l of the sample in frame B, the jackknife estimator
of the variance is

vJ(τ̂) =
H∑

h=1

ñA
h − 1

ñA
h

ñA
h∑

i=1

(τ̂A
(hi) − τ̂)2 +

L∑
l=1

ñB
l − 1

ñB
l

ñB
l∑

j=1

(τ̂B
(lj) − τ̂)2. (9)

The jackknife estimator of the variance is consistent for smooth functions of population
means. A bootstrap estimator of the variance can be constructed similarly, and properties
of the bootstrap in multiple-frame surveys are a subject of current research.
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4. Designing multiple-frame surveys

Multiple-frame designs are usually used because they result in better coverage and less
cost than a single-frame survey. The survey needs to be carefully designed to realize
those cost savings.

We first discuss design for screening multiple-frame surveys. Since screening
multiple-frame surveys can be considered as a special case of stratified sampling, the
same principles used in allocating sample sizes in stratified samples can be used to design
the survey. For a simple example, suppose a simple random sample of size nA is to be
taken from frame A, and an independent simple random sample of size nB is to be taken
from frame B. Each unit from frame A has cost cA and each unit from frame B has cost
cB, so the total cost is C = cAnA +cBnB. Since overlapping units are removed from one
of the frames in a screening survey, frames A and B are disjoint; consequently, the vari-
ance of the estimator Ŷ = ŶA + ŶB is V(Ŷ) = V(ŶA)+V(ŶB) = N2

AS2
A/nA +N2

BS2
B/nB,

where S2
A and S2

B are the variances in frames A and B. Minimizing the variance subject
to fixed total cost gives sample sizes nA = kNASA/

√
cA and nB = kNBSB/

√
cB, where

k = C/(NASA

√
cA + NBSB

√
cB). These are the sample sizes given by Cochran (1977)

for optimal allocation in stratified random sampling with two strata.
In an overlapping multiple-frame survey, the design and estimator need to be con-

sidered simultaneously. Hartley (1962, 1974) derived optimal designs for his estimator
when a simple random sample is taken in each frame. For the dual-frame survey shown
in Fig. 1, Hartley expressed the optimal sample sizes nA and nB as a function of the
costs of data collection in each frame, the variances of the response variable within each
domain, and the domain means.

Biemer (1984) and Lepkowski and Groves (1986) discussed designs for the situation
in Fig. 3 when a stratified multistage sample is taken from each frame. Frame A is an
area frame of dwellings, and frame B is a list of telephone numbers. They considered
measurement error models, where the distribution of the measurement errors can differ
for the two frames. Lepkowski and Groves (1986) argued that the survey designer needs
to consider nonsampling bias as well as sampling variance when allocating resources
to the two samples.

5. New applications and challenges for multiple-frame surveys

Historically, much of the development of multiple-frame survey theory has been moti-
vated by the situation where one frame is an area frame and the other frame is a list
frame.As populations become more demographically and technologically diverse, how-
ever, a number of researchers have explored the use of multiple-frame surveys to exploit
alternative frames and modes of data collection that may provide cost savings.

The internet opens many possibilities for using multiple-frame surveys. It can provide
an inexpensive method of data collection, but a frame of internet users rarely includes
the entire population of interest. Blair and Blair (2006) considered using dual-frame
surveys to sample rare populations where the web is used to sample members of the
rare population who have internet access, and a general method such as a telephone
survey is used for other persons. They considered using an online panel of persons who
have agreed to participate in a study as frame B. Often, an online panel has hundreds of
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thousands of members, and demographic and other information may be known about the
panel members. In some cases, then, panel members who belong to the rare population
can be easily identified and contacted, giving a relatively large sample size with small
cost. In this approach, it is important that a probability sample be taken from the sampling
frame of the panel; a convenience sample of persons who happen to visit a Web site and
take a survey cannot be used to make inference about a population (Couper, 2000).

Unfortunately, a panel of this sort often consists of volunteers in practice; estimators
derived solely from the online panel sample thus do not reflect population quantities
because the panel members are self-selected. A dual-frame approach, combining infor-
mation from the online panel (frame B in Fig. 3) with that from a general population
survey (frame A), can reduce the bias by covering the parts of the population not in
the online panel. The panel often has only a small fraction of the population, though.
Writing the population total as Y = Ya + Yab, it will often be the case that Yab, the
part of the total from units present in both frames, is negligible. Some researchers have
suggested that the sample from the online panel can be taken as representative of the
population with internet access, but this is a strong, and usually unjustified, assumption.
The dual-frame design does, however, allow researchers to investigate differences in
responses between respondents from the two frames. In some cases, it may be possible
to use model-based estimators or poststratification to adjust for possible biases in the
online panel sample, but more research needs to be done on this topic.

These new applications present challenges for using multiple-frame surveys. When
the surveys from the different frames are taken using different modes—for example,
when persons with internet access fill out an online questionnaire while persons in the
telephone survey are asked questions by an interviewer—it is possible that differences
in domain estimators are due to mode effects rather than sampling variability. In this
case, ŶA

ab and ŶB
ab are not necessarily even estimating the same quantity.

It is also important to make sure that the same quantity is being estimated in the over-
lap domain when using multiple-frame methods to combine information collected from
different surveys, as suggested by Elliott and Davis (2005). They combined information
from the U.S. National Health Interview Survey (NHIS) and the U.S. Behavioral Risk
Factors Surveillance System (BRFSS) to estimate prevalence of smoking for U.S. coun-
ties. They assumed that the estimates from the NHIS were less biased and adjusted the
weights for observations in the BRFSS. This approach can give more precise estimates
of smoking prevalence, but care must be taken to test whether the “smoking prevalence”
measured in one survey is the same as the “smoking prevalence” measured in the other
survey: question order, wording effects, or characteristics of the interviewers or survey
administration may cause the underlying constructs to differ in the two surveys.

The estimators of population totals given in Section 2 assumed that domain estimators
are approximately unbiased. This is not necessarily the case when there is nonresponse or
measurement error. For the U.S. Survey of Consumer Finances discussed in Section 1
(Bucks et al., 2006), frame A is an area frame containing the entire U.S. population,
whereas frame B is a list frame of wealthier households constructed from tax return
information. The response rates differ greatly in the two samples. The response rate
in the frame A sample using the area frame is about 70%, whereas the response rate
in the list sample is closer to 30%. Households with high net worth are more likely
to refuse to participate in the survey. The dual-frame estimators of population totals
need to be adjusted for the nonresponse. This can be done, for example, by performing
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poststratification adjustments on the modified weights constructed using one of the
methods in Section 2. Additional weighting adjustments can be done within each frame
separately if auxiliary information is known. Calibration estimation (Deville and Särn-
dal, 1992) can be used to give a final set of weights that satisfy the poststratification
constraints for the separate frames and for their union.

Brick et al. (2006) experimented with using a dual-frame survey to reduce coverage
bias from telephone surveys. In the setting of Fig. 1, they used a frame of landline
telephone numbers for frame A and a frame of cellular telephone numbers for frame
B. They found that the sample from frame B had substantially more households that
only had a cell phone (domain b) than expected. Tucker et al. (2007) found that 31%
of households in the overlap domain ab, having both landline and cell phones, reported
that they rarely receive calls on the cell phone. Although those households are officially
in the overlap domain, it is likely that they will be unreachable if selected in the cell
phone sample. Consequently, a disproportionate number of the nonrespondents in the
cell phone sample are from domain ab. The probabilities that a household will be a
nonrespondent differ for each frame and also differ for the domains, which makes
nonresponse adjustment difficult.

All the estimators for multiple-frame surveys require that the domain membership of
sampled units is known. In a screening survey, you must be able to recognize whether
a unit in the area frame is in the list frame, so each population unit belongs to exactly
one frame. This is not always easy to do. In the National Survey of America’s Families,
described in Section 1.1, households in frame A who had a telephone were not to be
interviewed. To avoid multiplicity, this screening needs to be accurate: if a substantial
proportion of households interviewed from frame A actually have a telephone, they will
be overrepresented in the survey. In multiple-frame surveys with overlap, misclassify-
ing sampled units into the wrong domains can result in biased estimates of population
quantities. If domain membership must be determined through the survey, for exam-
ple, when a person reached through a landline telephone frame is asked about cellular
telephone availability, careful pretesting is necessary to ensure that the domain assign-
ment is accurate. Mecatti (2007) noted that specific estimators may reduce the effect of
certain types of misclassification errors. If Ŷave in (8) is used to estimate a population
total, the multiple-frame weight adjustment for a sampled individual depends only on
the number of frames containing the individual; misclassifying a person from domain
ac into domain bc does not change the estimator. In general, however, scenarios can be
constructed in which each of the estimators is sensitive to misclassification error.

Multiple-frame surveys have great potential for improving the accuracy of estimates
in regions where one survey has too small of a sample size to give sufficient precision
for estimates. Such regions are called “small areas” (see Chapters 31 and 32). Rao
(2003a, p. 23) suggested using dual-frame designs to improve small area estimates for
subpopulations of interest. As an example, Rao discussed the Dutch Housing Demand
Survey, in which the main personal-interview survey is supplemented by telephone
surveys in some municipalities. Then dual-frame estimation can be used to find estimates
of population quantities within those municipalities. There is also potential for using
dual-frame surveys to supplement a general survey when more precision may be wanted
for population subgroups in the future. The U.S. NHIS has been designed so that in the
future, state data from the NHIS may be integrated with supplemental data from a
random-digit dialing telephone survey (Botman et al., 2000, p. 4).
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Multiple-frame surveys are becoming more widely used, and in numerous situations,
they are the best method to obtain good coverage while containing costs for data collec-
tion. They must be designed and analyzed carefully, however, to account for multiplicity
of population units among the frames. The design needs to take into account nonsam-
pling error and possible domain misclassification as well as sampling errors.
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Designs for Surveys over Time

Graham Kalton

1. Introduction

Most of the literature on survey methodology focuses on surveys that are designed
to produce a snapshot of the population at one point in time. However, in practice,
researchers are often interested in obtaining a video of the changes that occur over time.
The time dimension can be introduced by repeating the survey at different time points or
by using some form of panel design. This chapter reviews the design choices available
for surveys over time and provides a brief overview of many additional methodological
complexities that arise. References are provided to direct readers to more detailed treat-
ments of the various topics discussed. Methods for the analysis of surveys over time are
addressed in Chapters 24, 33, 34, and 35.

Many surveys aim to estimate characteristics of a population at a specific point in
time. For example, the U.S. Census of Population provides a snapshot of the population
for April 1 at the beginning of each decade. In practice, of course, data collection for the
majority of surveys cannot be conducted on a single day, but the goal is still to represent
the population as of that date. Also, often some of the data collected will not relate to
that specific date; some retrospective data are generally collected, such as employment
status in a given earlier week, illnesses experienced in the past month, and expenditures
over the past six months. Nevertheless, the objective of these cross-sectional surveys is
to collect the data needed for describing and analyzing characteristics of the population
as it exists at a point in time.

This focus of cross-sectional surveys on a particular point in time is important because
both the characteristics and the composition of a population change over time. The
survey estimates are therefore time specific, a feature that is particularly important in
some contexts. For example, the unemployment rate is a key economic indicator that
varies over time; the rate may change from one month to the next because of a change in
the economy (with businesses laying off or recruiting new employees) and/or because
of a change in the labor force (as occurs, e.g., at the end of the school year, when school
leavers start to seek employment).

Changes in population characteristics over time raise many important issues for study.
At one level, policymakers need to estimate population characteristics repeatedly over
time to obtain estimates that are as current as possible. They are also interested in the
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change in the estimates across time: Has the unemployment rate increased or decreased
since the previous survey? This change is termed the net change and reflects changes
in both the characteristics and composition of the population. A more detailed analysis
would involve understanding the components of change. To what extent is the change (or
lack of change) due to population dynamics, with people entering the population through
“births” (e.g., people reaching age 15, for surveys of adults; people who immigrate;
or people who leave institutions, for surveys of the noninstitutional population) and
leaving the population through “deaths” (e.g., people who die, emigrate, or enter an
institution)? To what extent is the change due to changes in the statuses of the persons in
the population? Furthermore, how does change operate in cases where there is a change
in status? For example, assuming no population dynamics, if the unemployment rate
undergoes a net increase of 1 percent, is that because 1 percent of previously employed
persons lost their jobs or because, say, 10 percent lost their jobs and 9 percent of the
previously unemployed found work? The decomposition of net change into its two
components leads to a measure of gross change. While net change can be measured
from separate samples for the two occasions, measuring gross change requires repeated
measurements on the same sample, or at least a representative subsample.

There are two broad classes of objectives for surveys across time, and these give rise
to different approaches to survey design. In many cases, the objectives are restricted to
estimating population parameters at different time points and to estimating net changes
and trends. This class of objectives also includes the estimation of average values of
population parameters over a period of time. None of these objectives requires repeated
measurements on the same sample. They can all be achieved by collecting the survey
data from representative cross-sectional samples of the survey population at different
time points. Satisfying these objectives imposes no restrictions on the relationships
between the samples at different time points. In particular, these objectives can be met
with samples selected entirely independently at each time point. They can also be met
with samples that are constructed to minimize sample overlap across time to spread the
respondent burden over different sample elements. Such repeated surveys are discussed
in Section 2.

This first class of objectives can also be met with panel designs that include some
or all of the sample members at different time points. In fact, the precision of cross-
sectional and net change estimates can be improved using a rotating panel sample design
that creates some degree of sample overlap over time. Rotating panel designs may also
be used to eliminate telescoping effects that occur when respondents erroneously report
an event as occurring in a given interval of time. Rotating panel designs are discussed
in Section 3.

The second class of objectives focuses primarily on the estimation of gross change
and other components of individual change, and on the aggregation of responses (e.g.,
expenditures) for individuals over time. These objectives can be satisfied only by some
form of panel survey that collects data from the same individuals for the period of
interest. Issues involved in conducting various types of panel—or longitudinal—surveys
are discussed in Section 4.

Other objectives for surveys over time relate to the production of estimates for rare
populations (i.e., a subset of the general population that has a rare characteristic). One
such objective is to accumulate a sample of cases with the rare characteristic over time.
If the characteristic is an event, such as getting divorced, then this objective can be
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satisfied by any of the designs. However, if the characteristic is stable, such as being
a member of a rare racial group, accumulation works only when fresh samples are
added over time. In either case, analysts need to recognize that the characteristics of
members of the rare population may vary over time. For example, in a survey of recent
divorcees, the economic consequences of the divorce may change over the period of
sample aggregation.

Adifferent objective with a rare population is to produce estimates for that population
at various points in time. If the rare characteristic is a stable one, it may be economical to
identify a sample of members of that population at an initial time point and then return
to that sample repeatedly in a panel design. This approach has been used, for instance, in
sampling graduate scientists and engineers in the U.S. Scientists and Engineers Statistical
Data System (SESTAT) (Fecso et al., 2007). An initial sample was created based on data
collected in the latest decennial Census of Population, and that sample was treated as a
panel to be resurveyed at intervals during the next decade. While this scheme covered
all those who were already scientists and engineers and living in the United States at
the time of the census, there was a need to add supplemental samples of new U.S.
graduates—“births”—as the decade progressed (with a remaining gap for scientists and
engineers entering the United States after the census).

The final section of the chapter (Section 5) briefly summarizes the issues to be con-
sidered in making a choice of the type of design to adopt for surveying a population over
time. It also summarizes the methodological challenges that are to be faced in producing
valid findings from surveys over time.

2. Repeated surveys

This section discusses a range of issues and designs for surveys over time when the
analytic focus is on the production of a series of cross-sectional estimates that can be
used in analyses of net changes and trends at the aggregate level. The designs considered
here are not structured to enable longitudinal analyses at the element level.

A common form of repeated survey is one in which separate samples of the ultimate
sampling units are selected on each occasion. When the interval between rounds of a
repeated survey is long (say, 5–10 years), the selection of entirely independent samples
may well be an effective strategy. However, in repeated surveys with multistage sample
designs and with shorter intervals between rounds, sizeable benefits may be achieved by
retaining the same primary sampling units (PSUs), and perhaps also units at later stages
(but not the ultimate units), at each round. Master samples of PSUs are widely used for
national household survey programs because of the fieldwork and statistical efficiencies
they provide, both for repeated surveys on a given topic and surveys that range over
different topics (U.N. Department of Economic and Social Affairs Statistics Division,
2005, Chapter V). Overlapping higher level sampling units also leads to more precise
estimates of net change over time. However, a master sample becomes increasingly
less statistically efficient over time, as the population changes. When updated frame
information becomes available and indicates that substantial population changes have
occurred, the need arises to modify the PSUs’ measures of size and revise the stratifica-
tion. (In national household surveys, the availability of new population census results is
usually the basis for an update). To address these issues, a variety of methods have been
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developed to retain as many sampled PSUs as possible in the new sample while updating
the measures of size and strata (e.g., Ernst, 1999; Keyfitz, 1951; Kish and Scott, 1971).

With repeated surveys of businesses, a methodology based on some form of per-
manent random numbers (PRNs) is often used (see Ernst et al., 2000; Ohlsson, 1995;
and Chapter 17 in this volume). In essence, the methodology consists of assigning a
random number between 0 and 1 to each population element on a list frame. Then a
disproportionate stratified sample can be readily selected by including all elements with
random numbers less than the sampling fraction in each stratum. The random numbers
assigned remain with the elements over time, with the result that an element selected in
the sample at a given round of a repeated survey will also certainly be in the samples
at all other rounds for which its selection probability is no lower than that of the given
round. This flexible procedure automatically covers changes in overall and stratum sam-
ple sizes across rounds, elements that change strata, and births and deaths. It is primarily
intended to improve the precision of estimates of change across rounds and sometimes
to facilitate data collection, but it can also be used to generate a panel sample for a
given period. The elements in the sample for all rounds of a given period constitute
a probability sample of elements that exist throughout the period, with an element’s
probability of being in the panel given by the minimum of its selection probabilities
across the rounds (Hughes and Hinkins, 1995). The Statistics of Income Division of
the U.S. Internal Revenue Service uses a PRN methodology to sample both individual
and corporate tax returns and has created panel files from the cross-sectional samples
for longitudinal analysis (Dalton and Gangi, 2007). The PRN methodology can also be
modified to provide sample rotation to limit respondent burden on sampled businesses,
particularly small businesses for which selection probabilities are low. For example,
the PRN for each business can be increased by, say, 0.1 on each round and taking the
fractional part if the result exceeds 1.

A critical objective for repeated surveys is the production of valid estimates of trends
throughout the period of interest, particularly change from one round to the next. How-
ever, changes in the survey design are often desirable, and unfortunately even small
design changes may affect the estimates. Thus, changes in question wording or ques-
tionnaire content, mode of data collection, interviewer training, interviewer field force,
sampling frame, coding procedures, and imputation and weighting procedures can all
threaten the validity of trend estimates. It is, for example, well documented that chang-
ing the questionnaire content can lead to context effects that can distort trend estimates
(see, e.g., Biemer et al., 1991; Tourangeau et al., 2000), and even the meanings of iden-
tical questions may change over time (see, e.g., Kulka, 1982). Even a major increase
in sample size alone can affect the survey estimates because of the need to recruit new
interviewers and perhaps because of a reduced level of effort to obtain responses. Those
conducting repeated surveys—particularly a long-running series of repeated surveys—
are frequently confronted with the dilemma of whether to improve the survey proce-
dures based on experience gained in past rounds, general methodological research, and
changes in the population and topics of current interest, or to stay with past methods to
maintain valid trend estimates.

When a significant methodological change is found to be necessary, a common prac-
tice is to carry out a bridging survey for one or more time periods, that is, to con-
duct one part of the survey using the old methods and another part using the new
methods simultaneously. For example, in preparation for a conversion of the monthly
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U.S. Current Population Survey (CPS) from a combination of face-to-face paper-and-
pencil interviewing (PAPI) and computer-assisted telephone interviewing (CATI) to a
combination of computer-assisted personal interviewing (CAPI) and CATI, the U.S.
Census Bureau and Bureau of Labor Statistics (2000) conducted CATI and CAPI over-
lap experiments in 1992, in which a sample of 12,000 households were interviewed with
the CAPI/CATI combination using a revised CPS questionnaire, to provide estimates
with the revised methodology that could be compared with those produced by the offi-
cial CPS. The experiments found that the new questionnaire in combination with the
computer-assisted data collection did not significantly affect the estimate of the overall
unemployment rate but did affect a number of other estimates, such as the duration of
unemployment for the unemployed and the proportion of employees working part-time.

As another example, the U.S. National Household Survey on Drug Abuse (NHSDA,
now the National Survey on Drug Use and Health) underwent a major redesign in
1999 to adopt a new method of data collection (a change from PAPI to computer-
assisted interviewing, including the use of an electronic screener for respondent selection
within sampled households), a different sample design with a much larger sample (and
hence the need for a larger interviewer pool), and some other changes. Interviews were
conducted with a national sample of approximately 14,000 households using the old
PAPI methodology to evaluate the effects of the redesign and to maintain comparable
data for analyses of trends. Using this sample for comparison, Gfroerer et al. (2002)
provide a detailed analysis of the various effects of the NHSDA redesign.

The data collected in a series of rounds of a repeated survey are sometimes combined
to produce larger samples and hence reduce sampling errors, particularly for estimates
pertaining to small population subgroups (Kish, 1999). Also, the data collection for a
survey may be spread over time to facilitate the fieldwork. In this case, the survey’s
sample may be built up from a set of replicates, each of which can produce estimates—
albeit less precise—for the entire survey population. The U.S. National Health and
Nutrition Examination Survey (NHANES), for example, conducts medical examinations
in mobile examination centers that travel around the country from one PSU to the next
(Mohadjer and Curtin, 2008). The examination centers visit 15 PSUs per year. Each
yearly sample is a replicate sample that can be used to produce national estimates,
but the estimates generally have low precision. For most analyses, the samples are
aggregated over three or six years.

Some repeated surveys are specifically designed to be combined to produce average
estimates for a period of time for characteristics that change over time. The U.S. National
Health Interview Survey (NHIS) is one such survey (Botman et al., 2000). The NHIS
collects health-related data from weekly samples of persons, with the data being aggre-
gated to produce annual estimates. The annual estimate of the two-week prevalence of
a seasonal illness, such as influenza, is thus an average prevalence estimate across the
year. The NHIS may also be aggregated over longer periods to produce estimates for
rare subgroups or over shorter periods to produce estimates for a heavy outbreak of a
disease such as measles.

The complexities involved in aggregating data from a series of rounds of a repeated
survey are well illustrated by the U.S. Census Bureau’s American Community Sur-
vey (ACS) (U.S. Census Bureau, 2006c; Citro and Kalton, 2007). A single-stage
sample of households is selected each month for the ACS, accumulating to approxi-
mately two million responding households per year. The data are aggregated to produce
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1-year period estimates for governmental units with populations of 65,000 or more,
3-year period estimates for governmental units with populations of 20,000 or more, and
5-year period estimates for all governmental units, including school districts and census
tracts. A user needs to understand the difference between these period estimates and the
usual point-in-time estimates, and to carefully assess their applicability for his or her
needs.

An ACS period estimate reflects both any changes in the characteristic under study
over the period and any changes in an area’s population size and composition. Thus,
period estimates will differ from point-in-time estimates for characteristics that can
change markedly over a period (e.g., unemployment rates).Aparticular issue here relates
to estimates that involve monetary amounts, such as income during the past 12 months,
rent or value of the accommodation, or fuel costs last month. When aggregating data
over, say, 5 years, should the effect of inflation on changes in such amounts be taken
into account? If so, how should this be done? Point-in-time and period estimates will
also differ for areas with highly seasonal populations and for areas of rapid growth or
decline. The use of period estimates of totals (e.g., the number of persons in poverty)
is particularly unclear for areas that experience substantial changes in population size
during the period.

3. Rotating panel surveys

Repeated surveys of households may retain the same set of PSUs, second-stage sampling
units, and units at other higher stages of sampling from one round to the next, but they
select fresh samples of reporting units on each occasion.1 In contrast, rotating panel
surveys are designed to ensure some degree of overlap in the final sample units at
specified rounds. However, unlike full panel surveys, not all the same final sample units
are retained over all rounds. With a rotating design, each final sample unit remains in
the sample for only a limited period of time.

Rotating panel designs are widely used for labor force surveys. In the monthly
Canadian Labour Force Survey (LFS), for example, each sampled housing unit is
included in the sample for six consecutive months. Each month, one-sixth of the housing
units enter the sample and one-sixth of them rotate out of the sample (Statistics Canada,
1998). Table 1 illustrates this rotation scheme over a period of 12 months. The sample
in month 1 is made up of six rotation groups, each comprising one-sixth of the overall
sample. Rotation group A has been in sample for the previous five months and rotates
out in month 2, rotation group B has been in sample for four previous months and will
remain in sample in month 2 before rotating out in month 3, and so on.

Various rotating panel designs are used for labor force surveys in different countries.
For example, the quarterly U.K. LFS employs a five-wave rotating panel design, with
one-fifth of the sample entering each quarter and one-fifth rotating out (U.K. National
Statistics, 2007). The U.S. monthly labor force survey—CPS—employs a more com-
plex rotation scheme. Each sampled housing unit is in sample for eight months, but not

1 Indeed, repeated surveys may be designed to minimize the chance that a reporting unit is selected for
rounds that are close in time (as is the case with the U.S. American Community Survey, which ensures that
housing units are not selected more than once in a five-year period).
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Table 1
An illustration of the Canadian LFS six-month rotation scheme for a 12-month period

Month

1 2 3 4 5 6 7 8 9 10 11 12

A G G G G G G M M M M M
B B H H H H H H N N N N
C C C I I I I I I O O O
D D D D J J J J J J P P
E E E E E K K K K K K Q
F F F F F F L L L L L L

consecutive months (U.S. Census Bureau and Bureau of Labor Statistics, 2000). A hous-
ing unit enters the sample in a given month and stays in sample for the next three months,
drops out of sample for 8 months, and then returns for four consecutive months. This
scheme is termed a 4-8-4 rotation scheme.

The primary analytic objectives of these labor force surveys are the same as those of
repeated surveys: to produce cross-sectional estimates at each time point and to measure
net changes over time.As compared with independent samples for each round, a rotating
design induces a correlation between estimates at rounds in which there is some sample
overlap. Since this correlation is almost always positive, the overlap results in a reduction
in the sampling error of estimates of net change. The 4-8-4 rotation pattern in the U.S.
CPS, for example, is fashioned to provide substantial overlap from one month to the
next and also from a given month in one year to the same month in the next year.

In fact, with a rotating panel design, the precision of estimates of current level and
net change can “borrow strength” from the data collected during all previous rounds
of the survey, using the technique of composite estimation. See U.S. Census Bureau
and Bureau of Labor Statistics (2000) for the application of composite estimation in the
CPS and Fuller and Rao (2001) for an investigation into the use of regression composite
estimation in the Canadian LFS. See also Chapter 33 in this volume and Binder and
Hidiroglou (1988) for more detailed discussions of composite estimation and optimal
rotation designs.

As well as improvements in the precision of survey estimates, a rotating design
can yield important cost savings because returning to the same housing units is often
less expensive than starting afresh. In particular, while the initial interview may need
to be conducted face-to-face, subsequent interviews may be conducted by telephone
where possible. This procedure is used in the Canadian LFS and the U.K. LFS. In the
U.S. CPS, face-to-face interviewing is required for the first and fifth interviews (when
a sampled housing unit returns to the sample after a gap of eight months), but other
interviews may be conducted by telephone. There is, however, a concern that responses
obtained by telephone may not be comparable with those obtained by face-to-face inter-
viewing. See, for example, de Leeuw (2005) on the effects of mixed-mode data collec-
tions in general and Dillman and Christian (2005) on the issues of mixing modes across
waves of a panel survey.

The LFS conducted by theAustralian Bureau of Statistics uses a rotating panel survey
design, with sampled dwellings remaining in sample for eight consecutive months. Until
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1996, face-to-face interviewing was used on each wave, but then telephone interviewing
was introduced for all interviews except the first. This change was introduced over time
by rotation group. Bell (1998) used this balanced feature to analyze the effects of the
change while also taking account of rotation group bias (see below). He concluded that
the change in data collection methods resulted in a transitory effect on estimates by labor
force status, but the effect had almost disappeared by the end of the phase-in period.

Even apart from a change in mode, there is concern that the responses obtained in
repeated interviews with the same respondents may not be comparable. This effect,
which is termed panel conditioning, occurs when responses at later waves of interview-
ing are affected by the respondents’ participation in earlier waves of the survey. For
example, respondents may change their behavior as a result of being sensitized to the
survey’s subject-matter and perhaps learning something from the interview (such as the
existence of a welfare program). Some respondents may change their response behaviors
in later interviews, perhaps demonstrating better recall after learning more about the sur-
vey contents, being more motivated to give accurate responses, giving less-considered
responses because they have lost interest, or responding to filter questions in a manner
that will avoid lengthy sets of follow-up questions. Respondents may also seek to be
overly consistent in responses to attitude items. See Waterton and Lievesley (1989) and
Sturgis et al. (2009) for a discussion of possible reasons for panel conditioning effects
and Cantor (2007) for an extensive review of the research on panel conditioning.

Yet another issue with panel designs, in general, is panel attrition (see also Section 4).
While both cross-sectional and panel surveys are subject to total nonresponse at the initial
wave of data collection, a panel survey also suffers losses at later waves. Although
nonresponse weighting adjustments may help to compensate for panel attrition, the
estimates derived from a rotation group that has been in sample for several waves, with
associated panel attrition, may differ for this reason from those derived from rotation
groups that have been in sample for shorter durations.

A well-documented finding in the U.S. CPS and the Canadian LFS is that the sur-
vey results for the same time point differ across rotation groups (Bailar, 1975, 1989;
Ghangurde, 1982; U.S. Census Bureau and Bureau of Labor Statistics, 2000). This
effect, which reflects some combination of panel conditioning and attrition effects, is
variously known as rotation group bias, time-in-sample bias, and month-in-sample bias.
The existence of this bias for a given monthly estimate almost certainly implies that the
estimate is biased but, under an additive model of the bias by rotation group, estimates
of month-to-month changes are unbiased provided that the rotation group pattern is bal-
anced at each time point (Bailar, 1975). This balance is not always achieved; in any case,
it does not hold during the start-up period for a rotating panel design. Also, as Solon
(1986) shows, change estimates are biased under a model that includes a multiplicative
bias term.

Rotating panel designs are not restricted to labor force surveys. They are also used
for purposes other than efficiency of fieldwork and improved precision of estimates of
change and level. An important reason for using a rotating panel design in the U.S.
National Crime Survey (now the National Crime Victimization Survey) is for the pur-
pose of bounding, to deal with telescoping effects (Cantor, 1989). These effects can
occur when respondents are asked to report events that happened in a given period,
such as victimizations that they have experienced in the past six months or any cars
purchased in the past year. Telescoping occurs when a respondent reports an event as
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occurring within the reference period when, in fact, it fell outside the period. See Neter
and Waksberg (1964a,b) for a classic study of both panel conditioning and telescoping
effects. Telescoping effects can be addressed with a rotating panel survey—indeed, any
panel survey—in which the sample is reinterviewed at intervals corresponding to the
reference period: events reported at the current wave that were also reported at a previ-
ous wave can be discounted because they occurred prior to the current reference period.
(See also Section 4.2 for a discussion of dependent interviewing, in which respondents
are reminded of their answers to the previous wave.)

Another application of rotating panel designs is when respondents cannot be expected
to recall accurately all the information required for a given reference period. They may
then be reinterviewed at set intervals to report the information for shorter reference
periods, with the information then being aggregated to provide the information required
for the full period. The household component of the U.S. Medical Expenditure Panel
Survey (MEPS), for example, uses a rotating panel approach to collect data on health
status and health care access, utilization, and expenditures; data on panel members are
collected over five waves covering 30 months, with a new panel being introduced every
year (Ezzati-Rice and Cohen, 2004). The data from two consecutive rotation groups
(panels) can be pooled for a given year, and the data aggregated to produce annual
estimates. The Survey of Income and Program Participation, described in Section 4, has
used a similar approach (Kalton et al., 1998).

A rotating panel design can sometimes provide the data needed for longitudinal
analyses for a limited time span. For example, with the ultimate sampling units retained
in the MEPS rotating panel for five waves, the data for one rotation group (panel) can
be analyzed to study gross changes over a specific 30-month period (Ezzati-Rice and
Cohen, 2004). However, in labor force surveys, the basis of the rotation scheme is usually
housing units rather than household members. While this choice eliminates the need to
trace and interview households or household members that move between waves, it fails
to provide the data needed for longitudinal analyses of households or persons.

A general issue with cross-sectional estimation from panel surveys is that, unless
special steps are taken, the sample at later waves does not represent elements that have
entered the population after the sample was selected for the initial wave. This is seldom
a very serious concern for rotating panel surveys because the duration of each rotation
group in the panel is fairly short. Moreover, at any point in time, new entrants can
appear in the sample through the more recent rotation groups provided that the sample
coverage is updated for each group (such as by updating dwelling lists in sampled
segments in a multistage design). They can therefore be properly represented in cross-
sectional estimation by the use of an appropriate weighting scheme that reflects the fact
that they had chances of selection in only some of the rotation groups on which the
cross-sectional estimates are based.

4. Panel surveys

This section considers survey designs in which the same elements are followed over
time. Such designs are commonly known as either panel surveys or longitudinal surveys.
The term “panel survey” is used in this chapter for all such designs, with the term
“longitudinal” being used to describe the data such designs produce.
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The distinction between panel surveys and rotating panel surveys becomes blurred in
the case of panel surveys of fixed duration, when fresh panels are introduced periodically;
the new panel may overlap with the current panel or it may start only after the current
panel has been terminated. The distinction made here is between surveys that focus
primarily on cross-sectional estimates and estimates of net change, as with the rotating
panels in labor force surveys, and panel surveys that are concerned primarily with
longitudinal analyses at the individual unit level (e.g., gross change).

The first part of this section (Section 4.1) describes some types of panel surveys that
are in widespread use, and the second part (Section 4.2) reviews a range of methodolog-
ical issues that arise with panel surveys.

4.1. Types of panel survey

The benefit of a full panel survey is that it produces the data needed for longitudinal
analysis, thus greatly expanding on the analytic potential of a cross-sectional survey.
Although panel surveys have a long history, interest in them has greatly increased in
recent years, especially with developments in the computing power needed to handle
complex longitudinal data files and the software needed for conducting longitudinal
analyses. There are many panel surveys currently in operation and a sizeable literature
on the conduct of such surveys (e.g., Duncan and Kalton, 1987; Kalton and Citro, 1993;
Kasprzyk et al., 1989; Lynn, 2009; Trivellato, 1999).

Longitudinal data obtained from panel surveys provide the opportunity for a wide
variety of analyses not possible with cross-sectional data. For example, longitudinal data
are needed for analyses of gross change; durations of spells (e.g., of poverty); growth
trajectories with growth curve modeling (e.g., children’s physical and cognitive devel-
opment); early indicators that predict later outcomes (e.g., environmental exposures in
childhood and health outcomes in later years); and causal temporal pathways between
“causes” and effects, using longitudinal structural equation modeling (e.g., self-efficacy
as a mediator between stressful life events and depressive symptoms; see Maciejewski
et al., 2000). Sometimes, the longitudinal data needed can be obtained by retrospective
recall or from administrative records. Indeed, some panel surveys are based entirely on
administrative records; for example, the U.K. Office for National Statistics Longitudi-
nal Study links data across censuses together with vital event data on a sample basis
(Blackwell et al., 2005). However, when the quality of retrospective recall is inadequate
and administrative data are unavailable or insufficient, direct data collection in a panel
survey is required.

Martin et al. (2006) provide brief descriptions of a sizeable number of large-scale
panel surveys of social conditions conducted in several countries. These surveys cover
topics such as physical and mental health and disability; physical, social, and educational
development; employment history; family dynamics; effects of divorce; dynamics of
income and assets; transitions to retirement and effects of aging; and social and cultural
integration of immigrants. Most focus initially on specific areas but, over time, they are
likely to cover a wide range of subject-matter. (Indeed, one of the advantages of the
panel design is the opportunity for data collection on many topics at different waves
of the survey.) A long-term panel survey may change its areas of inquiry over time in
response to changing societal concerns and, in the case of panel studies of age cohorts,
to examine changes in age-related topics of interest. Panel designs have also long been
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used in fields such as epidemiological research on specific illnesses (e.g., Doll and Hill,
1964), studies of voting behavior (e.g., American National Election Study, 2007), and
studies to evaluate the effects of intervention programs (Piesse et al., 2009).

Although panel surveys are primarily concerned with producing the data needed for
longitudinal analysis at the element level, in most cases they are also analyzed cross-
sectionally for each wave of data collection. An important issue for cross-sectional
analysis is the adequacy of the sample coverage at each wave: unless steps are regularly
taken to “freshen” the cross-sectional samples by adding samples of new entrants to
the population since the last sample update, the new entrants will not be represented in
the cross-sectional analyses. New entrants are generally not included, and hence are not
needed, for those longitudinal analyses that start with data from the first wave of the
panel.

4.1.1. Cohort studies
One class of panel survey is often known as a cohort study (Bynner, 2004). Many cohort
studies take samples of persons of a particular age and follow them through important
periods of transition in their lives. A birth cohort may be followed throughout the life
course, and, indeed, the study can be extended to follow the offspring of the original
cohort. Four British national birth cohorts well illustrate this type of design in a sequential
form: the first was the 1946 National Birth Cohort, also known as the National Survey of
Health and Development (Wadsworth et al., 2005); the subsequent studies are the 1958
National Child Development Study, the 1970 British Cohort Study, and the Millennium
Cohort Study (Centre for Longitudinal Studies, 2007). A new U.S. birth cohort study,
the National Children’s Study, will enroll women early in their pregnancies, and even
prior to pregnancy, to study the effects of environmental exposures and other factors
in early life on the children’s health and development till they are 21 years old (NCS,
2007).

Although birth cohorts provide extremely valuable longitudinal data for examining
the effects of early childhood experiences on health and other factors much later in life,
this great strength is accompanied by some limitations. The sample members of all age
cohort studies are subject to the same historical events, or period effects (e.g., wars and
environmental disasters) that affect the entire population at that time. They may also
be affected by such events differentially because of their susceptibility at the ages at
which the events were experienced (cohort effects). Data from a single cohort confound
age, period, and cohort effects, and the results must be interpreted accordingly (Bynner,
2004; Yang, 2007). For instance, the effects of early life experiences on later outcomes
must be viewed in the context of the period and cohort studied; the magnitude, or even
the existence, of the effects may not apply to the current or later generations.

Another limitation of a birth cohort study is that its members would have to be fol-
lowed for a very long time before it would be possible to investigate, say, the effects of
retirement on health outcomes. For this reason, many age cohort studies start at later ages.
For instance, the U.S. Health and Retirement Study (HRS) (Juster and Suzman, 1995),
the English Longitudinal Study of Ageing (ELSA, 2007), and the Survey of Health,
Ageing and Retirement in Europe (SHARE, 2007) follow cohort members from later
middle age into later life. The U.S. Bureau of Labor Statistics’ National Longitudinal
Surveys (NLS) comprise seven cohorts defined by starting age group and sex (e.g., men
and women aged 12–17 years, women aged 30–44, and men aged 45–59) (U.S. Bureau
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of Labor Statistics, 2005). The U. S. National Center for Education Statistics has con-
ducted many cohort studies, including the Early Childhood Longitudinal Studies, Birth
and Kindergarten Cohorts; the Education Longitudinal Study of 2002 (which is follow-
ing a 10th grade cohort through high school to postsecondary education and/or work); the
Beginning Postsecondary Students Longitudinal Study; the Baccalaureate and Beyond
Longitudinal Study; High School and Beyond; and the National Longitudinal Study of
the High School Class of 1972 (U.S. Institute of Education Sciences, National Center
for Education Statistics, 2007).

4.1.2. Household panel surveys
A second major class of panel survey is the household panel survey (Rose, 2000). The
ongoing U.S. Panel Study of Income Dynamics (PSID) (Hill, 1992), started in 1968,
provided a major impetus for this type of study. The PSID design has been adopted
for studies in many countries, including the ongoing British Household Panel Survey
(Taylor et al., 2007) (currently being expanded into the Understanding Society study),
the ongoing German Socio-Economic Panel (German Institute for Economic Research,
2007), and the European Community Household Panel (ECHP, 2007). These surveys
start with a sample of households and then follow household members for the duration
of the panel. To reflect the economic and social conditions of the households of panel
members at each wave, the surveys also collect data on persons with whom panel
members are living at later waves, termed variously as cohabitants, nonsample persons,
or associated persons. The surveys are thus, in reality, samples of persons rather than
households. Households are constantly changing, with members joining and leaving,
new households coming into existence, and others ceasing to exist. For this reason, the
definition of a longitudinal household is extremely problematic unless the time period is
very short (see, e.g., Duncan and Hill, 1985, and McMillen and Herriot, 1985). Person-
level analyses with wave-specific household characteristics attributed to panel members
are generally preferred for longitudinal analyses.

Other household panel surveys modeled along the lines of the PSID are the U.S.
Survey of Income and Program Participation (SIPP) (Kalton et al., 1998), the Canadian
Survey of Labour and Income Dynamics (SLID) (Statistics Canada, 2008), and the
European surveys conducted under the European Union Statistics on Income and Liv-
ing Conditions (EU-SILC) regulations (replacing the ECHP surveys) (Eurostat, 2005).
A distinctive feature of all these surveys is that they are designed to last for a fixed
duration. The SIPP panels, which collect data every four months, have varied between
2½ and 4 years in length; the SIPP design has varied between overlapping panels and
abutting panels where a new panel starts only as the last panel ends. The SLID panels,
which collect data twice a year, last for six years; the SLID uses a rotating design with a
fresh panel starting every three years. The EU-SILC surveys follow a four-year rotation
design.

An advantage of abutting panels is that the full sample size is available for longitudinal
analyses for the period of the panel. However, abutting panels cannot handle longitudinal
analyses for a period that spans two panels. Also, valid estimates of trends from cross-
sectional estimates, such as the annual estimates that are important for these surveys,
cannot be produced because of variable time-in-sample biases across years. Rotating
designs with an annual rotation can produce acceptable trend estimates because of the
constant balance of time-in-sample across waves.
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The choice of the length of time for household panel surveys of limited duration
depends on a combination of analytic objectives and practical data collection consider-
ations, particularly respondent burden and its effects on response rates at later waves. In
the SIPP, for example, the duration was extended from the original goal of eight waves
(22

3 years) to 12 waves (4 years) in 1996 to provide longer periods of observation for use
in longitudinal analyses, such as durations of spells of poverty. (See Citro and Kalton,
1993, for a review of the SIPP program and a discussion of the SIPP panel length.)
However, with three waves of data collection each year, the extension to four years was
accompanied by lower response rates. Response rate and other practical implementation
issues influenced the decision to move from the ECHP to the EU-SILC rotating design
(Eurostat, 2005).

4.1.3. Cross-national panel surveys
An important recent development in general survey research is the use of survey data
for cross-national comparisons, enabling the investigation of the effects of differing
societal conditions on the populations involved. This development applies equally with
some panel surveys. Notable examples are the aging panel surveys (HRS, ELSA, and
SHARE) that are coordinated across many countries and the household panel income
surveys. While coordination is valuable, there remains a need for harmonization of
the data collected in surveys in different countries. To facilitate cross-national research
on economic and health issues in Australia, Canada, Germany, Great Britain, and the
United States, Burkhauser and Lillard (2007) have created a Cross-National Equivalent
File from the data collected in the household panel surveys in these countries.

4.2. Methodological issues in panel surveys

Many of the same methodological issues apply to panel surveys and rotating panel sur-
veys, although the importance of an issue may be different. For example, all forms of
panel surveys must take into consideration the issues of sample attrition, panel condi-
tioning, time-in-sample bias, and the need to cover new entrants to the population for
cross-sectional estimation. However, concerns about sample attrition and covering new
entrants increase with panels of longer duration, and conditioning effects are a serious
concern for many forms of longitudinal analysis.

4.2.1. Maintaining panel participation
Maintaining participation of panel members throughout the life of the study is a critical
issue with a panel survey. As in a cross-sectional survey, a panel survey is subject to
total nonresponse, which occurs when a sampled unit fails to participate in any wave
of the panel. In addition, a panel survey is subject to wave nonresponse, which occurs
when a sampled unit participates in some but not all waves of the survey.

Wave nonresponse may consist of attrition nonresponse (when the unit drops out
of the panel at one wave and never returns to it) or nonattrition nonresponse (when a
sampled unit misses a wave but responds at one or more later waves). The potential
patterns of wave nonresponse depend on the following rules adopted for the panel.
For instance, for practical reasons, many surveys make no attempt to convert initial
nonrespondents into respondents at the next or later waves. Thus, initial nonrespondents
are all total nonrespondents. Also, nonrespondents who adamantly refuse to participate
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or cannot be located at one wave may not be followed in subsequent waves and, hence,
become attrition cases. Frequently, no attempt is made to follow up those who have
missed two consecutive waves.

In general, panel surveys encounter the highest loss rate at the initial wave, after
which high proportions of those responding at each successive wave also respond at the
following wave. However, the accumulation of nonrespondents over time frequently
results in a high overall nonresponse rate. With long-term panels, this situation raises
the dilemma of whether to continue with the existing panel, with its increasing analytic
potential, or terminate it and start afresh. Some panels—particularly those with high
respondent burden—are designed to be of limited duration because of concerns about
attrition. The possible biasing effects of accumulating nonresponse are a serious concern
in nearly all panel surveys; see, for example, the special issue on attrition in longitudinal
surveys in the Journal of Human Resources (Volume 33, Number 2, 1998).

The primary causes of wave nonresponse are loss to follow-up for panel members
who move and refusals resulting from the repeated burden of being a panel member.
A variety of methods are used to minimize loss to follow-up, particularly in panels
with lengthy intervals between waves. One approach is to institute methods for tracking
panel members so they can be located if they move. For instance, mailings such as
birthday cards or newsletters with key findings from the last wave can be sent to panel
members, using delivery methods that require the post office to forward mail and inform
the sender of the new address. When the tracking methods fail, panel members must be
traced to their new addresses. Collecting contact information (e.g., telephone numbers)
for neighbors and relatives who are not likely to be mobile (e.g., parents of young people)
can be helpful. Otherwise, a variety of web-based and other search procedures may be
used. With sufficient effort, loss to follow-up can be limited, even for panels with long
intervals between waves (Couper and Ofstedal, 2009).

Preventing the loss of panel members who are no longer willing to participate is
a challenge. As with a cross-sectional survey, incentives may be offered to increase
participation, but there are additional factors to be considered in a panel survey. Should
incentives be offered at every wave? If not, will panel members paid an incentive at one
wave refuse to participate when they are not offered an incentive at the next wave? The
results of a 1996 U.S. SIPP incentive experiment, in which a monetary incentive was
offered only at the first wave, do not support that concern. This experiment found that
the sample loss at that and the following five waves was lower with an incentive of $20
than with an incentive of $10 and that both rates of loss were lower than the sample
loss in the control group, which received no incentive (Kalton et al., 1998; Mack et al.,
1999). With panel surveys, the opportunity exists to target incentives to respondents
who demonstrated reluctance at the previous wave, such as those who failed to answer
many questions. There are debatable equity issues with this procedure because it serves
to reward behaviors that are undesirable from the survey organization’s perspective.
Another form of targeting is to offer increased incentives to those who facilitate the
interview at a given wave. This form of targeting has been found to be cost-effective in
the U.S. NLS, where larger incentives are offered to those who call in for a telephone
interview (Olson, 2005). Incentives are used in one form or another in many panel
surveys.

Minimizing respondent burden is another approach to limiting the loss to follow-up
from refusals at later waves of a panel survey. One way to reduce respondent burden



Designs for Surveys over Time 103

is via linkages to administrative data; such linkages can also provide data that panel
members are unable to report accurately. In the Canadian SLID, income tax records
are used to reduce the reporting burden on many respondents. The survey includes a
January interview to collect data on labor market experiences, educational activity, and
family relationships and a May interview to collect income data; more than 80 percent
of the respondents grant Statistics Canada permission to collect income data from their
tax files, and thereby avoid the burden of a May interview (Statistics Canada, 2008).
Linkages to administrative data can also extend the period of observation of a panel
survey without extending the period of the survey data collection, with its attendant
nonresponse losses. A good example is provided by the U.S. HRS, a panel survey that
starts with samples of persons aged 51–61. The analytic value of the survey data is greatly
enhanced by linkages to lifetime earnings and benefits records in Social Security files
and to health insurance and pension data from employers (Juster and Suzman, 1995). See
Calderwood and Lessof (2009) for a discussion of linkages implemented in panel surveys
in the U.K. For ethical reasons, panel members must be asked for their permission to
make the linkages, and procedures must be put in place to ensure that the linkages cannot
harm the panel members.

4.2.2. Measurement error
Measurement errors are a concern in all surveys, but they are particularly problematic for
longitudinal analyses of panel survey data. To illustrate this point, consider the estimation
of the stability of an attitude score across two waves of a panel survey and assume that the
scores are subject to random measurement errors that are independent between waves.
While the cross-sectional and net change estimates are unbiased in this case, the stability
of the estimates over time is underestimated. Another example is the important case of
estimating gross change in employment status from a labor force survey. Even if the
cross-sectional and net change estimates are considered acceptable, measurement errors
can lead to serious overestimates of gross change (see, e.g., Chua and Fuller, 1987).
Kalton et al. (1989) list a variety of sources of differential measurement errors that can
distort the estimation of gross change: panel conditioning effects, change in mode of
data collection, change in respondents between waves (including the possibility of proxy
respondents when the sampled person cannot be contacted), changes in personnel (e.g.,
interviewers, coders of responses to open questions), changes in the questionnaire (with
possible context effects even when the questions involved remain the same), changes in
the questionnaire content, changes in interpretations of a question, imputation of missing
responses, matching errors in linking the files for the two waves, and keying errors. The
kinds of effects that measurement errors have on analyses of gross change also apply
for many other forms of longitudinal analysis.

One way to try to reduce the overestimation of gross change is to use dependent
interviewing, in which respondents are reminded of their responses on the previous
wave of the panel. A risk with dependent interviewing is, of course, the generation
of false consistency in the responses. Many studies have been conducted to evalu-
ate the effect of dependent interviewing (e.g., Hill, 1994; Hoogendoorn, 2004; Jäckle,
2009; Lynn and Sala, 2006); see Mathiowetz and McGonagle (2000) and Jäckle (2009)
for reviews of the technique. In general, dependent interviewing is thought to reduce
response errors and the overestimation of gross change. Dependent interviewing may
be applied in a proactive form by reminding respondents about their reported status at
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the previous wave (e.g., they were employed) and then asking for their current status,
or in a reactive form by asking about their current status and any discrepancy from
their previous response. Proactive-dependent interviewing can also be useful to reduce
respondent burden, whereas reactive-dependent interviewing may be less susceptible
to false consistency effects. In situations where household respondents may change
between waves of a panel, dependent interviewing may result in the disclosure of one
household respondent’s responses to a different household respondent in the next wave.
This feature raises a confidentiality issue that may need to be addressed with a consent
form that permits sharing of responses across household members (Pascale and Mayer,
2004).

A particular aspect of excessive change between waves becomes evident in panels
that ask respondents to report their statuses for subperiods within the interval between
waves. Thus, for example, the U.S. SIPP collects data on a monthly basis within each
four-month interval between waves. A common finding in this situation is that the
amounts of gross change between adjacent months are much greater for pairs of months
for which the data are collected in different waves than for pairs of months for which
the data are collected in the same wave. This effect, which is termed the seam effect,
has been investigated in many studies (see, e.g., Cotton and Giles, 1998; Kalton and
Miller, 1991; Kalton et al., 1998; Moore and Kasprzyk, 1984; Rips et al., 2003). The
effect is likely to be a combination of false consistency within a wave and overstate-
ment of change across waves. Dependent interviewing can also be used to address
this problem.

4.2.3. Weighting and imputation
The standard weighting adjustment methods used to compensate for total nonresponse
in cross-sectional surveys can be applied for total nonresponse in panel surveys (see
Chapter 9). However, compensating for wave nonresponse (particularly, nonattrition
nonresponse) and item nonresponse is much more challenging.

Apart from total nonrespondents, a good deal of information is known about the
other cases with missing data based on the responses they provided in the wave(s) of
data collection in which they have participated. One approach for handling missing
data is to impute all the missing items, including all the items in waves in which the
sampled unit is a nonrespondent. This approach has the advantage of retaining in the
analysis file all the information that the sampled units have reported. However, the large
amount of imputation involved raises concerns about distortions that the imputed values
may introduce into an analysis. An alternative approach is to use nonresponse weighting
adjustments to handle some or all of the missing waves. This approach limits the analysis
file to sampled units that responded in all the relevant waves. It uses a limited number of
the survey responses in making the adjustments, but the responses to other items are lost
(Kalton, 1986; Lepkowski, 1989). Imputation is the natural solution when a survey unit
fails to respond to just a few items, but the choice between imputation and weighting
adjustments is less straightforward for wave nonresponse.

To retain the covariance structure in the dataset, imputation requires that all the other
variables associated with the variable to be imputed should be used as auxiliary variables
in the imputation model. Satisfying that requirement adequately is difficult enough with
a cross-sectional survey, but it is much more challenging with a panel survey because the
model has to incorporate variables from other waves of the survey and variables from
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the given wave. In particular, it is important to include the responses to the same variable
at other waves, or gross change will be overestimated. A practical issue is that, in many
cases, a completed data set is produced after each wave of a panel survey to enable
analyses of all the data collected up to that point. Imputations for the current wave can
use current and previous wave data as auxiliary variables but not data from later waves.
One solution is to produce preliminary imputations for each wave and then produce
final imputations when the next wave’s data can be incorporated into the imputation
scheme. Although somewhat laborious, this solution is used in the British Household
Panel Survey (Taylor et al., 2007).

Concerns that mass imputation for wave nonresponse may introduce distortion into
analyses have led to a general, but not universal, preference for weighting adjustments
over imputation for handling this type of missing data. In the case of attrition non-
response, a common practice is to develop weights for all those responding at each
wave, based on data collected in previous waves (by the attrition definition, all those
who responded at the current wave have responded at all previous waves). With the
large amount of data available for respondents and attrition nonrespondents at a given
wave, the development of the weighting adjustments is more complex than in most
cross-sectional surveys, but the process is essentially the same. Procedures such as
Chi-squared Automatic Interaction Detector (CHAID), propensity score weighting, and
raking can be used in developing the weighting adjustments (see, e.g., Kalton and Brick,
2000; Rizzo et al., 1996). Analysts select the set of weights for the latest wave in which
they are interested and they can then use that set of weights to conduct any longitudinal
analyses they desire.

With many possible patterns of response/nonresponse for nonattrition cases across
waves, the use of weighting adjustments in this case can result in the production of a
multitude of sets of weights if all the data for responding waves are to be retained for
analyses involving data from any given set of waves. Including attrition nonresponse,
there is, in fact, a maximum of 2H−1 patterns of response/nonresponse across H waves,
but this number is often reduced somewhat by the following rules that are used. Rather
than compute sets of weights for each of the potential patterns, analysts often reduce
the sets of weights by discarding data for some reported waves. For instance, discarding
data from all waves after the first nonresponding wave converts all nonattrition cases to
attrition cases and reduces the number of sets of weights to H . Starting from that basis,
a restricted number of additional sets of weights may be added based on a review of the
combinations of waves that are of analytic importance together with an assessment of
the extent of data loss for these combinations resulting from a weighting scheme that
treats all wave nonrespondents as attrition cases.

An alternative approach for handling certain nonattrition patterns is to use imputation
rather than weighting. For example, in the 1991, 1992, and 1993 U.S. SIPP panels, a
longitudinal imputation procedure was used for persons who missed one wave that
fell between two waves in which they responded; in the 1996 panel, this procedure was
extended to include two consecutive missing waves (see Kalton et al., 1998, for research
on longitudinal imputation and the missing wave imputation procedures adopted for
the SIPP).

A unique weighting issue arises with cross-sectional estimation in household panel
surveys as a result of the collection of survey data for the cohabitants with whom
panel members are living at each wave. To take advantage of all the data collected at a
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given wave in producing cross-sectional estimates for that wave requires a weighting
scheme that takes account of the multiple routes of selection by which the household
and household members can be selected for the sample at that wave. For example, if
a member of an originally sampled household leaves to join another household, that
person’s new household could be selected either via that person’s original household or
via the original households of the other members of the new household. A weighting
scheme that takes the multiple routes of selection into account and that depends only on
the selection probabilities of originally sampled households is described by Ernst (1989),
Kalton and Brick (1995), and Lavallée (1995, 2007b). Verma et al. (2007) discuss the
application of this scheme to rotating panel designs, with particular reference to the
EU-SILC surveys.

4.2.4. Sampling issues
There are many special sampling considerations that arise with panel surveys. One
concerns the degree of clustering to be used in selecting the sample for the first wave
of a panel. The effectiveness of clustering in reducing interviewers’ travel time and
facilitating face-to-face callbacks dissipates over time as some panel members move to
new addresses.Also, once a panel sample has been enrolled with face-to-face interviews,
other methods of data collection that do not benefit from clustering (telephone, mail,
and web) may be used in later waves. These considerations argue for less clustering in
the first wave of a panel survey than in a cross-sectional survey, thereby cutting back
the increases in the variances of survey estimates resulting from clustering.

Most surveys aim to produce estimates for certain subgroups of the population as
well as for the total population. Smaller subgroups are often oversampled to gener-
ate sample sizes that produce adequate levels of precision for the subgroup estimates.
The use of oversampling in a panel survey must be carefully assessed. With a long-
term panel, survey designers should take into account that the survey objectives and
subgroups of interest may change over time so that the initial oversampling may be
detrimental later on. Also, the type of subgroup must be considered. When the defining
characteristic of the subgroup is a static one, as with a racial/ethnic subgroup, oversam-
pling can be particularly advantageous in a panel survey. In this case, the benefits of
the oversampling apply throughout the life of the panel, whereas any additional costs
associated with the oversampling are incurred only in the initial wave. However, when
the defining characteristic is liable to change over time (e.g., being in poverty or living
in a particular province), oversampling based on the initial state can be problematic,
particularly when a high degree of oversampling is used. Over time, panel members
will move into and out of the subgroup. As a result, subgroup members at later waves
will have markedly different weights, leading to a serious loss in precision of subgroup
estimates, even to the point that they may not be useful. An extreme example occurs
with panels of businesses; often, highly disproportionate samples of businesses are used,
but over time, some small businesses that were sampled at very low rates may grow
substantially. These high-growth businesses retain the large weights associated with
their initial selection probabilities, a feature that gives rise to a serious loss of precision
in the survey estimates. If oversampling is to be used with nonpermanent subgroups
in a panel survey, consideration should be given to keeping the variability in sampling
rates within reasonable bounds to avoid the loss of precision associated with movement
across subgroups.
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In the types of panel survey described here, the primary focus is on providing the
data needed for longitudinal analyses. However, panel survey data are also widely used
for cross-sectional analyses of the data produced at each wave. An important issue for
these analyses is representation of the full population at the time of the wave in question,
that is, covering units that entered the population after the sample for the initial wave
was selected. The same issue arises for longitudinal analyses, where the starting point
for the analyses is later in the life of the panel. New samples may be added to give
representation to new entrants at later waves. They may also be added to counteract
the sample loss from initial wave and attrition nonresponse, in response to an expanded
definition of the population of inference, to increase sample sizes for certain subgroups
that have become of analytic interest, or just to expand overall sample size.

A number of panel surveys use methods to add sample at later waves as, for example
was described in Section 1 for the SESTAT (Fecso et al., 2007). As another example,
the U.S. National Education Longitudinal Study of 1988 (NELS:88) started with a
sample of 8th grade students in 1988. At the first follow-up wave at 10th grade, the
sample was freshened by adding a sample of 10th graders who were not in 8th grade in
the 1987–1988 school year. The ongoing U.S. PSID, started in 1968, added a sample
of post-1968 immigrants in 1997 (PSID, 2007). The German Socio-Economic Panel,
started in West Germany in 1984, added a sample in East Germany in 1990, a sample
of immigrants in 1994–1995, and further new samples since then to increase sample
size and to provide an oversample of high-income households (German Institute for
Economic Research, 2007). The weighting schemes for the various longitudinal data
files can become complex when sample additions are introduced at later waves of a
panel survey.

4.2.5. Ethical and data disclosure issues
To conclude the discussion in this section, the special ethical issues and data disclosure
risks associated with panel surveys deserve comment (Lessof, 2009). The requirement
that sampled persons be informed about the purposes of the study at the outset can be
difficult to satisfy in a long-term panel study, the purposes of which may change during
the life of the panel. Also, those directing the study and conducting the data collections
may change over time. Researchers should pay attention to these issues in designing
consent forms.

Panel surveys are expensive to conduct, but they produce extremely rich data that can
be valuable for analyses of many different subjects. To capitalize on the investment, the
data should be made available to many researchers. However, the rich longitudinal data
often pose a high disclosure risk (see, e.g., Béland, 1999). Although standard techniques
such as data suppression (particularly of detailed geography), top coding, data swapping,
and subsampling may provide adequate protection to enable the release of a public use
data set for one wave, these techniques often do not afford sufficient protection for a
public use panel file, which includes much more data. In this case, alternative methods
may be needed to make the data available to researchers, such as restricted use files,
secure data enclaves, and remote analyses.Another aspect of making panel data available
for analysts is that full documentation must be maintained on an ongoing basis, both
to advise analysts on the contents of the complex panel data and to record the survey
details for use by those analyzing the data years later.
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5. Conclusions

Those planning survey data collections to provide data across time have a choice between
repeated cross-sectional, rotating panel designs, and full panel designs. If the data are
to be used for longitudinal analyses, then only a panel design will serve the purpose.
However, if the data are to be used only for overall trend analyses, any of the designs
can be used, provided that the sample is freshened at each wave to give representation
to new entrants to the population.

The design considerations for a series of repeated cross-sectional surveys would
appear to be the same as those for a single cross-sectional survey, but in fact there
are differences. Those planning a series of repeated cross-sectional surveys need to
reflect on what the data needs might be in the future in order to cover them from the
outset. During the course of the series, they will likely also face difficult decisions about
changing aspects of the design to meet current conditions and conform to current best
survey practice, or whether to stay with the existing design to maintain valid estimates
of trends. Analysts of repeated surveys must be cognizant of any changes made to the
design that may distort trend estimates.

Panel surveys are far more complex to design and analyze than cross-sectional sur-
veys. In addition to general issues of survey design, designers of panel must pay a
great deal of attention to such issues as maintaining the cooperation of panel members,
tracking and tracing methods, introducing sample freshening to be able to provide valid
cross-sectional estimates, the use of dependent interviewing, and the use of incentives.
Analysts must be cognizant of the effects of measurement errors and panel conditioning
on their analyses, as well as the likely deterioration in the representative nature of the
sample over time.
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Sampling of Rare Populations

Mary C. Christman

1. Introduction

In almost all research areas for which surveys are performed, whether it is social,
environmental, biological, or other scientific fields, there are many situations in which
it is desired to estimate the parameters of populations that are somehow rare. To define
rare, we first need some common definitions. Let the population to be the set of elements
that it is of interest to enumerate or characterize in some way. This is distinct from the
sampling frame, which is the set of units that can be sampled in a probabilistic sampling
design. For example, in a study of sexually transmitted diseases (STDs), it may be of
interest to determine the health status of symptom-free individuals with STDs. So, the
population of interest is the health status of all individuals who have an STD and are
symptom-free. They cannot be enumerated for sampling purposes, and so the sampling
frame could be the list of household addresses in the city where the study is to take
place.

A“rare population” can have several meanings. First, a rare population is one in which
the size of the population (N) is very small, for example, an endangered species. Here,
even if the sampling frame and the population do not coincide, the number of sampling
units containing the rare elements is small. For example, in a study of endangered
species, the sampling frame might be circular plots within suitable habitat. The second
definition relates to populations in which the presence of a particular trait is very low,
such as genetic disorders that occur very infrequently in live births. Rare in this setting
refers to the rarity of the sub-population (M out of N) displaying the trait of interest.
In this situation, it is often the case that the elements with the trait are not identifiable
before sampling commences. Hence, screening methods which sample from both parts
of the population and identify members of the subpopulation are required.

A third definition is where the elements are not necessarily rare but are cryptic or
hidden. As a result, detectability is low and the population appears rare since so few are
observed. In these cases, sampling designs that allow for estimation of both detectability
and rarity are required to obtain sufficient information about the cryptic population.

The final definition of rare is the case where the population is not necessarily small or is
the trait particularly rare but instead the proportion of sampling units containing elements
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from the population is very small. This occurs most frequently when the population or
the trait within a population is highly clustered in space or time, and the sampling units
are spatial regions (such as zip codes or circular plots) or time segments (such as a
week or 12 hour part of the day). As a result, a large proportion of sampling units do
not contain any elements of interest but those that do contain elements can contain high
numbers of them. For example, when acquired immune deficiency syndrome (AIDS)
was initially identified, it was shown that AIDS patients tended to congregate in areas
with good health care facilities (Ellis, 1996). Any sampling design based on a sampling
frame composed of large primary sampling units (PSUs), such as zip codes, would have
had a high proportion of PSUs with no AIDS patients.

Rare populations require sampling designs that provide high observation rates while
also controlling sample sizes. Hence, distinct sampling strategies have been developed to
adjust for the infrequent observations of the elements of interest. The choice of sampling
design is influenced by the objectives of the study. Common objectives that influence
design are as follows: estimating population size (N) or density (N/A, where A is area),
developing probability maps for the presence of a rare trait, estimating the proportion of
the population carrying a rare trait (M/N), comparing parameters among two or more
populations, monitoring for temporal changes within the population, and detecting the
impacts of interventions. A secondary objective may be the need for sufficient samples
for other types of analyses unrelated to the population parameters, that is, when the
object is to estimate other characteristics of the rare population. For example, in a study
of a rare species, the researcher may be interested in obtaining sufficient numbers of
observations for use in predictive models of habitat suitability or resource selection.
Another example is estimating the median income of employed persons with a rare
form of disability. In the following, we assume that the sampling frame is sufficiently
large relative to the sample size, so that the finite population correction factor can be
ignored.

Following is a review of methods that are used to estimate the parameters concerning
rare populations. Previous reviews of sampling designs for rare populations and com-
parisons among designs include Kalton (1993, 2003), Kish (1965), Sudman and Kalton
(1986), Sudman et al. (1988), Kalton andAnderson (1986), Thompson and Seber (1996),
Christman (2000), Thompson and Collins (2002), and Turk and Borkowski (2005). More
recently, Cervantes and Kalton (2007) described sampling rare populations using screen-
ing methods, such as telephone surveys.

2. Modifications to classical design-based sampling strategies

2.1. Random sampling

Simple random sampling is ill-suited for determining parameters of rare populations
due to a high probability of a sample of fixed sample size containing many or all zeroes.
This usually results in either a degenerate distribution around zero or a highly skewed
empirical distribution with excess zeroes. In spite of inherent problems, research has
been performed to determine the sample sizes needed to obtain sufficient observations
to reduce the influence of the excess zeroes and increase the probability of observing
individuals from a rare population. For example, Green andYoung (1993) determined the
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sample size that ensures a specified probability of detection of the rare events assuming
either a Poisson or a negative binomial distribution. They considered sampling of a spa-
tial region that has been divided into non-overlapping quadrats. Smith (2006) modified
their work to consider timed searches of a spatial region with the intention of increasing
the probability of observing elements of a rare population. More generally, Venette et al.
(2002) considered random sampling under three possible distributions: binomial, beta-
binomial, and hypergeometric sampling strategies. Johnson et al. (2003) developed a
Bayesian approach for estimating the sample size needed in surveys for determining the
absence of a disease. Another approach is sequential sampling, according to a negative
binomial distribution, that is random sampling until at least r rare elements are observed
in the sample. Liu (1999) described the confidence interval estimation when using such a
sampling approach to estimate the prevalence of a rare disease. These approaches were
preceded by the original work of Fisher (1934) and Rao (1965) on the effects of the
methods of sampling, called ascertainment, on the distributions of the study variables.
This approach is referred to as the method of weighted distributions. Fisher (1934), for
example, compared sampling of families known to have albino children (the “Proband”
method) with direct sampling of individuals with albinism (“Sib” method). Of interest
was the estimation of the probability of having albinism given that a family had an
albino child. In the Proband method, the distribution of number of albino children in
a family of size n is truncated due to the fact that families with no outward evidence
of albinism would be excluded from the sample. Rao (1965) expanded on this work
to allow for other reasons for nonsampling of individuals of interest. More recently,
Chung and Kim (2004) described a Bayesian approach to the method of weighted
distributions.

In social research, a common method to obtain sufficient sample size when the ele-
ments of interest are a subset of a larger population and the main focus is to study the
characteristics of the rare subpopulation involves screening during random sampling.
Screening is performed when the population is oversampled to ensure sufficient sample
sizes of the subpopulation that is designated as rare. When screening is used with sim-
ple random sampling, such as when random digit dialing is used in telephone surveys,
the total sample size needed to generate a sample size of nr elements in the rare sub-
population is ntotal = nr/pr, where pr is the proportion of rare elements in the sampling
frame. If in addition, nonresponse is observed, the estimated sample size needs to be
modified to account for the degree of nonresponse (Cervantes and Kalton, 2007).

2.2. Stratified random sampling

To control the costs of sampling for rare populations, several authors have suggested spe-
cialized methods for stratification and for allocation of samples among strata. Ericksen
(1976), for example, recommended constructing strata such that rare elements are con-
centrated in one or a few strata and that those strata with rare elements be oversampled
to obtain sufficient elements for precise estimation. In his study, the population of inter-
est tended to be concentrated in specific parts of the study region and at least partial
information on spatial distribution was available a priori. Kalton and Anderson (1986)
described stratification and disproportionate samplings for estimating the prevalence of
a rare trait in a population and estimating the mean of a rare population.
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The efficiency of disproportionate sampling when the population is stratified depends
on the effectiveness of the stratification in grouping the rare population into one of the
strata. To compare disproportional to proportional allocation, for example, suppose the
population is composed of M rare sampling units and N–M nonrare units, it is desired
to estimate the mean, μ = M−1∑M

i=1 yi, of a certain variable for members of the
rare subset of the population using stratified random sampling. Let the population be
divided into two strata such that stratum 1 contains a proportion, A

(= M1
M

)
, of the

rare population with the remainder (1 − A) in stratum 2. Simple random samples of
sizes n1 and n2 are taken from the strata where m1(≤ n1) and m2(≤ n2) are sampled
members of the rare populations. The unbiased estimator of μ can be written in terms
of A as

μ̂A
st = Ay1 + (1 − A)y2, (1)

where yh = m−1
h

∑mh

j=1 yhj . If m1 and m2 are sufficiently large, the variance of (1) is
approximately

v(μ̂A
st)

∼= A2 σ2
1

E[m1] + (1 − A)2 σ2
2

E[m2] , (2)

where σ2
h = (Mh − 1)−1∑Mh

j=1 (yhj − μh)
2 with μh = M−1

h

∑Mh

j=1 yhj , and E[mh] is the
expected value of mh (Kalton and Anderson, 1986). To show the efficiency of dispro-
portionate sampling relative to proportional sampling, let Wh = Nh

N
be the proportion of

the total population in stratum h, P = M
N

be the proportion of the total population that
is rare, Ph = Mh

Nh
be the proportion of units in the hth stratum that is rare, and kf2 and f2

be the sampling fractions in strata 1 and 2, respectively. Let c be the ratio of the cost of
sampling a member of the rare subset to that of a member in the nonrare subset of the
population. Further, assume σ2

1 = σ2
2 , which is not unreasonable since we are confining

the estimation to the values of y for the rare subset of the population only and are not
stratifying based on the values of y but instead on whether the unit is a member of the
rare subset. Then, Kalton and Anderson (1986) showed that the ratio of the variance of
μ̂A

st under disproportional allocation to proportional allocation is approximately

R ∼= [kP − (k − 1)W1P1][(c − 1){P + (k − 1)W1P1} + (k − 1)W1 + 1]
kP[(c − 1)P + 1] .

(3)

The optimal choice of k, the ratio of the sampling fractions in the two strata, is given by

k̃ =
√

P1[(c − 1)(P − W1P1) + (1 − W1)]
(P − W1P1)[(c − 1)P1 + 1] (4)

which reduces to k̃ =
√

P1
P2

when c = 1 (Kalton and Anderson, 1986). The degree to

which the disproportional sampling outperforms the proportional sampling depends on
both A and P1; the larger A or P1 is, the better disproportional sampling is relative to
proportional sampling. Hence, the ideal condition to perform disproportional stratified
random sampling is when most of the rare subset of the population is confined to a single
stratum (large A) and that stratum has few nonrare elements (large P1).
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When the distribution of the rare elements among the sampling units is not known
beforehand, a method for stratifying the population is desired. Here, we discuss two
approaches: (1) two-phase sampling for stratification (Kalton and Anderson, 1986;
Thompson, 2002; see also Chapter 3 of this volume) and (2) model-based approach.
In two-phase sampling, at the first phase, units are screened using easily measured and
inexpensive variables that are highly correlated with the rare trait. The sample is then
divided into two or more strata according to the probability of being a member of the rare
population estimated from the screening variables. A second sample is then taken from
the now-stratified sampling units collected at the first phase. It is recommended that this
phase of sampling use disproportional allocation. Fink et al. (2004), for example, used
an initial screening questionnaire with eight questions to classify the incoming patients
according to their risk for psychiatric disorders. The first-phase sample consisted of
patients entering a hospital in Sweden and agreeing to answer the questionnaire. The
answers were then used to stratify the sample into two groups, either at low risk or
at high risk for psychiatric disorders. Second-phase sampling consisted of performing
time-consuming detailed diagnostic interviews on all first-phase patients in the high-
risk stratum and on a third of the individuals in the low-probability stratum. In this
particular study, the ultimate goal was to determine the ability of the screening tool to
identify severe disorders and so sampling the entire high-risk stratum was considered
appropriate.

In two-phase sampling for stratification, a first-phase sample of size n′ is selected
according to a probability-based design D that yields an unbiased estimator of the
population characteristic of interest. For example, the parameter might be the population
mean μall = N−1∑N

i=1 yi for a variable Y which may take on nonzero values only for
the population elements possessing the rare trait. Denote the estimator of the mean as
μ̂all. Since μ̂all is design-unbiased, ED[μ̂all] = μall, with variance VD[μ̂all] based on the
design D. Before second-phase sampling, easily measured auxiliary information is used
to classify the units in the first-phase sample into H strata of sizes n′

h, h = 1, . . . , H ,∑
h n′

h = n. The strata are constructed so that the rare units are congregated into one
or few strata. Stratified random sampling, preferably with disproportional allocation,
is now performed with nh units being sampled from n′

h, h = 1, . . . , H . The estimator
ystr = ∑H

h=1
nh

n′
h

yh = ∑H
h=1

1
n′

h

∑nh

j=1 yhj is conditionally unbiased for μ̂all and has
conditional variance

var(ystr|yn) =
H∑

h=1

(
nh

n′
h

)2 σ2
h|yh

nh

,

where yn is the vector of observations from the first phase, yh is the subvector of yn

assigned to stratum h, and σ2
h|yh

is the population variance of yh. Then, the unconditional
mean and variance of ystr are ED[Estr|D[ystr]] = ED[μ̂all] = μall and

var(ystr) = varD(Estr|D[ystr]) + ED[varstr|D(ystr)]

= varD(μ̂all) + ED

[
H∑

h=1

(
nh

n′
h

)2 σ2
h|yh

nh

]
.

(5)

Hence, the variance is greater than would be obtained if the strata were constructed
in advance of sampling, but it can be reduced by judicious choice of the sampling
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design for the first-phase sample and by performing disproportionate allocation for the
second-phase stratified random sample.

Another approach to stratification uses model-based approaches to construct strata
where at least one stratum is highly likely to contain the rare elements. Edwards et al.
(2005), for example, hypothesized that the presence of four common species of lichens is
correlated with the presence of several rare lichens. Using data collected at the nodes of a
systematic grid placed over the study region, they used classification trees to predict the
presence of the common species based on readily available data, such as topographic and
bioclimatic variables. The resulting estimates were interpolated to produce probability
maps which were then used to stratify the study area for subsequent sampling of rare
species. They allocated stratum sample sizes proportional to the predicted probability
of the common species. In a comparison of this approach to a systematic sampling
design, detections of rare species increased from 1.2- to 5-fold for four of the five rare
species.

Two-phase sampling has also been used for adaptive allocation of sample sizes to
predefined strata when the population is rare. The first-phase sample is taken according
to a stratified random design, possibly with Neyman allocation, and the observations are
reviewed to determine which strata should receive additional sampling effort. The first
description of the use of this approach was given by Francis (1984) who used adaptive
allocation to estimate fish biomass from sampling at sea.

Consider sampling to estimate a population total τ = ∑H
h=1

∑Nh

j=1 yhj for some vari-
able Y . For example, when sampling a spatially, highly clustered population, yhj might
be the number of population elements in the jth sampling unit (e.g., PSU) within the
hth stratum. Optimal allocation of the samples to strata often cannot be done a priori
because of incomplete knowledge of the variances in the different strata. Instead, an
initial stratified random sample with nh1 samples in stratum h is performed and the
sample stratum variance s2

h1, h = 1, . . . , H , is calculated. Now, for highly clustered
populations, s2

h1 will be largest for those strata in which PSUs have large counts. Hence,
additional samples should be assigned when possible to those strata. Francis (1984)
recommended a sequential allocation of additional effort as follows. For each stratum,
first calculate the stratum variance of the estimator from the first-phase sample. In the
case of estimating the total, the estimator at the stratum level is τ̂h1 = Nhyh1, where
yh1 is the sample mean per PSU, and Nh is the total number of PSUs in stratum h with

estimated variance v̂(τ̂h1) = N2
hs2

h1
nh1

. Then, the difference in variance if one additional
sample is taken is approximated as follows:

Gh = N2
hs

2
h1

(
1

nh1
− 1

nh1 + 1

)
= N2

hs
2
h1

nh1(nh1 + 1)
.

One additional sample is taken in the stratum with the largest value of Gh and a new
Gh is calculated. Another sample is taken in the stratum with the now largest Gh; this
could be the same or a new stratum. The sequential sampling is repeated until the desired
total sample size is reached. Since the initial estimates of the stratum variance are used
throughout, the second-phase sampling allocation can be determined before the actual
second-phase sampling effort is begun. Francis (1984) and Thompson and Seber (1996)
described the use of this approach for a study of fish biomass based on stratified random



Sampling of Rare Populations 115

tows of different lengths. Francis (1984) recommended combining the data from the two
phases and using the usual estimator for stratified random sampling. In our description
that would be

τ̂h = Nhyh = Nh

n′
h∑

j=1
yhj

n′
h

, (6)

where n′
h is the final sample size (nh1 + nh2) with variance

v̂(τ̂h) = N2
hv̂(yh) = N2

h

n′
h∑

j=1
(yhj − yh)

2

n′
h(n

′
h − 1)

= N2
h

s′2
h

n′
h

.

For the population total,

τ̂ =
H∑

h=1

Nh

N
τ̂h.

The variance of τ̂ is estimated by v̂(τ̂) =∑H
h=1

(
Nh

N

)2
v̂(τ̂h).

Both τ̂ and v̂(τ̂) are biased due to the adaptive allocation. Francis (1984) found that
the bias decreased as the ratio n1/n approached 1 but that the efficiency of the adap-
tive allocation sampling also decreased as the ratio increased. Thompson and Seber
(1996) used the Rao–Blackwell method to derive unbiased estimators of the total and
variance using the complete two-phase samples. Within each stratum, the unbiased esti-
mators are given by μ̂RBh = E[yh1|yhR] and s2

RBh = E[s2
h1|yhR], where yhR is the set of

y-values corresponding to the distinct units for the entire two-phase sample of size n′
h

and is the complete sufficient statistic for μh. The expectations are functions of the
permutations of yhR. They further show that μ̂RBh ≥ yhand hence that yh is negatively
biased.

3. Adaptive sampling designs

3.1. Multiplicity or network sampling designs

In multiplicity sampling, the N population elements are associated with sampling units,
such as N ′ households. When a sampling unit (household) is selected, information is
obtained both on the individuals within the household as well as on individuals in other
households who are linked to those in the sampled household (Sirken, 1970). This
information is collected from the sampled unit; the linkages are not directly sampled as
a result of being identified by the sampled unit. Hence, multiplicity sampling is distinct
from the related link-tracing designs in which linked sampling units are then randomly
selected for additional measurement.

The intent is usually estimation of the prevalence of a rare trait within a larger
population. In conventional sampling, the likelihood of observing the rare subset of
the population is generally so low that collecting additional information through the
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multiplicity design should decrease the sampling variance. For example, in a study on
the prevalence of a rare genetically based cancer (such as the gene BRCA-1 associated
with a high probability of breast cancer), the usual, conventional sampling approach
would be a random selection of households as PSUs. Because of the rarity of the cancer,
the sampling errors of the estimators could be very large. To reduce the sampling error,
a multiplicity design would include asking the sampled households to report cancer
patients in other households. To control the amount of information generated, the reports
for other households are limited by some counting rule. Examples of rules include
reporting only siblings of the cancer patient who have cancer not living in the sampled
household or reporting all children of the cancer patient not living in the household. In
multiplicity sampling, every individual in the rare population is assumed to be linked
with at least one sampling unit (e.g., household), such as the unit in which the individual
is located or by being reported by another sampling unit under the imposed counting
rule. The number of links leading to an individual is said to be its multiplicity.

In multiplicity sampling, each sampling unit reports several pieces of data: the indi-
viduals in the unit with the rare trait, its links to individuals with the rare trait in other
sampling units, and the multiplicity of each link. Using this information, the estimator
of the proportion of the population with the rare trait, P = M

N
, is

P̂ = N ′/n′

N

⎧⎨⎩
N ′∑
i=1

di

M∑
j=1

(aij1 + aij2)

(Sj1 + Sj2)

⎫⎬⎭, (7)

where N ′ is the number of sampling units in the sampling frame, n′ is the size of the
random sample of units, di is the indictor variable that the ith sampling unit is selected
for the sample, aijk is the indictor variable whether the jth event is reported for the
ith sampling unit by the kth counting rule used, and Sjk is the multiplicity of the jth
event reported by sampling units for the kth counting rule (Czaja et al., 1986). The first
counting rule is for the conventional sampling design of random selection of sampling
units and so Sj1 = 1. The other counting rule is for the multiplicity design.Assuming that
no more than one event is reported in each sampling unit and that sampling is random
and without replacement, the expected value of P̂ is

E[P̂] = P

⎡⎣θ∗
2 + (θ∗

1 − θ∗
2

) 1

M

M∑
j=1

1

(1 + Sj2)

⎤⎦,

where θ∗
k is the conditional probability of reporting an event under counting rule k, given

that it is linked to a sampled unit under rule k. The variance of P̂ is given by

Var[P̂] = P
N ′/N

n′

⎧⎨⎩θ∗
2

⎛⎝ 1

M

M∑
j=1

1

(1 + Sj2)

⎞⎠

+ (θ∗
1 − θ∗

2

)⎛⎝ 1

M

M∑
j=1

1

(1 + Sj2)2

⎞⎠⎫⎬⎭− E[P̂]2

n′
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(Czaja et al., 1986). Levy (1977) expanded the sampling design to include stratified
random sampling of the sampling units. He derived the stratified estimators of the
prevalence that allow linkages across strata boundaries.

Sirken (1970) derived relationships for the differences between multiplicity and con-
ventional estimators of the prevalence of a rare trait within a population. Three mul-
tiplicity counting rules were considered. He compared the variances of the resulting
estimators to that obtained under conventional random sampling without replacement
and multiplicity. Overall, multiplicity sampling tends to reduce sampling error com-
pared with the conventional sampling approach without multiplicity, but the degree of
gain in efficiency depends on the particular counting rule used.

Sirken (1970) also points out that the gain in efficiency of multiplicity sampling is
offset by the response errors associated with the additional information about linkages.
Here, response error could be due to incorrect reporting of the links associated with
a sampling unit or of the multiplicities of the links or both. Nathan (1976) expanded
on this by performing a small experiment that allowed partitioning of the total mean
squared error (MSE) of the multiplicity estimator into components for sampling vari-
ance, response error, and response bias. The sampling variance is the usual sampling
error obtained under the design assuming perfect information. The response bias is due
to counting bias, the loss of individuals who are not linked to any sampling unit in the
sampling frame, and implementation bias, the bias due to reporting individuals who do
not belong to the population of interest due to misinterpretation of the counting rule. An
example of the latter is the case where the counting rule is to ask for events that occurred
in the last year, such as births, but births in prior years are reported as well.

Nathan (1976) compared three sampling designs for estimation of births in 1973
in Israel: conventional random sampling of households, multiplicity sampling with
a restricted counting rule, and a full multiplicity sampling design with an expansive
(“full”) counting rule. In his example, the restricted rule was to include births linked to
the mother and maternal grandmother of the parent giving birth in the sampled house-
hold. The full multiplicity counting rule included the restricted rule and added reporting
of the mother’s sisters as well. Data were collected according to the study design except
that a subsample of the individuals reported as linkages were surveyed using the same
counting rules. This provided the additional information that allowed estimation of the
components of the MSE. Nathan (1976) also found that the two multiplicity methods had
high variance due to response error, but the full multiplicity had lower sampling vari-
ance and bias. Hence, full multiplicity was the most efficient, and conventional sampling
performed better than the restricted multiplicity due to the increase in response error
variance. Czaja et al. (1986) showed that multiplicity sampling in general had higher
reporting biases but considerably lower MSE than conventional sampling designs. The
gain in efficiency depended on the counting rule and the population sampled.

3.2. Link-tracing sampling designs

These designs also go by the moniker of graph sampling designs (Thompson and Collins,
2002) and are a form of adaptive sampling since the final set of sampled units depends on
the observations taken during sampling. Examples of link-tracing designs include multi-
plicity sampling (described above), random walk sampling (Klovdahl, 1989), snowball
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sampling (Kalton and Anderson, 1986), and respondent-driven sampling (Heckathorn,
1997). In all link-tracing designs, when a selected sampling unit is measured, the data
collected include information about the elements in the sampled unit as well as data
on linkages to other units. Except for multiplicity sampling, the linkages are used to
select subsequent sampling units for inclusion. The selection in a random walk sam-
pling design, for example, is based on randomly selecting one link to be measured at
the next sampling step. In snowball sampling, L ≥ 1 linkages are included in the next
steps of sampling. The number of steps or stages of sampling is usually selected before
sampling commences and generally depends on the rarity or obscurity of the subpopu-
lation under study. The final sample consists of the original sampled units (stage 0) plus
all units selected in the subsequent stages (stages 1 to L).

There are a number of problems associated with these approaches (Erickson, 1979).
Foremost is that the linkages are nonrandom and possibly inaccurately reported. In
addition, elements with large numbers of links tend to be oversampled relative to the
elements with small multiplicities. Also, response error when sampling human popula-
tions, such as unresponsive answers or lies, can severely compromise the data collection.
This is most likely to occur when the trait of interest is an illegal activity, such as drug
use. Further, by their nature, the final sample is not a random selection and as such
the estimators are biased and the variances are difficult to compute. Finally, the entire
snowball sample is a function of the initial sample and so if the initial sample is biased
then the entire data set is biased (Heckathorn, 1997). An attempt to correct for some
of the flaws of snowball sampling is respondent-driven sampling where incentives are
used at each selection stage to gather unbiased data from the respondent himself as
well as complete sets of the respondent’s linkages that can be used for subsequent
sampling. Heckathorn (1997) argues that these dual incentives overcome the difficul-
ties of snowball or random walk sampling, both the reporting errors and the method
of choice of the initial sample. He states that the sampling is a Markovian process so
that the final sample is independent of the initial sample, and unbiased estimators and
standard errors can be calculated based on some additional assumptions (Heckathorn,
2002). He developed methods for determining the number of stages required to obtain
this independence. Once respondent-driven sampling is completed, a common method
for estimating the standard error of the estimators is to assume that the final sample
is a random sample from the population since analytic solutions for the variance of
respondent-driven sampling are not available. This is, of course, a biased estimator and
so should be avoided. Salganik (2006) recommended the use of bootstrapping instead
of estimation of variances and use percentile method (Efron and Tibshirani, 1993) for
constructing confidence intervals.

3.3. Adaptive cluster sampling designs

Adaptive cluster sampling was first described as a single-stage cluster sampling strategy
in which the size and the distribution of the clusters are unknown before sampling (see,
e.g., Francis, 1984; Thompson, 1990). Here, clusters refer to a group of secondary units,
some of which display a characteristic which is of interest to the sample survey. In this
sampling design, secondary units are selected and if a secondary unit demonstrates a par-
ticular attribute, then the primary unit of which it is a member is exhaustively sampled.
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One of the earliest descriptions of a type of adaptive cluster sampling was given in
Fisher (1934) in which it was of interest to estimate the proportion of children with
albinism from parents who could produce children with albinism. This is distinct from
the proportion of albinos in the general population; Fisher’s interest was in compar-
ing two sampling methods for determining if albinism is a Mendelian recessive gene.
Fisher’s “Sib Method” samples individuals; if the individual is an albino, they are asked
about albinism of their siblings. Here, the secondary unit is the individual. If the indi-
vidual had albinism, then the cluster (siblings) of which she/he is a member is then
sampled. In Fisher’s case, he did not explicitly indicate that individuals were sampled
to determine if they were albinos; more likely a list frame from medical records was
available so that the initial sample could be restricted to those of interest. Adaptive
cluster sampling would be used if that list frame were unavailable as might be the case
for more confidential information.

To conduct adaptive cluster sampling, a more formal definition of cluster is required.
Clusters are constructed based on two pieces of information: the linkages among sam-
pling units and the defining characteristic of a cluster. For example, a common approach
in an ecological study of population size in a spatial setting is to construct a sampling
frame composed of a set of contiguous, non-overlapping quadrats or grid cells in which
Yi is the number of individuals within the ith cell. Linkages among the cells are based on
attributes, such as common boundaries, distance between centroids, orientation relative
to each other, or similar. For example, in the case of a regular grid, the linkages for the
ith cell might be to cells with a border in common with the ith cell. The set of linkages
for a cell is often referred to as the cell’s neighborhood. For unbiased estimation, it
is required that the linkages among units within a cluster be symmetric, that is, if the
ith cell is linked to the jth cell, then the converse is also true. For the determination
of what constitutes a cluster, that is, when the linkages are to be used in sampling,
the researcher specifies a criterion for initiating the adaptive cluster sampling. This is
similar to the counting rule used in multiplicity sampling. The choice for criterion is
based on the Y -variable, such as {Y > c} for c a constant. A common choice, especially
when the population is very rare, is {Y > 0}. The adaptive component of sampling is
performed when a sampled unit, either in the initial sample or via a link to the sampled
unit, meets the criterion {Y > c}. Occasionally, it is not possible to pick the value of c

before sampling, and so another approach is to base the criterion for adaptive cluster
sampling on the order statistics observed in the initial sample (Thompson, 1996).

The set of units that would be sampled as a result of any single one of them being
intersected in the initial sample is often referred to as a network; hence a requirement of
a network is that every unit in the network is linked to every other unit in the network.
A cluster then is composed of the network plus any additional units that would be
sampled but which are not part of the network.

Any unit in the initial sample which does not satisfy the criterion to perform adaptive
sampling is said to be a network of size 1. In adaptive cluster sampling, it is possible
to sample units that are not part of the network. For example, consider a spatial region
divided into square quadrats for sampling purposes; the linkages are defined to be the
cells to the north or south. So, if a cell is selected in the initial sample and meets the
criterion for adaptively sampling the links, then the adjacent cells to the north or south
are sampled. If either of these cells meet the condition, the next cell(s) to the north



120 M. C. Christman

or south is sampled. Sampling continues until either a boundary is encountered or a
cell which does not meet the condition is measured. These last cells are not within the
network of the cluster but are measured to determine the spatial extent of the cluster.
These are often referred to as “edge units.” The final sample consists of the units in the
initial sample plus all units belonging to the networks intersected by the initial sample
plus those edge units which are not part of any network.

Hence, the definition of a cluster is chosen before sampling commences, but a sam-
pling frame listing the actual clusters in the population is not available. Instead, an initial
sample of secondary units is selected using a probabilistic sampling design; if a sam-
pled secondary unit has the particular attribute that is of interest, then sampling of the
entire cluster in which it is a member is performed. The adaptive aspect of the design
is the additional sampling for other members of the cluster when at least one member
of the cluster is sampled. As a result, the initial sample size may be controlled, but the
final sample size is random since the size of clusters that are sampled as a result of the
initially sampled individuals’ meeting the criterion for cluster sampling. To use Fisher’s
Sib Method as an example, the final sample size is the number of individuals sampled
to identify those with albinism plus all the siblings of individuals with albinism were
also sampled.

Besides not knowing the clusters a priori, another aspect that distinguishes adaptive
cluster sampling from one-stage cluster sampling is that exhaustive sampling of a cluster
includes secondary units that do not belong to the cluster. For example, in a study of the
spatial distribution of weeds in an agricultural plot, it might be of interest to determine the
number and spatial extent of weed clusters within the plot. Adaptive cluster sampling
could be used first by taking an random sample of locations and by determining the
presence of the weed at those sites. If the weed is present, then the adaptive sampling
method could call for sampling for presence in one-meter quadrats surrounding the
randomly sampled location. If those quadrats contain weeds, then the method calls for
sampling quadrats around that site. This continues until the entire cluster of weeds
has been delineated as a set of contiguous one-meter quadrats with weeds surrounded
by a sample of quadrats without weeds. If the rule is to continue sampling in nearby
1 meter quadrats when weeds are present at a sampled location, then the final sample
size is controlled only by the spatial distribution of the weeds and their proximity to
each other. Hence, recent work has considered restricted or incomplete sampling of the
cluster to control the final sample size (Lo et al., 1997; Salehi and Seber, 2002); in these
designs, sampling stops once some predetermined number of members of the cluster
has been sampled. Brown and Manly (1998) recommended an alternative approach for
controlling the sample size which is based on sequential sampling of complete clusters
and restricting the number of clusters sampled rather than the number of units within
clusters.

The method of selecting of the initial sample in adaptive cluster sampling has been
studied by Thompson (1990; simple random sampling), Salehi and Seber (1997a; simple
random sampling without replacement of clusters), Thompson (1991a; one-stage cluster
sampling, such as a systematic sample), Thompson (1991b; stratified random sampling),
Borkowski (1999; Latin square sample), Christman and Lan (2001; sequential sampling
with various stopping rules), Christman (2003; Markov chain one-per-stratum designs
(see Breidt, 1995)), and Salehi and Seber (1997b; two-stage cluster sampling).
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Unbiased estimation of population totals or means in unrestricted adaptive cluster
sampling is accomplished using a modified version of either Horvitz and Thompson
(1952) or Hansen and Hurwitz (1943) estimators. Both estimators weight each sam-
pling unit’s observation with the inverse of the probability of inclusion of that sampling
unit. The distinction is that the Horvitz–Thompson estimator (HT) is used for sampling
without replacement and includes each observation exactly once in the estimator while
the Hansen–Hurwitz estimator (HH) for with replacement sampling includes observa-
tions as many times as they have been observed in the sample. As a result, the HH
estimator is often easier to calculate than the HT estimator but generally has higher
variance. The usual HH estimator of the population mean is

μ̂HH = 1

nN

n∑
i=1

Yi

αi

,

where αi is the probability that the ith sampling unit is selected in a with-replacement
sampling design. For adaptive cluster sampling, the estimator must be modified since αi

is calculable for units in the initial sample and units in the networks adaptively sampled
from the initial sample but not for the edge units sampled as part of an adaptively sampled
cluster. The modified HH estimator is given by

μ̂HH = 1

n′N

n′∑
i=1

Yi

αi

, (8)

where n′ equals the number of units selected in the initial sample plus the number of
adaptively added units which met the criterion and so belonged to the networks, and αi

is now interpreted as the probability that the ith network is included in the sample. The
variance of (8) is given by

var(μ̂HH) = 1

N2n′

N∑
i=1

αi

(
yi

αi

− Nμ

)2

(9)

with unbiased estimator

v̂(μ̂HH) = 1

N2n′(n′ − 1)

n′∑
i=1

(
yi

αi

− Nμ̂HH

)2

.

The HT estimator is similarly modified and is given by

μ̂HT = 1

N

ν∑
i=1

Yi

πi

,

where ν is the number of distinct units in the sample which belong to a network, and πi

is the probability that the ith network is intersected by the initial sample. An alternative
formulation uses the sums of the y-values of the sampled networks and is given by

μ̂HT = 1

N

κ∑
i=1

Y∗
i

πi

, (10)
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where κ is the number of sampled networks, and Y∗
i is the sum of the y-values in the ith

network. The variance of (10) is

var(μ̂HT) = 1

N2

K∑
j=1

K∑
k=1

Y∗
j Y∗

k

(
πjk − πjπk

πjπk

)
, (11)

where K is the number of networks in the population, and πjj = πj; an unbiased
estimator of (11) is

v̂(μ̂HT) = 1

N2

κ∑
j=1

κ∑
k=1

Y∗
j Y∗

k

πjk

(
πjk − πjπk

πjπk

)
.

Some examples of the intersection probabilities include

Initial
Sampling
Design πa

i πij

Simple random
sampling with
replacement

1 −
(

1 − xi

N

)n1 1 −
{(

1 − xi

N

)n1 +
(

1 − xj

N

)n1 −
(

1 − xi + xj

N

)n1
}

Simple random
sampling
without
replacement

1 −
[(

N − xi

n1

)/(
N

n1

)]
1 −

[(
N − xi

n1

)
+
(

N − xj

n1

)
−
(

N − xi − xk

n1

)]/(
N

n1

)

Stratified
random
sampling
without
replacement

1 −
[

H∏
h=1

(
Nh − xhi

nh1

)/(
Nh

nh1

)]
1 − (1 − πi) − (1 − πj) +

[
H∏

h=1

(
Nh − xhi − xhj

nh1

)/(
Nh

nh1

)]

aN is the number of sampling units in the population, n1 is the initial sample size, xi is the number of units in the ith
network, and xhi is the number of units in the ith network of the hth stratum.

For unrestricted adaptive cluster sampling, it has been shown that adaptive cluster
sampling outperforms nonadaptive sampling in most cases where the population is spa-
tially rare, that is, when the individuals in the population tend to be highly clustered but
are not necessarily rare in the sense of few individuals. Further, the efficiency of adaptive
cluster sampling depends strongly on the within network variability, the definition of
linkage (i.e., the neighborhood), the criterion for which adaptive sampling is initiated,
and the size of the networks (Brown, 2003; Christman, 1997; Smith et al., 1995). Each of
these attributes are confounded, and so it is difficult to choose a single measure by which
to decide if adaptive cluster sampling is more efficient than simple random sampling.
High within cluster variability usually leads to adaptive cluster sampling that is more
efficient than an equivalently sized random sample. Conversely, small network sizes
usually imply high efficiency since the final sample size is constrained. The choice of
criterion c can be used to control sample size, but it influences the within network vari-
ability as well as the networks sizes. Both within network variability and network sizes
generally decrease as c is increased, but low network variability leads to less efficiency
in adaptive cluster sampling, whereas low network sizes increase efficiency.
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A comparison of adaptive cluster sampling with stratified random sampling with
disproportionate allocation has shown that the stratified sample with disproportionate
allocation tends to outperform adaptive cluster sampling (Christman, 2000). In a study of
adaptive cluster sampling, Brown (1999) compared an initial random sample to an initial
stratified random sample and found that stratification did not increase the efficiency of
the adaptive cluster sampling in the populations. Brown (1999) also compared adaptive
allocation with stratified sampling to adaptive cluster sampling without stratification
and found that although the estimator in (6) is negatively biased, adaptive allocation
produced smaller MSE than the adaptive cluster sampling design.

The use of order statistics to determine the criterion that initiates adaptive sampling
or the use of methods that restrict the final sample size (Brown and Manly, 1998; Salehi
and Seber, 2002) lead to biased HH and HT estimators. For adaptive cluster sampling
with order statistics, Thompson (1996) derived an unbiased estimator based on the HH
estimator but the derived estimator is less efficient than if order statistics had not been
used. He also provided an unbiased estimator using the Rao–Blackwell method; this
new estimator has lower variance than either the derived estimator or the estimator
based on simple random sampling. Su and Quinn (2003) used simulations to compare
the efficiencies of the biased HT estimator and the unbiased HH estimator when order
statistics are used. They found that the use of higher quantiles for the cutoff that initiates
the adaptive sampling component decreases the efficiency of both estimators, but that
the bias of the HT estimator also decreased.

4. Experimental design

When sampling is in a controlled environment, for example, to estimate the proportion
of defects in widgets or the number of bugs in computer code, the approaches for
estimating the prevalence or population sizes are different than for the methods used
in survey sampling. For experiments to estimate rare events, the estimation method is
based on probability distributions and the variances are model based rather than design
based. Here, an example of the use of such approaches for planned experiments is given.

Hedayat and Sinha (2003) described a method for estimating the proportion of a
certain brand of toys resulting in accidents; the toys may or may not exhibit the defect
and so several trials must be run for each toy to estimate the probability that a toy will
display the defect. The method is based on sampling N toys and subjecting each of
them to k trials. Three outcomes are possible in the trials: the toy malfunctions, the
toy is known not to malfunction, or the functioning is unknown after the k trials. The
estimator of the probability of observing the defect in the k trials is a function of the ratio
of the number of defects observed (at most one per toy selected) to the total number of
trials (kN). The estimator is derived under the assumption of a multinomial distribution
but is biased for small sample sizes. Since it is a maximum likelihood estimator, it is
consistent and so the bias is smaller for larger sample sizes.

5. Confidence interval estimation

When the variables under study are characteristics, such as prevalence of a rare trait or
the sum of a Y -variable for only those individuals in the population with the rare trait,
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the construction of confidence intervals using the assumption of asymptotic normality
is sometimes appropriate. This is especially so when the Y -variable is well behaved,
that is, not highly skewed, or when the sampling strategy is designed to obtain sufficient
numbers of the rare elements. On the other hand, when the variables under study are
attributes like counts, the empirical frequency distribution of the counts is usually highly
skewed with an excess number of zeroes even when sampling is designed for rare popu-
lations (see, e.g., Christman and Pontius, 2000). As a result, the estimators of population
characteristics are often highly skewed as well and use of symmetric confidence inter-
vals is inappropriate. Alternatives that have been recommended include trimming and
transformation (Keselman et al., 2002), bootstrapping (Brown and Manly, 1998; Christ-
man and Pontius, 2000; Di Battista, 2003; Salganik, 2006), and jackknifing (Di Battista,
2003). Keselman et al. (2002) described various combinations of approaches to estimate
when distributions are highly skewed and non-normal. They favored a combination of
trimming and transformation of the data remaining after trimming and recommended
bootstrapping to estimate variance. Christman and Pontius (2000) studied several boot-
strapping approaches for adaptive cluster sampling of finite populations to develop
confidence intervals around the HH estimator for estimating the means or abundances.
Di Battista (2003) discussed jackknifing and bootstrapping for adaptive cluster sampling
based on simple random sampling with and without replacement. Brown and Manly
(1998) described bootstrapping for without replacement sampling using the method by
Booth et al. (1994).

6. Summary

Several methods are available to study rare populations and the choice depends on
the population under study, the objectives of the study, and the distribution of the rare
elements to be sampled. None of the methods will perform well at small samples sizes
when the elements are very rare and found in small groups of one or two. When the
population has internal linkages such as are common when studying human populations
where it is likely that individuals with the rare trait are familiar with others who exhibit
the same rare trait, then the link-tracing designs are available. The advantages of these
methods are that a large gain in information is available from a relatively small initial
sample, but the dependence on accurate responses and identification of linkages is critical
to the success of the methods. When the population is spatially distributed and the rare
elements occur in spatially distinct groupings of reasonable sizes, then a method such as
adaptive cluster sampling can be used to estimate population parameters. The availability
of several different sampling strategies for the initial sampling allows for a variety of
approaches to accurately and precisely estimate the parameters of interest. Overall, the
final choice of design will depend on the cost and objectives of the study.
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Design, Conduct, and Analysis of Random-Digit
Dialing Surveys

Kirk Wolter, Sadeq Chowdhury and Jenny Kelly

1. Introduction

Random-digit dialing (RDD) is a method of probability sampling that provides a sample
of households, families, or persons via a random selection of their telephone numbers.
For simplicity of explication, we use the person as the final unit of analysis in this
article; yet, virtually, all our comments and methods extend naturally to the household or
family.

In this chapter, we discuss the design, conduct, and analysis of RDD surveys primarily
in the context of large-scale work performed in the United States. We believe that the
material generalizes to other countries with an established landline infrastructure. In the
United States, there is generally no sampling frame that enables a direct sampling of
persons. RDD changes the sampling unit from the person to the telephone number, for
which sampling frames do exist. Then, people can be sampled indirectly through their
telephone numbers, enabling valid inferences to populations of people.

In the modern era, the RDD survey has come to embody the following three elements:
(1) random sampling of telephone numbers from a listing of all (or most) assigned
telephone numbers; (2) dialing the selected numbers from a central call center(s); and
(3) administering the survey questionnaire to residential respondents via a system of
computer-assisted telephone interviewing (CATI). RDD surveys became an accepted
form of survey research in the 1970s, and their prevalence increased considerably in the
1980s and 1990s.

Today, the RDD survey stands as one of the dominant survey forms for social-science
and market research. It has attained this position because it offers important advantages
in cost, timing, and accuracy. RDD surveys eliminate travel costs and, thus, are far
less costly than surveys that use face-to-face interviewing methods. They may be more
expensive, however, than mail or web surveys that shed labor costs by eliminating or
reducing the use of human interviews. RDD surveys have the capacity to deliver survey
information very quickly relative to surveys that use other modes of enumeration. They
may be launched and their interviewing operations completed quickly in a matter of
days or weeks. The survey questionnaire—possibly even with elaborate skip patterns,
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large lookup tables, and other complications—can be entered quickly into the CATI
software. Since the interview data are already in machine-readable form, entered by the
interviewer into the CATI system, there is no need for a data conversion from paper to
computer format. Mail and web surveys may match RDD surveys in terms of start-up
time, whereas only web surveys can match them in terms of data collection and delivery
speed. Face-to-face surveys are much slower to launch, to complete data collection, and
to deliver the survey data.

RDD surveys, and generally CATI surveys, also possess features that enhance data
quality. Because interviewing operations are usually centralized in a small number of
call centers, it is possible to achieve specified standards relating to the hiring, qualifi-
cations, and training of the interviewers and their supervisors. Supervisors can monitor
interviews and the general performance of the interviewers; they can take corrective
actions in real time through retraining or replacement of underperforming interview-
ers. A work force that undergoes continuous improvement has the capacity to produce
better and better interview data. Computer edits can be built into the CATI instrument,
thus limiting missing values and the possible entry of out-of-range values, erroneous
skip patterns, and the like. Face-to-face surveys that use a system of computer-assisted
personal interviewing (CAPI) can incorporate the advantages of online edits, yet such
surveys, with or without CAPI, cannot match CATI surveys in terms of close, real-time
monitoring of interviewers. Face-to-face surveys, however, can generally achieve higher
response rates than CATI surveys; they may achieve greater data completeness relative
to certain types of questions or subject matter (e.g., it is obviously not possible to collect
biomarkers in a pure CATI survey) and they usually have the capacity to handle a longer
interview. Mail surveys generally experience lower response rates than CATI surveys;
they cannot offer the benefits of online edits and cannot accommodate complicated skip
patterns. Web surveys may offer online edits, yet their response rates will likely be
lower than those of RDD surveys. Depending on the target population, there may be no
acceptable sampling frame to support the use of a web-interviewing approach, and thus,
web surveys would tend to have lower coverage than RDD surveys.

Survey planning and the selection of a mode of interview require consideration of
many complex trade-offs between cost, speed, and accuracy. The foregoing discussion
reveals many circumstances in which the RDD survey will be preferred and demonstrates
why RDD surveys have reached a dominant position in the survey research market-
place.

Before proceeding, it is also important to observe that modern surveys increasingly
use multiple modes of enumeration to collect acceptable data in the fastest time feasible
at an affordable price. While we do not explicitly treat mixed-mode surveys in this
chapter, the methods we do present show how the telephone component of a mixed-
mode survey may operate.

2. Design of RDD surveys

2.1. Structure of telephone numbers

The telephone industry in the United States consists of many individual telephone
companies. Each company manages a block of telephone numbers and assigns those
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numbers to their subscribers. Subscribers typically maintain their numbers through time,
regardless of switching telephone companies. The telephone number itself consists of
eleven digits as depicted in the following diagram:

1 - N P A - N X X - H I J K

The first digit in the structure (i.e., 1) is a constant, which is the international county
code for the United States, and is required to be dialed first for calling outside the local
calling area and in some cases even within the local area. The three-digit area code is
represented by the symbol NPA, the three-digit exchange code or prefix is represented
by the symbol NXX, and the four-digit suffix is represented by the symbol HIJK. The
symbol NPA-NXX-H represents a 1000-block of numbers.

Area codes represent compact geographic areas; they are generally non-overlapping
and exhaust the land area of the United States. Not all three-digit combinations are in
service at this time, and in some cases, area codes overlay one another. The area codes
are generally nested within states, but they do not generally correspond to political,
postal, or census geography. Exchange codes within area codes or 1000-blocks within
exchange are designated for landline telephones, wireless (or cell) telephones, or some
other type of use. Historically, the exchange codes for cell telephones have been excluded
from sampling for RDD surveys. Exchange codes for landline telephones are not geo-
graphically compact nor are boundaries defined in a useful way. The area covered by an
exchange can cross city or county boundaries, making it difficult to use the exchange
directly for any geographic stratification. The four-digit suffix within an exchange also
contains no useful geographic information. However, since the telephone companies
activate banks of consecutive numbers and assign numbers to residential and nonres-
idential subscribers in such a way that the consecutive suffixes within an exchange
may be clustered in terms of working or nonworking or residential or nonresidential
status, banks of suffixes have sometimes been used as clusters in the sample selection
process.

In what follows, we describe sampling frames and sampling designs for telephone
numbers. We refer to 100 consecutive telephone numbers—from 1-NPA-NXX-HI00 to
1-NPA-NXX-HI99—as a 100-bank or simply a bank of numbers. At any given point in
time, some banks have not been assigned and placed into service, some are assigned to
landline telephone subscribers, some to cell-telephone subscribers, some to other types
of use, and a few to mixed use.

2.2. Sampling frames

The main premise of RDD is that each eligible person in the survey target population
can be linked to—that is, reached and interviewed at—one or more residential telephone
numbers in the population of landline telephone numbers. Sampling telephone numbers
with known probabilities of selection means that people are selected with calculable
probabilities, and thus, that valid inferences can be made to the population of eligible
people.Another key premise of RDD is that each telephone number is linked to a specific,
identifiable (approximate) geographic location. This feature makes it possible to select
representative samples of people in defined geographic areas such as states, counties,
or cities.
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At the outset, it is clear that RDD surveys provide no coverage of people who do not
have ready access to a landline telephone in their home, including those who have access
to a cell telephone only and those who have no access to any telephone. We discuss this
undercoverage and approximate ways of adjusting for it later.

A major challenge for RDD surveys is the development of a complete list of tele-
phone numbers that covers all the remaining persons in the target population, that is,
all persons in the population with access to a landline telephone. A natural but naive
approach would be to sample telephone numbers at random from residential telephone
directories. This method is nearly always unsatisfactory because not all residential
numbers are listed in a directory and not all listed numbers actually connect to an
occupied residence. The former problem is the more acute since it would result in
an additional bias of undercoverage to the extent that people with an unlisted tele-
phone are different from people with a listed telephone with respect to the issues
under study in the survey. Various authors have shown that the sociodemographic
characteristics of the persons in households with unlisted telephone numbers are dif-
ferent from those of persons in households with listed telephone numbers (see, e.g.,
Brunner and Brunner, 1971; Fletcher and Thompson, 1974; Glasser and Metzger, 1975;
Leuthold and Scheele, 1971; Roslow and Roslow, 1972; Shih, 1980). The latter problem
leads to inefficiency but not bias because some telephone numbers will screen out as
nonresidential.

As an alternative to the directory-based sampling frame, one could consider the use of
the conceptual list of all telephone numbers in assigned landline telephone banks. Cur-
rently, there are over 718 million numbers in such banks in the United States. Although
this frame covers both listed and unlisted numbers, it can be highly inefficient to work
with. The major problem is that this frame includes a large percentage of nonworking and
nonresidential telephone numbers. Dialing purely at random from such a frame would
result in relatively few residential calls, many unproductive calls, and the consumption
of excessive cost and time.

To make the conceptual list viable as a sampling frame, some method of sampling
is needed to diminish the rate of out-of-scope calls and increase the rate of productive
residential calls. In fact, such methods have been developed and the conceptual list of
telephone numbers does provide the sampling frame for most RDD surveys conducted
today. We provide a brief account of useful sampling methods in the next section.

2.3. Sampling procedures

Various sampling procedures have been developed and used over the years for ran-
dom digit dialing (Glasser and Metzger, 1972; Hauck and Cox, 1976; Sudman, 1973;
Tucker et al., 1992; Waksberg, 1978). Lepkowski (1988) provides an extensive discus-
sion of telephone sampling methods used in the United States until the late 1980s. We
have already noted that pure random sampling of telephone numbers is unworkable on
grounds of high cost and time. We proceed to describe three of many methods of sample
selection that have found favor in RDD surveys over the years through increases in
cost-effectiveness.

Sudman (1973) described a procedure in which directory-based sampling is com-
bined with RDD sampling. The procedure considers each block of 1000 consecutive
telephone numbers as a cluster, and the clusters are selected by obtaining a simple random
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(or systematic) sample of numbers from a telephone directory and the corresponding
clusters of all selected numbers are included in the sample. Then, calls within each
selected cluster are made using RDD sampling to reach a predetermined number of
households with listed telephone numbers. Because the sampling of clusters is based on
the directory-listed numbers, the clusters are selected with probability proportional to the
(unknown) count of listed telephone numbers in the cluster. The procedure improves
over the unrestricted method by concentrating on the banks with one or more listed
telephone numbers, but it still requires making a large number of calls to reach the pre-
determined number of listed telephone numbers.Also, since the initial sample is selected
based on a telephone directory, the procedure introduces a small bias of undercoverage
by omitting the clusters with recently activated numbers or with no listed numbers.

During the 1970s and 1980s, the Mitofsky–Waksberg method (Waksberg, 1978) was
used widely in RDD surveys. It involves a two-stage sampling procedure, consisting
of (i) a selection of banks at the first stage, using Lahiri’s (1951) rejective method for
probability proportional to size (PPS) sampling, and (ii) a random selection of telephone
numbers within selected banks at the second stage. The idea is to select banks with prob-
ability proportional to the number of working residential numbers (WRNs) they contain.
Then, telephone numbers are sampled in the selected banks, which tend to be rich in
WRNs. In this manner, dialing of unproductive numbers (nonworking or nonresidential)
is greatly reduced. Each bank is considered as a cluster or primary sampling unit (PSU).
A random bank is first selected and then a random telephone number is dialed within the
selected bank. If the dialed number is determined to be nonworking or nonresidential,
the bank is rejected and excluded from the sample. However, if the number dialed is
determined to be a WRN, then the bank is accepted and additional telephone numbers
are selected from the bank at random and dialed, until a fixed number, k, of residential
numbers is reached. The two-stage process is continued until a predetermined number
of banks, m, is selected. The total sample size of WRNs is, therefore, n = m (k + 1). If
M denotes the number of banks in the sampling frame and Ki is the number of WRNs
in the population within the ith bank, then the probability that a given bank i is selected
and accepted at a given draw is

πi = pi

1

1 − p̈
= Ki

MK
, (1)

where

pi = 1

M

Ki

100
, (2)

p̈ = 1

M

M∑
i′=1

(
1 − Ki′

100

)
, (3)

and K =∑M
i′=1 Ki′/M. Thus, the rejective selection method is a PPS sampling method,

despite the fact that the measure of size Ki is unknown at the time of sampling! Only
banks with one or more WRNs have a nonzero probability of selection, thus reducing
the number of unproductive calls. The conditional probability that a given WRN j

is selected, given that its bank i is selected and accepted on the given draw, is simply
πj|i = min{k+1, Ki}/Ki. Thus, the unconditional probability of selecting a given WRN



130 K. Wolter, S. Chowdhury and J. Kelly

on the given draw is

πij = πiπj|i = min{k + 1, Ki}
MK

= k + 1

MK
. (4)

Typically, k is specified to be a small number, usually no more than 4 so that it is usually
less than the number of WRNs in the bank. As long as k < Ki for all i, all WRNs in the
population have an equal probability of selection. The values of m and k can be optimized
for a given ratio of the costs of an unproductive call to the costs of a productive call
(including the cost of calling, interviewing, and processing).

While the Mitofsky–Waksberg sampling scheme makes considerable improvements
over unrestricted random sampling, it runs into severe operational problems. Because of
potential nonresponse – or at least a lag in response between the initial release of the num-
ber and its resolution – for the first selected telephone number, the critical determination
of whether a given bank is accepted or rejected may be unacceptably delayed. In addi-
tion, because of the risk of subsequent nonresponse within the bank or because of small
Ki, it is sometimes difficult to locate k residential numbers. Due to these operational
problems and since another method of sampling has proved to be successful, rejective
selection has now sharply declined in use for modern, large-scale RDD surveys.

List-assisted sampling is a term used to describe a class of methods that select the sam-
ple from the conceptual list of all telephone numbers in assigned landline banks while
exploiting information in residential telephone directories to improve the efficiency of
the selection. In 1+sampling, one restricts the sampling frame to all assigned landline
banks in which one or more telephone numbers are listed in the residential telephone
directory. Banks containing zero listed numbers are dropped. Then, a probability sam-
ple of telephone numbers is selected from the remaining banks. The method provides
complete coverage of all listed and unlisted numbers in banks with at least one listed
number, omitting only unlisted numbers in banks with no listed number. The scheme
covers around 98% of the universe of landline telephone households and excludes only
the approximately 2% of households with unlisted numbers in zero banks (Giesbrecht
et al., 1996; Fahimi et al., 2008; Boyle et al., 2009). The bias due to the noncoverage of
these unlisted telephone households in zero banks is thought to be small in many sur-
veys (Brick et al., 1995). The method easily extends to p+ sampling, where p is a small
integer, say between 1 and 5. The larger the p is, the greater the rate of productive calls,
saving time and money. The downside of a larger p is a reduced population coverage
rate and an increased risk of bias. Ultimately, p+ sampling seems to have the following
three virtues:

• Easy to implement
• Acceptably small undercoverage bias, especially for 1+ designs
• Yields an unclustered sample with a smaller design effect and larger effective

sample size than the aforementioned clustered sampling designs

As a result, p+ sampling has emerged as the dominant form of RDD sampling today.
Table 1 describes our recent experience at NORC in calling 1+ samples. Approxi-

mately 24% of the telephone numbers may be classified as WRNs and 59% as something
else, such as disconnected lines or businesses.Almost 17% of telephone numbers cannot
be classified either way, meaning that information is incomplete and it is not possible
to resolve whether the numbers are residential or not, despite repeated callbacks.
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Table 1
Directory-listed status and working residential number status for U.S. telephone numbers in 1 + banks: 2005

Directory-Listed
Telephone Status

Working Residential Number Status

No Yes Not Resolved Total

No 49.1% 4.4% 8.0% 61.5%
Yes 10.0% 19.9% 8.6% 38.5%
Total 59.0% 24.3% 16.7% 100.0%

Note: The proportion of unresolved numbers depends in part on the calling protocol and on the length of
the data-collection period. The proportions we cite are in the context of social-science surveys conducted
by NORC with ample periods for data collection and relatively high response rates.

Almost 39% of telephone numbers are listed in a directory, whereas 61% are not. In all,
10% of numbers are directory-listed but turn out not to be WRNs and, on the other hand,
4% of numbers are not directory listed yet turn out to be WRNs. Lags in the development
of directories and the timing of the field period explain the apparent misclassifications.
From these data, one can calculate that 82% of resolved WRNs are listed in a directory.
The remaining 18% of resolved WRNs are the unlisted. This unlisted percentage varies
considerably from one part of the country to another. To restrict sampling to directory-
listed numbers only would risk a bias in survey statistics, and the bias could be differential
from one area to another, clouding comparisons.

2.4. Stratification

Little auxiliary information is typically available on the RDD sampling frame and oppor-
tunities for stratification of the sample are limited. Stratification is possible by directory-
listed status or by whether a mailing address can be linked to the telephone number. Some
broad geographic information is embedded within the structure of telephone numbers,
which can be used for coarse geographic stratification. Since area codes are nested
within states, stratification by state is feasible. Finer geographic stratification is difficult
because exchanges may cross area boundaries.

It is possible to make an approximate assignment of telephone exchanges to finer
census-defined geographic areas by geocoding the addresses of the listed telephone
numbers within exchanges. Given a census-defined area of interest, one calculates the
hit rate and the coverage rate for each exchange, where the hit rate is the proportion of
listed telephone numbers in the exchange that belongs to the designated area, and the
coverage rate is the proportion of listed telephone numbers in the designated area that
is covered by the exchange. The sampling statistician may implement a rule involving
these two factors to stratify exchanges by finer geographic areas, but this is an imperfect
process. For example, each exchange may be classified to one of the set of geographically
defined strata, spanning the target population, according to a majority rule; that is, one
may assign the exchange to the stratum for which its hit rate is the maximum over the
set of strata. As a second example, one may classify an exchange to a designated area if
the hit rate exceeds a threshold, such as 0.05, and the cumulative coverage rate over all
such exchanges exceeds another threshold, such as 0.95.

Stratification by socioeconomic status becomes possible by mapping census tracts
onto telephone exchanges based upon the geocoded addresses of listed telephone
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numbers. Again, such mapping is necessarily approximate. Census variables at the tract
level—such as race/ethnicity, age, sex, income, poverty, education, and housing tenure
variables—can then be donated to the exchange and, in turn, exchanges can be assigned
to socioeconomic strata. Among other things, such stratification enables one to over-
sample subpopulations of interest (Mohadjer, 1988; Wolter and Porras, 2002). Variables
of this kind are sometimes called contextual or environmental variables.

2.5. Determination of sample size

The sample of telephone numbers selected for an RDD survey will need to be many
times larger than the required number of completed interviews. During data-collection
operations, there will be a number of losses to the sample, and the initial sample of
telephone numbers must be large enough to offset the losses.

As usual, the statistician must begin by determining the effective number of complete
interviews needed to achieve the survey’s resource constraints and goals for statistical
precision and power. Multiplying by the anticipated design effect—due to any clustering,
differential sampling rates, and differential weighting effects—gives the target number
of completed interviews.

The next step is to inflate the sample size to account for sample attrition due to
nonresolution of telephone numbers, resolution of nonresidential telephone numbers,
failure to complete the survey screening interview for some WRNs, the survey eligibility
rate, and failure to complete the main interview among some eligible respondents.

The attrition starts with the nonresolution of many numbers regarding their WRN
status. Despite repeated callbacks, it will be impossible to resolve many telephone
numbers as to whether they are WRNs or something else. Then, among the resolved
numbers, a large percentage will be non-WRNs, such as business numbers, computer
modems, or disconnected lines. Once a WRN is identified, the next step is to conduct a
brief screening interview to determine eligibility for the main survey. Screening for the
eligible population is usually not possible beforehand because eligibility is not known
at the time of sampling. (A special case is where all persons are eligible for the survey.
In this case, there is in effect no screening interview.) Some screening interviews will
not be completed because the respondent is never home or refuses to cooperate. Among
completed screeners, households containing no eligible people are omitted (or “screened
out”) from the main interview. Finally, some main interviews will be missing because
the eligible respondent is not at home or refuses to participate.

To determine the appropriate inflation of the sample size, the statistician must make
assumptions about the foregoing factors based on general experience or information
available from prior surveys. Ultimately, the target sample size in terms of telephone
numbers in the hth sampling stratum is given by

n′′
h = n′

h

πh1 πh2 πh3 πh4 πh5
= nhDh

πh1 πh2 πh3 πh4 πh5
, (5)

where n′
h is the target number of completed interviews, nh is the effective sample size

required from stratum h, Dh is the design effect assumed for stratum h, πh1 is the
resolution completion rate assumed in stratum h, πh2 is the WRN rate among resolved
numbers assumed in stratum h, πh3 is the screener completion rate assumed in stratum
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h, πh4 is the eligibility rate among screened households assumed in stratum h, and πh5

is the interview completion rate among eligible people assumed in stratum h.

2.6. Emerging problems and solutions

The RDD sampling frames and sampling designs discussed so far cover the population
of people who reside in households with at least one landline telephone and fail to
cover people who live in cell-phone-only households and nontelephone households.
This undercoverage was of little concern in the early cell-telephone era. Yet at this
writing, concern among survey researchers is growing. Using data from the National
Health Interview Survey, Blumberg et al. (2006) show that 9.6% of adults (in the period
January to June 2006) live in households with only cell-telephone service. Three years
earlier (in the period January to June 2003), this population stood at only 2.8% of adults.
Throughout this three-year period, adults in nontelephone households remained steady
at 1.8–2.0% of the adult population. Some characteristics of the population with no
telephone or only a cell telephone tend to be different from those of the population with
a landline telephone. Thornberry and Massey (1988) discuss the patterns of landline
telephone coverage across time and subgroups in the United States for the period of
1963–1986. Adults living with unrelated roommates tend to be cell-telephone-only at a
higher rate than other adults. Other domains displaying a higher rate of cell-phone-only
status include renters, young adults (age 18–24), males, adults in poverty, and residents
of the South and Midwest regions. The population with no telephone service is likely
to be unemployed, less well educated, below the poverty line, or in older age groups
(Blumberg et al., 2006, 2005; Khare and Chowdhury, 2006; Tucker et al., 2007). Tucker
et al. (2007) also show the rapid growth of the cell-telephone population using data
from the Consumer Expenditure Survey and the Current Population Survey. Because
of the current size of the populations without a landline telephone and the likelihood of
their continued growth, there is increasing concern about potential bias in standard RDD
surveys that omit these populations. What is not known for sure is whether cell-only
and nontelephone populations differ from landline populations with respect to the main
characteristics under study in surveys.

Until now, the main approach used to compensate for the undercoverage in RDD
survey statistics has been the use of various calibration adjustments in the weighting
process (Brick et al., 1996; Frankel et al., 2003; Keeter, 1995; Khare and Chowdhury,
2006). With the rapidly increasing cell-phone-only population, consideration must now
be given to direct interviewing of this population. A dual-frame approach with supple-
mentation of the RDD frame by an area-probability frame has received consideration
in the past, but the approach is too expensive for general use. Dual frame designs using
the traditional RDD frame of landline telephone numbers and a supplementary frame
of numbers in cell-telephone banks must be considered.

Studies are being conducted to investigate the viability of interviewing respondents
via cell telephones (Brick et al., 2007; Wolter, 2007). Sampling frames for cell-telephone
numbers can be constructed from the Telcordia® TPM™ Data Source or Telemarketing
Data Source. Both can be used to identify prefixes or 1000-blocks that are likely to be
used for cell telephones. In addition, many cell-telephone numbers in use today are the
result of “porting” the numbers from landline use to cell-telephone use. Such numbers
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are, by definition, located in landline blocks and are not covered by the type of sampling
frame just described.

A number of additional problems for RDD surveys are emerging due to the recent
rapid advancement in telephone technology. Voice over internet protocol (VoIP), which
offers routing of telephone conversations over the internet or through any other IP-
based network, is penetrating the mass market of telephony. Under the VoIP technology,
a user may have a telephone number assigned under an exchange code in one city but
can make and receive calls from another city or indeed anywhere in the world, just
like a local call. The possibility of a universal telephone numbering system is also on
the horizon, whereby a subscriber may have a number under any exchange code but
can live anywhere in the country or even anywhere in the world. Call forwarding is
another problem where a landline WRN may be forwarded to a business number, a cell-
telephone number, a VoIP number, or a landline number out of area. Since geographic
stratification for an RDD survey is usually based on the telephone area and exchange
codes, extra screening efforts to identify the location of a number will be required with
the increasing use of these systems. Also, increasing use of these systems will increase
the rate of out-of-scope residential numbers or differences between frame and actual
locations of in-scope sampling units, in turn increasing costs.

Sometimes, two telephone numbers are linked to the same landline telephone without
the knowledge of a subscriber. The hidden number is called a ghost number, and calls
made to this number will reach the subscriber just as will calls made to the real telephone
number. The respondent’s selection probability increases to an unknown extent and the
statistician is left with no information to allow adjustment in the survey weighting.

A final set of problems has arisen from the rapid deployment and now widespread
use of caller id and voice mail/answering machines. More and more people are using
these technologies to screen their calls, and it is becoming more and more difficult to
reach them or even resolve whether the telephone number is a WRN or not. In our recent
experience with large studies in the United States, approximately 17% of all unresolved
telephone numbers are due to answering machine systems and the lack of sufficiently
detailed recorded messages or other markers that would allow us to otherwise classify
the cases as WRNs, businesses, or other nonresidential. We also find that approximately
45% of our unresolved telephone numbers are due to repeated noncontact on all call
attempts. Some unknown portion of this percentage is assumed to be due to people
using caller-id to screen their calls. While caller-id and answering machines do not
alter sampling units or their probabilities of selection, they do substantially increase
survey costs by inflating the sample size necessary to achieve a specified number of
completed interviews. They correspondingly depress response rates and thus heighten
concern among statisticians about potential bias in RDD survey statistics.

3. Conduct of RDD surveys

The advent of CATI systems and automated dialers has made RDD surveys, and tele-
phone surveys generally, a workhorse of social-science and market research. Scheduling,
working, and manipulating the sample of telephone numbers to achieve a targeted num-
ber of completed interviews by stratum, on a timely basis, at low cost, and with a high
response rate, is the task of the sample-management function.
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3.1. Technology of data collection

CATI is a term used to cover all computer-aided aspects of telephone interviewing. It
covers both hardware requirements (including telephony systems) and software. Some
CATI systems use a single integrated piece of software that controls the sample, the
questionnaire, and the dialing; other systems combine elements from multiple vendors
to take advantage of some specializations.

A good CATI system can connect dozens or hundreds of workstations in multiple
locations and can offer interviewers and their supervisors the facility to work simulta-
neously sharing the same system. CATI was first introduced in the early 1970s and is
now commonplace in market and social-science research.

A typical system offers customized tools for survey instrument development, call
scheduling, display of survey items, recording of survey responses, monitoring and
supervision of interviewers’ work, keeping a record of calls for each case in the released
sample, online data editing and processing, preparation and export of data sets, and
other automatic record keeping. A typical system allows one quickly to develop a sur-
vey questionnaire in multiple languages, thus enabling the conduct of multilingual inter-
views. The system can automatically record call outcomes such as no answer, answering
machine, disconnect, busy, or fax/modem; it also can dispatch only the connected calls
to interviewers or schedule callbacks where required. During the interview itself, the
system can automatically execute simple or complex skip patterns without interviewer
intervention, and conduct subsampling, if required. It offers the facility to view the call
history of a case and to add to it. Integrated CATI systems offer the facility to produce
frequency tabulations, survey statistics, response rates, and productivity reports, which
are useful for ongoing monitoring of progress and of key indicators of quality. They
also admit data exports in a wide range of formats, thus enabling external analysis of
the data and reporting of progress.

The two components of a CATI system which are of most relevance to RDD surveys
are the sample management component and the dialer technology. Survey costs are
largely driven by interviewer time, and in a RDD survey, it is not unusual for many
dozens of dials to be required for each completed interview. Dialer technology provides
efficiencies by reducing the amount of time the interviewer is involved in each dial,
whereas the case management system (see Section 3.3) can provide efficiencies by
reducing the number of dials needed to obtain the same result.

Automated dialers can assist the dialing process at both ends of the phone call. For
example, at dial initiation, they can automatically deliver and dial the next number when
an interviewer comes free, and at call outcome, they can detect outcome tones such as
a busy line or a fax machine, and automatically apply the appropriate disposition to the
case and file it away. Under a fully manual system, it takes approximately 40 seconds
for an interviewer to dial and disposition an engaged or disconnected number; yet an
automatic dialer can do this in less than a quarter of this time.

Dialers can be classified into two distinct groups, based on whether they are capable
of predictive dialing or not. Predictive dialers are distinguished from nonpredictive (or
preview) dialers in that they do not connect cases to an interviewer until after a connec-
tion is established. This means they can dial more numbers than there are interviewers
available and deliver to the interviewers only those calls which need an interviewer
(i.e., those that connect to an answering machine or a live person) while handling in
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the background a comparable number of dials which do not need interviewer attention
at all. In this manner, interviewer time is eliminated from handling unproductive calls,
increasing efficiency and lowering cost.

Different predictive dialers use different algorithms, but all rely essentially on pre-
dicting two probabilities: the probability of a number being answered and the probability
of an interviewer being free to take a call. One can assess the optimal speed of the dialer
by using a “supply and demand” analysis, where the demand side is due to the dialer
dialing numbers and creating a demand for interviewer labor, whereas the supply side
is created by the pool of interviewers who are free to accept a call. When the dialer runs
faster than its optimal speed and demand exceeds supply, calls will be abandoned, that is,
the dialer will need to hang up on a connection because it cannot find a free interviewer
to whom to pass the connection. When the dialer runs slower than the optimal speed
and supply exceeds demand, interviewers will sit idle and efficiencies will be lost. The
fastest dialing will occur under the following situations:

– Relatively few connections occurring among the dials made immediately preced-
ing the current dial

– Tolerance setting for the risk of abandonment set relatively high
– Many interviewers logged into the system
– Fairly short average connection length and overall relatively little variation in the

connection lengths.

However, there are two distinct drawbacks to predictive dialing. One is the risk of
abandoning calls, which can be a nuisance for respondents and can ultimately translate
into respondent complaints or additional refusals. The other drawback is that since the
dialer will not assign a case to an interviewer until after the connection is established,
the first opportunity an interviewer will have to review call notes associated with the
case is when they hear someone saying “hello.” Particularly when trying to convert
refusals, it is important that interviewers be informed on the details of previous refusals,
but predictive dialers prevent this transfer of information and thus diminish response
rates.

Hybrid dialing delivers most of the efficiencies of predictive dialing while eliminating
these drawbacks. The dialer starts in predictive mode for virgin cases and continues
subsequent callbacks in that mode, but then shifts to preview mode for all callbacks
once contact has been established. Given that it is only upon contact that a household
is identified and call notes written, the risk of abandoning a call to a known household
is eliminated, and the interviewer can prepare properly for the call by reading the call
notes left by the interviewer who handled the previous contact.

It is important to note that hybrid dialing mixes the two modes of dialing – predictive
and preview – within a single CATI survey in real time. This is quite different from
splitting the sample to start it in predictive mode (to clear out disconnects) and then
switching the numbers once connected into a separate survey to run in preview mode,
or vice versa. Splitting samples in such a manner is inherently less efficient because it
means fewer interviewers logged in for the predictive algorithm to maximize its speed
and substantial time required for sample management and call history reconstruction.

Hybrid also enhances the interviewer’s task, which in turn translates to an improved
respondent experience. With a traditional preview dialer, interviewers can spend at least
one-third of their time listening to dials being placed or ringing out, which can lead to
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loss of attention and preparedness for those few crucial seconds when an interviewer first
interacts with a potential respondent. The hybrid dialer enables interviewers to spend a
much larger proportion of their time actively engaged in respondent interactions.

3.2. Sample preparation and release

Once the sample is selected for an RDD survey, three preparatory steps are applied
before releasing the sample to the telephone center for calling. The steps involve (a)
subdividing the sample into replicates, (b) identifying the unproductive cases in the
sample through prescreening of the telephone numbers for nonworking, nonresidential,
and cellular telephone numbers, and (c) mailing advance letters to the households in
the sample for which address information is available to increase response rates. These
steps provide for good management and control of the sample and efficient dialing.

3.2.1. Forming replicates
In an RDD survey, the sample is usually not released and loaded into the CATI system
as a single monolithic batch. Instead, the specified sample in each stratum is divided
into a number of replicates that are formed randomly so that each replicate is a random
subsample of the full sample. The replicates are then released to the telephone center as
needed to spread the interviews for each stratum evenly across the duration of the inter-
view period. Careful release of replicates allows for both efficient use of the interviewer
pool and tight control over the number of completed interviews achieved. Recognizing
the uncertainty in the level of survey response that will be achieved in an RDD survey,
the statistician will often select a larger sample of telephone numbers than is expected
to be consumed in the survey. Release of replicates is terminated when the difference
between the (real-time) projected number of completed interviews and the target sample
size determined at the planning stage is deemed to be acceptable. Unused replicates are
not considered released and only released replicates constitute the actual sample for
purposes of weighting and the calculation of response rates.

3.2.2. Prescreening replicates
Because approximately 75% (This percentage, derived from Table 1, assumes an ample
data collection period with the survey protocol configured to achieve a relatively high
response rate. Different survey conditions could yield a somewhat larger percentage.) of
all selected telephone numbers are nonworking, nonresidential, or unresolved, a large
part of the interviewers’ efforts may potentially go into simply identifying the status
of these numbers. To reduce the size of the task and allow interviewers to focus more
fully on household interviews, replicates are prescreened before they are loaded into
the CATI system to identify as many unproductive telephone numbers as possible.
Telephone numbers can be classified as not eligible for interviewing in three ways.

First, the replicates are prescreened for businesses. Typically, this means the replicates
are matched against business directories, and any telephone number that matches a
directory listing is classified as a business number and is made ineligible to be called in
the survey. If the survey topic might be sensitive to the exclusion of households which
share a business number, additional matching of the numbers classified as businesses
might be made against residential listings and the ineligible status retained only if no
match is found in this additional process.
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Second, the remaining numbers are matched against residential directories and the
matches are classified as eligible to be called in the survey. All remaining nonmatches
(did not match the business directories and the residential directories) are run through
a predictive dialer, which automatically detects nonworking numbers by unique signal
tones issued by the telephony system, by extended periods of silence, or by continuous
noise on the telephone line. The dialer also detects fax and modem numbers. Such
numbers are classified as ineligible to be called in the survey.

Third, in the United States, a telephone number originally assigned as a landline
number can now be ported to a cell telephone at the request of the subscriber. This
means that even if the RDD sample is selected from landline telephone exchanges, it
may, by the time of the RDD survey, contain a few cell-telephone numbers. This porting
of numbers creates a legal problem that must be solved before dialing can commence in
the survey. Except for emergency calls or calls made with the prior express consent of the
person being called, the Telephone Consumer Protection Act of 1991 prohibits the use
of automatic dialers in calling telephone numbers assigned to a cell telephones. (The
act does not bar the manual dialing of cell-telephone numbers.) Because the typical
RDD survey uses an automatic dialer, the replicates to be released are matched to a
commercial database that contains all ported numbers in the nation. Matched numbers
are made ineligible to be called in the RDD survey.

Finally, all telephone numbers within the prescreened replicates that are not desig-
nated as ineligible are loaded into the CATI system and are made ready for the launch
of interviewing operations. In our recent experience, approximately 56–58% of the
selected sample of telephone numbers are loaded to the CATI system and are eventually
called. The remaining (42–44% of the numbers) are prescreened as ineligible. Clearly,
prescreening saves interviewers a lot of work.

3.2.3. Sending the advance letter
When time and resources permit, an advance letter is mailed to the subscriber(s) of all
selected telephone numbers for whom a mailing address is available and not removed
in the prescreening process. The addresses are obtained by matching the replicates to
be released to commercially available databases that contain telephone numbers and
corresponding names and addresses. (These databases are populated with information
from credit histories and other sources.) The advance letter explains the purpose of the
survey and its importance, and identifies the sponsor and other pertinent facts about
the task of completing the survey. The letters are usually mailed a fixed number of
days before the expected release of a replicate, timed to arrive two to five days before
the first dial is anticipated. The choice of mailing class (e.g., express, first class, or
bulk) will depend on budget and available lead time. At the time of writing, an advance
letter can be sent to about one-third of the cases in an overall sample in the United
States. Approximately 50% of the cases loaded to the CATI system are sent an advance
letter.

A well written and presented advance letter increases the rate of cooperation in a
RDD survey. De Leeuw et al. (2007) in a meta-analysis found that cooperation was on
average 11 percentage points higher among cases that receive an advance letter than
among cases that do not receive a letter. The size of increase for any one study will vary
depending on a range of factors including topic, letter, and timing, and because there
is self-selection involved in which cases present themselves with a complete address
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for mailing the advance letter, we cannot conclude with certainty that the higher rate is
“caused” entirely by the letter.

3.3. Case management

Once all sample preparation steps have been completed, the sample is released to CATI
for actual interviewing operations. Usually, the sample is released by replicate or batches
of replicates and the release may occur on a daily basis or according to some other
schedule. The size of the release of virgin replicates is coordinated with the number of
interviewer hours available for interviewing, the distribution of those hours by shift and
time zone, and in consideration of the number of pending cases already scheduled for an
additional call attempt. The number of virgin cases to be released is determined by taking
the difference between the total number of calls that can be handled by the telephone
center in a given time period and the number of pending cases already scheduled for
a call in that period. If staffing exceeds the amount of work currently in the system, a
release of virgin replicates is made. The size of the release may vary by stratum, with
relatively more virgin replicates released in any strata that are lagging in achieving their
target numbers of completed interviews.

Once replicates are released, the next tasks are to schedule the individual cases to
be called, to track and report on their status, to re-schedule them for additional calls, as
needed, and generally to bring as many cases to a completed status as possible.

3.3.1. Tracking of case status
To effectively manage the sample throughout the data collection period, it is essential to
be able to track the status of cases in real time, each and every day. Such management
requires four distinct types of codes assigned at the case level, for every case in the
released sample, and the survey manager must have the capability to tabulate frequencies
and cross-tabulations of these codes at any moment. The codes are updated with each call
attempt. The four types of codes are the Life Cycle Stage (LCS) code, the call-outcome
code, the finalization code, and the disposition code.

The LCS code, presented in Table 2, describes the overall status of a case in the CATI
system. It describes the key stages that a case goes through as it progresses through
the telephone interviewing system. It can be used to determine the scheduling and
intensity of future call attempts. Before any live contact is established with a case, there
is a good chance that no household exists at the end of that line, so the objective is
to be able to clear that telephone number out of the system as fast as possible. Once
live contact is established, it is usually possible to classify the case as a WRN or as

Table 2
Life cycle stage codes

Code Label

0 Virgin (fresh) cases
1 No contact
2 No live contact but possible household
3 Live contact and likely household
4 Screened household



140 K. Wolter, S. Chowdhury and J. Kelly

a nonresidential number. The WRNs will likely be worthy of additional call attempts,
and once a household has completed the screening interview and is determined to be
eligible, it becomes the subject of still more call attempts, with the option to restrict these
cases so that they are handled only by interviewers with advanced refusal conversion
skills. The marginal cost of obtaining a completed interview from an already-screened
household is generally relatively low. Thus, cases in LCS 4 receive the highest and most
focused level of effort.

The LCS code follows a ratchet system that can move forward but not backward.
For example, a case that was busy on the last call and on all previous calls will be in
LCS 1. However, a case that was busy on the last call but was previously a refusal at the
interview level will be in LCS 4, which captures the fact that the case has been identified
as an eligible household.

The call-outcome code describes the state of a case based on the outcome of the
last call attempt. Table 3 gives some examples of possible call-outcome codes. The
combination of the LCS and call-outcome codes suggest what rule should be used to
determine the schedule for the next call attempt, if any. If the call outcome is a busy
signal, it is evident that someone is at home, and it is probably worthwhile to callback
within the hour or half-hour. On the other hand, if the call outcome is a refusal, it is
probably worthwhile to delay the next callback for several days, assuming the data
collection period is long enough, to allow for a cooling-off period.

The finalization code is a simple indicator of whether a case has been finalized or not.
Completed interviews, ineligible households, and nonworking or nonresidential tele-
phone numbers are considered finalized, meaning no additional callbacks are planned
for them. Cases not finalized require additional callbacks. In an RDD survey, the statis-
tician may develop and use alternative rules to designate when a case is finalized. For
example, a case may become final after

• a specified total number of call attempts
• a specified number of call attempts within each of several day-parts or shifts (week-

day evenings, weekend days, and so forth)
• a specified number of call attempts after reaching LCS 4 status.

The disposition code for a case summarizes the current evidence with respect to its
resolution as a WRN or not, its screening interview, and (if eligible) its main interview.
The disposition code is a synthesis of the current LCS code, the sequence of call-outcome
codes for all call attempts to date, and the current finalization code. We defer further
discussion of disposition codes until Section 3.4.

3.3.2. Shift and resource attributes
Call scheduling is driven by a number of factors, such as shift and resource attributes,
time zone, and current LCS and call-outcome codes. There may be several shift types
used in the RDD survey, including weekday days, evenings, and nights, and weekend
days, evenings, and nights. A shift attribute is assigned to the next call for each case in
the active sample.

There may be several resource types employed in the RDD survey, including regular
interviewers, interviewers with refusal conversion skills, special language (e.g., Spanish)
interviewers, and special language refusal converters. A resource attribute is assigned
to the next call for each case in the active sample.



Design, Conduct, and Analysis of Random-Digit Dialing Surveys 141

Table 3
Illustrative call-outcome codes

Code Label Usage Notes

01 Engaged/busy Non-autodisposition engaged/busy

02 No reply [no answer] Non-autodisposition ring no answer/no reply

03 New phase Virgin sample

04 Refusal HUDI Used when a respondent hangs up during the intro-
duction (HUDI). Respondent does not speak to
interviewer at all.

05 Refusal (gatekeeper) Used when an adult, noneligible respondent
refuses. Only available if specific respondent has
already been selected.

06 Refusal (soft) Adult refuses to participate in the study after full
introduction.

07 Refusal (hostile) Used when respondents use profanity towards
interviewer in a threatening manner or threatens
any legal or governmental action. Reviewed by
supervisors before being finalized.

08 Made soft appointment Used when a household member gives callback
time for a respondent.

09 Made hard appointment Used when respondent gives you a specific call-
back time for them.

10 Unable to proceed: general call back Used when no specific appointment information
was given but recontact is viable.

11 Unable to proceed: supervisor review
requested

Used when Supervisor review is required.

12 Privacy manager (known housing unit) Used if unable to successfully bypass a privacy
manager machine - known housing unit.

13 Privacy manager (unknown if housing unit) Used if unable to successfully bypass a privacy
manager machine - unknown if housing unit.

16 Answering machine: message left (known
housing unit)

Used when a call machine is reached and a message
is left: known housing unit.

17 Answering machine: message left
(unknown if housing unit)

Used when a call machine is reached and a message
is left - unknown if housing unit.

18 Business/government Used when a business or home business line (not
used for personal calls) or government office is
reached.

19 Dorm/prison/hostel Used when a dorm is reached.

20 Cell phone/mobile/GPS phone Used when number dialed belongs to a cell phone
or other mobile device.

21 Call forwarding Used when number dialed is permanently for-
warded to a different number.

22 Fast busy Used when a fast busy signal is received.

23 Disconnect/temporarily disconnected Used when a number is permanently disconnected,
temporarily disconnected, or has been changed.

25 Fax/modem/data line Used when a fax/modem signal is received.

32 HH ineligible (no eligible person in HH) Screener complete, no household members eligible
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The next call for a case in the active sample is scheduled in light of its current
LCS and call-outcome codes, the number of times the case was already called in the
various shift types, its time zone, and the availability of an appropriate resource in the
interviewer pool.

3.3.3. Three phases of the data-collection period
Interviewing operations proceed through three distinct phases during the data-collection
period. During the initial start-up phase, the active sample will be dominated by virgin
replicates. At this time, few refusal converters are needed. During the longer middle
phase, the active sample is characterized by a mixture of virgin and pending cases. The
final phase, also called the close-down period, begins at the point in time when the
last replicate is released. Because no virgin replicates are introduced during this period,
and as noncontact cases are retired, the active sample will come to be dominated more
and more by difficult and eligible cases. At this time, a larger number of specialized
interviewers are needed to deal with partially completed interviews, refusals and hidden
refusals, appointments, and cases that require a specialized language.

3.3.4. Staffing and staff scheduling
Once the middle phase of data collection is reached, analysis of the most productive
times to call and the dynamics of the call scheduling rules (particularly if shift types
are used) will produce a distinct pattern of dials that must be performed at different
times of the day and week. For example, many companies concentrate RDD dialing into
weekday evenings, when households are more likely to be at home, leaving the day only
lightly staffed.

This pattern is further complicated by the number of time zones that a study is
spanning from a single site. For example, if two-thirds of the sample is in the Eastern
time zone and the remainder is in the Central time zone, and if the sample size requires
10 booths to be active at 9:00 am Eastern time, then by 10:00 am Eastern time another 5
will need to be added for a total of 15. If a sharp distinction is drawn between midweek
evening and midweek days with volumes increasing four-fold, the booth requirements
at 5:00 pm will jump to 45 once the Eastern evening dialing starts, and up to 60 at 6:00
pm when the Central evening dialing starts, dropping to only 20 at 9:00 pm Eastern time
when the Eastern dialing closes for the day. If only five interviewers were dialing at 9:00
am, a proportion of the Eastern sample would not be dialed in that first hour and would
back up for later dialing at a less optimal time of day or even to the next day. Conversely,
if 20 interviewers started dialing at 9:00 am, then the day work would be exhausted by
mid-afternoon, and either the interviewers would sit idle, or cases requiring a night
time call would be dialed far too early with a much lower chance of success. While the
patterns of calling by time zone cited here are merely illustrative, call center managers
need to understand their own survey-specific sample sizes and interviewer capacity to
schedule and manage the staff.

3.4. Case disposition

For an RDD survey, just as for most surveys, the statistician must provide an explicit
definition of what constitutes a completed interview. The definition may hinge on
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such factors as whether key items were completed, whether a majority of items were
completed, or whether a certain range of sections of the questionnaire were completed
before break-off, if any.

Given this definition, telephone numbers in the released sample should move through
the CATI system until they finalize as resolved-nonhousehold, ineligible-household,
or eligible-household-completed-interview. The cases that are not finalized directly
are eventually finalized as unresolved, unscreened-households, or eligible-household-
incomplete-interview.

After going through the prescreening, calling, and interviewing process, all cases in
an RDD survey must end up receiving final disposition codes based on their prescreening
statuses, life cycle, and call-outcome codes. The final disposition codes must be defined
at a sufficient level of detail so that the cases can be treated appropriately in estimation,
analysis, and reporting of response rates.

The American Association for Public Opinion Research has developed standard defi-
nitions for disposition categories for RDD surveys (AAPOR, 2006). At the highest level,
the AAPOR codes are:

(1) Interview includes fully complete interviews or partial interviews with all nec-
essary questions answered.

(2) Eligible, noninterview includes cases that are resolved as WRNs and are screened
as eligible for the survey but have not completed the interview.

(3) Unknown eligibility, noninterview includes cases that are unresolved for WRN
status or are resolved as WRN but the screener interview to determine eligibility
was incomplete.

(4) Not eligible includes cases that are not WRNs and cases that are WRNs but are
screened as ineligible.

For a listing of the detailed AAPOR codes, see Table 1 in the document www.aapor.org/
uploads/standarddefs_4.pdf.

While the detailed categories of AAPOR can be very helpful to data-collection man-
agers in diagnosing problems and opportunities and to survey statisticians in planning
sample sizes and data-collection operations for future surveys, they provide more detail
than is necessary to conduct estimation and analysis for the current survey. For the latter
purposes, we find that a simpler set of final disposition categories is sufficient and fully
acceptable. We present our set of final disposition categories in Table 4 along with a
cross-walk that demonstrates the link between the AAPOR detailed categories and our
final disposition categories. The next subsection shows how these final categories sup-
port the calculation of response rates for an RDD survey, and Section 4 demonstrates
how the final categories support the survey estimation procedure.

To give an illustration of the distribution of an RDD sample by final disposition
categories, we have analyzed recent RDD surveys conducted at NORC. Figure 1 presents
the recent trend in case dispositions found in our surveys. WRNs comprise categories
U1, J, ER, and C. Categories V and UN are unresolved, whereas all other categories
are resolved. Notice the downward trend in the proportion of the sample classified as
resolved WRNs. This trend is due to the evolving telephony infrastructure in the United
States.
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Table 4
Cross-walk between final disposition categories and AAPOR categories

Final Categories Meaning AAPOR Categories

V Virgin, cases released to telephone center but
never dialed

3.11

UN Unresolved telephone number 3.10 (except 3.11)
D Nonworking, out-of-scope 4.20 + 4.30 + 4.40
NR Nonresidential, out-of-scope 4.50
U1 Known household, screening incomplete 3.20
J Screened household, not eligible 4.70
ER Eligible respondent, incomplete interview,

or refusal
2.0

C Completed interviews 1.0

Note: AAPOR categories 3.90, 4.10, and 4.80 are not used. 3.90 is ambiguous and should be classified to
either UN or U1, as the case may be; 4.10 should not exist in a properly managed survey; 4.80 does not
apply in the case of strict probability sampling discussed here.
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Fig. 1. Recent trends in the classification of cases in RDD surveys

3.5. Measures of response rates

It is important to report the response rate for an RDD survey, just as it is for any other
survey. This rate stands as an indicator of the risk of nonresponse bias that may be present
in survey estimators. Features of RDD surveys make the calculation of the response rate
less than completely straightforward. To illustrate the principles, we take the situation in
which a brief screening interview is administered to households to ascertain eligibility
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for the survey, followed by a main interview administered only to eligible households.
Given this situation, what is the appropriate response rate?

The response rate is a summary measure used to designate the ratio of the number of
completed interviews to the number of eligible units in the sample. It is a measure of the
result of all efforts, properly carried out, to execute the RDD survey. Since this definition
is supported by the Council of American Survey Research Organizations (CASRO), we
often call it the CASRO response rate. Assumptions or estimation is usually required to
work out the denominator of the response rate.

In general, the response rate is defined by

r = C

C + ER + λ1U1 + λ2φUN
= completed interviews

eligible cases in the released sample
, (6)

where λ1 is the unknown proportion of unscreened households that are in fact eligible
for the survey, φ is the unknown proportion of unresolved telephone numbers that are
in fact WRNs, and λ2 is the unknown proportion of unresolved WRNs that are in fact
eligible for the survey. Equation (6) also agrees with response rate 3 defined in AAPOR
(2006). Because the rates in the denominator of the response rate are unknown, we
estimate them from the sample itself by

λ̂1 = C + ER

C + ER + J
= eligible cases

eligible and ineligible cases
, (7)

φ̂ = C + ER + J + U1

C + ER + J + U1 + D + NR
= WRNs

resolved cases
, (8)

and

λ̂2 = λ̂1. (9)

For simplicity, we are using a system of notation wherein the same symbol is used to
represent both the final disposition category, the set of survey cases classified in the
category, and the cardinality of the set. For example, C designates both the category of
completed interviews, the set of cases with a completed interview, and the number of
cases that achieved a completed interview.

Given assumptions (6)–(8), the estimated response rate becomes

r̂ = C

C + ER + λ̂1U1 + λ̂2φ̂UN
= cRcScI, (10)

where

cR = C + ER + J + U1 + D + NR

C + ER + J + U1 + D + NR + UN

= resolved telephone numbers

total telephone numbers in released sample

(11)

is the resolution completion rate;

cS = C + ER + J

C + ER + J + U1
= screening interviews

WRNs
(12)
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is the screener completion rate; and

cI = C

C + ER
= completed interviews

eligible households
(13)

is the interview completion rate. The completion rates are useful not only for computing
the response rate but also for planning, monitoring, and managing the RDD survey.

