| ‘l\@ MORGANNCLAYPOOL PUBLISHERS

MATLAB® Software for
the Code Excited Linear

Prediction Algorithm
1The Federal Standard-1016

Karthikeyan N. Ramamurthy
Andreas S. Spanias

SYNTHESIS LLECTURES ON ‘
ALGORITHMS AND SOFTWARE IN ENGINEERING

Andreas Spanias, Series Editor

MATLAB' Software for the
Code Excited Linear

Prediction Algorithm
The Federal Standard-1016

Synthesis Lectures on
Algorithms and Software in
Engineering

Editor
Andreas S. Spanias, Arizona State University

MATLAB® Software for the Code Excited Linear Prediction Algorithm The Federal
Standard 1016

Karthikeyan N. Ramamurthy and Andreas S. Spanias

2009

Advances in Modern Blind Signal Separation Algorithms: Theory and Applications
Kostas Kokkinakis and Philipos C. Loizou
2010

OFDM Systems for Wireless Communications
Adarsh B. Narasimhamurthy, Mahesh K. Banavar, and Cihan Tepedelenlioglu
2010

Algorithms and Software for Predictive Coding of Speech
Atti Venkatraman
2010

Advances in Waveform-Agile Sensing for Tracking
Sandeep Prasad Sira, Antonia Papandreou-Suppappola, and Darryl Morrell
2008

Despeckle Filtering Algorithms and Software for Ultrasound Imaging
Christos P. Loizou and Constantinos S. Pattichis
2008

Copyright © 2009 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in

printed reviews, without the prior permission of the publisher.

MATLAB® Software for the Code Excited Linear Prediction Algorithm — The Federal Standard-1016
Karthikeyan N. Ramamurthy and Andreas S. Spanias

www.morganclaypool.com

ISBN: 9781608453849 paperback
ISBN: 9781608453856 ebook

DOI 10.2200/500252ED1V01Y201001ASE003

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON ALGORITHMS AND SOFTWARE IN ENGINEERING

Lecture #3

Series Editor: Andreas S. Spanias, Arizona State University
Series ISSN

Synthesis Lectures on Algorithms and Software in Engineering
Print 1938-1727 Electronic 1938-1735

MATLAB Software for the
Code Excited Linear
Prediction Algorithm

The Federal Standard-1016

Karthikeyan N. Ramamurthy and Andreas S. Spanias

Arizona State University

SYNTHESIS LECTURES ON ALGORITHMS AND SOFTWARE IN
ENGINEERING #3

1\@ MORGAN CLAYPOOL PUBLISHERS

ABSTRACT

This book describes several modules of the Code Excited Linear Prediction (CELP) algorithm.
The authors use the Federal Standard-1016 CELP MATLAB® software to describe in detail sev-
eral functions and parameter computations associated with analysis-by-synthesis linear prediction.
The book begins with a description of the basics of linear prediction followed by an overview of
the F'S-1016 CELP algorithm. Subsequent chapters describe the various modules of the CELP
algorithm in detail. In each chapter, an overall functional description of CELP modules is provided
along with detailed illustrations of their MATLAB® implementation. Several code examples and
plots are provided to highlight some of the key CELP concepts.

The MATLAB® code within this book can be found at http://www.morganclaypool.com/
page/fs1016

KEYWORDS
speech coding, linear prediction, CELP, vocoder, ITU, G.7XX standards, secure com-

munications

http://www.morganclaypool.com/page/fs1016
http://www.morganclaypool.com/page/fs1016

Contents

Preface o ix
Introduction to Linear Predictive Codingt 1
1.1 Linear Predictive Codingot 2

1.1.1 Vocal Tract Parameter Estimation 3
1.1.2 Excitation, Gain and Pitch Period 5
1.1.3 Linear Prediction Parameter Transformations 6
1.1.4 Long-Term Prediction 6
1.2 Analysis-by-Synthesis Linear Prediction................... ..o 7
1.2.1 Code Excited Linear Prediction Algorithms 9
1.2.2 The Federal Standard-1016 CELP 12

1.3 SUMMArY ..o e 13
Autocorrelation Analysis and Linear Prediction 15
2.1 Framing and Windowing the Input Speech, 16
2.2 Computation of Autocorrelation Lags ... 18
2.3 The Levinson-Durbin Recursion. ..., 20
2.4 Bandwidth Expansion 23
2.5 Inverse Levinson-Durbin Recursion...................ooooiiioi 26
2.6 SUITIIMALY . o ettt et ettt e e e e e e e ettt 28
Line Spectral Frequency Computation........................, 29
3.1 Construction of LSP Polynomials...... ... 29
3.2 Computing the Zeros of the Symmetric Polynomial 31
3.3 Computing the Zeros of the Anti-Symmetric Polynomial 35
3.4 Testing Ill-Conditioned Cases ..., 40

3.5 Quantizing the Line Spectral Frequencies........... ..., 41

viii CONTENTS

3.6 Adjusting Quantization to Preserve Monotonicitycooooiia... 45
3.7 SUIITIALY . ot ettt ettt ettt et e e e e e e e 49
4 Spectral Distortion. i 51
4.1 Conversion of LSP to Direct-Form Coefficients.......... ...t 52
4.2 Computation of Autocorrelation Lags from Reflection Coefficients............. 53
4.3 Calculation of Distance Measuresouvuiinininininieiii ... 57
44 SUIMIMIAIY . oottt ettt e e e e e e e e e 60
5 The Codebook Search i 63
5.1 Overview of Codebook Search Procedure, 63
5.2 Adaptive Codebook Search......... ... o i 66

5.2.1 Target Signal for Adaptive Codebook Search 66
5.2.2 Integer Delay Search 68
5.2.3 Sub-Multiple/Fractional Delay Search 70
5.3 Stochastic Codebook Search......o 72
5.3.1 Target Signal for Stochastic Codebook Search 72
5.3.2 Search for Best Codevector 75

5.4 Bitstream Generationouiuiiiniiiii i 77
5.5 SUMMAIY . ..o e 78
6 TheFS-1016 Decodert e 79
6.1 Extracting Parameters for Synthesiso ol 79
6.2 LP Synthesis.o.oouiiii e 82
6.3 Postfiltering Output Speech 84
6.4 Computing Distance Measures, 88
6.5 SUMMAIY ¢ .ttt ettt et e 88
Biblography 93

Authors’ Biographies 99

Preface

The CELP algorithm, proposed in the mid 1980’s for analysis-by-synthesis linear predictive
coding, had a significant impact in speech coding applications. The CELP algorithm still forms
the core of many speech coding standards that exist nowadays. Federal Standard-1016 is an early
standardized version of the CELP algorithm and is based on the enhanced version of the originally
proposed AT&T Bell Labs CELP coder [1].

This book presents MATLAB®software that simulates the FS-1016 CELP algorithm. We
describe the theory and implementation of the algorithm along with several detailed illustrations
using MATLAB®functions. In the first chapter, we introduce the theory behind speech analysis
and linear prediction and also provide an overview of speech coding standards. From Chapter 2
and on, we describe the various modules of the FS-1016 CELP algorithm. The theory sections in
most chapters are self-sufficient in that they explain the necessary concepts required to understand
the algorithm. The implementation details and illustrations with MATLAB®functions complement
the theoretical underpinnings of CELP. Furthermore, the MATLAB®prograrns and the supporting
files are available for download in the companion website of the book. The extensive list of references
allows the reader to carry out a more detailed study on specific aspects of the algorithm and they
cover some of the recent advancements in speech coding.

We note that although this is an existing algorithm and perhaps the very first that has been
standardized, it is a great starting point for learning the core concepts associated with CELP. Stu-
dents will find it easy to understand the CELP functions by using the software and the associated
simulations. Practitioners and algorithm developers will be able to understand the basic concepts and
develop several new functions to improve the algorithm or to adapt it for certain new applications.
We hope this book will be useful in understanding the CELP algorithm as well as the more recent
speech coding standards that are based on CELP principles.

The authors acknowledge Ted Painter, who wrote the MATLAB®code for the FS-1016
CELP algorithm, and DoD for developing the C code for the algorithm.

The MATLAB® code within this book can be found at http://www.morganclaypool.
com/page/£fs1016

Karthikeyan N. Ramamurthy and Andreas S. Spanias
February 2010

http://www.morganclaypool.com/page/fs1016
http://www.morganclaypool.com/page/fs1016

CHAPTER 1

Introduction to Linear

Predictive Coding

This book introduces linear predictive coding and describes several modules of the Code Excited
Linear Prediction (CELP) algorithm in detail. The MATLAB program for Federal Standard-1016
(FS-1016) CELP algorithm is used to illustrate the components of the algorithm. Theoretical
explanation and mathematical details along with relevant examples that reinforce the concepts are
also provided in the chapters. In this chapter, some of the basics of linear prediction starting from
the principles of speech analysis are introduced along with some fundamental concepts of speech
analysis.

Linear prediction analysis of speech signals is at the core of most narrowband speech coding
standards. A simple engineering synthesis model that has been used in several speech processing
and coding applications is shown in Figure 1.1. This source-system model is inspired by the human
speech production mechanism. Voiced speech is produced by exciting the vocal tract filter with
quasi-periodic glottal pulses. The periodicity of voiced speech is due to the vibrating vocal chords.
Unvoiced speech is produced by forcing air through a constriction in the vocal tract or by using other
mechanisms that do not engage the vocal chords.

11111 /

O
. Synthetic
Vocal Tract Filter |—» Speech
—e

Figure 1.1: Engineering model for speech synthesis.

The vocal tract is usually represented by a tenth-order digital all-pole filter. As shown in
Figure 1.1, voiced speech is produced by exciting the vocal tract filter with periodic impulses and
unvoiced speech is generated using random pseudo-white noise excitation. Filter coefficients and
excitation parameters are typically determined every 20 ms or less for speech sampled at 8 kHz. The

2 1. INTRODUCTIONTO LINEAR PREDICTIVE CODING

filter frequency response models the formant structure of speech and captures the resonant modes
of the vocal tract.

1.1 LINEAR PREDICTIVE CODING

Digital filters for linear predictive coding applications are characterized by the difference equation,

M
y(n) = b0)x(n) — Za(i)y(n —i). (1.1)
i=1
In the input-output difference equation above, the output y(n) is given as the sum of the input minus
a linear combination of past outputs (feedback term). The parameters a(i) and b(i) are the filter
coefficients or filter taps and they control the frequency response characteristics of the filter. Filter
coefficients are programmable and can be made adaptive (time-varying). A direct-form realization
of the digital filter is shown in Figure 1.2.

— y(n)

x(n) + N) e »
)3 z z q z
<4

Figure 1.2: Linear prediction synthesis filter.

When the tenth-order all-pole filter representing the vocal tract is excited by white noise, the
signal model corresponds to an autoregressive (AR) time-series representation. The coefficients of the
AR model can be determined using linear prediction techniques. The application of linear prediction
in speech processing, and specifically in speech coding, is often referred to as Linear Predictive
Coding (LPC). The LPC parameterization is a central component of many compression algorithms
that are used in cellular telephony for bandwidth compression and enhanced privacy. Bandwidth is
conserved by reducing the data rate required to represent the speech signal. This data rate reduction
is achieved by parameterizing speech in terms of the AR or all-pole filter coefficients and a small
set of excitation parameters. The two excitation parameters for the synthesis configuration shown

1.1. LINEAR PREDICTIVE CODING 3

in Figure 1.1 are the following: (a) the voicing decision (voiced/unvoiced) and (b) the pitch period.
In the simplest case, 160 samples (20 ms for 8 kHz sampling) of speech can be represented with ten
all-pole vocal tract parameters and two parameters that specify the excitation signal. Therefore, in
this case, 160 speech samples can be represented by only twelve parameters which results in a data
compression ratio of more than 13 to 1 in terms of the number of parameters that will be encoded
and transmitted. In new standardized algorithms, more elaborate forms of parameterization exploit
turther the redundancy in the signal and yield better compression and much improved speech quality.

1.1.1 VOCALTRACT PARAMETER ESTIMATION

Linear prediction is used to estimate the vocal tract parameters. As the name implies, the linear pre-
dictor estimates the current sample of the speech signal using a linear combination of the past samples.
For example, in a tenth-order linear predictor, an estimate of the current speech sample s(n) is pro-
duced using a linear combination of the ten previous samples, i.e.,s(n — 1), s(n — 2), ..., s(n — 10).
This is done by forming a prediction error,

10

e(n) = s(n) — Za(i) s(n—i) . (1.2)

i=l1

The prediction parameters a(i) are unknown and are determined by minimizing the Mean-Square-
Error (MSE) E[e?(n)]. The prediction parameters a(i) are also used to form the all-pole digital
filter for speech synthesis. The minimization of the MSE yields a set of autocorrelation equations
that can be represented in terms of the matrix equation,

ey] [r r) or@ oo | a)]
r(2) rl) r@© r) ... r(a(2)
r (3) _ r@) r)y r@© ... r(a(3) (1.3)
r(iO) _r(.9) r('8) r(‘7) r('O)_ _a(iO)_
The autocorrelation sequence can be estimated using the equation,
1 N—m—1
r(m)=ﬁ ,12:(:) sn+m)s @) . (1.4)

The integer N is the number of speech samples in the frame (typically N = 160). The autocorre-
lations are computed once per speech frame and the linear prediction coefficients are computed by

4 1. INTRODUCTIONTO LINEAR PREDICTIVE CODING

inverting the autocorrelation matrix, i.e.,

Ca)] [r@ r) r@ oor | r@]

a(2) rc)y r©O r) ... r(® r(2)

a(3) _| 2 r) r© ... r(r(3) (1.5)
i a(iO)] i r(.9) r(.8) r(.7) r(.O)] i r(iO)]

The coefficients a(1), a(2), ..., a(10) form the transfer function in (1.6) of the filter which is used
in the speech synthesis system shown in Figure 1.1. This all-pole filter reproduces speech segments
using either random (unvoiced) or periodic (voiced) excitation.

1
10

1— Za(i)z*"

i=1

H(z) = (1.6)

The matrix in (1.3) can be inverted efficiently using the Levinson-Durbin order-recursive
algorithm given in (1.7 a-d).

for m = 0, initialize:

sg =r(0)
form =1 to 10: |
rm) =Y amo1 () (m—1i)
i=1
Am (m) = i (1.7 a-d)
8m—1

fori =1 to m — 1:
am (i) =am_1 (@) —am M)ap_1(m—i), 1 <i <m-—1
end
e = (1= (am m)?) el _,
End

The subscript m of the prediction parameter a,, (i) in the recursive expression (1.7 a-d) is
the order of prediction during the recursion while the integer in the parenthesis represents the
coefficient index. The symbol 8,{, represents the mean-square estimate of the prediction residual
during the recursion. The coefficients a,, (m) are called reflection coefficients and are represented
by the symbol k,, = a,,(m). In the speech processing literature, the negated reflection coefficients
are also known as Partial Correlation (R4RCOR) coefficients. Reflection coefficients correspond to
lattice filter structures that have been shown to be electrical equivalents of acoustical models of the
vocal tract. Reflection coefficients have good quantization properties and have been used in several

1.1. LINEAR PREDICTIVE CODING 5

speech compression systems for encoding vocal tract parameters. A lattice structure is shown in
Figure 1.3.

s(n)

¢ (n)

Figure 1.3: Lattice structure for linear prediction and reflection coefficients.

1.1.2 EXCITATION, GAIN AND PITCH PERIOD

The residual signal e(n) given in (1.2) forms the optimal excitation for the linear predictor. For
low-rate representations of speech, the residual signal is typically replaced by a parametric excitation
signal model. Many of the early algorithms for linear prediction used the two-state excitation model
(impulses/noise) shown in Figure 1.1. This model is parameterized in terms of the gain, the binary
voicing parameter and the pitch period. The gain of voiced and unvoiced segments is generally
determined such that the short-term energy of the synthetic speech segment matches that of the
analysis segment. For unvoiced speech, the excitation is produced by a random number generator.
Since unvoiced segments are associated with small energy and large number of zero crossings, voicing
can be determined by energy and zero-crossing measurements. Pitch estimation and tracking is a
difficult problem. Some of the well-known algorithms for pitch detection were developed in the
late sixties and seventies. A straightforward approach to pitch detection is based on selecting the
peak of the autocorrelation sequence (excluding r(0)). A more expensive but also more robust
pitch detector relies on peak-picking the cepstrum. The Simplified Inverse Filter Tracking (SIFT)
algorithm is based on peak-picking the autocorrelation sequence of the prediction residual associated
with downsampled speech. Post-processing algorithms for pitch smoothing are also used to provide
frame-to-frame pitch continuity. Current pitch detection algorithms yield high-resolution (sub-
sample) estimates for the pitch period and are often specific to the analysis-synthesis system. In
many Analysis-by-Synthesis (A-by-S) linear predictive coders, the pitch is measured by a closed-
loop process which accounts for the impact of the pitch on the overall quality of the reconstructed
speech.

6 1. INTRODUCTIONTO LINEAR PREDICTIVE CODING
1.1.3 LINEAR PREDICTION PARAMETER TRANSFORMATIONS

One of the major issues in LPC is the quantization of the linear prediction parameters. Quantization
of the direct-form coefficients a (i) is generally avoided. The reflection coefficients ky, are by-products
of the Levinson algorithm and are more robust for quantization. The reflection coefficients can also
be quantized in an ordered manner, i.e., the first few reflection coefficients can be encoded with a
higher precision. Transformations of the reflection coefficients, such as the Log Area Ratio (LAR),
ie.,

(1.8)

LAR(m):log{1+km} ,

1 —ky

have also been used in several LPC algorithms. Another representation of Linear Prediction (LP)
parameters that is being used in several standardized algorithms consists of Line Spectrum Pairs
(LSPs). In LSP representations, a typical tenth-order polynomial,

A =14+az "+ +apz ', (1.9)
is represented by the two auxiliary polynomials P (z) and Q (z) where,

PR =A@ +z"A (z—‘), (1.10)
Q@) =A)—z "4 (z*l). (1.11)

P(z) and Q(z) have a set of five complex conjugate pairs of zeros each that typically lie on the unit
circle. Hence, each polynomial can be represented by the five frequencies of their zeros (the other
five frequencies are their negatives). These frequencies are called Line Spectral Frequencies (LSFs).
If the polynomial A(z) is minimum phase, the roots of the polynomials P (z) and Q(z) alternate on
the unit circle.

1.1.4 LONG-TERM PREDICTION

Almost all modern LP algorithms include long-term prediction in addition to the tenth-order short-
term linear predictor. Long Term Prediction (LTP) captures the long-term correlation in the speech
signal and provides a mechanism for representing the periodicity of speech. As such, it represents
the fzne harmonic structure in the short-term speech spectrum. The LTP requires estimation of two
parameters, i.e.,a delay T and a gain parameter a (7). For strongly voiced segments, the delay is usually
an integer that approximates the pitch period. The transfer function of a simple LTP synthesis filter
is given by,
1

Ar(z) = T—a@ (1.12)
The gain is obtained by the equation a(r) = r(r)/r(0). Estimates of the LTP parameters can be
obtained by searching the autocorrelation sequence or by using closed-loop searches where the LT'P
lag that produces the best speech waveform matching is chosen.

1.2. ANALYSIS-BY-SYNTHESIS LINEAR PREDICTION 7
1.2 ANALYSIS-BY-SYNTHESIS LINEAR PREDICTION

In closed-loop source-system coders, shown in Figure 1.4, the excitation source is determined
by closed-loop or A-by-S optimization. The optimization process determines an excitation se-
quence that minimizes the perceptually-weighted MSE between the input speech and reconstructed
speech [1, 2, 3]. The closed-loop LP combines the spectral modeling properties of vocoders with
the waveform matching attributes of waveform coders; and hence, the A-by-S LP coders are also
called Aybrid LP coders. The term hybrid is used because of the fact that A-by-S integrates vocoder
and waveform coder principles. The system consists of a short-term LP synthesis filter 1 /A(z) and a
LTP synthesis filter 1/ A (z) as shown in Figure 1.4. The Perceptual Weighting Filter (PWF) W (z)
shapes the error such that quantization noise is masked by the high-energy formants. The PWF is
given by,

1= yi@aG)z™
_AG/y) ;

Al .
S Y piat

i=1

W(z)

i O<pym<yi<l1, (1.13)

where y; and y» are the adaptive weights, and m is the order of the linear predictor. Typically, y;
ranges from 0.94 to 0.98; and y» varies between 0.4 and 0.7 depending upon the tilt or the flatness
characteristics associated with the LPC spectral envelope [4, 5]. The role of W (z) is to de-emphasize
the error energy in the formant regions [6]. This de-emphasis strategy is based on the fact that, in
the formant regions, quantization noise is partially masked by speech. From Figure 1.4, note that a
gain factor g scales the excitation vector x and the excitation samples are filtered by the long-term
and short-term synthesis filters.