Massey (1995) and Ezzati-Rice et al. (2000) propose an alternative to assumptions
(6)–(8) that takes account of both nonresponse and undercoverage, if any, in the number
of identified eligible households in the survey. Some authors prefer to quote weighted
response rates. To implement this idea, one could let C, ER, and so on be the sum of the
base weights of the members of the corresponding set, instead of simply the cardinality
of the set. The use of the weights could be important for an RDD survey that employs
differential sampling rates from stratum to stratum.

4. Analysis of RDD surveys

In this section, we discuss the procedures used to develop weights for the survey respon-
dents. Properly calculated weights are needed to provide essentially unbiased estimators
of population parameters. Given a large-scale RDD survey, an estimator of the popula-
tion total, Y , is of the general form

Ŷ =
∑
i∈C

WiYi, (14)

where C is the set of completed interviews, Yi is the characteristic of interest for the
ith completed interview, and Wi is the survey weight for the ith completed interview.
Estimators of proportions, ratios, regression coefficients, and the like are calculated as
functions of estimated totals.

Weighting begins with the construction of the probabilities of selection for the tele-
phone numbers in the released sample. The base weights, or the reciprocals of the
probabilities of selection, implement the Horvitz and Thompson (1952) estimator of the
population total. Several adjustments to the weights are required, each being designed
to compensate for missing data at the several steps in the survey response process. The
steps usually include nonresolution of telephone numbers as to their residential or non-
residential status; nonresponse of households to the screening interview, if any, designed
to determine the persons eligible for the survey; and nonresponse of eligible respon-
dents to the main interview. In addition, weights should be adjusted to correct for any
multiple probabilities of selection and to compensate for any households missing from
the sampling frame because they do not have landline telephones. Finally, weights are
usually benchmarked to external population control totals. In what follows, we define
all these steps in weighting. Some steps may not apply to all RDD surveys.

4.1. Base weights

The list-assisted RDD survey design is essentially a simple random sample without
replacement of telephone numbers within stratum, with independent sampling from one
stratum to the next. Let Nh be the size of the population of all landline telephone numbers
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in stratum h and let nh be the size of the sample selected and released. Then, the base
weight for the kth telephone number in the set of released telephone numbers, A, is
defined by

W1k = 1/π1k = Nh/nh, if k ∈ A, (15)

where π1k is the probability of selection given the sampling design. The base weight is
a constant for all released telephone numbers in a stratum.

4.2. Adjustment for nonresolution of telephone numbers

As we have seen, the RDD frame is highly inefficient with more than 70% of the tele-
phone numbers being out-of-scope, either nonworking or nonresidential. The first step in
the survey response process is to identify the WRN status of all released telephone num-
bers. Even after repeated call attempts, some telephone numbers will inevitably remain
unresolved, meaning that there was not enough evidence collected to classify them as
residential, nonresidential, or nonworking. To compensate for the missing classifica-
tions, a nonresponse adjustment is conducted within cells. The adjustment is applied by
forming adjustment cells within each stratum and assuming that the WRN rate within
a cell is the same for both the resolved and unresolved cases. The weights of the unre-
solved telephone numbers are distributed to the weights of the resolved cases in the
same adjustment cell. For the kth resolved telephone number within the �th adjustment
cell, the nonresolution adjusted weight is defined by

W2k = W1k/π2�, if k ∈ B ∩ �, (16)

where B is the subset in A of resolved telephone numbers, and

π2� =
∑

k∈B∩�

W1k

/∑
k∈A∩�

W1k (17)

is the weighted resolution completion rate for the �th adjustment cell.

4.3. Adjustment for nonresponse of households to the screening interview

Once a WRN is identified, it is screened for eligibility. The target population of many
surveys does not include all persons within the household. A given RDD survey may
only target persons of a specific age, sex, education level, or health condition. The
brief screening interview, conducted prior to the main interview, is intended to identify
the members of the target population living in households. Despite repeated callbacks,
the screener is sometimes left missing due to refusal or noncontact. To account for
such nonresponse, the weights of the WRNs with completed screening interviews are
adjusted to account for the nonresponding WRNs within cells. The screener nonresponse
adjusted weight of the kth screener complete in the mth nonresponse adjustment cell is
defined by

W3k = W2k/π3m, if k ∈ S ∩ m, (18)
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where S is the subset in B1 consisting of screener completes, B1 is the subset in B

consisting of the resolved WRNs, and

π3m =
∑

k∈S∩m

W2k

/ ∑
k∈B1∩m

W2k (19)

is the weighted screener completion rate for the mth adjustment cell.

4.4. Adjustment for selection of eligible respondents

In some surveys, once the eligible persons are identified within the household, one
or more of them are selected for participation in the survey. Let E be the subset in
S of households with eligible persons, P be the set of eligible persons identified in
completed screening interviews, and P1 be the subset in P of persons selected for the
survey interview. Then, an adjustment for subsampling is defined by

W4i = W3k/π4i, if i ∈ k and i ∈ P1, (20)

where i designates the selected, eligible person in household k, π4i is the conditional
probability of selecting the ith eligible person given that their household screening
interview was completed, and W3k is the screener-nonresponse adjusted weight from
the previous weighting step. For example, if one eligible person was selected at random
from a household containing three eligible persons, then π4i = 1/3. If the survey calls
for interviewing all eligible persons within the household, then π4i = 1 and W4i ≡
W3k, i ∈ k.

4.5. Adjustment for nonresponse of eligible persons to the main interview

Following screening and subsampling, the survey’s main interview is administered
to the selected eligible persons. At this juncture, further nonresponse is likely due to
refusals and not-at-homes. An interview nonresponse adjustment is applied within cells
to account for the eligible cases that fail to provide a completed interview. The interview
nonresponse-adjusted weight for the ith eligible person with a completed interview in
the qth adjustment cell is defined by

W5i = W4i/π5q, if i ∈ C ∩ q, (21)

where C is the subset in P1 of eligible persons who completed the main interview,
and

π5q =
∑

i∈C∩q

W4i

/∑
i∈P1∩q

W4i (22)

is the interview completion rate within the qth cell.
Table 5 presents a summary of a typical response pattern in an RDD survey, show-

ing how the units with various disposition codes are treated in different weighting
steps.
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Table 5
Summary of hierarchical response pattern and mix of units for a typical RDD survey

Disposition
Codes

Released
Sample of
Telephone
Numbers

Resolution
Status
(Telephone
Numbers)

WRNs
(Telephone
Numbers)

Screening
Status
(Telephone
Numbers)

Eligibility
Status
(Households)

Subsampling
Status
(Eligible Persons)

Interview Status
(Eligible Persons)

C: complete
interview

P1 = set of
selected, eligible
persons

C = set of
respondents to the
main interview

ER: incomplete
interview S = set of WRNs

that responded to
the screening
interview

E = set of
households with
one or more
eligible persons

P1 ∩ Cc = selected,
eligible persons that
did not complete
the main interview

Eligible persons
subsampled out

B = set of all
resolved
telephone
numbers

B1 = set of all
resolved WRNs

P ∩ Pc
1 = set of

nonselected eligible
persons

J: screened
household, no
eligible person

A = set of all
telephone
numbers in
the released
sample

S ∩ Ec = set of
ineligible
households

U1: known
household,
incomplete
screening interview

B1 ∩ Sc = set of
WRNs that did
not complete the
screening interview

NR: nonresidential,
out-of-scope

B ∩ Bc
1 = set of

resolved non-
working or non-
residential numbers

D: nonworking,
out-of-scope

I: answering
machine (status
unresolved) Bc = set of all

unresolved
telephone
numbers

NC: noncontact
(status unresolved)

U2: possible
household (status
unresolved)
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4.6. Forming adjustment cells

A different set of nonresponse adjustment cells may be formed and used at the different
steps in the RDD response process. As would be typical of any sample survey, cells
in an RDD survey are formed to achieve two ends: (i) units within a cell should be
alike with respect to the survey characteristics of interest, and (ii) the survey response
rates should vary from cell to cell. Cells are usually, though not necessarily always,
nested within the sampling strata. The directory-listed status is often found to be a
significant correlate of the nonresponse mechanism at each of the resolution, screen-
ing, and interviewing steps and is almost always included in the cell structure within
stratum.

At the resolution step, only sampling frame variables are available for cell formation,
including such variables as directory-listed status; broad geographic location including
census region and state; and environmental variables obtained at the census tract level
corresponding to the approximate mapping between the telephone exchange and the
tract. The latter include variables related to the distribution of the population with respect
to age, sex, race/ethnicity, housing tenure, and income.

At the screening step, both frame variables and variables collected at the resolution
step are available for cell formation, and at the interviewing step, frame variables, res-
olution variables, and variables collected at the screening step are available for cell
formation. Usually, the resolution step adds little information, and the cell structure
for the screener nonresponse adjustment is forced to rely mainly on frame variables.
Depending on the RDD survey, some screening interviews collect substantial new infor-
mation and some do not. Sometimes the screening interview is minimized to include
only essential variables so as not to risk additional nonresponse at this step. The cell
structure for the interview nonresponse adjustment may be relatively more or less artic-
ulated depending on how many additional useful variables are obtained in the screening
interview.

4.7. Adjustment for multiple probabilities of selection

Many households have two or more landlines that may be used for voice communications
(excluding the lines used only for fax or computer communications), and the interview
respondents in these households have multiple chances of selection into the survey. The
increased probabilities of selection were not known at the time the base weights were
formed and, therefore, an adjustment for these probabilities is now in order. Without
an adjustment, the extant weights would provide an upward biased estimator of the
population total. Although we have not emphasized this point until now, at this step in
the weighting process, we have an essentially unbiased estimator of the total population
of eligible person/WRN pairs.An eligible person with two landlines appears twice in this
total. The real parameter of interest, however, is the total (and functions thereof) of the
population of eligible persons. A weight adjustment is needed to convert the weighted
estimator to be an estimator of the real parameter of interest.

The number of voice landlines is collected during the interview, and the appropriate
adjusted weight is given by

W6i = W5i/ min(ti, to), (23)
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where ti is the number of telephone lines in the household of the ith eligible respondent.
The value to is used to cap the number of telephone lines used in the weight adjustment,
both to control variability and to guard against reporting bias. For example, some surveys
take to = 3.

It is possible that a household with multiple landlines is selected more than once in
the sample. With time and expense, one can undertake efforts to identify the lines. To
identify the landlines in the sample that are linked to the same household, all landlines
of the responding household can be collected and the sample file of responding landlines
can be checked to establish the link. However, to avoid the response burden and the costs
of collecting and processing the information, and considering the negligible chance of
selecting the household more than once in the sample, it is usually assumed in the
weighting process that only one landline has been selected per household.

4.8. Adjustment for noncoverage of nonlandline households

Since the frame of a RDD survey only includes landline telephone numbers, the eligi-
ble persons living in households without landline service (including both nontelephone
households and households with only cell-telephone service) are not covered by tradi-
tional RDD surveys. To compensate for this type of undercoverage, a certain poststrati-
fication adjustment can be used (Keeter, 1995). The basic idea is to use the households
with an interruption in landline telephone service of one week or more during the past
year to represent not only themselves but also the households without a landline tele-
phone. Keeter (1995), Brick et al. (1996), and Srinath et al. (2002) showed that the
socioeconomic characteristics of persons who live in households with interruptions of
one week or more in landline telephone service within the past 12 months are similar
to those who live in nontelephone households. This finding resonates with common
sense because if a survey is conducted at a point in time when the household service is
interrupted, then the household is necessarily considered as a part of the population of
nontelephone households. Therefore, interviewed persons living in households with a
recent interruption in landline telephone service can be used to represent persons living
in nontelephone households.

Given this method, two cells are formed within a stratum by the telephone interruption
status of the household as follows: 1) interruption of more than one week during the past
12 months; and 2) no interruption of more than one week during the past 12 months. Let
Th1 denote the total number of eligible persons in the population either without a landline
telephone or with a landline telephone with an interruption in service, and let Th2 denote
the total number of eligible persons in the population with a landline telephone without
an interruption in service, all in stratum h. Then, the adjusted weight for the ith person
in C is defined by

W7i =
⎛⎝Thg

/ ∑
i∈C∩Uhg

W6i

⎞⎠W6i, if i ∈ C ∩ Uhg, (24)

where g indexes the cell within stratum h, and Uhg denotes the population of eligible
persons in households in cell (h, g). The population totals Th1 and Th2 are typically
unknown and must be estimated from a census or a reliable reference survey.
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4.9. Calibration to population control totals

The aim of the previous step is to reduce bias in the survey estimator due to the
noncoverage of the population without landline telephone service. The RDD surveys
may also be subject to differential coverage of the population by race/ethnicity and other
factors. Like almost any census or survey, some categories of persons are underreported
at a higher rate than others. The penultimate step in RDD surveys is to correct for the
differential undercoverage by calibrating the weights to independent population con-
trol totals. A poststratification (Holt and Smith, 1979) or raking-ratio type calibration
(Brackstone and Rao, 1979) is commonly applied.

The requisite population control totals are obtained from a census or a reference
survey and are typically available for socioeconomic characteristics such as age, sex,
race/ethnicity, income or poverty status, education attainment, and telephone interrup-
tion status. The population control totals may be obtained for the population as a whole
or within each stratum.

To illustrate, we give the adjustment corresponding to a raking-ratio calibration.
Introduce the following additional notation:

a = iteration within the raking procedure
b = dimension (or classification variable) of the raking structure within the

iteration
c = category (or value or the classification variable) within the dimension

within the iteration
Lb = number of categories within the bth dimension
T b

c = population control total for the cth category within the bth dimension of
the raking structure

ϕb
ci = 1, if the ith eligible person is in the cth category of the bth dimension of

the raking structure
= 0, otherwise

Then, the adjusted weights at the bth dimension of the ath iteration are given by

W
a,b
8i =

⎛⎜⎝ Lb∑
c=1

ϕb
ci

T b
c∑

i∈C

ϕb
ciW

a,b−1
8i

⎞⎟⎠W
a,b−1
8i , (25)

for eligible persons with a completed interview i ∈ C. The raking procedure cycles
through each of the dimensions of one iteration before moving forward to the next
iteration. The entry weights for the first dimension of an iteration are the exit weights
following the last dimension of the previous iteration. The entire process opens with
the weights from the prior step in weighting, {W7i} for i ∈ C. The process iterates until
a user-specified convergence criteria is achieved.

For example, if population control totals are available for five age groups, two sex
groups and four race/thnicity groups, then we have the raking structure

Dimension (b) Classification Variable Number of Categories (Lb)

1 Age 5
2 Sex 2
3 Race/ethnicity 4
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4.10. Trimming of extreme weights

Since the weights in an RDD survey are derived through the foregoing series of
adjustments, a few weights in some strata may end up being very large in compari-
son to other weights in the stratum. To avoid any undue influence of large weights on
survey estimates and to control the sampling variance of the estimator, the extreme
weights may be trimmed by using a suitable truncation or Winsorization procedure (see
Fuller, 1991; Kish, 1992; Potter, 1990). After trimming, the calibration adjustment is
reapplied to ensure the consistency of the resulting weights with the population control
totals. In some cases, the process may have to be iterated a few times to achieve final
weights that are at once void of extreme values and also consistent with the population
control totals. Let {W9i} or simply {Wi} denote the resulting, final weights.

4.11. Estimation and variance estimation

For a RDD survey, the survey weights are used to produce survey statistics and variance
estimates in the usual way. To see this, expand the notation to let Yhij = (Y1hij, . . . Yphij)

′
be a p-variate characteristic of interest reported by the jth eligible person selected in the
ith household in the hth stratum, and Whij be the corresponding final weight. Suppose
the goal is to estimate a parameter θ = g(Y) of the eligible population, where Y is the
vector of population totals and g(·) is a well-behaved differentiable function. Then, the
estimator of the parameter of interest is θ̂ = g(Ŷ), where

Ŷr =
∑

(h,i,j)∈C

WhijYrhij (26)

is a typical element of Ŷ, r = 1, . . . , p, and C is the set of eligible respondents. The
usual Taylor series estimator of the variance is

v(θ̂) =
∑

h

nh

nh − 1

∑
i

⎛⎝∑
j

WhijV̂hij − 1

nh

∑
i′

∑
j′

Whi′j′ V̂hi′j′

⎞⎠2

(27)

V̂hij =
p∑

r=1

∂g(Ŷ)

∂yr

Yrhij, (28)

where
∑

h denotes a sum over strata,
∑

i is a sum over the respondents’households within
stratum, nh is the number of such households, and

∑
j is a sum over respondents within

household. For a superior estimator of variance that takes into account the calibration
done in the 9th step in weighting, see Sections 6.12 and 6.13 of Wolter (2007). Notice
that the households act as the primary sampling units in an RDD survey.

Alternatively, a replication-type estimator of variance may be used, such as the jack-
knife estimator

vJ(θ̂) =
∑

h

nh − 1

nh

∑
i

(
θ̂(hi) − θ̂(h+)

)2
, (29)

where

θ̂(hi) = g(Ŷ(hi)) (30)
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is the estimator derived from the sample after omitting the (h, i)th household,

θ̂(h+) = 1

nh

∑
i

θ̂(hi), (31)

Ŷr(hi) =
∑
h′

∑
i′

∑
j′

W(hi)h′i′j′Yrh′i′j′ (32)

is a typical element of Ŷ(hi) for r = 1, . . . , p, and the replicate weights are defined by

W(hi)h′i′j′ = Wh′i′j′ , if h′ �= h

= Wh′i′j′
nh

nh − 1
, if h′ = h and i′ �= i

= 0, if h′ = h and i′ = i.

(33)

For large RDD surveys, it will be prohibitive to compute replicate weights for the drop-
out-one-completed-interview version of the jackknife. To better manage survey costs,
one may use the survey replicates defined in Section 3 and compute the drop-one-
replicate (or random group) version of the jackknife (see Wolter, 2007, Chapter 4).

One may use the estimated variances and covariances together with ordinary normal
theory to make inferences regarding relationships and parameters of interest.

4.12. Difference in frame and actual location

In some cases, a telephone number is selected from one stratum, but the interview reveals
that the respondent (or the respondent’s housing unit) is actually in a different stratum.
Actual location may be collected in the interview and used to define the estimation
domains for analysis. (Actual location could also be used earlier in the implementation
of the last several weight adjustments.)

Since the sample selection probability may vary substantially from one stratum to
another, the movement of one or more respondents to a new estimation domain may
add variation in the sampling weights within the domain. To protect against any such
extra variation in weights, the weight of the reclassified respondent may be truncated if
it is very large compared with all other weights in the domain. A multiple of the average
weight in the domain is sometimes used as a cap for the weights.

Let δd
i be an indicator variable for the dth estimation domain based on actual location

collected in the interview. Then the estimator of the domain total is defined by

Ŷ d =
∑
i∈C

Wiδ
d
i Yi. (34)

Variance estimation occurs as defined in Section 4.10, with the variable Yd
i = δd

i Yi

replacing the original variableYi.
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Introduction to Part 2

Paul Biemer

After the data are collected, a number of processing steps must be performed to convert
the survey data from their raw, unedited state to a verified, corrected state ready for
analysis, and/or for dissemination to the users. If the data are collected by paper-and-
pencil interviewing (PAPI) methods, they must be converted into a computer-readable
form. Data collected by computer-aided interviewing (CAI) do not require this step, but
may require additional cleaning steps to remove data remnants left after an erroneous
branch. Responses to open-ended questions may need to be classified into categories
using a coding scheme so that these responses can be tabulated. Additional operations
may be performed on the data to reduce survey error and missing data.

For example, the data may be “cleaned” by eliminating inconsistencies and address-
ing unlikely or unusual responses (e.g., outliers). Survey weights may be computed to
account for unequal selection probabilities. These weights may be further refined by a
series of postsurvey adjustments that are intended to reduce coverage error bias, non-
response bias, and sampling variance. Some survey variables (for example, household
income) may have numerous missing values, and plausible values may be imputed for
them. After these steps are completed, the data contents file should be well-documented.
Data masking and de-identification techniques may also be conducted on the file to pro-
tect the confidentiality of the respondents. The next section provides a brief overview
of these data processing activities.

1. Overview of data processing steps

The data processing steps vary depending on the mode of the data collection for the
survey and the technology available to assist in the data processing. The steps involved
for processing PAPI questionnaires, shown in Fig. 1, are discussed initially. The steps
for CAI are essentially the same except for the data entry step.

Prior to keying, paper questionnaires must undergo a scan editing process that
involves several steps. First, as the survey organization receives the questionnaires,
their identification numbers are entered into the receipt control system and the question-
naires are inspected for obvious problems, such as blank pages or missing data for key
items that must be completed for questionnaires to be usable. Questionnaires determined
to be incomplete may be sent back to the field for completion. In mail surveys, incom-
plete questionnaires might be routed to a telephone follow-up process for completion. In
cases where there is no follow-up of nonresponse, the questionnaires may be passed on
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Coding
(open ended
responses)

File preparation

  • Weighting
  • Weight adjustments
  • Outlier analysis
  • Record linkage

Data analysis

  • Tabulations
  • Modeling
  • Error evaluations

Data file
documentation

Statistical Disclosure
Analysis (SDA)

Data
capture

Statistical
editing and
imputation

Scan editing
(PAPI only)

Fig. 1. Processing steps for a typical survey.

to the next data processing step (i.e., data capture or keying). Ultimately, questionnaires
that are not minimally complete are coded as nonresponding units. As part of the scan
editing process, questionnaires may be grouped into small batches called work units to
facilitate the subsequent processing steps.

For the data capture step, paper questionnaires are digitized (i.e., converted into a
computer-readable form). Data can be entered manually using keying equipment or
automatically using scanning or optical character recognition devices. For the latter,
messy questionnaires may have to be copied onto new, clean forms so that the scanner can
read them properly. Keying usually involves some form of quality control verification.
For example, each questionnaire may be keyed independently by two different keyers.
Any discrepancies between the first and second keyed entries are then rectified by the
second keyer. Alternatively, acceptance sampling methods (typically, a single sampling
plan) may be applied to each work unit. Here, only a sample of questionnaires within each
work unit is rekeyed. If the number of discrepancies between the two keyings exceeds
some threshold value, the entire work unit is rekeyed. As a result of these verification
methods, the error rate for keying is usually quite low for closed-ended responses: less
than 0.5%. However, for verbal responses such as names and addresses, the error rates
are substantially higher: 5% or more (Biemer and Lyberg, 2003).

Note that for CAI questionnaires, interviewers or respondents perform this data cap-
ture step as they enter their data directly into the computer. Typically there is no quality
control operation to identify the keying errors during this step. However, some evidence
suggests (see, for example, Dielman and Couper, 1995; Lepkowski et al., 1998) that
keying errors for CAI are quite small and inconsequential.

1.1. Editing and imputation

Editing is a process for verifying that the digitized responses are plausible and, if not,
modifying them appropriately. Editing rules can be developed for a single variable or for
several variables in combination. The editing rules may specify acceptable values for a
variable (e.g., an acceptable range of values) or acceptable relationships between two
or more variables (e.g., an acceptable range for the ratio of two variables). Typically,
editing identifies entries that are definitely in error (called critical edits) or are highly
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likely to be in error (called query edits).All critical edits must be corrected, while various
rules may be applied to determine which query edits to address to reduce the cost of the
editing process. This approach is sometimes referred to as selective editing (Granquist
and Kovar, 1997).

Some surveys specify that respondents should be recontacted if the number of edit
failures is large or if key survey items are flagged as erroneous or questionable. Thus,
missing, inconsistent, and questionable data can be eliminated by the respondent’s input;
however, this is not always done either to save costs or because of the impracticality
of respondent recontacts. In that case, values may inserted or changed by means of
deducing the correct value based on other information on the questionnaire or from
what is known about the sample unit from prior surveys, a process called imputation.
Consistency checks, selective editing, deductive editing, and other editing functions
can be performed automatically by specially designed computer software (discussed in
Chapter 13).

In Chapter 9, methods for editing are examined under the rubric of statistical data
editing (SDE). SDE involves two steps: error localization (identifies errant or missing
data entries) and imputation (supplies a value for the errant or missing data item). The
latter topic is discussed in much greater detail in Chapter 10. This chapter provides a
comprehensive discussion of imputation methods, focusing primarily on methods for
imputing a single value (as opposed to methods for multiple imputations). In addition,
issues of inference in the presence of imputed values are explored.

1.2. Coding

Coding is a procedure for classifying open-ended responses into predefined categories
that are identified by numeric or alphanumeric code numbers. For example, the open-
ended question “What is your occupation?” may have thousands of different responses.
To be able to use this information in subsequent analysis, each response is assigned
one of a much smaller number (say 300–400) of code numbers that identify the specific
occupation category for the response. So that occupation categories are consistent across
different surveys and different organizations, a standard occupation classification (SOC)
system is used. A typical SOC code book may contain several hundred occupation
titles and/or descriptions with a three-digit code number corresponding to each. In most
classification standards, the first digit represents a broad or main category, and the
second and third digits represent increasingly detailed categories. Thus, for the response
“barber,” a coder consults the SOC code book and looks up the code number for “barber.”
Suppose the code number is 411. Then the “4” might correspond to the main category
“personal appearance workers,” 41 might correspond to “barbers and cosmetologists,”
and 712 to “barber.” In automated coding, a computer program assigns these code
numbers to the majority of the cases while the cases that are too difficult to be accurately
coded by computer are coded manually. A discussion of methods for coding open-ended
responses can be found in Biemer and Lyberg (2003).

1.3. File preparation

The file preparation step results in a file that is ready for data analysis. This step consists
of a number of activities including weighting, weight adjustment, outlier analysis, and
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record linkage. For sampling with unequal probabilities, base (or selection) weights
must be computed for the sample units. Weight adjustments can also be applied to
compensate for unit nonresponse and frame coverage errors. Often the weights are
developed in three steps. First, the base weight is computed for each unit as the inverse
of the probability of selection of the unit. Next, the base weight is adjusted to compen-
sate for unit nonresponse by a response propensity adjustment. This adjustment factor
is usually computed as the inverse of the estimated probability of responding to the
survey. Finally, additional weight adjustments might be performed to adjust for frame
coverage error depending on availability of external information. These so-called cal-
ibration adjustments are intended to achieve additional improvements in the accuracy
of the estimate. Chapter 8 provides a general introduction to survey unit nonresponse
and the need for weighting survey data. It reviews various methods for computing
response rates, examines response rate trends, and considers the relationship between
response rates and nonresponse bias. Methods for weighting, especially to reduce
nonresponse bias, are covered in some detail. Also covered are methods for variance
estimation and confidence interval estimation in the presence of nonresponse.

Related to the topics of both weighting and imputation is outlier analysis, the subject
of Chapter 11. In some surveys, a few units can account for up to 10% of an estimate
of the population total. The situation is even worse if some of these extreme units are
combined with large survey weights. Like data editing, the goal of outlier analysis is
to identify these extreme values and confirm or correct them. Extremely large or small
values of a survey variable that cannot be confirmed with the respondent may be set to
missing and imputed (see Chapter 10).

Beaumont and Rivest (Chapter 11) distinguish between two types of outliers: those
due to reporting errors (referred to as nonrepresentative) and those that are correct values
but represent an extremely small part of the population (referred to as representative).
Nonrepresentative outliers can be handled at the data collection and/or editing stages
of a survey process using outlier detection techniques. Representative outliers offer the
greater challenge to statisticians because whether these outliers are included or excluded
in the calculations of the sample means or totals can dramatically impact the magnitude
of these statistics. Although including representative outliers is statistically correct and
produces design unbiased estimators of totals, they can noticeably increase the standard
errors of the estimates. On the other hand, estimators that limit the influence of large
values produce more stable estimates, but are biased. As Beaumont and Rivest show, the
art of outlier treatment in survey sampling lies in the management of this bias-variance
trade-off. Chapter 11 examines these issues in detail and discusses the major methods
for dealing with representative outliers.

Another potential step in preparing files for data analysis is appending administra-
tive or possibly census block or tract-level data to the survey data records. This might
be done prior to the weighting step to provide additional auxiliary data for the weight
adjustments. In addition, such data supplements can provide contextual variables to
enrich data analysis. Linking survey records to external, auxiliary records requires the
techniques of record linkage, which are discussed in Chapter 14. In countries using
population registries, such linkages across data systems are facilitated by the existence
of a unique identifier for each population member. However, in many other applications,
such linkages must rely on a few fields such as first name, last name, and date of birth.
In these situations, special techniques have been developed to achieve high levels of
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accuracy with a known level uncertainty. Other applications of record linkage method-
ology include the construction of multiple frames to avoid duplication of frame units,
or the evaluation of survey or census coverage error.

1.4. Statistical disclosure analysis

Chapter 15 takes up the important topic of preserving the confidentiality and privacy
of survey respondents in the public release of survey data files. Virtually all national
statistical institutes (NSIs) and many other survey organizations have policies regarding
the release of macrodata and microdata to external users. Macrodata refer to files con-
taining tabulations, counts, and frequencies. Microdata refer to files containing records
that provide data about individual persons, households, establishments, or other units.
Disclosure protection refers to efforts made by a survey organization or data supplier
to reduce the risk that a specific unit in the population is identified as a unit in the data
file, when such a disclosure could reveal information about the unit that is generally
unknown. Thus, for any proposed release of tabulations or microdata to the public, the
acceptability of the level of risk of disclosure must be evaluated. Statistical disclosure
control (SDC) is a set of statistical techniques that help to evaluate the risk of reidenti-
fication and, if the risk is deemed too high, to reduce the risk by altering the data.

Chapter 15 begins with the basic concepts, goals, and essential approaches of statis-
tical disclosure analysis. It casts SDC as an optimization problem that trades the risks
of disclosure against the utility of the data to analysts. As an example, stripping the
microdata records of all geographic identifiers (including primary sampling unit indica-
tors) is often necessary to reduce disclosure risks. However, such identifiers are needed
to appropriately estimate the design variances of the estimators. The chapter discusses
these issues for both microdata and macrodata releases.

1.5. Data documentation and analysis

The final processing step is data documentation in which a type of data file users’manual
is created. This document describes the methods used to collect and process the data and
provides detailed information on the variables on the file. For example, each variable on
the data file might be linked to one or more questions on the questionnaire. If variables
were combined, recoded, or derived, the steps involved in creating these variables are
described. The documentation might also include information regarding response rates
for the survey, item nonresponse rates, reliability estimates, or other information on the
total survey error of key variables.

As noted in Chapter 13, new technologies have opened up many possibilities to
integrate these data processing steps. Therefore, for some surveys, the sequence of
steps might be very different from those described earlier. For example, it is possible
to integrate data capture and coding into one step; likewise, data capture and editing
can be integrated with coding. It is also possible to integrate editing and coding with
data collection through the use of CAI technology. The advantage of integration is
that inconsistencies in the data or insufficient information for coding can immediately
be resolved with the respondent, which reduces follow-up costs and also may result
in better information from the respondent. Many other possibilities for combining the
various data processing steps may be feasible. The goal of integration is to increase the
efficiency of the operations while improving data quality.
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Chapter 13 reviews the major software packages available for all the processing steps
listed in Fig. 1, including data collection (via CAI). This chapter addresses one of the
most frequent errors made by data analysts who are not familiar with survey data, that
is, incorrect use of weights. Such errors range from ignoring the weights completely to
regarding them incorrectly as frequency weights in standard statistical packages such as
SAS and SPSS. The chapter also considers a number of widely available survey analysis
software packages such as SUDAAN, STATA, WesVar, and the special survey analysis
modules of SAS and SPSS.

2. Data quality and data processing

As is clear from the previous discussion, the data can be modified extensively during
data processing. Hence, data processing has the potential to improve data quality for
some variables while increasing the error for others. Unfortunately, knowledge about
the errors introduced in data processing is very limited in survey organizations and,
consequently, such errors tend to be neglected. Operations are sometimes run without
any particular quality control efforts, and the effects of errors on the overall accuracy
as measured by the mean squared error (MSE) are often unknown, except perhaps for
national data series of great importance.

As an example, although editing is intended to improve data quality, it misses many
errors and can even introduce new ones. Automation can reduce some errors made by
manual processing, but might introduce new errors. For instance, in optical recognition
data capture operations, the recognition errors are not uniformly distributed across digits
and other characters, which can introduce systematic errors (i.e., biases). For these
reasons, quality control and quality assurance measures should be a standard part of all
data processing operations.

The evaluation of measurement errors in surveys, including data processing errors,
is the topic of Chapter 12. As this chapter explains, knowledge of the magnitudes of
measurement bias and variance can serve multiple purposes.

• Information on the errors related to alternative data collection methods can be used
to improve data collection methodology for future surveys.

• Estimates of the reliability and validity of survey questions can lead to improved
questionnaire design.

• Information on the measurement error properties of survey variables used in the
data analysis is important for data users and analysts who need to understand the
limitations of the data to account for them in a proper way.

Chapter 12 presents five modeling approaches that are appropriate for the study of
measurement error, three of which focus primarily on classification errors and two on
the error in continuous data. The chapter begins with the model first espoused by Hansen
et al. (1964), which can be applied to any type of variable. Much of the chapter is spent
on examining the essential concepts and methods underlying latent class analysis (LCA)
of measurement error, including Markov latent class analysis (MLCA) for panel data.
The chapter closes with a discussion of some common approaches for the assessment of
measurement error in continuous data, using structural equation modeling techniques.
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Nonresponse and Weighting

J. Michael Brick and Jill M. Montaquila

Broadly defined, nonresponse is the failure to obtain a valid response from a sampled
unit. It is of concern to survey methodologists and practitioners since complete response
is assumed by the randomization or design-based theory that allows for inference from
a sample to the target population. Nonresponse has the potential to introduce bias into
survey estimates and reduce the precision of survey estimates. As a result, survey practi-
tioners make efforts to minimize nonresponse and its effects on inferences from sample
surveys. However, even with the best of efforts there will be nonresponse, so it is
essential to understand its potential effects and methods that can be used to limit these
effects.

We begin by discussing nonresponse in surveys, the reasons for nonresponse, and
methods used to increase response rates in surveys. In Section 2, we define response
rates, review methods of computing response rates, and then examine the trends in
response rates over time. Section 3 examines the relationship between response rates
and nonresponse bias, and methods for modeling response propensities and estimating
bounds on nonresponse bias. Section 4 reviews weighting in surveys. It begins with a
brief review of the reasons for weighting in surveys and the steps in weighting, before
concentrating on weighting methods to reduce nonresponse bias including standard
weighting class adjustment methods and calibration weighting. Section 5 examines
variance estimation and confidence interval estimation in the presence of nonresponse,
including a discussion of some of the software available for doing this. We conclude
with a discussion that includes some areas that need further research.

1. Nonresponse in surveys

While all types of nonresponse result in missing data, it is useful to classify nonresponse
by the pattern of missingness. When a sampled unit fails to respond at all to the data
collection efforts, this type of missing data is called unit nonresponse (the failure of a
sampled unit to respond to the survey). Item nonresponse is another form of missing
data that occurs when a unit responds to some of the data items in the survey but fails to
answer one or more items. A third type of nonresponse is partial or wave nonresponse.
Partial nonresponse occurs when only a portion of the survey is completed. For example,
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a survey may involve sampling households and screening for persons eligible for the
main or extended interview. If the screening interview is completed and an eligible
person is sampled but does not respond, this might be considered partial nonresponse.
Partial nonresponse also occurs when a respondent to an initial wave of a longitudinal
survey fails to respond to a subsequent wave. In longitudinal or panel surveys, wave
nonresponse is often an important component of nonresponse.

These classes or types of nonresponse are related to the main methods used to deal
with survey nonresponse in data files. Typically, some form of weighting adjustment is
used to compensate for unit nonresponse. Imputation, on the other hand, is usually the
method chosen to deal with item nonresponse. While this is common practice, weight-
ing adjustment can be used for item nonresponse and imputation for unit nonresponse.
Partial nonresponse is a hybrid in the sense that it may be treated as either unit non-
response or item nonresponse. Other factors, such as processing costs and accuracy of
the compensation method, play an important role in determining whether the partial
nonresponse is handled by weighting or imputation. For example, the Survey of Income
and Program Participation, a longitudinal survey conducted by the U.S. Census Bureau,
imputes for wave nonresponse if the preceding and subsequent waves are obtained, but
weights for all other forms of wave nonresponse.

Another type of missing data occurs when eligible units in the target population are
not included in the sampling frame; this is undercoverage or noncoverage rather than
nonresponse. Noncoverage is not studied in this chapter.

The remainder of this chapter focuses on unit nonresponse and methods for adjusting
the unit nonresponse. Wave nonresponse is discussed in Chapters 5 and 34, and item
nonresponse in Chapter 10.

1.1. Reasons for nonresponse

Unit nonresponse may occur for various reasons, but most nonresponse may be classified
into two broad categories: accessibility issues and amenability issues. Accessibility refers
to the ability to make contact with the sampled unit. For example, accessibility issues
may be the inability to find anyone at home for an in-person or telephone survey, or the
inability to trace a unit successfully from a list sample. Amenability refers to the unit’s
willingness to cooperate with the survey request after contact has been made.Athird, and
generally less significant, cause of unit nonresponse is loss due to administrative issues,
such as mail questionnaires that are received too late or are lost in processing. Stoop
(2005) discussed various theories of survey participation and provided an extensive
literature review to address those theories.

Much of the nonresponse literature examines the effect of the characteristics of
the respondents and interviewers on amenability. Goyder (1987), Groves and Couper
(1998), and Stoop (2005) reviewed this extensive literature and examined the differ-
ences in response levels by factors, such as the sex, age, and geography of the respon-
dent. The differences by demographic characteristics are relatively consistent across
surveys. The characteristics of interviewers, on the other hand, rarely predict those
who are likely to obtain higher response rates. Groves and Couper (1998) reviewed
this literature as well as the interaction between respondents and interviewers. Below,
some of the other factors that affect either amenability or accessibility are briefly
mentioned.
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Many studies have found that mode of data collection is an important factor in
determining the level of nonresponse, especially in household surveys. The highest
response rates are often attained by face-to-face surveys. Telephone survey response
rates are usually lower than in-person response rates. Mail surveys generally have the
lowest response rates. Over two decades ago, Goyder (1985) noted, “Many texts caution
against expecting mailed questionnaire response from a general population to exceed
about 30 percent” and cited variations among authors in the range of “typical” response
rates. Krosnick (1999) referred to mail surveys as “undesirable” due to low rates of
response. Tourangeau et al. (2000) discussed some of the psychological reasons that
make respondents more amenable to interviewer-administered surveys compared with
self-administered modes. Accessibility also varies substantially by mode. For example,
households without telephones are not accessible in telephone surveys.

The type of unit sampled also affects response rates. Organizational or establishment
surveys generally have lower response rates than surveys of individuals (Tomaskovic-
Devey et al., 1994). Among a number of factors studied, Tomaskovic-Devey et al.
(1994) found that motive to respond had the most significant effect on response rates
in organizational surveys, although authority to respond and capacity to respond were
also associated with the quality of survey responses. Lynn and Sala (2004) concluded
that a flexible approach to interviewing in establishment surveys, including offering
multiple modes for response, can boost response rates considerably. In reporting on
U.S. military personnel surveys, Newell et al. (2004) stated that “the primary reasons
why Navy surveys are not being returned is a belief that they have no impact, general
apathy over the survey process, and survey length.”

The introduction of new technologies may also affect the level of nonresponse. The
potential of technology to affect response rates is most prominent in telephone surveys,
where answering machines, caller ID devices, and privacy managers are technological
barriers to obtaining high response rates. Despite the popularity of these devices, their
effects are still largely unknown. Studies have found that households with answering
machines or caller ID devices were harder to reach, but once contacted, they were as
likely to respond as those without answering machines (Piazza, 1993; Link and Old-
endick, 1999). However, Smith (1995) noted that “refusals and the related problem of
call screening and answering machines were considered the most important problems
over the next 10 years.” Tuckel and O’Neill (2002) reported that although refusal rates
appeared to have leveled off, noncontact rates continued to increase, causing nonre-
sponse to increase.

Other societal changes also influence the response levels. In the United States, a
National Do Not Call Registry (often referred to as the “Do-Not-Call list”) was imple-
mented in 2003 to prohibit telephone solicitations for households that have registered
their telephone numbers.Although survey research firms are exempted from the Do-Not-
Call restrictions, some have hypothesized that telephone survey response rates suffer
because respondents are unaware of this exemption and view the survey request as an
intrusion. However, others hypothesized that because of the reduction in unsolicited
calls due to the Do-Not-Call list, respondents should be more willing to comply with
the survey request. Link et al. (2006) provided some empirical evidence suggesting the
Do-Not-Call list has had little or no effect on state-level response rate.

The importance of the topic of the survey to the sampled person has long been
identified as an important determinant of nonresponse. Groves et al. (2004) used this
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idea to propose a leverage-salience theory of response. They pointed out that items
directly related to the survey topic are most susceptible to nonresponse bias, and that
people who are interested in or have characteristics related to the survey topic may be
more likely to cooperate. To the extent that this is true, comparisons of easier and harder
to interview respondents might provide confirmation of the theory. Some studies have
attempted to examine this theory empirically. For example, Voigt et al. (2003) found
“intermediate and late responders” to be slightly younger, more likely to be non-White,
and less educated than “early responders.” We discuss these models in more detail in a
subsequent section.

1.2. Methods to increase response rates

As discussed above, response rates differ across survey modes. However, response rates
may also vary widely across surveys even when the surveys are conducted using the
same mode. One explanation for these differences in response rates is that different levels
of effort are expended in the survey to obtain the responses. For example, Edwards et al.
(2006) noted a wide variation in effort among in-person surveys. Such differences in
levels of effort also exist in mail and telephone surveys.

Because of the potential for differences among initial cooperators, refusers, and reluc-
tant (or “late” or “resistant”) respondents, a number of data collection and estimation
strategies have been used to attain high response rates, with the ultimate goal of min-
imizing the effects of nonresponse bias for the estimates (e.g., Holbrook et al., 2008).
Some standard strategies have been used for decades, while others have been introduced
more recently to make use of emerging technologies and to combat declines in response
rates. Some examples of such strategies are given below.

For in-person and telephone surveys, efficient contact or calling strategies that result
in multiple contact attempts, on varying days of the week at various times of the day, have
been an important part of the effort to obtain high response rates for many years. The field
period must be long enough to allow sufficient numbers of contact attempts (e.g., Groves
and Couper, 1998; Weeks, 1988). Following good questionnaire design principles (e.g.,
well-written introductions and clear, well-executed skip patterns), setting limits on the
length of the interview, and using well-trained interviewers contribute substantially to
effective data collection efforts.

Translation of questionnaires into multiple languages (or the use of interpreters) and
using multiple modes of administration are relatively newer strategies. Tactics such
as refusal conversion, multiple mailings (including, in the case of telephone or in-
person surveys, both advance letters and mailings to follow up with nonrespondents),
and incentives (Cantor et al., 2008) are becoming more widely used in attempts to
elicit cooperation. For telephone surveys, answering machine messages are used to
introduce the study and attempt to mitigate any effects of call screening. Heberlein and
Baumgartner (1978) found that for mail surveys, the number of follow-ups and topic
salience were the two most significant predictors of response.

Nonresponse follow-up has been found to be an important tool in understanding and
assessing the nonresponse bias. Teitler et al. (2003) implemented a nonresponse follow-
up study to examine how characteristics and costs per case vary by mode. They used
proxy data available from an early stage of interviewing to examine nonresponse and
found large differences between respondents and nonrespondents in education and race.
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They used this information to inform their nonresponse weighting strategy, by using
education and race as auxiliary variables in a weighting adjustment for nonresponse.
The goal was to reduce the bias associated with the differences between respondents
and nonrespondents. A more complete discussion of the use of weighting adjustments
to reduce nonresponse bias is presented later in this chapter.

2. Response rates

For the past several decades, the response rate has been one of the most important and
widely used indicators of survey quality. Two reasons why response rates became so
important are that response rates are measurable, and the common assumption that high
nonresponse was more likely to be associated with high levels of nonresponse bias. In
the next section, we discuss the evidence showing the relationship between response
rates and nonresponse bias is not as clear as had been assumed. First, we define unit
response rates and discuss trends in response rates in surveys over time.

2.1. Computation of response rates

The unit response rate (often simply referred to as the response rate) is the ratio of
the number of respondents to the number of eligible units. In some cases, this rate is
easily defined and computed, whereas in other cases the denominator must be estimated.
Lohr (1999) pointed out that sometimes organizations use nonstandard definitions of
response rates to show higher “response rates” than would be achieved by standard
methods. The American Association of Public Opinion Research (AAPOR) published
a booklet specifically developed to help standardize methods of computing response
rates. The computations presented here are those described in AAPOR (2006).

Response rates may be weighted or unweighted. The unweighted rate, computed
using the raw sample counts, provides a useful description of the success of the oper-
ational aspects of the survey. The weighted rate is computed by summing the weights
(usually the reciprocals of the probabilities of selection) for both the numerator and
the denominator. Since the weights allow for inference of the sample data (including
response status) to the population level, the weighted rate gives a better description
of the success of the survey with respect to the population sampled. In establishment
surveys, weighting the response rates by the size of the establishment (e.g., number of
employees, number of students, dollar volume) reflects the importance of the institu-
tions to the population total (otherwise the response of an institution with one employee
would account for the same as an institution with 10,000 employees).

Let s, r, and nr denote the set of sampled units, the set of respondents in the sample,
and the set of nonrespondents in the sample, respectively. Further, let e, ie, and ue denote
the sets of units in the sample that are known to be eligible, known to be ineligible, and
have unknown eligibility, respectively, so that e = r ∪ nr and s = e ∪ ie ∪ ue. The

unweighted unit response rate, which we denote φ̂
(u)

, is

φ̂
(u) =

∑
r

1∑
e

1 + α
∑
ue

1
, (1)
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where α is an estimate of the proportion of cases with unknown eligibility that are

eligible. The weighted unit response rate, denoted φ̂
(w)

, is computed as follows:

φ̂
(w) =

∑
r

wi∑
e

wi + α
∑
ue

wi

, (2)

where wi = π−1
i is the base weight or reciprocal of the selection probability of unit i. If

the response rate for an establishment survey is weighted by the size of an institution,
then wi in (2) is replaced by wisi, where si is the size of institution i.

Thus, for the computation of response rates and for adjusting of nonresponse, it
is necessary to classify each unit in the sample as a respondent, a nonrespondent, an
ineligible, or a case with unknown (undetermined) eligibility. Simply put, respondents
are those eligible units who complete the survey. However, this class is complicated
by partial completes, units who respond to part of the survey request but not the entire
request. (These may include, e.g., units who break-off during a telephone interview,
those who neglect to complete one page of a multipage mail questionnaire, or those
who respond to certain items but fail to respond to other items). Survey practitioners
establish rules for handling partial completes that address which items or sets of items
must have been completed, or what sections of the interview had to have been finished,
to classify a partial complete as a respondent.

Nonrespondents are eligible sample units for which a response was not obtained.
These may include units who could not be located; those who were located but could
not be contacted; those who could not complete the survey due to reasons, such as a
language barrier, illness, or extended periods away from home; and those who refuse to
participate.

Ineligible units are sampled units that are not part of the target population. In an
establishment survey, these include units that have gone out of business. In a household
survey, units that are vacant during the data collection period would be ineligible. In
a list sample, the people on the list may include those who are eligible and those who
are not.

In multistage samples, ineligible units may be nested within eligible units. For exam-
ple, in a school-based survey of students enrolled in fourth grade, ineligible students
(students enrolled in grades other than fourth grade) are nested within eligible schools
(schools containing students enrolled in fourth grade). Another example is the case of a
screening survey, in which a household screener is administered to identify members of
a rare population. In such cases, if the larger unit (in these examples, the school or the
household) does not respond, it is important to recognize that only a proportion of units
within that larger unit are eligible, or that only a proportion of larger units may contain
eligible units, whichever the case may be.

Units with unknown eligibility (or undetermined units) are typically units whose
eligibility could not be determined due to failure to make contact with the unit. An
example of unknown eligibility is a “no answer” telephone number in a random digit
dial (RDD) household telephone survey—a case for which every call attempt resulted
in a ring, but no answer. In general, it cannot be determined if a “no answer” telephone
number is assigned to a household and thus eligible for the survey.
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An important issue in the computation of response rates is the estimation of α, the
proportion of undetermined units assumed to be eligible. (See AAPOR, 2006). Bounds
on the response rate may be obtained by considering the two extremes, α = 0 and α = 1.
The Council of American Survey Research Organizations (CASRO) method response
rate is computed by allocating the units with unknown eligibility in the same proportion
observed among cases with known eligibility status, that is, α =

∑
e wi∑

e wi+∑ie wi
. Various

other approaches have been used, including the use of survival analysis methods with
call record data to estimate α and using auxiliary data to classify units. See Smith (2002)
for a detailed discussion of methods of estimating α, including the CASRO method, the
survival method, and other methods based on references to auxiliary data.

2.2. Trends in response rates

Achieving high response rates in sample surveys is a longstanding concern that has
become increasingly difficult in recent years. As early as 1946, Hansen and Hurwitz
expressed concerns with low mail survey response rates and proposed a mixed-mode
approach of following up a subsample of mail survey nonrespondents with in-person
attempts. More recently, Atrostic et al. (2001) and Curtin et al. (2005) showed declining
response rates in several household surveys conducted in the United States. As noted
earlier, this trend toward lower response rates is happening despite the introduction of
additional procedures aimed at increasing response.

Although much of the literature on trends in response rates focuses on trends in
U.S. surveys, the results are similar internationally. Smith (1995), Groves and Couper
(1998), and Holbrook et al. (2003) have cited numerous studies demonstrating declines
in response rates in both U.S. surveys and those in other countries. De Leeuw and de Heer
(2002) found declines in surveys in developed countries. Synodinos and Yamada (2000)
reported overall response rate declines of about 10% over the last quarter of the 20th
century in Japanese surveys. In their study, Synodinos and Yamada noted increasing
difficulty in contacting respondents and hypothesized this may be due to longer work
hours and longer commutes. They also observed an increase in refusal rates over that
same period.

De Heer (1999) noted differences in response rates and trends among labor force
surveys and expenditure surveys in different countries, but attributed these differences
mainly to differences in survey practices among various survey organizations. Stoop
(2005) also noted considerable differences among European countries in terms of both
response rates and reasons for nonresponse for the European Social Survey (see Stoop,
2005, Chapter 10).

Steeh et al. (2001) argued that a decline in response rates observed over the 1960s
and 1970s leveled off during the 1980s and 1990s, even though the composition of
nonrespondents changed over that period; refusal rates declined while noncontact rates
increased. In a study of mail survey nonresponse, Brennan and Hoek (1992) concluded
that people tended to be consistent in whether or not they responded to mail survey
requests, and that refusers differed from nonreturners in their likelihood to respond to
subsequent mail survey requests.

Earlier we noted that societal changes may affect response rates. These changes
can have both long-term and short-term effects on response rates. For example,
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Goyder (1985) noted the long-term effect of the increases in literacy rates following
World War II on mail questionnaire response rates. Harris-Kojetin and Tucker (1999)
found evidence of short-term relationships between refusal rates in the U.S. Current
Population Survey and political and economic conditions.

3. The relationship between response rates and nonresponse bias

Thus far, we have discussed unit nonresponse and response rates. Of course, nonre-
sponse is primarily of interest in surveys because missing data introduce the potential
for bias. Two models, a deterministic and stochastic model, have been developed to
relate nonresponse rates to nonresponse bias. Lessler and Kalsbeek (1992) and Särndal
and Lundström (2005) reviewed these models.

3.1. Two models of response

The first approach, the deterministic model, treats response as a fixed outcome, so that
the population can be partitioned into respondent and nonrespondent strata (Cochran,
1977). Nonresponse bias of an estimated mean under this model is

bias(yNHT) = (1 − R)(Yr − Ym), (3)

where R is the (nonstochastic) proportion of units in the respondent stratum (the expected
value of the weighted response rate), Yr is the mean in the stratum of respondents,
and Ym is the mean in the stratum of nonrespondents. The bias depends on the rela-
tive sizes of the strata and the differences in the characteristic of the respondents and
nonrespondents.

The second approach is based on a response propensity model that assumes response
is stochastic, similar to a second phase of sampling (Särndal and Swensson, 1987). An
important difference from two-phase sampling is that in the stochastic model of response,
the response probabilities or propensities (φi) are unknown. The response propensity
model requires that φi > 0 for all i to allow unbiased estimation. Nonresponse cannot be
accommodated entirely within the randomization framework because the theory requires
that all the probabilities of selection must be known. Consequently, models must be used
to address nonresponse bias.

Platek et al. (1978), Kalton and Maligalig (1991), Bethelehem (1988), and others have
examined the relationship between response rates and nonresponse bias using response
propensity models. As an example, consider the respondent ratio mean (the estimator of
the total based on respondents divided by the sum of the weights of respondents). The
nonresponse bias for this estimator is

bias(y∗
NHT) ≈ φ

−1
σφσyρφ,y, (4)

where φ is the mean of the response propensities, σφ is the standard deviation of φ,
σy is the standard deviation of the y, and ρφ,y is the correlation between φ and y.
The estimated respondent mean is unbiased if φ and y are uncorrelated. This expression
clearly demonstrates that nonresponse bias is defined for a specific statistic, even though
the unit response rate is the same for all statistics from the survey.
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In fact, the relationship between the response propensities (response rates are observ-
able outcomes while response propensities are unobservable) and the nonresponse
bias depends on both the type of statistic and the estimator. For example, Groves
et al. (2004) gave an expression for the nonresponse bias of the difference between
two means. Bethlehem (1988) and Kalton and Maligalig (1991) examined the bias of
the poststratified estimator and raking estimator, respectively. Brick and Jones (2008)
extended these results to other types of statistics. The expressions for the bias are sim-
ilar to (4); for both estimators, the bias involves covariances between the response
propensities and characteristics within partitions defined by the auxiliary data used in
the estimators.

3.2. Response propensity modeling

Response propensity models are a valuable way to think about nonresponse bias and to
motivate weighting methods to reduce bias. As the stochastic view of nonresponse has
become more accepted, many researchers seek to develop models to estimate response
propensities. If the posited response propensity model holds and the propensities can be
accurately estimated, then the estimated propensities can be used to adjust the weights
and create estimates with lower nonresponse biases. A variety of nonresponse weighting
schemes that are either based on response propensity models or are consistent with some
response propensity model are discussed below.

Despite the promise of response propensity models, the ability to eliminate nonre-
sponse bias in survey estimates is limited. Response propensities are unknown, and
the only observables are whether or not the sampled unit responds. Accurately estimat-
ing probabilities based on zero-one observations is often difficult and unreliable. This
is because response propensity models are based upon largely speculative theories of
individual or institutional behavior regarding such actions as responding to a survey.

Särndal and Lundström (2005) pointed out that nonresponse bias can be reduced
if powerful auxiliary variables are available. A problem, especially in household sur-
veys, is that variables that are highly predictive of response propensities are rarely
available. Eliminating nonresponse bias for all statistics produced from a survey is a
difficult if not impossible task, especially when surveys generate estimates that were
not even contemplated when the survey was designed or when the survey weights were
prepared.

Since perfect estimation of response propensities is infeasible in practice, other ways
of taking advantage of the relationship between response propensities and the statistics
being estimated may be considered. One approach is to establish approximate bounds
on the potential bias (Montaquila et al., 2008). For example, assume the statistic is a
proportion (P) and we wish to evaluate the potential for nonresponse bias. To bound
the bias, suppose the response propensities for all the units with the characteristic are
φ1, and are φ2 for all those without the characteristic. In this case, (4) simplifies to
bias(p∗

NHT) ≈ P(1 − P)(φ1 − φ2){Pφ1 + (1 − P)φ2}−1. Since the bias depends only
on λ = φ2φ

−1
1 , it can be further simplified to bias(p∗

NHT) ≈ P(1 − P)(1 − λ){P +
(1 − P)λ}−1. The bias is negative when λ > 1 and positive when λ < 1. Since the
bias is a monotonic decreasing function of λ (for 0 < p < 1), a bounded estimate of
the bias can be computed by choosing a bounding value for λ. For example, if φ2 is
very likely to be no more than 1.5 times φ1 (e.g., response rates of 30% and 45% for
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those with and without the characteristic), then the bound on the bias in the respondent
proportion for a 50% characteristic is −10% and the relative bias is −20%. The bounds
computed using this approach may be large, especially for values of P less than 50%.
These bounds may still be useful, especially when compared with bounds computed
using the deterministic approach to nonresponse. Upper bounds are also obtained by
specifying λ.

Specifying λ requires speculating on the causes of nonresponse. As discussed earlier,
the two major causes of nonresponse in surveys are related to accessibility (the ability
to contact the sampled unit so that they can be surveyed) and amenability (the likeli-
hood of gaining cooperation from the sampled units that are contacted). In estimating a
proportion, a large value of λ is likely only if the causes of nonresponse are related to
the presence of the characteristic. Groves (2006) proposed a “common cause” model for
nonresponse, in which the relationship is part of a causal sequence. In this model, the
probability of responding to the survey and the distribution of the characteristic differ
because the same factor(s) affects both. It might be possible to infer relationships of
this nature between response propensities and characteristics from empirical studies. It
could also be part of the reason that these studies tend to find weak relationships between
response rates and nonresponse bias (e.g., Groves, 2006).

Causal relationships could be related to either accessibility or amenability. For exam-
ple, consider people who travel a great deal of time; these persons might be expected
to have low response propensities due to the inability to contact them, and they might
have characteristics that are different from other persons for topics such as time use
or travel. Another example is a list survey where the contact information for sampled
units comes from different sources. If persons on the list with poor contact information
are those who have infrequent dealing with medical providers, then estimates of health
may be biased due to this common relationship. Another example is bias in estimates
of economic status when persons who do not speak the native language or persons who
are illiterate cannot be surveyed and are likely to have lower than average economic
status.

With respect to amenability, the topic and sponsorship of the survey are aspects
that have been shown to cause or at least be highly correlated with differential response
propensities for those with and without a characteristic. Groves et al. (2000) incorporated
this hypothesis into their leverage-saliency theory. For example, sample persons who are
involved in a socially undesirable activity, such as using illegal drugs, may be more likely
to refuse a survey that is sponsored by a drug enforcement agency; sampled businesses
who do not provide a service to their employees, such as insurance, may be less likely
to cooperate in a survey if the introductory letter indicates that the survey will be about
insurance benefits. Groves et al. (2004) and Groves et al. (2006) conducted experiments
to study this theory and found at least some support for the theory. However, even when
they attempted to produce nonresponse bias intentionally, the observed differences in
response propensities were minor.

Although one might be tempted to surmise from these empirical investigations that
large values of λ are unlikely to result from differences in response propensities asso-
ciated with amenability, there are many exceptions with very large values of λ. For
example, Abraham et al. (2006) found that respondents in a labor force survey who
reported being a “volunteer” were much more likely to respond to a follow-up time
use survey than those who had not volunteered. Differences in amenability could bias
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estimates of time spent in volunteering. Notice that even in the aforementioned case,
nonresponse bias may be large only for a few statistics related directly to amenability,
and for many other estimates of time use, the bias may be small or negligible.

Nonresponse biases due to inaccessibility are often easier to recognize. The survey
literature has many studies showing factors related to accessibility. For example, house-
holds with many members are easier to contact than those with only one or two members;
households with children are easier to contact, young adults are harder to contact, and
persons who are socially isolated are even harder to contact. If the factors associated
with accessibility are related to a statistic being estimated, then nonresponse bias result-
ing from a substantial value for λ is likely. In a telephone survey of cell or mobile phone
numbers in the United States, Brick et al. (2006) found substantial nonresponse bias
in estimating the percentage of households with a cell phone but no landline (cell-only
households). The bias in this statistic was attributed to the difference in accessibility of
the cell-only households and the numbers linked to persons with both types of telephone
service. They conjectured that persons with cell-only service rely on their cell phone
for much of their phone conversations and are likely to answer their cell phone calls,
whereas in some households with both types of service the cell phone is often used only
for emergencies so accepting incoming calls on their cell phone is rare.

When deciding on the ratio of the response propensities for bounding the bias, the
effects of both accessibility and amenability must be considered simultaneously. Some-
times the nonresponse bias due to one of the effects is partially offset by the nonresponse
bias due to the other. An example is given by Lin and Schaeffer (1995) where nonre-
sponse bias due to refusals was in the opposite direction of that due to inability to contact
the sampled unit; Montaquila et al. (2008) provided another example.

If the direction of the bias due to amenability and accessibility is consistent, then large
nonresponse biases can occur, and this is the situation that is of most concern in practice.
For this reason, understanding the sources of nonresponse bias and the likely direction of
the biases is essential; it enables researchers to predict which estimates are likely to have
large nonresponse biases and those likely to have small nonresponse biases. Knowledge
of the sources of nonresponse can also help in the construction of weighting schemes
that have the potential to reduce the biases of the estimates. For example, Kennickell
and McManus (1993) reported results from a sample of wealthy individuals, where the
sampling frame contained information about the income and wealth of the individuals.
The goal of the survey was to estimate statistics related to overall financial assets.
Kennickell and McManus observed that response rates differed depending upon the
known values of wealth of the individuals. The wealthiest individuals were both harder
to contact and less likely to respond when contacted. The results of this combination
were very large nonresponse biases in estimates of assets and financial characteristics.
The biases could not be reduced or eliminated without having the data from the sampling
frame.

We conclude this discussion of the relationships between response propensity and
nonresponse bias by discussing a couple of the assumptions of response propensity
models. One of the assumptions is that φi > 0 for all i. If some units will not respond
to a particular survey, then a better model would be a hybrid of the deterministic
(for those with φi = 0) and stochastic models. Deming (1953) explicitly considered
units with zero response propensities. He called those who never participate as “perma-
nent refusers” while others have used the term “hard-core nonrespondents.” We prefer
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“persistent nonrespondents” because the units may be either those that cannot be con-
tacted or those that refuse under all circumstances pertinent to the survey. The existence
of persistent nonrespondents essentially adds a noncoverage component to the nonre-
sponse bias, and thus distorts the relationship between bias and response propensity
discussed earlier. Any nonresponse bias analysis based only on the response probability
model assumptions does not account for the possibility of the existence of persistent
nonrespondents.

A second assumption that is at least implied in the model is that response propensities
are specific to both the units sampled and the survey conditions. For example, the same
units may have different response propensities depending on key survey conditions, such
as the mode, the content of the survey, the length of the survey, the survey sponsor, and
the use of incentives. As noted earlier, practitioners manipulate these factors to increase
response rates. For example, in a nonresponse follow-up, the mode may be changed, say,
from mail to face-to-face to increase the response rate. One way of thinking about this
is that the mode switch essentially changes the response propensities of the respondents
by modifying the survey conditions.

4. Weighting for nonresponse

As mentioned in the previous section, weighting adjustments are often used to reduce
nonresponse bias in the estimates from sample surveys. To provide some context for the
discussion of nonresponse weighting adjustments, we first briefly describe weighting
in surveys generally. We then focus most of the discussion on nonresponse weighting
adjustments.

4.1. Reasons for weighting in surveys

Weighting can be viewed as a means of adjusting for missing data in a broad sense, with
unit nonresponse being just one form of missing data that use weighting adjustments. For
example, weighting compensates for missing data associated with units in the population
that are not sampled (sampling weights) and for missing data due to units that are not
in the sampling frame (noncoverage weight adjustments).

Assigning a weight to a record in the data file is essentially a computational tool for
implementing an estimation scheme to deal with missing data. The sampling or base
weight (the inverse of the probability of selection) may be attached to each sampled
unit. Assuming no other missing data, the product of the weight and the y-characteristic
summed across all sampled units yields the familiar Horvitz–Thompson (Narain, 1951;
Horvitz and Thompson, 1952) estimate of a total. Many estimators used in practice are
implemented by devising a scheme for weights specific to an estimator and attaching
a weight to each record in the data file. Since the weights implement an estimation
scheme, the same procedures can be used for many statistics. The benefits of being able
to implement complex estimation schemes using the same computational procedure
with weights are quite significant.

The rationale for using weights presented here is based on Kish (1992). The first
reason for weighting is to account for data that are missing due to sampling. Varying
probabilities of selection are frequently used in sample surveys. For example, optimum
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allocation or the desire to produce precise estimates for domains or subgroups may result
in differential selection probabilities (i.e., different units having different probabilities of
selection). To produce consistent and approximately unbiased estimates in the design-
based paradigm, weights are attached to the records to account for these differential
probabilities of selection.

While the first rationale for weighting deals with biases in the estimates due to
sampling, the second is to reduce the variance of the estimates due to sampling. For
example, suppose some auxiliary variables are known for all sampled units and for
the population in aggregate. Estimation schemes such as calibration may reduce the
variance of the estimates by using the auxiliary variables. These schemes are usually
implemented by adjusting the base weights to create a new set of weights.

A third reason for weighting is to reduce the bias of the estimates from data missing
due to nonresponse and noncoverage. Nonresponse and noncoverage are qualitatively
different from data missing due to sampling because design-based theory relies solely on
selection probabilities for making inferences. Nonresponse and noncoverage are outside
the design-based framework and can only be handled by making model assumptions.
Nonresponse is sometimes considered another stage of sampling; a stage in which the
probabilities of nonresponding are unknown. As a result, weight adjustments for non-
response often mimic methods used to adjust for differential sampling probabilities.

Noncoverage refers to data missing because the units were excluded from the sam-
pling frame and thus had no chance of being selected. Models for noncoverage weight-
ing adjustments are not as well developed, but one approach assumes the units omitted
from the sampling frame are similar to units that are covered and uses a pseudorandom-
ization model to justify adjusting the weights. An important difference is that nonre-
sponse weighting adjustments can be based on auxiliary data known from the sampling
frame, while noncoverage adjustments rely on auxiliary variables known for the total
population.

A fourth reason for using weights is to force the estimates from the survey to be con-
sistent with those known from another reliable source. Poststratification or calibration
weighting adjustments are used to accomplish this goal, but here the primary goal is
to make the estimates consistent with known totals from external sources (sometimes
referred to as control totals), rather than to reduce variance or biases due to nonresponse
or noncoverage. Matching controls provides face validity for the survey when the con-
trol totals are well known and widely accepted as being accurate. The commonly used
epidemiological method called standardization is used to force the survey estimates to
match specified control totals and improve the comparability of estimates across time
and domains.

Afinal reason for weighting is to combine samples and produce estimates that are more
accurate than those available from any of the samples individually. For example, multiple
frame surveys (Hartley, 1974, Chapter 4) may have overlapping samples for some seg-
ments of the population. By combining the overlapping samples with weights, more
precise estimates of the overlap and the total population may be produced. Composite
weights are often used in this setting. Another objective may be to combine samples
over time to produce reliable estimates for a domain. The American Community Survey
is designed to cumulate samples over three- and five-year periods to produce estimates
of sufficient precision for small geographic areas in the United States, and weights are
used to achieve this result.
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In any one survey, weighting adjustments may be used for one or more of the reasons
mentioned above. Naturally, some trade-offs are made in deciding which of the adjust-
ments should or should not be used. The traditional criterion is to minimize the mean
square error of the estimates, but mean square error is difficult to minimize because
the magnitude of the bias of the estimate is often unknown. Practitioners must decide
whether adjustments that are likely to increase the variance of the estimates are likely
to reduce the potential bias sufficiently to warrant their use.

Until recently, major statistical analysis software packages made little or no attempt
to deal with sample surveys and assumed simple random sampling without weight-
ing. Because weighting has become such a common practice in sample surveys, most
standard statistical packages now handle weights at least for producing estimates. As a
result, most statistical packages can use weights to produce design-unbiased first-order
estimates. Of course, the weights alone are not sufficient to produce design-unbiased
second-order estimates; for that, other information is required on the sampling scheme
and estimation method. Consequently, specialized survey software is still needed to com-
pute design-consistent standard errors in most cases. Some general statistical software
packages, such as Stata®, have been making great strides in developing software that
incorporates both weights and the sample design and estimation scheme appropriately,
but there is more work to be done.

4.2. Steps in weighting

A typical sequence of weighting steps is presented by Brick and Kalton (1996). The
weighting begins with the creation of base weights and these weights are then adjusted
sequentially for the reasons listed in the previous section. The base or sampling weight
compensates for nonsampled units and is used to produce the Horvitz–Thompson esti-
mator of the population total. Heuristically, the base weight can be conceived of as
creating a data set in which the sampled unit represents itself and (π−1

i − 1) other
units in the population. This approach is consistent with randomization theory since the
selection probabilities are known for all sampled units and no model assumptions are
required.

After creating the base weights, the weights may be adjusted for nonresponse and
then some sort of calibration adjustment may be applied to the nonresponse-adjusted
weights. As noted above, the calibration adjustments may be used to accomplish several
goals simultaneously—reducing sampling error, reducing residual nonresponse bias and
noncoverage bias, and matching known control totals.

While these weighting steps may be prototypical, the specific sequence of weight
adjustments varies depending on the type of survey and the auxiliary data available
for adjustment. For example, the data available for weighting in household surveys
(Chapter 16) are quite different from the data available in business surveys (Chapter 17).
One dimension that often affects the weighting is the type of sample, and weighting
approaches used in different sampling schemes are described elsewhere (e.g., Chapters 3,
4, 5, 6, 7, 31, and 34). Similarly, samples drawn to examine specific topic areas are
frequently characterized by types of auxiliary data that can be used in weighting. Sample
designs for several topic areas are covered elsewhere (e.g., Chapters 16, 17, 18, 19, 20,
22, and 38).
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Calibration methods are used in nonresponse weighting, as well as for other purposes
as mentioned above. We discuss calibration uses for nonresponse weighting in this
chapter, but general issues related to calibration weighting methods are discussed in
Chapter 25. Other weighting methods that are not specifically for nonresponse are not
discussed in this chapter. See Chapter 26 on estimating functions and Chapter 30 on
empirical likelihood methods, for example. Another relevant weighting method is the
trimming of weights to deal with outliers when the outliers are due to a few large weights.
Chapter 11 covers this issue in some detail.

4.3. Nonresponse weighting adjustments

Expressions like (4) show that to reduce bias, both response propensities and the char-
acteristics being estimated must be taken into consideration in designing weighting
adjustments. Researchers have long recognized this and have suggested modeling key
statistics being produced from a survey as an approach to nonresponse weighting (e.g.,
Kalton, 1983). Little (1986) labeled weighting methods based on modeling the dis-
tribution of survey characteristics as predicted mean stratification. He contrasted this
approach with response propensity stratification, which he defined as using the modeled
response propensities to create categories or classes that are used in the nonresponse
adjustment. Response propensity stratification is thus a special case of using the mod-
eled response propensities in adjusting for nonresponse. Little (1986) pointed out that
predicted mean stratification may reduce both bias and variance while response propen-
sity stratification may only reduce bias. In practice, both the response propensity and
survey characteristics are modeled in adjusting for nonresponse.

The key to modeling both response propensities and survey characteristics is the
information available for modeling. The two types of information are variables known
for all sampled units but not for the entire population (sample-based) and variables
or functions of variables known for the entire population (population-based). Brick
and Kalton (1996) used the sample and population terminology while Lundström and
Särndal (1999) referred to these as InfoS and InfoU auxiliary data. Although the data
requirements differ, there is virtually no difference in terms of nonresponse bias reduc-
tion for population and sample-based estimators. Population-based estimators do have
advantages in terms of variance reduction and accounting for noncoverage bias.

One method of nonresponse weighting adjustment is to directly model the response
propensities for the sampled units using the inverse of the estimated propensities as the
weighting adjustment. The estimator is

ŷ1 =
∑

r

wiφ̂
−1
i yi, (5)

where φ̂i might be estimated by logistic or probit regression modeling. Other approaches
have also been used. For example, Da Silva and Opsomer (2004, 2006) used a nonpara-
metric method.

An early method of directly estimating response propensities was suggested by Politz
and Simmons (1949). In their method, the interviewer asked how often the respondent
would be at home on different days to estimate the propensity of a respondent to be
contacted. The inverse of this estimate is the weighting adjustment factor. Notice that this
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adjustment only accounts for noncontact. Another example of this type of nonresponse
adjustment weight was explored by Bartholomew (1961).

The Dunkelburg and Day (1973) approach, in which the weights of the difficult-
to-complete cases are increased to account for the nonrespondents, is closely related
to adjusting the weights as if the additional level of effort is equivalent to a two-phase
weighting adjustment. For example, Waksberg et al. (1993) subsampled nonrespondents
and then adjusted the weights of those completed in the subsample to account for all
nonrespondents eligible for subsampling.

Little (1986) noted that direct estimates of response probabilities, such as those
derived from logistic regression models, may lead to unstable estimates if some of
the estimated probabilities are close to zero. This may also apply to other methods of
computing direct estimates of the response propensities. For example, in the Politz and
Simmons (1949) model, the adjustments vary by a factor of six. Little (1986) suggested
sorting the sample by estimated response propensities, forming five categories based on
the quintiles of the response propensity distribution, and assigning the same weighting
adjustment to all sampled units within a category.

4.4. Nonresponse calibration weighting

Lundström and Särndal (1999) proposed using calibration estimators as a unifying
approach to both sample-based and population-based nonresponse weighting adjust-
ment. Deville and Särndal (1992) introduced calibration estimation in the full response
case and showed that many standard estimators, such as the generalized regression
estimator (GREG) and poststratified estimator, are calibration estimators. (See also
Bethlehem, 2002, Chapter 18.) Lundström and Särndal (1999) extended calibration
estimators to encompass estimators that adjust for unit nonresponse. They define a cal-
ibration estimator as

ŷcal =
∑

r

w∗
i yi, (6)

subject to the calibration equation
∑

r w∗
i xi = X, where the sum is over the respondents,

w∗
i is the adjusted weight, xi is a vector of auxiliary variables, and X is a vector of

totals of those auxiliary variables. Since the weights are not uniquely defined by these
conditions, further assume w∗

i = wivi, where wi is the base weight. While nonlinear
relationships between the weighting adjustment and the vector of auxiliary variables
can be considered, they focus on the linear relationship, where the squared difference
between the original weights and the calibrated weights is minimized. With full response,
this linear calibration estimator is the GREG estimator. We take advantage of the ability
to write many nonresponse weighting estimators as calibration estimators below.

The weighting class adjustment mentioned above is a calibration estimator and it can
be either sample-based or population-based. The estimator is

ŷ2 =
∑

r

wiv2iyi, (7)

where v2i = xc/
∑

r wiδi(c), and δi(c) = 1 if i is in cell c and = 0 otherwise. For the
sample-based version, xc = ∑

s wiδi(c), while for the population-based version xc = Nc,
where Nc is the number of units in the population in cell c. Little and Vartivarian
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(2003) argue that including the survey weights in the estimation of the propensities is
either incorrect or unnecessary. For example, if weighting classes are used, they prefer
φ̂c = nc/rc, the unweighted ratio of the number sampled to the number of respondents in
cell c to v2c = φ̂c = ∑

s wiδi(c)/
∑

r wiδi(c), the calibrated and weighted version. The
weighted version clearly has some desirable properties, especially for estimating totals
rather than means or proportions.

While the development of the weighting class adjustment was motivated here by
response propensity modeling, the cells should be formed considering variables that are
predictive of response and are correlated to the key statistics being produced, including
domains. The bias of an estimated mean will be reduced if (1) the response propensities
of the units within the cells are approximately equal (φi ≈ φc for i ∈ c), (2) the value
of y is approximately constant within cells (yi ≈ yc for i ∈ c), or (3) the response
propensities and y’s are approximately uncorrelated within cells (ρyi,φi

≈ 0 for i ∈ c).
The weighting class adjustment approach can be applied when important variables are
quantitative by categorizing these variables. Forming three to five categories from a
quantitative variable typically extracts most of the information from the variable.

Kalton (1983) and Särndal and Lundström (2005) discussed the methods for choosing
variables that satisfy these conditions. When there are many possible auxiliary variables,
some of the methods for choosing those for nonresponse weighting include the use of
substantive experts who define important variables, logistic and other forms of regression
modeling, and categorical search algorithms. Rizzo et al. (1996) examined many of
these methods in some detail for nonresponse adjustment of weights in a later wave of
a household panel survey. These methods of choosing variables are not specific to the
weighting class adjustment approach and can be applied to other nonresponse weighting
adjustments.

A limitation of the weighting class approach is that some variables may not be able
to be fully utilized in creating the cells. This is especially problematic when many
auxiliary variables are available, such as in surveys with rich sampling frames and in
longitudinal surveys. Practitioners often require that cells have a minimum number of
respondents and avoid large weighting adjustments that could increase the variances
of the estimates. In this situation, the weighting class approach inhibits using all the
auxiliary data effectively.

Raking and the two-way classification method are alternative calibration methods that
support including as many auxiliary variables as needed by controlling only to marginal
totals. Raking to marginal totals traces back to Deming and Stephan (1940) while the two-
way classification is the linear estimator suggested by Särndal and Lundström (2005).
Särndal and Lundström indicated that there is little difference in the weighting adjust-
ment regardless of whether raking or the two-way classification is used. Brick and Jones
(2008) provided further evidence of the similarity of these methods.

An advantage of the raking approach is that the adjustment factors are constrained
so that no weights can be negative, although they can be less than unity. The adjustment
factors based on the linear estimator may be negative, and this may be a more serious
problem for users. It is possible to constrain the variation in the adjustment factors to
avoid negative weights, but this adds some complexity to the computations. Kalton and
Flores-Cervantes (2003) showed the effect of constraining the adjustment factors on the
weights. Other practical issues that may be considered are the iterative computation of
the raking estimator and that convergence in high-dimensional raking problems may be
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slow. The two-way classification requires inverting a matrix, and there may be difficulties
with the inversion in high-dimensional cases.

Neither the raking nor the two-classification estimator admits a simple expression
for the weights, but both can be written as

ŷ3 =
∑

r

wiv3iyi, (8)

where v3i is computed so that it satisfies the calibration equations defined by the marginal
constraints.

As an example of raking, consider the case of two marginal constraints with
population-based margins. The adjustment factor for all respondents in level h of the first
(row) variable and level k of the second (column) variable can be written as v3hk ≈ α̂hβ̂k,
where α̂h is the adjustment for level h of the row variable and β̂k is the adjustment for
level k of the column variable. The factors are the product of all the adjustments that
are made to the specified row and column over the iterations, until the process con-
verges. With more than two raking dimensions, the adjustment factor for a cell defined
as the intersection of all the dimensions is still the product of the dimension adjust-
ments. The only difference between the sample-based and the population-based versions
of the raking process is the nature of the marginal totals, analogous to the difference
in the weighting class adjustment. In the population-based version, the marginal totals
are known universe counts (e.g., Nh+ and N+k) while in the sample-based version,
the marginal totals are computed for the full sample (e.g., N̂h+ = ∑

k

∑
i∈r whki and

N̂+k =∑h

∑
i∈r whki).

The nonresponse bias of an estimated mean that has weights adjusted by either the
raking or two-way classification method will be reduced under conditions similar to
those of the weighting class approach. To better appreciate the similarity, we rewrite
the conditions in terms of a main effects models (if φi ≈ φc, then φi ≈ αc, for i ∈ c;
if yi ≈ yc, then yi ≈ α′

c, for i ∈ c, and if ρyi,φi
≈ 0, then ρyi−α′

c,φi−αc
=0, for i ∈ c).

Raking and two-way or multiway classification methods correspond to main effects
models of higher dimensions.Thus, the conditions for approximately unbiased estimates,
using only two auxiliary variables to simplify the presentation, are as follows: (1) the
response propensities of the units can be expressed as φhki ≈ αhβk for i ∈ hk; (2) the
value of y is approximately given by yhki ≈ α′

h + β′
k, for i ∈ hk; or (3) the response

propensities and y’s are approximately uncorrelated after accounting for the main effects
(ρyi−α′

h−β′
k,φi−αhβk

≈ 0 for i ∈ hk). See Kalton and Maligalig (1991), Oh and Scheuren
(1983), Holt and Elliot (1991), Särndal and Lundström (2005), and Brick and Jones
(2008) for discussions related to these conditions.

Adding other main effects through use of the raking (or the multiway classification
approach) permits more information than might be possible with the weighting class
estimator. As the conditions above clearly show, nonresponse bias due to interactions
is not accounted for in the weighting adjustments. With many auxiliary variables avail-
able, it is possible to create margins that are very extensive to reduce the potential for
missing important interactions. For example, suppose weighting class adjustments by
age, by sex, and by region are created. This classification could be used as one marginal
constraint, and other auxiliaries like education by income added as another margin. The
goal is to include important interactions between the auxiliaries, such as education and
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income, in the weighting while avoiding nonresponse biases that might occur if they are
omitted.

There are potential dangers in making the marginal constraints too extensive and
too numerous. The standard advice is to avoid controlling the weights in this process
by creating too many levels and variables. Some of this advice is based on empirical
experience where problems have been encountered. For example, Brick et al. (2003)
described issues that arose in surveys when high-dimensional raking was attempted and
the cross classification of the dimensions resulted in many cells with no observations.
The applications raised questions about both the convergence of the weighting procedure
and the properties of the adjustment factors in these settings. Current practice varies,
but many practitioners impose larger minimum cell size requirements on the levels of
the margins than for cells with the weighting class approach. More research into these
issues is needed to guide practice.

5. Variance and confidence interval estimation

Using weights adjusted for nonresponse has implications for both point and interval
estimation.The previous section focused on nonresponse weighting adjustment to reduce
the bias of the estimates.

If the weight adjustment is successful in reducing the nonresponse bias, then the
confidence interval coverage rates may be substantially improved. Cochran (1977) dis-
cussed the deleterious effect of bias in confidence interval coverage rates and showed
that the relative bias (ratio of the bias of the estimate to its standard error) should be less
than about 10% to give confidence intervals with coverage rates close to the nominal
levels. Bias causes the intervals to be off-center, lowering the overall coverage rate and
making the coverage very asymmetric. For example, if the bias in a mean is half the
standard error of the mean, then instead of the nominal 95% coverage rate, the actual
rate is about 92%, and almost all of the noncoverage is at the lower end of the interval (if
the bias is positive). The substantial effect of bias on the confidence interval coverage
rate (and the analogous effects on error rates in tests of hypotheses) is the reason why
so much emphasis is placed on methods to reduce bias, even when those methods may
increase the standard errors of the estimates.

Of course, unnecessary increases in the variability of the weights, where the vari-
ability in weights does not result in reductions in bias, should also be avoided. If the
estimates of variance account for the nonresponse adjustment, then this type of variation
in weights will cause confidence intervals to be wider than necessary and could lead to
conservative intervals (covering at greater than the nominal level). On the other hand,
if the variance estimation technique does not account for the nonresponse adjustment,
then the variance estimates may be biased downward causing the coverage intervals to
be too short and anticonservative. Many researchers have warned about the effect of
weight adjustments on the variance of the estimates, but there is relatively little in the
literature about the actual computation of variances with nonresponse-adjusted weights.

The two main methods of computing variances for complex sample surveys are
replication methods and Taylor series linearization. These methods are also used when
the weights have been adjusted for nonresponse. Below, we review these methods and
the ability to account for the nonresponse adjustments with the methods.
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The most frequently used replication methods are the jackknife, the balanced repeated
replication, and the bootstrap. All of these methods involve the same general steps: (1)
replicate samples are selected from the full sample (using different replicate sampling
techniques for the different replication methods), (2) replicate estimates are computed
from each replicate sample using the same procedures used in the full sample to com-
pute the estimate of interest, (3) the sum of the squared deviations between the replicate
estimates and the full sample estimate is computed, and (4) an estimate of the vari-
ance of the full sample estimate is computed by scaling the sum of the squares by the
constants appropriate for the replication method. There are many potential variations
in the specifics of these steps that produce variance estimates with slightly different
asymptotic properties. For example, in step 3, the deviation can be from the average of
the replicate estimates rather than the full sample estimate. See Wolter (2007) and Shao
and Tu (1995) for details on replication for the full response case. Fuller (1998) gave a
detailed discussion of replication for two-phase samples, where the second phase may
be the uncontrolled unit nonresponse.

Rust and Rao (1996) described how replicate weights can be used to implement
replication methods efficiently. Since the replicate samples are selected only once for
any particular survey, replicate weights are attached to each respondent record and
stored on the data file. These replicate weights can then be used to produce the replicate
estimates for nearly all, or certainly the vast majority of, estimates of interest using the
same estimation scheme used to create the full sample estimate, thus greatly simplifying
the computational tasks associated with replication.

Creating replicate weights also helps facilitate the ability to include the effect of
weight adjustments in the variance estimation process. For example, Yung and Rao
(2000) showed that if poststratification weighting adjustments are performed separately
and independently for each replicate, then the variance estimator will be consistent.
Valliant (1993) obtained similar results. Although the theory for other weighting adjust-
ments has not been presented formally, the inclusion of all or almost all steps of weight-
ing adjustments in the calculation of replicate weights is now a commonly accepted
practice. When the replicate weights are adjusted in the same manner as the full sam-
ple weights, no other information is needed for producing variance estimates for any
statistic that can be written as a function of the sum of weighted estimates. This feature
has enabled replication advocates to claim that this procedure “accounts” for all the
weighting steps, including nonresponse adjustment. However, there are issues that must
be handled appropriately to deal with nonresponse. Mantel et al. (2000) noted that when
using the bootstrap to replicate nonresponse adjustments special precautions for some
bootstrap replicates must be considered to avoid computations with no respondents in
the denominator of the adjustments.

The Taylor series linearization approach for estimating variances of complex sample
survey estimates is relatively simple. In most surveys, even designs with multiple stages
of sampling and unequal probabilities of selection, an expression for the variance of
a linear statistic is usually straightforward for with-replacement sampling methods.
For nonlinear statistics, the same variance estimation procedures are used, but a linear
substitute based on the first-order Taylor series approximation is used instead of the
nonlinear statistic. In large multistage samples, the variances are approximated simply
if the first-stage sampling units are selected with-replacement or if the proportion of
units sampled is very small. The same conditions are required for replication methods to
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give consistent variance estimates. See Wolter (2007) and Binder (1983) for descriptions
of the linearization method.

The poststratified estimator is essentially a ratio or regression estimate, so the lin-
earization approach to deal with this type of weighting adjustment is to compute the
variance for a linearized ratio or regression statistic. Any nonresponse weighting adjust-
ment that can be written as a calibration estimator with the linear distance function can
be approximated using this type of approach as discussed by Lundström and Särndal
(1999). Raking adjustments are more complicated and difficult to handle with lineariza-
tion methods. Linearization methods using residuals can be used, but there are opera-
tional issues. The main difficulty is that all the marginal control totals need to be included
along with the sample data for variance estimation. One option that is used in practice
approximates the variance of the raked estimate by treating one of the marginal controls
as defining poststrata while ignoring the other marginal controls. Implementation still
requires including the “poststratification” control totals for variance estimation.

Two commercially available software programs that compute linearized variance
estimates from complex samples and support weight adjustments in some way are
SUDAAN® and Stata®. Both of these packages require the control totals to be input
to compute poststratified estimates. Other packages with the same types of require-
ments include Bascula (Nieuwenbroek and Boonstra, 2002), POULPE (Caron, 1998),
and CLAN97 (Andersson and Nordberg, 1998). CALMAR2 (Sautory, 2003) supports
controlling for several dimensions, but for a number of reasons including concerns about
confidentiality and disclosure, the full set of calibration totals are rarely included with
the survey data when linearization is used.

The difficulties associated with reflecting the full set of weight adjustments in the lin-
earization method raises the important question of whether it matters on a practical level;
there has been very little research on this topic. Valliant (2004) conducted a simulation
study of the effect of weighting adjustments on variance estimates; he compared vari-
ance estimates and confidence intervals computed with both replication and linearization
methods. He concluded that replication methods do account for the effects of weight
adjustments on the variances of the estimates to a greater extent than linearization meth-
ods, but in a limited sense. In his study, replication methods with fully replicated weight
adjustments tended to overestimate variances but the estimated confidence intervals
had coverage rates close to the nominal level. The linearization estimators he reviewed
did not fully account for the adjustments, and these gave underestimates of variances
and confidence intervals that covered at lower than the nominal level. Valliant’s results
are consistent with expectation, but other simulation and empirical research would be
beneficial.

6. Discussion

Nonresponse is a major concern in making inferences from sample surveys. Almost all
surveys are subject to unit nonresponse; the trend toward lower response rates is being
consistently observed across countries, modes of data collection, content areas, and
sponsorships. The lower response rates are the result of decreases in both accessibility
and amenability, but the specific reasons seem to differ greatly by survey. Efforts to
increase response rates by using tactics such as more call attempts or incentives, have
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limited effectiveness. Surveys often find that even with these additional efforts, response
rates are just declining more slowly than in comparable surveys that do not use these
tactics.

The decline in response rates has heightened concern about the potential for non-
response bias. A stochastic response model is often used to bridge the gap in the ran-
domization model that exists due to the failure to observe responses from all sampled
units. The stochastic model postulates positive response propensities for all sampled
units, but these propensities must be estimated, resulting in theoretical and practical
difficulties. The theoretical problem is that randomization requires that all probabili-
ties are known. The practical problem is that estimating response propensities based on
observing responses and nonresponses in one trial is a process that may be subject to
substantial errors.

Nonresponse bias is the most serious effect of attaining response rates less than 100%.
The precision of the estimates is also affected by nonresponse, but this loss in accuracy
is easy to handle. In the past, response rates have been used to provide some sort of
metric to guide users on the magnitude of nonresponse bias. More recently, it has been
shown that response rates may not be very good measures of nonresponse bias. Within a
survey, the nonresponse bias for different statistics may vary greatly, even though there
is only one unit response rate for the survey. This has encouraged researchers to examine
the relationships between the survey characteristics being estimated and the reasons for
nonresponse. One component of this examination is modeling response propensities
using data available from the sampling frame and from other sources. Another is model-
ing the statistic itself in terms of these same types of auxiliary variables. These models
may be useful in predicting when nonresponse bias is likely to be significant and when
it is likely to be negligible, an important consideration for both users and producers of
sample surveys. They also provide information that can be used in forming weighting
adjustments.

Many nonresponse weight adjustment procedures are calibration estimators. The
totals used to calibrate the weights may be either sample-based (using auxiliary vari-
ables available for the sampled units) or population-based (using auxiliary variables from
external sources). Standard estimators defined under full response, such as poststrati-
fication, raking, and GREGs, can be modified and used to deal with unit nonresponse.
Both sample-based and population-based estimators may be effective in reducing non-
response bias, but those based on population totals have added advantages in that they
may reduce other sources of error, such as noncoverage bias and variance.

If reasonable models of response propensities and the key survey statistics can be
formed from available auxiliary variables, then weighting adjustments derived from
these models have the potential to reduce nonresponse bias. The key to bias reduction
lies with the auxiliary data and the way the auxiliary data are used in the adjustments.
Either implicitly or explicitly, calibration adjustments specify a model of the relation-
ships between the response propensities and the auxiliary data, and the characteristics
themselves and the auxiliary data. If the auxiliary data are effective in accounting for
strong relationships, then the residuals between the response propensities and the esti-
mates after fitting the models should have low correlations. If these correlations are
low, then nonresponse bias in the estimates should be minimal. Unfortunately, this
modeling is often difficult in practice. In some cases, the auxiliary data are limited or
are not predictive of response propensities or the key survey statistics. However, an
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increasing awareness of the importance of collecting paradata (survey process data)
may result in increased availability of auxiliary data that are predictive of response
propensities.

One area of active research is focused on improving the modeling that underpins
nonresponse weighting adjustments. The adoption of the stochastic model of nonre-
sponse took many years to gain general acceptance in the survey community. As the
model has become more accepted, new questions about its application in the survey
setting are being posed. Some basic issues that still need to be addressed involve the
nature of response propensities and whether the assumptions applied in observational
studies are appropriate in the survey sampling context. Developments in these areas
may result in changes in the ways weight adjustments are performed.

More research is needed on the implications of weight adjustments on the estimated
variance and confidence intervals for survey statistics. Valliant (2004) provided an
important first step in this area, but many practical and theoretical issues remain to
be studied for both replication and linearized variance estimation techniques.
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Statistical Data Editing

Ton De Waal

1. Introduction

Users of statistical information are nowadays demanding high-quality data on social,
demographic, industrial, economic, financial, political, and cultural aspects of society
with a great level of detail and produced within a short span of time. National statistical
institutes (NSIs) fulfillacentral role inprovidingsuchhigh-qualitystatistical information.
Most NSIs face this challenge while their financial budgets are constantly diminishing.

A major complicating factor is that collected data generally contain errors. The data
collection stage in particular is a potential source of errors. For instance, a respondent
may give a wrong answer (intentionally or not), a respondent may not give an answer
(either because he does not know the answer or because he does not want to answer this
question), and errors can be introduced at the NSI when the data are transferred from
the questionnaire to the computer system, etc. The occurrence of errors in the observed
data makes it necessary to carry out an extensive process of checking the collected data,
and, when necessary, correcting them. This checking and correction process is referred
to as statistical data editing (SDE).

To check and correct data, two steps have to be carried out. First, the erroneous
records and the erroneous fields in these records have to be localized. This is called the
error localization step. Second, the localized erroneous fields and the missing fields have
to be imputed, that is, the values of the erroneous fields have to be replaced by better,
preferably the correct, values and the values of the missing fields have to be estimated.
This is called the imputation step. The error localization step only determines which
fields are considered erroneous; the imputation step determines values for these fields
as well as for the missing ones.

Although the error localization step and the imputation step are closely related in
theory, in practice, they are usually treated as two separate steps in the statistical process.
In this chapter, we will also treat them as two distinct steps. We will use the phrase SDE
in the sense of localizing errors, unless stated otherwise. Imputation of missing data is
discussed in Chapter 10.

Traditionally, statistical agencies have always put much effort and resources into
SDE, as they considered it a prerequisite for publishing accurate statistics. In traditional
survey processing, SDE was mainly an interactive activity where all individual records
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were checked with the aim to correct all data in every detail. It has long been recognized,
however, that it is not necessary to correct all data in every detail. Several studies (see,
e.g., Granquist, 1984, 1997; Granquist and Kovar, 1997; Pannekoek and De Waal, 2005)
and many years of practical experience at several NSIs have shown that in general it
is not necessary to remove all errors from a data set to obtain reliable publication
figures. The main products of statistical offices are tables containing aggregate data,
which are often based on samples of the population. This implies that small errors
in individual records are acceptable. First, because small random errors in individual
records generally tend to cancel out, that is, their sum generally tends to be negligible
in comparison to the corresponding publication figure. Second, because if the data are
obtained from a sample of the population, there will always be a sampling error in the
published figures, even when all collected data are completely correct. In this case,
an error in the results caused by incorrect data is acceptable as long as it is small
in comparison to the sampling error. To obtain data of sufficiently high-quality, it is
usually sufficient to remove only the most influential errors.

In the past, and often even in the present, too much effort was spent on correcting
errors that did not have a noticeable impact on the ultimately published figures. This
has been referred to as “overediting.” Overediting not only costs budget but also a
considerable amount of time, making the period between data collection and publication
unnecessarily long. Sometimes overediting even becomes “creative editing”: the editing
process is then pursued to such an extent that unlikely, but correct, data are “ corrected,”
or discarded and replaced. Such unjustified alterations can be detrimental for data quality.

To improve the efficiency of the editing process, modern techniques such as selec-
tive editing, automatic editing and macroediting can be applied instead of the traditional
microediting approach, where all records are extensively edited manually. In this chap-
ter, we discuss these editing techniques. A crucial role in several (versions) of these
techniques is often played by so-called edit rules. We describe the use of these edit rules
in Section 2. We then continue our discussion with interactive editing in Section 3. We
examine the possibility of editing during the data collection phase in Section 4. In the next
three sections, we examine modern editing techniques: selective editing in Section 5,
automatic editing in Section 6, and macroediting in Section 7. In Section 8, we discuss
a strategy for SDE based on combining different editing techniques. Section 9 ends the
chapter with a brief discussion of possible future developments with respect to SDE.

For more information on SDE in general, we refer to Ferguson (1994), and for SDE
for business surveys to EDIMBUS (2007). An important international project on SDE
and imputation was the EUREDIT project. The EUREDIT project aimed at improving
the efficiency and the quality of automatic methods for SDE and imputation at NSIs.
For the main findings of this project, we refer to EUREDIT Project (2004a,b). Several
software packages for SDE have been developed. We refer to Chapter 13 for a discussion
of these software packages.

2. The use of edit rules

At NSIs, edit rules, or edits for short, are often used to determine whether a record is
consistent or not. An example of an edit is

T = P + C, (1)
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where T is the turnover of an enterprise, P its profit, and C its costs. Edit (1) expresses
that the profit and the costs of an enterprise should sum up to its turnover. Such an edit is
referred to as a balance edit.Another example is T ≥ 0, expressing that the turnover of an
enterprise should be non-negative. Edits like these are referred to as non-negativity edits.
A third example is P/T ≤ 0.5. Such an edit expressing that the ratio of two variables
should be less (or greater) than a certain threshold is referred to as a ratio edit. Examples
of edits for categorical (discrete) data are that children of the head of household cannot
be married to each other and that a person can have only one (biological) mother.

To construct a set of edits, one usually starts with the “hard” (or logical) edits, which
hold true for all correctly observed records. Balance edits are usually hard edits. After
the hard edits have been specified, one generally uses subject-matter knowledge and
statistical analyses to add a number of “soft” edits, which hold true for a high fraction
of correctly observed records but not necessarily for all of them. In many cases, ratio
edits are soft edits. The thresholds of soft ratio edits have to be carefully determined,
so correct records do not, or only very rarely, violate these edits, while the edits are
powerful enough to pinpoint erroneous records. Another example of a soft edit is that a
mother must be at least 15 years older than any of her children. In most cases where this
edit is violated, the record under consideration is indeed incorrect. Only in extremely
rare cases, this edit is violated by a correct record.

Records that are inconsistent with respect to the edits, that is fail one or more edits, are
considered to contain errors if hard edits are violated and are considered to be suspicious
if only soft edits are violated. The values in an erroneous record have to be modified
in such a way that the resulting record is a better approximation of the true data of the
corresponding respondent. Suspicious records are either examined further or are treated
as erroneous records.

A consistent record, that is a record that satisfies all edits, is not necessarily (consid-
ered to be) error-free. For instance, (some of) the values in a consistent record may be
outliers with respect to the bulk of the data. Such outlying values are often considered
suspicious and are, hence, checked in the editing process, even if all edits are satisfied.

To avoid overediting, one should in particular be careful not to specify too many
soft edits. In general, users tend to apply more soft edits than necessary to the data (see
Di Zio et al., 2005a).

3. Interactive editing

The use of computers in the editing process started many years ago. In the early years,
their role was restricted to checking which edits were violated. For each record, all
violated edits were listed. Subject-matter specialists then used these lists to correct the
records. That is, they retrieved all paper questionnaires that did not pass the edits and
corrected these questionnaires, for instance by recontacting the respondent or by compar-
ing the respondent’s data to data from similar respondents. After they had corrected the
data, these data were again entered into the computer, and the computer again checked
whether the data satisfied all edits. This iterative process continued until (nearly) all
records passed the edits.

A major problem with respect to this approach was that during the manual correction
process, the records were not checked for consistency. As a result, a record that was
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“corrected” could still fail one or more specified edits. Such a record hence required
more correction. It was not exceptional that some records had to be corrected several
times. It is therefore not surprising that editing in this way was very costly, both in
terms of budget as well as in terms of time (see, e.g., Federal Committee on Statistical
Methodology, 1990; Granquist and Kovar, 1997).

Subject-matter specialists have extensive knowledge with respect to their area of
expertise. This knowledge should be used as well as possible. This aim can be achieved
by providing subject-matter specialists with efficient and effective data editing tools.
Survey-processing systems such as Blaise and CSPro (see Chapter 13 for a discussion
of such software systems) are often used to edit data at NSIs. When such systems are
used, the specified edits can be checked during or after data entry, and, if necessary,
the data may immediately be corrected. This is referred to as interactive or computer-
assisted editing. The introduction of systems such as Blaise and CSPro led to a sub-
stantial efficiency improvement of the editing process. In this section and in the next,
we use Blaise as an example of a survey-processing system due to the wide use of the
system.

When Blaise is used to edit the data, it is no longer necessary to edit the data in several
iterations, each consisting of a checking phase and a correction phase. When data are
corrected, new error signals due to failed edits, if any, are immediately shown on the
computer screen. The error signals, in combination with the data themselves, direct the
subject-matter specialist to potential errors in the data. For instance, Blaise can calculate
the number of times each field is involved in a failed edit. Fields that are most often
involved in failed edits are usually the most likely ones to be in error. To correct data,
the subject-matter specialists often check the paper questionnaires or scanned versions
thereof as this can help them to identify errors in the data.

Data from paper questionnaires can be entered either by fast data entry personnel or by
subject-matter specialists. In the former case, the data are keyed in without attempting
to edit them at this stage. Later, subject-matter specialists edit the keyed raw data.
Alternatively, data can directly be entered by subject-matter specialists. This costs more
time than letting the data be keyed in by data entry personnel. However, subject-matter
specialists can enter and correct data at the same time. The extra time required to enter
the data is often (more than) compensated for by the fact that each record is treated, that
is entered or edited, only once. A practical drawback of keying in data and editing them
at the same time is that the raw, unedited, data are not available for later analyses, for
instance, analyses with respect to the efficiency and effectiveness of the editing process
itself.

An alternative to keying in data is scanning the paper questionnaires in combina-
tion with optical character recognition. For paper questionnaires for which the answers
mainly consist of numerical data, this often leads to data of similar quality as keyed-in
data. Paper questionnaires for which optical character recognition does not give good
results are often scanned anyway to help the subject-matters specialists during the inter-
active editing process.

Interactive editing can be used to edit both categorical and numerical data, and it is
nowadays a standard way to edit data. The number of variables, edits, and records may,
in principle, be high. Survey managers generally consider data edited in an interactive
manner to be of high statistical quality. For more on interactive editing by means of
systems like Blaise, we refer to Pierzchala (1990).
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The fundamental problem of interactive editing is that, even though each record has
to be edited only once, still all records have to be edited. We have already mentioned that
this can, and often does, lead to overediting. Instead of editing all records, one could
consider editing only the ones with influential errors. This is referred to as selective
editing and is discussed in Section 5. In Section 4, we first discuss the most efficient
editing technique of all: no editing at all, but instead ensuring that correct data is obtained
during the data collection phase.

4. Editing during the data collection phase

Blaise not only applies edits but also so-called routing rules. Frequently, different ques-
tions are posed to different kinds of respondents. For instance, it is not useful to ask
a male respondent whether he has ever been pregnant as the answer to this question
would not provide any additional information. Blaise ensures that each respondent is
asked the questions that are applicable to this kind of respondent. Owing to this function-
ality, Blaise is an excellent system for CAPI (computer-assisted personal interviewing),
CATI (computer-assisted telephone interviewing), CASI (computer-assisted self inter-
viewing), and CAWI (computer-assisted web interviewing).

When CAPI is used to collect the data, an interviewer visits the respondent and enters
the answers directly into a laptop. When CATI is used to collect the data, the interview
is carried out during a telephone call. When CASI or CAWI is used to collect the data,
the respondent fills in an electronic questionnaire himself. The difference between these
two modes is that for CAWI, an electronic questionnaire on the internet has to be filled
in, whereas for CASI, an off-line electronic questionnaire has to be filled in. When an
invalid value for a question is given or an inconsistency between the answers of two or
more questions is noted during any of these data collection modes, this is immediately
reported by Blaise. The error can then be resolved by asking the respondent these
questions again. For CASI and CAWI, generally not all edits that could be specified are
actually specified since the respondent might get annoyed and may refuse to complete
the questionnaire when the edits keep on reporting that the answers are inconsistent.

In many cases, data collected by means of CAPI, CATI, CASI, or CAWI contain
fewer errors than data collected by means of paper questionnaires as random errors that
affect paper questionnaires can be detected and avoided at collection. For face-to-face
interviewing, CAPI has in fact become the standard. CAPI, CATI, CASI, and CAWI
may hence seem to be ideal ways to collect data, but, unfortunately, they too have their
disadvantages.

A first disadvantage of CATI and CAPI is that CATI and, especially, CAPI are very
expensive. A second disadvantage of CATI and CAPI is that a prerequisite for these two
data collection modes is that the respondent is able to answer the questions during the
interview. For a survey on persons and households, this is often the case. The respondent
often knows (good proxies of) the answers to the questions or is able to retrieve the
answers quickly. For a survey on enterprises, the situation is quite different. Often, it is
impossible to retrieve the correct answers quickly, and often the answers are not even
known by one person or one department of an enterprise. Finally, even in the exceptional
case that one person knew all answers to the questions, the NSI would generally not know
the identity of this person. For the above-mentioned reasons, many NSIs frequently use
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CAPI and CATI to collect data on persons and households but only rarely for data on
enterprises.

Pilot studies and actual applications have revealed that CASI and CAWI are indeed
viable data collection modes, but also that several problems arise when these modes are
used. Besides IT problems, such as that the software, and the internet, should be fast and
reliable and the security of the transmitted data should be guaranteed, there are many
practical and statistical problems. We have already mentioned the practical problem that
if the edits keep on reporting that the answers are inconsistent, the respondent may get
annoyed and may refuse to fill in the rest of the questionnaire. An example of a statistical
problem is that the group of people responding to a web survey may be selective (see,
e.g., Bethlehem, 2007). Another important problem for CAWI and CASI is that data
collected by either of these data collection modes may appear to be of higher statistical
quality than data collected by means of paper questionnaires, but in fact are not. When
data are collected by means of CASI and CAWI, one can enforce that the respondents
supply data that satisfy build-in edits or one can avoid balance edits by automatically
calculating the totals from their components. As less edits are failed by the collected
data, the collected data may appear to be of higher statistical quality. This may not be
the case, however, as respondents can be less accurate when filling in the entries in
an electronic questionnaire, especially if totals are computed automatically (see Børke,
2008; Hoogland and Smit, 2008).

NSIs seem to be moving toward the use of mixed-mode data collection, where data
are collected by a mix of several data collection modes. This obviously has consequences
for SDE. Some of the potential consequences have been examined by Børke (2008),
Hoogland and Smit (2008), and Van der Loo (2008). For more information on computer-
assisted data collection in general, we refer to Couper et al. (1998).

5. Selective editing

5.1. Introduction to selective editing

Selective (or significance) editing (see, e.g., Farwell and Raine, 2000; Hedlin, 2003;
Hidiroglou and Berthelot, 1986; Hoogland, 2002; Latouche and Berthelot, 1992;
Lawrence and McDavitt, 1994; Lawrence and McKenzie, 2000) is an umbrella term
for several methods for identifying the influential errors in a data set, that is, the errors
that have a substantial impact on the publication figures. The aim of selective editing is
to split the data into two streams: a critical and a noncritical stream. The critical stream
consists of records that are the most likely ones to contain influential errors; the non-
critical stream consists of records that are unlikely to contain influential errors. Only
the records in the critical stream are edited interactively. The records in the noncritical
stream are either not edited or edited automatically (see Section 6).

The scope of most techniques for selective editing is limited to (numerical) busi-
ness data. In these data, some respondents can be more important than other respon-
dents, simply because the magnitude of their contributions is higher. Social data are
usually count data where respondents contribute more or less the same, namely their
raising weight, to estimated population totals. In social data, it is therefore difficult to
differentiate between respondents. Selective editing has gradually become a popular
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method for editing business data and increasingly more NSIs use selective editing
techniques.

Many selective editing methods are relatively simple ad hoc methods based on com-
mon sense, although also complicated outlier detection techniques have been used in
the context of selective editing (see Di Zio et al., 2008). The most often applied basic
idea is to use a score function (see, e.g., Hidiroglou and Berthelot, 1986; Van de Pol
and Molenaar, 1995). We distinguish two important components to construct a score
function: the influence component and the risk component. The influence component
measures the relative influence of a record on a publication figure. The risk component
usually measures the deviation of the observed values from “anticipated” values. How to
define suitable anticipated values depends on the specific data set. For a cross-sectional
survey, one could, for instance, use means or medians in certain groups of records. For
longitudinal surveys, one could, for instance, use values from a previous period, pos-
sibly multiplied by an estimated trend. For some variables, anticipated values may be
obtained from available register data.

A score function for an entire record is referred to as a global score function. Such a
global score function is often based on local score functions. A local score function is
a score function for a single variable within a record. It is usually defined as a distance
between observed and anticipated values of a variable y in the record under considera-
tion, taking the influence of this record into account.

An example of a local score function is

wi|yi − ŷi|, (2)

where yi denotes the observed value of variable y in record i, ŷi the corresponding
anticipated value, and wi the raising weight of record i. This local score function can be
considered as the product of a risk component, |yi − ŷi|/ŷi, which measures the relative
deviation of the observed value to the anticipated value, and an influence component,
wiŷi, which measures the anticipated impact on the publication figure.

A global score function combines the local scores to a measure on the record level, so
one can decide whether to edit the record in an interactive manner or not. Local scores
can be combined into a global score by, for instance, taking a (weighted) sum of the
local scores or by taking the maximum of the local scores (see Subsection 5.2). A record
is considered suspicious if the value of the global score function exceeds a certain cutoff
value (see Subsection 5.3).

The local score function (2) is suited for simple estimators for population totals. In
principle, one can also develop local score functions for more complex estimators than
simple estimators for totals. This can be done by linearization of the estimators, that
is, by taking the first-order Taylor series. For more details, we refer to Lawrence and
McKenzie (2000).

5.2. Combining local scores into a global score

When combining several local scores into a global score, one, first of all, needs to take
into account that different variables may have a different order of magnitude or may
be measured in different units. This problem can be overcome by scaling the variables.
There are several options to scale variables, such as dividing the observed value by the
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mean value, by the standard error, or by the mean squared error of the variable under
consideration (see Lawrence and McKenzie, 2000). From now on, whenever we refer
to a local score, we will in fact mean the scaled local score.

The currently most general approach to combine local scores into a global score
seems to be the use of the so-called Minkowski metric (see Hedlin, 2008). In our case,
the Minkowski metric is given by

GSr(LSr, α) =
(

n∑
i=1

LSα
r,i

)1/α

, (3)

where GSr denotes the global score for a record r, LSr,i ≥ 0 the local score of the ith vari-
able, n the total number of variables, α > 0 a parameter, and LSr = (LSr,1, . . . , LSr,n

)
.

The choice of α in (3) determines how the local scores are actually combined into a
global score. The influence of large local scores on the global score increases with α.
For α = 1, the global score is simply given by the sum of the local scores, and for
α = 2, the global score is the well-known Euclidean metric. For the limit where α goes
to infinity, the global score GSr(LSr, ∞) becomes maxi LSr,i, that is, the maximum of
the n local scores.

The cutoff threshold value above which a record is considered to need interactive
editing depends on the value of the α parameter and on the data set to be edited. Setting
the cutoff threshold value is examined in Subsection 5.3.

The advantage of taking the maximum value of the local scores as the global score
is that one is ensured that no influential error on any of the involved variables will slip
through. Attempting to avoid the occurrence of influential errors in any of the involved
variables may have the drawback that one has to edit many records interactively. Hedlin
(2003), however, argues by using a model for the occurrence of influential errors in the
data that this may not be the case. It depends on the data set to be edited how valid the
assumptions underlying this model are.

The Minkowski metric is a flexible function that encompasses many well-known met-
rics used for selective editing purposes. By choosing the α parameter, one can basically
select a metric varying from taking the sum of all local scores to taking the maximum
of the local scores. However, more complex metrics cannot be selected. Such a more
complex metric may be deemed necessary if there are many variables with many com-
plex interactions between them (see also Subsection 5.5). Presently, no good generally
applicable technique for combining local scores into a global score using such complex
metrics seems available.

5.3. Determining cutoff thresholds

After a method to determine the global score has been decided upon, a cutoff threshold
should, in principle, be fixed. All records with a global score above the cutoff threshold
are selected for interactive editing, whereas the records with a global score below the
cutoff threshold are not edited interactively.

The most common approach to set the cutoff threshold is to perform a simulation
study, using a raw (unedited) data set and the corresponding clean (edited) version.
These data sets are generally from a previous period. The simulation study consists of
calculating the global scores of the records in the raw data set and prioritizing the records
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in order of these scores. For several percentages p, one then simulates that the first p%
of these records are edited and the remaining records are not. This is done by replacing
the first p% of the records in the prioritized raw data set with the corresponding records
in the clean version of the data.

A natural criterion to determine the quality of a selective editing procedure in the
simulation study approach is the absolute pseudobias (see Latouche and Berthelot, 1992),
which measures the absolute deviation between the raw value and the clean value. The
difference between the raw value and the clean value is called the pseudobias rather than
the bias as one cannot be sure that the clean value is indeed the correct value. For the
records selected for interactive editing, the corresponding absolute pseudobias is zero.
Based on the simulation study, the cutoff threshold is selected so that the sum of the
absolute pseudobias is acceptably low compared with other errors in the data, such as
the sampling error and the coverage error.

As Lawrence and McKenzie (2000) argue, the simulation study approach is also a
way to check the effectiveness of the edits and the editing process itself. The simulation
study allows one, for instance, to check if the records with high global scores indeed
contain influential errors.

In some cases, the simulation study approach may not be applicable, for instance,
because data from a previous period are not available. Lawrence and McKenzie (2000)
suggest using a model for the editing process to determine the cutoff threshold in such
cases. Given that model, one can then estimate the bias due to not editing some records
as a function of the cutoff threshold. By specifying a maximum for the estimated bias,
the corresponding cutoff threshold can be determined.

Lawrence and McKenzie (2000) use a relatively simple model for the editing process,
but note that it can be extended to more complicated cases. An obvious drawback of
the model-based approach is that is dependent on the model assumptions. Lawrence
and McKenzie (2000) therefore propose to use the model-based approach only at the
beginning of a new editing process to find a first cutoff threshold and later use the results
of the current editing process to improve this threshold by means of a simulation study.

In practice, one sometimes does not fix a cutoff threshold before selective editing but
instead only uses the global scores to prioritize the records. One then edits the records
in order of priority until budget or time constraints tell one to stop.

5.4. The edit-related approach

Hedlin (2003) proposes an edit-related approach to selective editing rather than the above
sketched approach, which he refers to as estimate-related. The underlying idea of the
edit-related approach is that influential errors will lead to violated edits. In the edit-related
approach, one measures how many edits are failed by a record and by how much they
fail. For each edit, the amount of failure is measured in some way. For a balance edit, one
can, for instance, measure the amount of failure as the absolute difference between the
observed total and the sum of its observed components. The amount of failure may be of
very different orders for different (types of) edits. Hedlin (2003) therefore proposes using
the Mahalanobis distance to combine amounts of failure into a global score per record.

The edit-related approach has the advantage that it does not focus on a single target
variable. It also has the advantage that, unlike the estimate-related approach, it can
be applied to categorical data. The edit-related approach has the drawback that it is
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dependent on the specified edits. In a study, Hedlin (2003) found that the estimate-related
approach performed better than the edit-related approach.

Hybrid approaches where an estimate-related approach is combined with an edit-
related approach are also possible. For instance, Hoogland (2002) discusses such a
hybrid approach that uses anticipated values to estimate the risk of a record and at the
same time takes the violations of the edits as well as the number of missing values of
that record into account.

5.5. Experimental approaches

At Statistics Netherlands, some more advanced, experimental, approaches have been
examined that to some extent try to capture complex interactions between different
variables. One such approach is based on logistic regression. In this logistic regression
approach, one tries to estimate either the probability that a record contains influential
errors or the probability that a specific variable in a record contains an influential error.
In both cases, records or variables that are likely to contain influential errors need
interactive editing.

We describe the case where we aim to estimate the probability π that a specific
variable contains an influential error. For this, we need a training data set consisting of
both the raw (i.e., unedited) data and the clean (i.e., edited) data from a previous period.
To each record in the unedited data set, we assign a probability π that this record contains
an influential error. The assigned probability is high for records for which the edited
version differs much from the raw version, and is low for records for which the edited
version is close to the raw version. Based on the training data, we then fit a logistic
model defined by

log

(
π

1 − π

)
= β0 + β1x1 + · · · + βpxp, (4)

where the x1 to xp are predictor variables and β0 to βp the model parameters.
For a new data set that needs to be edited, one then uses the model given by (4) with

model parameters estimated using the training data. For each record in the data set to
be edited, we hereby obtain an estimate π̂ that the variable under consideration contains
an influential error. If, for a certain record, wπ̂ is above a certain threshold value, where
w is the raising weight of this record, the variable under consideration is considered to
require to interactive editing for this record.

For the record-level case, one can construct a model similar to (4), with the main
difference that π denotes the probability that a record with attributes x1 to xp contains
an influential error, and hence requires interactive editing.

Another approach that has been studied at Statistics Netherlands is the use of classi-
fication and regression trees (see Breiman et al., 1984) for selective editing. The idea of
this approach is to grow a classification or regression tree that predicts the occurrence
of an influential error in a record or a specific variable.

In general, a tree-based model classifies the data in terms of the values of a set of
categorical predictor variables. A tree-based model is a binary tree that is generated by
successively splitting a training data set into smaller subsets. These subsets are increas-
ingly more homogeneous with respect to a selected response variable. This response
variable may be either categorical or numerical. The process of recursively splitting the
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data set into two subsets continues until a stopping criterion is met. The terminal nodes
in this tree form homogeneous clusters.

Homogeneity of a cluster can be measured in many ways. If the response variable
is categorical, homogeneity may, for instance, be measured by the so-called Gini index
(see Breiman et al., 1984). If the response variable is numerical, homogeneity may, for
instance, be measured by ordinary least squares.

In the context of selective editing, there are several options for selecting the response
variable. First, one has to choose whether one wants to generate a tree, either a clas-
sification tree or a regression tree, for a single variable or an entire record. Second,
one has to choose between generating a classification tree or a regression tree. If
one constructs a categorical response variable that expresses whether one considers
a record or variable to need interactive editing or not, a classification tree has to be
generated. If one constructs a numerical response variable that expresses the mag-
nitude and impact on the publication figures of the errors in a record or variable, a
regression tree has to be generated. By combining the possibilities, one obtains four
different options, namely a classification tree for a single variable, respectively for
an entire record, and a regression tree for a single variable, respectively for an entire
record.

To generate a classification or regression tree, one again needs a training data set.
In our case, the training data set consists of a raw (unedited) data set from a previous
period, together with information from the editing process applied to this data set. In the
cases where the aim is to generate a classification tree, we use the information whether a
record is considered to require interactive editing, based on the changes that were made
to this record during the editing process, as our response variable. In the cases where the
aim is to generate a regression tree, we use the magnitude and impact on the publication
figures of the changes that were made to this record during the editing process as our
response variable.

After the generation of a tree, and hence generation of classification rules for con-
structing homogeneous clusters of records, a data set to be edited is supplied to the tree.
The tree is then used to decide whether a variable or record needs to be edited interac-
tively (in the case of a classification tree) or to estimate the magnitude and impact of
the error in a single variable or an entire record on the publication figures (in the case
of a regression tree).

At Statistics Netherlands, Van Langen (2002) and Sanders (2002) have carried
out limited evaluation studies for the logistic regression approach and the tree-based
approach, respectively. They both used a single data set of the Dutch Structural Busi-
ness Statistics on the Construction Industry of which four versions were available:
raw and clean versions for use as training data and other raw and clean versions
for use as evaluation data. The simulation studies showed that in most cases, the
logistic regression approach and the tree-based approach performed worse than a tra-
ditional approach based on an estimate-related global score. An exception was the
approach based on a regression tree for an entire record. This approach turned out
to be slightly more powerful than a traditional approach based on an estimate-related
global score. However, given the complexity of the method and the low transparency
of the decision rules generated, the approach based on generating a regression tree for
an entire record has thus far not been implemented in editing processes at Statistics
Netherlands.
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6. Automatic editing

6.1. Introduction to automatic editing

When automatic editing is applied, records are edited by computer without human
intervention. In that sense, automatic editing is the opposite of the traditional approach
to the editing problem, where each record is edited manually. Automatic editing can be
applied to both categorical and numerical data. To automate the SDE process both the
error localization step and the imputation step have to be automated. In this section, we
focus on discussing the former step.

We can distinguish two kinds of errors: systematic error and random error. A sys-
tematic error is an error reported consistently by (some of) the respondents. It can be
caused by the consistent misunderstanding of a question by (some of) the respondents.
Examples are when gross values are reported instead of net values and particularly when
values are reported in units instead of, for instance, the requested thousands of units (so-
called “thousand-errors”). Random errors are not caused by a systematic deficiency but
by accident. An example is an observed value, where a respondent by mistake typed in
a digit too many.

Systematic errors, such as thousand-errors, can often be detected by comparing a
respondent’s present values with those from previous years, by comparing the responses
to questionnaire variables with values of register variables, or by using subject-matter
knowledge. Other systematic errors, such as transpositions of returns and costs and
redundant minus signs, can be detected and corrected by systematically exploring all
possible transpositions and inclusions/omissions of minus signs. Rounding errors—
a class of systematic errors where balance edits are violated because the values of
the involved variables have been rounded—can be detected by testing whether failed
balance edits can be satisfied by slightly changing the values of the involved variables.
Once detected, a systematic error is often simple to correct. We treat systematic errors
in more detail in Subsection 6.2.

Generally speaking, we can subdivide the methods for automatic error localization of
random errors into methods based on statistical models, methods based on deterministic
checking rules, and methods based on solving a mathematical optimization problem.
Methods based on statistical models, such as outlier detection techniques (see Chapter
11 of this book for more on outlier detection and treatment) and neural networks (see
Nordbotten, 1995, for one of the first attempts to apply neural networks in the context
of SDE), are extensively discussed in the literature. We therefore do not discuss these
techniques in this chapter.

Deterministic checking rules state which variables are considered erroneous when the
edits in a certain record are violated. An example of such a rule is if component variables
do not sum up to the corresponding total variable, the total variable is considered to be
erroneous.Advantagesof thisapproachare its transparencyand its simplicity.Adrawback
of this approach is that many detailed checking rules have to be specified, which can be
time and resources consuming to do.Another drawback is that maintaining and checking
the validity of a high number of detailed checking rules can be complex. Moreover, in
somecases, itmaybe impossible todevelopdeterministiccheckingrules thatarepowerful
enough to identify errors in a reliable manner. A final disadvantage is the fact that bias
may be introduced as one aims to correct random errors in a systematic manner.
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The automatic error localization problem for random errors can be formulated as a
mathematical optimization problem in several ways. Freund and Hartley (1967) were
among the first to propose such a formulation. It is based on minimizing the sum of
the distance between the observed data and the “corrected” data and a measure for the
violation of the edits. After “correction,” some of the edits may still be failed. A second
formulation, based on minimizing a quadratic function measuring the distance between
the observed data and the “corrected” data subject to the constraint that the “corrected”
data satisfy all edits, has later been proposed by Casado Valero et al. (1996).

A third approach for the automatic error localization problem for random errors is
based on first imputing missing values and potentially erroneous values for an incon-
sistent record by means of hot-deck donor imputation (see Chapter 10), using a number
of donor records. Subsequently, an imputed record that satisfies all edits and that is
“closest” to the original record according to some distance function is selected. The
values in the original record that differ from the corresponding values in the selected
imputed record are considered to be erroneous. This paradigm forms the basis of nearest
neighbor imputation methodology (NIM; see Bankier et al., 2000). Since the hot-deck
donor imputation approach underlying NIM is much more suited for social data than
for economic data, NIM has thus far mainly been used for demographic data. In some
cases, NIM has been used in combination with methodology based on the Fellegi–Holt
paradigm, which is discussed below (see Manzari, 2004).

The most often used approach for the automatic error localization problem for random
errors is based on the paradigm of Fellegi and Holt (see Fellegi and Holt, 1976). This
paradigm is, in fact, only one of three principles for automatic edit and imputation
proposed by Fellegi and Holt in 1976. These three principles are as follows:

(1) the data in each record should be made to satisfy all edits by changing the fewest
possible items of data (fields);

(2) as far as possible, the frequency structure of the data file should be maintained;
(3) imputation rules should be derived from the corresponding edit rules without

explicit specification.

In the context of error localization, the first one of these principles is referred to as
the “Fellegi–Holt paradigm.” With regards to error localization, it is the most important
principle of the three. The other two principles relate to imputation after errors have
been localized. In their second principle, which was originally formulated in the context
of categorical data only, Fellegi and Holt basically note that imputation should result in
the preservation of the distribution of the true data, and in their third principle, that error
localization and imputation should be applied in combination and not as completely
separate processes.

In due course, the Fellegi–Holt paradigm has been generalized to: the data of a
record should be made to satisfy all edits by changing the values of the variables with
the smallest possible sum of reliability weights. That is, for each record (x1, . . . , xn), we
wish to ensure the existence of, and often want to find, a synthetic record

(
x̂1, . . . , x̂n

)
such that

(
x̂1, . . . , x̂n

)
satisfies all edits, and

n∑
k=1

wkδ
(
xk, x̂k

)
(5)
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is minimized, where δ
(
xk, x̂k

)
equals 1 if xk is missing or differs from x̂k and 0 other-

wise, and wk ≥ 0 is the so-called reliability weight of the kth variable (k = 1, . . . , n).
A reliability weight of a variable expresses how reliable one considers the values of this
variable to be. A high reliability weight corresponds to a variable of which the values are
considered trustworthy, and a low reliability weight corresponds to a variable of which
the values are considered not so trustworthy. The (generalized) Fellegi–Holt paradigm
can be applied to numerical data as well as to categorical data.

A variable k (k = 1, . . . , n), for which xk is missing or differs from x̂k, is considered
to be erroneous. Such a variable has to be imputed later using a suitable imputation
method (see Chapter 10). The existence of a synthetic record satisfying all edits ensures
that the variables considered erroneous can indeed be imputed consistently, that is, such
that all edits can be satisfied. The synthetic record is generally not used as the “corrected”
record.

For business surveys, an overview of algorithms for solving the error localization
problem based on the Fellegi–Holt paradigm has been given in De Waal and Coutinho
(2005). Algorithms for categorical data have been proposed by Fellegi and Holt (1976),
Garfinkel et al. (1986), Winkler (1998), Bruni et al. (2001), and Bruni and Sassano
(2001). The algorithms described in the first two articles have been examined in detail
by Boskovitz (2008). Algorithms for solving the error localization problem in a mix of
categorical and continuous data have been proposed by Sande (1978), Schaffer (1987),
De Waal (2003a,b, 2005), and De Waal and Quere (2003). This latter algorithm is
sketched and illustrated in Subsections 6.3 and 6.4.

Assuming that only few errors are made, the Fellegi–Holt paradigm obviously is a
sensible one. Provided that the set of edits used is sufficiently powerful, application of
this paradigm generally results in data of higher statistical quality, especially when used
in combination with other editing techniques. This is confirmed by various evaluation
studies such as Hoogland and Van der Pijll (2003).

A drawback of using the Fellegi–Holt paradigm is that the class of errors that can
safely be treated is limited to random errors. A second drawback is that the class of edits
that can be handled is restricted to “hard” edits. “Soft” edits cannot be handled as such,
and, if specified, are treated as hard edits. Especially, in the case of automatic editing,
one should be careful not to specify too many soft edits to avoid overediting (see Di Zio
et al., 2005a).

6.2. Approaches to automatic editing of systematic errors

As already mentioned, a well-known class of systematic errors consists of so-called
thousand-errors. These are cases where a respondent replied in units rather than in the
requested thousands of units. The usual way to detect such errors is by considering
“anticipated” values, which could, for instance, be values of the same variable from
a previous period or values available from a register. One then calculates the ratio of
the observed value to the anticipated one. If this ratio is higher than a certain threshold
value, say 300, it is assumed that the observed value is 1000 times too large. The
observed value is then corrected by dividing it by 1000.Aminor practical problem occurs
when the anticipated value equals zero. Usually, this problem can easily be solved in
practice.
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Al-Hamad et al. (2008) note more important problems with this standard procedure.
The main problem they note is that the anticipated value itself has to be of sufficiently
high-quality. If this value is incorrect, the procedure may not detect a thousand-error in
the observed value if it is present.

They propose an alternative procedure, which simply consists of comparing the num-
ber of digits of the observed value to the anticipated value. In this way, thousand-errors
(and larger errors) may be identified as those records for which the difference between
the number of digits of the observed and anticipated value is 3 or more. In a study, they
found that this alternative rule slightly outperformed the standard rule based on taking
ratios.

A more complex approach for detecting and correcting thousand-errors, or more
generally unity measure errors, that is, any error due to the erroneous choice by some
respondents of the unity measure in reporting the amount of a certain variable, has been
proposed by Di Zio et al. (2005b). That approach uses model-based cluster analysis to
pinpoint various kinds of unity measure errors. The model applied consists of a finite
mixture of multivariate normal distributions.

A second kind of systematic error that can relatively easily be corrected occurs when
a respondent adds a minus sign to a value that is subtracted. The questionnaire of the
Dutch Structural Business Survey (SBS) contains a number of combinations of items
where costs have to be subtracted from returns to obtain a balance. If a respondent adds
a minus sign to the reported costs, the value becomes wrongfully negative after data
processing. Such an error where a respondent by mistake adds or deletes a minus sign
is called a sign error. An obvious way to correct a sign error is by taking the absolute
value of the reported value.

The situation becomes more complicated when a respondent may also have inter-
changed returns and costs on the questionnaire. Scholtus (2008a,b) examines this sit-
uation. Part of the Dutch SBS is the so-called results block. In this block of related
questions, a respondent has to fill in a number of balance amounts. We denote the bal-
ance variables by x0, x1, . . . , xn−1. The so-called pretax result is denoted by xn and
equals the sum of x0 to xn−1, that is,

x0 + x1 + · · · + xn−1 = xn. (6)

Some of these balance variables are equal to the difference between a returns variable
and a costs variable. That is,

xk,r − xk,c = xk, (7)

where xk,r denotes the returns variable and xk,c the corresponding costs variable of the
kth balance restriction.

We give a simple example of sign errors and interchanged returns and costs. To
this end, we consider a record with the following values: x0,r = 3, 250, x0,c = 3, 550,
x0 = 300, x1,r = 110, x1,c = 10, x1 = 100, x2,r = 50, x2,c = 90, x2 = 40, x3,r = 30,
x3,c = 10, x3 = 20, and x4 = −140. This record has to satisfy (6) with n = 4 and (7)
for k = 0, 1, 2, 3. The record can be made to satisfy all edits by changing the value of
x0 from 300 to −300 and interchanging the values of x2,r and x2,c. These are likely to
be the correct values as this is the only way to make the record satisfy all edits by means
of such simple and natural modifications.



202 T. De Waal

Assuming that if an inconsistent record can be made to satisfy all balance edits (6) and
(7) by adding/deleting minus signs and interchanging returns and costs, this is indeed
the way the record should be corrected; Scholtus (2008a,b) provides a formulation for
correcting a record as a binary linear programming problem. Well-known operations
research techniques can be applied to find a solution to this problem.

Assuming that the variables x0,r and x0,c, which incidentally are the so-called oper-
ating returns and operating costs, respectively, in the case of the Dutch SBS, are not
interchanged, Scholtus (2008b) proves that if a solution is found, it is the unique solution
under some mild additional conditions.

Balance edits are often violated by the smallest possible difference. That is, the
absolute difference between the total and the sum of its components is equal to 1 or 2.
Such inconsistencies are often caused by rounding. An example is when the terms of
the balance edit x1 + x2 = x3 with x1 = 2.7, x2 = 7.6, and x3 = 10.3 are rounded to
integers. If conventional rounding is used, x1 is rounded to 3, x2 to 8, and x3 to 10, and
the balance edit becomes violated.

From a purely statistical point of view, rounding errors are rather unimportant as
by their nature they have virtually no influence on publication figures. Rounding errors
may be important, however, when we look at them from the point of view of the SDE
process. Some statistical offices apply automatic editing procedures for random errors,
such as automatic editing procedures based on the Fellegi–Holt paradigm. Such auto-
matic editing procedures are computationally very demanding. The complexity of the
automatic error localization problem increases rapidly as the number of violated edit
rules becomes larger, irrespective of the magnitude of these violations. A record con-
taining many rounding errors may hence be too complicated to solve for an automatic
editing procedure for random errors, even if the number of random errors is actually
low. From the point of view of the SDE process, it may therefore be advantageous to
resolve rounding errors at the beginning of the editing process.

Scholtus (2008a,b) describes a heuristic method for resolving rounding errors. The
method does not lead to solutions that are “optimal” according to some criterion, such as
that the number of changed variables or the total change in value is minimized. Instead
the method just leads to a good solution. Given that the statistical impact of resolving
rounding errors is small, a time-consuming and complex algorithm aimed at optimizing
some target function is not necessary anyway. The heuristic method is referred to as the
“scapegoat algorithm”, because for each record assumed to contain rounding errors, a
number of variables, the “scapegoats,” are selected beforehand and the rounding errors
are resolved by changing only the values of the selected variables. Under certain very
mild conditions, the algorithm guarantees that exactly one choice of values exists for
the selected variables such that the balance edits become satisfied. Different variables
are selected for each record to minimize the effect of the adaptations on published
aggregates.

In general, the obtained solution might contain fractional values, whereas most busi-
ness survey variables are restricted to be integer-valued. If this is the case, a controlled
rounding algorithm could be applied to the values to obtain an integer-valued solu-
tion (see, e.g., Salazar-González et al., 2004). Under certain additional mild conditions,
which appear to be satisfied by most data sets arising in practice, the problem of fractional
values does not occur, however. For details, we refer to Scholtus (2008a,b).
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Rounding errors often occur in combination with other “obvious” systematic errors.
For instance, a sign error might be obscured by the presence of a rounding error. Scholtus
(2008a,b) provides a single mathematical model for detecting sign errors and rounding
errors simultaneously.

6.3. Example of a Fellegi–Holt-based algorithm

In this subsection, we sketch an algorithm based on the Fellegi–Holt paradigm to illus-
trate how such algorithms work. We will first describe the algorithm for numerical data
and later describe how the algorithm can be adapted to categorical data. In Subsec-
tion 6.4, the algorithm is illustrated by means of an example.

The basic idea of the algorithm we describe in this section is that for each record, a
binary tree is constructed. In our case, we use a binary tree to split up the process of
searching for solutions to the error localization problem. We need some terminology
with respect to binary trees before we can explain our algorithm. Following Cormen
et al. (1990), we recursively define a binary tree as a structure on a finite set of nodes
that either contains no nodes or comprises three disjoint sets of nodes: a root node, a
left (binary) subtree, and a right (binary) subtree. If the left subtree is nonempty, its
root node is called the left child node of the root node of the entire tree, which is then
called the parent node of the left child node. Similarly, if the right subtree is nonempty,
its root node is called the right child node of the root node of the entire tree, which
is then called the parent node of the right child node. All nodes except the root node
in a binary tree have exactly one parent node. Each node in a binary tree can have at
most two (nonempty) child nodes. A node in a binary tree that has only empty subtrees
as its child nodes is called a terminal node or also a leaf. A nonleaf node is called
an internal node. In each internal node of the binary tree generated by our algorithm, a
variable is selected that has not yet been selected in any predecessor node. If all variables
have already been selected in a predecessor node, we have reached a terminal node of
the tree.

We first assume that no values are missing. After the selection of a variable, two
branches, that is, subtrees, are constructed; in one branch, we assume that the observed
value of the selected variable is correct, and in the other branch, we assume that the
observed value is incorrect. By constructing a binary tree, we can, in principle, exam-
ine all possible error patterns and search for the best solution to the error localization
problem.

In the branch in which we assume that the observed value is correct, the variable
is fixed to its original value in the set of edits. In the branch in which we assume that
the observed value is incorrect, the selected variable is eliminated from the set of edits.
A variable that has either been fixed or eliminated is said to have been treated (for the
corresponding branch of the tree). To each node in the tree, we have an associated set
of edits for the variables that have not yet been treated in that node. The set of edits
corresponding to the root node of our tree is the original set of edits.

Eliminating a variable is nontrivial, as removing a variable from a set of edits may
imply additional edits for the remaining variables. To illustrate why edits may need to
be generated, we give a very simple example. Suppose we have three variables x1, x2,
and x3, and two edits x1 ≤ x2 and x2 ≤ x3. If we want to eliminate variable x2 from
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these edits, we cannot simply delete this variable and the two edits but have to generate
the new edit x1 ≤ x3 implied by the two old ones for else we could have that x1 > x3

and the original set of edits cannot be satisfied.
To ensure that the original set of edits can be satisfied, Fourier–Motzkin elimination

is used. For inequalities, Fourier–Motzkin elimination basically consists of using the
variable to be eliminated to combine these inequalities pairwise (if possible), as we did
in the above example. If the variable to be eliminated is involved in a balance edit, we
use this equation to express this variable in terms of the other variables and then use
this expression to eliminate the variable from the other edits.

In each branch of the tree, the set of current edits is updated. Updating the set of
current edits is the most important aspect of the algorithm. How the set of edits has to
be updated depends on whether the selected variable is fixed or eliminated. Fixing a
variable to its original value is done by substituting this value in all current edits, failing
as well as nonfailing. Conditional on fixing the selected variable to its original value, the
new set of current edits is a set of implied edits for the remaining variables in the tree.
That is, conditional on the fact that the selected variable has been fixed to its original
value, the remaining variables have to satisfy the new set of edits.As a result of fixing the
selected variable to its original value, some edits may become tautologies, that is, may
become satisfied by definition. An example of a tautology is “1 ≥ 0.” Such a tautology
may, for instance, arise if a variable x has to satisfy the edit x ≥ 0, the original value of
x equals 1, and x is fixed to its original value. These tautologies may be discarded from
the new set of edits. Conversely, some edits may become self-contradicting relations.
An example of a self-contradicting relation is “0 ≥ 1.” If self-contradicting relations are
generated, this particular branch of the binary tree cannot result in a solution to the error
localization problem. Eliminating a variable by means of Fourier–Motzkin elimination
amounts to generating a set of implied edits that do not involve this variable. This set of
implied edits has to be satisfied by the remaining variables. In the generation process,
we need to consider all edits, both the failing edits as well as the nonfailing edits, in
the set of current edits pairwise. The generated set of implied edits plus the edits not
involving the eliminated variable become the set of edits corresponding to the new node
of the tree.

If values are missing in the original record, the corresponding variables only have to
be eliminated from the set of edits (and not fixed).

After all variables have been treated, we are left with a set of relations involving no
unknowns. If and only if this set of relations contains no self-contradicting relations, the
variables that have been eliminated to reach the corresponding terminal node of the tree
can be imputed consistently such that all original edits can be satisfied (cf. Theorems 1
and 2 in De Waal and Quere, 2003). The set of relations involving no unknowns may
be the empty set, in which case it obviously does not contain any self-contradicting
relations. In the algorithm, we check for each terminal node of the tree whether the
variables that have been eliminated to reach this node can be imputed consistently. Of
all the sets of variables that can be imputed consistently, we select the ones with the
lowest sum of reliability weights. In this way, we find all optimal solutions to the error
localization problem (cf. Theorem 3 in De Waal and Quere, 2003).

For categorical data, the algorithm is essentially the same as the above-described
algorithm. The only difference between the algorithms for the two data types is the
way in which variables are eliminated and hence the way in which implied edits are
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generated.As we have mentioned above, when a variable in numerical data is eliminated,
we pairwise apply Fourier–Motzkin elimination. For the case of categorical data, when
a variable is to be eliminated, we apply the method originally proposed by Fellegi and
Holt (1976) to generate implied edits, using the variable to be eliminated as the so-called
generating field.

We again denote the number of variables by n. Furthermore, we denote the domain,
that is, the set of all allowed values of a variable i, by Di. In the case of categorical data,
an edit j is usually written in so-called normal form, that is, as a collection of sets F

j

i

(i = 1, 2, . . . , n):

(F
j

1 , F
j

2 , . . . , Fj
n), (8)

meaning that if for a record with values (v1, v2, . . . , vn) we have vi ∈ F
j

i for all i =
1, 2, . . . , n, then the record fails edit j, otherwise the record satisfies edit j. For instance,
suppose we have three variables: Marital status, Age, and Relation to head of household.
The possible values of Marital status are Married, Unmarried, Divorced, and Widowed,
of Age are “less than 16 years” and “16 years or older,” and of Relation to head of
household are Spouse, Child, and Other. The edit that someone who is less than 16
years cannot be married can be written in normal form as

({Married}, {less than 16 years}, {Spouse, Child, Other}). (9)

The edit that someone who is not married cannot be the spouse of the head of household
can be written as

({Unmarried, Divorced, Widowed}, {less than 16 years, 16 years or older}, {Spouse}).
(10)

Note that whereas for numerical data, an edit is satisfied if a certain condition is
fulfilled, for categorical data, an edit is violated if a certain condition is fulfilled. We
assume that all edits are written in the form (8). We call a categorical variable i involved
in an edit given by (8) if F

j

i �= Di.
Now, if we eliminate a variable vr, we start by determining all index sets S such that⋃
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and ⋂
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i �= ∅ for all i = 1, . . . , r − 1, r + 1, . . . , n. (12)

From these index sets, we select the minimal ones, that is, the index sets S that obey
(11) and (12), but none of their proper subsets obey (11).

Given such a minimal index set S, we construct the implied edit⎛⎝⋂
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For example, if we eliminate variable Marital status from the edits (9) and (10), we
obtain the implied edit

({Married, Unmarried, Divorced, Widowed}, {less than 16 years}, {Spouse}),
which expresses that someone who is less than 16 years of age cannot be the spouse of
the head of household.

Note that variable vr is not involved in the edit (13). By adding the implied edits
resulting from all minimal sets S to the set of edits and removing all edits involving the
eliminated variable, one obtains the updated set of current edits.

The algorithms for numerical and categorical data can be combined into a single
algorithm for numerical and categorical data (see De Waal and Quere, 2003). That
algorithm can be further extended to deal with integer-valued data in a heuristic manner
(see De Waal, 2005).

6.4. Illustration of the Fellegi–Holt-based algorithm

In this subsection, we illustrate the algorithm for numerical data described in Subsec-
tion 6.3 by means of an example. Suppose the explicit edits are given by

T = P + C (14)

P ≤ 0.5T (15)

−0.1T ≤ P (16)

T ≥ 0 (17)

T ≤ 550N, (18)

where T denotes the turnover of an enterprise, P its profit, C its costs, and N the num-
ber of employees. Let us consider a specific erroneous record with values T = 100,
P = 40,000, C = 60,000, and N = 5. Edits (16)–(18) are satisfied, whereas edits (14)
and (15) are violated. The reliability weights of the variables T , P , and C equal 1, and
the reliability weight of variable N equals 2. As edits (14) and (15) are violated, the
record contains errors.

We select a variable, say T , and construct two branches: one where T is eliminated
and one where T is fixed to its original value. We consider the first branch and eliminate
T from the set of edits. We obtain the following edits.

P ≤ 0.5(P + C) (19)

−0.1(P + C) ≤ P (20)

P + C ≥ 0 (21)

P + C ≤ 550N. (22)

Edits (19)–(21) are satisfied, edit (22) is violated. Because edit (22) is violated,
changing T is not a solution to the error localization problem. If we were to continue
examining the branch where T is eliminated by eliminating and fixing more variables,
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we would find that the best solution in this branch has an objective value (5) equal to 3.
We now consider the other branch where T is fixed to its original value. We fill in the
original value of T in edits (14)–(18) and obtain (after removing any tautology that
might arise) the following edits:

100 = P + C (23)

P ≤ 50 (24)

−10 ≤ P (25)

100 ≤ 550N. (26)

Edits (25) and (26) are satisfied, and edits (23) and (24) are violated. We select another
variable, say P , and again construct two branches: one where P is eliminated and one
where P is fixed to its original value. Here, we only examine the former branch and
obtain the following edits (again after removing any tautology that might arise):

100 − C ≤ 50

−10 ≤ 100 − C (27)

100 ≤ 550N (28)

Only edit (27) is violated. We select variable C and again construct two branches:
one where C is eliminated and another where C is fixed to its original value. We only
examine the former branch and obtain edit (28) as the only implied edit. As this edit
is satisfied by the original value of N, changing P and C is a solution to the error
localization problem. By examining all branches of the tree, including the ones that we
have skipped here, we find that this is the only optimal solution to this record.

7. Macro-editing

7.1. Introduction to macro-editing

Thus far, we have examined micro-editing methods, that is, methods that use the data of a
single record and related auxiliary information to check and correct it. In this section, we
examine macro-editing methods. Macro-editing techniques often examine the potential
impact on survey estimates to identify suspicious data in individual records. Macro-
editing can lead to the detection of errors that would go unnoticed with selective editing
or automatic editing. Micro-editing and macro-editing are complementary. Errors that
are apparent from one point of view may not be apparent from the other. For instance,
micro-editing may reveal more errors than macro-editing, but macro-editing may trace
bigger, more influential errors.

Macro-editing can be seen as a form of selective editing. A major difference between
macro-editing and selective editing is the moment at which they are applied in the
SDE process. Whereas selective editing can be used early in the SDE process while a
substantial part of the data to be edited may still be collected, macro-editing is used at the
end of the SDE process when (most of) the data have already been collected. This allows
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a different approach. Whereas selective editing basically treats each record to be edited
separately, macro-editing treats the data set to be edited as a whole. Selective editing
checks whether each record to be edited is plausible; macro-editing checks whether the
data set as a whole is plausible.

We distinguish between two forms of macro-editing. The first form is called the
aggregation method (see, e.g., Granquist, 1990, 1995). It formalizes and systematizes
what every statistical agency does before publication: verifying whether figures to be
published seem plausible. This is accomplished by comparing quantities in publica-
tion tables with the same quantities in previous publications, with quantities based on
register data, or with related quantities from other sources. Examples of this form of
macro-editing are the foreign trade surveys of the Netherlands (see Van de Pol and
Diederen, 1996) and Canada (see Laflamme et al., 1996). Only if an unusual quantity is
observed, a micro-editing procedure is applied to the individual records and fields con-
tributing to this quantity. An unusual quantity may, for instance, be detected by checking
whether ∣∣∣∣∣Y − Ŷ

Ŷ

∣∣∣∣∣ > p/100, (29)

where Y denotes a publication figure to be checked, Ŷ an “anticipated” value for this
publication figure, and p a certain percentage. If (29) holds true, that is, if Y deviates
more than p% from its anticipated value, the microdata underlying the publication figure
Y are subjected to a micro-editing procedure.

Generally, in software packages for macro-editing (see also Chapter 13), the influ-
ence of individual observations on population figures is estimated. Starting from the
most influential observation, individual data can be interactively checked and corrected,
raising weights can be adjusted, or records can be removed all together. The interac-
tive editing process terminates when further corrections have a negligible effect on the
estimated population figures. The impact of such changes to the data on estimates of
publication figures can be monitored by re-estimating the publication figures each time
a change has been made.

A second form of macro-editing is the distribution method. Here, the available data,
either the data set to be edited or a reference data set, are used to characterize the distri-
bution of the variables. Next, all individual values are compared with this distribution.
Typically, measures of location and spread are computed. Records containing values
that could be considered uncommon (given the distribution) are candidates for further
inspection and possibly for correction. The distribution method is examined in more
detail in Subsection 7.2.

7.2. Exploratory data analysis and related techniques

There is an area in statistics providing all kinds of techniques for analyzing the distri-
bution of variables, namely exploratory data analysis (EDA) (see, e.g., Tukey, 1977).
Many EDA techniques can be applied in macro-editing. Advocates of EDA stress the
importance of the use of graphical techniques (see, e.g. Chambers et al., 1983). These
techniques can provide much more insight in the behavior of variables than numerical
techniques do. Graphs of the distribution of the data show a lot of information and often
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are capable of showing unexpected properties that would not have been discovered if
just numerical quantities were computed.

The application of EDA techniques for data editing has been the subject of a num-
ber of papers. DesJardins (1997) gives a description of how several EDA techniques
can be used during the data editing stage. The techniques range from traditional EDA
techniques, such as boxplots and scatterplots, to more advanced techniques, such as
so-called 6D-plots and “industry plots.” Industry plots have been devised by Des-
Jardins to present a comprehensive overview of an entire survey in a single graph.
An industry plot attempts to depict the multivariate relation between the key vari-
ables of each individual company. In such an industry plot, the “normal” companies
are clustered around the center point of the plot, whereas outlying companies lie far
from the center point. Once an industry plot has been designed, it is a powerful tool
to quickly detect outliers. However, designing an industry plot seems a nontrivial task.
Another drawback of industry plots is that they have to be redesigned for each type of
survey.

Bienas et al. (1997) describe the application of graphical EDA techniques to iden-
tify potentially incorrect data in two different surveys. The EDA techniques that were
applied were boxplots, scatterplots, and bivariate fitting. Transformations, such as
taking logarithms, were applied to the data to discern patterns more easily. The fit-
ting methods that were applied were ordinary least squares and resistant regression,
which reduces the influence of outlying cases on the fit of the regression model.
Ordinary least squares fitting proved very useful when there are only a few unusual
records that can be easily distinguished from the usual records. In the case that
there are relatively many outlying records, resistant fitting proved to be more useful.
Bienas et al. (1997) mention that the EDA approach can be combined with batch-type
micro-editing.

Frequently used techniques in software packages for macro-editing (see also
Chapter 13) are so-called anomaly plots, time series analysis, outlier detection meth-
ods, and the already mentioned EDA techniques such as boxplots and scatterplots.
Anomaly plots are graphical overviews of the important estimates, where unusual esti-
mates are highlighted. Once suspicious data have been detected on a macrolevel, in
such an anomaly plot, one can usually drill-down to subpopulations and individual
records. Outlying records can often be identified by means of graphical EDA tech-
niques. In particular, scatterplots comparing the data in the current period to the cor-
responding data in a previous period can often be used. Also, the concept of linked
plots, where an outlier in one plot is automatically also highlighted as outlier in other
plots, helps the analyst to study the behavior of an outlier in one plot in other plots.
Besides graphical EDAtechniques, software packages for macro-editing sometimes also
offer a mathematical (multivariate) outlier detection algorithm for identifying outlying
records.

7.3. Possibilities and pitfalls of macro-editing

One may wonder whether the application of macro-editing approaches will result in
microdata of less statistical quality than would have been obtained after exhaustive
micro-editing. Data users who consider their applications more “micro” than the usual
publication figures of totals and means often have to be convinced that macro-editing
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approaches are not harmful, especially for multivariate micro analysis. A reassuring
point for these users is that so-called microlevel analysis does not actually involve the
inspection of individual records. Multivariate analysis brings along the estimation of
parameters that are always some sort of an aggregate. For instance, the estimation of
output elasticities for energy, labor, and material from annual construction survey data
turned out to differ less than one standard deviation when comparing results after no
data editing, selective data editing, and exhaustive data editing (see Van de Pol and
Bethlehem, 1997).

Another point to convince skeptic data users that application of macro-editing tech-
niques does not lead to a loss of quality is that all methods of data editing, including the
traditional exhaustive micro-editing approach, will leave some errors unnoticed and not
corrected because not all errors are apparent. In case of overediting, some other fields
will be changed without good justification. Data editors are human, which means that
they make errors and miss errors from time to time. This will occur less often when
they have good tools to navigate in the data and to distinguish between important and
unimportant errors. Because multivariate methods often are sensitive to outliers, data
editing methods that trace these outliers, such as macro-editing techniques, should be
welcomed.

Despite these points in favor of macro-editing, changing from an exhaustive micro-
editing approach to a much less exhaustive macro-editing approach is a big step for
many potential users. They have to be convinced that the application of a macro-editing
approach can result in data of sufficiently high-quality. In the words of DesJardins
(1997): “Introducing graphical EDA can be a tough nut.”

Graphical macro-editing certainly offers a lot of possibilities, but unfortunately there
are some problems and pitfalls one should be aware of when applying this approach and
before deciding to develop a software tool for macro-editing.

A limitation of macro-editing, at least in the applications known to us, is that it
is much more suited for editing of economic data than of social data. A drawback of
macroediting is that the time and resources required for editing are hard to predict.
A further drawback is that one needs to wait with the macro-editing process until all or
most of the data have arrived and are ready for processing.

Persons can interpret data that are depicted in several scatterplots simultaneously,
so graphical macro-editing allows one to edit relatively large amounts of data simul-
taneously. There is also a limit, however. It is impossible for (most) human beings to
interpret, say, 10 scatterplots at the same time. For a data set with many important key
variables, graphical macro-editing is usually not the most suitable editing method, unless
applied in combination with other SDE methods.

A very important methodological drawback of the aggregation method is that this
approach involves the risk that records contributing to publication figures that are con-
sidered nonsuspicious still do contain influential errors, errors that were not detected
and corrected. This will lead to biased publication figures. Relying fully on macro-
editing may also prevent publication of unexpected but true changes in trend. Outliers
in one direction may be removed until outliers in the opposite direction cancel out the
unexpected trend.

For more on the possibilities and pitfalls of macro-editing, we refer to De Waal et al.
(2000).
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7.4. Macro-editing versus micro-editing

An advantage of macro-editing in comparison to micro-editing is that micro-editing,
either automatically or interactively, requires edits. Specifying edits, for instance the
bounds of ratio-edits, can be difficult and time-consuming. Of course, one does not
want to specify edits that are too lenient in the sense that influential incorrect data are
not detected. On the other hand, one also does not want to specify edits that are too
severe in the sense that many correct, or only slightly incorrect, records are considered
suspicious because this would result in overediting. So, not having to specify edits
clearly has its benefits.

Although not having to specify edits is one of the advantages of macro-editing, it is
at the same time also a bit dangerous. When edits are specified and the micro-editing
approach is used, it is clear when a record will be considered suspicious. When the macro-
editing approach is used and edits are not specified, it is for a substantial part left to the
subject-matter specialists who do the editing to decide which records are suspicious and
which are not. That is, it will depend on the partly subjective judgment of the subject-
matter specialists how the records are divided into suspicious and nonsuspicious records.

Automatic editing and imputation can be implemented in such a way that the results
can be reproduced, that is, if the same data set is edited and imputed again, the same
results are obtained. This is not the case for interactive editing and macro-editing. The
results of interactive editing and macro-editing are partly subjective, that is, they partly
depend on the specific subject-matter specialist who edits the data. Different subject-
matter specialists, or even the same subject-matter specialist at different moments in
time, may obtain different results.

When the incoming raw data contain many errors, that is, when almost every record
needs correction, micro-editing is more efficient than macro-editing. In that case, the
extra effort to trace erroneous records from a macro point of view should be postponed
until the data set has a reasonably good quality due to micro-editing.

An argument for maintaining some sort of micro-editing is that this is the only way to
make sure that records are internally consistent, that is they satisfy the edits. Also, auto-
matic correction of “obvious” systematic errors should always be done before macro-
editing in our opinion. This form of micro-editing is not costly and can improve the
estimates of aggregates and distributions used in the macro-editing phase.

8. A strategy for statistical data editing

In this section, we propose a strategy for SDE in which we combine the editing
techniques described in the previous sections. We assume that a data set to be edited has
already been collected. Our proposed strategy depends on whether the data are numer-
ical or categorical. We start with our strategy for numerical data. For these data, we
advocate an SDE approach that consists of the following phases:

(1) correction of “obvious” (systematic) errors, such as thousand-errors, sign errors,
interchanged returns and costs, and rounding errors;

(2) application of selective editing to split the records in a critical stream and a
noncritical stream;
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(3) editing of the data: the records in the critical stream are edited interactively, and
the records in the noncritical stream are edited automatically;

(4) validation of the publication figures by means of macro-editing.

The above steps are used at Statistics Netherlands in the production process for
structural business statistics (see De Jong, 2002). The goal of the first phase is to treat
errors that are obviously errors and that once detected are also easy to correct. Typically,
“obvious” systematic errors, such as thousand-errors, are dealt within this phase. The
main goal of the second phase is to select the influential errors. In the third phase,
these errors are treated interactively. Most influential errors will be resolved by the
subject-matter specialists; in some cases, the respondents will be re-contacted. In the
third phase also noninfluential errors are treated. As these errors often occur in a high
number of records, they have to be detected and corrected as efficiently as possible,
both in terms of budget and time. Automatic editing is hence the most often used way
to handle noninfluential errors. The fourth phase, the validation phase, is performed
by subject-matter specialists who use macro-editing to compare the publication figures
based on the edited data to publication figures from a previous year, for instance. In this
final step, the focus is more on the overall results than on the correctness of individual
records. An additional goal of macro-editing is to check whether the SDE process itself
has functioned well.

One could argue that with selective editing, the automatic editing step is superflu-
ous. Personally, we advocate the use of automatic editing, even when selective editing
is used. We mention three reasons. First, the sum of the errors of the records in the
noncritical stream may have an influential effect on the publication figures, even though
each error itself may be noninfluential. This can in particular be the case if the data
contain systematic errors as then a substantial part of the data may be biased in the
same direction. The correction of “obvious” systematic errors evidently leads to data
of higher statistical quality. In addition, provided that the set of edits used is suffi-
ciently powerful, application of the Fellegi-Holt paradigm also generally results in data
of higher statistical quality. Second, many noncritical records will be internally incon-
sistent, that is, they will fail specified edits, if they are not edited, which may lead
to problems when publication figures are calculated or when microdata are released
to external researchers. Finally, automatic editing provides a mechanism to check the
quality of the selective editing procedures. If selective editing is well-designed and well-
implemented, the records that are not selected for interactive editing need no or only
slight adjustments. Records that are substantially changed during the automatic editing
step, therefore, possibly point to an incorrect design or implementation of the selective
editing step.

Phases 2 and 4 of our strategy for numerical data do not, or hardly, apply to categorical
data. For those data, our proposed strategy simply consists of checking and correcting
errors, first obvious ones as in phase 1 and later more complex ones as in phase 3, as
much as possible automatically.

We feel that a combined approach using, if applicable, selective editing, interactive
editing, automatic editing, and macro-editing can improve the efficiency of the tradi-
tional interactive SDE process while at the same time maintaining or even enhancing
the statistical quality of the produced data.
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9. Discussion

In this chapter, we have focused on identifying errors in the data as this has traditionally
been considered the most important aim of SDE in practice. In fact, however, this is
only one of the goals of SDE. Granquist (1995) identifies the following main goals of
SDE:

(1) identify error sources to provide feedback on the entire survey process
(2) provide information about the quality of the incoming and outgoing data
(3) identify and treat influential errors and outliers in individual data
(4) when needed, provide complete and consistent individual data.

During the last few years, the first two goals—providing feedback on the other survey
phases, such as the data collection phase, and providing information on the quality of the
collected data and the final results—have gained in importance. The feedback on other
survey phases can be used to improve those phases and reduce the amount of errors
arising in these phases. The SDE forms part of the entire statistical process at NSIs. A
direction for potential future research is hence the relation between SDE and other steps
of the statistical process, such as data collection (see, e.g., Børke, 2008) and statistical
disclosure control (see Shlomo and De Waal, 2008). In the next few years, the first two
goals of SDE are likely to become even more important.

From our discussion of SDE, the reader may have gotten the feeling that the basic
problems of SDE are fixed and will never change. This is definitely not the case! The
world is rapidly changing and this certainly holds true for SDE. The traditional way of
producing data, by sending out questionnaires to selected respondents or interviewing
selected respondents, and subsequently processing and analyzing the observed data, is
for a substantial part being replaced by making use of already available register data.
This presents us with new problems related to SDE.

First, differences in definitions of the variables and the population units between the
available register data and the desired information have to be resolved before register
data can be used. This can be seen as a special form of SDE. Second, the external register
data may have to be edited themselves. Major differences between editing self-collected
survey data and external register data are that in the former case, one knows, in principle,
all the details regarding the data collection process, whereas in the latter case one does
not, and that in the former case one can recontact respondents as a last resort, whereas in
the latter case this is generally impossible. Another difference is that the use of register
data requires co-operation with other agencies, for instance tax offices. An increased
use of register data seems to be the way of the future for most NSIs. The main challenge
for the near future for SDE is to adapt itself, so we can handle these data efficiently and
effectively.

SDE and imputation are more closely related than space restrictions allow us to
describe in this book. In practice, one often needs a well-balanced selected mix of SDE
and imputation techniques to edit and impute a data set (see, e.g., Pannekoek and De
Waal, 2005). Often in survey and census practice, imputation is carried out to deal
with edit failures. Apart from briefly sketching the basic idea underlying NIM, where
imputations are used to identify erroneous fields, in Section 6, we have not examined
the relation between SDE and imputation any further.
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In this chapter, we have also not examined methods that deal simultaneously with
outliers and missing data in multivariate settings. There is a growing literature on these
methods; we refer the interested reader to Béguin and Hulliger (2004, 2008), Ghosh-
Dastidar and Schafer (2006), Elliott and Stettler (2007), and in particular to the paper by
Little and Smith (1987). For some recent work on outliers in the context of data editing,
we refer to Di Zio et al. (2008). For how to deal with outliers, in general, we refer to
Chapter 11.

In this book, we also do not examine how to impute missing data in such a way
that all specified edits are satisfied. Some recent work has been carried out in this area.
For imputation of categorical data subject to edits, we refer to Winkler (2003) and for
imputation of numerical data subject to edits to Drechsler and Raghunathan (2008),
Pannekoek et al. (2008), and, in particular, Tempelman (2007).
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Imputation and Inference in the Presence of Missing Data

David Haziza

1. Introduction

Nonresponse inevitably occurs in most, if not all, surveys. Essentially, survey statisti-
cians distinguish between two types of nonresponse, total or unit nonresponse and partial
or item nonresponse. Unit nonresponse occurs when all the survey variables are missing
or not enough usable information is available. For example, a sample unit may refuse to
participate in the survey or it may prematurely terminate an interview. In the latter case,
the sample unit is identified as a total nonrespondent even if some information has been
collected because it is judged to be insufficient. Item nonresponse occurs when some but
not all the survey variables have missing values. For example, a sample unit may refuse
to respond to sensitive items or may not know the answer to some items, or missing
values can be the result of edit failures. A comprehensive discussion of statistical data
editing is given in Chapter 9. Unit nonresponse is usually treated by a weight adjustment
procedure. With a weight adjustment procedure, the nonrespondents are deleted and the
survey weights of respondents are adjusted to compensate for the deletions. These pro-
cedures are described in Chapter 8. Imputation is a process where an artificial value is
produced to replace a missing value. Although imputation is sometimes used to handle
unit nonresponse, it is mostly used to compensate for item nonresponse.

The main effects of (unit or item) nonresponse include as follows: (i) bias of point
estimators, (ii) increase of the variance of point estimators (since the observed sample
size is smaller than the sample size initially planned), and (iii) bias of the complete data
variance estimators. The main objective when treating (unit or item) nonresponse is the
reduction of the nonresponse bias, which occurs if respondents and nonrespondents are
different with respect to the survey variables.

Although multiple imputation is gaining in popularity in national statistical institutes,
the vast majority of surveys use some form of single imputation. For this reason, we
mainly focus on single imputation that consists of creating a single imputed value to
replace a missing value resulting in a single complete data file. Multiple imputation
(Rubin, 1987), discussed in Section 10.7, consists of creating M ≥ 2 imputed values to
fill in a missing value resulting in M complete data files.

Single imputation is widely used in surveys for treating item nonresponse because it
presents the following advantages: (i) it leads to the creation of a complete data file, so the
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results of different analyses are consistent with each other and (ii) unlike weight-
ing adjustment for each item, imputation allows for the use of a single survey weight
for all items.

However, imputation presents certain risks, for instance: (i) even though imputation
leads to the creation of a complete data file, inferences are valid only if the underlying
assumptions about the response mechanism and/or the imputation model are satisfied;
(ii) some imputation methods tend to distort the distribution of the variables of inter-
est (i.e., the variables being imputed); (iii) treating the imputed values as if they were
observed may lead to a substantial underestimation of the variance of the estimator,
especially if the item nonresponse rate is appreciable; (iv) imputing for each item sep-
arately has the effect of distorting relationships between variables.

In the absence of nonresponse, survey samplers usually try to avoid using estimation
procedures whose validity depends on the validity of a given model. To avoid assump-
tions on the distribution of the data, the properties of estimators are generally based on
the sampling design. This approach is the so-called design-based approach or random-
ization approach to survey sampling. This does not mean that models are useless under
the design-based approach. In fact, they play an important role in the determination of
efficient sampling and estimation procedures. The use of models is unavoidable in the
presence of nonresponse, and the properties of (point and variance) estimators (e.g.,
bias and variance) will depend on the validity of the assumed models. Consequently,
imputation is essentially a modeling exercise. The quality of the estimates will thus
depend on the availability (at the imputation stage) of good auxiliary information and
on its judicious use in the construction of imputed values and/or imputation classes.

Auxiliary information plays an important role in surveys because it allows the survey
statistician to use more efficient sampling and estimation procedures. Also, it can be
used to reduce nonsampling errors such as nonresponse errors, coverage errors, and
measurement errors. In our discussion, the problem of coverage errors, and measurement
errors is not addressed. We distinguish between three sets of auxiliary variables. The first
is the set of design variables we assume to be available for all the units in the population
at the design stage. The design variables are typically used to stratify the population or
use some form of probability proportional-to-size sampling. The second set of auxiliary
variables is used to construct imputed values and/or imputation classes and is typically
related to the variable being imputed and/or to the response probability to this variable.
In other words, these variables will be useful in reducing the nonresponse bias and
possibly reduce the nonresponse variance. Finally, we assume that, at the estimation
stage, a set of auxiliary variables (often called calibration or benchmark variables) is
available for all the sample units and that the population total for each variable in this
set is known. The calibration variables are usually specified by the data users to ensure
consistency with known totals. Note that the three sets of auxiliary variables are not
necessarily disjoint, so a given auxiliary variable can be used at different stages in a
survey.

2. Context and defnitions

In this section, we begin by introducing the expansion estimator and the generalized
regression (GREG) estimator in the context of complete data and their corresponding
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imputed estimators in Section 2.1. In Section 2.2, we present several important
imputation methods used in practice. The concept of nonresponse mechanism is dis-
cussed in Section 2.3. Finally, two approaches for inference are presented in Section 2.4.

2.1. An imputed estimator

Let U = {1, 2, . . . , N} be a population of N identifiable elements. In this section, we
consider the problem of estimating a population total Y =∑i∈U yi, where yi denotes the
ith value of the variable of interest y, i = 1, . . . , N. To that end, we select a random sam-
ple, s, of size n, according to a given sampling design p (s). Let πi denote the first-order
inclusion probability of unit i in the sample and let di = 1/πi denote its design weight.
We assume that the sampling design is noninformative in the sense that the probability
of inclusion in the sample does not depend on the variable of interest after accounting
for the design variables in the estimation procedure (e.g., see Pfefferman 1993).

In the absence of nonresponse, we consider two complete data estimators of the
population total Y . The first estimator is the well-known expansion estimator given by

Ŷπ =
∑
i∈s

diyi, (1)

for example, see Särndal et al. (1992, Chapter 2). The estimator Ŷπ is a p-unbiased esti-

mator of Y , that is, Ep

(
Ŷπ

)
= Y , where Ep denotes the expectation with respect

to the sampling design p(.). Note that Ŷπ does not use any auxiliary information
apart from the one used in the sampling procedure. To denote a variance estimator of
Ŷπ, it is convenient to use the operator notation. Using this notation, we write

v
(
Ŷπ

)
= v (y). For example, an p-unbiased variance estimator of the design variance,

Vp

(
Ŷπ

)
, is given by

v
(
Ŷπ

)
≡ v (y) =

∑
i∈s

∑
j∈s

(
πij − πiπj

)
πij

yi

πi

yj

πj

,

where πij denotes the second-order inclusion probability for units i and j and Vp denotes
the variance with respect to the sampling design.

Often, some auxiliary information is available at the estimation stage. In this case,
an alternative estimator that incorporates auxiliary information is the GREG estimator
given by

ŶG =
∑
i∈s

wiyi, (2)

where wi = digi and

gi = 1 + c−1
i

(
X − X̂π

)′
(∑

i∈s

dic
−1
i xix′

i

)−1

xi (3)

with X = ∑
i∈U xi, X̂π = ∑

i∈s dixi, xi = (
x1i, . . . , xpi

)′
is a vector of p auxiliary

(calibration) variables and ci denotes a known constant attached to unit i. The GREG
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estimator ŶG is asymptotically p-unbiased for Y . Also, ŶG belongs to the class of
calibration estimators since X̂G = ∑

i∈s wixi = X (Deville and Särndal, 1992). The
ratio estimator and the poststratified estimator are special cases of ŶG. Depending on the
context, we use either Ŷπ or ŶG as prototype estimators (i.e., estimators that we would
have used in the ideal situation of complete response to item y). An asymptotically

p-unbiased estimator of VP

(
ŶG

)
is given by v

(
ŶG

)
= v (ge), where ei = yi − x′

iγ̂ and

γ̂ = (∑i∈s dixix′
i/ci

)−1∑
i∈s dixiyi/ci (e.g., see Särndal, et al., 1992; Chapters 6 and 7).

In the presence of nonresponse to item Y , it is not possible to compute either (1) or
(2) since some y-values are missing. In this case, using ŶG as the prototype estimator,
we define an imputed estimator of the population total Y as

ŶIG =
∑
i∈s

wiriyi +
∑
i∈s

wi (1 − ri) y∗
i ,

(4)

where ri is a response indicator for unit i such that ri = 1 if unit i responded to item
y and ri = 0, otherwise, and y∗

i denotes the imputed value for missing yi whose value
depends on the imputation method used. Note that the imputed estimator (4) is simply
the weighted sum of observed and imputed values in the sample. Thus, its computation
does not require the response indicators ri in the imputed data file. Similarly, if we use
Ŷπ as the prototype estimator, an imputed estimator, denoted by ŶIπ, is obtained from (4)
by replacing wi with di. Finally, let sr and sm denote the random sets of respondents and
nonrespondents, respectively. We have s = sr ∪ sm. Under complete response to item
y (i.e., sr = s), note that both imputed estimators ŶIπ and ŶIG reduce to the prototype
estimators, Ŷπ and ŶG, respectively.

2.2. Imputation methods

Imputation methods may be classified into two broad classes: deterministic and random
(or stochastic). Deterministic methods are those that yield a fixed imputed value given the
sample if the imputation process is repeated as opposed to random methods that do not
necessarily yield the same imputed value. Most of the imputation methods (deterministic
and random) used in practice can be represented as a special case of the following model
(Kalton and Kasprzyk, 1986):

yi = f (zi) + εi,

Em (εi) = 0, Covm

(
εi, εj

) = 0 if i �= j, Vm (εi) = σ2
i = σ2ν (zi) (5)

where z = (z1, . . . , zq)
′ is a vector of auxiliary variables available at the imputation

stage for all the sampled units,f(.) is a given function,σ2 is an unknown parameter, ν(.) is
a known function, and Em, Vm, and Covm denote, respectively, the expectation, the vari-
ance, and the covariance operators with respect to the model (5). Note that the imputation
model (5) is used to motivate the particular imputation used. In the case of deterministic
imputation, the imputed value y∗

i is obtained by estimating f(z) by f̂r(z) based on the
responding units, i ∈ sr; that is, y∗

i = f̂r(zi) for i ∈ sm. Random imputation can be seen as
a deterministic imputation plus a random noise ε∗; that is, y∗

i = f̂r(zi) + σ̂iε
∗
i for i ∈ sm,

where σ̂i is an estimator of σi. It is natural to select (usually with replacement) the
random component ε∗

i from the set, Er = {
ej; j ∈ sr

}
, of standardized residuals
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observed from the responding units, where ej = 1
σ̂j

[
yj − f̂

(
zj

)] − ēr and ēr is the

weighted mean of the ej’s for the respondents. Commonly used deterministic meth-
ods include regression imputation (REGI), ratio imputation (RAI), mean imputation
(MI), auxiliary value imputation (AVI), and nearest neighbor imputation (NNI). These
methods are described in Section 2.2.1. Except for NNI, deterministic methods tend
to distort the distribution of the variables being imputed. Commonly used random
imputation methods include random REGI and random hot-deck imputation (RHDI).
These methods are described in Section 2.2.2. Random imputation methods tend to
preserve the distribution of the variable being imputed (Chen et al., 2000) but they suf-
fer from an additional component of variance due to the use of a random imputation
mechanism.

An alternative classification of the imputation methods consists of distinguishing the
donor imputation methods and the predicted value imputation methods. In the case of
donor imputation methods, the nonrespondent (recipient) missing values are replaced by
the values of a respondent (donor). Therefore, the imputed values are actual, observed
data. Donor imputation is convenient when it is desired to impute more than one variable
at a time since a unique donor can be used to impute all missing values of a given non-
respondent while satisfying postimputation edit constraints specified by subject-matter
specialists. This feature help preserve relationships between survey variables, contrary
to independently imputing each variable. Satisfying edit constraints is a desirable goal
when a public-use microdata file is produced since it ensures that no gross error will
remain in the imputed survey data file. The NNI and the RHDI are examples of donor
imputation methods. Predicted value imputation uses the value obtained from fitting
a model using the respondent values. These methods do not yield observed values, in
general, which could lead to awkward imputed values, for example, when the variable
being imputed is binary. Both deterministic and random REGI are examples of predicted
value imputation. The reader is referred to Kovar and Whitridge (1995) for a discussion
of imputation methods in business surveys.

2.2.1. Some deterministic imputation methods
Commonly used deterministic imputation methods include the following:

(i) REGI: It consists of using a regression model to predict the missing values.
In this case, we have f (zi) = z′

iβ and ν (zi) = λ′zi for a specified vector of
constants λ. It follows that the imputed values are given by

y∗
i = z′

iB̂r, i ∈ sm, (6)

where

B̂r =
(∑

i∈s

ωiriziz′
i/
(
λ′zi

))−1∑
i∈s

ωiriziyi/
(
λ′zi

)
(7)

is the weighted least square estimator of β based on the responding units and ωi

is a weight attached to unit i. A special case of REGI is simple linear regression
imputation (SLRI), which is obtained when zi = (1, zi) and ν (zi) = 1. As we
argue in Section 3.3.1, several options for ωi are available. When ωi = di, we
are in presence of survey weighted deterministic REGI, whereas the choice
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ωi = 1 leads to unweighted deterministic REGI. Other weighting alternatives
are possible depending on the approach used for inference (see section 3.3.1).

(ii) RAI: It is a special case of REGI that uses a single auxiliary variable. In this
case, we have f (zi) = βzi and ν (zi) = zi. It follows that the imputed values
are given by

y∗
i = ȳr

z̄r

zi, i ∈ sm, (8)

where (ȳr, z̄r) = 1∑
i∈s ωiri

∑
i∈s ωiri (yi, zi) are the means of the respondents for

variables y and z respectively. Note that RAI assumes that the relationship
between the variable of interest y and the auxiliary variable z goes through the
origin.

(iii) MI: It is another special case of REGI for which zi = 1 for all i ∈ s, f (zi) = β,
and ν (zi) = 1. It follows that the imputed values are given by

y∗
i = ȳr, i ∈ sm. (9)

(iv) NNI: It is a nonparametric imputation method. Hence, we do not attempt to
specify the form of f (zi) nor the function ν (zi). We have

y∗
i = yj such that dist

(
zi, zj

)
is minimum, j ∈ sr, (10)

where dist (., .) is a distance measure to be determined (e.g., the Euclidean
distance). It is assumed that the auxiliary variables in the vector z are all quan-
titative and have been standardized so that they are on the same scale. For
example, this could be done either by subtracting the mean and dividing by the
standard deviation for each auxiliary variable or by replacing the values of each
auxiliary variable by their ranks.

(v) AVI: For a given nonresponding unit i ∈ sm, AVI consists of replacing the
missing value of a variable of interest y using only reported values coming
from this unit i but using other auxiliary variables. Therefore, a unit with a
missing y-value is never imputed using reported y-values of other units when
AVI is used. A special case of this imputation method is historical imputation
(sometimes called carry-forward imputation), which is particularly useful in
repeated economic surveys for variables that tend to be stable over time (e.g.,
number of employees). Under AVI, the imputed values are given by

y∗
i = zi. (11)

AVI can be seen as a special case of the imputation model (5) with f (zi) = zi.

2.2.2. Some random imputation methods
Commonly used stochastic imputation methods include the following:

(i) Random REGI: It is closely related to deterministic REGI (6) except that a
random noise is added to the prediction. It follows that the imputed values are
given by

y∗
i = z′

iB̂r + (λ′zi

)1/2
ε∗
i , (12)
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where ε∗
i = ej with probability ωj

/∑
l∈s

ωlrl and ej = (
λ′zj

)−1/2
(
yj − z′

jB̂r

)
−ēr

with ēr =
∑
j∈s

ωjrjej∑
j∈s

ωjrj
.

(ii) RHDI: It is a special case of random REGI with zi = 1 for all i ∈ s and ν (zi) = 1.
RHDI consists in selecting donor values with replacement from the set of respon-
dents sr with probabilities ωj/

∑
l∈sr

ωl to replace missing values. That is,

y∗
i = yj with P

(
y∗

i = yj

) = ωj∑
l∈s ωlrl

, j ∈ sr. (13)

RHDI can be seen as weighted MI plus a random noise; that is, y∗
i = ȳr + ε∗

i ,
where ε∗

i = ej with probability ωj∑
l∈s

ωlrl
and ej = (yj − ȳr

)− ēr.

2.3. The nonresponse mechanism

The situation in the presence of nonresponse is similar to the one prevailing in the pres-
ence of two-phase sampling, which is often used in surveys when the sampling frame
contains little or no auxiliary information. In the context of two-phase sampling, the sur-
vey statistician knows the inclusion probabilities to both phases, which makes it possible
to construct p-unbiased estimators of population totals. In the presence of nonresponse
to item y, the set of respondents can be viewed as a second phase sample, except that
the inclusion probabilities in the set of respondents are unknown. In this context, these
inclusion probabilities are called response probabilities and will be denoted by pi. Note
that pi may depend on the realized sample s. Since the pi’s are typically unknown, we
must make some assumptions about the nonresponse mechanism, which we define next.

Let I = (I1, . . . , IN)′ be the vector of sample selection indicators, where Ii = 1 if
unit i is selected in the sample and Ii = 0, otherwise, and r = (r1, . . . , rN)′ be the vector
of response indicators to item y. The distribution of r, q (r|I), is called the nonresponse
mechanism and is generally unknown (except in the case of planned nonresponse). Let
pi = P (ri = 1|s, i ∈ s) be the response probability of unit i to item y. We assume that
pi > 0 for all i, which may not be realistic in most surveys because a fraction of sampled
units are hard core nonrespondents (Kott, 1994). Also, we assume that the units respond
independently of one another; that is, pij = P

(
ri = 1, rj = 1|s, i ∈ s, j ∈ s, i �= j

) =
pipj . The assumption of independence is usually satisfied in practice although it is easy
to come up with situations where it is not satisfied. For example, in cluster sampling, the
units within clusters (e.g., households) may not respond independently of one another.

The causes leading to missing values are numerous. For example, a value could be
missing because of edit failure or because the unit refused to respond. In this case, we
clearly have two distinct nonresponse mechanisms. However, trying to describe all the
possible reasons that lead tomissingvalues ispracticallyunrealistic (SchaferandGraham,
2002). In the remainder of this chapter, we will thus refer to the nonresponse mechanism.

The simplest type of nonresponse mechanism is the uniform nonresponse mechanism
for which the response probability is constant for all the units in the population. That
is, pi = p for all i. In this case, the probability of response is independent of all the
variables available (auxiliary variables and variables of interest). When the nonresponse
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mechanism is uniform, we say that the data are missing completely at random (MCAR)
(Rubin, 1976). This mechanism is, in general, not realistic in most practical applications.
However, it is customary to assume uniform response within imputation classes (see
Section 5).

We now discuss the notion of ignorability of the nonresponse mechanism, which is
always defined with respect to an imputation model (Rubin, 1976). Let z be the vector
of auxiliary variables selected in the imputation model. The nonresponse mechanism
is ignorable if the probability of response, pi, is independent of the error term εi in
the imputation model. That is, it is ignorable if after accounting for z in the imputation
procedure, the response probability does not depend on the error term. Note that the
response probability may depend on the error term when both the response probability
and the error term are related to z but there must be no residual relationship between the
probability of response and the error term after accounting for z. Otherwise, the nonre-
sponse mechanism is nonignorable. When the nonresponse mechanism is ignorable, the
data are said to be missing at random (MAR), whereas when it is nonignorable, the data
are said to be not missing at random (NMAR). Note that a uniform nonresponse mech-
anism is automatically ignorable. It is possible to eliminate the nonresponse bias when
the nonresponse mechanism is ignorable. When the probability of response depends
on the variable of interest (and so the nonresponse mechanism is automatically non-
ignorable), the estimators will remain biased even after accounting for the appropriate
auxiliary information but we expect to achieve a good bias reduction if the auxiliary
variables are highly related to the variable being imputed. In practice, the ignorability
of the nonresponse mechanism is assumed because it is generally impossible to test
whether we are in presence of ignorable or nonignorable response except in the context
of planned nonresponse. In the majority of surveys, we can expect that the nonresponse
is nonignorable, and so a nonresponse bias is generally unavoidable. In this case, it is
important to make a serious modeling exercise to build a reasonable model that will help
reduce the nonresponse bias. Estimation in the presence of a nonignorable nonresponse
mechanism has been considered by Greenlees et al. (1982), Beaumont (2000), and Qin
et al. (2002) among others.

To illustrate the concept of ignorability, consider the case of a scalar z and suppose
that the probability of response depends on the variable z. If the variable of interest
y is related to z (so the error term depends on z), then the nonresponse mechanism
is ignorable if z is used in the imputation procedure (by using, e.g., SLRI or RAI);
otherwise, the nonresponse mechanism is nonignorable. If the variable z is not related
to y (so the error term does not depend on z), then there is no need to include z in the
imputation model.

2.4. Approaches to inference

Different approaches may be used for evaluating the quality (e.g., bias and variance)
of the imputed estimator and to derive corresponding variance estimators. To under-
stand the nature of these approaches, we first identify three sources of randomness:
(i) the imputation model m, which generates the vector of y-values, y = (y1, . . . , yN)′;
(ii) the sampling design p (s), which generates the vector of sample selection indica-
tors, I = (I1, . . . , IN)′, and (iii) the nonresponse mechanism q (r|I), which generates
the vector of response indicators, r = (r1, . . . , rN)′. Different combinations of these
distributions may be used to assess the properties of an estimator. Next, we describe
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two such combinations that will lead to the nonresponse model (NM) approach and the
imputation model (IM) approach.

2.4.1. The nonresponse model approach
In the NM approach, explicit assumptions, called the nonresponse model, about the
nonresponse mechanism are made. We assume that the probability of response pi, for
unit i, is linked to an l-vector of auxiliary variables ui according to a model pi = f

(
u′

iη
)
,

where η is the l-vector of model parameters. A frequently used model is the logistic
regression model given by

pi = exp
(
u′

iη
)
/exp

(
1 + u′

iη
)
. (14)

Letting ui = 1 for all i in (14) leads to the uniform nonresponse model (UNM), under
which the response probability is assumed to be constant for all i. In the NM approach,
inference is made with respect to the joint distribution induced by the sampling design
and the assumed nonresponse model, whereas the vector of y-values, y, is treated as
fixed. The NM approach has been studied by Beaumont (2005), Haziza and Rao (2006),
Kim and Park (2006), Rao (1990, 1996), Rao and Sitter (1995), and Shao and Steel
(1999) among others.

2.4.2. The imputation model approach
In the IM approach, explicit assumptions about the distributions of the values of the
variables of interest are made. Here, inference is with respect to the joint distribution
induced by the imputation model, the sampling design, and the nonresponse model.
Unlike the NM approach, the underlying nonresponse mechanism is not explicitly spec-
ified, except for the MAR assumption. The IM approach has been studied by Brick et al.
(2004), Deville and Särndal (1994), Särndal (1992), and Shao and Steel (1999), among
others. Under both deterministic and random REGI, the model (5) with f (zi) = z′

iβ

and ν (zi) = λ′zi is assumed.

2.4.3. Which approach to use?
Recall that imputation is primarily used to reduce the nonresponse bias, assuming that
some auxiliary information can explain the item to be imputed and/or the response prob-
ability. Hence, the choice between modeling the response probability and modeling the
item of interest should be dictated by the quality of the nonresponse and imputation mod-
els. Although it may seem intuitively more appealing to model the variable of interest
(IM approach), there are some cases encountered in practice for which it may be easier
to model the response probability to item y (NM approach). For example, Haziza and
Rao (2006) reported the case of the Capital Expenditure Survey conducted at Statistics
Canada that produces data on investment made in Canada. For this survey, two important
variables of interest are capital expenditures on new construction (CC) and capital expen-
ditures on new machinery and new equipment (CM). In a given year, a large number of
businesses have not invested any amount of money on new construction or new machin-
ery. As a result, the sample data file contains a large number of zeros for the two vari-
ables CC and CM. Modeling these two variables may thus prove to be difficult, whereas
modeling the response probabilities may be simpler if auxiliary information related to
the response probability to CC an CM is available. For example, a logistic regression
model could be fitted with the response indicator to CC (CM) as the dependent variable.
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3. Bias of the imputed estimator

In Section 2.1, we noted that the complete data estimator ŶG given by (2) is asymp-
totically p-unbiased for the population total Y . What can we say about the imputed
estimator ŶIG given by (4)? To study its properties, we use the standard decomposition
of the total error, ŶIG − Y , as a starting point:

ŶIG − Y =
(
ŶG − Y

)
+
(
ŶIG − ŶG

)
. (15)

The term ŶG − Y in (15) is called the sampling error, whereas the term ŶIG − ŶG is
called the nonresponse error. In practice, it is impossible to measure the magnitude of
the nonresponse bias (before and after imputation). It is customary to assume that, after
the data has been imputed, the nonresponse bias is small and can be neglected. This
assumption is only tenable if the nonresponse mechanism is ignorable with respect to
the imputation model.

3.1. Nonresponse bias under the NM approach

Using (15), the bias of the imputed estimator ŶI under deterministic imputation can be
expressed as

Bias
(
ŶIG

)
= Epq

(
ŶIG − Y |I

)
≈ EpBq

(
ŶIG|I

)
, (16)

where Bq

(
ŶIG|I

)
= Eq

(
ŶIG − ŶG|I

)
is the conditional nonresponse bias under the NM

approach. Hence, the imputed estimator ŶIG is asymptotically pq-unbiased if Bq

(
ŶIG|I

)
is asymptotically equal to zero for any sample s. This condition is satisfied if the non-
response mechanism is ignorable with respect to the assumed imputation model. In the
case of random imputation, we need to take the imputation mechanism (which consists
of randomly selecting the residuals) into account. In this case, the bias of the imputed
estimator ŶIG can be expressed as

Bias
(
ŶIG

)
= EpqI

(
ŶIG − Y |I

)
≈ EpBqI

(
ŶIG|I

)
, (17)

where the subscript I denotes the imputation mechanism and BqI

(
ŶIG|I

)
= EqI

(
ŶIG−

ŶG|I
)

.

3.2. Nonresponse bias under the IM approach

Using (15), the bias of the imputed estimator ŶIG under deterministic imputation can be
expressed as

Bias
(
ŶIG

)
= Empq

(
ŶIG − Y

)
= Epqm

(
ŶIG − Y |I, r

)
= EpqBm

(
ŶIG|I, r

)
, (18)
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where Bm

(
ŶIG|I, r

)
= Em

(
ŶIG − ŶG|I, r

)
is the conditional nonresponse bias under

the IM approach. Hence, the imputed estimator ŶIG is asymptotically mpq-unbiased if

Bm

(
ŶIG|I, r

)
is equal to zero for any sample s. Note that the second equality in (18)

follows from the fact that the sampling design is assumed to be noninformative and the
nonresponse mechanism ignorable. In the case of random imputation, the bias of the
imputed estimator ŶIG can be expressed as

Bias
(
ŶIG

)
= EmpqI

(
ŶIG − Y |I, r

)
≈ EpqBmI

(
ŶIG|I, r

)
, (19)

where BmI

(
ŶIG|I, r

)
= EmI

(
ŶIG − ŶG|I, r

)
.

3.3. The bias in some special cases

The bias of imputed estimator under REGI, AVI, and NNI is addressed in this section.

3.3.1. Regression imputation
As we mentioned in Section 2.2.1, there are several valid choices of the weights ωi.
Here, we consider three options: (i) the option ωi = 1, which lead to unweighted impu-
tation; (ii) the option ωi = di, which leads to the customary survey weighted imputation,
and (iii) the option ωi = di

1−p̂i

p̂i
≡ d̃i, where p̂i denotes the estimated response prob-

ability to item y for unit i. Note that the estimated probabilities may be obtained by
fitting a parametric (e.g., logistic) regression model or by using a nonparametric non-
response model, which is typically weakly dependent on modeling assumptions (Da
Silva and Opsomer, 2006; Little and An, 2004). The third option for ωi was studied
by Beaumont (2005), Kim and Park (2006), and Haziza and Rao (2006). A question
at this point is: what choice of weight ωi is more adequate? The answer to this ques-
tion is far from obvious and partly depends on the approach (NM or IM) used for
inference.

Consider the imputed estimator ŶIG given by (4) under deterministic REGI for which
the imputed values are given by (6). Under the choice ωi = 1, it is easy to show that

under the IM approach, we have Bm

(
ŶIG|I, r

)
= 0 if the imputation model is correctly

specified. As a result, the imputed estimator ŶIG is asymptotically mpq-unbiased for Y .
In other words, if we are willing to put complete reliance on the imputation model, the
use of the design weights di in the construction of the imputed values is not justified.
However, under the NM approach, the imputed estimator ŶIG is generally asymptotically
pq-biased under the choice ωi = 1. In this case, the asymptotic conditional bias of ŶIG

is given by

Bq

(
ŶIG|I

)
≈ −

∑
i∈s

wi (1 − pi)
(
yi − z′

iB̂
(1)
p

)
, (20)

which is not equal to zero, in general, where B̂(1)
p = (∑

i∈s piziz′
i/
(
λ′zi

))−1∑
i∈s piziyi/

(
λ′zi

)
. Note that even when pi = p (UNM approach), the bias (20) does
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not vanish. Therefore, although the choice ωi = 1 leads to a valid imputed estimator
under the IM approach, it cannot generally be justified under the NM approach.

We now consider the option ωi = di. It can be shown that under the IM approach, the

conditional nonresponse bias, Bm

(
ŶIG|I, r

)
, is equal to zero if the imputation is correctly

specified. On the other hand, under the UNM approach, the conditional nonresponse bias,

Bq

(
ŶIG|I

)
, is also asymptotically equal to zero if the units actually have equal response

probabilities. As a result, the imputed estimator ŶIG is asymptotically mpq-unbiased
and pq-unbiased (under the UNM approach) for Y . However, under a general NM
approach (i.e., the pi’s may vary from one unit to another), the imputed estimator ŶIG

is asymptotically pq-biased. Thus, the imputed values (6) using ωi = di are generally
inadequate under the NM approach. In fact, the asymptotic conditional nonresponse
bias of ŶIG is given by

Bq

(
ŶIG|I

)
≈ −

∑
i∈s

wi(1 − pi)
(
yi − z′

iB̂
(d)
p

)
, (21)

where B̂(d)
p = (∑i∈s dipiziz′

i/
(
λ′zi

))−1∑
i∈s dipiziyi/

(
λ′zi

)
. The bias (21) vanishes

when pi = p (UNM approach), as expected. What choice of weights ωi will lead to
an imputed estimator that is valid under either the IM approach or the NM approach?
One such option is ωi = d̃i, where it can be shown that the imputed estimator ŶIG is
asymptotically unbiased under either the IM approach if the imputation is correctly
specified or the NM approach if the nonresponse model is correctly specified. In this
case, the imputed estimator is said to be doubly robust in the sense that it can be justi-
fied from either approach if at least one of the models (imputation or nonresponse) is
correctly specified. When p̂i = p̂, note that the imputed values obtained using the option
ωi = di are identical to those obtained using the option ωi = d̃i.

The double robustness property is attractive in practice because it provides some
protection against the misspecification of one model or the other. However, if we put
complete reliance on the imputation model (IM approach), the option ωi = 1 is generally
more efficient than the other two options, especially if the design weights di are not
significantly correlated with the variable being imputed and are widely dispersed. This
situation occurs frequently in household surveys. This point is illustrated in a simulation
study in Section 3.4.1. Doubly robust inference is discussed in Haziza and Rao (2006),
Kang and Schafer (2008), Kott (1994), Little andAn (2004), Robins et al. (2008), among
others.

Finally, note that from a bias perspective, the results under random REGI, for which
the imputed values are given by (12), are identical to those obtained under deterministic
REGI since EI

(
ε∗
i |I, r

) = 0.

3.3.2. Auxiliary value imputation
The AVI is motivated by the model (5) with f (zi) = zi. This imputation model is some-
what restrictive because it assumes that the intercept goes through the origin and that the
slope is equal to 1. Under the IM approach, the imputed estimator ŶIG is mpq-unbiased
for Y . However, under the NM approach, the conditional nonresponse bias is given

by Bq

(
ŶIG|I

)
= −∑i∈s wi(1 − pi)(yi − zi), which is not equal to zero, in general.
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Therefore, the imputed estimator ŶIG under AVI is pq-biased. For more details on AVI,
the reader is referred to Shao (2000) and Beaumont et al. (2007).

3.3.3. Nearest neighbor imputation
The NNI is motivated by the model (5). Chen and Shao, 2000 considered the special
case of a scalar z. They showed that, under some mild regularity conditions, the imputed
estimator ŶIπ is asymptotically mpq-unbiased for Y . The main advantage of NNI is that
the functions f(.) and ν(.) do not need to be specified explicitly in order for the imputed
estimator to be asymptotically unbiased. The reader is also referred to Rancourt et al.
(1994).

3.4. Some numerical examples

In this section, we perform two simulation studies. The first investigates on the perfor-
mance of imputed estimators (in terms of relative bias and mean square error) under
both unweighted and weighted RHDI, whereas the second illustrates the importance of
performing a complete modeling exercise before choosing an imputation method.

3.4.1. Simulation study 1
We generated a finite population of size N = 1000 with three variables: two variables
of interest y1 and y2 and an auxiliary variable ψ. To do so, we first generated ψ from a
gamma distribution with shape parameter α0 = 1 and scale parameter α1 = 50. Then,
the y1-values were generated according to the model, y1i = 2ψi + εi, where the εi’s
are generated from a normal distribution with mean 0 and variance σ2. The variance
σ2 was chosen to lead to a model R2-value approximately equal to 0.64. Finally, the
variable y2 was generated independently of y1 and ψ from a gamma distribution with
shape parameter α0 = 2 and scale parameter α1 = 50. The objective is to estimate the
population totals Yj =∑i∈U yji, j = 1, 2.

From U, we generated R = 25, 000 samples of size n = 50 according to the Rao–
Sampford proportional-to-size sampling procedure (Rao, 1965; Sampford, 1967), using
ψ as the measure of size. In this case, the inclusion probability of unit i in the sample is
defined as πi = n

ψi∑
i∈U ψi

. Note that the coefficient of variation of the ψ-values, CV(ψ),
was set to 1.2, which may be considered as high. Under the Rao–Sampford design, we
have CV(ψ) = CV(π) and so the sampling weights di are widely dispersed. Also, note
that the variable y1 is highly related to the size variable ψ, whereas the variable y2 is
unrelated to ψ. This situation is frequent in surveys with multiple characteristics (e.g.,
Rao, 1966). In other words, unlike for the variable y2, the variable y1 is highly related to
the sampling weight di. In each simulated sample, nonresponse to items y1 and y2 was
independently generated according to a uniform response mechanism with probability
0.6. To compensate for nonresponse to items y1 and y2, we used weighted RHDI for
which the imputed values are given by (13) with ωi = di and unweighted RHDI which
consists of setting ωi = 1.

From each simulated sample, we calculated the imputed estimator ŶIπ. We define the
Monte–Carlo expectation of an estimator θ̂ as

EMC

(
θ̂
)

= 1

R

R∑
r=1

θ̂(r), (22)
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where θ̂(r) denotes the estimator θ̂ for the rth simulated sample, r = 1, . . . , R. As a
measure of the bias of ŶIπ, we used the Monte–Carlo percent relative bias (RB) given by

RBMC

(
ŶIπ

)
= 100 ×

EMC

(
ŶIπ

)
− Y

Y
, (23)

where EMC

(
ŶIπ

)
is obtained from (22) by replacing θ̂ with ŶIπ. As a measure of vari-

ability of ŶIπ, we used the Monte–Carlo mean square error (MSE) given by

MSEMC

(
ŶIπ

)
= EMC

(
ŶIπ − Y

)2
, (24)

which is obtained from (22) by replacing θ̂ with
(
ŶIπ − Y

)2
. Table 1 reports the Monte–

Carlo percent relative bias given by (23) as well as the relative efficiency defined as

RE = MSE
(un)
MC

(
ŶIπ

)
MSE

(w)
MC

(
ŶIπ

) , where MSE
(un)
MC

(
ŶIπ

)
and MSE

(w)
MC

(
ŶIπ

)
denote the Monte–Carlo

MSE of ŶIπ under unweighted RHDI and weighted RHDI, respectively. We use a similar
notation for the Monte–Carlo percent relative bias in Table 1.

For the variable y1, the RB of the imputed estimator under unweighted RHDI is
large (approximately 28.5%), whereas it is small under weighted RHDI (see Table 1).
This result is not surprising since unweighted RHDI does not account for the sampling
weight di despite the fact that the sampling weight and the variable y1 are strongly
related. In other words, the imputation model is misspecified because it failed to include
the sampling weight. For the variable y2, which is poorly related to the sampling weight,
we note that the imputed estimator under both unweighted RHDI and weighted RHDI
shows a small bias. However, the imputed estimator under unweighted RHDI is more
efficient than the corresponding estimator under weighted RHDI with a value of RE
equal to 0.83. This can be explained by the fact that, since the sampling weights are
widely dispersed and are not related to y2, their use in the construction of imputed values
is essentially equivalent to adding random noise.

3.4.2. Simulation study 2
We generated three finite populations of size N = 1000 with two variables: a variable
of interest y and an auxiliary variable z. To do so, we first generated z from a gamma
distribution with shape parameter α0 = 2 and scale parameter α1 = 25. For population
1, the y-values were generated according to the model yi = 2zi+εi. For population 2, we
used the model yi = 50+2zi +εi. For population 3, we used the model yi = e0.05zi +εi.
In the three population, the εi’s are generated from a normal distribution with mean 0

Table 1
Weighted versus unweighted RHDI

Variable RB
(w)
MC

(
ŶIπ

)
RB

(un)
MC

(
ŶIπ

)
RE

y1 1.6 28.4 4.2
y2 0.5 0.9 0.83
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and variance σ2. For populations 1 and 2, the variance σ2 was chosen to lead to a model
R2-value approximately equal to 0.64. The objective is to estimate the total Y =∑i∈U yi

in each population. Note that for both populations 1 and 2, the model used to generate
the data is linear, whereas it is nonlinear for population 3.

From each population, we generated R = 10, 000 random samples of size n = 100
according to simple random sampling without replacement. In each sample, nonre-
sponse to item y was generated such that the response probability pi for unit i is given
by log pi

1−pi
= λ0 + λ1zi. The values of λ0 and λ1 were chosen to give a response rate

approximately equal to 70%. The response indicators ri were then generated indepen-
dently from a Bernoulli distribution with parameter pi.

To compensate for the nonresponse to item y, we used four imputation methods: MI,
RAI, SLRI, and NNI. The last three imputation methods used z as the auxiliary variable.
From each simulated sample, we calculated the imputed estimator ŶIπ. As a measure
of the bias of ŶIπ, we used the Monte–Carlo percent relative bias given by (23). As
a measure of variability of ŶIπ, we used the percent Monte–Carlo relative root mean

square error (RRMSE) given by RRMSEMC

(
ŶIπ

)
=

√
MSEMC

(
ŶIπ

)
Y

, where MSEMC

(
ŶIπ

)
is given by (24).

Table 2 reports the Monte–Carlo RB and RRMSE of the resulting estimators. For
population 1, we note that the imputed estimator under MI is heavily biased (24.5%),
which is not surprising since the response probability and the variable of interest are both
related to the variable z and MI does not account for z. This also applies to populations 2
and 3. For population 1, it suffices to include z in the imputation model (RAI, SLRI, and
NNI) to reduce the bias considerably. Note that both RAI and SLRI give almost identical
results in terms of RRMSE, which can be explained by the fact that, for population
1, the intercept is not significant. The NNI leads to a slightly higher RRMSE than
RAI and SLRI.

For population 2, it is interesting to note that the imputed estimator under RAI is
heavily biased (−16.8 %) despite the high correlation between the variables y and z. In
fact, the RB (in absolute value) is even larger than the one obtained under MI (4.2%).
This result can be explained by the fact that RAI forces the intercept to go through the
origin, whereas the intercept is highly significant for population 2. It suffices to add the
intercept in the imputation model (SLRI) to eliminate the bias. This example illustrates
that taking only the coefficient of correlation into account for choosing an imputation
method can be a risky strategy.

For population 3, for which the model of y given z is nonlinear, the three methods MI,
RAI, and SLRI lead to heavily biased estimators since, in this case, the imputation model
is clearly misspecified. On the other hand, the imputed estimator under NNI is nearly

Table 2
Comparison of imputation methods

MI RAI SLRI NNI
RB RRMSE RB RRMSE RB RRMSE RB RRMSE

Population 1 24.5 26.3 −0.0 7.3 0.3 7.5 1.3 8.1
Population 2 4.2 4.5 −16.8 16.9 −0.0 1.3 0.2 1.4
Population 3 41.1 123.1 13.0 93.6 −118.3 128.5 0.1 82.1



230 D. Haziza

unbiased, which demonstrates the advantage of NNI over the parametric imputation
methods such as REGI.

3.5. Choosing an imputation method in practice

The results in the preceding sections clearly show that imputation is essentially a model-
ing exercise. Hence, the choice of an appropriate set of auxiliary variables related to the
variable being imputed and/or the response propensity is a crucial step in the imputation
process. Also, it is important that the imputation model accounts for sampling design
features such as stratification and clustering if appropriate. In the case of stratified sam-
pling, the strata identifiers should be included in the imputation model if they are related
to the variable being imputed. In the case of cluster sampling, the use of random effect
models should be considered if the intracluster correlations are appreciable. This aspect
was studied by Haziza and Rao (2003), Yuan and Little (2007), and Shao (2007).

Model validation is thus an important step of the imputation process. It includes
the detection of outliers or the examination of plots such as plots of residuals versus
the predicted values, plots of residuals versus the auxiliary variables selected in the
model, and plots of residuals versus variables not selected in the model. The choice of
imputation method should be dictated by the shape of the data at hand. If the relationship
between a variable of interest and a set of auxiliary variable is not linear, then NNI or a
nonparametric imputation method such as nonparametric regression imputation should
be considered.

In practice, the imputation method should also be chosen with respect to the type of
parameter we are trying to estimate as well as the nature of the variable being imputed
(continuous or categorical). For example, if we are interested in estimating a quantile,
some deterministic methods such as REGI should be avoided because they tend to distort
the distribution of the variables being imputed. As a result, estimators of quantiles could
be heavily biased. Random imputation methods or NNI could prove useful in this case.
Also, if the variable being imputed is categorical, donor imputation methods (e.g., NNI
and RHDI) are preferable to avoid the possibility of impossible values in the imputed
data file.

4. Variance of the imputed estimator

In this section, we give the variance expressions for the imputed estimator ŶIG under
both the NM approach and the IM approach. We assume that ŶIG is asymptotically
unbiased for Y .

4.1. Variance under the NM approach

Using the decomposition (15), the variance of the imputed estimator ŶIG under deter-
ministic imputation can be expressed as

Epq

(
ŶIG − Y

)2 = V
q

SAM + V
q

NR, (25)
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where V
q

SAM = Vp

(
ŶG

)
is the sampling variance of the prototype estimator ŶG and

V
q

NR = EpVq

(
ŶIG|I

)
is the nonresponse variance. The term Vq

(
ŶIG|I

)
is the conditional

nonresponse variance under the NM approach. In the case of random imputation, one
needs to account of the variance due to the random selection of the residuals. This
variance is called the imputation variance. The total variance of the imputed estimator
ŶIG can be thus expressed as

EpqI

(
ŶIG − Y

)2 = V
q

SAM + V
q

NR + V
q

I , (26)

where V
q

NR = EpVqEI

(
ŶIG|I

)
is the nonresponse variance and V

q

I = EpqVI

(
ŶIG|I

)
is the imputation variance. The conditional nonresponse/imputation variance under the

NM approach is given by VqI

(
ŶIG|I

)
= VqEI

(
ŶIG|I

)
+ EqVI

(
ŶIG|I

)
.

4.2. Variance under the IM approach

Using the decomposition (15), the variance of the imputed estimator ŶIG under deter-
ministic imputation can be expressed as

Empq

(
ŶIG − Y

)2 = Vm
SAM + Vm

NR + Vm
MIX, (27)

where Vm
SAM = EmVp

(
ŶG

)
is the anticipated sampling variance of the prototype

estimator ŶG, Vm
NR = EpqVm

(
ŶIG − ŶG|I, r

)
is the nonresponse variance, and Vm

MIX =
2EpqCovm

(
ŶG − Y, ŶIG − ŶG|I, r

)
is a mixed component. The term Vm

(
ŶIG − ŶG|I, r

)
is the conditional nonresponse variance under the IM approach. In the case of random
imputation, the variance of the imputed estimator ŶIG can be expressed as

EmpqI

(
ŶIG − Y

)2 = Vm
SAM + Vm

NR + Vm
MIX + Vm

I , (28)

where Vm
NR = EpqVmEI

(
ŶIG − Y |I, r

)
is the nonresponse variance, Vm

MIX = 2EpqCovm

EI

(
ŶG − Y, ŶIG − Ŷ |I, r

)
, and Vm

I = EmpqVI

(
ŶIG|I, r

)
is the imputation variance. The

term VmI

(
ŶIG − ŶG|I, r

)
= VmEI

(
ŶIG − ŶG|I, r

)
+EmVI

(
ŶIG − ŶG|I, r

)
is the condi-

tional nonresponse/imputation variance under the IM approach.

5. Imputation classes

In practice, imputation is rarely done at the overall sample level. Instead, it is cus-
tomary to first divide respondents and nonrespondents into classes before imputing
missing values. These imputation classes are formed on the basis of auxiliary informa-
tion recorded for all units in the sample. The objective in forming the classes is first to
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reduce the nonresponse bias and also to reduce the nonresponse variance as well as the
imputation variance in the case of random imputation. There are at least two reasons
motivating the formation of imputation classes instead of directly imputing the value
resulting from the use of a regression model: (i) it is more convenient when it is desired
to impute more than one variable at a time and (ii) it is more robust to model miss-
pecification.

Suppose that the sample s is partitioned into C classes, s1, . . . , sc of sizes n1, . . . , nc.
We have s = ⋃C

c=1 sc and
∑C

c=1 nc = n. In the remainder of this section, the sub-
script (ci) will denote unit i in class c. We restrict ourself to the prototype estima-
tor ŶIπ. An imputed estimator of the population total Y based on C classes can be
expressed as

ŶIπ,C =
C∑

c=1

ŶIπc, (29)

where ŶIπc = ∑
i∈sc

dcirciyci +∑i∈sc
dci (1 − rci) y∗

ci denotes the imputed estimator in
class c, c = 1, . . . , C. We consider the case of survey weighted RHDI within classes for
which a missing y-value in class c is replaced by the y-value of a donor selected (with
replacement) from the set of respondents in class c and with probability proportional to
its design weight dci. That is, y∗

ci = ycj for j ∈ src
such that P

(
y∗

ci = ycj

) = dcj∑
l∈sc

dclrcl
,

where src
denotes the random set of respondents in class c.

5.1. Properties under the NM approach

Under the NM approach, it can be shown that the conditional bias of ŶIπ,C in (29) can
be approximated by

BqI

(
ŶIπ,C|I

)
≈

C∑
c=1

p̄−1
c

∑
i∈sc

dci (pci − p̄c) (yci − ȳc), (30)

where, p̄c =∑i∈sc
dcipci/

∑
i∈sc

dci, and ȳc = ∑i∈sc
dciyci/

∑
i∈sc

dci. From (30), it fol-
lows that the bias is approximately equal to zero if the sample covariance between the
response probability and the variable of interest is approximately equal to zero in each
class. This is satisfied, for example, when the classes are homogeneous with respect
to the response probabilities and/or the variable of interest. In practice, classes will be
formed with respect to estimated response probabilities or with respect to substitute
variable closely related to y (see Section 5.3).

Next, we turn to the conditional nonresponse/imputation variance of ŶIπ,C under the
NM approach that can be approximated by

VqI

(
ŶIπ,C|I

)
≈

C∑
c=1

p̄−2
c

∑
i∈sc

d2
cipci(1 − pci)

(
yci − ȳ(p)

c

)2

+
C∑

c=1

∑
i∈sc

d2
ci(1 − rci) s2

rc,

(31)
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where ȳ
(p)
c = ∑

i∈sc
dcipciyci/

∑
i∈sc

dcipci and s2
rc = 1∑

i∈sc
dcirci

∑
i∈sc

dcirci (yci − ȳrc)
2

with ȳrc =∑i∈sc
dcirciyci/

∑
i∈sc

dcirci. Note that the first term on the right-hand side of
(31) is the conditional nonresponse variance, whereas the second term is the imputation
variance due to RHDI. It is clear from (31) that the nonresponse variance and the
imputation variance can be reduced by forming imputation classes that are homogeneous

with respect to the variable of interest since the terms
(
yci − ȳ

(p)
c

)
and s2

rc are small in this

case. It is not clear, however, that forming imputation classes homogeneous with respect
to the response probabilities will help in reducing the nonresponse or the imputation
variance.

5.2. Properties under the IM approach

We assume the following general imputation model:

yi = μi + εi

Em(εi) = 0, Em

(
εiεj

) = 0 if i �= j and Vm(εi) = σ2
i .

(32)

Under the IM approach and model (32), it can be shown that the conditional bias of
ŶIπ,C in (29) is given by

BmI

(
ŶIπ,C|I

)
= −

C∑
c=1

∑
i∈sc

dci

(
μci − μ̄rc

)
, (33)

where μ̄rc
= ∑

i∈sc
dcirciμci/

∑
i∈sc

dcirci. The bias in (33) vanishes if μci is constant
within each imputation class, which corresponds to the model underlying RHDI within
classes (or MI within classes). Hence, the objective will be to form classes that are
homogeneous with respect to μi. Since μi is typically unknown, classes will be made
homogeneous with respect to the substitute variable μ̂i.

Under the IM approach, the conditional nonresponse/imputation variance of ŶIπ,C is
given by

VmI

(
ŶIπ,C − Ŷπ|I, r

)
=

C∑
c=1

p̂−2
c

[
p̂2

c

∑
i∈sc

d2
ci(1 − rci) σ2

ci + (1 − p̂2
c

)∑
i∈sc

d2
circiσ

2
ci

]

+
C∑

c=1

∑
i∈sc

d2
ci(1 − rci) s2

rc, (34)

where p̂c = ∑
i∈sc

dcirci/
∑

i∈sc
dci is the weighted response rate in class c. The vari-

ance in (34) will be small if the model variances σ2
ci are small, which occurs when the

imputation model is highly predictive.

5.3. Construction of classes

In practice, several methods are used to form imputation classes. Here, we consider
two methods: (i) the cross-classification method and (ii) the score method (sometimes
called predictive mean matching or response propensity stratification, depending on the
context).
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The cross-classification method consists of cross-classifying categorical variables
and is widely used in practice. If the auxiliary variables chosen to form the classes are
related to the response probability and/or to the variable of interest, then the imputation
classes will likely help in reducing the nonresponse bias. However, this method can
lead to a huge number of classes. For example, cross-classifying 8 variables, each with
5 categories, leads to the creation of 390,625 classes.As a result, a large number of classes
may contain few or no observations, which could potentially lead to unstable estimators.
In practice, it is customary to specify certain constraints to ensure the stability of the
resulting estimators. For example, we can specify that the number of respondents within
a class must be greater than or equal to a certain level. On the other hand, we can also
specify, that, within a class, the proportion of respondents must be greater than or equal
to a certain level. If the constraints are not met, classes are generally collapsed by, for
example, eliminating one of the auxiliary variables and cross-classifying the remaining
variables. If the constraints are too severe, a large number of auxiliary variables may
have to be dropped to satisfy the constraints, which in turn may result in a relatively
poor (nonresponse or imputation) model. As a result, the nonresponse bias may not have
been reduced to the maximum extent. Also, the cross-classification requires a proper
ordering of the auxiliary variables that will determine which variable will be dropped
first, which variable will be dropped second, and so on. Finally, since a respondent may
be used as a donor in several stages of the process, the resulting classes are not disjoint.
As a result, application of the available variance estimation methods (see Section 6) is
not straightforward because of the collapsing of the classes at each stage of the process.
In practice, it is customary to treat the classes as if they were disjoint. This method was
studied by Haziza and Beaumont (2007).

The score method consists of first estimating the response probabilities pi by p̂i, i ∈ s

using the assumed nonresponse model, or estimating the conditional means μi by μ̂i,
i ∈ s using the assumed imputation model. The scores p̂ and μ̂ may be seen as a summary
of the information contained in the auxiliary variables related to the response probability
and the variable of interest, respectively. Using one of the two scores p̂ or μ̂, partition
the sample according to an equal quantile method (which consists of first ordering the
observations according to the selected score and partitioning the resulting sample into C

classes of approximately equal size) or a classification algorithm. The resulting classes
are then homogeneous with respect to the chosen score p̂ or μ̂. The score method has been
studied in the context of weighting for unit nonresponse by Eltinge and Yansaneh (1997),
Little (1986), and in the context of imputation, by Haziza and Beaumont (2007). Results
from numerous simulation studies show that, unlike the cross-classification method, the
score method requires a relatively small number of classes (typically between 5 and 50) to
achieve a significant nonresponse bias reduction. Therefore, the number of respondents
per class is typically large, which ensures the stability of the resulting estimators, and no
ordering of the auxiliary variables is needed. Predictive mean matching (Little, 1988)
can be seen as the limit case of the score method when the number of classes is equal to
the overall number of respondents in the sample. Finally, note that it is possible to form
the classes so that they are simultaneously homogeneous with respect to both scores p̂

and μ̂. The resulting estimators are then doubly robust in the sense that they are still
valid even if one model or the other is misspecified. In the context of weighting for unit
nonresponse, the simultaneous use of both scores was studied by Smith et al. (2004) and
Vartivarian and Little (2002). In the context of imputation, it was studied by Haziza and
Beaumont (2007).
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6. Variance estimation

Variance estimation in the presence of single imputation has been widely treated in the
literature. The reader is referred to Lee et al. (2002), Rao (1996), and Shao (2002) for an
overview on the topic. Before the 1990’s, it was customary to treat the imputed values
as if they were observed values. Nowadays, surveys are increasingly using variance
estimation methods designed to handle nonresponse and imputation. Failing to account
for the nonresponse and imputation will result in variances (or coefficients of variation)
typically too small and inferences (e.g., confidence intervals or tests of hypothesis) will
be potentially misleading, especially if the response rates are low. For example, a 95%
confidence interval for the population total Y is given by

ŶIG ± 1.96

√
v
(
ŶIG

)
, (35)

where v
(
ŶIG

)
denotes an estimator of the variance of ŶIG. It is well known that the

confidence interval (35) is valid if the following criteria are met as follows: (i) the
asymptotic distribution of ŶIG is normal; (ii) the estimator ŶIG is unbiased (or asymptot-

ically unbiased) for Y , and (iii) the variance estimator v
(
ŶIG

)
is consistent for the true

variance of ŶIG. If one of the three criteria is not satisfied, then the coverage probability
of the confidence interval (35) may be considerably different than 95%. In the presence
of imputed data, the criterion (i) is often satisfied (see e.g., Rao and Shao, 1992). As
we discussed in Section 2.3, the criterion (ii) is only met if the assumed (nonresponse
or imputation) model is valid. Finally, the criterion (iii) is clearly not met if standard
variance estimation methods (i.e., methods that treat the imputed values as observed
values) are used. In this case, the coverage probability of the confidence interval (35)
may be considerably smaller than 95% if the nonresponse rate is appreciable.

We distinguish between two frameworks for variance estimation: (i) the customary
two-phase framework (TPF) and (ii) the reverse framework (RF). In the TPF, nonre-
sponse is viewed as a second phase of selection. First, a random sample is selected
from the population according to a given sampling design. Then, the set of respon-
dents is generated according to the nonresponse mechanism. In the RF, the order of
sampling and response is reversed. First, the population is randomly divided into a
population of respondents and a population of nonrespondents according to the nonre-
sponse mechanism. Then, a random sample is selected from the population (containing
respondents and nonrespondents) according to the sampling design. The RF usually
facilitates the derivation of variance estimators, but unlike the TPF, it requires the addi-
tional assumption that the nonresponse mechanism does not depend on which sample
is selected. This assumption is satisfied in many situations encountered in practice. On
the other hand, the TPF leads to a natural decomposition of the total variance. That is,
the total variance can be expressed as the sum of the sampling variance and the nonre-
sponse variance which allows the survey statistician to get an idea of the relative mag-
nitude of each component. Under the RF, there is no easy interpretation of the variance
components.

For each framework, inference can be based either on an IM approach or a NM
approach. The IM approach requires the validity of an imputation model, whereas the
NM approach requires the validity of a nonresponse model. We assume that the imputed
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estimator ŶIG is asymptotically unbiased for Y , so bias is not an issue here. Note that the
response indicators ri must be included in the imputed data file for variance estimation
purposes. We consider the case of a single imputation class but the extension to multiple
classes is relatively straightforward.

6.1. The two-phase framework under the IM approach

Särndal (1992) proposed a variance estimation method under the IM approach and
illustrated it under RAI and simple random sampling without replacement. Deville and
Särndal (1994) extended the method to the case of an arbitrary design and deterministic
REGI. In both papers, the authors considered the expansion estimator, Ŷπ, as the proto-
type estimator. Under the IM approach and deterministic imputation, the total variance
of the imputed estimator is given by (27). In this section, we consider the case of the
imputed estimator ŶIG. The estimation of Vm

SAM, Vm
NR, and Vm

MIX may be performed as
follows:

(i) To estimate Vm
SAM, it suffices to estimate Vp

(
ŶG

)
. Let V̂SAM be an asymp-

totically p-unbiased complete data variance estimator of Vp

(
ŶG

)
. Also, let

V̂ORD be the “naive” variance estimator of ŶIG, that is, the variance estimator
obtained by treating the imputed values as if they were observed. It is well known
that for several imputation methods (in particular, the deterministic methods),
V̂ORD is a biased estimator of Vm

SAM. In most cases, V̂ORD underestimates Vm
SAM.

To compensate for this underestimation, Särndal (1992) proposed to evaluate

the following expectation, Em

(
V̂SAM − V̂ORD|I, r

)
≡ VDIF. Then, determine a

m-unbiased estimator, denoted by V̂ m
DIF, of VDIF. This will usually require the

estimation of certain parameters of the assumed imputation model. Finally, a
mpq-unbiased estimator of Vm

SAM is given by V̂ m
SAM = V̂ORD + V̂ m

DIF.
(ii) To estimate Vm

NR, it suffices to find a m-unbiased estimator, denoted by V̂ m
NR, of

Vm

(
ŶIG − ŶG|I, r

)
. Again, this will require the estimation of unknown parame-

ters of the imputation model m. We have Em

(
V̂ m

NR|I, r
)

= Vm

(
ŶIG − ŶG|I, r

)
.

It follows that V̂ m
NR is an asymptotically mpq-unbiased estimator of Vm

NR.
(iii) To estimate Vm

MIX, it suffices to find a m-unbiased estimator, denoted by V̂ m
MIX,

of Covm

(
ŶG − Y, ŶIG − ŶG|I, r

)
. Again, this will require the estimation of

unknown parameters of the imputation model m. As a result, the estimator
V̂MIX is asymptotically mpq-unbiased for Vm

MIX.

Finally, an asymptotically mpq-unbiased estimator of the total variance, V
(
ŶIG

)
,

denoted by V̂ m
TP, is given by

V̂ m
TP = V̂ORD + V̂ m

DIF + V̂ m
NR + V̂ m

MIX.

We now make some remarks on Särndal’s method, which are as follows:

(a) Unlike most deterministic methods, the naive variance estimator V̂ORD is asymp-
totically unbiased for Vm

SAM for random imputation methods (e.g., random REGI)
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and the derivation of V̂ m
DIF may be omitted in this case. For deterministic methods,

the derivation of V̂ m
DIF for an arbitrary design involves tedious algebra. An alter-

native that does not require any derivation involves the construction of a new
set of imputed values. It consists of adding a randomly selected residual to the
imputed values obtained under the deterministic method. Then, use a standard
variance estimator valid in the complete response case using the new imputed
values. Let V̂ ∗

ORD denote the resulting variance estimator. It can be shown that
V̂ ∗

ORD is an asymptotically mpqI-unbiased estimator of Vm
SAM. Note that this new

set of imputed values is used only to obtain a valid estimator of the sampling
variance and is not used to estimate the parameter of interest Y . In practice,
one could, for example, create a variance estimation file containing the new set
of imputed values and use standard variance estimation systems (used in the
complete data case) to obtain an estimate of the sampling variance.

(b) In the case of self-weighting unistage designs and REGI, the component V̂ m
MIX

is exactly equal to 0 when the prototype estimator is the expansion estimator
Ŷπ. Even when it is not exactly zero, Deville and Särndal (1994) argue that this
component is typically much smaller than the terms V̂ m

SAM and V̂ m
NR, so it may be

omitted in the computation of the total variance. However, Brick et al. (2004)
showed that in the case of unequal probability designs, the contribution (positive
or negative) of V̂ m

MIX to the total variance may be important. Also, Beaumont
et al. (2007) show that under AVI, the component V̂ m

MIX is always negative and
its contribution to the total variance may be considerable. Thus, the computation
of this component should not be omitted, in general.

(c) The variance components V̂ m
DIF, V̂ m

NR, and V̂ m
MIX are derived under the selected

imputation model. Hence, their validity depends on the validity of the assumed
model. For example, under REGI, one must correctly specify the vector of
auxiliary variable z as well as the variance structure σ2

i . In other words, both
the first and the second moments of the imputation model must be correctly
specified to ensure that the resulting variance estimators are asymptotically
valid. Modeling the variance structure may prove to be difficult in practice.
To overcome this problem, it could be estimated nonparametrically by using,
for example, the respondents y-values and penalized least squares estimation
(Beaumont et al., 2007).

(d) Unlike replication methods (see Section 6.4), the method is not computer
intensive.

(e) The method can be applied for more complex parameters such as the ratio of
two totals, where both variables involved may be missing (Haziza, 2007). The
application of the method for nonsmooth parameters (e.g., median) has not been
yet studied.

We now discuss variance estimation for ŶIG under weighted deterministic REGI for
which the imputed values are given by (6) with ωi = di.An estimator of Vm

SAM is obtained
by first creating a new set of imputed values under weighted random REGI. That is, the
missing values are replaced by the imputed values given in (12). Then, an asymptotically
unbiased estimator of Vm

SAM is given by V̂ m
SAM = V̂ ∗

ORD, which is a complete data variance
estimator (i.e., the variance estimator that treats the new imputed values as if they
were observed). To obtain the variance components V̂ m

NR and V̂ m
MIX, we first express
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the imputed estimator ŶIG as

ŶIG =
∑
i∈s

w∗
i riyi,

where w∗
i = di

[
gi +

(
ẐG − ẐrG

)′
T̂−1

r
zi

(λ′zi)

]
with ẐG = ∑

i∈s wizi, ẐrG = ∑
i∈s wirizi,

T̂r = ∑
i∈s diriziz′

i/
(
λ′zi

)
, and gi is given by (3). Expressing the imputed estimator ŶIG as

a weighted sum of the y-values simplifies the derivation of V̂ m
NR and V̂ m

MIX considerably.
We have

V̂ m
NR = σ̂2

[∑
i∈s

(
w∗

i − wi

)2
ri

(
λ′zi

)+
∑
i∈s

w2
i (1 − ri)

(
λ′zi

)]
and

V̂ m
MIX = σ̂2

∑
i∈s

(wi − 1)
(
w∗

i ri − wi

)
ri

(
λ′zi

)
,

where σ̂2 is an estimator of σ2. A simple but slightly biased estimator of σ2 is given by

σ̂2 =
∑

i∈s ri

(
yi−z′

iB̂r

)
∑

i∈s ri
(
λ

′
zi

) (Deville and Särndal 1994). Note that the component V̂ m
MIX is not

equal to zero, in general, even for self-weighting designs. Finally, under mild regularity
conditions, note that the three variance components V̂ m

SAM, V̂ m
NR, and V̂ m

MIX, are all of
order Op

(
N2/n

)
, so they all need to be computed to obtain a valid estimator of the total

variance.

6.2. The two-phase framework under the NM approach

The NM approach was studied by Rao (1990) and Rao and Sitter (1995) in the context
of simple random sampling without replacement and by Beaumont (2005) in the case
of arbitrary designs. Under AVI, it was studied by Beaumont et al. (2007). Under deter-
ministic imputation, the total variance of the imputed estimator is given by (25). Both
components V

q

SAM and V
q

NR can be estimated unbiasedly by using, for example, a Taylor

linearization procedure. Note that to estimate V
q

NR, it suffices to estimate Vq

(
ŶIG|I

)
. An

estimator of the total variance V
(
ŶIG

)
is given by

V̂
q

TP = V̂
q

SAM + V̂
q

NR.

Both V̂
q

SAM and V̂
q

NR are of order Op

(
N2/n

)
, so both terms need to be computed to obtain

a valid estimator of the total variance.

6.3. The reverse framework

The RF was proposed by Fay (1991) and the variance estimation method under this
framework was developed by Shao and Steel (1999). Recall that we assume that the
response probability does not depend on the realized sample s.
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6.3.1. The NM approach
Under the NM approach and deterministic imputation, the total variance of the imputed
estimator ŶIG can be expressed as

V
(
ŶIG

)
= EqVp

(
ŶIG|r

)
+ VqEp

(
ŶIG|r

)
. (36)

Avariance estimator is obtained by separately estimating the two terms on the right-hand
side of (36).

(i) To estimate the component EqVp

(
ŶIG|r

)
, it suffices to estimate Vp

(
ŶIG|r

)
,

which is the variance due to sampling conditional on the vector of response
indicators r. This component, denoted by V̂1, is readily obtained by using any
standard variance estimation technique available in the complete data case since
the response indicator ri can now be seen as a characteristic of unit i. For
example, Taylor linearization or replication methods such as the jackknife or
the bootstrap can be used.

(ii) The estimation of the component VqEp

(
ŶIG|r

)
will require the estimation of

the response probabilities pi. The estimator, denoted by V̂
q

2 , can be obtained
using Taylor linearization.

An estimator of the total variance under the NM approach is thus given by

V̂
q

R = V̂1 + V̂
q

2 .

6.3.2. The IM approach
Under the IM approach and deterministic imputation, the total variance of the imputed
estimator ŶIG can be expressed as

V
(
ŶIG − Y

)
= EmqVp

(
ŶIG − Y |r

)
+ EqVmEp

(
ŶIG − Y |r

)
+ VqEmp

(
ŶIG − Y |r

)
.

(37)

Noting that Emp

(
ŶIG − Y |r

)
≈ 0, the third term on the right-hand side of (37) is

much smaller than the other two, so we omit it from the calculations. To estimate

EmqVp

(
ŶIG − Y |r

)
, it suffices to estimate Vp

(
ŶIG − Y |r

)
as in the case of the NM

approach, which leads to V̂1. To estimate EqVmEp

(
ŶIG − Y |r

)
, it suffices to estimate

VmEp

(
ŶIG|r

)
, which will require the estimation of certain parameters of the imputation

model.
An estimator of the total variance under the IM approach is thus given by

V̂ m
R = V̂1 + V̂ m

2 .

6.3.3. Some remarks on the reverse framework
We make the following remarks:

(a) The variance component V̂1 is identical for both the IM and the NM approaches
and its validity does not depend on the validity of the assumed (nonresponse or
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imputation) model. As a result, the component V̂1 is doubly robust in the sense
that it is valid under either approach. The validity of the components V̂

q

2 and V̂ m
2

depend on the validity of the assumed models.
(b) Under mild regularity conditions, the component V̂1 is of order Op

(
N2/n

)
,

whereas the components V̂
q

2 and V̂ m
2 are of order Op(N). The contribution of

V̂2 to the total variance, V̂2

V̂1+V̂2
is thus of order Op

(
n
N

)
, where V̂2 denotes either

V̂
q

2 or V̂ m
2 . As a result, the contribution of V̂2 is negligible when the sampling

fraction, n/N, is negligible, in which case its computation may be omitted. The
total variance of ŶIG can then be estimated by V̂1.

(c) As we argue in Section 6.4, both the Rao–Shao jackknife (Rao and Shao, 1992)
and the Shao–Sitter bootstrap (Shao and Sitter, 1996) find their justification under

the RF since they both attempt to estimate the component Vp

(
ŶIG|r

)
.

6.4. Replication methods

In the preceding sections, we considered the linearization technique to obtain asymp-
totically valid variance estimators. In this section, we consider the use of replication
variance estimation methods in the context of imputation for item nonresponse. Unlike
Taylor linearization procedures, replication methods neither require separate derivation
for each particular estimator nor require joint inclusion probabilities that may be difficult
to obtain for complex designs. For a overview on replication methods in the absence of
nonresponse, the reader is referred to Wolter (2007). In the presence of imputed data,
several replication methods have been studied in the literature (Davison and Sardy,
2007; Shao, 2002). In this section, we focus on two methods: (i) the jackknife and
(ii) the bootstrap.

We consider stratified multistage sampling designs. The population under consider-
ation is stratified into L strata with Nh primary sampling units (PSU’s) or clusters in the
hth stratum. Within each stratum, nh ≥ 2, clusters are selected from stratum h, indepen-
dently across strata. The first-stage clusters are usually selected without replacement to
avoid the selection of the same cluster more than once. Within the (hi)th sampled first-
stage cluster, mhi ultimate units (elements) are sampled according to some probability
sampling method, i = 1, . . . , nh; h = 1, . . . , L. Note that we do not need to specify
the number of stages or the sampling methods beyond the first stage. We simply assume
that subsampling within sampled clusters is performed to ensure unbiased estimation
of cluster totals, Yhi. We denote the kth sampled element in the ith sampled cluster of
the hth stratum as (hik), k = 1, . . . , mhi; i = 1, . . . , nh; h = 1, . . . , L. Let dhik denote
the design weights attached to the sample element (hik). Using the design weights, an
estimator of the population total Y is Ŷ = ∑

(hik)∈s dhikyhik, where s denote the total
sample of elements (hik).

At the variance estimation stage, it is a common practice to treat the sample as
if the first-stage clusters are drawn with replacement to simplify the derivation of
variance estimators. Typically, this approximation leads to overestimation of the true
variance when the first-stage clusters are selected without replacement, but the bias
will be small if the overall first-stage sampling fraction

∑L
h=1 nh/

∑L
h=1 Nh is small

(Shao, 2002).
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6.4.1. The Jackknife
The jackknife method consists in calculating a set of replicate estimates, derived from
a subset of the sample data, and in estimating the variance using the replicate estimates.
In the absence of nonresponse, we proceed according to the following steps:

(i) remove one cluster, say (gj);
(ii) adjust the design weights dhik to obtain the so-called jackknife weights dhikb(gj),

where b(gj) is an adjustment factor we apply when cluster (gj) has been deleted
such that

b(gj) =

⎧⎪⎨⎪⎩
1 if h �= g

ng

ng−1 if h = g, i �= j

0 if h = g, i = j;
(iii) compute the estimator Ŷ

(gj)

G , which is calculated the same way as ŶG but using
the adjusted weights dhikb(gj) instead of the design weights dhik;

(iv) insert back the cluster deleted in step (i) and delete the next cluster;
(v) repeat the steps (i)–(iv) until all the clusters have been deleted.

A jackknife variance estimator of ŶG is then given by

vJ

(
ŶG

)
=

L∑
g=1

(
ng − 1

ng

) nh∑
j=1

(
Ŷ

(gj)

G − ŶG

)2
. (38)

This method is called delete-cluster jackknife. In the presence of nonresponse to item
y, the use of (38) may lead to serious underestimation of the variance of the estimator,
especially, if the nonresponse rate is appreciable. Rao and Shao (1992) proposed an
adjusted jackknife variance estimator that may be applied in the case of deterministic
or random REGI. Under weighted random REGI, the Rao–Shao-adjusted jackknife
is calculated in the usual way except that whenever the (gj)th cluster is deleted, the
imputed values, y∗

hik, are adjusted to y
∗(gj)

hik = y∗
hik + [EI(gj)

(
y∗

hik|I, r
)− EI

(
y∗

hik|I, r
)]

,
where EI(gj)(.|I, r) denotes the expectation with respect to the imputation mechanism
when the (gj)th cluster is deleted. The adjusted imputed values y

∗(gj)

hik reflect the fact
that the donor set is changed when a cluster is deleted from the sample. In the case
of weighted deterministic REGI, y

∗(gj)

hik reduces to z′
hikB̂(gj)

r , where B̂(gj)
r is computed

the same way as B̂r given by (7) with dhikb(gj) instead of dhik. In this case, applying
the adjustment is equivalent to reimputing missing values in the replicates obtained by
deleting the (gj)th cluster, using the donors in that replicate. Using the adjusted imputed
values, the Rao–Shao jackknife variance estimator is given by

vJRS

(
ŶIG

)
=

L∑
g=1

(
ng − 1

ng

) nh∑
j=1

(
Ŷ

a(gj)
IG − ŶIG

)2
, (39)

where Ŷ
a(gj)

IG is computed the same way as Ŷ
(gj)

IG but with the adjusted imputed values
y

∗(gj)

hik instead of the imputed values y∗
hik (Yung and Rao, 2000).

6.4.2. The bootstrap
The bootstrap method proposed by Efron (1979) is a useful replication method
for obtaining variance estimators for complex parameters. Lahiri (2003) and Shao
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(2003) give comprehensive overviews of the boostrap in the context of survey
sampling.

In the case of complete response, Rao and Wu (1988) proposed a rescaling boot-
strap procedure for stratified multistage designs. Applying the Rao–Wu bootstrap in the
presence of missing responses and treating the missing values as true values may lead
to serious underestimation of the variance of the estimator. Under imputation for miss-
ing data, Shao and Sitter (1996) proposed a rescaling bootstrap procedure for imputed
survey data that may be described as follows:

(i) Draw a simple random sample with replacement, s∗ of size n∗ = n − 1 from s

after imputation. The sample s∗ is often called a bootstrap sample.
(ii) Let r∗

hik be the response indicator for element (hik) in s∗. Let s∗
r = {(hik) ∈

s∗ : r∗
hik = 1} and let s∗

m = {(hik) ∈ s∗ : r∗
hik = 0}. Apply the same imputation

procedure used to obtain the imputed estimator ŶIG for reimputing the nonre-
spondent values in s∗ (i.e., the missing values in s∗

m, using the bootstrap donor
set s∗

r ).
(iii) Compute the imputed estimator, Ŷ∗

IG, from the imputed data in (ii).
(iv) Repeat (i)–(iii) B times to get Ŷ

∗(1)

IG , . . . , Ŷ
∗(B)

IG .

A bootstrap variance estimator is then given by

vBSS

(
ŶIG

)
= 1

(B − 1)

B∑
b=1

(
Ŷ

∗(b)

IG − ¯̂
YIG

)2
, (40)

where ¯̂
YIG = 1

B

∑B
b=1 Ŷ

∗(b)

IG . When the within-stratum cluster sample sizes, nh, are small

(say, nh = 2), vBSS

(
ŶIG

)
may be heavily biased. Saigo et al. (2001) modified the Shao–

Sitter procedure to overcome this difficulty. Shao and Sitter (1996) also discussed
the without replacement bootstrap (e.g., Sitter, 1992a) and the mirror-match bootstrap
(Sitter, 1992b).

6.4.3. Some remarks on the replication methods
We make the following remarks:

(a) Both vJRS

(
ŶIG

)
and vBSS

(
ŶIG

)
estimate the first term on the right-hand side of

(36), EqVp

(
ŶIG|r

)
, but not the second term VqEp

(
ŶIG|r

)
, and both estimators

are asymptotically equivalent to the variance estimator we would have obtained
if the clusters were selected with replacement. Therefore, if the overall sampling
fraction

∑L
h=1 nh/

∑L
h=1 Nh is negligible, both variance estimators are asymptot-

ically unbiased for EqVp

(
ŶIG|r

)
. Also, noting that, in this case, we can omit the

derivation of the second term in (36) (see remark (b) in Section 6.3.3), it follows
that the Rao–Shao jackknife and the Shao–Sitter bootstrap variance estimators
are asymptotically unbiased for the total variance when the overall sampling
fraction

∑L
h=1 nh/

∑L
h=1 Nh is negligible. In other words, provided the overall

sampling fraction is negligible, vJRS

(
ŶIG

)
and vBSS

(
ŶIG

)
are valid regardless of

the validity of the underlying imputation or nonresponse model. If the overall

sampling fraction
∑L

h=1 nh/
∑L

h=1 Nh is not negligible, then both vJRS

(
ŶIG

)
and
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vBSS

(
ŶIG

)
will tend to overestimate EqVp

(
ŶIG|r

)
. Also, in this case, the contri-

bution of the second component VqEp

(
ŶIG|r

)
, which is not accounted for, may

be important, especially if the nonresponse rate is appreciable.
(b) Unlike the jackknife, the bootstrap can be used for nonsmooth parameters.
(c) In the case of NNI, Chen and Shao (2001) showed that the Rao–Shao jackknife

overestimates the variance of the imputed estimator ŶIπ. Therefore, they proposed
to use a partially adjusted jackknife that works in the same way as the Rao–Shao
jackknife except that, when an unit is deleted, the imputed values are partially
adjusted (see also Shao and Wang, 2008). The application of the bootstrap to
NNI has not yet been studied.

(d) Unlike the Taylor linearization procedure, the jackknife is computer intensive,
whereas the bootstrap is highly computer intensive.

7. Multiple imputation

Multiple imputation was originally proposed by to handle missing data (Rubin, 1987;
Little and Rubin, 2002). For each nonrespondent, M imputations are generated, result-
ing in M completed data sets, which allows the analyst to use standard techniques of
analysis designed for complete data. Analyses are performed separately on each of the
M completed data sets, and the results are then combined according to Rubin’s rule to
get point estimates as well as variance estimates. Let θ be a parameter of interest and θ̂

be an estimator of θ under complete response. Also, let V̂ be an estimator of the variance

of θ̂, Vp

(
θ̂
)
. We assume that θ̂ and V̂ are (asymptotically) p-unbiased for θ and Vp

(
θ̂
)

,

respectively.
Let θ̂

(t)
I and V̂

(t)
I be the point estimator and variance estimator using the tth imputed

data set, treating the imputed values as true values, t = 1, . . . , M. The multiple imputed
estimator of θ is defined as

θ̂I,M = 1

M

M∑
t=1

θ̂
(t)
I . (41)

The variance estimator associated with θ̂I,M is given by

TM = V̄M +
(

1 + 1

M

)
BM (42)

where V̄M = 1
M

∑M
t=1 V̂

(t)
I and BM = 1

M−1

∑M
t=1

(
θ̂

(t)
I − θ̂I,M

)2
. The term V̄M is an

estimator of the sampling variance, whereas the term
(
1 + 1

M

)
BM is an estimator of the

nonresponse/imputation variance. Inferences are then based on the approximation

T
−1/2
M

(
θ̂ − θ

)
∼ tν,

where the degrees of freedom, ν, is given by ν = (M − 1)
[
1 + 1

ρ

]2
, with ρ = (M−1)BM

V̄M
.

The quantity ρ can be interpreted as the relative increase in variance due to nonresponse.
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An improved version for the degrees of freedom from small sample has been proposed
by Barnard and Rubin (1999). Clearly, multiple imputation methods are required to be
random. As for the case of single imputation, the imputation model should account for
sampling design features such as stratification and clustering when appropriate. Reiter
et al. (2006) illustrated empirically that failing to do so can lead to severe biases.

In the context of complex designs, there has been some controversy about the validity
of multiple imputation in the past two decades. Next, we attempt to clarify and sum-
marize some of the issues raised in the literature. To that end, we distinguish between
two approaches for studying the properties of point and variance estimators in the con-
text of multiple imputation: the NM approach described in Section 2.4.1 and a variant
of the IM approach called Bayesian imputation model (BIM) approach. In the BIM
approach, inferences require specification of a prior distribution p (y) of the vector of
the population y-values. Inferences are then based on the posterior predictive distri-
bution p (ymis|yobs), where yobs and ymis denote the observed part and missing part,
respectively.

7.1. Multiple imputation under the NM approach

For inferences to be valid under the NM approach, the multiple imputation procedure
must be proper. Rubin (1987, pp. 118–119) gives three sets of conditions required for an
imputation procedure to be proper. Loosely, speaking, an imputation method is proper if
it displays the appropriate amount of variability. All the imputation methods described
in Section 2.2.2 are not proper in the sense of Rubin. An example of a proper impu-
tation method closely related to RHDI is the approximate bayesian bootstrap (ABB)
described in Rubin (1987, p. 124). In the context of simple random sampling without
replacement, it is easily seen that ABB is proper in the sense of Rubin. Proper ran-
dom REGI, that can be viewed as an extension of ABB, is described in Rubin (1987,
p. 166–168). Another imputation procedure consists of generating the imputed val-
ues from the conditional distribution P (ymis|yobs), using iterative simulation methods
such as Gibbs sampling (e.g., Little and Rubin, 2002; Schafer, 1997). Schafer (1997)
call this Bayesianly proper imputation. However, Bayesianly proper imputation is not
sufficient for proper imputation (Nielsen, 2003). In the context of complex sampling
designs, Binder and Sun (1996) argue that Rubin’s condition for proper imputation
is difficult to verify and may not hold generally. Also, Fay (1992, 1996) showed that
an imputation that is proper for a given parameter of interest may not be proper for
another.

In practice, most surveys use some form of nonproper random imputation such as
those presented as described in Section 2.2.2, in which case multiple imputation is known
to lead to invalid inferences. To overcome this problem, Bjørnstad (2007) suggested a
simple modification to the variance estimator (42). He proposed to use T ∗

M = V̄M +(
k + 1

M

)
BM instead of (42), where k is such that EpqI

(
T ∗

M

) = V
(
θ̂I,M

)
. Note that

T ∗
M = TM when k = 1. Bjørnstad derived the value k in several special cases. For

example, in the case of simple random sampling without replacement and a uniform
response mechanism, he showed that k ≈ 1/pr was appropriate for RHDI, where pr

denotes the expected response rate. Although this approach looks promising, extensions
to more complex cases are needed.
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7.2. Multiple imputation under the BIM approach

Kim et al. (2006) studied the properties of the variance estimator TM under the BIM
approach, see also Kott (1995). They considered prototype estimators of the form

θ̂ =
∑
i∈s

biyi, (43)

where bi is a coefficient attached to unit i that does not depend on yi. Population totals
and domain totals are special cases of (43). As in the case of deterministic imputation
(see Section 3), we express the total error of θ̂I,M , θ̂I,M − θ as

θ̂I,M − θ =
(
θ̂ − θ

)
+
(
θ̂I,∞ − θ̂

)
+
(
θ̂I,M − θ̂I,∞

)
, (44)

where θ̂I,∞ = limM→∞θ̂I,M . The terms θ̂ − θ, θ̂I,∞ − θ̂, and θ̂I,M − θ̂I,∞ in (44) represent
the sampling, nonresponse, and imputation errors, respectively. The total variance of
θ̂I,M is obtained from (28) by replacing Y , ŶG, and ŶIG with θ, θ̂, and θ̂I,M , respectively.
Under mild regularity conditions, Kim et al. (2006) showed that V̄M is asymptotically
mpqI-unbiased for the anticipated sampling variance, Vm

SAM, whereas
(
1 + 1

M

)
BM is

asymptotically mpqI-unbiased for the nonresponse/imputation variance, Vm
NR + Vm

I .
However, the variance estimator TM does not track the mixed component, Vm

MIX. As a
result, the bias of T̂M is given by B (TM) = −Vm

MIX. Note that the bias can be positive or
negative as Vm

MIX can take positive or negative values. At this point, a question naturally
arises: when do we have Vm

MIX = 0? A sufficient condition for Vm
MIX to be equal to 0 is

that the prototype estimator θ̂ must be self-efficient (e.g., Meng and Romero, 2003). A
prototype estimator is self-efficient if and only if

V
(
θ̂I,∞

)
= Vp

(
θ̂
)

+ V
(
θ̂I,∞ − θ̂

)
.

In other words, a prototype estimator is self efficient if and only if the variance of the
multiple imputed estimator θ̂I,∞ is larger than the variance we would have obtained had
complete response been possible. The fact that a prototype estimator is self-efficient or
not depends on the sampling design used to select the sample, the parameter we are
trying to estimate, and the imputation method used to compensate for nonresponse.

In conclusion, if the prototype variance estimator is not self-efficient, the multiple
variance estimator TM can be considerably biased, in which case the use of a bias-
adjusted variance estimator similar to those proposed by Kim et al. (2006) should be
considered.

7.3. Fractional imputation

Fractional imputation (FI) was originally proposed by Kalton and Kish (1984). It was
studied by Fay (1996), Kim and Fuller (2004), and Fuller and Kim (2005) for donor
random imputation methods such as RHDI. The FI replaces each missing value with
M ≥ 2 imputed values and assign a weight to each imputed value. For example, each
imputed value may receive 1/M times the original weight. Kim and Fuller (2004) studied
the properties of FI under the IM approach, whereas Fuller and Kim (2005) studied its
properties under the NM approach. One advantage of FI over single imputation is that
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the imputation variance can be reduced or eliminated when FI is used. In the latter case,
the imputed estimator is said to be fully efficient.

FI is similar to multiple imputation in the sense that each missing value is replaced by
M ≥ 2 imputed values but may be distinguished as follows: (a) under multiple imputation
and the NM approach, the imputation method should be proper for the estimators to be
valid, whereas the validity of FI does not require the imputation method to be proper.
(b) Under multiple imputation, the variance estimator is given by (42), whereas any
variance estimation method such as those presented in Section 6 can be used.

8. Conclusions

In this chapter, we have not examined how to impute missing data in such a way that all
specified edits are satisfied. Some work has been carried out in this area. For imputation
of categorical data subject to edits, we refer to Winkler (2003) and for imputation of
numerical data subject to edits, refer to Pannekoek et al. (2008) and, in particular,
Tempelman (2007).

In practice, parameters measuring relationships such as domain means (domain
totals), regression coefficients, and coefficients of correlation are often of interest. The
case of domain means is particularly important in practice since estimates for various
subpopulations are commonly required in surveys. Ideally, the imputation model (in
the context of both single and multiple imputation) should contain the appropriate set
of domain indicators. However, domains are generally not specified at the imputation
stage and are only known at the analysis stage. As a result, the imputer’s model is
often different from the analyst’s model. For example, the imputation model may not
contain a set of domain indicators that are highly related to the variable being imputed
but that is of interest to the analyst. In this case, the resulting imputed estimators may
be considerably biased. To overcome this difficulty, Haziza and Rao (2005) proposed a
bias-adjusted estimator that is asymptotically unbiased under either the NM approach or
the IM approach. Skinner and Rao (2002) considered the problem of estimating bivariate
parameters such as coefficient of correlations when marginal imputation (i.e., imputing
one variable at the time) is used. Because marginal tends to distort the relationships
between variables, the resulting imputed estimators are generally biased. Skinner and
Rao (2002) proposed a bias-adjusted estimator under simple random sampling without
replacement and the NM approach. Finally, Shao and Wang (2002) considered the prob-
lem of estimating a coefficient of correlation and proposed a joint imputation procedure
that leads to asymptotically unbiased estimators under the IM approach. The problem
of relationship is an important one and should receive more attention in the future.

Finally, it is not always possible to impute for the nonrespondents values by using
a single imputation method. Such situations often occur in business surveys for which
composite imputation within classes is typically used to compensate for nonresponse
to a given item y, depending on the availability of auxiliary information. For example,
if the value of a given business is recorded at a previous occasion, AVI is used. If the
historical value is not available but other auxiliary variables are available, then RAI or
REGI may be used. If no auxiliary information is available, then MI is used. Inferences
in the case of composite imputation has been studied by Shao and Steel (1999). This
topic requires further research.
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Dealing with Outliers in Survey Data

Jean-François Beaumont and Louis-Paul Rivest

1. Introduction

In survey sampling, the characteristics of the population of interest can often be
expressed in terms of means and totals. These statistics are sensitive to the presence
of outlying units which have unusual values for some of the corresponding variables. It
may occur that two or three units account for an important percentage, say 5−10%, of
the population total of a survey variable. The estimation of the population mean of such a
variable raises challenging statistical issues. The problem is amplified when some large
units are associated with large survey weights. Such units may have a huge influence
on the estimates of the population characteristics.

The occurrence of large units is common in population of businesses. If auxiliary
information is available to identify these units, their impact on the survey estimates can
be minimized when constructing the survey design. This is typically accomplished by
stratifying according to a size measure and by putting all the large units in a take-all
stratum in which selection is done with certainty; see Chapter 17 of this volume by
Hidiroglou and Lavallée. However, some large units may still be unexpectedly selected
in the sample due to imperfect auxiliary information at the time of stratification. This
chapter is concerned with the occurrence of these large units in a survey sample. In
many instances, their effect cannot be accounted for by a simple poststratification. They
occur in a haphazard way.

Using the terminology of Chambers (1986), outliers can be classified as being either
representative or nonrepresentative. Nonrepresentative outliers are most likely caused
by reporting errors, but they may also be units that are deemed unique in the popu-
lation although this may not be easy to determine. Representative outliers are other
large observations that are representative of the nonsampled part of the population and
that are dealt with at the estimation stage of a survey. Nonrepresentative outliers are
managed at the data collection and editing stages of a survey using outlier detection
techniques.

There are numerous outlier detection techniques in the sample survey literature. Lee
(1995) provided a review of some of these methods. Hidiroglou and Lavallée (Chapter 17
of this volume) described the most common methods used in business surveys, includ-
ing the well-known technique developed by Hidiroglou and Berthelot (1986). These

247
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methods determine a threshold above which units are flagged as being potential out-
liers. Although Winsorization or M-estimation, discussed in Sections 2, 3, and 4 of
this chapter, have not been specifically developed for the identification of outliers, they
could also be used as alternative methods of outlier detection since these methods also
involve a threshold that separates outliers (or influential units) from the other units. All
the above methods deal with outliers with respect to a single variable. More recently,
techniques have been developed to identify multivariate outliers (Béguin and Hulliger,
2004, 2008; Chambers et al., 2004; Franklin et al., 2000).

The goal of outlier detection techniques is to identify suspicious values and to either
confirm the reported values with the respondent or to correct them. If a reporting error
is found later, at the editing and processing stages of the survey (see Chapter 9 of this
volume by De Waal), it may not be possible to fix the error since the respondent may
not be available anymore. In this case, the erroneous value is often set to missing and
imputed (see Chapter 10 of this volume by Haziza). In sample surveys conducted by
national statistical agencies, it is thus less likely for the remaining outlying values to
be created by reporting errors than in other areas of Statistics due to this careful data
validation and editing.

Although it may usually not be possible to identify all the reporting errors in practice,
we make the assumption that the impact of the remaining errors is negligible and that
the outstanding large observed values are representative outliers; that is, they are not
caused by reporting errors and are not deemed unique in the population. Note that in
the rare event where a unit is deemed unique in the population and not selected with
certainty, its survey weight is usually simply set equal to 1. This situation is rare as these
very large units can often be detected before sampling so that they can be selected with
certainty yielding a sampling weight of 1.

Representative outliers may greatly influence survey estimates. Including or exclud-
ing an outlier in the calculation of the sample mean can have a dramatic impact on its mag-
nitude. While standard design-based estimators of totals are approximately unbiased,
representative outliers can dramatically increase their variances. Estimation methods
that curb the influence of large values produce more stable estimates, but are biased.
The art of outlier treatment in survey sampling lies in the management of this bias-
variance trade-off.

There is a large body of literature on the detection and the treatment of outliers in
classical statistics; see for instance, Barnett and Lewis (1994). This includes formal
methods to ascertain whether a sample value is an outlier given that the data come from
a known distribution and techniques to detect the presence of outliers when fitting a com-
plex statistical model. The field of Robust Statistics (see Hampel et al., 1986) develops
estimation methods that are insensitive to the presence of outliers. These methods may
lead to highly biased estimators of population totals and population means in survey
sampling because these population parameters are themselves quite sensitive to popula-
tion outliers. Thus, the Robust Statistics literature offers little assistance for the under-
standing of the bias-variance relationship that is central to the treatment of outliers in
survey data.

At the estimation stage, one can adopt a two-step strategy for dealing with
representative outliers in a sample. First outliers are identified using a detection rule
such as that of Hidiroglou and Berthelot (1986) or those mentioned earlier. Then, the
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sampling weights of the identified outliers are reduced and the population characteristics
are estimated using the reduced weight. Hidiroglou and Srinath (1981) suggested three
methods of weight reduction. They all give an important reduction in the conditional
mean squared error (MSE) of the estimators, given a fixed number of outliers in the sam-
ple. Several extensions of this approach are discussed by Lee (1995). In many instances,
the two-step approach of Hidiroglou and Srinath is useful. However, in samples drawn
from skewed distributions, such as those presented in Table 1, establishing a threshold
for outliers is somewhat arbitrary. An alternative approach is to perform simultaneously
outlier detection and treatment so that the specification of the threshold becomes part
of the estimation procedure. This is the approach on which we focus in this chapter.

The next section deals with the estimation of the mean of a skewed distribution
in an infinite population. Section 3 discusses the estimation of the total of a finite
population when the largest data values are Winsorized. Coping with outliers in a cal-
ibration estimator, such as the generalized regression estimator, is studied in Section 4

Table 1
Data for 10 rainbow smelt inventories in Lake St-Jean, Quebec

Year 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

167.82 76.77 61.79 19.03 92.61 7.04 94.91 17.05 77.80 1506.24
67.73 6.69 44.75 10.77 83.83 5.77 68.77 4.95 45.77 686.71
63.39 5.90 42.32 4.23 81.86 3.92 37.07 3.85 36.25 518.29
60.89 5.51 36.39 0.80 30.03 1.49 8.90 0.70 26.60 330.73
40.54 2.03 28.22 0.47 28.05 0.85 5.23 0.65 23.05 208.82
26.09 1.58 14.91 0.13 14.57 0.73 4.37 0.50 12.75 153.42
22.60 0.87 11.10 0.10 10.50 0.67 2.86 0.40 6.60 18.14
15.59 0.82 10.88 0.07 9.33 0.67 1.77 0.40 2.37 6.52
12.35 0.57 9.00 0.07 7.68 0.62 1.59 0.40 1.67 3.92

9.21 0.52 7.96 0.07 7.16 0.61 0.92 0.30 0.97 3.19
5.86 0.29 6.31 0.07 5.07 0.55 0.85 0.30 0.45 2.88
5.02 0.15 5.46 0.03 1.58 0.22 0.45 0.27 0.43 2.34
4.63 0.11 5.01 0.03 0.91 0.15 0.39 0.25 0.35 1.76
3.90 0.10 4.68 0.03 0.68 0.14 0.35 0.23 0.23 1.33

4.56 0.03 0.58 0.34 0.20 0.20 0.94
3.87 0.02 0.56 0.27 0.20 0.17 0.81
3.46 0.55 0.19 0.20 0.10 0.66
2.52 0.53 0.19 0.13 0.10 0.57
2.13 0.50 0.17 0.13 0.07 0.46
2.12 0.49 0.08 0.07 0.27
1.11 0.44 0.07 0.07 0.24
0.87 0.32 0.07 0.04 0.15
0.71 0.31 0.07 0.03 0.15
0.44 0.26 0.03 0.03 0.15
0.43 0.25 0.03 0.03 0.14
0.42 0.23 0.03
0.15 0.19 0.03
0.14 0.18
0.08 0.14

# 0 values 0 2 3 12 9 30 14 7 9 9
Sample size, n 14 16 32 28 38 44 33 34 34 34
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where M-estimation is discussed. Section 5 investigates the treatment of stratum jumpers
and extreme design weights via Winsorization of survey weights and weight smooth-
ing. Finally, some practical issues are discussed in the last section as well as potential
future work.

2. Estimation of the mean of an asymmetric distribution in an infinite
population

2.1. Some asymmetric distributions

Several distributions have been considered in the literature to model asymmetric positive
variables; a selection of models is presented in Table 2. It gives the density, the expec-
tation μ, the variance σ2, the coefficient of variation (CV = σ/μ), and the skewness
coefficient (γ1 = E{(Y − μ)3}/σ3) for three asymmetric densities.

In Table 2, f(α) = �(1+3/α)−3�(1+1/α)�(1+2/α)+2{�(1+1/α)}3

[�(1+2/α)−{�(1+1/α)}2]3/2 . The densities of Table 2
are all written in terms of a positive shape parameter α. The Weibull distribution with
shape parameter α = 1 is the exponential distribution. Fig. 1 shows that both the CV
and the skewness of the density increase with the shape parameter. The Weibull family
is considered by Fuller (1991), and the lognormal distribution is investigated by Myers
and Pepin (1990). The Pareto distribution gives an instance of an extreme skewness
since some of its moments are not finite. Its variance is defined only if α > 2.

The underlying distribution for an asymmetric sample with large positive values is
typically unknown. One can attempt to select a parametric model for such a data set
by using some goodness of fit tests; an estimator of μ, optimal for the model selected,
can be calculated. Myers and Pepin (1990) investigated this technique for distributions
that are close to the lognormal distribution. They showed that the parametric estimator
for μ is very sensitive to a misspecification of the underlying distribution, undetectable
by goodness of fit tests. They concluded that the sample mean is a better estimator
for μ than an optimal lognormal estimator when the underlying distribution is close to
a lognormal model. Thus, the estimation of μ via a parametric model is not pursued

Table 2
Three asymmetric densities defined on (0, ∞) for modeling skewed variables

Model Weibull Lognormal Pareto

Density αyα−1 exp(−yα)
1

y
√

2πα
exp

(−{log(y)}2

2α2

)
α

(1 + y)α+1

E(Y) = μ �(1 + 1/α) exp(α2/2) 1/(α − 1)

Var(Y) = σ2 �(1 + 2/α) − {�(1 + 1/α)}2 exp(α2)
{
exp(α2) − 1

} α

(α − 1)2(α − 2)

CV

√
�(1 + 2/α)

{�(1 + 1/α)}2
− 1

√
exp(α2) − 1

√
α

(α − 2)

γ1 f(α)
{
2 + exp(α2)

}√
exp(α2) − 1

√
α − 2

α

2(α + 1)

α − 3
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Fig. 1. The CV-skewness relationship for the three families of Table 2.

in the remaining of this chapter. Nonparametric alternatives to the sample mean are
presented in the next sections. The distributions of Table 2 are regarded as test cases for
the estimation procedures discussed.

When a simple random sample of size n is obtained from a skewed distribution
F(y) with skewness coefficient γ1, the skewness of the sample mean is γ1/

√
n. Thus,

the distribution of the sample mean has a heavy right tail when γ1 is large and n is
moderate. This implies that the sample mean can, at some occasions, take relatively
large values. The methods presented next limit the occurrence of these large sample
means by curtailing the effect of the largest values in the sample.

Sections 2.2, 2.3, and 2.4 consider a sample of size n, y1, y2, . . . , yn, which is drawn
from an infinite population with a skewed distribution F(y). The order statistics for this
sample are denoted y(1) < y(2) < . . . < y(n).

2.2. Searls’ Winsorized mean

This section presents a nonparametric alternative to the sample mean as an estimator
of the population mean μ. Searls (1966) suggested to Winsorize the largest values to
estimate the population mean. If R stands for the Winsorization cutoff, the Winsorized
mean is given by

yR =
n∑

i=1

min(yi, R)/n. (1)
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When the distribution F and the sample size n are fixed, the cutoff Rn that minimizes
the MSE of yR is the solution of

R − μ

n − 1
= EF {max(Y − R, 0)}, (2)

where EF(·) denotes an expectation taken with respect to the distribution F . When
historical data are available to estimate the underlying distribution F , solving (2) can
yield a good Winsorization cutoff if the training sample size is much larger than n.
However, estimating F with Fn, the sample empirical distribution function, and solv-
ing (1) with F = Fn may result in an unstable estimator as the solution R̂n depends
heavily on the largest data values; see the simulations in Rivest and Hurtubise (1995)
and the example of Section 2.5. Pooling several samples to estimate F can some-
times be envisioned; this is illustrated in Section 2.5. If there is no additional infor-
mation to estimate the cutoff, alternative estimators are presented in Sections 2.3
and 2.4.

When R is fixed, MSE(yR) is easily estimated by

mse(yR) =

n∑
i=1

[
min(yi, R) − yR

]2
n(n − 1)

+

⎡⎢⎢⎣
n∑

i=1
max(yi − R, 0)

n

⎤⎥⎥⎦
2

.

When Rn is obtained from (2), the expected number of Winsorized data points,
n{1 − F(Rn)}, decreases with an increase in skewness. This number is larger for a
Weibull distribution than for a Pareto distribution. For the distributions of Table 2, it is
less than 2 for samples as large as n = 300. Thus, estimating the cutoff Rn with a large
order statistic looks promising. This is considered in the next section.

2.3. The once-Winsorized mean

The once-Winsorized mean is obtained by taking y(n−1), the second largest order statistic,
as a Winsorization cutoff R in (1). It is given by y1 = y − (y(n) − y(n−1))/n. Rivest
(1994) shows that taking R = y(n−1) gives a smaller MSE than R = y(n−2), provided
that the underlying distribution F has a finite variance. Thus, y1 is the best possible
Winsorized mean when the cutoff is selected among extreme order statistics. A MSE
estimator proposed in Rivest (1994) is given by

mse(y1) = s2

n
− (y(n) + y(n−1) − 2y1)(y(n) − 3y(n−1) + 2y(n−2))

n2
,

where s2 is the sample variance. This estimator is consistent even in instances where F

has an infinite variance, such as the Pareto with parameter α = 2. For the exponential
distribution, y and y1 have the same MSE. Winsorizing improves the precision of the
sample mean when the underlying distribution is more skewed than the exponential
distribution. This holds true if the exponential Q-Q plot has a convex shape. Since, for an
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exponential sample, E(y(i)) is proportional to
∑i

j=1 1/(n − j + 1) this Q-Q plot consists
of the points⎧⎨⎩

⎛⎝ i∑
j=1

1/(n − j + 1), y(i)

⎞⎠, i = 1, . . . , n

⎫⎬⎭.

The MSEs of the optimal Searls’ Winsorized mean and of the once-Winsorized mean
can be expressed as σ2/n−ψ(n) with nψ(n) goes to 0 as n goes to infinity. The form of
ψ(n) and the rate of convergence of nψ(n) to 0 depend of the max domain of attraction of
the underlying distribution F(y). This highlights that the optimal Winsorized mean and
the once-Winsorized mean have the same asymptotic distribution as the sample mean;
thus standard asymptotic calculations cannot bring out the gains in precision associated
with these estimators.

2.4. Fuller’s preliminary test estimator

To determine whether the tails of the distribution F are heavier than exponential tails,
a simple statistic proposed in Fuller (1991) is

FTj =

n∑
i=n−j+1

Zi/j

n−j∑
i=n−Tj

Zi/
(
Tj − j + 1

) = Nj

Dj

,

where Zi = (n − i + 1)(y(i) − y(i−1)) is a normalized spacing, and j and Tj are integers
to be determined. When the underlying distribution F is exponential, FTj has an F

distribution with 2j and 2(Tj − j) degrees of freedom. One can reject the hypothesis
that the upper tail of the distribution is exponential if FTj is large. The preliminary test
estimator is

yP =

⎧⎪⎨⎪⎩
y if FTj < Kj

1

n

{
n−j∑
i=1

y(i) + j
[
y(n−j) + KjDj

]}
if FTj ≥ Kj,

where Dj is the denominator for FTj defined above and Kj is a predetermined cutoff. The
largest observations are Winsorized only if the null hypothesis of an exponential tail is
rejected. This estimator depends on three tuning parameters, j, Tj , and Kj that are defined
by the user. Fuller (1991) showed, through simulations, that j = 3, Tj = 4n1/2 − 10,

and Kj = 3.5 yield an estimator with good sampling properties. These values are used
for the numerical illustrations presented in the next section. Unfortunately, no estimator
for the MSE of yp is available.

2.5. An example: Analysis of 10 years of inventories for the rainbow
smelt in Lake St-Jean, Quebec

The data set in Table 1 gives the outcomes of 10 years of trawl survey, from 1996 to
2005, for the rainbow smelt in Lake St-Jean, Quebec. We are grateful to Michel Legault



254 J.-F. Beaumont and L.-P. Rivest

0

0

10

20

30

40

50

60

E{y (i )}

y
(i

)

4321

Fig. 2. Exponential Q-Q plot for the non-null densities of 1998.

from the Ministry of Natural Resources and Fauna of Quebec for his permission to use
this unpublished data set. Each data value gives the density in number of fish per 10003

meters of water at a random sampling point on the lake. The original data were stratified
by depth and each data point had an associated area measure. These two variables are
omitted since they did not account for much of the variability. The area of lake St-Jean
is more than 104 km2; this makes the sampling fractions negligible. We consider these
samples as coming from infinite populations. Table 1 gives, for each year, the measured
non-null densities in decreasing order of magnitude and the number of sample points
with a density of 0.

Several factors, such as the abundance of predators, influence the density of the
rainbow smelt. Providing a yearly density estimate is a problem since the largest obser-
vation can account for up to 70% of the sample mean in a given year. The CV and the
skewness of the 10 samples of non-null values are in the range (1.2, 2.9) and (1.4, 3.9),
respectively. Considering Fig. 1, the skewness in these data sets is relatively mild. The
exponential Q-Q plots have a convex shape as illustrated in Fig. 2. The sample means
are highly unstable, and the nonparametric alternatives suggested in this section are
presented in Table 3.

To estimate the optimal cutoffs for Searls’ Winsorized mean of Section 2.2, we
assumed that the distributions of the non-null smelt densities for each year were the
same, up to a scale change. The following algorithm was used:

(a) Discard all the null values;
(b) Normalize the data by dividing each observed density by the first quartile of its

yearly sample;



Dealing with Outliers in Survey Data 255

Table 3
The sample mean y, the optimal Winsorized mean yR, the Winsorized mean y

R̂
with R estimated from the

current sample, the once-Winsorized mean y1 (and their estimated root mean squared errors in adjacent
columns), and the preliminary test estimator yP for 10 rainbow smelts inventories. For the two Winsorized
estimators, nR and n

R̂
give the number of data points above the Winsorization cutoffs

Year y s/
√

n nR yR rmse n
R̂

y
R̂

rmse y1 rmse yp

96 36.12 11.87 0 36.12 11.87 1 31.24 9.46 28.97 7.61 36.12
97 6.37 4.73 1 4.16 3.37 1 4.1 3.37 1.99 1.04 6.29
98 9.74 2.75 0 9.74 2.75 3 8.79 2.46 9.21 2.55 9.74
99 1.28 0.77 2 0.6 0.75 2 0.95 0.62 0.99 0.88 0.33
0 9.98 3.84 0 9.98 3.84 3 8.45 3.39 9.75 3.77 9.98
1 0.53 0.22 0 0.53 0.22 2 0.44 0.19 0.5 0.25 0.44
2 6.96 3.6 2 5.01 3.02 2 5.41 2.99 6.17 4.26 3.26
3 0.93 0.52 2 0.57 0.42 1 0.69 0.39 0.57 0.3 0.33
4 6.95 2.88 1 6.94 2.87 2 5.85 2.44 6 2.65 6.95
5 101.4 50.28 NA NA NA 1 80.47 40.27 77.33 40.95 101.4

(c) Use formula (2), with F equal to the empirical distribution function of the pooled
non-null standardized values and n equal to the number of non-null data values
in a given year, to calculate the standardized optimal cutoff for that year;

(d) Multiply the standardized optimal cutoff of (c) by the first quartile of (b) to get
the final cutoff.

With this algorithm, the value of the optimal cutoff for each year does not depend on
the number of null observations for that year. When pooling all the data, this algorithm
yielded a severe Winsorization for 2005, with nR = n{1−Fn(Rn)} = 4 data values larger
than the cut-off. This suggests that 2005 violates the homogeneity assumption underlying
the calculation of the optimal cutoffs. This year was discarded and the Winsorization
cutoffs for 1995–2004 were calculated with the 187 non-null values for 1995–2004.

In Table 3, the root mses for the optimal Winsorized mean are evaluated as if the
optimal cutoffs calculated above were known.Atotal of eight data points are Winsorized
for the nine samples. This is in agreement with the discussion in Section 2.2 that showed
that few data points are Winsorized per sample under the optimal scheme.

Table 3 also features the estimator yR̂ obtained with a Winsorization cutoff that mini-
mizes the estimated MSE 1 year at a time. This estimator does not use the data from the
other years to determineR̂. It Winsorizes more points in years where no outliers had been
detected with the previous scheme. It has an estimated median bias of −19%. The rmse
column gives the minimal value of

√
mse(yR) as a function of R; this underestimates

the true MSE of yR̂ as it does not account for the variability in the estimation of R. It
gives an upper bound on the gains of efficiency achievable with a simple Winsorization;
the median of the maximal efficiency, s/

√
n × minR{mse(yR)}, is 123%.

In Table 3, the estimated median bias of the once-Winsorized mean is −17%, whereas
the median of s/

√
n × mse(y1) is 108%. Thus, Winsorizing the largest observation

improves the estimation of the population mean. The preliminary test estimator yp is
equal to the sample mean for 5 analyses out of 10; it is less than 50% of the sample mean
for 3 years. The values j = 3, Tj = 4n1/2 − 10, and Kj = 3.5 used in the calculations
might not be well suited for the data of Table 1. Constructing reliable confidence intervals
for the unknown population mean using the Winsorized means presented in Table 3 is
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still an open research area. Application of empirical likelihood techniques presented in
Chen et al. (2003) to Winsorized means could be envisioned for that purpose.

The mean density for the first 9 years of the study is y = 8.76, the average of the nine

values of y. The standard error is estimated by
√∑

s2
i /ni/9 =1.60, where the subscript

i refers to the year. The average optimal Winsorized mean is yR = 8.18, with a root mse√
mse(yR) of 1.61, where

mse
(
yR

) =
9∑

i=1

1

81

ni∑
j=1

[
min(yij, Ri) − yiR

]2
ni(ni − 1)

+

⎡⎢⎢⎢⎣
9∑

i=1

ni∑
j=1

max(yij − Ri, 0)

9ni

⎤⎥⎥⎥⎦
2

,

and subscript j refers to a sample point within a year. The two estimators have approx-
imately the same root mse; however yR is biased. In Table 3, the Winsorization cutoffs
were selected to optimize the bias-variance tradeoff for yearly estimates. These cutoffs
are no longer optimal for estimating the average density over 9 years. Thus, y has better
sampling properties than yR for estimating the 9-year average. For the estimation of a
sum using a Winsorized mean for each element, Eq. (2) no longer gives the optimal
Winsorization cutoff for the elements of the sum. This problem is addressed in the next
section in the context of a stratified sampling design.

3. The estimation of totals in finite populations containing outliers

When an outlier appears in a sample collected from a finite population, one can consider
that this outlier is unique and unrepresentative of the nonsample part of the population
(Rao, 1971). One can thus reduce its sampling weight to 1 and redistribute the outstand-
ing sampling weight among the non-outlier sample units. If an outlier is deemed to be
representative, one would like the sampling weight to be larger than or equal to 1. The
estimators discussed in Section 2 do not satisfy this property. For example, the once-
Winsorized mean of Section 2.3 sometimes gives a sampling weight smaller than 1 to
the largest observation.

This section focuses on the estimation of the total Ty = ∑
i∈U yi of variable y for

the population U of size N. Suppose that a simple random sample of size n is drawn
from the population, which is itself generated from an asymmetric distribution F(y) with
mean μ. Lemma 5 of Fuller (1991) shows that for any estimator y∗ that has a smaller
MSE than the sample mean ys when estimating μ,

T̂ ∗
y = N

[
f ys + (1 − f ) y∗

]
is a better estimator of the population total Ty than the expansion estimator T̂y = Nys,
where f = n/N is the sampling fraction. In addition, the design MSE of T̂ ∗

y can be
estimated by

mse(T̂ ∗
y ) = N2 (1 − f )2 mse

(
y∗
)+ N(1 − f )s2,

where mse(y∗) is an infinite population MSE estimator and s2 is the sample variance.
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The Winsorized mean of Section 2.2 can be adapted to sampling from a finite
population using y∗ = ∑

i∈s min(yi, R)/n in the above equation for T̂ ∗
y . If R stands

for the Winsorization cutoff, the resulting Winsorized estimator of Ty is given by

T̂yR =N

⎡⎢⎣f ys +(1 − f )

∑
i∈s

min(yi, R)

n

⎤⎥⎦= T̂y − (1 − f )

f

∑
i∈s

max(yi − R, 0),

where s is the set of the units in the sample. The estimator T̂yR can also be written as
T̂yR =∑i∈s d∗

i yi, where

d∗
i = 1 +

(
N

n
− 1

)
min(yi, R)

yi

is a reduced sampling weight that is never smaller than 1. Gross et al. (1986) called T̂yR

a Winsorized type II estimator. They called estimator (1), where a unit can receive a
weight smaller than 1, a Winsorized type I estimator.

The value Rn that minimizes the MSE of T̂yR with respect to the sampling design can
be approximated by the solution of

Rn − yU

n − 1
= (1 − f )

N

N∑
i=1

max(yi − Rn, 0). (3)

The solution Rn to Eq. (3) is slightly larger than that of Eq. (2) for the infinite popu-
lation Winsorization, with F(y) equal to the empirical distribution function of y in the
population. The next section discusses the extension of (3) to a stratified sampling design.

3.1. Winsorization in a stratified sampling design

Suppose that a random stratified design is used to sample a population with an asym-
metric distribution. The following notation is used:

• Nh is the size of stratum, h = 1, . . . , H and N = �Nh

• sh is the sample, of size nh, collected in stratum h, fh = nh/Nh is the sampling
fraction in stratum h and n = �nh;

• ysh is the sample mean in stratum h and T̂y = ∑
Nhysh is the simple expansion

estimator of the total;
• yhU is the population mean in stratum h;
• Rh is the Winsorization cutoff in stratum h.

A Winsorized type II estimator of the total is

T̂yR =
H∑

h=1

Nh

⎧⎪⎨⎪⎩fhysh + (1 − fh)

∑
i∈sh

min(yhi, Rh)

nh

⎫⎪⎬⎪⎭
=

H∑
h=1

Nh

{
ysh − 1 − fh

nh

∑
i∈sh

max(yhi − Rh, 0)

}
. (4)
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Alternative expressions for this estimator are T̂yR = ∑H
h=1

∑
i∈sh

d∗
hiyhi and T̂yR =∑H

h=1

∑
i∈sh

(Nh/nh)y
∗
hi, where

d∗
hi =1 +

(
Nh

nh

− 1

)
min(yhi, Rh)

yhi

and y∗
hi = fhyhi + (1 − fh) min(yhi, Rh).

They highlight that the Winsorized estimator can be written in the same form as the
simple expansion estimator T̂y =∑H

h=1

∑
i∈sh

(Nh/nh)yhi with either a reduced weight,
d∗

hi, or a reduced y-value, y∗
hi, for the outliers; that is, the units with a y-value above

the threshold Rh. The above expressions also show that the reduced weight d∗
hi given to

outliers cannot be smaller than 1. The MSE of (4) is given by

MSE(T̂yR) = Var(T̂yR) +
[

H∑
h=1

Nh∑
i=1

(1 − fh) (yhi − min(yhi, Rh))

]2

,

where Var(T̂yR) is the standard design-based variance for the estimator of the total
of y∗

hi.
The minimization of MSE(T̂yR) with respect to {Rh} is discussed in Kokic and Bell

(1994) and Rivest and Hurtubise (1995). An approximate solution, slightly larger than
the true minimizers of MSE(T̂yR), is given by Rh = yhU + Rfh/(1 − fh), where R is
obtained by solving

R =
H∑

h=1

Nh∑
i=1

(1 − fh) max

(
yhi − yhU − R

nh

(Nh − nh)
, 0

)
.

This is Eq. (3.4) in Rivest and Hurtubise (1995) when fh ≈ 0 and is similar to
Eq. (7) in Kokic and Bell (1994). In stratum h, a data point is Winsorized if yhi >

yhU + Rfh/(1 − fh). This condition can be interpreted in terms of a model m where
Em(yhi) = μh. The population residual with respect to this model needs to be larger than
a cutoff that increases with the sampling fraction for a y-value to be downweighted.
Section 4 presents similar results for design-based inference where auxiliary variables
are used to improve the estimation of Ty.

This Winsorization scheme has properties similar to those for the infinite population
model. The number of Winsorized data points decreases with the skewness of the data
and the total number of Winsorized data points in all the strata combined should be
relatively small.

3.2. Winsorization in a general sampling design

This section and Sections 4 and 5 consider a population U that is sampled with
an arbitrary sampling design with single and joint selection probabilities given by
πi and πij , respectively. The Horvitz–Thompson estimator of the population total is
T̂ HT

y = ∑i∈s yi/πi. A basic, Winsorized type I estimator is T̂ HT
yR = ∑i∈s min(yi/πi, R).

Alternative Winsorization schemes are proposed in Section 4.2. They are developed in
the next section where auxiliary information is used in the construction of an estimator
for Ty.
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4. The estimation of totals using auxiliary information in finite populations
containing outliers

Suppose that a vector xi of auxiliary variables is available for all the units in the sample
and that the totals Tx = ∑

i∈U xi are known. Within the design-based framework, the
sampling weights di = 1/πi can be calibrated to the known totals Tx; see Deville and
Särndal (1992).Alternatively, model-based methods (Chambers , 1996, 1997) could also
be considered to determine calibrated weights. Let wi denote the calibrated weight for
unit i and T̂ C

y =∑i∈s wiyi denote the calibrated estimator for the total of y. The weights
wi satisfy the calibration equation

∑
i∈s wixi = Tx. The calibration is motivated by the

following linear estimation model

m : Em(yi|X) = x′
iβ and Varm(yi|X) ∝ νi = x′

iλ, i ∈ U,

where the subscript m indicates that the moments are evaluated with respect to the
model, β is a vector of unknown model parameters, λ is known, and X is a N-row
matrix containing x′

i in its ith row. The quality of the design-based inference drawn with
the calibrated weights depends heavily on the validity of the model. Although standard
calibration estimators are typically approximately unbiased under the sampling design,
they may be quite inefficient if the model fails drastically (e.g., Hedlin et al., 2001); in
particular, when the model misspecification results in the presence of outliers. It is thus
useful to seek for estimators that are more efficient than standard calibration estimators
in outlier-prone populations.

4.1. Robust M-estimation for finite populations

Let β̂
R

be an arbitrary outlier-resistant estimator of the regression parameter in model m.
A decomposition analogous to that of Chambers (1986) is useful to illustrate that cali-
bration estimators are vulnerable to outliers. Since the x-variables satisfy the calibration
equation

∑
i∈U xi =∑i∈s wixi, one has

T̂ C
y =

∑
i∈s

yi +
∑

i∈U−s

x′
iβ̂

R +
∑
i∈s

ui

(
yi − x′

iβ̂
R
)

√
vi

, (5)

where ui = (wi − 1)
√

vi. Thus,

T̂ C
y − Ty = −

∑
i∈U−s

(
yi − x′

iβ̂
R
)

+
∑
i∈s

ui

(
yi − x′

iβ̂
R
)
/
√

vi.

On the one hand, this expression for the sampling error of T̂ C
y highlights that extreme

(positive or negative) residuals yi − x′
iβ̂

R
for nonsample units may have a substantial

impact on the sampling error; nothing can be done about that at the estimation stage. On
the other hand, a sample unit with a large weight ui, combined to a large standardized

residual (yi − x′
iβ̂

R
)/

√
νi, may account for an important share of the sampling error and

may thus be called an influential unit. Methods to downweight its contribution to the
sampling error of the calibration estimator are proposed in this section.
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We use Schweppe form of the generalized M-estimator to limit the impact of outliers;
see Chapter 6 of Hampel et al. (1986). This leads to

T̂ RC
y =

∑
i∈s

yi +
∑

i∈U−s

x′
iβ̂

R +
∑
i∈s

ui

hi

ψ

⎛⎝hi

(
yi − x′

iβ̂
R)

√
vi

⎞⎠, (6)

where hi is a weight that is allowed to depend on both xi and di, and ψ(t) is a bounded
function with ψ(0) = 0 and ψ(t) ≈ t when t is close to 0. If ψ(t) = t for every value
of t then T̂ RC

y reduces to the nonrobust calibration estimator T̂ C
y in (5). The Huber ψ-

function,

ψ(t) = ψI
H(t) ≡

{
t if |t| < c

sign (t) × c if |t| ≥ c
,

is widely used in this context. An interesting property of estimator (6) is that it is census-
consistent in the sense that, no matter the choice of hi or ψ(.), T̂ RC

y reduces to Ty if a
census is conducted (i.e., when s = U and wi = 1, for i ∈ U).

The robust calibration estimator (6) can also be written in the form

T̂ RC
y = T′

xβ̂
R +

∑
i∈s

wr,i(β̂
R
)(yi − x′

iβ̂
R
), (7)

with weights

wr,i

(
β̂

R
)

= wi

ψ∗
i

(
hi

(
yi − x′

iβ̂
R)/√

vi

)
hi

(
yi − x′

iβ̂
R)/√

vi

and

ψ∗
i (t) = t

wi

+ (wi − 1)

wi

ψ (t) .

Expression (7) has the same form as the estimator studied in Duchesne (1999). If
ψ(t) = ψI

H(t), the resulting function ψ∗
i (t) provides an outlier treatment analogous

to type II Winsorization since it reduces only 100(wi − 1)/wi% of a weighted residual.
From this perspective, the standard Huber function ψ∗

i (t) = ψI
H(t) gives a two-sided

type I Winsorization. Alternatives to (6) are available to limit the impact of large sample
residuals. For instance, Lee (1991) multiplies the residual component of (5) by a number
θ between 0 and 1; see also Gwet (1998) and Lee and Patak (1998).

Many choices for the weights hi have been proposed in the literature. They include
hi = 1 (Chambers , 1986, 1997), hi ∝ √

νi (Gwet and Rivest, 1992), and hi = wi

√
vi or

hi = di

√
vi (Beaumont and Alavi, 2004). Equation (5) suggests hi = ui = (wi − 1)

√
vi

as another interesting set of weights.

Several strategies are available to construct β̂
R

. In a model-based approach, β̂
R

is
derived from the theory of Robust Statistics to represent the relationship between x and
y for the bulk of the data values. It should be outlier-resistant and should achieve a high
efficiency when the model errors have a normal distribution (see Hampel et al., 1986).

Then,
∑

i∈U−s x′
iβ̂

R
is little affected by outliers; it may however suffer from a substantial

bias as an estimator of
∑

i∈U−s yi in outlier-prone populations. The role of the third term
in (6) is to reduce this bias. The function ψ in (6) brings outliers in the estimation
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of Ty. Hopefully, the resulting increase in variance will be offset by a bias reduction.
The management of this bias-variance trade-off is the key to producing estimators of
Ty with good sampling properties. Variants of this model-based approach are presented

in Chambers (1986) and Welsh and Ronchetti (1998). Several tuning constants, for β̂
R

and ψ, are involved; they cannot be determined using design-based information only.
From a design-based perspective, β is a nuisance parameter since the focus is the

estimation of Ty. Considering (7), a suitable estimating equation for β is U(β) = 0, where

U(β) =
∑
i∈s

wr,i(β)(yi − x′
iβ)

xi

vi

=
∑
i∈s

wi

hi

ψ∗
i

(
hi

(yi − x′
iβ)√

vi

)
xi√
vi

. (8)

Let β̂
GM

denote the solution of U(β) = 0. The associated robust calibration estimator

(7), obtained with β̂
R = β̂

GM
, takes the simple projection form

T̂ RC
y = T′

xβ̂
GM

. (9)

Gwet and Rivest (1992); Hulliger (1995), and Beaumont and Alavi (2004) investigated
estimator having the form (9). In (9), the outlier treatment is done through the tun-
ing constant c of Huber ψ-function. Before discussing the specification of this tuning
constant, it is interesting to draw a parallel between estimator (9) and the Winsorized
estimator (4) in a stratified sampling design, which was presented in Section 3.1.

4.2. Some examples

The Winsorized estimators of Section 3 are associated to one-sided Huber ψ-functions,
ψ(t) = min(t, R). This section shows that they are special cases of the robust calibration
estimator (9).Alternatives to the Horvitz-Thompson are also developed in the framework
of Section 4.1.

In a stratified design where stratum membership is the only auxiliary information,
a unit i in stratum h has x′

iβ = μh, νi = 1, Tx = (N1, . . . , NH)′, wi = di = 1/fh,
and

∑
i∈sh

wi = Nh. Taking ψ(t) = min(t, R) and hi = ui = (1 − fh)/fh, the robust
estimator of μh obtained from the estimating equation U(β) = 0, see (8), is a solution of

μh = fhysh + (1 − fh)

nh

∑
i∈sh

min[yhi, fhR/ (1 − fh) + μh].

Thus T̂ RC
y = ∑H

h=1 Nhμ̂h = T̂yR, is the Winsorized estimator of Section 3.1 with a cutoff

Rh = μ̂h + R
fh

1−fh
that has a form similar to the optimal cutoff of Section 3.1. The

Winsorized estimator (4) can be regarded as a special case of (9).
The Horvitz–Thompson estimator can be fitted in the framework developed in

Section 4.1. First suppose that model m is empty, with no auxiliary variable, and vi = 1.
Set ui = hi = (1/πi − 1), (7) leads to

T̂ HT
yR =

∑
i∈s

yi + min((1/πi − 1)yi, R).

This is a type II alternative to the estimator presented in Section 3.2.
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Suppose now that m has only an intercept μ and vi = 1. The calibrated weights wi sum
to N. If ui = hi = (wi − 1), then the robust estimator of μ obtained from the estimating
equation U(β) = 0, see (8), with ψ(t) = min(t, R) is a solution of

μ =
∑
i∈s

yi + (wi − 1) min[yi, μ + R/(wi − 1)]∑
i∈s

wi

,

and T̂ RC
y =∑i∈s wiμ̂.

Finally, the Horvitz–Thompson weights di are sometimes implicitly calibrated
to known auxiliary totals; that is,

∑
i∈s dixi = Tx for a suitably defined vector x. This

has already been shown for stratified simple random sampling in the above example.
This is also true with probability-proportional-to-size (pps) sampling as the selection
probability for unit i is πi = nxi/Tx and thus

∑
i∈s dixi = Tx. When a sampling design

is used such that the Horvitz–Thompson estimator is implicitly calibrated, estimator (9)
may be directly used for its improvement by letting wi = di. For pps sampling, this was
done by Hulliger (1995), who used ψ∗

i (t) = ψI
H(t).

4.3. Choice of the tuning constant when solving U(β) = 0

The determination of the tuning constant c for Huber ψ-function appearing in the esti-

mating equation for β̂
GM

is critical for the construction of a good estimator for Ty.
Section 3 was facing a similar problem when determining the optimal Winsorization
cutoff. Too small a value produces a small variance at the expense of a large bias, whereas
a large value gives the nonrobust calibration estimator T̂ C

y . Therefore, the MSE is a use-
ful criterion for evaluating the quality of outlier-robust estimators of finite population
parameters and for choosing an appropriate tuning constant c.

A simple strategy sets c equal to a residual scale parameter estimate Q times a fixed
constant c∗ (e.g., c∗ = 2 or c∗ = 10). With this ad hoc approach, one cannot be sure that
T̂ RC

y is more accurate than the standard calibration estimator. Following the strategy used

in Section 3, one can select the value of c that minimizes MSE(T̂ RC
y ) = E(T̂ RC

y − Ty)
2

for a known population similar to that under study, or perhaps by pooling several samples
together, as illustrated in Section 2.5.

When additional information is not available, Hulliger (1995) and Beaumont and
Alavi (2004) suggested to find the tuning constant c that minimizes an MSE estimator
mse(T̂ RC

y ). As pointed out by Hulliger, this approach does not depend on the choice of
the scaling statistic Q so that it can be set to 1. This is the approach pursued now as
a known population similar to that under study is often not easily available. Assuming
that E(T̂ C

y ) ≈ Ty, the MSE of T̂ RC
y can be approximated as

MSE
(
T̂ RC

y

)=E
(
T̂ RC

y −Ty

)2 ≈Var
(
T̂ RC

y

)+{E(T̂ RC
y −T̂ C

y

)2−Var
(
T̂ RC

y −T̂ C
y

)}
,

(10)

The two terms within brackets in (10) are an approximation of the square of the design
bias of T̂ RC

y . Gwet and Rivest (1992) suggested the MSE estimator

mse
(
T̂ RC

y

) = v
(
T̂ RC

y

)+ max
{

0,
(
T̂ RC

y − T̂ C
y

)2 − v
(
T̂ RC

y − T̂ C
y

)}
, (11)
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where v
(
T̂ RC

y

)
and v

(
T̂ RC

y − T̂ C
y

)
are design-consistent estimators of Var

(
T̂ RC

y

)
and

Var
(
T̂ RC

y − T̂ C
y

)
, respectively. When the goal of MSE estimation is only to find a suitable

tuning constant c, the following simplified MSE estimator is often more appealing in
practice:

mse∗(T̂ RC
y

) = v
(
T̂ RC

y

)+ (T̂ RC
y − T̂ C

y

)2
. (12)

Then, v
(
T̂ RC

y

)
may be estimated using a simple linearization technique. First one can

obtain V̂
(
β̂

GM)
, an estimator of Var (β̂

GM
), using the estimating function (8) and the

linearization method of Binder (1983); that is,

V̂
(
β̂

GM) =
{

∂U(β)

∂β

}−1

V̂ {U(β)}
{(

∂U(β)

∂β

)′}−1
∣∣∣∣∣
β=β̂

GM

. (13)

To simplify the estimation of the middle term in the right-hand side of (13), we treat

both wi and hi as fixed quantities. From (9), we then have v
(
T̂ RC

y

) = T′
xV̂(β̂

GM
)Tx and

(see Beaumont, 2004, for additional details),

ν
(
T̂ RC

y

) =
∑
i∈s

∑
j∈s

πij − πiπj

πij

eiej, (14)

where

ei =
wr,i

(
β̂

GM) (
yi − x′

iβ̂
GM
)

vi

x′
i

⎛⎝∑
j∈s

γjxjx′
j

⎞⎠−1

Tx, and

γi = wi

vi

∂ψ∗
i (t)

∂t

∣∣∣∣
t=hi

(
yi−x′

i
β̂
GM

)
√

vi

.

Once the ei’s have been computed, the variance estimator (14) is easy to obtain using
standard software packages for survey sampling.

The minimization of (12) with respect to c can be achieved using the Newton–
Raphson algorithm with the first and second derivatives computed numerically. This
is what has been done in Section 4.6. Since current data are used to determine the
tuning constant, there is some instability in the estimated c. To increase stability, one
can consider using the average estimated c or c* over several periods of a survey, when
such data are available.

4.4. Estimation of the MSE

Once the tuning constant c has been estimated, it is usually required to evaluate the MSE
of the resulting robust estimator T̂ RC

y . The variability added by the estimation of c must
be taken into account in MSE estimation. To this end, we use the bootstrap technique
(e.g., Rao and Wu, 1988; Rao et al., 1992) to obtain variance estimators involved in (11).
For each bootstrap replicate, the complete estimation process is repeated, including the
minimization used to determine the tuning constant. The resulting bootstrap variance
accounts for the fact that wi and hi are random. Gwet and Lee (2000) studied empirically
the bootstrap in the context of outlier-robust estimation and found promising results.
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When the residuals in (5) have a skewed distribution, Section 2 suggests that selecting
a tuning constant c that curbs the contribution of 1 or 2 data points should bring a reduc-
tion in MSE.As argued in Section 2.3, this reduction might not be detectable by standard
asymptotic calculations, such as the Taylor or bootstrap procedure, presented in this sec-
tion. More work is needed to adapt the techniques for estimating the Winsorization cutoff
presented in Section 2 to the calibration estimator of Section 4.

4.5. Implementation

Users of survey data are accustomed to work with a complete rectangular data file
containing a unique set of estimation weights. Unlike the calibration estimator T̂ C

y , the

robust calibration estimator T̂ RC
y cannot be implemented easily if only the calibration

weights wi, for i ∈ s, are provided along with the original values of the y-variables. In
this section, we describe two approaches to deal with this issue: a weighting approach
(Beaumont and Alavi, 2004) and an imputation approach (e.g., Beaumont and Alavi,
2004; Chambers and Kokic, 1993; Ren and Chambers, 2002).

Let Ty = ∑
i∈s yi be the vector of population totals for the q variables of

interest y = (y1, . . . , yq)
′, with corresponding robust calibration estimators T̂RC

y =(
T̂ RC

y1
, . . . , T̂ RC

yq

)′
. In the weighting approach, yi, for i ∈ s, are kept intact but the

calibration weights wi, for i ∈ s, are replaced by the robust calibration weights wR
i ,

which are obtained by using the augmented calibration equation∑
i∈s

wR
i

(
xi

yi

)
=
(

Tx

T̂RC
y

)
.

Of course, there may be a limit on the number of y-variables that can be used for
calibration purposes. This may somewhat restrict the applicability of this method when
q is very large.

An alternative is to modify the values of the y-variables while keeping the calibration
weights wi intact. It is applied separately for each variable of interest and is called the
imputation approach. It is straightforward to show that the robust calibration estimator
T̂ RC

y in (6) can be written as T̂ RC
y =∑i∈s wiy·i, where

y·i = yi

wi

+ (wi − 1)

wi

⎧⎨⎩x′
iβ̂

R +
√

vi

hi

ψ

⎛⎝hi

(
yi − x′

iβ̂
R)

√
vi

⎞⎠⎫⎬⎭. (15)

When a Huber ψ-function, with tuning constant c, is used, Eq. (15) reduces to

y·i =

⎧⎪⎪⎨⎪⎪⎩
yi , if i ∈ s − so

yi

wi

+ (wi − 1)

wi

⎧⎨⎩x′
iβ̂

R +
√

vi

hi

sign

⎛⎝hi

(
yi − x′

iβ̂
R)

√
vi

⎞⎠ c

⎫⎬⎭ , if i ∈ so ,
(16)

where so is the set of all sample units i for which wr,i

(
β̂

R)
< wi. Thus, so contains units

that have been detected as being influential by the robust procedure. The modified values
(16) can be viewed as type II symmetric two-sided regression Winsorized values and
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the corresponding robust estimator could be called a Winsorized regression estimator
of Ty. The expression for the Winsorized values in Section 3.1 of this Chapter as well
as those given in Kokic and Bell (1994), Clarke (1995), and Chambers et al. (2000) can
be obtained from a one-sided version of (16) with hi = ui = (wi − 1)

√
vi. Plugging

hi = 1 in (16) leads to the Winsorized ratio estimator of Chambers and Kokic (1993).
Considering (7), an alternative form for T̂ RC

y is T̂ RC
y =∑i∈s wiy·i, where

y·i = wr,i

(
β̂

R)
wi

yi +
⎛⎝1 − wr,i

(
β̂

R)
wi

⎞⎠ x′
iβ̂

R
. (17)

The modified values in Eq. (17) are equivalent to those given in (15) and have a

simple interpretation: they are a weighted average of the robust predictions x′
iβ̂

R
and

the observed values yi. Less weight is given to the observed value yi when it has a

smaller value of wr,i(β̂
R
)/wi and, therefore, when it is highly influential. The imputa-

tion approach can also be implemented through reverse calibration by using a suitable
distance function (Beaumont and Alavi, 2004; Ren and Chambers, 2002).

4.6. An illustration using the Canadian Workplace and Employee Survey

To illustrate the usefulness of robust M-estimators, we use the data of the 2003 Canadian
Workplace and Employee Survey (CWES). The CWES is a longitudinal survey that
started in 1999 and that collects information on employers and their employees. In this
application, we focus on the employer portion of the CWES. Every other year, a sample
from the population of births is selected from the Business Register. Therefore, the 2003
sample contains units selected in 1999, 2001, and 2003. In each of these years, employers
are selected by stratified simple random sampling without replacement and the strata
are formed by crossing 6 regions, 14 industry groups, and 3 size groups, where the size
variable corresponds to the number of employees available on the Business Register.
To simplify the example, we restrict to a single region-industry group, which yields a
sample of size n = 112, and consider only the most important variables of the survey.
They are five financial variables, which will be denoted by Y1, Y2, Y3, Y4, and Y5. In
this survey, there is a single auxiliary variable x with vi = xi and wi = diTx/

∑
i∈s dixi,

where di is the inverse sampling fraction in the stratum of unit i. Thus, the calibration
estimator is actually a ratio estimator. The sample values of this auxiliary variable are
obtained at the collection stage and correspond to the number of employees of each
sampled employer. The population total Tx is obtained from a reliable external survey
(the Survey of Employment Payroll and Hours); Tx is assumed to be without error to
simplify the example.

Figure 3 shows the relationship between x and Y1. For variable Y4, this relationship
is illustrated in Fig. 4. The solid line in both figures corresponds to the least-squares
fit. In both cases, there are large regression residuals and the ratio model seems to be
reasonable although it may not be fully satisfactory.Asimilar observation was also made
for the other three variables, which are not illustrated here. Figures 5 and 6 show a plot
of the standardized residuals (yi − xiβ̂)/

√
xi versus ui = (wi − 1)

√
vi, for Y1 and Y4,

respectively, where β̂ =∑i∈s wiyi/
∑

i∈s wixi. This plot is useful to determine whether
there are influential units in the sample. A unit that has a large value on both axes is most



266 J.-F. Beaumont and L.-P. Rivest

X

Y
1

0 200 400 600 800 1000 1200 1400

0

Fig. 3. Plot of Y1 versus the auxiliary variable.

0 200 400 600 800 1000 1200 1400

X

Y
4

0

Fig. 4. Plot of Y4 versus the auxiliary variable.
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Fig. 5. Plot of the standardized residual for Y1 versus u.
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Fig. 6. Plot of the standardized residual for Y4 versus u.
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likely quite influential. From these two figures, it appears that there is an influential unit
for variable Y1 and none for variable Y4. Thus, the large regression residuals in Fig. 4 do
not seem to be influential. The other residual plots are not provided here: variable Y2 is
similar to Y1, it has one influential unit, whereas variables Y3 and Y5 have two influential
units, although less influential than the one for variable Y1.

In our empirical investigation, we considered the robust estimator (9) and solved
U(β) = 0 (see Eq. 8) using the iteratively reweighted least squares algorithm (Beaton
and Tukey, 1974) starting with the least squares solution. We compared two different
choices of weight hi: hi = ui = (wi − 1)

√
vi and hi = 1. We also compared four differ-

ent choices of c : c = 0.00001Q, c = 2Q, c = 10Q, and the optimal value of c obtained
by minimizing the estimated MSE given by (12) and (14). The scale statistic Q required
in the first three cases is obtained as in Beaumont and Alavi (2004). It is proportional
to a weighted median of absolute weighted residuals. Note that we kept this statistic
unchanged throughout the iterations of the iteratively reweighted least squares algo-
rithm for simplicity. Results are given in Table 4. Four quantities have been computed:
i) the relative difference in percentage RD = 100

(
T̂ RC

y − T̂ C
y

)
/T̂ C

y ; ii) the Wald statis-

tic Wald = (
T̂ RC

y − T̂ C
y

)2
/vB

(
T̂ RC

y − T̂ C
y

)
, which can be used to give an indication of

the design bias of the robust calibration estimator; iii) the bootstrap relative efficiency
in percentage RE_Bootstrap = 100vB

(
T̂ C

y

)
/mseB

(
T̂ RC

y

)
, and iv) the Taylor relative

Table 4
Comparison of different robust estimators on the CWES data

RD Wald RE_Bootstrap RE_Taylor RD Wald RE_Bootstrap RE_Taylor
Variable C

hi = ui hi = 1

Y1

0.00001Q 8.01 0.32 598.5 233.8 8.01 0.32 598.5 233.8
2Q −8.13 0.39 671.2 263.2 −20.14 4.85 59.1 48.6
10Q −13.76 1.29 242.1 100.6 −2.67 5.74 94.5 82.7
Optimal 1.09 0.02 246.0 667.9 1.39 0.04 198.1 442.0

Y2

0.00001Q 8.90 0.32 647.7 247.1 8.90 0.32 647.7 247.1
2Q −9.04 0.35 1181.6 294.4 −24.43 4.52 58.9 47.6
10Q −17.34 1.43 225.6 91.5 −4.67 5.31 98.8 90.4
Optimal 0.72 0.01 230.6 767.7 0.97 0.02 202.2 638.1

Y3

0.00001Q 19.45 8.83 10.4 9.3 19.45 8.82 10.4 9.3
2Q 7.77 2.42 68.8 44.0 −5.85 6.64 65.1 57.4
10Q −0.46 0.01 145.6 128.0 −0.93 5.41 95.3 88.3
Optimal 1.86 0.63 104.9 135.3 1.28 0.75 105.9 215.9

Y4

0.00001Q 157.41 76.54 0.4 0.4 157.41 76.54 0.4 0.4
2Q 52.21 15.00 3.6 3.4 −20.34 14.37 22.2 21.3
10Q 3.76 1.53 72.9 68.1 −11.06 11.71 53.6 50.6
Optimal 0 − 100 100.7 −1.38 1.35 103.1 102.7

Y5

0.00001Q 50.03 7.02 12.6 11.0 50.02 7.02 12.6 11.0
2Q −2.89 0.04 216.7 212.9 −27.34 11.13 36.4 33.7
10Q −20.26 3.43 71.2 54.5 −3.52 5.45 93.7 83.5
Optimal 2.32 0.46 112.2 226.6 1.98 0.80 98.1 137.6



Dealing with Outliers in Survey Data 269

efficiency in percentage RE_Taylor = 100vB

(
T̂ C

y

)
/mse∗(T̂ RC

y

)
. The notation vB(.) is

used to denote the Rao–Wu bootstrap variance estimator. The estimator mseB

(
T̂ RC

y

)
is

obtained by using the Rao–Wu bootstrap method for the estimation of the two vari-
ance terms appearing in (11). One thousand bootstrap replicates have been used in this
empirical study. Finally, mse∗(T̂ RC

y

)
is obtained from (12) and (14).

From Table 4, we can make the following remarks:

• On the one hand, the robust calibration estimator T̂ RC
y is often more efficient than

the nonrobust calibration estimator T̂ C
y when T̂ RC

y is not significantly biased; that
is, when the Wald statistic is small (say smaller than 3.84). On the other hand, it
may be much less efficient than T̂ C

y when the Wald statistic is large.

• The optimal c, estimated using the procedure outlined in Section 4.3, always leads
to a small value of the Wald statistic and seems to offer a good compromise between
bias and variance as it is almost always more efficient than T̂ C

y . However, it does
not always lead to the most efficient robust calibration estimator due to the increase
in variance resulting from estimating c. This can be noted by examining the relative
efficiencies.

• Note that the optimal choice of c led to a value c∗ = c/Q smaller than 2 in most
cases but larger than 10 for variable Y4.

• An ad hoc choice of c∗ may result in large gains in efficiency, especially when c∗ is
small. It may also lead to quite an inefficient robust estimator when c∗ is small. It
thus seems difficult to determine a fixed constant c∗ that performs reasonably well
in all situations. A larger value of c∗ seems preferable to avoid large biases even
though it may also reduce efficiency gains.

• The choice hi = ui performed better in general than hi = 1 although the difference
is small for the optimal choice of c.

• The gain in efficiency for variable Y4 was smaller than that for variable Y1. This is
not surprising as there was no influential unit in Fig. 6, whereas there was one in
Fig. 5. For variable Y4, when hi = ui, we were indeed not able to find any value
of c such that mse ∗(T̂ RC

y

)
< mse ∗(T̂ C

y

)
so that the optimal robust estimator was

actually the calibration estimator T̂ C
y .

• More gains in efficiency could potentially be obtained by finding an optimal value of
c using past data. In the absence of past information, the optimal robust calibration
estimator shown in this empirical study is attractive and performed well overall.

Finally, it is important to point out that the estimated MSE (12) had more than
one local minimum. The local minimum with the largest value of c (not leading to
T̂ RC

y = T̂ C
y ) was usually not the global minimum. It was associated to a negative bias

with only a few units detected as being influential. It would normally be the global
minimum if a one-sided Huber function was used. There was also another minimum
with a value of c closer to zero and which was usually the global minimum. This global
minimum was associated to a small bias, not necessarily negative. This is in agreement
with Kokic (1998) who found out that two-sided Winsorization can substantially reduce
the bias compared to one-sided Winsorization. Note that this global minimum may lead
to modifying more than 50% of the y-values, especially when hi = 1 is used. Indeed,
only a few y-values were not modified in some cases. Therefore, implementation of T̂ RC

y



270 J.-F. Beaumont and L.-P. Rivest

using the imputation approach discussed in Section 4.5 may not be attractive for users.
The weighting approach may be more suitable in this context.

Unfortunately, the global minimum was somewhat difficult to find using the Newton–
Raphson algorithm as the derivative of the estimated MSE in the neighborhood of this
minimum was quite large compared to the derivative in the neighborhood of the local
minimum with a larger value of c. To find the global minimum in the original sample,
we fed the Newton–Raphson algorithm with several different initial values and also
scrutinized the estimated MSE curve. This could not be done for the 1000 bootstrap
replicates. Instead, for a given bootstrap replicate, we started the iterative process with
the optimal value of c found with the original sample and stopped after a maximum of
five iterations to save on computer time.

5. Dealing with stratum jumpers

Standard design-based estimators, such as the Horvitz–Thompson estimator and the
calibration estimators, are known to be inefficient when the estimation weights are
highly variable and uncorrelated with the variables of interest (e.g., Basu, 1971; Rao,
1966). A consequence of a high variability in the estimation weights is the presence of
extreme weights, sometimes referred to as outlier weights. This problem often occurs
in household surveys for a number of reasons, including the use of a series of weight
adjustments. In business surveys, stratification by size and common allocation schemes
usually results in variable design weights. This may yield inefficient estimates when
there are stratum jumpers. This is the problem on which we focus in this section.

5.1. The problem of stratum jumpers in business surveys

In many business surveys, the population of businesses is stratified by region, industry
type, and size group. The latter is defined using some measure of business size avail-
able on the sampling frame, such as the number of employees or the revenue of the
business. Then, the sample is usually selected by stratified simple random sampling
without replacement. For efficiency considerations, a large selection probability πi (and
thus a small design weight, di = 1/πi) is usually assigned to a unit i of large size on the
sampling frame, whereas a small selection probability (and thus a large design weight)
is assigned to a unit of small size. This strategy is justified on the grounds that business
survey variables are usually highly skewed and that there is usually a positive correlation
between the size measure and the main variables of interest so that large values of these
variables are expected to be assigned to a small design weight.

At the time of collection, we often observe discrepancies between the information
available at the design stage and the same information collected from the respondent.
These discrepancies can be explained by errors on the sampling frame, which are partly
due to outdated information, and the time lag between sampling and data collection.
They become problematic when a unit that is thought to be of small size at the design
stage is actually found to be a large unit. Such units are sometimes called stratum jumpers
because they would have been assigned to another stratum had the correct information
been available at the time of design. A consequence of this problem is that some units
with large values of the variables of interest are unfortunately assigned large design
weights, which may result in inefficient design-based estimators.
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At the design stage, the potential impact of stratum jumpers can be reduced to some
extent by controlling the maximum design weight to be smaller than a certain thresh-
old (e.g., Bocci and Beaumont, 2006). This will usually imply departing from optimal
stratification and/or allocation. Rivest (1999) proposed a method for dealing with stra-
tum jumpers, which worked well empirically. It reduces the maximum design weight
by a large factor. No matter how carefully the sampling design is chosen, it is likely
that the problem will not be completely eliminated as the stratum jumpers occur in a
haphazard way.

As an example, suppose that there are two design strata A and B. Stratum A has nine
selected units considered to be of large size at the design stage, which are assigned a
design weight of 1, whereas stratum B has 41 selected units considered to be of small
size at the design stage, which are assigned a design weight of 31. At the collection
stage, we observe that one of the 41 units with a large weight is actually a large size unit
so that the collection stratum is different from the design stratum for this unit, which is
thus called a stratum jumper. Table 5 summarizes the above information. The stratum
jumper is found in the middle row of this table.

Assume that the collection strata are homogeneous with respect to the variable
of interest y (or at least more homogeneous than the design strata) so that collection
stratum A contains large size units associated with large y-values, whereas collec-
tion stratum B contains small size units associated with small y-values. On the one
hand, the stratum jumper can be viewed as a unit with a large y-value compared to
the other 40 units in the same design stratum, which all have the same design weight.
Therefore, standard outlier-robust techniques, such as Winsorization (see Section 3) or
M-estimation (see Section 4), can be used to handle this stratum jumper. On the other
hand, the stratum jumper can also be viewed as a unit with a large design weight com-
pared to the other nine units in the same collection stratum although it may have a similar
y-value. This is the view we take in Section 5.3 with the weight smoothing approach.

Before describing the weight smoothing approach, let us first briefly discuss an alter-
native approach to handling the potential problem of extreme design weights; namely,
Winsorizing the largest design weights (e.g., Liu et al., 2004; Potter, 1990). This actu-
ally seems to be the most popular method whenever something is done to deal with the
problem of large design weights. Using this approach in the example given in Table 5
would lead to reducing the design weight of the stratum jumper but also of all other units
in the same design stratum, which may be less appealing and may reduce efficiency. The
main challenge with this method is to determine an appropriate Winsorization cutoff.
Several methods, sometimes more or less ad hoc, have been considered to address this
issue, including the use of outlier detection techniques. One data-driven method is to
choose the cutoff so as to minimize an estimate of the design MSE. Unfortunately, this

Table 5
Example showing a stratum jumper

Collection Stratum Design Stratum Number of Units Design Weight

A A 9 1
A B 1 31
B B 40 31
Sum over the sample units 50 1280
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leads to a different cutoff for each variable of interest y, and thus a different Winsorized
weight for each y-variable. This is not convenient in multipurpose surveys and, thus, a
compromise Winsorization cutoff is needed. Also, it is worth noting that extreme design
weights may not cause any problem if there is no stratum jumper and the design strata
are homogeneous.

In Section 5.2, we briefly describe a weight smoothing approach, proposed by
Beaumont (2008), to deal with the general problem of variable design weights, including
the presence of extreme weights. This approach is adapted to handle the problem of stra-
tum jumpers in stratified business surveys in Section 5.3. Unlike Winsorization of design
weights, a compromise smoothed weight is obtained naturally when there is more than
one y-variable. In Section 5.4, both weight smoothing and Winsorization are illustrated
using the data of the CWES.