The three most common excitation models typically embedded in the excitation generator
module (Figure 1.4) in the A-by-S LP schemes include: the Multi-Pulse Excitation (MPE) [2, 3],
the Regular Pulse Excitation (RPE) [7], and the vector or Code Excited Linear Prediction (CELP) [1].
A 9.6 kb/s Multi-Pulse Excited Linear Prediction (MPE-LP) algorithm is used in Skyphone airline
applications [8]. A 13 kb/s coding scheme that uses RPE [7] was adopted for the full-rate ETSI
GSM Pan-European digital cellular standard [9]. The standard was eventually replaced by the GSM
Enhanced Full-Rate (EFR) described briefly later.

The aforementioned MPE-LP and RPE schemes achieve high-quality speech at medium
rates. For low-rate high-quality speech coding a more efficient representation of the excitation
sequence is required. Atal [10] suggested that high-quality speech at low rates may be produced by
using non-instantaneous (delayed decision) coding of Gaussian excitation sequences in conjunction
with A-by-S linear prediction and perceptual weighting. In the mid-eighties, Atal and Schroeder [1,
11] proposed a CELP algorithm for A-by-S linear predictive coding.

8 1. INTRODUCTIONTO LINEAR PREDICTIVE CODING

Excitation X 8
generator ={>——> 1/A() 1/4,(2) —+(z
(MPE or RPE) Synthetic
speech Residual
error
e

Error minimization W(z)

Figure 1.4: A typical source-system model employed in the analysis-by-synthesis LP.

The excitation codebook search process in CELP can be explained by considering the A-by-S
scheme shown in Figure 1.5. The N x 1 error vector e associated with the i th excitation vector, can
be written as,

e =5, — §2) — gk§f,i) , (1.14)

where s,, is the N x 1 vector that contains the perceptually-weighted speech samples, 8% is the
vector that contains the output due to the initial filter state, 84 is the filtered synthetic speech vector
associated with the i™ excitation vector, and g is the gain factor. Minimizing ¢ =)" e with

respect to g(i), we obtain,

=T a(0)

g(l): S.wTSw. , (1.15)
S(l) §(1)
w w

where §,, = s,, — 80, and T represents the transpose of a vector. From (1.15), ¢) can be written as,

N\ 2
(s55)

é“(i)=§5,§w— T -
SR

(1.16)
The it excitation vector x¥) that minimizes (1.16) is selected and the corresponding gain factor
g® is obtained from (1.15). Note that the perceptual weighting, W (z), is applied directly on the
input speech, s, and synthetic speech, §, in order to facilitate for the CELP analysis that follows.
The codebook index, i, and the gain, g®, associated with the candidate excitation vector, x| are
encoded and transmitted along with the short-term and long-term prediction filter parameters.

1.2. ANALYSIS-BY-SYNTHESIS LINEAR PREDICTION
Input
speech
S
Excitation vectors PWF
Codebook W(z)
,,,,, @) LTP synthesis LP synthesis &)
filter fiter > PWE
""" 1/4,(2) 1/A(z) Synthetic W(z)
..... speech
Residual
error
e(i)
MSE
minimization

Figure 1.5: A generic block diagram for the A-by-S Code Excited Linear Predictive (CELP) coding.

One of the disadvantages of the original CELP algorithm is the large computational complex-
ity required for the codebook search [1]. This problem motivated a great deal of work focused upon
developing structured codebooks [12, 13] and fast search procedures [14]. In particular, Davidson
and Gersho [12] proposed sparse codebooks and Kleijn ez al. [13] proposed a fast algorithm for
searching stochastic codebooks with overlapping vectors. In addition, Gerson and Jasiuk [15, 16]
proposed a Vector Sum Excited Linear Predictive (VSELP) coder which is associated with fast
codebook search and robustness to channel errors. Other implementation issues associated with
CELP include the quantization of the CELP parameters, the effects of channel errors on CELP
coders, and the operation of the algorithm on finite-precision and fixed-point machines. A study on
the effects of parameter quantization on the performance of CELP was presented in [17], and the
issues associated with the channel coding of the CELP parameters were discussed by Kleijn in [18].
Some of the problems associated with the fixed-point implementation of CELP algorithms were
presented in [19].

1.2.1 CODE EXCITED LINEAR PREDICTION ALGORITHMS

In this section, we taxonomize CELP algorithms into three categories that are consistent with
the chronology of their development, i.e., first-generation CELP (1986-1992), second-generation
CELP (1993-1998), and third-generation CELP (1999-present).

9

10 1. INTRODUCTIONTO LINEAR PREDICTIVE CODING

1.2.1.1 First-Generation CELP Coders

The first-generation CELP algorithms operate at bit rates between 4.8 kb/s and 16 kb/s. These
are generally high complexity and non-toll quality algorithms. Some of the first-generation CELP
algorithms include the following: the FS-1016 CELP, the IS-54 VSELP, the ITU-T G.728 Low-
Delay (LD) CELP, and the IS-96 Qualcomm CELP. The FS-1016 4.8 kb/s CELP standard [20, 21]
was jointly developed by the Department of Defense (DoD) and the Bell Labs for possible use in
the third-generation Secure Telephone Unit (STU-III). The IS-54 VSELP algorithm [15, 22] and
its variants are embedded in three digital cellular standards, i.e., the 8 kb/s TIA 1S-54 [22], the
6.3 kb/s Japanese standard [23], and the 5.6 kb/s half-rate GSM [24]. The VSELP algorithm uses
highly structured codebooks that are tailored for reduced computational complexity and increased
robustness to channel errors. The ITU-T G.728 Low-Delay (LD) CELP coder [25, 26] achieves
low one-way delay by using very short frames, a backward-adaptive predictor, and short excitation
vectors (5 samples). The IS-96 Qualcomm CELP (QCELP) [27] is a variable bit rate algorithm
and is part of the Code Division Multiple Access (CDMA) standard for cellular communications.
Most of these standardized CELP algorithms were eventually replaced by newer second and third
generation A-by-S coders.

1.2.1.2 Second-Generation Near-Toll-Quality CELP Coders

The second-generation CELP algorithms are targeted for Internet audio streaming, Voice-over-
Internet-Protocol (VoIP), teleconferencing applications, and secure communications. Some of the
second-generation CELP algorithms include the following: the ITU-T G.723.1 dual-rate speech
codec [28], the GSM EFR [23,29], the IS-127 Relaxed CELP (RCELP) [30, 31], and the ITU-T
G.729 Conjugate Structured - Algebraic CELP (CS-ACELP) [4, 32].

The coding gain improvements in second-generation CELP coders can be attributed partly
to the use of algebraic codebooks in excitation coding [4, 32, 33, 34]. The term Algebraic CELP
(ACELP) refers to the structure of the codebooks used to select the excitation codevector. Various
algebraic codebook structures have been proposed [33, 35], but the most popular is the interleaved
pulse permutation code. In this codebook, the codevector consists of a set of interleaved permutation
codes containing only few non-zero elements. This is given by,

pi=i+jd, j=0,1,...2M_1, (1.17)

where p; is the pulse position, i is the pulse number, and d is the interleaving depth. The integer M
is the number of bits describing the pulse positions. Table 1.1 shows an example ACELP codebook
structure, where, the interleaving depth, d = 5, the number of pulses or tracks are equal to 5, and
the number of bits to represent the pulse positions, M = 3. From (1.17), p; =i + j5, where i =
0,1,2,3,4and j =0,1,2,...,7.

1.2. ANALYSIS-BY-SYNTHESIS LINEAR PREDICTION 11

Table 1.1: An example algebraic codebook struc-
ture; tracks and pulse positions.
Track(i) Pulse positions (P;)

0 Py: 0,5,10,15, 20, 25, 30, 35

1 P:1,6,11,16, 21, 26,31, 36

2 P:2,7,12,17,22,27,32,37

3 P3:3,8,13,18, 23, 28, 33, 38

4 Py:4,9,14,19, 24,29, 34,39

For a given value of 7, the set defined by (1.17) is known as ‘track,’ and the value of j defines
the pulse position. From the codebook structure shown in Table 1.1, the codevector, x(n), is given

by,

4
x(m)=Y ad(n—p), n=0,1,...,39, (1.18)
i=0

where §(n) is the unit impulse, «; are the pulse amplitudes (1), and p; are the pulse positions. In
particular, the codebook vector, x(n), is computed by placing the 5 unit pulses at the determined
locations, p;, multiplied with their signs (££1). The pulse position indices and the signs are encoded
and transmitted. Note that the algebraic codebooks do not require any storage.

1.2.1.3 Third-Generation (3G) CELP for 3G Cellular Standards
The 3G CELP algorithms are multimodal and accommodate several different bit rates. This is
consistent with the vision on wideband wireless standards [36] that will operate in different modes:
low-mobility, high-mobility, indoor, etc. There are at least two algorithms that have been developed
and standardized for these applications. In Europe, GSM standardized the Adaptive Multi-Rate
(AMR) coder [37, 38], and in the U.S., the Telecommunications Industry Association (TTA) has
tested the Selectable Mode Vocoder (SMV') [39, 40, 41]. In particular, the adaptive GSM multirate
coder [37, 38] has been adopted by European Telecommunications Standards Institute (ETSI) for
GSM telephony. This is an ACELP algorithm that operates at multiple rates: 12.2,10.2, 7.95, 6.7,
5.9,5.15, and 5.75 kb/s. The bit rate is adjusted according to the traffic conditions.

The Adaptive Multi-Rate WideBand (AMR-WB) [5] is an ITU-T wideband standard that
has been jointly standardized with 3GPP, and it operates at rates 23.85, 23.05, 19.85, 18.25, 15.85,
14.25,12.65, 8.85 and 6.6 kbps. The higher rates provide better quality where background noise
is stronger. The other two important speech coding standards are the Variable Rate Multimode
WideBand (VMR-WB) and the extended AMR-WB (AMR-WB+). The VMR-WB has been
adopted as the new 3GPP2 standard for wideband speech telephony, streaming and multimedia
messaging systems [42]. VMR-WB is a Variable Bit Rate (VBR) coder with the source controlling
the bit rate of operation: Full-Rate (FR), Half-Rate (HR), Quarter-Rate (QR) or Eighth-Rate

12 1. INTRODUCTIONTO LINEAR PREDICTIVE CODING

(ER) encoding to provide the best subjective quality at a particular Average Bit Rate (ABR). The
source-coding bit rates are 13.3, 6.2, 2.7 and 1 kbps for FR, HR, QR and ER encoding schemes.
The AMR-WB+ [43] can address mixed speech and audio content and can consistently deliver high
quality audio even at low bit rates. It has been selected as an audio coding standard in 2004 by ET'SI
and 3rd Generation Partnership Project (3GPP). The SMV algorithm (IS-893) was developed to
provide higher quality, flexibility, and capacity over the existing IS-96 QCELP and IS-127 Enhanced
Variable Rate Coding (EVRC) CDMA algorithms. The SMV is based on four codecs: full-rate at
8.5 kb/s, half-rate at 4 kb/s, quarter-rate at 2 kb/s, and eighth-rate at 0.8 kb/s. The rate and mode
selections in SMV are based on the frame voicing characteristics and the network conditions. G.729.1
is a recent speech codec adopted by ITU-T that can handle both narrowband and wideband speech
and is compatible with the widely used G.729 codec [44]. The codec can operate from 8 kb/s to
32 kb/s with 8 kb/s and 12 kb/s in the narrowband and 14 kb/s to 32 kb/s at 2 kb/s intervals in
the wideband. The codec incorporates bandwidth extension and provides bandwidth and bit rate
scalability at the same time.

1.2.2 THE FEDERAL STANDARD-1016 CELP

A 4.8 kb/s CELP algorithm has been adopted in the late 1980s by the DoD for use in the STU-III.
This algorithm is described in the Federal Standard-1016 (FS-1016) [21] and was jointly developed
by the DoD and AT&T Bell labs. Although new algorithms for use with the STU emerged, such
as the Mixed Excitation Linear Predictor (MELP), the CELP FS-1016 remains interesting for our
study as it contains core elements of A-by-S algorithms that are still very useful. The candidate
algorithms and the selection process for the standard are described in [45]. The synthesis config-
uration for the FS-1016 CELP is shown in Figure 1.6. Speech in the FS-1016 CELP is sampled
at 8 kHz and segmented in frames of 30 ms duration. Each frame is segmented into sub-frames
of 7.5 ms duration. The excitation in this CELP is formed by combining vectors from an adaptive
and a stochastic codebook with gains g, and g, respectively (gain-shape vector quantization). The
excitation vectors are selected in every sub-frame by minimizing the perceptually-weighted error
measure. The codebooks are searched sequentially starting with the adaptive codebook. The term
“adaptive codebook” is used because the LTP lag search can be viewed as an adaptive codebook search
where the codebook is defined by previous excitation sequences (TP state) and the lag T determines
the specific vector. The adaptive codebook contains the history of past excitation signals and the
LTP lag search is carried over 128 integer (20 to 147) and 128 non-integer delays. A subset of lags
is searched in even sub-frames to reduce the computational complexity. The stochastic codebook
contains 512 sparse and overlapping codevectors [18]. Each codevector consists of sixty samples and
each sample is ternary valued (1, 0, —1) [46] to allow for fast convolution.

Ten short-term prediction parameters are encoded as LSPs on a frame-by-frame basis. Sub-
frame LSPs are obtained by applying linear interpolation of frame LSPs. A short-term pole-zero
postfilter (similar to that proposed in [47]) is also part of the standard. The details on the bit
allocations are given in the standard. The computational complexity of the FS-1016 CELP was

1.3. SUMMARY 13

Stochastic
codebook

T VQ index
Speech
» Postfilter p_»
Yy
Adaptive
codebook . A(Z)
T Lag index

Figure 1.6: FS-1016 CELP synthesis.

estimated at 16 Million Instructions per Second (MIPS) for partially searched codebooks and the
Diagnostic Rhyme Test (DRT) and Mean Opinion Scores (MOS) were reported to be 91.5 and 3.2,

respectively.

1.3 SUMMARY

This chapter introduced the basics of linear predictive coding, A-by-S linear prediction and provided
a review of the speech coding algorithms based on CELP. A detailed review of the basics of speech
coding, algorithms and standards until the early 1990’s can be found in [48]. A more recent and
short review of the modern speech coding algorithms is available in the book by Spanias ez a/. [49].
From Chapter 2 and on, we will describe the details of the F'S-1016 standard and provide MATLAB
program for all the pertinent functions. Chapter 2 will describe the autocorrelation analysis and linear
prediction module starting from the framing of speech signal upto the computation of reflection
coefficients from the bandwidth expanded LP coefficients. The construction of LSP polynomials,
computation of LSFs and their quantization are described in Chapter 3. Various distance measures
that are used to compute spectral distortion are detailed in Chapter 4. Chapter 5 illustrates the
adaptive and stochastic codebook search procedures, and the final chapter describes the components

in the FFS-1016 decoder module.

15

CHAPTER 2

Autocorrelation Analysis and
Linear Prediction

Linear Prediction (LP) analysis is performed on the framed and windowed input speech to compute
the direct-form linear prediction coefficients. It involves performing autocorrelation analysis of
speech and using the Levinson-Durbin algorithm to compute the linear prediction coefficients.
The autocorrelation coefficients are calculated and high frequency correction is done to prevent ill
conditioning of the autocorrelation matrix. The autocorrelation lags are converted to LP coefficients
using Levinson-Durbin recursion. Then, the direct-form LP coefficients are subjected to bandwidth
expansion. The bandwidth expanded LP coefficients are converted back to Reflection Coefficients
(RCs) using the inverse Levinson-Durbin recursion. The block diagram in Figure 2.1 illustrates
the autocorrelation analysis and linear prediction module of the F'S-1016 CELP transmitter. Every
chapter starting from this one, will have a similar schematic block diagram that will illustrate the
overall function of the module described in that chapter. Each block in the diagram corresponds to
a particular script in the FS-1016 MATLAB code, whose name is provided in the block itself.

Framed Speech

Signal
Speech signal Com Compute LP . Convert bandwidth
|) pute = .
W|nd9wed _wnh —> autocorrelation ¥ coefficients (Levinson [—p Bi’;’:;gtﬁhi ;:Etasnd —» expanded LP Coefficients
Hamming window Durbin recursion) to reflection coefficients
aufohf.m cor.m durbin.m bwexpand.m pctorc.m

Check reflection
coefficients for stability

autohf.m
I
Generating line
spectral frequencies

Figure 2.1: Autocorrelation analysis and linear prediction.

16 2. AUTOCORRELATION ANALYSIS AND LINEAR PREDICTION

The following sections of this chapter demonstrate the computation of autocorrelation lags,
conversion of the autocorrelation lags to LP coefficients and recursive conversion of the LP coeffi-

cients to RCs using MATLAB programs.

2.1 FRAMING AND WINDOWING THE INPUT SPEECH

The speech frame used in the FS-1016 transmitter is of size 240 samples and corresponds to 30 ms
of speech at the standardized sampling rate of 8000 Hz. There are three speech buffers used in the
encoder. Two speech buffers, 5,14 and s,y are one frame behind and one frame ahead, respectively,
while the sub-frame analysis buffer, s5,p, is half frame behind sy, and half frame ahead of s414. In
the later part of the FS-1016 analysis stage, sg,5 will be divided into four sub-frames each of size
60 samples corresponding to 7.5 ms of speech. The input speech buffer, 5,04, is scaled and clamped to
16 bitinteger range, before processing. Clamping to 16 bit integer range is performed by thresholding
the entries of the speech buffer. It is then filtered using a high-pass filter to remove low frequency
noise and windowed with a Hamming window for high frequency correction. Program P2.1 loads
an input speech frame and creates the three speech frame buffers in the variables snew, sold and
ssub.

Example 2.1 The Hamming window used to window the speech signal is shown in Figure 2.2.
The input speech (s,¢y) and the windowed speech (s) frames are shown in Figures 2.3 and 2.4,

Amplitude

50 100 150 200 240
Samples

Figure 2.2: The 240 point hamming window.

respectively, and they are generated using Program P2.1. The plot of the Fourier transforms for the
input and the windowed speech frames are provided in Figures 2.5 and 2.6. The Fourier transform
of the windowed speech frame is smoother because of the convolution of the frequency response of
the Hamming window in the frequency domain.

2.1. FRAMING AND WINDOWING THE INPUT SPEECH

% P2.1 - frame window.m

function [s,snew] = frame window (iarf,w,sold)

% sold - Initialized to zeros for the first frame
% iarf - Input speech frame, 240 samples

% scale - Scaling parameter, initialized to 1

% maxval- Maximum possible value, 32767

% minval- Minimum possible value, -32768

% 11 - Length of buffer, 240 samples

S W - Hamming Window Sequence

load framew par.mat;
load hpf param.mat;

ssub=zeros (240,1);

% SCALE AND CLAMP INPUT DATA TO 16-BIT INTEGER RANGE
snew = min([(iarf .* scale)'; maxval])';
snew = max([snew'; minval])';

% RUN HIGHPASS FILTER TO ELIMINATE HUM AND LF NOISE
[snew, dhpfl] = filter(bhpf, ahpf, snew, dhpfl);

$ MAINTAIN SSUB SUBFRAME ANALYSIS BUFFER. IT IS

% 1/2 FRAME BEHIND SNEW AND 1/2 FRAME AHEAD OF SOLD.
ssub(1:11/2) = sold((11/2)+1:11);

ssub((11/2)+41:11) = snew(1:11/2);

% UPDATE SOLD WITH CONTENTS OF SNEW
sold = snew;

% APPLY WINDOW TO INPUT SEQUENCE
S = snew.* w;

Program P2.1: Framing and windowing.