5.2. A general weight smoothing approach

We consider again the problem of estimating the population total Ty = ∑
i∈U yi. The

probability sampling design that is used to select the sample s is denoted by p(s| Z),
where Z = (z1, . . . , zN)′ and zi is a vector of design variables (e.g., the size mea-
sure, region, or industry) for the ith population unit. Let us also use the notation
I = (I1, . . . , IN)′ and Y = (y1, . . . , yN)′, where Ii is the sample inclusion indicator of
unit i; that is, Ii = 1 if the ith population unit is selected in the sample s and Ii = 0,
otherwise. It should be kept in mind that the design weight di = 1/πi is a function
of Z only and should thus be written di(Z). Nevertheless, we still denote it by di for
convenience.

The basic idea underlying weight smoothing consists of first viewing the design
weights as random (see also Chapter 39 of this volume) and then using the model ξ:

Eξ(di|I, X, Y) = gs(xi, yi; αs), (18)

for i ∈ s, where gs(.;.) is some function that may be sample-dependent and αs is a vector
of unknown model parameters to be estimated from sample data. Specific models for the
design weights are given in Pfeffermann and Sverchkov (1999) and Beaumont (2008).
Note that nothing precludes y from being a vector so that the problem of finding a
smoothed weight in multipurpose surveys boils down to considering more explanatory
variables in model ξ. If d̃i = gs(xi, yi; αs) were known, we would obtain the smoothed
estimator T̃ SDB

y by replacing the design weights di by the smoothed weight d̃i in a design-

based estimator T̂ DB
y , such as the Horvitz–Thompson estimator or a calibration estimator.

For instance, if T̂ DB
y is the Horvitz–Thompson estimator, that is, T̂ DB

y =∑i∈s diyi, then

T̃ SDB
y = ∑

i∈s d̃iyi. The role of model ξ is to remove the unnecessary variability in the

design weights. Beaumont (2008) showed that T̃ SDB
y is unbiased and never less efficient

than the corresponding design-based estimator T̂ DB
y under the model ξ and the sampling

design.
Since d̃i = gs(xi, yi; αs) is unknown, we consider a model-consistent estimator α̂s

of αs and use this estimator to obtain d̂i = gs(xi, yi; α̂s), for i ∈ s. This leads to the
smoothed estimator T̂ SDB

y , which is obtained by using d̂i instead of di in the design-based

estimator T̂ DB
y . Note that classical model selection and validation techniques can be
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used to determine an appropriate model and to estimate αs since we are interested
in estimating the relationship between the design weight variable d and both x and y
conditional on the realized sample and only for sample units. We expect that T̂ SDB

y keeps

the good properties of T̃ SDB
y in many practical applications provided that the underlying

model (18) holds reasonably well. Indeed, Beaumont (2008) showed that if a linear
model holds, the smoothed estimator T̂ SDB

y is unbiased and never less efficient than the
Horvitz–Thompson estimator under the model ξ and the sampling design.

Similarly to (11), a design-based MSE estimator of T̂ SDB
y is

mse
(
T̂ SDB

y

) = v
(
T̂ SDB

y

)+ max

{
0,
(
T̂ SDB

y − T̂ DB
y

)2 − v
(
T̂ SDB

y − T̂ DB
y

)}
.

(19)

Since T̂ SDB
y may have a complicated form, the bootstrap technique (e.g., Rao and Wu,

1988; Rao et al., 1992) is a natural candidate for obtaining estimators v
(
T̂ SDB

y

)
and

v
(
T̂ SDB

y − T̂ DB
y

)
of the design variances Var

(
T̂ SDB

y

)
and Var

(
T̂ SDB

y − T̂ DB
y

)
respectively.

One can also restrict the estimated MSE not to be greater than v
(
T̂ DB

y

)
, the estimator of

Var
(
T̂ DB

y

)
, since we expect gains in efficiency if model ξ holds. Such an MSE estimator

performed well in the empirical study of Beaumont (2008).

5.3. Weight smoothing to handle stratum jumpers

Let us now consider the weight smoothing approach in the context of stratum jumpers
in business surveys. We have already denoted by Z, the matrix of design information
available at the time of the design. Let us denote by Zcol, the matrix of design information
at the time of data collection, which is assumed to be measured essentially without errors
for sample units. We may hypothesize that, once we know Zcol, X, and I, the initial design
matrix Z brings no extra information about Y. In other words, Y is independent of Z
after conditioning on Zcol, X, and I; that is, F

(
Y | Z, Zcol, X, I

) = F
(
Y | Zcol, X, I

)
.

This can also be rewritten as F(Z | Y, Zcol, X, I
) = F

(
Z | Zcol, X, I

)
. The latter implies

that the design weights are independent of Y after conditioning on Zcol, X, and I and
that a suitable model for the design weights would be

Eξ

(
di|Zcol, I, X, Y

) = gs(zcol, i, xi; αs

)
, (20)

where zcol, i is the vector of design variables at the collection stage for unit i. These
design variables are treated here like additional y-variables. The idea is to keep from the
design weights the useful information contained in zcol and x (since it may have a strong
relationship with y) and remove their extra variability. Model (20) can then be used to
construct a smoothed estimator, which should be more efficient than its corresponding
design-based estimator.

In many business survey applications, model (20) often reduces to Eξ(di|Zcol,
I, X, Y) = gs(zcol, i; αs). For instance, one has X = Zcol in the example of Section 4.6.
A simple approach to approximate the unknown function gs(zcol, i; αs), is then to dis-
cretize zcol, i, for i ∈ s, into homogeneous categories called collection strata; this is
considered in Section 5.4. Assuming that gs(zcol, i; αs) is constant within each category,
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Table 6
Smoothed weights in the example given in Table 5

Collection Design Number Design Smoothed Smoothed Weight (with
Stratum Stratum of Units Weight Weight Constraint)

A A 9 1 4 1 × 1.0215 = 1.02
A B 1 31 4 4 × 1.0215 = 4.09
B B 40 31 31 31 × 1.0215 = 31.67
Sum over the sample units 50 1280 1280 1253 × 1.0215 = 1280

we approximate the unknown model ξ by a simple analysis-of-variance model. The
smoothed weight d̂i is simply obtained as the average of the design weights within
the collection stratum containing unit i. The second-to-last column of Table 6 gives
the smoothed weight when the above methodology is used in the example provided in
Table 5.

For the stratum jumper, the smoothed weight is close to eight times smaller than the
design weight. To compensate for this weight reduction, the smoothed weight of other
units in collection stratumAbecame four times larger than the design weight. Since units
with a small design weight may be associated to large y-values, it is perhaps preferable
not to modify too much the weights of these units as they may become quite influential.
One option, tested in Section 5.4, is to use the constraint that the smallest design weights
are kept unchanged so that the nine units with a design weight of 1 in Table 6 would
also be given a smoothed weight of 1. It may then be necessary to adjust all the resulting
smoothed weights by a constant factor so that the overall sum of the final smoothed
weights is still equal to the overall sum of the design weights. This leads to the last
column of Table 6, where the constant factor is 1280/1253 = 1.0215. This strategy is
equivalent to a hybrid approach between Winsorization and weight smoothing, where the
largest design weights are Winsorized within each analysis-of-variance cell (collection
stratum). Under this scheme, the Winsorization cutoff is simple to compute as it is the
average of the design weights within each collection stratum. Perhaps more sophisticated
methods of finding the Winsorization cutoff could yield better results. This has yet to be
investigated.

5.4. An illustration using the CWES

To illustrate the benefits of the weight smoothing method when handling stratum
jumpers, we use the 2003 CWES data, as described in Section 4.6. We have only one
auxiliary variable with xi = zcol,i being the number of employees obtained at the collec-
tion stage for business i. Figure 7 shows the relationship between the design weights and
zcol,i. The solid curve has been obtained using the procedure TPSPLINE of SAS. It is
a nonparametric smoothing spline method based on penalized least squares estimation.
We can see that there is a unit with a relatively large design weight of about 35 and
a large value of zcol. Standard Winsorization of the design weights may not reduce at
all the weight of this unit, depending on the cutoff point. Weight smoothing will be
more efficient by reducing the weight of this unit so that it has less influence on the
estimates.



Dealing with Outliers in Survey Data 275

Zcol

D
es

ig
n 

w
ei

gh
t

0 200 400 600 800 1000 1200 1400

0

20

40

60

80

100

120

Fig. 7. Plot of the design weights versus zcol,i.

To smooth the weights, we used a one-way analysis-of-variance model with five
categories obtained by discretizing zcol as proposed in Section 5.3. There are three
categories for zcol ≤ 200, as the slope of the smoothed spline curve is quite steep for
small zcol and two categories for zcol > 200. The resulting smoothed ratio estimator
is denoted by SR-5. The analysis-of-variance residuals are plotted against zcol and Y4

in Figures 8 and 9. The smoothing splines in these figures do not show obvious trends
in the residuals; thus this model for the design weights is satisfactory. Although they
are not provided here, plots for the other y-variables were similar. Thus the assumption
F(Z|Y, Zcol, X, I) = F(Z|Zcol, X, I) made in Section 5.3 is reasonable.

In our empirical study, we have also considered a common mean model for the
weights, which led to the smoothed ratio estimator SR-1. Under this model, the smoothed
weight d̂i, for i ∈ s, is simply the overall average of the design weights. Versions of
SR-1 and SR-5 that left the design weights less than 2 (di < 2) unchanged were also
calculated, as suggested in the example shown in the last column of Table 6. All the
smoothed weights were Winsorized to ensure that the final smoothed weight, say d̂F

i ,
lied in the range 0.1di ≤ d̂F

i ≤ 10di. This step did not change the results in a significant
way; it controlled the bias by preventing large weight adjustments d̂F

i/di, especially when
the constraint on the smallest design weights was not used. This numerical investigation
also features two estimators, WIN10 and WIN100, obtained by Winsorizing the largest
design weights with cutoff points of 10 and 100, respectively.Asummary of the empirical
study is reported in Table 7. The quantities RD, Wald, and RE_Bootstrap are defined
in Section 4.6 but with robust estimators replaced by estimators with smoothed or
Winsorized weights.
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Table 7
Comparison of smoothed and Winsorized estimators using CWES data

RD Wald RE_Bootstrap RD Wald RE_Bootstrap
Variable Method

Without Constraint on the Smallest With Constraint on the Smallest
Design Weights Design Weights

Y1

SR-1 8.88 0.59 434.9 11.96 3.68 56.6
SR-5 −3.77 0.10 323.2 −10.31 0.81 238.4
WIN10 10.08 1.90 143.8 10.08 1.90 143.8
WIN100 2.34 1.99 92.3 2.34 1.99 92.3

Y2

SR-1 10.10 0.62 448.9 14.19 4.05 53.6
SR-5 −5.49 0.16 418.8 −12.98 0.98 318.7
WIN10 11.70 2.14 135.2 11.70 2.14 135.2
WIN100 2.53 1.78 92.8 2.53 1.78 92.8

Y3

SR-1 18.45 10.82 11.3 10.12 20.02 26.5
SR-5 2.22 0.32 155.4 −1.66 0.13 136.4
WIN10 15.20 16.07 15.6 15.20 16.07 15.6
WIN100 1.72 7.03 88.6 1.72 7.03 88.6

Y4

SR-1 137.32 73.97 0.5 29.06 26.68 10.8
SR-5 39.66 6.91 6.3 12.36 3.56 40.5
WIN10 95.05 61.67 1.1 95.05 61.67 1.1
WIN100 7.30 34.28 64.2 7.30 34.28 64.2

Y5

SR-1 47.46 8.65 13.7 27.00 15.33 28.4
SR-5 −13.01 1.26 211.0 −12.22 0.92 215.3
WIN10 39.47 13.17 18.2 39.47 13.17 18.2
WIN100 5.32 8.60 88.9 5.32 8.60 88.9

From Table 7, we can make the following remarks:

• For all variables but Y4, the SR-5 estimator was not significantly biased, accord-
ing to the Wald statistic, and it was more efficient than the ratio estimator. Also,
the constraint on the smallest design weights led generally to a small loss of
efficiency.

• For variable Y4, the SR-5 estimator was significantly biased although less biased
than its competitors according to the Wald statistic. This resulted in an inefficient
estimator. The use of the constraint on the smallest design weights substantially
reduced the bias and improved the efficiency.

• For variables Y1 and Y2, the SR-1 estimator was the most efficient when no con-
straint on the smallest design weights were used, although only marginally more
efficient than estimator SR-5. However, imposing this constraint resulted in a sig-
nificant loss of efficiency and an increase in bias for these two variables. For the
other three variables, the SR-1 estimator had a very large bias which made the
estimator inefficient.

• Both Winsorized estimators did not perform well. The WIN10 estimator was some-
times significantly biased, whereas the WIN100 never led to gains in efficiency. We
tried several other Winsorization cutoffs but were not able to find any satisfactory
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compromise. Note also that the constraint on the smallest design weights had no
effect on the Winsorized estimators.

• Overall, the SR-5 estimator is the best. Its relative efficiency is generally larger
than that of the optimal robust calibration estimator of Table 4, except for variable
Y4. Also, the constraint on the smallest design weights seems to offer protection
against bias at the expense of a slight loss of efficiency when the bias of the
smoothed estimator is not significant.

Figures 8 and 9 suggest that the analysis-of-variance model used in this example
is adequate. Using an argument similar to Beaumont (2008), the resulting smoothed
estimator SR-5 should be asymptotically unbiased and more efficient than the ratio
estimator, under the model and the sampling design, provided that this linear model
holds. This is in agreement with results of Table 7, except for variable Y4. The bias
for variable Y4 may thus be explained either by a slight model misspecification that is
difficult to detect by a graphical analysis or by an error of the Wald test since the Wald
statistic is not that extreme. From a single sample, it is difficult to determine the exact
cause of this bias. It is worth mentioning again that the constraint on the smallest design
weights seems to bring some robustness against model misspecification and potential
bias. Another alternative could have been to include Y4 in the model, in addition to zcol,
to reduce the impact of the possible model misspecification.

As a final comment on this example, note that the SR-1 estimator is equivalent to a
model-based ratio estimator when no constraint on the design weights is used. Such a
model-based estimator ignores completely the design weights and should work well if
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Fig. 8. Plot of the analysis-of-variance model residuals versus zcol,i.
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Fig. 9. Plot of the analysis-of-variance model residuals versus Y4,i.

its underlying model m explains satisfactorily the relationship between the y-variables
and x. Apparently, this might have been the case for variables Y1 and Y2. However,
Table 7 also indicates that it may be risky in general to blindly use this estimator unless
one is confident that model m holds reasonably well.

6. Practical issues and future work

Chambers et al. (2000) discussed three practical issues related to Winsorization but that
are also applicable to most robust estimation procedures including M-estimation. The
first issue is illustrated in the numerical example of Section 2.5, which shows that the
bias-variance trade-off for controlling outliers varies with the level of aggregation. On
the one hand, we may not reduce the MSE enough in small domains if y-values of
influential units are modified (e.g., Winsorized) at high levels of aggregation. On the
other hand, we may have good performance in small domains if y-values of influential
units are modified at lower levels of aggregation. However, such a strategy may end
up being quite biased at higher levels of aggregations and be far from optimal. The
methodology in Rivest and Hidiroglou (2004) could be useful to address this issue so
that estimates at higher levels of aggregation remain of good quality.

The second issue is about robust estimation of derived variables. More specifically,
if different y-variables are Winsorized separately then linear (or nonlinear) relationships
that hold among them are likely to be destroyed by Winsorization. For instance, if the
sum of variables at unit level must add up to some total then a separate Winsorization
of each variable, including the total, is likely to destroy this linear relationship. The
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same problem is encountered when imputing separately variables with missing values
for which some relationships must hold. In practice, some form of pro-rating is usually
performed. Chambers et al. (2000) also provided a solution. The last issue that they
consider is the treatment of nonrepresentative outliers. It is often assumed that such
outliers are not present in the data due to thorough editing. This seems to be a strong
assumption in practice. How to deal with such outliers at the estimation stage is not
trivial.

There remains research to be done to handle the above practical issues. Also, the
choice of the tuning constant involved in most robust methods is important and should
not be taken lightly. More research is certainly needed on this topic. Robust estimation
of nonlinear population parameters and of changes have not been fully investigated
although there has recently been some useful work on these topics. For instance, the
method of Zaslavsky et al. (2001) is a good starting point for nonlinear parameters
as well as the Winsorized estimators of changes developed by Lewis (2007). Finally,
applications of Winsorization or M-estimation to real survey data is important to better
understand the properties of robust estimators. A few examples of applications to real
survey data are Tambay (1988) and Matthews and Bérard (2002) for Winsorization and
Gershunskaya and Huff (2004) and Mulry and Feldpausch (2007) for M-estimation.
Nevertheless, more empirical investigations would certainly be useful, especially in the
context of M-estimation.

Regarding the weight smoothing approach described in Section 5, it is important to
point out that finding an appropriate model is a key aspect of the method. To obtain some
robustness against model failures, we partitioned the sample into collection strata in a
more or less ad hoc way in Section 5.4. Research into the issue of determining adequate
collection strata boundaries could be useful.An alternative to determine collection strata,
which remains to be investigated, would be to use nonparametric methods of estimating
the smoothed weights. Finally, if it is believed that weight smoothing does not yield a
sufficient increase in efficiency then nothing precludes, in principle, to combine weight
smoothing with an outlier-robust method, such as Winsorization or M-estimation. This
also remains to be investigated.
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Measurement Errors in Sample Surveys

Paul Biemer

1. Introduction

Measurement errors are errors in the survey observations that may be due to interviewers,
respondents, data processors, and other survey personnel. Often, the causes of measure-
ment errors are poor questions or questionnaire design, inadequate personal training or
supervision, and insufficient quality control. Measurement errors are often hidden in the
data and are only revealed when the measurement process is repeated or responses are
compared to a gold standard (i.e., error-free measurements). If repeated measurements
are collected by the same measurement process, systematic errors may remain hidden.
Fortunately, many analytical techniques can be used to account for measurement errors
in data analysis and inference, such as structural equation modeling (Bollen, 1989),
instrumental variables (Fuller, 1987), and errors-in-variables modeling (Carroll et al.,
2006). In general, these techniques consider measurement error components more as
nuisance parameters whose effects are to be neutralized in the analysis to achieve greater
inferential validity.

In this chapter, measurement error components are considered the primary param-
eters of interest in an analysis, not as by-products of the analysis. Knowledge of the
magnitudes of measurement bias and variance can serve multiple purposes. First, this
knowledge can be used to improve data-collection methodology. As an example, a
survey methodologist may wish to compare the accuracy of health data collected by
telephone with data collected by face-to-face interviewing. Typically, such comparison
will entail a mode comparison study based on a split-ballot design, where, say, half
the sample is assigned to one mode and half to the other mode. While this comparison
may be sufficient for determining whether two modes will produce different results, it
is usually not sufficient for determining the better mode of response accuracy. For this
purpose, the measurement error components must be estimated and compared. Other
error components could be considered as well, for example, nonresponse bias.

Second, the assessment of measurement error can also lead to improved survey
questionnaires. Poor reliability of a survey question may indicate a problem with the
questionnaire wording. Confusing references, undefined technical terms, vague quanti-
fiers, and so on can lead to respondent confusion, comprehension error and, ultimately,
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measurement error in responses. Correcting these problems usually begins with a study
to identify which questions are subject to measurement error as well as the magnitude
of the errors. Only then the sources of errors can be discovered and traced to their
root causes so that measurement error can be reduced. Identifying root causes might
involve cognitive laboratory methods or special field studies (Biemer and Lyberg, 2003,
Chapter 8).

Third, information on the measurement error properties of survey variables can be
quite useful to data users and analysts who need to understand limitations of the data.
For example, it is easy to show that the coefficient of determination (or R2) for simple
regression can never exceed the reliability of the dependent variable. In addition, the
estimated regression coefficients are attenuated towards 0 by a factor equal to the reli-
ability of the corresponding dependent variable (Fuller, 1987). Thus, knowledge of the
reliability of the analysis variables will help explain the lack of fit of a model or the
statistical insignificance of variables thought to be highly explanatory of the dependent
variable. Estimates of measurement error can even be used in some cases to correct the
analysis for measurement error biases, as previously noted.

This chapter presents five modeling approaches that are appropriate for the study of
measurement error: three of which focus primarily on classification errors. Section 2
discusses the model first espoused by Hansen et al. (1964), which can be applied to any
type of variable. The essential formulas for this approach follow almost immediately
from cluster sampling theory when individuals in a survey are viewed as primary sam-
pling units with secondary “units” corresponding to their potential responses to a survey
question. Section 3 extends this model to a classification probability model. In this con-
text, the bias and variance parameters of Section 2 are shown to be complex functions
of false positive and false negative probabilities associated with each population unit.
Section 3 also introduces the essential concepts underlying latent class analysis (LCA)
of measurement error. Section 4 provides greater detail about LCA and extends those
concepts to panel data by introducing Markov Latent Class Analysis (MLCA). Section 5
provides a discussion of some common approaches for the assessment of measurement
error in continuous data. Finally, the chapter closes with a brief discussion of the main
ideas and examines the future of measurement error research.

2. Modeling survey measurement error

2.1. The general response model

This section introduces a simple model for measurement error originally proposed by
Hansen et al. (1964) and revisited in Biemer (2004b), which we refer to as the Hansen-
Hurwitz-Pritzker (HHP) model. The focus in this section is inferences about the popu-
lation mean, Y , of some characteristic of interest, Y . To fix the ideas, assume a simple
random sample (SRS) of individuals is selected, although extension to complex sam-
pling designs is straightforward.

Suppose Y is measured with error by the survey process; that is, assume that a
distribution of responses, hi(Y ), is associated with each individual, i, in the population.
Each observation on Y for the ith unit is analogous to a single draw from this distribution.
Biemer (2004b) showed that, under these assumptions, the measurement process is
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analogous to a two-stage sampling process, where in the first stage, an individual is
selected at random from the finite population of individuals, and in the second stage, Y
is observed for unit i by randomly selecting a value from the distribution hi(Y ). Biemer
showed that the usual formulas for two-stage sampling can be directly applied to obtain
the population parameter estimation formulas with measurement errors.

To examine these assumptions further, imagine a hypothetical survey process that
can be repeated many times under identical survey conditions; that is, under conditions
where the same response distribution, hi(Y ), applies for each measurement on i. For
example, (a) a sampled individual is asked a question; (c) his/her response is recorded;
(d) amnesia is then induced; (a)–(c) are repeated some number, say m, of times generating
m draws from hi(Y ). In a typical survey, only one realization of Y is obtained for each
respondent. Measurement error evaluation studies may obtain two or more realizations
of Y . As an example, a test–retest reinterview may be conducted for a subsample of
respondents where a subsample of respondents are revisited after the original survey
and asked some of the same questions again. Here, the second measurement is obtained
solely to estimate the measurement variance. In our discussion, we will consider a
sequence of m ≥ 1 repeated measurements on the ith unit denoted by yij, j = 1, . . . , m,
all drawn independently from the same distribution hi(Y ).

Let Yi and σ2
i denote the mean and variance of hi(Y ). In the psychometric literature

(see, e.g., Nunnally and Berstein, 1994), Yi is called the true score of ith individual and
σ2

i is the error (or response) variance component. The mean of the population is Y ,
that is, the population average true score. Later, we will introduce the concept of a true
value, denoted by μi that is distinct from the true score Yi. The present development
does not require the acknowledgement of a true value.

An unbiased estimator of Y and its variance can be obtained by applying the usual
textbook formulas for two-stage sample with SRS at each stage (see, e.g., Cochran,
1977, Chapter 10). We initially consider the general case where all m realizations of Y
are used to estimate Y , and then, as a special case, we consider the common situation
where the first realization (representing the main survey response) is used to estimate
Y , and the repeated measurements are used to evaluate this estimator of Y . For a SRS of
size n from the population of size N, let yi = ∑j yij/m, the mean response for the ith
individual (sometimes called the individual’s observed score). An unbiased estimator
of Y based on all m measurements is y =∑n

i=1 yi/n with variance

Var
(
y
) = (1 − f )

S2
1

n
+ S2

2

nm
, (1)

where f = n/N, S2
1 =∑ (Y i − Y)2/(N − 1), and S2

2 =∑ σ2
i /N.

Under the measurement error model, the variance of y is a linear combination of
two variance components which HHP referred to as sampling variance ((N −1)N−1S2

1 ,
denoted by SV) and simple response variance (S2

2 , denoted by SRV). Note that the
contribution to variance of SV decreases as the sample size increases, and the contri-
bution to SRV decreases as the product of sample size and number of measurements
(nm) increases. As HHP note, SRV reflects the trial-to-trial variation in responses aver-
aged over all individuals in the population. The larger the SRV, the less reliable are the
responses obtained by the survey process, since a repetition of the survey under identical
conditions would yield very different responses even if the same sample were used. As
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we shall see, SRV is a key determinant of the reliability of a measuring process. When
there is no trial-to-trial variation in responses, the SRV is 0. In that case, the variance
simplifies to (1 − f )S2

1/n, where S2
1 is the variance of Yi. This is the classical formula

for the variance of the sample mean in SRS without measurement error. For a typical
survey with m = 1, the variance of the SRS simple expansion mean of the observations
can be obtained by setting m = 1 in (1). Note that the contribution to variance of SRV
is not 0 in this case; but, as we shall see later, with only one observation per unit, SRV
cannot be estimated.

2.2. Estimation of response variance and reliability

The reliability, a survey variable, is key concept in the study of measurement error. It is
defined in terms of a single observation rather than an estimator. Consider the variance
of a single observation for a randomly selected individual, and let this observation be
denoted by yi1. From (1), setting n = m = 1,

Var(yi1) = SV + SRV (2)

using the HHP’s notation. This gives rise to a useful measure of response quality referred
to as the inconsistency ratio defined as

I = SRV

SV + SRV
= SRV

Var(yi1)
. (3)

The inconsistency ratio may be interpreted as the proportion of the variance of a single
observation that is attributable to measurement error. The complement of I, that is,
R = 1 − I is called the reliability ratio. It is the proportion of total variance that is true
score variance (see, e.g., Fuller, 1987).

Note that both I and R are bounded by 0 and 1. The closer the R is to 1, the smaller
is SRV, and the observations are said to be more reliable. When R is below 0.5 (i.e., I

above 0.5), reliability is considered to be poor because more than 50% of the variation
in the observations is the result of measurement error (noise). When (1 − f1) can be
ignored and m = 1 (i.e., no repeated measurements), Var(y) is inversely proportional
to R; that is, Var(y) = SV/nR, which follows directly from (1). The product nR is
sometimes referred to as the effective sample size.

Further application of the classical two-stage sampling formulas yields an unbiased
estimator of Var(y) given by

v(y) = 1 − f

n
s2

1 + f

nm
s2

2, (4)

where s2
1 = (n − 1)−1∑ (yi − y)2, s2

2 = [n(m − 1)]−1∑
i

∑
j (yij − yi)

2. Note that (4)

simplifies to v(y) = n−1s2
1 when f << 1 (Cochran, 1977, Chapter 10).

It can be shown that E(s2
2) = SRV and E(s2

1) = SV + SRV/m. As mentioned
previously, quite often the methodologist is interested in the quality of one particular
measurement of Y and repeated measurements are obtained toward that end. Thus,
rather than using y, the estimator of Y is based upon one set of measurements, say
yi1(i = 1, . . . , n). Denote this estimator by y(1) = ∑n

i=1 yi1/n, which has variance given
by (1) with m = 1. Two estimators of Var(y(1)) are possible. One can be obtained from
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(1) by replacing SRV and SV by their estimators s2
2 and s2

1 − s2
2/m, respectively, where

s2
1 is based upon all m available measurements. A second estimator is also possible

that is based only upon a single set of observations. Let ŜV(1) denote the estimator S2
1

based on yi1(i = 1, . . . , n). Then, ŜV(1)/n is an unbiased estimator of Var(y(1)) when
f can be ignored. This also shows that the usual SRS estimator of Var(y) for one set of
measurements is also an unbiased estimator of the variance for negligible f .

If m ≥ 2, an estimator of reliability can be obtained by noting that s2
1 + (m−1

m

)
s2

2 is
an estimator of SV + SRV. Thus, an estimator of I is obtained by replacing SRV and
SV + SRV in (3) by their estimators to obtain

Î = s2
2

s2
1 + (m−1

m

)
s2

2

. (5)

This estimator of I is referred to in the literature as the index of inconsistency. It follows
that an estimator of R is 1 − Î. It can be shown that (5) is a consistent estimator of I

for any number (m ≥ 2) of repeated measures.

2.3. Special case: Dichotomous variables

Many variables collected in surveys are either inherently categorical or continuous
variables that have been discretized. Therefore, much of our study of measurement errors
in this chapter will focus on classification errors. Classification errors are errors in a
categorical variable that cause respondents to be classified in to different categories of the
variable over repeated measurements. To simplify the discussion, we initially assume Y
is dichotomous with values 0 and 1. The true score for unit i is hi(1) = P(Yij = 1|i) = Pi;
that is, Pi is the probability that individual i is classified as a positive by the survey
process. The formulas for SV and SRV in the previous section can now be rewritten as

SV =
N∑

i=1

(Pi − P)2

N − 1
and SRV =

N∑
i=1

PiQi

N
(6)

where Qi = 1 − Pi and P = N−1∑Pi is the population proportion. Further, the
estimators s2

1 and s2
2 can be rewritten as s2

1 = (n − 1)−1∑ (pi − p)2 and s2
2 = [n(m −

1)]−1m
∑

piqi, where pi is the proportion of the m observations on the ith unit that are
positive, p =∑n

i=pi/n and qi = 1 − pi.
For m = 2 (e.g., a test–retest reinterview study), the data can be summarized by

the interview–reinterview (or crossover) table shown in Table 1, where p11 denotes the
proportion of sample members classified as 1 on both occasions, p01 is the proportion
classified as 0 in the interview and 1 in the reinterview, p01 is the proportion classified

Table 1
Interview–reinterview table

Reinterview (B)

Interview (A) 1 0

1 p11 p10

0 p01 p00
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as 1 in the interview and 0 in the reinterview, p00 is the proportion classified as 0 by
both the interview and the reinterview, and p11 + p01 + p10 + p00 = 1. The notation
frequently used in the psychometric literature denotes the original observation (y1i) by
A and the reinterview classification (y2i) by B (note that the subscript i denoting the
unit is implicit).

It is easy to show that s2
2 can be further simplified as

s2
2 = p01 + p10

2
= g

2
, say, (7)

where g, referred to as the gross difference rate, is the proportion of off-diagonal units in
the table or the disagreement rate; that is, the proportion of the sample that is classified
inconsistently by the two interviews.

As shown for the general case, when m ≥ 2, there is more than one estimator of
SV + SRV, which will lead to different estimators of I. Both pAqA and pBqB estimate
SV + SRV under the assumptions of our model. In test–retest reinterview surveys in
which only a subsample of respondents are reinterviewed, pAqA may be more precise if
it is taken from the main survey and is therefore preferred. An estimator of the inconsis-
tency ratio using this denominator is Î/ = g/(2pAqB). However, for estimation based
only on the cases that have been reinterviewed, an estimator that has somewhat bet-
ter precision incorporates information from both the interview and the reinterview to
estimate SV + SRV. It is given by

Î = g

pAqB + pBqA

, (8)

where pA and pB are the interview and reinterview proportions, respectively (U.S.
Census Bureau, 1985). Hess et al. (1999) provide the interesting result that (8) is
identical to 1 − κ where κ is Cohen’s kappa measure of reliability (Cohen, 1960) given
by κ = (P0 − Pe)/(1 − Pe), where P0 is the agreement rate between the interview and
reinterview classifications (i.e., 1 − g), and Pe is an estimate of the expected agreement
by chance alone, that is, Pe = pApB + qAqB. Kappa may be interpreted as a chance-
corrected agreement rate since it is the agreement rate adjusted for the probability of
chance agreement (i.e., P0 −Pe) divided by the maximum value of this quantity (1−Pe).

Thus, κ has two very different interpretations in the literature: an estimator of
R and the chance-corrected agreement rate. Guggenmoos–Holzmann (1996) and
Guggenmoos–Holzmann and Vonk (1998) discuss yet a third interpretation of R̂ under
the so-called agreement model. Under their model, reliability is the proportion of units
in the population that can be classified consistently by raters (so-called “conclusive”
units). For a comparison of this and other methods for computing reliability, see Biemer
(2004b).

2.3.1. Limitations of parallel measurements
Recall that, in order for s2

2 to be unbiased for S2
2 , the two replicate measures must be

parallel, that is, equivalent to a SRS of size m = 2 from each individual’s response
distribution. As Hansen et al. (1964) discuss, these assumptions are seldom satisfied in
practice. For example, if the second measurement is provided by a test–retest reinterview,
the general survey conditions that existed during the interview likely have changed by



Measurement Errors in Sample Surveys 287

the time of the reinterview; thus, the equal error distribution assumptions may not hold.
In addition, respondents may have been conditioned by the first interview and their
reinterview responses may reflect this conditioning. For example, after the interview,
respondents may have obtained additional information on the survey topics that could
influence their responses in the reinterviews. The respondent true values may also have
changed since the interview. This can be addressed to some extent by modifying the
reinterview questions to refer to the same time period referenced in the interview. The
reinterview questionnaire is often much shorter than the interview questionnaire and is
usually conducted using less expensive methodologies. These design changes threaten
the validity of the reliability estimates since they conspire to violate the assumption of
identically distributed interview and reinterview errors.

The assumption of conditional (or local) independence of response errors is also
unlikely to hold in many practical situations. Between-trial correlations can be induced
if respondents tend to simply recall their interview responses and repeat them rather
than providing a response without referencing the interview. It may be possible to
schedule the second interview to allow sufficient time for the respondent to forget their
interview responses (see, e.g., Bailar, 1968). However, response errors may still be
correlated if respondents tend to misinterpret the survey questions in the same way at
both occasions or otherwise use the same process to generate an erroneous response.
The risk of correlated errors is particularly great for embedded replicate measurements;
i.e., measures that are obtained within the same questionnaire and interview.

Suppose a reinterview study is conducted to estimate the reliability for some charac-
teristic, and let g denote the gross difference rate from the study. It can be shown that,
in general,

E(g) = SRVA + SRVB − ρAB

√
SRVASRVB + D2

AB (9)

(U.S. Census Bureau, 1985), where SRVA and SRVB denote simple response variance for
the interview and reinterview, respectively, ρAB is the between-trial error correlation, and
DAB denotes the expected difference between the interview and reinterview responses.
Under the parallel assumption, ρAB = D2

AB = 0, SRVA = SRVB, and thus, g is
unbiased for 2SRVA. The failure of any of these three conditions to hold will result in
E(g) �= 2SRVA and biased estimates of reliability. Note that even if ρAB = D2

AB = 0,
SRVA and SRVB may still differ and thus R̂ will be biased.

In that case, g is an estimator of (SRVA + SRVB)/2. If SRVA < SRVB, then R̂ will
likely overestimate RA. In other words, greater reliability of the reinterview process
will tend to make the reliability estimate for the original interview look better than it
is. Similarly, if SRVA > SRVB, R̂ will likely underestimate RA (U.S. Census Bureau,
1985); Suppose that SRV is the same for both trials, DAB = 0 but ρAB > 0, that is, the
errors in the two measurements are positively correlated. In this case, it can be shown
from (9) that E(g) = 2SRV(1−ρAB), that is, SRV will be underestimated and reliability
will be overestimated. In other words, positive correlations between the errors in the
two measurements will make the measurements appear to be more consistent than they
are, thus negatively biasing the index of inconsistency. Some violations of the parallel
assumptions create negative bias, whereas others may create positive bias in the estimates
of RA. In general, the bias in R̂ is unpredictable. Examples of this unpredictability are
provided in the following illustration.



288 P. Biemer

Table 2
Past-year marijuana use for three measures

A B C COUNT

1 1 1 1,158
1 1 0 2
1 0 1 2
1 0 0 82
0 1 1 7
0 1 0 313
0 0 1 308
0 0 0 15,876

2.3.2. Example 1: Reliability of questions on marijuana use
To illustrate the concepts, we use data from a large, national survey on drug use. Data
for three dichotomous measures of past-year marijuana use are shown in Table 2. The
measures are labeled A, B, and C, and for each, “1” denotes use and “0” denotes no use.
Though the sample was drawn by a complex, multistage, unequal probability design,
SRS will be assumed for the purposes of the illustration. Cell counts have been weighted
and rescaled (see Section 5.2) to the overall sample size, n = 17,748.

The assumption of parallel measures can be tested by comparing three proportions,
viz., P(A = 1), P(B = 1), and P(C = 1). If a test of equality is rejected, the assumption
of parallel measures is not supported by the data; however, failure to reject does not
suggest that A, B, and C are parallel. The estimate of P(A = 1) is pA = (1158 + 2 +
2 + 82)/17748 = 0.070; P(B = 1) is pB = 0.083, and P(C = 1) is pC = 0.083. The
test is rejected indicating that the parallel assumption is not supported. Thus, we expect
that our estimates of reliability will be somewhat biased.

An estimator of marijuana use prevalence that may be considered is the combined
estimator of prevalence y. For three measurements, pi will be 0, 1/3, 2/3, or 1. Table 2
shows that the frequency of each of these values is 15876, 703 (=82 + 313 + 308),
11 (=2 + 2 + 7), and 1158. Thus, p = (1/3 × 703 + 2/3 × 11 + 1 × 1158)/17748 =
0.079. The standard error of this estimate may be computed as s2

1/n using the data
in Table 2. Using the estimates of the parameters in (6), the possible values for (pi − p)2

are (0 − 0.079)2, (1/3 − 0.079)2, (2/30.079)2, and (1 − 0.079)2, which occur with fre-
quencies 15876, 703, 11, and 1158, respectively. Multiplying the values of (pi − p)2

by their corresponding sample frequencies and dividing by (17748 − 1), which yields
v(p) = 3.60 × 10−6.

Now consider estimating the reliability of the measurements under the parallel
assumption. Applying s2

2, an estimate of SRV can be obtained from the data
in Table 2. Note that the nonzero values of piqi are (1/3)(2/3) and (2/3)(1/3),
both of which yield 0.222 occurring with frequency 714 (=703 + 11). Thus,
s2

2 = (17748)−1(3/2)(0.222)(714) = 0.0134. The index of inconsistency from (5) is
0.0134/[(3.60×10−6)×(17748)], which yields Î = 0.21. The reliability of the measures
is R̂ = 1 − 0.21 = 0.79.

The U.S. Census Bureau (1985) suggests the following rule of thumb for interpret-
ing the magnitude of Î: 0 ≤ Î ≤ 0.2 is good, 0.2 < Î ≤ 0.5 is moderate, and Î > 0.5 is
poor. This rule is merely offered as a guideline since whether a particular level of relia-
bility is too low depends upon the purpose to which the data will be put. Nevertheless,
by this rule, past-year marijuana use can be said to exhibit moderately good reliability.
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Using the first two columns of Table 2, we can demonstrate the calculations for the
case where there are only two measures. In this situation, p11 = 0.065, p01 = 0.0047,
p10 = 0.018, and p00 = 0.91. Thus, g = 0.0227 and, as calculated previously, pA =
0.070 and pB = 0.083. It follows from (8) that Î = 0.0227/(0.065 + 0.078) = 0.16.
To calculate κ, we first compute P0 = p11 +p00 = 0.977 and then Pe = pApB + qAqB =
0.86. Hence, κ = (0.977 − 0.86)/(1 − 0.86) = 0.84. Alternatively, we could have com-
puted κ = 1 − Î with the same result.

For both the three and two measure cases, the reliability estimates are biased due
to the failure of the parallel assumptions to hold. The result suggests that Î may be
biased upward since, as shown previously, D2

AB > 0. However, this may not be the case
if ρAB �= 0. Since it appears that D2

BC = 0 can be assumed, the assumption of parallel
measures seems to be more plausible for B and C. Computing Î using B and C only
yields Î = 0.25, which is considerably higher than the value computed for A and B. This
result is somewhat unexpected since if B and C are parallel and D2

AB > 0, Î computed
on B and C should be less than Î computed for A and B. One possible explanation is
that ρAB

√
SRVASRVB > D2

AB which, by (9), results in a negative bias in Î computed
from A and B.

3. The truth as a latent variable: Latent class models

Further, insights into the structure and effects of classification error can be obtained by
considering a classification probability model (Biemer and Stokes, 1991; Tenenbein,
1979; Mote and Anderson, 1965). Such models assume the existence of a true value
underlying each observation in a survey. However, the true value is assumed to be
unobservable in general. In that sense, the true value may be regarded as a latent variable
in a model for the observations. We first consider the simple case of a dichotomous
variable and only two measurements: for example, an interview and a reinterview value.
Generalizations to polytomous variable and multiple repeated measurements will be
considered subsequently.

3.1. Two measurements

As before, let yi denote a dichotomous observed variable for the ith sample unit with
corresponding unobserved true value μi, i = 1, . . . , n. The error in yi, viz. yi − μi,
is to be assessed. Let θi = P(yi = 0|μi = 1) and φi = P(yi = 1|μi = 0) denote
the misclassification probabilities for the ith unit. The true score can be rewritten for
all i as

Pi = μi(1 − θi) + (1 − μi)φi. (10)

By substituting (10) for Pi in (6) and simplifying, it can be shown that SV =
π(1−π)(1−θ−φ)2+γθφ and SRV = πθ(1−θ)+(1−π)φ(1−φ)−γθφ (see Biemer and
Stokes, 1991), where π = E(μi), the true population proportion, γθφ = πσ2

θ +(1−π)σ2
φ,

where σ2
θ = Var(θi|μi = 1) and σ2

φ = Var(φi|μi = 0), θ = E(θi), and φ = E(φi).
The component γθφ reflects the variation in error probabilities in the population. It is
regarded as a nuisance parameter in the literature of classification error. Indeed, the mod-
els to be introduced subsequently will assume that it is negligible under the so-called
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homogeneity assumption. Violating this assumption can have serious consequences for
classification error analysis. However, as we shall see, the homogeneity assumption can
usually be satisfied (at least approximately) in practice by stratifying the population
into mutually exclusive groups that are defined so that γθφ ≈ 0 within each group. The
analysis is then carried out in each group assuming that groups are homogeneous with
respect to θi and φi. This approach will be discussed in more detail subsequently.

From (10), we obtain E(p) = π(1 − θ) + (1 − π)φ and thus, the bias in the estimate
is given by B(p) = − πθ + (1 − π)φ. Let us consider the implications of these results
for data quality evaluations. First, note that the bias can be rewritten as N × B(p) =
−N0|1 + N1|0, where N0|1 = Nπθ is the number of false negative classifications and
N1|0 = N(1 − π)φ is the number of false positive classifications. Thus, the bias will
be 0 if (a) there are 0 misclassifications or (b) the expected number of false negative
classifications equals the expected number of false positive classifications, that is, the
two types of misclassifications exactly cancel each other in expectation. If false negatives
outnumber false positives, the bias will be negative. If the opposite is true, then the bias
will be positive.

Second, consider the form of the index of inconsistency under this model given by

I = πθ(1 − θ) + (1 − π)φ(1 − φ) − γθφ

PQ
. (11)

Note that I is a nonlinear function of π, φ, and θ, which is difficult to interpret, even
when γθφ is ignored. In particular, I does not directly reflect the error in a classification
process since it can be quite large even if both error probabilities are quite small. To
illustrate, suppose the prevalence of an item is quite small, say π = 0.01 and let the
error probabilities also be small, say θ = φ = 0.005. In this situation, I is still quite
large, that is, I = 0.50, denoting high inconsistency/ poor reliability. Without changing
the error probabilities, suppose now that π is higher, say 0.05. The index drops to 0.10,
denoting good reliability. These examples illustrate the difficulty in interpreting I for
categorical measures.

In addition, I has limited utility for evaluating measurement bias. For example, in the
examples above, the parameter values that yield an I of 0.10 (which is small) also yield
a relative bias (i.e., B(p)/π) of −0.9 or −90% (which is quite large). The parameter
values that yield a high index (I = 0.5) correspond to a relative bias of 0. Similar
examples can be constructed to illustrate the point that magnitude of I can and often
does belie the magnitude of B(p). These undesirable properties of I (and R) suggest that
they are poor metrics for gauging the magnitude of measurement error in categorical
survey variables.

On the other hand, the parameters π, θ, and φ provide all the information one requires
to know the bias, the total variance, the SV, and the SRV for the estimator p. For
categorical variables, we believe that the goal of survey measurement error evaluation
should estimate π, θ, and φ or comparable parameters whenever possible. The next
section discusses methods for obtaining estimates of these parameters.

3.2. Estimation of π, θ, and φ

We saw in the last section that estimates of π, θ, and φ are the basic building blocks for
constructing the estimates of the mean squared error of p and its components including
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bias, SRV, SV, I, and R. In this section, we discuss two methods for estimating these
parameters. The first relies on knowledge of gold standard measurements, that is, obser-
vations yi that have the property that yi

.= μi. Such measurements are very difficult
to obtain in practice; however, studies have attempted to obtain them from reconciled
reinterview surveys (see Forsman and Schreiner, 1991); in-depth probing reinterviews;
record check studies (see Biemer, 1988); blood, urine, hair, or other biological speci-
men collections (Harrison, 1997); or any other method that yields essentially error-free
measurements.

To illustrate the gold standard approach to estimation, suppose that in Table 1, the
column classification (labeled B) is assumed to be the true classification. Then p11 + p01

is an estimator of π; p01(p11 + p01)
−1 is an estimator of θ; p10(p10 + p00)

−1 is an
estimator of φ; and p10 −p01, referred to as the net difference rate, is an estimator of the
bias in p.

Unfortunately, the literature provides few examples in which the gold standard
approach has been applied successfully to obtain valid estimates of π, θ, and φ. In
fact, many articles show that reconciled reinterview data can be as erroneous as the
original measurements they were intended to evaluate (see, e.g., Biemer and Fors-
man, 1992; Biemer et al., 2001; Sinclair and Gastwirth (1996)). In addition, admin-
istrative records data are quite often inaccurate and difficult to use (Jay et al., 1994;
Marquis, 1978) as a result of differences in time reference periods and operational def-
initions, as well as errors in the records themselves. Even biological measures such as
hair analysis and urinalysis used in studies of drug use contain substantial false pos-
itive and false negative errors for detecting some types of drug use (see, e.g., Visher
and McFadden, 1991). An alternative approach is to use a model that expresses the
likelihood of a sample of observations in terms of π, θ, and φ and then use maxi-
mum likelihood estimation to estimate these parameters. This is essentially the idea
of LCA.

For example, a survey may ask two questions about smoking behavior that are
worded slightly differently but designed to measure the same behavior. This informa-
tion may be sufficient for estimating the misclassification parameters for both questions
using the so-called Hui–Walter method (Hui and Walter, 1980) described in the next
section.

3.3. The Hui–Walter method

Assume that the row (A) and column (B) indicators in Table 1 are parallel measurements.
Following notational conventions for LCA, the true value for unit i (previously denoted
μi) is denoted by X (with implied subscript i). The parallel assumptions can be restated
in this notation as follows:

(i) P(A = 1|X = x) = P(B = 1|X = x) and

(ii) P(A = 1, B = 1|X = x) = P(A = 1|X = x)P(B = 1|X = x).

Assumption (i) implies that the error probabilities are equal for both trials and
assumption (ii) (referred to as local independence) implies that the classification errors
are independent between trials. Under these assumptions, the observed cell counts
(n11, n10, n01, n00), wherenab = npab, follow a multinomial distribution with parameters
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(n, P11, P10, P01, P00), where Pab = P(A = a, B = b) for a, b = 0, 1. Note that Pab

can be written as

P11 = P(X=1)P(A=1, B=1|X = 1) + P(X = 0)P(A = 1, B = 1|X = 0)

= π(1 − θ)2 + (1 − π)φ2

P10 = P01 = πθ(1 − θ) + (1 − π)φ(1 − φ) (12)

P00 = πθ2 + (1 − π)(1 − φ)2.

Thus, the likelihood of π, θ, and φ, given n = (n11, n10, n01, n00), is given by

L(π, θ, φ|n) = K
∏

a,b=0,1

P
nab

ab , (13)

where K is the usual combinatorial constant. Maximizing this likelihood with respect
to π, θ, and φ will yield the corresponding maximum likelihood estimates (MLEs);
however, since the number of parameters (viz., 3) exceeds the degrees of freedom for
Table 1 (viz., 2 df), a unique maximum does not exist and the parameters are said
to be unidentifiable (Fuller, 1987). This problem can be rectified by constraining the
parameters in some way. If the constraint θ = φ = ε, say, is imposed, then the number
of parameters is reduced by 1 and the model becomes identifiable. In general, ensuring
that the number of parameters does not exceed the available degrees of freedom is
no guarantee of identifiability of LCA models. Other methods have been proposed for
determining whether a model is identifiable (see, e.g., Goodman, 1974). Identifiability
is discussed further in Section 3.5.

Suppose we relax assumption (i) for parallel measures but retain assumption (ii).
Now the expected cell counts for Table 1 involve five parameters: π, θA, θB, φA, and φB,

where θA and φA denote the false positive and false negative probabilities, respectively,
for measure A with analogous definitions for θB and φB for measure B. To achieve
identifiability, we use a device suggested by Hui and Walter (1980).

Let G denote a grouping variable with two categories, g = 1, 2, say, for exam-
ple, gender. Denote the observed counts in each cell of the GAB table by ngab

and note that ngab, g = 1, 2; a = 0, 1; and b = 0, 1 follows a multinomial distribu-
tion with 10 parameters, viz., πg, θAg, θBg, φAg, and φBg, where πg = P(X = 1|G = g),
θAg = P(A = 1|G = g), and so on. Since there are only seven degrees of freedom for the
GAB table, the number of parameters must be reduced to seven or fewer as a necessary
condition for identifiability. Hui and Walter (1980) show that an identifiable model with
seven parameters can be obtained by introducing the restrictions: (a) θA1 = θA2 = θA,
(b) θB1 = θB2 = θB, (c) φA1 = φA2 = φA, and (d) φB1 = φB2 = φB, that is, the misclassi-
fication probabilities are constrained to be equal across the two groups, G. Further, the
two groups must be chosen so that π1 �= π2, that is, the prevalence rates for the two
groups must differ. These constraints produce a saturated model, that is, the number of
parameters exactly equals the number of degrees of freedom, and hence, no residual
degrees of freedom are left for testing model fit.

Under the Hui–Walter assumptions, the GAB likelihood is given by

L(πg, θAg, φAg, θBg, φBg|n) = K
∏
g,a,b

P
ngab

gab , (14)
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where Pgab = P(G = g, A = a, B = b) for g = 1, 2, a = 0, 1, and b = 0, 1. For exam-
ple, Pg11 = P(G = g)[(1 − θA)(1 − θB)π1 + φAφBπ2)], Pg10 = P(G = g)[(1 − θA)(1 −
θB)π1 + φA(1 − φB)π2)], and so on. The Expectation-Maximization (EM) algorithm
(Dempster et al., 1977; Hartley, 1958) has been implemented in a number of software
packages for maximizing likelihood functions like (19). One that is freely available and
easy to use is �EM (Vermunt, 1997), which is used extensively for illustrations in this
chapter. Others include MLSSA, MPlus, and Latent Gold.

3.3.1. Example 2: Estimation of data collection mode bias
The next illustration presents a useful and interesting variation of the Hui–Walter model
when estimating mode effects in split-sample experiments. Taken from Biemer (2001),
it is based upon an application of LCA to compare the quality of data obtained by face-
to-face interviewing with that obtained by telephone interviewing for the 1994 National
Health Interview Survey (NHIS). Classification error was estimated separately for two
modes of interview through an LCA of test-retest reinterview data.

The study was conducted in two states: Texas (TX) and California (CA). Face-to-
face interviews were provided by the NHIS sample in those states. Simultaneously,
random-digit dialing (RDD) samples were selected in each state and interviewed using
an abbreviated version of the NHIS questionnaire. Both the NHIS and RDD sample
respondents were reinterviewed by telephone within two weeks of the original interview.
The NHIS had a response rate of 81% for the main survey and 69% for the reinterview,
whereas the RDD survey response rates were 60% for the main survey and 74% for the
reinterview. Only cases that responded to both the interview and the reinterviews were
retained in the analysis. Data for one characteristic (smoking in the home) are presented
in Table 3.

Let G = 1 denote the NHIS sample and G = 2 denote the RDD sample. As before,
A will denote the interview classification and B the reinterview classification. Let πg

denote the true prevalence rate for target population members in group g, θgt denote the
false negative probability for group g at time t, and φgt the false positive probability for
group g at time t for t = 1, 2. Further, let Pij|g denote the probability of a unit in group
g being classified in the (i, j) cell of the interview–reinterview table.

Key in this approach is to assume that the error probabilities are the same for all
interviews conducted by the same mode of interview, that is, assume

θ12 = θ21 = θ22 = θTEL and θ11 = θFF,

φ12 = φ21 = φ22 = φTEL and φ11 = φFF. (15)

Table 3
Typical data table for the 1994 NHIS mode of interview evaluation

Does Anyone Smoke Inside the Home?

Reinterview by Telephone

B = 1 B = 2

Interview by face-to-face A = 1, G = 1 334 70
A = 2, G = 1 29 1233

Interview by telephone A = 1, G = 2 282 20
A = 2, G = 2 9 931
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It therefore follows that, for the NHIS sample (g = 1), the probability of being in
cell (i, j) in the GAB table is

Pij|g=1 = π1θ
1−i
FF θ

1−j

TEL(1 − θFF)
i(1 − θTEL)j

+ (1 − π1)φ
i
FFφ

j

TEL(1 − φFF)
1−i(1 − φTEL)1−j, (16)

and for the RDD sample (g = 2),

Pij|g=2 = π2θ
2−i−j

TEL (1 − θTEL)i+j + (1 − π2)φ
i+j

TEL(1 − φTEL)2−i−j. (17)

Note that the prevalence rates (π1 and π2) are assumed to differ since the response
rates for the NHIS and the RDD data sets differed substantially; thus, the two achieved
samples may represent different responding populations with different prevalence rates.

For the data in Table 3, the model implied by (15)–(17) is saturated since there are
six degrees of freedom and six parameters: πg(g = 1, 2), θFF, φFF, θTEL, and φTEL. The
estimates of these parameters, expressed as percentages, are: π1 = 22.9, π2 = 25.1,
θFF = 7.9, φFF = 4.1, θTEL = 4.8, and φTEL = 0.0.

Biemer (2001) considered the case where all parameters of the model differed by
state as well as when some parameters were set equal across states. As an example,
it may be plausible to consider the case where the error parameters associated with
telephone interviewing are the same for TX and CA since all telephone interviews in
those states were conducted from the same centralized telephone facility using the same
staff, interviewers, supervisors, questionnaires, and survey procedures. Thus, letting
the subscript s denote parameters specific to the state (s = 1 for TX and s = 2 for
CA), we may also assume that θTEL,s = θTEL and φTEL,s = φTEL for s = 1, 2. Biemer
tested this assumption as well as a number of alternative model specifications for each
characteristic in the study.

In Section 2, we considered several estimators of reliability when two parallel mea-
surements are available. Using the Hui–Walter model estimates of π, θA, and φA, an
alternative estimator of IA can be derived when the two measurements are not parallel.
Using the expression of I in (11) and ignoring the variance term γθφ, we replace each
parameter by its MLE (denoted by a “hat” over the parameter symbol). This yields the
following consistent estimator of IA:

ÎA = π̂θ̂A(1 − θ̂A) + (1 − π̂)φ̂A(1 − φ̂A)

pA(1 − pA)
(18)

A similar estimator, denoted by ÎB, can be obtained for IB.

4. Latent class models for three or more polytomous indicators

4.1. Probability model

When three or more indicators of a latent true value are available, more plausible models
that impose weaker assumptions on the error parameters can be specified and inference
is improved. In some cases, the three measurements are obtained from a survey followed
by two reinterview surveys (e.g., see Biemer et al., 2001; Brown and Biemer, 2004).
Such situations are rare, however, due to the difficulty and costs of conducting multiple
interviews of the same households in a short span of time and solely for the purpose of
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quality evaluation. Multiple indicators more commonly arise when replicate measure-
ments are embedded within the same interview. For modeling any number of indicators,
a more general system of notation will now be introduced that is conventional within
the LCA literature.

To fix the ideas, consider three polytomous indicators of a latent variable X denoted
by A, B, and C. There are two options for representing marginal and conditional prob-
abilities. For example, P(X = x) can be denoted as πX

x or πx. Similarly, conditional
probabilities such as P(A = a|X = x) can be denoted as π

A|X
a|x or πa|x. Joint probabilities

such as P(A = a, B = b, C = c) can be denoted as πABC
abc or πabc. In the following, we

make use of both notational conventions when it is convenient and informative to do so.
In general, indicators need not be parallel to obtain models that are identified, although

local independence usually must be assumed. The local independence assumption is
equivalent to assuming

πabc|x = πa|xπb|xπc|x. (19)

Let n denote the vector of cell counts, nabc, for the ABC table and π denote the vec-
tor of parameters πx, πa|x, πb|x, and πc|x for all values of x, a, b, and c. Under these
assumptions, n follows a multinomial distribution with likelihood given by

L(π|n) = K
∏
a

∏
b

∏
c

(
πABC

abc

)nabc
, (20)

where the cell probabilities may be rewritten in terms of the latent variable as

πABC
abc =

∑
x

πX
x π

ABC|X
abc|x =

∑
x

πX
x π

A|X
a|x π

B|X
b|x π

C|X
c|x . (21)

Equation (21) is the likelihood kernel associated with the classical latent class model
(LCM) for three indicators. For the situations considered in this chapter (i.e., the latent
variable and its indicators having the same dimension), the model parameters are
identifiable.

The interpretation of the parameters of the three-indicator LCM extends the two-
indicator model interpretation of π, θ, and φ. For example, using the new notation for
two indicators, A and B, π in the old notation may be rewritten as πX

1 in the new notation.
Likewise, θA and θB maybe rewritten as π

A|X
0|1 and π

B|X
0|1 , respectively, and φA and φB are

rewritten as π
A|X
1|0 and π

B|X
1|0 , respectively. These parameters can be studied for their own

intrinsic interest or can be used to compute estimates of reliability and bias as shown in
the previous section.

As an example, to compute the estimates of the inconsistency ratios, IA, IB, and IC,
for the three-indicator model using MLEs of πx, πa|x, πb|x and πc|x, we can use formulas
that are analogous (18) but generalized for three indicators. Suppose A, B, C, and X

all have dimension K and consider the estimator of IA denoted by ÎA. Let A∗ denote
a hypothetical variable that is parallel to A and consider the form of the K × K cross-
classification table AA∗. Let n̂ij for i = 1, 2, . . . , K and j = 1, 2, . . . , K denote the
estimates of the expected cell counts for the hypothetical AA∗ table, where

n̂ij = n

K∑
x=1

π̂X
x π̂

A|X
i|x π̂

A∗|X
j|x = n

K∑
x=1

π̂X
x

(
π̂

A|X
i|x
)2

, (22)
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where π̂
A|X
i|x and π̂X

x are the latent class model parameter estimates of π
A|X
i|x and πX

x , respec-
tively. Using the n̂ij , we can compute the index of inconsistency for each category, i, by
forming the 2×2 table consisting of the cell frequencies p11, p10, p01, and p00 in Table 1,
where np11 = nii, np10 = ∑

j �=i nij, np01 = ∑
j �=i nji and np00 = ∑

j �=i

∑
j′ �=i njj′ .

In other words, we form the 2 × 2 table by collapsing the K × K dimensional table
around the category i. The formula for ÎA is then given by applying to this 2 × 2 table.
It can be shown that, when A and B are dichotomous, the estimator of I is equal to (18).

The measurement bias for an arbitrary indicator, say F , can be written as Bias(πF
f ) =

πF
f −πX

f and estimated by replacing the parameter by its MLE. For example, write πF =
πF|XπX, where πF = [πF

1 πF
2 . . . πF

K]′, πF|X = [πF |X
ij , i = 1, 2, . . . K; j = 1, 2, . . . K],

and πX = [πX
1 πX

2 . . . πX
K]′. Then it follows that πX = (πF|X)−1πF and

Bias(πF) = [I − (πF|X)−1]πF. (23)

An estimator of Bias(πF) is obtained by replacing the parameters in by their correspond-
ing MLEs.

4.2. Model validity and identifiability

4.2.1. Model validity
When interpreting the LCM estimates of measurement bias, reliability, or the error
probabilities, it is important to keep in mind the four key assumptions underlying the
estimation process, viz.:

(a) unidimensionality: the indicator variables all measure the same latent variable X;
(b) local independence: the classification errors are independent across indicators;
(c) group homogeneity: the variance of the misclassification probabilities is negli-

gible within groups defined in the model; and
(d) simple random sampling (SRS): all sampling units have equal probability of

selection and no clustering was used in the design.

For the Hui–Walter method, two additional assumptions are made, viz.:

(e) misclassification probabilities are equal across levels of the grouping variable,
and

(f) prevalence, πx|g, varies across levels of the grouping variable.

Failure of any of these assumptions to hold could invalidate the estimates.
Assumption (a) is usually satisfied for test–retest reinterview surveys since the same

question asked in the original interview is simply asked again in the reinterview survey.
In some cases, minor wording changes are needed to reference the same time period in
both interviews, which could alter the meaning of the question in some instances. The
risk of violating assumption (a) is greater when the indicators are formed from questions
embedded in the same interview.

The local independence (or equivalently, uncorrelated errors among indicators)
assumption invoked for all the models considered thus far seems a strong assumption
for most applications but particularly for embedded repeated measures. When asked
about the same topic repeatedly in the same interview, respondents could recall their
earlier responses and force response consistency on the topic, thus inducing correlated
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error. Likewise, correlated errors could result if a respondent uses the same process to
formulate responses to multiple questions on the same topic. These problems can often
be ameliorated by altering the wording of the questions sufficiently to mask their sim-
ilarity. Failing that, however, error dependencies can to some extent be modeled. The
introduction of additional terms in the model to reflect correlated errors will result in
an unidentifiable model unless further restrictions on the model parameters are made
(Hagenaars, 1988). As an example, one could impose the constraint πA

a = πB
b = πC

c

for a = b = c to free up degrees of freedom for modeling local dependence among
the indicators (Hagenaars, 1988). Such constraints may not be plausible, particularly if
different methods are used to generate the indicators.

Biemer and Wiesen (2002) describe a study of past-year marijuana smoking that
used a number of embedded repeated measurements. Fig. 1 shows the wording of two
questions in the study. Indicator A was coded “1” if the response to question 1 in the
figure indicated the respondent smoked marijuana anytime within the last 12 months;
otherwise A was coded “0.” Indicator B was coded “1” if the response to question 2
indicated that the respondent used marijuana on at least one day within the past 12
months; otherwise B was coded “0.” Biemer and Wiesen tested for local dependence in
their study by introducing grouping variables and then, following the strategy of Hui
and Walter, equating some model parameters across groups to free up enough degrees
of freedom for estimating the correlated error parameters. Their tests of significance of
the dependence parameters provided no evidence of correlated error for the indicators
used in their study. In general, however, the possibility of local dependence and its
ramifications should always be considered in LCA.

Sinclair (1994) considered the effects of violations of the Hui–Walter assumptions
on estimates of the model parameters. He found that the bias in the estimates of the
Hui–Walter model parameters depends upon both the size of the prevalence rates in

each group (i.e., πX|G
1|1 and π

X|G
1|2 ) and the magnitude of the classification error rates of the

indicators. Large differences in prevalence rates (i.e., πX|G
1|1 −π

X|G
1|2 ) seemed to quell the

biasing effects caused by the failure of the assumption of equal error rates for the two
subpopulations to hold. Sinclair also examined the effects of local dependence in the
Hui–Walter model. He found that the condition to be most problematic for estimating
small error rates. In addition, the problem was exacerbated when the relative difference
between the two prevalence rates was small.

As a check on the validity of the Hui–Walter estimates, Biemer and Bushery (2001)
proposed a method that they applied to the estimation of labor force status classifications

1. How long has it been since you last used marijuana or hashish?

A � “Yes” if either “Within the past 30 days” or “More than 30 days but within past 12 months;”
A � “No” if otherwise.

2. Now think about the past 12 months from your 12-month reference date through today. On how many days in the
past 12 months did you use marijuana or hashish?

B � “Yes” if response is 1 or more days;
B � “No” otherwise.

Fig. 1. Two embedded questions on past-year marijuana smoking.
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in the Current Population Survey (CPS). Using data from the CPS reinterview program,
they computed the index of inconsistency for three labor force categories—employed
(EMP), unemployed (UNE) and not in the labor force (NLF)—using two methods: the
traditional method (i.e., Î in (8) and ÎA in (18)) using the Hui–Walter estimates of the
model parameters. Agreement of the two sets of estimates supports (but does not ensure)
the validity of both methods since the methods rely on quite different assumptions and
agreement would be unlikely if one or more of the assumptions were violated for either
method. As an example, the 1993 traditional estimates for I for the categories EMP,
UNEMP, and NLF were Î = 8.2, 33.5, and 10.0, respectively, compared with ÎA = 7.4,
34.9, and 10.1, respectively. The close agreement of these estimates from two very
different approaches supports the validity of both approaches for this application.

4.2.2. Identifiability
Model identifiability for LCMs is related to parameter estimability in linear modeling.
Unidentifiability is similar to the situation of too many unknowns or too few simulta-
neous equations. Essentially, a model is identified if there is one and only one set of
parameter estimates that maximize the model likelihood function. Otherwise, the model
is said to be unidentified. A necessary condition for identifiability is that number of
parameters to be estimated should not exceed the number of degrees of freedom avail-
able for the data table. For T indicator variables with the same number of categories, C,
this condition can be specified as � = CT −LT(C−1)−L ≥ 0, where L is the number
of classes in X (Agresti, 2002). For example, if T = 2, C = 2, and L = 2, then � = −2,
indicating that the corresponding model is unidentified (as noted in Section 2). Recall
that an identified model was obtained by adding constraints that reduced the number of
parameters by two. For T = 3 indicators and C = L = 2 classes and categories, � = 0
and the model is “just” identified.

There are situations where � ≥ 0, but the model is still not identified. This can happen
when structural or observed 0s populate the data table rendering estimation of one or
more parameters impossible. The model can usually be made identifiable by restricting
some parameters or terms in the model to be 0 or equating two or more parameters.
It may not be evident that the model is unidentified without testing for this condition.
Failure to do so may lead the naive analyst to erroneously accept the estimates from an
unidentified model.

Fortunately, it is fairly easy to detect unidentifiability. The preferred method is to
test that the model information matrix is positive definite, which is a necessary and a
sufficient condition for identifiability. Some software packages compute the information
matrix and automatically test that it is of full rank.

Alternative methods can also be used to detect unidentifiability. One method is to run
the estimation algorithm two or more times to convergence, using the same data, but
different start values. If the same solution is reached using different start values, one can
be more confident that the model is identified. However, this method is not a foolproof
check on identification.

4.3. Log-linear model representations of LCMs

The models introduced in the last section can easily be extended so that any num-
ber of grouping variables can be added either for their intrinsic interest or to improve
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model fit. In addition, by taking advantage of the equivalence between the categor-
ical probability models and log-linear models, a much larger range of models may
be specified. Haberman (1979) showed that the LCM can also be specified as a log-
linear model for a table, say XAB, where A and B are observed and X is latent. The
log-linear modeling framework also provides greater opportunity to specify more par-
simonious models. The misclassification models described previously can be viewed
as special cases of a general model log-linear or logistic model for classification
error.

To introduce the log-linear modeling framework, let G and H denote two grouping
(or exogenous) variables; for example, G may denote an individual’s gender and H

may denote whether the individual is of Spanish origin or descent (i.e., Hispanicity).
Let A, B, and C denote three indicators of the latent true characteristic X. As we shall
see, it may be advantageous to consider the order in which the indicator variables are
observed. For example, suppose A is measured first, then B is measured followed by
C. Such an ordering is often imposed by the order of questions in the questionnaire
where it is assumed that respondents are not allowed to change responses to earlier
questions. Alternatively, A may be obtained in an interview, B in a reinterview, and C

in a second reinterview where all three indicators are designed to assess the same latent
characteristic X. Although it is not critical for many types of models of interest, the
temporal ordering assumption can result in more parsimonious models since it implies
that A may influence B and C and B may influence C; however, C cannot influence
B or A nor can B influence A. These interrelationships can be represented by the path
diagram in Fig. 2.

To simplify the discussion somewhat, we first consider models that omit X and
then show how the manifest variables only model can be extended to include X. The
likelihood kernel for the saturated model corresponding to the GHABC table can be
written as

πGHABC
ghabc = πGH

gh π
A|GH

a|gh π
B|GHA

b|gha π
C|GHAB

c|ghab , (24)

which imposes the temporal ordering constraints described above.Additional degrees of
freedom can be saved if we can also assume that A does not influence B and drop these
terms from the conditional probability π

B|GHA

b|gha to obtain π
B|GH

b|gh . In this manner, other
restrictions can be easily imposed by eliminating one or more conditioning variables.
For example, we could further restrict πB|GH

b|gha by π
B|G
b|g , πB|H

b|h , or even πB
b .As this approach

saves degrees of freedom at the cost of reduced model fit, the significance of the omitted
terms should be tested as described below.

X

A CB

G

Fig. 2. Saturated path model with grouping variable, G.
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Now consider how (24) can be expressed as a product of simultaneous logistic regres-
sion models. A well-known result in the logistic regression literature is that π

B|GHA

b|gha can
be written as

π
B|GHA

b|gha =
exp
(
uB

b + uBG
bg + uBH

bh + uBA
ba + uBGH

bgh + uBGA
bga + uBHA

bha + uBGHA
bgha

)
1 + exp

(
uB

b + uBG
bg + uBH

bh + uBA
ba + uBGH

bgh + uBGA
bga + uBHA

bha + uBGHA
bgha

) ,

(25)

where the u-variables are the usual log-linear model parameters to be estimated (see,
e.g., Agresti, 2002). Taking the logit of both sides of (25), one obtains

logit
(
π

B|GHA

b|gha

)
= log

(
π

B|GHA

b|gha

1 − π
B|GHA

b|gha

)
= uB

b + uBG
bg + uBH

bh + uBA
ba + uBGH

bgh + uBGA
bga + uBHA

bha + uBGHA
bgha .

(26)

Likewise, the other probabilities on the right hand side of (24) can be rewritten in terms
of exponential models with corresponding logit parameterizations. Goodman (1973)
named these models modified path models. This approach leads to more parsimonious
models since certain higher-order interaction terms can be excluded without excluding
an entire variable. For example, dropping uBGHA

bgha from produces the model

logit
(
π

B|GHA

b|gha

)
= uB

b + uBG
bg + uBH

bh + uBA
ba + uBGH

bgh + uBGA
bga + uBHA

bha . (27)

This model specification cannot be expressed as a simple product of conditional prob-
abilities as in (24). Thus, the modified path model approach provides much greater
flexibility for specifying and fitting parsimonious models.

All the models considered thus far are hierarchical models in the sense that they
include all lower-order interaction terms involving B and the other variables contained
in higher-order terms in the model. For example, since uBGH

bgh is in the models, so are
uB

b uBH
bh and uBG

bg . In this chapter, only hierarchical logit models will be considered. We
shall adopt the convention of representing hierarchical models simply by excluding all
implied terms. For example, to represent (26), we can write {BGHA} since all other
terms in the model are implied. Likewise, (27) can be represented by {BGH, BGA,
BHA}. For the full model in (24), we combine the four submodels in braces separated
by semicolons and write as {GH; AGH; BGH BGA BHA; CGH CGB CHB}. In this
expression, note that the submodel π

C|GHAB

c|ghab has been reduced to {CGH CGB, CHB}.
Regarding estimation, Goodman (1973) demonstrated that the MLEs for the parame-

ters of an unrestricted modified path model can be estimated by factoring the likelihood
into terms corresponding to each submodel and then maximizing each submodel sepa-
rately. Vermunt (1996,Appendix E.2) shows that the estimates so obtained are equivalent
to those obtained by estimating all the submodels simultaneously by maximizing the full
likelihood function. For example, the MLE’s for uB

b , uBH
bh , and uBG

bg are the same whether
they are obtained by maximizing the likelihood of the BGH table separately or by max-
imizing the likelihood of the full model. This approach has been implemented in the
� EM software (Vermunt, 1997).
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Adding latent variables to modified path models is straightforward. For example, the
three-indicator LCM in can be represented in our notation as {X; AX; BX; CX}. If we
add grouping variables G and H , many more identifiable models can be specified. For
example, we can rewrite πGHABC

ghabc as

πGHABC
ghabc = πGH

gh

∑
x

π
X|GH

x|gh π
A|GHX

a|ghx π
B|GHAX

b|ghax π
C|GHABX

c|ghabx . (28)

However, the parameters are unidentified. An identifiable but fully saturated LCM can
be obtained by eliminating the intra-indicator interactions, viz.,

πGHABC
ghabc = πGH

gh

∑
x

π
X|GH

x|gh π
A|GHX

a|ghx π
B|GHX

b|ghx π
C|GHX

c|ghx , (29)

which is equivalent to assuming local independence within each level of GH. Now using
log-linear model notation, more parsimonious models can be specified for each term in
this model, for example, π

A|GHX

a|ghx could be simplified to {AGX AHX}, π
B|GHX

b|ghx could

be reduced to {BX}, and π
C|GHX

c|ghx replaced by {CGX}. The resulting model is {GHX;
AGX AHX; BX; CGX}. Modified path models can be fit using software packages
such as �EM, Mplus (Muthen and Muthen, 1998–2005) or similar packages that have
implemented the EM algorithm (Dempster et al., 1977; Hartley, 1958) as the primary
method of estimation.

By adopting a log-linear modeling framework for LCA, many diagnostic measures
for estimating and testing logit models are also available for testing and assessing the fit
of LCMs. For example, the usual Pearson χ2 statistic (X2) and the likelihood ratio χ2

statistic (L2) are both distributed as χ2
df random variables for LCAs, where df denotes the

model degrees of freedom. Their associated p-values can be used to identify models that
provide an adequate fit to the data using the usual criterion of p ≥ 0.05 for an adequate
fit. The L2 statistic is also particularly useful for comparing two nested models by the
method of differencing their L2s using standard procedures for log-linear models (see,
e.g., Agresti, 2002). Another useful measure of model fit is the dissimilarity index given
by D =∑

k

|nk − m̂k|/2n, where nk is the observed and m̂k is the model estimated count

in cell k. It is the smallest proportion of observations that would need to be reallocated to
other cells to make the model fit perfectly. As a rule of thumb, D should be less than 0.05
for a well-fitting model. For comparing non-nested models, the Bayesian Information
Criterion (BIC) or the Akaike Information Criterion (AIC) can be applied, where

BIC = −2 logL + (log n) × npar

AIC = −2 logL + 2npar.
(30)

When several models fit the data, the model with the smallest BIC (orAIC) is deemed the
best since, by these measures, the competing criteria of goodness of fit and parsimony
are balanced.

4.3.1. Example 3. Errors in self-reports of marijuana use
Biemer and Wiesen (2002) consider the case of three measurements obtained in a single
interview in an application to the National Household Survey on DrugAbuse (NHSDA).
They defined three indicators of past-year marijuana use in terms of the questions asked
at various points during the interview. Indicator A was the response to the recency of
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use (or recency) question (Fig. 1, question 1) and Indicator B was the response to the
frequency of use (or frequency) question (Fig. 1, question 2). Indicator C was a composite
measure combining many questions about past-year marijuana use that appeared on the
so-called drug answer sheet. It was coded “1” or “yes” if any affirmative response to
those questions was obtained; otherwise, it was coded “0” or “no.” This study was
focused on estimating the false positive and false negative probabilities separately for
each indicator. The composite indicator was constructed primarily for the sake of model
identifiability. Three years of NHSDA data were analyzed: 1994, 1995, and 1996.

The models Biemer and Wiesen considered were limited to simple extensions of the
basic LCM for three measurements incorporating multiple grouping variables defined
by age (G), race (R), and sex (S). The simplest model they considered contained 54
parameters. This model allows the prevalence of past-year marijuana use, πx, to vary
by age, race, and sex; however, the error probabilities, πa|x, πb|x, and πc|x are constant
across these grouping variables. The most complex model they considered contained 92
parameters and allowed error probabilities to vary by the three grouping variables. Since
A, B, and C were collected in the same interview, the possibility of locally dependent
errors was also considered in the analysis as noted in Section 4.2.

The best model identified in their analysis was a locally independent model contain-
ing 72 parameters that incorporated simple two-way interaction terms between each
grouping variable and each indicator variable. (The reader is referred to the original
paper for the full specification and interpretation of this model.)

Estimates of the classification error rates for all the three indicators of past-year drug
use were derived from the best model. Table 4 shows the estimated classification error
rates (expressed as percentages) for the total population and for all the three years.
Standard errors, which are provided in parentheses, assume SRS and do not take into
account the unequal probability cluster design of the NHSDA. Consequently, they may
be understated.

A number of points can be made from these results. First, note that the false pos-
itive rates for all the three indicators are very small across all the three years except

Table 4
Comparison of estimated percent classification error by indicator*

Indicator of
True Classification Past-Year Use 1994 1995 1996

Yes (X = 1) Recency = No 7.29 (0.75) 8.96 (0.80) 8.60 (0.79)
(A = 2)
Direct = No 1.17 (0.31) 0.90 (0.28) 1.39 (0.34)
(B = 2)
Composite = No 6.60 (0.70) 5.99 (0.67) 7.59 (0.74)
(C = 2)

No (X = 2) Recency = Yes 0.03 (0.02) 0.01 (0.01) 0.08 (0.02)
(A = 1)
Direct = Yes 0.73 (0.07) 0.78 (0.07) 0.84 (0.07)
(B = 1)
Composite = Yes 4.07 (0.15) 1.17 (0.08) 1.36 (0.09)
(C = 1)

* Standard errors are shown in parentheses.
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for indicator C in 1994 where it is 4.07%: more than four times that of the other two
measurements. This was analyzed further by comparing the questions comprising C for
all the three years. This analysis revealed that, prior to 1995, one of the questions used
for constructing C seemed quite complicated and potentially confusing to many respon-
dents. For 1995 survey, the question was dropped. Therefore, a plausible hypothesis for
the high false positive rate for C in 1994 is the presence of this highly complex and
confusing question.

To test this hypothesis, a new indicator was created from the 1994 data by deleting
the problematic question from indicator C and rerunning the model. This resulted in a
drop of the false positive rate for the composite measure from 4.07% to only 1.23%,
which was consistent with 1995 and 1996 false positive rates for C. Clearly, LCA was
successful at identifying the problem item in the composite question.

A second finding of interest that can be observed in Table 4 focused on the false
negative error probability estimates. Note that both A and C have much higher false
negative rates than B, a pattern that is repeated for all the three years. To uncover the
possible reason, consider the wording differences for questions 1 and 2 in particular.
As shown in Fig. 1, question 1 asks how long ago marijuana was used while question 2
asks how many times marijuana was used within the last year. Very infrequent users of
marijuana may not consider that they are “users” of the substance or may object to being
labeled as “marijuana users.” These infrequent users might respond “no” to question
1 while responding “yes” to question 2. To test this hypothesis, responses to the two
questions were cross-classified. Consistent with the hypothesis, 59% of respondents
answering “no” to question 1 were infrequent (i.e., 1–2 days) users compared with only
16% who answered “yes” to both questions 1 and 2.

5. Some advanced topics

5.1. Markov latent class models

LCMs can also be applied when measurements of the same phenomena are made at
different time points as in the case of a panel survey. Suppose now A, B, and C denote
the values of the same categorical variable at three time points. Remarkably, only these
data are necessary to estimate the classification error in the measurements under the
Markov latent class model (MLCM) assumptions, that is, no other reinterview or data
of repeated measurements are required. MLCMs, first proposed by Wiggins (1973),
resemble the LCMs described previously, except new parameters must be introduced
into the models to allow the true characteristic to vary across the time points.

Let X, Y , and Z denote latent variables corresponding to the true values of the
characteristic at times 1, 2, and 3, respectively. Thus, A, B, and C are indicators of X,
Y , and Z, respectively, observed at times 1, 2, and 3, respectively. A key assumption
for these models is the Markov assumption, which states that P(Z = z|X = x, Y =
y) = P(Z = z|Y = y), that is, knowing an individual’s true state at time 2 is sufficient
for predicting his/her true state at time 3. In other words an individual’s time 1 status
does not provide any additional information once the time 2 status is known. As an
example, consider a panel survey question on current smoking behavior. The Markov
assumption states an individual’s smoking behavior for the last two panel waves is
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no more predictive of current smoking behavior than the individual’s behavior at the
last wave. As we shall see, MLCA models are surprisingly robust to violations of this
assumption.

We further assume independent classification errors (I.C.E) across time points,
referred to in the literature as the ICE assumption (Singh and Rao, 1995). It is anal-
ogous to the local independence assumption for LCA. Further restrictions are still
needed to attain an identified model. For example, when X, A, B, and C are all
dichotomous random variables, there are 11 parameters to be estimated, viz., πX

1 ,
π

Y |X
1|x (x = 1, 2), π

Z|Y
1|y (y = 1, 2), π

A|X
1|x (x = 1, 2), π

B|Y
1|y (y = 1, 2), and π

C|Z
1|z (z = 1, 2),

and only seven degrees of freedom. The usual restrictions are to equate the classification
error probabilities across time points, that is, assume

π
A|X
a|x = π

B|Y
b|y = π

C|Z
c|z (31)

for a = b = c and x = y = z, referred to as the time invariant errors assumption. With
these restrictions, the model is saturated but identified, and the likelihood kernel is

πABC
abc =

∑
x

∑
y

∑
z

πX
x π

Y |X
y|x π

Z|Y
z|y π

A|X
a|x π

B|Y
b|y π

C|Z
c|z , (32)

subject to the constraints in (31). In shorthand notation, this model can be represented by
{X; XY; YZ; AX; BY; CZ}. Additional degrees of freedom can be saved by restricting
the transition probabilities, πY |X

y|x and π
Z|Y
z|y , to be equal whenever (x,y) = (y,z)—referred

to as stationary transitions.
The model can easily be extended to accommodate grouping variables or covari-

ates. For example, consider the model in Fig. 3. In shorthand notation, this model is
represented by {GX; GXY; GYZ; GAX; GBY; GCZ} with time invariant errors within
groups, that is, π

A|XG

a|xg = π
B|YG

b|yg = π
C|ZG

c|zg , when a = b = c and x = y = z for all g.
A number of additional assumptions can be explored in the search for model parsimony,
which are as follows:

(1) nonhomogeneous, stationary transition probabilities: GXY = GYZ;
(2) homogeneous transition probabilities: replaces {GXY} by {XY} and {GYZ} by

{YZ}; and

C

A

B

G

Y

Z

X

Fig. 3. Fully saturated MLCA with grouping variable, G.
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(3) homogeneous error probabilities: replaces {GAX} by {AX}, which by the time
invariant errors assumption implies {BY} replaces {GBY} and {CZ} replaces
{GCZ}.

When four waves of data or more are available, models with less restrictive
assumptions are identifiable. For example, Biemer and Tucker (2001) and Tucker
et al. (2006) fit second-order MLCAs to four waves of data from the U.S. Consumer
Expenditure Survey, thus relaxing the first-order Markov assumption of the present
model.

5.2. Methods for complex survey data

The methods discussed heretofore assume a sample selected by SRS. For survey data
analysis, this assumption is rarely satisfied. Survey samples usually involve some form
of cluster sampling, stratification, and unequal probability sampling. The survey lit-
erature has shown that if data are collected under a complex sampling design and
SRS is assumed, parameter estimates from many types of data analysis may be biased
and their standard errors may be underestimated (see, e.g., Korn and Graubard, 1999,
pp. 159–172). For LCA, local independence could be violated for clustered data if
measurement errors also tend to be clustered. Likewise, oversampling certain groups
in the population having higher error rates creates heterogeneity that could violate the
group homogeneity assumption. As previously discussed, group heterogeneity can usu-
ally be rectified by adding grouping variables to the model that, in this case, aligns with
the sampling domains. This may be infeasible if the number of sampling domains is
quite large.

In some cases, ignoring the sampling design may be acceptable. Although some
individual characteristics may be highly geographically clustered in a population, clas-
sification errors often exhibit much less clustering. If the focus of an investigation is on
classification error, ignoring clustering may not have serious consequences. Patterson
et al. (2002) provide some evidence of this in their study of the survey design effects on
LCA estimates for dietary data. Other researchers have argued that sample weighting
may not even be appropriate when the LCA is focused on misclassification. For exam-
ple, in his discussion of the Patterson et al. paper, Vermunt (2002) argues that weighting
does not appropriately account for the heterogeneity in the misclassification probabilities
induced by unequal probability sampling. He suggests that adding grouping variables
to account for the heterogeneity is a better way to address the problem.

More research is needed to evaluate the advantages and disadvantages of the various
methods for applying LCA to survey data. Until then, we advocate the use of methods
that at least take unequal probability sampling into account. One simple method for that
advocated by Clogg and Eliason (1985) is to reweight and rescale the cell frequencies
using the unit-level sample weights. This method will produce model unbiased parameter
estimates although standard errors will tend to be negatively biased. In addition, the usual
model diagnostics for assessing fit (X2, L2, BIC, etc) are no longer be valid and may
result in model Type I error probabilities smaller than their nominal levels. Thus, models
that in truth adequately describe the data may be falsely rejected.

To apply Clogg’s scheme, let (a,b,…, v) denote a cell of the AB…V table. Let nab...v

denote the unweighted sample size in the cell and let Wab...v denote the sum of the sample
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weights (including postsurvey adjustments) for these nab...v observations. Then, replace
nab...v by

n′
ab...v = n

Wab...v

W
, (33)

where W = ∑
a,b,...,v

Wab...v to form the weighted and rescaled table, AB…Vwtd , where the

subscript denotes “weighted.” The LCAproceeds usingAB…Vwtd under the assumption
of SRS. One strategy is to perform the LCA for both unweighted and weighted tables.
If the estimates are fairly close, then they opt to use the unweighted estimates since they
often exhibit greater stability than the weighted ones.

Fortunately, there have been recent advances in analysis of complex survey data using
pseudo maximum likelihood (PML) methods (Pfeffermann, 1993). These methods have
been implemented in some latent class software packages such as Latent Gold (Vermunt
and Magidson, 2005) and Mplus (Muthen and Muthen, 1998–2005). These packages
also take both unequal weighting and clustering into account when estimating standard
errors using either replication methods such as jackknife or linearization.

To illustrate the PML method, write the likelihood for the AB…V table under SRS
and K latent classes as

L =
∏
a

∏
b

· · ·
∏
v

(
K∑

x=1

πX
x π

A|X
a|x π

B|X
b|x · · · πV |X

v|x

)nab...v

. (34)

The PML method provides design-consistent estimates of the model parameters by
maximizing L′ which is L after replacing nab...v by n′

ab...v defined in (33).
A third method for accounting for unequal probability sampling uses the unweighted

cell counts with an offset, consisting of the log of the inverse of the average cell sample
weight, in each cell of the contingency table (Clogg and Eliason, 1985). Under a cor-
rectly specified log-linear model for the population, this method will produce consistent
estimates of model parameters. However, if the log-linear model is misspecified, the
estimates will not be consistent. The PML method is often preferred because its esti-
mates will be approximately unbiased for values of the population model parameters
regardless of whether the model was correctly specified.

5.2.1. Example 4: MLCA estimates of labor force status misclassification
Acommon application of MLCM is to model the classification error in labor force survey
panel data. For example, Van de Pol and Langeheine (1997) applied these models to the
Netherlands Labor Market Survey, Vermunt (1996) to the SIPP labor force series, and
Biemer and Bushery (2001) and Biemer (2004a) to the CPS. The latter two papers also
evaluated a number of the assumptions of MLCM for the CPS, including the Markov
assumption, and provided some evidence of the empirical, theoretical, and external
validity of the MLCM estimates of CPS classification error. The latter papers used
MLCA to evaluate the accuracy of labor force for the revised CPS questionnaire that
was introduced in 1994 and compared it with the accuracy of the original questionnaire
that had been in use prior to 1994.

To illustrate the general approach, we use the three labor force categories defined in
Example 2 and consider any three consecutive months of the CPS, say January, February,
and March. Let X denote an individual’s true labor force status in January, that is,
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X = 1 for EMP, X = 2 for UNEMP, and X = 3 for NLF. Define Y and Z analogously
for February and March. Similarly, A, B, and C will denote the observed labor force
statuses for January February, and March, respectively, with the same categories as their
corresponding latent counterparts. Similar models can be defined and fit for February,
March, and April; March, April, and May; April, May, and June, etc. The resulting
estimates can be compared or more importantly averaged together to form estimators
having smaller variance. Models involving four consecutive months can include second-
order Markov terms, that is, denoting the latent variables for the four months by W , X,
Y , Z, the terms Y |WX and Z|XY can be included. The sample size will be reduced
slightly if the analysis is restricted only to households that respond to four consecutive
months. Vermunt (1996) describes some methods for retaining cases that do not respond
at some panel waves.

For grouping variables, Biemer and Bushery (2001) and Biemer (2004a) considered
age, race, gender, education, income, and self/proxy response. The last variable is an
indicator of whether a subject’s labor force status was obtained from the subject or from
another person in the household (i.e., a proxy). In the CPS, the interview informant
can change from month to month, and thus, self-proxy can be regarded as a time-
varying covariate. However, in doing so, Biemer and Bushery found the models to be
quite unstable and opted for a time-invariant self/proxy variable denoted by G, where
G = 1 ⇔ self-response in all three months, G = 2 ⇔ self-response in exactly two
months, G = 3 ⇔ proxy response in exactly two months, and G = 4 ⇔ proxy in all
three months. This variable was highly significant in all the models they considered.

Biemer and Bushery analyzed data from three years—1993, 1994, and 1996—of the
CPS, fitting models to each year separately. The data were weighted and rescaled data
as per (33), and the �EM software was used. A wide range of models were fit to the
data including the following five essential models in Table 5. In addition, all the models
they considered assumed stationary classification error probabilities as a condition of
identifiability.

Table 5 shows the fit diagnostics for these five models by year. As shown, only
Model 4 provided an acceptable fit when the p-value criterion is used. Model 4 is the
most general model in the table and allows the January–February and February–March
transition probabilities to vary independently across the four self-proxy groups. The
model further specifies that the error probabilities are the same for January, February,
and March, but may vary by self-proxy group. This latter specification is consistent with
the literature of survey methods (see, e.g., O’Muircheartaigh (1991); Moore, 1988). In
addition, the dissimilarity index, d, for Model 4 is 0.3%, which indicates a very good
model fit. Thus, the authors used Model 4 to generate the estimates of labor force
classification error. These estimates and their standard errors appear in Table 6. As
noted in previous examples, the standard errors are likely to be understated since the
effects of unequal weighting and clustering were not taken into account in the analysis.

As shown in Example 2, for the true EMP and true NLF, the probability of a correct
response is quite high: 98% and 97%, respectively. However, for the true UNEMP,
the probability of a correct response varies across years from 72–84%. However, a
surprising result from Table 6 is the magnitude of reporting accuracy for 1994 and
1995 compared to 1993. As the authors note, the CPS questionnaire was substantially
redesigned in 1994 to increase the accuracy of the labor force status classifications, as
well as other population characteristics. The results in Table 6 suggest that reporting
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Table 5
Model diagnostics for alterative MLCA models by year

Model Year df npar L2 p BIC d

Model 0 1993 90 17 645 0.00 –320 0.048
{X; XY; YZ; AX; BY; CZ|XY=YZ} 1995 697 0.00 –275 0.044

1996 632 0.00 –325 0.045

Model 1 1993 84 23 632 0.00 –269 0.047
{GX; GXY; GYZ; AX; BY; CZ|GXY= GYZ} 1995 668 0.00 –240 0.043

1996 585 0.00 –308 0.044

Model 2 1993 66 41 99 0.01 –609 0.007
{GX; XY; YZ; AX; BY; CZ} 1995 146 0.00 –567 0.008

1996 159 0.00 –543 0.010

Model 3 1993 42 65 64 0.02 –386 0.005
{GX; GXY; GYZ; AX; BY; CZ} 1995 82 0.00 –372 0.005

1996 83 0.00 –364 0.010

Model 4 1993 24 83 23 0.50 –234 0.002
{GX; GXY; GYZ; GAX; GBY; GCZ} 1995 25 0.41 –234 0.002

1996 39 0.03 –216 0.003

Table 6
Estimated labor force classification probabilities by group and year*

Observed Classification

True EMP UNEMP NLF
classification

1993 1995 1996 1993 1995 1996 1993 1995 1996

EMP 98.8 98.7 98.8 0.3 0.5 0.4 0.9 0.8 0.8
(0.1) (0.1) (0.1) (0.11) (0.1) (0.1) (0.1) (0.1) (0.1)

UNEMP 7.1 7.9 8.6 81.8 76.1 74.4 11.1 16.0 17.0
(0.7) (0.9) (1.0) (0.9) (1.2) (1.2) (0.9) (1.2) (1.2)

NLF 1.4 1.1 1.1 0.8 0.7 0.9 97.8 98.2 98.0
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1)

* Standard errors are shown in parentheses.

accuracy is higher for the year prior to the major redesign (i.e., in 1993) than for the
years following the redesign.

Subsequently, Biemer (2004a) applied MLCM to further explore this anomaly. His
analysis considered the error associated with the two primary subclassifications of unem-
ployed: persons who are unemployed and on layoff, and persons who are unemployed
and looking for work. His analysis found that the primary cause of the anomaly in
table 10 was a reduction in classification accuracy of persons who are on layoff. Using
MLCA, he found that two questions on the revised questionnaire appear to be responsi-
ble. He found considerable error associated with the revised question: “LAST WEEK,
did you do ANY work (either) for pay (or profit)?” He found that more than 50% of
the error in the revised layoff classification is contributed by this question. In addition,
he found considerable classification error in determining whether individuals reporting
some type of layoff have a date or indication of a date to return to work. This question
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contributes between 30 and 40% of the layoff classification error. The combination of
these two questions appears to explain the reduction in accuracy in UNEMP in the
revised questionnaire.

Biemer and Bushery also compared the MLCA estimates of the CPS classification
probabilities with similar estimates from the literature, for example, Fuller and Chua
(1985), Poterba and Summers (1995), and the CPS reconciled reinterview program
(Biemer and Bushery, 2001). Unlike the MLCA estimates, these other estimates relied
on reconciled reinterview data, which was considered a gold standard. Biemer and
Bushery found that the relative magnitude of the MLCA estimates across the labor
force categories agrees fairly well with the previous estimates. The greatest differences
occurred for the true unemployed population where the estimates of response accuracy
from the literature were three to seven percentage points higher than corresponding
MLCAestimates. One explanation for this difference is that the comparison estimates are
biased upward as a result of correlations between the errors in interview and reinterview.
Another explanation is that the MLCA estimates are biased downward as a result of the
failure of the Markov assumption to hold. Both explanations may be true to some extent.
However, Biemer and Bushery (2001) provides some evidence that failure of the Markov
assumption in not likely to have an appreciable effect on estimates of classification error.

6. Measurement error evaluation with continuous variables

The preceding discussion dealt primarily with the evaluation of classification error,
that is, measurement errors when both the latent variable and the manifest variable
are discrete. Indeed, categorical variables tend to dominate survey data analysis. For
completeness, this section will be devoted to a brief discussion of measurement errors
in continuous variables, that is, latent and manifest variables that are measured on an
interval or ratio scale. The literature for this area of measurement error analysis is quite
extensive and, in many ways, more developed than the methodology for classification
error. Disciplines such as econometrics, psychometrics, sociometrics, and statistics have
all contributed to this vast area of research. Some recent books that summarize the key
developments in this area are Wansbeek and Meijer (2001), Biemer et al. (1991, Section
E), and Alwin (2007). Our aim is not to provide a comprehensive exposition of the topic.
Rather, we describe a general framework for modeling and estimation emphasizing a
few widely used methods. As we did in earlier sections of this chapter, we first consider
techniques appropriate for cross-sectional surveys and then extend the ideas to panel
surveys. Also as before, the focus will be restricted to quality criteria for single response
variables or composite variables that are treated as such.

Section 2.1 considered some of the early developments in the estimation of mea-
surement error variance for categorical variables that arose from the two-stage sam-
pling model of the measurement process. Central to those results is the classic work by
Hansen et al. (1961), which considered the estimation of SRV using continuous parallel
indicators. The modern approach for estimating reliability with continuous data applies
structural equation models or SEMs (see, e.g., Saris and Andrews, 1991). Maximum
likelihood estimation may be used to obtain estimates of SEM coefficients, which give
rise to estimates of the reliability ratio. The origins of SEM can be traced to Wright’s
(1918, 1921) work on path analysis. Since then, further developments have mostly
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occurred in the behavioral and social sciences. Growth was spurred by the develop-
ment of software packages that facilitate the estimation of SEMs, particularly LISREL
(Jöreskog and Sörbom, 1978).

The next section introduces the basic SEM measurement model that is analogous to
the basic LCA model. The concepts of validity and invalidity will also be introduced.
Together with reliability, these concepts are central to the SEM framework.

6.1. Reliability, validity, and invalidity in the SEM framework

Extending the notions of general model in Section 2.1, we assume that an observation
on the ith individual at the jth trial follows the linear model

yij = μi + εij, (35)

where μi is the true value of the characteristic having mean π and variance σ2
μ, and εij

is the measurement error with conditional mean and variance, Mij mean and variance
σ2

εij , respectively. In the SEM literature, the subscript j = 1, . . . , J is referred to as
the “method” of measurement since it is assumed that questions, data collection modes,
respondent types, or data sources may vary for each replicate measurement or trial. The
variable μi is assumed to be latent since none of the methods will always produce the
true value.

The model assumes that Cov(εij, εi′j′) = 0 for (i, j) �= (i′, j′), that is, measure-
ment errors are uncorrelated among units and trials. The model also stipulates that
Cov(μi, εij′) = 0, which distinguishes the model from the simple dichotomous model
discussed in Section 2, where it can be shown that by using the notation in Section 3,
Cov(μi, εij) = −π(1 − π)(φ + θ). While the uncorrelated error assumption seems rea-
sonable for continuous data, it can still be violated. For example, for income data, the
size of the measurement error may depend upon the income value. Suppose the error is
proportional to the true value, that is, εij = γijμi and rewrite the right side of (35) as
μi(1 + γij). The log transformation can be used to linearize the model. Alternatively,
variables believed to be correlated with error such as education, gender, and race (in the
case of income) could be included in the model that may result in independent residual
error.

One of the strengths of SEM is the ability to simultaneously fit multiequation models
that describe a system of measurement involving many related variables. In general, the
SEM model incorporates two types of submodels, one for the latent variables (referred to
as the structural model) and another for the error terms (referred to as the measurement
model since it describes how the latent variables and the error terms are linked to form
the measurement variables). In our discussion, we consider only very simple model
structures. Readers interested in exploring more complex measurement error models
are referred to Alwin (2007).

The model in (35) is too general to be of any practical use since it is implicitly
overspecified. To reduce the number of parameters, various types of restrictions have
been considered in the literature. One possibility considered previously is to assume
parallel measurements, that is, assume Mij = M and σ2

ij = σ2
ε , for all (i,j). However, these

assumptions are both impracticable and unnecessarily restrictive. Another is to assume
that the distribution of εij depends only on the method (j). We considered a similar
assumption in the dichotomous case by allowing the misclassification probabilities to
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vary across the repeated measurements. For SEM, it is customary to allow the mean and
variance of the response distribution to depend only on the method as in the following
model:

yij = μi + ξij + εij, (36)

where ξij is an independent, random component representing the interaction between the
method and the individual, E(ξij) = Mj and Var(ξij) = σ2

ξj . This model postulates that
each implementation of the same method under the same identical survey conditions
produces the value μi + ξij for the ith individual apart from a random error term, εij .
Thus, the true score for the ith individual for the jth method is E(yij|i, j) = μi + ξij,

which will be denoted by Tij . The SV is σ2
μ +σ2

ξj and the SRV is σ2
ε . The reliability ratio

for the jth measurement process can be written as

Rj = σ2
μ + σ2

ξj

σ2
μ + σ2

ξj + σ2
ε

.
(37)

Further, Mj may be interpreted as the bias of the jth measurement process since E(ȳj) =
μ + Mj, where μ = E(μi).

In SEM, yij is often modeled in standardized form. For any variable z, the standard-
ized form will be denoted by an asterisk in superscript as z∗ = (z − E(z)/

√
Var(z).

Rewriting model (36) in terms of the standardized variables, we obtain the following
equations:

y∗
ij = hjT

∗
ij + ε∗

ij

T ∗
ij = bjμ

∗
i + gjξ

∗
ij

(38)

hj =
√

Var(Tij)

Var(yij)
, bj =

√
σ2

μ

Var(Tij)
and gj =

√
σ2

ξj

Var(Tij)
(39)

where hij denotes the reliability coefficient, bj denotes the validity coefficient and gj is
the method coefficient. Thus, for the jth measurement, reliability is h2

j , the measurement
validity is defined as b2

j , measurement invalidity is defined as (1 − b2
j ), which under the

present model is equal to the method effect or g2
j . This model can be represented by the

path diagram in Fig. 4. In the following, we consider some approaches for estimating
these parameters under SRS.

T *
j y *

ij

bj

hj

gj

εij

�*
ij

�*
i

Fig. 4. Basic measurement model for one measurement.
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6.2. Estimation of reliability and validity

6.2.1. Cross-sectional surveys
If two measurements are made on the same sample of individuals using different
methods, then it can be shown that, under the present model,

E(2s2
2) = SRV1 + SRV2, (40)

where s2
2 is defined in Section 2 and SRVj denotes the SRV for jth method, j = 1, 2.

In general, s2
2 is a biased estimator of SRV1 or SRV2 unless the two measurements are

parallel, in which case SRV1 = SRV2. For parallel measurements, an estimator of relia-
bility can also be obtained from the sample covariance between the two measurements,
since from (38) we have (assuming standardized variables but dropping the asterisks
for simplicity).

Cov(yi1, yi2) = h1h2 = h2. (41)

When measurements are not parallel, three measurements having the same true score
are required for estimating the h2

j , j = 1, 2, 3. To see this, note that the three sample
covariances between the measurements can be used to form estimates of h1h2,h1h3,
and h2h3. These three estimates can be manipulated to obtain estimates of reliability for
each measurement, for example, an estimate of h2

1 can be derived from the following
relation:

Cov(yi1, yi2)

Cov(yi2, yi3)
Cov(yi1, yi3) = h1h2

h2h3
h1h3 = h2

1. (42)

The reliability of the other two measurements can be estimated in similar fashion. No
estimates of validity and method coefficients can be obtained with this design, however,
even if more than three replications (say, J ≥3) of the same true score are available.

The general measurement model for J repeated measurements can be rewritten in
matrix form for the ith case as

yi= hTi + εi, (43)

where yi is the 1 × J vector of standardized measurements on the ith unit, εi is the
1 × J vector of errors associated with the measurements, Ti is the 1 × J vector of
standardized true scores, and h = diag {h1, . . . , hJ }. The latent variable model (second
model in (38)) will be ignored for the time being since this design does not admit
estimates of its coefficients. Let � denote the J × J variance–covariance matrix of yi,
which is assumed to be the same for all units i. Note that � can be written as h2 + �2,
where �2 is the J × J diagonal matrix with diagonal elements, σ2

ε∗j = Var(ε∗
ij), j =

1, . . . , J . Model (43) is essentially a factor analytic model with one factor, and thus,
ordinary factor analysis techniques can be used to estimate h and �. If the vector yi is
assumed to follow a multivariate normal distribution, maximum likelihood estimation
techniques can be used to obtain efficient estimates and their standard errors in large
samples. Let ĥ = diag {ĥ1, . . . , ĥJ } denote the MLE of h. Then the maximum likelihood
estimator of the reliability of the jth method is ĥ2

j .
The estimation of all the components in (38), that is, reliability, validity, and method

effects, is possible using the so-called multitrait-multimethod (MTMM) approach orig-
inally proposed by Campbell and Fiske (1959) and extended to the so-called true score
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model in (38) by Saris and Andrews (1991). For estimability, the design requires the
same characteristic be obtained using two different methods and two replications for
each. However, at least three methods and two replications—a minimum of six repeated
measurements of the same characteristic—is highly recommended. To apply the MTMM
approach, the model in (38) is extended to accommodate more than one trait as follows:

y∗
ijk = hjkT

∗
ijk + ε∗

ijk (44)

T ∗
ijk = bjkμ

∗
ik + gjkξ

∗
ijk,

where ijk refers to the ith individual, jth method, and kth trait. No restrictions are
made on the correlations among the true values for the same individuals, that is,
Cov(μ∗

ik, μ
∗
ik′) �= 0; however, the usual assumptions regarding uncorrelated errors is

made for ε∗
ijk and ξ∗

ijk among individuals, traits, and methods.
Over the past 20 years, researchers have done extensive of analysis of the quality

of survey measures using this approach (see, e.g., Scherpenzeel and Saris, 1997, for
a review and meta-analysis of the literature). Saris et al. (2004) advocate using past
MTMM studies to inform meta-analytic models, where the dependent variables are the
MTMM reliability or validity estimates of survey questions and independent variables
include item characteristics such as mode of interview, response format or scale type,
position in the questionnaire, motivating statements, etc. They use these models to
predict the quality of survey questions for future or planned surveys. An excellent
discussion of the MTMM approach can be found in (Alwin (2007), Chapter 4).

6.2.2. Panel surveys
For panel data, it is possible to estimate validity, method variance, and reliability with
fewer than six replicate measurements at each time point by taking advantage the tem-
poral replication inherent in the panel design. Many methods are available including an
extension of the MTMM method referred to as the multitrait, multimethod, and multitime
(MTMMMT) approach (Saris and Andrews, 1991). This design essentially replicates
a MTMM data structure at each time point. One advantage of the design is that fewer
replicate measures (e.g., two traits and two repeated measurements) are required at each
time point. In addition, this design allows the evaluation of an additional, heretofore
unmentioned component of variance, viz., unique variance. This component, which is
confounded with ε-error term in the previous models, can be regarded as the interaction
between the method and the trait (see, e.g., Saris and Andrews, 1991).

For estimating reliability in panel surveys without repeated measurements at each
time point, the method of choice is the so-called quasi-simplex approach (Heise, 1969,
1970; Jöreskog, 1979; Wiley and Wiley, 1970). This method only requires the same
characteristic be measured by the same method (i.e., interview mode, survey question,
interview approach, etc.) for at least three panel waves. Like the MLCA model, a first-
order Markov latent variable model is assumed for the third and subsequent time points.
The covariation of responses within and between the waves provides the basis for an
estimate of the reliability of the measurement process. In this sense, the quasi-simplex
model is akin to a test–retest reliability assessment, where the correlation between values
of the same variable measured at two or more time points estimates the reliability of
those values. An important difference is that while test–retest reliability assumes no
change in true score across repeated measurements, the quasi-simplex model allows the
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true scores to change across the repetitions. The quasi-simplex model attempts to model
the changing true scores while simultaneously separating the true score variance from
error variance. The quasi-simplex path diagram for three time points is very similar to
Fig. 3 without the grouping variable, G. In fact, it can be regarded as the continuous
data version of the MLCA.

Only the model for three waves of data will be illustrated; however, extensions to
four or more waves is straightforward. Let w( = 1, 2, 3) denote a wave of a panel survey
and, for convenience, drop the subscript i denoting the unit. Assume an observation at
wave w, say yw, is related to its true score, Tw, through the model

yw = Tw + εw, (45)

where εw denotes the random measurement error. We further assume that true scores
across waves are inter-related as follows:

T2 = β12T1 + ζ2

T3 = β23T2 + ζ3,
(46)

Where β12 is the effect of true score at time 1 on true score at time 2 and β23 is the effect
of true score at time 2 on true score at time 3. The terms ζ2 and ζ3 are random error
terms that represent the deviations between tw+1 and βw,w+1tw, sometimes referred to
as random shocks. Note that Var (ζw) is a component of true score variance at time w;
for example,

Var(T2) = β2
12Var(T1) + Var(ζ2). (47)

Assumptions of the quasi-simplex model include, for all w, w′ = 1,2,3,

E(εw) = 0, Cov(εw, εw′) = 0, w �= w′, Cov(εw, Tw′) = 0,

Cov(ζw, Tw′) = 0. (48)

For model identification, we impose the further restriction of equal error variances,
that is,

Var(εw) = Var(εw′) = σ2
ε for w �= w′. (49)

Under normality assumptions, maximum likelihood estimation can be used to esti-
mate the parameters β12, β23, σ

2
ε , σ

2
t1 = Var(t1), σ2

ζ2 = Var(ζ2), and σ2
ζ3 = Var(ζ3). The

reliabilities for the three waves are given by the following:

R1 = σ2
t1

σ2
t1 + σ2

ε

, R2 = σ2
t2

σ2
t2 + σ2

ε

= β2
12σ

2
t1 + σ2

ζ2

β2
12σ

2
t1 + σ2

ζ2 + σ2
ε

,

R3 = σ2
t3

σ2
t3 + σ2

ε

= β2
23(β

2
12σ

2
t1 + σ2

ζ2) + σ2
ζ3

β2
23(β

2
12σ

2
t1 + σ2

ζ2) + σ2
ζ3 + σ2

ε

.

(50)

Thus, MLEs of the reliabilities can be obtained by replacing the parameters by their
respective MLEs.

A key assumption of the classical quasi-simplex model is the assumption of constant
error variance across waves, whereas true score variance is allowed to vary with the
wave. However, there are situations when the error variance should also be allowed to
vary across the waves. For example, as respondents repeatedly participate in a survey,
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they may become better respondents and their responses may become less subject to
random error. Thus, the error variance at w = 3 could be somewhat smaller than the
error variance at w = 2, which is smaller still than the error variance at w = 1.

Unfortunately, specifying both varying true score and error variances will yield an
unidentified model due to insufficient number of degrees of freedom to obtain a unique
solution to the structural equations. Thus, if the assumption of changing error variances
is specified, then true score variances must be held constant across waves. There are
no identifiability issues if both true score and error variances are held constant or by
restricting the reliabilities to be equal across waves. Biemer et al. (2006) examine this
issue for a wide range of composite measures from the National Survey of Child and
Adolescent Well-being (NSCAW). They concluded that, for most of the measures, the
assumption of unequal error score variances allowing true score variance to vary gave
better results using the quasi-simplex model.

7. Discussion

Traditional measurement error models made fairly strong assumptions on the error
distributions. As an example, the assumption of parallel measurements is difficult, if
not impossible, to satisfy for actual survey operations. Estimating measurement bias
required error-free measurements obtained from an infallible and unimpeachable source.
Through the years, measurement error modeling techniques have evolved under more
operationally plausible assumptions that place less stringent demands on evaluation
studies. The LCA has an advantage over traditional methods in that it can be used when
the assumptions associated with traditional analysis fail or when the remeasurements
are collected by methods that do not satisfy traditional assumptions.

But LCA also requires assumptions which can be difficult to satisfy in many situ-
ations. Therefore, the use of LCA for evaluating survey error should not preclude the
use of classical methods. We recommend using multiple methods and comparing their
results since, as some examples in this chapter have demonstrated, insights are often
provided about both the error and the validity of the competing methods. Agreement of
the results from multiple methods should engender confidence that the findings of the
analysis are valid. Disagreement among the results may lead to further investigation of
the underlying assumptions of all the methods. In this way, much more knowledge can
be discovered about the underlying causes of the errors than if only one method was
used.

There is much more work to be done in the area of measurement error modeling.
The limitations of LCMs are not well understood despite their use in various types of
analysis for more than half a century. The field requires a better understanding of the
consequences of model assumption violations for classification error evaluations. The
few simulation studies that have been conducted provide valuable insights regarding
the sensitivity of LCA estimates to model failures. Future research will continue to add
to this knowledge base.
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Computer Software for Sample Surveys

Jelke Bethlehem

1. Survey process

Our world faces a growing demand for information on all kinds of topics. Such
information can be collected and compiled in a survey. Executing a survey and produc-
ing reliable information can be an expensive and time-consuming process. Fortunately,
rapid developments in computer technology have made it possible to conduct more sur-
veys and more complex surveys. Over time, computer hardware and software are being
used in more and more steps of the survey process.

This chapter describes the various steps in the process, and the software that can
be used in it. Also, attention is paid to some of the methodology problems one may
encounter. No attempt has been made to give an exhaustive overview of all available
software. Only examples of software are mentioned that could or could not be used in
specific situations.

The first step is the design of the survey. The survey researcher must define the
population to be investigated, the data to be collected, and the characteristics to be
estimated. Also, a questionnaire must be designed and tested. Usually, only a sample of
the population is investigated. This means a sample design and accompanying estimation
procedures must be selected. And the sample must be selected accordingly from an
appropriate sampling frame.

The second step in the process is data collection. Traditionally, in many surveys, paper
questionnaires were used. There were three modes of data collection: face-to-face, by
telephone, and by mail. Every mode had its advantages and disadvantages. Since the
1970s, paper questionnaire forms were gradually replaced by electronic forms. This is
called computer-assisted interviewing (CAI).Acomputer programme asks the questions,
checks the answers, and controls the route through the questionnaire. More recent is the
use of the Internet for data collection.

Particularly, if the data are collected by means of paper forms, completed question-
naires have to undergo extensive treatment. To produce high-quality statistics, it is vital
to remove any errors. This step is called statistical data editing.

Detected errors have to be corrected, but this can be very difficult if it has to be
done afterwards, when the fieldwork has been completed. In many cases, particularly
for household surveys, respondents cannot be contacted again, so other ways have to
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be found to solve the problem. Sometimes it is possible to determine a reasonable
approximation of a correct value by means of an imputation technique, but in other
cases an incorrect value may have to be replaced by a special code indicating the value
is “unknown.”

After data editing, the result is a “clean” file, that is, a file in which no more errors can
be found. However, this file is not yet ready for tabulation and analysis. In the first place,
the sample is sometimes selected with unequal probabilities, for example, establishments
are selected with probabilities proportional to their size. The reason is that a clever
choice of selection probabilities makes it possible to produce more accurate estimates
of population parameters, but only in combination with an estimation procedure that
corrects for this inequality. In the second place, representativeness may be affected
by nonresponse, that is, for some elements in the sample, the required information
is not obtained. If nonrespondents behave differently with respect to the population
characteristics to be investigated, estimates will be biased.

To correct for unequal selection probabilities and nonresponse, a weighting adjust-
ment procedure is often carried out. Every record is assigned some weight. These weights
are computed in such a way that the weighted sample distribution of characteristics like
sex, age, marital status, and area reflects the known distribution of these characteristics
in the population.

In the case of item nonresponse, that is, answers are missing from some, but not all
questions, an imputation procedure can also be carried out. Using some kind of model,
an estimate for a missing value is computed and substituted in the record.

Finally, a clean file is obtained which is ready for analysis. The first step in the
analysis phase will nearly always be tabulation of the basic characteristics. A more
in-depth analysis should reveal underlying structures and patterns, and thus help gain
insight in the subject-matter under research.

The results of the analysis will be published in some kind of report. Survey agencies
experience an increasing demand for releasing survey data files, that is, data sets contain-
ing the individual scores on a number of variables for each respondent. An increasing
public consciousness concerning the privacy of individuals may lead to a disclosure
problem.

2. Data collection

2.1. Traditional data collection

Traditionally, paper questionnaires were used to collect survey data.Aquestionnaire was
defined, containing the questions to be asked of respondents. There were three modes
of data collection:

• Face-to-face interviewing. Interviewers visit respondents, ask questions, and fill in
answers on the questionnaire form. The quality of the collected data tends to be
good. However, face-to-face interviewing is expensive. It requires a large number
of interviewers, all of whom have to do a lot of traveling.

• Telephone interviewing. Interviewers call respondents from the survey agency. No
more traveling is necessary. Still, telephone interviewing is not always feasible:
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only people who have a telephone can be contacted, and the questionnaire cannot
be too long or too complicated.

• Self-interviewing. This is a mail survey. No interviewers at all are necessary. Ques-
tionnaires are mailed to potential respondents with the request to return completed
forms. Although reminders can be sent, the persuasive power of the interviewer is
lacking, and therefore response tends to be lower in this type of survey.

2.2. CAI

Carrying out a survey is a complex, costly, and time-consuming process. One of the
problems is that data collected by means of paper forms usually contain many errors.
Extensive data editing is required to obtain data of acceptable quality. The rapid devel-
opments of information technology in the last decades made it possible to use microcom-
puters for CAI. The paper questionnaire was replaced by a computer program containing
the questions to be asked. The computer took control of the interviewing process, and
it also checked answers to questions on the spot. Application of computer-assisted data
collection has three major advantages:

• It simplifies the work of interviewers. They no longer have to pay attention to choos-
ing the correct route through the questionnaire. Therefore, they can concentrate on
asking questions and assisting respondents in getting the answers.

• It improves the quality of the collected data because answers can be checked and
corrected during the interview. This is more effective than having to do it afterwards
in the survey agency.

• Data are entered in the computer during the interview resulting in a clean record,
so no more subsequent data entry and data editing is necessary. This considerably
reduces the time needed to process the survey data, and thus improves the timeliness
of the survey results.

CAI comes in three modes. The first mode implemented was computer-assisted tele-
phone interviewing. In the 80s, the laptop computers arrived, and it became possible
to implement computer-assisted personal interviewing, which is the electronic form
of face-to-face interviewing. Another recent mode of CAI is computer-assisted self-
interviewing (CASI), which is the electronic analog of mail interviewing. Diskettes
are sent to respondents, or they can access the interviewing software via telephone and
modem, or via the Internet. This latter form of CASI is also denoted by computer-assisted
web interviewing.

2.3. Authoring languages

The elements of paper questionnaires were rather straightforward: questions for respon-
dents and instructions for interviewers or the respondents to jump to other questionnaires
or the end of the questionnaire. Electronic questionnaires can have more elements, for
example:

• Questions. Each question may have an identification (number or name), a question
text, a specification of the type of answer that is expected (text, number, selection
from a list, etc.), and a field in which the answer is stored.
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• Checks. Each check may have identification, a logical expression describing a
condition that must be fulfilled, and an error message (which is displayed when the
condition is not met).

• Computations. Each computation may have identification, an arithmetic expres-
sion, and a field in which the result must be stored.

• Route instructions. These instructions describe the order in which the objects are
processed and also under which conditions they are processed.

These routing instructions can take several forms. This is illustrated using a simple
example of a fragment of a questionnaire. Figure 1 shows what this fragment could look
like in paper form.

The questionnaire contains two types of routing instructions. In the first place, there
are skip instructions attached to answer codes of closed questions. This is the case for
questions 1 and 4. The condition deciding the next question asked only depends on
the answer to the current question. In the second place, there are instructions for the
interviewer that are included in the questionnaire between questions. These instructions
are typically used when the condition deciding the next question depends on the answer
to several questions, or on the answer to a question that is not the current question.
Figure 1 contains an example of such an instruction between questions 3 and 4.

Usually, specification languages of CAI systems (so-called authoring languages)
do not contain interviewer instructions. Skip instructions appear in different formats.

1. What is your sex? 
   Male . . . . . . . . . . . . . . . . . . 1 Skip to question 3
   Female . . . . . . . . . . . . . . . . . 2 

2. Have you ever given birth? 
   Yes  . . . . . . . . . . . . . . . . . . 1 
   No . . . . . . . . . . . . . . . . . . . 2 

3. How old are you?                 _ _ years 

Interviewer: If younger than 17 then goto END 

4. What is your marital status? 
   Never been married . . . . . . . . . . . 1 Skip to question 6 
   Married  . . . . . . . . . . . . . . . . 2 
   Separated  . . . . . . . . . . . . . . . 3 
   Divorced . . . . . . . . . . . . . . . . 4 Skip to question 6
   Widowed  . . . . . . . . . . . . . . . . 5 Skip to question 6 

5. What is your spouse's age?       _ _ years 

6. Are you working for pay or profit? 
   Yes  . . . . . . . . . . . . . . . . . . 1 
   No . . . . . . . . . . . . . . . . . . . 2 

END OF QUESTIONNAIRE 

Fig. 1. A paper questionnaire.
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>Sex<
What is your sex? 
<1> Male                   [goto Age] 
<2> Female 
@

>Birth<
Have you ever given birth? 

<1> Yes 
<2> No 
@

>Age<
How old are you ? 
<12-20>
@
[@][if Age lt <16> goto End] 

>MarStat<
What is your marital status? 
<1> Never been married    [goto Work] 

<2> Married 
<3> Separated 
<4> Divorced              [goto Work] 
<5> Widowed               [goto Work] 

@

>Spouse<
What is your spouse's age? 
<16-20>
@

>Work<
Are you working for pay or profit? 

<1> Yes 
<2> No 
@

Fig. 2. The sample questionnaire in CASES.

Figure 2 contains a specification of the sample questionnaire of Fig. 1 in the authoring
language of the CASES system. This system was developed by the University of
California in Berkeley. Routing instructions are goto-oriented in CASES. There are
two types:

(1) Skips attached to answer codes are called unconditional goto’s
(2) Interviewer instructions are translated into conditional goto’s.

An example of a CAI system with a different authoring language is the Blaise System
developed by Statistics Netherlands. The authoring language of this system uses IF-
THEN-ELSE structures to specify routing instructions. Figure 3 contains the Blaise
code for the sample questionnaire.

There has been an intensive debate about the use of goto-instructions in programming
languages. A short paper by Edsger Dijkstra in 1968 (“Go To Statement Considered
Harmful”) was the start of the structured programming movement. It has become clear
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DATAMODEL Example 

FIELDS

  Sex     "What is your sex?": (Male, Female)
  Birth   "Have you ever given birth?": (Yes, No)
  Age     "How old are you?: 0..120 
  MarStat "What is your marital status?": 
          (NeverMar "Never been married", 
           Married   "Married", 
           Separate  "Separated", 
           Divorced  "Divorced", 
           Widowed  "Widowed")
  Spouse  "What is your spouse's age?": 0..120 
  Work    "Are you working for pay or profit?": (Yes, No)

RULES
  Sex 
  IF Sex = Female THEN
     Birth
  ENDIF 
  Age 
  IF Age >= 17 THEN 
     MarStat 
     IF MarStat = Married) OR (MarStat = Separate) THEN 
        Spouse 
     ENDIF 
     Work 
  ENDIF 

ENDMODEL

Fig. 3. The sample questionnaire in Blaise.

that this also applies to questionnaires. Use of goto-instructions in questionnaires makes
these instruments very hard to test and to document.

The way in which the routing structure is specified is not the only difference between
Figs. 2 and 3. The developers of Blaise have considered a clear view on the routing
structure so important that routing is specified in a separate section of the specification
(the rules section).

Note that in the simple example in Fig. 3 only question elements have been used. It
contains no checks or computations.

2.4. Modular questionnaires

Several CAI software systems offer a modular way of specifying electronic question-
naires. This means the questionnaire is split into a number of subquestionnaires, each
with its own question definitions and routing structure. Subquestionnaires can be devel-
oped and tested separately. It is possible to incorporate such modules as a standard
module in several surveys, thereby reducing development time and increasing consis-
tency between surveys.

Also with respect to subquestionnaires, there can be routing instructions. Answers to
questions in one subquestionnaire may determine whether or not another subquestion-
naire is executed. Furthermore, subquestionnaires can be used to implement hierarchical
questionnaires. Such questionnaires allow a subquestionnaire to be executed a number
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of times. A good example of a hierarchical questionnaire is a household questionnaire.
There are questions at the household level, and then there is a set of questions (subques-
tionnaire) that must be repeated for each eligible member of the household.

On the one hand, a subquestionnaire can be seen as one of the objects in a question-
naire. It is part of the routing structure of the questionnaire, and it can be executed just
like a question or a check. On the other hand, a subquestionnaire contains a question-
naire of its own. By zooming into a subquestionnaire, its internal part becomes visible,
and that is a questionnaire with its objects and routing conditions.

2.5. Testing and documentation

The growing potential of computer hardware and software has made it possible to
develop very large, and very complex electronic questionnaires. It is not uncommon for
electronic questionnaires to have thousands of questions. To protect respondents from
having to answer all these questions, routing structures and filter questions see to it
that only relevant questions are asked and irrelevant questions are skipped. Due to the
increasing size and complexity of the electronic questionnaires, it has become more and
more difficult for developers, users, and managers to keep control of the content and
structure of questionnaires. It takes a substantial amount of knowledge and experience
to understand such questionnaires. It has become more and more difficult to comprehend
electronic questionnaires in their entirety, and to understand the process that leads to
responses for each of the questions as they ultimately appear on data files. See, for
example, Kent and Willenborg (1997).

A number of concrete problems have arisen in statistical agencies due to the lack of
insight in complex electronic questionnaires:

• It has become very hard to test electronic questionnaires. It is no simple matter to
test whether every possible person one might encounter in the field will answer the
correct questions in the correct order. Every possible tool providing insight into
this matter will help avoid problems in the field.

• Creating textual documentation of an electronic questionnaire has become an enor-
mous task. It is usually a manual task, and is therefore error-prone. There is no
guarantee that hand-made documentation exactly describes the real instrument.
Making documentation by hand is also very time-consuming.

• There are always managers in organizations who have to approve questionnaire
instruments going into the field. In the old days of paper questionnaires, they could
base their judgment on the paper questionnaire. However, for modern electronic
questionnaire instruments, they have nothing to put their signature on. The printout
of the questionnaire specification in the authoring language of the CAI system
usually is not very readable for the nonexpert. So, documentation is required that
on the one hand is readable and on the other hand describes as exactly as possible
what is going in the instrument.

• Interviewers carrying out a survey with paper questionnaires could use the paper
questionnaire to get some feeling of where they are in the questionnaire, of what
the next questions is about, and of how close they are to the end. If they use an
electronic questionnaire, they lack such an overview. Therefore, they often ask for
a paper document describing the global content and structure of the questionnaire,
which they can use as a tool together with the electronic questionnaire.
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All these problems raise the question of the feasibility of a flexible tool capable of
representing content and logic of an electronic questionnaire in a human-readable way.
Such a tool should not only provide a useful documentation, but also help analyze the
questionnaire and report possible sources of problems. Research has shown that there is
a need for software capable of displaying the various routes through the questionnaire
in the form of a flow chart (see Bethlehem and Hundepool, 2000).

Jabine (1985) described flow charts as a tool to design survey questionnaires. Partic-
ularly, flow charts seem to be useful in the early stages of questionnaire development.
Sirken (1972) used flow charts to effectively explore alternative structures and sequences
for subquestionnaires. He also found that more detailed flow charts, for example, of the
structure of subquestionnaires, can be equally effective. Another more recent example
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Fig. 4. An example of TADEQ output.
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is the QD system developed by Katz et al. (1997). A flow chart can also be a useful
tool in the documentation of electronic questionnaires. Their strong point is that they
can give a clear idea of the routing structure. But they also have the weak point that
the amount of textual information that can be displayed about the questionnaire object
is limited. Therefore, a flow chart can be a very important component of questionnaire
documentation, but it will not be the only component.

A flow chart can also be a useful tool in the documentation of electronic question-
naires. Their advantage is that they can give a clear idea of the routing structure. But they
also have the disadvantage that the amount of textual information that can be displayed
about the questionnaire object is limited. Therefore, a flow chart can be a very important
component of questionnaire documentation, but it will not be the only component. There
have been a number of initiatives for automatically producing survey documentation,
but they pay little or no attention to documentation of survey data collection instruments.
They focus on postsurvey data documentation and not on providing tools to assist in
the development and analysis of the operation of the collection instrument. The TADEQ
project was set up to develop a tool documenting these instruments (see Bethlehem and
Hundepool, 2000). Figure 4 shows an example of the output of this tool.

3. Statistical data editing

3.1. What is statistical data editing?

Statistical data editing is the process of detecting errors in survey data and correct-
ing those detected errors, whether those steps take place in the interview or in the
survey office after data collection. Traditionally, statistical organizations, especially
those in government, have devoted substantial amounts of time and major resources
to data editing in the belief that this was a crucial process in the preparation of accu-
rate statistics. Current data editing tools have become so powerful that questions are
now raised as to whether too much data editing occurs. A new objective for some is to
minimize the amount of data editing performed while guaranteeing a high level of data
quality.

Data editing may occur in many phases of the survey process. Edits can be part of a
CAI program. In this case, data editing takes place during data collection. Traditionally,
data editing has taken place after data collection, either before, after, or during data
capture. Editing can also be carried out on tables or graphs of the distribution of one or
two variables. Such edits will take place when a substantial part of the data has been
completed, for instance 50%. Data editing is not restricted to within record edit-
ing. Between record edits and edits on aggregated quantities are also included in the
definition.

A more in-depth treatment of statistical data editing is given in Chapter 10 (Statistical
Data Editing and Imputation).

3.2. Forms of data editing

When data editing takes place at the level of individual records, this is called micro-
editing. Records are checked and corrected one at a time. Values of the variables in a
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record are checked without using the values in the other records. Micro-editing typically
is an activity that can take place during the interview or during data capture. When data
editing takes place at the level of aggregated quantities obtained by using all available
records, we call it macro-editing. For macro-editing, a file of records is required. This
means it is typically an activity that takes place after data collection, data entry, and
possibly after micro-editing.

Following Pierzchala (1990), data editing can be seen as addressing four principal
types of data errors:

• Completeness errors. The first thing to be done when filled-in paper questionnaire
forms come back to the survey agency is to determine whether they are complete
enough to be processed. Forms that are blank or unreadable, or nearly so, are
unusable. They can be treated as cases of unit nonresponse, scheduled for call-
back, deleted from the completed sample, or imputed in some way, depending on
the importance of the case.

• Domain errors. Each question has a domain (or range) of valid answers. An answer
outside this domain is considered an error.

• Consistency errors. Consistency errors occur when the answers to two or more
questions contradict each other. Each question may have an answer in its valid
domain, but the combination of answers may be impossible or unacceptable. The
occupation of a person may be school teacher, a person may be under 5 years of
age but the combination of these answers for the same person is probably an error.
A firm known to have 10 employees should not report more than 10,000 person
days worked in the past year.

• Routing errors (skip pattern errors). Many questionnaires contain routing instruc-
tions. A routing error occurs when an interviewer or respondent fails to follow a
routing instruction, and a wrong path is taken through the questionnaire. Rout-
ing errors are also called skip pattern errors. As a result, the wrong questions are
answered, leaving applicable questions unanswered and inapplicable items with
entries.

3.3. Developments

In traditional survey processing, data editing was mainly a manual activity. Domain
errors were identified by visually scanning the answers to the questions one at the time.
Consistency errors were typically caught only when they involved a small number of
questions on the same page or on adjacent pages. Route errors were found by following
the route instructions and noting deviations. In general, manual editing could identify
only a limited number of the problems in the data.

The data editing process was greatly facilitated by the introduction of computers.
Initially, these were mainframe computers, which only permitted batch-wise editing.
Tailor-made editing programs, often written in COBOL or FORTRAN, were designed
for each survey. Later, general purpose batch editing programs were developed and
extensively used in survey agencies. These programs performed extensive checks on
each record and generated printed lists of error reports by case identification number.
The error lists were then sent to subject-matter experts or clerical staff, who attempted
to manually reconcile these errors. This staff then prepared correction forms which were
keyed to update the data file, and the process was repeated.
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Batch computer editing of data sets improved the data editing process because it
permitted a greater number of and more complex error checks. Thus, more data errors
could be identified. However, the cycle of batch-wise checking and manual correction
was proved to be labor-intensive, time-consuming, and costly. See, for example, Beth-
lehem (1987) for a more complete analysis of this process and its disadvantages. Garcia
and Thompson (2000) also pointed at the disadvantages of manual editing. They showed
that a generalized Fellegi–Holt system was able to edit/impute a large economic survey
in 24 hours, whereas 10 analysts needed 6 months to make three times as many changes.

With the emergence of microcomputers in the early 1980s, completely new methods
of data editing became possible. One of these approaches has been called computer-
assisted data input (CADI). The same process also has been called computer-assisted
data entry. CADI provides an interactive and intelligent environment for combined data
entry and data editing of paper forms by subject-matter specialists or clerical staff. Data
can be processed in two ways: either in combination with data entry or as a separate step.

In the first approach, the subject-matter employees process the survey forms with
a microcomputer one-by-one. They enter the data “heads up,” which means that they
tend to watch the computer screen as they make entries. After completion of entry for a
form, they activate the check options to test for all kinds of errors (omission, domain,
consistency, and check errors). Detected errors are displayed and explained on the screen.
Staff can then correct the errors by consulting the form or by contacting the supplier
of the information. After elimination of all visible errors, a “clean” record, that is, one
that satisfies all check edit criteria, is written to file. If staff members do not succeed
in producing a clean record, they can write it to a separate file of problem records.
Specialists can later deal with these difficult cases using the same CADI system. This
approach of combining capture and editing is efficient for surveys with relatively small
samples but complex questionnaires.

In the second approach, clerical staff (data typists or entry specialists) enters data
through the CADI system “heads down,” that is without much error checking. When
this entry step is complete, the CADI system checks all the records in a batch run and
flags the cases with errors. Then, subject-matter specialists take over. They examine the
flagged records and fields one-by-one on the computer screen and try to reconcile the
detected errors. This approach works best for surveys with large samples and simple
questionnaires.

A second advance in data editing occurred with the development of CAI. It replaced
the paper questionnaire with a computer program that was in control of the interviewing
process. Routing and range errors are largely eliminated during data entry. This also
reduces the burden on the interviewers, since they need not worry about routing from
item to item and can concentrate on getting the answers to the questions. It also becomes
possible to carry out consistency checking during the interview. Since both the inter-
viewer and the respondent are available when data inconsistencies are detected, they
can immediately reconcile them. In this way, CAI should produce more consistent and
accurate data than correcting errors in the survey office after the interview is over.

Performing data editing during a computer-assisted interview is greatly facilitated
when the interviewing software allows specification of powerful checks in an easy and
user-friendly way. Although edit checks can be hard-coded for each survey in standard
programming languages, this is a costly, time-consuming, and error-prone task. Many
CAI software packages now offer very powerful tools for micro-editing, permitting
easy specification of a large number of checks, including those involving complex



328 Jelke Bethlehem

relationships among many questions. Editing during CAI is now extensively used both
in government and private sector surveys. An example of CAI software used by many
statistical institutes is the Blaise System, see Statistics Netherlands (2002).

Whether micro-editing is carried out during or after the interview, the entire process
may have major disadvantages, especially when carried to extremes. Little and Smith
(1987) and Granquist and Kovar (1997) have mentioned the risk of over-editing. Pow-
erful editing software offers ample means for almost any check one can think of, and
it is sometimes assumed that the more checks one carries out, the more errors one will
correct. But there are risks and costs.

First, the use of too many checks may cause problems in interviewing or postinterview
data correction, especially if the checks are not carefully designed and thoroughly tested
prior to use. Contradictory checks may cause virtually all records to be rejected, defeating
the purpose of editing. Redundant checks may produce duplicate or superfluous error
messages slowing the work. And checks for data errors that have little impact on the
quality of published estimates may generate work that does not contribute to the quality
of the finished product.

Second, since data editing activities make up a large part of the total survey costs,
their cost effectiveness has to be carefully evaluated at a time in which many statistical
agencies face budget reductions. Large numbers of micro-edits that require individual
correction will increase the costs of a survey. Every attempt should be made to minimize
data editing activities that do not improve the quality of the survey results.

Third, it must be recognized that not all data problems can be detected and repaired
with micro-editing. One such problem is that of outliers. An outlier is a value of a
variable that is within the domain of valid answers to a question, but it is highly unusual
or improbable when compared with the distribution of all valid values. An outlier can
be detected only if the distribution of all values is available.

Three alternative approaches to editing are described that address some of the limita-
tions of traditional micro-editing. In some situations, they could replace micro-editing.
In other situations, they could be carried out in combination with traditional micro-
editing or with each other. They are called automatic editing, selective editing, and
macro-editing.

3.4. Automatic editing

In automatic editing, checking and correcting the records are carried out automatically
by a software package. Since no human activities are involved, this approach is fast and
cheap. For automatic editing, the usual two stages of editing, error detection and error
correction, are expanded into three stages as follows:

• Error localization. As usual, the software detects errors or inconsistencies by
reviewing each case using the prespecified edit rules.

• Determining the cause of the error. If an edit detects an error that involves several
variables, the system must determine which variable caused the error. Several
strategies have been developed and implemented to solve this problem.

• Error correction. Once the variable causing the error has been identified, its value
must be changed so that the new value no longer causes the error message.
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There is no straightforward way to determine which of several variables causes a
consistency error. One obvious criterion is the number of inconsistencies in which that
variable is involved. If variable A is related to three other variables B, C, and D, an
erroneous value of A may generate three inconsistencies: with B, C, and D. If B, C, and
D are involved in no other edit failures, A seems the likely culprit. However, it could
be that no other edit rules have been specified for B, C, and D. Then B, C, and D could
also be candidates for correction.

The Fellegi–Holt methodology takes a more sophisticated approach (see Fellegi and
Holt, 1976). To reduce dependence on the number of checks defined, the Fellegi–Holt
methodology performs an analysis of the pertinent edit checks for each variable. Logi-
cally, superfluous checks are removed and all implied checks that can be logically derived
from the checks in question are added. Records are then processed as a whole, and not
on a field-by-field basis, with all consistency checks in place to avoid the introduction of
new errors as identified ones are resolved. The smallest possible set of imputable fields
is located, with which a record can be made consistent with all checks.

In the Fellegi–Holt methodology, erroneous values are often corrected with hot-deck
imputation. Hot-deck imputation uses values copied from a similar donor record (another
case) not violating any edit checks. When the definition of “similar” is very strict or
when the receptor record is unique, it may be impossible to find a similar donor record.
In this situation, a simple default imputation procedure is applied instead.

The Fellegi–Holt methodology has been programmed and put into practice for gov-
ernment statistical agencies. Several editing packages exist. For editing categorical
variables, they include DISCRETE (United States), AERO (Hungary), DIA and LINCE
(Spain), and DAISY (Italy). The U. S. Census Bureau program SPEER was designed for
valid value checks on ratios of numerical variables. The Chernikova algorithm, which
can only handle numerical variables, was further developed by Statistics Canada for
the generalized editing and imputation programs GEIS and Banff. All these programs
identify fields that are likely to contain errors and impute estimates of their values. These
programs run on diverse computer platforms and operating systems. AERO runs under
MS-DOS, LINCE under Windows, and DAISY runs on an IBM-mainframe. DISCRETE
and SPEER are in portable FORTRAN code. GEIS is an Oracle-based system, whereas
Banff is a SAS-based system.

The current state of affairs of automatic editing only allows for limited applicability
of these techniques. This is disappointing because powerful automatic data editing tools
can substantially reduce survey costs. Currently, automatic editing should only be used
for detecting and correcting errors that have no substantial impact on the published
statistics. Furthermore, automatic editing should never be the only data editing activity.
To avoid imputation of values of wrong variables, it should be used in combination with
other editing techniques.

3.5. Selective editing

Instead of conserving editing resources by fully automating the process, they may be
conserved by focusing the process on the most necessary edits. Necessary edits are those
which have a noticeable effect on published figures, including outliers. This approach
is called selective editing.



330 Jelke Bethlehem

To establish the effect of edits on population estimates, one can compare estimates
based on unedited data with estimates based on edited data. Boucher (1991) and Lindell
(1994) compared unedited data with edited data and found that, for each variable studied,
50–80% of the edits had virtually no effect on the estimate of the grand total. Similar
results were obtained in an investigation carried out by Van de Pol and Molenaar (1995)
on the effects of editing on the Dutch Annual Construction Survey.

If only a few edits have a substantial impact on the final figures, data editing efforts
can be reduced by identifying those edits. One way to implement this approach is to use a
criterion to split records into a critical and noncritical stream. The critical stream contains
the records which have a high risk of containing influential errors and therefore requires
thorough micro-editing. Records in the noncritical stream could remain unedited or
could be limited to automatic editing.

At present, there is no standard software available to implement the concepts of
selective editing just described. In some situations, selective editing can be applied using
existing software. An example is the Blaise System developed by Statistics Netherlands
(2002). First, the data entry program is used for heads-down data entry. Then, the data
manipulation tool (Manipula) is used to compute the values of a so-called OK index,
and these values are added to the records of each case. One approach could be to split the
data file into a file of critical records (i.e., records with an OK index below a specified
threshold) and a noncritical file. The critical file will then be subject to micro-editing.
Another approach could be to sort the data file by OK index value from low to high, and
then allow analysts to continue working with the file. They can decide on a case-by-case
basis how far they need to continue editing the records in the file.

Selective editing is a promising approach to data editing. However, methodology is
still in its infancy. Selective editing has been shown to work in specific cases, but a
general framework is needed to provide more tools for deciding which records must
undergo micro-editing.

3.6. Macro-editing

Macro-editing provides a solution to some of the data problems left unsolved by micro-
editing. It can also address data problems at the aggregate, distribution, and higher levels.
The types of edit checks used by macro-editing are similar to those of micro-editing, but
the difference is that macro-edit checks involve aggregated quantities. In this chapter,
two general approaches of macro-editing will be described.

The first approach is sometimes called the aggregation method (see Granquist, 1990;
United Nations, 1994). It formalizes and systematizes what statistical agencies routinely
do before publishing statistical tables. They compare the current figures with those of
previous periods to see if they appear plausible. Only when an unusual value is observed
at the aggregate level will the individual records contributing to the unusual quantity be
edited at the micro level. The advantage of this form of editing is that it concentrates on
editing activities at those points that have an impact on the final results of the survey.
No superfluous micro-editing activities are carried out on records that do not produce
unusual values at the aggregate level. A disadvantage is that results are bent in the
direction of one’s expectations. There is also a risk that undetected errors may introduce
undetected biases.
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A second approach of macro-editing is the distribution method. The available data
are formed into distributions of variables, and the individual values are compared with
their distributions. Measures of location, spread, and covariation are computed. Records
containing values that appear unusual or atypical in their distributions are candidates
for further inspection and possible editing. Standard software implementing this macro-
editing approach is limited. Three systems mentioned in the literature are described in
this chapter.

The first program is GRED, a microcomputer program developed by Statistics
New Zealand (see Houston and Bruce, 1993). It displays the individual values of a
variable for different firms for consecutive survey years. In one plot, it is possible to
detect outliers and deviations from trend. For unusual points, the sampling weight of
the record can be adjusted or the record can be removed. Outliers can be highlighted
by marking them with a different color. Using linked plots, these outliers will also be
highlighted in other graphic displays. This permits easy identification of the influence
of a specific observation on aggregate statistics.

The second program, ARIES was designed for macro-editing the Current Employment
Statistics Program of the U. S. Bureau of Labor Statistics (see Esposito and Lin, 1993;
Esposito et al., 1994). A session with ARIES starts with a so-called anomaly plot. This is
a graphical overview of the important estimates in which each node represents a specific
industry. Related estimates are connected by lines. Estimates identified as unusual based
on month-to-month changes are marked in a different color. Only suspicious estimates
are analyzed in more detail.

For industry groups, ARIES can generate two types of plots: a scatter plot of the
data values of the current month against the data values of the previous month, and
a plot of the distribution of the month-to-month changes. By selecting points using a
mouse, the data values can be displayed in tabular form on the screen. The adjustment
weight of detected outliers can be modified interactively. Future versions of ARIES
will produce simultaneous scatter plots of multiple variables. Linked plots will help the
analyst to study outlier cases from one plot in other plots for the same or additional
variables.

A third example of a macro-editing system was developed for use in the Swedish
Short Periodic Employment Survey (see Engström and Ängsved, 1994). First, suspect
estimates are selected, based on time-series analysis and sample variance. This may be
seen as a form of macro-editing by the aggregation method. Next, a scatter plot is made
of the data contributing to each suspect estimate, with its data values plotted against
the corresponding values of the previous quarter. Outliers are displayed in different
colors. Single-clicking on an observation displays information about it, including the
weight assigned to the observation and a measure of its contribution to the estimate.
Double-clicking on an observation provides the analyst with access to the correspond-
ing data record. The analyst can make changes in the data record. The system then
rechecks the record for inconsistencies and updates the scatter plot and all corresponding
parameters.

Most current macro-editing systems have been designed for application to specific
surveys. Thus, they cannot be directly applied to surveys with different variables and
data structure. There is a clear need for general macro-editing software that can be used
for a wide variety of surveys.
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4. Imputation

4.1. What is imputation?

To correct for item nonresponse and for errors in the data, often some kind of imputation
technique is applied. Imputation means that missing values are replaced by synthetic
values. A synthetic value is obtained as the result of some technique that attempts to
estimate a missing value. Imputation uses the available information about the specific
element and possibly also other available information.

After applying an imputation technique, there are no more “holes” in the survey data
set. So, all analysis techniques can be applied without having to worry about missing
values. However, there is a downside to this approach. There is no guarantee that an
imputation technique will reduce a bias caused by item nonresponse. It depends on the
type of missing data pattern and the specific imputation technique that is applied. Three
types of missing data mechanisms are distinguished. Let X represent a set of auxiliary
variables that are completely observed, Y a target variable that is partly missing, Z

represents causes of missingness unrelated to X and Y , and R the missingness.
In case of Missing Completely at Random (MCAR), missingness is caused by a phe-

nomenon Z that is completely unrelated to X and Y . Estimates for parameters involving
Y will not be biased. Imputation techniques will not change this.

In case of Missing at Random (MAR), missingness is caused partly by an independent
phenomenon Z and partly by the auxiliary variable X. So, there is an indirect relationship
between Y and R. This leads to biased estimates for Y . Fortunately, it is possible to correct
for such a bias by using an imputation technique that takes advantage of the availability
of all values of X, both for respondents and nonrespondents.

In case of Not Missing at Random (NMAR), there may be a relationship between
Z and R and between X and R, but there is also a direct relationship between Y and
R that cannot be accounted for by X. This situation also leads to biased estimates
for Y . Unfortunately, imputation techniques using X will not be able to remove the
bias.

There are many imputation techniques available. A number of them are described in
the next two sections.

4.2. Single imputation

Single imputation means that a missing value is replaced by a synthetic value. By
contrast, Section 4.3 is about multiple imputation, where a missing value is replaced by
a set of synthetic values. There are many single imputation techniques described in the
literature (see, e.g., Kalton and Kasprzyk, 1986). A nonexhaustive overview of the most
frequently used techniques is given below.

Sometimes the value of a missing item can be logically deduced with certainty from
the nonmissing values of other variables. This is called deductive imputation. If strict
rules of logic are followed, this technique has no impact on the properties of the distri-
bution of estimators. For example, if a girl is 5-years-old, it is certain that she has had
no children. Likewise, if a total is missing but all subtotals are available, the total can
easily be computed.

Imputation by the mean implies that a missing value of a variable is replaced by the
mean of the available values of this variable. Since all imputed values are equal to the
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sample mean, the distribution of this variable in the completed data set will be affected.
It will have a peak at the mean of the distribution. For imputation by the mean within
groups, the sample is divided into a number of nonoverlapping groups. Within a group,
a missing value is replaced by the mean of the available observations in that group.
Imputation by the mean within groups will perform better than imputation by the mean
if the groups are homogeneous with respect to the variable being imputed. Then, all
values are close to each other, and therefore, the imputed group mean will be a good
approximation of the true, but unknown, value.

Random imputation means that a missing value is replaced by a value that is randomly
chosen from the available values for the variable. This imputation is sometimes also
called hot-deck imputation. It is a form of donor imputation: a value is taken from an
existing record where the value is not missing. The distribution of the values of the
variable for the complete data set will look rather natural. However, this distribution
does not necessarily resemble the true distribution of the variable. Both distributions
may differ if the missing values are not randomly missing. For random imputation within
groups, the sample is divided into a number of nonoverlapping groups on the basis of
one or more qualitative auxiliary variables. Within a group, a missing value is replaced
by a randomly chosen value from the set of available values in that group. Random
imputation within groups will perform better than random imputation if the groups are
homogeneous with respect to the variable being imputed. Since all values are close to
each other, the randomly selected value will be a good approximation of the true, but
unknown, value.

The idea of nearest neighbor imputation is to search for a record which resembles as
much as possible the record in which a value is missing. A distance measure is defined
to compare records on the basis of values of auxiliary variables that are available for all
records.

Regression imputation assumes a linear relationship between the target variable (with
missing values) and a set of auxiliary variables (without missing values). A regression
model is estimated using the available data.After that, this model can be applied to predict
missing values of the target variable. Application of regression imputation affects the
distribution of the imputed variables in the data set. Therefore, inference for this variable
may lead to wrong conclusions. To avoid this, an error term can be added to imputed
values. Such an error term can be derived randomly using the nonmissing cases in the
data set or from a theoretical distribution.

A number of single imputation techniques are available in an optional module of
SPSS (Missing Value Analysis). IVEware is a free package (developed by the Univer-
sity of Michigan) that runs in SAS. It contains a variety of single imputation techniques.
See Raghunathan et al. (2002) for a description. Royston (2004, 2005) described a user
supplied ado-file for the statistical package Stata. It is called Imputation by Chained
Equations (ICE) and provides a number of model-based single imputation techniques.
On the basis of the level of measurement, one can choose a regression, logit, ordered
logit, or multinomial regression model. There is a library of functions that can be used
in S-plus to perform various kinds of single imputation. For more information, see, for
example, Alzola and Harrell (2006). SOLAS is a dedicated package that implements
many imputation techniques. Among supported single imputation techniques are impu-
tation by the mean, random imputation, and regression imputations. For more details,
see, for example, Scheffer (2002) and Horton and Lipsitz (2001).
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4.3. Properties of single imputation

There are many single imputation techniques. So the question arises: which technique to
use in a practical situation. There are several aspects that may play a role in this decision.
The first aspect is the type of variable for which missing values have to be imputed. In
principle, all mentioned imputation techniques can be applied for quantitative variables.
However, not every single imputation technique can be used for qualitative variables. A
potential problem is that the synthetic value produced by the imputation technique does
not necessarily belong to the domain of valid values of the variable. For example, if the
variable gender has to be imputed, mean imputation produces an impossible value (what
is the mean gender?). Therefore, it is better to stick to some form of “donor imputation”
for qualitative variables. These techniques always produce “real” values.

Single imputation techniques can be divided in two groups: deterministic imputation
techniques and random imputation techniques. For deterministic imputation techniques,
imputed values only depend on the realized sample. An example is imputation by the
mean. Random imputation techniques add an extra source of randomness to the compu-
tation of imputed values. An example is random imputation.

For some deterministic imputation techniques (e.g., imputation by the mean), the
mean of a variable before imputation is equal to the mean after imputation. This shows
that not every imputation technique is capable of reducing a bias due to missing data.
For random imputation techniques, the mean before imputation is never equal to the
mean after imputation. However, expected values before and after imputation may be
equal.

Deterministic imputation may affect the distribution of a variable. It tends to produce
synthetic values that are close to the centre of the original distribution. The imputed
distribution is more “peaked.” This may have undesirable consequences. Estimates of
standard errors may turn out to be too small. A researcher using the imputed data (not
knowing that the data set contains imputed values) may get the impression that his
estimates are very precise, whereas in reality, this is not the case.

Imputation may also have an impact on the correlation between variables. Suppose
the variable Y is imputed using imputation by the mean, and suppose the variable X is
completely observed for the sample. It can be shown that, in this case, the correlation
after imputation is smaller than the correlation in the data set before imputation. The
more the observations are missing from Y , the smaller the correlation coefficient will
be. Researchers not aware of the fact that their data set has been imputed will get the
impression that relationships between variables are weaker than they are in reality. Also
here, there is a risk of drawing wrong conclusions.

The correlations are also affected if random imputation is applied. These values will
generally be too low when computed using the imputed data set. This is caused by the
fact that imputed values are randomly selected without taking into account possibly
existing relationships with other variables.

4.4. Expectation–Maximization imputation

Expectation–Maximization imputation (or EM imputation) uses an iterative maximum
likelihood procedure to provide estimates of the mean and the variance-covariance
matrix based on all available data for each respondent. The algorithm assumes that
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the data are from a multivariate normal distribution (or possibly some other specified
distribution), and that, conditional on the reported data, the missing data are MAR.

EM imputation is a widely used technique that derives likelihood-based inferences
from incomplete data (see Little and Rubin, 2002). Actually, it is not a pure imputation
technique because no missing values themselves are being substituted. Rather, functions
of the missing values (sufficient statistics) appearing in the likelihood function are being
substituted.

In each cycle of the iterative process, there is an Expectation step (or E-step) followed
by an Maximization step (or M-step). The E-step computes expected values based on all
available data. This is followed by an M-step in which missing values are replaced by
synthetic values computed in the E-step. This process is continued until convergence.

EM imputation is available in several general analysis packages. For example, in SPSS
it is part of the module Missing Value Analysis (MVA). Other-than normal distributions
can be assumed here. EM imputation is also available in SAS (from version 8.2), and
S-Plus (from version 6.0).

4.5. Multiple imputation

Single imputation is a technique that solves the missing data problem by filling the holes
in the data set by plausible values. This is clearly an advantage in the analysis phase of
the survey. However, there are also disadvantages. Application of a single imputation
technique may create more problems than that are solved because the distribution of
estimates is distorted. Therefore, there is a risk of drawing wrong conclusions about
the data set. More details about this aspect of imputation can be found, for example, in
Little and Rubin (2002).

To address the problems caused by single imputation techniques, Rubin (1987) pro-
posed multiple imputation. This is a technique in which each missing value is replaced
by m > 1 synthetic values. Typically m is small, say 3–10. This leads to m complete
data sets. Each data set is analyzed using standard analysis techniques. For each data
set, an estimate of a population parameter of interest is obtained. The m estimates for a
parameter are combined to produce estimates and confidence intervals that incorporate
missing-data uncertainty.

Rubin (1987) developed his multiple imputation technique primarily to solve the
missing data problem in large public-use sample survey data files and censuses files.
With the advent of new computational methods and software for multiple imputation,
this technique has become increasingly attractive to other sciences where researchers
are confronted by missing data. See also Schafer (1997).

Multiple imputation assumes some kind of model. This model is used to generate
synthetic values. The imputation model will often be a regression model. The effects
of imputation depend on the missing data mechanism that has generated the missing
values. The most convenient situation is MCAR. This means that missingness happens
completely at random. In this case, multiple synthetic drawings can be generated by
applying random imputation a number of times. It is also possible to use imputation by
the mean if the variation is modeled properly. For example, this can be done by adding a
random component to the mean which has been drawn from a normal distribution with
the proper variance.
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MCAR is usually not a very realistic assumption. The next-best assumption is that
data are MAR. This means that missing information depends on one or more auxiliary
variables, but these variables have been observed completely. Sets of synthetic values
are generated by using the regression model to predict the missing values. To give the
imputed values of the proper variance, usually a random component is added to the
predicted value. This component is drawn from a distribution with the proper variance.
The worst case is the situation in which data are NMAR. Then, missing information
depends on unobserved variables, and therefore no valid imputation model can be built
using the available data. The distribution of the estimators cannot be repaired by applying
multiple imputation. There is still a risk of drawing wrong conclusions from an analysis.

Rubin (1987) described how to combine estimates for our multiple data sets into one
proper estimate. He claims that the number of imputations per missing value should not
exceed 10. Multiple imputation can be a useful tool for handling the problems caused by
missing data, but if it is not applied carefully, it is potentially dangerous. If an imputation
does not model the missing data mechanism properly, analysis of the imputed data sets
can be seriously flawed. This means we should check as much as possible the models
we use.