17

18 2. AUTOCORRELATION ANALYSIS AND LINEAR PREDICTION

6000

4000

2000

0] 8

Amplitude

-2000¢

-4000¢

-6000 L L L L
50 100 150 200 240

Samples

Figure 2.3: Input speech frame.

4000 4

2000 4

Amplitude

-2000¢ 4

-4000 ! ! L L
50 100 150 200 240

Samples

Figure 2.4: Windowed speech frame.

2.2 COMPUTATION OF AUTOCORRELATION LAGS

The biased autocorrelation estimates are calculated using the modified time average formula [50],

N
r@i) = Z umu(n — i), i=0,1,....M, (2.1)

n=1+i

2.2. COMPUTATION OF AUTOCORRELATION LAGS 19
110

100+ 4

POt 4

80} 4

70 4

Magnitude (dB)

60} 4

50 4

40 1 1 1 1 1 1 1 1 1
0 0.1 02 03 0.4 05 06 07 08 09 1

Normalized Freq (x o) Rad/s

Figure 2.5: Fourier transform of input speech frame.

100

a0t i
80} i
701 i
60 H i
50 i

Magnitude (dB)

401
30}
201 a

10 | | | | | | | | |
0 0.1 02 0.3 0.4 05 06 07 08 09 1

Normalized Freq (x) Rad/s

Figure 2.6: Fourier transform of windowed speech frame.

where, r is the autocorrelation value that is computed, i is the lag, u is the input signal and N is the
length of the input signal. Program P2.2 computes the autocorrelation lags of a test signal u for the
maximum lag specified by M.

Example 2.2 A sinusoidal test signal () shown in Figure 2.7 is used to estimate autocorrelation
using Program P2.2, and the autocorrelation estimates are computed for lags 0 to 20 as shown in

20 2. AUTOCORRELATION ANALYSIS AND LINEAR PREDICTION

%$ P2.2 — cor.m

function [r0 r] = cor (u,M)

% u - Input signal.

% N - Length of input signal.
% M - Maximum lag value.
N=length (u) ;

% ALLOCATE RETURN VECTOR

r = zeros(M, 1);
% COMPUTE r (0)
r0 = sum(u(l:N) .* u(l:N));

$ COMPUTE C(i), i NONZERO
for 1 = 1:M

r(i) = sum(u(i+1:N) .* u(l:N-1i));
end

Program P2.2: Computation of autocorrelation lags.

08 4
06 4
04} 4
02} 4

02} 4
04} 4
06}
08}

Amplitude

1 1 1 1
50 100 150 200 250
Samples

Figure 2.7: Sinusoidal test signal.

Figure 2.8. The sinusoidal test signal has a period of 16 samples, and it can be readily observed from
the autocorrelation function, which has a peak at a lag of 16.

2.3 THE LEVINSON-DURBIN RECURSION

Linear predictor coefficients are the coefficients of the LP polynomial A(z). Recall that LP analysis
is carried out using the all-zero filter A(z) whose input is the preprocessed speech frame and the
output is the LP residual. But, during synthesis the filter used has the transfer function 1/A(z),
which models the vocal tract and reproduces the speech signal when excited by the LP residual.

2.3. THE LEVINSON-DURBIN RECURSION 21

150 T T T T T T T T T

Amplitude

-150 ! 1 | ! ! | | 1 !
0 2 4 6 8 10 12 14 16 18 20

Figure 2.8: The autocorrelation estimate for the sinusoidal test signal.

The Levinson-Durbin recursion is used to compute the coefficients of the LP analysis filter from
the autocorrelation estimates [51]. It exploits the Toeplitz structure of the autocorrelation matrix to

recursively compute the coefficients of a tenth-order filter.
The algorithm [52] initializes the MSE as follows,

g0 =r(0), (2.2)

where, €9 is the initial MSE and r(0) is the autocorrelation. Then, for a first-order predictor,

=D
ai(l) = 70 (2.3)
ky =ai(1), (2.4)
g =r(l), (2.5)

where, a,, (i) is the i predictor coefficient of order m and k,, is the reflection coefficient.

We find the linear predictor coefficients recursively using (2.6) to (2.9). Note that, in the
MATLAB code given in Program P2.3, the index of linear predictor coefficients start from 1,
whereas in the equations the index starts from 0. For i = 1 to m—1,

22 2. AUTOCORRELATION ANALYSIS AND LINEAR PREDICTION

$ P2.3 - durbin.m

function a = durbin(r0, r, m)
r0 - Zero lag autocorrelation(value)

o°

%$ r - Autocorrelation for lags 1 to m+l
$ m - Predictor Order
% a - LP coefficients (initialized as column vector, size m+l, a(l)=1)

% INITIALIZATION

a=zeros (m+1,1);

a(l)=1;

= r0;

a(2) = -r(l) / x0;
1 .

% RECURSION

for i = 1:m-1
E=E+ (g * k(i));
qg=1r(i+l);

g=qgq+ sum(r(1:1) .* a(i+1:-1:2));
k(i+l) = -q / E;

tmp(1:1) = k(i+1) .* a(i+1l:-1:2);
a(2:1+41) = a(2:14+1) + tmp(1:1)';

a(i+2) = k(i+1);

end

Program P2.3: Levinson-Durbin recursion.

& =¢&i—1 +kiq, (2.6)
i
g=ri+D+> aii+1-jra). 2.7)
j=1
ki = 4 (2.8)
&j

g =si1(1—kD), 2.9)
ai+1(j) = ai(j) +kiv1aii +1—j). (2.10)

Example 2.3 The frequency response magnitude of the LP synthesis filter 1/A(z), where the
coefficients of A(z) are calculated using the Program P2.3,is shown in Figure 2.9. The autocorrelation
estimates (r) of the speech signal (s) shown in Figure 2.4 are used to compute the coefficients of

A(2).

2.4. BANDWIDTH EXPANSION 23

30

Magnitude (dB)

-30 ! ! ! ! 1 1
0 0.1 0.2 03 0.4 05 06 07 08 09 1

Normalized Freq (x n) Rad/s

Figure 2.9: Frequency response of the linear prediction synthesis filter.

2.4 BANDWIDTH EXPANSION

Bandwidth expansion by a factor of y changes the linear predictor coefficients from a(i) to yia@)
and moves the poles of the LP synthesis filter inwards. The bandwidth expansion can be computed
by [53],

(2.11)

1 — 2
BW = 2cos™! [1 — ﬂ] ,

2y

where 3 — 2+/2 < y < 1,and BW is the bandwidth expansion in radians. At a sampling frequency of
8000 Hz, a bandwidth expansion factor of 0.994127 produces a bandwidth expansion of 15 Hz. This
bandwidth expansion factor is used in the implementation of the FS-1016 algorithm. Bandwidth
expansion expands the bandwidth of the formants and makes the transfer function somewhat less
sensitive to round-off errors.

% P2.4 - bwexp.m

function aexp = bwexp(gamma, a, m)

% gamma - Bandwidth expansion factor, 0.99412

% a — Linear predictor coefficients, column vector

% aexp — Bandwidth expanded linear predictor coefficients
% m — Order of the linear predictor

% SCALE PREDICTOR COEFFICIENTS TO SHIFT POLES RADIALLY INWARD
aexp(l:m+l, 1) = (a(l:m+l) .* (gamma .”~ (O:m)'));

Program P2.4: Bandwidth expansion.

24 2. AUTOCORRELATION ANALYSIS AND LINEAR PREDICTION

Example 2.4 The pole-zero plots of the original and bandwidth-expanded filter coefficients for
a tenth-order linear predictor are shown in Figure 2.10. The corresponding frequency response is
shown in Figure 2.11. The linear prediction filter coefficients are calculated for the speech signal
given in Figure 2.4. The filter coefficients, before and after bandwidth expansion by a factor of
0.994127 are given in Table 2.1. Though not quite evident in this case, after bandwidth expansion,

the poles have moved inwards in the pole-zero plot.

Imaginary Part

Before BW expansion

After BW expansion

Figure 2.10: Pole-zero plots of linear prediction filter.

Magnitude (dB)

30

-30
0

1) 2] S
05} X %, . 0580 ix %,
x |8 x

10 = 10
0 ? - 4
x g’ X
05} ¥ E 05| i X

A K, A TS

05 0 05 1 4 05 0 05
Red Part Red Part

Before BW expansion
After BW expansion

01

02

03

1
04

1
05

1
06

07

Normalized Freq (x) Rad/s

08 09

Figure 2.11: Frequency response before and after bandwidth expansion.

2.4. BANDWIDTH EXPANSION 25

Table 2.1: Linear Prediction Filter coefficients.

Coefficient Before Bandwidth After Bandwidth

a0
a]
a2
a3
a4
a5
a6
a7
ag
a9
410

Expansion
1.0000
-1.6015
1.5888
-1.3100
1.4591
-1.3485
1.0937
-0.7761
0.9838
-0.7789
0.2588

Expansion
1.0000
-1.5921
1.5702
-1.2870
1.4251
-1.3094
1.0558
-0.7447
0.9385
-0.7386
0.2440

In order to demonstrate bandwidth expansion more clearly, let us take an example of the Long
Term Predictor (LTP), where the filter expression is given by 1/(1 — 0.9z710). The bandwidth
expansion factor y is taken to be 0.9. Please note that this is only an instructive example and
bandwidth expansion is generally not applied to the LTP. The pole-zero plot is given in Figure 2.12
and the frequency response is given in Figure 2.14. In the pole-zero plot, it is quite evident that
the poles have moved towards the origin and the frequency response also clearly shows expanded
bandwidth. The plots given in Figure 2.13 show that the impulse response after bandwidth expansion
decays faster than the one before bandwidth expansion.

Before BW expansion After BW expansion

2 . 1 e
. 05L X X . 05 X x
g E 10
? 0 x 10 © 0
c =
E o5] - E 05| iy v,
S I I X X
1 [LS - X B 1 s
T 05 0 05 1 4 05 0 05 A
Red Part Red Part

Figure 2.12: Pole-Zero plots of linear prediction filter.

26 2. AUTOCORRELATION ANALYSIS AND LINEAR PREDICTION

Impulse Resp - Before BW expansion Impulse Resp - After BW expansion
1 1
08 - 08
o 06 {1 o 06
© ©
=2 2
i s
£ o4 £ o4
02 - 02
; H““HIAA Ml
0 100 200 0 50 100 150 200 250

Samples Samples

Figure 2.13: Impulse response before and after bandwidth expansion.

30

Before BW Expansion
- After BW Expansion

251

Magnitude dB)

01 02 03 04 05 06 07 08 09 1
Normalized Freq (x n) Rad/s

Figure 2.14: Frequency response before and after bandwidth expansion.

2.5 INVERSE LEVINSON-DURBIN RECURSION

Inverse Levinson-Durbin recursion is used to compute the RCs from the bandwidth expanded
linear predictor coefficients [50]. Here, the coefficients are real-valued, therefore the order-update
equations for the forward and backward prediction filters are given in a matrix format by,

ai(j) | ki ai—1(J) . .
{aia—j)]‘[ki 1Hai_1(i—j>] j=0L...5, @12

2.5. INVERSE LEVINSON-DURBIN RECURSION 27

where the order i varies from 1 to m. Solving for a;_1(j) from the above equation, we get,

ai(j) —kiai(i — j)
1= Iki]?
where, k; is the reflection coefficient of order i. Starting from the highest order m, we compute the
linear predictor coefficients for orders decreasing from m — 1 through 1 using (2.13). Then, using
the fact that k; = a; (i), we determine the RCs of orders 1 through m — 1.If the absolute values of all
the RCs are less than 1, then the LP polynomial is minimum phase resulting in a stable LP synthesis
filter. This can be intuitively understood from (2.9), where if |k;| < 1, &; < &;—; which means that
the MSE decreases with the order of recursion as we expect for a stable filter. If [k;| = 1 or |k;| > 1
the MSE is either zero or it increases with the order of recursion, which is not a characteristic of a
stable filter. Detailed explanation of the relationship between the stability of the LP synthesis filter

and the magnitude of reflection coefficients is given in [54].

ai—1(j) = . j=0,1,...,i, (2.13)

In the MATLAB code given in Program P2.5, there are certain variable and indexing mod-
ifications that are specific to our implementation. First, we take k; = —a; (i) because of the sign
convention that forces k; to be positive for voiced speech. Because of this, when (2.12) is imple-
mented in the program, the numerator is a summation instead of difference. The indices for the
array start from 1, and vectorized operations are used to compute the coefficient array in a single
statement.

% P2.5 - pctorc.m

function k = pctorc(lpc, m)
% MAXNO - Predictor Order (10 here)

% lpc - LP Coefficients
T m - Order of LP polynomial
MAXNO=m;

% ALLOCATE RETURN VECTOR AND INIT LOCAL COPY OF PREDICTOR POLYNOMIAL

k = zeros(MAXNO, 1);

a = lpc;

% DO INVERSE LEVINSON DURBIN RECURSION

for i = m:-1:2
k(i) = -a(i+1);
t(1:-1:2) = (

(1.

a(2:14) = t(2:1

end

k(1) = -a(2);

Program P2.5: Inverse Levinson-Durbin recursion.

Example 2.5 In order to keep the examples simple, we work with a reduced order LP polynomial.
This is achieved by taking only the first four autocorrelation lags (r0_4, r_4) of the speech frame

28 2. AUTOCORRELATION ANALYSIS AND LINEAR PREDICTION

(s) and forming a fourth order LP polynomial using Levinson-Durbin recursion. The coefficients
of the fourth order LP polynomial are bandwidth-expanded (a_4exp) and provided as input to the
Program P2.5 to yield the reflection RCs (k_4). The coefficients are given as vectors below. Note that
the vectors are given in MATLAB notation where separation using semicolon indicates a column
vector. In this case, the LP synthesis filter is stable because the absolute values of all the reflection
coefficients are less than 1.

a_4exp = [1.0000; —1.5419; 1.3523; —0.7197; 0.3206] ,
k_4 =[0.7555; —0.7012; 0.2511; —0.3206] .

2.6 SUMMARY

LP analysis is performed on the speech frames and the direct-form LP coefficients are obtained using
the autocorrelation analysis and linear prediction module. Further information on linear prediction
is available in a tutorial on linear prediction by Makhoul [55] and the book by Markel and Gray [56].
The government standard FS-1015 algorithm is primarily based on open-loop linear prediction and
is a precursor of the A-by-S FS-1016 [57]. The LP coefficients are bandwidth-expanded and then
converted to RCs. The negative of the RCs (—k;) are also known as PARCOR coefficients [58], and
they can be determined using the harmonic analysis algorithm proposed by Burg [59]. Note that
the stability of the LP synthesis filter can be verified by checking the magnitude of RCs. RCs are
less sensitive to round-off noise and quantization errors than the direct-form LP coefficients [60].
Because of the good quantization properties, RCs have been used in several of the first generation
speech coding algorithms. Second and third generation coders, however, use Line Spectrum Pairs
(LSPs) that are described in the next chapter.

29

CHAPTER 3

Line Spectral Frequency
Computation

Line Spectrum Pairs (LSPs) are an alternative LP spectral representation of speech frames that
have been found to be perceptually meaningful in coding systems. LSPs can be quantized using
perceptual criteria and have good interpolation properties. Two LSP polynomials can be formed
from the LP polynomial A(z). When A(z) is minimum phase, the zeros of the LSP polynomial
have two interesting properties: (1) they lie on the unit circle and (2) the zeros of the two polynomials
are interlaced [61]. Each zero corresponds to a LSP frequency and instead of quantizing the LP
coefficients, the corresponding LSP frequencies are quantized. After quantizing the LSP frequencies,
if the properties of the LSP polynomials are preserved, the reconstructed LPC filter retains the
minimum phase property [62]. The LSP frequencies are also called Line Spectral Frequencies (LSFs).
The LSFs are quantized using an independent, non-uniform scalar quantization procedure. Scalar
quantization may result in non-monotonicity of the LSFs and in that case, adjustments are performed
in order to restore their monotonicity. The block diagram in Figure 3.1 shows the steps involved in
the generation the LSP polynomials, computing the LSFs and quantizing them.

Construction of LSP polynomials and computation of their zeros [62] by applying Descartes’
rule will be illustrated using MATLAB programs in the following sections. Correction of ill-
conditioned cases that occur due to non-minimum phase LP polynomials and quantization of LSFs
are also illustrated.

3.1 CONSTRUCTION OF LSP POLYNOMIALS

The LSP polynomials are computed from the linear predictor polynomial A(z) as follows,

P(z) =A@ +z " DA™Y, (3.1)
0(z) = Ax) —z " VA, (3.2)

where P (z) is called the symmetric polynomial (palindromic) and Q(z) is called the anti-symmetric
polynomial (anti-palindromic). This is because of the reason that P(z) has symmetric coefficients
and Q(z) has anti-symmetric coefficients. Evidently, P(z) has a root at (—1, 0) in the z-plane as

30 3. LINE SPECTRAL FREQUENCY COMPUTATION

Linear predictor
coefficients

Compute zeros of P
and Q by Dissection
method

Generate P and Q
(LSP) polynomials

Check and correct Quantize LSF to
ill-conditioned cases nearest level

A 4

pctolsp2.m pctolsp2.m pctolsp2.m Isp34.m

}

Adjust quantization if
non-monotonic

Isp34.m

v

Quantized LSFs

Figure 3.1: Computation of line spectral frequencies.

it has symmetric coefficients and Q(z) has a root at (0, 0) in the z-plane as it has anti-symmetric
coefficients. To regenerate A(z) from P(z) and Q(z), we use,

A(z) =0.5[P(z) + Q)] . (3.3)

In practice, only half the coefficients of the LSP polynomials, excluding the first element are
stored. The reason is that the polynomials have symmetry and their first coefficient is equal to 1. In
Program P3.1, in addition to storing a part of the coefficients as described above, all the coefficients
of both P(z) and Q(z) are stored in the output variables pf and gf for illustration purposes.

Example 3.1 The linear predictor coefficients for the speech signal given in Figure 2.4 are shown
in Figure 3.2. The resulting LSP polynomial coefficients are shown in Figure 3.3. Figure 3.3 shows
that the coefficients of P(z) are symmetric and those of Q(z) are anti-symmetric.

As another example, a fourth-order LP polynomial is considered. Using Program P3.1, the
coefficients of P(z) and Q(z) are generated. The coefficients of LP polynomial (a_4exp), the
coefficients of the symmetric LSP polynomial (pf_4) and the coefficients of the anti-symmetric
LSP polynomial (qf _4), are listed below.

a_4exp = [1.0000; —1.5419; 1.3523; —0.7197; 0.3206] ,
pf_4 =[1.0000; —1.2212; 0.6326; 0.6326; —1.2212; 1.0000] ,
qf_4 = [1.0000; —1.8625; 2.0719; —2.0719; 1.8625; —1.0000] .

3.2. COMPUTING THE ZEROS OF THE SYMMETRIC POLYNOMIAL 31

% P3.1 - generate_lsp.m

function [p,q,pf,gfl=generate lsp(a,m)

% a - LPC coefficients

$ m - LPC predictor order (here 10)

% P,q9 - First half of coefficients of P(z)& Q(z),excluding 1
% pf,gf — All the coefficients of P(z)& Q(z)

% MAXORD- Maximum order of P or Q(here 24)

MAXORD = 24;

MAXNO = m;

$ INIT LOCAL VARIABLES
p = zeros(MAXORD, 1);
g = zeros(MAXORD, 1);

mp =m + 1;

mh = fix (m/2);

% GENERATE P AND Q POLYNOMIALS

p(l:mh) a(2:mh+1) + a(m+tl:-1:m-mh+2);
g(l:mh) = a(2:mh+1) - a(m+tl:-1:m-mh+2);
p=[1;p(l:mh);flipud(p(1:mh));1];
g=[1l;g(l:mh);-flipud(gq(l:mh));-11;

$ ALL THE COEFFICIENTS
pf=[1;p(l:mh);flipud(p(l:mh));1];
af=[1;g(l:mh);-flipud(g(l:mh));-1];

Program P3.1: LSP polynomial construction.

3.2 COMPUTING THE ZEROS OF THE SYMMETRIC
POLYNOMIAL

It is not possible to find the roots of the symmetric polynomial in closed form, but there are some
properties of the polynomial that can be exploited to find its roots numerically in a tractable manner.
The symmetric polynomial is given by,

2

P =1+piz ' +pz 244 ppz ™D g pgm 7D (3.4)

where p; is the i coefficient of P(z). Assuming that the symmetric polynomial has roots lying on
the unit circle, we evaluate the zeros of P(z) by solving for w in,

(m+ o (m— Do
os——————+p1am——————+~-~+pm+hﬂ}. (3.5)

_jm+l
P(2),—pjo =277 277 [c 5 5

32 3. LINE SPECTRAL FREQUENCY COMPUTATION

2

15} 4
e 4
S o5t J
©
>
E 0
S
2 s l l _
(&)
AL 4
-150 4
2 ! | ! ! | | ! | |
0 1 2 3 4 5 6 7 8 9 10

Coefficientindex

Figure 3.2: Linear predictor coefficients.

Coefficients of symmetric polynomia Coefficients of anti-symmetric polynomial
15 . . 25 r
0]
21 i
1
b 4 151 4
1 i
05} | P
g g
T =z 05¢ |
> >
c O & O
s J s
Eimwymmet _
8 051 4 8
1L g
-151 4
1L |
21 i
15 . . o5 Q °
0 5 10 0 5 10
Coefficient index Coefficient index

Figure 3.3: Symmetric and anti-symmetric polynomial coefficients.

Let us call the bracketed term of (3.5) as P’(w). Since the zeros occur in complex conjugate pairs we
compute only the zeros on the upper half of the unit circle. Also, the zero at the point (—1, 0) in the
unit circle is not computed. The MATLAB code to compute the zeros of the symmetric polynomial
is given in Program P3.2.

In order to compute the roots of the symmetric polynomial numerically using Descartes’ rule,
the following procedure is adopted. The upper half of the unit circle is divided into 128 intervals
and each interval is examined for zeros of the polynomial. The fundamental assumption is that

3.2. COMPUTING THE ZEROS OF THE SYMMETRIC POLYNOMIAL

% P3.2 - sym zero.m

function [freq,sym fregl=sym zero(p,m)

$ m - Order of LPC polynomial

% freqg- All LSP frequencies(to be computed)
% sym_freq - LSP frequencies of P(z)

% N - Number of divisions of the upper half unit circle

% DEFINE CONSTANTS

EPS = 1.00e-6; % Tolerance of polynomial values for finding zero
N = 128;

NB = 15;

% INITIALIZE LOCAL VARIABLES
freq = zeros(mtl, 1);

mp = m + 1;

mh = fix (m/2);

% COMPUTE P AT F=0

f1 = 0.0;

pxl = 1.0 + sum(p(l:mh));
% SEARCH FOR ZEROS OF P

nf = 1;

i=1;

while i <= N
mb = 0;

% HIGHER FREQUENCY WHERE P IS EVALUATED
fr =1 * (0.5/ N);
pxr = cos(mp * pi * fr);
jce=mp - (2 * (1l:mh)');
% ARGUMENT FOR COS
ang = pi * fr * jc;
$ EVALUATION OF P AT HIGHER FREQUENCY
pxr = pxr + sum(cos(ang) .* p(l:mh));
tpxr = pxr;
tfr = fr;
% COMPARE THE SIGNS OF POLYNOMIAL EVALUATIONS
% IF THEY ARE OPPOSITE SIGNS, ZERO IN INTERVAL
if (pxl * pxr) <= 0.00
mb = mb + 1;
$ BISECTION OF THE FREQUENCY INTERVAL
fm = f1 + (fr - £1) / (pxl - pxr) * pxl;

pxm = cos(mp * pi * fm);

jc=mp - ((l:imh)' * 2);

ang = pi * fm * jc;

pxm = pxm + sum(cos(ang) .* p(l:mh));

Program P3.2: Computation of zeros for symmetric LSP polynomial. (Continues.)

33

34 3. LINE SPECTRAL FREQUENCY COMPUTATION

% CHECK FOR SIGNS AGAIN AND CHANGE THE INTERVAL

if (pxm * pxl) > 0.00

pxl = pxm;

fl = fm;
else

pPXr = pxm;

fr = fm;
end

% PROGRESSIVELY MAKE THE INTERVALS SMALLER AND REPEAT THE

% PROCESS UNTIL ZERO IS FOUND
while (abs(pxm) > EPS) & (mb < 4)
mb = mb + 1;

fm = f1 + (fr - £1) / (pxl - pxr)
pxm = cos(mp * pi * fm);
jc =mp - ((l:mh)' * 2);
ang = pi * fm * jc;
pxm = pxm + sum(cos(ang) .* p(l:mh));
if (pxm * pxl) > 0.00
pxl = pxm;
fl = fm;
else
pPXr = pxm;
fr = fm;
end
%$ IF THE PROCESS FAILS USE DEFAULT LSPS
if ((pxl-pxr) * pxl) ==
freg(1tm) = (1l:m) * 0.04545;
fprintf('pctolsp2: default lsps used,
return

end
% FIND THE ZERO BY BISECTING THE INTERVAL

freq(nf) = f1 + (fr-f1l) / (pxl-pxr) * pxl;

nf = nf + 2;
if nf > m-1
break
end
end
pxl = tpxr;
fl = tfr;
i=1+4+ 1;
end
% LSP Frequencies of P(z) alone
sym freg=freqg(l:2:m);

* pxl;

avoiding /0\n');

Program P3.2: (Continued.) Computation of zeros for symmetric LSP polynomial.

3.3. COMPUTING THE ZEROS OF THE ANTI-SYMMETRIC POLYNOMIAL 35

the interval is so small that it contains at most a single zero. The polynomial P’(w) is evaluated
at the frequencies fr and £1 which are the end frequencies of the interval considered. The values
of the polynomial P’(w) in the two frequencies are stored in the program variables pxr and px1,
respectively.

Initially the value of P’ (w) at frequency 0 is the sum of its coefficients. Then P’ (w) is evaluated
at the radian frequency w, where w is represented as i /128. In general, the program variable jc
contains the argument of the cosine function excluding 0.5w, and the program variable ang is the
complete argument for the cosine function.

Upon computation of pxr and px1, their signs are compared. If there is a sign change, then
by Descartes’ rule, there are an odd number of zeros. However, as our interval is small enough there
can be no more than a single zero. If there is no sign change, there are no zeros and therefore the
program proceeds to the next interval. If there is a zero, the next step is the computation of mid-
frequency fm using the bisection method. The value of pxm is subsequently calculated by using fm.
Then again, the signs of pxm and px1 are compared. If there is a sign change, then there is a zero
between fm and f£1. Therefore, the interval is changed accordingly. This is repeated until the value
of pxm gets close to zero and then the frequency interval is bisected to find the zero. After finding
a zero, we move on to the next interval to find the next zero. This process is repeated until all the
zeros on the upper half of the unit circle are determined. Every time a zero is calculated, the number
of frequencies computed (nf) is incremented by two because each zero on the upper half of the unit
circle is a complex conjugate of another in the lower half of the unit circle. Hence, finding one zero
is actually equivalent to finding two LSFs.

Example 3.2 The roots of the symmetric polynomial whose coefficients are shown in Figure 3.3
are given in Figure 3.4. As it can be seen, the roots lie on the unit circle and appear as complex
conjugate pairs.

3.3 COMPUTING THE ZEROS OF THE ANTI-SYMMETRIC
POLYNOMIAL

Finding the root of the anti-symmetric polynomial is similar to finding the roots of the symmetric
polynomial. However, it is simpler because of the property that the roots of the symmetric and
anti-symmetric polynomial are interlaced. The anti-symmetric polynomial is given by,

2 —(m—1) _

0@ =1+qz ' +qz?... —qz g1z — 77D (3.6)

where g;’s are the coefficients of Q(z). Since we need to evaluate the zeros of Q(z) only on the unit
circle, we can write Q(z) as,

,_imriy [(m+ Do . (m— Do
Q(Z)Zzejw =2je /2 ¢ |:51n T + g1 sSIn T +...+ Q(m+l)/2j|) (3.7)

36 3. LINE SPECTRAL FREQUENCY COMPUTATION

£ R
P o
o
osf e
- o]
5
o
> H
g O
£
?
£ o
05 .
o
1 Y O
1 05 0 05 1
Red Part

Figure 3.4: Roots of the symmetric LSP polynomial.

where we call the bracketed term as Q'(w). The zero at the point (0, 0) in the unit circle is not
computed. The procedure to compute the roots of Q’(w) and hence that of Q(z) is given in Pro-
gram P3.3.

The procedure for computing the zeros of Q(z) is very similar to the procedure for computing
the zeros of P(z), except for a few differences. Firstly, since we know that the zeros of P(z) and
Q(z) are interlaced, the start and end points of the interval are taken as the consecutive zeros of
symmetric LSP polynomial. Secondly, instead of using the cosine function, we use sine function
because of the difference between (3.5) and (3.7).

Example 3.3 The roots of the anti-symmetric polynomial whose coefficients are shown in Fig-
ure 3.3 are given in Figure 3.5. Again, all the roots lie on the unit circle and appear as complex
conjugate pairs.

Another example is to consider a fourth-order LP polynomial and compute the LSP fre-
quencies. Considering the same LP polynomial in Example 3.1, we get the symmetric LSFs
(sym_freq_4) from Program P3.2 and anti-symmetric LSFs (asym_freq_4) from Program P3.3
as,

sym_freq_4 = [0.0842; 0.2102] ,
asym_freq_4 = [0.1082; 0.3822] ,
freq_4 = [0.0682; 0.1082; 0.2033; 0.3822] ,

3.3. COMPUTING THE ZEROS OF THE ANTI-SYMMETRIC POLYNOMIAL 37

% P3.3 - antisym zero.m

function [freq,asym freqg]=antisym zero(q,m, freq)

$ m - Order of LPC polynomial
% freq- LSP frequencies (to be computed)
$ N - Number of divisions of the upper half unit circle

% EPS - Tolerance of polynomial values for finding zeros
% DEFINE CONSTANTS

EPS = 1.00e-6;

N = 128;

NB = 15;

% INITIALIZE LOCAL VARIABLES
mp =m + 1;
mh = fix (m/2);

$ THE LAST FREQUENCY IS 0.5

freg(m+l) = 0.5;

$ FIRST SYMMETRIC LSP FREQUENCY IS THE STARTING POINT
fl = freqg(l);

gxl = sin(pi * mp * f1);

je =mp - ((Iimh)' * 2);

$ ARGUMENT FOR SIN

ang = pi * f1 * jc;

gxl = gxl1 + sum(sin(ang) .* g(l:mh));

i = 2;
while 1 < mp
mb = 0;

% USE ONLY SYMMETRIC LSP FREQUENCIES AS END POINTS (ZEROS INTERLACED)
fr = freqg(i+l);

gxr = sin(mp * pi * fr);

je =mp - ((l:mh)' * 2);

ang = pi * fr * jc;

gxr = gxr + sum(sin(ang) .* g(l:mh));

tgxl = gxl;

tfr = fr;

tgxr = gxr;

mb = mb + 1;

fm = (£f1 + fr) * 0.5;
gxm = sin(mp * pi * fm);
jc =mp - ((l:mh)' * 2);

ang = pi * fm * jc;

Program P3.3: Computation of zeros for anti-symmetric LSP polynomial. (Continues.)

38 3. LINE SPECTRAL FREQUENCY COMPUTATION

gxm = gxm + sum(sin (ang)
% CHECK FOR SIGN CHANGE

.* g(l:mh)

if (gxm * gx1) > 0.00
agxl = gxm;
fl = fm;
else
gxr = gxm;
fr = fm;

end

% Progressively make the intervals smaller and repeat the

% process until zero is found

while (abs(gxm) > EPS*tgxl) & (mb < NB
mb = mb + 1;
fm = (f1 + fr) * 0.5;
gxm = sin(mp * pi * fm);
jc=mp - ((limh)' * 2);
ang = pi * fm * Jjc;
gxm = gxm + sum(sin(ang) .* g(l:mh)
if (gxm * gx1) > 0.00
gxl = gxm;
fl = fm;
else
gxr = gxm;
fr = fm;
end
end
% If the process fails use previous LSPs
if ((gxl - gxr) * gxl) ==
freg(1:m) = (1l:m) * 0.04545;
fprintf ('pctolsp2: default lsps used,
return
end
% Find the zero by bisecting the interval
freq(i) = f1 + (fr - f1) / (gxl - gxr)
agxl = tgxr;
fl = tfr;
i=1i+2;

end

% LSP frequencies excluding the last one(0.5)

freg=freqg(l:m);
% LSP Frequencies of Q(z) alone
asym freg=freq(2:2:m);

avoiding /0\n"'");

* gxl;

Program P3.3: (Continued.) Computation of zeros for anti-symmetric LSP polynomial.