A good overview of multiple imputation software can be found in Horton and Lipsitz
(2001). SAS has the procedures MI and MIANALYZE. The first procedure is used to
create a number of imputed data sets. After analysis of these data sets, the results are
combined with the second procedure for making proper inference. The statistical pack-
age SPSS has the MVA module with imputation based on the EM algorithm. It can
produce estimates of means, variances, and covariances. It does not compute standard
errors. Multiple imputation is not supported. Stata contains ICE, see Royston (2004,
2005) for multiple imputation. There is program for creating multiple imputed data sets,
and another program for analysis of such a data set. NORM is a library of functions avail-
able for use in S-Plus, see Schafer (1997). They just create multiple imputed data sets.
Another such library is MICE, see Van Buuren and Oudshoorn (1999). It contains tools
for generating multiple imputation and pooling of analysis results. The dedicated pack-
age SOLAS implements various single and multiple imputation approaches, see Horton
and Lipsitz (2001). It also contains some analysis tools for imputed data (descriptive
statistics, t-test, ANOVA, and regression analysis)

5. Weighting adjustment

5.1. Nonresponse problem

Surveys suffer from nonresponse. Nonresponse can be defined as the phenomenon where
elements (persons, households, companies) in the selected sample do not provide the
requested information or where the information provided is useless. The situation in
which all requested information on an element is missing is called unit nonresponse. If
information is missing on some items only, it is called item nonresponse. Item nonre-
sponse can be treated by means of imputation (see Section 4).

This section focuses on the treatment of unit nonresponse. Due to this type of nonre-
sponse, the sample size is smaller than expected. This leads to estimates of population
characteristics with larger variance, that is, less accurate, but still valid. This is not a
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serious problem. It can be taken-care-of by making the initial sample size larger. A far
more serious problem caused by nonresponse is that estimates of population character-
istics may be biased. This situation occurs if some groups in the population are over- or
under-represented due to nonresponse, and these groups behave differently with respect
to the characteristics to be investigated.

If nonresponse leads to biased estimates, wrong conclusions are drawn from the
survey results. Therefore, it is vital to reduce the amount of nonresponse in the fieldwork
as much as possible. Nevertheless, in spite of all these efforts, a substantial amount
of nonresponse usually remains. To avoid biased estimates, some kind of correction
procedure must be carried out. One of the most important correction techniques for
nonresponse is weighting adjustment. Every observed object in the survey is assigned a
weight that is adjusted for nonresponse, and estimates of population characteristics are
obtained by processing weighted observations instead of the observations themselves.

5.2. Basics of weighting

Suppose the objective of a survey is assumed to be estimation of the population mean of a
variable Y . To that end, a simple random sample of size n is selected without replacement.
Let πk be the first-order inclusion probability of element k, for k = 1, 2, . . . , N, where
N is the size of the population.

The sample can be represented by a series of N indicators t1, t2, . . . , tN , where the
k-th indicator tk assumes the value 1 if element k is selected in the sample, and otherwise
it assumes the value 0. Consequently, E(tk) = πk.

In case of complete response, an unbiased estimator for the population mean is defined
by Horvitz and Thompson (1952). It can be written as

yHT = 1

N

N∑
k=1

tkYk

πk

. (1)

In the case of nonresponse, estimates may be biased. A frequently used approach to
do something about this bias is to apply weighting adjustment. Each observed element
k is assigned a weight wk. This weight is the product of the inclusion weight dk = 1/πk

and a correction weight ck. So, the Horvitz–Thompson estimator is replaced by a new
estimator

yW = 1

N

N∑
k=1

wktkYk = 1

N

N∑
k=1

ckdktkYk = 1

N

N∑
k=1

cktkYk

πk

. (2)

Correction weights are the result of the application of some weighting technique.
The characteristics of the correction weights should be such that the weighted estimator
has better properties than the Horvitz–Thompson estimator.

Weighting is based on the use of auxiliary information. Auxiliary information is
defined as a set of variables that have been measured in the survey and for which infor-
mation on the population distribution is available. By comparing the population distri-
bution of an auxiliary variable with its sample distribution, it can be assessed whether
or not the sample is representative of the population (with respect to this variable). If
these distributions differ considerably, one can conclude that nonresponse has resulted
in a selective sample.
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The auxiliary information can also be used to compute weighting adjustments.
Weights are assigned to all records of observed elements. Estimates of population char-
acteristics can now be obtained by using the weighted values instead of the unweighted
values. The weights are then adjusted in such a way that population characteristics for
the auxiliary variables can be computed without error. So when adjusted weights are
applied to estimate the population means of auxiliary variables, the estimates must be
equal to the true values, that is,

xW = 1

N

N∑
k=1

wktkXk = X. (3)

If this condition is satisfied, the weighted sample is said to be representative with
respect to the auxiliary variable used.

If it is possible to make the sample representative with respect to several auxiliary
variables, and if these variables have a strong relationship with the phenomena to be
investigated, then the (weighted) sample will also be (approximately) representative
with respect to these phenomena, and hence estimates of population characteristics will
be more accurate.

A number of weighting techniques are described in the subsequent sections. The sim-
plest technique is poststratification. This weighting adjustment technique is a special
case of a more general approach called linear weighting. It is based on use of the gener-
alized regression estimator. Multiplicative weighting is a different kind of weighting. It
does not use a regression model. It is also shown that linear and multiplicative weight-
ing are special cases of an even more general framework called calibration estimation,
where it can be shown that the asymptotic properties of weighted estimates are identical.
So, in practical situations, it does not matter whether linear or multiplicative weighting
is used.

5.3. Poststratification

To be able to carry out poststratification, one or more qualitative auxiliary variables are
needed. Here, only one such variable is considered. The extension to more variables
is straightforward. Suppose there is an auxiliary variable X having L categories. So it
divides the population into L strata. The strata are denoted by the subsets U1, U2, . . . , UL

of the population U. The number of population elements in stratum Uh is denoted by
Nh, for h = 1, 2, . . . , L. The population size is equal to N = N1 + N2 + · · · + NL.

Poststratification assigns identical correction weights to all elements in the same
stratum. The correction weight ck for an element k in stratum Uh is in its most general
form defined by

ck = Nh∑
j∈Uh

tj

πj

(4)

where the sum is taken over all sample elements j in the stratum Uh. In case of simple
random sampling, all inclusion probabilities πk are equal to n/N, and the correction
weight ck reduces to

ck = Nh

N

n

nh

(5)
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If the values of the inclusion probabilities and correction weights are substituted in
expression (2), the result is the well-known poststratification estimator

yps = 1

N

L∑
h=1

Nhyh, (6)

where

yh = 1

nh

∑
k∈Uh

tkYk (7)

is the sample mean of the observations in stratum Uh. So, the poststratification estimator
is equal to a weighted sum of sample stratum means.

It can be shown (see, e.g., Bethlehem, 2002) that the bias due to nonresponse vanishes
if there is no relationship between response behavior and the target variable of the survey.
Two situations can be distinguished in which this is the case:

• The strata are homogeneous with respect to the target variable, that is, this variable
shows little variation within strata;

• The strata are homogeneous with respect to the response behavior, that is, response
probabilities show little variation within strata.

5.4. Linear weighting

In the case of full response, the precision of simple estimators can be improved if suitable
auxiliary information is available. If the auxiliary variables are correlated with the target
variable, then for a suitably chosen vector B of regression coefficients for a best fit of Y

on X, the residuals vary less than the values of the target variable itself. The ordinary
least squares solution B can, in the case of full response, be estimated by a vector b

which is asymptotically design unbiased. The generalized regression estimator is now
defined by

yR = yHT + (X − xHT)′b, (8)

in which xHT is the vector of Horvitz–Thompson estimators for the vector of population
means X. The generalized regression estimator is asymptotically design unbiased. This
estimator reduces the bias due to nonresponse if the underlying regression model fits
the data well (see Bethlehem, 1988).

Bethlehem and Keller (1987) have shown that the generalized regression estimator
(9) can be rewritten in the form of the weighted estimator (2), where the correction
weight ck for the observed element k is equal to ck = v′Xk, and v is a vector of weight
coefficients which is equal to

v = N

(
N∑

k=1

tkXkX
′
k

πk

)−1

X. (9)

Poststratification turns out to be a special case of linear weighting. If the stratification is
represented by a set of dummy variables, where each dummy variable denotes a specific
stratum, expression (8) reduces to expression (6).
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Linear weighting can be applied in more situations than poststratification. For
example, poststratification by age class and sex requires the population distribution
of the crossing of age class by sex to be known. If just the marginal population distri-
butions of age class and sex are known separately, poststratification cannot be applied.
Only one variable can be used. However, linear weighting makes it possible to specify a
regression model that contains both marginal distributions. In this way, more information
is used, and this will generally lead to better estimates.

The trick is to introduce sets of dummy variables. A complete cross-classification
of sex by 10 age classes would require one set of 2 × 10 = 20 dummy variables (one
for each stratum). For linear weighting only using the marginal distributions of the age
classes and sex, two sets of dummy variables are introduced: one set of two dummy
variables for the sex categories and another set of 10 dummy variables for the categories
of age class. There is always a dummy variable representing the constant term in the
regression model. This makes 2 + 10 + 1 = 13 dummy variables.

Due to the special structure of the auxiliary variables, the computation of the weight
coefficients v cannot be carried out without imposing extra conditions. Here for every
qualitative variable, the condition is imposed that the sum of the weight coefficients
for the corresponding dummy variables must equal zero. The weight for an observed
element is now obtained by summing the appropriate elements of this vector v.

Linear weighting is, however, not limited to quantitative auxiliary variables. It allows
for inclusion in the model a mix of quantitative and qualitative variables.

Linear weighting has the advantage that it is relatively straightforward to compute
variances of weighted estimators. It has the disadvantage that some correction weights
may turn out to be negative. Such weights are not wrong, but simply a consequence
of the underlying theory. Usually, negative weights indicate that the regression model
does not fit the data too well. Some analysis packages (e.g., SPSS) are able to work with
weights, but they do not except negative weights. This may be a reason not to apply
linear weighting.

5.5. Multiplicative weighting

Correction weights produced by linear weighting are the sum of a number of weight
coefficients. It is also possible to compute correction weights in a different way, namely
as the product of a number of weight factors. This weighting technique is usually called
raking or iterative proportional fitting. Here, it is denoted by multiplicative weighting
because weights are obtained as the product of a number of factors contributed by the
various auxiliary variables.

Multiplicative weighting can be applied in the same situations as linear weighting,
as long as only qualitative variables are used. Correction weights are the result of an
iterative procedure. They are the product of factors contributed by all cross-classi-
fications.

The iterative proportional fitting technique was already described by Deming and
Stephan (1940). Skinner (1991) discussed the application of this technique in multiple
frame surveys. Little and Wu (1991) described the theoretical framework and showed
that this technique comes down to fitting a loglinear model for the probabilities of
getting observations in strata of the complete cross-classification, given the probabilities
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for marginal distributions. To compute weight factors, the following scheme has to be
carried out:

(1) Introduce a weight factor for each stratum in each cross-classification term. Set
the initial values of all factors to 1.

(2) Adjust the weight factors for the first cross-classification term so that the weighted
sample becomes representative with respect to the auxiliary variables included
in this cross-classification.

(3) Adjust the weight factors for the next cross-classification term so that the
weighted sample is representative for the variables involved. Generally, this will
disturb representativeness with respect to the other cross-classification terms in
the model.

(4) Repeat this adjustment process until all cross-classification terms have been dealt
with.

(5) Repeat steps 2, 3, and 4 until the weight factors do not change any more.

Multiplicative weighting has the advantage that the weights are always positive.
There are, however, no simple formulae for the variance of the weighted estimates.

5.6. Calibration estimation

Deville and Särndal (1992) and Deville et al. (1993) have created a general framework
for weighting of which linear and multiplicative weighting are special cases. The starting
point is that adjusted weights wk = ck/πk = ckdk have to satisfy two conditions:

• The correction weights ck have to be as close as possible to 1.
• The weighted sample distribution of the auxiliary variables has to match the pop-

ulation distribution, that is,

xW = 1

N

N∑
k=1

tkwkXk = X. (10)

The first condition sees to it that resulting estimators are unbiased, or almost unbiased,
and the second condition guarantees that the weighted sample is representative with
respect to the auxiliary variables used.

Deville and Särndal (1992) introduced a distance measure D(wk, dk) that measures
the difference between ck and 1 in some way. The problem is now to minimize

N∑
k=1

tkD(wk, dk) (11)

under the condition (10). This problem can be solved by using the method of Lagrange.
By choosing the proper distance function, both linear and multiplicative weighting can
be obtained as special cases of this general approach. For linear weighting, the distance
function D is defined by D(wk, dk) = (wk − dk)

2/dk, and for multiplicative weighting,
the distance D(wk, dk) = wk log(wk/dk) − wk + dk must be used.

Deville and Särndal (1992) and Deville et al. (1993) showed that estimators based
on weights computed within their framework have asymptotically the same properties.
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This means that for large samples, it does not matter whether linear or multiplicative
weighting is applied. Estimators based on both weighting techniques will behave approx-
imately the same. Note that, although the estimators behave in the same way, the indi-
vidual weights computed by means of linear or multiplicative weighting may differ
substantially.

5.7. Software

Bascula is a software package for calculating weights for all units in a sample using aux-
iliary information. The auxiliary information is used to specify a weighting model, which
forms the basis for the weighting procedure. Several weighting methods are supported,
among which are poststratification, linear weighting, and multiplicative weighting.

Bascula can also use the computed weights to estimate population totals, means,
and ratios as well as variances based on Taylor linearization and/or balanced repeated
replication (BRR). For the purpose of variance estimation, several sampling designs are
supported.

Bascula is part of the Blaise System for computer-assisted survey processing. Bascula
can be used either as a menu-driven interactive program or as a software component
suitable for developing custom weighting/estimation applications. More information on
Bascula can be found, for example, in Bethlehem (1998).

CALMAR is a SAS macro developed by the French National Statistics Office (INSEE),
see Sautory (1993). It implements the calibration approach developed by Deville and
Särndal (1992). CALMAR is an acronym for CALibration on MARgins, an adjustment
technique which adjusts the margins (estimated from a sample) of a contingency table of
two or more qualitative variables to the known population margins. However, the pro-
gram is more general than mere “calibration on margins,” since it also calibrates on the
totals of quantitative variables. CALMAR offers four calibration methods, corresponding
to four different distance functions:

• a linear function: the calibrated estimator is the generalized regression estimator;
• an exponential function with qualitative calibration variables. This comes down to

multiplicative weighting;
• a logit function. This approach makes it possible to set upper and lower bounds for

the weights;
• a truncated linear function. This approach is similar to that of the logit function.

The last two weighting methods are used to control the range of the distribution of
correction weights. The logit function is used more often because it avoids excessively
large weights, which can compromise the robustness of the estimates, and excessively
small or even negative weights, which can be produced by the linear method.

Work is in progress on a new version, CALMAR 2, see Le Guennec and Sautory
(2003). It implements the generalized calibration method of handling nonresponse pro-
posed by Deville (1998). Its also does consistent weighting.

Also, for SPSS, there are special modules enabling researchers to carry out cali-
bration. Vanderhoeft (2001) developed g-DESIGN and g-CALIB-S under SPSS 9.0.
These modules make extensive use of SPSS’s syntax language, matrix language, and
macro facilities and are comparable to CALMAR. g-CALIB-S allows for virtually any
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calibration model to be applied. There is no restriction to calibration on margins (or totals
of quantitative variables within categories of qualitative variables). The price for this
generality is that preparation of input files for g-CALIB-S can be very complicated and
is therefore not easy to automate. However, the additional module g-DESIGN contains
several macros that, to a large extent, support construction of these files.

CLAN is a system of SAS macros developed by Statistics Sweden. It does not explic-
itly compute weights, but implements the generalized regression estimator, thereby
taking into account the sampling design. It has several possibilities for nonresponse
correction. For more information, see Andersson and Nordberg (1998).

The generalized estimation system, GES, developed in Statistics Canada, is also
a system of SAS macros. It can produce estimates and variance estimates, taking into
account a number of different sampling designs.Also, auxiliary variables can be included
in estimation procedures so that implicit weighting is carried out (see Estevao et al.,
1995).

6. Analysis

6.1. Analysis of dirty data

Carrying out a sample survey is a time-consuming and costly activity. Therefore,
attempts will be made to obtain interesting results from the collected data as much as
possible. However, one must be careful. A lot can go wrong in the process of collecting
and editing the data, and this has an impact on the results of the analysis.

Many data analysis techniques assume some kind of model stating that the data can
be seen as an independent identically distributed random sample from some normal
distribution. These assumptions are almost never satisfied in practical situations. More
often, the Dirty Data Theorem applies. It states that data are usually obtained by a
dependent sample with unknown and unequal selection probabilities from a bizarre and
unspecified distribution, whereby some values are missing and many other values are
subject to substantial measurement errors.

Researchers have to take into account the fact that data may be affected by measure-
ment errors and nonresponse, that some values may not be observed but imputed, and
that they have to use weights to compensate for a possible nonresponse bias.

Many statistical analysis packages assume the ideal model for the data and have no
possibilities to account for the effects of dirty data. Therefore, researchers should be
very careful in their choice of software for analysis.

6.2. Weighting issues

Most general software packages for statistical analysis assume that the data come from a
simple random sample. Then, simple quantities like sample means and sample percent-
ages are unbiased estimators for their population analogs. When the sample is selected
using a complex sample design, or if the survey is affected by nonresponse, unbiasedness
is at stake.

Analysis packages like SPSS, SAS, and Stata have the possibility to use weights. To
that end, a specific variable is assigned the role of weight. The question now is whether
the use of these weights can help compute the unbiased estimates.
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It should be realized that there are several types of weights. Each statistical package
may interpret weights differently. Weights can even be interpreted differently within the
same package. The following types are considered here:

• Inclusion weights. These weights are the inverse of the inclusion probabilities.
Inclusion weights are determined by the sampling design. They must be known
and nonzero to compute unbiased estimates (see Horvitz and Thompson, 1952).

• Correction weights. These weights are the result of applying some kind of weighting
adjustment technique.

• (Final) Adjusted weights. These weights combine inclusion weights and correc-
tion weights. When applied, they should provide unbiased (or almost unbiased)
estimates of population characteristics.

• Frequency weights. These weights are whole numbers indicating how many times
a record occurs in a sample. They can be seen as a trick to reduce the file size.

To emphasize possible problems that may be encountered, a short overview is given
of the treatment of weights in a few major statistical analysis packages.

Weights can be introduced in SAS with the WEIGHT statement. However, in one
procedure weights may be interpreted as frequency weights, whereas in another they
may be used as inclusion weights. If weights only assume integer values, they may be
seen as frequency weights, whereas real-valued weights will be interpreted as inclusion
weights.

SPSS consists of a series of modules. The two modules SPSS Base and SPSS Advanced
Models treat weights as frequency weights. If weights are specified with the “weight
by” command, real-valued weights will be rounded to integers. A new module Complex
Samples was introduced in version 12 of SPSS. This module is capable of taking into
account the inclusion weights.

Stata is more flexible in the use of weights. For many procedures, it is possible to
indicate whether weights must be interpreted as either inclusion weights or frequency
weights.

Problems may arise if weights are interpreted as frequency weights while in fact they
are inclusion weights. Suppose a sample of size n has been selected from a finite popu-
lation of size N. The sample values of the target variable are denoted by y1, y2, . . . , yn.
Let πi be the inclusion probability of element i, for i = 1, 2, . . . , n. Then, the inclusion
weight for element i is equal to 1/πi. If these inclusion probabilities are interpreted as
sample frequency weights, the weighted sample mean is computed as

yW =

n∑
i=1

wiyi

n∑
i=1

wi

=

n∑
i=1

yi

πi

n∑
i=1

1

πi

(12)

According to the theory of Horvitz and Thompson (1952), the unbiased estimator is
equal to

yHT = 1

N

n∑
i=1

wiyi = 1

N

n∑
i=1

yi

πi

(13)
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Generally, these two estimators are not the same. However, in the case of simple
random sampling, where we have equal probabilities πi = n/N, expression (12) reduces
to (13).

Similar problems occur when computing estimates for variances. Many statisti-
cal packages assume that the sample originated from an independent random sample
selected with equal probabilities. If the weights are interpreted as frequency weights,
then the sample size is equal to

w+ =
n∑

i=1

wi (14)

and the proper estimator for the variance of the sample mean is

v(yW) =

n∑
i=1

wi

(
yi − yW

)2
w+(w+ − 1)

(15)

Usually, survey samples are selected without replacement, which means that the
proper expression for the variance of the estimator is

v(yW) =
(

1

w+
− 1

N

) n∑
i=1

wi

(
yi − yW

)2
(w+ − 1)

(16)

If the finite population correction factor f = w+/N is small, expressions (15) and
(16) are approximately the same.

The situation becomes more problematic if the weights wi contain inclusion weights.
In the simple case of an equal probability sample (wi = N/n), expression (15) will be
equal to

v
(
yW

) =

n∑
i=1

(
yi − yW

)2
n(N − 1)

, (17)

which is a factor (N − 1)/(n − 1) too small as a variance estimator.
For general without-replacement sampling designs, a completely different expression

should be used to estimate the variance of the estimator as follows:

v
(
yW

) =
n∑

i=1

n∑
j=i+1

(
πiπj − πij

)
πij

(
yi

πi

− yj

πj

)2

. (18)

Note that expression (18) involves second-order inclusion probabilities πij , which
do not appear in expression (15).

The problems described above do also occur in a more in-depth analysis of the data.
Many multivariate analysis techniques are based on the assumption of an identically
distributed independent sample. Due to complex sampling designs, adjusted weighting
and imputation (see Section 6.3), estimates for the first- and second-order moments of
distributions are likely to be wrong.
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6.3. Imputation issues

Some imputation techniques affect the distribution of a variable. They tend to produce
synthetic values that are close to the centre of the original distribution. The imputed
distribution is more “peaked.” This may have undesirable consequences. Estimates of
standard errors may turn out to be too small. A researcher using the imputed data (not
knowing that the data set contains imputed values) may get the impression that his
estimates are very precise, whereas in reality this is not the case.

Possible effects of imputation are illustrated by analyzing one single imputation
technique: imputation by the mean. This type of imputation does not affect the mean of
a variable: the mean yIMP after imputation is equal to the mean yR before imputation.
Consequently, the variance of the estimator also does not change.

Problems may arise when an unsuspecting researcher attempts to estimate the vari-
ance of estimators, for example, for constructing a confidence interval. To keep things
simple, it is assumed that the available observations can be seen as a simple random sam-
ple without replacement, that is, missingness does not cause a bias. Then, the variance
after imputation is equal to

V(yIMP) = V(yR) = (1 − m/N)

m
S2, (19)

in which m ≤ n is the number of “real” observations, and S2 is the population variance.
It is known from sampling theory that, in case of a simple random sample without

replacement, the sample variance s2 is an unbiased estimator of the population variance
S2. This also holds for the situation before imputation: the s2 computed using the m

available observations is an unbiased estimator of S2.
What would happen if a researcher attempted to estimate S2 using the complete

data set, without knowing that some values have been imputed? He would compute the
sample variance, and he would assume this is an unbiased estimator of the population
variance. However, this is not the case. For the sample variance of the imputed data set,
the following expression holds:

s2
IMP == m − 1

n − 1
s2 (20)

Hence,

E(s2
IMP) = m − 1

n − 1
S2 (21)

This is not an unbiased estimator of the population variance. The population variance
is under-estimated. This creates the impression that the estimators are very precise,
whereas in reality, this is not the case. So there is a substantial risk of drawing wrong
conclusions from the data. This risk grows larger with each additional imputed value.
For further details, see Lee et al. (2000).

Imputation also has an impact on the correlation between variables. Suppose the
variable Y is imputed using imputation by the mean, and suppose the variable X is
completely observed for the sample. It can be shown that in this case the correlation
after imputation is equal to

rIMP,X,Y =
√

m − 1

n − 1
rXY , (22)
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where rXY is the correlation in the data set before imputation. So, the more observations
are missing for Y , the smaller the correlation coefficient will be. Researchers not aware
of their data set having been imputed will get the impression that relationships between
variables are weaker than they are in reality. Here again, there is a risk of drawing wrong
conclusions.

6.4. Special software

A naive researcher, working with standard analysis software, and unaware of the fact
that he is working with “dirty data,” runs serious risks of making mistakes in his statis-
tical analysis of the data. Fortunately, the functionality offered by analysis software is
constantly increasing.

Prior to version 12 of SPSS, it was not possible to correctly carry out a weighted
analysis because estimates of variances of estimators were wrong. The Complex Sample
module of version 12 of SPSS does conduct a weighted analysis correctly (and also
allows for design effects due to clustering and stratification). Unfortunately, this model
only includes descriptive statistics. For multivariate analysis, existing SPSS modules
will have to be used. These will compute variances incorrectly.

Other major multipurpose statistical packages, like Stata and SAS, can do weighted
analysis correctly. Stata can take into account the sampling design (stratified, clustered,
or multistage) in estimating the variance of measures, such as totals, means, proportions,
and ratios (either for the whole population or for different subpopulations), using the
Taylor linearization method. There are also commands for jack-knife and bootstrap vari-
ance estimation, although these are not specifically oriented to survey data. Multivariate
statistical analysis (e.g., linear, logistic, or probit regression) can also be carried out by
taking into account the sampling design. However, Stata does not allow for variance
estimation properly adjusted for poststratification.

Sudaan (www.rti.org/sudaan) is a statistical software package for the analysis of
data from sample surveys (simple or complex). It uses the SAS-language and has similar
interface, but it is a stand-alone package. It can estimate the variance of simple quantities
(such as totals, means, ratios in the whole population or within domains) as well as more
sophisticated techniques (parameter estimates of linear, logistic, and proportional hazard
models). The available variance estimation techniques include the Taylor linearization,
jack-knife, and BRR. Again, weighting adjustments are not generally supported.

WesVar (www.westat.com/wesvar) is a package primarily aimed at the estimation
of basic statistics (as well as specific models) and corresponding variances from com-
plex sample surveys using the method of replications (BRR, jack-knife, and bootstrap).
Domain estimation and analysis of multiple-imputed data sets are accommodated. It can
incorporate sample designs including stratification, clustering, and multistage sampling.
Moreover, it can calculate (and take into account in the variance estimation) weights of
nonresponse adjustments, complete or incomplete poststratification.

Caljack is a SAS macro developed by Statistics Canada (see Bernier and Lavallée,
1994). It is an extension of the SAS macro CALMAR. It implements variance estimation
for stratified samples (of elements or clusters). It can compute variance estimates of
simple statistics like totals, ratios, means, and percentages. It uses a jack-knife technique.
It can take into account all calibration methods provided by CALMAR.

GES is a SAS-based application also developed by Statistics Canada (see Estevao et
al., 1995). It can take into account stratified random sampling designs (of both elements
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and clusters). It does not support multistage designs. It can compute variance estimators
for totals, means, proportions, and ratios (not only for the whole population, but also
for the domains). Methods of variance estimation available include Taylor linearization
and jack-knife techniques. It is possible to apply generalized regression estimation.

CLAN is a system of SAS macros developed by Statistics Sweden (see Andersson
and Nordberg, 1998). Taking into account the sampling design (stratified or clustered),
it provides point estimates and variance estimates for totals as well as for means, pro-
portions, ratios, or any rational function of totals (for the whole population or domains).
Incorporation of auxiliary information is supported through regression estimation. With
respect to the treatment of unit nonresponse, it allows for specific nonresponse models
(by defining response homogeneity groups) as well as incorporation of subsampling of
nonrespondents.

7. Disclosure control

7.1. The disclosure problem

Survey agencies experience an increasing demand for releasing survey data files, that is,
data sets containing the scores on a number of variables for each respondent. Because of
this trend and an increasing public concern regarding the privacy of individuals, there
is a disclosure problem.

The disclosure problem relates to the possibility of identification of individuals in
released statistical information and to reveal what these individuals consider to be sen-
sitive information. Identification is a prerequisite for disclosure. Identification of an
individual takes place when a one-to-one relationship can be established between a
record in released statistical information and a specific individual.

Disclosure is undesirable for several reasons. In the first place, it is undesirable
for legal reasons. In several countries, there is a law stating that firms should provide
information to the statistical agencies while the agency may not publish statistical infor-
mation in such a way that information about separate individuals, firms, and institutions
becomes available.

In the second place, there is an ethical reason. When collecting data from individuals,
survey agencies usually promise respondents that their data will be handled confiden-
tially. The International Statistical Institute (ISI) Declaration on Professional Ethics (see
ISI, 1986), states that “Statisticians should take appropriate measures to prevent their
data from being published or otherwise released in a form that would allow any subject’s
identity to be disclosed or inferred.”

In the third place, there is a very practical reason: if respondents do not trust statistical
agencies, they will cease to respond. In many countries, nonresponse rates in household
surveys have increased over the last decade, thereby affecting the quality of the survey
results. A further rise is very undesirable.

Having stated that disclosure of data concerning individuals is unacceptable, the ques-
tion arises, to what extent are statistical publications to be protected to achieve this goal.
Too-heavy confidentiality protection of the data may violate another right: the freedom
of information. It is the duty of every statistical office to collect and disseminate statis-
tical information. It is this dilemma, right of anonymity versus freedom of information,
which is the core of the considerations about disclosure control of microdata.
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For more information on the disclosure problem, see, for example, Bethlehem et al.
(1990).

7.2. Software for disclosure control

The need for practical tools to establish the disclosure risks, and to reduce these risks,
has triggered research in this area. Partly subsidized by the Fifth Framework Research
Programme of the European Union, the CASC-project has produced software tools
called μ-ARGUS and τ-ARGUS.

The μ-ARGUS software aims at the protection of microdata sets. The starting point
for the development of μ-ARGUS was a view on safety/unsafety of microdata that is
used at Statistics Netherlands. The incentive for building a package like μ-ARGUS has
been to allow data protectors to easily apply general rules for various types of microdata
and to relieve them from the chore and tedium that can be involved in producing a safe
file in practice.

The aim of statistical disclosure control is to limit the risk that sensitive information
of individual respondents can be disclosed from data that are released to third party
users. Identifying variables are those variables for which the scores are easily known
to possible intruders, like municipality, sex, etc. On the basis of the frequency tables of
identifying variables, an approximation of the disclosure risk is calculated. Records are
considered not to be safe if a combination of its identifying variables does not occur
frequently enough in the population. To replace the very basic risk approach, new risk
estimators have been included in μ-ARGUS, which could also take into account the
structure of the households.

Traditional methods to hamper the possible reidentification of records are global
recoding and local suppression. Global recoding will reduce the amount of detail in
the identifying variables, whereas local suppression will change individual codes into
missing values.

To replace the very basic risk approach, new risk estimators have been include in
μ-ARGUS, which could also take into account the structure of the households. Other
methods available are

• multivariate micro-aggregation (grouping similar records together and replacing
values of numerical variables by its mean),

• rank swapping (exchange the values between neighboring records),
• postrandomization (distort categorical variables with a known random mechanism,

such that researches can correct this on an aggregate level),
• top and bottom coding (replacing the tails of the distribution by, for example, the

mean of the extreme values),
• rounding, and
• noise addition.

All these methods have in common the fact that they will distort the individual records
and make the disclosure much harder. Nevertheless, the resulting data files can be very
well used by researchers for their analyses.

It should be noted that application disclosure protection techniques always reduces
the amount of information in data file. For example, if a regional classification based
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on municipalities is replaced by a coarser one based on provinces, a detailed regional
analysis is not possible any more. Some protection techniques may also to some extent
affect distributional properties of variables.

The τ-ARGUS software aims at the protection of statistical tables. Tables have tra-
ditionally been the major form of output of statistical agencies. Even in moderate size
tables, there can be large disclosure risks. Protecting tables is usually done in two steps.
First, sensitive cells are identified, and next these cells are protected.

To find the sensitive cells in tables containing magnitude data, often the well-known
dominance (n, k) rule is used. However, there is a tendency to apply the prior-posterior
rule. This rule has several advantages (see Loeve, 2001). Locating the sensitive cells
is by far the easiest part of the job. To protect these cells, additional cells have to be
found to make the recalculation impossible. This leads to very complex mathematical
optimization problems. Some solutions for this have been implemented in τ-ARGUS.
These problems have become even more complex due to the hierarchical structures in
many of these tables.

For more information about the Argus software, see Hundepool et al. (2004, 2005).
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Record Linkage

William E. Winkler1

1. Introduction

Record linkage consists of methods for matching duplicates within or across files using
nonunique identifiers such as first name, last name, date of birth, address, and other char-
acteristics. Fields such as first name, last name, date of birth, and address are referred to as
quasi-identifiers. In combination, quasi-identifiers may uniquely identify an individual.
Modern computerized record linkage began with the methods introduced by a geneticist
Howard Newcombe (Newcombe et al., 1959; Newcombe and Kennedy, 1962), who
used odds ratios (likelihood ratios) and value-specific, frequency-based probabilities.
(common value of last name “Smith” has less distinguishing power than rare value
“Zabrinsky”). Fellegi and Sunter, (1969, hereafter FS) gave a mathematical formaliza-
tion of Newcombe’s ideas. They proved the optimality of the decision (classification)
rule of Newcombe and introduced many ideas about estimating optimal parameters
(probabilities used in the likelihood ratios) without training data.

In this chapter, we will give background on the model of FS and several of the
practical methods that are necessary for dealing with (often exceptionally) the messy
data. Although the methods rely on statistical models, most development has been done
by computer scientists using machine learning or database methods (Winkler, 2006a).
Computer scientists refer to record linkage as entity resolution, object identification, or
a number of other terms.

Applications of record linkage are numerous. In some situations, we might use a
collection of lists to create a large list (survey frame) or update an existing large list.
The updating and list maintenance can assure that we have good coverage of a desired
population. The largest applications of record linkage are often during a population
census or in updating an administrative list such as a national health directory or death
index. Large typographical variation or error in fields such as first name, last name,
and date of birth in a moderate proportion of records can make the updating quite
difficult. Historically, some agencies have a full-time staff devoted to cleaning up the

1 This report is released to inform interested parties of research and to encourage discussion. The views
expressed are those of the author and not necessarily those of the U.S. Census Bureau.
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lists (primarily manually). If they did not, then 1–3% error or more might enter the lists
every year. The computerized record linkage methods can significantly reduce the need
for clerical review and clean-up.

Another application of record linkage might be the matching of one list with another
list to estimate the undercoverage/overcoverage of one of the lists that is believed to be
reasonably complete. For the U.S. Census (Winkler, 1995), a large number of census
blocks (contiguous regions of approximately 70 households) were reenumerated and
matched against the main list of individuals. The computerized procedures reduced
clerical review from an estimated 3000 individuals for 6 months to 300 individuals for
6 weeks. Because of the high quality of the lists and associated skills of individuals,
false match rates of the computerized procedures were approximately 0.2%. More than
85% of matches were found automatically with the remainder of matches easily located
among potentially matching individuals in the same household. The potentially matching
individuals were often missing both first name and age.

Other applications of record linkage might involve reidentification experiments in
which a public-use file only contains fields needed for demographic or economic anal-
yses. Such fields might include a geocode, sex, age or age range, education level, and
income level. Agencies release anonymized or masked data so that additional statistical
analyses can be performed but do not wish “intruders” to reidentify individuals or data
associated with individuals by placing names with individual records. Sweeney (1999)
showed that 77+% of individuals can be uniquely identified by ZIP code, sex, and date
of birth that are readily available in public lists such as voter registration databases.
Until Sweeney’s work many public-use health files contained ZIP code, sex, and date
of birth. Winkler (1998), Sweeney (1999), and Evfimievski (2004) showed how to rei-
dentify using a combination of analytic properties and record linkage. We do not cover
reidentification in this chapter.

Record linkage can both increase the amount of coverage and reduce the amount
of duplication in a survey frame. Frame errors can severely bias sampling and esti-
mation. It is nearly impossible to correct errors in estimates that are based on sam-
pling from a frame with moderate error (Deming and Gleser, 1959). After applying
sophisticated record linkage, the 1992 Census of Agriculture (Winkler, 1995) con-
tained 2% duplication whereas the 1987 Census of Agriculture contained 10% dupli-
cation. The duplication rates are based on field validation. Some estimates from the
1987 Agriculture Census with 10% duplication error may have been substantially
biased.

The outline of this chapter is as follows. In the second section following this
introduction we give background on the record linkage model of Fellegi and Sunter
(1969), methods of parameter estimation without training data, string comparators
for dealing with typographical error, an empirical example, and some brief com-
ments on training data. The third section provides details of the difficulties with
the preparation of messy data for linkage. Traditionally, file preparation has yielded
greater improvements in matching efficacy than any other improvements. In the fourth
section, we describe methods for error rate estimation without training data, meth-
ods for adjusting statistical analyses of merged files for linkage error, and tech-
niques for speeding up record linkage. The final section consists of concluding
remarks.
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2. Overview of methods

In this section, we provide summaries of certain ideas of record linkage. Although the
ideas are based on statistical models, the messiness of the data and the difficulty of
developing certain algorithms for estimation and comparison have limited statistical
agencies ability to create generalized computer systems that can be used in a variety of
their applications.

2.1. The Fellegi–Sunter model of record linkage

Fellegi and Sunter (1969) provided a formal mathematical model for ideas that had
been introduced by Newcombe (Newcombe et al., 1959; Newcombe and Kennedy,
1962). They provided many ways of estimating key parameters. The methods have been
rediscovered in the computer science literature (Cooper and Maron, 1978) but without
proofs of optimality. To begin, notation is needed. Two files A and B are matched. The
idea is to classify pairs in a product space A × B from two files A and B into M, the set
of true matches, and U, the set of true nonmatches. Fellegi and Sunter, making rigorous
concepts introduced by Newcombe et al. (1959), considered ratios of probabilities of
the form:

R = P(γ ∈ �|M)/P(γ ∈ �|U) (1)

where γ is an arbitrary agreement pattern in a comparison space �. For instance, �

might consist of eight patterns representing simple agreement or not on the largest name
component, street name, and street number.Alternatively, each γ ∈ � might additionally
account for the relative frequency with which specific values of name components such
as “Smith,” “Zabrinsky,” “AAA,” and “Capitol” occur. The ratio R or any monotonely
increasing function of it such as the natural log is referred to as a matching weight (or
score).

The decision rule is given by:

If R > Tμ, then designate pair as a match.

If Tλ ≤ R ≤ Tμ, then designate pair as a possible match and hold for

clerical review. (2)

If R < Tλ, then designate pair as a nonmatch.

The cutoff thresholds Tμ and Tλ are determined by a priori error bounds on false matches
and false nonmatches. Rule (2) agrees with intuition. If γ ∈ � consists primarily of agree-
ments, then it is intuitive that γ ∈ � would be more likely to occur among matches than
nonmatches and ratio (1) would be large. On the other hand, if γ ∈ � consists primarily
of disagreements, then ratio (1) would be small. Rule (2) partitions the set γ ∈ � into
three disjoint subregions. The region Tλ ≤ R ≤ Tμ is referred to as the no-decision
region or clerical review region. In some situations, resources are available to review
pairs clerically.

Figure 1 provides an illustration of the curves of log frequency versus log weight for
matches and nonmatches, respectively. The two vertical lines represent the lower and
upper cutoffs thresholds Tλ and Tμ, respectively. The x-axis is the log of the likelihood
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Fig. 1. Log frequency versus weight matches and nonmatches combined.

ratio R given by (1). The y-axis is the log of the frequency counts of the pairs associ-
ated with the given likelihood ratio. The plot uses pairs of records from a contiguous
geographic region that was matched in the 1990 Decennial Census. The clerical review
region between the two cutoffs primarily consists of pairs within the same household
that are missing both first name and age.

Table 1 provides examples of pairs of records that might be matched using name,
address, and age. The pairs give the first indication that matching that might be straight-
forward for a suitably skilled person might not be easy with naive rules based on (1) and
(2). If the agreement pattern γ ∈ � on the pairs is simple agree or disagree on name,
address, and age, then we see none of the pairs would agree on any of the three fields.
In most situations, a suitably skilled person would be able to recognize that the first
two pairs may be the same but unlikely to put a suitable score (or matching weight)
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Table 1
Elementary examples of matching pairs of records (dependent on context)

Name Address Age

1a. John A Smith 16 Main Street 16
1b. J H Smith 16 Main St 17

2a. Javier Martinez 49 E Applecross Road 33
2b. Haveir Marteenez 49 Aplecross Raod 36

3a. Gillian Jones 645 Reading Aev 24
3b. Jilliam Brown 123 Norcross Blvd 43

on the first two pairs. The third pair must be taken in context. If the first record in the
pair were individuals in medical school at the University of Michigan 20 years ago and
the second record is from a current list of physicians in Detroit, Michigan, then, after
suitable follow-up, we might determine that the third pair is a match.

If we had computerized parsing algorithms for separating the free-form name field
into first name, middle initial, and last name and address in house number, street name,
and other components, then we might have better patterns γ ∈ � for applying (1) and
(2). If we had suitable algorithms for comparing fields (e.g. Javier vs. Haveir) having
typographical error, then we might be to give partial agreement to minor typographical
error rather than calling a comparison a disagreement. Additionally, we might want
standardization routines to replace the commonly occurring words with a common
spelling (“Raod” with “Road” in pair two; “Aev” with “Ave” in pair three).

2.2. Learning parameters

Early record linkage systems were often for large administrative lists such as a national
health index. The typical fields were name, address, date of birth, city of birth, and
various fields associated with health information. The main administrative list might
be cleaned-up in the sense that many components of the name, address, and other
fields were reviewed and changed manually. As time progressed, the easiest of the
manual procedures were replaced by computerized procedures that mimicked the manual
procedures. For instance, it is straightforward to convert nicknames to possible legal
names (“Bob” → “Robert”) or obvious spelling errors (“Smitn” to “Smith”) using
lookup tables from prior manual review.

In virtually all real-world situations of which we are aware, training data have been
unavailable. Practitioners have developed a number of ways for learning “optimal”
record linkage parameters without training data. In all but one of the following sub-
sections, we will describe methods of unsupervised learning where training data are
unavailable.

2.2.1. Ideas of Newcombe
Newcombe’s ideas (Newcombe et al., 1959; Newcombe and Kennedy, 1962) are based
on odds-ratios that are effectively likelihood ratios. He began with a large administrative
list representing an entire population. The list had been cleaned up in the sense that
duplicates were removed and inconsistent spelling or formatting was eliminated. Let
file C = (cij), 1 ≤ i ≤ N, 1 ≤ j ≤ Nc, be a file with Ns records (rows) and Nc
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fields (columns). Newcombe wished to divide pairs in C × C into matches M and non-
matches U. Although he knew the answer, he wished to be able to match external files A
against C using the odds (conditional probabilities) that he developed from matching C
against itself. Let Ai represent agreement on field i, Ac

i represent disagreement on field
i, and Ax

i represent agreement or disagreement on field i but not both. Newcombe’s first
simplifying assumption is the conditional independence (CI) assumption that conditional
on being in the set of matches M or nonmatches U agreement on field i is independent
of agreement on field j.

(CI) P(Ax
i ∩ Ax

j |D) = P(Ax
i |D)P(Ax

j |D) (3)

where D is either M or U. Under condition (CI), Newcombe then computed the odds
associated with each value of a specific field. The intuition is to bring the pairs together
on common values of individual fields. For instance, with last name we might consider
pairs agreeing on Smith or Zabrinsky. Let (fij), 1 ≤ j ≤ Ij , represent the specific
frequencies (number of values) of the ith field. The number of matches in N and the
number of nonmatches is N × N – N. Among matches M, there are fij pairs that agree
on the jth value of the ith field. Among nonmatches U, there are fij × fij − fij pairs
that agree on the jth value of the ith field. Then the odds ratio of agreement on the jth
value of the ith field is

R1i = P(agreejth value of ith field|M)/P(agreejth value of ith field|U)

= (fij/N)/(fij × fij − fij)/(N × N − N). (4)

If pairs are taken from two files (i.e., product space of A×B), then we can use fij as the
frequency in A, gij as the frequency in B, hij as the frequency in A ∩ B (that is usually
approximated with hij = min(fij, gij)), and make the appropriate changes in (4).

We notice that the sum of the probabilities of the numerator in Eq. (4) sum to 1. In prac-
tice, we assume that the sum of the probabilities is 1 − ε where ε > 0 and multiply all of
the numerators in Eq. (4) by 1−ε. This allows a small probability of disagreement ε > 0
and P(A1|M) = 1 − ε. The values of the ε > 0 were chosen via experience. In some
situations there was clerical review on a subset of pairs and the P(A1|M) were reesti-
mated. Although the reestimation (possibly after several iterations) was cumbersome, it
did work well in practice.

Newcombe and others had observed the probabilities in the denominator could be
approximated by random agreement probabilities

P(Ai|U) ≈ P(Ai) =
∑

j

fijfij/N
2, (5)

Formula (5) is a reasonable approximation when the set of matches M is not known.
There are equivalent random agreement probabilities in the case of A × B.

There were only a few methods for dealing with typographical error. On receipt
and keying of data, certain obvious misspelling (“William” vs. “Willam” or “Bill”
vs. “William”) might be changed by an analyst. Previously determined typographical
variations might be placed in lookup tables that could be used for replace one spelling
with another. The intent in all situations was to increase the proportion of matches that
were found.
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2.2.2. The methods of Fellegi and Sunter
Fellegi and Sunter (1969, Theorem 1) proved the optimality of the classification rule
given by (2). Their proof is very general in the sense in it holds for any representations
γ ∈ � over the set of pairs in the product space A × B from two files. As they observed,
the quality of the results from classification rule (2) were dependent on the accuracy of
the estimates of P(γ ∈ �|M) and P(γ ∈ �|U).

Fellegi and Sunter (1969) were the first to give very general methods for computing
these probabilities in situations that differ from the situations of Newcombe in the
previous section. As the methods are useful, we describe what they introduced and then
show how the ideas led into more general methods that can be used for unsupervised
learning (i.e., without training data) in a large number of situations.

Fellegi and Sunter observed several things. First,

P(A) = P(A|M)P(M) + P(A|U)P(U) (6)

for any set A of pairs in A × B. The probability on the left can be computed directly
from the set of pairs. If sets A represent simple agreement/disagreement, under condition
(CI), we obtain

P(Ax
1 ∩ Ax

2 ∩ Ax
3|D) = P(Ax

1|D)P(Ax
2|D)P(Ax

3|D), (7)

then (6) and (7) provide seven equations and seven unknowns (as x represent agree
or disagree) that yield quadratic equations that they solved. Here D is either M or U.
Equation (or set of equations) (7) is essentially the same as Eq. (3) and can be expanded to
K fields. Although there are eight patterns associated with the equations of the form (7),
we eliminate one because the probabilities must add to one. In general, with more fields
but still simple agreement/disagreement between fields, the equations can be solved via
the EM algorithm in the next section. Probabilities of the form P(Ai|D) are referred to
as m-probabilities if D = M and u-probabilities if D = U.

Fellegi and Sunter provided more general methods for frequency-based matching
(value-specific) matching than those of Newcombe. Specifically, they obtained the gen-
eral probabilities for simple agree/disagree and then scaled the frequency-based proba-
bilities to the agree/disagree weights. If A1 represents agreement on the first field and
vj, 1 ≤ j ≤ I1, are the values of the first field, then

P(A1|D) =
∑

j

P(A1 ∩ vj|D) (8)

where D is either M or U. Typically, P(Ai|M) < 1 for the simple agree/disagree weights
on field i. This reflects the fact that there is less than 100% agreement on the ith field.
Superficially, we can think of the 1 −P(Ai|M) as the average “typographical error” rate
in the ith field. To make Eq. (8) valid under certain restrictions, FS assumed that the
typographical error rate was constant over all values vj, 1 ≤ j ≤ I1, associated with
the ith field. Winkler (1989b) extended the frequency-based ideas of FS by showing
how to do the computation under significantly weaker assumptions. The details of the
computations (that we have greatly simplified) are given in their papers (FS, Winkler
1989b).

There are a number of implicit assumptions that are often made when matching two
files and computing probabilities using (6)–(8). The first is that there is a significant
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overlap between two files A and B. This essentially means that A ∩ B is either most
of A or most of B. If this assumption is not true, then the probabilities obtained via
Newcombe’s methods or the FS methods may not work well. The second assumption
is that neither file A nor B can simultaneously be samples from two larger files A2

and B2. Deming and Gleser (1959) provided theory demonstrating the unreliability of
determining the sampling overlap (i.e., number of duplicates) from two sample files. As
a case in point, if A2 = B2 each contain 1000 records on which 1% have the last name
of Smith, among the matches M between A2 and B2, there is a 1% probability of being
a pair agreeing on Smith actually being a match. If A and B are 10% samples of A2

and B2, respectively, then among matches between A and B, there is a 0.1% probability
of a pair agreeing on Smith actually being a match. The third assumption is that the
typographical error rates are quite low so the frequency-based computations based on
the different observed values of the fields are valid. If a relatively rare value of last name
such as Zabrinsky has six different spellings in the six records in which it appeared,
then it is not possible to compute accurate frequency-based probabilities directly from
the file.

In practice, it is necessary to perform blocking of two files that effect how pairs
are brought together. If two files A and B each contain 10,000 records, then there are
108 pairs in the product A × B. Until very recently, we could not do the computation
of 108 pairs. In blocking, we only consider pairs that agree on certain characteristics.
For instance, we may only consider pairs that agree on first initial of first name, last
name, and date of birth. If we believe (possibly based on prior experience) that we are
not getting a sufficiently large proportion of matches with a first blocking criteria, we
may try a second. For instance, we may only consider pairs that agree on first initial of
first name, first initial of last name, and the ZIP+4 code (that represents approximately
50 households). FS gave the straightforward theoretical extensions for blocking. In
performing computation over pairs P1 in A × B obtained via blocking, there is a fourth
implicit assumption: that the pairs in P1 contain a moderately high proportion of matches
(say 3+% of P1 consists of matches). In the next section, we return to the minimal needed
proportion of pairs needing to be matches in more general situations. The methods of
obtaining the probabilities given by (6)–(8) break down when the proportion of matches
from M in the set of pairs P1 is too low. The computations also break down if we do
the computation over all 108 pairs in A × B. In A × B, at most 0.01% of the pairs
are matches. In the next section, we will show how we can effectively find reasonable
probabilities in a variety of situations.

2.2.3. EM algorithm
In this section, we do not go into much detail about the basic EM algorithm because
the basic algorithm is well understood. We provide a moderate amount of detail for the
record linkage application so that we can describe a number of the limitations of the EM
and some of the extensions.

For each γ ∈ �, we consider

P(γ) = P(γ|M)P(M) + P(γ|U)P(U) (8a)

P(γ) = P(γ|C1)P(C1) + P(γ|C2)P(C2) (8b)

P(γ) = P(γ|C1)P(C1) + P(γ|C2)P(C2) + P(γ|C3)P(C3) (8c)
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and note that the proportion of pairs having representation γ ∈ � [i.e., left-hand side of
Eq. (8)] can be computed directly from available data. In each of the variants, either M

and U, C1 and C2, or C1, C2, and C3 partition A × B.
If the number of fields associated with P(γ) is K > 3, then we can solve the com-

bination of equations given by (8) and (7) using the EM algorithm. Although there are
alternate methods of solving the equation such as methods of moments and least squares,
the EM is greatly preferred because of its numeric stability. Under CI, programming is
simplified and computation is greatly reduced (from 2k to 2k).

Caution must be observed when applying the EM algorithm to real data. The EM
algorithm that has been applied to record linkage is a latent class algorithm that is
intended to divide A × B into the desired sets of pairs M and U. The probability of a
class indicator that determines whether a pair is in M or U is the missing data must be
estimated along with the m- and u-probabilities. It may be necessary to apply the EM
algorithm to a particular subset S of pairs in A × B in which most of the matches M

are concentrated, for which the fields used for matching clearly can separate M from
U, and for which suitable initial probabilities can be chosen. Because the EM is a local
maximization algorithm, the starting probabilities may need to be chosen with care
based on experience with similar types of files. Because the EM latent-class algorithm
is a general clustering algorithm, there is no assurance that the algorithm will divide
A × B into two classes C1 and C2 that almost precisely correspond to M and U.

The following example characterizes some of the cautions that must be observed
when applying the EM. As we will observe, the EM, when properly applied, can supply
final limiting parameters that are quite effective. In extensive Decennial Census work, we
observed that the final limiting parameters often reduced the size of the clerical review
region by 2/3 from the region that might have been obtained by the initial parameters
obtained from knowledgeable guesses. In the following we use 1988 Dress Rehearsal
Census data from one of the 457 regions of the U.S. that we used for the 1990 Decennial
Census. The matching fields consist of last name, first name, house number, street name,
phone, age, and sex. In actuality, we also used middle initial, unit (apartment identifier),
and marital status. The first file A is a sample of blocks from the region and the second
file is an independent enumeration of the same sample of blocks. The first file size
is 15,048 and the second file size is 12,072. In the first part of the example, we only
consider 116,305 pairs that agree on Census block id and first character of surname and,
in the second part, we only consider the 1,354,457 pairs that agree on Census block id
only. A census block consists of approximately 70 households whereas a ZIP+4 area
represents approximately 50 households. We observe that there can be at most 12,072
matches if the smaller file is an exact subset of the larger file. As is typical in population
censuses, the work begins with address lists of households in which the data from
the survey forms are used to fill-in information associated with individuals. In many
situations (such as with families), there will be more than one individual associated
with each address (housing unit).

We begin by applying the (2-class) EM to the set of 110,305 pairs. We use knowl-
edgeable initial probabilities that we believe correspond to the probabilities we need
for matching individuals. We also use a precursor program to get the counts (or prob-
abilities) of the form P(γ) that we use in the EM algorithm. In the limit, we get the
final probabilities given in Table 2. The final proportion of matches in the first class
P(M) = 0.2731 is much too large. The m-probability P(agree first |M) = 0.31 is much
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Table 2
Initial and final probabilities from 2-class EM fitting

Initial Final

m u m u

Last 0.98 0.24 0.95 0.07
First 0.98 0.04 0.31 0.01
Hsnm 0.94 0.24 0.98 0.03
Stnm 0.66 0.33 0.99 0.47
Phone 0.70 0.14 0.68 0.01
Age 0.88 0.11 0.38 0.07
Sex 0.98 0.47 0.61 0.49

Table 3
Initial and final probabilities from 3-class EM fitting

Initial Final

m i oh m i oh u

Last 0.98 0.90 0.24 0.96 0.92 0.07 0.25
First 0.98 0.24 0.04 0.96 0.02 0.01 0.01
Hsnm 0.94 0.90 0.24 0.97 0.97 0.04 0.23
Stnm 0.66 0.90 0.33 0.98 0.99 0.47 0.58
Phone 0.70 0.60 0.14 0.72 0.64 0.01 0.14
Age 0.88 0.20 0.11 0.88 0.14 0.07 0.08
Sex 0.98 0.70 0.47 0.98 0.45 0.49 0.49

too small. What has gone wrong? We observe that addresses are of high quality. Because
we are in very small contiguous regions (blocks), last name, house number, street name,
and phone are likely to be the same in most housing units associated with families. The
higher quality household information outweighs the person fields of first name, age, and
sex that might be used to separate individuals within household.

We overcome the situation by creating a 3-class EM that we hope divides records
agreeing on household variables into 2-classes and leaves a third class that would be
nonmatches outside of households. The initial ideas were due to Smith and Newcombe
(1975) who provided separate ad hoc weighting (likelihood) adjustments for the set of
person fields and the set of household fields. Their ideas have been verified by Gill (1999)
among others. As the EM algorithm is quite straightforward to convert to 3-classes, we
make the appropriate algorithmic adjustments and choose appropriate starting proba-
bilities. Winkler (1993b) provides details. Table 3 gives initial probabilities for a first
class that we hope corresponds to person matches M within a household, an in-between
class I that we hope corresponds to nonmatches within the same household, and a class
Oh that are pairs not agreeing on household fields. To get the final u-probabilities we
combine the i-probabilities and oh-probabilities according to the proportions in classes
2 and 3. When we run the EM program, we get probabilities of being in the three classes
of 0.0846, 0.1958, and 0.7196, respectively. The probability 0.0846 associated with the
first class accurately corresponds to the known number of true matches (obtained via two
levels of review and one level of adjudication). Notice that the starting i-probabilities
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are reasonable guesses for the probabilities of persons within the same household who
are not matches.

If we apply the 3-class EM algorithm to the 1,354,457 pairs agreeing on block (but not
block plus first character of last name) and use good initial guesses for the probabilities,
then we get similarly “good” m-probabilities as we did in Table 3. This is true even
though the estimated proportion of pairs in the first class is 0.0081. In general, when we
begin with sets of pairs that are much too large, the EM algorithm will not converge to
estimates that are not reasonable for separating matches from the other pairs. The EM
algorithm when applied to the much larger set of pairs can be much more sensitive to
the set of starting points.

If the EM algorithm is applied with care, then it will generally yield good parameter
estimates with lists of individuals. It will not always yield reasonable lists with agri-
culture or business lists because of the (moderately) high proportion of truly matching
pairs that disagree on names or on addresses. The EM algorithm was used for produc-
tion matching in the 1990 Decennial Census (Winkler and Thibaudeau, 1991) because
Winkler (1989a) had been able to demonstrate that matching probabilities (particularly
m-probabilities) varied significantly (say between a suburban area and an adjacent urban
area). If we think of 1 − P(Ai|M) as crudely representing the average typographical
error in the ith field, then the variation of parameters is understandable because lists
associated with urban areas often contain more typographical error.

Winkler (1988, 1989a) showed the EM algorithm yielded “optimal parameters” in the
sense of effective local maxima of the likelihood. The 2-class and 3-class EM algorithms
under condition (CI) are quite robust. If starting points are varied substantially, the EM
converges to the same limiting values where the limiting values are determined by
characteristics of the files A and B. The 2-class algorithm will outperform the 3-class
algorithm in situations where there is typically only one entity at an address (or telephone
number). In those situations, the address can be considered an identifier of the individual
entity.

During 1990 production matching, the EM algorithm showed its flexibility. In three
regions among a number of regions processed in 1 week, clerical review became much
larger with the EM parameters than was expected. Upon quick review, we discovered
that two keypunchers had managed to bypass edits on the year of birth. All records from
these keypunchers disagreed on the computed age. The clerical review became much
larger because first name and the age were the main fields for separating persons within
a household.

More generally, we may wish to account for dependencies directly using appropri-
ate loglinear models (Bishop et al., 1975). Winkler (1993b) provides a general EMH
algorithm that accounts for the general interactions between fields and allows convex
constraints to predispose certain estimated probabilities into regions based on a priori
information used in similar matching projects. The EMH algorithm is a form of MCECM
algorithm (Meng and Rubin, 1993) that additionally allows convex constraints. The
interaction EM can yield parameters that yield slight improvements in matching effi-
cacy. It is much more difficult to apply because of its sensitivity to moderate changes in
the set of interactions. Winkler (1993b) and Larsen and Rubin (2001) demonstrated that
effective sets of interactions can be selected based on experience. The starting point for
the interaction EM is the set of parameters from the CI EM.
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2.3. String comparators

In most matching situations, we will get poor matching performance when we compare
two strings exactly (character-by-character) because of typographical error. Dealing
with typographical error via approximate string comparison has been a major research
project in computer science (see e.g., Hall and Dowling, 1980; Navarro, 2001). In
record linkage, we need to have a function that represents approximate agreement, with
agreement being represented by 1 and degrees of partial agreement being represented by
numbers between 0 and 1. We also need to adjust the likelihood ratios (1) according to
the partial agreement values. Having such methods is crucial to matching. For instance,
in a major census application for measuring undercount, more than 25% of matches
would not have been found via exact character-by-character matching. Three geographic
regions (St. Louis, urban; Columbia, MO, suburban; and Washington, suburban/rural)
are considered in Table 4. The function � represents exact agreement when it takes
value 1 and represents partial agreement when it takes values less than 1. In the St. Louis
region, for instance, 25% of first names and 15% of last names did not agree character-
by-character among pairs that are matches.

Jaro (1989) introduced a string comparator that accounts for insertions, deletions, and
transpositions. The basic Jaro algorithm has three components: (1) compute the string
lengths, (2) find the number of common characters in the two strings, and (3) find the
number of transpositions. The definition of common is that the agreeing character must
be within half the length of the shorter string. The definition of transposition is that the
character from one string is out of order with the corresponding common character from
the other string. The string comparator value (rescaled for consistency with the practice
in computer science) is:

�j(s1, s2) = 1/3(NC/lens1 + NC/lens2 + 0.5Nt/NC) (9)

where s1 and s2 are the strings with lengths lens1 and lens2, respectively, NC is the
number of common characters between strings s1 and s2 where the distance for common
is half of the minimum length of s1 and s2, and Nt is the number of transpositions. The
number of transpositions Nt is computed somewhat differently from the obvious manner.

Using truth data sets, Winkler (1990) introduced methods for modeling how the
different values of the string comparator affect the likelihood (1) in the Fellegi–Sunter
decision rule. Winkler (1990) also showed how a variant of the Jaro string comparator
� dramatically improves matching efficacy in comparison to situations when string

Table 4
Proportional agreement by string comparator values among matches

Key Fields by Geography

StL Col Wash

First
� = 1.0 0.75 0.82 0.75
� ≥ 0.6 0.93 0.94 0.93

Last
� = 1.0 0.85 0.88 0.86
� ≥ 0.6 0.95 0.96 0.96
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comparators are not used. The Winkler variant employs some ideas of Pollock and
Zamora (1984) in a large study for the Chemical Abstracts Service. They provided
empirical evidence that quantified how the probability of keypunch errors increased as
the character position in a string moved from the left to the right. The Winkler variant,
referred to as the Jaro–Winkler string comparator, is widely used in computer science.

Work by Cohen et al. (2003a,b) provides empirical evidence that the new string
comparators can perform favorably in comparison to Bigrams and Edit Distance. Edit
Distance uses dynamic programming to determine the minimum number of insertions,
deletions, and substitutions to get from one string to another. The Bigram metric counts
the number of consecutive pairs of characters that agree between two strings. A gener-
alization of bigrams is q-grams where q can be greater than 2. Cohen et al. (2003a,b)
provided additional string comparators that they demonstrated slightly outperformed
the Jaro–Winkler string comparator with several small test decks but not with a test
deck similar to Census data. Yancey (2005), in a rather exhaustive study, also demon-
strated Jaro–Winkler string comparator outperformed new string comparators of Cohen
et al. (2003a,b) with large census test decks. Yancey introduced several hybrid string
comparators that used both the Jaro–Winkler string comparator and variants of edit
distance.

Cohen et al. (2003a,b) observed that the computational algorithm for edit distance is
10 times as slow as the corresponding algorithm for the Jaro–Winkler string comparator.
The speed of the string comparator dramatically affects the speed of matching software.
It is fairly typical for matching software with the Jaro–Winkler string comparator to
expend 30–70% of the CPU cycles in the string comparator subroutine.

Table 5 compares the values of the Jaro, Winkler, Bigram, and Edit-Distance values
for selected first names and last names. Bigram and Edit Distance are normalized to be

Table 5
Comparison of string comparators using last names and first names

Two Strings String Comparator Values

Jaro Winkler Bigram Edit

Shackleford Shackelford 0.970 0.982 0.800 0.818
Dunningham Cunnigham 0.867 0.867 0.917 0.889
Nichleson Nichulson 0.926 0.956 0.667 0.889
Jones Johnson 0.867 0.893 0.167 0.667
Massey Massie 0.889 0.933 0.600 0.667
Abroms Abrams 0.889 0.922 0.600 0.833
Hardin Martinez 0.778 0.778 0.286 0.143
Itman Smith 0.467 0.467 0.200 0.000
Jeraldine Geraldine 0.926 0.926 0.875 0.889
Marhta Martha 0.944 0.961 0.400 0.667
Michelle Michael 0.833 0.900 0.500 0.625
Julies Julius 0.889 0.933 0.800 0.833
Tanya Tonya 0.867 0.880 0.500 0.800
Dwayne Duane 0.778 0.800 0.200 0.500
Sean Susan 0.667 0.667 0.200 0.400
Jon John 0.778 0.822 0.333 0.750
Jon Jan 0.778 0.800 0.000 0.667
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between 0 and 1. All string comparators take value 1 when the strings agree character
by character.

2.4. An empirical example

In the following, we compare different matching procedures on the data that were used
for the initial EM analyses (Tables 2 and 3). Although we also demonstrated very similar
results with several alternative pairs of files, we do not present the additional results here
(see Winkler, 1990). The results are based only on pairs that agree on block identification
code and first character of the last name.

The procedures that we use are as follows. The simplest procedure, crude, merely uses
an ad hoc (but knowledgeable) guess for matching parameters and does not use string
comparators. The next, param, does not use string comparators but does estimate the
m- and u-probabilities. Such probabilities are estimated through an iterative procedure
that involves manual review of matching results and successive reuse of reestimated
parameters. Such iterative-refinement procedures are a feature of Statistics Canada’s
CANLINK system.

The third type, param2, uses the same probabilities as param and the basic Jaro
string comparator. The fourth type, em, uses the EM algorithm for estimating param-
eters and the Jaro string comparator. The fifth type, em2, uses the EM algorithm for
estimating parameters and the Winkler variant of the string comparator that performs
an upward adjustment based on the amount of agreement in the first four characters in
the string.

In Table 6, the cutoff between designated matches is determined by a 0.002 false
match rate. The crude and param types are allowed to rise slightly above the 0.002
level because they generally have higher error levels. In each pair of columns (des-
ignated matches and designated clerical pairs), we break out the counts into true
matches and true nonmatches. In the designated matches, true nonmatches are false
matches.

By examining the table, we observe that a dramatic improvement in matches can
occur when string comparators are first used (from param to param2). The reason is
that disagreements (on a character-by-character basis) are replaced by partial agree-
ments and adjustment of the likelihood ratios (see Winkler 1990). The improvement

Table 6
Matching results via matching strategies

Designated Computer Match Designated Clerical Pair

Truth Match/Nonmatch Match/Nonmatch

Crude 310/ 1 9344/794
param 7899/ 16 1863/198
param2 9276/ 23 545/191
em 9587/ 23 271/192
em2 9639/ 24 215/189

Note: 0.2% false matches among designated matches.
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due to the Winkler variant of the string comparator (from em to em2) is quite minor.
The param method is essentially the same as a traditional method used by Statistics
Canada. After a review of nine string comparator methods (Budzinsky, 1991), Statistics
Canada provided options for three string comparators in CANLINK software with the
Jaro–Winkler comparator being the default.

The improvement between param2 and em2 is not quite as dramatic because it is
much more difficult to show improvements among “hard-to-match” pairs and because
of the differences in the parameter-estimation methods. Iterative refinement is used
for param2 (a standard method in CANLINK software) in which pairs are reviewed,
reclassified, and parameters reestimated. This method is a type of (partially) supervised
learning and is time-consuming.

The improvement due to the parameters from em2 can be explained because the
parameters are slightly more general than those obtained under CI. If Ax

i represents
agreement or disagreement on the ith field, then our CI assumption yields

P(Ax
1 ∩ Ax

2 · · · ∩ Ax
k|D) =

k∏
i=1

P(Ax
i |D) (10)

where D is either M or U. Superficially, the EM considers different orderings of the
form

P(Ax
ρ,1 ∩ · · · ∩ Ax

ρ,k|D) =
k∏

i=1

P(Ax
ρ,i|Ax

ρ,i=1, · · · , Ax
ρ,1, D) (11)

where ρ, i represents the ith entry in a permutation ρ of the integers 1 thru k. The
greater generality of (11) in comparison to (10) can yield better fits to the data. We
can reasonably assume that the EM algorithm under the CI assumption (as the actual
computational methods work) simultaneously chooses the best permutation ρ and the
best parameters.

In this section, we have demonstrated that very dramatic improvement in record
linkage efficacy through advancing from seemingly reasonable ad hoc procedures to
procedures that use modern computerized record linkage procedures. The issue that
affects statistical agencies is whether their survey frames are well-maintained using
effective procedures. Upgrading matching procedures is often as straightforward as
replacing a subroutine that uses ad hoc methods with another subroutine. It is crucial to
never assume that moderately sophisticated record linkage procedures are being used
as the following situation demonstrates.

Maintenance of state voter registration lists is a situation where efficacy could be
enhanced by moving from ad hoc to modern record linkage procedures. There have
been two U.S. Federal laws (in 1993 and 2002) allocating money and mandating require-
ments on list maintenance. The voter registration lists are compared to department of
motor vehicle lists, social services lists, and other lists including the main U.S. Social
Security Administration list. Each list is searched internally for duplicates. All the states
(Levitt el al., 2005) appear to be using ad hoc matching procedures that were origi-
nally developed for matching department of motor vehicle lists. The efficacy of the state
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ad hoc computer matching procedures in many situations may be between the worst two
methods (crude and param) in Table 6.

2.5. Training data

Representative training data are seldom available for getting the parameters for record
linkage classification rules. If training data are available, then it is possible to get the
parameters by adding appropriate quantities to yield the probabilities in (1) and (2). In
fact, with sufficient training data, it is straightforward to estimate probabilities in (1)
that account for the dependencies between different matching fields and to estimate
error rates.

Winkler (1989a) showed that optimal record linkage parameters vary significantly in
different geographic regions. For the 1990 U.S. Decennial Census, training data would
have been needed for the 457 regions where matching was performed. The amount of
time needed to obtain the training data in the 457 regions would have substantially
exceeded the 3 weeks that was allotted for the computer matching. In more than 20
years of record linkage at the Census Bureau, there have never been training data. In
more than 30 years in maintaining the National Health Files and performing other large
matching projects at Oxford University, Gill (2000, private communication) never had
training data.

3. Data preparation

In matching projects, putting the data from two files A and B into consistent forms
so that the data can be run through record linkage software often requires more work
(3–12 months with a moderate or large staff) than the actual matching operations (1–3
weeks with one individual). Inability or lack of time and resources for cleaning up
files in preparation of matching are often the main reasons that matching projects
fail. We provide details of file acquisition, preparation, and standardization in the next
sections.

3.1. Description of a matching project

Constructing a frame or administrative list entities for an entire country or a large region
of a country involves many steps. The construction methods also hold pairs of lists or
for the situation of finding duplicates within a given list.

(1) Identify existing lists that can be used in creating the main list. In this situation,
it is important to concentrate on 10 or fewer lists. It is practically infeasible to
consider thousands of lists.

(2) With each list, obtain an annotated layout.The annotation should include the loca-
tions of different fields and the potential values that different fields can assume.
For instance, a given list may have several status codes associated with whether
the entity is still in business or alive. With lists of businesses, it may have addi-
tional status codes denoted whether the record is associated with another entity
as a subsidiary or duplicate. If the annotated layout is not available, then reject
the list. If the list is on an incompatible computer system or in an incompatible
format such as a typed list or microfiche, then reject the list.
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(3) Obtain the lists to begin putting them in a standard format that will be used by the
duplicate-detection and updating programs. If the list will not pass through name
and address standardization programs, then reject it. If some or many records
in the list cannot be standardized, then consider rejecting the list or only use
records that can be standardized. The standard format should include a field for
the source of a list and the date of the list. If possible, it is a good idea to also
have a date for the individual record in the list.

(4) If resources permit, greater accuracy may be obtained by matching each potential
update source against the main list sequentially. Matching each list in a sequen-
tial manner allows more accurate clerical clean-up of duplicates. If the clerical
clean-up cannot be done in an efficient manner, then duplicates in the main list
will yield more and more additional duplicates as the main list is successively
updated. If it appears that an individual list is causing too many duplicates to be
erroneously added to the main list, then reject the list as an update source. If a
large subset of the update source does not yield a sufficiently large number of new
entities in the main list, then it might also be excluded.

(5) After the initial matching, additional computerized and clerical procedures
should be systematically applied for further identifying duplicates in the main
list. A very useful procedure is to assure that the representations of names and
addresses associated with an entity are in the most useful form and free of
typographical errors. These extra improvement procedures should be used con-
tinuously. If updates and clean-ups of lists containing many small businesses
are only done annually, then the overall quality of the list can deteriorate in an
additive fashion during each subsequent update. In the U.S., it is known that
the yearly turnover (going in and out of business or substantial changes in name
and address information that make updating very difficult) can exceed 10% with
small businesses.

Many matching projects fail because groups cannot even get through the first
1–2 steps mentioned above. Maintaining lists can be difficult. In the U.S., the Postal
Change of Address files for individuals represent 16% of the population per year. Some
individuals may move more than once. With lists of small business (such as petroleum
retailers), the change of name or address can exceed 10% per year. In maintaining a large
national health file or national death index, 1–3% net error per year can yield substantial
error after several years.

3.2. Initial file preparation

In obtaining the files, the first issue is to determine whether the files reside in sequential
(standard flat) files, databases, or in SAS files. As most record linkage software is
designed for only sequential files, files in other formats will need to have copies that
are in sequential formats. Some groups that do record linkage with many files will have
a standard format and procedures so that the files are in the most compatible form for
record linkage. An annotated layout will give the descriptions of individual fields that
might be compared. For instance, a sex code might be broken out into Sex1 (male = M,
female = F, missing = b where b represents blank) or Sex2 (male = 1, female = 2,
missing = 0). Simple programs can have tables that are used in converting from one set
of codes to another set of codes.
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It is very typical for well-maintained files to carry status codes indicating whether an
entity is still alive or in business and whether information such as an address or telephone
number is current. If a file has status codes indicating that certain records are out-of-
scope, then in most matching applications the out-of-scope records should be dropped
before using the file for updating or merging. In some files, it may be difficult to determine
out-of-scopes. For instance, electric utilities have very good address information that
individuals might wish to use in updating a list of residences. Unfortunately, electric
utilities typically include small commercial establishments with residential customers
because they maintain their lists by flow-rate categories. If the electric utility list is
used to update a list of households, many “out-of-scope” commercial addresses will be
added.

It may be necessary to review various fields across two files. For instance, if one
file has addresses that are almost entirely of the form house number and street name
and another file has a substantial portion of the addresses in the form PO Box, then it
may be difficult to match to two files using name and address information. With lists
of businesses, it may be necessary to have auxiliary information that allows separat-
ing headquarters from subsidiaries. With many businesses, headquarters fill out survey
forms. If a survey form is sent to the subsidiary and returned, then the survey organiza-
tion may double-count the information from the subsidiary that is also reported in the
totals from the headquarters.

In the following, we provide summaries of various procedures that can be used for
the preliminary cleaning of files and can often be in straightforward computer routines.
These consistency checks and clean-up procedures prior to running files through a
matching program are referred to as standardization.

(1) Replacing spelling variants with a common consistent spelling is referred to as
spelling standardization.

(a) Replace ‘Doctor’, ‘Dr.’ with ‘Dr’
(b) Replace nicknames such as ‘Bob’, ‘Bill’ with ‘Robert’ and ‘William’
(c) Replace words such as ‘Company’, ‘Cmpny’, ‘Co.’ with ‘Co’

Note: The third example is application dependent because ‘Co’ can refer to
county or Colorado.

(2) Replacing inconsistent codes is referred to as assuring code consistency.

(a) Replace Sex Sex (male=‘1’, female=‘2’, missing=‘0’) with (male=‘M’,
female=‘F’, missing=‘’)

(b) Replace ‘January 11, 1999’ and ‘11 January, 1999’ with
MMDDYYYY=‘01111999’ or YYYYMMDD=‘19990111’

Code consistency is sometimes referred to as making the value-states of vari-
ables (or fields) consistent.

In record linkage, a variable (or field) is typically a character string such as
a complete name, complete address, or a sub-component such as first name or
last name.

(3) Identifying the starting and ending positions of the individual components of a
free form string such as a name or address is referred to as parsing.
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(a) Identify locations of first name, middle initial, and last name in ‘Mr John
A Smith Jr’ and ‘John Alexander Smith’

(b) Identify locations of house number and street name in ‘123 East Main Street’
and ‘123 E. Main St. Apt. 16’

The idea of parsing is to allow the comparison of fields (variables) that should be
consistent and reasonably easy to compare. It is not easy to compare free-form names
and addresses except possibly manually. The above three ideas of standardization are
often preliminary to situations when free-form names and addresses are broken (parsed)
into components. We cover general name and address standardization in the next two
sections.

3.3. Name standardization and parsing

Standardization consists of replacing various spelling of words with a single spelling.
For instance, different spellings and abbreviations of “Incorporated” might be replaced
with the single standardized spelling “Inc.” The standardization component of software
might separate a general string such as a complete name or address into words (i.e.,
sets of characters that are separated by spaces and other delimiters). Each word is then
compared lookup tables to get standard spelling. The first half of the following table
shows various commonly occurring words that are replaced by standardized spellings
(given in capital letters).After standardization, the name string is parsed into components
(second half of the following table) that can be compared (Table 7). The examples are
produced by general name standardization software (Winkler 1993a) for the U.S. Census
of Agriculture matching system. Because the software does well with business lists and
person matching, it has been used for additional matching applications at the Census
Bureau and other agencies. At present, it is not clear that there is any commercial
software for name standardization. Promising new methods based on hidden Markov
models (Borkar et al., 2001; Christen et al., 2002; Churches et al., 2002) may improve
over the rule-based name standardization in Winkler (1993a). Although the methods
clearly improve over more conventional address standardization methods (see following
section) for difficult situations such as Asian or Indian addresses, they did not perform
as well as more conventional methods of name standardization. Bilmes (1998) provides
a tutorial on EM-type algorithms that show that hidden Markov methods are slight

Table 7
Examples of name parsing

Standardized
1. DR John J Smith MD
2. Smith DRY FRM
3. Smith & Son ENTP

Parsed
Pre First Mid Last Post1 Post2 Bus1 Bus2

1. DR John J Smith MD
2. Smith DRY FRM
3. Smith Son ENTP
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Table 8
Examples of address parsing

Standardized
1. 16 W Main ST APT 16
2. RR 2 BX 215
3. Fuller Bldg Suite 405
4. 14588 HWY 16 W

Parsed
Pre2 Hsnm Stnm RR Box Post1 Post2 Unit1 Unit2 Bldg

1. W 16 Main ST 16
2. 2 215
3. 405 Fuller
4. 14588 HWY 16 W

generalizations of the simplest EM methods. Among mathematical statisticians, hidden
Markov is referred to as the Baum-Welsh algorithm.

3.4. Address standardization and parsing

Table 8 illustrates address standardization with a proprietary package developed by
the Geography Division at the U.S. Census Bureau. In testing in 1994, the software
significantly outperformed the best U.S. commercial packages in terms of standard-
ization rates while producing comparably accurate standardizations. The first half
of the table shows a few addresses that have been standardized. In standardization,
commonly occurring words such as “Street” are replaced by an appropriate abbrevi-
ation such as “St” that can be considered a standard spelling that may account for
some spelling errors. The second half of the table represents components of addresses
produced by the parsing. The general software produces approximately 50 compo-
nents. The general name and address standardization software that we make avail-
able with the matching software only outputs the most important components of the
addresses.

3.5. Summarizing comments on preprocessing

Many files cannot be sufficiently preprocessed to clean-up much of the data. Examples
include legacy files that contain considerable missing data such as date of birth and
high typographical error rate in other fields. In situations of reasonably high-quality
data, preprocessing can yield a greater improvement in matching efficacy than string
comparators and “optimized” parameters. In some situations, 90% of the improvement
in matching efficacy may be due to preprocessing. The results of Table 6 show that
appropriate string comparators can yield greater improvement than better record linkage
parameters.

4. More advanced methods

Nearly all of the recent record linkage work is in the computer science literature and is
based on statistical models (Winkler 2006a). The three most important research problems
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involve: (1) estimating error rates, (2) adjusting statistical analyses of merged files for
linkage error, and (3) speeding up the record linkage process.

4.1. Error rate estimation

With any matching project, we are concerned with false match rates among the set of
pairs among designated matches above the cutoff score Tμ in (2) and the false nonmatch
rates among designated nonmatches below the cutoff score Tλ in (2). Very few matching
projects estimate these rates although valid estimates are crucial to understanding the
usefulness of any files obtained via the record linkage procedures. Sometimes reasonable
upper bounds for the estimated error rates can be obtained via experienced practitioners
and the error rates are validated during follow-up studies (Winkler 1995). If a moderately
large amount of training data is available, then it may be possible to get valid estimates
of the error rates.

If a small amount of training data is available, then it may be possible to get improved
record linkage and good estimates of error rates. Larsen and Rubin (2001) combined
small amounts of (labeled) training data with large amounts of unlabeled data to esti-
mate error rates using an MCMC procedure. In machine learning (Winkler 2000), the
procedures are referred to as semisupervised learning. In ordinary machine learning,
the procedures to get parameters are “supervised” by the training data that is labeled
with the true classes into which later records (or pairs) will be classified. Winkler (2002)
also used semisupervised learning with a variant of the general EM algorithm. Both
the Larsen and Rubin (2001) and Winkler (2002) methods were effective because they
accounted for interactions between the fields and were able to use labeled training data
that was concentrated between the lower cutoff Tλ and the upper cutoff Tμ.

Belin and Rubin (1995) were the first to provide an unsupervised method for obtain-
ing estimates of false match rates. The method proceeded by estimating Box-Cox trans-
forms that would cause a mixture of two transformed normal distributions to closely
approximate two well separated curves such as given in Fig. 1. They cautioned that
their methods might not be robust to matching situations. Winkler (1995) observed that
their algorithms would typically not work with business lists, agriculture lists, and low-
quality person lists where the curves of nonmatches were not well separated from the
curves of matches. Scheuren and Winkler (1993), who had the Belin–Rubin EM-based
fitting software, observed that the Belin–Rubin methods did work reasonably well with
a number of well-separated person lists.

Because the EM-based methods of this section serve as a template of other EM-based
methods, we provide details of the unsupervised learning methods of Winkler (2006b)
that are used for estimating false match rates. The basic model is that of semisuper-
vised learning in which we combine a small proportion of labeled (true or pseudotrue
matching status) pairs of records with a very large amount of unlabeled data. The CI
model corresponds to the naive Bayesian network formulization of Nigam et al. (2000).
The more general formulization of Winkler (2000, 2002) allows interactions between
agreements (but is not used in this chapter).

Our development is similar theoretically to that of Nigam et al. (2000). The notation
differs very slightly because it deals more with the representational framework of record
linkage. Let γi be the agreement pattern associated with pair pi. Classes Cj are an
arbitrary partition of the set of pairs D in A × B. Later, we will assume that some of
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the Cj will be subsets of M and the remaining Cj are subsets of U. For coherence
and clarity Eqs. (12) and (13) repeat the earlier equations but use slightly different
notation. Unlike general text classification in which every document may have a unique
agreement pattern, in record linkage, some agreement patterns γi may have many pairs
pi(l) associated with them. Specifically,

P(γi|�) =
|C|∑
i

P(γi|Cj; �)P(Cj; �) (12)

where γi is a specific pair, Cj is a specific class, and the sum is over the set of classes.
Under the Naive Bayes or CI, we have

P(γi|Cj; �) = �kP(γi,k|Cj; �) (13)

where the product is over the kth individual field agreement γik in pair agreement pattern
γi. In some situations, we use a Dirichlet prior

P(�) = �j(�Cj)
α−1�k(�γi,k|Cj)

α−1 (14)

where the first product is over the classes Cj and the second product is over the fields.
We use Du to denote unlabeled pairs and Dl to denote labeled pairs. Given the set D of
all labeled and unlabeled pairs, the log likelihood is given by

lc(�|D; z) = log(P(�))

+ (1 − λ)
∑
i∈Du

∑
j

zij log(P(γi|Cj; �)P(Cj; �)) (15)

+ λ
∑
i∈Dl

∑
j

zij log(P(γi|Cj; �)P(Cj; �)).

where 0 ≤ λ ≤ 1. The first sum is over the unlabeled pairs and the second sum is over
the labeled pairs. In the third terms Eq. (15), we sum over the observed zij . In the second
term, we put in expected values for the zij based on the initial estimates P(γi|Cj; �)
and P(Cj; �). After reestimating the parameters P(γi|Cj; �) and P(Cj; �)) during the
M-step (that is in closed form under condition (CI)), we put in new expected values
and repeat the M-step. The computer algorithms are easily monitored by checking that
the likelihood increases after each combination of E- and M-steps and by checking
that the sum of the probabilities add to 1.0. We observe that if λ is 1, then we only use
training data and our methods correspond to naive Bayes methods in which training data
are available. If λ is 0, then we are in the unsupervised learning situations of Winkler
(1993b). Winkler (2000, 2002) provides more details of the computational algorithms.

We create “pseudotruth” data sets in which matches are those unlabeled pairs above
a certain high cutoff and nonmatches are those unlabeled pairs below a certain low
cutoff. Figure 1 illustrates the situation using actual 1990 Decennial Census data in
which we plot log of the probability ratio (1) against the log of frequency. With the
datasets of this chapter, we choose high and low cutoffs in a similar manner so that
we do not include in-between pairs in our designated pseudotruth data sets. We use
these “designated” pseudotruth data sets in a semisupervised learning procedure that is
nearly identical to the semisupervised procedure where we have actual truth data. A key
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Table 9
Pseudotruth data with actual error rates

Matches Nonmatches Other

A × B pairs 8817 (0.008) 98257 (0.001) 9231 (0.136)

difference from the corresponding procedure with actual truth data is that the sample
of labeled pairs is concentrated in the difficult-to-classify in-between region where, in
the pseudotruth situation, we have no way to designate comparable labeled pairs. The
sizes of the pseudotruth data is given in Table 9. The errors associated with the artificial
pseudotruth are given in parentheses following the counts. The Other class gives counts
of the pairs and proportions of true matches that are not included in the pseudotruth set
of pairs. In the Other class, the proportions of matches vary somewhat and would be
difficult to determine without training data.

We determine how accurately we can estimate the lower cumulative distributions of
matches and the upper cumulative distribution of nonmatches. This corresponds to the
overlap region of the curves of matches and nonmatches. If we can accurately estimate
these two tails of distributions, then we can accurately estimate error rates at differing
levels. Our comparisons consist of a set of figures in which we compare a plot of the
cumulative distribution of estimates of matches versus the true cumulative distribution
with the truth represented by the 45◦ line. We also do this for nonmatches. As the plots
get closer to the 45◦ lines, the estimates get closer to the truth.

Our primary results are from using the CI model and “semisupervised” methods of
this chapter with the CI model and actual semisupervised methods of Winkler (2002).
With our pseudotruth data, we obtain the best sets of estimates of the bottom 30% tails
of the curve of matches and the top 5% tails of nonmatches with CI and λ = 0.2.
Figures 2A and 2B illustrate the set of curves that provide quite accurate fits. The
45◦ line represents the truth whereas the curve represents the cumulative estimates of
matches and nonmatches for the left and right tails, respectively. Although we looked
at results for λ = 0.1, 0.5, and 0.8 and various interactions models, the results under CI
were the best with λ = 0.2. We also looked at several different ways of construct-
ing the pseudotruth data. Additionally, we considered other pairs of files in which
all of the error-rates estimates were better (closer to the 45◦ line) than those for the
pair of files given in Fig. 2a.

We can use the model given in this section (essentially the same as in Winkler 2000;
2002) and the associated EM software to obtain all of the EM estimates that are used in
this chapter. In each situation, the inputs will vary significantly.

4.2. Adjusting analyses for linkage error

Adjusting statistical analyses for linkage error is clearly a statistical problem. We briefly
provide background and describe issues. We wish to match two files A = (aij) and
B = (bkl) using name, address, and other quasi-identifying information. We would like
to examine joint relationships between a-variables and b-variables on A ∩ B. We can
examine the joint relationships if matching error is very low or we have a model for
adjusting for matching error. We consider the simplest situation of ordinary regression
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Fig. 2a. Estimates versus truth, file A cumulative matches, tail of distribution independent EM,
lambda = 0.2.

where one file provides an independent x-variable and the other file provides the depen-
dent y-variable associated with the model

Y = βX + ε (16)

where ε is suitable normal noise with mean 0 and constant variance σ2. We assume that
we use all n A records and all pairs to which it can be linked. We wish to use (Xi, Yi)
but must use (Xi, Zi) where Zi is the observed y-variable that may or may not be from
the correct B record. For i = 1, . . . , n,

Zi =
{
Yi with probability pi,

Yj with probability qij for j �= i,

where pi + �jqij = 1.
The probability pi of matching the correct record may be 0 or 1. We define hi = 1−pi

and divide the set of pairs into n mutually exclusive classes. The classes are determined
by the records from one of the files. Each class consists of the independent x-variable
Xi, the true value of the dependent y-variable, the values of the y-variables from the
second file to which the record in the first file containing Xi have been paired, and the
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Fig. 2b. Estimates versus truth, file A cumulative nonmatches, tail of distribution independent EM,
lambda = 0.2.

computer matching weights (scores). Under an assumption of one-to-one matching, for
each i = 1, . . . , n, there exists at most one j such that qij > 0. We let ϕ be define by
ϕ(i) = j.

Under the model, we observe

E(Z) = (1/n)�iE(Z|i) = (1/n)�i(Yipi + �jYjqij)

= (1/n)�iYi + (1/n)�i(Yi(−hi) + Yϕ(i)hi) (17)

= Y + B.

As each Xi, i = 1, . . . , n, can be paired with either Yi or Yϕ(i), the second equality
in (17) represents 2n points. Similarly, we can represent σzy in terms of σxy and a bias
term Bxy and σ2

z in terms of σ2
y and a bias terms Byy. We neither assume that the bias

terms have expectation zero nor that they are uncorrelated with the observed data. The
advantage of the adjustments using equations like (17) is that the estimated coefficient
β̂xy between y and x is increased to a value close to the true value β.

In the simulations of Scheuren and Winkler (1993), having reasonable estimates of the
probabilities pi and qij from the methods and software of Belin and Rubin (1995) were
crucial to the application. Scheuren and Winkler showed that their adjustment methods
could work well in a few situations when the probabilities pi and qij were known



376 W. E. Winkler

0.90

0.92

0.94

0.96

0.98

1.00

1.02

1.04

22 0

A
A

A

A

A

A

A
A

A

A
A

8642
Cumulative weight classes

R
el

at
iv

e 
bi

as
Estimated probabilities, adjusted

Fig. 3a. Relative bias of beta coefficients using the Scheuren–Winkler adjustment procedure.

and noted that, in many situations, the methods of Belin and Rubin could not supply
reasonable estimates. Figure 3 illustrates the relative bias of the regression coefficient
(i.e., relative bias = β̂xy/β) using the adjustment procedures and with the observed
data, respectively. The quasi-identifying data are similar to the data of the example of
Section 2.4. The curves of nonmatches and matches, however, are much closer together
than with the curves of Fig. 1. Each plot uses all points above a certain matching weight.
As we move from right to left, more pairs are associated with each plot. As the matching
error increases with lower matching weights, we expect the plots from the observed
data to show progressively more bias. Although we do not show the corresponding
plots when the true probabilities are used, they are similar to those given in Fig. 3. The
similarity indicates the reasonable quality of the estimates of the probabilities pi and qij

given by the Belin–Rubin procedure.
Lahiri and Larsen (2005) extended the methods of Scheuren and Winkler under the

assumption that the values of the probabilities pi and qij were known. In their simula-
tions, they were able to show that their methods substantially outperformed the methods
of Scheuren and Winkler. A crucial issue related to applying the methods of Lahiri and
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Larsen (2005) and Scheuren and Winkler (1993) is having suitable methods of esti-
mating the probabilities pi and qij . Winkler (2006b) provides an alternative method
for estimating the probabilities pi and qij that should hold in more situations than the
method of Belin and Rubin (1995). None of the methods for estimating the probabil-
ities pi and qij will work in situations where the curves of matches and nonmatches
(analogous to Fig. 1) overlap substantially. The curves overlap with poor quality person
lists and with almost all agriculture and business lists.

Scheuren and Winkler (1997) provided methods for both improving the matching
(i.e., causing the curves of matches and nonmatches to pull apart) in a situation similar
to that of Scheuren and Winkler (1993). In their situation, the name and address matching
had far more typographical error than in the earlier work and curves similar to Fig. 1
almost totally overlapped. Using high-weight pairs from the initial match (approximately
0.5% of all pairs above a certain matching weight), they were able to get an initial guess
y = β̂x for the relationship between x and y using the ideas of Scheuren and Winkler
(1993). With this initial guess for the regression model, they created a new variable
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pred(y) = β̂x that they put in the file containing the x-variable. They then developed
an additional metric for comparing the y-variable with the predicted y-variable pred(y)

that they added to the matching software. When they repeated the matching with name,
address, and (y, pred(y)), they observed a substantial improvement.

Figure 4 illustrates the improvement. In the first matching pass, determining the
regression relationship with all pairs above a certain point is effectively impossible. The
false matches (given by “o”) overwhelm the true matches (given by “*”). After addition
of (y, pred(y)) comparison, the matching improves as shown in Fig. 4B where there is
substantially smaller proportion of false matches. The true underlying beta coefficient
is approximately 5.
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Fig. 4a. (A) Poor matching scenario, 1st pass. All false & 5% true matches, observed data, highoverlap 1104
points, beta = 2.47, R-square = 0.07.
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Fig. 4b. (B) Poor matching scenario, 2nd pass. All false & 5% true matches, observed data, highoverlap 650
points, beta = 4.75, R-square = 0.33.

4.3. Speeding up record linkage

The issue of speed affects larger matching problems in which files with 10 million or
more records are compared.At present, the fastest methods are BigMatch (Winkler et al.,
2008) that have been production tested for use in the 2010 Decennial Census. Details of
the BigMatch technology are given in Winkler (2006a) or Yancey (2004). There are two
key improvements. First, the larger file of the two files being matched is never sorted. In
traditional record linkage, pairs of files are successively sorted and matched according
to different blocking criteria. If 10 blocking passes are used, then BigMatch eliminates
10 sorts of the larger file. Second, BigMatch uses a very efficient retrieval/comparison
mechanism for comparing pairs of records according to the different blocking criteria.
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The retrieval/comparison mechanism is three times as fast as inverted index procedures
that are widely used in computer science.

BigMatch software matches 1017 pairs (300 million × 300 million) records in 63
hours using 40 processors on a 64-processor SGI Linux machine. Using seven blocking
criteria, the software performs detailed computation on only 1012 pairs. Winkler (2004)
provides methods for estimating the number of matches that are missed by a set of
blocking criteria. BigMatch software is 40–50 times as fast as recent parallel software
(Kawai et al., 2006; Kim and Lee, 2007), at least 10 times as fast as other sequential
software being researched (e.g., Chaudhuri et al., 2003), and possibly 80 times as fast as
commercial Vality-suite software from IBM. It nearly maintains the accuracy of earlier
software (Winkler and Thibaudeau, 1991).

5. Concluding remarks

This chapter covers modern computerized record linkage procedures that are used for
removing duplicates from lists and for improving coverage in a list by updating it with
external lists. It is somewhat remarkable how much these modern methods improve
accuracy of lists in comparison to ad hoc methods that are still in wide-spread use. As
observed by Herzog et al. (2007) and others, duplication and lack of coverage in the list
frame can bias estimates (both from sampling and censuses) more than any other source
of error.
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Statistical Disclosure Control for Survey Data

Chris Skinner

1. Introduction

1.1. The problem of statistical disclosure control

Survey respondents are usually provided with an assurance that their responses will be
treated confidentially. These assurances may relate to the way their responses will be
handled within the agency conducting the survey or they may relate to the nature of
the statistical outputs of the survey as, for example, in the “confidentiality guarantee”
in the United Kingdom (U.K.) National Statistics Code of Practice (National Statistics,
2004, p. 7) that “no statistics will be produced that are likely to identify an individual.”
This chapter is concerned with methods for ensuring that the latter kinds of assurances
are met. Thus, in the context of this chapter, statistical disclosure control (SDC) refers
to the methodology used, in the design of the statistical outputs from the survey, for
protecting the confidentiality of respondents’ answers. Methods relating to the first kind
of assurance, for example, computer security and staff protocols for the management of
data within the survey agency, fall outside the scope of this chapter.

There are various kinds of statistical outputs from surveys. The most traditional
are tables of descriptive estimates, such as totals, means, and proportions. The release
of such estimates from surveys of households and individuals have typically not been
considered to represent a major threat to confidentiality, in particular because of the pro-
tection provided by sampling. Tabular outputs from the kinds of establishment surveys
conducted by government have, however, long been deemed risky, especially because
of the threat of disclosure of information about large businesses in cells of tables which
are sampled with a 100% sampling fraction. SDC methods for such tables have a long
history and will be outlined in Section 2.

Although the traditional model of delivering all the estimates from a survey in a
single report continues to meet certain needs, there has been increasing demand for more
flexible survey outputs, often for multiple users, where the set of population parameters
of interest is not prespecified. There are several reasons why it may not be possible to
prespecify all the parameters. Data analysis is an iterative process, and what analyses
are of most interest may only become clear after initial exploratory analyses of the data.
Moreover, given the considerable expense of running surveys, it is natural for many
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commissioners of surveys to seek to facilitate the use of the data by multiple users.
But it is usually impossible to prespecify all possible users and their needs in advance.
A natural way to provide flexible outputs from a survey to address such needs is to make
the survey microdata available, so that users can carry out the statistical analyses that
interest them.

However, the release of such microdata raises serious confidentiality protection
issues. Of course, statistical analyses of survey data do not require that the identities of
the survey units are known. Names, addresses, and contact information for individuals
or establishment can be stripped from the data to form an anonymized microdata file.
The problem, however, is that such basic anonymization is often insufficient to pro-
tect confidentiality, and therefore, it is necessary to use one of a range of alternative
approaches to SDC and this will be discussed further in Section 3.

1.2. Concepts of confidentiality, disclosure, and disclosure risk

To be precise about what is meant by “protecting confidentiality” requires discussion of
definitions. These usually involve the notion of a hypothetical intruder who might seek to
breach confidentiality. There are thus three key parties: (1) the respondent who provides
the data, (2) the agency which collects the data, releases statistical outputs, and designs
the SDC strategy, and (3) the hypothetical intruder who has access to these outputs
and seeks to use them to disclose information about the respondent. One important
notion of disclosure is identity disclosure or identification, which would occur if the
intruder linked a known individual (or other unit) to an individual microdata record or
other element of the statistical output. Another important notion is attribute disclosure,
which would occur if the intruder could determine the value of some survey variable
for an identified individual (or other unit) using the statistical output. More generally,
prediction disclosure would occur if the intruder could predict the value of some survey
variable for an identified individual with some uncertainty. When assessing the potential
for disclosure for a particular statistical output, it is usual to refer to the disclosure risk.
This might be defined as the probability of disclosure with respect to specified sources
of uncertainty. Or the term might be used loosely to emphasize not only the uncertainty
about potential disclosure but also the potential harm that might arise from disclosure
(Lambert, 1993). The confidentiality of the answers provided by a respondent might
be said to be protected if the disclosure risk for this respondent and the respondent’s
answers is sufficiently low. In this chapter, disclosure risk is discussed in more detail
in Sections 2 and 3. For further discussion of definitions of disclosure, see Duncan and
Lambert (1986, 1989) and Skinner (1992).

1.3. Approaches to protecting confidentiality

If the disclosure risk is not deemed to be sufficiently low, then it will be necessary to use
some method to reduce the risk. There are broadly two approaches, which are referred to
here as safe setting and safe data (Marsh et al., 1994). The safe setting approach imposes
restrictions on the set of possible users of the statistical output and/or on the ways that the
output can be used. For example, users might be required to sign a licensing agreement
or might only be able to access microdata by visiting a secure laboratory or by submitting
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requests remotely (National Research Council, 2005). The safe data approach, on the
other hand, involves some modification to the statistical output. For example, the degree
of geographical detail in a microdata file from a national social survey might be limited
so that no area containing less than 100,000 households is identified. In this chapter,
we focus on the safe data approach and generally refer to methods for modifying the
statistical output as SDC methods.

1.4. SDC methods, utility, and data quality

SDC methods vary according to the form of the statistical output. Some simple
approaches are as follows:

– Reduction of detail, for example, the number of categories of a categorical variable
might be reduced in a cross-classified table or in microdata.

– Suppression, for example, the entry in a table might be replaced by an asterisk,
indicating that the entry has been suppressed for confidentiality reasons.

In each of these cases, the SDC method will lead to some loss of information for the
user of the statistical output. Thus, the method will reduce the number of population
parameters for which a user can obtain survey estimates. Other kinds of SDC methods
might not affect the number of parameters which can be estimated but may affect the
quality of the estimates that can be produced. For example, if random noise is added to an
income variable to protect confidentiality, then this may induce bias or variance inflation
in associated survey estimates. The general term utility may be used to cover both the
information provided by the statistical outputs, for example, the range of estimates or
analyses which can be produced, and the quality of this information, for example, the
extent of errors in these estimates. It should, of course, be recognized that survey data
are subject to many sources of error, even prior to the application of SDC methods,
and the impact of SDC methods on data quality therefore needs to be considered in this
context.

Generally, utility needs to be considered from the perspective of a user of the sta-
tistical outputs, who represents a key fourth party to add to the three parties referred to
earlier: the respondent, the agency, and the intruder.

1.5. SDC as an optimization problem: the risk-utility trade-off

The key challenge in SDC is how to deal with the trade-off between disclosure risk
and utility. In general, the more the disclosure risk is reduced by an SDC method, the
lower will be the expected utility of the output. This trade-off may be formulated as
an optimization problem. Let D be the (anonymized) survey data and let f(D) be the
statistical output, resulting from the use of an SDC method. Let R[f(D)] be a measure of
the disclosure risk of the output, and let U[f(D)] be a measure of the utility of the output.
Then, the basic challenge of SDC might be represented as the constrained optimization
problem:

for given D and ε, find an SDC method, f(.), which

maximizes U[f(D)], subject to R[f(D)] < ε.
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The elements of this problem need some clarification:

f(.) : the SDC method—a wide variety of these have been proposed and we shall
refer to some of these in this chapter;

R(.) : the disclosure risk function—we shall discuss ways in which this function
may be defined; this is certainly not straightforward, for example, because of
its dependence on assumptions about the intruder and because of the challenge
of combining the threats of disclosure for multiple respondents into a scalar
function;

U(.) : the utility function—this will also not be straightforward to specify as a scalar
function, given the potential multiple uses of the output;

ε : the maximum acceptable risk—in principle, one might expect the agency to pro-
vide this value in the light of its assurances to respondents. However, in practice,
agencies find it very difficult to specify a value of ε, other than zero, that is, no
disclosure risk. Unfortunately, for most definitions of disclosure risk, the only way
to achieve no disclosure risk is by not releasing any output and this is rarely a
solution of interest!

Given these difficulties in specifying R(.) and U(.) as scalar functions and in specify-
ing a value for ε, the above optimization problem serves mainly as conceptual motiva-
tion. In practice, different SDC methods can be evaluated and compared by considering
the values of alternative measures of risk and utility. For given measures of each, it can
sometimes be useful to construct an RU map (Duncan et al., 2001), where a measure
of risk is plotted against a measure of utility for a set of candidate SDC methods. The
points on this map are expected to display a general positive relationship between risk
and utility, but one might still find that, for given values of risk, some methods have
greater utility than others and thus are to be preferred. This approach avoids having to
assume a single value of ε.

2. Tabular outputs

2.1. Disclosure risk in social surveys and the protection provided by sampling

The main developments in SDC methods for tabular outputs have been motivated by
the potential risks of disclosure arising when 100% sampling has been used, such as in
censuses or in administrative data. Frequency tables based upon such data sources may
often include small counts, as low as zero or one, for example, in tables of numbers
of deaths by area by cause of death. Such tables might lead to identity disclosure, for
example, if it is public knowledge that someone has died, then it might be possible to
identify that person as a count of one in a table of deaths using some known characteristics
of that person. Attribute disclosure might also occur. For example, it might be possible
to find out the cause of the person’s death if the table cross-classifies this cause by other
variables potentially known to an intruder.

In social surveys, however, the use of sampling greatly reduces the risks of such
kinds of disclosure for two reasons. First, the presence of sampling requires different
kinds of statistical outputs. Thus, the entries in tables for categorical variables tend to
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be weighted proportions (possibly within domains defined by rows or columns) and not
unweighted sample counts. Even if a user of the table could work out the cell counts
(e.g., because the survey uses equal weights and the sample base has been provided),
the survey agency will often ensure that the published cells do not contain very small
counts, where the estimates would be deemed too unreliable due to sampling error. For
example, the agency might suppress cell entries where the sample count in the cell falls
below some threshold, for example, 50 persons in a national social survey. This should
prevent the kinds of situations of most concern with 100% data. Sometimes, agencies
use techniques of small area estimation (see Chapters 31 and 32) in domains with small
sample counts and these techniques may also act to reduce disclosure risk.

Second, the presence of sampling should reduce the precision with which an intruder
could achieve predictive disclosure. For example, suppose that an intruder could find
out from a survey table that, among 100 respondents falling into a certain domain,
99 of them have a certain attribute and suppose that the intruder knows someone
in the population who falls into this domain. Then, the intruder cannot predict that
this person has the attribute with probability 0.99, since this person need not be a
respondent and prediction is subject to sampling uncertainty. This conclusion depends,
however, on the identities of the survey respondents being kept confidential by the
agency, preventing the intruder knowing whether the known person is a respondent,
referred to as response knowledge by Bethlehem et al. (1990). In general, it seems
very important that agencies do adopt this practice since it greatly reduces disclo-
sure risk while not affecting the statistical utility of the outputs. In some exceptional
cases, it may be difficult to achieve this completely. For example, in a survey of chil-
dren it will usually be necessary to obtain the consent of a child’s parent (or other
adult) in order for the child to take part in the survey. The child might be assured that
their responses will be kept confidential from their parent. However, when examining
the outputs of the survey, the parent (as intruder) would know that their child was a
respondent.

For the reasons given above, disclosure will not generally be of concern in the release
of tables of estimates from social surveys, where the sample inclusion probabilities are
small (say never exceeding 0.1). See also Federal Committee on Statistical Methodology
(2005, pp. 12–14).

2.2. Disclosure risk in establishment surveys

A common form of output from an establishment survey consists of a table of estimated
totals, cross-classified by characteristics of the establishment. Each estimate takes the
form Ŷc = ∑

s wiIciyi, where wi is the survey weight, Ici is a 0–1 indicator for cell c

in the cross-classification, and yi is the survey variable for the ith establishment in the
sample s. For example, yi might be a measure of output and the cells might be formed
by cross-classifying industrial activity and a measure of size.

The relevant definition of disclosure in such a setting will often be a form of prediction
disclosure. Prediction disclosure for a specific cell c might be defined under the following
set-up and assumptions:

– the intruder is one of the establishments in the cell which has the aim of predicting
the value yi for one of the other establishments in the cell or, more generally, the
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intruder consists of a coalition of m of the Nc establishments in the cell with the
same predictive aim;

– the intruder knows the identities of all establishments within the cell (since, e.g.,
they might represent businesses competing in a similar market).

Given such assumptions, prediction disclosure might be said to occur if the intruder
is able to predict the value yi with a specified degree of precision. To clarify the notion
of precision, we focus in the next subsection on the important case where the units in
the cell all fall within completely enumerated strata. Thus, wi = 1 when Ici = 1 so that
Ŷc =∑Uc

yi, where Uc is the set of all establishments in cell c and Nc is the size of Uc.
In this case, the intruder faces no uncertainty due to sampling and this might, therefore,
be treated as the worst case.

2.2.1. Prediction disclosure in the absence of sampling
In the absence of sampling, prediction is normally considered from a deterministic
perspective and is represented by an interval (between an upper and lower bound)
within which the intruder knows that a value yi must lie. The precision of prediction
is represented by the difference between the true value and one of the bounds. It is
supposed that the intruder undertakes prediction by combining prior information with
the reported value Ŷc.

One approach to specifying the prior information is used in the prior-posterior rule
(Willenborg and de Waal, 2001), also called the pq rule, which depends upon two
constants, p and q, set by the agency. The constant q is used to specify the precision of
prediction based upon the prior information alone. Under the pq rule, it is assumed that
intruder can infer the yi value for each establishment in the cell to within q%. Thus, the
agency assumes that, prior to the table being published, the intruder could know that a
value yi falls within the interval [(1 − q/100)yi, (1 + q/100)yi]. The combination of
this prior information with the output Ŷc = ∑

Uc
yi can then be used by the intruder to

obtain sharper bounds on a true value. For example, let y(1) ≤ y(2) ≤ . . . ≤ y(Nc) be
the order statistics and suppose that the intruder is the establishment with the second
largest value, y(Nc−1). Then, this intruder can determine an upper bound for the largest
value y(Nc) by subtracting its own value y(Nc−1) together with the sum of the lower
bounds for y(1), . . . , y(Nc−2) from Ŷc. The precision of prediction using this upper bound
is given by the difference between this upper bound and the true value y(Nc), which is
(q/100)

∑Nc−2
i=1 y(i). This cell would be called sensitive under the pq rule, that is, judged

disclosive, if this difference was less than p% of the true value, that is, if

(p/100)y(Nc) − (q/100)

Nc−2∑
i=1

y(i) > 0. (1)

The expression on the left-hand side of (1) is a special case of a linear sensitivity
measure, which more generally takes the form Rc = ∑Nc

i=1 aiy(i), where the ai are speci-
fied weights. The cell is said to be sensitive if Rc > 0. In this case, prediction disclosure
would be deemed to occur. A widely used special case of the pq rule is the p% rule,
which arises from setting q = 100, that is, no prior information is assumed. Another
commonly used linear sensitivity measure arises with the (n, k) or dominance rule. See
Willenborg and de Waal (2001), Cox (2001), Giessing (2001), and Federal Committee
on Statistical Methodology (2005) for further discussion.
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2.2.2. Prediction disclosure in the presence of sampling
More generally, all cell units may not be completely enumerated. In this case, Ŷc will be
subject to sampling error and, in general, this will lead to additional disclosure protection,
provided that the intruder does not know whether other establishments (other than those
in the coalition) are sampled or not. The definition of risk in this setting appears to need
further research. Willenborg and de Waal (2001, Section 6.2.5) presented some ideas.
An alternative model-based stochastic approach might assume that before the release
of the table, the prior information about the yi can be represented by a linear regression
model depending upon publicly available covariate values xi with a specified residual
variance. The predictive distribution of yi given xi could then be updated using the
known value(s) of yi for the intruder and the reported Ŷc, which might be assumed to
follow the distribution Ŷc ∼ N[Yc, v(Ŷc)], where v(Ŷc) is the reported variance estimate
of Ŷc. Prediction disclosure could then be measured in terms of the resulting residual
variance in the prediction of yi.

2.3. SDC methods for tabular outputs

If a cell in a table is deemed sensitive, that is, the cell value represents an unacceptably
high disclosure risk, a number of SDC approaches may be used.

2.3.1. Redefinition of cells
The cells are redefined to remove sensitive cells, for example, by combining sensitive
cells with other cells or by combining categories of the cross-classified variables. This
is also called table redesign (Willenborg and de Waal, 2001).

2.3.2. Cell suppression
The value of a sensitive cell is suppressed. Depending upon the nature of the table and its
published margins, it may also be necessary to suppress the values of “complementary”
cells to prevent an intruder being able to deduce the value of the cell from other values
in the table. There is a large literature on approaches to choosing complementary cells
which ensure disclosure protection. See, for example, Willenborg and de Waal (2001),
Cox (2001), and Giessing (2001) and references therein.

2.3.3. Cell modification
The cell values may be modified in some way. It will generally be necessary to modify not
only the values in the sensitive cells but also values in some complementary nonsensitive
cells, for the same reason as in cell suppression. Modification may be deterministic, for
example, Cox et al. (2004), or stochastic, for example, Willenborg and de Waal (2001,
Section 9.2). A simple method is rounding, where the modified cell values are multiples
of a given base integer (Willenborg and de Waal, 2001, Chapter 9). This method is
more commonly applied to frequency tables derived from 100% data but can also be
applied to tables of estimated totals from surveys, where the base integer may be chosen
according to the magnitudes of the estimated totals. Instead of replacing the cell values
by single safe values, it is also possible to replace the values by intervals, defined by
lower and upper bounds (Salazar, 2003; Giessing and Dittrich, 2006). The method of
controlled tabular adjustment (Cox et al., 2004) determines modified cell values within
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such bounds so that the table remains additive and certain safety and statistical properties
are met.

2.3.4. Pretabular microdata modification
Instead of modifying the cell values, the underlying microdata may be perturbed, for
example, by adding noise, and then the table formed from the perturbed microdata
(Evans et al., 1998; Massell et al., 2006).

The statistical output from a survey will typically include many tables. Although
the above methods may be applied separately to each table, such an approach takes
no account of the possible additional disclosure risks arising from the combination
of information from different tables, in particular, from common margins. To protect
against such additional risks raise new considerations for SDC. Moreover, the set of
tables constituting the statistical output is not necessarily fixed, as in a traditional survey
report. With developments in online dissemination, there is increasing demand for the
generation of tables which can respond in a more flexible way to the needs of users. This
implies the need to consider SDC methods which not only protect each table separately
as above but also protect against the risk arising from alternative possible sequences of
released tables (see, e.g., Dobra et al., 2003).

3. Microdata

3.1. Assessing disclosure risk

We suppose the agency is considering releasing to researchers an anonymized micro-
data file, where the records of the file correspond to the basic analysis units and each
record contains a series of survey variables. The record may also include identifiers for
higher level analysis units, for example, household identifiers where the basic units are
individuals, as well as information required for survey analysis such as survey weights
and primary sampling unit (PSU) identifiers.

We suppose that the threat of concern is that an intruder may link a record in the file
to some external data source of known units using some variables, which are included
in both the microdata file and the external source. These variables are often called key
variables or identifying variables. There are various ways of defining disclosure risk in
this setting. See, for example, Paass (1988) and Duncan and Lambert (1989). A common
approach, often motivated by the nature of the confidentiality pledge, is to consider a
form of identification risk (Bethlehem et al., 1990; Reiter, 2005), concerned with the
possibility that the intruder will be able to determine a correct link between a microdata
record and a known unit. This definition of risk will only be appropriate if the records
in the microdata can meaningfully be said to be associated with units in the population.
When microdata is subject to some forms of SDC, this may not be the case (e.g., if the
released records are obtained by combining original records) and in this case, it may
be more appropriate to consider some definition of predictive disclosure (e.g., Fuller,
1993) although we do not pursue this further here.

A number of approaches to the assessment of identification risk are possible, but
all depend importantly upon assumptions about the nature of the key variables. One
approach is to conduct an empirical experiment, matching the proposed microdata
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against another data source, which is treated as a surrogate for the data source held
by the intruder. Having made assumptions about the key variables, the agency can use
record linkage methods (see Chapter 14), which it is plausible would be available to
an intruder, to match units between the two data sets. Risk might then be measured
in terms of the number of units for which matches are achieved together with a mea-
sure of the match quality (in terms of the proportions of false positives and negatives).
Such an experiment, therefore, requires that the agency has information which enables
it to establish precisely which units are in common between the two sources and which
are not.

The key challenge in this approach is how to construct a realistic surrogate intruder
data set, for which there is some overlap of units with the microdata and the nature
of this overlap is known. On some occasions a suitable alternative data source may be
available. Blien et al. (1992) provide one example of a data source listing people in
certain occupations. Another possibility might be a different survey undertaken by the
agency, although agencies often control samples to avoid such overlap. Even if there
is overlap, say with a census, determining precisely which units are in common and
which are not may be resource intensive. Thus, this approach is unlikely to be suitable
for routine use.

In the absence of another data set, the agency may consider a reidentification experi-
ment, in which the microdata file is matched against itself in a similar way, possibly after
the application of some SDC method (Winkler, 2004). This approach has the advantage
that it is not model-dependent, but it is possible that the reidentification risk is overes-
timated if the disclosure protection effects of sampling and measurement error are not
allowed for in a realistic way.

In the remainder of Section 3, we consider a third approach, which again only requires
data from the microdata file, but makes theoretical assumptions, especially of a modeling
kind, to estimate identification risk. As for the reidentification experiment, this approach
must make assumptions about how the key variables are measured in the microdata and
by the intruder on known units using external information.Asimplifying but “worst case”
assumption is that the key variables are recorded in identical ways in the microdata and
externally. We refer to this as the no measurement error assumption, since measurement
error in either of the data sources may be expected to invalidate this assumption. If at
least one of the key variables is continuous and the no measurement error assumption
is made, then an intruder who observes an exact match between the values of the key
variables in the microdata and on the known units could conclude with probability one
that the match is correct, in other words, the identification risk would be one. If at
least one of the key variables is continuous and it is supposed that measurement error
may occur, then the risk will generally be below one. Moreover, an exact matching
approach is not obviously sensible and a broader class of methods of record linkage
might be considered. See Fuller (1993) for the assessment of disclosure risk under some
measurement error model assumptions.

In practice, variables are rarely recorded in a continuous way in social survey micro-
data. For example, age would rarely be coded with more detail than 1 year bands.
And from now on, we restrict attention to the case of categorical key variables. For
simplicity, we restrict attention to the case of exact matching, although more gen-
eral record linkage methods could be used. We focus on a microdata file, where the
only SDC methods which have been applied are recoding of key variables or random
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(sub)sampling. We comment briefly on the impact of other SDC methods on risk in
Section 3.4.

3.2. File-level measures of identification risk

We consider a finite population U of N units (which will typically be individuals) and
suppose the microdata file consists of records for a sample s ⊂ U of size n ≤ N. We
assume that the possibility of statistical disclosure arises if an intruder gains access to
the microdata and attempts to match a microdata record to external information on a
known unit using the values of m categorical key variables X1, . . . , Xm. (Note that s and
X1, . . . , Xm are defined after the application of (sub)sampling or recoding, respectively,
as SDC methods to the original microdata file.)

Let the variable formed by cross-classifying X1, . . . , Xm be denoted by X, with
values denoted k = 1, . . . , K, where K is the number of categories or key values of
X. Each of these key values corresponds to a possible combination of categories of
the key variables. Under the no measurement error assumption, identity disclosure is
of particular concern if a record is unique in the population with respect to the key
variables. A record with key value k is said to be population unique if Fk = 1, where Fk

denotes the number of units in U with key value k. If an intruder observes a match with
a record with key value k, knows that the record is population unique and can make the
no measurement error assumption then the intruder can infer that the match is correct.

As a simple measure of disclosure risk, we might therefore consider taking some
summary of the extent of population uniqueness. In survey sampling, it is usual to
define parameters of interest at the population level and this might lead us to define our
measure as the population proportion N1/N, where Nr =∑kI(Fk = r) is the population
frequencies of frequencies, r = 1, 2, . . . . From a disclosure risk perspective, however,
we are interested in the risk for a specific microdata file it is natural to allow the risk
measure to be sample dependent. Thus, we might expect the risk to be higher if a sample
is selected with a high proportion of unusual identifiable units than for a sample where
this proportion is lower. Thus, a more natural file-level measure is the proportion of
population uniques in the sample. Let the sample counterpart of Fk be denoted by fk,
then this measure can be expressed as follows:

Pr(PU) =
∑

k

I(fk = 1, Fk = 1)/n. (2)

It could be argued, however, that the denominator of this proportion should be made
even smaller, since the only records which might possibly be population unique are ones
that are sample unique (since fk ≤ Fk), that is, have a key value k such that fk = 1. Thus,
a more conservative measure would be to take

Pr(PU|SU) =
∑

k

I(fk = 1, Fk = 1)/n1, (3)

where n1 is the number of sample uniques and, more generally, nr = ∑
kI(fk = r)

is the sample frequencies of frequencies. For further consideration of the proportion of
sample uniques that are population unique, see Fienberg and Makov (1998) and Samuels
(1998).
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It may be argued (e.g., Skinner and Elliot, 2002) that these measures may be
overoptimistic, since they only capture the risk arising from population uniques and
not from other records with Fk ≥ 2. If an intruder observes a match on a key value with
frequency Fk, then (subject to the no measurement error assumption) the probability
that the match is correct is 1/Fk under the exchangeability assumption that the intruder
is equally likely to have selected any of the Fk units in the population. An alternative
measure of risk is then obtained by extending this notion of probability of correct match
across different key values.Again, on worst case grounds, it is natural to restrict attention
to sample uniques. One measure arises from supposing that the intruder starts with the
microdata, is equally likely to select any sample unique and then matches this sample
unique to the population. The probability that the resulting match is correct is then the
simple average of 1/Fk across sample uniques:

θs =
[∑

k

I(fk = 1)/Fk]/n1

]
. (4)

Another measure is

θU =
∑

k

I(fk = 1)
/∑

k

FkI(fk = 1), (5)

which is the probability of a correct match under a scenario where the intruder searches
at random across the population and finds a match with a sample unique.

All the above four measures are functions of both the fk and the Fk. The agency
conducting the survey will be able to determine the sample quantities fk from the
microdata but the population quantities Fk will generally be unknown. It is, therefore,
of interest to be able to make inference about the measures from sample data.

Skinner and Elliot (2002) showed that, under Bernoulli sampling with inclusion pro-
bability π, a simple design-unbiased estimator of θU is θ̂U = n1/[n1 + 2(π−1 − 1)n2].
They also provided a design consistent estimator for the asymptotic variance of
θ̂U − θU . Skinner and Carter (2003) showed that a design-consistent estimator of θU

for an arbitrary complex design is θ̂U = n1/[n1 +2(π−1
2 −1)n2], where π−1

2 is the mean
of the inverse inclusion probabilities π−1

i for units i with key values for which fk = 2.
They also provided a design-consistent estimator of the asymptotic variance of θ̂U − θU

under Poisson sampling.
Such simple design-based inference does not seem to be possible for the other

three measures in (2)–(4). Assuming a symmetric design, such as Bernoulli sampling,
we might suppose that n1, n2, . . . represent sufficient statistics and seek design-based
moment-based estimators of the measures by solving the equations:

E(nr) =
∑

t

NtPrt, r = 1, 2, . . . ,

where the coefficients Prt are known for sampling schemes, such as simple random
sampling or Bernoulli sampling (Goodman, 1949). The solution of these equations for
Nt with E(nr) replaced by nr gives unbiased estimators of K and N1 under apparently
weak conditions (Goodman, 1949). Unfortunately, Goodman found that the estimator
of K can be “very unreasonable” and the same appears to be so for the corresponding
estimator of N1. Bunge and Fitzpatrick (1993) reviewed approaches to estimating K and
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discussed these difficulties. Zayatz (1991) and Greenberg and Zayatz (1992) proposed
an alternative “nonparametric” estimator of N1 but this appears to be subject to serious
upward bias for small sampling fractions (Chen and Keller-McNulty, 1998).

One way of addressing these estimation difficulties is by making stronger modeling
assumptions, in particular by assuming that the Fk are independently distributed as
follows:

Fk|λk ∼ Po(λk) (6)

where the λk are independently and identically distributed, that is, that the Fk follow
a compound Poisson distribution. A tractable choice for the distribution of λk is the
gamma distribution (Bethlehem et al., 1990) although it does not appear to fit well
in some real data applications (e.g., Chen and Keller-McNulty, 1998; Skinner et al.,
1994). A much better fit is provided by the log-normal (Skinner and Holmes, 1993).
Samuels (1998) discussed estimation of Pr(PU|SU) based on a Poisson-Dirichlet model.
A general conclusion seems to be that results can be somewhat sensitive to the choice of
model, especially as the sampling fraction decreases, and that θU can be more robustly
estimated than the other three measures.

3.3. Record-level measures of identification risk

A concern with file-level measures is that the principles governing confidentiality pro-
tection often seek to avoid the identification of any individual, that is require the risk to
be below a threshold for each record, and such aims may not adequately be addressed
by aggregate measures of the form (2)–(5). To address this concern, it is more natural
to consider record level measures, that is, measures which may take different values
for each microdata record. Such measures may help identify those parts of the sample
where risk is high and more protection is needed and may be aggregated to a file level
measure in different ways if desired (Lambert, 1993). Although record level measures
may provide greater flexibility and insight when assessing whether specified forms of
microdata output are “disclosive,” they are potentially more difficult to estimate than
file level measures.

A number of approaches have been proposed for the estimation of record level mea-
sures. For continuous key variables, Fuller (1993) showed how to assess the record level
probability of identification in the presence of added noise, under normality assump-
tions. See also Paass (1988) and Duncan and Lambert (1989). We now consider related
methods for categorical variables, following Skinner and Holmes (1998) and Elamir
and Skinner (2006).

Consider a microdata record with key value X. Suppose the record is sample unique,
that is, with a key value k for which fk = 1, since such records may be expected to
be most risky. Suppose the intruder observes an exact match between this record and a
known unit in the population. We make the no measurement error assumption so that
there will be Fk units in the population which potentially match the record. We also
assume no response knowledge (see Section 2.1). The probability that this observed
match is correct is

Pr(correct match | exact match, X = k, Fk) = 1/Fk, (7)
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where the probability distribution is with respect to the design under a symmetric
sampling scheme, such as simple random sampling or Bernoulli sampling. (Alterna-
tively, it could be with respect to a stochastic mechanism used by the intruder, which
selects any of the Fk units with equal probability). This probability is conditional on the
key value k and on Fk.

In practice, we only observe the sample frequencies fk and not the Fk. We, therefore,
integrate out over the uncertainty about Fk and write the measure as

Pr(correct match | exact match, X = k, fk) = E(1/Fk|k, fk = 1). (8)

This expectation is with respect to both the sampling scheme and a model generating
the Fk, such as the compound Poisson model in (6). An alternative measure, focusing
on the risk from population uniqueness, is

Pr(Fk = 1|k, fk = 1). (9)

The expressions in (8) and (9) may be generalized for any record in the microdata with
fk > 1. A difference between the probabilities in (8) and (9) and those in the previous
section is that here we condition on the record’s key value X = k. Thus, although we
might assume Fk|λk ∼ Po(λk), as in (6), we should like to condition on the particular
key value k when considering the distribution of λk. Otherwise, if the λk is identically
distributed as in the previous section, then we would obtain the same measure of risk
for all (sample unique) records. A natural model is a log-linear model:

log(λk) = zkβ, (10)

where zk is a vector of indicator variables representing the main effects and the interac-
tions between the key variables X1, . . . , Xm, and β is a vector of unknown parameters.

Expressions for the risk measures in (8) and (9) in terms of β are provided by Skinner
and Holmes (1998) and Elamir and Skinner (2006). Assumptions about the sampling
scheme are required to estimate β. Under Bernoulli sampling with inclusion probability
π, it follows from (6) that fk|λk ∼ Po(πλk). Assuming also (10), β may be estimated
by standard maximum likelihood methods. A simple extension of this argument also
applies under Poisson sampling where the inclusion probability πk may vary with respect
to the key variables, for example, if a stratifying variable is included among the key
variables. In this case, we have fk|λk ∼ Po(πkλk). Skinner and Shlomo (2008) discussed
methods for the specification of the model in (10). Skinner (2007) discussed the possible
dependence of the measure on the search method used by the intruder.

3.4. SDC methods

In this section, we summarize a number of SDC methods for survey microdata.

3.4.1. Transformation of variables to reduce detail
Categorical key variables may be transformed, in particular, by combining categories.
For example, the variable household size might be top coded by creating a single max-
imum category, such as 8+. Continuous key variables may be banded to form ordinal
categorical variables by specifying a series of cut-points between which the intervals
define categories. The protection provided by combining categories of key variables
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can be assessed following the methods in Sections 3.2 and 3.3. See also Reiter (2005).
Provided the transformation is clear and explicit, this SDC method has the advantage
that the reduction of utility is clear to the data user, who may suffer loss of information
but the validity of analyses is not damaged.

3.4.2. Stochastic perturbation of variables
The values of potential key variables are perturbed in a stochastic way. In the case
of continuous variables, perturbation might involve the addition of noise, analogous
to the addition of measurement error (Fuller, 1993; Sullivan and Fuller, 1989). In the
case of categorical variables, perturbation may consist of misclassification, termed the
Postrandomization Method (PRAM) by Gouweleeuw et al. (1998). Perturbation may
be undertaken in a way to preserve specified features of the microdata, for example, the
means and standard deviations of variables in the perturbed microdata may be the same
as in the original microdata, but in practice there will inevitably be unspecified features of
the microdata which are not reproduced. For example, the estimated correlation between
a perturbed variable and an unperturbed variable will often be downwardly biased if an
analyst uses the perturbed data but ignores the fact that perturbation has taken place.
An alternative is to provide users with the precise details of the perturbation method,
including parameter values, such as the standard deviation of the noise or the entries in
the misclassification matrix, so that they may “undo” the impact of perturbation when
undertaking their analyses. See, for example, Van den Hout and Van der Heijden (2002)
in the case of PRAM or Fuller (1993) in the case of added noise. In principle, this may
permit valid analyses although there will usually be a loss of precision and the practical
disadvantages are significant.

3.4.3. Synthetic microdata
This approach is similar to the previous approach, except that the aim is to avoid requir-
ing special methods of analysis. Instead, the values of variables in the file are replaced
by values generated from a model in a way that is designed for the analysis of the
synthetic data, as if it were the true data, to generate consistent point estimates (under
the assumption that the model is valid). The model is obtained from fitting to the orig-
inal microdata. To enable valid standard errors as well as consistent point estimators,
Raghunathan et al. (2003) proposed that multiple copies of the synthetic microdata are
generated in such a way that multiple imputation methodology can be used. See Reiter
(2002) for discussion of complex designs. Abowd and Lane (2004) discussed release
strategies combining remote access to one or more such synthetic microdata files with
much more restricted access to the original microdata in a safe setting.

3.4.4. Selective perturbation
Often concern focuses only on records deemed to be risky and it may be expected
that utility will be greater if only a subset of risk records is perturbed. In addition
to creating stochastically perturbed or synthetic values for only targeted records, it is
also possible just to create missing values in these records, called local suppression
by Willenborg and de Waal (2001), or both to create missing values and to replace
these by imputed values, called blank and impute by Federal Committee on Statistical
Methodology (2005). A major problem with such methods is that they are likely to
create biases if the targeted values are unusual. The data user will typically not be able
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to quantify these biases, especially when the records selected for blanking depend on the
values of the variable(s) which are to made missing. Reiter (2003) discussed how valid
inference may be conducted if multiple imputed values are generated in a specified way
for the selected records. He referred to the resulting data as partially synthetic microdata.

3.4.5. Record swapping
The previous methods focus on the perturbation of the values of the variables for all or
a subset of records. The method of record swapping involves, instead, the values of one
or more key variables being swapped between records. The choice of records between
which values are swapped may be controlled so that certain bivariate or multivariate
frequencies are maintained (Dalenius and Reiss, 1982) in particular by only swapping
records sharing certain characteristics (Willenborg and de Waal, 2001, Section 5.6).
In general, however, it will not be possible to control all multivariate relationships
and record swapping may damage utility in an analogous way to misclassification
(Skinner and Shlomo, 2007). Reiter (2005) discussed the impact of swapping on iden-
tification risk.

3.4.6. Microaggregation
This method (Defays and Anwar, 1998) is relevant for continuous variables, such as in
business survey microdata, and in its basic form consists of ordering the values of each
variable and forming groups of a specified size k (the first group contains the k smallest
values, the second group the next k smallest values, and so on). The method replaces the
values by their group means, separately for each variable. An advantage of the method
is that the modification to the data will usually be greatest for outlying values, which
might also be deemed the most risky. It is difficult, however, for the user to assess the
biasing impact of the method on analyses.

SDC methods will generally be applied after the editing phase of the survey, dur-
ing which data may be modified to meet certain edit constraints (see Chapter 9). The
application of some SDC methods may, however, lead to failure of some of these con-
straints. Shlomo and de Waal (2006) discussed how SDC methods may be adapted to
take account of editing considerations.

3.5. SDC for survey weights and other design information

Survey weights and other complex design information are often released with survey
microdata in order that valid analyses can be undertaken. It is possible, however, that such
design information may contribute to disclosure risk. For example, suppose a survey
is stratified by a categorical variable X with different sampling fractions in different
categories of X. Then, if the nature of the sampling design is published (as is common),
it may be possible for the intruder to determine the categories of X from the survey
weight. Thus, the survey design variable may effectively become a key variable. See de
Waal and Willenborg (1997) and Willenborg and de Waal (2001, Section 5.7) for further
discussion of how survey weights may lead to design variables becoming key variables.
Note that this does not imply that survey weights should not be released; it just means
that disclosure risk assessments should take account of what information survey weights
may convey. Willenborg and de Waal (2001, Section 5.7.3) and Mitra and Reiter (2006)
proposed some approaches to adjusting weights to reduce risk.
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In addition to the release of survey weights, it is common to release either stratum
or PSU labels or replicate labels, to enable variances to be estimated. These labels will
generally be arbitrary and will not, in themselves, convey any identifying information.
Nevertheless, as for survey weights, the possibility that they could be used to convey
information indirectly needs to be considered. For example, if the PSUs are defined by
areas for which public information is available, for example, a property tax rate, and the
microdata file includes area-level variables, then it is possible that these variables may
enable a PSU to be linked to a known area. As another example, suppose that a PSU is
an institution, such as a school, then school level variables on the microdata file, such
as the school enrolment size, might enable the PSU to be linked to a known institution.
Even for individual level microdata variables, it is possible that sample-based estimates
of the total or mean of such variables for a stratum, say, could be matched to published
values, allowing for sampling uncertainty.

A standard simple approach to avoiding releasing PSU or replicate identifiers is to
provide information on design effects or generalized variance functions instead. Such
methods are often inadequate, however, for the full range of uses of survey micro-
data (Yung, 1997). Some possible more sophisticated approaches include the use of
adjusted bootstrap replicate weights (Yung, 1997), adjusted pseudoreplicates or pseudo
PSU identifiers (Dohrmann et al., 2002), or combined stratum variance estimators
(Lu et al., 2006).

4. Conclusion

The development of SDC methodology continues to be stimulated by a wide range of
practical challenges and by ongoing innovations in the ways that survey data are used,
with no signs of diminishing concerns about confidentiality. There has been a tendency
for some SDC methods to be developed in somewhat ad hoc way to address specific
problems, and one aim of this chapter has been to draw out some principles and general
approaches which can guide a more unified methodological development. Statistical
modeling has provided one important framework for this purpose. Other fields with the
potential to influence the systematic development of SDC methodology in the future
include data mining, in particular methods related to record linkage and approaches to
privacy protection in computer science and database technology.
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Introduction to Part 3

Jack G. Gambino

National statistical offices (NSOs) conduct periodic population censuses and surveys
of households, businesses, and agricultural operations. Four of the chapters in Part 3
are devoted to these four areas. Two of the other three chapters cover what are usually
“private sector” endeavors, namely, opinion polls and marketing research. The remain-
ing chapter looks at environmental surveys, which here are literally surveys of the
environment, involving direct measurement, and not surveys of households and enter-
prises on environmental topics. The reader will find that, although there are substantial
differences in the various types of surveys covered in these chapters, there is also a
great deal of overlap in the underlying survey sampling methodology. In fact, the theory
covered in Part 1 of this volume is the statistical foundation for the types of surveys
discussed in Part 3. It is in this sense that Part 3 is on survey applications.

The complete survey process involves many more facets than we will cover in this
introduction and in the chapters themselves. We do not discuss survey financing, the
choice of variables of interest, concepts and definitions, and other “front-end” topics.
Nor do we discuss back-end topics such as data capture and dissemination. Our range
of topics goes from the choice of sampling frame to estimation, at least the parts where
survey statisticians play a key role.

1. Frames and designs

Achallenge common to the types of survey under consideration is the choice of sampling
frame. Traditional list frames and area frames are used by most types of surveys, the
only real difference being their prevalence: in many countries, business surveys and
household surveys are much more likely to use, respectively, a list frame and an area
frame. We see in Chapters 16, 20, and 22 that the use of telephone lists to create a
frame is common in opinion polls, marketing surveys, and NSO-run household surveys.
Chapter 22 by Francovic, Panagopoulos, and Shapiro includes some classic examples
of the bias that can result when such frames have uneven coverage of the population.
The use of more than one frame for a given survey, discussed in Part 1, is becoming more
common, both because of deficiencies in list frames and the high costs often associated
with the use of area frames.

The use of area frames is common for household surveys and for the types of environ-
mental survey discussed in Chapter 19. For agricultural surveys, the use of area frames
tends to decrease as the degree of consolidation of farm operations increases, that is, it
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is related to the relative importance of the traditional family farm. As Nusser and House
note in Chapter 18, surveys of small farms may be similar in design to household sur-
veys. Thus, in developing countries where family farms still dominate the agricultural
sector, this is the case. Conversely, in many developed countries, there has been tremen-
dous consolidation of farm operations, and as a result, a large proportion of agricultural
production is now truly the result of business operations. These businesses appear in
lists, such as business registers, and can therefore be surveyed like any other business.
However, in terms of numbers, there are still very many family farms. Thus, it seems
natural to use business survey methods for large agricultural enterprises and household
survey methods for small operations. Nusser and House discuss the challenges due to
this mix.

There is a relationship between frames and sampling units on the one hand and sample
designs on the other. List frames are often associated with stratified simple random
sampling (or something close to it); therefore, this is the type of design commonly used
for business surveys. Area frames, which are often used for household surveys and some
agricultural and environmental surveys, are often associated with multistage designs,
typically with PPS sampling. We also see this type of design in Nirel and Glickman’s
discussion, in Chapter 21, of the design of surveys for estimating census coverage errors
(over and undercounts), particularly those using a dual system estimator approach.

The choice of sampling units and sampling stages is strongly influenced by the nature
of the frame and by collection costs. These include the cost of maintaining selected units
(e.g., ensuring that the list of lower-level units within the selected higher-level ones is
reasonably complete and kept up to date) and, for surveys that conduct interviews in
person, the cost of interviewer travel. This is discussed in greater detail by Gambino
and Silva in Chapter 16.

In Chapter 19, Marker and Stevens discuss both traditional area frames, where the
boundaries of sampling units are defined using physical features such as roads and
rivers, and frames that may be unfamiliar to some survey statisticians. These include
the use of a grid to create a frame of units and frames based on data from a geographic
information system (GIS). There are other features, such as spatial balance (defined
formally in Chapter 19), that are important in some environmental surveys but not
usually in other surveys. More generally, Marker and Stevens discuss some designs used
for environmental surveys that are not usually seen elsewhere (e.g., random tessellation
stratified (RTS) designs).

Because environmental and agricultural economists both have an interest in land use,
watersheds, and the effect of fertilizers and pesticides on the environment, there are a
number of issues common to environmental surveys and certain agricultural surveys, par-
ticularly those in which there is no respondent in the usual sense. These surveys involve
some form of direct measurement, such as remote sensing (satellite or aerial imagery).
More generally, the spatial context underlies both types of survey. In Chapter 18, Nusser
and House discuss agricultural surveys of this type as well as agricultural surveys that
collect information from farm operators using methods like those used in business and
household surveys.

In Chapter 20 by Velu and Naidu, we see that the design of marketing surveys has
had an evolution that parallels that of NSO-run household surveys: reacting to changes
in society and technology, moving away from interviewing in the home to less expen-
sive methods, and confronting increased concerns about privacy and confidentiality. In
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addition to designs familiar to most statisticians, such as designs that use random digit
dialing (RDD) or frames based on telephone lists, Velu and Naidu discuss less familiar
designs such as shopping center sampling (mall intercept interviews). They note that
despite problems such as non-representativity of the sample for the population under
study, such surveys are growing in popularity due to their advantages, particularly cost.

The traditional census is a survey in which all units are selected, of course, but
sampling plays a role here as well. Therefore, frame and design issues arise in this
context too. In Chapter 21, Nirel and Glickman begin with a brief review of traditional
censuses (area based, single point in time, etc.) to contrast them with new approaches
using administrative data or cumulated samples over time. The chapter then discusses
at length three important census topics. The first is the measurement of coverage error
using a survey, with a focus on the dual system estimator approach. This is followed by
a discussion of the use of surveys cumulated over time in lieu of a traditional census,
using the French approach to illustrate the method. Finally, an approach that combines
features of the cumulation approach and the traditional census is discussed. In this
approach, a traditional census with limited content is conducted periodically, but it is
supplemented by a large, ongoing survey with rich content, which is cumulated over
time to provide estimates for small areas. The authors use the American Community
Survey to illustrate this approach.

2. Stratification, allocation and sampling

Most of the sampling methods discussed in Part 3 are well known and are covered in
detail in Part 1. The chapters in Part 3 explain how these methods are used in practice
and also describe some approaches to sample selection that are unique to a particular
area such as marketing research or environmental surveys. Sampling methods used in
opinion and election polling (Chapter 22) and in surveys designed to measure census
coverage (Chapter 21) have a great deal in common with those used in household
surveys. In all cases, the same factors lead to the use of multistage PPS sampling (e.g.,
cost considerations) or to simpler designs (e.g., the existence of an adequate list frame).

Stratification in list-based agricultural surveys is very similar to that in business sur-
veys. For business surveys, strata are formed at the highest level using geography (usu-
ally large sub-national units such as provinces), type of industry, and unit size (e.g., size
of establishment). For agricultural surveys, type of industry may be replaced by com-
modity as a stratification dimension. In Chapter 17, Hidiroglou and Lavallée describe
methods for determining the boundary between take-all and take-some strata (a take-all
stratum is one in which all units are sampled with probability 1). For business surveys,
defining strata is not nearly as difficult as dealing with changes in the classification of
units (e.g., change in industry or size) once the strata have been formed. This is also
discussed in Chapter 17.

Like stratification methods, methods for sample allocation (i.e., deciding how much
of the sample should be allotted to each stratum) are also well-developed. The total
sample size and sample allocation are determined by cost, quality (related to variance),
and time (how soon and how frequently we need results). The theory is described
in Chapter 17. Current concerns are often related to the need to allocate the sample
for multiple purposes and for various domains, particularly levels of geography. These
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concerns, and the compromises needed to address them, are mentioned in various places
in Part 3, particularly in Chapter 16, 17 and 19. Frankovic et al. use the term allocation
in a different sense. For example, they discuss the allocation of undecided respondents
to the candidates in an election poll.

With the major exception of random digit dialing (RDD, described by both Velu
and Naidu in Chapter 20 and in greater detail by Wolter et al. in Chapter 7 in Part 1),
the sampling methods used in marketing research are often quite different from those
described in the rest of Part 3. We have already mentioned shopping center interviewing.
To this we add the use of consumer panels, which is described in detail by Velu and Naidu.
They also include a timely discussion of internet surveys, by which they mean surveys
that select potential respondents via the internet, as opposed to traditional surveys that
may have the internet as a mode of response.

Environmental surveys, described by Marker and Stevens in Chapter 19, also present
some unique sampling design challenges, because of their spatial context. Although it
is true that for human populations, proximity can mean similarity (in incomes, say),
the effect is much more pronounced for environmental variables. Marker and Stevens
devote a large part of their chapter to describing the consequences of this fact on sample
design.

Many surveys, be they business, household, agricultural, or environmental, are
repeated with some predetermined frequency, because estimation of changes and trends
is important for policy makers. Chapters 16 and 17, on household and business surveys,
respectively, each devote a whole section to sample rotation. Much of what they present
applies to any type of survey. The key idea, which is well known, is that maximizing
sample overlap from period to period is optimal for estimating change. But the price
to pay is response burden. Thus, a compromise is needed between estimating change
efficiently and managing response burden. Gambino and Silva discuss the implications
in Chapter 16.

For traditional censuses, of course, rotation does not come into play. However, it is at
the heart of new “census-like” approaches such as theAmerican Community Survey and
the new French census, both of which implement variations on Kish’s rolling samples
idea. Both are described by Nirel and Glickman in Chapter 21.

3. Estimation

The primary output of any survey or census is a set of estimates. Comparing the estima-
tion methods discussed in the seven chapters of Part 3, we notice that estimation methods
have become much more sophisticated than simple expansion (Horvitz–Thompson) esti-
mators. At the very least, the weights used to produce estimates are adjusted to make
the sample “look like the population,” using poststratification. If additional auxiliary
information is available, a survey is likely to use some form of regression estimator or,
more generally, calibration to improve the quality of its estimates. See Chapter 25 for
details.

Each type of survey covered in Part 3 has its own special issues and concerns related
to estimation. Household surveys often use complex, multistage design, and this is
reflected in the estimation methods used. This is especially true of variance estimation,
where replication methods (jackknife, bootstrap, etc.) are commonly used because of
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their relative ease of implementation for a wide variety of estimators. Business surveys,
on the other hand, sometimes use two-phase designs, which present different challenges.
Outliers are also a more severe problem for business surveys due to the skewed dis-
tributions of their populations and the sometimes dramatic change in the size of some
population units. Among the interesting estimation challenges of agricultural surveys,
we note the need to forecast crop harvests as quickly and as early as possible in the year.
The surveys designed to estimate census coverage, described by Nirel and Glickman,
have some distinct features, in part because their goal is to measure something that,
one hopes, is small, namely errors in the coverage. The difficulty is exacerbated by the
variability in the coverage error across regions, races, age groups, and so on. Nirel and
Glickman also discuss rolling samples (censuses) that introduce other interesting esti-
mation challenges such as how to combine different “vintages” of sample (e.g., whether
older units should get the same weight as recent ones).

A requirement of many surveys, particularly business and agricultural surveys, is the
reconciliation of estimates with data from external (administrative) sources. In addition,
the estimates produced by various surveys (e.g., various industries, various farm types)
must be brought together for the National Accounts, and so, the estimates must be coher-
ent as much as possible. This is especially important because these estimates are often
used as indicators of not only where the economy has been, but also where it is heading.
The estimation of trends, especially the trade-off between trend and level estimation, is a
theme covered throughout Nusser and House’s chapter on agricultural surveys. Marker
and Stevens also devote a part of their chapter on environmental surveys to the issue.
Velu and Naidu note in Chapter 20 that to estimate trend, marketing researchers use
panels of various kinds (consumer panels, store audits).

Every paper on small area estimation mentions the increasing demand for such esti-
mates. The chapters in Part 3 all address the issue of small area or small domain esti-
mation to some degree. We have already mentioned the rolling samples discussed by
Nirel and Glickman. One of the primary motivations for having such samples is to
accumulate units over time to make the estimation of variables for small domains feasi-
ble. Most surveys cannot be designed to produce good estimates for all small domains
of interest. The statistician then turns to special estimation methods for such domains.
Chapters 31 and 32 in Part 5 include detailed discussions of small area estimation
methods.

4. Auxiliary information

Auxiliary data, typically from a census or administrative source, is used at various
stages of survey design (stratification, sample allocation, unit formation, etc.). Most
introductory texts on sampling explain how this is done in business and household
surveys, but the same applies to the other types of survey covered in Part 3. For example,
Marker and Stevens describe how an auxiliary variable is used to implement spatial
balancing. Lavallée and Hidiroglou include a detailed discussion of the uses of auxiliary
data, particularly administrative data, at various stages of the survey process in business
surveys. Much of what they say applies to other surveys as well.

Auxiliary data is also essential in modern estimation methods, and we have already
mentioned their use in regression and calibration estimators. Both Lavallée and
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Hidiroglou (Chapter 17) and Gambino and Silva (Chapter 16) include sections with
detailed discussion of these estimation methods and their use in their respective surveys.

A recent trend has been the increased use of auxiliary data, usually tax data, as a com-
plement to, or replacement for, survey data. Gambino and Silva describe how income
tax data are used to replace questions on income for some household surveys for respon-
dents who consent to this. However, this is a very limited use of auxiliary data compared
to how it is being used in some business surveys conducted by NSOs. Broadly speak-
ing, they divide the population into three groups: the take-all units (the very biggest
businesses, which are sampled with certainty), the take-some units (medium-sized busi-
nesses, which are sampled with some probability between 0 and 1), and the so-called
take-none units (the smallest units, which are not sampled at all). The information for
the take-none units is obtained from tax files. This is discussed briefly by Hidiroglou and
Lavallée in the section on the uses of administrative data. They also explain methods
for determining a boundary between take-all and take-some strata in greater detail.

5. Challenges

The challenges that face the various types of surveys discussed in Part 3 are surprisingly
similar. The increasing appetite for information is certainly one of them. To satisfy it, the
burden on respondents inevitably increases, except possibly for surveys that focus on
the relatively limited set of variables that can be obtained from administrative sources.
The need to manage the growth in response burden, particularly in business surveys,
has led to the development of formal methods of sample coordination (discussed in
Chapter 17). The increase in respondent burden coincides with what appears to be an
across-the-board decrease in response rates. This phenomenon can be explained in part
by the individual’s perceived increase in burden, not necessarily from the specific survey
or poll that is making the contact, but from the many solicitations we are all subjected
to. Another part of the explanation is that there have been technological developments
that make it easier to thwart contact efforts (discussed in several chapters in Part 3).

The rapidly increasing use of mobile (or cell) phones, especially for individuals who
do not have a landline telephone, is another factor that makes it difficult to maintain
high response rates because most telephone surveys have relied on landline telephones
to select their sample or to conduct interviews. This is discussed in several chapters
as well. In Chapter 22, Frankovic et al. discuss the challenges posed not only by cell
phones but also by other technologies.

New technologies present positive challenges as well. The ease with which GPS
(global positioning system) data can be obtained or recorded presents opportunities not
only for agricultural and environmental surveys but also for censuses and household
surveys. This is discussed in several chapters, but especially by Nusser and House
in Chapter 18. Another positive development is the use of the internet as a mode for
responding to surveys. Again, this cuts across the different types of surveys and is
mentioned in several places in Part 3. A more difficult challenge is to use the internet
not simply as a collection mode but as a frame from which to sample. A lot of thought is
being given to how to do this properly, involving difficult challenges such as selection
bias and coverage issues. Developments in this area are discussed by both Velu and
Naidu in Chapter 20 and Frankovic et al. in Chapter 22.
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One consequence of the various developments we have discussed is that for many
surveys, multimode collection, where responses for a given survey can be obtained in
a variety of ways (telephone, paper, internet, CAPI, etc.), may become the norm, in
the hope that it will help to prevent response rates from decreasing further. However, it
is well known that the mode of collection has an effect on response. This leads to the
challenge of measuring and adjusting for this mode effect. This is not a new problem,
and most chapters in Part 3 mention it, but the greater use of multiple modes and the
increasing variety of modes available make this a topic worthy of greater attention.
The same can be said more generally about the need to better measure and manage
nonsampling errors because the changes we have described in the last few paragraphs
have complicated an already difficult problem.
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Sampling and Estimation in Household Surveys

Jack G. Gambino and Pedro Luis do Nascimento Silva

1. Introduction

A household survey is a particular type of social survey. In a household survey, we
are interested in the characteristics of all or some members of the household. These
characteristics typically include a subset of variables such as health, education, income,
expenditure, employment status, use of various types of services, etc. Since they became
common in the 1940s, a number of major trends in household surveys have been evident.
Many of these trends are closely linked to technological advances both in statistical
agencies and in society, and have accelerated following the spread of personal computers
in the early 1980s. These trends include, but are not limited to, the following.

1.1. Simplification of sample designs

A good example of simplification is the Canadian Labour Force Survey (LFS), which
went from as many as four stages of sampling to two stages, and for which the feasibility
of using a single-stage design, with an address register as a frame, is currently being
studied. In the United Kingdom, the LFS already uses, and the new Integrated Household
Survey will use, an unclustered design (see Office for National Statistics, 2004). In
the United States, the American Community Survey (ACS) also adopted a stratified
unclustered design (see U.S. Census Bureau, 2006b).

1.2. Increasingly complex estimation methods

The increasing power and availability of computers has made it possible to use increas-
ingly complex estimation procedures.

1.3. Increased use of telephone interviewing

As the proportion of households with a telephone has increased, the proportion of inter-
views conducted in person (across surveys) has decreased. This trend accelerated with
the introduction of computer-assisted interviewing. A related trend is the increased use
of multiple modes of collection for the same survey. The latter trend is likely to continue
as use of the internet as a medium for survey response becomes more popular.
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1.4. Increasingly complex questionnaires

The introduction of computer-assisted interviewing has made it possible to have
questionnaires with complex skip patterns, built-in edits, and questions tailored to the
respondent.

1.5. Increased availability of data on data collection (paradata)

The use of computers for interviewing makes it possible to save data on various aspects
of the interviewing process. In addition, interviews can be monitored, providing another
source of data.

We discuss some of these trends throughout the chapter. There are a number of
other important trends we do not discuss since they are covered in other chapters in
this volume. They include increasingly elaborate editing and imputation procedures,
the rising importance of confidentiality and privacy, questionnaire design and related
research, and the advent of more sophisticated data analysis methods, particularly for
data from complex surveys.

2. Survey designs

Much of the theory and practice of survey design was developed from the 1930s to the
1960s. In fact, many methods currently in use, particularly for area-based sampling,
are already included in the classic text by Hansen et al. (1953). We will often refer to
dwellings, which are sometimes referred to as dwelling units or housing units in other
publications. A dwelling may be vacant (unoccupied) or occupied by a household.

2.1. Frames

The traditional frames used for household surveys are area frames and list frames.
Alternatives to these include the use of random-digit dialling (RDD) and the internet.

2.1.1. List frames
If a list of population units is available, then it can be used to sample directly, possibly
after stratification of the units into more homogeneous groups. Examples include lists of
dwellings, lists of households or families, lists of people, and lists of telephone numbers.
A major advantage of list frames for surveys is that they are easy to use for sampling and
usually lead to relatively straightforward weighting and estimation procedures. On the
other hand, it is often difficult and expensive to keep a list up-to-date in light of individual
changes such as moves, marriages and divorces, and births and deaths. Certain types of
unit pose difficulties. For example, students and workers living temporarily at a work site
may be listed twice or missed completely. There are many other situations that can lead
to missed units (or undercoverage) or double-counted units (or overcoverage), as well
as to units that do not belong to the list (also overcoverage). Nevertheless, the benefits of
having an up-to-date list of units are sufficiently great that several countries have invested
in the creation and maintenance of permanent lists, including population registers and
address registers. For example, Scandinavian countries have made increasing use of
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population registers in their censuses, including complete replacement of traditional
censuses in some cases (see Statistics Finland, 2004; Statistics Norway, 2005).

2.1.2. Area frames
An area frame is obtained by dividing a country (or province, state, etc.) into many
mutually exclusive and exhaustive smaller areas. In principle, therefore, an area frame
has complete coverage. In practice, the area frame approach pushes the coverage prob-
lems of list frames down to a smaller geographical level since, at some point in the
sampling process, a list of ultimate sampling units (dwellings, households, or people)
will be needed. Obtaining such lists for many small areas can be very time-consuming
and expensive.

The use of area frames has led naturally to multistage designs where clusters form
the penultimate stage: the country may be divided into provinces or states, which are
divided into counties, say, and so on, until we come to the smallest area units, which we
will refer to as (geographical) clusters. We may then start the sample selection process at
one of these geographical levels. The simplest case would be direct selection of clusters
(possibly after stratification), followed by selection of units (typically dwellings) within
the clusters that were selected at the first stage. This has the great advantage that we
need a complete list of ultimate (or elementary) units only for clusters that are selected
in the sample—in effect, we “localize” the list frame creation problem.

In practice, getting a complete list of units (dwellings and/or people) in a cluster
can be difficult. The cluster may contain easy to miss dwellings (e.g., they may not
be obvious from the street). There may be problems identifying the cluster boundary,
especially if a part of the boundary is an imaginary line or if new construction has
occurred in the area. As a result, in the field, it may not be clear who belongs to the
cluster.

The use of an area frame with multistage sampling is very common in both devel-
oping and developed countries. One important benefit is the reduced travel costs for
personal interviewing when dwellings are selected in compact geographical areas such
as clusters and higher level sampling units (e.g., a village can be a sampling unit) since
the interviewer drives to a cluster and contacts several dwellings in close proximity.

2.1.3. Apartment frames
A list of apartment buildings (typically useful in metropolitan areas) is, in a sense, at
the intersection of list frames and area frames: a survey may use an area frame, but
whenever apartment buildings are found (because they are new or were missed earlier),
they are “removed” from the area frame and put in a separately maintained list frame of
apartment buildings. Each apartment building may then be treated as a cluster.

2.1.4. Telephone-based frames
A list of telephone numbers is simply a list frame, as discussed above. An alternative
way of using telephone numbers is via RDD. In RDD, telephone numbers are generated
at random, avoiding the need for a list of numbers. In practice, the process is more
sophisticated than simply generating a string of digits and expecting that the result will
be a valid telephone number. Efforts are made to eliminate invalid or business numbers
in advance. One can also vary the probability for certain sets of numbers. There is a vast
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literature on RDD, which we do not cover here. Nathan (2001) includes an extensive
list of references on RDD and other telephone-based methods of data collection.

Until recently, the use of mobile (or cell) phones as either a frame or as a mode
for conducting interviews has been avoided, but this may be changing in light of the
increasing number of households with mobile phones (and without a traditional landline
telephone). Problems related to the use of mobile phones for surveys have generated a
great deal of interest recently; see, for example, the 2005 Cell Phone Sampling Summit
and several sessions at the 2007AAPOR conference. Blumberg and Luke (2007) present
recent results on the rapid increase in the number of cell phone-only households in the
United States using data from the most recent National Health Interview Survey. They
also look at the demographic and health-related characteristics of these households. For
example, they find that homeowners are much less likely to be in a cell phone-only
household than renters.

In this section, we have noted that survey statisticians face a variety of problems
in constructing and maintaining frames. Yansaneh (2005) discusses these further and
presents possible solutions to some of the problems.

2.2. Units and stages

We have already had occasion to mention sampling units and sampling stages in this
chapter. We now discuss these more formally in the following.

2.2.1. Persons and households
In the surveys under consideration, interest is usually in persons, families, or households.
We usually get to these units via the dwelling (for our purposes, we define a dwelling
as a set of living quarters; a formal definition can be quite involved—e.g., the formal
definition of private dwelling on the Statistics Canada web site is more than 500 words
long). As discussed above, we get to the dwelling via an area frame, a dwelling frame, or
a telephone number. Although formal definitions of units may be quite involved, smooth
implementation in the field may require simplifications to be practicable.

In some surveys, the ultimate unit of interest is not the household but one person
within the household. This introduces a problem of representativity of the sample if
persons within households are selected by a naive method: certain groups (e.g., age
groups) may be over- or under-represented. For example, Beland et al. (2005) cite a
Canadian example where a naive approach (an individual in the household is selected
with equal probability) yields 8.2% of the sample in the 12–19 age range, whereas the
percentage in the population is 12.4. For people aged 65 and older, the corresponding
percentages were 21.5 and 14.5. Thus, young people would be under-represented and
old people over-represented. Solutions to this problem are discussed in the study by
Beland et al. (2005) and by Tambay and Mohl (1995). Clark and Steel (2007) discuss
optimal choice of the number of persons to select from each household.

2.2.2. Clusters
We already mentioned clusters when we discussed frames.Acluster is usually a compact
geographical area containing a few dozen to a few hundred households. In urban areas,
clusters are typically formed by combining contiguous block faces or blocks. In rural
areas, many countries use census enumeration areas as clusters, but there may also
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be natural clusters such as villages that can be used. Sometimes these clusters vary
widely in size, which is undesirable, and may require using sampling with probabilities
proportional to size. Apartment buildings are sometimes used as clusters, especially
in large metropolitan areas where a significant proportion of the population lives in
apartment complexes.

2.2.3. The role of census units
In most countries, the process of conducting a population census entails the formation
of a hierarchy of geographical units. It is natural to consider these “ready-made” units
when designing household surveys. We have mentioned the use of a census unit, namely
an enumeration area, as a sampling unit in surveys. More generally, census units are used
in surveys for a variety of purposes: the biggest census units may form geographical
strata (examples are provinces and states), and the smallest census units may be useful
building blocks for the formation of primary sampling units (PSUs) and (optimal) strata.
In countries with big populations, PSUs can be very large (e.g., a whole city can be a
PSU). In the United States, national household surveys often use counties or groups of
counties as PSUs. Typically, the largest PSUs are self-representing, i.e., they are selected
with probability 1, which means they are really strata rather than PSUs.

2.3. Stratification

Subnational geographical areas such as provinces, states, and regions form the high-
est level of stratification both because they have well-defined, stable boundaries and
because they are often of interest for policy-making. In most cases, these subnational
areas are too big and need to be divided into finer geographical strata. Once the lowest
level of geographical stratification is reached, there may be enough PSUs (e.g., census
enumeration areas) in some geographical strata to form optimal strata within the latter.
Optimality is defined by some measure of homogeneity and the PSUs are grouped into
final strata that are as homogeneous as possible.

In some cases, it is more convenient to use implicit stratification via ordering of the
units—similar units are placed near each other. Then, some form of systematic sampling
is used to select the sample to ensure that no major subpopulations are left out of the
sample. A special case is geographical ordering to ensure that no major areas are left out
of the sample and also to achieve approximately proportional allocation of the sample
between areas.

Textbooks on survey sampling tend to devote little space to stratum formation and
even then, they emphasize the case of a single variable. In practice, several variables
are usually of interest, and a compromise stratification is needed. A common tool for
stratum formation based on several variables is cluster analysis. For a recent approach to
stratification using a spatial cluster analysis algorithm that minimizes distances between
PSUs in a stratum on selected variables considering the spatial location of PSUs, see
Palmieri Lage et al. (2001).

2.4. Sample size

The determination of sample size for household surveys is complicated by the fact that
most surveys are interested in several variables, so the standard textbook formulas based
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on a single variable are not adequate. In addition, one must decide on a criterion: standard
error versus coefficient of variation (CV), that is, to aim to control either absolute
or relative error. Finally, if a clustered design will be used, the “IID” (independent
and identically distributed) or “SRS” sample size formulas are inadequate—they will
likely understate the required sample size. The design effect (deff) is a measure of this
phenomenon. The deff is defined as the ratio of the variance of an estimator under the
actual design to the variance of the estimator under simple random sampling (SRS),
assuming that the sample size is the same for both designs. Thus,

deff (θ̂; p) = Vp,n(θ̂)/VSRS,n(θ̂), (1)

where θ̂ denotes an estimator of a parameter θ, p denotes a complex survey design,
Vp,n(θ̂) and VSRS,n(θ̂) denote the variances of θ̂ under the designs p and SRS, respec-
tively, with n defined as the number of sampled households.

A common approach to sample size determination in complex surveys is to use
information from similar surveys or census data to obtain (or assume) design effects
and population variances for key variables, and use these deffs and variances to deter-
mine n. This follows from using (1) in the following manner. Suppose a sample size
n0 can be determined using the standard SRS formulas so that a specified variance v

is achieved for the estimator of a key parameter, that is, n0 solves VSRS,n0(θ̂) = v.
Then, if the same sample size n0 was used with the complex design p, (1) implies that
Vp,n0(θ̂)/deff (θ̂; p) = v ⇔ Vp,n0(θ̂) = v × deff (θ̂; p). Hence, to obtain the same vari-
ance v using a complex design p, we need to solve VSRS,n(θ̂) = v/deff (θ̂; p), which
leads to the simple solution corresponding to multiplying the initial sample size n0 by
deff, that is,

n = n0 × deff (θ̂; p) (2)

For surveys where proportions are the target parameters, the above solution is simple,
since sample sizes under SRS can be determined easily using the fact that the variances
of sample proportions are maximized when the population proportion is ½ (see, e.g.,
Cochran, 1977, Chapter 3). This is a conservative solution which is feasible even if little
or no information is available about the possible range of the population proportions. In
cases where the target proportions are far from ½, especially near 0 (rare subpopulations),
it may be useful to consider using sample sizes that aim to provide specified levels of
relative variance or CV of the estimated proportions. In either case, the theory for sample
size determination under SRS is quite simple, and the adjustment (2) may be applied to
determine sample sizes for a complex design.

In practice, one must make sure that the “right” design effects are used. For example, if
regression estimators will be used for the actual survey, one should use the corresponding
deffs and not deffs of simple means or totals; otherwise, the formulas may give incorrect
sample size requirements. The numerator and denominator in the deff formula should
agree both in terms of key design features (e.g., stratification) and choice of estimator. It is
misleading to have, say, a ratio estimator in the numerator and a total in the denominator,
or stratification in the numerator but not in the denominator. Finally, if VSRS,n(θ̂) is to be
estimated using data from a complex survey, the estimate of V is not the usual SRS one
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since the actual complex design (e.g., clustering) needs to be taken into account. Two
useful references on design effects are Lê and Verma (1997) and Park and Lee (2004).

An area where household survey practice needs to improve is in making estimates
of design effects widely available. Such estimates are not regularly provided, especially
in less developed survey organizations. Survey designers are then left with the task of
having to estimate deff s from the survey microdata (when these are available and carry
sufficient information about the design that variances can be correctly estimated), or
alternatively, from published estimates of standard errors for certain parameter estimates
(again, if available). In either case, this can be time-consuming for those unfamiliar with
the survey or having limited access to detailed information about its design.

All surveys have nonresponse, which must be taken into account at the design stage. In
addition to taking an anticipated rate of nonresponse into account, designers of household
surveys that use the dwelling as a sampling unit also need to take the proportions
of vacant and ineligible dwellings into account. These can be quite stable for large
areas but may vary for smaller ones, even over short time periods. Attention must be
paid to dwellings of temporary residence, such as those commonly found in beach and
mountain resorts, where the resident population is sometimes smaller than the temporary
population. Similar care is needed to account for addresses that are not residential if
using an address frame where it is not possible to determine beforehand which ones are
occupied by households. Two options for addressing these issues include: a) increasing
sample size by dividing the initial sample size by the expected proportion of eligible
and responding dwellings, in which case the selected sample is fixed but the effective
sample is random; b) using a form of inverse sampling, where the required number
of responding eligible dwellings is fixed, but the total number of selected dwellings is
random. In both cases, weighting is required to compensate for the unequal observed
eligibility and response rates. Such weighting requires precise tracking of eligibility and
response indicators during fieldwork (see Chapters 8 and 9).

Allocation of the sample to strata, both geographical and optimal, requires a com-
promise among the important variables that the survey will measure. In addition, the
designer must make compromises between different geographical levels (national, sub-
national, and so on). For many variables, simply allocating the sample proportional to
population size is nearly optimal for national estimates. However, this allocation will
likely be poor for subnational estimates. For example, if the country is divided into R

regions and the national sample size is n, then a good allocation for regional estimates is
likely to be to give each region about n/R units. Unless the regions have approximately
equal populations, the two allocations (proportional and equal) are likely to be very
different, and a compromise must be found. A common approach is to allocate the sam-
ple proportional to the square root (or some other power) of population size (see, e.g.,
Kish, 1988). Singh et al. (1994) describe a pragmatic solution to the specific problem of
producing good estimates for both the nation and relatively small areas within it, which
has been used for the Canadian LFS since the late 1980s. In this approach, most of the
sample, say two-thirds, is allocated to produce the best possible national estimates. The
remaining sample is then allocated disproportionately to some smaller areas to ensure
a minimal level of quality in each area. As a result, large metropolitan areas get little
or no sample in the second allocation round and, conversely, sparsely populated small
areas get much of their sample in that round.
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2.5. Sample selection

One aspect where household and business surveys tend to differ most is sample selection.
The methods used by business surveys are discussed in Chapter 17. Household surveys
that sample from a list can use methods similar to those. For example, the ACS and
the U.K. Integrated Household Sample Survey have unclustered samples of addresses
selected from address lists. One advantage of this type of frame is the ability to coordinate
samples over time, either to ensure that adjacent survey waves have overlap or to avoid
such overlap, when it is important to get a fresh sample of addresses in each wave.

However, for multistage household surveys, methods where the probability of selec-
tion of a PSU is proportional to its size are more common. These are referred to as
probability proportional to size or PPS methods. They are discussed in most standard
textbooks on sampling (see, e.g., Cochran, 1977, Chapter 9A). Under multistage PPS
sampling, even though PSUs are selected with unequal probabilities, we can have a
self-weighting design, in which all ultimate sampling units in a stratum have the same
final design weight (see Section 5.1). To illustrate this, consider a two-stage design and
suppose PSUs are selected using PPS sampling, with size defined as the number of
second-stage units in a PSU. Thus, if Mi is the size of the ith PSU and M is the total size
of all the PSUs in the stratum, then the probability that PSU i is selected is pi = nMi/M,
where n is the number of PSUs selected in the stratum. Now, select the same number
m of second-stage units from each sampled PSU using SRS. Then the second-stage
inclusion probability is p2ij = m/Mi for all j in PSU i. Hence, the overall inclusion
probability for each second-stage unit is pip2ij = nMi/M × m/Mi = nm/M = 1/d.
The design is then self-weighting because all units in the sample have the same design
weight d.

In practice, this textbook procedure is often not useful since unit sizes Mi become
out of date quickly. In fact, since the sizes are typically based on a recent census or
an administrative source, they are likely to be out of date as soon as they become
available. To preserve self-weighting in this more realistic situation, an alternative is to
use systematic sampling at the second stage instead of SRS and fix the sampling interval
over time. For example, if we should select every Kth unit according to the census counts,
then we continue to select every Kth unit thereafter. One undesirable consequence of
this procedure is that the sample size in each PSU is no longer constant. If a PSU has
grown by 10%, then its sample will also grow by 10% and conversely for decreases in
size. Since populations tend to grow over time, the former is the more serious problem.
At the national level, this implies that the total sample size, and therefore costs, will
gradually increase. One way to deal with this growth is to randomly drop enough units
from the sample to keep the total sample size stable. This is the approach used by the
Canadian LFS and the U.S. Current Population Survey (CPS).

An alternative is to design a sample which is self-weighting, but to allow the weights
to vary over time for households selected from different PSUs. This weight variation
would happen anyway if nonresponse varies between PSUs and if simple weight adjust-
ments are applied at the PSU level. This design will be slightly less efficient than the
corresponding self-weighting design but will not suffer from the cost-increase problem
described above. Its main disadvantage is that varying household weights lead to more
complex estimation procedures but this disadvantage is less important with the increased
availability of modern computer facilities and software.
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Regardless of the approach used, in practice, having a pure self-weighting design
may not be attainable. For example, even if we implement the fixed sampling interval
method described above, there will almost certainly be PSUs in the sample that have
grown to such an extent that it will be necessary to subsample from them to control costs
and balance interviewer workloads.

3. Repeated household surveys

3.1. Repeated versus longitudinal surveys

Many household surveys are repeated over time with the same or very similar content
and methodology to produce repeated measurements of key indicators that are used to
assess how demographic, economic, and social conditions evolve. In fact, many descrip-
tive analyses reported in household survey publications discuss how major indicators
changed in comparison to previous survey rounds. The idea that a household survey is
to be repeated introduces a number of interesting aspects of survey design and estima-
tion, which we consider in this section. We start by establishing a distinction between
repeated and longitudinal surveys.

Longitudinal surveys require that a sample of elementary survey units (say households
or individuals) is followed over time, with the same units observed in at least two
survey data collection rounds or waves. Observation of the selected units continues for
a specified length of time, a number of waves, or until a well-specified event takes place
(e.g., the person reaches a certain age). Longitudinal designs are essential if the survey
must provide estimates of parameters that involve measures of change at the individual
level.

Repeated surveys collect data from a specified target population at certain (regular)
intervals using the same (or at least comparable) methodology. They do not require that
the same elementary units should be followed over time but are often designed such that
there is some overlap of units in successive survey waves. They also include surveys
for which the samples on different occasions are deliberately non-overlapping or even
completely independent.

When a repeated survey uses samples that are at least partially overlapping at the
elementary unit level, it includes a longitudinal component, which may or may not be
exploited for analysis. In such cases, the distinction between longitudinal and repeated
surveys becomes blurred and the key to separating them is the main set of outcomes
required from the survey. If the main parameters to be estimated require pairing mea-
surements on the same elementary units from at least two survey waves, we classify the
survey as longitudinal. Otherwise, we call it a repeated survey.

Longitudinal surveys are discussed in Chapters 5 and 34. In this section, we focus
on some design and estimation issues regarding repeated household surveys. A more
detailed classification of surveys in terms of how their samples evolve in time is provided
by Duncan and Kalton (1987) and Kalton and Citro (1993).

The traditional design of household surveys requires specifying a sample selection
procedure coupled with an estimation procedure that provides adequate precision for key
parameters. Sample sizes are determined by taking account of the survey budget, cost
functions describing the relative costs of including additional primary and elementary
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sampling units, and design effects if available. If the survey is to be repeated, the process
by which the sample evolves in time is an additional element that must be designed for.
We refer to this process as the rotation scheme or rotation design of the survey.

3.2. Objectives, rotation design, and frequency for repeated household surveys

The key to efficient design for repeated household surveys is to match the sample
selection mechanism, survey frequency, rotation scheme, and estimation procedures
to satisfy the survey objectives at minimum cost for a fixed precision or maximum
precision for a fixed cost. Key references on this topic are Binder and Hidiroglou (1988)
and Duncan and Kalton (1987). For a good example of an in-depth discussion of how
the survey objectives affect the rotation design in the case of a household labor force
survey, see Steel (1997).

We first consider the problem of specifying what the key objectives of inference are
for a repeated household survey. They may include the following:

(a) Estimating level: estimating specified population parameters at each time point;
(b) Estimating change: estimating (net) change in parameters between survey waves;
(c) Estimating averages: estimating the average value over several survey waves;
(d) Cumulating samples of rare populations or for small domains over time.

Kalton and Citro (1993) list several other objectives that require a survey to be repeated
over time, but these require the longitudinal component of the survey to be of primary
interest. Here, we focus only on repeated surveys, where the main objectives do not
require the longitudinal component.

Considering objective (d), the best possible rotation design is to have completely
non-overlapping samples in the various survey waves. This design maximizes the speed
with which new observations from the rare target population can be found. For example,
consider a survey which needs to cumulate observations of people who migrated from
a foreign country to their current place of residence during the five years preceding
interview time. To be able to have a sufficiently large sample of this subpopulation,
it may be necessary to use either a cross-sectional screening survey with a very large
sample size, or alternatively, a repeated survey with smaller samples at each wave,
screening for this subpopulation, thus providing a sample of the intended size after a
number of waves has been completed.

Note, however, that this would often be a secondary objective for a repeated survey
because the alternative of using a large cross-sectional survey would probably be more
cost-effective than the non-overlapping repeated survey option described above. Never-
theless, given an existing repeated survey (overlapping or not), it may be cost-effective
to include the screening questions and additional survey modules as required for the
measurement of this “rare” target subpopulation. Advantages and limitations of these
two competing approaches must be carefully considered before choosing the survey
design for any particular application.

It follows that the main objectives leading to a repeated survey design are likely to be
(a), (b), (c), or a combination of these. For these objectives, alternative rotation designs
affect the precision of estimators for each type of target parameter. Let Ut denote the
target population at time t and let θt denote the value of a target parameter at time t, where
t could refer to years, quarters, months, weeks, etc. We assume that the definition of the
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target population is fixed over time, for example, all adults living in private dwellings.
However, the size and composition of this target population may change over time,
because people die, migrate, or reach the age limit to be included in the survey from a
given time point onwards. Changes in the parameter θt over time can thus be caused by
changes in both the composition of the population and in the values of the underlying
characteristics of members of the population.

A repeated survey may have as key objective the estimation of the series of values of
θ1, θ2, . . . , θt, . . ., that is, the main goal is to get the best possible estimates for the level
θt at each point in time (objective (a)). Alternatively, the target parameter may be the
change between times t and t−1, defined as θt −θt−1 (objective (b)). In some situations,
the target parameter may be an average of the values of the parameters at different time
points (objective (c)), and a simple example of this is θ̄t,2 = (θt−1 + θt)/2, the (moving)
average of the parameter values at two successive time points.

Denoting by θ̂t , an (approximately) unbiased estimator of θt , we have the following
results on the precision of estimators of these types of target parameters. For the estima-
tion of change, the variance of the simple (approximately) unbiased estimator θ̂t − θ̂t−1

is given by

V(θ̂t − θ̂t−1) = V(θ̂t) + V(θ̂t−1) − 2COV(θ̂t−1; θ̂t). (3)

If successive measurements on the same unit for the survey variable defining the param-
eters θt are positively correlated over time, then with some degree of overlap between
the samples at times t − 1 and t, the covariance term in the right-hand side of (3) would
be positive. In this case, the estimation of the change would be more efficient with
overlapping samples than with completely independent samples at times t and t − 1.
Independent samples lead to complete independence between θ̂t and θ̂t−1, in which case
the variance of the difference is

V(θ̂t − θ̂t−1) = V(θ̂t) + V(θ̂t−1). (4)

So for the estimation of change, some overlap of samples in successive waves increases
the precision of the estimator when the underlying characteristic is positively correlated
for measurements on successive occasions.

For the estimation of averages over time, the variance of the simple (approximately)

unbiased estimator ˆ̄θt,2 = (θ̂t + θ̂t−1)/2 is given by

V

[
1

2
(θ̂t + θ̂t−1)

]
= 1

4

[
V(θ̂t) + V(θ̂t−1) + 2COV(θ̂t−1; θ̂t)

]
. (5)

Here, the positive correlation of successive measurements of the underlying survey
characteristic would lead to reduced precision with overlapping surveys, and having
independent or non-overlapping samples would be more efficient. This discussion illus-
trates the importance of regularly publishing estimates of the correlations over time
between key measurements such that these are available to inform survey design or
redesign.

These two examples illustrate the need to specify clearly what the inferential objec-
tives are for the survey; otherwise, one may end up with an inefficient rotation design.
In addition, they also indicate that if in a given situation, both changes and averages
over time are required, overlapping samples increase efficiency for change but reduce
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it for averaging. This poses a problem to the survey designer and calls for an explicit
assessment of the relative importance of the different survey objectives so that decisions
regarding the rotation design are not misguided. The estimation of change is usually the
harder of these two objectives, often requiring larger sample sizes than would be needed
for the estimation of level itself. Hence, the survey could be designed to achieve the
required level of precision for estimating change both in terms of sample design, sample
size, and rotation design, and still be able to provide estimates of acceptable accuracy
for averages over time.

Another important design parameter of a repeated survey is the frequency of the
survey, which again is closely linked with the survey objectives. Surveys having a short
interval between waves (say monthly or quarterly) are better for tracing respondents over
time, provide better recall of information between surveys because successive interviews
constitute useful benchmarking events, and are generally capable of providing more
frequently updated estimates for the target parameters. Also, shorter survey intervals
are better for monitoring more volatile target parameters. On the other hand, the shorter
the interval between surveys, the larger the burden on respondents with overlapping
surveys, which may increase nonresponse and lead to response conditioning, a well-
known source of bias in repeated surveys. Longer survey intervals may suffice for less
volatile parameters.

Labor force surveys provide an example where the key outputs are required monthly
or quarterly, given the need to assess how employment and unemployment totals and
rates evolve in the short term. In the European Union, member states are required to carry
out continuous labor force surveys, that is, surveys which measure the labor force status
of the people every week during the year, to report the results of such surveys at least
quarterly (see the Council of the European Union, 1998; the European Parliament and
Council of the European Union, 2002). It is interesting to note that the key concept in an
LFS requires establishing each person’s economic activity status in a specified reference
week. For this reason, several countries conduct their LFS in a fixed or prespecified week
every month, with the reference week being the week before the interview (see Table 1
below). This however places a heavy burden on the statistical agency, which then must
have a workforce capable of handling all the required data collection of a country’s
LFS within a single (or sometimes two) week(s). Other countries, while still aiming to
measure the same concept, use moving reference weeks to be able to spread the data
collection activities over a longer period of time. In the United Kingdom, the sample
for a quarter is split into 13 weekly assignments to create an efficient fieldwork design,
and hence the sample size for every week is about 7.7% of the total sample size for
a quarter. However, this choice has implications for both the estimation and analysis
of the resulting indicators, which we do not discuss here (for further details, see Steel,
1997).

At the other end of the spectrum, demographic and health surveys are carried out
with intervals of up to five years between successive survey waves because the main
parameters of interest in these surveys are expected to vary slowly. The same is true
for the case of household income and expenditure surveys in many countries—see, for
example, the Seventeenth International Conference of Labour Statisticians (2002)—
although there is a trend to increasing the frequency of such surveys in other countries.

A quick note on retrospective versus prospective data collection designs: for most
repeated surveys, prospective data collection designs are adopted. We call a design
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Table 1
Summary of characteristics of selected LFS rotation designs

Item Survey

U.S. CPS Canadian Australian U.K. LFS Japan Brazilian
LFS LFS LFS LFS

Frequency Monthly Monthly Monthly Quarterly Monthly Monthly
Reference week Fixed Fixed Fixed Moving Fixed Moving
Collection period 1 week 1 week 2 weeks 13 weeks 2 weeks 4 weeks
Rotation design 4-8(2) 6-0(1) 8-0(1) 1-2(5) 2-10(2) 4-8(2)
Monthly overlap (%) 75 83 88 0 50 75
Quarterly overlap (%) 25 50 63 80 0 25
Yearly overlap (%) 50 0 0 20 50 50
Sample size (HH) per month 60,000 53,000 29,000 20,000 40,000 41,600

prospective when the data will be collected for a period similar to the current reference
period every time a household is sampled. A design is called retrospective if in any
given survey wave (say the first one), the household is asked to provide data for several
past reference periods (say if this is a month, data are required for at least two previous
months, which may or may not be the latest ones). Retrospective designs can be useful
if there is a need to limit the total number of visits to a household, and yet information
needs to be available on an individual basis for different time periods so that some
form of longitudinal analysis is possible. However, caution is required given the well-
known adverse effects of respondent recall of information for periods not too close
to the time of interview or for information regarding events that may not be easily
remembered.

3.3. Estimation strategies for some basic objectives and rotation schemes

Cochran (1977) in Chapter 12 considered the case when θt = Yt is the population
mean of a survey variable y, that is, the target parameter is the level at each time point.
Under SRS from the population at each time period, there are gains to be made from
using samples with some overlap in adjacent survey waves, but these gains are modest
unless the correlation ρ of the measurements of the survey variable y in two successive
time periods is high (say bigger than 0.7). The gains in efficiency are made by using
an estimator that combines, in an optimal way, the mean of the unmatched portion of
the sample at time t with a regression estimator of the mean based on the portion of
the sample at time t, which is matched to units in the sample at time t−1. In this case, the
optimal proportion of sample overlap between two successive survey waves would not
exceed 50%, and this would be the limiting proportion of overlap required to maximize
efficiency gains.

If the target parameter is the change between times t and t − 1, then the best rotation
design requires matching larger proportions of sampling units in successive survey
waves. Using more than 50% overlap would not be optimal for level estimation but
would not result in substantial losses in efficiency compared with the estimators of level
under the optimal overlap for level. Hence, in a survey where both estimation of level
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and change are important, sample overlap more than 50% may be used as a compromise
to obtain large efficiency gains for the estimates of change and modest efficiency gains
for estimates of level.

If cost considerations are added, in household surveys it is often the case that the cost
of the first interview of a selected household is higher than in subsequent occasions. For
example, in many countries, labor force surveys have most or all of their first interviews
conducted in person, and most subsequent interviews are carried out over the telephone
(see the U.S. CPS, the Canadian LFS, the U.K. LFS, the Australian LFS, etc.). In such
cases, cost considerations would suggest retaining the largest possible portion of the
sample in two successive survey waves. However, one has to consider the added burden
of keeping the same respondents in the sample for several waves and the impact this
may have on nonsampling errors, such as potential increases to nonresponse and attrition
rates, as well as other more subtle forms of errors such as “panel conditioning”—see
Chapter 5 for definitions of technical terms.

Many commonly used rotation designs have the number of times in sample equal to at
most 8, which means a maximum overlap of samples in successive waves of 87.5% (as is
the case in the Australian LFS, which is a monthly survey using a rotation scheme called
in-for-8, where a selected household is in the sample for eight consecutive months).

Now consider a repeated survey where the target parameter is an average level over
three waves, represented here by θ̄t,3 = (θt−1 + θt + θt+1)/3. Here, the best rotation
design is selecting independent samples every time, because with this design, the vari-
ance of the average is simply 1/3 of the average of the variances of the estimates for the
individual survey periods. An example of a survey where the prime target is estimating
averages is the ACS, designed to replace the “long form” sample in the decennial cen-
sus in the United States. The idea is that survey data for periods of five years should
provide equivalent data to those formerly obtained using the decennial census sample.

The above discussion reveals that precise knowledge of the key survey inference
objectives is required for an efficient rotation design to be selected. Estimating averages
over time (objective (c)) requires independent or non-overlapping samples at each survey
wave, whereas estimating change (objective (b)) requires samples with high overlap
in the survey comparison periods (base and current). Estimating level (objective (a))
suggests that a moderate amount of overlap is required but it retains some efficiency
gains compared with independent samples even if the overlap is somewhat bigger than
the optimal.

The advice above is based on variance considerations only. Repeated large-scale
household surveys must often satisfy several of these objectives and for different survey
characteristics. Hence, design choices are more complex and less likely to be based only
on variance efficiencies. There are several reasons for not using completely independent
repetition of cross-sectional designs across time. First, sample preparation costs and time
are likely to be substantially bigger. For example, in many household surveys, there are
substantial costs associated with selection of new PSUs, such as listing or frame updating
costs, staff hiring or relocating, infrastructure, etc. Second, if a survey is repeated over
time, it is not unlikely that users will use the survey results for comparisons over time and
completely independent surveys would be very inefficient for this purpose. In addition,
nonsampling error considerations must also play an important part in specifying rotation
designs such that respondent burden, attrition and measurement error are kept under
control.
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3.4. Examples of non-overlapping repeated surveys

In this section, some alternative rotation designs used by some major household surveys
around the world are highlighted to illustrate how different objectives lead to different
design options. We start by describing perhaps the largest repeated cross-sectional survey
(i.e., no overlap of samples in adjacent survey waves) in existence: the ACS, see U.S.
Census Bureau, 2006b.

TheACS selects a stratified systematic sample of addresses. The survey has a five-year
cycle, and each address sampled in a given year is deliberately excluded from samples
selected in the four subsequent years (negative coordination of samples in successive
years). This is achieved by randomly allocating each address in the Master Address File
used as the frame for the survey into one of five subframes, each containing 20% of the
addresses in the frame. Addresses from only one of the subframes are eligible to be in
the ACS sample in each given year, and a subframe can be used only once in every five
years. New addresses are randomly allocated to one of the subframes.

The main objective of the ACS is to provide estimates for small areas, replacing the
previous approach of using a long form questionnaire for a large sample of households
collected during the Decennial Censuses in the United States. It was designed to provide
for sample accumulation over periods of up to five years, after which the sample for
each small area would be of similar size to what would have been obtained in the
Decennial Census. The survey data are then used to estimate parameters that can be
seen as moving averages of five years, with five years of survey data being used to
provide estimates for the smallest areas for which results are published, and fewer
years being used to provide estimates for broader geographies. Currently, single-year
estimates are published annually for areas with a population of 65,000 or more. Multi-
year estimates based on three successive years of ACS samples are published for areas
with populations of 20,000 or more. Multi-year estimates based on five successive years
of ACS samples will be published for all legal, administrative, and statistical areas down
to the block-group level regardless of population size.

Another very large survey using repeated non-overlapping cross-sectional samples
is the French Population Census. From 2004 onwards, the “census” of France’s resident
population started using a new approach, which replaced the traditional enumeration
previously conducted every eight or nine years. The 1999 general population census of
France was the last one to provide simultaneous and exhaustive coverage of the entire
population. The new “census” in fact uses a large sample stratified by area size and
requires cumulating data over five years to provide national coverage. Data are collected
in two months every year (during January–February). All small municipalities (those
with fewer than 10,000 inhabitants) are allocated to one of five “balanced” groups.
For each group of small municipalities, a comprehensive census (no subsampling of
dwellings or households) is carried out once every five years. Large municipalities
(those with 10,000 or more inhabitants) carry out a sample survey of about 8% of their
population every year. So at the end of a five-year cycle, every small municipality has
carried out a census and, in the large municipalities, a sample of around 40% of the
households will be available. This comprehensive sample is then used to replace the
previous census for all purposes. Once the system is fully in place, rolling periods of
five years may be used to provide census-like results, which were previously updated
only once every eight or nine years.
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Household income and expenditure surveys in many countries provide another impor-
tant example of repeated cross-sectional surveys that use non-overlapping designs. The
current recommendations issued by the International Labour Organization (ILO) on this
type of survey (see the Seventeenth International Conference of Labour Statisticians,
2002) specify that such surveys should be conducted with intervals not exceeding five
years. The recommendations do not specify that non-overlapping designs are required,
but in many countries, this is the preferred method, given the considerable burden that
such surveys place on participating households.

Another type of repeated survey design implemented around the world is the use of
a panel sample of PSUs, with complete refreshment of the list of households sampled
in the selected PSUs. The series of Demographic and Health Surveys (DHS) adopts
this design whenever possible. Here, the gains from retaining the same set of PSUs are
not as important in terms of variance reduction for estimates of change as if the same
households were retained, but there are potential advantages in terms of costs of survey
taking and also perhaps less volatile estimates of change between successive waves of
this survey in a given country or region. For a more detailed discussion, see Macro
International (1996, p. 29).

3.5. Rotation designs in labor force surveys

Labor force surveys conducted in most countries provide the most prominent application
of overlapping repeated survey designs. For such surveys, intervals between survey
waves are usually very short (months or quarters in most countries). In some countries,
data collection is continuous throughout the year and publication periods may again be
monthly or quarterly. In the United States and Canada, monthly surveys are used, with
a single reference week every month. Rotation designs for these surveys are 6-0(1)1 for
the Canadian LFS, and 4-8(2) for the U.S. CPS. In both surveys the estimation of change
in labor force indicators between adjacent months is a prominent survey objective. In
both countries, some form of composite estimation (see section 5.3) is used to estimate
the indicators of interest. Seasonally adjusted estimates derived from the time series
of the composite estimates are also published, and are prominent in the analysis of
survey results contained in monthly press releases issued by the corresponding statistical
agencies.

InAustralia, the LFS uses the 8-0(1) rotation design, and the key estimates highlighted
in the publications are the estimates of the trend derived from the time series of the
sample estimates. This is a unique example of a survey where the major indicators
are based on time series modeling of the basic survey estimates. Because the targets
for inference here are not simply the values of the unknown parameters, but of rather
complex functions of these (the trend of the corresponding time series), this brings in
some interesting design issues. McLaren and Steel (2001) studied options for designs for
surveys where the key objective is trend estimation and concluded that monthly surveys
using rotation designs 1-2(m) are the best. This study illustrates quite clearly the impact

1 We use the convention in-out (times) to denote the number of waves that a household is included in the
sample, then the number of waves that it is left out of the sample, and the number of times that this pattern is
repeated. A similar convention was proposed by McLaren and Steel (2001).
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that the choice of objectives has on rotation designs: if the trend is the main target,
monthly surveys need not have monthly overlap. The same is not true, though, if the
target parameter is the simple difference of the relevant indicators, without any reference
to the underlying trend. The U.K. LFS is a quarterly survey, originally motivated by the
aim of measuring quarter-on-quarter change, using a rotation design which may be
described as equivalent to a monthly 1-2(5), whereby the sampled households enter
the survey with an interview on a single month of the quarter, rest for two months,
then return for another four successive quarters. Interestingly, this same rotation pattern
(more precisely, a 1-2(8) pattern) is used by the Canadian LFS in Canada’s three northern
territories, where three-month estimates are published.

Table 1 displays some information on key aspects of rotation designs used in labor
force surveys around the world. The U.K. LFS is a model close to the LFS design
adopted throughout the European Union. The use of this model for LFSs has spread
beyond the European Union. In 2005–2006, Statistics South Africa started an ambitious
project to replace its semiannual LFS with a quarterly survey with a rotation design in
2008. A similar project is under way in Brazil, where an integrated household survey
using a 1-2(5) rotation design will replace the current annual national household survey
and the monthly LFS in 2009.

3.6. Some guidance on efficiency gains from overlapping repeated surveys

Once a decision has been taken that the survey has to have some sample overlap over
time, it becomes important to decide how much and which methods to use to control how
the sample evolves over successive survey occasions. Cochran (1977, Section 12.11)
provides some useful guidance on the choice of how much overlap to have. His results
are all based on an assumed SRS design. Most household surveys use more complex
sample designs. However, the sample design structure (stratification, clustering, sample
sizes, selection probabilities, and estimator) is often held fixed over time. We can express
the variance of survey estimates at each time point in terms of the product

Vp(θ̂t) = VSRS(θ̂t) × deff t , (6)

where Vp(θ̂t) is the variance of the survey estimator under the complex survey design
adopted to carry out the survey, VSRS(θ̂t) is the variance that the survey estimator would
have under a simple random sample design with the same sample size, and deff t is
the corresponding design effect. If we assume that the design effect is approximately
constant over time (i.e., deff t = deff ∀t), then the advice provided for SRS is relevant
to compare the relative merits of complex surveys for alternative rotation designs.

Suppose that a SRS of size n is used on two successive occasions (t and t + 1)
and that the population is assumed fixed (no changes due to births or deaths), but the
measurements may change. On the second occasion, a SRS of m < n units sampled at
t are retained (overlap part) and n − m units are replaced by newly selected ones, also
sampled using SRS, from the units not sampled at t. Under this scenario and assuming
that the finite population correction can be ignored, the variance of the sample mean yt ,
the simplest estimator of the population mean Yt (the level) of a survey variable y at
each time point t, is given by

VSRS(yt) = S2
t

/
n, (7)
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where S2
t is the population variance of the survey variable y at time t. Clearly, the

variances of the simple estimates of level do not depend on m, the size of the matched
or overlapping portion of the sample at time t + 1. However, assuming that the variance
of the survey variable is constant over time, that is, S2

t = S2
t+1 = S2, it follows that the

variance of the estimate of change, namely, the difference in the population means, is
given by

VSRS(yt+1 − yt) = 2
S2

n

(
1 − m

n
ρ
)
, (8)

where ρ is the correlation of observations of the survey variable in two adjacent time
periods.

As ρ is often positive, it becomes clear that no overlap (m = 0) is the least efficient
strategy for estimation of change and that a panel survey (complete overlap or m = n)
is the most efficient, with a reduction factor of 1−ρ. The overlap fraction m/n provides
an attenuation of the variance reduction when a rotation design with less than 100%
overlap is adopted.

Now with some sample overlap, there are alternative estimators of the level on
the second (and subsequent) occasion(s). If an optimal estimator (see Cochran, 1977,
eq. 12.73) is used with optimal weight and optimum matching proportion of m/n =√

1 − ρ2
/(

1 +√1 − ρ2
)
, its variance would be given approximately by

VSRS

(
y

opt
t+1

)
= S2

n

(
1 +√1 − ρ2

)
2

. (9)

For values of ρ above 0.7, the gains are noticeable, and the optimum matching proportion
is never bigger than 50%.

The above discussion demonstrates a clear link between the selection of an estimator
and the choice of a rotation design, particularly in terms of the proportion of sample
overlap, given a specified survey objective (in the above, estimation of the current popu-
lation mean). This discussion is at the heart of substantial developments in the literature
on estimation from repeated surveys, reviewed in Binder and Hidiroglou (1988), and
subsequently, in Silva and Cruz (2002). Some large-scale repeated surveys make use of
composite estimators (see Section 5.3), and the prime examples are again the U.S. CPS
(see U.S. Census Bureau and U.S. Bureau of Labor Statistics, 2002), and the Canadian
LFS (see Gambino et al., 2001).

After reviewing efficiency gains for estimators of both level and change under the
simplified SRS scenario discussed above, Cochran (1977, p. 354) suggests that “retention
of 2/3, 3/4, or 4/5 from one occasion to the next may be a good practical policy if
current estimates and estimates of change are both important.” But this large overlap of
successive surveys will only be advantageous if the estimators utilized are capable of
exploiting the survey overlap as would the “optimal” estimator discussed above.

We conclude this section by pointing out that in addition to considerations of sampling
error, it is essential that designers of repeated surveys consider the implications of alter-
native rotation designs in terms of nonsampling errors. The longer the households are
retained in the sample, the more likely they are to drop out (attrition/nonresponse), as well
as to start providing conditioned responses (measurement error). After a certain point,
the combined adverse effects of nonsampling errors are more likely to overshadow any
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marginal gains in efficiency, so it is vital not to extend the length of survey participation
beyond this point.

4. Data collection

The traditional modes of data collection for household surveys are personal interview,
telephone interview, and questionnaire mail out followed usually by self-completion
by the respondent. Recently, a variety of new methods have started to be used. These
include use of the internet (html questionnaires), the telephone (where the respondent
enters his replies using the telephone keypad), and self-completion using a computer
(the respondent either enters his responses using the keyboard or gives them orally, and
the computer records them).

Gradually, the use of paper questionnaires is diminishing and being replaced by
computer-based questionnaires. The latter have several advantages, including the pos-
sibility of having built-in edits that are processed during each interview and the elim-
ination of the data capture step needed for paper questionnaires. An important effect
of these changes is that the file of survey responses is relatively clean from the outset.
Computer-based questionnaires also make it possible to have very complex question-
naires with elaborate skip patterns. Even in some very large-scale household surveys,
such as national population censuses, computers are now being used instead of tra-
ditional paper questionnaires: this has been the case in Colombia and Brazil, where
handheld computers were used for population censuses in 2006 and 2007. The Brazilian
case illustrates the potential for such devices to affect data collection because for the
first time, the population census and an agricultural census have been integrated into a
single field operation, with households in the rural area providing both the population
and agricultural census information in a single interview (for details see the web site of
the Brazilian official statistics agency IBGE).

One benefit of using computer-assisted interviewing that is receiving increased atten-
tion is the wealth of information about the data collection process that it makes available.
Such data about the data collection process, and more generally about other aspects of
the survey process, are referred to as paradata (see Scheuren, 2005). This information
can be invaluable to improving the collection process. It provides answers to questions
such as: which parts of the questionnaire are taking the most time? Which questions
are being corrected most often? Which are triggering the most edit failures? This infor-
mation can then be used to review concepts and definitions, improve the questionnaire,
improve interviewer training, and so on. Granquist and Kovar (1997) advocate the use
of such information as one of the primary objectives of survey data editing, but one that
is often not so vigorously pursued in practice. The ultimate goal is to improve the survey
process in subsequent surveys or survey waves.

A major change in field operations in developed countries has been the increase in
the proportion of interviews conducted by telephone rather than in person. This has
had an impact on both the types of people who conduct interviews and the way their
workload is organized. For example, when most interviews were conducted in person,
often in the daytime, the interviewer needed a car. With the introduction of computer-
assisted interviewing from a central facility, the interviewer no longer needs a car and
the number of evening interviews can increase since it is possible to have an evening



426 J. G. Gambino and P. Luis do Nascimento Silva

shift that conducts interviews in different time zones. As a result of factors such as
these, the demographic characteristics of interviewers have changed (e.g., the number
of university students working part-time as interviewers has increased in Canada).

The introduction of computer-assisted interviewing from a central facility also makes
it possible to monitor interviews as they happen. In some statistical agencies, elaborate
quality assurance programs based on monitoring have been introduced to improve the
data collection process (identify problems, target interviewer training needs, etc.).

Monitoring interviews conducted in a central facility has benefits, but until recently,
the computers used for personal interviewing, namely, laptop computers and handheld
devices, were not powerful enough to implement something similar to monitoring for
personal interviews. However, recording of personal interviews (on the same computer
used to enter responses to survey questions) has now become feasible. Biemer et al.
(2000) discuss the application of computer audio-recorded interviewing (CARI) to the
National (United States) Survey of Child and Adolescent Well-being. Another form of
interview monitoring that has recently become feasible is to use computers equipped
with a Global Positioning System device, which can be used to record the coordinates
of dwellings visited for interview at the time of arrival or at the start of the interview.
This enables survey organizations to supervise work in ways that were not previously
feasible with paper-and-pencil type interviews. Devices like these were used to carry out
a mid-decade population census in Brazil and are being considered for the redesigned
South African LFS.

The use of computers in survey sampling extends well beyond computer-assisted
interviewing. Since the whole survey process can be monitored using software tools,
this opens new possibilities for improving data collection. In addition to the tools already
mentioned in this section, such as live monitoring of interviews, computers make it easier
to keep track of progress on many fronts, such as response rates by various categories
(geographical, age group, etc.). Hunter and Carbonneau (2005) provide a high-level
overview of what they refer to as active management.

The increased use of telephone interviewing is motivated by cost considerations, but
it also introduces problems. We have already mentioned problems associated with the
use of mobile telephones in Section 2.1 in the context of frame coverage. There are
other aspects of telephone interviewing that make it more difficult to get a response.
These include the use of answering machines and call display (caller ID) to screen calls
and the apparently greater difficulty for the interviewer to establish a rapport with the
respondent by telephone than in person. The recent Second International Conference on
Telephone Survey Methodology, held in 2006, was devoted to the subject. A monograph
containing selected papers from the conference will be published.

In recent years, there has been increased interest in finding better ways to survey rare
populations (or, more accurately, small groups within larger populations) and groups
that are difficult to survey, such as the homeless and nomadic populations. Statistics
Canada (2004) devoted a methodology symposium to the topic and some of the latest
research in this area is covered in the proceedings of that conference.

4.1. Combining data from different sources

Another way to reduce survey costs is to try to make use of existing data and, in particular,
data from administrative sources. We focus on the combined use of administrative and
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survey data, although there are cases where administrative data can be used on their own.
In addition to its low cost (since it was collected for some other purpose and therefore
already “paid for”), a great benefit of using administrative data is the reduction in
burden on survey respondents. In addition, if the concepts used by the survey (e.g., to
define income) are close to those on which the administrative data are based, then the
administrative data may be more accurate than the same data obtained via a survey. We
give two examples of the integration of survey and administrative data. The Canadian
Survey of Labour and Income Dynamics (SLID) asks survey respondents whether they
prefer to answer several questions on income or, alternatively, to give permission to
Statistics Canada to access the information from their income tax records. In recent
surveys, 85% of respondents have chosen the latter option. Because of this success, the
approach is being extended to other surveys such as the Survey of Household Spending
and even the census of population.

A second example involves the long-standing longitudinal Survey of Income and
Program Participation (SIPP) conducted by the U.S. Census Bureau, which is being
replaced by the Dynamics of Economic Wellbeing System (DEWS). The DEWS will
make extensive use of administrative data files to augment survey data (see U.S. Census
Bureau, 2006a).Akey motivating factor behind this change is the reduction of both costs
and response burden. By using administrative data files over time, the new approach
also avoids the problem of attrition common to all longitudinal surveys. More generally,
data can be combined across multiple surveys and administrative sources. This is often
the only way to obtain adequate estimates for small domains. Two sessions at Statistics
Canada’s 2006 methodology symposium included papers on this topic (see Statistics
Canada, 2006).

Merkouris (2004) presented a regression-based method for combining informa-
tion from several surveys. This method is essentially an extended calibration proce-
dure whereby comparable estimates from various surveys are calibrated to each other,
accounting for differences in effective sample sizes. The method has been applied
successfully: data from the Canadian SLID was used to improve estimates for the
much smaller Survey of Financial Security. Merkouris (2006) adapted the procedure to
small domain estimation. A related approach was adopted in the Netherlands (Statis-
tics Netherlands, 2004) to compile a whole “virtual census” using data from several
sources, such as a population register, some other administrative records, and selected
household surveys. The methodology, called repeated weighting, is described in detail in
Houbiers et al. (2003).

5. Weighting and estimation

5.1. Simple estimation of totals, means, ratios, and proportions

Estimation in household sample surveys is often started using “standard” weighting
procedures. Assuming that

• a two stage stratified sampling design was used to select a sample of households,
• every member in each selected household was included in the survey, and
• the sample response was complete,



428 J. G. Gambino and P. Luis do Nascimento Silva

then the standard design-weighted estimator for the population total
Y =∑h

∑
i∈Uh

∑
j∈Uhi

yhij of a survey variable y has the general form

Ŷ =
∑

h

∑
i∈sh

∑
j∈shi

dhijyhij, (10)

where dhij is the design weight for household j of PSU i in stratum h, yhij is the corre-
sponding value for the survey variable y, Uh and sh are the population and sample sets
of PSUs in stratum h, respectively, of sizes Nh and nh, Uhi and shi are the population and
sample sets of households in PSU i of stratum h, having sizes Mhi and mhi, respectively.

The design weight dhij is the reciprocal of the inclusion probability of household j of
PSU i in stratum h, which can be calculated as the product of the inclusion probability
πhi for PSU hi and the conditional probability πj|hi of selecting household j given that
PSU hi is selected. Design weights for multistage designs having more than two stages
of selection can be computed using similar recursion algorithms where each additional
stage requires computing an additional set of inclusion probabilities conditional on
selection in preceding stages.

Although the design weight is simply the reciprocal of a unit’s inclusion probability,
in practice, its computation can be quite involved. For example, in the relatively simple
case of the Canadian LFS, the design weight is the product of the following: the first-
stage (PSU) inclusion probability, the second-stage (dwelling) inclusion probability, the
cluster weight (a factor, usually equal to 1, that accounts for subsampling in PSUs whose
population has increased significantly since the last redesign), and the stabilization
weight (a factor to account for the high-level subsampling that the LFS uses to keep the
national sample size stable over time; see Section 2.5 in this chapter). For some surveys,
the computation of design weights can be much more complex than this, particularly
for longitudinal surveys. In addition, there are further adjustments to the design weight
needed to account for nonresponse and, in some cases, for coverage errors, unknown
eligibility (in RDD surveys, for example), and so on.

Estimators of totals similar to (10) are available for designs having
any number of stages of selection. The estimator of the population mean
Y = ∑

h

∑
i∈Uh

∑
j∈Uhi

yhij

/∑
h

∑
i∈Uh

Mhi would be obtained simply by substituting
the design-weighted estimators of the totals in the numerator and denominator leading
to

yd =
∑

h

∑
i∈sh

∑
j∈shi

dhijyhij

/∑
h

∑
i∈sh

∑
j∈shi

dhij. (11)

For most household surveys, the overall population size M0 = ∑
h

∑
i∈Uh

Mhi is not
known and the estimator that could be obtained from (14) by replacing the estimated
population size in the denominator by M0 is not available. However, even if this alter-
native estimator was available, (11) would still be the usual choice because for many
survey situations encountered in practice, it would have smaller variance. Note that (11)
is a special case of the estimator

R̂d =
∑

h

∑
i∈sh

∑
j∈shi

dhijyhij

/∑
h

∑
i∈sh

∑
j∈shi

dhijxhij (12)
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for the ratio of population totalsR=Y/X=∑h

∑
i∈Uh

∑
j∈Uhi

yhij

/∑
h

∑
i∈Uh

∑
j∈Uhi

xhij ,

where the variable x in the denominator is equal to 1 for every household. Another
special case of interest occurs when the survey variable is simply an indicator variable.
In this case, its population mean is simply a population proportion, but the estimator
(11) is still the estimator applied to the sample observations of the corresponding
indicator variable.

The above estimators would be used also to obtain estimates on characteristics of
persons simply by making the corresponding y and x variables represent the sum of
the values observed for all members of sampled households. This assumes that survey
measurements are taken for every member of sampled households, which is a common
situation in practice. However, if subsampling of household members takes place, there
would be an additional level of weighting involved, but the above general approach to
estimation would still apply.

5.2. Calibration estimation in household surveys

Despite their simplicity, such design-weighted estimators are not the ones most com-
monly used in the practice of household surveys. Instead, various forms of calibration
estimators (Deville and Särndal, 1992) are now commonly used. Calibration estimators
of totals (see Chapter 25) are defined as

ŶC =
∑

h

∑
i∈sh

∑
j∈shi

whijyhij, (13)

where the weights whij are such that they minimize a distance function

F =
∑

h

∑
i∈sh

∑
j∈shi

G
(
whij, dhij

)
(14)

and satisfy the calibration equations∑
h

∑
i∈sh

∑
j∈shi

whijxhij = X, (15)

where xhij is a vector of auxiliary variables observed for each sampled household, X is
a vector of population totals for these auxiliary variables, assumed known, and G(w, d)

is a distance function satisfying some specified regularity conditions. A popular choice
of distance function is the standard “chi-square” type distance defined as

G
(
whij, dhij

) = (whij − dhij

)2
/qhijdhij, (16)

where the qhij are known constants to be specified.
Calibration estimators for ratios and means (as well as proportions) follow directly

from using the weights whij in place of the design weights dhij in the expressions (11)
and (12).

Calibration estimators have some desirable properties. First, weights satisfying (15)
provide sample “estimates” for the totals of the auxiliary variables in x that match
exactly the known population totals for these variables. If the population totals of the
auxiliary variables have been published before the survey results are produced, then
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using calibration estimators for the survey would guarantee that the survey estimates are
coherent with those already in the public domain. This property, although not essential
from an estimation point of view, is one of the dominant reasons why calibration is so
often used in household surveys. It appeals to survey practitioners in many instances
as a way of enforcing agreement between their survey and publicly available totals
for key demographic variables. Särndal calls this the cosmetic property of calibration
estimators.

The second desirable property is simplicity, namely the fact that given the weights whij

calibration estimates are linear in y. This means that each survey record can carry a single
weight to estimate all survey variables. Calculation of the estimates for totals, means,
ratios, and many other parameters is straightforward using standard statistical software,
after the calibration weights have been obtained and stored with each household survey
record. In the case of some commonly used distance functions, the calibrated weights
are given in a closed form expression and are easy to compute using a range of available
software (e.g., CALMAR, GES, BASCULA, G-CALIB-S, R survey package, etc.).

The third property of such calibration estimators is their flexibility to incorporate
auxiliary information that can include continuous, discrete, or both types of benchmark
variables at the same time. If the auxiliary totals represent counts of the numbers of
population units in certain classes of categorical (discrete) variables, then the values
of the corresponding x variables are simply indicators of the units being members of
the corresponding classes. Cross-classification of two or more categorical variables
can also be easily accommodated by defining indicator variables for the corresponding
combinations of categories.

Calibration estimators also yield some degree of integration in the sense that some
widely used estimators are special cases, for example, ratio, regression, and poststrat-
ification estimators (Särndal et al., 1992, Chapter 7) as well as incomplete multiway
poststratification (Bethlehem and Keller, 1987).

In addition, if the calibration is performed at the level of the household, all members
of the same household will have a common calibration weight whij , which is a “natural”
property since this is the case for the original design weights dhij . If there are auxiliary
variables referring to persons, such as age and sex, the calibration at the household
level is still possible, provided the auxiliary variables x include the counts of household
members in the specified age-sex groups for which population auxiliary information
is available. This is the approach called “integrated household (family) weighting” by
Lemaitre and Dufour (1987).

These are powerful arguments for using calibration estimators. However, when doing
so, users must be aware of some difficulties that may be encountered as well. Some of
the issues that should be of concern when performing calibration estimation in practice
include as follows:

• Samples are often small in certain weighting classes;
• Large numbers of “model groups” and/or survey variables;
• Negative, small (less than 1) or extreme (large) weights;
• Large number of auxiliary variables;
• Nonresponse;
• Measurement error.
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The last issue in this list (measurement errors and their effect on calibration) is
discussed in Skinner (1999). All the other issues are considered in Silva (2003).

Calibration estimators may offer some protection against nonresponse bias. Poststra-
tification and regression estimation, both special cases of calibration estimators, are
widely used techniques to attempt to reduce nonresponse bias in sample surveys.
Särndal and Lundström (2005) even suggest “calibration as a standard method for treat-
ment of nonresponse.” Calibration estimators are approximately design unbiased if there
is complete response for any fixed choice of auxiliary variables. Under nonresponse bias,
however, calibration estimators may be biased even in large samples. Skinner (1999)
examined the impact of nonresponse on calibration estimators. His conclusions are as
follows:

• “the presence of nonresponse may be expected to lead to negative weights much
more frequently”;

• “the calibration weights will not converge to the original design weights as the
sample size increases”;

• “the variance of the calibration estimator will be dependent on the distance func-
tions G(w, d) and revised methods of variance estimation need to be considered.”

The intended bias reduction by calibration will only be achieved, however, if the
combined nonresponse and sampling mechanisms are ignorable given the x variables
considered for calibration. This suggests that the choice of x variables has to take account
of the likely effects of nonresponse, and in particular, should aim to incorporate all x
variables for which auxiliary population data is available that carry information about
the unknown probabilities of responding to the survey.

The bias of the calibration estimator will be approximately zero if yhij = β′xhij

for every unit in the population, with a nonrandom vector β not dependent on the units.
(e.g., see Bethlehem, 1988; Särndal and Lundström, 2005, and also Chapter 15 of Särndal
et al., 1992). In household surveys, this is an unlikely scenario, and even under models
of the form yhij = β′xhij + εhij , the residuals may not be sufficiently small to guarantee
absence of bias due to nonresponse. Särndal and Lundström (2005, Section 9.5) examine
additional conditions under which calibration estimators are nearly unbiased and show
that if the reciprocals of the response probabilities are linearly related to the auxiliary
variables used for calibration, then the calibration estimators will have zero “near bias.”

Hence, the key to successfully reduce nonresponse bias in estimating for household
surveys is to apply calibration estimation using auxiliary variables that are good linear
predictors of the reciprocals of the response probabilities.

Gambino (1999) warns that “nonresponse adjustment can, in fact, increase bias rather
than decreasing it,” and consequently, that “the choice of variables to use for nonresponse
adjustment should be studied even more carefully in the calibration approach than in
the traditional approach” for nonresponse compensation.

5.3. Composite estimation for repeated household surveys

For repeated surveys with partial overlap of sample over time, we can use information for
the common (matching) sample between periods to improve estimates for the current
period t, as we saw in Section 3.6. The common units can be used to obtain a good
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estimate of change �̂t−1,t between periods t − 1 and t, which can then be added to the
estimate θ̂t−1 to produce an alternative estimate to θ̂t . An optimal linear combination of
these two estimates of θt is referred to as a composite estimate. The U.S. CPS has used
such estimates since the 1950s. Initially, the CPS used the K-composite estimator

θ̂′
t = (1 − K)θ̂t + K(θ̂′

t−1 + �̂t−1,t)

with K = 1/2. This was later replaced by the AK-composite estimator

θ̂′
t = (1 − K)θ̂t + K(θ̂′

t−1 + �̂t−1,t) + A(θ̂u,t − θ̂m,t)

with A = 0.2 and K = 0.4, where m and u denote the matched and unmatched por-
tions of the sample (see Cantwell and Ernst, 1992). Note that the term on the far right
involves the difference between estimates for the current time point based on the current
unmatched and matched samples, respectively. One drawback to using the K- and AK-
composite estimators is that the optimal values of A and K depend on the variable of
interest. Using different values for different variables will lead to inconsistencies in the
sense that parts will not add up to totals (e.g., labor force �= employed + unemployed).
One solution to this problem, called composite weighting, was introduced into the CPS
in 1998. Coefficients of A = 0.4 and K = 0.7 are used for employed and A = 0.3 and
K = 0.4 are used for unemployed, with Not-in-Labour Force being used as a residual
category to ensure additivity. Then, a final stage of raking is used to rake to control totals
based on composited estimates (see Lent et al., 1999).

The Canadian LFS introduced a regression (GREG) approach, called regression com-
posite estimation, that does not have the consistency problem and has other benefits as
well (see Fuller and Rao, 2001; Gambino et al., 2001; Singh et al., 2001).

To implement regression composite estimation, the X matrix used in regression is
augmented by columns associated with last month’s composite estimates for key vari-
ables, that is, some of last month’s composite estimates are used as control totals. Thus,
the elements of the added columns are defined in such a way that, when the final weights
of this month are applied to each new column, the total is a composite estimate from
the previous month. Therefore, the final calibration weights will respect both these new
control totals and the ones corresponding to the original columns of X (typically, age-sex
and geographical area population totals).

There are several ways to define the new columns, depending on one’s objectives. In
the Canadian LFS, a typical new column corresponds to employment in some industry,
such as agriculture. If one is primarily interested in estimates of level, the following
way of forming columns produces good results. For person i and times t − 1 and t, let
yi,t−1 and yi,t be indicator variables that equal 1 whenever the person was employed in
agriculture, and 0 otherwise. Then let

x
(L)
i =

{
ȳ′

t−1 if i ∈ u

yi,t−1 if i ∈ m,

where y′
t−1 is last month’s composite estimate of the proportion of people employed in

agriculture. The corresponding control total is last month’s estimate of the number of
people employed in agriculture, that is, Ŷ ′

t−1.Thus, applying the final (regression) weights
to the elements of the new column and summing will produce last month’s estimate.
The superscript L is used as a reminder that the goal here is to improve estimates of
level.
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If estimates of change are of primary interest, the following produces good results:

x
(C)
i =

{
yi,t if i ∈ u

yi,t + R(yi,t−1 − yi,t) if i ∈ m,

where R =∑wi/
∑

m wi and 1/R is (approximately) the fraction of the sample that is
common between successive occasions.

Using the L controls produces better estimates of level for the variables added to the
X matrix as controls. Similarly, adding C controls produces better estimates of change
for the variables that are added. Singh et al. (2001) present efficiency gains for C-based
estimates of level and change and refer to earlier results on L-based estimates.

Although we can add both L and C controls to the regression, this would result in
a large number of columns in the X matrix, which can have undesirable consequences.
Fuller and Rao (2001) proposed an alternative that allows the inclusion of the industries
of greatest interest while allowing a compromise between improving estimates of level
and improving estimates of change. They proposed taking a linear combination of the
L column and the C column for an industry and using it as the new column in the X

matrix, that is, use

xi = (1 − α)x
(L)
i + αx

(C)
i .

This is the method currently used by the Canadian LFS. For a discussion on the choice
of α, see Gambino et al. (2001). They also discuss some of the subtleties involved in
implementing the above approach that we have not considered here. Note the importance
of having good tracking or matching information for the survey units and also the need
to apply composite estimation in line with the periods defining rotation of the sample
(i.e., monthly rotation leads to monthly composite estimators, etc.).

5.4. Variance estimation

Variance estimation for multistage household surveys is often done using approximate
methods. This happens because sampling fractions are very small, exact design unbiased
variance estimators are complex or unavailable (e.g., when systematic sampling is used
at some stage), or estimators are not linear. There are two main alternative approaches,
which are as follows:

• Approximate the variance and then estimate the approximation;
• Use some kind of resampling or replication methodology.

Wolter (2007) provides a detailed discussion on variance estimation in complex sur-
veys, and many of the examples discussed in the book come from multistage household
surveys. Skinner et al. (1989) also discuss in detail variance estimation under com-
plex sampling designs, not only for standard estimators of totals, means, ratios, and
proportions but also for parameters in models commonly fitted to survey data.

In the first approach, which we refer to as the “approximation approach,” we approxi-
mate the variance of the estimator under the complex design assuming that the selection
of PSUs (within strata) had taken place with replacement, even though this was not
actually the case. If the estimator of the target parameter is linear, this is the only
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approximation required to obtain a simpler variance expression and then use the sample
to estimate this approximate variance. This is the so-called ultimate cluster approach
introduced by Hansen et al. (1953). If, in addition, the estimators are nonlinear, but may
be written as smooth functions of linear estimators (such as estimators of totals), Taylor
series methods are used to approximate their variance using functions of variances of
these linear estimators obtained under the assumption of with-replacement sampling of
PSUs. Obtaining design-unbiased variance estimators for these variance approximations
simplifies considerably, and for a large set of designs and estimators, the corresponding
variance estimators are available in explicit form and have been incorporated in statisti-
cal software. Such software includes special modules in general statistical packages like
SAS, SPSS, STATA, and R (see the “survey” package—Lumley, 2004). It also includes
specialized packages such as SUDAAN, PC-CARP, and EPI-INFO.

In contrast, resampling methods start from a completely different perspective. They
rely on repeatedly sampling from the observed sample to generate “pseudoestimates”
of the target parameter, which are subsequently used to estimate the variance of the
original estimator. Let θ̂ denote the estimator of a vector target parameter θ, obtained
using the “original” survey weights wi. Then a resampling estimator of the variance of
θ̂ is of the form

V̂R(θ̂) =
R∑

r=1

Kr(θ̂
(r) − θ̂)(θ̂(r) − θ̂)

′
(17)

for some specified coefficients Kr, where r denotes a particular replicate sample selected
from s, R denotes the total number of replicates used, and θ̂(r) denotes the pseudoestimate
of θ based on the rth replicate sample. These replicate samples may be identified in the
main sample data set by adding a single column containing revised weights correspond-
ing to each sample replicate, and for each of these columns, having zero weights for
units excluded from each particular replicate sample. The constants Kr vary according
to the method used to obtain the replicate samples. Three alternative approaches are
popular: jackknife, bootstrap, and balanced repeated replication. For details, see Wolter
(2007).

Approximation-based methods are relatively cheap in terms of computation time,
provided the survey design and the target parameters are amenable to the approximations,
and one has the required software to do the calculations. Their main disadvantages are the
need to develop new approximations and variance estimators whenever new estimators
are employed and the somewhat complex expressions required for some cases, especially
for nonlinear estimators.

Resampling methods are reasonably simple to compute, provided the survey data
contains the necessary replication weights. They are, however, more costly in terms of
computation time, a disadvantage which is becoming less important with the increase
in computer power. In addition, the methods are quite general and may apply to novel
situations without much effort from a secondary analyst. The burden here lies mostly
on the survey organization to compute and store replicate survey weights with each data
record.

Modern computer software is available for survey data analysis that is capable of
computing variance estimates without much effort, provided the user has access to the
required information on the survey design (Lumley, 2004).
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For domain estimates, when the sample within a domain is sufficiently large to
warrant direct inference from the observed sample, the general approaches discussed
above can be applied directly as well. However, many emerging applications require
more sophisticated methods to estimate for small domains (small areas). This topic is
covered in a large and growing literature and will not be treated here. We note only that
when small area estimation methods are used, the variance estimation becomes more
complex. The reader is referred to Rao (2003) for a comprehensive review of this topic.
See also Chapters 31 and 32.

6. Nonsampling errors in household surveys

This section considers briefly some issues regarding nonsampling errors in household
surveys, a topic which requires, and has started to receive, more attention from survey
statisticians. See Chapters 8–12 for more detailed treatment of nonsampling errors such
as nonresponse, and measurement and processing errors. We identify some factors that
make it difficult to pay greater attention to the measurement and control of nonsam-
pling errors in household surveys, in comparison to the measurement and control of
sampling errors, and point to some recent initiatives that might help to improve the
situation.

Data quality issues in sample surveys have received increased attention in recent
years, with a number of initiatives and publications addressing the topic, including sev-
eral international conferences (see the list at the end of the chapter). Unfortunately, the
discussion is still predominantly restricted to developed countries, with little participa-
tion and contribution of experiences coming from developing countries. We reach this
conclusion after examining the proceedings and publications issued after these various
conferences and initiatives.

After over 50 years of widespread dissemination of (sample) surveys as a key obser-
vation instrument in social science, the concept of sampling errors and their control,
measurement and interpretation has reached a certain level of maturity. Treatment of
nonsampling errors in household surveys is not as well developed, especially in develop-
ing and transition countries. Lack of a widely accepted unifying theory (see Lyberg et al.,
1997, p. xiii; Platek and Särndal, 2001; and subsequent discussion), lack of standard
methods for compiling information about and estimating parameters of the nonsam-
pling error components, and lack of a culture that recognizes these errors as important
to measure, assess, and report on imply that nonsampling errors, their measurement and
assessment receive less attention in many household surveys carried out in developing
or transition countries. This is not to say that these surveys are of low quality but rather
to stress that little is known about their quality levels.

This has not happened by chance. The problem of nonsampling errors is a difficult
one. Such errors come from many sources in a survey. Efforts to counter one type of
error often result in increased errors of another kind. Prevention methods depend not
only on technology and methodology but also on culture and environment, making it
harder to generalize and propagate successful experiences. Compensation methods are
usually complex and expensive to implement properly. Measurement and assessment are
hard to perform. For example, how does one measure the degree to which a respondent
misunderstands or misinterprets the questions asked in a survey (or, more precisely, the
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impact of such problems on survey estimates)? In addition, surveys are often carried out
with very limited budgets, with publication deadlines that are becoming tighter in order
to satisfy the increasing demands of information-hungry societies. In this context, it is
correct for priority to be given to prevention rather than measurement and compensation,
but this leaves little room for assessing how successful prevention efforts were, thereby
reducing the prospects for future improvement.

Even if the situation is not good, some new developments are encouraging. The
recent attention given to the subject of data quality by several leading statistical agen-
cies, statistical and survey academic associations, and even multilateral government
organizations, is a welcome development. The main initiatives that we shall refer to
here are the General Data Dissemination System (GDDS) and the Special Data Dis-
semination Standard (SDDS) of the International Monetary Fund (IMF, 2001), which
are trying to promote standardization of reporting about the quality of statistical data by
means of voluntary adherence of countries to either of these two initiatives.According to
the IMF, “particular attention is paid to the needs of users, which are addressed through
guidelines relating to the quality and integrity of the data and access by the public to
the data.” These initiatives provide countries with a framework for data quality (see
http://dsbb.imf.org/dqrsindex.htm) that helps to identify key problem areas and targets
for quality improvement. Over 60 countries have now subscribed to the SDDS, having
satisfied a set of tighter controls and criteria for the assessment of the quality of their
statistical output.

A detailed discussion of the data quality standards promoted by the IMF or other
organizations is beyond the scope of this chapter, but readers are encouraged to pursue
the matter with the references cited here. Statistical agencies or other survey agencies in
developing countries can use the available standards as starting points (if nothing similar
is available locally) to promote greater quality awareness both among their members
and staff, and perhaps also within their user communities.

Initiatives like these are essential to support statistical agencies in developing coun-
tries to improve their position: their statistics may be of good quality but they often do not
know how good they are. International cooperation from developed towards developing
countries and also among the latter is essential for progress towards better measure-
ment and reporting about nonsampling survey errors and other aspects of survey data
quality. A good example of such cooperation was the production of the volumes House-
hold Sample Surveys in Developing and Transition Countries and Designing Household
Survey Samples: Practical Guidelines by the United Nations Statistics Division (see
United Nations, 2005a,b).

7. Integration of household surveys

The integration of household surveys can mean a variety of things, including

– Content harmonization, that is, the use of common concepts, definitions, and ques-
tions across surveys;

– Integration of fieldwork, including the ability to move cases among interviewers
using different modes of collection, both for the same survey and possibly across
surveys;
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– Master sample, that is, the selection of a common sample that is divided among
surveys, possibly using more than one phase of sampling;

– The use of common systems (collection, processing, estimation, and so on).

In the past twenty years or so, there have been efforts in several national statistical
agencies to create general systems for data collection, sampling, estimation, etc. that
would be sufficiently flexible that most surveys conducted by a given agency could use
these systems. These efforts have met with mixed success—it appears inevitable that
some surveys will make the claim that their requirements are unique.

The United Kingdom’s Office for National Statistics (ONS) is currently in the pro-
cess of moving its major household surveys into an Integrated Household Survey. This
endeavor includes the integration of fieldwork: interviewers, and the systems they use,
will be able to work on several surveys during the same time period. The integration
extends to all steps in the survey process. All respondents will be asked the same core
questions and different subsets of respondents will be asked additional questions from
modules on a variety of topics. Details are available at the ONS web site.

At Statistics Canada, different approaches to creating a master sample for household
surveys have been studied. One option, to have a distinct first-phase sample in which all
respondents get a small, core set of questions, was rejected due partly to the substantial
additional cost of a separate first phase. In addition, the benefits of using first-phase
information to select more efficient second-phase samples only accrue to surveys that
target subpopulations (e.g., travelers are important in the Canadian context), whereas
most major surveys, such as the LFS and health surveys, are interested in the population
as a whole. To make the first phase more useful, the core content would have to be
increased to the point where it affects response burden and jeopardizes response rates.
The preferred option at Statistics Canada is to make the “front end” of major surveys
such as the LFS the same (corresponding to the core content of phase one of the two-
phase approach) and then to pool the samples of all these surveys to create a master
sample for subsampling.

In parallel with the study of design options, Statistics Canada is working on content
harmonization for key variables. The objective is not only to harmonize questions on
important variables such as income and education but also to create well-tested soft-
ware modules that new surveys can use without needing to develop them themselves.
The goal is to have different versions of certain modules, and each survey would choose
a version depending on its requirements. For example, for income, there would be
a short set of questions and a long set. A survey where income is of primary inter-
est would select the long set and, conversely, most other surveys would select the
short set.

Several developing countries, such as South Africa and Vietnam, have developed
master samples. Pettersson (2005) discusses the issues and challenges faced by devel-
oping countries in the creation of a master sample. These include the availability of
maps for PSUs, the accuracy of information, such as population counts, about such
units and how to deal with regions that are difficult to access. Of course, many of these
challenges are also faced by developed countries, but usually not to the same degree.
The development of integrated household survey programs in developing countries has
been a United Nations priority for some time. A discussion of efforts in this area, as well
as further references, can be found in United Nations (2005b).
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8. Survey redesign

Major ongoing surveys such as labor force surveys need to be redesigned periodically.
Redesigns are necessary for several reasons.

– Changes in geography, such as municipal boundary changes, may result in the need
for domain estimation and these changes accumulate over time.Aredesign provides
an opportunity to align survey strata with the latest geographical boundaries.

– The needs of users of the survey’s outputs change over time, in terms of geography,
frequency, and level of detail. These changing needs can be taken into account
during a redesign of the survey.

– As the population changes, the sample may no longer be “in the right place” because
of uneven growth and migration. A redesign is an opportunity to reallocate the
sample.

– Related to the previous point, inclusion probabilities (and therefore weights)
become increasingly inaccurate. This is not a concern for the bias of survey esti-
mates but it is for their variance (efficiency).

– A redesign provides an opportunity to introduce improvements (new methods, new
technology).

– For surveys with a clustered design, if all sampled clusters are carefully relisted
as part of the redesign process, this will reduce undercoverage (missed dwellings)
and put all clusters on the same footing (until cluster rotations start occurring).

Because of these benefits, surveys invest in periodic redesigns even though they can
be very expensive. Typically, redesigns take place shortly after a population census since
data from the census and census geography are key inputs for the design of household
surveys.

9. Conclusions

In the introduction, we mentioned some major trends in household surveys since the
1940s. We conclude this chapter by taking a nonexhaustive look at current and future
challenges. We have already noted that the theory of sample design is well-developed
for traditional household surveys. A traditional area where there is scope for further
development is the coordination of surveys. The U.S. Census Bureau recently conducted
a study comparing four methods based on either systematic sampling or permanent
random numbers for their household surveys (see Flanagan and Lewis, 2006). The goal
of the study was to find the best method for avoiding selection of a given household in
more than one survey over a certain time period. Studies of this type are needed in other
contexts as well.

Most new developments are likely to stem from technological changes, particularly
the internet. Currently, the internet is a useful medium for data collection, but it is not as
useful as a basis for selecting representative samples of people or households. Perhaps
this will change in the future: will there come a time when each individual will have a
unique and persistent internet address? We have already mentioned the challenges (in
developed countries) and opportunities (in developing countries) posed by the increased
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use of mobile phones. The future of telephone surveys depends on the development of
the mobile phone industry and its impact on landline telephone usage.

Like the theory of sample design, estimation theory for sample surveys is mature,
especially for relatively simple parameters such as totals, means, ratios, and regression
coefficients. However, there is still a great deal to do for analytical problems, especially
those associated with longitudinal surveys. Another area of active research is small area
estimation, which we mentioned only briefly in this chapter.

Perhaps the biggest estimation-related challenges in household surveys are associated
with nonsampling errors: how to measure them and how to fix them or take them into
account. Despite their importance, space considerations prevented us from addressing
this topic here, and Section 6 of this chapter barely skimmed the surface. We expect
that there will continue to be a great deal of research on topics such as nonresponse and
imputation, errors and biases due to reporting problems (including work on questionnaire
design and cognitive research), and variance estimates that reflect more than simply
sampling variability.

A common element underlying the challenges mentioned in the previous two para-
graphs is the need for statistical models. Traditionally, national statistical agencies have
favored purely design-based methods where possible, minimizing the use of explicit
models. To deal with the problems now facing them, survey statisticians in these agen-
cies recognize the need to use models explicitly in many areas, such as imputation and
small area estimation.

Finally, we mention the influence of cost considerations on household survey method-
ology. In most countries, there is constant pressure to reduce survey costs. In countries
with a high penetration of landline telephones, this has led to increased use of telephone
interviewing, but we have noted that there is a reversal under way and that there is scope
to use the internet as a response medium to counteract this reversal. We expect that
efforts to improve the survey collection process using paradata and other technology-
based tools such as interviewer monitoring will continue (see Groves and Heeringa,
2006). Sharing of experiences in this area among national statistical agencies (e.g.,
what works, what are the savings) would be beneficial.
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Sampling and Estimation in Business Surveys

Michael A. Hidiroglou and Pierre Lavallée

1. Introduction

A business survey collects data from businesses or parts thereof. These data are collected
by organizations for various purposes. For instance, the System of National Accounts
within National Statistical Offices of several countries uses them to compile annual
(and sometimes quarterly) data on gross product, investment, capital transactions,
government expenditure, and foreign trade. Business surveys produce a number of
economic statistics such as: production (outputs, inputs, transportation, movement of
goods, pollution, etc.); sales (wholesale and retail services, etc.); commodities (inputs,
outputs, types of goods moved, shipments, inventories, and orders); financial statements
(revenues, expenses, assets, liabilities, etc.); labor (employment, payroll, hours, bene-
fits, employee characteristics); and prices (current price index, industrial price index).

Business surveys differ in a number of ways from social surveys, throughout the
survey design. The frame of businesses is highly heterogeneous in terms of size and
industrial classification of its units, whereas the one associated with social surveys is
more homogenous. Business surveys usually sample from business registers (or equiva-
lent list frames) that contain contact information, such as name, address, contact points,
from administrative files. Social surveys, on the other hand, often use area frames to
select households, and eventually individuals from within these households.

The literature on the conduct of business surveys is relatively sparse. Deming’s
(1960) book is the only sampling book that specifically focuses on business surveys.
The two recent International Conferences on Establishment Surveys (1993 and 2000)
resulted in two books specially dedicated to establishment surveys: Cox et al. (1995)
and ICES-II (2001).

This chapter is structured as follows. In Section 2, we discuss sampling frames for
business surveys. In Section 3, we will discuss how administrative data form an important
component of business surveys. In Section 4, commonly used procedures for stratifying
a business register and allocating samples will be introduced. In Section 5, methods for
sample selection and rotation will be discussed, highlighting procedures that minimize
response burden. The remaining Sections 6 and 7 will include brief coverage of data
editing, outlier detection, imputation, and estimation, as they are covered in more depth
in other chapters of this book.

441



442 M. A. Hidiroglou and P. Lavallée

2. Sampling frames for business surveys

2.1. Basic concepts

A business is an economic unit (establishment, farm, etc.) engaged in the production of
goods or the provision of services that uses resources (labor, capital, raw materials) to
produce these goods or services. Businesses operate in economic sectors that include
retail trade, wholesale trade, services, manufacturing, energy, construction, transporta-
tion, agriculture, and international trade. A business survey is one that collects data used
for statistical purposes from a sample of businesses or firms.

Businesses are characterized by a set of attributes that include identification data,
classification data, contact data, and activity status. Identification data uniquely iden-
tify each unit with name, address, and alphanumeric identifiers. Classification data
(size, industrial and regional classifications) are required to stratify the population and
select a representative sample. Contact data are required to locate units in the sample,
including the contact person, mailing address, telephone number, and previous survey
response history. Activity status indicates whether a business is active (live, in-season)
or inactive (dead, out-of-season). Maintenance and linkage data are needed to monitor
and follow businesses through time. They include dates of additions and changes to the
businesses and linkages between them. Collectively, the identification, classification,
contact, maintenance, and linkage data items are referred to as frame data.

A business is also characterized by its legal structure, or its operating structure.
Administrative files usually reflect how businesses are structured with respect to their
legal arrangements, but do not reflect associated operating structures. The legal struc-
ture provides the basis for ownership, entering into contracts, employing labor, and so
forth. It is via the legal structure that a business is registered with the government, and
subsequently submits tax returns and/or payroll deductions and value-added taxes. The
operating structure reflects the way the business makes and enacts decisions about its
use of resources, production of goods and services, and how its accounting systems keep
track of production inventories and personnel (salaries and wages, number and types
of employees). These structures are reflected, and maintained, on a business register by
representing their linkages with the associated business. The linkages are maintained
by regular profiling of the businesses or signals triggered by survey feedback, or from
updates from administrative files.

The sampling of businesses takes place by usually transforming operating structures
into standardized units known as statistical units. The transformation takes into account
decision-making autonomy, homogeneity of industrial activity, and the data available
from each operating unit. Statistical units are usually represented as a hierarchy, or series
of levels that allow subsequent integration of the various data items available at different
levels within the organization. The number of levels within the hierarchy differs between
statistical agencies. For example, the Canadian Business Register has four such levels:
enterprise, company, establishment, and location (see Colledge, 1995 for definitions).
In the United Kingdom, the business register has two levels: establishment and local
unit (see Smith et al., 2003, for definitions). Statistical units are characterized by size
(e.g., number of employees, income), geography, and industry. Statistical units are used
for sampling purposes. Such units are called sampling units, and the level of the hierarchy
that is sampled depends on the data requirements of the specific business survey.
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Businesses either have a simple or complex structure. A simple business engages in
a single type of activity at a single location. The vast majority of businesses have a simple
structure that consists of a single legal unit that owns and controls a single operating
unit. A complex business engages in a range of economic activities taking place in many
locations, and can be linked to several legal units that in turn control several operating
units.

The target population is the set of units about which data are required for a specific
business survey. Target units within that population can be any of: legal units, operating
structures, administrative units linked to businesses, or statistical units. For example,
the target population could be the set of all locations that have industrial activity in the
industries associated with that survey. The sampling units are at a level equal or higher
than the target units.

Data collection arrangements between the statistical agency and a sampled business
(defined at the statistical unit level) are established via collection units. Three attributes
associated with a collection unit are:

• Coverage—defining the relationship between the business from which the data
are being acquired and the level within the business (i.e., enterprise, location) for
which the data are required;

• Collection mode—the means of obtaining the data (e.g., questionnaire, telephone
interview, administrative record, etc.);

• Contact—the respondent name, address, and telephone number within the business
operating structure.

Figures 1 and 2 illustrate how statistical units and collection units are related for a
simple or complex business, respectively.

Collection units provide one of several means for updating the business frame in terms
of frame data: others include administrative data updates and profiling. Collection units

Statistical
Unit

Target
Unit

Collection
Unit

Fig. 1. Simple business.
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Region 1

Target Unit 3
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Region 2

Target Unit 4
Industry 2
Region 2

Target Unit 5
Industry 2
Region 2

Target Unit 6
Industry 2
Region 3

Collection
Unit 1

Collection
Unit 2

Collection
Unit 3

Out-of-
scope

Statistical
Unit

Fig. 2. Complex business.

also represent the vehicle for monitoring respondent contacts and assessing respondent
burden. Collection units are created only for statistical units in a survey sample, and
are survey specific. Collection units are automatically generated with rules that depend
on statistical-operating links and data availability. They can be modified manually, as
need be, to take into account information related to nonstandard reporting arrangements
requested by respondents.

2.2. Types of sampling frames

Sampling frames for business populations, such as retail stores, factories, or farms, are
constructed so that a sample of units can be selected from them. There are two main
types of sampling frames used for business surveys: list frames and area frames.

A list frame is list of businesses with their associated frame data (such as adminis-
trative identification, name, address, and contact information). This list, also known
as a business register, should represent as closely as possible the real-life universe of
businesses. Business surveys are carried out in most countries by sampling businesses
from the business register. For National Statistical Agencies, administrative files are by
far the preferred way to maintain the business register, as they are relatively inexpensive
to acquire from government tax collecting agencies by the surveying agency. Examples
of administrative files provided by tax collecting agencies to National Agencies include
the Unemployment Insurance system in the Bureau of Labor Statistics in the United
States and the ValueAdded Tax files in Britain. In Canada, a wide range of administrative
files maintained by the Canada Revenue Agency is available to Statistics Canada’s
Business Register. These include files on corporate tax, individual tax, employee payroll
deductions, goods and services tax, importers.

An area frame is a collection of geographic areas (or area segments) used to select
samples using stratified multistage designs. All businesses within the selected areas
are enumerated. The use of area frames for business surveys presents both advantages
and disadvantages. An advantage is that it ensures the completeness of the business
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frame. However, their use presents a number of disadvantages. It is expensive to list
and maintain a list of businesses within an area frame, as they have to be person-
ally enumerated. The sampling design is inefficient on account of the clustering of the
selected segments, and the high skewness of the data associated with businesses.

A business survey may be based on more than one of these frames, and all pos-
sible combinations have been used by National Statistical Agencies. For instance, in
New Zealand, business surveys were at one time based solely on an area frame. Busi-
ness surveys have always been based on a list frame in the United Kingdom, whereas
Canada and the United States used at one time a combination of list and area frames.
Area frames are much more costly to develop than list frames. Consequently, their use
as a sampling frame for business surveys is warranted if they represent a significant por-
tion of the estimates, or if they represent the only means to obtain a list of businesses.
It is for that reason that Canada abandoned the area sample component of its retail and
wholesale businesses in the late 1980s: the lack of an area frame was compensated by
adjusting the weights to account for undercoverage. The United States followed suite
(see Konschnik et al., 1991) in the early 1990s for their monthly retail trade surveys.
The joint use of area frames with list frames results in a multiple frame. Kott and Vogel
(1995) provide an excellent discussion of problems and solutions encountered in this
context. From hereon, the discussion will focus on the building of business sampling
frames using administrative files.

2.3. Maintenance

A business universe is very dynamic. There are five main types of changes: (i) births
due to brand new business formation, mergers or amalgamations; (ii) deaths result-
ing from either splits or physical disappearances of exiting businesses; (iii) structural
changes in existing businesses; (iv) classification changes of existing businesses in
terms of industry, size, and/or geography; and (v) contact information changes. In the
case of mergers or amalgamations, the statistical units are to be linked prior to this
change are inactivated and the resulting statistical units are birthed with a new identi-
fier. Also, if a business splits, the parent statistical units are inactivated and the resulting
descendents are birthed. Such changes are tracked by a combination of (a) continu-
ously matching the administrative files to the business register; (b) profiling of existing
businesses on the business register; and (c) using feedback from surveys that use the
business register as their sampling frame.

The ideal system would keep all such changes up-to-date on the business register.
The reality is that this is not always possible, and errors in coverage (missing, extra-
neous, duplicate units), classification (size, industry, geography), and contact informa-
tion (name, address, telephone number) do occur. Reasons for coverage errors include
improper matching of the business register to administrative files, delays in updating
new births and structural changes to existing units, and delayed removal of deaths from
the register. Haslinger (2004) describes the problems associated with matching admin-
istrative files to a business register in further detail. Hedlin et al. (2006) propose a
methodology for predicting undercoverage due to delays in reporting new units.

Survey feedback updates the classification status, structures, and contact information
of existing businesses. Although survey feedback from surveys is beneficial for updat-
ing a register, it can result in biased estimates if changes in classification stratification
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and/or activity status (live to dead) are used for the same sampled units in future occa-
sions of the same survey. The problem can be avoided using updating the frame with
a source independent of the sampling process. If the frame is simultaneously updated
through several sources, indicators on the frame that reflect the source of the update will
allow the application of independent updates in an unbiased manner. If an independent
update source is not available, then domain estimation is required. This is achieved
by maintaining a copy of the original status of the stratification information of the in-
scope sampling units that allows computation of the survey weights as units were first
selected. Domain estimation can then take place reflecting any changes in stratification
and activity status of the sampled units. Although domain estimation results in unbiased
estimates, their variability will eventually become too large.

We illustrate how an independent source can be used to handle dead units. Dead units
in a sample are representative of the total number of dead units on the business frame.
Such units are initially retained on the frame and treated as zeroes in the sample. Given
that the independent administrative source identifies dead units, how do we use it? We
restrict ourselves to two occasions, and for a single stratum, to illustrate how this can
be handled during estimation.

On survey occasion 1, a sample s1 of n1 units is selected using simple random
sampling without replacement (srswor) from a population U1 of size N1. On the second
occasion, the universe U2 consists of all the original units in U1 as well as a set Ub

of Nb universe births that have occurred between the two occasions. Suppose that a
subset of U1 has died, between the creation of U1 and data collection for s1. This
subset denoted as Ud , consists of Nd unknown dead units. Suppose that the independent
administrative source identifies Ad of the Nd unknown dead units, where Ad < Nd .
During data collection of s1, nd deaths are also observed in sample s1, and ad(ad < nd)

of these deaths are also identified by the administrative source. The sample s1 is enlarged
with a representative sample sb of size nb = f1Nb, where f1 = n1/N1, selected using
srswor from Ub. If all the deaths are retained in the sample, then the resulting sample
consists of n2 = n1 + nb units of which nd are known to be dead.

Suppose that the parameter of interest is the population total Y2 = ∑
k∈U2

yk. An

unbiased estimator of Y2 is given by Ŷ2,HT = N1
n1

∑
k∈s2

yk where s2 = s1
⋃

sb. Note
that at least nd units are dead in that sample (because some more deaths have occurred
during the collection of data after the second selection). A more efficient estimator of Y2

is given by the poststratified estimator Ŷ2,PS = N2

N̂2
Ŷ2,HT where N̂2 = N1

n1
(n1 − ad + nb)

and N2 = N1 −Ad +Nb. This estimator is of a ratio form and is therefore approximately
unbiased.

3. Administrative data

Administrative data have been increasingly used by many National Statistical Agencies
for a number of years. Data are becoming more readily available in computer readable
format and because that their potential to replace direct survey data reduces overall sur-
vey costs. Brackstone (1987) classified administrative data records into six types, based
on their administrative purpose: the regulation of the flow of goods and people across
national borders; legal requirements to register particular events; the administration of
benefits or obligations; the administration of public institutions; the administration of
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government regulation of industry; and the provision of utilities (electricity, phone, and
water services).

3.1. Uses

Brackstone (1987) divided the use of administrative data into four categories: direct
tabulation, indirect estimation, survey frames, and survey evaluation. These categories
have been refined into seven types of use (see Lavallée, 2007a).

3.1.1. Survey frames
Administrative files have long been used by National Statistical Agencies to build and
maintain their business register. The objective is to use the business register to select
samples for all business surveys.

3.1.2. Sample design
Administrative data can be used as auxiliary variables for improving the efficiency of
sample designs in terms of sample allocation, for example.

3.1.3. Partial data substitution in place of direct collection
Some of the variables on an administrative file can be used instead of corresponding
variables collected by a direct survey. The practice of partial data substitution has been
adapted by Statistics Canada for both annual and subannual surveys: annual tax data on
incorporated businesses are used to replace direct collection of financial variables for
annual surveys; and Goods and Services Tax (GST) data are used for monthly surveys.
Erikson and Nordberg (2001) point to similar practices in Sweden’s Structural Business
Survey: administrative data replace direct data collection for small enterprises that have
less than 50 employees.

3.1.4. Edit and imputation
Administrative data can be used to assess the validity of collected variables. For example,
we should expect expenses on wages and salaries, collected via a direct survey, to be
smaller than the total expenses of the business. As total expenses are also available for
the corresponding unit on the administrative file, one is in a better position to decide
whether a collected value is valid. In the event that collected data have been declared as
incorrect, administrative data may be used to replace them, provided that the concepts
and definitions are comparable between the survey and administrative data.

3.1.5. Direct estimation
As administrative data are often available on a census basis, estimates such as totals
and means are obtained by summing the corresponding administrative data. Although
the resulting estimates are free of sampling errors, they will be subject to all of the
nonsampling errors associated with administrative data.

3.1.6. Indirect estimation
Administrative data can be used as auxiliary data to improve the precision of collected
data. Calibration procedures such as those given in Deville and Särndal (1992) are used
for that purpose.
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3.1.7. Survey evaluation
Once the survey process has been completed, administrative data can be used to evaluate
the quality of the resulting process. Validation compares the survey-based estimates to
corresponding administrative values to ensure that the results make sense. Such survey
evaluations can be done at the microlevel (i.e., the record level), and at the macro level
(i.e., the estimate level) as well. For example, in the Current Employment Statistics
survey conducted by the Bureau of Labor Statistics, administrative data available on a
lagged basis are used for that purpose.

3.2. Advantages and disadvantages

The use of administrative data offers both advantages and disadvantages which we
discuss briefly. We begin with the advantages. First, administrative data are often the only
data source for essential statistics (e.g., births, customs transactions). Second, because
most of the administrative data are available in computer form, considerable savings in
terms of capture costs are realized. This does not, however, reduce processing costs to
edit, impute, and transform them into a usable format for a specific application. Third,
they can also contribute to the reduction of response burden. Fourth, as administrative
data are often available on a census basis, there are no sampling errors associated with
statistics obtained from them. Another consequence of their availability on a census
basis is that it is possible to produce statistics for any domain of interest, including those
with a very small number of units. The production of domain estimates is, however,
constrained by the availability of that describes the domains on the administrative files.

We next note some of the disadvantages of using administrative data: some of them
are similar to those associated with direct surveying. First, there is limited control on data
timeliness, content, and quality as the administrative data originator’s main objective
may not be to use these data for statistical purposes. This will have a negative effect
on national agencies’ statistical programs. For example, a problem may occur if the
frequency for compiling administrative data is changed in mid-stream (e.g., changing
from monthly to quarterly). Furthermore, even though there are automated procedures
for assigning industrial classification codes to administrative records, the resulting codes
may be erroneous because of the limited available information describing industrial
activity. Administrative data may as well not be checked as thoroughly as possible at
source, and this means that the user needs to build edit checks that verify data consistency.
Data in error (missing or failing edit checks) are either corrected using logical checks or
imputed. Second, because administrative data have a limited number of variables, they
need to be supplemented with data collected by direct surveys. Third, there are coverage
problems if the population represented by the administrative data differs from the target
population of the survey that uses them.

3.3. Calendarization

Administrative data can cover time periods that differ markedly from the reporting
periods required by surveys. For example, the ideal reporting period for an annual survey
would be a calendar year, while the one for a monthly survey would be a calendar month.
These time periods are also known as reference periods. When the reference periods of
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the administrative data and the survey requirements differ, the administrative data are
transformed using a method known as calendarization. In Canada, reference periods
may differ between different records of an administrative file, and may even change
within the same record.

We will assume, without loss of generality, that the calendarization of the adminis-
trative data is required at a monthly calendar level. The following is a summary of
Quenneville et al. (2003). Formally, the objective of calendarization is to generate
monthly estimates for a variable of interest y over a selected range of T months, called
the estimation range, from the set of N transactions of a given unit. The available report-
ing periods may either partially or fully cover the months in the estimation range. If the
set of transactions does not cover all the estimation range, there are gaps between some
of the transactions and after the last transaction. The generated monthly estimates θ̂t

for each month t are called interpolations when they are within the span of the trans-
actions. These interpolations provide monthly estimates for all the months associated
with the transactions, as well as the gaps. The generated monthly estimates θ̂t are called
extrapolations when they are outside the span of the transactions. These extrapolations
provide monthly estimates for transactions not yet received. Figure 3 illustrates some
of the ideas given in this paragraph.

Calendarization benchmarks a monthly indicator series x to the administrative data y.
The monthly indicator series is a series obtained from another data source that reflects the
seasonal pattern of the series to be calendarized. The indicator series x is in fact used for
taking seasonality into account. The benchmarking procedure is based on a regression
model with autocorrelated errors. It is a generalization of the method of Denton (1971),
which now explicitly recognizes the timing and the duration of the data.

The benchmarking model for calendarization is represented by two linear equations.
The first one, given by yk = ∑T

t=1 γk,tθt + εk, specifies the relationship between the
reported value yk of each of the N transactions and the unknown, but true, interpola-
tions θt . This is the key to calendarization. It states that a transaction yk corresponds
to the temporal weighted sums of the true interpolations θt over its reporting period.
The quantity γk,t , called the coverage fraction, is the fraction of month t covered by yk.
For example, if yk covers from July 1 to August 31, the coverage fractions are equal to
31/31 for July, 31/31 for August, and 0 for all the other months. As another example,
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Interpolation
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1999 2000

Fig. 3. Calendarization for a monthly series.
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if yk covers from June 16 to August 17, the coverage fractions are equal to 15/30 for
June, 31/31 for July, 17/31 for August, and 0 for all the other months. It is assumed that
E(εt) = 0, V(εk) = σ2

k , Cov(εk, εk′) = 0 for k �= k′.
The second linear equation, xt = θt + ctet , states that the monthly indicator series

xt is the sum of the true interpolation θt and a measurement error ctet , t = 1, . . . T .
It is assumed that the indicator series xt is available for all the months t = 1, . . . T in
the estimation range. It is further assumed that E(et) = 0, and E(etet′) = ρ(|t−t′|) where
ρ(l) is the autocorrelation at lag l = 0, 1, . . . , T − 1 of a stationary and invertible Auto-
Regressive Moving Average (ARMA) process (Box and Jenkins, 1976). We also have
E(εket) = 0. The quantities ct are known constants proportional to a power of |xt|. Note
that the indicator series needs to be rescaled to the level of the data by multiplying it by

the factor
(∑N

k=1 yk

)/(∑N
k=1

∑T
t=1 γk,txt

)
.

These equations can be written in matrix notation as: y = γθ + ε, where E(ε) = 0 and
Cov(ε) = Vε; and x = θ + Ce, E(e) = 0, Cov(e) = ρe, where y is the column vector
containing the reported values yk, and so on for x, ε, and e. We define γ = [γk,t]N×T ,
Vε = diag(σ2

k ), C = diag(ct), and ρe = [ρ(|t − t′|)]T×T .
Using a Generalized Least Squares procedure such as the one given in Dagum

et al. (1998), the estimated monthly interpolations θ̂t are obtained from θ̂ = x +
CρeCγ′(γCρeCγ′+Vε)

−1(y−γx). The estimated interpolations can be shown to exactly
satisfy the benchmarking constraint by setting Vε = 0 and premultiplying both sides of
the previous equation in θ̂ by the matrix γ. This leads to γθ̂ = y, which shows that the
estimated interpolations exactly satisfy the benchmarking constraint y = γθ, because
we set Vε = 0.

In Canada, calendarization of the Goods and Service Tax data provided by the Canada
Revenue Agency has contributed significantly to reducing survey costs and response
burden of conducting monthly business surveys in a number of industrial sectors that
include wholesale, retail, manufacturing, and services.

4. Sample size determination and allocation

4.1. Choice of sampling unit

The sampling of a business universe is usually done in two steps. First, the in-scope
target universe is defined, and a set of target units are obtained. Second, the sampling
unit is defined at some level of the statistical units. The sampling level will be at
least at the level of the target units. For example, suppose that locations and estab-
lishments are the only two types of statistical units on the business register. Given that
the target unit is the location, the sampling unit could either be the location or the
establishment.

4.2. Stratification of sampling units

Once the population of businesses has been partitioned into sampling units, the sam-
pling units are stratified. The selection of samples is done independently in each of
these strata. The strata are usually based on geography (e.g., Canadian provinces and
major metropolitan centers), standard industrial classification (e.g., restaurants, agents
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and brokers, garages, department stores), and some measure of size (e.g., number of
employees, gross business income, net sales). Cochran (1977) gives four main reasons
for stratification. First, it reduces the variances of survey estimates, if they are correlated
with the stratification variables. Second, stratification may be dictated by administrative
convenience if, for example, the statistical agency has field offices. Third, sampling prob-
lems may differ markedly in different parts of the population such that each part should
be considered independently. Finally, reliable estimates for designated subpopulations
that have high overlap with the design strata can be obtained as a by-product.

The selection of samples in business surveys frequently uses simple random sampling
techniques applied to each stratum. A feature of most business populations is the skewed
nature of the distribution of characteristics such as sales, employment output, or revenue.
A “certainty” or “take-all” stratum of the very largest sampling units is usually created
to reduce the variances of estimates: all sampling units within the certainty strata are
selected in the sample. Noncertainty strata are then formed and the remaining sampling
units are placed in them according to their size.

The optimality of stratification breaks down over time, resulting in a less efficient
sample design. Deterioration of stratification of the frame requires that the whole frame
be restratified. A new sample that is optimal with respect to the newer stratification is
then selected, in general with as much overlap as possible with the previous sample. This
overlap ensures continuity of the estimates in a periodic survey, and is less expensive
than a complete redraw from a collection perspective.

Factors that affect realized precision include: population size; overall sample size;
stratification of the frame in terms of the number of strata and the stratum allocation
scheme; the construction of stratum boundaries for continuous stratification variables;
the variability of characteristics in the population; the expected nonresponse; cost, time,
and operational constraints; and the targeted precision of summary statistics such as
means and totals of the target variables.

4.3. Allocation

4.3.1. Notation
We introduce notation to deal with allocation for a single x-variable (univariate alloca-
tion). The finite population U of N units is divided into L nonoverlapping subpopulations
or strata Uh, h = 1, 2, . . . , L, with Nh units each, and N = ∑L

h=1 Nh. A sample sh of
size nh, h = 1, . . . , L, is selected independently by simple random sampling with-
out replacement (srswor) within each h-th stratum, yielding an overall sample of size
n = ∑L

h=1 nh. Let xhk (known from a previous census or survey) denote the k-th obser-
vation within stratum h. An unbiased estimator of the population total X = ∑L

h=1 Xh =∑L
h=1

∑
k∈Uh

xhk is given by X̂ = ∑L
h=1 Nhxh, where xh = ∑

k∈sh
xhk/nh, and its asso-

ciated population variance is

V(X̂) =
L∑

h=1

N2
h

(
1

nh

− 1

Nh

)
S2

h

=
(

L∑
h=1

Ah/nh

)
− D (1)
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where Ah = N2
hS

2
h, D = ∑L

h=1 NhS
2
h, Xh = Xh/Nh, and S2

h = ∑
k∈Uh

(
xhk − Xh

)2/
(Nh − 1).

The x-values for the current population will not be known. However, an estimate
V ′(X̂) of the population variance V(X̂), based on a sample s′

h of size n′
h from a pilot

survey, a past survey, or from administrative data, can be used as a substitute. Here,

V ′(X̂) =
(∑L

h=1 A′
h/n′

h

)
−D′ with A′

h = N2
hŜ

′2
h , D′ = ∑L

h=1 NhŜ
′2
h , Ŝ

′2
h = ∑

k∈s′
h
(xhk −

x′
h)

2/(n′
h − 1), and x′

h = ∑
k∈s′

h
xhk/n′

h.

4.3.2. Some allocation schemes
Let ah denote the proportion allocated to the h-th stratum, where 0 ≤ ah ≤ 1 and∑L

h=1 ah = 1. The number of units of units allocated to a given stratum h is given
by nh = nah for h = 1, 2, . . . , L.

Assume that the cost of collecting data is the same for all units. The allocation of the
sample s of size n to strata sh can be carried out in two ways:

i Require that the variance of X̂ should be minimal given that the overall sample
size n is fixed or the overall cost is fixed;

ii Specify a tolerance on the precision of the estimate X̂ as a predetermined coeffi-
cient of variation c, that is c2 = V(X̂)/X2. In that case, the objective is to mini-
mize the sample size n (or total cost), and is computed using the chosen allocation
scheme. Substituting nh = n ah and V(X̂) = c2X2 into (Eq. 1) and solving for n,
we obtain:

n = (c2X2 + D
)−1

(
L∑

h=1

Ah/ah

)
(2)

A number of allocation schemes for stratified srswor are summarized using the above
notation.

4.3.2.1. N-proportional allocation (ah = Nh/N). This scheme is generally superior
to simple random sampling of the whole population if the strata averages Xh differ
considerably from each other. A slight reduction in variance results only if the strata
means are similar. It is often used in business surveys to equalize the sampling
weights between strata whose units are known to have a high probability to change
classification.

4.3.2.2. X-Proportional allocation (ah = Xh/X). X-proportional allocation is used
in business surveys because distribution of data is quite skewed. The largest units are
sampled with near certainty and the remaining units are sampled with probability less
than one.

4.3.2.3. Optimal allocation

(
ah =

(∑L
h=1 (NhSh)

)−1
(NhSh)

)
. More sample units

are allocated to the larger strata and/or strata that have the highest variances. This type of
allocation is also known as Neyman allocation (see Neyman, 1934). Optimal allocation
is similar to X-proportional allocation if Sh/Xh is assumed constant across strata. The



Sampling and Estimation in Business Surveys 453

difficulty with this allocation is that the population variance S2
h, or its estimate Ŝ

′2
h , may

be unstable.

4.3.2.4.
√

N or
√

X-proportional allocation

(
ah =

(∑L
h=1

√
Nh

)−1 √
Nh or(∑L

h=1

√
Xh

)−1 √
Xh

)
. This scheme results in good reliability of strata estimates

X̂h, but it is not as efficient as Neyman allocation for the overall estimate X̂. This type
of allocation was first proposed by Carroll (1970), and provides fairly similar coefficients
of variation for stratum totals X̂h. Bankier (1988) extended the concept by considering

ah as
(∑L

h=1 (Xh)
q
)−1

(Xh)
q where 0 ≤ q ≤ 1. Note that setting q to 0.5 results in the

Carroll allocation.

4.4. Some special considerations

Nonresponse, out-of-datedness of the frame, initial over-allocation of units to strata,
and minimum sample size within strata are additional factors to account for in the
computation of the sample size.

4.4.1. Nonresponse
Nonresponse reduces the effective sample size, and hence the reliability of summary
statistics. Assume the sample size is n = ∑L

h=1 nh units and the nonresponse rates
(known from experience) are expected to be rh(h = 1, 2, . . . , L), where 0 ≤ rh < 1 within
each stratum. The resulting effective sample size would be neff =∑L

h=1 nh(1 − rh) < n

after data collection. The sample size can be increased to n′
h = nh/(1 − rh) within each

stratum h to compensate for the nonresponse. This increase assumes that the nonre-
spondents and respondents have similar characteristics. If they differ, a representative
sample of the nonrespondents needs to be selected to represent the nonresponding part
of the sample.

4.4.2. Out-of-date frame
The impact of an out-of-date frame should be reflected in the sample size determination
and allocation method. The out-of-datedness of a frame occurs because the classification
(geography, industry, status: live or dead) of the units is not up to date. In our case, we
just focus on estimating the total of the live units for a variable y, given that a number
of dead units are present on the frame but identified as active. Consequently, a repre-
sentative portion of them will be included in the sample. The universe of “active” units
is labeled as U. The corresponding universe of live units (but unknown) is denoted as
U�, where U� ⊂ U. Let the parameter of interest be the domain total Y� = ∑

k∈U yk�,
where yk� is equal to yk if k ∈ U� and zero otherwise. We need to determine the sam-
ple size n, such that: (i) the allocation to the design strata is nh = n ah(0 < ah < 1)

and (ii) the targeted coefficient of variation c is satisfied, that is, V(Ŷ�) = c2Y 2
� . Simple

random samples sh of size nh are selected from Uh(h = 1, . . . , L), without replace-
ment. The corresponding estimator is Ŷ� = ∑L

h=1 Ŷh� with Ŷh� = ∑
k ∈ sh

(Nh/nh) yk�.

We obtain the required sample size n using V
(
Ŷ�

)
= c2Y 2

� = ∑L
h=1 N2

h

(
1
nh

− 1
Nh

)
S2

h�
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where S2
h� = (Nh − 1)−1∑

k ∈ Uh

(
yk� − Yh�

)2
with Yh� = ∑

k ∈ Uh
yk�/Nh. The required

sample size is

n =

L∑
h=1

N2
h

(
S̃2

h� + (1 − Ph�) Ỹ
2

h�

)
Ph�/ah

c2

(
L∑

h=1
NhYh�Ph�

)2

+
L∑

h=1
Nh

(
S̃2

h� + (1 − Ph�) Ỹ
2

h�

)
Ph�

,

where S̃2
h� = (Nh� − 1)−1∑

k∈Uh�

(
yk − Ỹ h�

)2
, Ỹ h� = ∑

k∈Uh
yk�/Nh�, Nh� is the num-

ber of units belonging to domain Uh� = U� ∩ Uh, and Ph� = Nh�/Nh is the expected
proportion of units that belong to U� and initially sampled in stratum h. Note that
the case of Ph� = 1 yields the usual sample size formula. The mean and variance
components can be estimated from previous surveys. The required sample sizes at
the stratum level are then simply nh = n ah for h = 1, . . . , L. It is not recommended
to use an approximation of the type n∗

h = nh/Ph to compensate for unknown dead
units, where nh is computed ignoring the existence of unknown dead units in the
universe.

4.4.3. Over-allocation
Optimum allocation (Neyman), X-proportional or

√
X-allocation may result in sample

sizes nh that are larger than the corresponding population sizes Nh for some strata. The
resulting overall sample size will be smaller than the required sample size n. Denote
the set of strata where over-allocation has taken place as “OVER.” Such strata are
sampled with certainty, that is, nh = Nh, with total sample size nOVER = ∑

h∈OVER nh.
The remaining set of strata, denoted as “NORM,” is allocated the difference n − nOVER

using the chosen allocation scheme. That is, for h ∈ NORM, n′
h = (n − nOVER) a′

h where
a′

h is computed according to the given allocation scheme, with
∑

h∈NORM a′
h = 1. The

process is repeated until there is no over-allocation. A similar procedure is used in the
case where the overall sample size is chosen to satisfy reliability criteria. The only

difference is that nh = a′
h

∑
h∈NORM Ah/a

′
h

c2X2 + D′ .

4.4.4. Minimal sample size
A minimal sample size within each stratum is a requirement to protect against empty
strata occurring on account of nonresponse. It also provides some protection against
allocations that are poor for characteristics not considered in the sample design.
A minimal sample size of three to five units is quite often used in large-scale sur-
veys: at least two units are required to estimate variances unbiasedly. Denote as
mh(h = 1, 2, . . . , L) the minimal sample size within the h-th stratum: mh will most
likely be the same for all strata. The minimum sample size may be applied before or
after the allocation of given sample size n has been established. If it is applied before,
a sample size m′ is initially set aside for minimum size requirements across all strata,
where m′ = ∑L

h=1 m′
h and m′

h = min{Nh, mh}. The remaining sample size n − m′ is
allocated to the population strata of size Nh − m′

h using the chosen allocation method.
If the minimum size is applied after allocation, the sample size for the h-th stratum is
n′

h = min{max[nh, mh], Nh}. The sum of the overall sample
∑L

h=1 n′
h may be greater

than n.
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4.4.5. Equalization of the coefficient of variation among strata
A property of power allocation is that the coefficient of variation for the estimates
of the totals will be fairly similar for each stratum. However, it may be required
to have exactly equal levels of reliability for estimates of the totals at the stratum
level: that is, V

(
X̂h

)
/X2

h = c1 for all h = 1, . . . , L, where c1 is not known and is
bounded between 0 and 1. If the overall coefficient of variation has been fixed at

c, it follows that c1 = c

√
X/
∑L

h=1 X2
h, and the sample size within each stratum is

nh = Ah/
(
c2

1X
2
h + Dh

)
. If the overall sample size has been fixed at n, we solve iteratively

f(c1) = n−∑L
h=1

Ah

c2
1X

2
h + Dh

, an increasing function in c1, using the Newton–Raphson

procedure.

4.4.6. Simultaneous level of reliability for two stratification variables
Assume that the population has been stratified at the geography (h = 1, . . . , L) and
industry (λ = 1, . . . , M) levels. Specified coefficients of variation of totals are required
at the subnational and industry levels: let these be ch. and c.λ, respectively. The sampling
takes place within a further size stratification of these LM possible cross-classifications.
The required sample size for each of these levels can be computed if we can obtain the
corresponding coefficient of variation given the marginal (i.e., geography and industrial
reliability constraints). This coefficient can be obtained using a raking procedure (see
Deming and Stephan, 1940). Let Xhλ be the population total of a given variable of interest
(say x), and let Xh. and X.λ be the associated marginal totals. The hλ-th coefficient of
variation at the r-th iteration is given by

c
(r)

hλ = c
(r−1)

hλ

(ch.Xh.) (c.λX.λ)√
L∑

h=1
c
(r−1)

hλ X2
hλ

√
M∑

λ=1
c
(r−1)

hλ X2
hλ

The starting point for this algorithm is c
(0)

hλ = (ċh. + ċ.λ)/2, where ċh. and ċ.λ are

marginal coefficients of variation given by ċh. = ch.Xh.

/√∑M
λ=1 X2

hλ for h = 1, 2, . . . , L

and ċ.λ = ckX.λ

/√∑L
h=1 X2

hλ for λ = 1, 2, . . . , M. In practice, five iterations are suffi-

cient to stabilize the c
(r)

hλ values. The sample size required to achieve the required marginal

coefficients of variation for each hλ-th cell is then nhλ =
((

c
(R)

hλ

)2
X2

hλ + Dhλ

)−1

Ahλ,

where Ahλ = N2
hλS

2
hλ, Dhλ = N2

hλS
2
hλ, and c

(R)

hλ is the coefficient of variation at the final
iteration R.

4.5. Construction of self-representing strata

4.5.1. Using known auxiliary data x

Stratification of a population into natural strata based on geography and industrial
activity usually increases the efficiency of a sample design. Further stratification by
size of business (employment, sales) always increases the efficiency of the sample
design in business surveys because business populations are typically composed of a
few large units (accounting for a good portion of the total for the variable of interest)
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and many small units. It is therefore desirable to construct stratum boundaries that split
the businesses into a take-all stratum containing the largest units (being sampled with
certainty) and a number of take-some strata containing the remaining units (sampled
with a given probability). The resulting stratification offers two advantages. First, the
overall sample size required to satisfy reliability criteria (denoted as c) is dramatically
reduced (or alternatively, the variance of the estimated total is minimized for a fixed
overall sample size). Second, because the largest units are sampled with certainty, the
chance of observing large values for the units selected in the take-some strata is reduced.

Consider a population U of size N where the units have the size measures,
x1, x2, . . . , xN . Define order statistics x(1), x(2), . . . , x(N) where x(k) ≤ x(k+1), k = 1, . . . ,

N − 1.
We first provide two approximations due to Glasser (1962) for fixed sample size n

and Hidiroglou (1986) for fixed coefficient of variation c for splitting the universe into
a take-all and a take-some stratum. Glasser’s (1962) rule for determining an optimum

cut-off point is to declare all units whose x value exceeds XN +
√

NS2
N/n as belonging

to the take-all stratum, where XN =∑k∈U xk/N and S2
N =∑k∈U(xk − XN)2/(N − 1).

Hidiroglou’s (1986) algorithm is iterative. The take-all boundary Br(r = 1, 2, . . .) at
the r-th iteration is given by

Br = XN−Tr−1 +
{

(n − Tr−1 − 1)

(N − Tr−1)2
c2X2 + S2

N−Tr−1

}1/2

where Tr−1 is the number of take-all units at the (r − 1)-th iteration, and XN−Tr−1

and S2
N−Tr−1

are the corresponding take-some stratum population mean and variance.
The process is started by setting T0 to zero, and the iterative process continues until
0 < (1 − Tr/Tr−1) < 0.10 has been met. Convergence usually occurs after two to five
iterations.

Lavallée and Hidiroglou (1988) provided a procedure for stratifying skewed popula-
tions into a take-all stratum and a number of take-some strata, such that the sample size is
minimized for a given level of precision. They assumed power allocation of the sample
for the take-some strata, as this type of allocation tends to equalize coefficients between
the strata. Their algorithm uses Dalenius’s (1950) representation of a finite population in
terms of a continuous population. That is, given a continuous density function g of the
auxiliary variable x in the range (−∞, ∞), the conditional mean and variance of the h-th
stratum Uh can be expressed as μh = ∫ b(h)

b(h−1)
yg(y)/Wh and σ2

h = ∫ b(h)

b(h−1)
y2g(y)/Wh −μ2

h

where Wh = ∫ b(h)

b(h−1)
g(y)dy. The overall sample size is given by

n = NWL +
N

L−1∑
h=1

W2
hσ2

h/ah

N

(
c

L∑
h=1

Whμh

)2

μ2 +
L−1∑
h=1

Whσ
2
h

(3)

where ah = (Whμh)
p∑L−1

h=1 (Whμh)
p

for h = 1, . . . , L − 1. Hidiroglou and Srinath (1993) pro-

posed a more general form of ah, given by ah = γh/
∑L−1

h=1 γh where γh = W
2q1

h μ
2q2

h σ
2q3

h ,
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qi ≥ 0 (i = 1, 2, 3). A number of different allocations are obtained with various choices
of the qi’s. For example, Neyman allocation is obtained by setting q1 = q3 = 0.5 and
q2 = 0.

The optimum boundaries b1, b2, . . . , bL−1, where x(1) ≤ b1 < . . . < bL−1 ≤ x(N), are
obtained by taking the partial derivatives of (3) with respect to each bh, h = 1, . . . L−1,
equating them to zero, and solving the resulting quadratic equations iteratively using a
procedure suggested by Sethi (1963). The initial values are set by choosing the bound-
aries with an equal number of elements in each group.Although the Lavallée–Hidiroglou
method is optimal, Slanta and Krenzke (1996) and Rivest (2002) noted that it does not
always converge, and that convergence depends on providing the algorithm with rea-
sonable initial boundary values.

Gunning and Horgan (2004) recently used the geometric progression approach to
stratify skewed populations. They based their algorithm on the following observation
stated in Cochran (1977): when the optimum boundaries of Dalenius (1950) are achieved,
the coefficients of variation (CVh = Sh/Xh) are often found to be approximately the
same in all strata. Assuming that the x variable is approximately uniformly distributed
within each stratum, their boundaries are b′

h = aτh for h = 1, 2, . . . , L − 1 where a =
x(1) and τ = (x(n)/x(1)

)1/L
. The advantages of Gunning–Horgan’s procedure are that it is

simple to implement, and that it does not suffer from convergence problems. However,
two weaknesses of the procedure are that it does neither stratify a population according to
an arbitrary sample allocation rule (represented by ah), nor does it require the existence
of a take-all stratum. The stratification boundaries obtained by the Gunning–Horgan
procedure could be used as starting points for the Lavallée–Hidiroglou algorithm to
ensure better convergence.

4.5.2. Using models to link auxiliary data x and survey variable y

A number of authors have developed models between the known auxiliary data x and
the survey variable y. They include Singh (1971), Sweet and Sigman (1995), and Rivest
(2002). The last three authors incorporated the impact of the model in the Lavallée–
Hidiroglou algorithm. As Sweet and Sigman (1995) and Rivest (2002) demonstrated,
the incorporation of the model could lead to significant improvements in the efficiency
of the design.

5. Sample selection and rotation

As mentioned earlier, strata are often cross-classifications of industry and geography by
size. These strata are either completely enumerated (take-all) or sampled (take-some).
We denote the required sampling fraction within a take-some stratum as f (the subscript
h is dropped in this section to ease the notation). It is equal to unity for the take-all strata.

The sampling mechanism of in-scope units in business surveys needs to account for
a number of factors. First, the units should be selected using a well-defined probability
mechanism that yields workable selection probabilities for both estimation (πk’s, k =
1, . . . , N) and variance estimation (πk,k′ ’s). Note that πk ≈ f within the strata. Second,
the resulting samples should reflect the changing nature of the universe in terms of
births, deaths, splits, mergers, amalgamations, and classification changes. Third, the
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selection should allow for sample rotation of the units to alleviate response burden
across time. Fourth, there should be some control of the overlap of the sampled units
between various business surveys occurring concurrently. Fifth, if there are significant
changes in the stratification of the universe, it should be possible to redraw a sample
that reflects the updated stratification and sampling fractions.

Response burden occurs within surveys and across surveys. Response burden within
surveys is minimized if a selected business remains in sample for as few occasions as
possible. Response burden across surveys is minimized if a business is selected in as
few surveys as possible at the same time. However, these preferences will not normally
agree with what is best for a survey in terms of reliability within and between occasions.

Two types of coordination can be distinguished for selecting several samples from the
same frame: they are negative and positive coordination. Negative coordination implies
that response burden is reduced, by ensuring that a business is not selected in too many
surveys within a short time frame. Positive coordination implies that the overlap is
maximized as much as possible between samples.

5.1. Selection procedures

Poisson sampling and its variants form the basis for sampling business surveys in most
national agencies. This method allows for response burden control within and across
surveys. Poisson sampling as defined by Hájek (1964) assigns each unit in the population
of size N a probability of inclusion in the sample denoted as πk = npk, k = 1, . . . , N.
Here, n is the required sample size and pk is usually linked to some measure of size
of the unit k. Ohlsson (1995) provides the following procedure for selecting a Poisson
sample of expected sample size n. A set of N independent uniform random numbers uk

is generated, where 0 ≤ uk ≤ 1. If these random numbers are fixed and not regenerated
for the same units between two survey occasions, they are called permanent random
numbers (PRN). A starting point α is chosen in the interval [0, 1]. A population unit k

is included in the sample if α < uk ≤ α + npk, provided α + npk ≤ 1. If α + npk > 1,
it is included in the sample if (α < uk ≤ 1) ∪ (0 < uk ≤ α + npk − 1). The value of α

is usually set to zero when a survey sample is first selected. Sampling from a stratified
universe occurs by assigning the required pk’s and sample sizes within each stratum.
Births to a business universe are easily accommodated with Poisson sampling: a PRN
is generated for the birth unit, and it is selected using the previously stated algorithm.
Rotation of the sample takes place by incrementing α by a constant κ on each survey
occasion. The constant κ reflects the required rotation rate.

A special case of Poisson sampling is Bernoulli sampling: the pk’s are equal to
1/N within each stratum. It should be noted that, conditioning on the realized sam-
ple size, Bernoulli sampling is equivalent to srswor. Poisson and Bernoulli sampling
are often not used in practice, because the realized sample sizes may vary too much
around the expected sample sizes. A number of procedures have been developed over
the years to control this weakness. These include collocated sampling (Brewer et al.,
1972), sequential Poisson sampling (Ohlsson, 1995), and Pareto sampling (Rosén, 2001).
Statistics Canada uses Bernoulli sampling to sample tax records from Canada Revenue
Agency’s administrative tax files. PRNs are created by transforming the unique iden-
tifying numbers on the administrative files to pseudorandom numbers using a hashing
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algorithm. This approach, introduced by Sunter (1986), maximizes sample overlap
between sampling occasions.

Bernoulli variants have been used in a number of agencies. Statistics Sweden samples
from their business register using sequential srswor. Sequential srswor, described in
Ohlsson (1990a,b), involves the selection of the first nh units within the ordered list
of the PRNs within each stratum of size Nh. The synchronized sampling methodology
used by the Australian Bureau of Statistics, developed by Hinde and Young (1984),
is quite similar to the one developed at Statistics Sweden. It differs from the Swedish
one with respect to its definition of the start and end points of the sampling intervals.
The start and end points are equal to the PRNs associated with the units at the time
of selection. In-scope population units are selected if they belong to these sampling
intervals. The start point is in sample but the end point is not. A desired sample size
n is achieved by including the start point, and the remaining n − 1 successive PRNs.
The incorporation of births and deaths is done by moving the start or end points to the
right to prevent units reentering the sample. The procedure allows for rotation, as well
as periodic restratification of the frame. Negative or positive coordination is achieved
by allowing different surveys to use well defined intervals on the [0, 1) interval. More
details of this methodology are available in McKenzie and Gross (2001). Sampling of
the business register at Statistics Canada is a blend of collocated sampling described
in Brewer et al. (1972), and the panel sampling procedure given by Hidiroglou et al.
(1991). Details of the procedure are given in Srinath and Carpenter (1995).

A variant of Poisson sampling, known as Odds Ratio Sequential Poisson sampling,
has been used to sample businesses in the petroleum industry. Saavedra and Weir (2003)
provide more details of the methodology, which is really Pareto sampling as described
in Rosén (2001). This method provides fixed sample sizes in the Poisson context, and
the resulting probabilities of selection closely approximate the desired probabilities to
be proportional to size.

5.2. Accounting for response burden

The methodology used by the “Central Bureau voor de Statistiek” (CBS) in the
Netherlands incorporates PRNs to control sample rotation across and within their busi-
ness surveys, while accounting for response burden. De Ree (1999) briefly described
this methodology: at the time of initial sample selection, sampling units on the business
register are assigned a PRN, and ranked accordingly. A PRN remains associated with a
given unit on the register throughout its life. However, the manner in which samples are
selected may vary. Businesses can be selected several times successively for a specific
survey (a subannual survey), or by several different surveys. Each time a business is
surveyed, its associated response-burden coefficient is increased. After each selection,
the ordering changes so that businesses with a lower cumulated response burden are
placed before businesses with a higher cumulated response burden. Earlier versions
of this methodology are presented in more detail in Van Huis et al. (1994). The CBS
sampling system has useful features: (i) it integrates sampling amongst several surveys,
and takes into account the response burden; (ii) it allows user specified parameters for
defining the sampling and rotation rates. However, there is some limitation in the choice
of stratification.
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Rivière (2001) discusses a somewhat different approach, whereby the sample
selection procedure does not change, but the initially assigned random numbers are
systematically permuted between units for different coordination purposes: smoothing
out the burden, minimizing the overlap between two surveys, or updating panels. Per-
mutations of the random numbers are carried out within intersections of strata that are
referred to as microstrata. The microstrata method was developed in 1998 in the frame-
work of Eurostat’s SUPCOM project on sample coordination. The methodology was
initially implemented in a program known as SALOMON in 1999. Improvements to
SALOMON resulted in a program known as MICROSTRAT in 2001.

In the microstrata method, the initial procedure is to assign a random number to every
unit on the business register that is in-scope for sampling.As with the CBS methodology,
every unit is also assigned a response-burden coefficient that cumulates every time the
unit is selected for a given survey. The random numbers never change but they can be
permuted between the units. The permutation of the random numbers is controlled by
the cumulated burden similarly to the CBS procedure. The most important difference
from the CBS methodology is that the permutations are done within the microstrata.
A microstratum is the largest partition that can be defined so as to sort the units by
increasing response burden without introducing bias. Using this technique, the random
numbers remain independent and identically distributed with a uniform distribution.

The main drawback to microstratification is the possible creation of microstrata so
small that the sample coordination becomes ineffective. However, this can be avoided
using a different sorting procedure. On the other hand, microstratification has several
benefits. The method has good mathematical properties and gives a general approach
for sample coordination in which births, deaths, and strata changes are automatically
handled. There is no particular constraint on stratification and rotation rates of panels.
It is unbiased, as shown by Rubin–Bleuer (2002).

6. Data editing and imputation

6.1. Data editing

Business survey data are not free of errors and this holds true whether they have been col-
lected by direct surveys or obtained through administrative sources. Errors are detected
and corrected by editing data both at the data capture and estimation stages. A number
of data editing procedures are used to detect errors in the data. The associated edits are
based on a combination of subject-matter experts’ knowledge, as well as data analysis.
Edits are either applied to each individual observation or across a number of them. The
former is known as microediting, whereas the latter as macroediting.

Microediting takes place both during data capture and estimation. Microediting can be
manual (e.g., a human declaring data in error) or automated (e.g., a computer rejecting
data using predetermined editing rules). Edits associated with microediting include
validation edits, logical edits, consistency edits, range edits, and variance edits. Validity
edits verify the syntax within a questionnaire. For example, characters in numeric fields
are checked, or the number of observed digits is ensured to be smaller or equal to the
maximum number of positions allowed within the questionnaire. Range edits identify
whether a data item value falls within a determined acceptable range. Consistency edits
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ensure that two or more data items (mainly financial variables) within a record do not
have contradictory values. They follow rules of subject-matter experts to verify that
relationships between fields are respected. Variance edits isolate cells with suspiciously
high variances at the output stage, that is, when the estimates and variances have been
produced. Erroneous or questionable data are corrected, identified for follow-up, or
flagged as missing to be later imputed. Edits may be differentiated to declare resulting
errors as either fatal or as suspicious.

Macroediting is carried out at the estimation stage. Errors in the data set missed by
microediting are sought out via the analysis of aggregate data. The objective of the
procedure is to detect suspicious data that have a large impact on survey estimates
(Granquist, 1997). If this impact is quite large, suspicious data can be considered as
outliers. Macroediting offers a number of advantages. First, significant cost savings can
be obtained without loss of data quality. Second, data quality can be improved by redi-
recting resources and concentrating on editing of high impact records. Third, timeliness
improvements are achieved by cutting down survey processing time and subject-matter
experts’data analysis time. Finally, follow-ups are reduced, thereby relieving respondent
burden.

A drawback of microediting is that too many records can be flagged for follow-
up without accounting for the relative importance of individual records and the high
cost in editing all records. This is remedied by selective editing, which cuts down on
checking all records declared in error by focusing on a subset. Selective editing (also
known as significance editing) selects records in error for follow-up if it is expected that
the corrected data will have a large impact on the estimates. Such methods have been
developed at Statistics Canada (Latouche and Berthelot, 1992), the Australian Bureau
of Statistics (Lawrence and McDavitt, 1994; Lawrence and McKenzie, 2000), and the
Office for National Statistics (Hedlin, 2003). Records in error that are not followed-up
are imputed.

Latouche and Berthelot (1992) defined a score function to determine which records
to follow up. Their score function was based on the magnitude of historical change for
that record, the number of variables in error for that record, and the importance of each
variable in error. One of the score functions that they suggested is given by

Scorek(t) =
Q∑

q=1

wk(t)Ek,q(t)Iq

(
xk,q(t) − xk,q(t − 1)

)∑
s

wk(t)xk,q(t − 1)

where Ek,q(t) equals 1 if there is an edit failure or partial nonresponse, and 0 otherwise;
wk(t) is the weight for unit k at time t, and Iq reflects the relative importance for variable
q. For example, if variable xq is considered more crucial or important than variable xq′ ,
then this is reflected in the score function by assigning a larger value to Iq than Iq′ .
Suspicious records are ranked by their associated score. Records with scores above a
given threshold are followed up.

Hedlin’s (2003) procedure differs from Latouche and Berthelot’s (1992) procedure
in that his score function minimizes the bias incurred by accepting records in error.
For a sample s, let the clean data be denoted as y1, y2, . . . yn and the raw data as
z1, z2, . . . zn. The score for zk is computed as Score(zk) = wk × |zk − E(zk)| /Ŷ , where
Ŷ =∑k ∈ sd

wkyk, and sd is part of the current sample for a specified domain d of interest
(say the d-th industrial sector). The E(zk) term is usually the previous “clean” value of
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that record yk, or the median of the corresponding domain. A record k will be rejected
if Score(zk) exceeds a prespecified threshold based on historical data. The threshold is
set so that the coverage probability of the estimate is nearly unchanged.

6.2. Detection of outliers

Outliers are a common feature of almost all surveys. This is especially true for business
surveys due to the highly skewed nature of their data. Outliers may result in unrealisti-
cally high or low estimates of population parameters, such as totals.

Outliers can come from two sources. First, they can be erroneous values, due to data
entry or measurement problems for example. Second, they can be improbable or rarely
occurring, but valid values. Erroneous values that are detected as outliers should be
corrected, or removed from the dataset. On the other hand, improbable values identified
as outliers should be left in the dataset, but special treatments should be applied to them
to reduce their effects on estimates.

Chambers (1986) classifies outliers in sample surveys into two groups: representative
and nonrepresentative. Outliers are representative if they have been correctly recorded
and represent other population units similar in value to the observed outliers. Nonrep-
resentative outliers are those that are either incorrectly recorded or unique in the sense
that there is no other unit like them. Errors that lead to outliers should be detected and
corrected at the editing stage. In what follows, we focus on outliers that are free of error,
and such outliers may either be representative or nonrepresentative.

Suppose that we have observed a sample s of size n with values yk, and associated
weights wk, k = 1, . . . , n. Outliers will be influential if the joint effect of the data and
associated weight is significant. This is so whether they are representative or nonrepre-
sentative. A typical example is a frame that is out-of-date in terms of size classification
of its units. Suppose that a unit classified as small or medium size should have been
classified as a large unit. The joint effect of the sampling weight wk and large observed
value yk may result in declaring unit k as an influential observation.

In this section, we focus on a number of procedures to detect outliers. We present
a number of those used in practice for business surveys. The treatment of outliers is
discussed by Beaumont and Rivest (Chapter 11 of this book).

6.2.1. Top-down method
This simple procedure sorts the largest entered values (top 10 or 20) and starts the
manual review from the top or the bottom of the list. Units that have an abnormally
large contribution to an estimator of interest such as the sample total are flagged and
followed up.

Let y(1) ≤ . . . ≤ y(n) denote the ordered values of the observed y-values in the
sample s. The cumulative percent distribution of the top j units to the y total of all the
sampled units is computed. Unweighted or weighted versions of the cumulative percent
distribution are computed. The unweighted version identifies units that may be in error.
Once the unweighted top-down method is performed, the weighted version provides us
with an idea of units that will be influential on account of their very large wkyk product.

We can illustrate how the unweighted cumulative percent distribution is computed.
The computations for the weighed version are identical with the exception of incorporat-
ing the weights wk into the computations. The cumulative percent contribution P(j) to the
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total for each of the j top units is given by P(j) = 100×∑n
k=j y(k)/Ys, where. For j = n,

we have P(n) = 100 × y(n)/Ys. For j = n− 1, we have P(j) = 100 × (y(n−1) + y(n))/Ys,
and so on. More details on the top-down method are available in Granquist (1987).

6.2.2. Standardized distance
Let zk = wk yk be the product of the sampling weight wk and observed value yk. Let mz

and σz be the estimates of the location and scale of zk. A typical measure used to detect
outliers is the standardized distance δz,k = (zk − mz)/σz. A unit k is identified as an
outlier if the absolute value of δz,k is larger than a predetermined threshold. Location and
scale estimates could be the sample mean and the standard deviation of the zk values.
Such estimates are nonrobust because they include some of the potential outlier values.
Including all units in the computations reduces their probability of being declared as
outliers. This “masking” effect is avoided by computing robust estimates of mz and σz.
Robust outlier-resistant estimates of mz and σz are the median Q2,z and interquartile
distance (Q3,z − Q1,z) of the zk values respectively, where the Qj,z values are the j-th
(j = 1, 2, 3) quartiles of the population (or the sample). Note that we could have used
the nonweighted variable δy,k = (yk − my)/σy as well. Units are declared as outliers
if their zk values fall outside the interval

(
mz − δLowσz, mz + δHighσz

)
, where δLow and

δHigh are predetermined values. These bounds can be chosen by examining past data or
using past experience.

6.2.3. Hidiroglou–Berthelot method
The standardized distance can be used to detect whether the ratio of two variables y and
x for a given sampled unit differs markedly from the ratios of the remaining units. Such
comparisons do not account for size differences between units. Incorporating a measure
of size (importance) with each unit places more emphasis on small ratios associated
with those larger values. Hidiroglou and Berthelot (1986) extended the standardized
distance procedure by incorporating a size component, and transforming the ratios to
ensure symmetry. The extended method has been adapted by several national agencies
to detect suspicious units. The procedure consists of six steps: (i) Ratios rk = yk/xk

are computed for each unit k within the sample s. (ii) Data are transformed to ensure
outliers can be detected at both tails of the distribution. The transformed data are given
by sk = 1 − (med rk)/rk if 0 < rk < med rk, and rk/(med rk) − 1 otherwise. (iii) The
data’s magnitude is incorporated by defining Ek = sk max(xk, yk)

φ where 0 < φ < 1.
These Ek values are called effects. The parameter φ provides a control of the importance
associated with the magnitude of the data. It controls the shape of the curve defining upper
and lower boundaries. (iv) The first (EQ1), second (EQ2), and third (EQ3) quartiles of the
effects Ek are computed. (v) The interquartile ranges dQ1 = max(EQ2 − EQ1, |a EA2|)
and dQ3 = max(EQ3 − EQ2,

∣∣a EQ2

∣∣) are computed. The quantity
∣∣a EQ2

∣∣ reduces the
tendency of declaring false outliers, and “a” is usually set to 0.5. This problem may arise
when the E values are clustered around a single value and are one or two deviations
from it. (vi) Units are declared to be outliers if their associated Ek value is outside
(EQ2 − cdQ1, EQ2 + cdQ3). The parameter c controls the width of the acceptance region.
Belcher (2003) suggested a procedure to determine the values of the different parameters
entering the Hidiroglou–Berthelot method. Figure 4 illustrates how these steps lead to
identifying outliers.
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Fig. 4. Hidiroglou–Berthelot method.

6.3. Imputation

Edited records have either passed or failed the edits. A subset of these records may
have been declared as outliers as well, regardless of their edit status. Records also
considered as having failed edits are those that have not responded to the survey (or unit
nonresponse), or that have provided incomplete data (partial response). Furthermore,
some data items may have been manually deleted if they have been considered in error
as a result of the editing process. The overall impact of edit failure is that it results in
missing data.

There are several options available for dealing with missing data. The simplest one
is to do nothing. That is, missing values are flagged on the output data file, leaving
it up to the data user or analyst to deal with them. This “solution” to missing data
is usually adopted when its reveal to be too difficult to impute values with sufficient
accuracy. For example, this occurs for variables that have no direct relationship with
any other collected variable. In farm surveys, for example, livestock and crops cannot
be used to impute each other, and it is then preferable to leave the missing values not
imputed.

Another option is to adjust the survey weights for nonresponse. Although this pro-
cedure is mainly meant for unit nonresponse, it can be used for partial nonresponse.
However, the drawback is that there will be as many weight adjustments as there are
missing fields across the records. Methods such as calibration, or mass imputation, are
used to insure consistency between the resulting tabulations. These approaches have
been considered by Statistics Netherlands for the construction of a consistent set of
estimates based on data from different sources (see Kroese and Renssen, 2001).

The preferred option for survey users is to impute missing data within individual
records. The imputation procedures should be based on the Fellegi–Holt principles
(Fellegi and Holt, 1976) which are as follows: (i) data within individual records must
satisfy all specified edits. (ii) The data in each record should be made to satisfy all edits by
changing the fewest possible variables (fields). (iii) Imputation rules should be derived
automatically from edit rules. (iv) Imputation should maintain the joint distribution of
variables.

In business surveys, because there are usually strong accounting relationships
between collected variables, manual imputation is often considered, especially for small
surveys where the resources to be devoted to imputation systems are minimal. This
approach is not reasonable as it can lead to different tabulations, thereby yielding incon-
sistent results. The resulting manual imputation may not be the best method to use if the
imputation is based on incomplete knowledge.
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Imputation methods can be classified as deterministic or stochastic. A deterministic
imputation results in unique imputed data. Examples of deterministic imputation meth-
ods often used for business surveys include: logical, mean, historical, sequential
(ordered) hot-deck, ratio and regression, and nearest neighbor imputation. A stochastic
imputation results in data that are not unique, as some random noise has been added
to each imputed value. Stochastic imputation can be viewed as being composed of a
deterministic component with random error added to it. Stochastic imputation, unlike
deterministic imputation, attempts to preserve the distribution of the data. Examples of
stochastic imputation include random hot deck, regression with random residuals, and
any deterministic method with random residuals added.

Imputation of plausible values in place of missing values results in internally consis-
tent records. Imputation is also the most feasible option for partial nonresponse. Good
imputation techniques can preserve known relationships between variables, which is
an important issue in business surveys. Imputation also addresses systematic biases,
and reduces nonresponse bias. However, imputation may introduce false relationships
between the reported data by creating “consistent” records that fit preconceived models.
For example, suppose it is assumed that x < y for two response variables x and y. If
this constraint is false, imputing the missing variable x (or y) will result in incorrectly
imputed data.

Imputation will normally use reported data grouped within subsets of the sample or
population. Such subsets are known as imputation groups or imputation classes.

6.3.1. Deterministic imputation methods
6.3.1.1. Logical (or deductive) imputation. Missing values are obtained by deduction,
using logical constraints and reported values within a record. Typical examples include
deriving a missing subcomponent of a total. This type of imputation is often used in
business surveys if there is a strong relationship between variables (especially financial
ones).

6.3.1.2. Mean value imputation. Missing data are assigned the mean of the reported
values for that imputation class. Mean value imputation should only be used for quan-
titative variables. Respondent means are preserved, but distributions and multivariate
relationships are distorted by creating an artificial spike at the class mean value. The
method also performs poorly when nonresponse is not random, even within imputation
classes. It is often used only as a last resort.

Note that the effect on the estimates of mean value imputation corresponds exactly
to a weight adjustment for nonresponse within imputation groups. Weighting is useful
for unit nonresponse as relationships between variables are preserved.

6.3.1.3. Historical imputation. This is the most useful method in repeated economic
surveys. It is effective when variables are stable over time, and when there is a good
correlation between occasions for given variables within a record.The procedure imputes
current missing values on the basis of the reported values for the same unit on a previous
occasion. Historical trend imputation is a variant of the procedure: previous values
are adjusted by a measure of trend, based on other variables on the record. Historical
imputation is heavily used for imputing tax data for incorporated businesses at Statistics
Canada (Hamel and Martineau, 2007). Historical imputation can be seen as a special
case of regression imputation (see later).
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6.3.1.4. Sequential hot-deck method. This method assumes that the order of the data
items is fixed, even though they might have been sorted according to some criterion
(measure of size or geography). Missing data are replaced by the corresponding value
from the preceding responding unit in the data file. The data file is processed sequen-
tially, storing the values of clean records for later use, or using previously stored values to
impute missing variables. Care is needed to ensure that no systematic bias is introduced
by forcing donors (reported data items) to always be smaller or larger than recipients
(missing data items). Sequential hot-deck is used for the United States Current Popula-
tion Survey.

Sequential hot-deck uses actual observed data for imputation. The distribution
between variables tends to be preserved, and no invalid values are imputed, unlike
with mean, ratio, or regression imputation. This is ensured if the imputed variables are
not correlated with other variables within the record. If the variables are correlated (as
it is the case with financial variables, for example), then imputing the missing variables
by those from the preceding unit will not preserve the distribution. This problem is
resolved, in practice, by imputing complete blocks of variables at a time: a block being
a set of variables with no relationship with variables outside the block (see Hamel and
Martineau, 2007).

6.3.1.5. Nearest neighbor imputation. Nearest neighbor imputation uses data from
clean records to impute missing values of recipients. It uses actual observed data from
recipients. Donors are chosen such that some measure of distance between the donor
and recipient is minimized. This distance is calculated as a multivariate measure based
on reported data. Nearest neighbor imputation may use donors repeatedly when the
nonresponse rate is high within the class. This method is the second most heavily used
one, after historical imputation, for imputing tax data for incorporated businesses at
Statistics Canada (Hamel and Martineau, 2007).

6.3.1.6. Ratio and regression imputation methods. These imputation methods use
auxiliary variables to replace missing values with a predicted value that is based on a
ratio or regression. This method is good for business surveys when auxiliary information
is well correlated with the imputed variable. However, accounting relationships between
variables need to be respected, and this leads to the need for some adjustment of the
predicted values. For example, suppose that the relationship x + y = z holds for three
variables x, y, and z . If x and y are imputed, we might need to adjust the imputed values
(e.g., by prorating) to insure that this relationship still holds.

The response variable needs to be continuous for these methods to be effective. For
regression, the independent regression variables may be continuous or dummy variables
if they are discrete. A disadvantage of this method is that the distributions of the overall
data set may have spikes.

6.3.2. Stochastic methods
Deterministic methods tend to reduce the variability of the data, and to distort the data
distributions. Stochastic imputation techniques counter these negative effects by adding
a residual error to deterministic imputations that include regression imputation. Another
approach for stochastic methods is to use some form of sampling in the imputation
process, as it is the case of hot-deck imputation. Whether or not stochastic methods are
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used, it is possible to compute variances that take into account the effect of imputation
(see Beaumont and Rivest in Chapter 11 of this book).

7. Estimation

Business survey data are collected for reference periods that are monthly, quarterly,
or annual. The resulting data are usually summarized as level and change. Level is
measured as a total for a given variable of interest y. Change is defined as the difference
between, or the ratio of, two estimated totals at two different time periods.

Factors that need to be taken into account for estimation include the sample design,
the parameters to be estimated, domains of interest, and auxiliary data. The sample
design is usually straightforward for business surveys. These surveys mostly use one-
phase or two-phase stratified simple random sampling or Bernoulli sampling without
replacement at each phase. Domain estimation is used in three ways for business surveys.
First, the classification (i.e., geography, industry, or size) of the sampled units may differ
from the original one. Second, the classification associated with domains for tabulating
the collected data may differ from one used for the stratification purposes. Third, a
unit originally sampled in-scope for a given survey may become out-of-scope either by
ceasing its business activities or changing its classification to one that is not within the
target population (e.g., a unit sampled within the retail sector becomes a wholesaler,
which is out-of-scope to the survey).

The increasing use of auxiliary data for business surveys is associated with the wider
availability of sources outside the survey, such as regularly updated administrative
sources or annual totals from a larger independent survey. Auxiliary data yield several
benefits. They improve the efficiency of the estimates when the auxiliary data (say x)
are correlated with the variable(s) of interest y. Given that there is some nonresponse,
the potential nonresponse bias is reduced if the variables of interest are well correlated
with the auxiliary data. A by-product of using auxiliary data is that their weighted totals
add up to known population totals. We limit estimation to one-phase stratified Bernoulli
sampling in what follows.

7.1. Estimation for level

Let U = {1, . . . , k, . . . , N} denote the in-scope population of businesses. The popula-
tion of businesses is stratified by geography, industry, and size as Uh, h = 1, . . . , L.
The population size of Uh is Nh, and a probability sample s is selected from U with inclu-
sion probability πk for k ∈ s. If Bernoulli sampling has been used, the inclusion probabil-
ities associated with stratum Uh are given by πk = fh = nh/Nh. The expected sample
size within the sample stratum sh is nh, and the realized sample size will be n∗

h. Each
sampled unit k ∈ sh will have sample design weights given by wk = 1/πk = Nh/nh.

Suppose that we wish to estimate the total of y for a given domain of U, say U(d),
d = 1, . . . , D. This population total is given by Y(d) =∑L

h=1

∑
k∈Uh

y(d)k where y(d)k =
yk δ(d)k with δ(d)k is one if k ∈ U(d) and zero otherwise.

If no auxiliary data are used, the population total Y(d) is estimated by the expansion
estimator Ŷ

(EXP)

(d) = ∑L
h=1 Ŷ

(EXP)

(d),h where Ŷ
(EXP)

(d),h = ∑k∈sh
wky(d)k. Although this estima-

tor is unconditionally unbiased, it is conditionally biased given the realized samples



468 M. A. Hidiroglou and P. Lavallée

size n∗
h (see Rao, 1985). Given that Bernoulli sampling has been used, the estimated

variance of Ŷ
(EXP)

(d) will be v(Ŷ
(EXP)

(d) ) = ∑L
h=1

∑
k∈sh

(1 − πk)y
2
(d)k/π

2
k , which does not

compare favorably with the corresponding expression for stratified srswor given the
same (expected) sample sizes at the stratum level.

Consider the estimator

Ŷ
(HAJ)
(d) =

L∑
h=1

Nh

N̂h

∑
k∈sh

wky(d)k (4)

where Nh are known population strata counts, and N̂h = ∑
k∈sh

wk is the estimated
population strata counts (Brewer et al., 1972). This estimator, also known as the Hájek
estimator, “adjusts” for the discrepancy between expected and realized sample sizes,
assuming thatP

(
n∗

h = 0
)

is negligible forh = 1, . . . , L.This estimator has the following
two desirable properties. First, it is conditionally nearly unbiased given n∗

h. Second, its
variance estimator is approximately equal to the one that we would get with srswor with
realized sample sizes n∗

h selected from populations of size Nh, h = 1, . . . , L. That is,

V
(
Ŷ

(HAJ)
(d)

)
.=

L∑
h=1

N2
h

nh

(
1 − nh

Nh

)
S2

h(d) (5)

where S2
h(d) = (Nh −1)−1∑

k∈Uh

(
y(d)k − Yh(d)

)2
and Yh(d) =∑k∈Uh

y(d)k/Nh. This vari-
ance can be estimated using

v
(
Ŷ

(HAJ)
(d)

)
.=

L∑
h=1

N2
h

n∗
h

(
1 − nh

Nh

)
Ŝ2

h(d) (6)

where Ŝ2
h(d) = (n∗

h − 1)−1∑
k∈s∗

h

(
y(d)k − Ŷ h(d)

)2
and Ŷ h(d) =∑k∈s∗

h
y(d)k/n∗

h.

Estimator (7.1) is reasonable if the realized sample size is sufficiently large within
each stratum Uh; if it is not, strata with insufficient realized sample sizes need to be
combined with others to reduce the relative bias. The estimator Ŷ

(HAJ)
(d) can alternatively

be written as Ŷ
(HAJ)
(d) =∑L

h=1

∑
k∈sh

wkgky(d)k, where gk = Nh/N̂h for k ∈ Uh is known
as the g-weight (see Särndal et al., 1992).

The separate count ratio estimator is the simplest example of an estimator that uses
auxiliary data. Multivariate auxiliary data can be incorporated into the estimation process

via the well known regression estimator, Ŷ (REG)

(d) = Ŷ
(EXP)

(d) +
(

Xd − X̂d

)′
B̂(d), where B̂(d)

is obtained by minimizing the variance of Ŷ
(REG)

(d) . The regression estimator can also be

written as Ŷ
(REG)

(d) = ∑
k∈s w̃ky(d)k where w̃k = wkgk is known as regression weights.

The regression weights are the products of the original design weights wk with the

gk-weights given by gk = 1+ (∑k∈U xk −∑k∈s wkxk

)′(∑
l∈S

xlx
t
l

λlπl

)−1 x′
k

λk

: the λk term

incorporates the optimality of the estimator. In the case of the ratio estimator, we have
that λk = ckxk. The Huang and Fuller’s (1978) iterative procedure is implemented in
Bascula (Nieuwenbroek and Boonstra, 2001).

The calibration procedure of Deville and Särndal (1992) minimizes distance
measures between the original weights and final weights w̃k subject to X =
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∑
k∈s w̃kxk. They propose several such distance measures, and the one defined by∑
k∈s(w̃k − wk)

2 /wkλk corresponds exactly to the regression weighs given by gk =
1 + (∑k∈U xk −∑k∈s wkxk

)′ (∑
l∈s

xlx
t
l

λlπl

)−1 x′
k

λk

. It should also be noted that Deville

and Särndal’s procedure allows for bounding the g-weights. A good comparison of these
two approaches in given is Singh and Mohl (1996).

The
∑

k∈s w̃kxk =∑k∈U xk constraint can be applied to subpopulations Up ⊆ U(p =
1, . . . , P) of the population U, where Up ∩ Up′ = Ø for p �= p′ and U = ⋃P

p=1 Up.
These subpopulations are also referred to as poststrata. The previous constraint trans-
lates into

∑
k∈sp

w̃kxk = ∑k∈Up
xk where sp = s ∩ Up. For this case, the g-weights are

of the form:

gk = 1 +
(∑

k∈Up

xk −
∑

k∈sp

wkxk

)′
⎛⎝∑

l∈sp

wlxlx′
l

cl

⎞⎠−1

xk

ck

for k ∈ Up (7)

Hidiroglou and Patak (2004) show that domain estimation efficiency (in terms of vari-
ance) is improved when auxiliary data are available for poststrata that are close to the
domains of interest. This holds when there is a constant term in the auxiliary data vec-
tor, and when the variance structure associated with the model linking the variable of
interest y to the auxiliary data x is constant. It does not necessarily hold, however, that
the incorporation of unidimensional auxiliary data at the poststratum level into Ŷ

(HAJ)
(d)

will increase the efficiency of the resulting estimator.
If the poststrata sizes are too small, raking on margin variables (counts or contin-

uous quantities) will also improve the efficiency of the expansion estimator Ŷ
(EXP)

(d) .
Hidiroglou and Patak (2006) displayed how gross business income incorporated into
raking ratio estimation could improve the efficiency of the estimates of total sales for
the Monthly Canadian Retail Trade Survey by raking on margins based on industry and
geography.

Two-phase sampling is also used in business surveys to obtain (or inherit) relatively
inexpensive first-phase information that is related to the characteristic of interest. This
information may be in the form of discrete variables that yield estimated counts used in
poststratified estimation, or continuous x variables for improving the efficiency of the
estimators of interest. A number of surveys use a two-phase sample design at Statis-
tics Canada. An example is the Quarterly Canadian Retail Commodity Survey. This
sample design was chosen to reduce collection costs by using as the first-phase sample
the Canadian Monthly Retail Trade Survey. Auxiliary information (annualized sales)
from the first-phase sample is used in all of the Canadian Retail Commodity Survey
design steps to maximize the efficiency. More details of sample design are given in
Binder et al. (2000).

7.2. Estimation for change

Let U(t) = {1, . . . , k, . . . , N(t)} denote the in-scope population of businesses at the t-th
survey occasion. Note that because of births and deaths of units, we expect U(t) to be
different from U(t′) for t �= t′. As in the previous section, we consider the case where
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Bernoulli sampling has been used, with inclusion probabilities associated with stratum
Uh(t) given by πk(t) = fh(t) = nh(t)/Nh(t).

At survey occasion 1, a sample s(1) of size n∗(1) has been selected, using the selec-
tion intervals defined by the starting point α(1) ∈ [0, 1]. Recall that a population unit k

falling in stratum h is included in the sample if α(1) < uk ≤ α(1) + fh(1), provided
α(1) + fh(1) ≤ 1 (see Section 5.1). For survey occasion 2, a rotation of (100 × r)%
of the sample has been performed by shifting the parameter α(1) by r × fh(2) in all
strata of survey occasion 2. The starting point α(2) is then given by α(1) + r × fh(2)

(assuming, for simplicity, that α(1) + rfh(2) + fh(2) ≤ 1). This rotation results in a
selected sample s(2) of size n∗(2), with n∗(c) units in common with s(1). Note that the
inclusion probability πk(1, 2) of unit k being selected in both survey occasions is given
by πk(1, 2) = min [max [0, fh(1) − rfh(2)] , fh(2)].

Change between the survey occasions can be defined in a number of ways. A simple
definition is to consider the difference �(d) = Y(d)2 −Y(d)1, where Y(d)t is the population
total of domain d at survey occasion t. This difference can be estimated using �̂

(HAJ)
(d) =

Ŷ
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is given by (5), and it can be estimated using (6). The covariance
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where, to simplify the notation, we denoted the strata of survey occasion 1
by h(h = 1, . . . , H), and those of survey occasion 2 by g(g = 1, . . . , G). The
quantity Ngh(c) is the size of the common population Ugh(c) crossing stra-
tum g of survey occasion 2 and stratum h of survey occasion 1. The quan-
tity fgh is given by fgh = min [max [0, fh(1) − rfh(2)] , fh(2)], and Sgh(d) =(
Ngh(c) − 1

)−1∑
k∈Ugh(c)
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)
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y(d)k(t)/Ngh(c) for t = 1, 2. The covariance (10) can be estimated using
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(HAJ)
(d)1

)
=

H∑
h=1

G∑
g=1

n∗
cgh

fgh

Nh(1)Ng(2)

n∗
h(1)n∗

g(2)

(
fgh − nh(1)ng(2)

Nh(1)Ng(2)

)
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where Ŝgh(d) =
(
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k∈s∗
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and

Ŷ h(d)t = ∑
k∈s∗

h(t)
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h(t) for t = 1, 2. If the realized sample size n∗
cgh is not

sufficiently large in some cross-strata gh; then some collapsing must be done within the
strata g of survey occasion 2, or the strata h of survey occasion 1, to reduce the relative
bias.
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Sampling, Data Collection, and Estimation in
Agricultural Surveys

Sarah M. Nusser and Carol C. House

1. Introduction

Surveys that provide information about land use, land stewardship, agricultural pro-
duction, and the economics of managing both the agricultural industry and our natural
resources are of necessity complex, but vitally important. Agriculture is a $240 billion
industry in the United States alone. It forms the foundation of an even larger food and
fiber industry that contributes 12.3% of the U.S. gross national product and over 17%
of the total employment. This industry provides $71 billion in U.S. exports, whereas the
U.S. imports more than $65 billion in food and fiber products from other countries.
Many developed countries in the world have similar economic dependence on their
agricultural industry, and the economies of developing countries are tied even more
tightly to their agrarian infrastructure.