3.3. COMPUTING THE ZEROS OF THE ANTI-SYMMETRIC POLYNOMIAL 39

o] N
~~~~~~~~~~~~~~~~ O.....
o o,
05 j_,.@ 9
&
[a
>
B oo o
8
E
R Y o
o
9 [CES o
1 05 0 05 1
Red Part

Figure 3.5: Roots of the anti-symmetric LSP polynomial.

where the array freq_4 stores all the LSFs. Note that the LSFs are normalized with respect to the
sampling frequency, and hence they range between 0 and 0.5. The relation between an LSF and the
corresponding zero of the LSP polynomial is given as,

2 =cos(2rf) +isin(2rf) , (3.8)

where f is the LSF and Z is the corresponding zero of the LSP polynomial. The LSFs 0 and 0.5 are
not included as it is evident that the zero of P (z) at the point (0, 0) in the unit circle corresponds to
a normalized frequency of 0 and the zero of Q(z) at the point (—1, 0) in the unit circle corresponds
to a normalized frequency of 0.5. The LSFs for the LP polynomial given in Example 3.1 are given
in Figure 3.6, where stars indicate the LSFs from P(z) and circles indicate the LSFs from Q(z).

So far, we have examined LP polynomials that are minimum phase to generate LSP fre-
quencies. We study here the effect of LP polynomials with non-minimum phase by considering the
following coefficients of A(z),

a_nm = [1.0000; —1.5898; 0.4187; 0.3947; 0.4470] .

The pole-zero plot of 1/A(z) is given in Figure 3.7, where we can see the poles lying outside
the unit circle making A(z) a non-minimum phase polynomial. Figure 3.8 shows the LSFs of
the symmetric LSP polynomial (shown as stars) and the LSFs of anti-symmetric LSP polynomial
(shown as circles). Note that the frequencies are not obtained using Programs P3.2 and P3.3, but
rather they are calculated directly using MATLAB. We can see that all the roots of Q(z) do not lie
on the unit circle and hence do not satisfy the assumption that all the roots of the LSP polynomials
lie on the unit circle. Therefore, the LSFs obtained from the Program P3.2 and P3.3 will not be




40 3. LINE SPECTRAL FREQUENCY COMPUTATION

08} e .
osf «,
o4l / X

02t

o2 |
04f /
06| \ ¥

osl /

Imaginary Part
o
P

Figure 3.6: Roots of the LSP polynomials.

accurate because of the assumption of minimum phase LP polynomial, A(z). The attempt to detect
and correct this case of ill-condition is described in the next section.

|

05 .

I X "

IS
o
g O
£
®
£

05 x

X
AL T i S
1 05 0 05 1
Red Pat

Figure 3.7: Pole-zero plot of the non-minimum phase filter.

3.4 TESTING ILL-CONDITIONED CASES

IlI-conditioned cases in finding the roots of the LSP polynomials occur if the LP polynomial used to
generate them is non-minimum phase. In a well-conditioned case, the LP polynomial is minimum
phase and our assumption that the zeros of LSP polynomials lie on the unit circle is valid. If the
zeros of the symmetric and anti-symmetric LSP polynomials do not alternate on the unit circle, the



3.5. QUANTIZING THE LINE SPECTRAL FREQUENCIES 41

T T T T T T
T P 1
/ *,
05} i
- / \
3 /
> H
iCB 0 - © © ©
£ 'y
05} \ ‘._..-v'/ §
. o g
£ T SR B g i
1 1 1 1 1 1
2 15 1 05 0 05 1 15 2
Red Part

Figure 3.8: Roots of the LSP polynomials for the non-minimum phase filter.

LP polynomial may not be minimum phase. Therefore, the Programs P3.2 and P3.3 do not output
monotonic LSFs.

Program P3.4 tests ill-conditioned cases that occur with LSPs and tries to correct them. If
more than one LSF is 0 or 0.5, then the program variable 1spflag is set to 1, indicating that a case
of ill-condition is encountered. If the LSFs are non-monotonic, an attempt to correct them is made.
If that attempt fails, the LSFs of the previous frame are used.

Example 3.4 Consider the non-minimum phase LP polynomial in Example 3.3, and using Pro-

grams P3.1, P3.2, and P3.3, we obtain the LSFs as,

freq = [0.1139; 0.0064; 0.1987; 0.3619] .

We can see that the LSFs are non-monotonic, and using Program P3.4, we can detect and
correct the ill-conditioned case. After using Program P3.4, the LSFs re-ordered for monotonicity
are obtained as,

freq = [0.0064; 0.1139; 0.1987; 0.3619] .

3.5 QUANTIZING THE LINE SPECTRAL FREQUENCIES

The LSFs will be quantized using the quantization matrix given in Table 3.1. Six frequencies (LSF 1
and LSFs 5 to 9) will be quantized using 3 bits and the remaining four (LSFs 2 to 5) will be quantized




42 3. LINE SPECTRAL FREQUENCY COMPUTATION

0 0 0 0 0 0 0 0 0€8¢ 0ILE | 06S€ 06ve | 0cTve 0s¢ee 0LTE 061¢
0 0 0 0 0 0 0 0 (11993 0eye | Olce 00C¢ | 00I€ 000¢ 088¢ 09LT
0 0 0 0 0 0 0 0 0s€e | OSIE | 0S6C | 008C | 0S9¢ §¢sT | 00vC §eee
0 0 0 0 0 0 0 0 006C | 00LC | 08¥YC | 00¢€C | 00IT | 096l 0881 0081
0 0 0 0 0 0 0 0 009C | 00¥C | 00TC | 000C | 0¢8I 0691 0LST 0LY1
0sCC | 0SIT | 00T | 0S61 0s81 0SLT 0L91 0651 oISt 0Evl 0s€l :141 (Ut 0€I T 0501 0001
0L61 0L8T OLLT 0L91 0LST 0Ly 0LET 0LCI OLTT 0801 0L6 088 S6L 0CL 099 029
0SSl oSyl 0s€l 0scl 0STI 0501 056 0S8 SLL SOL 0¥9 G8¢ (1149 00S 09 0Ty
088 018 ovL 0L9 019 09¢ 0cs 08% (44 00¥ 09¢ 949 S6T S9¢ 344 01¢
0 0 0 0 0 0 0 0 00§ 0Ty ove 08¢ 0S¢ See 0Ll 001

xdpu] Aouanbaig

S[9AQT uoneznuen()
‘xinew uoneznuenb JQT :1°¢ 9qe],




3.5. QUANTIZING THE LINE SPECTRAL FREQUENCIES

% P3.4 - 1lsp condition.m

function [ freq ] = lsp condition( freq,lastfreq,m )
% freq - LSP Frequencies of current frame

% lastfreq - LSP frequencies of last frame

% m - Order of LP polynomial

% TEST FOR ILL-CONDITIONED CASES AND TAKE CORRECTIVE ACTION IF REQUIRED
freq = freg(l:m);
lspflag = 0;

if ( any(freg==0.00) | any(freg==0.5) )
lspflag = 1;

end

% REORDER LSPs IF NON-MONOTONIC

for i = 2:m

if freq(i) < freg(i-1)
lspflag = 1;

fprintf( 'pctolsp2: non-monotonic lsps\n' );
tempfreqg = freqg(i);

freqg(i) = freg(i-1);

freg(i-1) = tempfreqg;

end
end
% IF NON-MONOTONIC AFTER 1ST PASS, RESET TO VALUES FROM PREVIOUS FRAME
for 1 = 2:m

if freg(i) < freqg(i-1)

fprintf ( 'pctolsp2: Reset to previous lsp values\n' );
freq(l:m) = lastfreq;
break;

end
end

Program P3.4: Testing cases of ill-condition.

using 4 bits resulting in a total of 34 bits per frame. The LSFs are quantized such that the absolute

distance of each unquantized frequency with the nearest quantization level is minimal.

The first LSF is quantized using the quantization levels given in the first row of the matrix
given in Table 3.1, the second LSF using the second row and so on. Note that in some cases though
the second LSF is higher than the first, it may be quantized to a lower value. This is because the
quantization tables overlap, i.e., the non-zero values in each of the columns of Table 3.1 are not
always in increasing order. Nevertheless, quantization is performed using the quantization table, and
the issue of quantized LSFs becoming possibly non-monotonic is handled later. Also, it can be seen
from Table 3.1, that the number of levels used for quantizing the second, third, fourth and fifth LSFs
are 16, thereby needing 4 bits; whereas for the other LSFs, there are 9 quantization levels, hence

needing 3 bits each.
In Program P3.5, the program variable bits is initialized as,

43




44 3. LINE SPECTRAL FREQUENCY COMPUTATION
bits =[3;4;4;4;4;3;3;3; 3; 3] .

The quantization matrix given in Table 3.1 is stored in the program variable 1spQ. FSCALE is the
sampling frequency, which is used to scale the LSFs to the appropriate range. For each LSEF, the
number of bits used for quantization determines the number of levels. Quantization of each LSF is
performed such that the distance between the unquantized LSF and the corresponding quantization
level in the table is minimized. The index of the quantized LSF is stored in the program variable
findex.

% P3.5 - lsp quant.m
function [ findex ] = lsp quant( freq, no, bits, 1lspQ )

% freq - Unquantized LSFs

% no — Number of LSFs (10 here)

% bits - Array of bits to be allocated for each LSF

% findex - Vector of indices to quantized LSFs, references lspQ

oe

1spQ - Quantization table matrix

% DEFINE CONSTANTS

FSCALE = 8000.00;

MAXNO = 10;

% INIT RETURN VECTOR
findex = zeros( MAXNO, 1 );
% INIT LOCAL VARIABLES
freq = FSCALE * freqg;

levels = ( 2 .” bits ) - 1;
% QUANTIZE ALL LSP FREQUENCIES AND FORCE MONOTONICITY
for i = 1:no
% QUANTIZE TO NEAREST OUTPUT LEVEL
dist = abs( freg(i) - 1lspQ(i,l:levels(i)+1) );
[ low, findex (i) ] = min( dist );
end

Program P3.5: Quantizing the LSFs.

Example 3.5 The LSFs are quantized using Program P3.5 to obtain indices of quantized LSFs
(findex) in the quantization table. Table 3.2 gives the input unquantized LSFs, unquantized fre-
quencies, output indices (findex) and the quantized frequencies corresponding to those indices.
The spectral plots of the LP synthesis filters corresponding to the unquantized and quantized LSFs
are given in Figure 3.9. The corresponding pole-zero plots are given in Figure 3.10. Note that the
LSFs must be converted to LP coefficients using Program P4.1 in order to visualize the spectra and
pole-zero plots.



3.6. ADJUSTING QUANTIZATION TO PRESERVE MONOTONICITY 45

Table 3.2: Example results for Program P3.5.
Unquantized Unquantized Index to Quantized
LSF Frequency = Quantization Frequency
(Hz) Table (Hz)
0.0617 493.3 8 500
0.0802 641.3 13 670
0.0999 799.1 8 775
0.1612 1289.7 9 1270
0.1785 1428.0 7 1430
0.2128 1702.2 3 1690
0.2957 2365.9 5 2300
0.3141 2513.0 3 2525
0.3761 3009.1 3 3000
0.4049 3239.4 2 3270
'8 ] — Spectrum from unquantized LSF
16| [ — Spectrum from quantized LSF

14t

12t

10

Magnitude (dB)

| | — | T
0 0.1 02 03 0.4 05 06 0.7 08 09 1
Normalized Freq (x o) Rad/s

Figure 3.9: Spectra from unquantized and quantized LSFs.

3.6 ADJUSTING QUANTIZATION TO PRESERVE
MONOTONICITY

Quantization of LSFs may lead to non-monotonicity because of the overlapped quantization tables.
But, it is important to preserve the monotonicity of LSFEs because if they become non-monotonic,
the zeros of the two LSP polynomials will no longer be interlaced. This will lead to the loss of
minimum phase property of the LP polynomial. Therefore, the quantized LSFs are checked for
monotonicity, and if there is a case where the previous quantized LSF has a higher value than the




46 3. LINE SPECTRAL FREQUENCY COMPUTATION

PZ plot from unquantized LSFs PZ plot from quantized LSFs

Sl A —— S| S ——
X X X X
o osp X % | L 05p Sx *
2 10 SR IS 1
> H >
fCU 0 6} *C“ 0 ©
? « |l ® x
E 05 x,.-’: E 05
) X A X ¥
5 x x
4 Xt [P I R
-1 05 0 05 1 -1 05 0 05 1
Red Part Red Part

Figure 3.10: Pole-zero plots from unquantized and quantized LSFs.

current LSE, then the problem is corrected by either quantizing the current LSF to the next higher
level or quantizing the previous LSF to the next lower level.

Table 3.3: Example results for Program P3.6.

Unquantized Index to Non-monotonic Corrected Index Monotonic
LSFs Quantization Quantized to Quantization Quantized

Table LSFs Table LSFs
0.0501 7 0.0525 7 0.0525
0.0512 7 0.0500 8 0.055
0.0942 8 0.0969 8 0.0969
0.1209 6 0.1212 6 0.1212
0.1387 3 0.1413 3 0.1413
0.2335 4 0.2288 4 0.2288
0.3103 6 0.3100 6 0.31
0.3214 3 0.3156 3 0.3156
0.4235 7 0.4288 7 0.4288
0.433 5 0.4363 5 0.4363

Program P3.6 takes unquantized LSFs (freq) and quantized LSF indices (findex) as the
first two inputs. For each LSEF, the program checks whether the current quantized LSF is less than or
equal to the previous quantized LSF. If this is true, then the corresponding upward and downward
errors are calculated. Upward error is the error resulting if the current LSF were quantized to a
next higher value, with the previous LSF remaining at the same quantized level. Downward error is
the error resulting if the previous LSF were quantized to a next lower value, with the current LSF
remaining at the same quantized level. If the upward error is lower than the downward error, then
the current LSF is quantized to a next higher level. Else, the previous LSF is quantized to the next



3.6. ADJUSTING QUANTIZATION TO PRESERVE MONOTONICITY

% P3.6 - lsp_adjust quant.m

function [ findex ] = lsp adjust quant( freq, findex,no,lspQ,bits )

% freq - Unquantized LSFs

% findex - Vector of indices to quantized LSFs, references 1lspQ

% (May index non-monotonic LSFs on input, but will index to
% monotonic LSFs on output)

% lspQ — Quantization table matrix

% no — Number of LSFs (10 here)

% bits - Array of bits to be allocated for each LSF

% DEFINE CONSTANTS

FSCALE = 8000.00;

MAXNO = 10;

% INIT LOCAL VARIABLES

freq = FSCALE * freq;

levels = ( 2 .” bits ) - 1;

%$ QUANTIZE ALL LSP FREQUENCIES AND FORCE MONOTONICITY

for i = 1l:no
%$ ADJUST QUANTIZATION IF NON-MONOTONICALLY QUANTIZED AND
$ FIND ADJUSTMENT FOR MINIMUM QUANTIZATION ERROR

if 1 > 1
if 1spQ( i,findex (i) ) <= 1lspQ( i-1,findex(i-1) )
errorup = abs (freqg(i)-
1spQ(i,min(findex (i) +1, levels(i))))+
abs( freg(i-1) - 1lspQ(i-1, findex(i-1)) );
errordn = abs( freqg(i) - 1lspQ (i, findex (1)) ) +
abs( freg(i-1) - 1lspQ(i-1,max(findex(i-1)-1,0)) )

% ADJUST INDEX FOR MINIMUM ERROR (AND PRESERVE MONOTONICITY)
if errorup < errordn

findex (i) = min( findex(i)+1, levels (i) );
while ( 1lspQ(i,findex(i)) < lspQ(i-1,findex(i-1)) )
findex (i) = min( findex(i)+1, levels (i) );
end
elseif i ==
findex (i-1) = max( findex(i-1)-1, 0 );
elseif 1spQ(i-1,max(findex(i-1)-1,0))>1spQ(i-2,findex(i-2))
findex (i-1) = max( findex(i-1)-1, 0 );
else
findex (1) min( findex (i)+1, levels (i) );

while 1spQ( 1, findex (i) ) < 1lspQ( i-1, findex(i-1) )
findex(i) = min( findex(i)+1, levels(i) );
end
end
end
end
end

Program P3.6: Adjusting quantization to preserve monotonicity.

47




48 3. LINE SPECTRAL FREQUENCY COMPUTATION

lower level. If this operation introduces non-monotonicity, then the current LSP is quantized to the
next higher value, regardless of the higher upward error.

Example3.6 In this example, we will consider a case where the quantized LSF's are non-monotonic
as observed in Table 3.3. If we provide the indices of the non-monotonically quantized LSFs
(findex) shown in the second column of Table 3.3 as an input to Program P3.6, we get the indices
shown in fourth column as the output. The indices to the quantization table output from the pro-
gram correspond to monotonic quantized LSFs that are given in the last column of Table 3.3. The
pole-zero plots of the LP synthesis filters corresponding to unquantized LSFs, quantized LSFs and
quantized LSFs corrected to be monotonic are given in Figure 3.11. The pole that crosses the unit
circle is zoomed in and it is clear that the non-monotonicity of LSFs that occurs due to quantization
results in the pole crossing to the outside of the unit circle. When the LSFs are corrected to be
monotonic, the pole comes inside the unit circle again, making the system minimum phase.

PZ plot from PZ plot from PZ plot from quantized
unquantized LSFs quantized LSFs monotonic LSFs
(v , 1 ] 1 -
€ , T , T L |
Ky 0.5 % > 0.5 ¥ > 0.5 % :
g ol JO g o o0 g o Jo
£ \ £ | £ . I
205 R.0.5 " Ros %
05 % gos " gos)%
- _1 \X¥\/ _1 T _ _1 ‘ \X\\l,,/ g
-1 0 -1 0 -1 0 1
Real Part Real Part Real Part

\\\ 034 \\ 1 034 \\

0.315 \\ 1 \\ \\\
\ 0.32 L X 1033 \
X \ % \
0.31 3 — | |
| 0.3 | 1 0.32 \
0.305 | ] \\\ |
0.94 0.95 0.94 0.96 0.98 0.93 0.94 0.95

Figure 3.11: Pole-zero plots from unquantized, quantized and monotonically quantized LSFs.



3.7. SUMMARY 49

3.7 SUMMARY
The LSP polynomials, P(z) and Q(z) are generated from the LP coefficients. P(z) is a polynomial

with even-symmetric coefficients and Q(z) is a polynomial with odd symmetric coefficients. The
zeros of the polynomials, the LSFs, are computed using Descartes’ method. LSFs can be efficiently
computed using Chebyshev polynomials [63], and details on the spectral error characteristics and
perceptual sensitivity of LSFs are given in a paper by Kang and Fransen [64]. Developments in
enhancing the coding of the LSFs include using vector quantization [65] and discrete cosine trans-
form [66] to encode the LSFs. In third-generation standards, vector quantization of the LSFs [67, 68]
is common practice. Note that ill-conditioned cases are indicated by the non-monotonicity of the
LSFs. They could arise either due to a non-minimum phase LP polynomial or quantization of LSFs.
Immittance Spectral Pairs (ISPs) are another form of spectral representation for the LP filter [69]
similar to LSPs, and they are considered to represent the immitance of the vocal tract. Some of
the most modern speech coding standards such as the AMR-WB codec and the source-controlled
VMR-WB codec use ISPs as parameters for quantization and transmission [5, 42].







51

CHAPTER 4

Spectral Distortion

Spectral distortion in the FS-1016 encoder occurs due to the quantization of LSFs. The quantized
and unquantized LSFs are converted to their respective LP coefficients. The LP coefficients are then
converted to the RCs using inverse Levinson-Durbin recursion. The RCs are finally converted back
to autocorrelation lags and the distances between the autocorrelation lags are computed. There are
many distance measures that could be used to characterize the distortion due to the quantization of
the LSFs. The following distance measures are considered in this chapter: (1) the cepstral distance
measure, (2) the likelihood ratio and (3) the cosh measure. The block diagram in Figure 4.1 shows
the steps involved in the computation of the spectral distortion measures.

Computation of the RCs from LP coefficients using inverse Levinson-Durbin recursion has
been already explained in Section 2.5 (Program P2.5). Conversion of LSPs to LP coefficients,
conversion of RCs to autocorrelation lags and calculation of distances between autocorrelation lags
will be illustrated in the following sections using MATLAB programs.

Line spectral

frequencies
. Calculate distances
Convert LSFs to LP Convert LP coefficients Ct.‘.onver: T.CS It° between
coefficients to RCs autocorrelation lags autocorrelation lags
Isptopc.m pctorc.m rctoac.m dist.m

v

Spectral distortion
measures

Figure 4.1: Spectral distortion computation.




52 4. SPECTRAL DISTORTION

4.1 CONVERSION OF LSPTO DIRECT-FORM
COEFFICIENTS

Conversion of LSP frequencies to LP coefficients is much less complex than finding the LSP
frequencies from the LP polynomial. Each LSP frequency w; represents a polynomial of the form 1 —
2cos w;z~! 4 z72 [63]. Upon multiplying the second-order factors, we get the symmetric and anti-
symmetric polynomials P(z) and Q(z). Then the LP polynomial can be reconstructed using (3.3).
But here we adopt a different approach by realizing that each second-order factor of the polynomial
P(z) and Q(z) can be considered as a second-order filter, of the type shown in Figure 4.2. The
total filter polynomial is a cascade of many such second-order stages. Because the filter is Finite
Impulse Response (FIR), the impulse response samples are the coefficients of the filter. Therefore,
the coefficients of the LP polynomials are found by computing the impulse response of the cascade
of the second-order stages.

71

-2cos(w

[: (w) G)
71

Figure 4.2: Second-order section of P(z) and Q(z).

In Program P4.1, p and ¢ are the arrays that contain the cosine of the LSP frequencies of
the polynomials P(z) and Q(z). The variables a and b are the arrays that contain the outputs of
the current stage and, consequently, the inputs for the next stage. The variables a; and by are the
first level memory elements that correspond to first-order delays and a; and b, are the second level
memory elements that correspond to second-order delays. The outer for loop cycles through the
samples and the inner for loop cycles through the stages of the cascaded filter for each input sample.
The latter calculates the output samples for each stage and populates the memory elements. Each LP



4.2. COMPUTATION OF AUTOCORRELATION LAGS FROM REFLECTION COEFFICIENTS 53

polynomial coefficient, except the first coefficient, which is always one, is computed as the average
of the coefficients of the two filters as per (3.3). Finally, the LP coefficients are stored in the array

pc.

Example 4.1 The Program P4.1 takes the LSP frequencies as the input and generates the LP
coefficients as the output. For the case of a tenth-order LP polynomial, quantized and unquantized
LSP frequencies (f and £q) supplied as input to the program and the corresponding LP coefficients
(pc and pcq) output from the program are given below. The spectra and pole-zero plots of the LP
synthesis filters corresponding to unquantized and quantized LSFs are given in Figures 3.9 and 3.10,