Information obtained from surveys of agricultural production and the economics
of that production allows the market economy to function efficiently. “With accurate
information, individuals can make sound decisions that allow them to adjust their actions
to the situation at hand. The value of publicly provided information [to these markets]
is often underestimated.” (Roberts and Schimmelphennig, 2006). Apart from producers
and buyers, this information is used by such entities as businesses supplying inputs to
production, to those deciding where to build processing facilities, and those directing
train car distributions. These surveys further provide the information needed by policy
makers, local governments, academic researchers, and other stakeholders to extract
knowledge needed for making informed decisions.

Farming and ranching are closely tied to the use and management of land. There
are 1.9 billion acres of land in the United States, with nearly 1.4 billion acres in rural
(non-Federal) areas. Non-Federal rural areas include about 400 million acres in active
cropland and cropland set aside via conservation programs, more than 500 million acres
of pastureland and rangeland used to raise livestock, and 400 million acres of forestland
(Natural Resources Conservation Service, 2007a). The quality of this land is important
to both agriculture and natural resources. For example, programs to reduce soil loss on
cropland and increase wetlands on agricultural land have helped to generate reductions
of 43% in soil erosion since 1982 (Natural Resources Conservation Service, 2007b) and
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net increases in agricultural wetlands of 98,000 acres during the last decade (Natural
Resources Conservation Service, 2007c). Thus, surveys to obtain information about land
utilization and stewardship are linked closely to those of agricultural production, and
this chapter will include these in the discussions. These surveys provide information on
such topics as the changing use of land, the spread of urbanization, the conservation
practices employed on cropland, and the effectiveness of environmental policies.

From the perspective of applying statistical methods, conducting agricultural surveys
requires the use of a distinct mix of methodology. Farms are businesses and much of
the data that are collected on agricultural surveys are facts related to the operation
of those businesses. During the past three decades, much of production agriculture in
developed countries has become consolidated into larger operations. Now in the United
States, less than 10% of the farms produce almost 75% of the total production. Many
farming enterprises are part of vertically integrated, multinational corporations. Thus,
survey methodology developed for business surveys is relevant to agricultural surveys
in developed countries (see Chapter 17).

Although many farms have become corporate in nature, many more remain small and
family operated. Within the United States, 90% of all farms are still small, family owned
operations. In developing countries, small family run farms are the predominant type of
production agriculture. Often, there is an interest in the farm household as well as the
farm enterprise. Surveys of small farms, and particularly those collecting information
about the farm household, may be similar to household surveys of other population
groups. Thus, the survey methodology created for household surveys also applies to
agricultural surveys (see Chapter 16).

Finally, some surveys of agriculture involve assessments of conditions on the land.
These surveys consist of sampling land units and then collecting information and mak-
ing direct measurements on those land units. This may be done on-site or remotely
via imagery and without any input from a human respondent. Thus, methodological
strategies that are designed to minimize error in measurements made directly from the
field or other resources are also important. In addition, statistical approaches used in
environmental surveys are relevant (see Chapter 19).

Thus, agricultural surveys present many challenges, most of which are related to
the complex and diverse nature of the target population and the types of information
acquired through these surveys. These challenges include:

• Using the appropriate mix of methodology for businesses, households, and direct
measurements;

• Choosing a sampling frame that has both reasonable completeness and reasonable
efficiency;

• Handling changes in the population, such as the consolidation of production agri-
culture into fewer population units from which more and more information is
demanded, or changes in boundaries of land types;

• Coping with decreasing response rates;
• Creating estimates that are consistent with multiple independent administrative

data sources and previously released estimates;
• Addressing the emerging need for all information to be geo-referenced;
• Serving the increasing need for small population estimates related to small

geographic areas and specialized agricultural commodities that have been devel-
oped and marketed;
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• Providing for the growing demand of analysts and researchers for more data, more
access, greater accuracy, and to be able to import data into sophisticated tools; and

• Ensuring confidentiality of respondent data.

This chapter provides an overview of methods used for surveys of agricultural pro-
ducers and land areas that focus on agriculture and natural resource concerns. In doing
so, we emphasize emerging methods and future challenges in sampling, data collection,
and estimation.

2. Sampling

In surveys of agriculture and the land, a careful review and understanding of the popula-
tion inferences that are needed from the survey are critically important. This is certainly
the case for all surveys, but these issues seem to be easily obscured in agricultural and
land surveys. This is illustrated by the following example. There is a current need in the
United States and Europe to understand how quickly farmland may be disappearing to
development, and to make policy decisions to slow down that development. The first
question to ask is “what is farmland.” Is it land that is currently used for growing a
crop or raising livestock? Is it more broadly any land owned or managed by a farming
operation, whether or not it is currently used for producing crops or livestock? Is it any
undeveloped land? Are woods and forests included? What if cattle are kept in those
woods and forests? Do you include subdivisions of 10 acre homesites (perhaps with
horses), or is this land already considered “developed”? The answers to these types of
questions are essential to defining the target population, sampling units, reporting units,
and observations for a survey.

Sampling methods for agricultural surveys are tied to land, either directly or indirectly.
Not surprisingly, area frames are utilized for many agricultural surveys. An area sample
frame allows for the direct sampling of units of land, usually through a multistage
sampling process to improve efficiency in sampling and/or data collection. A major
advantage of the use of an area frame is that it provides complete coverage of the
targeted land area. It can be an efficient frame for drawing samples to collect data
and make measurements that are highly correlated to that land area, such as land use,
production of major crops, general conservation practices, etc. An area frame, although
a complete frame, will generally provide very large sampling errors when used for
collecting data on uncommon items. For example, the acres of corn in Iowa can be
estimated very effectively with an area frame. The estimation of acres of apples in that
same state would be problematic.

Area frames may be constructed in different ways. Several important area frames
are in use for agricultural statistics, and we will describe in some detail three that have
distinctly different designs. One has been built and maintained by the U.S. Department
of Agriculture for the estimation of agricultural production. Land area in the United
States is divided into primary sampling units (PSUs), which are then stratified by gen-
eral land use classifications, and sampled at different rates. Strata definitions differ by
state, but usually include the following breakouts: >75% cultivated, 51–75% cultivated,
15–50% cultivated, <15% cultivated, agri-urban, urban, nonagriculture, water. Sampled
PSUs are further broken down into secondary sampling units of approximately one
square mile in size, and sampled for data collection. Usually one secondary unit is
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selected within each PSU. Breakdown of all units are made along visible and natural
boundaries such as roads, streams, ditches, etc. This approach to the development and
use of an area sampling frame for agricultural statistics has been used in a number of
developing countries.

Another important area frame is used by the U.S. Department of Agriculture (USDA,
2005) to monitor conditions on the land via the National Resources Inventory (NRI).
The NRI is a large natural resource monitoring survey conducted by the USDA Natural
Resources Conservation Service in cooperation with the Iowa State University Center
for Survey Statistics and Methodology. This inventory captures data on land cover and
use, soil erosion, prime farmland, soils, wetlands, habitat diversity, selected conserva-
tion practices, and related resource attributes. It does so primarily via remote sensing
but is periodically augmented by a subsample of field visits (Nusser and Goebel, 1997).
The NRI area frame encompasses all land in the United States and its territories. The
sample for the first 1982 inventory formed the basis of subsequent inventories. The
first-stage area sample was stratified within counties (or equivalents) using political
divisions or geographic coordinate systems without regard to visible features or natural
resource boundaries (Figure 1). The use of political or geographic stratum boundaries
avoids problems associated with changing natural resource boundaries. Small strata
were used in each county to ensure geographic spread and control over sampling rates
for diverse geographic domains. Area segments within strata are generally a square of
land one-half mile on each side, although segments may be smaller or larger as hetero-
geneity of land conditions warrant (Figure 1). Sampling rates within strata generally
range from two to four percent. For nearly all sampled area segments, three points are
selected within the segment using restricted randomization to encourage geographic
spread. Sample points are used to obtain detailed trending information for most survey
variables.

A third area frame is one developed for the USDA Forest Service’s Forest Inventory
and Analysis (FIA) program, designed to estimate conditions over time for private
forests in the United States (Bechtold and Patterson, 2005). The frame design consists
of a system of grid points that are the center coordinates of a hexagonal tessellation of
the land surface of the United States. The FIA uses a three-phase sample design. Remote
sensing methods are used in the first phase to classify these grid points into forest and
non-forest strata. FIA’s second and third phases are used to obtain field measurements.
The second phase sample is used to obtain traditional inventory field measurements at
a systematic subsample of approximately 125,000 first phase forest points. The third
phase is a subsample of approximately 8,000 second phase points (about 1 in 16 phase
two points) to collect more intensive forest health field measurements (USDA, 2007b).
One-fifth of the Phase 2 and Phase 3 samples are observed each year. A complex plot
design has been developed to facilitate collection of a wide variety of biological and
environmental properties at different scales (Figure 2; USDA, 2007a). The layout at a
Phase 2 point consists of four circular subplots with a 24 foot radius, one centered at the
sample point and the other three surrounding the center point at regular intervals 120
feet from the center plot. A circular microplot with a 6.8 foot radius is also established
within each circular subplot.

The integration of field and remote sensing surveys via two-phase sampling to extend
the depth of information available for individual sampling units is also used with the
NRI. Subsamples of NRI photo-interpretation survey samples are selected to investigate
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Fig. 1a. Area sample examples for the National Resources Inventory: (a) standard Public Land Survey sample
in the central U.S. with a 4% area sample using third townships as strata and quarter sections as area sampling
units (each square on the map is a 1 mi × 1 mi section, each solid sample unit is a 0.5 × 0.5 mi quarter section,

each stratum is 2 mi × 6 mi).

field conditions for specific kinds of land, such as the health of rangeland or the quality
of cropland soils. Over the last few years, the Conservation Effects Assessment Pro-
gram has involved a collaboration among USDA agencies in which interviews were
conducted with producers whose land was associated with a subsample of NRI points.
This approach has led to more detailed practice information at a point than would
be available via remote sensing and administrative databases, and has been used to
develop simulation models that predict outcomes under alternative practices for policy
evaluation.

In Europe, designs that involve remote sensing and field components are also being
used to generate timely information on agricultural production for implementation of its
Common Agricultural Policy. The MARS (Monitoring Agriculture by Remote Sensing)
project is sponsored by the Directorate General Joint Research Center of the Euro-
pean Commission. This project provides crop and yield monitoring by utilizing agro-
meteorological models, low resolution remote sensing methods, and area estimates using
high resolution data combined with ground surveys. Echoing features of the FIA design,
Italy’s agricultural survey (AGRIT) also relies on satellite imagery to stratify points for
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Fig. 1b. Area sample examples for the National Resources Inventory: (b) similar design in the eastern U.S.
with latitude and longitude boundaries for strata and sampling units.

agricultural field surveys (Carfagna and Gallego, 2005). This is especially helpful in
fragmented landscapes such as those in Europe.

Technologies used in area frame sampling have evolved considerably over the last
50 years. Initial frames relied on paper products—county road maps and aerial pho-
tography to define strata and area segments. Today, geographic information systems
(GIS) are used to assist in stratification and in selecting and managing samples. Uti-
lizing satellite imagery and digital aerial photography, the steps in the process involve
computer-assisted delineation of sampling structures against a digital image. Delin-
eation is improved by the capacity to view different scales. Further, digital storage of
strata and segments enables more efficient production of sampling lists and field materi-
als for the survey. For land-based surveys, the ability to quickly generate area sampling
geometries on the earth’s surface via GIS greatly increases flexibility in choice of design
features. For example, the FIA program redesigned their survey based on a tessellation
of hexagons for their first phase of sampling, an approach that would be difficult without
GIS. Regardless of the type of sample units, the use of GPS (global positioning system)
receivers enables field staff to find sample points created in GIS frames when they are
not associated with visible features.
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Fig. 1c. Area sample examples for the National Resources Inventory: (c) area sample in variable land use area
of the western U.S. with smaller area segments for heterogeneous areas and larger segments in homogeneous

areas.

List sampling frames are also very important for agricultural surveys. Generally,
these lists are of land owners or of the operators/managers of the agricultural enterprises.
These lists can be efficient sampling frames for agricultural statistics particularly if they
contain useful information about the agricultural enterprises. Thus, a list of agricultural
enterprises that have produced or sold hogs in the past could be an effective sampling
frame for a survey to measure hog inventories. If that list also had information about
how many hogs each enterprise produced in the past, it would allow stratification of the
list for increased precision in the estimate.

Lists of agricultural enterprises may be available through producers associations, pro-
ducer oriented magazine publishers, or certain publicly available administrative record
systems. Most such list sources are likely to have considerable “out-of-scope” records,
and will also suffer from serious under-coverage of the target population. Local land
and tax offices may have information on land owners that could be used to build a list
frame of such owners.

Many governments provide financial and technical support for agricultural produc-
tion and land stewardship through various programs, and create administrative record
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Fig. 2. The Forest Inventory and Analysis plot design (USDA, 2007a).

systems to run these programs. If accessible, these records can be very valuable in sam-
pling for agricultural surveys. (They can also be extremely valuable in direct estimation,
as will be discussed later in this chapter.) Administrative records are created when farm-
ers sign up for production support payments, when they receive government assistance
for land or waste management enhancements, or when they apply for a license to build
new facilities or to spray certain pesticides.

List sampling from administrative records is perhaps one of the most widely used
methodologies for agricultural surveys worldwide. Canada conducts its Census of Agri-
culture every five years in conjunction with its Census of Population. The database
generated from this activity creates a list sampling frame for agricultural surveys. This
sampling frame may be updated for births and deaths, and augmented by specialty lists.
Countries with centrally controlled economies (including those which have had such
economies in the past) usually have extensive administrative systems of records. The
Russian Federation, for example, bases its frame for surveys of rural agricultural house-
holds on its “Land Taxpayer Register.” The only ancillary variable for stratification is
total land area. South Africa historically used administrative data from its marketing
board to generate information on agricultural production. As that country has moved
to a free market economy, that administrative source has become much less complete
as a sampling frame. Many of these countries are experimenting with area frames,
remote sensing, and other methodological innovations. For example, South Africa is
experimenting with a point sample area frame survey in which land use and crops are
identified from an ultra-light aircraft.
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Sampling from a list frame for general purpose agricultural production surveys can
be very complex, even when a good sampling frame with ancillary data with size of
operation and commodities produced is available. Often the intent is to measure agricul-
tural production for numerous crop and livestock commodities within a single survey.
For efficiency, larger producers (who can report for a larger percentage of the total com-
modity) should be sampled more heavily than smaller producers. Because farmers do
not produce every commodity, care must be taken to allocate the sample so that sufficient
responses are received to estimate all targeted commodities. Stratified sampling can be
used for this purpose. Strata would be defined first by commodity, and then by the size
of operation for those producing the commodity. Because many farming operations will
generally produce more than one commodity, each could be eligible for inclusion in
more than one stratum. A priority system may be used to assign each population unit to
one and only one stratum. Such a system should give higher priority to the less common
commodities.

The stratified sampling design described earlier can be effective when only a few
commodities are targeted. When there are many commodities, a large number of strata
are needed and the prioritization becomes more complex. An alternative sampling pro-
cedure for general purpose agricultural production surveys is discussed by Kott and
Bailey (Bailey and Kott, 1997; Kott and Bailey, 2000). Their approach selects a Poisson
sample (Ghosh et al., 2002) from multiple list frames and then uses calibration estima-
tion. Kott and Bailey propose independently assigning a Poisson Permanent Random
Number (PRN) to each population unit. They then create a separate list frame of farming
operations for each commodity, creating multiple partially overlapping frames. A spe-
cific population unit would be in a commodity frame if ancillary information indicated
that farming operation produced the commodity. Many population units would be in
more than one commodity list frame. A targeted minimum sample size is determined for
each commodity, and a probability proportional to size sample simultaneously drawn
from each frame. Use of the permanent random numbers forces overlaps between the
commodity samples, thus minimizing the total sample size. Kott and Bailey describe
the process of how this overlap is forced, as well as how to calculate the probability
of inclusion in the overall sample. In practical application, instead of having a sepa-
rate sampling frame for each commodity, it may be more appropriate to group similar
commodities (such as major row crops) within the same commodity frame.

Using a list frame and an area frame in a multiple frame design can be very effective
for agricultural surveys. A well-developed list of enterprises with appropriate ancillary
variables can provide a very efficient sample, but may also have considerable incom-
pleteness. An area frame sample may be less efficient for collecting certain types of
data, but offers complete coverage. Using standard multiple frame methodology (see
Chapter 4), estimates from the overlap domain are weighted by the inverse standard
errors for each frame. In practice, the standard errors using the area frame are often
considerably larger than those of list frame and thus the overlap domain is estimated
almost exclusively from the list frame.

Repeated observations over time in surveys that target units of land are possible, and
often desirable, but will increase the complexity of sample designs (Fuller, 1999). Survey
objectives that involve estimating both status at a particular point of time and trends
over time are in conflict and need to be balanced. For surveys that target agricultural
enterprises directly, longitudinal designs are problematic because individual farming
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enterprises change their structure over time. They go in and out of business, take on or
dissolve partnerships, change their land holdings, and change names. Any longitudinal
survey that requires human response needs to take into account respondent burden and
the effect of frequent contact on both response rates and the quality of response.

Land surveys with area sampling frames and longitudinal data sets generate a differ-
ent set of concerns, which are well expressed through the current design for the NRI.
Pressures for more frequent NRI data led to a redesign in 2000 involving a shift to
an annual survey. This replaced a design that involved observations on 300,000 area
segments once every five years from 1982 to 1997. Research evaluating the trade-offs
between status and trend estimates resulted in a supplemented panel design in which
40,000 segments are observed every year along with a rotating panel of approximately
30,000 segments that augments the continuous panel (Breidt and Fuller, 1999). The rota-
tion period varies across types of segments. Segments with points that have land/cover
uses that are more likely to change or are of primary interest are given shorter rotation
periods. Longer rotation periods are defined for other segments. The 1997 NRI is viewed
as a first phase sample for subsequent annual samples for the purposes of estimation
(Legg et al., 2006).

Land surveys may seek to produce a time series of information about land-based
sample units for constructing tables of gross change (Fuller, 1999). Gross change tables
provide estimates of change into and out of various categories of land, and offer a detailed
understanding of the dynamics of change. Area data can be used for this purpose, but it is
quite difficult to track polygons that represent changes in the extent of area features over
time. A more practical method is to use repeated observations at a specific point on the
land, which generates direct time series information to support gross change estimates.

3. Data collection

Data collection methods vary with the type of observation unit, the type and complexity
of information to be collected, the time frame for data collection, and budget considera-
tions. Many surveys require producer inputs and thus involve collecting data from farm
operators. Responses may be collected either in person, by telephone, through the mail
or via the web, to collect data on crop and livestock production, conservation practices,
and/or pesticide use. As with the other household or business surveys, mail collection
can be very economical, but may not yield the required response rates. Multimode sur-
veys are common, using less-expensive mail or web surveys coupled with nonresponse
follow-up on the telephone or with in-person visits. Web surveys have an important
future for surveying agricultural producers and agri-businesses, especially as internet
access becomes more consistent in rural areas. In 2005, 51% of all farmers in the United
States, and 72% of commercial farmers, reported having internet access. However, most
reported still using dial-up rather than high-speed service, and as yet most appear not to
be inclined to respond to surveys over the web.

Most in-person agricultural surveys in the United States are completed using paper
survey instruments, in part because of the difficulty of conducting interviews in out-
door farm environments. However, recent research indicates that as technologies for
tablet computers improve, it will be feasible to conduct computer-assisted interviews
for production surveys (Nusser, 2004). In-person interviews may focus on one or more
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parcels of land operated by the producer, and thus often rely on an aerial photograph to
identify and document parcel boundaries. With the use of computer-assisted interviews,
it will be possible to use GIS-based capture of parcel boundaries on digital photo-
graphic backdrops (Nusser, 2004). Such an approach also provides the opportunity for
computer-based measurement of areas associated with fields and buffers, which may be
more accurate than operator-reported areas and less burdensome to obtain.

Land-use surveys often involve field observations of attributes at points, along tran-
sects or within areas, including possibly the location and extent of geographic fea-
tures. However, remote sensing and image analysis have become very effective and
efficient means of collecting information on land usage and management. Data col-
lected via remote sensing generally involve variables that can be directly observed using
geographic information sources (e.g., aerial photographs, satellite images, topographic
maps, soils maps). These may be the extent or surface area of geographic features on
the land, or conditions at a specific line segment or point on the land. To supplement
directly observable data, some elements, such as conservation program participation,
may be obtained from administrative data, again not requiring contact with a human
respondent. These approaches save respondent burden and data collection resources.
However, even though the costs of remote sensing materials are far less than in the past,
these costs still may be substantial, particularly if high-resolution materials are desired
for detailed observations.

Computer-assisted data collection methods for land features are considerably more
complex than standard questionnaires, but surveys are beginning to take advantage of
advances in geographic information technologies. In recent years, the NRI has moved
to directly capturing boundary delineations of features such as water bodies and build-
ing structures using custom-developed geographic data tools (Nusser, 2005). The geo-
graphic interface is integrated with more traditional computer-assisted forms to record
land classifications. Prior to the availability of geographic tools in the survey instrument,
data collectors manually measured abstracted summaries of features, such as areas and
lengths. The geographic survey instrument now enables collection of raw information
on the feature, and algorithms process the geographic data.

Although land use surveys rely more heavily on remote sensing imagery and analysis,
they may still require on-site field measurements that are tied to remotely sensed delin-
eation and classification of land areas. In 1996, the NRI began using handheld computers
with formal computer-assisted survey instruments in the field with coordinates from the
photo-interpretation survey displayed on a GPS receiver (Nusser and Thompson, 1997).
Today, GPS can be provided as a resource, integrating easily with a mobile computer
and digital imagery.

Repeated observations in longitudinal surveys introduce special problems for
remotely sensed or field observations at a sample point. The key concept of repeated
measurement is to return to the same physical location as data were collected in the past.
It is tempting to consider the stored GPS coordinate as the gold standard for a sample or
reporting unit’s location, but positional error exists in GPS receivers and the coordinate
systems of imagery and other geospatial data layers. These errors may exist even after
the coordinates have been orthorectified (a process that aligns a geospatial data source
to a standard coordinate system that adjusts for the presence of three dimensional ter-
rain features). Material from the previous observation is required to ensure that the new
observation is taken in the same location as the prior observation.
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4. Statistical estimation

Statistical estimation encompasses data processing, imputation, weighting, and estima-
tion of parameters and variances of parameter estimates. As with any survey, estimation
approaches depend greatly upon the objectives of the survey. The choice of methods for
surveys that release one-time results are generally less constrained than those that can be
used in longitudinal panel surveys in which a series of related estimates are released over
time. If inference for small areas is an objective, more complex estimation techniques
are needed. Similarly, methods for creating public release data sets are more involved
than those used for surveys where only estimates are released.

Even somewhat static estimation of agricultural production and related activities
is complex because it generally involves the careful integration of information from
various surveys (often collected at different times over the marketing year) and from
administrative sources of varying quality. The goal of these endeavors is to estimate
current year supply of an agricultural commodity, which can be used with information on
demand for that commodity to provide appropriate transparency for proper functioning
of the marketplace.

Vogel and Bange (1999) discuss the complexities of crop production estimates and
forecasts produced by the U.S. Department ofAgriculture and the need for a careful inte-
gration of survey and administrative data, both from domestic and foreign sources. The
components of production are measured separately, and span the production year. First,
planted acreage is estimated based on a multiple frame survey conducted in June. This
initial estimate of planted area is subject to revision later in the season when administra-
tive data is available from an USDA production support program. This administrative
data provides the area planted to major crops by farming operations signed up for the
support program. Because most field crop producers enroll in these programs, these
estimates from administrative data must be integrated with survey estimates of planted
area.As the season progresses, additional surveys are conducted to estimate area that will
be harvested. This amount may vary greatly from year to year, and change throughout
the production year, based on both weather and market conditions. Yield is forecasted
monthly during the growing season using a combination of estimates from surveys of
producers and from direct measurements of the crop in the field. Data from both the
producer surveys and the direct measurement surveys are used in models that fore-
cast yield per acre. At harvest, additional surveys (both surveys of producers and those
involving direct measurements only) are conducted to estimate harvested area, yield and
production.

Following harvest, additional administrative or survey data become available show-
ing utilization of the crop production. For example, all cotton will be ginned. There is
no other utilization for this crop. A monthly census of cotton gins around the country
provide a critically important estimate of total cotton production that must be integrated
with estimates from earlier production surveys to improve the overall estimate of cotton
production. Corn is even more complex because some corn enters the market (for food,
feed, or ethanol production) and some is fed on-farm to livestock. Corn may be stored
for some time without further processing. Administrative and survey data providing
estimates of corn exports, corn imports, corn storage, and corn fed to animals are all
utilized in an estimation “balance sheet” (see Figure 3) with the initial corn production
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Grain supply Subtract Grain utilization Equals End of year grain in storage

Becomes carry-in for the
following season grain supply

Grain supply includes:

Carry-in supply from previous year

Current year production

Imports

Grain utilization includes:

Exports

Grain that is processed

Grain fed to animals

Fig. 3. Balance sheet for grain production and use.

estimates to ensure that the total estimates of corn production, marketing and utilization
are consistent for the marketing year.

An even more complex assemblage of methods is required when surveys release
related estimates over time and/or of microdata that can be further explored by policy
analysts and researchers. The NRI survey program periodically releases estimates of
conditions and trends for natural resources as well as public use data sets that have a
complete time series for all points in the data set. Numerous issues are addressed in the
estimation process. These include ensuring sensible temporal patterns for observed and
imputed point data, integrating known trends from external data sources such as program
participation data and land areas, appropriately reflecting these trends in small area
estimates, and promoting consistency with estimates generated from previous releases.
These problems require sophisticated estimation methods and if data are to be released,
estimation methods must also create a data set that is simple for analysts to generate
routine statistics and their estimated variances.

To address these issues, the NRI uses several strategies. In data review, historical
time trends are given special attention to evaluate whether rare or impossible time
series have been created in the classification sequences for a point. However, it can be
difficult to identify all unusual or unexpected time series, or even inconsistent values
for suites of related variables. A recent advance was made by Wang and Opsomer
(2006), who describe the use of cluster algorithms to identify unusual combinations
of values or unusual trends over time. This approach may reduce the need to create
specific computer checks or manually review data for unusual trends. Small changes
can also occur in individual time series for continuous measures that are entirely due
to measurement error and do not represent meaningful changes. Smoothing procedures
have been developed to minimize the impact of such fluctuations.

To improve small area estimates, an imputation approach is used to ensure area
data known to correspond to segments or watersheds within counties are geographically
allocated to these same locations for subpopulation estimates (Breidt et al., 1996; Nusser
and Goebel, 1997). NRI sample area segments can be viewed as representing the first
phase in a two-phase sample with points as the second phase. However, instead of using
segment data in a standard two-phase weighting approach (see Chapter 3), segment area
data are used to impute points that reflect observed segment changes when such patterns
are not observed in the segment’s points. Weights that reflect the size of segment areas
corresponding to specific time trends are assigned to imputed and observed points that
match conditions observed in the segment data. Local attribution of these areas improves
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the small area properties of estimates relative to using a standard two-phase estimator
(Breidt et al., 1996).

As mentioned earlier, it is important that NRI–generated estimates are consistent
over time. It is equally important that they are consistent with information from certain
administrative record systems (such as that tabulating area enrolled in the Conservation
Reserve Program). In NRI, consistency with prior estimates or administrative totals is
handled via raking and ratio estimation methods.

Recent research in the NRI has considered an estimated generalized least squares
estimator (EGLSE) to incorporate correlations across sample panels and the full 1997
NRI sample (Legg et al., 2005, 2006). These estimators are consistent and asymptotically
as efficient as generalized least squares estimators, which have minimum variance among
the class of linear unbiased estimators. EGLSEs are used in a ratio step near the end of
the weighting process to improve the properties of estimates for key variables.

Because of the complexity of the NRI estimation process, replication methods are
used for variance estimation. Replicates are created for delete-a-group variance esti-
mation (Kott, 2001; Lu et al., 2006) that attempt to reflect both sampling variance and
variance due to estimation methods such as point imputation. Another approach being
investigated, but not yet implemented, is fractional imputation (Kim and Fuller, 2004).
In fractional imputation, multiple imputation outcomes are generated for a point and the
weight associated with the point prior to imputation is divided equally among the impu-
tation realizations for the point. This approach is expected to provide a better estimate
of variance due to imputation than the current method.

The National Agricultural Statistics Service also uses satellite data to improve the
precision of estimates of crop acreage, especially at the county level (Allen et al., 2002).
Studies have shown that relative efficiencies of 3.0 or more have been achieved over the
area frame estimate of planted acreage. However,Allen et al. (2002) point to complexities
in this process: “There is a common misunderstanding that crop type signatures are so
unique that they could be determined once and for all. Then later classifications would
be a matter of running a new satellite data file against known parameters. This is called
signature extension. Satellite-based crop classification is based on the measurement of
energy emitted or reflected by plants. Those readings do differ somewhat from one crop
type to others in different wavelengths. However, that pattern differs throughout the
growing season of a particular crop. There can also be considerable differences between
healthy plants and plants of the same crop but under serious stress. The density of
crop planting and the presence or absence of weeds and recent precipitation also can
affect crop response. On top of all other factors, the atmosphere through which the crop
response is being measured is not the same from one day to the next.”

Because most agricultural surveys are inherently linked to the land, there is great
pressure to use the geospatial locations of sample points, even if they are not pub-
licly available. Research agreements can be used as one vehicle to enable point-specific
modeling. Agencies are also looking towards the possibility of using image classifi-
cation in creating map-based products. Supervised image classification involves using
ground truth (or reference) data in combination with satellite imagery to produce a
data layer depicting a specific theme, such as land cover or crop cover. For example,
in selected states, NASS has created a popular data product called the Cropland Data
Layer, which is a public use GIS data file with crop specific categorization (at 30 m
resolution) for each crop season. This data layer is used in conjunction with other GIS
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layers to aid in watershed monitoring, soils utilization analysis, agribusiness planning,
crop rotation practices analysis, animal habitat monitoring, and prairie water pothole
monitoring (Allen et al., 2002).

5. Confidentiality

Maintaining the confidentiality of individual survey responses is a critical part of the
survey estimation process for agricultural and land based surveys, as it is for surveys of
other populations. Disclosure avoidance issues for farms mirrors many of the issues with
surveys of businesses (see Chapter 15). Namely, there are large or specialized producers
that are easily identifiable even when their responses are combined with other responses.
Thus disclosure avoidance programs and processes must ensure an appropriate number
of responses in an estimation cell, but also must ensure that one or two responses do not
individually account for a predominant portion of the cell total.

Confidentiality methods for surveys that involve observations of the land are simpler
than for surveys that involve respondents. Coordinates of sample points are not publicly
released in order to protect land owners and to preserve the integrity of plots that are
revisited over time. Thus, the primary concern in these surveys is to evaluate disclosure
risks within geographic polygons created with classification variables such as county,
watershed or eco-region. The NRI combines polygons with small sample sizes with
adjacent polygons to reduce disclosure risk. As the time series at a point becomes more
extensive, additional disclosure limitation methods may be needed.

6. Concluding remarks

Agriculture and land utilization issues sit at the vertex of many global concerns and
conflicts. The disagreement over governmental subsidy programs for agricultural pro-
duction is a major barrier to negotiating international free trade agreements. There are
ongoing concerns about shortages of food in drought stricken parts of the world. Global
concerns about human health extend to food-borne diseases such as bovine spongiform
encephalopathy (BSE) in cattle, avian influenza, and E. coli. There is global concern
about the clearing of forestland for agriculture and about the conversion of agricultural
land to development. One common thread through all of these concerns is the need for
high quality information with which to make policy and trade decisions. Agricultural
and land-based surveys will continue to be an important tool for information gathering
in the foreseeable future.

There are a number of methodological opportunities and challenges ahead for these
surveys. From the data user viewpoint, there are several critical needs. Because a single
survey will never encompass the breadth of interacting components of the agricultural
sector, there is an increasing need for linking data from surveys and other administra-
tive sources together in appropriate ways to support more global analyses. There is an
increasing need to link data of all types back to a land base, and then to be able to layer
that data within a GIS to draw inferences based on increasingly smaller geographic areas.
There is an increasing need for improved methods of small area estimation in general.
This extends not only to facilitate analysis of small geographic areas, but also because
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agricultural commodities are becoming so specialized that finer and finer breakouts of
production are required. There is an increasing need to look at change over time, and
to create data and techniques that are appropriate for longitudinal analysis. Finally, data
users want more access to disaggregate data, they want online access to that data, and
they want online tools available with the data sets that will allow them to perform a
wide range of analysis.

From the data providers’ viewpoint, there are equally critical needs ahead. In devel-
oped countries there continues to be fewer enterprises engaged in commercial agri-
culture. Thus, the population base from which to sample for agricultural surveys is
shrinking while the need for data from that population is growing. Methodological chal-
lenges before us are to minimize the reporting burden by improving electronic reporting
capabilities, increasing the utility of other sources of information, and developing and
improving various modeling techniques that require less input data. Another critical
need for data providers is to maintain the confidentiality of their individual responses
and of remotely sensed data associated with a producer’s land. There are significant
methodological changes ahead as we try to meet data user needs of more online access
to disaggregate data from a shrinking population that is becoming more and more con-
cerned about privacy. From a statistical perspective, these requirements ultimately lead
to more complex sampling and estimation methods, particularly for surveys conducted
over time, which must be balanced with the need to provide easily accessible and usable
data to researchers and the public.
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Sampling and Inference in Environmental Surveys

David A. Marker and Don L. Stevens Jr.

1. Introduction

In this chapter, we focus on surveys of environmental resources, which we loosely define
as the air, water, soil, and associated biota that sustain our environment. The objective
of the surveys we consider will generally be an assessment of status, condition, or
extent of a resource. The target population of the survey may be discrete and finite,
for example, small lakes or wetlands, with well-defined population units; or may be a
one-, two-, or three-dimensional continuum, for example, a stream network, a forest,
or the volume of water in a large lake. Each of these calls for different types of frames
and sampling techniques. The survey may be a one-time assessment or may include a
long-term monitoring objective to assess change or trend. Addressing both objectives
requires a balance of revisiting sites to assess trend and adding new sites to assess
status.

Traditionally, the focus of sampling in the environmental sciences has been on rela-
tively small and well-delimited systems, e.g., at the scale of a lake or watershed or forest
stand. However, some current environmental issues, such as global warming, contam-
ination of surface and ground water by pesticides and other pollutants, and extensive
landscape alteration are not localized. Quantifying the extent of symptoms of widespread
concerns requires large-scale study efforts, which in turn needs environmental sampling
techniques and methodology that are formulated to address regional, continental, and
global environmental issues.

Survey design is a well-developed and established area in the statistical literature.
There are many textbooks that provide excellent accounts of the essential attributes
of good survey design, such as the necessity of clear definitions of the population of
interest, the sample units, the sample frame, and how the sample is to be drawn (Cassel
et al., 1993b; Cochran, 1977; Kish, 1967; Lohr, 1999; Sarndal et al., 1992; Thompson,
2002; Yates, 1981). However, designs for environmental sampling often present addi-
tional challenges which we identify below. These include the need for broad popula-
tion description; spatial context of the population; availability of ancillary information;
inadequate frames; difficult access; multiple objectives, including status and trend;
evolving objectives; and the need to satisfy multiple stakeholders.

The focus of most survey methodology is estimating the mean value or total of a
population. In contrast, an environmental survey often has a more general object, such
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as estimating the distribution function or the proportion of the population in various
classes, for example, the proportion of lakes that meet designated use criteria. There
may be many environmental responses of interest that are interdependent. A common
objective of environmental surveys is to characterize the status of some resource as well
as the change or trend in that status. These two objectives have somewhat conflicting
design criteria: status is generally best assessed by sampling as much of the resource
as possible, whereas trends are generally best detected by observing the same resource
locations over time. Frequently, a secondary objective is the evaluation of relationships
between attributes, both measured at the site and available on the frame.

A characteristic of overwhelming importance for environmental populations is that
they exist in a spatial context. The response will have spatial pattern and structure. Sites
near to one another will tend to have similar physical substrate and be subjected to similar
stressors, both natural and anthropogenic. Response can be influenced by topography,
hydrology, and metrology. All these influences will tend to induce spatial patterns in the
response.

Another important characteristic of environmental populations is that some ancillary
information (in addition to location) is almost always available. Currently, there is a
wealth of remotely sensed information available from satellites or aerial photography
that may be used to structure the sampling design or used in analysis.

Environmental resources are often expensive and time-consuming to sample. Logis-
tics can be difficult; often, the population of interest includes sites in remote loca-
tions, for example, lakes in wilderness areas. There can be considerable time and
money expended in traveling between sites. Laboratory costs for analyzing individ-
ual samples may be nontrivial. Some environmental metrics can be time-consuming to
evaluate, for example, quantifying the species richness, and abundance of a macroin-
vertebrate sample requires the services of a skilled benthic taxonomist. For a large
program, it may be a year or more after data are collected in the field before laboratory
analyses are available. These may also be subject to substantially more measurement
error than routinely found in other types of surveys. Nonresponse in environmental
sampling can be substantial for reasons such as ease of physical access, safety, or
permission.

A practical complication frequently encountered in environmental sampling is the
difficulty in obtaining an accurate sampling frame. In many instances, available sampling
frames include a substantial portion of nontarget elements or fail to cover the entire
population. The frame problem is aggravated by the sheer difficulty of collecting and
analyzing samples.

Environmental sampling almost always occurs with a backdrop of political, eco-
nomical, and societal considerations so that statistical considerations represent only one
aspect of a sampling design. Furthermore, because environmental issues can impact
human populations, there are often multiple groups, agencies, and organizations that
have an interest in the products of the survey. The interests of the multiple stakeholders
are not always perfectly aligned. Meeting the interests of multiple stakeholders, while
maintaining a scientifically and statistically rigorous design, can be a challenge.

In many instances, the need for an environmental sample will be driven by the
need to assess the condition of an environmental resource because of concern over
potential degradation. The design needs to address current environmental issues but
that is not sufficient. The current issues will eventually be resolved, but new, presently
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unrecognized issues will emerge. These issues will manifest themselves in unforeseeable
ways, and they will affect resources that cannot now be identified. An environmental
assessment program with the dual objectives of status and trend must be able to accom-
modate regrouping, recombining, expansion and contraction of the sample to permit
such emerging issues, and evolving objectives to be addressed. The issues of inade-
quate frames, nonresponse and missing data, and evolving objectives drive a need for
sampling designs with the flexibility to add, remove, or reallocate samples.

Below, we review some of the sampling methodology that has been developed to meet
the challenges that sampling environmental populations present: focus on broad pop-
ulation description; spatial context; ancillary information; inadequate frames; difficult
access; evolving objectives; and the need to satisfy multiple objectives and stakeholders.

2. Sampling populations in space

Historically, many environmental samples have been chosen for convenience or subjec-
tively to be representative. Both of these selection methods have severe shortcomings
(Paulsen et al., 1998; Peterson et al., 1999). There are two widely accepted, statis-
tically and scientifically rigorous approaches to selecting an environmental sample:
probability-based and model-based. These two approaches begin from different theo-
retical bases but can both address the common working objective. In probability-based
sampling, the response is viewed as fixed but unknown. A model-based approach views
the response as one realization of a random process. In environmental sampling, we are
usually interested in an attribute of an environmental resource, and a probability-based
design objective is to estimate that attribute. A parallel model-based design objective
is to predict the outcome of the process and to calculate the attribute from the pre-
dicted outcome. The focus in this chapter is on probability-based design and inference.
However, there are some insights from model-based optimal design that are relevant to
probability-based sampling, and these are discussed in Section 19.7.

Because space has a central role in environmental sampling, much of the relevant the-
ory and practice has dealt with spatial sampling. A number of authors have investigated
designs for sampling in space. The papers that have a sampling theoretic orientation tend
to consider only finite populations; some of those with a spatial statistics model-based
orientation consider continuous populations. Overton and Stehman (1993) compared
three designs (systematic (SYS), simple random sampling (SRS), and random tessel-
lation stratified (RTS)), then contrasted them in terms of their precision and variance-
estimation properties. They concluded that the designs ranked RTS<SYS<SRS in order
of increasing variance. Many investigations of two-dimensional sampling have taken
a superpopulation approach (Cochran, 1946; Das, 1950; Quenouille, 1949). Matérn
(1986) investigated sampling in continuous two-dimensional space and derived some
comparisons of stratified and systematic sampling, using several systematic arrange-
ments and spatial covariance functions. He concluded that a systematic sample on a
triangular grid was optimum for a wide class of nonincreasing, isotropic covariance
functions. Olea (1984) compared several variations on systematic designs that give good
sample dispersion yet avoid the potential problems with periodicity that strict systematic
designs have. Iachan (1985) derived some asymptotic comparisons of two-dimensional
sampling designs and extended Cochran’s (1946) result that under some restrictions on
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the covariance function, systematic sampling is more efficient than stratified sampling,
which in turn is more efficient than simple random sampling. Dalenius et al. (1961)
showed that with some restrictions on the spatial covariance, sample designs using a
triangular grid are optimal, a result supported by later work by McBratney et al. (1981)
and Yfantis et al. (1987).

3. Defining sample frames for environmental populations

Probability-based sample designs were defined in Chapter 1. The first characteristic of
a probability sample is that each unit in the population must have an explicit definition.
That definition is used to develop a frame for the population, that is, a construct from
which population elements can be selected via a random process. The construction of a
frame is a first step for any probability sample, but environmental frames can take some
different forms than that usually found in survey methodology.

In the case of discrete environmental resources with distinct sampling units (such as
lakes), it would be possible in concept to develop an exhaustive list of all elements of
the resource. The Eastern Lake Survey (ELS) (Linthurst et al., 1986) and the Western
Lake Survey (WLS) (Landers et al., 1987), which were conducted by the EPA as a part
of the National Acid Precipitation Assessment Program (NAPAP), took this approach.
The frame for these surveys was developed by listing each lake in the target region on
U.S. Geological Survey (USGS) 1:250,000-scale topographic maps.

A serious drawback to a list frame is the amount of time required to construct the
list. Even in those fortunate circumstances when a nearly ready-made frame exists,
considerable effort must be expended to verify that the frame completely covers the
population of interest without excessive inclusion of nontarget populations. In the ELS,
for example, investigators discovered that many bodies of water represented as lakes on
1:250,000-scale maps were in fact bogs, intermittently flooded areas, or wide spots in a
stream. These nontarget units can be eliminated in the sampling, but they do complicate
population estimation procedures. There is no easy way to compensate for units in the
target population that were omitted from the list.

Another strategy for sampling environmental resources is to develop an area sampling
design based upon a single-area sampling frame. In such a frame, the entire region to
be monitored (e.g., the conterminous United States) is partitioned into a set of mutually
exclusive and exhaustive areas. These areas are frequently designated primary sampling
units (PSUs). The partition can be based on arbitrary geometric figures or on some char-
acteristic of the landscape, such as the USGS hydrologic cataloging units. Commonly,
PSUs are chosen with boundaries that are easily discernible in the field, such as per-
manent roads, railroads, or rivers. A sample is selected from these PSUs according to a
probability-based protocol, such as selecting a PSU with a probability proportional to
its size. Usually, some restriction is imposed on the sample selection to ensure spatial
dispersion of the sample. The resources occurring in each sample PSU are identified,
characterized, and measured.

Land use/land cover databases are available that cover the entire United States. These
databases can provide ancillary information, such as land use, land form, soils classi-
fication, vegetation cover, hydrology, and human-induced modifications that can be
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used to structure a sampling design. Additional information is available from existing
meteorological databases.

The National Hydrography Database (NHD; USGS, 2000) is arguably the best infor-
mation available for water bodies in the United States, but it is not an ideal frame.
Although attributes within NHD can be used to identify a subset of NHD that more
closely matches the target, the subset may still include many nontarget entries. For
example, suppose the original goal was to describe the population of lakes in Califor-
nia that support fish populations; the NHD has over 9000 entries identified as lakes in
California. Many of these are very small (over 1000 are less than 1 ha, and over 5000
are less than 5 ha). Many of those smaller entries identified as lakes are in fact not lakes;
they are farm ponds, sewage-treatment holding ponds, or intermittent seepage basins
that are dry most of the year.

Conversely, the best available frame may miss some of the target resource. A geo-
graphic information systems (GIS) coverage was most likely based on aerial photos,
and the utility of the coverage as a population frame is dependent on the skill of
the photo interpreter and cartographer. The best source of frame information for wet-
lands in the United States is the National Wetland Inventory (NWI; USFWS, 2002;
http://www.fws.gov/nwi/). However, it can be very difficult to identify wetlands in
forested areas because of canopy cover. As many as of 50% of wetlands can be missed
in the NWI (Brooks et al., 1999).

Agrid can be used to frame a population that is distributed over some spatial extent by
superimposing a grid over a representation of the spatial extent and then sampling at or
around each grid point. Randomized systematic grids have a long history of application
in environmental sampling. At the national level, they have been used extensively by the
National Forest System (NFS) and Forest Inventory and Analysis (FIA) (Bickford et al.,
1963; Gillespie, 1999; Hazard and Law, 1989) to sample forest growth and production.
The National Stream Survey (Kaufmann et al., 1988; Messer et al., 1986) also used a
grid frame to locate stream segments for sampling.

With the availability of GIS, electronic representations of maps are becoming more
common for environmental populations. The NHD is the most complete information to
be had on the extent and location of aquatic resources in the United States. The U.S.
EPA’s Environmental Monitoring andAssessment Program (EMAP; Messer et al., 1991;
http://www.epa.gov/emap/) uses the NHD as a preferred frame (Angradi, 2006). With a
GIS representation of a frame, the population can be viewed as finite or as a continuum
of points. For example, a list of coordinates of lakes can be obtained from the NHD.
Conversely, a forest, a large estuary, or a stream network may be treated as continua.
Sample sites can be identified by choosing points from the GIS representation.

The use of a GIS can facilitate the preservation of the spatial context of the sample
points. At a minimum, spatial context is the information required to locate a sample
point on the landscape, for example, latitude and longitude. However, there is a richer
connotation in all the available landscape information that is also attached to geographic
coordinates: ecoregion, land use, soil topography, and so on. Knowing the spatial context
of a sample from a resource, that is, knowing where the samples are located, and knowing
their spatial relationship to one another provides the link of proximity to admit the joint
evaluation of multiple resources and to evaluate the effects of stresses with known spatial
properties.
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Acautionary note on the combining of GIS data from multiple sources is that different
levels of accuracy can result in inconsistencies in the derived sampling frame. It is impor-
tant when combining multiple data sources to check for unacceptable combinations and
clean these before proceeding.

4. Designs for probability-based environmental samples

The simplest and easiest to implement sampling method is simple random sampling
(SRS) (Cochran, 1977). Simple formulae apply to population attribute and variance
estimation. However, SRS is rarely appropriate because auxiliary information and prior
knowledge about the population are not used in the selection. SRS samples will be inef-
ficient compared to methods that do utilize knowledge about population characteristics
or structure.

4.1. Multistage designs

In a multistage cluster design, an area selected at a given stage is further split into
subareas, and a sample is selected from the subareas. Complete characterization and
measurement take place only at the lowest order set of areas. This is essentially the
design used by the National Agricultural Statistics Service (NASS http://www.nass
.usda.gov/research/AFS.htm; Cotter and Nealon, 1987; Mazur and Cotter, 1991) in their
June Enumerative Survey of national agricultural production, where each sampled PSU
is split into secondary sampling units called segments. Field visits are made to a sample
of segments.

The National Resource Conservation Service (NRCS) (formerly the Soil Conserva-
tion Service (SCS)) also uses a two-stage design in several national resource surveys
(Goebel, 1998; Goebel and Schmude, 1982; Nusser and Goebel, 1997). The 1958 Con-
servation Needs Inventory (CNI) used a frame based on 100-acre squares of land in
the northeastern states and partitions of public land survey sections (approximately
640 acres) in the rest of the country. The 1967 CNI treated the 1958 sample areas
as PSUs and subsampled within them at specific points. The 1977 National Resource
Inventory (NRI) also used the 1958 CNI area frame and a two-stage sample. The 1982
NRI also used a two-stage area frame based on public land survey sections in most
cases. A similar design was used in 1987 and 1992 (Goebel, 1998).

4.1.1. Spatially constrained designs
Some prior knowledge about environmental populations is always available. We may
have reason to believe that the response is influenced by or is related to a variable for
which we have complete information, for example, from remote sensing techniques. One
important item of information that is always available for environmental populations
is location. As noted in the introduction, environmental populations invariably exhibit
spatial structure and pattern.

The advantage of spatial control accrues from the tendency of elements of an envi-
ronmental population that are near one another to be more similar than elements that
are far apart. Observations of elements that are near one another contain redundant
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information. Thus, samples that are well dispersed over the population domain tend
to lead to more precise estimates of population attributes than samples without spa-
tial control. The advantage of a spatially dispersed sample has long been recognized;
accordingly, there are many techniques for achieving that dispersion, including area
sampling, spatial stratification, systematic and grid-based sampling, spatially structured
list frames, and spatially balanced designs.

4.1.2. Spatially balanced designs
The notion of a balanced sample was introduced by Yates (1946). A sample of Z is
balanced over an auxiliary variable X if the x-values (which are known beforehand) are
chosen so that the sample mean of the x-values is exactly equal to the true population
mean of X. A stricter version of balance was suggested by Royall and Herson (1973),
who required that the first several sample moments of the x-sample match the population
moments. The intuition behind balancing is that the auxiliary variable is correlated with
the unknown response to be assessed. By balancing over the auxiliary variable, we hope
to get approximate balance over the unknown response and hence to get a more precise
estimate than SRS would give. Kott (1986) noted that an option intermediate between
random sampling and strict balancing can be obtained by splitting the range of X into n

quantiles and picking one sample element in each quantile. Although this option does
not achieve balance in the strict sense of having sample moments match population
moments, it does guarantee that the sample distribution function of X will be close to
the true distribution function for every sample draw. This is the idea behind all stratified
sample designs. Because of the correlation between X and Z, the hope is that the sample
of Z will be more precise.

If the ancillary variable is location, then we define a sample to be spatially balanced if
the spatial moments of the sample locations match the spatial moments of the population.
The first two spatial moments are the center of gravity and the inertia. The center of
gravity for a region R is given by the ordered pair

(
μx, μy

)
, where μx, the moment

about the y-axis, is given by μx = ∫∞
−∞ xνy(x)dx. The function νy(x) is the extent of

the cross section of R at the point x and is given by νy(x) = ∫∞
−∞ I{w|(x,w)∈R}(y)dy.

Similar definitions hold for μy and νx. The second spatial moment is analogous to the
covariance matrix and measures the regularity of the shape of R or of the point pattern
formed by the sample points.

In general, a probability sample will not achieve exact spatial balance, but approx-
imate spatial balance is a worthwhile goal. Also, the discrepancy between the sample
moments and the population moments can be used as a measure of spatial balance of
a sample. The techniques described below for achieving spatial control all do better at
achieving spatial balance than does SRS.

4.2. Stratified designs

Sample designs can almost always be improved by introducing stratification. As dis-
cussed in Chapter 1, frames can be stratified to assure representation in the sample for
units with particular characteristics or to improve precision of estimates. Stratification by
analytic domains of interest can assure representation of each domain, thereby improv-
ing small area estimation (see Chapters 31 and 32 and Marker, 2001). If units within
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strata are more homogeneous than the population as a whole, then stratified designs
(with corresponding estimators) can improve survey precision. While many environ-
mental surveys use stratified list sample designs similar to those discussed in earlier
chapters, the remainder of this section describes other types of stratified designs more
common in environmental settings.

4.2.1. Systematic sampling
For some kinds of environmental resources, systematic sampling is an attractive means
of achieving spatial dispersion. For a two-dimensional, extensive resource, for example,
a forest, a systematic sample can be obtained by placing a grid over a map of the resource
and selecting the center points of grid cells or intersections of grid lines as sample points.
Olea (1984) discusses several alternate ways of picking points in grid cells so that strict
alignment is avoided. Randomness can be achieved by random placement of the grid.
For a stream network, sample points could be picked at regular intervals along the
network, starting at the outflow and working upstream. A rule for how to proceed at
confluences would be needed.

A potential drawback of systematic samples is that they can align with natural or
anthropogenic features of the landscape. If those features also influence the response,
then high variability of estimators can result. This phenomenon is usually cited in relation
to periodic or near-periodic responses but can also occur in responses with a mosaic
structure. Another shortcoming with a systematic sample is its inflexibility. Frame errors
or inaccessible sites are not easily accommodated, nor is variable probability. A sample
can be locally intensified, say by halving the grid spacing, but there are a limited number
of intensification factors available (Dacey, 1964; Hudson, 1967). Finally, systematic
samples do not yield unbiased variance estimation formulas.

4.2.2. Spatially stratified designs
One of the most popular means of achieving a spatially dispersed sample is through the
use of spatial stratification. Strata are defined to be disjoint polygons that tile or tessellate
the target domain. Strata can be regular geometric figures such as grid cells; arbitrary
polygons such as ecoregions; political boundaries such as state or county borders; or
natural boundaries such as drainage basins. Maximal spatial balance will generally be
achieved by maximal dispersion over the domain, which in turn will be obtained by
choosing strata with few samples per stratum. The aim of defining the strata should be
to have an equal amount of the resource (number, length, area) and equal number of
samples in each stratum, resulting in an equiprobable design. Commonly, samples are
selected within strata using SRS, but other techniques could be used. If the design is
not equiprobable, then the aim should still be to have a constant number of samples per
stratum, but the amount of the resource per stratum will vary.

Maximal stratification achieves good spatial control, but having only a few samples
per stratum limits flexibility. Given the difficulties of environmental sampling, it would
be quite possible to lose all the samples from a stratum because of inaccessibility. If lost
samples were replaced, as could be done if SRS is used for within stratum selection,
then the inclusion probability could be substantially different for that stratum.

Forming strata with equal size and equal number of samples is usually straightforward
for equiprobable designs and two-dimensional target resources but can be problematic
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for finite resources of unequal size. For example, lakes are often treated as finite popu-
lations for sampling purposes. The size distribution of lakes is heavily skewed toward
small lakes (Larsen et al., 1994; Stevens, 1994). An equiprobable sample would result in
mostly very small lakes, which are not likely to be the lakes that are of most interest (e.g.,
the ones that are accessible, support recreational or commercial fisheries, support other
recreational use, have developed shorelines, or are subject to development impacts).
Also, the spatial pattern of lakes tends to be clumped rather than uniform. To reap a
benefit from spatial stratification, the strata should encompass a more or less homoge-
neous area of spatial influence, for example, land use/land cover, terrain, ecoregions,
and anthropogenic impacts. This suggests strata that are spatially compact, with small
perimeter to area ratio. Forming such strata (spatially compact with equal number of
samples) can be difficult. Stevens (1994) describes an algorithm used by EMAP to form
spatial strata of lakes.

4.2.3. Random tessellation stratified designs
A compromise between SRS and SYS designs is a RTS design. An RTS design is
implemented by randomly placing a grid over the population domain and selecting one
point at random in each grid cell. See Olea (1984) or Overton and Stehman (1996)
for a discussion of RTS designs. For a linear resource, the design is implemented by
systematically dividing the resource into units with equal length and then picking a point
at random in each unit. It can also be applied to a finite resource by picking one unit at
random from the units covered by a grid cell. Although the RTS design does give good
spatial dispersion, it also suffers from the same lack of flexibility and unbiased variance
estimator that a systematic design does.

4.2.4. Spatial address techniques
One method that has been used to disperse points in space is to induce a linear order on
points in two-dimensional space, apply that order to the population elements, and then
use systematic sampling along the ordered population. For example, NASS (Cotter and
Nealon, 1987; Mazur and Cotter, 1991) has used a serpentine order to arrange the PSUs.
Saalfeld (1991) discussed a method for sampling a connected tree structure, such as a
stream network, by starting at the base of the network, tracing up one side (following all
tributaries to their source) and then down the other side to the point of beginning. The
resulting path traces each stream segment on both sides and is thus twice as long as the
total length of the network so that every point on the network is mapped to two points
on the path. A systematic sample along the path will have good spatial dispersion.

Some methods for creating spatial addresses are related to the concept of space-filling
curves, such as first constructed by Peano (1890). Wolter and Harter (1990) have used
a construction similar to Peano’s to construct a “Peano key” to maintain the spatial
dispersion of a sample as the underlying population experiences births or deaths.

The Peano key is an example of a spatial address created via a quadrant recursive func-
tion (Mark, 1990). Without loss of generality, we can assume that the two-dimensional
population domain has been scaled and translated into the unit square. A quadrant recur-
sive (q-r) function maps the unit square onto the unit interval and has the property that
subquadrants of any order are mapped onto subintervals. This property preserves some
two-dimensional proximity relationships in the one-dimensional image (Mark, 1990).
As the name implies, a q-r function is defined recursively. We illustrate the construction



496 D. A. Marker and D. L. Stevens Jr.

of a q-r function with the Peano key. First, divide the unit square into four quadrants,
which are labeled 0 through 3, beginning in the lower left, proceeding up, diagonally
down, and then up to end in the upper right (see Fig. 1). The second step then divides
each quadrant into four subquadrants labeled in the same order. Successive steps con-
tinue the subdivision process to smaller and smaller subquadrants. Figure 1 illustrates
the process, with the subdivision carried out only in the first subquadrants. A spatial
address is constructed by joining the labels attached to the subquadrants, beginning
with the first division and proceeding down the chain, and treating the resulting number
as a base 4 fraction. Thus, every point in the crosshatched subquadrant in Fig. 1 will
get an address beginning with 0.0014. If this process was carried out indefinitely, then
the limit is a measurable, 1-1, onto function from the unit square to the unit interval
(Stevens and Olsen, 2004).

The basic quadrant recursive function is made into a random map by randomly and
independently permuting the order in which labels are attached to the quadrants, at every
possible opportunity. This randomization, termed hierarchical randomization (Stevens
and Olsen, 1999), preserves the quadrant recursive nature of the map.

Stevens and Olsen (2004) use recursive partitioning to develop a very general tech-
nique, the Generalized Random Tessellation Stratified (GRTS) method, for selecting
approximately spatially balanced designs. The concept underlying GRTS is to apply
recursive partitioning to create a spatial address. At each step in the recursion, the
total inclusion probability for each cell is computed as the sum or integral of the
inclusion probability of all population elements within the cell. The inclusion prob-
ability need not be constant and very general variable probability designs can be
accommodated.

The recursion is continued until every cell has total inclusion probability less than
one and then hierarchical randomization is applied. The process is illustrated in Fig. 2.
Part (A) of the figure shows the q-r address of the first 16 cells, with a line connecting
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Fig. 1. Illustration of the recursive partitioning steps in construction of the Peano key.



Sampling and Inference in Environmental Surveys 497

(a) (b)

1 5

2

3

4

5

6

7

8

9 11

12

13

14

15

16

0.0 0.4 0.80.0 0.4 0.8

0.0

0.4

0.8

0.0

0.4

0.8
1

34

6

7

8

9

11

13 14

15 16

2

10

12

10

Fig. 2. Example of GRTS q-r addressing and sample location. (a) Nonrandomized q-r address for the first
two levels. (b) Hierarchically randomized q-r address.

the cells following the q-r order. In Fig. 2(B), the path connecting the cells follows a
hierarchically randomized order. Each cell is assigned a length equal to its inclusion
probability, and then the lengths are strung together, forming a line with length equal
to the total sample size. A systematic sample is selected along the line. Because of the
1-1 nature of a quadrant-recursive map, every point on the line corresponds to some
population element, so the selected points on the line can be mapped back to specific
population elements. Details are given in Stevens and Olsen (2004).

One additional step gives tremendous flexibility to the GRTS technique. The samples,
as selected, will appear in the proximity-preserving order inherited from the randomized
q-r address. Stevens and Olsen (2004) show how to order the sample points so that any
consecutive subsequence of the sequence has good spatial balance. This property allows
adjustment of sample size based on field experience or changing priorities, adjustment
for nontarget sites, and formation of interpenetrating temporal panels.

4.3. Other sample designs

4.3.1. Adaptive sampling
Some environmental populations have spatial structure that makes them difficult to
sample efficiently, even when using stratagems for spatial balance. For example, natural
populations frequently exhibit clustering: individuals of the same type or species tend to
group together. One potential technique for improving sample efficiency for clustered
populations is adaptive sampling (Thompson, 1990, 1991b). Adaptive sampling allows
one to modify the sample based on information as it is collected. The basic idea is best
illustrated with an example. Suppose that a regular square grid has been placed over
the domain of some clustered population. Further, suppose that the clusters tend to be
of a size that covers several grid cells so that the grid cell area is substantially smaller
than the average cluster size. An initial sample of grid cells is selected, the cells in the
initial sample are visited, and the response (e.g., the number of individual members of
the target species in the grid cell) is recorded for each cell. If the response meets some
criteria (e.g., number of observed individuals is positive, or greater than some number),
then adjacent cells are added to the sample. This sequence of observation/augmentation
is continued until no newly observed cell meets the criteria of triggering augmentation.



498 D. A. Marker and D. L. Stevens Jr.

The resulting sample presents some analysis difficulties because the inclusion
probability of a cell is impossible to calculate without complete knowledge of the pop-
ulation structure, which is not available. Thompson (1990) shows how to obtain some
modified weights that permits unbiased estimates of the total using an estimator sim-
ilar to the Horvitz–Thompson estimator. Christman (1997) compares the efficiency of
several designs for sampling clustered populations and concludes that adaptive sam-
pling is an efficient sampling scheme for rare, tightly clustered populations (Chao and
Thompson, 2001).

There are also some difficulties in applying adaptive sampling in the field. The rule
for adding to the sample must be formulated prior to beginning sampling and must
be followed in the field. In particular, new neighboring sites must be added so long
as the site just observed meets the criteria. Some investigators have reported that has
lead to unmanageable sample sizes (Hanselman et al., 2003; Kimura and Somerton,
2006). Thompson (2006) has recently extended the allowable stopping criteria to permit
more control over the evolution of the sample. In particular, the new methodology
allows the investigator to ensure a fixed sample size. However, the procedure can be
computationally intensive.

4.3.2. Mark/recapture studies
Estimation of the size of a wildlife population is a frequent need in environmental
studies. Many fish and wildlife populations in the United States are listed under the
Endangered Species Act as being either threatened or endangered, and there is a con-
sequent legal requirement to track the abundance of those species. Additionally, most
state fish and wildlife agencies use population size information to manage harvest levels
and set fishing and hunting seasons.

One of the most popular methods of estimating the size of a wildlife or fish pop-
ulation is known as mark/recapture. In a basic mark/recapture study, an initial sam-
ple of individuals is collected, tagged with some permanent mark, and then released.
A subsequent sample records the number of marked individuals recaptured from the first
sample as well as the total number of individuals. The simplest mark/recapture models
for estimating population size assume a closed population (there are no additions to or
removals from the population during the observation period), and that each individual
has a constant and equal probability of capture at each trapping occasion (Otis et al.,
1978; White et al., 1982). For a single recapture event, with data consisting of the num-
ber marked (M), the total number in the second sample (C) (including recaptured), and
the number recaptured in the second sample (R), Chapman’s (1951) estimator of the
population size is

N̂C = (M + 1)(C + 1)

R + 1
− 1

However, in practice, basic mark/recapture studies are rarely used because the
required assumptions are not likely to hold. Open population models for mark/recapture
studies, known as Jolly-Seber models, were introduced by Jolly (1965) and Seber (1965).
The closed-population assumptions have been relaxed (Link and Barker, 2005; Pradel,
1996; Schwarz, 2001; Schwarz and Arnason, 1996, 2000) in a variety of ways to per-
mit estimation of apparent survival and recapture probabilities, the population size at
each trapping occasion, and the number of individuals entering the population at each
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occasion. Seber and Schwarz (2002) provide a recent review of the state of capture–
recapture studies.

4.3.3. Designs for assessing trend or status and trend
Powerful and sophisticated statistical techniques are available to identify and test
changes in population parameters, for example, tests for change in the mean. We also
have techniques for identifying and quantifying trend at a single site or in a single
parameter, for example, we can quantify trend in some chemical concentration at a par-
ticular sampling station or trend in the average value of several sampling stations, by
fitting a regression model that includes a time-dependent term. However, the notions of
regional change and especially regional trend are much less well understood. Duncan
and Kalton (1987) identified several types of change that might be addressed by sampling
a population over time. Although their discussion was oriented toward human popula-
tions, the following kinds of change that they identified are relevant for environmental
populations:

Gross change is the change at the site between two time periods.

Average change over several time periods can refer to the rate of change or trend at
a site (as opposed to regional change or trend).

Individual instability is a measure of the variance at a site, possibly corrected for
trend.

The traditional statistical concept is of change in a population parameter, where the
usual population parameter of interest is the mean. Change is described by sampling the
population and estimating parameters at distinct points in time. The resulting estimates
are then analyzed for change/trend, for example, with time series or regression methods,
or tested for significant difference.

Duncan and Kalton also described net change at the aggregate level. They use the
example of change in unemployment rate between two months; however, a more general
concept is implicit in net change. One can view the unemployment rate as the mean value
of a dichotomous population, coded 1 for unemployed and 0 for employed. From this
viewpoint, net change is merely a change in a population parameter. However, defining
net change as a change in the population distribution, for example, population cumulative
distribution function, captures a more general concept of allowing elements of individual
change to counterbalance one another. Thus, it is quite possible for individual elements
of a population to change, yet for there to be no net change in the population. A related
concept occurs in forestry, where change is sometimes broken down into components
consisting of growth of existing trees, mortality, and in-growth of new trees. Each of these
components of change could be positive, yet the age and size population distribution
could be invariant.

Generally, the most precise information of change (trend) comes from sites that are
revisited, whereas the most precise information of status comes from visiting more sites.
A critical point in designing a survey with the dual objective of status and trend is the
allocation of visits to new sites versus revisits, attempting to describe current status and
to detect trends in a set of ecological indicators. Observing the same sites over time
eliminates the between-site component of variation. If the sites maintain their identity
through time, this can greatly increase the power of trend detection methods. For some
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environmental resources, this is clearly not an issue, for example, for forested sites.
For others, for example, lakes or estuaries, there may be little advantage in returning
to the same set of site coordinates. Moreover, even if a site retains its identity, there
is potential impact of previous visits on the site stemming from both perturbation due
to sampling activity at the site and differential management of the site. That impact,
sometimes referred to as “time-in-sample bias” (Bailar, 1989), can be substantial. The
gain in precision may be more than offset by loss of representativeness.

Skalski (1990) recommended the use of rotating panel designs for the dual objective
of status and trends. These designs partition the total sample into several subsets or
panels. Each panel is then revisited on a different schedule. Fuller (1999), McDonald
(2003), and Chapter 5 of this volume provide details and nomenclature for a wide
variety of panel designs. Stevens and Olsen (1999) show how to use GRTS to form
interpenetrating temporal panels so that each panel is spatially balanced as well as the
composite. The Oregon Department of Fish and Wildlife (ODFW) uses a panel design
to monitor the size of Coho salmon populations on the Oregon Coast (Stevens, 2002).
Coho spawn in fresh water, migrate to salt water to spend their adult lives, and then
return to spawn in about a three-year cycle. The design ODFW uses is tied to the Coho
life cycle. One panel is visited every year. There are three panels visited on a three-year
cycle and nine panels visited on a nine-year cycle. Four panels are visited every year:
the annual panel, one of the three-year panels, one of the nine-year panels, and one panel
of new sites.

The power of panel designs to detect change or trend is addressed in Fuller (1999),
Urquhart et al. (1993, 1998), and Urquhart and Kincaid (1999). Their insight is that
some frequently visited sites are important (e.g., a small annual panel), and the revisit
schedule should be tied to the level of change relative to background noise. Thus, to
detect a small but persistent trend, a design with a long revisit cycle will be more
powerful for the same level of effort than a design with frequent revisits.

5. Using ancillary information in design

Ancillary data can be used in both sampling and inference to improve the accuracy of
estimates. In sampling, it can be used to stratify the sampling frame to assure represen-
tation of all types of units. It can also be used as a basis for oversampling certain types
of units to improve estimates for subdomains of interest. This is true for environmental
and other sampling applications. We focus on two applications of ancillary information,
which are frequently discussed in environmental applications: additional dimensions to
the sampling frame and the appropriate use of ranked set sampling (RSS).

Spatial strata in environmental sampling typically are defined in four dimensions:
three geographical and one time dimensions. Sampling bays and streams requires defin-
ing the geographical sampling frame in three dimensions. This is also true of sampling
land, whether hazardous waste sites or downstream from potential pollution sources.
Air pollution monitoring also has three geographical dimensions. Sampling wildlife,
on the other hand, is more likely to only have two geographic dimensions. But in all
these examples (with the possible exception of nonmoving pollution in the ground), the
population of interest, whether wildlife or pollution, is moving, introducing a temporal
dimension to the stratification.
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The sampling units comprising the sampling frame are usually not difficult to delin-
eate, but ancillary data on these units are often sparse. This is particularly true across
time and height/depth. Ancillary data are generally known for a few time periods, so
its consistency across time is subject to doubt. Similarly, many historical measurements
represent a vertical slice (whether water, land, or air) that has been composited before
analyzing, providing limited information on variation across this dimension.

In some environmental applications, it can also be very difficult (or costly) to move
data collection locations. For example, only a few monitoring wells are likely to be
drilled downstream of a potential pollution source. Once these sampled locations are
selected, they can monitor across time, but all the measurements will be at the same
location with respect to the other three dimensions of the sampling frame. This physical
clustering of the measurements can dramatically reduce the effective sample size and
resulting precision of estimates.

As with other traditional sample allocations (see Chapters 1–3), one frequently over-
samples rare domains of interest and parts of the sampling frame, where the outcome
measure is thought to be more variable. The four-dimensional nature of environmental
sampling can make this more difficult. Variability has to be considered across space
and time. The basic principle that one should not oversample too heavily if it is not
clear which units are to be oversampled, applies to environmental samples. The result-
ing design can be very inefficient if the units that are oversampled do not increase the
frequency of the rare subdomains or have consistent measurements of the domain of
interest.

Ranked set sampling is a particular type of two-phase (double) sampling (see Chap-
ter 3). In RSS, a small number of units, m, are not measured but are simply ranked,
and then the measurement is taken on one unit based on its rank. This is repeated for m

sets, each time selecting a different order statistic to be measured. To select a sample of
nm measurements, it is necessary to rank nm2 units by taking n cycles of m sets. This
method was introduced by McIntyre (1952) to estimate pasture yields but has received
renewed interest in recent years (Patil et al., 1994; Takahasi and Wakimoto, 1968). The
advantage of RSS is that it does not require you to know how to stratify the sampling
frame in advance, nor do you have to take the initial less-costly ranking information on
all first-phase units before beginning second-phase measurement. By being able to rank
multiple units and measure one immediately, RSS is attractive to the field operations of
environmental measurements.

As an example of the possible use of RSS, consider wanting to select a sample of
stream riffles (where the water moves roughly across a series of rocks) to measure fish
stocks. Stocks are quite possibly correlated with riffle size. Rather than just to take a
random sample of one-third of riffles, it is preferable to walk a stream and rank each set
of m = 3 riffles, selecting the largest of the first set to measure, the middle of the second
set, and the smallest of the third set, then repeating this process. (It is possible to modify
this balanced approach to oversample units of particular interest. (Patil, 2002b)) With
remote sampling locations and a lack of stratifying ancillary information in advance,
this process can provide increased precision.

Unfortunately, much of the research on RSS has compared it with SRS. As demon-
strated by the earlier chapters of this volume, SRS is rarely appropriate and the correct
comparison is against other complex sample designs that might be used. Mode et al.
(2002) compared RSS with three other sampling designs: (1) SRS; (2) weighted double
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sampling with cut points; and (3) double sampling using ratio estimation. They showed
that RSS is appropriate when inexpensive (and possibly qualitative) auxiliary data are
available for ranking, for which little distributional knowledge exists. If the general dis-
tribution of the auxiliary data is known in advance, then determining which to sample by
comparing the auxiliary information to the cut points can achieve improved precision. If
the auxiliary data are known to be highly correlated and linearly related to the variable
of interest, then ratio estimation is preferable.

In situations where the available covariates make RSS a reasonable data collection
method, it is important to consider the cost implications (Mode et al., 1999). Ranked set
sampling requires ranking nm2 units in addition to sampling nm of them. If ranking has
minimal costs relative to measurement, RSS can be used. The relative cost of measuring
a single unit compared to ranking can vary depending upon the application. Mode et al.
provide examples of cost ratios of 5.3 for crude oil in contaminated sediment, 20 for
estimating fish abundance, and 50 for detecting radiation. They found that depending
on the shape of the distribution and the accuracy of the ranking, cost ratios exceeding
6–11 were sufficient for RSS to yield improvements for a fixed total cost.

6. Inference for probability-based design

The analysis of a probability survey is often called design-based because the valid-
ity of the population inference rests on the design rather than on an assumed statis-
tical model. The randomness is explicitly included in the sample-selection process
and forms the basis for estimating population characteristics. The key quantity in the
estimation is the inclusion probability for a population unit, which is the probability
that that unit is included in the sample. It must be positive for every unit. In the case
of a continuum, the inclusion probability is defined by an inclusion density, usually
denoted by π(s). In contrast to a probability density, the inclusion density has units.
For example, an inclusion density for a point sample from a map might have units of
(number of sample points)/km2. In the case of a finite population, the inclusion prob-
ability sums to the sample size; in the continuous case, the integral of the inclusion
density over the target domain gives the sample size. The importance of the inclusion
probability for a sample element is that its reciprocal is a measure of the portion of the
population represented by that element. Thus, for example, in a SRS of size n from a
finite population with N total elements, the inclusion probability for each sample ele-
ment is n/N, and each sample element represents N/n population elements. If a SRS
of n sites were selected in a wetland with area A km2, then the inclusion density would
be π(s) = n/A and each site would represent A/n km2 of wetland.

The basic analysis tool is the Horvitz–Thompson or π-weighted estimator (Horvitz
and Thompson, 1952; Thompson, 2002). The continuous version of this estimator is
given in Cordy (1993) or Stevens (1997). The concept of the π-weighted estimator is
that estimates of totals are obtained by weighting individual observations with a weight
inversely proportional to their inclusion probability.

Let n be the number of sample plots, zi the response for the ith sample plot, and πi

be the inclusion probability (or density) evaluated at ith sample point. Note that zi could
be a numeric score (e.g., per cent forested land cover) or a binary classification, for

example, zi =
{

1, if ith plot in degraded condition
0, otherwise

. The Horvitz–Thompson estimate
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of the total of z is given by ẑT = ∑n
i

zi

πi
and the estimate of the mean value by z = ẑT

A
,

where A, the population size, is the total area of the target population. These formulas
are the same for both finite and infinite populations. Note that in the case of zi being a
binary classification, z estimates the proportion of the resource in the condition class,
for example, the proportion of the watershed in degraded condition.

An alternative estimator of the mean value uses the estimated population size
Â = ∑n

1
1
πi

as a divisor in place of A. In some circumstances, use of the estimated
population size in place of a known population size can lead to a more precise estimate
of the mean because of positive covariance between z and Â. If the size of the target pop-
ulation is not known, for example, the imperfect frame case described below, then the
alternative estimator must be used. Also, if some plots were not accessible, say because
access permission was not obtained, then an estimate of the average condition of the
accessible wetlands is z = ẑT

Â
, where both z̄ and Â are computed using only those sites

for which a response was obtained. An alternative is to use a nonresponse adjustment
to compensate for the nonaccessible locations.

Aspatially balanced sample will normally be more precise than a SRS of the same size
because its spatial balance capitalizes on the spatial structure of the response. However,
because of the restricted randomization inherent in the spatial balance, variance estima-
tion can be an issue. Technically, the variance depends on pairwise or joint inclusion
probabilities (the probability that a pair of points are both included in the sample). The
restricted randomization implicit in spatial balance makes some of those joint probabil-
ities very small or zero. The joint probabilities appear in the denominator of the usual
variance estimators, so the estimators are undefined if joint probabilities are zero and
unstable if small. A commonly used approach is to ignore the spatial constraint in the
design and apply the SRS variance estimator. The resulting estimator will almost always
be biased high. Horvitz and Thompson (1952) derived an unbiased variance estimator
to accompany their estimator of the total, but the joint inclusion probability appears as
a divisor in the estimator, so it is unsuitable for spatially balanced designs.

Wolter (1985) identified eight one-dimensional variance estimators for one-
dimensional systematic sampling. D’Orazio (2003) extended three of these to two-
dimensional systematic sampling. A general purpose technique that provides reasonably
good results is to apply a postselection spatial stratification with at least two points per
stratum. The strata can be selected arbitrarily but the points in a stratum should be
close together. The usual stratified sample variance estimator is then applied. Stevens
and Olsen (2003) developed a variance estimator specifically for spatially constrained
designs that is based on a similar concept. Instead of explicitly forming strata, a local
variance is computed at each sample point. The local neighborhood of a point is defined
as a region containing the point’s four nearest neighbors and then expanded to satisfy a
symmetry constraint (if a is in the neighborhood of b, then b must be in the neighborhood
of a). The overall variance estimate is a weighted average of the local estimates.

7. Model-based optimal spatial designs

The development of statistical theory or methodology is often driven by the search for
optimality, that is, to find a new procedure that is “best.” Design optimality involves two
choices: which estimator or predictor to use, and which population elements to select,
or, in a spatial context, where to place design points. In a statistical context, the standard
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is usually some measure of closeness of the estimator or predictor to the population
attribute. Thus, our working objective needs to combine an estimator and a criterion
that can be optimized. This requires the specification of an optimality criterion, which
in statistics is usually minimum variance. This is not the only possibility; minimax
criteria are also used, where one tries to minimize the maximum unfavorable outcome,
for example, minimize the maximum loss. In situations where bias is a major concern,
minimum mean square error is often the criterion. Unless otherwise stated, optimal
should be interpreted to mean minimum variance.

Statistical models may be used to describe the underlying environmental process that
generates the response. The statistical models usually applied in this setting are models
of a mean process, possibly depending on ancillary variables, plus models of a spatial
random process. The mean process μ(s|X, β) may be a constant, a function of location s,
or a function of location and ancillary variables X with parameters β. The spatial random
process Z(s|θ) with parameters θ is frequently taken to be intrinsically stationary so that
E[Z(s+h|θ)−Z(s|θ)] = 0. The spatial covariance of Z(s|θ) is usually described by the
variogram 2γ(h), where 2γ(h|θ) = Var[Z(s + h) − Z(s)|θ]. The quantity γ(h) is then
called the semivariogram. In this discussion, we will consider a spatial random field
given by Y(s) = μ(s|X, β)+Z(s|θ), s ∈ R for location s and domain R. Frequently, the
semivariogram is also assumed to be isotropic so that it depends only on distance and
not direction, so that γ(h|θ) = γ(|h||θ).

Some of the early insights on optimal design (Dalenius, 1961; Iachan, 1985; Matérn,
1986) were derived by assuming a known covariance, using the sample mean as an
estimator, and by optimizing a variance rate, that is, a variance per unit area. This
approach sidesteps the influence of a domain boundary. In practice, the presence of a
boundary, especially an irregular boundary, influences the optimal site locations. The
results were consistent in suggesting that a systematic sample was better that a stratified
sample, which was in turn better than a SRS. Moreover, the compactness property of a
triangular grid was also shown to lead to favorable designs.

For the random field model, the sample mean is not the optimal estimator of our
working objective. For the case when μ(s) is an unknown constant or a linear com-
bination of explanatory variables, the optimal (in the sense of minimum squared error
loss) predicted value for a new location s0 is given by the kriging or best linear unbiased
prediction estimator Ŷ (x0) = ∑

λiY(xi), where λi are the kriging weights and are des-
cribed in many textbooks on geostatistics such as Cressie (1993) or Schabenberger and
Gotway (2005). The variance of the prediction at location s0 is given by σ2(s0|S, γ) =
2
∑n

i=1 λiγ(si − s0)−∑n
i

∑n
j λiλjγ(si − sj). Note that the prediction variance depends

on the location of the sample points and the semivariogram. There is no dependence on
the actual values at those points.

To get an optimal design for our working objective, it makes sense to use the opti-
mal estimator and to choose the sample S to minimize the total prediction variance
VT(S, γ) = ∫

D
σ2(s|S, γ)ds. In most cases, this integral is very difficult to work with. It

is intractable analytically and must be dealt with numerically.
As an alternative, Yfantis et al. (1987) evaluated square, triangular, and hexagonal

grids, assuming a known covariance. Their optimality criterion was to minimize the
maximum mean square prediction error. Their conclusion was that a triangular grid
was optimal. McBratney et al. (1981) reached a similar conclusion using the average
prediction variance.
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The concept that the optimum location of sampling points for prediction will be some
sort of regular arrangement is well established. One approach to optimizing design is
to maximize some measure of regularity of the point pattern of the sample locations.
The underlying assumption is that a highly regular design will also be a low variance
design. An algorithm for locating sample sites that has been used with known domain
boundaries or the presence of existing points is spatial simulated annealing (SSA) (Di
Zio et al., 2004; Lark, 2002; Stevens, 2006; Van Groenigen, 2000; Van Groenigen and
Stein, 1998). Sample points are selected to optimize some criterion that reflects the study
objective, for example kriging variance, or a measure of regularity of the resulting spatial
point process. The SSA begins with a set of arbitrary locations, and cycles through the
points, perturbing each one in turn. At each step, the optimality criterion is calculated. If
the new configuration resulting from the perturbation is better than the prior optimum,
it is retained as the new optimum configuration. If it is worse, it is retained with a
probability that decreases with the number of cycles. The concept behind retaining the
suboptimal configuration is to bump the iteration away from a local optimum. Letting
the probability of (temporarily) accepting a suboptimal configuration decrease helps to
ensure eventual convergence to the global optimum.

Another approach is to modify the criterion somewhat. For example, instead of
attempting to optimize over all possible designs, limit the space of potential designs.
One way of limiting the design space restricts attention to sequentially optimal designs.
In this method, an initial design with m points is chosen, arbitrarily or at random.
Then sm+1 is chosen at an optimal location conditional on the locations of the previous
points (Cressie et al., 1990). The process is then repeated until all n points have been
chosen. Another way to do this is to discretize by replacing the two-dimensional con-
tinuous domain with a finite point set, say with a regular grid that covers the domain.
In principle, then, one can evaluate all possible designs and pick the optimal one. This
has been tried by Di Zio et al. (2004) and Wiens (2005). Even then, the computa-
tional burden can be overwhelming unless the design space is severely limited. Other
authors have used SSA in conjunction with discretization (Wiens, 2005; Zhu and Stein,
2006).

In most applications, the covariance structure will not be known and must be esti-
mated. Some papers have considered optimal designs solely for estimating the covari-
ance function without regard to prediction. Warwick and Myers (1987) develop a search
algorithm for achieving particular distributions of point pair distances, by which they
take sums of squares of discrepancies in the realized and desired distributions and select
a point pattern with a minimum sum of squares. Müller and Zimmerman (1999) con-
sider generalized least squares fit to the empirical variogram to estimate variogram
parameters. They use the determinant of the information matrix as design criteria. They
compare several techniques, including the Warwick and Meyers method (1987). Their
results show that a more irregular design with some points placed close to each other
is better for variogram estimation. Zhu and Stein (2005) use maximum likelihood to
estimate covariance parameters. They use minimax and Bayesian criteria to select an
optimal designs. The design space is restricted to a fine grid, and SSA is used to locate
optimal designs.

The more realistic case where the objective is prediction and the covariance structure
is unknown and must be estimated has been considered by several authors, who attempt
to consider the impact of covariance parameter estimation on the prediction variance.
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Zimmerman (2005) notes that the design objectives for efficient prediction assuming
known dependence and efficient estimation of spatial dependence parameters are largely
antithetical and often lead to very different optimal designs. Zimmerman introduces a
hybrid design that emphasizes prediction but accounts for the uncertainty in the covari-
ance parameters. His approach is to choose the design to minimize an approximation
to the variance of the empirical kriging (empirical-BLUP) prediction error. Note that
the empirical kriging/BLUP predictor involves evaluating the covariance matrix at the
estimated θ̂ rather than the assumed known θ. He makes some empirical comparisons
between designs to optimize parameter estimation, prediction variance, and a hybrid
design.

Zhu and Stein (2006) compare the designs for (1) prediction using covariance param-
eters estimated from an existing data set, (2) estimating covariance parameters, and (3)
prediction with estimated parameters. They use SSA to locate optimal design configura-
tions. Consistent with previous work, the optimal designs in case (1) are highly regular
and approximately triangular grid structure, subject to perturbation because of irregular
boundaries. For case (2), the optimal designs consisted of multiple clusters of points.
Their case (3) gives a pattern that is mostly regular, with several clusters of closely
spaced points.

Diggle and Lophaven (2006) described a Bayesian approach to spatial design that
balances the design for parameter estimation with spatial prediction. The designs are
efficient for spatial prediction and make an appropriate allowance for parameter uncer-
tainty. They also compare the efficiency of designs based on a regular grid plus extra
close pairs to a regular grid with in-filling. Ritter and Leecaster (2007) also evaluate
several designs that combine regularly spaced points with clusters of points. They con-
clude that the clusters are valuable for estimating the semivariogram and offer several
recommendations for a design.

8. Plot design issues

Environmental measurements are frequently taken as an average over a three- (or four-)
dimensional space. Water, land, or air samples are collected from a small physical area
rather than a point. This area is referred to as the physical support. Complications arise
in inference from environmental samples when the analytic units do not match with the
physical support of the samples or when units of different size (or composition) support
are combined. These are referred to as change of support problems (Gotway Crawford
and Young, 2006).

Combining units of different size does not effect mean estimation, but it can cause
significant problems in estimating precision and correlation. This in turn effects estima-
tion of significant differences and distributional percentiles. Cressie (1996) points out
that if the physical units are positively autocorrelated, the collapsing of the units into
larger physical support will have less effect on the variability of the mean than when
this correlation is absent.

In general, the larger the physical support, the lesser the variability in the measure-
ments. This averaging of smaller units into larger ones shrinks the variation among units.
This can be vital in many environmental situations. Polluted areas are often defined as
those exceeding a set level. The determination of whether or not a site is polluted can
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be completely determined by the size of the physical support used for collecting the
sample, not the underlying amount of contaminant.

Although not an environmental application, Openshaw and Taylor (1979) provide an
excellent example of how the size and shape of the physical support can determine the
estimate. They examined the correlation between the percentage of Republican voters
and elderly voters in Iowa counties. Depending on which groupings of counties were
used as the physical support, the correlation varied from −0.99 to +0.99.

Another plot design issue that can have important implications for analysis is when
the physical support overlaps analytic domain boundaries. This situation can arise, for
example, when plots are based on watersheds or river reaches, but analyses are planned
by political boundaries such as states or counties. When the sampled plots cross the
analytic boundaries, it makes analyses very difficult, with the accuracy of the estimates
a function of the model assumptions that have to be made to allocate the support across
domains (see Chapter 31). To minimize this problem, it is important to try and identify
key analytic domains before the sampling frame is determined. It is then possible to
define sampling units as the intersection of logical geographic units and these planned
domains.

Composite sampling (Patil, 2002a) is a tempting methodology for measurements that
are much more expensive (or time consuming) to analyze than they are to collect. Com-
mon examples are sampling for pesticides in soil, air monitoring, and contaminants in
fish. Composite sampling is a logical method if when the analyte is present, it is likely to
be in large quantities. For example, when conducting exploratory measurements around
a suspected hazardous waste dump site, it is reasonable to take multiple samples from
around the site, composite them, and then do the chemical analyses. If the analyte was
really dumped on this location, it is assumed that the diluting resulting from combining
the different samples, some of which have high levels of the analyte and others having
none, will still result in detectable levels. Once the presence has been identified, more
careful, noncomposited sampling can be conducted. (Alternatively for fish, the initial
field sample collects 10 fish: 5 are composited and 5 are archived. If the composite
analysis raises a flag, then the individual fish is analyzed. This avoids the expense of
multiple field visits. Sample storage is cheap compared with travel to a remote site.)

There are two dangers associated with composite sampling. First, if the detection
limit for the analyte is high relative to the expected levels in relative hot spots, then
a composited sample might be below the detection limit, even if a hot spot has been
included. For example, if the detection limit is only one-quarter the concentration found
in the hot spot and five or more physical locations are composited, it is possible for the
composite analysis to be nondetectable, even when it included the high value.

Second, composite samples are very good at producing estimated mean values for
the area being composited. Thus, it can be used to produce a daily average air pollution
level or an average exposure from digging up soil on a site. Unfortunately, composite
samples underestimate the variability about that average. That is, the variation in samples
with physical support of size equal to that of individual samples will be much greater
than the variation observed from the composites. The difference is proportional to the
square root of the number of composited samples, so if sets of four individual samples are
composited, the variability will be 50% that of the individual samples. This is particularly
important if one is interested in measuring percentiles of a distribution far away from
the mean. For example, if one is interested in estimating the 90th percentile of individual
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soil samples, this number will be quite a bit higher than the 90th percentile of composited
samples. This is similar to the fact that the 90th percentile of hourly airborne (or waste
water) emissions is much larger than the 90th percentile of daily emissions.

Also note that composite samples may not estimate the average that one is really
interested in. Going back to the fish example, the result from compositing is a weighted
mean of the fish that went into the composite, with the weight being the actual weight
of the individuals. This is not necessarily the same as the average body burden of the
five fishes. Unless the weight distribution in the sample matches the weight distribution
of the target population, there could be enough discrepancy to be of concern.

9. Sources of error in environmental studies

There are a number of sources of error that, if not unique to environmental studies, are
more commonly observed in environmental situations than with other types of data. One
particularly problematic error source is that the only sources of data are frequently not
located at the site of interest. Frequently, measurement requires installation of expensive
equipment, which already exists in preset locations. Water pollution measurements are
frequently taken near outfalls from industrial facilities, but the concern is the effect on
drinking water in peoples’ homes. Air pollution monitoring stations are often located
near the manufacturing plants producing the pollution, but the concern is with pollution
levels in the air breathed by people where they live, often far away from the pollution
source. Unlike most other data collection situations, the physical sampling locations are
presets based on decisions having nothing to do with optimal statistical sampling. It is
left to analysts to model how the data observed in one set of locations migrates to the
locations of interest. Madsen et al. (2007) develop a regression model utilizing spatial
correlation where the predictor variables are observed at different locations than the
response. Zhu et al. (2003) apply a Bayesian hierarchical model to relate incidence of
asthma to traffic density data, where the response and the stressor are misaligned in both
space and time. Mugglin and Carlin (1998) also use a hierarchical model to interpolate
disease incidence counts using spatially misaligned covariates. This migration may be
subject to air and water currents, seasonality, and a host of other complicating factors.

Even when the environmental study designer gets to identify their sample locations,
they may not be able to gain access to the sites. Often sampled locations are identified
from large-scale maps based on GIS or other methods. Although in theory it is possible
to go to all such locations, it is not necessarily true in practice. The location might be
in middle of river rapids, on a steep slope, or on private property where the landowner
refuses to provide permission. While the latter is analogous to refusals in household
surveys (Groves and Couper, 1998, also Chapter 9 in this volume), environmental data
collection introduces additional situations in which it will be impossible to collect the
data from the sampled location.

Seasonality affects many types of data collection and analysis. But in most environ-
mental surveys, seasons affect the location being sampled; while in household surveys
the person being measured is associated with a specific location. (Migrant populations
are an exception to this generalization and in this situation are more like environmental
samples than other surveys of people (Kalton, 2003).) Environmental surveys of living
species have the extra source of variability due to the fact that many move locations
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across seasons. For example, the location of fish varies greatly by time of year. Surveys
of salmon in rivers of the Northwestern United States can only be conducted in those
locations during spawning season. At all other times of year, there will be no fish to
measure. If a single species is being studied, it can be timed appropriately for the
migration patterns of the species; but if a general survey is being conducted, the results
for specific species may be largely dependent on the time of year at which data are
collected.

The two just-discussed sources of error can interact to create additional difficulties.
During certain seasons, it may be impossible to collect data from locations that are
available other times of year. For example, in a survey of domestic well drinking water
quality, it may be necessary to sample from the well pipes before treatments are added.
This requires accessing the pipes outside of the home. It is impossible to collect this
data in rural Alaska during the winter. The data must be collected during the rest of the
year, even though the water is consumed all year long.

Measurement error can come from a great variety of sources, including data collection
instruments, laboratories, staff collecting and/or measuring the data, inconsistent phys-
ical materials, and detection limits. In addition, measurement errors that are unbiased
can result in bias for statistics of interest.

Data collection instruments may not measure accurately. This can result in both
extra variability and bias. Frequent recalibration of instruments can reduce bias but
with an increase in data measurement costs. For example, X-ray fluorescence (XRF)
machines are used to measure lead content of painted surfaces. The XRF machines
might regularly underestimate the amount of lead or it might inconsistently measure
depending on the underlying substrate. If multiple machines are used at the same time
by different data collectors, inconsistencies across machines can introduce more error.
Machines in laboratories can be similar sources of measurement error. In addition, there
may be practices at laboratories (e.g., cleanliness or data tracking) that can affect data
quality as well. Again, if multiple laboratories are used to measure the same analyte,
then measurement errors can be compounded.

As with other types of surveys, data collectors can be sources of both variability and
bias. In environmental surveys requiring data collectors to use machines, the varying
skills of the people using the machines can cause increased levels of error. This makes
it very important to develop protocols for data collection that will minimize error, are
easy to follow, and are easy to monitor for quality.

The need to collect physical samples from inconsistent physical material is a
source of error unique to environmental surveys. For example, collecting samples from
municipal dump sites to measure the presence of toxic materials requires develop-
ing procedures to assure a representative sample of materials from a combination of
computer parts, lawn mowers, furniture, and miscellaneous waste.

Detection limits are another difficulty unique to environmental surveys. Detection
limits are “defined as the lowest level of the measurand where the probability of a
positive result is at least 95 percent” (Van der Voets, 2002, p. 504). Frequently, samples
with values of the analyte that are not detected are assumed to be 0 or possibly one-half
of the detection limit. A more sophisticated approach is to model the measured data and
then distribute the nondetected values between 0 and the detection limit according to the
model. Lambert et al. (1991) describe how it can be improper to assume that all values
that are nondetected are really below the detection limit.
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The fact that measurement error can cause bias in estimated regression coefficients is
well known across all analytic situations (see Fuller, 1987; Stefanski and Buzas, 1995,
and Chapter 12 of this volume.) In environmental analysis, the effect of measurement
error is increased because the parameters of interest are frequently not means and totals
but rather extreme percentiles or the percent of a distribution that falls above a preset
limit. The estimated distribution that results from naive analysis of observations with
measurement error is an estimate of the convolution of the true distribution of the param-
eter and the measurement error distribution. Central location may remain unchanged, but
the tails of the convoluted distribution will be spread out relative to the true parameter
distribution. In these situations, unbiased measurement error can result in biased esti-
mates of these parameters of interest. Cook and Stefanski (1994) introduced the SIMEX
estimator (for SIMulation_EXtrapolation) as a way to remove bias from estimates from
estimators that may be complicated, nonlinear functions of the data. The simulation step
of SIMEX consists of generating multiple sets of pseudodata by adding known levels of
error to the observed data and by calculating the estimator for each set of pseudodata.
For the extrapolation step, the set of estimates is then regressed against the known level
of error contamination. The regression is then extrapolated back to a zero level of error
contamination. Stefanski and Buzas (1996) show how to apply the SIMEX estimator to
deconvolute the estimated distribution function for a finite population, and Stefanski and
Cook (1995) explore the relationship between the SIMEX estimator and the jackknife
method (Quenouille, 1956) for reducing bias in nonlinear estimators.

Many environmental measures are right skewed, such as the log-normal distribution
shown in Fig. 3. If the goal is to estimate the percent of the distribution above a preset
limit (L in Fig. 3), it is clear that a greater percentage of the data are just below L than
just above it. Thus, unbiased random measurement error will cause more values that are
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Fig. 3. Log-normal distribution with preset limit L.
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truly below L to be measured above L than the reverse. Measurement error will therefore
bias upwards the estimated percent above the limit L.

Asecond source of bias that interacts with this measurement error is that environmen-
tal measurements often are concerned not with the percent of measurements above the
cutoff L, but with the percent of physical units that have any values above L. Examples
include hazardous waste sites that are declared superfund sites if they have contamina-
tion levels above L anywhere on the site or homes that are considered to have a lead
hazard if levels above L exist anywhere in the house. Comprehensive measurements of
all locations are never taken, rather a sample of locations is measured and then a deter-
mination is made as to whether the site or home is contaminated. While the sample of
measurements provides an unbiased estimate of the average level of contamination, they
provide an underestimate of the highest level of contamination. (Similar sources of bias
arise when trying to estimate life cycle exposure to contamination by only collecting
physical samples at selected interview times during a longitudinal survey.)

An example of how these two sources of bias interact is provided in Clickner et al.
(2002). As part of the National Survey of Lead and Allergens in Homes, a representative
sample of homes in the United States was selected and measurements were taken to
determine how many had lead hazards. One source of a lead hazard is having any
floor dust with lead loadings of greater than 40 μg/ft2. Samples from four rooms were
collected and the maximum was computed. Figure 4 (Figure C.8 from Clickner et al.,
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2002) shows three curves. The thin black line shows the maximum of the measured dust
levels. The gray line adjusts the maximum for the measurement error bias described
above. This adjustment lowers the percent of homes that exceed the cutoff. The thick
black line adjusts these maximums for the fact that only four rooms per house were
measured. Since the maximum cannot go down if data from additional rooms were
included, this adjustment increases the percent of homes exceeding the cutoff. Using
the estimates after both adjustments yields an estimate of 4% of homes having floor dust
lead loadings of 40 μg/ft2 or more in one or more rooms. This is about 1% (one million)
fewer homes than estimated using the actual measured floor dust measurements.

10. Conclusions

Sampling and inference in environmental surveys have much in common with other
surveys. Thus much of what is contained in the earlier chapters of this book is relevant to
environmental surveys as well. We have discussed some aspects of populations that need
particular attention when designing and analyzing an environmental sample: focus on a
broad population description, make use of the spatial context, use ancillary information,
inadequate frames, difficult access to sampling locations, responses that are difficult and
expensive to measure, evolving objectives, and the need to satisfy multiple objectives
and stakeholders. We have outlined some methods that have been developed to address
issues engendered by these aspects. This chapter is by no means a complete compendium,
as there are other issues and methodology that we did not touch upon. The methods we
did discuss are constantly being improved as we gain experience using them and software
implementations become more readily available.
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Survey Sampling Methods in Marketing Research:
A Review of Telephone, Mall Intercept,
Panel, and Web Surveys

Raja Velu and Gurramkonda M. Naidu

1. Introduction

Survey sampling methods play an important role in marketing research. The discipline
of marketing itself draws its techniques from various social and physical sciences and
any advances made in sampling methods in these areas almost always find an application
in marketing research. Recognizing the importance of the topic, the first special issue
(August 1977) of the Journal of Marketing Research was devoted to survey research. The
articles in that special issue addressed three aspects of survey research, namely, sampling
design, questionnaire preparation, and data collection. In an article that has appeared in
an earlier volume, Velu and Naidu (1988) provided a survey of these aspects. Our objec-
tive there was to briefly review and update the aspect of sampling design with special
focus on telephone, mall intercept, panel, and internet surveys. Because the design issues
related to telephone sampling in particular the random digit dialing (RDD) methods are
covered in a separate chapter 7 in this volume, we will focus on the other forms of sur-
veys. A bibliography follows and, while not exhaustive, the listing of books and other
references should provide a starting point for an iterative search. Although the coverage
of topics is more relevant for United States, to the extent possible we provide informa-
tion about the practices in other countries as well. To begin with, we have compiled a
list of select institutions that actively engage in marketing survey research (Table 1).

Marketing researchers have been aware that subjective sampling procedures must
be avoided in favor of probability methods of selection to make valid inferences about
the target segments. Because of the inherent diversity of the marketing discipline, there
has been a growing demand for all types of data necessitating more complex marketing
surveys. Also, during the past three decades, the household (the nucleus of most con-
sumer surveys) has undergone dramatic changes in terms of its composition and size.
More women have joined the workforce, have become economically independent, and
are making buying decisions. As the environment was changing, techniques for sample
surveys were also changing. The high cost of personal household interviews has led
to the development and use of more efficient sample designs and less expensive data
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Table 1
A list of marketing research institutions

URL Institution Marketing Research Services Offered

www.surveysampling.com Survey Sampling
International (SSI)

Leading provider of superior samples for mail,
telephone, Internet, panel, B2B, B2C, surveys,
RDD in 20 countries and internet panels in 17
countries. With global partners, and a reach of
over 50 countries. Some 1500 organizations and
43 of the top 50 research organizations use their
services.

www.createsurvey.com Create Survey Create Survey is a Web-based survey software
that lets you build and run online surveys in the
Internet. You may start using it right now or read
more below.

www.surveysystem.com The Survey System The Survey System is the most complete soft-
ware package available for working with tele-
phone, online, and printed questionnaires. It
handles all phases of survey projects, from cre-
ating questionnaires through data entry. The
Survey System was designed specifically for
questionnaires; so their software saves you
time.

www.greenfield.com Greenfield Online Greenfield Online helps marketing research
companies and consultancies connect with their
consumer insights by programming and exe-
cuting online surveys using their Internet-based
online panel of prerecruited respondents. They
couple access to survey respondents with exe-
cutional excellence and quality.

http://us.lightspeedpanel.com LightSpeedConsumer
Panel

By taking the time to participate in Lightspeed
Panel surveys, you have the power to let com-
panies know exactly what you think. This helps
you, the consumer, to develop and improve the
products and services offered.

www.tnsglobal.com TNS in North
America

TNS is a market information group. It is the
world’s largest custom research company and a
leading provider of social and political polling.
It is a major supplier of consumer panel,
TV audience measurement, and media intel-
ligence services. It provides market informa-
tion and measurement, together with insights
and analysis, to local and multinational organi-
zations.

www.e-focusgroups.com e-focus Groups e-FocusGroups offers solutions for all market
research needs. It brings the benefit of more
than 20 years of market research experience
in a wide variety of industries, including con-
sumer products, advertizing, pharmaceuticals,
e-commerce, computer hardware, computer
software, telecommunications, and banking,
among others.

(Continued)



Survey Sampling Methods in Marketing Research 515

Table 1
(continued)

URL Institution Marketing Research Services Offered

www.forrester.com Forrester Forrester Research, Inc. is an independent tech-
nology and market research company that pro-
vides pragmatic and forward-thinking advice to
global leaders in business and technology. For
more than 23 years, Forrester has been making
leaders successful every day through its pro-
prietary research, consulting, events, and peer-
to-peer executive programs

www.zoomerang.com Zoomerang Zoomerang pioneered online survey software in
1999 to give organizations like yours a power-
ful self-service alternative to conduct accurate
comprehensive surveys with a minimum of cost
and effort. Today, Zoomerang is the world’s No.
1 source of online surveys, helping thousands of
organizations in more than 100 countries.

www.web-surveyor.com Web Surveyor They are empowering people to make informed
business decisions using their online data
collection solutions. It provides online survey
services that enable their customers to eas-
ily collect real-time feedback to drive their
businesses. They ensure data security and con-
fidentiality, a reliable survey hosting service,
dependable survey software, and a responsive
team of survey experts.

www.web-online-surveys.com Web Online Surveys This is an all in one service designed for people
who are not computer experts and have the need
to conduct surveys by themselves.

www.synovate.com Synovate–Research
Reinvented

Synovate is the world’s most curious company.
Their job is to learn what people like, and why
they like the things they like. That knowledge
helps product designers and manufacturers give
people what they want. The work they do at Syn-
ovate is continuously stretching the definitions
of conventional research. They operate across
six continents, in 50 countries.

www.gartner.com Gartner They deliver the technology-related insight nec-
essary to make the right decisions, every day.
Gartner serves 10,000 organizations, includ-
ing chief information officers and other senior
IT executives in corporations and government
agencies, as well as technology companies and
the investment community.

www.vnu.com Nielsen The Nielsen Company is a global informa-
tion and media company with leading market
positions and recognized brands in marketing
information, media information, business pub-
lications, and trade shows. The privately held
company is active in more than 100 countries,
with headquarters in Haarlem, the Netherlands,
and New York, United States.

(Continued)
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Table 1
(continued)

URL Institution Marketing Research Services Offered

www.imshealth.com IMS Intelligence
Applied

IMS is the one global source for pharmaceutical
market intelligence, providing critical informa-
tion, analysis, and services that drive decisions
and shape strategies.

www.kantargroup.com Kantar Kantar is one of the world’s largest research,
insight and consultancy networks. They help
clients to make better business decisions through
a deeper understanding of their markets, their
brands, and their customers. They help clients find
better ways to answer business questions.

www.harrisinteractive.com Harris Interactive In an increasingly chaotic and competitive world,
Harris Interactive can provide clarity and confi-
dence. They believe that market research helps
our clients understand the drivers of decision
making and can strengthen enterprise equity. Pro-
viding clients with this accurate knowledge will
help them achieve measurable and enduring per-
formance improvements.

www.jdpower.com J.D. Power
Consumer Center

Since 1968, J.D. Power and Associates has
been conducting quality and customer satisfac-
tion research based on survey responses from mil-
lions of consumers worldwide. It has developed
and maintains one of the largest, most comprehen-
sive historical customer satisfaction databases for
various products and services.

www.opinionresearch.com Opininon Research
Corporation

At Opinion Research Corporation, they provide
objective, fact-based decision support, they earn
their confidence with our fresh ideas and perspec-
tives, grounded in rigorous research methods and
business savvy.

www.dentsuresearch.co.jp Dentsu Research
On-line

Dentsu Research, a specialist in market research,
has served as the eyes and the ears of team Dentsu,
collecting and analyzing the latest in consumer
information. Now, over 30 years later, marketing
research remains the core of their work, providing
any and all services clients require.

www.infores.com IRI—Information
Resources Inc.

Driving the transformation of the consumer pack-
aged goods (CPG), retail, and healthcare indus-
tries, only IRI provides a unique combination
of real-time market content, advanced analytics,
enterprise performance management software,
and professional services.

www.npd.com NPD Group The NPD Group, founded in 1967, is the lead-
ing global provider of consumer and retail market
research information for a wide range of indus-
tries. They provide critical consumer behavior
and point-of-sale information and industry exper-
tise across more industries than any other market
research company.

Note: There are several other vendors and due to space limitations, they are not listed here.
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collections methods such as the use of telephone and mall intercept interviews and the use
of Web surveys. At the same time, the public has become increasingly concerned about
invasion of privacy and the maintenance of confidentiality of the information obtained.

Some developments (see Frankel and Frankel, 1977) of interest to marketing
researchers include: (i) techniques related to the manipulation of sampling frames,
(ii) techniques related to respondent selection, (iii) methods for minimizing the total
survey error, and (iv) improving the quality of nonprobability sampling. Broadly we
organize the discussion of various forms of surveys around these areas. We shall focus
briefly in Section 2 on sample frames and procedures for telephone household surveys,
a topic that received a great deal of attention over the last several decades. Judgment or
nonprobability sampling procedures, still viable in marketing research, are convenient
to carry out and are less expensive compared to other methods. In Section 3 we shall
comment on mall intercept surveys, which are used increasingly by several marketing
research firms. The consumer panel studies are reviewed in Section 4. With the advent of
the Internet in the mid 1990s, theWeb survey has become quite popular because of its ease
of implementation as well as its cheaper cost. We briefly review this area in Section 5.

2. Telephone surveys

The telephone is an important tool for the collection of marketing survey data in the
United States.Although it has been used in the past mainly for short follow-up interviews,
usually for clarifying the information provided in personal or mail interviews, marketing
researchers had resorted to using the telephone due to the increasing cost of other
forms of surveys. A distinct advantage of the method is accessibility to the respondent.
Some major disadvantages are the limited time a respondent may want to spend with a
physically absent interviewer and the inability of the respondent to actually “see” the
product in question as in surveys where the interviewer can display the product and
obtain observational data.

In the United States telephone numbers have three parts: a three-digit area code, a
three-digit central office code or prefix, followed by a four-digit suffix. The list of all
area code–central office code combinations currently in service can be obtained from the
telephone companies. With the introduction of mobile phones, these combinations have
exponentially increased in recent times. Numbers to exclude from such a list are those
of (i) the telephone company central offices (such as 555 used for directory assistance)
and (ii) other central offices used solely by government or businesses (such as 866). We
shall refer to groups of consecutive numbers starting with 0, 00, or 000 within the suffix
as “banks of numbers.” For the operational convenience of the exchange, only certain
banks of numbers are assigned to users.

2.1. Sampling frames for telephone households

The sampling unit for most marketing investigations has been primarily a household
and it is implicitly assumed when telephone sampling is used that a single telephone
serves a single household. This is not necessarily the case in practice. Some households
have more than one telephone and more than one number. With the call forward option,
business calls are sometimes automatically transferred to home phones. It is estimated
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that more than 94% of the households in the United States can be contacted either via
land line or via mobile phone (see Tucker et al., 2007).

Households with mobile telephones are different from households with land tele-
phones, as shown by several demographic and economic variables. These demographic
and economic differences are expected to manifest in attitudinal differences as well. We
will comment on sampling issues related to mobile phones later in the chapter. What we
describe below mainly applies to land lines only.

There are basically two kinds of sampling frames used for telephone surveys. The
rest are minor variants of these two frames. One is the list-assisted frame. The list can
come from the telephone directories or from previous surveys. The other is the set of
all possible four-digit suffixes within the existing central office codes. The latter is used
in RDD methods. There are some advantages and disadvantages in both frames. The
most important drawback of this frame, however, is that it excludes working telephone
numbers that are not listed in the directory. Also, telephone directories are outdated,
on the average, by at least 7–8 months. The percentage of unlisted numbers varies by
regions with roughly 30% of numbers in large metropolitan areas of the United States
unlisted. Households with unlisted telephone numbers tend to differ from households
with listed telephone numbers on key demographic characteristics (see Moberg, 1982).
Brunner and Brunner (1971) found significant differences between the two groups on
certain product ownership, usage, and purchase patterns.

The disadvantage of the second frame is the large number of nonworking telephone
numbers that may be sampled with unrestricted random sampling. In the United States
only a fraction of dialings will connect with a usable residential household. The effort
to identify these numbers adds considerably to the cost of a survey. Waksberg (1978)
reports that this spade work is done by marketing research firms, and the more “useful”
sampling frames are developed by these firms at considerable expense and are not
available to the general public. Most researchers cannot afford to duplicate such a costly
task. It is important to narrow the frame used for RDD. The designs to be discussed in
what follows are expected to reduce the proportion of unused numbers sharply.

To emphasize the inherent differences between the two frames and their variants, it
is useful to mention the problems in determining the status of a given number. Dialing
a working number can result in (i) a completed call, (ii) unanswered rings, (iii) a busy
signal, or (iv) wrong or no connection because of misdialing or technical problems.
Unless the call results in a contact, it is impossible to determine whether the number
belongs to a household or a nonhousehold. In RDD sampling, a nonworking number is
not always easily determined. Dialing such a number can result in (i) a recorded message
stating that the call cannot be completed as dialed, (ii) no connection, (iii) unanswered
rings, or (iv) connection with a number other than that was dialed. The last possibility
introduces biases in RDD sampling, because the telephone system equipment is not
normally designed to receive a nonworking number. Note that the households reached
in this manner have a greater probability of inclusion in the sample.

2.2. Telephone sample designs

Telephone sample designs can be broadly divided into list-assisted and RDD methods.
We shall briefly discuss these designs and finally discuss the concept of dual frame
designs.
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2.2.1. List-assisted methods
2.2.1.1. Direct selection from directory. This is the most basic of all the directory
assisted methods. A sample of directory lines is selected using either systematic or
simple random sampling. One could also use cluster sampling for easy execution. The
cluster consists of a randomly selected line and the next k lines. To avoid actually count-
ing lines, directory column inches can be used. This method yields an equal probability
sample of all listed numbers with a minimal percentage of wasted dialing due to non-
working numbers. A disadvantage of the cluster sampling method is that names listed
together in a directory might belong to the same community, religion, etc., and if they are
homogeneous with respect to the variables being estimated, the design is inefficient as
compared to simple random sampling of lines. The major disadvantage of the directory
method is that it does not give any chance for unlisted working telephone numbers to
appear in the sample. The bias may be significant in certain surveys and the following
procedures are proposed to correct partially for the bias.

2.2.1.2. Addition of a constant to a listed number. Anumber is randomly selected from
the directory and an integer, either fixed or randomized (between 0 and 9), is added to
the directory number. This gives a chance for inclusion of possibly unlisted numbers
in the sample. Some variants of the above mentioned procedure involve randomization
of the last r (2, 3, or 4) digits or a directory number. Two drawbacks of these procedures
are as follows: (i) when r increases, the number of wasted dial rings will increase, and (ii)
all telephone numbers do not have an equal chance of inclusion, because the probability
of selection of a number would be proportional to the number of directory listed numbers
in the same rth bank. If the numbers are not in the directory, they automatically eliminate
the possibility that numbers which follow them will be in the sample.Amethod suggested
by Sudman (1973) to correct for (ii) is described in the following section.

2.2.1.3. Sudman’s method. A random sample of listed numbers is selected and the
last (usually r = 3) digits are ignored. This results in banks of numbers selected with
probability proportionate to the number of listed numbers in the bank. Calls are made
using RDD within the bank until a predetermined number of households with listed
numbers have been reached. The predetermined number is fixed so that the resulting
sample is self-weighting. If we let N = total number of household telephones, NL =
number of telephones among N that are listed, n = sample size, m = number of selected
banks of working numbers, and NLi

= number of listed telephones in the ith bank, then

probability of inclusionof a number in the sample =
(

NLi

m

NL

)(
NLn

NmNLi

)
= n

N
.

(1)

Remark. This probability is exact (and the sample is self-weighting) only if (a) the
proportion of listed households numbers in the ith bank is equal to the overall proportion
(NL/N) of listed household numbers and the predetermined number of sampled listed
households in a bank is n/m, or if (b) the predetermined number of sampled listed
households in a bank is fixed as nNiNL/NmNLi

where Ni is the number of household
telephones in the ith bank.
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The first bracketed term indicates the probability of inclusion of bank i in the sample
and the second term, that of selecting a number within the bank. The procedure is
unbiased and self-weighting.AsWaksberg (1978) points out, this method also has several
problems. Ascertaining whether a number dialed is listed or not can be difficult. For
example, in a national survey, the procedure requires the use of a large number of
telephone directories. Finally, because the numbers are clustered, a large proportion of
them may occur in relatively empty banks, resulting in unequal numbers of households
per cluster.

2.2.2. Random digit dialing methods
These methods are used to obtain equal probability samples of all telephone numbers
both listed and unlisted. As mentioned earlier, an unrestricted application of the pro-
cedure will lead to the inefficient use of survey resources. Therefore, it is important to
narrow the sampling frame by eliminating nonworking numbers. If information on non-
working numbers is available (e.g., which banks are not assigned), random digits within
these banks could be excluded from the sample. Some telephone companies will provide
information about working banks. However, this information is usually not available,
forcing researchers to use directories to determine working banks. Typically those banks
with less than three listed phone numbers are eliminated. The incidence of telephone
households in the sample can be increased by eliminating the business telephones listed
in the yellow pages of the telephone directory. It is evident that all these efforts require
a considerable investment of time and, unless the frame is used repeatedly, the cost may
be prohibitive for a small survey.

2.2.2.1. Waksberg–Mitofsky design. The (RDD) selection procedure proposed by
Waksberg (1978) is as follows. Obtain from the telephone companies all area code–
central office code combinations currently in service. Append all possible two digits
and treat the resulting eight-digit numbers as primary sampling units (PSU). Randomly
select a PSU and the next two digits. If the 10-digit number is for a residential address,
the PSU is retained in the sample and if not, it is rejected. If retained, additional pairs
of random numbers to identify the two last digits are selected within the same PSU and
dialed until a set number of residential telephones are reached. This process is repeated
until a predetermined number of PSUs are chosen. This design produces an equal prob-
ability sample of working telephone numbers. The procedure of selecting PSUs is sim-
ilar to Lahiri’s (1951) selection procedure for probability proportionate to size (pps),
although the latter requires a prior estimate of cluster size. This procedure which selects
PSUs with probability proportional to working numbers differs from Sudman’s method
which selects PSUs proportional to listed working numbers. The stopping rule for the
Waksberg–Mitofsky design also refers to working numbers and is not restricted to listed
numbers. It is important to note that this procedure uses a cluster size of 100, a practical
advantage over a cluster of 1000.

A crucial problem in this procedure is the large value of the proportion of PSUs with
no residential numbers. Because all possible choices of two-digit numbers are appended
to area code–central office code combinations to arrive at the PSU, it is possible that a
large number of PSUs may not contain any residential numbers. It is important to obtain
an estimate of the proportion of PSUs with no residential numbers. This can be expected
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to be smaller for urban than rural areas. An estimate based on a national U.S. study is
given by Groves (1978) as 0.65.

2.2.2.2. Stratified element sample. An alternative design is discussed in Groves
(1978). The procedure initially groups together all central office codes in the same
exchange and then groups together exchanges in the same area code. Size categories
of the exchanges are then formed based on the number of central office codes in an
exchange with the number of central office codes acting as a proxy to population den-
sity. Within each size category, exchanges are ordered geographically within an area
code and similarly area codes are then ordered geographically. Given this ordering of
the frame, a systematic sample of central office codes is drawn. A four-digit random
number is generated and appended to a selected central office code, yielding a 10-digit
sample telephone number. Groves (1978) observes that only about one-fifth of the num-
bers were confirmed a working household numbers, whereas in Waksberg’s design a
roughly threefold increase in identifying working household number is possible. The
main attraction for using this design would be when there is a greater homogeneity
among the prefixes. This design can be treated as a simple random sample when the
stratification introduced based on the exchange size is rather weak.

2.2.2.3. Dual frame sample design. The two-stage cluster design, proposed by
Waksberg (1978), is better than directory-based designs in terms of coverage rates and
over stratified element sampling in terms of cost. However, the design requires a new
selection from the same PSU for each nonworking number encountered, and thus adds to
the cost of screening numbers to identify residences. It is difficult to distinguish nonwork-
ing numbers from unanswered residential numbers.Another problem is the low-response
rates for telephone surveys attempted without prior contact. It is found that persons with
listed numbers are more likely to cooperate than those with unlisted numbers. Groves
and Lepkowski (1986) consider dual frame designs as proposed by Hartley (1962) to
be useful when the target segment forms a majority of elements in one incomplete list
frame (directory listings) but a minority in another complete frame (RDD generated
numbers). The poststratified estimator suggested by Casady et al. (1981), which mixes
the estimates from each of the two frames, is investigated by Groves and Lepkowski
(1986) and Lepkowski and Groves (1986). If we let p denote the proportion of the
unlisted telephone population and θ denote a mixing parameter, the estimator of the
mean is

y = pyUL, RDD + (1 − p)
[
θyL, RDD + (1 − θ) yL, DL

]
(2)

where yUL, RDD is the estimate for the unlisted population chosen by RDD, yL, RDD is
the estimate of the listed population chosen by RDD, and yL, DL is the estimate of the
listed population chosen from the directory frames cases. The cost advantage of the
dual frame derives from the list frame in identifying the working numbers. Several
survey research firms (see Table 1) maintain a computerized data bank of all published
directories and in one test for the state of Michigan, Groves and Lepkowski (1986)
report 88% of numbers on the list were found to be working numbers as compared to
59% for the selection of samples within the PSU in RDD design. From the form of the
poststratified estimator, it can be seen that the crucial parameters are p and θ which
depend on the geographical region and the type of marketing research investigation. It
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is estimated that roughly 64% of contacted RDD sample households are in directory
listings, but the proportion of RDD numbers not contacted but found in the listing is
around 66%. At the national level it is not known what proportion of these noncontacted
numbers are working residential numbers. This may be influenced by large metropolitan
areas where a low rate of list frame coverage is known to exist. Thus, the dual frame
design can result in increased coverage (than list frame) and also increased precision
(than the cluster RDD) by following simple random/stratified element designs on the
list frame, thereby avoiding homogeneity due to clustering. To evaluate the dual design
more thoroughly, the marketing investigator must know several cost elements and the
relative nonresponse bias. The nonresponse bias is typically measure by the difference
between two group means, where only one group receives an advance letter. Based on
a simulation study for the U.S. National Crime Survey, Groves and Lepkowski (1986)
suggest optimal allocations between 35% and 80% to the list frame.

2.2.2.4. List-assisted RDD methods. The operational difficulties involved in imple-
menting the Mitofsky–Waksberg method has led to increased use of list-assisted sample
designs. Two main issues with the Mitofsky–Waksberg method were in replacing the
nonresidential numbers and in variances being larger than a simple random sample or
stratified random sample of the same size. The properties of the list-assisted methods
were examined in detail by Casady and Lepkowski (1993). But the underlying structure
of the telephone system has changed greatly since then. More area codes are now being
assigned and there is a gradual decrease in the proportion of numbers that appear in
directories. Thus, it has become increasingly difficult to identify the residential num-
bers. Tucker et al. (2002) evaluate relative efficiencies of list-assisted and Mitofsky–
Waksberg designs and conclude that the relative gain in precision from list-assisted
design has increased in the past decade.

2.3. Respondent selection in telephone surveys.

There are a number of other issues to be addressed in telephone surveys. Some house-
holds have more than one telephone number, making it necessary to obtain this informa-
tion during the interview so that appropriate estimation weights could be constructed. In
any telephone survey, ambiguities exist about no answers, uncertain rings, busy signals,
etc. Any stopping rule for classifying these is bound to introduce some bias in sample
selection. A more serious problem from a marketing researcher’s point of view is that
the person answering the telephone is not necessarily the same person who makes the
purchase decisions. As shown in the literature on consumer behavior, buying decisions
result from an interaction of all family members. To retain the characteristics of a prob-
ability sample, the person to be interviewed should be selected at random. We discuss
a few approaches to the problem in the following.

A selection procedure suggested by Kish (1967) in the context of area probability
samples requires all eligible respondents within a household to be listed by sex and
by age within sex categories. The interviewer then selects one respondent using a ran-
dom number table (see Kish, 1976, Section 11). This procedure is difficult to use in
telephone surveys where most refusals to participate occur at the beginning of the inter-
view. The procedure is time-consuming and could present problems establishing rapport.
For example, asking for the number of adult males in residence could be perceived as
insensitive to single women living alone. Because rapport with the respondent is so
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vital to telephone surveys, Troldahl and Cater (1964) adapted the Kish format but based
the selection on only two easy-to-answer questions: (i) How many adults live in your
household, counting yourself, and (ii) how many of them are men? Using four selection
matrices rotated randomly over the sample, a respondent is selected. This procedure does
not significantly reduce refusals when compared to the Kish strategy (see Frey, 1983,
p. 80). Bryant (1975) suggested dropping one of the four matrices every second time
it appears in the rotation. This would result in the selection of more male respondents
and the procedure takes into account increases in one-person households and households
headed by women. It must be noted that these alternative strategies assign unequal prob-
abilities of selection to some eligible respondents such as middle-aged adults. Another
variation used by Groves and Kahn (1979) is to modify (ii) “how many of them are
women?” A recent investigation by Czaja et al. (1982) reveals no major differences in
cooperation rates and demographic characteristics across the three models.

Two procedures reported recently seem to be effective in terms of operational use
and eliciting higher response rates. Basically, these two avoid asking household com-
position questions before beginning the interview. The first procedure is suggested by
Hagan and Collier (1983). The designated respondent is predetermined to be one of four
possibilities: oldest man, youngest man, oldest woman, or youngest woman. After the
initial introduction, interviewers simply ask for the designated respondent (randomly
chosen and printed on the interview form a priori) and when a respondent of that desig-
nation does not live in the household, the opposite sex is interviewed. In single-person
households, the age designation is irrelevant. Based on a national study, the authors
suggest that this procedure is an improvement in terms of lower refusal rate. The second
procedure given by O’Roourke and Blair (1983) selects the adult who had the “most
recent birthday.” This is a probability selection method and ascertaining the birthday is
considerably easy. Comparing this with Kish’s procedure, based on a survey, the authors
found the major difference in refusal rate occurred at the preselection stage. Once the
respondents agreed to participate, it did not matter which procedure was used to continue
the interview.

Rizzo et al. (2004) provide a less intrusive method for selection of within-household
members. It uses the fact that about 85% of households in the United States have less
than two adults. Thus, this method randomly selects either the screener respondent or
the other adult. Other than gathering information on the number of adults in the family,
the procedure does not call for any information. The procedure operates as follows. Let
N be the number of adults: if N = 1, the respondent is selected; if N > 1, randomly
sample the respondent with probability equal to 1/N. If N > 2 and if the screener
respondent is not selected, then use the Kish method. This is a probability sampling
method and does not result in self-selection biases.

2.4. Randomized response techniques in telephone sampling

The randomized response technique originally introduced by Warner (1965) to obtain the
estimates of behavior that is usually underreported and is found to be useful for personal
interviews. A randomizing device is used to choose a statement and the respondent
is asked to provide a response to the one selected. The interviewer is neither shown
the outcome of the device nor is informed of which statement is answered. The most
difficult aspect of a telephone application of the randomized response technique for
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sensitive questions is the provision of a randomization device. As Stern and Steinhorst
(1984) observe, there are two main problems: (i) the device is not readily available
to many respondents, and (ii) the complexity of instructions necessary to provide a
satisfactory distribution may inhibit respondent cooperation. Also, suggestions from
a “faceless” voice to flip a coin may be regarded as foolish by some respondents.
However, an advantage of using a respondent-supplied randomizer is that it eliminates
the respondent’s suspicions that the interviewer has “fixed” the randomizer. A potential
disadvantage is that it does not provide a known probability distribution. The technique
continues to be used widely in social sciences. See Van der Heijden et al. (2000).

There are several randomizers suggested in the literature including credit card num-
ber, street address, occurrence of events, etc. (see Orwin and Boruch, 1982). The one that
is tested on a limited basis is the last digit of randomly selected telephone numbers. This
provides a known distribution for both the selection of sensitive and nonsensitive ques-
tions and the generation of surrogate answers (see Stern and Steinhorst, 1984). Although
this method is considered to be successful on the issue of response privacy, the nonre-
sponse is still high. This method also requires both the interviewer and respondent to
have access to the same telephone directory. Each geographical area served by a different
telephone exchange and telephone directory would be sampled as a separate stratum. At
a national level, this may create some operational problems. Other randomizers such as
the last digit of street address are supposed to overcome this problem, but in the absence
of a known distribution of the last digits, they are not statistically attractive to use.

2.5. Locating a special population using RDD

In many instances, the researcher may be interested in locating a subclass of the total
population. Blair and Czaja (1982) show how Waksberg’s two-stage cluster design
can be modified, if it is known that this special population clusters geographically.
This modification takes advantage of the fact that the telephone central office codes
are assigned to well-defined geographic locations. It works as follows: select a simple
random sample from all possible telephone numbers. These numbers are then called
and only those working residential numbers of a household with the appropriate special
characteristics are retained. The first eight digits of each retained number are then defined
as a PSU. Using each retained telephone number as a random start in the PSU it created,
numbers are then sequentially generated and screened. This procedure is continued until
a certain cluster size is identified.

As Waksberg (1983) notes, this procedure has some serious statistical implications in
which many situations may reduce the efficiency. But in the case of special populations,
PSUs could exist in which it is not possible to reach the predetermined cluster size even
if the 100 numbers are used. The special population households associated with clusters
that are smaller than the specified cluster size have a lower probability of selection than
the rest of the special population. Hence, to produce an unbiased estimate for the total
population, we must adjust for unequal probabilities which increase the sample variance
(see Kish, 1967, p. 430).

2.6. Ring policy in telephone surveys

Each telephone call is composed of 2-second rings followed by 5 seconds of silence.
Survey research firms on the average allow six rings per call, thus the amount of time
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taken to reach a potential respondent is on the average 37 seconds. Smead and Wilcox
(1980) questioned how long the phone should be allowed to ring based on a telephone
survey using the members of a major university consumer panel. Ten rings and three call-
backs were used. The average answer time for the 219 respondents was 8.7 seconds with
a standard deviation of 6.3 seconds. The answer times followed a gamma distribution
and suggested that only four rings (or 23 seconds) were necessary to reach 97%.

2.7. Telephone sampling: other uses

The use of telephone interviewing is widespread because of its major cost advantages.
However, there are still many situations that require face-to-face interviewing, partic-
ularly those that deal with special subgroups of the general population. This involves
screening, and the rarer the group the more costly the screening. However, in general,
telephone screening costs are lower than face-to-face screening. Sudman (1978), based
on a realistic cost model, has shown that telephone screening will be an optimum proce-
dure unless (i) the degree of homogeneity is small, (ii) the density of interviews is low,
and (iii) locating and screening costs are small relative to interviewing costs. From the
discussion in Section 1, it follows that (iii) could be an important consideration in using
RDD. However, directory-based telephone screening might be cost effective.

Many survey research firms have databases constructed from the telephone directories
supplements with auto registration data. These are useful for mail samples. Informa-
tion collected from other sources such as census records are sorted by area code and
telephone exchange that provides a faster way to reach a target population such as low
income families, Hispanic groups, etc. The yellow page listings are used for business
samples, because the directory category headings are broad and easy to use by marketing
researchers.

Computer-assisted telephone interviewing (CATI) was used first by market research
agencies in the private sector. The concept was proposed by the American Telephone
and Telegraph Company to measure customer evaluation of telephone services. CATI
is now very popular in other types of organizations as well. Interview responses are
quickly processed and by accumulating counts of key respondent characteristics while
interviewing, quota targets, that is, desired sample sizes in strata in RDD sampling, can
be tracked. Adding visual monitoring to telephones from supervisory terminals, CATI
provides efficient control in the interview process (see Nichols and Groves, 1986). Also
see the discussion in Chapter 8 in this volume.

2.8. Recent developments in telephones surveys

Cell phones, pagers, faxes, modems, Internet, call forwarding, voice mail, and other
convenient services offered to phone subscribers are creating increasing challenges
to researchers to contact the public for telephone interviews. The explosion of tele-
phone area codes as a result of these new products creates a much bigger challenge to
researchers to draw representative samples from their target population. According to
a Lockheed Martin Study, United States will run out of new area codes by 2010. This
implies evolving challenges for telephone survey sampling methodology. It is estimated
that more than 25% of U.S. households have more than one land line. Households with
children, Internet access, home-based businesses, and the difficulty to identify multiple
phone line households create new challenges to draw a random sample of households.
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Telephone Consumer Protection Act (TCPA) prohibits calls to wireless and assess
a penalty for each such call. Land lines are household-based whereas cell (wireless)
is population-based. Of the 9% of U.S. households that have no land lines, around
2.5% do not subscribe to a phone, and 6.5% have only wireless service. Cell phone
numbers proliferate into RDD samples due to call-forward their land lines to wireless
services. Wireless service-only households tend to be young males (less than 35 years),
educated, employed, renter, earning less than $40,000 annually, and have no children.
Wireless also does not have 911 services and when they get married and have family,
they may opt for a land line. Some agencies such as survey sampling international (SSI)
use software, wireless ID that reduces sampling risk by identifying potential wireless
phones. Merging of two overlapping and incompatible sampling frames and households
with multiple phone lines create potential cover bias.

The recent Cell Phone Sampling Summit II sponsored by Nielsen Media Research
was convened to discuss how the cell phones are treated in RDD surveys. It is estimated
that approximately 70% of the U.S. households have cell phones and it is growing.
The telephone frame can be partitioned into three components: (a) land-line telephone
exchanges, (b) cellular telephone exchanges, and (c) mixed-use exchanges. It must be
noted that cellular telephone numbers are located in all those components of the frame.
In addition to the issues discussed in telephone sampling earlier, the design should
explicitly consider,

“Weighing for unequal probability of selection, including whether a cell phone is a
personal device reaching only one potential respondent or a household device reaching
more than one potential respondent.”

Because cell phone usage is on the rise among the teenagers, it is possible to reach
ineligible persons when surveying adults and thus RDD cell phone calls may result in a
wastage. These and other recent developments are to be carefully studied. We summarize
a few studies that have addressed these issues later.

Tucker et al. (2007) report the telephone service and usage patterns in 2004 based on
the information obtained from Current Population Survey (CPS). As observed earlier,
standard RDD techniques usually exclude the cell phones, thus resulting in undercove-
rage. It is estimated that 6% of the households have only cell phone service. The per-
centage of one-person households that are cell-only (8.1%) is somewhat higher than
that of large households (5.5%). Cell-only households are more likely to be renters
than owners of homes. If the distribution is sliced by age approximately 20% young
adults (18–24) are cell-only users. The data indicate that among those households that
have both cell and land line, very few receive any calls in cell phones. Tucker et al.
(2007) suggest using individuals as sampling units rather than households. But this can
cause problems for households with multiple members who may share a single cell
phone.

Brick et al. (2007) discuss the feasibility of cell phone surveys in United States. The
contact rates across various time periods were the same for cell samples, whereas the
rates for land samples were lower during weekdays. The refusal rate for cell sample is
generally much higher and efforts to follow up also do not result in success. The text
messaging was not effective in raising the cell response rate.
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3. Fax surveys

In the mid 90s, there was a growing interest in conducting surveys via fax. Faster
delivery was the main reason put forth along with the possibility that it may give the
impression to the responder that the matter is important. Dickson and Maclachlan (1996)
conduct a study to compare the mail surveys with fax surveys. They estimate that the
cost per returned questionnaire in the fax was less than one-fourth of the cost for the
mail surveys. The selection bias due to ownership of fax machines was not addressed. It
is not known what percentage of households have fax machines and even if they have,
what percentage of them keep them on. With the increasing use of scanners and the
internet, fax surveys are not likely to take off.

4. Shopping center sampling and interviewing

Interviewing shoppers in shopping malls started in the early 60’s when the development
of totally enclosed shopping centers provided researchers access to a large number
of shoppers from a wide geographic area. Prior to the mall intercept, surveys were
mostly conducted in supermarkets, discount stores, train stations, and places where large
concentrations of people could be found. More than 170 malls have permanent market
research facilities, some of which are equipped with interviewing stations, videotape
equipment, and food preparation facilities for conducting taste tests. A large number of
malls permit intercepts on a temporary basis but may prohibit interviewing because they
see it as an inconvenience to their shoppers.

The two major advantages of a mall intercept interview are cost and control and it has
many of the advantages associated with personal interviewing. Also, it is the only way to
conduct most taste tests and ad tests requiring movie projectors or videotape equipment.
However, there are a number of disadvantages. The important one is that shoppers are
frequently in a hurry and may not respond carefully. It may be difficult to maintain a con-
trolled interviewing environment in the presence of the respondent’s children, relatives,
etc. Despite these problems, mall intercept interviews are increasingly used in market
research. It is estimated that, of those who had participated in any form of a survey, 18%
were contacted through mall intercept interviews compared to 12% through personal
interviews (see Gates and Solomon, 1982). Because of the administrative efficiency, it
has some potential for growth.

4.1. Sampling issues

Samples for most shopping center interview are selected haphazardly and do not reflect
the general population. The effect and sources of biases are not properly understood
and are not taken into account. If the investigation is at the early stages of product
development, it may not be necessary to follow rigorous sampling procedures. But if
the objective is to generalize to the population, it is important to follow rigorous sampling
schemes. Shopping center sampling can be compared to sampling mobile populations.
The major interest in studies related to mobile populations has been in estimating the
size of the population, but little attention has been paid to sampling time and location.
Sudman (1980) provides some procedures that take these aspects into account.
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The key assumption in the mall samples is that all households have a nonzero (but
not equal) probability of begin found in a shopping center. The assumption may not
be realistic and the bias introduced for some special groups such as lower income or
older households may be substantial. Second, because the probability of selection is a
function of the frequency of visits, that frequency must be estimable. This may strain
respondent memory and may introduce some biases.

Sudman’s procedure works as follows: First, select the shopping centers using the
same basic random sampling procedures used in the selection of locations in a multistage
area probability sample with probability proportional to a size measure such as total
annual dollar volume. The optimum number of shopping centers and the number of
respondents can be determined using the formulae for area cluster samples,

nopt =
[
C1

C2

(
1 − ρ

ρ

)]1/2

(3)

where C1 is the set up cost at a shopping center, C2 is the cost per interview and with a
total budget C = C1m + C2mn, where m is the sampled number of shopping centers,
n is the number of interviews per shopping center, and ρ is the intraclass correlation
coefficient between shoppers within shopping centers. Because C1 is generally much
larger than C2, large samples are selected from each center; but the heavy clustering
increases the sampling variance.

The respondents can be selected either when they arrive at the center or as they
move around within it. For the latter, we require information on how much time they
have spent in the center because persons spending more time shopping have a higher
probability of selection. To select an unbiased sample of entrances, it is important to
know the fraction of customers the entrances attract from previous counts. This size
measure can be used to sample entrances with probability proportional to size and is
much more efficient than sampling them with equal probability. Though the less-used
entrances will be sampled fewer times than the more heavily used entrances, the sampling
rate would be higher at the less-used entrances if a self-weighting sample is desired.
Establishing rules for within shopping center sampling is more difficult than entrance
sampling. Identical traffic patterns in all parts of the center cannot be assumed because
the location of discount stores is more likely to attract customers different from those
who shop at fashion centers.

It is important to use careful time sample procedures, to avoid biases against certain
types of customers, for example, working women who mostly shop in the evenings and
weekends. Selecting an eligible time period with equal probability is not an efficient
design. The solution is identical-sampling of time periods with probabilities proportion-
ate to the number of customers expected in the time period. Sudman (1980) suggests
forming time–location clusters, based on past data and selecting these clusters with
probability proportional to past size.

The above mentioned procedures are far more sophisticated than those procedures
used in the past. There are still problems in their implementation and generalizability.
We suggest using the dual frame concept. For each shopping center, we may obtain trade
area maps showing geographic areas from which stores draw their trade, because shop-
ping centers generally attract those households nearest to it. These maps are sometimes
drawn from shopper surveys (see Blair, 1983) intended for a different use by the retail
merchants. With such a map, we may have a sampling frame from which we can draw
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an independent sample by telephone that can be combined with the mall sample. For a
related discussion, see Bush and Hair (1985).

It is known that sampling bias may occur when the individuals spend different lengths
of time at the survey location. Because most surveys are conducted away from the
entrances, individuals who spend more time at the mall are more likely to be sampled.
Such samples are known as length-biased (Cox, 1969). Recreational shoppers are likely
to be overrepresented in the sample. Nowell and Stanley (1991) report a study on the
bias of length of stay and suggest correcting for the bias using the procedures given in
Cox (1969). The key factor appears to depend on whether individuals can accurately
estimate the time they spend at the mall. Nichols et al. (1995) report that the length
of time spent in the mall is different for Hispanics. Generally they spend more time
traveling to the mall, but spend less time in it. Thus, both frequency bias and length of
stay bias need to be considered for the shopping mall estimates.

5. Consumer panels

The panel has become an important tool for monitoring market factors ever since
Jenkins (1938) and Lazarsfeld and Fiske (1938) used them to study brand preferences and
reader reactions to a magazine (Women’s Home Companion). Since then, the use of panels
to study the purchase behavior of nondurable consumer goods has gained importance in
NorthAmerica and someWestern European countries. See Hardin and Johnson (1971) for
various applications of panels in marketing research. Marketing Research Corporation of
America (MRCA) followed with a panel of 7500 households in 1941 and focused on the
consumer purchase behavior of grocery, health and personal care, and textile products.
Today, the use of panels in marketing studies is much more widespread and there are
hundreds of consumer and industrial panels mostly located in NorthAmerica andWestern
Europe. Nevertheless, some of the initial sampling problems related to panels still remain.
This section will briefly review some of these problems from a sample design perspective.
The problems related to panel sample design are not usually covered in discussions of
sample survey methods. Sudman and Ferber (1979) identified three critical areas likely to
inducebias inpanel sampledesign.Theseareas follows: (i)biascreatedby initial refusals,
(ii)biascreatedbysubsequentmortality,and(iii)biascreatedthroughconditioning.Abrief
discussion of these areas follows. It must be recognized that there are other critical areas,
such as aging of the panel and possible changes in the population that are not represented
in the sample, which are not discussed here.

A consumer panel measures purchases of a product at any given point over a period
of time. This has been used to measure market trends, seasonal effects, and the effects
of marketing strategies. Panel data from the Chicago Tribune, National Panel Diary
(NPD), National Family Opinion (NFO), Marketing Research Corporation of America
(MRCA), Intercontinental Marketing Services (IMS), etc. focus on different product
lines and industries. The majority specialize on consumer products, mostly nondurables
distributed through grocery stores, whereas industrial panels such as those from IMS
focus on hospital equipment, supplies, and doctor’s prescriptions. Alternatively, store
audits are used to estimate market size and trends (A. C. Nielsen) and with the advent
of electronic scanners of Universal Product Codes (UPC), purchase data have become
much more reliable and offer extensive detail on product/brand purchases as well as
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profiles of sample buyers. Information Resources, Inc. with headquarters in Chicago
provide Infoscan and Behaviorscan services to business clients. Each panel member
receives a member identification card that is presented to the store clerk at the time of
checkout. All purchases are electronically recorded, eliminating the need for written
diaries. This method has distinct advantages, as its popularity is growing both in North
America and abroad (Information Resources has operations inAustralia, Canada, France,
Great Britain, Japan, and West Germany). These sources also study consumer brand
preferences and brandswitchings over a period of time. Panel data have been extensively
used in the formulation and evaluation of pricing strategies (see Montgomery, 1971).
Segmentation by usage, package size, effectiveness of “marketing mix” variables have
been studied by, among others, Blattberg and Sen (1976). Models are developed to
predict market penetration based on repeated buying rates (see Eskin, 1973). With the
information provided by panels on both purchasing and media exposure, efforts were
made to estimate the effectiveness of advertizing particularly for new products (see
Nakanishi, 1973). Carefoot (1982) and Information Resources, Inc. have used scanners
to evaluate the effectiveness of advertizing. MRCA’s panel data have been utilized to
sense changing food habits leading to the modification of existing products and the
development/introduction of new products to better serve the consumer.

5.1. Bias created by initial refusals

Refusals, noncooperation, and nonresponse are to be expected in any survey. The level
of cooperation attained is dependent on recruiting methods used and the nature of tasks
required by the panel members. Often higher rates of cooperation are achieved if the
expected effort from the respondent is lower. Panels recruited by face-to-face contact
tend to have higher rates of cooperation than those recruited by telephone or mail.
Oversamples are drawn initially to balance demographic variables such as geography,
household size, income, education of the head of household, etc. Even if the panel fits all
these demographics, there is no assurance that the panel results are bias free if willingness
to cooperate on a panel and purchase of a product are related to a variable such as
lifestyle. Panel cooperation seems to be closely associated with family size; for example,
households with two or more members tend to cooperate more readily than single-
person households. From the studies of the U.S. Department of Agriculture (1953) and
additional investigations (“Panel bias reviewed,” 1976), the following patterns emerge:

• Single-person households have a higher tendency to be noncooperators or “not-
at-homes.” They have less interest in food purchases and maintain records on an
irregular basis.

• The older the housewife (after 55 years), the lower the chances of joining the panel.
This may be related to education and the ability to keep records.

• Homeowners are more likely to cooperate than tenants. This again may be related
to household size.

• Working wives are less likely to join the consumer panel than nonworking wives.
• Panel cooperators tend to be more “price conscious” than noncooperators.
• The income distribution of panel members and that of the U.S. population tend to

be very similar except at the lower end where a smaller percentage of lower income
households are represented in the panel.
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Except for household size, the differences between cooperators and noncooperators
tend to be negligible with respect to demographic profiles. However, the differences
could be significant with respect to socio-psychographic characteristics such as organi-
zation, record keeping, and price consciousness. With new developments (Infoscan and
Behaviorscan) the need to keep records by the panel members is eliminated, reducing
potential errors in reporting, recall, and record keeping. Atwood consumer panels in
Great Britain and Germany show no significant differences between panel members
and the general population with respect to readership of magazines and newspapers and
selected psychological and buying variables (Sudman and Ferber, 1979).

In summary, the evidence from the United States and European studies indicates
that some biases in consumer panels such as household size, age of the housewife,
and level of education of the head of household are possible. In panels requiring less
effort, the refusal rate is lower resulting in lower sample bias. Panels that require more
effort and those recruited by mail or telephone often tend to have a higher percentage
of noncooperators resulting in higher bias.

The ratio method of estimation has often been used to obtain better estimates of
the population. Under-representation of smaller households or a specific geographic
region is overcome by the application of suitable poststratified weights in deriving the
population estimates.

5.2. Bias due to attrition/mortality/formation of new households

Apanel should be representative of a target population. Though the population itself may
not change drastically from year to year, some changes do occur over time. Dissolution
of old households, formation of new households, household moves, etc. are examples of
changing population characteristics. Potential problems are as follows: (i) panel member
dropouts, (ii) household moves, (iii) household dissolutions, and (iv) new household
formations. We will discuss each of them briefly.

(i) Dropouts: Panel dropouts or attrition is often estimated to be 5–10% from one
period to the next in the United States. Charlton and Ehrenberg (1976) reported
that 88% of their limited sample completed the 25-week panel. Farley et al. (1976)
reported a 43% dropout rate from the waves of interviewing spanning 18 months.
Personal situations, such as illness in the family, birth of a child, enlistment in
the army, etc., are often the reasons for dropout. Two methods have been used
to overcome this problem. An oversample could be made in anticipation of an
expected dropout rate. However, in practice, it may not be possible to main-
tain large oversamples (European panel operators tend to follow this procedure).
Besides, this would lead to sampling bias. The second method is to replace the
dropout household with a new household of similar characteristics by a method of
imputation in the field. The problem of noncooperation of a newly selected house-
hold is similar to that of initial recruiting. A prepared list of substitute households
is searched until a replacement is found. Even if replacements are representative
with respect to selected socioeconomic and demographic variables, they could
differ on behavioral variables such as purchase quantity, degree of brand loyalty,
private brand proneness, etc. Winer (1983) suggested that replacements be made
with due consideration to selected behavior variables.
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Sobol (1959) and Bucklin and Carman (1976) demonstrated that attrition
introduces potential bias in panel-based market research. Hausman and Wise
(1979) have designed a model of attrition and proposed a maximum likelihood
method of estimation of parameters. They estimated the parameters in the pres-
ence of attrition as well as bias due to attrition. Winer (1980, 1983) and Olsen
(1980) developed procedures for estimation of attrition bias in the absence of
replacement of dropouts.

Maintaining a representative panel is not easy. Most panel operators recognize
the importance of suitable compensation and effective communication with panel
households as essential factors in keeping morale high and turnover rate at a
minimum.

(ii) Household moves: When a household moves, it is a generally accepted principle
to follow it. The only exception is if the panel is confined to a specific geographic
area and the move takes the household out of that target area. Following the panel
wherever they go ensures continuous representativeness of the panel including
the patterns of mobility inherent in the population.

(iii) Household dissolutions: In the event that all members of a panel household die,
the household is often replaced with a similar household. If one of the spouses
dies and the other joins a nursing home, the household is dropped from the panel.

(iv) New household formations: The panels are continuously monitored as to the
size of the household. If a new household is formed through marriage, the new
household is recruited with probabilities inversely proportional to the number
of persons who will constitute the new household. Thus, in the case of new
households resulting from a marriage, half the split-offs are recruited. This way
the panel recruits younger households to maintain their representatives in the
population.

5.3. Bias created through conditioning

The term “conditioning” refers to stimuli in a broad sense and includes all contacts
between panel operators and panel households such as initial recruiting calls, instruc-
tions/training, diary keeping, compensation, and newsletter or other forms of commu-
nication whether personal or mail. Sudman and Ferber (1979) classified the effects of
the stimuli into three categories: immediate, short-term, and long-term. These effects
could be in terms of purchase behavior affecting brand choice, store choice, quantities
purchased, number of shopping trips per unit time, expenditures on a product per unit
of time, etc. For example, keeping a “time-use” diary might cause a person to use a
different pattern of time utilization than the “usual.” Besides changes in behavior, it
might also change attitudes and beliefs affecting future behavior.

Studies focusing on the immediate effect of the acceptance of an invitation to join the
panel on a household have used “recall” techniques to assess the differences in purchase
behavior before and after joining the panel. The results, however, were inconclusive.
The effect of short-term conditioning seems to be evident bases on empirical studies.
A 1973–1979 study conducted by the Survey Research Laboratory at the University
of Illinois on medical diaries found that first month reportings were 14% higher than
the subsequent records of the following 2 months. Similarly, Sudman (1962) found
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that a panel diary method used to collect data on 10 product purchases over an 8-week
period reported that first week purchases were 20% higher than the 8-week average
and second week expenditures were 8% below the average. The experiences of U.S.
Bureau of Census (1972–1973) also support the evidence of the existence of a short-term
conditioning effect on the behavior of panel households. As a result, many practitioners
ignore the first period as “trial” data or omit it in the trend analysis.

Substantial evidence exists that a special stimulus can result in major changes in
reported purchase behavior. A sticker reminder in a diary and a postcard reminder to
record all soft drink purchases resulted in an increase or more than 30% in reported
purchases. A similar study on reporting purchases of citrus products (special form
included for reporting) showed that the experimental group had a significantly higher
incidence of purchase records of citrus products during the first month than the con-
trol group. However, the initial conditioning effect seemed to have disappeared in later
months.

Some researchers have speculated that keeping diary records could sensitize house-
holds over time and cause them to be better shoppers. One panel study indicated that
an average household made 2.7 trips per week for grocery shopping during the first
3 months of data collection period and 2.6 trips per week in the next 3 months. The
differences are not statistically significant, and any conditioning effect is negligible.
Ehrenberg (1960) using a British consumer panel and Cordell and Rahmel (1962) using
A. C. Nielsen panel for television viewing habits concluded that there may be a slight
short-term effect of panel conditioning but it disappears over the long term.

Long-term effects on households serving as panel members is of major concern as
they could develop fatigue or become uninterested in keeping diaries. Interestingly
enough, there is no evidence to support such a hypothesis. Ehrenberg (1960) described
several studies and pointed out that over a 10-year period the Atwood consumer panel
compared “old” and “new” panel members and found no significant differences. The
general conclusion was that the length of panel membership did not systematically
affect the reported results. Any “conditioning” that may exist in the early period of
panel membership is likely to wear off or stabilize over a reasonably short time.

Some form of compensation is very common for most continuing panels and is often
in the form of money, gifts, or other forms of motivation (participation in lotteries, etc.).
The amount or value of compensation seem to vary widely depending on the type of
respondent. For most consumer nondurables, the compensation has been in the range of
$10–$60 a year. For physician panels, the compensation was several hundred dollars.
Both European and Japanese panels seem to receive better compensation than those in
North America. Ferber and Sudman (1974) and Sudman and Ferber (1971) reported
that the households receiving compensation provided better quality data than those who
did not. Their conclusion was that compensation in sufficient amounts is necessary to
ensure initial and continuing cooperation as well as quality of reporting. There is no
evidence that the form of compensation has any major impact on cooperation (Ferber
and Sudman, 1974).

5.4. Consumer panels: other issues

A study by Grootaert (1986) on the estimation of household expenditures in Hong Kong
using the panel diary method suggested the use of multiple diaries—each member of
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the household maintains a separate diary of daily expenditures. This method resulted
in more accurate reporting of expenditures particularly on “personal” products such as
clothing, shoes, and services. The reporting arrangements depend on family structure,
size, and decision making process within a household.As such, the results are not usually
generalizable to other countries.

With high-tech electronic methods of data collection using scanners, the need to
maintain written diaries is diminishing. As increasingly more retail stores are equipped
with UPC scanners, data collection using panel method has become increasingly impor-
tant for various marketing experiments. This has led to what is called “single source”
research where many promotional experiments can be tested out by following the panel
members from their TV sets to checkout counters.

It is easy to measure accurately the effect of promotional campaigns via this high-
tech research. Information Resources, Inc. (IRI) monitors 3000 households in eight small
town markets. The microcomputers record when the television is on and which station
it is tuned to. IRI sends out special test commercials via cable channels. The single
source research has it drawbacks. The size of the panels is still relatively small because
of the high-cost nature of data collection and hence it is doubtful how generalizable the
results would be to the entire market. Second, how do we know viewers are actually
watching the test commercials. The change in the buying behavior is also questionable
when the panel members are probably conscious of being in the panel. Brand loyalties
are somewhat difficult to change by a short-term advertizing. But this research may be
useful for new products (see Kessler, 1986).

5.5. Recent developments in consumer panels

International household consumer panels are maintained by various commercially
oriented survey research companies. SSIs surveyspot (U.S. Panel) covers NorthAmerica
whereas Opinionworld offers collective panel for Europe. SSI offers proprietary pan-
els in more than 40 countries and in early 2007, it added China to the list of coun-
tries offering consumer panels. Though the literature on panels initially focused on
consumer/household panels, now panels are extended to commercial and professional
panels. Commercial panels are often used to track movement of goods and services at
different stages of distribution to monitor trends. For example, a panel of pharmacists
is used to track or monitor trends in prescription drugs.

6. Web surveys

The online world has become as important to Internet users as the real world (http://
digitalcenter.org). “The internet has been a source of entertainment, information, and
communication since the web became available to theAmerican public in 1994.” During
the past decade Internet has become the primary vehicle for conducting marketing
research. Web surveys, Internet panels, E-focus groups, web advertizing research, etc.
have replaced traditional methods of conducting marketing research. Internet has also
become rich source of secondary data and become universally accessible by anyone from
anywhere and brought down the cost of conducting marketing research more effectively,
with higher speed, and ever declining costs of unit information. Further developments,
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as noted in the sections that follow, will have profound effect on tools, and methods
employed in marketing research over the next 10–15 years.

6.1. Internet penetration

Since Internet accessibility to the public in 1994, it has made rapid strides (see Tabel 2)
to become a very powerful platform and changed the way we do business, and the
way we communicate. It is the universal source of information. In fact, Internet is the
most democratic of all mass media. With a very low investment, any business irrespec-
tive of its size can have a web page and reach a very large market, directly, fast, and
economically. With a small investment almost anybody can have access to the world-
wide web. The number of internet users in December 1995 was 16 million representing
only 0.4% of the world population. This has grown to 361 million or 5.8% of the world
population by December 2000 and then to 1.018 billion or 15.7% of world population by
December 2005 and to 1.093 billion or 16.6% of world population in December 2006
(www.internetworldstats.com accessed on Feb. 12, 2007). This represents an annual
growth of some 46.8% since 1995 and reaching a moderating annual growth of 25%
during the past 5 years.

Although the annual growth of Internet users may moderate from the past rates of
growth, it is a fair assumption to forecast 15–20% annual growth between now and
2010. That translates to 1.91–2.27 Bil Internet users by 2010. This tends to imply that
Internet research can be representative and effective as other traditional methods with
the fast growth of Internet populations.As reported recently by researchers, the problems
of conducting Internet research must be effectively addressed and resolved, just as the
problems with traditional research. (Ilieva et al., 2002; Kellner, 2004; Mathy et al., 2002;
Schillewaert and Meulemeester, 2005)

English is the language of some 30% of Internet users followed by Chinese and
Spanish by 14% and 8%, respectively. Japanese and German occupy fourth and fifth
ranks with 7.9% and 5.3%, respectively. The top five Internet users languages account
for nearly two-thirds of Internet user population. (www.internetworldstats.com) Table 2
presents SSI Internet Samples by country and official language. It can be seen that
economically well-developed countries tend to have higher and similar levels of
penetration.