respectively. The LP coefficients (pc and pcq) are converted to RCs using Program P2.5, and the
corresponding RCs (rc and rcq) are given below.

£ =[0.0617; 0.0802; 0.0999; 0.1612; 0.1785; 0.2128; 0.2957; 0.3141; 0.3761; 0.4049] ,
pc = [1.0000; —1.5921; 1.5702; —1.2870; 1.4251; —1.3094; 1.0557; —0.7447; 0.9385; —0.7386; 0.2440] ,

fq =[0.0625; 0.0838; 0.0969; 0.1588; 0.1787; 0.2112; 0.2875; 0.3156; 0.3750; 0.4088] ,
pcq = [1.0000; —1.6440; 1.6310; —1.2326; 1.2500; —1.1169; 0.9365; —0.6354; 0.7458; —0.5828; 0.1708] .

The LP coefficients (pc and pcq) are also converted to RCs using Program P2.5 and the
corresponding RCs (rc and rcq) are also given below. Note that the absolute value of the elements
of the arrays rc and rcq are less than one, which implies that the LP synthesis filter is stable.

rc = [0.7562; —0.6992; 0.2369; —0.3205; 0.0473; —0.5316; —0.1396; —0.0367; 0.3723; —0.2440] ,
rcq = [0.7817; —0.7778; 0.2507; —0.3701; —0.0816; —0.4893; —0.0247; 0.0151; 0.3111; —0.1708] .

4.2 COMPUTATION OF AUTOCORRELATION LAGS FROM
REFLECTION COEFFICIENTS

To calculate the Autocorrelation (AC) lags from RCs [50], we first obtain the LP polynomials of
increasing orders from the reflection coefficients using forward and backward predictor recurrence
relations that are given in (4.1) and (4.2), respectively,

ai1(j) = a; (j) + kiv1a;(i +1— ) (4.1)
aip1(i+1—j)=a;(+1—j)+kit1a;(j), (4.2)

where, a;(j) is the j th predictor coefficient of order i and k; is the reflection coefficient. In Pro-
gram P4.2) initially the autocorrelation array r is stored with the reflection coefficients rc. Then




54 4. SPECTRAL DISTORTION

% P4.1 - lsptopc.m

function pc = lsptopc( f, no )

% £ - LSP frequencies

% no - LPC filter order

% Pc - LPC predictor coefficients

% INITIALIZE LOCAL VARIABLES
noh = no / 2;

freq = £;

a = zeros( noh+1, 1 );
al = a;

az = a;

b = a;

bl = a;

b2 = a;

pc = zeros( no, 1 );

% INITIALIZE LSP FILTER PARAMETERS
p = -2 * cos( 2*pi*freqg((l:2:no-1)") );

g = -2 * cos( 2*pi*freg((2:2:no0)"'") );
% COMPUTE IMPULSE RESPONSE OF ANALYSIS FILTER
xf = 0.00;
for k = 1l:no+l

xx = 0.00;

if k ==

xx = 1.00;

end

a(l) = xx + xf;

b(l) = xx - xf;

xf = xx;

Program P4.1: Conversion of LSP frequencies to LP coefficients. (Continues.)



4.2. COMPUTATION OF AUTOCORRELATION LAGS FROM REFLECTION COEFFICIENTS 55

for i = 1l:noh
a(i+l) = a(i) + ( p(i) * al(i) ) + a2(i);
b(i+l) = b(i) + ( g(i) * bl(i) ) + b2(i);
az2(i) = al(i);
al(i) = a(i);
b2 (1) bl (1) ;
bl (1) b(i);
end
if k ~=1
pc(k-1) = -0.5 * ( a(noh+l) + b(noh+1l) );
end
end
$ CONVERT TO PREDICTOR COEFFICIENT ARRAY CONFIGURATION
pc(2:no+l) = -pc(l:no);

pc(l) = 1.0;

Program P4.1: (Continued.) Conversion of LSP frequencies to LP coefficients.

a temporary array t is created to store the intermediate LP polynomial coefficients of increasing
orders. If we have a predictor polynomial of order m, then we know that,

am(m) =k, . (4.3)

In Program P4.2, we negate the reflection coefficient and assign it to the intermediate LP
polynomial coefficient because we want to follow the sign convention where the first reflection
coefficient equals the normalized first-order autocorrelation lag. The LP polynomial coefficients
are computed for increasing order of the intermediate predictor polynomials from 2 to m, where
m is the order of the actual predictor polynomial. The order of the intermediate LP polynomial is
indicated by the variable i in the program. For each intermediate predictor polynomial, the first half
of the polynomial coefficients are computed using forward predictor recursion given in (4.1) and
the second half of the polynomial coefficients are computed using reverse predictor recursion given
in (4.2). The last coefficient of any intermediate polynomial is equal to the negative of reflection
coefficient. This follows from (4.3) and the negative sign is because of our sign convention.

Then, the autocorrelation lag of order i + 1 is computed by,

i+1
ri+1) =Y ankri+1-k, (4.4)
k=1

where, 7 (i) is the autocorrelation at lag i. In Program P4.2, all the coefficients of the intermediate
LP polynomial except the first coefficient are negatives of their actual values because of our sign




56 4. SPECTRAL DISTORTION

$ P4.2 - rctoac.m

function r = rctoac( rc, m )

% rc - Reflection coefficients

S m - Predictor order

% r - Normalized autocorrelation lags

% INITIALIZE LOCAL VARIABLES
r = zeros( m+l, 1 );
t = r;

% COMPUTE PREDICTOR POLYNOMIAL OF DIFFERENT DEGREE AND STORE IN T
% COMPUTE AUTOCORRELATION AND STORE IN R
t(l) = 1.0;
t(2) = -r(2);
ifm>1
for i 2:m
j = fix(i/2);
ty] = t( 2:3+41 ) = ( r( i+l ) * £( i:=1:1-3+1 ) );
tkj = t( i:-1:1-3+1 ) - ( r( i+1 ) * t( 2:3+1 ) );
t( 2:9+1 ) = t3;
t( i:=-1:i-3+1 ) = tkj;
t( i+l ) = -r( i+l );
r( i+l ) = r( i+1 ) - sum( t( 2:1 ) .* r( i:-1:2 ) );

end
end

Program P4.2: Computation of autocorrelation lags from reflection coefficients.

convention. Therefore, when (4.4) is implemented in the program, the final sum is negated to get
the autocorrelation lag with proper sign.

Example 4.2 The autocorrelation lags that are output when the RCs in Example 4.1 are input to
Program P4.2 are given below. The array ac contains the autocorrelation lags corresponding to rc and
acq contains the autocorrelation lags corresponding to rcq. We will be using these autocorrelation
lags to calculate various distance measures that quantify the amount of distortion that has occurred
due to quantization.

ac = [1;0.7562; 0.2725; —0.1267; —0.3443; —0.4001; —0.4154; —0.4701; —0.4573; —0.2241; 0.1523] ,
acq = [1; 0.7817; 0.3086; —0.1406; —0.4277; —0.5416; —0.5576; —0.5160; —0.3639; —0.0506; 0.3324] .



43. CALCULATION OF DISTANCE MEASURES 57
4.3 CALCULATION OF DISTANCE MEASURES

The distance measures used to measure the distortion due to quantization of LSP frequencies are the
likelihood ratio, the cosh measure and the cepstral distance [70]. Nine different distances are stored
in an array for each frame. In Program P4.3 (dist.m), the array of distance measures is indicated
by dm.

Considering the log likelihood distance measure, let us define A(z) as the LP polynomial that
corresponds to the unquantized LSFs. The LP polynomial that would correspond to quantized LSFs
is denoted by A’(z). The minimum residual energy o would be obtained if the speech samples of the
current frame, say {x (1)}, used to generate the LP polynomial A(z) is passed through the same filter.
The residual energy §, is obtained when {x(n)} is passed through the filter A’(z). Consequently, if
we assume that some sequence of samples {x'(n)} was used to generate A’'(z), then o’ would be the
minimum residual energy found when {x’(n)} was passed through A’(z). The residual energy &’ is
obtained when {x'(n)} is passed through A(z).The ratios 8’ /o’ and 8/« are defined as the likelihood
ratios and indicate the differences between the LPC spectra before and after quantization.

The program cfind.m is used by dist.m to compute the cepstral coefficients, the filter
autocorrelation lags, the residual energy, the LP filter parameters and the reflection coefficients,
using the autocorrelation sequence. The method of finding likelihood ratios is described in [70]. In
Program P4.3, the 8, 8, « and «’ are denoted by del, delp, alp, and alpp. The first two distance
measures dm(1) and dm(2) denote the ratios §/a and 8'/o’.

We denote,

1 1
Q= (0/0) (/) + (0" [0)*@ fa) — 1, (4.5)
cosh(w) — 1=, (4.6)
w=h[l+Q+/22+Q)], (4.7
where w is the cosh measure. The array element dm(3) is the distance measure 4.34294418w, where
o is calculated for 0 = 0’ = 1 and the factor 4.34294418 is used to convert the cosh measure to
decibels. The program fin.m converts €2 to the cosh measure dm(6) . The parameters o and o’ used
above are the gain constants related to the cepstral gains by,
co = In[o?], (4.8)
¢ =In[(c")*], (4.9)
where the cepstral coefficients ¢4 and ¢}, are the Fourier series coefficients for the log spectra given
by,

k=00

Info?/|A)P1= Y e, (4.10)
k=—00
k=00

In[(0")*/|A' (/)P 1= D cre . (4.11)

k=—00




58 4. SPECTRAL DISTORTION

% P4.3 - dist.m

function [ dm ] = dist( m, 1, r, rp)

% m - Filter order

% 1 - Number of terms used in cepstral distance
% Measure

% r - Autocorrelation sequence 1 (undistorted)
% rp - Autocorrelation sequence 2 (distorted)

% dm - Distances array

% DEFINE LOCAL CONSTANTS
DBFAC = 4.342944819;

% INITIALIZE LOCAL VARIABLES AND RETURN VECTORS
dm = zeros( 9, 1 );

% COMPUTE CEPSTRAL AND FILTER COEFFICIENTS
[ ¢, ra, alp, a, rc ] = cfind(m, 1, r );

[ cp, rap, alpp, ap, rcp ] = cfind( m, 1, rp );

% COMPUTE DM(0), DM(1)

del = ( r(l) * rap(l) ) + sum( 2 * r(2:m+l) .* rap(2:m+1l) );
delp = ( rp(l) * ra(l) ) + sum( 2 * rp(2:m+l) .* ra(2:m+1l) );
dm(l) = del / alp;

dm(2) = delp / alpp:

% COMPUTE DM (3)

qg= ( ( dm(l) + dm(2) ) / 2.0 ) - 1;
if g >= 0.00

dm(3) = fin(q);
end

% COMPUTE DM (4)

gl = (alpp * r(l) ) / (alp * rp(l) );
ga=( ( (dn(l) / gl ) + dm(2) * gl ) * 0.5) - 1.0;
if g >= 0.00
dm(4) = fin(q);
end

Program P4.3: Computation of distance measures. (Continues.)



$ COMPUTE
g2 = alpp
a= (((
if g >= 0.
dm (5)
end
$ COMPUTE
q = sqrt(
gflag = (
if gflag
dm (6)
end

% COMPUTE

cepsum =

if cepsum
dm (7)

2 * sum( (

4.3. CALCULATION OF DISTANCE MEASURES

DM (5)
/ alp;
dm (1)
00

= fin(q);

/ 92 ) + dm(2) * g2 ) * 0.5 ) - 1.0;

DM (6)
dm(1) * dm(2) ) - 1.
g >= 0.00 );

0;

= fin(q);

DM(7), DM(8), DM(9)

c(l:1) = cp(l:1) ) .~ 2 );
>= 0.0

= DBFAC * sqgrt( cepsum );

g = log(ql);

dm (8)

q =

dm (9)
else

gflag
end

= DBFAC * sqgrt( cepsum + (g * q) );

log(g2);

= DBFAC * sqgrt( cepsum + (g * q) );;

= FALSE;

Program P4.3: (Continued.) Computation of distance measures.

59

To obtain the fourth distance measure dm(4), we consider the following values for o and

(02,

o =a/r(0),
(0")? =a'/r'(0),

(4.12)
(4.13)

where, r’ indicates the autocorrelation lag corresponding to the quantized LSP frequencies. For

dm(5), we take 02 = « and (0/)2 = «'. For the sixth distance measure, dm(6), the gain constants

are adjusted to minimize 2 and the minimum is obtained as,

Qumin = [(8/a) (8" /aHN? — 1.

The cepstral distance measure u(L) is given by,

L
(L)) = (co— c)* +2) (cx — ),
k=1

(4.14)

(4.15)




60 4. SPECTRAL DISTORTION

where, L is the number of cepstral coefficients. The distance measure dm(7), is the cepstral distance
calculated with 0 = o/ = 1, dm(8) is the cepstral measure obtained with (4.12) and (4.13) holding
true, and finally, dm(9) is the cepstral measure with the conditions 02 =« and (¢/)? = &'. The
cepstral distance is a computationally efficient way to obtain the root-mean-square (RMS) difference
between the log LPC spectra corresponding to the unquantized and quantized LSFs.

Example 4.3  The autocorrelation lags from Example P4.2 are used in Program P4.3 to find the
distance measures. The order of the filter (m) is taken as 10 and the number of terms used to find the
cepstral distance measure (/) is taken as 40. The distance measure array output from the program is
given below.

dm = [1.0477; 1.0452; 1.3189; 1.7117; 1.7117; 1.3189; 1.2890; 1.6750; 1.6750] .

The cepstral distance dm(9) and likelihood ratios dm(1) and dm(2) for all frames from the
speech file ‘cleanspeech.wav’ [76] are given in Figure 4.3. The frame energy and the spectrogram
of the speech is also given in the same figure. The three distance measures follow the same trend
over most of the frames, which is reasonable because of the fact that all three of them measure
the distortion of spectra corresponding to quantized and unquantized LSFs. Note that no logical
relationship can be drawn between the distance measures and the frame energy or the spectrogram

of the speech signal.

44 SUMMARY

Procedures for computing three distinct types of spectral distance measures were presented in this
chapter. These distance measures have a meaningful frequency domain interpretation [70]. The
significance of the likelihood distance measures when the data are assumed to be Gaussian and their
efficient computation using autocorrelation sequences are provided in a paper by Itakura [71]. The
properties of cepstral coefficients from minimum phase polynomials [72] are exploited to compute
the cepstral distance measure, which provides a lower bound for the rms log spectral distance. The
cosh distance measure closely approximates the rms log spectral distance as well and provides an
upper bound for it [70].



4.4. SUMMARY 61

3.5 T T T T T T

25} i

Magnitude

ﬁ

05 1 I I I 1 1
20 40 60 80 100 120

Frame Number

Figure 4.3: (a) Cepstral distance for all the frames.

1.3

1251 =

Magnitude

1 I I I

20 40 60 80 100 120
Frame number

Figure 4.3: (b) Likelihood ratio distance measure at all the frames.




62 4. SPECTRAL DISTORTION

Normalized Freq (x 1) Rad/s

6400 12800 19200 25600 32000
Samples

Figure 4.3: (c) Spectrogram at all the frames.

110

100

0

80

70

Energy (dB)

60

50

40

30 L 1 1 1 1 |
20 40 60 80 100 120

Frame number

Figure 4.3: (d) Frame energy at all the frames.



CHAPTER 5

The Codebook Search

The prediction residual from the LP filter of the CELP analysis stage is modeled by an LTP and
the Stochastic Codebook (SCB). The pitch delay of the LP residual is first predicted by the LTP
and the SCB represents the random component in the residual. The LTP is also called as the
Adaptive Codebook (ACB) because the memory of the LTP is considered as a codebook and the
best matching pitch delay for a particular target is computed. Figure 5.1 provides an overview of the
codebook search procedure in the analysis stage consisting of both the ACB and the SCB.

The codebook search procedure outlined in Figure 5.1 will be described in detail with the nec-
essary theory and MATLAB programs in the following sections. Demonstration of some important
details will also be provided with some numerical examples and plots.

Speech
subframe
Initial error without Pitch (Adaptive Initial error with pitch Stochastic codebook Update filter
pitch VQ > codebook) search > VQ > search ™ states
confg.m psearch.m confg.m cbsearch.m confg.m

Figure 5.1: Codebook search procedure.

5.1 OVERVIEW OF CODEBOOK SEARCH PROCEDURE
The use of the closed-loop LTP was first proposed in a paper by Singhal and Atal [2] and led to a

big improvement in the quality of speech. The vector excitation scheme using stochastic codevectors
for A-by-S LP coding was introduced in a paper by Schroeder and Atal [1]. In this section, we give
an overview of the structure of ACB and SCB and the search procedures. The codebook searches
are done once per sub-frame for both the ACB and the SCB, using the LP parameters obtained
from the interpolated LSPs of each sub-frame. Determining the best matching codevector for a
particular signal is referred to as Vector Quantization (VQ) [73, 74]. The idea behind both the
codebook searches is to determine the best match in terms of the codevector and the optimal gain

63




64 5. THE CODEBOOK SEARCH

(gain-shape VQ [75]) so that the codevector is closest to the target signal in the MSE sense. Because
of this reason, the theory and most of the MATLAB implementation of both the ACB and the
SCB searches are similar. The major difference between the search procedures is that the target
signal used in the process of error minimization is different. The target for the ACB search is the LP
residual weighted by the perceptual weighting filter, A(z/y), where y is the bandwidth expansion
factor. The target for the SCB search is the target for the ACB search minus the filtered ACB
VQ_excitation [20]. Therefore, it is clear that the combination of the ACB and the SCB is actually
attempting to minimize the perceptually weighted error. The entire search procedure is illustrated in
Figure 5.2.i, and i, are the indices to the ACB and SCB that correspond to the optimal codevectors;
ga and g are the gains that correspond to the adaptive and stochastic codewords. In the MATLAB
implementation, the ACB search is performed first and then the SCB search is performed.

Stochastic Codebook

512

511 i

2 LS .l

1 \‘ \‘ g

\ \ S ="
o ) 4 LP R Pergept.ual e Minimize LR

pommmmmmmsmsee oo 4----) <+>—> Synthesis Weighting | —» Perceptual | g
- i o | i S Filter >
; Adaptive Codebook ! ! A i Filter S Error _za_>
= 256 ;o ! !
1 . 1
! 255 Ly i
| : g, : |
| - : l
| 2 : i
: 1 | i
i ¥ : :
! L o o e mmm H 1
i i

Figure 5.2: Searching the adaptive and the stochastic codebooks.

For the ACB, the codebook consists of codewords corresponding to 128 integer and 128 non-
integer delays ranging from 20 to 147 samples. The search involves a closed-loop analysis procedure.
Odd sub-frames are encoded with an exhaustive search requiring 8 bits whereas even sub-frames
are encoded by a delta search procedure requiring 6 bits. Therefore, the average bits needed for
encoding the ACB index is 7. Codebook search here means finding the optimal pitch delay and an
associated gain thatis coded between —1.0 and +2.0 using a modified Minimum Squared Prediction
Error (MSPE) criterion. Sub-multiple delays are also checked using a sub-multiple delay table to
check if the sub-multiples match within 1 dB of MSPE. This favors a smooth pitch contour and
prevents pitch errors due to choosing of multiples of pitch delay. The adaptive codebook gets updated
whenever the pitch memory of the TP is updated, i.e., once every sub-frame.



5.1. OVERVIEW OF CODEBOOK SEARCH PROCEDURE 65

For the fixed SCB, the codebook is overlapped with a shift of -2 samples between consecutive
codewords. The codebook is 1082 bits long and consists of 512 codewords that are sparse and ternary
valued (—1, 0 and +1) [18, 46]. This allows for fast convolution and end correction of subsequent
codewords, which will be described later in detail. A sample of two consecutive codewords shifted
by —2 found in the stochastic codebook is given in Figure 5.3 where the overlap, sparsity and ternary
values could be seen.

StochCB (1023:1082)
1 . . . . .

0 SEEEE0-T00-185505 aco-oleoleomsraoslancoraaraaelad)
1o I I L
1030° 1040 1050 1060 1070 1080
StochCB (1021:1080)
1 . . . . . ©
Odorercacera0 osee-osse-olealecsorascalasco 55555
L L
1030° 1040 1050 1060 1070 1080

Figure 5.3: Examples of ternary valued SCB vectors.

As we mentioned earlier, the search procedures for both the ACB and the SCB are essentially
the same, except that the targets are different. Assuming that we have the L x 1 target vector e©®
and codevectors x*), where i is the index of the codevector in the codebook, the goal is to find the
index for which the gain score g and the match score m‘?) are maximized. The filtered codeword
is given by,

y® = WHx" | (5.1)

where W and H are the L x L lower triangular matrices that represent the truncated impulse
responses of the weighting filter and the LP synthesis filter, respectively. The overall product in (5.1)
represents the effect of passing the codeword through the LP and the weighting filters. Figure 5.4
(adapted from [20]) illustrates the procedure to find the gain and the match scores. The scores are

given by,
i ¥y (52)
Y(l()';r'lyu(z)) 2
1
m@ 290 €7 53)

y(i)Ty(i)




66 5. THE CODEBOOKSEARCH
Codebook

yOT g©®
Correlate
m®
Cascaded LP g¥
and weighting
filters T\ ,(0)
L) Energy oy

Figure 5.4: Finding gain and match scores [From [20]].

5.2 ADAPTIVE CODEBOOK SEARCH

Having looked at the match scores and the overview of codebook searches, we will now describe the
ACB search in detail with MATLAB code. We will provide an elaborate study of the target signal
for the ACB search, the integer delay search, and the sub-multiple/fractional delay search.

5.2.1 TARGET SIGNAL FOR ADAPTIVE CODEBOOK SEARCH

Denoting s and §? as the actual speech sub-frame vector and the zero input response of the LP
filter, from Figure 5.2, we can see that the target signal for the ACB search, e© should be,

e =W —5©) . (5.4)

The filtered codeword y*) given in (5.1) is compared with the target e to get the gain and match
scores as given in (5.2) and (5.3). The best codebook index i is the one that maximizes m;.

The MATLAB implementation of the codebook search described above takes into account
certain considerations in order to reduce the implementation complexity. From (5.1), we see that
the codeword has to be filtered through the LP filter and the weighting filter for comparison with
the target. One possible simplification is to do away with the LP filtering, so that we deal with the
excitation signal instead of speech signal. Therefore, instead of using the weighting filter A(z/y), we
use the inverse weighting filter 1/A(z/y). The modified filtered codeword for comparison becomes,

}7(1‘) =W 1x® (5.5)



5.2. ADAPTIVE CODEBOOK SEARCH 67

This requires us to modify the target (converting it to a form of excitation) and the gain and match

scores as well. These are given by,

e —wW-TH (s — 5, (5.6)
()T

- _y €

’ _m),z o
(y'" e™)

=0Ty ©.8)

% P5.1 - acbtarget.m

% s - Speech or residual segment

% 1 - Segment size

% d2 - Memory, 1/A(z)

% d3 - Memory, A(z)

% d4 - Memory, 1/A(z/gamma)

% no - LPC predictor order

% e0 - Codebook search initial error(zero vector) and updated
% error (target)

% fc - LPC filter/weighting filter coefficients

% gamma2 - Weight factor, perceptual weighting filter

% LOAD THE SPEECH FRAME, FILTER MEMORIES AND OTHER PARAMETERS

load voic_ fr

% INITIALIZE LOCALS
fctemp = zeros( no+l, 1 );
% COMPUTE INITIAL STATE, 1/A(z)

[ d2, e0 ] = polefilt( fc, no, d2, eO,

$ RECOMPUTE ERROR
el = s - e0;
% COMPUTE INITIAL STATE, A(z)

[ d3, e0 ] = zerofilt( fc, no, d3, <0,

% COMPUTE INITIAL STATE, 1/A(z/gamma)
fctemp = bwexp( gamma2, fc, no );

[ d4, e0 ] = polefilt( fctemp, no, d4,

1)
1)
e0, 1),

Program P5.1: Target for the ACB.

The error is initialized to zero, and then it is passed as input to the LP synthesis filter 1/A(z).
This gives the Zero Input Response (ZIR) i.e., the initial condition, of the LP synthesis filter.
Then the ZIR is subtracted from the actual speech sub-frame and passed through the LP analysis
filter, which converts it back to the residual. Since we work with prediction residuals now, the inverse




68 5. THE CODEBOOK SEARCH

weighting filter 1/ A(z/y ) is used to obtain the final target vector for the ACB, i.e.,&®). Program P5.1
performs this operation, but it needs supporting files and workspace [76].

Example5.1 A test speech segment (voiced) is taken and tested with Program P5.1. The segment
of speech and the target are shown in Figure 5.5. Note that this target vector will be used by the
ACB to predict the pitch period.

15

——— Speech segment
................... ACB target

Amplitude

1 1
5 10 15 20 25 30 35 40 45 50 55 60

Figure 5.5: Speech segment and target for the ACB.

5.2.2 INTEGER DELAY SEARCH

Once the target signal is generated, the next step is to search for the integer pitch delay. In the
MATLAB implementation, the pitch is coded in two stages — searching the integer delays first and
the neighboring non-integer delays next. In this section, we will look into the coding of integer pitch
delays.

The MATLAB program that implements the integer pitch delay (integerdelay .m) is avail-
able under the directory P5_2 in the website [76]. Initially, the excitation vector (v0) is loaded with
a copy of the pitch memory (d1b), and allowable search ranges are fixed in the variables minptr
and maxptr. If the sub-frame is odd, then a full search of the pitch delay table (pdelay) is done.
If the sub-frame is even, the pitch delay is searched between —31 to 32 of the pitch index in the
pitch delay table. The pitch delay table has both integer and fractional pitch values. In the integer
delay search, only the integer delays are searched and match score is set to zero, if the pitch delay is
fractional.

The gain and match scores are computed as given in (5.7) and (5.8) in the MATLAB code
pgain.mand portions of itare provided in Program P5.3.The full MATLAB code for computing the




5.2. ADAPTIVE CODEBOOK SEARCH

% RUN GAIN COMPUTATIONS
if first ==
% CALCULATE AND SAVE CONVOLUTION OF TRUNCATED (TO LEN)

of

% IMPULSE RESPONSE FOR FIRST LAG OF T (=MMIN) SAMPLES:
%
% MIN(i, len-1)
% y = SUM h * ex , WHERE i = 0, ..., L-1 POINTS
% i, t j=0 j i-j
%
% h |0 1...1len-1 x x|
% ex |L-1 . . . 1 0] = y[O0]
% ex |[L-1 . . . 1 0] = y[1]
% : :
% ex |[L-1 . . . 1 0] = y[L-1]
for 1 = 0:1-1
Jjmax = min( i, len-1 );
Ypg(i+l) = sum( h(l:jmax+l) .* ex(i+l:-1:i-jmax+1l) );
end
else
% END CORRECT THE CONVOLUTION SUM ON SUBSEQUENT PITCH LAGS
% y = 0
% 0, t
sy =y +ex *h WHERE i =1, ..., L POINTS
% i, m i-1, m-1 -m i AND m = t+1, ..., tmax LAGS
Ypg(len-1:-1:1) = Ypg(len-1:-1:1) + ( ex(l) * h(len:-1:2) );
Ypg(l:-1:2) = Ypg(l-1:-1:1);
Ypg (1) = ex (1) * h(l);

end

% FOR LAGS (M) SHORTER THAN FRAME SIZE (L), REPLICATE THE SHORT
$ ADAPTIVE CODEWORD TO THE FULL CODEWORD LENGTH BY OVERLAPPING
$ AND ADDING THE CONVOLUTION

y2(1l:1) = Ypg(l:1);

ifm<1
$ ADD IN 2ND CONVOLUTION
y2(m+l:1) = Ypg(m+l:1l) + Ypg(l:1l-m);

if m < fix(1/2)
% ADD IN 3RD CONVOLUTION

imin = ( 2 *m ) + 1;

imax = 1;

y2( imin:imax ) = y2( imin:imax ) + Ypg( l:1-(2*m) );
end

end

Program P5.3: Gain and match scores computation. (Continues.)

69




70 5. THE CODEBOOK SEARCH

% CALCULATE CORRELATION AND ENERGY
cor sum( y2(1l:1) .* e0(1l:1) );
eng = sum( y2(1l:1) .* y2(1:1) );

$ COMPUTE GAIN AND MATCH SCORES
if eng <= 0.0
eng = 1.0;
end
Pgain = cor / eng;
match = cor * Pgain;

Program P5.3: (Continued.) Gain and match scores computation.

gain and match scores are available in the website under the directory P5_3 [76]. In this program, Ypg
is the variable that stores the filtered codeword. The filtered codeword is obtained by convolving
the excitation (ex) with the truncated impulse response (h) of the inverse weighting filter. The
convolution is shown in the first if condition in Program P5.3. Full convolution is performed only
when the first delay is tested. Because of the integer delay, the excitation signal for the second delay
is simply shifted by one from the excitation signal for the first delay. Exploiting this, we can perform
just end corrections from the second convolution onwards and reduce the number of computations.
This is illustrated in the first else condition in Program P5.3. The newly arrived first sample in
the excitation is multiplied with the time-reversed impulse response and added to the previous
convolution result. The new result is restricted to the length of the excitation signal (60).

If the pitch delay (M) is greater than the sub-frame length (60), then the codeword is con-
structed by taking the previous excitation signal and delaying it by M samples. If M is less than
60, then the short vector obtained by delaying the previous excitation signal is replicated by peri-
odic extension. In Program P5.3, the effect of periodic extension is provided by overlap-add of the
convolution result. Once the filtered codeword is obtained, the gain and match scores are computed
exactly in the same way as in (5.7) and (5.8). For even sub-frames the same procedure is repeated
except that the search range is limited.

Example 5.2 Integer delay search is performed for the speech segment given in Example 5.1. The
sub-frame is odd; therefore, all the integer delays are searched. The gain and match scores with
respect to the indices of the pitch delay table are plotted as shown in Figure 5.6. The maximum
index is 117 and the actual pitch period is 56. This is obtained by running the MATLAB program

integerdelay.m.

5.2.3 SUB-MULTIPLE/FRACTIONAL DELAY SEARCH

After performing an integer delay search, 2, 3, and 4 sub-multiple delays are searched according to
the sub-multiple delay table (submult), in order to ensure that the pitch contour is smooth. Note




5.2. ADAPTIVE CODEBOOK SEARCH 71

Gan Score
(O]
©
2
et
IS
<C
-10 1 1 1 1 1
50 100 150 200 250
x 108 Match Score
L
©
2
!
IS
<C

pdelay index

Figure 5.6: Gain and match scores for ACB search in a voiced segment.

that only the sub-multiples specified in the sub-multiple delay table are searched. Sub-multiple pitch
delay is selected if the match is within 1dB of MSPE of the actual pitch delay already chosen.

We will now describe fractional pitch estimation, which involves the interpolation of the
codevectors (that correspond to integer delay) chosen from the pitch memory (ACB). After the
interpolation is performed and codevectors corresponding to the fractional delay are found, the
gain and match scores are determined as shown before (pgain.m). The interpolating function is
the product of a hamming window (h,,), and a sinc function and totally 8 points are used for
interpolation. If D fractional samples are to be computed between two integer samples, it is equivalent
to increasing the sampling frequency by D. Therefore, the signal is upsampled and low-pass filtered,
which increases the number of samples by a factor of D. Then, the oversampled signal is delayed
by an integral amount equivalent to the fractional delay of the original signal. Again, the signal is
downsampled to the actual sampling rate. The entire process can be replicated using only windowed
sinc interpolation in the time domain [17]. The window and the windowed interpolation functions
are given as,

k
B (k) = 0.54 + 0.46 cos (6—;> , (5.9)
where N = interpolation length (even) k = —6N, —6N + 1, ..., 6N and

sin((j + f)m)

G+ pr 10

wyr(j) =h12(j + 1))




72 5. THE CODEBOOK SEARCH

where j = %, % +1,..., % -1, f= %, %, %, %, % (fractional part).

Program P5.4 (fracdelay.m) implements fractional delaying of an input signal and it is
available under the directory P5_4 in the website [76]. After computing the windowed sinc function,
the input signal is multiplied with the windowed sinc and interpolated to find the signal delayed
by fractional amount. The delayed excitation signal is used in the next step to find the gain and the
match score.

The integer and fractional parts of the delay are computed and the optimal excitation vector
with the highest match score is found. This excitation vector is used to update the pitch memory, so

that the codebook search for the next sub-frame uses the updated codebook.

Example 5.3 The windowed interpolating functions (8 points) for the fractional delays for 1/4
and 3/4 are shown in Figure 5.7. A signal and its delayed version by a delay of 1/3 are shown in
Figure 5.8. These figures are generated from the program fracdelay.m.

53 STOCHASTIC CODEBOOK SEARCH

The SCB search is similar to the ACB search except that the SCB is stored as overlapped codewords,
and the target signal for the SCB search is different to that of the ACB search. The following sections
describe the generation of target signals for SCB search and the actual search procedure.

5.3.1 TARGET SIGNAL FOR STOCHASTIC CODEBOOK SEARCH

The SCB search is done on the residual signal after the ACB search identifies the periodic component
of the speech signal. If u is the codeword obtained from the ACB search, the target for the SCB
search is,

e =W —5©) - WHu . (5.11)

The error target for the SCB is the error target for the ACB subtracted from the filtered codeword
obtained after the ACB search. In the MATLAB implementation, instead of operating directly with
the error target, the target signal is converted into a form of excitation as done with the ACB search.
Therefore, the modified filtered codeword for comparison is same as the one given in (5.5). In this
case, x, is the i™ SCB codeword used for comparison. The modified target is given by,

e =W ITH Iw—1e©® (5.12)

which is the same as,

e =W TH s -350) - W'y (5.13)

The gain and match scores are also the same as given in Equations (5.7) and (5.8). The pitch synthesis
routine that generates u from the pitch delay and gain parameters obtained from the ACB search is
given in the Program P5.5 (pitchsynth.m) available under the directory P5_5 in the website [76].



5.3. STOCHASTIC CODEBOOK SEARCH 73

1.2 : : T T

delay 1/4
1 delay 3/4 |

Amplitude

-0.2
1

Samples

Figure 5.7: Windowed sinc function for interpolation.

Input Signal
500
()
©
2 0
X
1S
<
-500
5 10 15 20 25 30 35 40 45 50 55 60
Output Signa - Delayed by 13
500
()
5
=
=
-500

5 10 15 20 25 30 35 40 45 50 55 60
Samples

Figure 5.8: Input signal and its delayed version by 1/3 sample.




74 5. THE CODEBOOK SEARCH

The variable buf is the memory that contains the past excitation. The array b contains the
pitch delay and the pitch predictor coefficients. The integer and fractional parts of the delay are
obtained from the pitch delay. If the integer part of pitch delay (M;) is greater than or equal to the
frame size (60 samples), the current excitation in the pitch memory is updated with the M; samples
of the past excitation stored in the pitch memory. If M; is less than 60 samples, the pitch memory
is updated by extending the past excitation to 60 samples. Once the integer delaying is performed,
fractional delay is implemented by the program ldelay.m. The current ACB excitation is now
present in buf, which is scaled by the pitch gain to obtain the scaled ACB excitation vector u and
stored in rar. For M > 60, this procedure is equivalent to doing pitch synthesis using a long-term
predictor with delay M and appropriate gain.

% P5.6 - scbtarget.m
%

s - Speech or residual segment
% 1 - Segment size
% dl - Memory, 1/P(z)
% d2 - Memory, 1/A(z)
% d3 - Memory, A(z)
% d4 - Memory, 1/A(z/gamma)
% fctemp - Bandwidth expanded poles, 1/A(z/gamma)
% idb - Dimension of dla and dlb (209)
% no - LPC predictor order (10)
% bb - Pitch predictor coefficients (array of 4)
% e0 - Codebook search initial error and updated error
% fec - LPC filter/weighting filter coefficients
% gamma2 - Weight factor, perceptual weighting filter

load scbvect;

% INITIALIZE LOCALS
fctemp = zeros( MAXNO+1l, 1 );
% COMPUTE INITIAL STATE, 1/P(z)

[ e0, d1 ] = pitchvg( 0, 1, dl1, idb, bb, 'long' );]
$ COMPUTE INITIAL STATE, 1/A(z)
[ d2, e0 ] = polefilt( fc, no, d2, e0, 1 );

Program P5.6: Generating the SCB target vector.

After generating u, the target vector € needs to be computed. This is performed in Pro-
gram P5.6 (scbtarget .m). The function pitchvq.mis very similar to Program P5.5 and generates
the vector u. Filtering u with 1/A(z) is the same as computing Hu + §©, where §© is the ZIR
of 1/A(z). This is subtracted from s to obtain the residual s — §Y — Hu. This residual is passed



5.3. STOCHASTIC CODEBOOK SEARCH 75

through the LP analysis filter A(z) and the inverse weighting filter 1/A(z) to yield the vector
W-TH"!(s — ) — W1, which is the same as &), the error target, in (5.13).

Example 5.4 The scaled ACB excitation is generated for the speech segment in Example 5.1 are
computed using Program P5.5. The workspace variable pitsyn contains the necessary pitch delay
and gain parameters needed by the program. The excitation is plotted in Figure 5.9.

1500F T T T T T T T T T T T 7]

1000}

500}

Magnitude
o

-5001

-1000

-1500

5 10 15 20 25 30 35 40 45 50 55 60
Samples

Figure 5.9: The scaled ACB excitation.

Example 5.5 The SCB error target is generated using Program P5.6 and is shown in Figure 5.10.
Note that the target is given by € and not e?). Therefore, the target displayed has the form of
excitation and needs to be filtered with 1/A(z), if we want to see the actual error target e This
could be easily determined using the function polefilt.m.

5.3.2 SEARCH FOR BEST CODEVECTOR

The SCB search is done with the modified error target signal. This is very similar to the ACB search
except that the SCB codebook is fixed and has some structure that could be exploited to perform
fast convolutions. Details on the structure of the SCB are given in Section 5.1.

Program P5.7 (cgain.m) computes the gain and matches scores for a particular SCB ex-
citation. It is available in the directory P5_7 in the website [76]. For the first search alone, a full
convolution is performed to compute Ycg, the filtered codeword. Filtering is performed by convolv-
ing the excitation (ex) with the truncated impulse response (h) of the inverse weighting filter. The




76 5. THE CODEBOOK SEARCH

4000

2000

Magnitude

-2000

-4000

5 10 15 20 25 30 35 40 45 50 55 60
Samples

Figure 5.10: Example of a modified SCB target signal.

full convolution is performed in the first 1f structure in the program. Since the subsequent code-
words are shifted by —2, the else structure corrects the previous convolution result individually
for the two shifts. The gain and match scores are then computed using the filtered codeword. This
process is repeated for all possible codewords, and the one with the best match score is chosen. The
gain and match scores are recomputed with the chosen codeword to correct any errors accumulated
during the process. The selected codeword is scaled with the quantized gain in order to get the SCB
excitation.

After determining the SCB excitation, the filter states are updated using a procedure similar
to the one followed in Program P5.6. The difference is that the error &) is not initialized to a zero
vector but the SCB excitation itself. This results in the complete update of the states of the filters
given in Figure 5.2. The final update of filter states is performed on the synthesis part of the A-by-S
procedure.

Example 5.6 The gain and the match scores are computed for the SCB target given in Exam-
ple 5.5. The resulting scores are plotted against the indices of the SCB codewords in Figure 5.11.
The gain scores are quantized gain values and they are constrained to the limits imposed by the
modified excitation gain scaling procedure [20]. In this case, the best codebook index is 135 and the
corresponding quantized gain score is —1330.




5.4. BITSTREAM GENERATION 77

Gain Score
2000
(0]
©
3 i il
3 O
S
<
-2000 | | | 1 |
100 200 300 400 500
x 10" Match Score
10+ B
(0]
©
2
= | J
£ 5
<
0 L
100 200 300 400 500
SCB index

Figure 5.11: Gain and match scores for SCB search in a voiced segment.

5.4 BITSTREAM GENERATION

The bitstream generation process for the FS-1016 encoder consists of packing the quantized LSF
values, the pitch delay, the pitch gain, the stochastic codeword and the stochastic gain indices into
a bitstream array and adding bit error protection to the bitstream. The total 144 bits per frame are
allocated as shown in Table 5.1.

The total number of bits needed to encode the quantized LSF values per frame is 34. Though
LSFs of sub-frames are used for codebook searches, LSFs are transmitted on only a per-frame basis.
This is because the sub-frame LSFs could be easily recovered from the LSFs of a frame using linear
interpolation. The ACB pitch delay index is encoded with 8 bits for odd sub-frames and 6 bits for
even sub-frames. Recall that the ACB pitch delay for odd sub-frames is absolute and the pitch delay
for even sub-frames is relative with respect to the previous odd sub-frame. Only the absolute pitch
delays have 3 bits protected by the FEC since coding the absolute pitch delays is crucial for coding
the delta delays correctly. The ACB gains are encoded using 5 bits per sub-frame, and therefore,
20 bits are needed to encode the ACB gain values per frame. The ACB gain has its most perceptually
sensitive bit protected. The SCB indices need 9 bits per sub-frame and the SCB gains need 5 bits
per sub-frame. Therefore, 56 bits are used per frame for the SCB.

One bit per frame is used for synchronization, 4 bits per frame for Forward Error Correction
(FEC) and 1 bit is used for future expansion. The FEC consists of encoding selected bits using a
Hamming code. The Hamming code used is a (15,11) code which means that 11 bits are protected
using 4 bits to give a total of 15 bits. Hamming codes can detect 2 errors and correct 1 error [77].




78 5. THE CODEBOOK SEARCH

Table 5.1: Bit allocation for a frame.
Sub-frame

Parameter 2 3
ACB index
ACB gain
SCB index
SCB gain
LSF1
LSF 2
LSF 3
LSF 4
LSF5 Sub-frames not
LSF 6 applicable here
LSF 7

LSF 8

LSF9

LSF 10

Future Expansion

Hamming Parity

Synchronization

Total 144

U1 \O U1 oo e
U1 O U1 O
U1 O U1
U1 \O U1 O\ IES
[\
(@)

[N NS [ U SO SO R G L N G NG NG NG OV

3 bits of the pitch delay index for the odd sub-frames and 1 bit of the pitch gain for all the sub-frames
are protected using the Hamming code. The 11™ bit protected by the Hamming code is the future
expansion bit.

5.5 SUMMARY

In this chapter, we discussed the structure of the ACB and the SCB and search methods to find
an optimal codevector. Further improvements in the codebook structure were made with the use of
algebraic codes for the SCB, and the modified CELP algorithm came to be known as ACELP. The
reduction in complexity was obtained using backward filtering and algebraic codes such as Reed-
Muller code and Nordstrom-Robinson code [33]. Most of the modern CELP algorithms, such as the