Table 2
Internet users by region and penetrations by their respective populations

Region No. of Internet
Users (million)

Internet Penetration
(% of Population)

Asia 389 10.5
Europe 313 38.6
North America 232 69.4
Latin America 89 16.0
Africa 33 3.5
Middle East 19 10.0
Australia/Oceania 19 53.5

Source: www.internetworldstats.com accessed on Feb. 12, 2007
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6.2. Web surveys: issues

The power of the Web appears to have both positive and negative sides. Because it
is relatively inexpensive to conduct surveys on the Internet, any business organization
irrespective of its size can avail this opportunity. On the other hand, the proliferation of
Web surveys makes it difficult to evaluate the quality of the surveys. Couper (2000) has
observed: “It has become much more of a fragmentation than a bifurcation (“quick and
dirty” versus “expensive but high quality,” as was originally predicted) with vendors
trying to find or create a niche for their particular approach or product.” The Web surveys
must be evaluated like other surveys in terms of their sampling, coverage, nonresponse,
and error properties.

6.2.1. Coverage and sampling error
The construction of sample frame for Web surveys that will lead to selecting probability
samples is not easy. The sampling frames are often incomplete and the coverage error
is probably the most serious as only about 42% of the population have used the Internet
even in the United States. Although it is expected to grow, it is not clear how much this
percentage will be in the future. It may be constrained by the interest of the population
in information sources.

The problem is not only who has access to the Internet but also the demographic and
behavioral difference of the population base between those who have access and those
who do not. The National Telecommunications and Information Administration (NTIA)
report generally identifies that income, race, education, and household composition all
play a role in having Internet access. Thus, the challenge for Web survey researchers
is to find ways to reach the target population or otherwise, the inferences from survey
results could be very restrictive. Because of the coverage issue, the sampling errors are
likely to be high and skewed.

6.2.2. Nonresponse error
The nonresponse error depends on the rate of nonresponse and on the difference between
respondents and nonrespondents on the variables of interest. When the sampling frame
itself cannot be defined, the problem becomes even more acute. Couper et al. (1999)
summarize the response rates in e-mail surveys and observe that the response rates in
e-mail surveys are lower than the rates for mail surveys. Several reasons are attributed
to this gap: lack of personalization as in mail surveys, technical difficulties in using the
Internet, and confidentiality concerns.

6.2.3. Measurement error
The Web is more flexible for constructing survey instruments, such as adding visuals,
etc., and therefore provides many options in its form and in its content. There is no
definite conclusion on the ideal form of the surveys; it is clear that it all depends on the
target population. In longitudinal surveys it is possible that the response over time may
be biased. Given that the sampling frames are not easily defined for Web surveys, the
statistical adjustments that could be made need to be studied more carefully.

6.3. Types of web surveys

Couper (2000) provides a neat summary of various types of Web surveys (see Table 2
of his paper). The surveys could be broadly classified as based on nonprobability and
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probability methods. Although the nonprobability methods are similar to other media
surveys such as telephone and mail surveys, we focus here on probability methods. They
take only two forms: restrict the sample to population with web access and thus limiting
the generalizability of the survey results; use other methods to reach broader population
via RDD-type of tools. These are briefly summarized in the following sections.

6.3.1. Intercept surveys
These are targeted toward visitors to a Web site and are used mainly for eliciting product-
related opinions and in general to acquire customer feed back. Typically, systematic
sampling is used and cookies are used to track the visits and for the timing of the
exposure to the survey.

6.3.2. List-based samples
Here, we begin with a list of households with Web access and invite a select sample
to participate in the survey with proper checks for avoiding duplications. Although this
may cover only a portion of targeted sampling frames, yet useful estimates of samples
error, etc. could be derived.

6.3.3. Prerecruited panels
Panel members are selected using probability sampling methods such as RDD and are
recruited for surveys on the Web. Because the selection has a probability basis, the
quantification of various types of errors are possible. However, it is recognized that
the nonresponse errors, etc. could be still different for Web and further research must
be done to better understand the dynamics of nonresponse between the Web and other
modes.

6.3.4. Probability samples
The basic approach here is to first define the appropriate sampling frame and then
provide Web access to those who are recruited but do not have access. Although this
is much more scientific than the other methods, the initial response rate to the recruiter
interviews has been somewhat poor. But this approach essentially solves the problem
of representative coverage and Web access.

6.3.5. Mixed-mode Design
These designs combine various modes of reaching the targeted group. Mixed-mode sur-
veys provide an opportunity to overcome the weaknesses of each method, but deploy-
ment of mixed-modes of data collection raises many challenges including the possibility
that some respondents may give different answers to each mode. Dillman (2007) iden-
tifies five situations for use of mixed-mode surveys.

• Collection of the same data from different members of a sample.
• Collection of panel data from the same respondents at a later time.
• Collection of different data from the same respondents during a single data collec-

tion period.
• Collection of comparison data from different populations.
• Use one mode to prompt completion by another mode.
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Use of mixed-mode surveys may enhance the possibility of improving response
rates and reduction of nonresponse and coverage errors. Though there is no compelling
evidence for choice and sequence of mixed-modes to be employed, it appears prudent to
start with a method that is least expensive such as web surveys and then move towards
mail, telephone, and if still necessary employ personal interviews. When multiple modes
of data collection are employed it is essential to make a deliberate effort to deliver
equivalent stimulus regardless of whether it is delivered aurally or visually.

6.4. Online Panels

The conduct of surveys via online panels has gained prominence in recent times because
of easy access to the internet. But the recruitment of panel member in some cases is not
based on known sampling methods. Harris Interactive for examples recruits panel mem-
bers on a voluntary basis, but collects extensive demographics for postsurvey adjust-
ments. Knowledge Network uses the telephone RDD methodology to recruit the panel
members, but the survey information is collected via the internet. In a study related to
health surveys, Baker et al. (2003) found that these online panels are no different from
other panels in terms of response rate, attrition, etc.

6.4.1. Some panel sources
Many suppliers of marketing research services offer online panels (www.iri.com;
www.acnielsen.com; www.lightspeedresearch.com; www.mra-net.org, and others).
Information Resources Incorporated offers a behavior scan system whereas AC
Nielsen offer scan track and specialty panels such as the African-American consumer
panel (www.targetmarket.com). Foreign vendors such as Marsc panel manage-
ment (www.marsc.co.uk), and Intage Inc. (www.jmra.net.or.ip) offer consumer pan-
els in the U.K. and Japan, respectively. Several vendors such as Forrester (www.
forrester.com), Lightspeed (www.lightspeedresearch.com), Marketmakers group
(www.marketmakersgroup.com), Perez (www.perez.com), Robert Thale Associates
(www.robertthaleassociates.com), and others offer B2B panels as well as consumer pan-
els. Future Information Research Management (FIRM) (www.confirmit.com) operates
a database of global 5000 for use of online B2B surveys and panels.

7. Conclusion

With the advent of Internet, we expect that a great number of market research surveys
will be carried out through the Web. Because of the coverage issues we expect increased
use of mixed-mode surveys. The surge in the number of surveys is bound to affect both
the nonresponse rates as well as the quality of the response. The Web provides a unique
opportunity to customize the surveys but this comes with a price of increase complexity
to generalize the results of the surveys because, the web universe is still evolving. Several
articles that have appeared in the International Journal of Market Research emphasize
the various issues pointed out in this chapter. It is obvious that until the issue of Web
sampling frame is clearly understood, the quantification of sources of survey errors will
continue to have bias.
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Sample Surveys and Censuses

Ronit Nirel and Hagit Glickman

1. Introduction

For many people, the simultaneous use of the terms census and sample survey seems
contradictory. This chapter highlights the past use of sample data in census projects, as
well as describes innovative developments in census methodology that accommodates
sample data to various degrees. We start with a brief presentation of the main features
of a census and the new trends in census methodology.

Censuses provide a core of official statistical data, around which demographic anal-
yses, survey estimates, and administrative data are calibrated. A population census has
been defined recently as “the operation that produces at regular intervals the official
counting (or benchmark) of the population in the territory of a country and in its smallest
geographical sub-territories together with information on a selected number of demo-
graphic and social characteristics of the total population” (United Nations Economic
Commission for Europe [UNECE], 2006, p. 6, no. 19). The essential features of a cen-
sus, as specified by the Commission, include universality, simultaneity of information,
and individual enumeration. These features imply that there is a (a) well-defined cen-
sus population, (b) reference date for all census data, which is usually referred to as
Census Day, and (c) accurate data pertaining to individuals with regard to place of res-
idence and other sociodemographic characteristics on Census Day are collected. Thus,
for a person to be enumerated correctly in a census, nontrivial eligibility criteria must
be met.

National eligibility. Each person should have one and only one usual place of resi-
dence, which defines the country he or she belongs to. A person living continuously in
one country for more than a predefined period of time (e.g., for over one year on Census
Day) is considered a “usual resident” of that country and is included in the target census
population. A person living outside the country for longer than that period is not eligible
for enumeration in the census. An illegal work migrant, for example, may be eligible for
enumeration in the census if he or she has resided continuously in the destination country
for more than, say, one year. The crucial role of the time reference is also noteworthy. For
example, a baby born one day after Census Day is considered ineligible for enumeration,
whereas a person in the target population who died one day after Census Day is
eligible.
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Local eligibility. Within a country, every individual should be counted at his or her
usual place of residence on Census Day. The definition of a “usual residence” specifies,
for example, criteria for people who divide their time between two places of residence
(e.g., people working away from their family’s place of residence; children in shared
custody). The issue of place of residence also interacts with the time reference. People
who moved one day before Census Day are considered ineligible at their former address,
even if they lived there for 30 years, and are eligible at their new address.

For detailed recommendations on eligibility issues, see UNECE (2006) and United
Nations (2006).

In the past, censuses have involved nationwide area enumeration (door-to-door data
collection). In recent decades, however, it has become evident that there is more than
one way to conduct a census with the essential features mentioned above. First, various
collection methods have been developed within the traditional door-to-door framework,
including self-enumeration and mail back and/or mail out options. Another group of
new methodologies includes censuses that are based on administrative sources, with
or without supplementary fieldwork data. The third group of innovative census-taking
methods is based on appropriate accumulation of sample survey data that cover the
census population over a predefined period of time.

It is not difficult to understand why many countries invest in developing new cen-
sus methodologies. To begin with, advances in information technology have enhanced
the role of administrative data in managing official statistics, including construction
of registers such as population and housing registers. Enhancement of record linkage
procedures has made it possible to accumulate data from various sources. Concomi-
tantly, the demand for more detailed information has increased, whereas the willingness
of individuals to respond to questionnaires has declined. Thus, many new approaches
focus on improving quality and timeliness of census outputs while reducing the response
burden. Finally, some countries expect the new methodology to reduce costs and enable
expenses to be distributed more evenly over time.

Regardless of the methodology used, census counts are subject to different types
of errors, which include coverage, content, and operational errors. Of those, coverage
errors are the most crucial. There are two types of coverage errors: undercount and over-
count. Undercount occurs when an eligible person is omitted from the enumeration, and
overcount occurs when an ineligible person is erroneously enumerated. The definition
of coverage errors depends on the geographical scale of interest. For example, some
countries define a coverage error only at the national level, whereas other countries
consider a person who is enumerated incorrectly at the level of a geographical region
(e.g., in the wrong province) as contributing to undercount in the correct region and to
overcount in the region of enumeration. Errors at various geographic scales within a
given country can be of interest as they may relate to different uses of census data.

Because the census is an important and costly operation, evaluation of its coverage
errors has become a “state-of-the-art” procedure in census-taking. Thus, many countries
conduct a postenumeration survey (PES) immediately after enumeration (whether the
enumeration is field-based or administrative), with the objective of estimating census
coverage rates. Furthermore, some countries use PES estimates to adjust census counts
for coverage errors. Section 2 describes the use of sample surveys to estimate coverage
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errors. The section begins with a description of model-based undercount estimation
(Section 2.1) and extends the approach to estimation of undercount and overcount (Sec-
tion 2.2). To conclude, we present design-based approaches to coverage evaluation
(Section 2.3). In that section, corresponding sample designs are presented together with
illustrative examples.

The PESs are generally large surveys possibly comprising hundreds of thousands
of households. As such, some countries conduct operations that evaluate the PES. This
“second-order” evaluation becomes a “first-order” evaluation of the census output when
the PES results are used to statistically adjust the census counts.Although the main source
of bias in “raw” census counts are errors pertaining to coverage, the main sources of bias
in a PES or in adjusted counts relate to measurement errors, modeling, and processing.
Owing to the dearth of comprehensive investigations on this topic, Section 3 attempts to
provide a conceptual framework for possible uses of sample data to evaluate statistical
adjustment of census counts. In light of the growing diversity of census-taking methods,
we focus on broad principles rather than on specific solutions. The first step we propose
is to analyze the remaining uncertainty in the adjusted counts (Section 3.1). The second
step is to identify potential errors resulting from this uncertainty (Section 3.2), and the
last step is to design different evaluating operations, including “Evaluation Follow-Up”
(EFU; see Section 3.3).

Section 4 deals with an entirely different types of census that is based on a system
of sample surveys. This approach adopts the principles of a rolling sample design,
which is briefly described in Section 4.1. The remainder of Section 4 focuses on a
description of the rolling census in France, which is the only country that has decided
to carry out a sample-based census to date. In the concluding section, we describe
sample surveys carried out in conjunction with a census (Section 5). These are the
“long-form” surveys, in which comprehensive socioeconomic information is collected
in the framework of the census. The U.S. Census is presented as an illustrative example
of the main methodological features of such surveys (Section 5.1). A relatively recent
development of the long-form concept is referred to by the UN a “traditional census
with yearly updates of characteristics” (UNECE, 2006). In this type of census, only
short-form data are collected, and the long form is replaced by a set of annual samples
from which socioeconomic data are collected during the intercensal years. This idea
was implemented in the American Community Survey (ACS), which is described in
Section 5.2.

2. The use of sample surveys for estimating coverage errors

A population census is exposed to different types of errors, including coverage, content,
and operational errors (UNECE, 2006). Of these, coverage errors are the most serious
because the main objective of a census is to provide a full and accurate count of the
population. Let C be the census count and N be the true population count. The census
net coverage error D is defined by

D = N − C.
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A positive value of D indicates net undercount and a negative value indicates net over-
count. Coverage errors arise due to omissions or erroneous enumerations of people in
the census. In the past, when enumerators conducted door-to-door enumeration, the
most common coverage problem was undercount of dwellings and of individuals within
dwellings. In recent years, interest in correcting overcount errors has grown, as several
countries base their censuses on administrative registers, and as door-to-door enumer-
ation and form collection has been replaced by various combinations of data collec-
tion through the mail and internet. Registers are often subject to inaccuracies in both
directions (undercount and overcount) because of delayed updates or lack of report-
ing. Mailing and internet responses are exposed to duplications and fabrications, as
well as to difficulties in understanding census eligibility criteria. Because the census
is a large, central, and costly operation carried out once every 5–10 years, evaluation
of coverage errors has become a “state-of-the-art” procedure in census-taking. Thus,
many countries conduct a PES immediately after the census enumeration activity that
estimates the census coverage rate. Furthermore, some countries use PES estimates to
adjust census counts for coverage errors. In this section, we describe several coverage
models and the corresponding PES sample design, as well as design-based evaluation
programs.

2.1. Dual system estimator–based estimation of undercount

To begin with, we consider a census list that is exposed only to undercount. To esti-
mate the extent of undercount in the census list, another source of information is
required, namely, another full or sample-based enumeration. The most known model for
estimating the size of a closed population using two incomplete enumerations is the
capture–recapture model. This model has been used since the 19th century in many dis-
ciplines, such as wildlife management, epidemiology, physics, criminology, software
testing, and, of course, demography (see, e.g., reviews by Chao, 2001; Schwarz and
Seber, 1999). Variants of the problem include the case where two enumerations attempt
to count all members of the population (nonsample case) and the case where one of the
enumerations is sample-based (census sample). Data may be obtained from field data
collection or from a list frame such as a register. In the census-taking literature, these
models are referred to as dual system estimators (DSEs). For a comprehensive review of
literature on capture–recapture modeling in census methodology, see Fienberg (1992)
and Chao and Tsay (1998).

2.1.1. The dual system model
We will begin with a description of the standard DSE (Peterson, 1896; Sekar and Deming,
1949; Wolter, 1986). Consider a closed population �, which comprises N individuals
residing in a given geographical area at a specific time. Assuming that N is fixed but
unknown, the problem is to estimate N. Suppose, for the time being, that we have made
two attempts to count the entire population and have obtained two lists of identified
individuals. After matching the two lists, a 2×2 table is set up, as in Table 1. Table 1 is
commonly referred to as The Dual System Estimation Table.

The entries in the table relate to the number of people counted in list A and list B,
Y11; the number of people counted in A but not in B and in B but not in A, Y10 and
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Table 1
The dual system estimation table for the nonsample case

Census List B

Counted Missed Total

Census Counted Y11 Y10 Y1+
List A Missed Y01 Y00 Y0+

Total Y+1 Y+0 Y++ = N

Y01, respectively; and the number of people missed in both lists, Y00. Note that Y00,
the marginal totals Y+0, Y0+ and the population total Y++ = N are unobservable, and
therefore need to be estimated. Let pab be the probability of inclusion in the abth cell,
a, b = 0, 1, +. The estimation procedure is based on three major assumptions: (A1),
lists A and B are created as a result of N mutually independent trials (autonomous
independence); (A2), counting probabilities are homogeneous across individuals (het-
erogeneous independence); and (A3), the event of being counted in list A is independent
of the event of being counted in list B (causal independence). With these assumptions,
the probability of being counted twice is the product of the marginal counting probabil-
ities, p11 = p1+p+1, and the maximum likelihood estimators of the probabilities that a
person will be counted in list A and in list B, p1+ and p+1, respectively, and of the total
population N, are

p̂1+ = Y11

Y+1
, p̂+1 = Y11

Y1+
, N̂ = Y1+ · Y+1

Y11
= Y1+

p̂1+
. (1)

It can be seen that the total population estimator N̂ is expressed as the number of
individuals counted in the first list divided by the estimated counting probability of this
list p̂1+. Given assumptions (A1)–(A3), these estimators are strongly consistent with
asymptotic normal distribution (see, e.g., Alho, 1990).

In many applications of the dual system methodology, it is not realistic to assume
that both lists are based on a counting procedure that aims to count the entire population.
Wolter (1986) provides a detailed description of an alternative model where only one
list, for example, the first one, is a nonsample list. The second list is based on a sample
of people that is selected from the target population for possible inclusion in the second
list. In the context of a census, the first list would be the full enumeration census list and
the second list would be provided by a postenumeration undercoverage sample survey.

Suppose that the underlined geographical area is divided into M plots known as
enumeration areas (EAs). A simple random sample of m EAs is chosen, and the data
collected for list B consist of an enumeration of the population living at the sampled
areas only. At this stage, it is assumed that both the census and the survey count only
eligible people. For this census-sample case, the maximum likelihood estimators of N

and the marginal capture probabilities are

p̃1+ = YU
11

YU
+1

, p̃+1 = YU
11

YU
1+

, Ñ = Y1+ · YU
+1

YU
11

= Y1+
p̃1+

, (2)

where the superscript U indicates sampled EAs. The population size is estimated as
the total number of individuals counted in the census list divided by the sample-based
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estimator of the counting probability p̃1+. The parameter p1+will also be referred to as
the undercount parameter.

When a more complex sampling design is used for sampling EAs, predictors of Y11,
Y1+, and Y+1 are calculated according to the particular sampling scheme. In that case,
the population size is estimated by substituting the appropriate design-based predictors
in (1), Ñ = (Y1+Ŷ+1)/Ŷ11, where Y1+ is the census count as before. For example, in
the U.S. Accuracy and Coverage Evaluation (ACE) Survey described in Section 2.2.2
(U.S. Census Bureau, 2004), Y+1 is essentially predicted by Ŷ+1 =∑k∈S wk, where wk

reflects the inverse of the probability of selection of person k in the sampled EAs, as
well as adjustments for missing data and other operational problems. A similar predictor
is calculated for Y11.

A slightly different estimation approach was taken by the United Kingdom 2001 One
Number Census (ONC). Here, the classical DSE (1) was applied at the EA level, and a
ratio estimator was used to estimate the size of the entire population.

Ñ = R̃Y1+ where R̃ =
∑
i∈U

N̂i

/∑
i∈U

Yi
1+ =

∑
i∈U

Yi
1+Yi

+1

Yi
11

/∑
i∈U

Yi
1+, (3)

where i indicates EAs, see Brown et al. (1999).
Wolter (1986) derived an expression for the asymptotic expectation and variance

of Ñ given in (2) by applying the standard Taylor series method, EÑ = N + C and
Var Ñ = N · C, where

C = (1 − p1+)(1 − p+1)

p1+p+1
+ 1 − f

f

1 − p1+
p1+p+1

, (4)

and f = m/M is the sampling fraction. When other estimation schemes are adopted
(e.g., the ONC ratio estimator (3)), the variance is usually estimated by resampling
methods.

The estimators described above rely heavily on model assumptions. Some modified
versions of those estimators have attempted to deal with the potential failures of these
assumptions. Bias resulting from failure of the heterogeneous independence or causal
independence assumptions (assumptions (A2) and (A3) in Section 2.1.1, respectively)
is referred to as correlation bias. Heterogeneity in counting probabilities is often han-
dled by poststratification. Typical stratification variables include geographic units, age
× gender groups, and other socioeconomic variables. Thus, it is assumed that the hetero-
geneous independence assumption is satisfied within poststrata, and a DSE is computed
for each stratum. Huggins (1989) and Alho (1990) further generalize the DSE to cases
in which counting probabilities vary for different people (e.g., cases when some hetero-
geneity still remains within strata). The individual counting probabilities are estimated
through logistic regression using relevant explanatory variables. The model predicts the
propensity that a person will be counted in the census and in the sample (for further
insights on this topic, see also Haines et al., 2000, and a presentation by Bell, 2007).

Causal independence is not satisfied if the act of someone being included in the census
affects his or her probability of inclusion in the coverage survey. This can happen, for
example, when data collection for the PES and census enumeration are not conducted
at completely different times or if some information about the first enumeration is
available at the second enumeration. Let θ = Y11Y00/Y10Y01 be the odds ratio in Table 1,
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then Eθ ∼= 1 under the assumptions of the model. However, in the presence of correlation
bias, the total population N can be estimated as

N̂(θ̂) = N̂ + (θ̂ − 1)Y10Y01/Y11, (5)

where θ̂ is a predictor of θ and N̂ is the DSE estimator (1) (Bell, 1993). Additional
independent (external) data are required to predict θ (e.g., administrative data or demo-
graphic estimates). If those data are available, we may have a good demographic total
estimate at the national level. Plugging this estimate in place of N̂(θ̂) in (5) yields a
prediction of θ. If we are interested in corrected DSEs within poststrata, either external
total estimates for these strata are required or some assumptions on θ can be made. Since
no accurate external estimates are available at subnational levels in many instances, the
second alternative is usually adopted. The simplest assumption is that θ is constant across
all poststrata. In that case, a synthetic estimate is obtained using strata-specific census
and PES counts combined with a national estimate of θ. Other possible assumptions
that yield corrected DSEs have been proposed by Bell (1993, 2001), Elliott and Little
(2000), and Brown et al. (2006). Methods based on a third enumeration, known as triple
system estimators, are discussed by, for example, Darroch et al. (1993) and Zaslavsky
and Wolfgang (1993).

Finally, we note that the dual system model is based on the multinomial distribution.
An alternative model for the target population capture process is based on the Poisson
distribution (e.g., Cormack and Jupp, 1991). The main advantage of the Poisson model
is its amenability to standard maximum likelihood theory. Log-linear models are also
discussed extensively in the capture–recapture literature (e.g., Rivest and Levesque,
2001), including models that accommodate heterogeneous capture probabilities. As far
as we know, the Poisson and log-linear models have not been used in a census context.

2.1.2. Principles of sample design and an illustrative example
To estimate undercount using the DSE, undercoverage postenumeration surveys have
been conducted in many countries, including Australia (Australian Bureau of Statistics,
2007), Italy (Cocchi et al., 2003), Turkey (Ayhan and Ekni, 2003), and the United
Kingdom (Brown et al., 1999). Typically, two-stage or multistage stratified area samples
are used in those surveys. To keep the description simple, we present a two-stage design
that has the following features:

Target population. Ideally, the PES target population should be the same as the census
target population. In practice, however, some countries exclude population groups such
as people living in nonprivate dwellings or in remote areas.

Primary sampling units. These first-stage units are relatively large geographical units
such as municipalities.

Secondary sampling units. The primary sampling units (PSUs) are partitioned into
smaller plots that typically comprise several dozens of households or dwellings. These
may correspond to existing administrative units such as postcode areas, geographical
units such as blocks, or often EAs defined specifically for the census. The main rationale
for selecting an area-based cluster sample is the lack of reliable sample frames that are
independent of the census enumeration, and that can be used to select units such as
dwellings, households, or individuals. In addition, an area sample might be preferred
for operational reasons.
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Sample frames. When address files or building registers exist, they may be used to
design and select the secondary sampling unit (SSU) sample. These lists can be on a
national scale or can comprise a combination of local lists. As mentioned before, in
many situations, only a PSU-level list is available and the second-stage sampling is
based purely on geographic area maps. It should be emphasized that the frames should
not depend on census information.

Stratification of PSUs. Undercount is generally not homogenous across PSUs. For
example, it is expected that undercount will be higher in areas with a high immigration
rate or with a high proportion of young people. Therefore, many countries stratify PSUs
by characteristics that were found to be important determinants of undercount to attain
sample efficiency. For example, a national Hard-to-Count (HtC) score was constructed
in the U.K. ONC based on the previous census information. The index distinguished
among PSUs by their expected level of census coverage.

Sample size and sample allocation. The overall sample size usually balances accuracy
requirements, cost, and other considerations such as using the PES to collect additional
socioeconomic data (see Section 5). Some countries aim at sample sizes ranging from
200,000 to 400,000 households (e.g., Italy and United Kingdom) and others have smaller
samples ranging from 20,000 to 40,000 households (e.g., Australia and Turkey). Sample
allocation to strata usually aims to minimize the variability of the DSE in key areas
and population groups. Hence, sampling fractions are generally unequal in different
strata. As such, sampling rates are typically expected to be larger in areas with higher
undercount rates, as can be seen in Eq. (4). Since counting probabilities are unknown at
the time of sample design, the design should be robust to deviations in the hypothesized
distributions. Hence, simulation studies (e.g., Brown et al., 1999), sensitivity analyses
(e.g., Nirel et al., 2003), and pilot surveys are used to design the sample.

The U.K. 2001 Census Coverage Survey. The 2001 ONC project aimed to identify and
adjust for omissions in the 2001 Census. Undercount was evaluated on the basis of a PES
known as the Census Coverage Survey (CCS). The objective of the CCS was to provide
undercount estimates at the subnational level by age groups and gender and was to
allocate the undercount to small areas. The CCS was a stratified two-stage sample, where
the primary strata were estimation areas comprising approximately 500,000 people.
There were 101 estimation areas in England and Wales, eight in Scotland, and three in
Northern Ireland. The PSUs were the 1991 Census Enumeration Districts (EDs).

Using the HtC distribution, three strata corresponding to three levels of enumeration
difficulty (lowest 40%, middle 40%, and top 20%) were defined within each estimation
area. Within these strata, PSUs were further stratified by size groups of the key age-
gender distribution. The size strata were formed on the basis of a design variable, which
captured the age-gender structure of the EDs using babies, young males, and elderly
female age-sex groups. A sample of EDs was selected within those strata, and postcodes
(SSUs) were selected within each selected PSU, with probability related to the mean
number of addresses per postcode within the selected ED. A sample of about 19,500
postcodes was selected, which consisted of about 370,000 households (including about
320,000 in England and Wales alone). The sample size aimed at a 1% relative error
rate for the EA level estimates, and a relative rate of 0.1% for the national counts. Data
was collected by face-to-face interviews as compared to the Census self-completion
questionnaire. For more details, see Brown et al. (1999) and Abbot and Marques dos
Santos (2007).
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2.2. DSE-based estimation of undercount and overcount

As we have pointed out, the problem of census overcount has become as important as
undercount in census methodology. Surprisingly, for example, in the U.S. 2001 census,
the estimated net undercount was −0.5%, that is, the census data essentially revealed
a net overcount rather than a net undercount. In this section, we will describe two
approaches to estimating overcount, together with a dual system for estimating under-
count. The first approach suggests a design-based estimate of overcount rate. The second
approach is based on the multinomial-Poisson model, which extends the dual system
multinomial model and includes both undercount and overcount parameters.

2.2.1. Extending the dual system estimator
In the undercount scenario described in Section 2.1, two sources of information were
required to estimate undercount—census enumeration and a sample of EAs. We refer
to this sample as the undercoverage sample or in short, the U-sample. Consistent with
the DSE assumptions, the U-sample is drawn independently from the census list, for
example, an area sample. If the census list comprises Z enumerations, of which X are
ineligible, then Z = Y1+ + X. We also assume, as before, that the U-sample list does
not include ineligible persons.

To predict X, a second sample is selected, that is, the overcoverage sample or the
O-sample. The objective of this sample is to identify erroneous enumerations that result
from counting ineligible people in the census. Therefore, the sampling frame is now the
census list, which is assumed to consist of eligible and ineligible people. To reduce cost
and simplify data collection, it is convenient that the O-sample comprises the same EAs
as the U-sample. Specifically, the O-sample consists of all people who are enumerated
by the census in the same plots as those that are selected for the U-sample.

Assume, as before, that a simple random sampling scheme of m plots out of M

has been selected. The design-based adjustment of the standard DSE for overcount
first shrinks the census count, Z, by the O-sample estimate of the share of correct
enumerations in the list, (ZO − XO)/ZO = YO

1+/ZO, where the superscript O indicates
O-sample counts. The predicted number of eligible people is then expanded by the
U-sample estimate of the counting probability p̃1+ of (2). In sum, we obtain

ÑD = Z
YO

1+
ZO

1

p̃1+
= Z · YO

1+ · YU
+1

ZO · YU
11

. (6)

This design-based approach to estimating overcount together with the DSE has
been used in U.S. Censuses (e.g., Hogan, 1993, 2003; Mulry, 2007, see below) and
in Switzerland (Renaud, 2007a). Variance estimates for ÑD can be obtained by resam-
pling methods such as stratified jackknife methods (U.S. Census Bureau, 2004, Section I,
Chapters 7–14).

A model-based approach for estimating and adjusting for overcount is based on five
basic assumptions. The three assumptions of the classical DSE model (A1)–(A3), plus
two additional assumptions: (A4), the number of ineligible people counted by the census
in an EA, i is distributed according to the Poisson distribution, with expectation λNi

for λ > 0, i = 1, . . . , M; and (A5), all EA counts of eligible and ineligible people
are mutually independent. Note that assumption (A4) states that the rates of ineligible
counts are homogeneous across EAs. This multinomial-Poisson model was proposed
by Glickman et al. (2003) for the 2008 Israeli Integrated Census.
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When Z = Y1+ + X represents the number of eligible and ineligible people counted
in the census list as before, the estimators derived from the model are

p̃1+ = YU
11

YU
+1

, p̃+1 = YU
11

YU
1+

, λ̃ = XO

YO
1+
/
p̃1+

ÑM = Z

p̃1+ + λ̃
. (7)

Thus, the estimate of the undercount parameter p1+ is the same as in (2), and the
overcount parameter λ is estimated by the share of ineligible persons out of the eligible
persons on the census list, with an adjustment for undercount. Note that since p1+is the
expected share of eligible persons in the list and λ is the expected share of ineligible
persons, their sum amounts to the expected size of the list, Z, divided by the size of
the target population. In that way, we obtain the estimator ÑM in (7). Note that for the
sample design considered here, the census list corresponding to sampled EAs was the
same for the U-sample and the O-sample.

The expressions for the asymptotic expectation and variance are similar to those
derived by Wolter (1986), for the case with no overcount in the census list. We obtain
EÑ = N + C and Var Ñ = N · C, where

C = (1 − p1+)(1 − p+1)

p1+p+1
+ 1 − f

f

1 − p1+
p1+p+1

+ 1 − f

f

λ

p1+ + λ

(
p1+

p1+ + λ
− 1 − p1+

p1+

)
.

(8)

The last term in the right side of Eq. (8) represents the contribution of overcount to
the variance of the census population estimator.

It should be noted that the share of eligible persons estimated in (6) is defined with
respect to the total number of census enumerations (eligible and ineligible), whereas the
overcount parameter λ estimated in (7) is defined only with respect to the number of
eligible persons.

2.2.2. Sample design and illustrative examples
The O-sample typically consists of all people who are enumerated by the census in
the same EAs selected for the U-sample. Thus, the sampling units and stratification
variables are defined according to principles similar to those described in Section 2.1.2.
Operationally, data collection for the two samples is linked in the following schematic
stages:

(1) U-sample data collection;
(2) Construction of U-sample list;
(3) Matching U-sample and O-sample lists; and
(4) Follow-up of unmatched cases (overcoverage-follow-up, OF).

Hence, the OF fieldwork is limited to people listed in the sampled EAs who were not
linked to the U-sample list. These may be ineligible people, eligible people missed by the
U-sample enumerators (U-sample undercount), or false nonmatches. Sample size and
sample allocation take into account expected overcount patterns in addition to expected
undercount patterns. Note that whereas the U-sample unit is a household or a dwelling,
the enumeration unit in the OF is typically an individual.
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The following is a description of the U.S. 2001 Census Accuracy and Coverage Eval-
uation and the Israeli Integrated Census paradigm for the 2008 census. Two examples
illustrate estimators (6) and (7), respectively.

2.2.2.1. U.S. census 2000 accuracy and coverage evaluation. The ACE consisted of
an undercount sample (the Population sample, or P-sample) and an overcount sample
(the Enumeration Sample, or E-Sample). The PSU was a block cluster comprising about
30 housing units. A national sample was selected in three phases:

(a) In the first phase, block clusters within states were classified into three size strata
(small, medium, and large) and a fourth American Indian Reservation stratum.
The size of the block clusters was based on preliminary census files, and an initial
sample of about 30,000 block clusters was selected. For these block clusters, lists
of housing units were created by field work.

(b) In the second phase, the field-based lists and updated census address lists were
used to substratify the first phase sample within the large and medium strata in
each state (reduction strata). A subsample of block clusters was selected, with
equal selection probabilities within second-phase strata and possible differences
in selection probabilities across strata. The second phase sample consisted of
11,303 cluster samples with about 850,000 housing units.

(c) In the third phase, a subsample of housing units was selected in block clus-
ters consisting of 80 or more housing units. This phase elicited a final sample
of about 301,000 housing units from the 11,303 block clusters selected in the
second phase. The respective E-sample list consisted of 311,000 housing units
(approximately 700,000 people).

Data were collected for the P-sample by means of computer-assisted personal inter-
viewing (CAPI). The P-sample list was matched to the census list in the sampled blocks
or in adjacent blocks, using computerized or computer-assisted clerical matching pro-
cedures. All the unresolved cases in the P- and E-samples (e.g., nonmatches, possible
matches) were sent for follow-up interviews. About 50,000 people were included in the
P-sample follow-up and about 143,500 people in the E-sample follow-up (for a detailed
account, see U.S. Census Bureau, 2004).

The form of the DSE used in each estimation poststratum of the ACE was essentially
as follows:

Ñ = Z × ŶE
1+

ẐE
× ŶP

+1

ŶP
11

× φ, (9)

where Z is the total number of census enumerations, ẐE is the estimated number of
census enumerations from the E-sample, ŶE

1+ is the estimated number of eligible enu-
merations from the E-sample, ŶP

+1 is the estimate of the total population from the P-
sample, ŶP

11 is the estimated number of enumerations from the P-sample that match to
the census, and φ is a correlation bias adjustment factor applied for male adults. All four
E-sample and P-sample estimators in (9) are basically expansion estimators adjusted for
missing data and other operational problems. The middle expression in (9), ŶE

1+/ẐE,
is the census overcoverage correction factor, while the last expression, ŶP

+1/Ŷ
P
11, is the

census undercoverage correction factor (see, e.g., Mulry, 2007).
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2.2.2.2. The integrated census paradigm planned for the 2008 Israeli census. The
basic idea of the Integrated Census (IC) is to replace the traditional nationwide field
enumeration with an “enumeration” of the Population Register (PR) augmented by
survey data for estimating and adjusting for coverage errors. Note that enumeration of
the PR means collecting the data from the PR files. Estimates of the coverage parameters
are obtained through two coverage surveys: The U-survey is based on an area sample and
provides estimates of undercount rates, and the O-survey is based on a sample of people
from the PR and provides estimates of overcount rates. Notably, U-sample enumeration
is “blind” to the PR. Thus, the enumerators do not know if and where a person in their
area is listed in the PR.

In the Israeli administrative-statistical system, the country is divided into statistical
areas (SAs), which comprise 3000–4000 residents on the average. The aim of the IC is
to provide population estimates by age and sex subgroups within SAs. In preparation
for the IC, SAs are divided into EAs, which include about 50 households each on the
average. All PR records are geocoded and clustered into the above-mentioned EAs and
a random sample of EAs is then selected within each SA. The U-sample comprises all
eligible people who live in the sampled EAs, and the O-sample includes all people who
are listed in the PR in the same EAs.

The planned sample for the first IC will comprise about one-fifth of the population
(about 400,000 households). However, the sampling fraction within SAs will vary in
accordance with accuracy requirements and on the level of the coverage parameters.
Sample allocation is basically extracted from the variance estimator (8), and estimates
of the coverage parameters are plugged in by matching the previous census with the PR,
as well as on the basis of other demographic data (e.g., percentages of children, young
people, elderly people, religious people, and new immigrants—for further details, see
Nirel et al., 2003).

The U-sample fieldwork will start one day after Census Day and will last from
four to six weeks. The U-sample file will then be matched to the PR and a list of
the people remaining in the O-sample EAs will be created, which includes the people
in the O-sample file but not those in the U-sample file. To complete the O-sample
fieldwork, all the people in the remainder list (the overcoverage-follow-up sample) will
be traced and interviewed to determine their status. The OF-sample is expected to include
approximately 20% of the O-sample on average.

2.3. Other approaches to estimation of coverage errors

Several countries evaluate coverage errors through PESs, which provide direct estimates
of overcount and undercount rates by usual weighting methods rather than through
DSE-based estimates. A prime example of this approach is the Canadian Coverage
Error Measurement Program. A traditional census is conducted in Canada every five
years, with modifications in the data collection methodology introduced in each cycle.
Thus, in the 2001 census, questionnaires were distributed by enumerators, completed by
household members, and returned by mail (mail out). In the 2006 census, an additional
online option was offered for completion and return of the census questionnaire. The
Canadian evaluation program will be illustrated below on the basis of the 2001 census.
The program comprised the following four studies (Statistics Canada, 2004a):
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(1) The Dwelling Classification Study (DCS), which focused on undercount due to
misclassification of dwellings as unoccupied and due to nonresponse;

(2) The Reverse Record Check (RRC), which estimated total undercount and over-
count that was not included in the other studies (AMS and CDS below);

(3) TheAutomated Match Study (AMS), which focused on overcount of people who
were counted more than once within the same area; and

(4) The Collective Dwelling Study (CDS), which dealt with overcount of people
who are counted in noninstitutional collective dwellings as well as in private
dwellings.

Due to lack of space, we provide here a brief description of these samples (for a
detailed account, see Statistics Canada, 2004). The main features of the above samples
are highlighted in Table 2. In the DSC, enumerators returned to unoccupied and non-
response dwellings in the sampled EAs in an attempt to determine whether or not the
dwellings had been occupied on Census Day. The estimates from this survey were the
only ones that were fed back into the census database. Approximately 223,000 people
were added to the census database.

The RRC was sampled independently from six sampling frames that cover the entire
census target population. The total sampling fraction was approximately 0.2% although
the sampling fractions varied between and within frames. The main frame was the 1996
census (providing 74% of the total RRC sample), and the other frames included people
who had been missed in the 1996 RRC, as well as files of births, immigrants, nonperma-
nent residents, and health care beneficiaries. An effort was made to identify people who
appeared in more than one frame. The 1996 census frame was stratified by province,
gender, age, and marital status. Sample allocation was based on past coverage and trac-
ing rates, which yielded higher sampling fractions for strata with a high percentage of
hard-to-count people. An intensive tracing operation provided telephone numbers and
other contact details for approximately 50% of the people in the RRC sample, and data
were collected primarily by computer-assisted telephone interviewing. Notably, this
study was completely independent of the census operation.

Table 2
The main features of the sample design in the Canadian 2001 Census Coverage Error Measurement Program
(for a detailed description, see Statistics Canada, 2004)

Study Target Population Sample Size Sample Design

Dwelling
Classification
Survey (DSC)

Nonresponse and
unoccupied dwellings

1399
enumeration
areas

Urban: single-stage
stratified sample
Rural: Two-stage sample

Reverse Record
Check (RRC)

People who should be
enumerated

60,653 persons 1996 Census: single-stage
stratified sample with
varying sampling rates

Automated Match
Study (AMS)

Matched pairs of
households within the
same region

17,275 pairs of
households

Single-stage stratified
sample

Collective Dwelling
Study (CDS)

Usual residents in non-
institutional collective
dwellings

4500 residents Single-stage stratified
sample. Sample size was
related to population size
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Although the last two studies did not involve field operations, they are described
here to provide a complete presentation of the program. The objective of the AMS
was to identify duplicate households within the same geographic region. Automated
record linkage identified exact and near matches, and the pairs were then stratified by
variables such as geographic proximity and level of similarity. A questionnaire review
was conducted for a random sample of pairs. Finally, the CDS reviewed questionnaires
completed by a sample of usual residents in noninstitutional collective dwellings who
had reported an alternative address on their census form.

For each study, weighted estimates of undercount and/or overcount were calcu-
lated. These estimates were combined arithmetically to provide the overall estimates.
For instance, the estimated undercount and overcount rates for the 2001 Census were
0.0395 and 0.0096, respectively, yielding a net undercount rate of D̂/N̂ = 0.0299
(SE = 0.0014).

3. The use of sample surveys to evaluate statistical adjustment of census counts

The coverage sample surveys discussed in the previous section estimate the bias in census
enumeration due to undercount and overcount. In many countries, the primary use of
these postenumeration surveys (PESs) has been to evaluate the quality of the census and
to gain insight into coverage issues for future censuses. In several countries, however,
such surveys are considered or even used to improve the accuracy of the census counts
by statistical adjustment. In the United Kingdom, for example, the 2001 ONC comprised
full enumeration as well as a PES, which was known as the CCS (Section 2.1.2), and
covered a sample of approximately 370,000 households. Using DSE, census counts
at the local authority district level were adjusted for undercount (Office for National
Statistics, 2000).

Another interesting example is the U.S. ACE survey, which was conducted following
the 2000 Census. The idea that census counts may be adjusted by sample survey data
led to some controversy regarding the usefulness of such a procedure. Freedman and
Watcher (2003, 2007) argue that “error rates in the adjustment are comparable to if not
larger than errors in the census.” In 2003, the Census Bureau decided not to use the ACE
results for the population base of the intercensal estimates due to “technical limitations”
of the ACE Revision II estimates (Mulry, 2007; U.S. Census Bureau, 2003b).

This section deals with evaluation of adjusted census counts. The primary aim of
such evaluation is to assess whether potential errors that may be introduced by a PES
are small enough so that its use for adjustment will improve the census accuracy. Some
error components can be incorporated in the adjusted estimates. For example, when
dual system models are used, correction for correlation bias can be included in the
adjusted estimates through a correlation bias factor (see Section 2.1.1). This correction
was applied in the U.S. ACE (Bell, 2001; Mulry, 2007), as well as in the U.K. CCS
(Brown et al., 2006). Model and sampling errors can be expressed through variance
estimations, as in the Israeli IC (Glickman et al., 2003; Section 2.2.1).

However, the adjusted estimates can still be subject to biases resulting from errors in
data collection and data processing. Fieldwork in PESs attached to traditional censuses
may take place a few weeks or even a few months after census day. This may lead
to recall problems, for example, it is possible that people will not remember the exact
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date they moved from their census day address or that they will even have problems
remembering birth or death dates around census day. For other types of censuses such as
a register-based censuses combined with coverage surveys, fieldwork for the undercount
survey may start on census day. However, differences between register variables and
field variables, as well as differences in data collection procedures (administrative versus
fieldwork), can introduce new and additional types of errors. In light of that situation,
the following section focuses on some of the error components that require additional
evaluation.

We start by analyzing known and unknown counts at the end of the data collection
process in a census that comprises full enumeration and coverage surveys. We then
discuss possible errors in the adjusted estimates and suggest additional data collection
with the objective of evaluating the adjusted estimates. We conclude the section by
describing evaluations of coverage estimates based on sample surveys that were carried
out by the U.S. Census Bureau after the 1990 and 2000 censuses.

3.1. Known and unknown counts in the DSE and extended DSE paradigm

The first step is to analyze the various pieces of information provided by a full enumer-
ation and coverage surveys. This analysis will highlight the missing information and
help to design a program for evaluating potential biases in the final estimates. Table 3
summarizes the counts obtained by an extended DSE paradigm. We extend the subscript
notation of Section 2 to include a third data source and apply it to eligible counts Y and
ineligible counts X. Thus, Y101 denotes the number of eligible people counted in the
full enumeration, who were not on the undercoverage list but were in the OF. Similarly,
X100 is the number of ineligible people who were counted in the full enumeration but
not in either of the two surveys. In contrast to the previous section, we do not assume
here that the undercoverage survey is free from overcount. Let us follow the stages in
data accumulation for this paradigm, which are given as follows:

(1) Full enumeration. The first step obtains a full enumeration list, either through
field collection or administrative “collection.”At this stage, we observe Z, which
includes eligible and ineligible people. We assume that this list is incomplete and
note that Z = Y11 +Y101 +Y100 +X11 +X101 +X100. However, the break down
of Z is not known at this stage.

Table 3
Data summary for a sampled area in an extended DSE paradigm, including an undercoverage and an
overcoverage-follow-up surveys

Undercoverage Survey List Total

Eligible Ineligible

Counted Missed Counted Missed

OF Survey List OF Survey List

Counted Missed Counted Missed
Census List Counted Y11 Y101 Y100 X11 X101 X100 Z

Missed Y01 Y00 X01 –

Note: Shaded cells indicate unknown counts.
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(2) Undercoverage survey. Once the survey data are collected and matched to the
full enumeration, we obtain (a) the count of matches Y11 + X11; (b) those in
the full count and not in the survey Y101 + Y100 + X101 + X100; and (c) those
who participated in the survey but not in the full list Y01 + X01. The additional
information we seek, namely the omissions of the full enumeration (Y01), is
included in the sum Y01+X01. However, this information is masked by erroneous
survey enumerations (e.g., fabrications) X01. In addition, Y00 is unknown. Note
that although in theory X11 may be positive, that is, both the full enumeration
and survey do not identify a person as ineligible, it is believed to be either equal
to zero or negligible.

(3) Overcoverage-follow-up survey. Data collection and matching of OF data with
previous data shed some light on omissions in the undercoverage survey through
Y101. Respondents in the OF also provide information on ineligibles throughX101,
but the remaining uncertainty due to OF survey nonresponse is still included in
X100. Actually, the sum Y100 + X100 is known, but the break down of eligible
and ineligible respondents is unknown. To complete the table, we note that by
definition, X000 = 0 because the OF list is extracted from the census list.

In sum, after completing the data collection and matching, the unknown counts that
remain are Y00 and a break down of Y01 +X01 and Y100 +X100 (see shaded cells in Table
3). The other counts in the table are considered “known.” Note that a DSE paradigm
that does not include an OF survey is a special case, with Y10 = Y101 + Y100 and the
appropriate X’s equal zero.

3.2. Error components

The second step in developing an evaluation framework is to analyze the sources of
missing data, on the one hand, and the sources of errors in the known counts, on the
other. Table 4 summarizes typical sources of errors leading to undercount and overcount.
It is important to note that the types of errors and their relative weight depend on the
country, on the census methodology, and on data collection methods.

We start by discussing errors pertaining to the unknown counts (see Table 3). The
main sources for these are nonresponse in the OF survey affecting the break down of
Y100 + X100, nonresponse and inadvert omissions of dwellings in the undercoverage
survey affecting Y00, and erroneous enumeration of buildings that do not belong to a
sampled area, as well as fabrications that affect the break down of Y01 + X01. Another
group of errors is those caused by model biases, when missing data are imputed using
a coverage model (e.g., DSE) and nonreponse imputation models.

Other errors relate to “known” counts in Table 3. Those are subject to measurement
and matching errors. One group of measurement errors deals with census eligibility in
the national and local dimensions. People who do not belong to the census population
(ineligible) may be erroneously counted. Such cases include visitors who came to the
country for a limited period (e.g., for less than three months) and happen to be present on
Census Day. Similarly, there are eligible people who might not be counted, for example
an illegal work emigrant who has been living in the country for more than a certain period
(e.g., for over one year). Errors with regard to Census Day Eligibility also include babies
born after Census Day who were counted in the census or people who died after census
day and were not counted (see Fig. 1).
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Table 4
Typical sources of undercount and overcount in adjusted estimates

Error Type Sources of Undercount Sources of Overcount

Unknown cells
Nonresponse Closed dwellings

U-survey and OF survey refusals and noncontact

Misclassification Erroneously classified as
an empty or nonresidential
dwelling

Erroneously classified as a
residential or noninstitutional
dwelling

Geocoding/address Buildings or dwellings
erroneously deleted by
enumerators from area

Buildings or dwellings
erroneously added by
enumerators in area

Other Undercoverage survey
fabrications

Modeling DSE and Extended DSE assumptions not met
Nonresponse imputation errors

“Known” cells
National eligibility Forgotten Counted

Long-term visitors Short-term visitors and
tourists
Citizens living abroad

Born before Census Day Born after Census-Day
Died after Census Day Died before Census Day

Local eligibility Counted more than once
Students at parents’ home
(depending on definition)

Students in dormitories
and in parents’ home

Not counted
Outmovers after Census Day Inmovers after Census Day
People with multiple
residences

People with multiple
residences

Children in shared custody Children in shared custody
No permanent address

Geocoding/address Erroneously omitted from
maps of area

Erroneously geocoded to area

Other OF fabrications and multiple
response

Matching False nonmatches due to
insufficient data

False matches

False nonmatches due to
geocoding to wrong area

Census residence is another difficult eligibility issue.At the time of the PES interview,
some people may have already moved away from their census address (outmovers) and
others may have moved in. Since spatial accuracy is a key issue in censuses, incorrect
records of census residency can lead to substantial bias. Part of the problem for outmovers
is that information about them is obtained by proxy (e.g., from neighbors) and may
thus be unreliable. Other common problems in measuring census residency pertain to
short-term visitors, people with vacation homes, college students, and children in shared
custody.All these problems can result in erroneous enumerations (people counted in two
locations) or in omissions (not counted in any location).
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Census-day

PES interview

In mover (ineligible)

Born (ineligible)

 Died (ineligible)

EFU reinterview

1 2

Died (eligible)

Born (eligible)

Out mover (eligible)

T
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e

Fig. 1. Schematic illustration of eligibility errors resulting in erroneous enumerations (+) and omissions (−).

Another group of errors relates to measurement of geographical locations. In field
operations, enumerators can mistakenly classify a dwelling as empty or nonresidential.
Alternatively, there may be errors in the geographic association of a building to an
EA (geocoding): buildings can mistakenly be added or omitted from an EA because of
erroneous geocodes. Countries that do not have a register of buildings or dwellings are
particularly susceptible to geocoding errors. However, address and building registers are
also susceptible to risks such as duplication (e.g., a building on the corner of two streets
can be entered with both addresses) or omitted addresses. The last group of measurement
errors relates to fabrication and multiple response (mail, interviewer, internet), which
results in erroneous enumerations.

Finally, record linkage procedures are used to produce the DSE and extended DSE
tables (Winkler, Chapter 14). These procedures are applied to identify the people who
were enumerated in both the census and the survey, or who were enumerated in one and
not in the other. Two types of error can occur when this procedure is used. The first type
of error can be made when people enumerated in both the census and the survey are
not linked, and results in false nonmatches. The second type of error can be made when
people are erroneously matched and results in false matches. Linkage errors can result
from insufficient matching information, erroneous data leading to false nonmatches,
imputation errors, or geocoding errors.

An important example of error component analysis is the U.S. Census Bureau total
error model for PES estimates (Hogan and Wolter, 1988; Mulry and Kostanich, 2006;
Mulry and Spencer, 1991). The model attempts to estimate systematic errors remaining
after adjustment. It incorporates modeling, sampling, data collection, measurement, and
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processing errors. The idea is to break the overall bias of the empirical census estimate
into major error components and to try and estimate each component separately. Specif-
ically, the model includes components such as matching errors, errors in census address
reporting, fabrication errors, errors in measuring erroneous enumerations, correlation
bias, and sampling errors. For an interesting analysis of potential problems in a PES,
see also Hogan (2003).

3.3. Evaluation follow-up

The last step is to design the required operations. Some evaluation operations, such as
expert clerical reviews and analyses based on demographic estimates and administrative
data, can be carried out in the office. Evaluation of errors such as Census Day residence
and missing data require a reinterview. We focus here on evaluation components that
are carried out by means of additional sample surveys, which will be referred to as EFU.
Notably, reinterviews are only useful if they provide more accurate data than the census
and the PES. Therefore, when we consider such an operation, it is important to balance
the need for information with the plausibility of obtaining accurate and consistent data.
Akey feature is a questionnaire with specific questions, which aim to elicit more accurate
recall and understanding of information relevant to determining all dimensions of census
eligibility.

Depending on the census methodology and data collection methods, a system of EFU
surveys can be designed to evaluate the expected errors. Those surveys may include the
following:

Dwellings/households sample. The first proposed operation is to conduct reinterviews
in a sample of dwellings that were classified by the PES as empty, closed, or nonresi-
dential, as well as in a sample of dwellings with residents who were not linked to the
census enumeration or who were linked with low probability. This sample is intended to
add information on PESs omissions, as well as to correct classification errors and false
nonmatches.

Buildings/address sample. Another possible operation involves buildings that were
deleted from a sampled area or added to it by a PES enumerator, as well as buildings
with residents who were interviewed at an address that differs from the census address.
This sample can shed light on geocoding errors, as well as on errors in census residence,
and errors in address registers.

Sample of individuals. Finally, a sample of individuals from the census list, including
OF nonrespondents, nonmatches within a household (especially students and babies) or
other nonmatches (e.g., people who reported no change of address), and people in hard-
to-count groups such as young male bachelors, residents of institutions, and households
with members who have more than one place of residence or households comprising a
divorced/separated parent and children. This sample attempts to supplement information
on OF missing data, Census Day recall problems, matching errors, and fabrications.

To conclude this section, we will describe some evaluation operations and error com-
ponent estimation that were carried out by the U.S. Census Bureau after the 1990 and
2000 PESs. These evaluation studies were mostly aimed at assessing errors in particular
aspects of the PESs operations and estimation.They were not intended or designed to pro-
vide corrections to the undercount estimates. The first net undercount estimate derived
from the 1990 PES was 2.1%. A sample of whole households and partial household
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nonmatches in 919 block clusters and a sample of matches from the same blocks were
selected to assess P-sample data collection errors. Moreover, in the E-follow-up sur-
vey, interviews were conducted among the same 919 block clusters to assess E-sample
errors. The results showed that the net error in the DSE estimate was approximately 0.5%
(Mulry and Spencer, 1993). Based on the results presented by Mulry and Spencer (1993,
Table 1), the main error components that reduce the undercount estimate are matching
error (0.21%), P-sample collection error (0.31%), E-sample operations error (0.25%),
and ratio-estimator bias (0.11%). The main components that increase the estimate were
E-sample collection error (−0.17%) and model bias (−0.29%). The contribution of
fabrication errors, imputation errors, and sampling errors to bias in the 1990 census
was negligible. The revision of the 1990 PES estimates involved developing a new
poststratification, redoing matching for 104 influential block clusters, and correcting
two computer processing errors that affected the estimation of erroneous enumerations
(Hogan, 1993).

The ACE survey that followed the 2000 Census provided three estimates of net
census undercount. The original net undercount estimate published in March 2001 was
approximately 1.2%. Evaluation of this estimate, which involved reinterviews and/or
rematching of approximately 1/10 of the P- and E-samples, is known as the EFU. The
EFU evaluated Census Day residency by reinterviewing people who were included in
the P-sample and people who were included in the person follow-up (PFU) samples with
unusual living situations, moving status, etc. The ACE Revision Preliminary Estimate
published in October 2001 indicated a net undercount of 0.06% (Thompson et al., 2001).
However, the final ACE Revision II Estimate published in March 2003 revealed a net
undercount of −0.5% (i.e., a net overcount of 1.3 million, Mulry, 2007). The Revision
II evaluation was motivated by the first revision evaluations but involved additional
work. It revealed that the reduction of 1.7% in the net undercount was mainly due to
census duplications that fell in the E-sample but were not detected as ineligible (−1%),
E-sample coding corrections (−0.9%), P-sample duplications (−0.4%), and correlation
bias (+0.6%, U.S. Census Bureau, 2003a, p. 31, Table 12). Duplicates were identified
by a nationwide search rather than by the limited area search conducted earlier. Coding
corrections pertain to conflicting addresses provided by the PFU and the EFU. Other
errors included dwellings registered under two different addresses in the address file. In
sum, the post-ACE evaluations showed that the main failure of the ACE was inaccurate
measurement of the Census Day residence.

4. The use of sample surveys for carrying out a census

The search for new census-taking methods has yielded an entirely different type of cen-
sus, which is based on continuous cumulative sample designs and utilizes the principles
of rolling sample design (see Section 4.1 below). The main advantage of a sample-
based census is that it provides more frequent and timely estimates of large national
domains. Such estimates supply information on temporal variation, in contrast to the
“once in ten years” census. The main drawback of the sample-based census is that it
does not provide a detailed geodemographic “snapshot” on a particular date so that
comparisons between domains are much more complicated. Furthermore, the issue of
coverage becomes much more complicated in a census that is rolled over time because
of the population movements in time and space. Thus, the likelihood of coverage errors
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may increase substantially in a sample-based census (for further discussion of the merits
and drawbacks of sample-based censuses, see Office for National Statistics, 2003).

4.1. Rolling samples and some extensions

The concept of a rolling sample was proposed and developed by Leslie Kish in a series
of papers (e.g., Kish, 1998). A rolling sample design jointly selects a set of k mutually
exclusive (not overlapping) periodic samples, each of which is a probability sample
with a fraction f = 1/F of the entire population. One sample is interviewed at each
time period, and the accumulation of k periods yields a sample with a fraction f ′ = k/F .
The main aim of the rolling sample design is to provide detailed estimates in tempo-
ral as well as spatial dimensions. Specifically, Kish emphasizes the need for adequate
annual estimates at the national and major regional/domain levels. By keeping the sam-
ples mutually exclusive, maximum efficiency of the accumulation is attained and the
estimation procedure is simple. Note that the rolling sample design assumes that each
sample is a representative sample of the relevant regions and domains. This means that
if the PSUs are clusters, they should be smaller than the target domains. Moreover, the
PSUs should form a rolling sample themselves. Therefore, a design in which all samples
include the same PSUs, with a rolling sample within a PSU, has been referred to by
Kish (e.g., 1999) as a cumulated representative sample (CRS) design. This design is not
strictly a rolling sample.

Kish (e.g., 1990, 1999) further extended the concept of a rolling sample to a rolling
census by taking k = F , that is, a sample with a cumulative fraction f ′ = F/F = 1. Thus,
the rolling census replaces the simultaneous and complete enumeration of the population,
carried out once in several years, by a continuous cumulative sample survey that covers
the entire population over a time period F . For example, a rolling census comprising of
10 annual 1/10 samples yields full coverage of the population after 10 years. A rolling
census can provide national and large domain estimates each year based on the latest
sample, as well as smaller domain estimates based on appropriate accumulations of a
number of samples.

The basic rolling census design is defined by the number of samples F and by the
choice of sampling unit. The number of samples is likely to coincide with the “regular”
intercensal periods of 5 or 10 years. The natural sampling unit is a small, well-defined
geographical area. Some modifications of the basic design can include unequal sampling
fractions in different strata as well as some overlap between samples (Kish, 1998).
Because of the complexity involved in conducting a census, it is expected that a rolling
sample design will be combined with a CRS design or with other panel designs (Kalton,
Chapter 5). For example, small local authorities can be sampled by a rolling design,
whereas large local authorities can be included in all samples, with a rolling sample of
addresses within them. The actual design is clearly determined by the census objectives,
as well as by numerous statistical and nonstatistical constraints. A qualitative analysis
of alternative designs is presented in the Office for National Statistics (2003).

4.2. An illustrative example: the French rolling census

At the time of the writing of this chapter, France is the only country that decided to carry
out a sample-based census (e.g., Dumais et al., 1999; Isnard, 1999). The first sample
was interviewed in 2004 and the first census will be completed in 2008. Because this is
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the only actual example of a sample-based census, we will describe its general design
and estimation procedure.

The national statistical agency of France, INSEE, has decided that to comply with
the requirement of timeliness on the one hand and budgetary constraints on the other,
the census will enumerate 5/7 of the population over a five-year period (Durr, 2004;
Durr and Dumais, 2002). The sampling unit is a “commune,” which is a subdivision of a
French territory and a local authority. The size of a commune varies from several dozen
residents to over 300,000 residents. Therefore, the communes are first stratified by size.
The large communes stratum includes all communes with 10,000 or more residents, and
the small communes stratum comprises all communes with less than 10,000 residents.

A two-stage annual sample is selected as follows: in the large communes stratum,
all communes are included in the sample, and 0.08 of the dwellings are selected for
enumeration. In the small communes stratum, approximately 0.20 of the communes are
sampled, and all dwellings in the sampled communes are included in the sample. Thus,
large communes are surveyed every year and small communes are surveyed once during
a five-year period. Because the small communes comprise approximately 50% of the
population, the annual sampling fraction is about 0.14 (0.5 × 0.08 + 0.5 × 0.2) and the
accumulated five-year fraction is about 0.70, as required.

The sample design in both strata is controlled by a multiannual rotating scheme. The
large communes sample is drawn from the “inventory of located buildings” (RIL) list.
The addresses in each large commune are divided into five balanced groups that have a
similar distribution with regard to variables such as age, gender, and type of dwelling,
based on the 1999 population census data. For year i, i = 1, . . . ,5, a sample of addresses
in the ith group is selected. All dwellings within a sampled address are enumerated. The
sampling fraction of an address within group i is approximately 0.40 so that 0.08 of the
addresses (and hence of the dwellings) in a commune are sampled annually. The RIL is
updated every year to account for new and demolished buildings, and the five sample
groups are updated accordingly.

Small communes are divided into five representative groups within each of the 22
regions of France based on the same variables as those of the large communes. During
year i, i = 1, . . . , 5, the sample of small communes is comprised of the ith group in
each region.

In sum, the French design is referred to as a “rolling census” but it covers approxi-
mately 70% of the population over a five-year period. The design extends Kish’s ideas
by combining a CRS design for the large communes with a rolling sample of small
communes.

4.3. Estimation

The census design defines a feasible resolution of estimates in time and space. Specifi-
cally, estimation for small domains can involve a combination of direct (design-based)
estimates and synthetic (model-based) estimates, possibly using auxiliary information
from additional sources.

Let Y be the outcome of interest, with annual estimators Ŷii = 1, . . . , F and Ŷ (W) =∑F
i=1 WiŶi, a census estimator with W = (W1, . . . , WF),

∑F
i=1 Wi = 1. Kish (e.g., 1999)

considers several basic weighting schemes: (a) using the last year only, where WF = 1
and all other weights equal zero; (b) averaging all years with equal weights, where
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Wi = 1/F, i = 1, . . . , F ; and (c) monotonically nondecreasing weights—W1 ≤ W2 ≤
. . . ≤ WF . Clearly, cases (a) and (b) are special cases of (c).

The example of the French census will be used to illustrate a typical system of
estimates that can be produced by a sample-based census. Consider years F , F -1, F -2,
F -3, and F -4. Three types of estimates are provided: (a) population counts for year F -2
for every commune; (b) small area estimates based on data collected over the previous
five years and pertaining to year F -2; and (c) national and regional estimates for the
current year F (Durr, 2004).

4.3.1. Commune population count for year F-2
For every commune, regardless of the year it was surveyed, an estimated population
count is provided at the end of year F for the beginning of year F -2. For a large commune,
let Xi be an auxiliary variable (e.g., number of dwellings in the RIL) during year i, and
X = ∑F

i=F−4 Xi/5 the average number of dwellings over the last five years. Let Ŷi be
the expansion estimator for population count of that commune based on the data for

year i, and Ŷ = ∑F
i=F−4 Ŷi/5 will be the average estimate. Accordingly, the estimated

count for year F -2 is the ratio (synthetic) estimate given by

ŶF−2 = Ŷ
XF−2

X
. (10)

For a small commune, the estimate depends on the year it was enumerated. Denote by
Yi the population count of a commune that is fully enumerated in year i. For a commune
surveyed in year F -2, the estimate is equal to its population count, YF−2. For communes
surveyed prior to year F -2, the estimates are extrapolated using a ratio estimate similar
to the one in (10), yielding

ŶF−4
F−2 = YF−4

XF−2

XF−4
and ŶF−3

F−2 = YF−3
XF−2

XF−3
,

where the superscript in Ŷ
(·)
F−2 denotes the actual survey year. For communes surveyed

after year F -2, the estimates are obtained by interpolation. The first value used for the
interpolation is the actual count on the year surveyed. The second value is an estimate
for year F -3, obtained from extrapolation of the previous count (five years before). We
obtain

Ŷ F−1
F−2 = αF−1YF−1 + (1 − αF−1)YF−6

XF−2

XF−6
and

ŶF
F−2 = αFYF + (1 − αF)YF−5

XF−2

XF−5
,

where 0 ≤ αi ≤ 1 i = F − 1, F , and is typically no smaller than 0.5. These estimates
are further calibrated (Kott, Chapter 25) to the national and other large-scale estimates
(for other versions, see Durr and Dumais, 2002).

4.3.2. Small-area estimates for year F-2
Every year, a file containing data for the previous five years will be constructed, including
a sampling weight for every person and dwelling. This file enables expansion estimation
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for any geodemographic subgroup, subject to accuracy limitations. These estimates are
taken to pertain to the midpoint of the period, for example, at the beginning of year F -2.
For large communes, the weight can be extracted from (10) and is equal to ϕXF−2/X,
where ϕ is the inverse of the respective inclusion probability. For a small commune, the
weight is Ŷ i

F−2/Yi, corresponding to the estimates for year F -2.

4.3.3. National and regional estimates for current year
Each annual survey is a representative sample comprising about eight million people.
Hence, usual survey methods (e.g., expansion estimates) enable reliable national and
regional estimates for the current year. These estimates are used to calibrate the commune
and small area estimates.

5. Sample surveys carried out in conjunction with a census

Censuses originally focused on enumeration of people. However, as the demand for more
detailed social and economic data increased, there was pressure to include additional
variables in the census questionnaire. Nonetheless, there is a delicate balance between
the length of the census form on the one hand and data quality and response burden
on the other. To solve this problem, many countries use two types of census forms:
a short form with a few (about 10–20) demographic variables, and a long form with
comprehensive information on topics such as housing, employment, education, income,
immigration, fertility, and disability. The short form is completed for all people in the
census population, whereas the long form is typically completed for a random sample of
the population. In that way, the response burden is reduced for the population at large,
and the census machinery can be used to supplement information based on the detailed
data collected from the population that filled out the long form. Because long-form data
collection is carried out during the same time period as the census, it is considered to
be one of the census outputs (United Nations, 2006).

Overall sampling rates for the long-form sample vary for different countries and
range from 5 to 20% of the population. Because of the high sampling rate compared
with current annual or panel surveys, the long-form sample provides detailed snapshot
information. Another strong link between the long-form sample and the census is that
calibration of sample estimates to the census counts is straightforward because the two
forms share the same geodemographic data.

The simplest selection method is to sample every lth unit systematically (e.g.,
dwellings, households), where l is the inverse of the sampling fraction. One in every five
and 1-in-10 are common rates. Variable rates are also possible. In Brazil, for example,
municipalities with more than 15,000 residents are sampled with a 1-in-10 rate, whereas
smaller municipalities are sampled with a 1-in-5 rate. Another sampling scheme is to
select geographical areas (clusters) and survey all households within a selected area.
An example of such one-stage cluster sample is the undercoverage survey of the Israeli
Integrated Census (Section 2.2.2). This survey aims to estimate coverage errors and col-
lects the long-form data at the same time. The EAs are sampled within SAs, and sample
allocation is predominantly determined according to a coverage model that typically
yields differential sampling rates for different SAs.
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5.1. An illustrative example: The U.S. Census 2000 long-form survey

As an illustrative example, we present some main features of the sampling and estimation
procedures used in the long-form survey in the U.S. Census 2000. The sampling frame
was the Decennial Master Address File, and the target overall sampling fraction was
1/6. This rate was achieved through systematic sampling with variable rates within four
size strata. The rates ranged from 1-in-2 for the smallest size stratum with less than
800 housing units to 1-in-4 and 1-in-6 for the 800–1200 and 1200–2000 size strata,
respectively, and 1-in-8 in the ≥2000 stratum.

To obtain sampling weights, weighting areas with at least 400 people were defined
within the four size strata. These areas were generally similar to the census tabulation
areas. The initial weight was the inverse of the sampling fraction, and the final weight was
obtained by iterative proportional fitting methodology, otherwise known as raking (Kott,
Chapter 25). The long-form estimates were calibrated to the census counts in dimensions
such as household type and size, and race by gender and age groups. Each stage of the
raking procedure was adjusted for one dimension and lasted until a predefined stopping
criterion was attained. Hefter and Gbur (2002) indicate that the difference in percentages
between the census counts and the weighted sample totals ranged from −5.09 to 6.84%
for single race groups (see Table 2 in Hefter and Gbur, 2002).

It is interesting to note that the direct variance estimates were calculated by the
successive difference replication (SDR) methodology, which takes advantage of the
systematic sampling of housing units. For an estimated total Ŷ = ∑

wjyj , the basic
successive difference estimator (Wolter, 1984) is

Var(Ŷ ) = (1 − f )
n

2(n − 1)

n∑
j=2

(wjyj − wj−1yj−1)
2,

where wj is the final weight for person j and f is the sampling fraction. The replication
version is based on replicate samples and is simple to use

Var(Ŷ ) = (1 − f )
4

R

R∑
r=1

(Ŷr(SDR) − Ŷ )2

where Ŷr(SDR) is the estimate for the rth replicate using the appropriate replicate
weights (Fay and Train, 1995; Gbur and Fairchild, 2002). The variance estimates pro-
duced by the U.S. Census Bureau do not calibrate each replicate to the census counts.
Schindler (2005) examined a raked-SDR method and argued that it best reflects the
sample design and estimation procedure. According to Schindler, the raked-SDR pro-
duces smaller variance estimates than other methods such as SDR and Jackknife. Finally,
design factors by state and size strata are calculated by comparing the SDR standard
errors to simple random sampling standard errors based on a 1-in-6 sample.

5.2. Rolling the long-form survey

A relatively recent development of the long-form idea has been referred to by the UN
as a “traditional census with yearly updates of characteristics” (UNECE, 2006). This
type of census is based only on the short-form data, and the long form is replaced by
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a set of annual surveys, where socioeconomic data are collected continuously during
the intercensal years. The census with yearly updates aims to provide more frequent
information for small domains.

To date, the United States is the only country that has decided to use a large continuous
survey to obtain data on the long-form topics on a regular basis instead of using the
traditional census long form. Interest in intercensal information in the United States
goes back to the 1940s (see Section 3 in Alexander, 2002) and provided the basis
for the ACS. The ACS methodology was tested in nationwide surveys from 2000 to
2004. Full implementation of ACS then began in 2005. These tests were carried out
separately from the census and provided data for comparison between the long-form
survey and ACS estimates. The main benefits of the ACS compared to the long-form
sample are timely and frequent estimates. Another benefit is higher data quality in terms
of completeness of response. The main weakness is larger estimation errors due to
factors such as smaller sample size and less accurate population controls for adjusting
the survey weights (National Research Council, 2007).

The ACS basically uses a monthly rolling sample design (Section 4.1). Approxi-
mately 250,000 addresses are surveyed each month, corresponding to an average sam-
pling fraction of f = 1/F = 1/480 (a total of approximately 120 million addresses). The
survey uses k = 60 mutually exclusive monthly samples, yielding 5-year average esti-
mates with approximately 1-in-8 sampling rates, as compared to the 1-in-6 long-form
average rate. The ACS uses a systematic sample of addresses, and the sample is selected
in two stages. In the first stage, a “super sample” is selected, using a constant rate in
all strata, which equals the largest sampling rate required for any one stratum. In the
second stage, samples from the first sample are selected to give the desired fraction for
each stratum. This design simplifies the handling of stratum-specific sampling rates and
their dynamics over time.

Five-year accumulations of ACS data provide products similar to those obtained by
the census long form. Average annual estimates are provided for areas with over 65,000
residents, and average three-year accumulations are provided for areas with over 20,000
residents. More frequent estimates for small domains can be obtained using small area
methods (Lehtonen and Veijanen, Chapter 31; Datta, Chapter 32), see Malec (2005).
For multiyear estimates, theACS accumulation of samples over the years approximately
averages the annual estimates with equal weights, contrary to Kish’s (1998) inclination
to increase wi with i. For a comprehensive description of the ACS methodology, see
U.S. Census Bureau (2006b), and for a discussion on alternative estimation approaches,
see Breidt (2007).

6. Concluding remarks

Developments in survey methodology used for censuses can largely be attributed to
technological progress, which influences data quality, timeliness, and the cost of direct
data collection. The CAPI, use of personal computers, handheld devices, and global
positioning systems (GPS) can greatly improve the accuracy of key census variables,
in particular, eligibility topics. Advances in internet technologies and in encryption also
enable online self-interviewing, which can improve response rates in the long run. It is
beyond the scope of this chapter to address this topic and the interested reader can find
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an overview in UNECE (2006, Chapter II). Regarding data processing, we have men-
tioned that progress in record linkage capabilities allows census surveys to be matched
with PES on a national level and, thus, reduces matching errors and duplication.

Another important topic that has not been covered in this chapter concerns estimation
procedures for small subgroups. Although estimators of coverage errors for national and
subnational counts were described in Section 2, of this chapter, PESs cannot provide
direct coverage estimates for small groups due to sample-size limitations. To derive
adjusted counts for small areas, estimates obtained by small-area techniques can be
used (Datta, Chapter 32). Suppose that the coverage factor for a given poststrata is
1/(p̃1+ + λ̃) (Eq. (7)). Assuming that there is homogeneous coverage within poststrata,
a synthetic adjusted census count for a subgroup g is given by Zg/(p̃1++ λ̃), where Zg is
the census count for subgroup g. The small-area estimates are generally calibrated to the
national and subnational direct estimates using methods such as the generalized regres-
sion (GREG) (Kott, Chapter 25) or prediction regression (PREG) (Bell et al., 2007).
For further details on these procedures, see Brown et al. (1999), Dick and You (2003),
Office for National Statistics (2000); see also U.S. Census Bureau (2004, Chapter 8).

Finally, we mention the issues of missing data on the one hand and multiple responses
on the other. A unique feature of census-related surveys is the need to impute eligibility
status at the national and local levels. In Israel, for example, 5–10% of the listings in
the Population Register are emigrants, many of whom are not traced by the O-survey.
Imputation models based on administrative data as well as on sample data estimate the
propensity of a missing case to be an emigrant. At the other extreme, the census and PES
might provide two different census addresses. In such cases, decision rules should deter-
mine which address is more likely to be the correct one. Another important census issue
is household counts. Entire households can be missed or individuals within households
can be missed. The ONC project, for example, developed an imputation methodology
which provided a fully imputed census file that is consistent with the adjusted census
counts. The methodology involved three steps: missed household imputation, missed
persons within households imputation, and “pruning and grafting” of imputations to the
adjusted census counts (Office for National Statistics, 2002; Steele et al., 2002; see also
U.S. Census Bureau, 2004, Chapter 6).

We have presented two directions in the development of sample survey methodology
for censuses. The first direction tightens the relationship between censuses and sample
surveys and focuses on evaluation of the census counts, with or without adjustment.
The second direction moves away from the “snapshot” census and involves large-scale
continuous sample surveys that either replace the census altogether or collect detailed
and timely socioeconomic data to supplement the census data. A third direction that may
be pursued in the future is to shorten the census cycle from 5–10 years to 2–5 years
by basing full enumeration on administrative data and adjustment through coverage
surveys.
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Opinion and Election Polls∗

Kathleen A. Frankovic, Costas Panagopoulos and
Robert Y. Shapiro

1. Introduction: the reasons for public opinion and election polling

Public opinion polls are widely used to learn about the political attitudes, voting, and
other behavior of individuals, by asking questions about opinions, activities, and indi-
viduals’ personal characteristics (e.g., Abramson et al., 2007; Asher, 2007; Erikson and
Tedin, 2007; Glynn et al., 2004; Traugott and Lavrakas, 2004). Responses to these
questions are then counted, statistically analyzed, and interpreted.

Historically, academicians and government researchers in the United States engaged
in opinion polling have called themselves “survey researchers,” many with interests in
psychologically oriented attitude research (Converse, 1987). There is also a separate
and more visible group of “pollsters,” originally involved in commercial research and
in journalism, whose poll results on political and social matters are reported widely
in the news media (Converse, 1987; Frankovic, 1998; Moore, 1992; Rogers, 1949).
Others conduct proprietary polling for political candidates, political parties, or other
clients (Eisinger, 2003, 2005; Jacobs and Shapiro, 1995; Stonecash, 2003). Today, survey
researchers and pollsters have become synonymous, although the polls they do can vary
in their purpose, type, scope, and quality (see Chapter 21).

This chapter describes these aspects of opinion and election polls, focusing largely
on the United States, but providing some international comparisons and discussions of
similar aspects and uses of polling. It begins by reviewing the public and private uses
of opinion and election polling. Next, it summarizes the general methodological issues
in polling that require attention in doing public opinion research. It then examines the
cases of preelection polls, “exit polls” on election days, and, briefly, postelection polling.
The last sections consider other methods of interview-based opinion measurement and
the challenges ahead for opinion and election surveys as interest in public opinion and
polling continues.

∗ The authors are listed alphabetically. This article is dedicated to our late colleague and friend, Warren J.
Mitofsky, who would not have been shy about critiquing what we take full responsibility for here.
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1.1. Polling for public consumption

Polling has been motivated by wide interest and curiosity about public opinion in general
and especially about voting during election periods. This is clear in the history of “straw
polls” described later. Ordinary citizens are curious about this; in turn, journalists who
write about politics try to appeal to their audiences’ interests in candidates and issues,
especially in the latest elections. This has been apparent from the early days of informal
“straw votes” or “straw polls” in the United States to the big expansion of national polling
in the 1970s as valid and reliable surveys could be done by telephone (Blankenship, 1977;
Nathan, 2001).

Contemporary opinion and election polls, especially those done for public consump-
tion, have many sources. By the end of the 19th century, politicians, academics, market
researchers, journalists, and government all had begun serious data collection. In many
states local leaders kept “poll books” registering the preferences of every registered
voter. These “poll books” had their greatest value in times of political movement and
uncertainty. An 1880 Republican poll of 26,000 Indiana Civil War veterans showed that
69% would vote Republican that fall; by 1888, only 30% of those same individuals
would (Jensen, 1971, p. 26). In 1886, the social survey movement began in England,
and social welfare workers collected data on poverty, housing, and crime. Sociologists
developed tools for measuring opinion. In the United States, newspaper market research
departments were established and national advertizing campaigns for brands like Ivory
soap became prominent in the 1880s. Political advertising on a mass scale soon fol-
lowed. In 1888, the Republican National Committee placed presidential campaign ads
on New York City streetcars for the first time, changing campaign tactics from persua-
sion to marketing (Jensen, 1971, p. 159). The U.S. Census first used an early version of
the Hollerith computer card for storing and analyzing data in 1890.

Opinion and election polls also date from the 19th century in the United States.
In 1824, straw poll counts appeared in partisan newspapers – along with suggestions
that the public might not agree with political leaders in their choice of presidential
candidates (Smith, 1990). In some cases, counts of candidate support were taken at
public meetings. In others, books were opened for people to register their preference.
Some newspapers praised the technique. The Niles Weekly Register said of a count taken
at a public meeting, “This is something new; but an excellent plan of obtaining the sense
of the people” (Niles Weekly Register, May, 1824).

In 1896, the Chicago Record sent postcard ballots to every registered Chicago voter,
and to a sample of 1 in 10 voters in eight surrounding states. The Record mailed a
total of 833,277 postcard ballots, at a cost of $60,000; 240,000 of those sample bal-
lots were returned. The Record poll found Republican William McKinley far ahead of
the Democrat, William Jennings Bryan. McKinley won; and in the city of Chicago,
the Records preelection poll results came within four one-hundredths of a percent of the
actual election-day tally.

By the 1920s, even papers whose editorial pages were clearly partisan were appar-
ently comfortable reporting straw polls that indicated their editorial choice in an election
was losing the contest for voters. Between 1900 and 1920 there were nearly 20 sepa-
rate news “straw polls” in the United States. The Literary Digest established a poll
in 1916. In 1920, it mailed ballot cards to 11,000,000 potential voters, selected pre-
dominantly from telephone lists. In later years, car registration lists and some voter
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registration lists were added to the sampling frame. Although the Digest touted its
polling as impartial and accurate, it was also tied to an attempt to increase the magazine’s
subscriber base.

These news straw polling operations involved outreach to as many groups as possible
and included huge numbers of interviews (often conducted on street corners). In its 1923
mayoral election poll, the Chicago Tribune tabulated more than 85,000 ballots. In the
month before the election, interviews were conducted throughout Chicago, and results
published reporting preferences by ethnic group (including the “colored” vote), with
special samples of street car drivers, moviegoers (noting the differences between first
and second show attendees), and white collar workers in the Loop.

But the real emergence of preelection polls as we now know them came in the 1930s.
In 1935, both George Gallup and Elmo Roper began conducting a new kind of news
poll: Gallup for a consortium of newspapers, and Roper for Fortune magazine. The
stated goals were both democratic and journalistic. Gallup co-authored a book called
The Pulse of Democracy (Gallup and Rae, 1940), while Fortune’s editors in their very
first poll report in June 1935 explicitly linked impartial journalism and polls: “For the
journalist and particularly such journalists of fact as the editors of Fortune conceive
themselves to be, has no preferences as to the facts he hopes to uncover. . .. He is quite
as willing to publish the answers that upset his apple cart of preconceptions as to publish
the answers that bear him out” (Fortune, 1935).

Gallup and Roper (as well as Archibald Crossley, whose polls for the Hearst newspa-
pers began in 1936) interviewed only a few thousand adults, unlike the tens of thousands
in the Tribune’s canvass or the millions answering the Literary Digest polls. However,
samples were selected to ensure that regions, city sizes, and economic classes were
properly represented.

Although not a true probability sample, they were far more representative than the
larger street corner or postcard polls (cf. Chapters 1, 16, and 20). And in that first test in
1936, the so-called scientific polls successfully predicted a Roosevelt victory. In fact,
Gallup not only predicted a Roosevelt victory, but also predicted the Literary Digest’s
mistake. The flaws in the Literary Digest’s procedures (using lists that in nearly every
state were biased in favor of the economically better-off during an economic depression)
are fairly obvious today. First, by almost always limiting the sampling frame to those
owning telephones and automobiles, lower-income voters were excluded, even though
by 1936 social class would matter more than state or region in a person’s presidential
choice. Second, only about two million of the Digest’s ten million or so postcard ballots
were returned, limiting the polling count to those who both received a questionnaire and
bothered to respond. This led to a “selection bias” and the Digest overestimated support
for Roosevelt’s opponent, Republican Alfred Landon (see Squire, 1988). Although the
new pollsters embarrassed the Digest, they too underestimated Roosevelt’s margin of
victory, suggesting biases in their methods as well. Those biases recurred in 1940 and
1944, foreshadowing the polling debacle of 1948 (see below and Converse, 1987).

By May 1940, 118 newspapers subscribed to the Gallup Poll. Fortune surveys
appeared monthly. Between 1943 and 1948, at least 14 state organizations were con-
ducting their own polls, using methods approximating those of the national pollsters
(Frankovic, 1998).

The very first question asked in the first Gallup Poll was: “Do you think expenditures
by the government for relief and recovery are too little, too great, or about right?”
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Totally 60% of respondents said “too great,” which was similar to what Americans
thought about spending on “welfare” in the National Opinion Research Center’s General
Social Survey more than 50 years later (see Davis et al., 2005; Gallup, 1972, p. 1; Page
and Shapiro, 1992, Chapter 3). By 1940, Gallup asked if the public approved of how
President Franklin Roosevelt was handling his job, as well as which problems facing
the country Americans believed were most important. These questions continue to be
asked and are widely cited today.

Preelection polling began in other western democracies in the period between the
wars and expanded afterwards (early European survey data are cited in Cantril with
Strunk, 1951). There was a Gallup Institute in Great Britain beginning in 1938, and one
in Canada starting in 1935. In Britain, “Mass Observation,” which collected information
about everyday life in Britain from 1937, used a different approach, creating a national
panel of volunteers to reply to regular questionnaires (Hubble, 2005).

As democracy spread, so did polling and preelection polls. After the surrender of
Japan, the U.S. occupying forces instituted public opinion polling, and the techniques
established in the United States were adapted to accommodate at least some Japanese
traditions (Worcester, 1983).

Wendell Willkie, an American businessman, used market researchers in his unsuc-
cessful 1940 presidential campaign. Franklin D. Roosevelt was the first president to
receive ongoing polling information – though from a distance, compared to later pres-
idents – from Hadley Cantril, whose Office of Public Opinion Research at Princeton
University had both an academic base and collaborated with the Gallup Organization.
Roosevelt’s use of polls during the period leading to the United States’ entry into the
war showed how polls provide strategic information for leading – or manipulating –
public opinion (Page and Shapiro, 1992, Chapters 5 and 9).

At the same time, government agencies expanded their use of survey methods and
large-scale polling beyond normal Census operations, beginning with the Department
of Agriculture in 1939 (see Chapter 18). Survey research was used for public policy
and public administration purposes, in attempts to improve wartime agricultural poli-
cies, control prices, understand race relations, stimulate war bond drives, measure the
morale of civilians, and the well-being, outlook, and opinions of members of the armed
forces (Converse, 1987; Gosnell and David, 1949; Stouffer et al., 1965 [1949]; Truman,
1945; Wallace and McCamy, 1940). The State Department, unknown to Congress, had
the National Opinion Research Center (NORC, the first independent national survey
research center, see below) survey the public’s opinions toward American foreign pol-
icy during the Cold War (Eisinger, 2003; Foster, 1983; Page and Shapiro, 1992).

University-based surveys had their beginnings in 1939–1940, when Columbia socio-
logist Paul F. Lazarsfeld founded the Office of Radio Research, later renamed the Bureau
of Applied Social Research. Lazarsfeld et al. conducted the first sophisticated survey
study of decision-making in presidential elections in 1940 in Erie County, Ohio, fol-
lowed by a study of the 1948 election in Elmira, New York (Lazarsfeld et al., 1944;
Berelson et al., 1954). Two large and widely known research centers developed the
long-term capacity to do national surveys: NORC, established in 1941 by Harry Field
at the University of Denver and moved to the University of Chicago in 1947; and the
University of Michigan’s Survey Research Center (SRC, Institute for Social Research
[ISR]), established in 1946 under the direction of Rensis Likert and Angus Campbell,
who had been involved in government survey research.
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Later, many other universities established their own survey research centers,
especially after telephone surveying became more common (Sudman and Bradburn,
1987). The localized election studies begun at Columbia were subsequently continued
on a larger national scale elsewhere. In 1948, Angus Campbell and Robert Kahn at the
University of Michigan conducted the first national election study in the United States –
or anywhere. This small study led to the long-term series of election studies conducted
first by the Survey Research Center and the Center for Political Studies at Michigan,
formalized as the American National Election Studies (ANES or NES) in 1977 with
National Science Foundation (NSF) support, expanding control to a larger academic
community. In 1972, NORC became the home of the ongoing, NSF-funded General
Social Surveys (Davis et al., 2005).

At the outset, interest in polling was related to the original “democratic” philosophy
associated with it – that individuals’ opinions could be added up to constitute the will
of the people that ought to have influence on political leaders and governing (Gallup
and Rae, 1940). Critics argued that this simple definition of public opinion was mis-
guided: public opinion as a concept and influence involved processes of purposive group
interactions and communications that reached the attention of government, and in this
process not all opinions counted equally (Blumer, 1948; Rogers, 1949). Ironically, the
results of the early academic studies supported the views of the critics of polling. These
studies showed that the public was not very knowledgeable and well informed about
politics, was not influenced in expected ways by mass communication, and voted in
ways related to seemingly mindless social characteristics and interpersonal influences.
Partisan attachments were no more than equivalent to team loyalties (Berelson et al.,
1954; Campbell et al., 1954, 1960; Lazarsfeld et al., 1944). The electorate voted neither
on the basis of issues nor awareness of the competing political ideologies of the day
(Converse, 1964). This spurred further debates about the capability, “rationality,” and
overall “democratic competence” of public opinion and the American electorate (cf.
Althaus, 2003; Glynn et al., 2004, Chapter 8; Page and Shapiro, 1992; Zaller, 1992).

By 1948, pollsters had gained a national audience far beyond that of their press
releases and print media subscribers. Elmo Roper gave weekly Sunday radio talks
on CBS, and both Roper and Gallup were televised. The front-page headline of the
Washington Post on Election morning read, “Dewey Deemed Sure Winner Today,”
although the last preelection Gallup Poll had given the Republican Thomas E. Dewey
only a five-point lead over the incumbent Democrat Harry Truman (49.5–44.5%).

Poll predictions of an easy win for Dewey made Truman’s victory all the more
devastating for the polling community. Gallup lost some subscribers. In one study that
interviewed 47 editors who had used polls before the election, half said they would no
longer do so (Merton and Hatt, 1949).

There were selection biases in the 1948 polls. Interviewers used their own judgment in
interviewing quota samples of the public. An academic investigation conducted under
the aegis of the Social Science Research Council resulted in a greater emphasis on
probability selection of respondents (see Mosteller et al., 1949, and Section 3 later).
In addition, the final 1948 published polls were conducted weeks before the election,
and as a result, they were not in the field to pick up any shifts in the electorate up until
the day people voted. Beginning in 1950, Gallup made its sampling methodology more
rigorous, providing interviewers with more strict instructions regarding the selection of
respondents.
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But polling was now embedded in American politics. As an extension of its campaign
activities, the Republican Party provided poll results to the White House after Eisen-
hower’s election. George Gallup and later Louis Harris routinely reported their latest
polls to presidents. Harris worked as John F. Kennedy’s political consultant and pollster.
These president–pollster relationships became regularized with Lyndon Johnson and his
pollster, Oliver Quayle; Nixon and his polling operation run by H.R. Haldeman, with
pollsters David Derge, Robert Teeter, and members of the Opinion Research Corpora-
tion; and Gerald Ford continuing with Teeter (see Eisinger, 2003; Jacobs and Shapiro,
1995, 1995–1996).

Although their wartime survey operations were disbanded, government agencies’
interest in survey and Census data continued after the war (Converse, 1987; Sudman
and Bradburn, 1987). United States government sponsored political polling was devoted,
interestingly and lawfully (as there were prohibitions against polling that could be con-
strued as partisan), only to long-term surveying in foreign countries through the United
States Information Agency (USIA; see Crespi, 1999). The tradition of public adminis-
tration and policy-related survey research continued, including state and local survey
research to improve policy formation and implementation, and to facilitate feedback
on the performance and effectiveness of government bureaucratic agencies, policies,
and programs (e.g., see Desario and Langton, 1984; Kweit and Kweit, 1984, Van Ryzin
et al., 2004a, 2004b).

Polling in the United States, especially telephone surveys, expanded substantially
in the 1970s with the development of Random Digit Dialing (see Chapter 7) and of
computer-assisted telephone interviewing (CATI) allowing polls to be done quickly and
relatively cheaply. Household telephone penetration reached 94%, easing interview-
ing over the phone, which cost less and enabled centralized control over interviewers.
Sampling by random digit dialing was also easier and cheaper than the enumeration
and sampling procedures used for in-person interviewing. Concerns about interviewer
access to respondents in urban areas also motivated the use of phones (see Blankenship,
1977; Nathan, 2001). In other countries, data collection also moved from in-person to
telephone when possible.

Journalistic organizations that wanted to poll could centralize data collection with
phone banks, occasionally utilizing advertizing or classified ad department offices at
night and on weekends. Improved newsroom computer technology, especially the arrival
of PCs in the 1980s, meant that polls in response to breaking news could be conducted
and reported within a half hour of an event’s occurrence. The same expansion occurred
for polling by political parties, candidates, and advocacy and interest groups.

But Vietnam and Watergate, by increasing cynicism among journalists and the public,
were as important as technology in the development of news surveys during the 1970s.
Extending the trend that began in the Progressive era of the 1890s, there was an even
further shift away from partisan influence over the press. Journalists again believed it
important to bypass party leaders and go directly to the public for its opinions. Media
polling made journalists less vulnerable to manipulation by political parties, candidates,
organized groups, and others who used poll data for their own purposes (see Gollin,
1980a, 1980b, 1987; Jacobs and Shapiro 1995–1996). The news media could now verify
claims by others about the state of or changes in public opinion.

CBS News and NBC News had conducted occasional polls for many years, and
had used computers and some statistical modeling in election coverage as early as 1952
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(Bohn, 1980), but serious polling units were organized only in time for the 1976 election.
CBS News formed a contractual arrangement with The New York Times in 1975. NBC
News worked on its own in the 1976 election, but joined with the Associated Press from
1977 to 1983, and later with the Wall Street Journal. ABC News joined forces with the
Washington Post in the early 1980s; that partnership continues. CNN first joined with
Time magazine in 1989, and worked with USA Today and the Gallup Organization from
1992 to 2005. Partnerships by different media outlet have occurred in state and local
polling as well.

As the ease of fielding surveys increased and costs dwindled, public pollsters increas-
ingly probed the public’s vote intentions and preferences on candidates for lower offices.
State-level polls routinely asked respondents’ views about candidates for statewide
office, such as gubernatorial and U.S. Senate candidates. Some survey organizations,
such as SurveyUSA, which use automated polling, Interactive Voice Response (IVR,
see below), on a large scale, have also fielded congressional-district and even municipal-
level surveys that ask respondents about candidates in those races.

The historical literature on polling in other countries is less extensive and cumula-
tive than in the United States (but see Worcester, 1983, 1987, 1991). Polling spread to
Mexico and Latin America after World War II through the work of Joe Belden and oth-
ers. After the fall of Communism, polling in Russia and Eastern Europe came through
sociological institutes and partnerships. There are now polling companies in nearly
every country, with preelection polls conducted wherever there are elections. This sug-
gests that polling has expanded its reach in tandem with democracy and democratization
worldwide. There are also many collaborations, including a European Social Survey,
modeled after the NORC General Social Survey, and the broader International Social
Survey Programme (ISSP). The Eurobarometer, established in 1973, has been used by
the European Commission to measure public opinion in all EU member countries. The
Eurobarometer concept has been extended to other continents: the Latinobarometro,
established in 1995, the Afrobarometer, established in 1999, and the Asian Barometer
Survey (formerly the East Asian Barometer Survey), begun in 2000. The broadest inter-
national survey collaboration to study elections is the Comparative Study of Electoral
Systems (CSES).

In countries other than the United States, there have been wide variations in direct
government involvement in political polling. No systematic comparison across coun-
tries has been made to date, although comparative research has slowly begun (e.g.,
Nacos et al., 2000; Worcester, 1983). In Canada, like the United States, polling for the
government originated during World War II. In addition to consulting available Gallup
polls, government officials initiated regular opinion polling of their own to study public
morale, attitudes toward living costs and rationing, and opinions about Canada’s involve-
ment in the war and expectations about the postwar economy (Page, 2006). This began
a tradition of government polling and politics in which polls are used for purposes of
determining what issues should be high on the agenda and for determining communica-
tion and policymaking strategies for promoting policies (see Jacobs and Shapiro, 2000).
In the former Soviet Union, the collection of data on media use and other “sociological”
topics led to the collection of other opinion data (Mickiewicz, 1981).

As public polling became institutionalized, there was a concurrent increase in
professional survey organizations. The American Association for Public Opinion
Research (AAPOR) was founded in 1947, followed soon after by the World Association
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for Public Opinion Research (WAPOR). These organizations provided meeting places
where both pollsters and academic researchers could discuss and debate issues in sur-
vey research (Sheatsley and Mitofsky, 1992). The National Council on Public Polls
(NCPP), an association of public polling organizations with a particular interest in the
polls produced for public consumption in the United States, was founded in 1969. The
European Survey Research Association was founded in 2005 to provide communica-
tion among European survey researchers. There are also organizations that are more
concerned about the market research industry, including CASRO (Council of Ameri-
can Survey Research Organizations) and CMOR (Council for Marketing and Opinion
Research), now merged with the Marketing Research Association, in the United States,
and ESOMAR (originally known as the European Society of Opinion and Marketing
Research and now branded as a “world organization”).

In addition, archives collect and make available polling results beyond the original
data collection and publication. The Roper Center (now at the University of Connecticut)
was established in 1947, and pollsters like Roper and Gallup deposited data sets there for
academic and public use. Currently, nearly every major public polling organization does
the same, including some international organizations. The Inter-University Consortium
for Political and Social Research (ICPSR, at the University of Michigan) was established
in 1962 and has data sets from academic social science studies, from the United States
and elsewhere, as well as public polls. A list of some international archives can be found
at: http://www.ropercenter.uconn.edu/data_access/data/data_archives.html.

1.2. Polling for private consumption: candidates and campaign strategy

Public opinion and polling research increasingly became a major part of political cam-
paigns in the United States in the 20th century, with the use of focus groups and other
means of message testing, initial benchmark polls to provide basic public opinion infor-
mation to candidates, periodic trend polls to compare to the benchmarks, and even more
frequent – weekly or even daily – “tracking polls” (Eisinger, 2005; Jacobs and Shapiro,
2000; Stonecash, 2003). In this century, political campaigns have attempted to “micro-
target” voters and engage in vote-getting activities in increasingly precise ways with the
aid of both their own proprietary polling and other publicly available data (Hamburger
and Wallsten, 2006; Jacobs and Shapiro, 2005). These polls have been used to find
out how specific types of voters might be influenced by emphasizing particular issues
or otherwise finding messages that will resonate with them, ultimately affecting their
voting decisions.1

In the 1992 congressional campaigns, candidates perceived public opinion surveys
to be a crucial source of information for gauging public opinion in House campaigns.
On a scale that ranged from 1 (not important or not used) to 5 (extremely impor-
tant), the mean score for the importance of polling was 3.5, second only to personal
candidate contact with voters as a source of information (mean score = 4.4). Candidates

1 The ways in which polls are used for this purpose are sometimes mistaken with a campaign tactic known
as “push polls,” that under the guise of an opinion survey is an attempt to talk to large numbers of voters
(tens of thousands, in contrast to under 1500) in an effort to spread often misleading information designed to
directly influence voters (see Asher, 2007).
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apparently perceived polling information to be more reliable than information obtained
from newspaper, radio or television sources, local party activists, mail from voters, and
national party leaders (Herrnson, 2004). Moreover, polling is widespread even in low-
salience, local-level elections; 41% of candidates in municipal elections conducted polls
(Strachan, 2003).

Presidents’ pollsters have been visible figures beginning with Patrick Caddell for
President Jimmy Carter, and continuing with Richard Wirthlin for Ronald Reagan,
Robert Teeter for George H.W. Bush, and Stanley Greenberg followed by Dick Morris
for Bill Clinton (Eisinger, 2003; Heith, 2004; Jacobs and Shapiro, 2000; Murray, 2006).
George W. Bush, despite his disparaging claims about political leaders using polls,
appointed an academic public opinion expert, Peter Feavre, as a member of his national
security team dealing with public support for the Iraq war.

American-style campaign politics, including heavy use of polling, has spread to
other countries, and American consultants have routinely worked in both developed and
developing democracies. One study found that nearly 60% of U.S.-based political con-
sultants had worked abroad, especially in Latin America, postcommunist countries, and
Western Europe (Plasser and Plasser, 2002). For example, Greenberg Quinlan Rosner,
whose principal Stan Greenberg polled for Bill Clinton’s 1992 presidential victory,
worked on the campaigns of Britain’s Tony Blair, Germany’s Gerhard Schroeder, South
Africa’s Nelson Mandela, Israel’s Ehud Barak, as well as in Bolivia, Honduras, Poland,
and Mexico. However, the extent to which American electioneering styles have been
adopted abroad has depended on the political, social, cultural, institutional, and regula-
tory environments in each country.

Polls also have been conducted by interest groups and other organizations. These
groups also have polled their own members and supporters, as a way of maintaining
contact with them. They have publicized their polling to promote their organizations’
goals, just as candidates and parties have promoted their political objectives. Some
organized groups have engaged in fundraising or membership solicitation in the context
of mail or other political surveys – “soliciting under the guise” of survey research
(SUGing) or “fund raising under the guise” (FRUGing) – which survey professional
associations such as the American Association for Public Opinion Research (AAPOR)
and the National Council of Public Polls (NCPP) have considered unethical uses of
surveys (Traugott and Lavrakas, Chapter 3, 2004).

2. General methodological issues in public opinion and election polls

Methodological issues in public opinion and election polling can perhaps best be sum-
marized under the general rubrics of errors in sampling, measurement error, and errors
in conceptualizing and specifying what’s being studied (Brady and Orren, 1992; see
especially the full guide provided by Weisberg, 2005). Errors that are part of sampling
go beyond the estimation of the margin of sampling error and include defining and
adequately covering the population that is to be studied. Then comes the problems of
nonresponse and the need to weight the data appropriately (see Chapter 8). Measure-
ment errors include the potentially substantial effects of the mode of surveying used,
question wording, question order or context effect (including the order in which response
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categories are offered), coding and data processing errors, problems in imputing missing
data, and the effects that interviewers can have on responses to questions (see Chapters 9,
10, and 12; Asher, 2007; Schuman and Presser, 1981; Weisberg, 2005). Conceptual
and specification problems bear on the ultimate validity of the opinion measures used.
In some cases researchers assume respondents have genuine attitudes or that particular
issues and attitudes have a high degree of salience, which may not in fact be the case.
The researcher must consider the possibility of “nonattitudes” and the transitory nature
of survey responses (see Asher, 2007; Bishop, 2004; Converse, 1964), and they should
make use of insights to be gained from “cognitive interviewing” methods and the results
of survey pretests (see Beatty and Willis, 2007; Sudman et al., 1996; Tourangeau et al.,
2000). Even in cases where researchers are confident that survey responses reveal real
attitudes, they may have difficulty.2

The different sources of survey error can overlap or interact with each other, and
they can vary by the mode in which the survey is administered. Modes (or ways) of
conducting surveys include in-person/face-to-face interviewing, mail and other paper
surveys, telephone surveys, and most recently, on-line polling. Each survey mode has
advantages and disadvantages in the way interviewers or data collectors interact with
respondents (Asher, 2007; Dillman, 1978, 2007; Fricker et al., 2005; Weisberg, 2005).
Nonresponse is a persistent and growing problem across modes, but it is more prevalent
in those selected for lower cost (nonresponse error includes noncontacts and refusals, as
well as problems of noncoverage of the desired population because of a limited sampling
frame). If the attitudes and opinions of nonrespondents differ significantly from those
of respondents in ways not easily corrected through demographic weights, nonresponse
bias is introduced. In-person surveys normally have higher response rates. Their larger
costs insure the close contact with respondents that typically lead to higher response
rates.

But even when different surveys use the same mode there can be survey “house
effects,” the effects of the particular procedures, instructions to interviewers, and other
rules for interviewing that are specific to individual survey organizations (Smith, 1978).

Survey respondents often appear to conform to “social desirability” pressures: self-
reported rates of voting in elections are substantially (and inaccurately) higher than
actual turnout rates (cf. Belli et al., 2001; McDonald, 2003a). Complications and bias
may also arise from respondents’ reactions to interviewer characteristics, including race,
gender, age, and ethnicity. Evidence of interviewer effects dates back to the 1940s (Katz,
1942). Most notably, there have been significant race-of-interviewer effects (cf. Finkel
et al., 1999). Black respondents may report more favorable attitudes about white can-
didates to white interviewers than they do to black interviewers (Anderson et al., 1988;
cf. Finkel et al., 1999). Black respondents also demonstrate higher levels of political
knowledge in telephone surveys when interviewed by black interviewers than when they

2 One illustrative case arose in the 2004 U.S. presidential election in which responses to the exit polls
indicated that more than 20% of voters chose “moral values” from a list of issues as the most important
influence on how they voted. This led to a lively debate about how the exit poll respondents interpreted the
meaning of “moral values” – whether this phrase referred to issues like abortion or the rights and behavior of
homosexuals, whether it was a statement about the candidates’ morality, or whether it was a fall-back answer
if respondents did not think the other issues on the list were sufficiently salient to their vote choice (see Langer
and Cohen, 2005).



Opinion and Election Polls 577

are interviewed by whites (Davis and Silver, 2003). The race-of-interviewer effect on
expressed voter preferences in preelection polls has been especially acute in elections
with a white candidate running against a black candidate. In one study, white respondents
were 8 to 11 points more likely to express support for the black candidate to black inter-
viewers than to white interviewers (Finkel et al., 1999). In some past elections, white
respondents have been far more likely to report an intention to vote for the black candi-
date compared to their behavior on Election Day, although there has been less evidence
of this in more recent elections and no evidence that it happened in the 2008 election of
Barack Obama (Hopkins, 2008). Gender and ethnicity-based interviewer effects have
also been reported (Hurtado, 1994; Kane and Maccaulay, 1993). Interviewer effects have
also been raised as a significant problem in conducting exit polls (discussed below; cf.
Bischoping and Schuman, 1992).

Different modes of interviewing can mitigate or exacerbate survey problems.

2.1. Mail surveys

Mail surveys have been an appealing mode of data collection, partly due to lower cost.
Because mail surveys are self-administered, interviewers are not necessary, thus elimi-
nating them as a source of bias. The assurance of anonymity and confidentiality may
also encourage respondents to be more forthright, especially when being probed on
sensitive or controversial issues (Asher, 2007; Dillman, 1978, 2007). Mail surveys can
be an effective way to gather information from smaller, specialized population groups.
The main drawback of mail surveys has been their high rate of nonresponse, which has
tended to exceed the nonresponse rates for telephone and personal interviews. General
population mail surveys have frequently achieved response rates under 5% (Dillman,
1978, 2007; Glynn et al., 2004). Monetary incentives, personalized notification letters
that arrive before the survey, multiple correspondences with nonresponders, and prepaid
return postage can boost response rates for mail surveys (Asher, 2007). Other problems
have included having little assurance about who actually completed the survey, no
opportunity for question clarification, and some uncertainty as to what order questions
were answered in (pertaining to possible context effects). Mail surveys also tend to
require long field periods for follow-up mailings.

2.2. Telephone surveys

Most surveys in the United States since the 1970s have been conducted by telephone.
Random Digit Dialing (RDD) techniques allowed researchers to select a random sample
of households, helping to resolve the sampling challenges often inherent with other
survey modes. Refinements to RDD made the process even more efficient.

One early innovation was the Mitofsky–Waksberg procedure developed by Warren
Mitofsky (Mitofsky, 1970) and later refined by Joseph Waksberg (Waksberg, 1978).
Residential phone numbers represented only about 20% of phone exchanges nationwide
but tended to be highly clustered within working blocks of 100 consecutive numbers.
Mitofsky–Waksberg, a form of area probability sampling, took advantage of this fact
to exclude attempts to banks of phone numbers that were unlikely to be residences.
The procedure randomly generates 10-digit phone numbers that can be called to identify
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working blocks. Random samples can be generated from those blocks identified as
working. This procedure increased considerably the efficiency of sampling for telephone
surveys while preserving the scientific integrity of the sample.

Telephone sampling was further refined to take advantage of list-assisted sampling
techniques, using telephone book listings as a seed to generate random household num-
bers (Brick and Waksberg, 1991). Important refinements were made, involving the statis-
tical theory underlying list-assisted methods and the effects of telephone system changes,
including the lower proportion of telephone numbers assigned to residential units (see
Tucker et al., 2002, 2007).

Registration-based sampling (RBS) allows survey researchers to draw random sam-
ples of registered voters from publicly available voter files rather than relying on the
respondent’s self-reported registration status. Pollsters for political campaigns have used
RBS sampling extensively, despite the fact that registration-based samples have fre-
quently suffered from incomplete coverage (due to unavailable telephone numbers) of
the population of registered voters and inaccuracies in the voter file.

An advantage of sampling from registration lists has been that many lists contain
additional information from public records that can be used to forecast voter turnout.
Although the quality of information available has varied across jurisdictions, typical
registration files have contained dates of birth, dates of registration, and (where relevant)
party registration. Data on past voter turnout has been furnished by registrars or acquired
by private vendors, and researchers can use this information to assign voting propensity
scores to individuals on the list and thus draw samples of voters most likely to participate
in the election. Some have found that registration-based sampling can improve the
accuracy of election forecasts over RDD (Green and Gerber, 2006).

Computer-assisted telephone interviewing (CATI) has allowed polling to be faster,
more efficient, and more accurate (Asher, 2007). CATI has also permitted randomizing
the order of questions and even response categories for each question, diminishing
the possibility of order effects. CATI has helped facilitate and expand experiments in
public opinion research, through the National Science Foundation-funded Time-sharing
Experiments for the Social Sciences Program, using both telephone and internet surveys
(see TESS).

Telephone surveys have had several disadvantages, however, including growing rates
of nonresponse, partly due to innovations like caller ID, answering machines, privacy
managers, and increasing cell phone coverage (see below). Interviews have tended to
last no more than 15 or 20 minutes, as respondents become fatigued faster than in
other modes. Telephone surveys have also been vulnerable to interviewer effects, as
the characteristics of the interviewer and their levels of training and motivation can
influence the quality of the data collected.

2.3. In-person /face-to-face surveys

Although in-person surveys became less common in public opinion and election polls
well before the end of the last century, primarily due to cost and time considerations,
they have remained an effective way to collect rich and complete public opinion infor-
mation. The National Opinion Center’s General Social Survey (GSS), for example,
continued to be administered in-person. Any type of simple, stratified or systematic
sampling of respondents dispersed over a vast geographic area would be impractical,
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so in-person surveys have typically used area probability samples that are essentially
stratified multistage cluster samples (MCS).

MCS requires the country to be divided into geographic regions (four in the United
States). Within each, a set of counties and standard metropolitan statistical areas have
been randomly selected. Within these, primary sampling units (PSUs) of four or five
city blocks are randomly selected and then four or five households randomly selected
from each block. Random selection has sometimes been abandoned at the household
level because complete lists of all household members may not be available, but inter-
viewers have generally relied on some systematic method to select respondents within
the household (Erikson and Tedin, 2007). The General Social Survey and the National
Election Study continued to select respondents randomly at the household level. The
response rate for the 2006 GSS was 71%; the preelection response rate for the 2004
NES was 66%.

One of the main disadvantages of in-person surveys is their higher cost, but these
costs are necessary because these surveys are designed to achieve (and they are usually
successful in achieving) higher response rates than other modes of data collection. On the
plus side, nonresponse rates tend to be lower, and respondents are usually more engaged
and forthcoming in the interview. Interviewers are also able to be more personal and
interactive, use visual aids and clarify questions, and monitor nonverbal behavior. How-
ever, the potential for interviewer effects described earlier is maximized with surveys
administered in-person.

2.4. Online surveys

Online surveys offer many advantages, including cost efficiency and speed. Researchers
can also develop and administer complex questionnaires and they inform respondents
how far they have proceeded through the survey (something they can directly see in mail
surveys). More important, researchers can include visual aids and they can conduct
experiments with random assignment of “treatments,” as well as provide graphic or
multimedia enhancements. Item nonresponse can be reduced because respondents can
be reminded and motivated to revisit incomplete items. Web-based surveys are self-
administered, so interviewer effects can be avoided.

On the other hand, web-based surveys present serious methodological problems that
may limit researchers’ ability to make valid statistical inferences from them, including
challenges in assembling sampling frames for probability sampling, coverage issues,
and selection bias. Despite rapid penetration of the Internet into households, coverage
issues remain especially acute in the United States, because access is restricted to about
60% of the population. Web-based surveys are also not immune to nonresponse. Other
disadvantages include questionable security and authentication procedures and differ-
ences in format and presentation across computing systems and browsers (Dillman,
2007).

Since as yet there is no available listing of electronic mail (e-mail addresses) and
not everyone has had online computer access, one approach in the United States has
been to use RDD or in-person survey probability sampling methods to draw random
samples of adults, giving respondents without internet access such access to form “pan-
els” who participate in multiple surveys, thereby reducing the costs of drawing repeated
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samples. A more controversial variation of this method has recruited thousands of vol-
unteers to join panels through invitations on internet sites; this approach has assumed
that any selection bias can be corrected through sophisticated methods of “propen-
sity score” weighting (Rosenbaum and Rubin, 1983; Taylor, 2000; Taylor and Terha-
nian, 1999). Online panels have been used in multiple countries in Europe and Asia,
even some with relatively low internet penetration. Yougov was founded in 2000 in the
United Kingdom, and has maintained an internet panel for research. It was successful
in predicting the outcome of the 2001 Parliamentary election, performing better than
conventional polls. It was not quite as good in the 2005 Parliamentary election, and
it fared poorly in its efforts in the U.S. 2004 presidential election. To date, preelec-
tion polls from self-selected internet panels in the United States have done no better
than telephone surveys, and often less well. But, given the problems facing telephone
surveys, they have received a great deal of interest. There has been a need for more
transparency and openness so that these surveys (like IVR, see below) can be evaluated
fully (Blumenthal, 2005).

Probability sampling for Internet surveys originated with Willem Saris who devel-
oped this method in the Netherlands prior to the development of the Internet (Saris,
1998). It utilized “computerized self-administered questionnaires” (Couper and Nichols,
1998, p. 13) and was implemented by the Telepanel of the Netherlands Institute for
Public Opinion (NIPO or Dutch Gallup). Respondents were provided with computers
and modems, and were trained to download and fill out the questionnaires by computer.
Upon completing the questionnaire, each respondent uploaded it for data collection and
processing. The Telepanel idea was adopted in other countries. Most recently, in 2006,
the US National Science Foundation funded a trial run of this method using in-person full
probability sampling recruitment of respondents. The Dutch government also provided
a major grant to support a large-scale Telepanel.

2.5. Mixed or multiple mode surveys

To date, mixed mode methods have not been used extensively in public opinion and
election surveys. Mixed mode surveys offer respondents a choice of response modes.
Multiple mode surveys have collected information from respondents using several sur-
vey modes. Some respondents may participate by mail, for example, while others in
the same survey may be interviewed on the telephone. The methodological considera-
tions described earlier for each survey mode continue to apply to mixed mode surveys
respectively, and others may arise when combining samples of respondents interviewed
using different modes, such as differences in responses depending on the method of
data collection. Offering respondents a choice of response modes may increase rates of
participation.

3. Preelection polling: methods, impact, and current issues

The earliest scientific preelection polls, in the 1930s, relied on in-person interviewing.
Interviewers were sent to selected locations and instructed to interview a specific number
of men and women, young and older people, higher and lower-status voters. Completed
questionnaires were then returned for tabulation and reporting. The Gallup Organization
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developed a procedure to speed up the polling as Election Day drew near, in which
interviewers telegraphed back the responses to specific questions.

As already noted, the early Gallup and other polls had significant successes in predict-
ing presidential victors, at least until the 1948 election. Their methodology, particularly
the reliance on the quota selection process administered by the interviewers themselves,
had been questioned by government statisticians like Louis Bean, of the Department
of Agriculture, Philip M. Hauser and Morris Hansen, of the Bureau of the Census, and
Rensis Likert, from the Bureau of Agricultural Economics, and some academics. The
post-1948 Social Science Research Council Report (Mosteller et al., 1949) also ques-
tioned the reliance on quota samples, and it observed that the pollsters had overestimated
the capabilities of the public opinion poll.

There was another source of concern in making prediction from preelection polls.
What the pollsters (and even some academics, like Paul Lazarsfeld) had discovered from
the 1936, 1940, and 1944 presidential elections was that few if any changes could be
attributed to the campaign (Lazarsfeld et al., 1944; on the history of “minimal” campaign
and especially “media effects,” see Klapper, 1960). In 1948, they believed that the lead
held by the Republican candidate in the fall could not be affected by anything either
candidate could do. Polling stopped several weeks before the election. After 1948,
pollsters would poll much closer to Election Day.

Methodological changes tend to follow problems in election prediction internation-
ally as well. For example, in Britain, preelection pollsters wrongly predicted a Labor
victory in the 1992 parliamentary election. The Conservative Party won by eight per-
centage points. The British Market Research Association conducted an investigation,
and found similar problems to those in the United States in 1948 (Jowell et al., 1993).
Voters changed their minds at the last minute, and there were also problems with the
sampling methods. Most British pollsters opted to continue in-person quota sampling
for the next national election, although they did change their quotas. But others moved
to implement greater changes, including the adoption of telephone polls. Similar issues
were reported in 2002 preelection poll errors in France (Durand et al., 2004).

When preelection polls underestimated Ronald Reagan’s victory margin in the 1980
election, pollsters decided that in future years they needed to continue interviewing
through the night before the election (Hansen, 1981; Kohut, 1981; Mitofsky, 1981).

Differences in methods may apply to the designation of likely voters or allocation
of undecided respondents (discussed below), but may also mean framing preference
questions differently. Martin et al. (2005) found evidence of these differences in the
preelection polls conducted in 2000.

3.1. The allocation of undecided voters

Preelection polls are routinely adjusted from pure probability samples of the adult popu-
lation. Some of those adjustments include the management of voters who refuse to
give a preference when asked. The range of the number of undecided voters in pre-
election surveys can vary greatly across surveys and across stages of the campaign.
Between 1988 and 1996, the proportion of undecided voters reported in polls ranged
from 3 to 73% of the sample (Visser et al., 2000). Typically, 15% or more of the elec-
torate may be undecided during a presidential campaign. This figure tends to be even
higher in lower-level, less-salient races (Erikson and Tedin, 2007). The proportion of
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“undecideds” drops substantially in the final days of the election, although 5% of voters
in the 2004 exit poll claimed they made up their minds on Election Day.

Some polling organizations treat undecided voters as a separate category and include
that percentage in the final preelection estimate; others remove them and recalculate
the percentage for each candidate or party, and others have attempted to allocate them.
Allocation schemes have varied considerably. One approach has assumed that undecided
voters who end up voting do so randomly, so truly undecided respondents should be
allocated equally to the main candidates. This procedure can yield more accurate fore-
casts than eliminating undecided respondents altogether (Erikson and Sigelman, 1995;
Visser et al., 2000). Another approach allocates undecided voters disproportionately to
the challenger, as preelection surveys may systematically underestimate support for the
challenger because of the “spiral of silence” (Noelle-Neumann, 1993 [1984]). In one
study of a wide range of statewide, congressional and municipal primary and general
election races, undecided respondents disproportionately voted for challengers in 82%
of elections (Panagakis, 1989).

Changes in procedures also make comparisons difficult. In 1992, for example, the
Gallup Organization changed its allocation method and, as a result, severely overes-
timated support for Bill Clinton and underestimated support for George W. Bush and
independent challenger Ross Perot (Traugott and Lavrakas, 2004). In the weekend before
the election, Gallup decided to assign all undecideds in its tracking poll to Clinton, citing
the tendency of undecided voters to ultimately choose challengers. Clinton’s lead grew
from two points on Friday to 12 on Monday. But rather than moving to Clinton, many
undecided voted for independent candidate Ross Perot (Erikson and Tedin, 2005).

3.2. Weighting and determining likely voters

The British difficulties in 1992 and the reaction to them underscored a major methodolo-
gical issue for preelection polls. Should one weight or adjust the results? The adjustments
can range from insuring that the original sample reflects the appropriate population
parameters and the probabilities of selection to weighting on past voting behaviors.
Adjustments may also be required to ensure that the final published results reflect the
opinions of actual voters, not all adults.

In countries like the United States, where voter registration is not automatic, a large
portion of respondents may not vote. Candidate preferences of nonvoters may be dif-
ferent from those of actual voters.

In the United States, pollsters have almost always first asked respondents whether or
not they were registered and then asked those registered a series of questions designed to
separate voters from nonvoters, including whether the respondent had voted in the past
and would vote in the current election, as well as a measure of political interest. Some
screens have included whether respondents knew the location of their polling places.
Based on their answers, registered respondents can be assigned a probability of voting
which is then used as a weight when tallying the projected vote.Amore common solution
(used by Gallup and many other pollsters) has been to divide registered respondents into
two groups. Respondents who scored beyond a specified cutoff have been designated
as “likely” voters, whose choices are then counted in the tally. The choices of those
scoring below the cutoff are excluded in the estimation (Asher, 2007; Crespi, 1988;
Daves, 2000; Erikson et al., 2004).
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Estimates of likely voters in the weeks and months prior to Election Day may reflect
transient political interest on the day of the poll, and might have little relationship to
behavior on the day of the election. Even though such likely voter samples might well
represent the pool of potential voters sufficiently excited to vote if a snap election were to
be called on the day of the poll, they may not be the same people voting on Election Day.
An analysis of Gallup polls in the 2000 presidential election indicated that the sorting
of likely and unlikely voters is volatile and that much of the change (although certainly
not all) is an artifact of classification. Pollsters can mistake shifts in the excitement level
of the two candidates’ core supporters for real, lasting changes in preferences (Erikson
et al., 2004).

3.3. Tracking polls

Tracking polls, which monitor campaign dynamics on a daily basis, originated with
political campaigns, which used them to evaluate campaign events and the impact of
political advertizing. Journalists adopted them in the 1980s. Typically, tracking polls
contact small samples of respondents (100–350) each day. To update results, a new
day’s sample of respondents is added to the total sample and the oldest day’s sample of
respondents is dropped. On their own, these samples are too small to provide precise
estimates of preferences, but pollsters have used rolling averages of two or three conse-
cutive days’worth of interviewing. Thus, estimates can be based on 500–600 interviews
aggregated across all days (Traugott and Lavrakas, 2004).

Tracking polls may be useful to assess campaign dynamics, but there are shortcuts
used in these surveys. Tracking polls have typically been one-night surveys that have
not always employed the rigorous sampling and respondent selection procedures that
many other polls do (Traugott and Lavrakas, 2004). Respondent call-back appointments
have rarely been made and interviewers have not always selected respondents randomly
within households. There have been disagreements over whether samples should be
weighted each day or over several days. The Washington Post tracking poll in the 2004
presidential election, for example, adjusted each day’s randomly selected samples of
adults to match the voting-age population percentages by age, sex, race, and education,
as reported by the Census Bureau’s Current Population Survey. The Post also adjusted
the percentages of self-identified Democrats and Republicans by partially weighting to
bring the percentages of those groups to within three percentage points of their proportion
of the electorate, as measured by national exit polls of voters in the last three presidential
elections (Washington Post, 2004). Despite these challenges, the accuracy of tracking
polls has been shown to be superior to other polls in some studies (Lau, 1994).

Several companies, in both the United States and Great Britain, have conducted
election polls among a sample of individuals recruited to be part of web panels. The
resulting interviews conducted online have been adjusted by demographics and politics
to reflect a predetermined estimate of the electorate (Taylor, 2000).

For the most part, pollsters have been reluctant to weight by party identification.
The main hesitation has been that party identification is not a fixed characteristic of the
electorate in the United States, and there has been evidence of significant short-term
fluctuation in party ID. But overall partisanship exhibits considerable stability over
time. Pollsters can estimate the underlying proportions of Democrats and Republicans
in the electorate based on moving averages of results from surveys conducted over
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several weeks, and these estimates might be used, with caution, to weight samples (see
Abramowitz, 2006).

3.4. Preelection poll accuracy

Although lopsided attention has been devoted to notable failures to predict election out-
comes, the results of preelection polls conducted at the end of an election cycle have
overall tended to come within a few percentage points of the actual outcome (Crespi,
1988). Analyzing presidential races between 1984 and 1992, one study reported an aver-
age error of 4.5 percentage points (Gelman and King, 1993). The National Council on
Public Polls (NCPP) calculated that the average error of national polls in 2004 and in
2008 was just 0.9 percentage points (see Martin et al., 2005; Traugott, 2005; NCPP,
2004, 2008). In fact, the “trauma” that has often followed inaccurate poll-based predic-
tions of election results has been a testament to the general reliability of polls (Mitofsky,
1998).

4. Exit polling

4.1. Uses

Exit polls are polls of voters, interviewed after they have left their places of voting
and no later than Election Day. They may include the interviewing before Election
Day of postal, absentee and other early voters. Exit poll functions are not mutually
exclusive: they can predict election results, describe the patterns of voter support for
parties, candidates, and issues; and support extensive academic research efforts with
which the results are formulated and disseminated.

Election projections can be made in ways other than by interviewing voters as they
exit the polling place. Though most projections are based on exit polls, interviewing
voters after having voted at a polling place, other forecasting models may include: CAPI,
CATI or other interviews on Election Day with voters after or before having cast their
votes and counts of official votes in a sample of precincts, often known as quick counts.

A standard use for exit polls in new democracies has been as a check on voting itself.
In recent years, exit poll results in Venezuela, the Ukraine, Georgia, Peru, and Serbia
have been hailed by some as better indicators of election outcomes than the vote count.
Although a well-conducted exit poll can sometimes be a check on fraud, sampling error
limits any poll’s precision, and operational difficulties, including restrictions on carrying
out exit polls, and possible bias due to interviewer–respondent interactions can call into
question the accuracy of those, and other, exit poll results.

The first exit poll was perhaps conducted inadvertently in the United States by
Ruth Clark in 1964. Clark, a well-known newspaper researcher, began her research
career as an interviewer. In 1964 she worked for Louis Harris and was sent to conduct
interviews in Maryland on its primary election day. Tired of door-to-door interviewing
to look for voters, she decided to talk with them as they left the polling place (Rosenthal,
1998, p. 41).

The exit poll did not become a staple of news election coverage until the 1970s
and 1980s. CBS News, under the leadership of Warren Mitofsky, began exit polling in a
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1967 gubernatorial race in Kentucky to collect voting data in precincts that did not make
their vote available at poll closing. It later expanded its questionnaire to include ques-
tions about voter demographics and issue positions. The process was adopted by other
American news organizations and then quickly spread to other countries (Frankovic,
2007; Mitofsky, 1999).

The first exit poll in Great Britain was conducted in 1974 for ITN by Humphrey
Taylor’s United Kingdom company, part of Louis Harris and Associates, followed soon
after by exit polling in other Western European countries. Other non-European democ-
racies adopted exit polling soon after – for example, Social Weather Stations in the
Philippines conducted its first Election Day poll in 1992, and Mexican researchers did
so in 1994. Mitofsky himself did exit polling in the Russian elections starting in 1993,
working with the Russian firm CESSI.

To provide a random sample of voters, the exit poll locations (precincts) must be
selected using probability sampling, proportionate to precinct size, with some stratifi-
cation by geographic location and past vote. Interviewers have to be hired and trained,
and stationed at the selected poll locations. Voters at the polling locations have to be
sampled, either by interviewing every voter or a probability sample of them (every
nth, with n determined ahead of time depending on the expected size of the precinct).
Records of nonresponse normally should be kept – indicating its size and composition.
Results then must be transmitted to a central location for processing, either physically,
by telephone, or electronically.

In the United States, estimates of election outcome are made on a state-by-state basis,
because of the allocation of electoral votes by states to the presidential candidates. The
precinct tallies are weighted by size and their probabilities of selection, a nonresponse
adjustment is made following a quality control check, and the results are entered into
several estimation models – stratified by geography or past vote, including simple esti-
mates and ratio estimates using the past vote. The models include tests for significance.

There have been different types of exit poll questionnaires. Some, as in Britain, have
simply asked which candidate the respondent voted for. In contrast, a typical United
States exit poll may contains 25 questions on both sides of a single sheet of paper
including the importance of issues and demographic characteristics.

4.2. Problems for exit polls

The most serious methodological issue for exit polls has the level and distribution of
nonresponse, as this may result in bias due to differences between those voters willing
and those unwilling to respond. In addition, interviewer effects can be great because
exit polls are conducted in person, although paper and pencil questionnaires preserve
confidentiality and can reduce the impact of this concern on respondents (Bishop and
Fisher, 1995). Examples of differential nonresponse have been documented in response
rates of voters to interviewers of different races in elections with a racial component
(Traugott and Price, 1992), and in other highly intense elections where interviewers may
be perceived (correctly or incorrectly) as favoring one or another candidate or party. In
the 2004 U.S. presidential election, exit poll overestimates of the vote for Democrat
John Kerry were frequently cited as evidence of fraud by some activists; but all analysis
indicated the difference was more likely caused by a differential response rate due to the
interviewer–respondent interaction (Edison Media Research and Mitofsky International,
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2005; Traugott et al., 2005). Younger interviewers achieved lower response rates than
older interviewers. Younger voters in general were more likely than average to be Kerry
voters, and that perception (frequently reported before the election from preelection
polls) may have influenced potential respondents.

In the United States, some states have passed legislation requiring exit poll inter-
viewers to stand as far as 300 feet (nearly 100 m) from the polling location, effectively
making a good sampling of voters impossible. In some countries, the difficulties of
interviewing at the polling place (either through legal restrictions or fear of violence)
have forced researchers to use different methodologies, such as in-person interviewing
at home after people have voted. In the Philippines, day of election surveys at voters’
homes are substituted for an exit poll at the polling place (voters there can be identified
by an indelible mark on their hands).

In the 2000 United States election, mistaken projections in the state of Florida were
attributed to exit polls, although when news organizations first projected that Al Gore
would win Florida’s electoral votes (7:50 p.m. ET), more than just exit poll results had
been received. Twelve of the 120 sample precincts had reported actual tabulated results,
and six of those precincts were part of the exit poll sample. Four percent of all precincts
statewide had reported their votes. At 7:50 p.m., all of the estimation models indicated
a Gore victory, and the estimates met the tests of significance.

There were several data problems. Precincts selected for the exit poll were not a true
reflection of the state results. The difference between the actual precinct vote and the
state totals was at the outer edge of sampling error. The ratio estimation model used
only one past race for comparison, and that was the 1998 gubernatorial election, which
had a 0.91 correlation with the vote for the 2000 Republican candidate, Bush. But using
this race, the size of the absentee vote was underestimated – at only 8% of the total.
As it turned out, the correlation of the 2000 Bush vote and the 1996 vote for Bob Dole
was nearly as high (0.88). In addition, the correlation of the Democratic vote in those
races was significantly higher than for the 1998–2000 comparison (0.81 vs. 0.71). Had
that race been chosen for use by the ratio estimate, the absentee vote would have not
been so grossly underestimated. Accurately estimating the size of the absentee vote is
extremely important in states like Florida, where absentee votes historically were more
than 20 points more Republican than the in-polling place day of election votes.

There was also differential nonresponse. In comparing exit poll results by precinct
with the actual vote in that precinct, one can compute the average Within Precinct Error.
This differential nonresponse has been attributed to many things, including variations
in levels of enthusiasm for each candidate.3 Early on election night 2000, it appeared
the exit poll was understating the vote for Gore, and overstating the vote for Bush. That
had been the pattern in Kentucky, the only other state where a WPE calculation could
be made at the time. However, though the overestimate of the Bush vote in the exit poll
remained true for Kentucky at the end of the night, it did not remain true in Florida.
(The later projection of Bush as the victor in Florida, which was also withdrawn, was
made without any use of exit poll results, only tabulated vote counts).

3 The 1992 Republican Presidential primary in New Hampshire provided an instructive example of this. The
exit poll indicated that Pat Buchanan might receive as much as 40% of the total vote against then President
George H.W. Bush. He did not. According to the exit poll, Buchanan voters were more enthusiastic about
their candidate than Bush voters were.
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WPE has been rarely calculated elsewhere in the world, because the results in each
precinct are not available in many places. In the United Kingdom, votes are aggregated
and released publicly only at the constituency, not the polling place level. And in coun-
tries where election day polls have not been conducted at the polling place, comparisons
can only be made to larger geographic units.

After the 2000 election, the U.S. exit poll operation was reviewed by RTI-Research
Triangle Institute, which suggested a number of improvements that could be made to
the methods of the Voter News Service (VNS), the organization that conducted the exit
polls in that year. The main suggestions were as follows: improving the methodology
for estimating the impact of absentee voters, improving the methodology for estimating
outstanding votes in close races, improving the measures of uncertainty for election
estimates, improving quality control, developing better decision rules, and exploring
new approaches (RTI, 2001).

In the United States, the average within precinct error has been consistently in favor
of the Democratic candidate. In three recent elections, 1988, 1996, and 2000, the average
error on the difference between the candidates has been about 2 points (2.2 in 1988 and
1996, 1.8 in 2000). But in 1992 and 2000 the errors were 5.0 and 6.6 points, respectively.
(This WPE calculation does not include polling places where there are many different
precincts voting.) Turnout was higher in 1992 and 2004 than in the other elections, and
the level of interest in the campaign was also high. In 1992 and 2004, two-thirds of
voters reported paying a lot of attention to the campaign; fewer than half did in 1988,
1996, and 2000.

WPE was higher in larger precincts, in urban precincts, and in precincts where the
respondent selection rate was high. It was higher in more competitive states. It was also
greater in precincts with more Bush voters. WPE was correlated with interviewer reports
of legal or other difficulties with election officials, with the distance an interviewer
was forced to stand from the polling place, and with bad weather. But it was also
correlated with interviewer characteristics: younger interviewers had higher WPE than
older interviewers. The adjustments made in 2006 were the recruitment of a greater
number of older interviewers and active attempts to encourage good relations with
polling place officials. There was still some evidence for similar problems in the 2006
midterm election exit poll; the early afternoon tabulations compared to official vote
returns showed that the Democratic candidates had a margin of vote in the exit poll that
was about 4 percentage points too large (Lindeman, 2007).

Exit poll accuracy has also come under scrutiny in other countries. Investigation by
a blue ribbon panel of an over-report of the vote in the exit poll for Gloria Macapagal–
Arroyo was traced to exceptionally high nonresponse in metropolitan Manila, where
many respondents were simply not available during the interview period. The Philippine
exit poll was conducted away from the polling place, at respondents’ residences.

Changes in the ways elections are conducted will affect exit polls. Absentee vot-
ing, vote by mail, and other forms of early voting have been increasingly permitted
in the United States, so interviews conducted only at polling places will not include
many voters. In two U.S. states (Oregon and Washington), nearly all votes are, at this
writing, cast by mail; in more than half, the absentee/early vote has become a quarter
or more of the total. Consequently, in the U.S. exit polls must be combined with tele-
phone surveys conducted in the days before the election to see a full portrait of the
electorate.
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5. Postelection and between-election polls

Postelection surveys are often conducted by academic organizations for scholarly pur-
poses and facilitate the analysis of public attitudes and behavior during election cycles
(see discussion of NES above).4 Media organizations conduct extensive polling to track
and monitor public preferences in the postelection period as well as reactions to election
outcomes. Perhaps, the most extensive use of postelection polling is by elected officials
and party organizations who find it useful to continuously monitor public opinion on
issues of public policy. At the presidential level, the polling apparatus has essentially
become institutionalized to provide private data about the state of public opinion to the
chief executive and his key advisers (Jacobs and Shapiro, 1995; Murray, 2006). There
is considerable debate about how this opinion data is used by politicians (cf. Eisinger,
2003; Heith, 2004; Jacobs and Shapiro, 2000), but a general consensus about politicians’
growing reliance on postelection private polls in the era of what Sidney Blumenthal has
named “the permanent campaign” (Blumenthal, 1982).

6. Other opinion measurements: focus groups, deliberative polls, and the effect of
political events

6.1. Focus groups

Most polls through the early 1970s relied on face-to-face interviewing. Ancillary
research may have included longer intensive interviews and the use of carefully planned
and moderated small group discussions to learn about perceptions and attitudes. These
were originally called “focused interviews,” but are now widely known as the “focus
group” (e.g., Delli Carpini and Williams, 1994; Morgan, 1996). Technically, focus
groups are not polls but in-depth interviews with a small number of people (6–12)
often selected to represent broad demographic groups (Asher, 2007). Focus groups
became widely used in market research and later in political campaigns as ways to learn
people’s opinions about products and candidates and their perceived sources for these
opinions. Focus group participants do not constitute random or purportedly representa-
tive samples, because they are rarely, or ever, selected through random sampling, but
they can provide useful information and pretest questions being developed for a larger
scale survey. Effective ways of framing issues and messages can be explored in focus
groups, and conversations among their dozen or fewer participants can provide insights
into how individuals’ opinions are shaped and change in response to new information,
such as candidates’ statements, news media reports, and advertizements. Focus group

4 One methodological consideration relevant to postelection studies is inaccurate respondent recall of past
behavior. Studies reveal that nontrivial numbers of respondents misreport vote choice. Moreover, there is
evidence that retrospective reports of vote choice systematically magnify the support actually received by
winning candidates, Using NES data, Wright (1993) reported that the prowinner bias tends to be relatively
modest for presidential contests (about 1.5 percentage points) but over-reported for winners of congressional
or gubernatorial races average between 4 and 7 percentage points, differences that far exceed amounts we
could expect from sampling error. Similar evidence of such “bandwagon effects” has been detected using
other data sources. Lindeman (2006) also shows that “false recall” favoring winners in presidential elections
often grows over time.
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leaders are able to probe participants to react to various stimuli while simultaneously
observing other participants’ reactions and redirecting the discussion to keep it relevant
as necessary.

Generalizations from focus group participants do not apply to broader populations.
Still, it is an appropriate methodology to illuminate the process and complexities of
preference formation and attitude change. Mainly, focus groups highlight that people
regularly and continuously construct views on complex issues through cognitive pro-
cesses rather than retrieve those views (Glynn et al., 2004).

6.2. Deliberative polling

Deliberative polls have attempted to combine the virtues of focus group studies with
those of standard public opinion surveys and to study and improve the quality of survey
data by affecting the dynamics and quality of public opinion itself. Their conductors have
first drawn a random sample of the public through probability sampling, interviewed
respondents, and then brought the sample together to meet and learn about issues and
problems through briefing materials, meetings with experts and political leaders, and
small-group discussions. This survey method has provided a way of observing how
public opinion is transformed, by the time of a later follow-up survey, through infor-
mation and debate (Fishkin, 1997). The first national deliberative poll “sample” was
convened in the United States in Austin, Texas, in 1996, in the context of the upcom-
ing presidential election. Several other deliberative polls have been conducted to date,
including British deliberative polls on “Europe 1995” and the “Monarchy;” an “Electric
Utility” deliberative poll in Texas; “Australia Deliberates” in 1999 and one on “Abori-
ginal Reconciliation” there in 2001; one in Denmark on the Euro in 2000; and even a
first-of-its-kind deliberative poll sponsored by the local government in Zeguo, China,
on local infrastructure projects (Fishkin et al., 2006; see also Luskin et al., 2002). Other
survey researchers have attempted to study deliberation through the context of a single
survey itself as respondents are asked to react to new information provided in batteries
of survey questions (see Kay, 1998). Another variant of the deliberative poll samples
participants using a probability sampling method and has them interact in online groups
to see whether and how opinions change when participants are interviewed again (see
Lindeman, 2002; Price, 2006; Price and Neijens, 1998; on deliberation more generally,
see Mendelberg, 2002).

Critics contend that the conclusions of deliberative polls cannot be generalized to
the population at large, despite their randomly selected samples, because the public is
unlikely to be exposed to information or experiences in the way participants in delib-
erative polls have been. Moreover, participants’ attitudes may be influenced by the
heightened sensitivity associated with participation.

6.3. The effect of events, political debates, and changing conditions

One important academic and journalistic use of polling is estimating the effect of events,
including crises, political debates, election campaigns, and other changing circum-
stances and conditions, on short-term changes in public opinion. This has been attempted
when surveys have been conducted frequently over short periods of time, or by track-
ing polls. Impact can also be measured by panel surveys, where the same respondents
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are interviewed again, and individual change (and the reasons for it) can be specified,
although the “panel” may be subject to attrition (see Chapters 5, 33, and 34).

The effects of presidential debates in the United States have been studied extensively
through experiments or small group studies, as well as larger scale surveys conducted
before and after those debates. Although there is not a consensus among researchers,
there is evidence that debates (and political campaigns generally) increase public know-
ledge about the candidates and salience of the issues raised. Some studies have reported
evidence of effects on candidate support and hence election outcomes (cf. Benoit et al.,
2003; Geer, 1988). One found that presidential candidates perceived as victorious in
debates against their opponents typically experience a surge in support following the
debate: in 1984, Mondale was perceived as the winner of the first debate against Reagan,
and experienced a bump of 3 to 4 percentage points (Holbrook, 1996).

U.S. political conventions have offered parties an opportunity to present their candi-
dates and image to voters in a positive and relatively uncontested format. The resulting
spike in support for the party’s nominee can be substantial and have lasting implication
that can carry through to Election Day. On average, presidential contenders between
1964 and 2004 received a 12-point boost in two-party support following their conven-
tion (Panagopoulos, 2007).

The impact of events on political attitudes and preferences can also be detected in
performance evaluations of incumbent presidents. Major foreign policy actions, scan-
dals, and other events can influence how respondents perceive the president. Short-term
surges in presidential support have often followed momentous foreign policy events, for
example, such as the attacks of 9/11 or the response to the invasion of Kuwait in 1991.
Such rally-around-the-flag effects resulted in a net-positive shift of nearly 30 points in
approval for President George W. Bush in 2001 following the 9/11 attacks (Mueller,
1973; see also Erikson et al., 2002). Generally, the impact of events dissipates over
time, although traces of event-related effects on opinion have often lingered (Campbell,
2000; cf. more generally Page and Shapiro, 1992, on changes in the public’s policy
preferences).

7. Present and future challenges in polling

7.1. Response rates and nonresponse bias

The proliferation of telephone surveying, along with the growth of market research,
telemarketing, and telephone solicitations in the United States since the 1970s created
new challenges for pollsters and for the study of public opinion and voting. These chal-
lenges also have begun to occur in other countries as well. Telephone calling became
increasingly disruptive, and household members became less willing to participate
in such conversations. New technology also gave potential respondents the ability to
screen calls through answering machines and caller identification devices. Decreased
response rates increased the potential for “nonresponse” or selection bias in polls (See
Chapter 11). In-person surveys are still conducted in some academic studies, such
as the General Social Survey and the American National Election Studies, and gov-
ernment surveys including the U.S. Census. These surveys have had larger budgets
and could maintain high-response rates through greater public relations and spending
efforts. The trend in nonresponse in telephone surveys due to both noncontact and
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refusals was steeper from 1996 to 2003 than from 1979 to 1996 (Curtin et al., 2005;
see also Zukin, 2006).

Despite this increase in nonresponse in the United States, there has been, surprisingly,
little significant bias found thus far in comparisons of surveys with low (less than 30%)
and substantially higher response rates (60% or more). What is still not known is whether
there is still bias related to the sizeable hard core portion of the public that never responds
(cf. Groves, 2006; Groves and Couper, 1998; Singer, 2006; Weisberg, 2005; Keeter et al.,
2006). Exit polls have also faced increasing nonresponse.

7.2. Technological issues

7.2.1. Polls using interactive voice response
Rising costs in telephone polling and the increasing demand for polls has spurred not
only the development of on-line surveys, but also the use of interactive voice response
(IVR) technology. This methodology is an offshoot of audio Computer Assisted Self
Interviewing (audio-CASI or ACASI). IVR polls are also referred to as automated polls
or “robo-polls,” which use a computer assisted polling method that replaces human
interviewers with a prerecorded voice asking a short set of survey questions. Depending
on the technology, respondents provide their answers verbally or key in responses on
their touch-tone phones.

One advantage that IVR pollsters emphasize is that IVR controls and makes uniform
how questions are asked, and how responses are received and data entered (though
there can be respondent errors). A major disadvantage is that these surveys work best if
limited to no more than 5 minutes of questions, which means less data can be collected.
In addition, they are likely to have more break-offs because respondents are not hanging
up rudely on a person who has attempted to build rapport, and respondents might have no
hesitation to offer flippant or false responses. Consequently, the main use for these polls is
to collect specific opinions and the most relevant background characteristics. Unless the
initial introduction and screening of respondents is done by a human interviewer, these
surveys may interview individuals who are not members of the sample of appropriate
age, voter eligibility, or whatever required characteristic (see Couper et al., 2004; Li,
2006).

At this writing, IVR surveys have performed well in a number of election contests in
many states and localities, as well as nationally, but there are also examples of preelection
difficulties (see Blumenthal, 2005).

7.2.2. Cellular phones
For telephone surveys, coverage issues in the past were limited to noncoverage of
households without telephones and over-coverage of households with multiple phone
lines. The latter can be dealt with by statistical weighting, the former by demographic
adjustments. There are concerns about the increasing use of cellular phones not only to
supplement regular “land-line” phones but also to replace such phones (see Lavrakas,
2007). According to a 2006 study conducted by the Pew Research Center for the Peo-
ple and the Press (2006), an estimated 7–9% of the American public was “cell phone
only” in 2006, 53% of the public had access to both a landline and a cell phone,
and 37% had a landline only. The remainder had no telephone access. Subsequently,
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the January–June 2008 National Health Interview Survey estimated cell phone-only
households at 17.5%. Approximately 2% of households had no phone (Blumberg and
Luke, 2008).

Thus far, surveys have dealt with this successfully through weighting the data to
adjust for the typically young age and other characteristics of individuals who have no
telephone or only cell phones at home. These phone issues were not a factor in 2004
preelection poll estimates, based on self-reports of household phone coverage in the
2004 U.S. national election exit poll (Keeter, 2006). The Pew study (2006) discussed
earlier also found only minimal differences between cell-only respondents and those
reachable by landline on key political questions, once appropriate weighting procedures
were implemented. However, in a subsequent study, Keeter et al. (2007) did find that by
including a cell phone-only sample with a standard RDD they could produce population
estimates that were nearly the same as those from a landline-only sample, they also
found evidence that the noncoverage of young adults (fully 25% of whom had only cell
phones) in RDD surveying created biased estimates on certain survey measures.

As the proportion of cell phone-only households increases in ways that might lead to
greater biases, it is likely to affect further survey response rates and costs. It is already
clear that respondents aged 18–34 have become much harder to reach and that the
“portability” of phone numbers in the United States has made it increasingly difficult
for sampling purposes to identify the geographic residence of cell phone users (see
Zukin, 2006). Further studies of cell phone users are under way to determine the fea-
sibility and effectiveness of interviewing respondents on their cell phones, and com-
pensating respondents for any costs incurred in receiving survey calls (Brick et al.,
2007). Response rates for a cell phone sample frame are typically lower than a land-
line sample. The contact rate for the cell phone sample may be higher, although greater
accessibility has not lead to a higher rate of cooperation; in one study half of the peo-
ple reached in the landline sample (50%) cooperated, when compared with 28% of
those reached in the cell phone sample. However, interviewers working on the survey
reported that cell phone respondents were as focused and cooperative as those reached
on a landline telephone (Pew Research Center, 2006; see also Lavrakas, 2007).

Telephone surveying has greater problems in other countries that do not have the
extensive availability of land lines. In some places cell phone penetration is very great
(Zukin, 2006), and in others land-line expansion has been by-passed by the large-scale
introduction of cell phones. Response rates are a major issue everywhere. In some
countries it is still necessary to do in-person interviewing, and in others researchers are
turning to the Internet and Internet panels, which have become increasingly appealing
(especially to interview young adults).

7.3. Threat of government regulation

In contemporary politics, attacking or fending off negative polls are a normal part of
campaigns. In 1992, when George H. W. Bush was trailing Bill Clinton, Bush attacked
polls in more than 30 speeches: the equivalent of once in every four times he spoke
publicly. In 1996, Bob Dole talked about the polls in one-third of all his speeches
(Frankovic, 1998). In recent elections, campaigns and news stories frequently describe
differences in preelection polls, and raise questions about methods, including queries
about how likely voters are defined, question order, weighting, and assumptions about
partisanship (Frankovic, 2005).
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Most recently, pollsters themselves have come under direct attack – almost literally –
for their election polling. There has been continuing debate and sensitivity to what might
be call “polling politics” in which local news media and other public pollsters have been
accused of partisan biases in their polls, in which normal variations and the occasional
outlier in poll results that can occur due to chance are attributed to manipulative polling
practices (Daves and Newport, 2005; Jacobs and Shapiro, 2005).

Some governments have attempted to limit the publication of poll results – both
during the preelection period and on Election Day. As late as 2002, at least 30 countries
had legal restrictions on the publication of preelection poll results. There had been little
change in that absolute number since 1996, when at least 31 countries had embargos
on the publication of political poll results on or prior to Election Day. Nine of these
embargos applied to Election Day only; 46 countries (61%) had no embargo. Nine
countries had increased the time restrictions between 1996 and 2002, while 15 others
had decreased it, or eliminated it entirely. Countries with limits on the publication of
preelection polls in 2002 included Western European countries like Portugal, Spain, and
Switzerland, and countries in Asia and Latin America. In Italy, publication was allowed,
but required a poll report to be accompanied by an “information note” with several
specifications related to the poll, which must be published together with the results of
the poll in the media and recorded on a dedicated website (Spangenberg, 2003).

Several nations ban the publication of preelection poll results at certain stages of the
campaign. In Canada, for example, poll results cannot be published during the final 3 days
of the campaign. Greece, Italy, and Ukraine are even more restrictive, prohibiting poll
publication for the final 15 days of the electoral campaign (Plasser and Plasser, 2002).
South Africa bans poll publication for the last 6 weeks of a campaign. In Lithuania, poll
publication is prohibited for the entire duration of the official campaign period.

The regulatory framework as it applies to public and media preelection polls varies
in other meaningful ways cross-nationally. According to data provided by the ACE
Electoral Knowledge Network, 16 countries required the sponsor of a poll to be indicated.
Disclosure of the sample characteristics is required by law in 17 countries, and the margin
of error is legally required to be disclosed in 13 countries including Albania, Portugal,
and Russia (ACE Electoral Knowledge Network, 2006).

The U.S. Congress held hearings after the early projection of a Ronald Reagan victory
in the 1980 election (as it had after a previous electoral landslide in 1964), and some
claimed that projections of a Ronald Reagan victory before all polls had closed affected
turnout in Western states (Jackson, 1983). Some states, including Oregon, passed laws
restricting those polls. As of 2002, 41 countries restricted publication or broadcast of
poll results until after the polling places have closed. In addition, in both the United
States and in Hong Kong, there are no government regulations about the release of exit
poll information, but pollsters and news organizations have agreed not to report exit poll
results until after the polls close (Spangenberg, 2003).

Bans on reporting preelection polls have been circumvented by posting results on the
Internet, and restrictions (whether government-imposed or self-imposed) on reporting
exit polls before polls close have also been circumvented, as leaks of exit polling results
and their reporting on the Internet have become routine. In 2004, early leaks of partial
exit poll results (with the overestimate of the Kerry vote) fueled speculation of voter
fraud that continued even after the election.

Despite near-universal belief that poll information affects voting, there is minimal
supporting evidence. According to one review of studies about the impact of election
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polling. “The conclusion is that any effects are difficult to prove and in any case are
minimal. Opinion polls do provide a form of ‘interpretative assistance’ which helps
undecided voters make up their mind. But the media are full of such interpretative
aids, including interviews and commentaries, and in this perspective, election polls are
a relatively neutral and rational interpretative aid” (Donsbach, 2001, p. 12; see also,
Adams, 2005).

7.4. Issues in reporting polls accurately

Beyond the technical details in conducting and analyzing polling data, how poll results
are reported and interpreted is itself an issue. News stories about polls are increasingly
common. One recent estimate is that the number of stories reporting on poll results has
nearly doubled from the 1992 and 1996 U.S. Presidential election years to 2000 and
2004 (Frankovic, 2005, p. 684–685).

In the United States, problems in reporting have been affected by changes in journal-
ism – cutbacks and 24 hour reporting leading to more reliance on poll results – and the
repackaging of releases of poll results – as news. Journalists too often do not have the
time or skills to evaluate fully the quality of the polls they report on (Rosenstiel, 2005).

8. Continued interest in public opinion and polling

Public opinion and election polling has been one of the constant features of late 20th
century and early 21st century social and political life in the United States. They have
been a persistent source of discussion and debate in the press, and the latest opinions
of the public toward political issues and candidates are persistent topics of political
contentions, and academics and commentators continue to debate the positive role for
American democracy that George Gallup saw for public opinion through polling. Many
critics doubt that the public is sufficiently knowledgeable, attentive to politics, skilled in
interpretation and analysis, and wise enough overall to deserve attention in governing
beyond casting votes on Election Day. Rather, the public should defer to political leaders
and experts. The defenders of the “rationality” of public opinion argue that the public –
as individuals and especially as a collective – was sufficiently capable of taking cues
or learning from political leaders and other sources. Indeed, the public had defensible
reasons for its opinions to warrant ongoing consideration in the political process.

This has raised classic questions: To what extent do political leaders follow or lead
public opinion? What are the implications for this for democracy? Some critics have
also argued that the existence of polling gives the public the false sense that its voice is
amply represented in the political process (see Ginsberg, 1986; Herbst, 1993). Although
the common wisdom, beginning with George Gallup, was that polls enabled political
leaders to learn about public opinion and, under electoral pressure, to follow the public’s
wishes, political leaders are not always under such immediate pressure; they have room
to maneuver and attempt to lead – or even manipulate – public opinion, using polling
information to learn how best to “craft” their messages for this purpose (see Glynn et al.,
2004, Chapter 9; Jacobs and Shapiro, 2000).

Polls continue to vary in their type, scope, and quality; innovations may create new
problems for pollsters to wrestle with. As survey researchers try to get good estimates of
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the public’s opinions and behavior, the problems cited in the early days of polling remain
the same: sampling coverage; identifying and representing an identifiable population and
obtaining a sufficiently high response rate; statistical sampling error, assuming there is
acceptable sampling coverage; the effects of questions wording; the use of fixed choice
versus open-ended questions; the treatment of “don’t know,” “no opinion,” “undecided”
and similar types of responses; effects of question order (“context effects”); lack of clar-
ity in the research questions being studied and assumptions about respondents’ familiar-
ity with a particular issue or topic; whether reported behavior validly represents actual
behavior (in the present, past, or future); interviewer effects; and the effects of the type
of survey method used (“mode effects”).

Given such attention to public opinion, the accuracy of poll results and how these
results are reported have become increasingly important academic and political issues.
Journalists have been widely criticized for their shortcomings in reporting about poll
results, often accepting them uncritically without researching the quality of polls and the
questions asked in them. The opportunities first offered by polling have led to challenges
for the pollsters and democratic politics on a number of fronts in the United States and
(increasingly) worldwide, as the reach of democracy and survey research has expanded
to more and more countries.
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