G.729 and the SMV are categorized as Conjugate Structured ACELP (CS-ACELP) [4] algorithms.
They use Conjugate Structure-VQ_(CS-VQ) to perform joint quantization of the adaptive and
the stochastic excitation gains [49]. In AMR-WB, multiple bit rates are achieved using algebraic
codebooks of different sizes and encoding the LP parameters at different rates. Furthermore, the
pitch and algebraic codebook gains are jointly quantized in the AMR-WB [5].



79

CHAPTER 6

The FS-1016 Decoder

The parameters of the encoded bitstream are decoded in the FS-1016 CELP receiver. The decoded
parameters include the ACB and the SCB gains and indices for each sub-frame. Also included in
the decoded parameters are the LSFs of a frame, which are then interpolated to obtain sub-frame
LSFs. The SCB gain, the ACB gain and the pitch delays are smoothed in case transmission errors are
detected. Composite excitation with both the periodic and stochastic components is generated for
the LP synthesis filter. The raw synthesized speech is scaled and clamped to the 16-bit integer range,
and the distance measures between input and synthesized speech are computed. The synthesized
speech is postfiltered to enhance the formant structure of speech, and it is also filtered using a
high-pass filter. Therefore, there are three speech outputs from the CELP receiver: raw synthesized
(non-postfiltered), postfiltered and high-pass filtered speech.

The block diagram of the CELP receiver is illustrated in Figure 6.1 and the key functions
will be described in the following sections. Demonstration of the functions will be provided using

MATLAB programs and plots.

Transmitted

Bitsream
Extract and decode . Postfilter High-pass igh-|
CELP synthesis | —p| Interpol;te LSFs for —»! Generatg cqmposne —»  LP synthesis — output filtegr oztput > H'fﬁpef:dss
parameters subframes excitation speech i speech speech
celpsyn.m intsynth.m pitchvq.m polefilt.m postfilt.m celpsyn.m 3
Postfiltered
speech
Compute
L distance s Distortion
measures measures
disto.m
Non-
postfiltered
speech

Figure 6.1: The CELP receiver.

6.1 EXTRACTING PARAMETERS FOR SYNTHESIS

The CELP synthesis parameters of a particular frame are extracted and decoded from the bitstream
as the first step in the CELP synthesis process. This step also involves decoding the LSFs using the




80 6. THEFS-1016 DECODER

quantization table and interpolating them to create sub-frame LSPs. Smoothing of the ACB, SCB
gains and the pitch delays is also performed as a part of this process.

The codewords are extracted from the received bitstream and the Hamming error protected
bitstream is decoded. The bit error rate is computed as a running average of bad syndromes. In
Hamming code, a syndrome other than zero indicates the position of error and hence is called
a bad syndrome whereas zero indicates no error [77]. The LSFs of the particular frame are ex-
tracted, decoded and interpolated to create sub-frame LSFs. The LSFs are decoded by indexing the
quantization table using the transmitted indices to create quantized LSFs.

The quantized values of LSFs are then used to create sub-frame LSFs using linear interpolation
as shown in Program P6.1. The quantized LSFs are tested for monotonicity again in the synthesis
stage. Corrections are done similar to the analysis stage to make the LSFs monotonic if they are
non-monotonic. Sub-frame LSFs are computed by interpolating the LSFs of the current and the
previous frames.

% P6.1 - synthLSP.m

% nn - Number of subframes per frame
% lspnew - New frequency array (LSPs)

% no - Number of LSPs

% 1sp - Interpolated frequency matrix

load synLSP _data;
% CHECK LSPs; TRY TO FIX NONMONOTONIC LSPs BY REPEATING PAIR
if any( lspnew(2:no) <= lspnew(l:no-1) )

for 1 = 2:no

if lspnew (i) <= lspnew(i-1)
lspnew (i) = lspoldIS(i);
lspnew (i-1) = lspoldIS(i-1);

end
end
end
% RECHECK FIXED LSPs
if any( lspnew(2:no) <= lspnew(l:no-1) )
% REPEAT ENTIRE LSP VECTOR IF NONMONOTONICITY HAS PERSISTED
lspnew = lspoldIS;

end
% INTERPOLATE LSPs AND TEST FOR MONOTONICITY
for i = 1l:nn
lsp( i, 1l:no ) = ( ( wIS(1l,i) * 1lspoldIS( 1l:no ) ) +

( wIS(2,1i) * lspnew( l:no ) ) )';
% CHECK FOR MONOTONICALLY INCREASING LSPs
if any( lsp(i,2:no) <= lsp(i,l:no-1) )
fprintf( 'intsynth: Nonmonotonic LSPs @ the current frame \n');
end
end

Program P6.1: Interpolating LSFs for sub-frames.



6.1. EXTRACTING PARAMETERS FOR SYNTHESIS 81

The weights used for the interpolation are given in Table 6.1. Indicating the LSF of the
previous frame as f, and the LSF of the current frame as f;, the LSFs of the i th sub-frame are
computed as follows,

Jis = Wiofo + Winfu, (6.1)

w;,, is the weight corresponding to the i™ sub-frame LSF that multiplies the previous frame LSF
and w; , is the weight corresponding to the i™ sub-frame LSF that multiplies the current frame

LSF.

Table 6.1: Interpolation weights for sub-frame LSFs.

Sub-frame Number

2 3
Previous Frame 0.8750 0.6250 0.3750 0.1250
Current Frame 0.1250 0.3750 0.6250 0.8750

The ACB and the SCB parameters are decoded from the bitstream. Smoothing is performed
on the SCB gain, the ACB gain and the pitch delay if bit protection is enabled. Smoothing is
essentially the process of reducing the variations in the received parameters across sub-frames. Here,
we will illustrate the case of gain smoothing and the smoothing of pitch delay is also done in a
similar manner. Gain smoothing is performed only when errors are detected. This is because, when
the actual gain is not correct, the smoothed gain from the past and future sub-frames will be a
good estimate. If either two errors are detected or the bit error rate is more than permissible, gain
smoothing is initiated. This is done by creating a vector of past and future gain values. The mean
and variance of the gain values in the vector are estimated. If the variance is within the prescribed
limit and the gain value of the current sub-frame falls outside the permissible range, the gain of the
current sub-frame is set to the average gain value, retaining the actual sign. For the fourth sub-frame
in any frame, gain smoothing is disabled.

Example6.1 Anillustration of generating sub-frame LSFs from the LSFs of a frame is described in
this example. The sub-frame LSFs are obtained from the LSFs of the previous frame and the current
frame using Program P6.1. Table 6.2 shows the values of LSFs for the current frame, previous frame
and the four sub-frames in the sub-frame analysis buffer. The pole-zero plots of the LP synthesis
filters corresponding to the LSFs of the previous frame, the LSFs of the current frame, and the
interpolated LSFs of the sub-frames are given in Figure 6.2. The effect of interpolating the LSFs of
the previous and the current frames is clearly visible in the figure. The pole-zero plot corresponding
to the LSF of the first sub-frame is closest to that of the previous frame whereas the pole-zero plot
corresponding to the LSF of the fourth sub-frame is closest to that of the current frame.




82 6. THE FS-1016 DECODER

PZ plot from LSFs of PZplat from LSFs of PZplat from LSFs of
old frame new frame subframe 1
1 - == 1 - - 1 P
' ~ . X SO . x RS
- x \\ - S v x N
L N K N // N
05 / \ 05 / \ 05 / \
é x \ x x o\ x \
/ \ 5 / \ / \
! 10 x! S ! 10 x| g ! 10 *
§ Of1- = = — = — - o= H F ob------- e B R I
g | x, E 1 1 \ x|
£ \ / g \ / g \ /
3 / - x x ! = k3 /
05 / 05 / 05f /
A Y N 7/ N\ 7/
N x \ x, N %
N x . ~ - N x -
\\x\ // \\x\ /// \\x\ ///
1 ——-—- 1 - - 1 ~—---
1 -05 [¢] 05 1 1 05 o] 05 1 1 05 o] 05 1
Real Part Real Part Real Part
PZ plats from LSFs of PZ plots from LSFs of PZ plats from LSFs of
2 3 4
1 e 1 . N 1 =l
='s | ~ o ' | T~ X | T~
- | < N e | ~ s | N
s N N
7/ : X\ // ! x x N // ‘ x N
osf ‘ \ osf : \ osf : x
x \ x \ x \
] , | \ ¥ , | \ ¥ , | \
| \10 x| | | X\ I \10 x
B oof------- e H §F oof----———- B §F oof----———- o -~
g ! | x g | : x | g ! : x
£ \ ‘ h £ \ / £ \ /
3 / ® ! ’ ® ! /
05 \\ : , o5 | / 05 ! x
\ | x / \ | 7
N | x b N | x e N | *
~ P ~ - N -
S x | - S x I - S ! e
1 oLk 1 e E e
1 05 0 0.5 1 1 05 0 0.5 1 1 05 0 05 1
Real Part Real Part Real Part

Figure 6.2: Pole-zero plots from LSFs (a) for the previous frame, (b) for the current frame, (c) for the
sub-frame 1, (d) for the sub-frame 2, (e) for the sub-frame 3 and (f) for the sub-frame 4.

6.2 LPSYNTHESIS

The SCB excitation is generated by scaling the selected SCB codeword by the SCB gain value. The
composite excitation is generated by passing the SCB excitation through the LTP and Program P5.5
is used to perform this. This excitation will be used in the LP synthesis filter to synthesize the speech
signal. The LP synthesis filter is an all-pole filter and the denominator polynomial is computed
by converting the sub-frame LSFs to the coefficients of the LP polynomial A(z) using (3.3). Pro-
gram P4.1 is used to convert the sub-frame LSFs to the corresponding LP coefficients. The LP
coefficients and the composite excitation are used in the all-pole synthesis filter to synthesize the
speech signal.

The synthesized speech is scaled and clamped to the 16-bit range. Program P6.2 generates
the raw synthesized (non-postfiltered) speech from the LSFs of a sub-frame and the excitation. It
internally uses the Programs P5.5 and P4.1 in order to generate the composite excitation and convert
the LSFs to direct-form LP coefficients.



6.2. LP SYNTHESIS 83

Table 6.2: Interpolating LSFs of a frame to create sub-

frame LSFs.
Frame LSF

Old
0.0213
0.0600
0.1187
0.1350
0.1988
0.2500
0.3100
0.3312
0.4288
0.4363

New
0.0350
0.0700
0.0969
0.1213
0.1412
0.2288
0.3100
0.3156
0.4288
0.4363

0.0230
0.0612
0.1160
0.1333
0.1916
0.2473
0.3100
0.3293
0.4288
0.4363

Sub-frame LSF

2
0.0264
0.0638
0.1105
0.1298
0.1772
0.2420
0.3100
0.3254
0.4288
0.4363

3
0.0298
0.0663
0.1051
0.1264
0.1628
0.2367
0.3100
0.3215
0.4288
0.4363

0.0333
0.0688
0.0996
0.1230
0.1484
0.2314
0.3100
0.3176
0.4288
0.4363

Example 6.2 The composite excitation is generated and LSFs are converted to LP coefficients

for sub-frame 3 of Example 6.1. The excitation given in Figure 6.3 and LP coefficients are used to

synthesize speech given in Figure 6.4.

3000

2000

1000

Amplitude

-1000

-2000

-3000

50 60

Figure 6.3: Composite excitation with both periodic and stochastic components.




84 6. THE FS-1016 DECODER

%

% subframe
% scaling
% stoch_ex
% comp_ex
%

% 1lsp

% pc

% npf

P6.2 - synth_speech.m

Subframe number in the given frame

Scaling factor for output speech

Stochastic excitation

Composite excitation with adaptive and stochastic
components

Matrix with LSPs of 4 subframes, each being a single row
LP coefficients for a particular subframe
Non-postfiltered speech subframe

load excit param;

subframe=3;
scaling=1;

maxv=ones (1, 60)*32767;
minv=ones (1, 60)*-32768;

% GENERATE PITCH EXCITATION VECTOR AND COMBINE WITH STOCHASTIC
% EXCITATION TO PRODUCE COMPOSITE LPC EXCITATION VECTOR

[comp ex dps]

= pitchsynth( stoch ex, 1, dps, idb, bb, 'long' );

% CONVERT THE LSP OF A SUBFRAME TO CORRESPONDING PC

pc = lsptopc(

lsp (subframe,:), no );

% SYNTHESIS OF NON-POSTFILTERED SPEECH

[ dss,npf 1]

polefilt ( pc, no, dss, comp ex, 1 );

% SCALE AND CLAMP SYNTHESIZED SPEECH TO 16-BIT INTEGER RANGE
npf = npf * descale;
npf'; maxv ] )';

npf = min( [
npf

round( max( [ npf'; minv ] )' );

Program P6.2: Synthesizing speech from excitation and LSF.

6.3 POSTFILTERING OUTPUT SPEECH

Postfiltering of output speech is generally performed in order to improve the perceptual quality

of the output speech [47]. Noise levels are kept as low as possible in the formant regions during

encoding as it is quite difficult to force noise below the masking threshold at all frequencies. The

major purpose for postfiltering is to attenuate the noise components in the spectral valleys, which

was not attenuated during encoding.

Postfilters can be generally designed by moving the poles of the all-pole LP synthesis filter
thereby resulting in filters of the form 1/A(z/a). But, using this filter to achieve sufficient noise
reduction will result in severe muffling of speech [47]. This is because the LP synthesis filter has a low-
pass spectral tilt for voiced speech. Therefore, the spectral tilt of the postfilter must be compensated to



6.3. POSTFILTERING OUTPUT SPEECH 85

x 10

Amplitude

10 20 30 40 50 60
Samples

Figure 6.4: Synthesized (non-postfiltered) speech using the composite excitation and LP coefficients.

15 T T T T T T T T T
_______ 1/A(z/0 5)
1/A(Z/0 8)
or 0~ A(z/0 5)/A(z/0 8) H

Magnitude (dB)

10
0 01 02 03 04 05 06 07 08 09 1

Norma ized Frequency (x rad/samp e)

Figure 6.5: Frequency response of the pole-zero postfilter.




86 6. THE FS-1016 DECODER

avoid muffling. Figure 6.5 illustrates the frequency response magnitude of 1/A(z/«) for the case of
o =0.5and @ = 0.8. A(z) is computed for a voiced frame, and it is instructive to note that = 0.5
gives the spectral tilt alone and o = 0.8 gives the filter with both the spectral tilt and the formant
structure. Therefore, the spectral tilt can be removed using the filter of form A(z/0.5)/A(z/0.8),
which is the pole-zero postfilter where the spectral tilt is partially removed and is also shown in
Figure 6.5.

Further compensation for the low-frequency tilt and muffling can be provided by estimating
the spectral tilt (first-order fit) of the postfilter denominator polynomial. This is done by computing
the reflection coefficients of the denominator polynomial. The first reflection coefficient is the LP
coefficient a1 (1) of the first-order polynomial that fits the spectrum. An all-zero filter of the form
1+ pai(1)z=! with o = 0.5 is used for the adaptive compensation of spectral tilt. The response of
this filter and the overall response of the pole-zero postfilter with adaptive spectral tilt compensation
are given in Figure 6.6.

12F| 7 Compensated PZ postfilter i
""""""" PZ postfilter

Magnitude (dB)

0 01 02 03 04 05 06 07 08 09 1
Normalized Frequency (x rad/sample)

Figure 6.6: Pole-zero postfilter with and without adaptive spectral tilt compensation.

The power of the synthesized speech before postfiltering (input power) and the after post-
filtering (output power) are computed by filtering the squared signal using an exponential filter.
Exponential filters are generally used in time series analysis for smoothing the signals and are de-
scribed by the transfer function,

T

I—(1—1)z 1’ (62

H;(z) =




6.3. POSTFILTERING OUTPUT SPEECH 87

0 008

o
o
o
(&)

Amplitude

0 004

0002

100 200 300 400 500 600 700 800 900 1000
Samples

Figure 6.7: Impulse response of the exponential smoothing filter.

Amplitude (dB)

1 1 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1
Normalized Freq (x rad/s)

50
0

Figure 6.8: Magnitude frequency response of the exponential smoothing filter.




88 6. THE FS-1016 DECODER

where T is the parameter that controls the degree of smoothing; smaller the parameter 7, greater
the degree of smoothing. The smoothed average estimates of the input and the output power of a
sub-frame are used for Automatic Gain Control (AGC). The impulse and frequency responses of the
exponential filter with 7 = 0.01 are shown in Figures 6.7 and 6.8, respectively. Note that since the
filter is IIR, only the truncated impulse response is shown. Because of the properties of the Fourier
transform, the magnitude response of the exponential filter is also a decaying exponential function.

The purpose of the AGC is to scale the output speech such that its power is roughly the same
as unfiltered noisy output speech. The scaling factor is computed as,

P unf
P out

S = , (6.3)

where Punf and P,, are the unfiltered speech power and output speech power, respectively. The
output speech is then scaled using the scaling factor. The MATLAB code for adaptive postfiltering
and AGC is given in Program P6.3.

The two different values of o used in the pole-zero postfilter are stored in the variables alpha
and beta in Program P6.3. The filter memories of the pole and zero filters are also taken into
consideration during postfiltering. All-zero filtering is also performed to provide further compen-
sation to spectral tilt. The negative of the first reflection coefficient is taken as a; (1) because of the
sign convention used in the program. The input and output power estimates are computed using
exponential filters taking into account the memory of the filters as well.

Example 6.3  Postfiltering is illustrated for the sub-frame 3 of the speech segment given in Exam-
ple 6.1. Figure 6.9 shows the plot of the postfiltered and scaled output speech sub-frame. Figure 6.10
shows the plot of scaling factors from the AGC module for the speech sub-frame. For this particular
sub-frame, the scaling factors are less than 1 and the postfiltered speech has to be scaled down.

6.4 COMPUTING DISTANCE MEASURES

The distance measures are computed between the actual input speech in the sub-frame buffer and the
synthesized speech segment (non-postfiltered). The procedure for computing the distance measures
is exactly same as the one described in Chapter 4, but the autocorrelation lags of the input and
synthesized speech segments need to be computed before calculating the distance measures.

6.5 SUMMARY

The FS-1016 CELP decoder synthesizes output speech from the transmitted parameters. The
LSFs of the frame are decoded and interpolated to form sub-frame LSFs and the ACB and SCB
parameters extracted from the bitstream. The extracted parameters are then used to generate a



6.5. SUMMARY

% P6.3 - adaptive_postfilt.m

% s - Non-postfiltered and postfiltered speech
% alpha, beta - Filter parameters (0.8,0.5)

% powerin, powerout - Input and Output power estimates

% dpl, dp2, dp3 - Filter memories

% fci - LPC predictor poles

% no - Predictor order

% agcScale - Automatic gain control scaling vector

% TC - Input/Output power estimate time constant

load postfilt dat;
% ALLOCATE LOCAL FILTER MEMORY (SPECTRAL TILT COMPENSATOR)
ast = zeros( 2, 1 );

% ESTIMATE INPUT POWER

[ newpowerin, ipZ ] = filter( [TC 0], [1 -1+TC], (s .* s ), 1ipZ );
powerin = newpowerin (1) ;

$ BANDWIDTH EXPAND PREDICTOR POLES TO FORM PERCEPTUAL POSTFILTER
pcexpl = bwexp( beta, fci, no );

pcexp?2 = bwexp( alpha, fci, no );

% APPLY POLE-ZERO POSTFILTER

[ dpl, s 1 = zerofilt( pcexpl, no, dpl, s, 1 );
[ dp2, s ] = polefilt( pcexp2, no, dp2, s, 1 );

% ESTIMATE SPECTRAL TILT (1ST ORDER FIT) OF POSTFILTER
% DENOMINATOR DOMINATES (POLES)
rcexp2 = pctorc( pcexp2, no );

% ADD TILT COMPENSATION BY A SCALED ZERO (DON'T ALLOW HF ROLL-OFF)
ast(l) = 1.0;
if rcexp2(l) > 0.0

ast(2) -0.5 * rcexp2(1l);
else
ast(2) = 0.00;
end
[ dp3, s 1 = zerofilt( ast, 1, dp3, s, 1 );

% ESTIMATE OUTPUT POWER
[ newpowerout, opZ ] = filter( [TC 0], [l -1+TC], (s .* s ), opZ )
powerout = newpowerout (l);

Program P 6.3: Postfiltering output speech. (Continues.)

89




90 6. THE FS-1016 DECODER

% INCORPORATE SAMPLE-BY-SAMPLE AUTOMATIC GAIN CONTROL
agcUnity = find( newpowerout <= 0 );

newpowerout ( agcUnity ) = ones( length( agcUnity ), 1 );
agcScale = sgrt( newpowerin ./ newpowerout );

agcScale( agcUnity ) = ones( length( agcUnity ), 1 );

s = s .* agcScale;

Program P 6.3: (Continued.) Postfiltering output speech.

12000 T T T T T T T T T T T

8000

Amplitude
N
o
o
o

o

4000

8000
5 10 15 20 25 30 35 40 45 50 55 60

Samples

Figure 6.9: Postfiltered and scaled output speech segment.

composite excitation which is used along with the LP parameters to synthesize speech on a sub-
frame basis. Since CELP uses an A-by-S procedure, the CELP encoder contains a replica of the
CELP decoder except for the postfilter. The FS-1016 speech coder provides a good compromise
between speech quality and bit rate, and the subjective quality of speech is maintained in the presence
of moderate background noise [20]. Modern day speech coders have incorporated variable bit rate
coding schemes to optimize speech quality under different channel noise conditions [5, 42]. The
Selectable Mode Vocoder (SMV) classifies input speech into different categories and selects the best
rate in order to ensure speech quality at a given operating mode [78].




6.5. SUMMARY 91

095 T T T T T T T T T T T

094

093

Scaling factor
o
©
N

091

09

089
5 10 15 20 25 30 35 40 45 50 55 60

Samples

Figure 6.10: Scaling factor for postfiltered speech provided by AGC.







93

Bibliography

[1] M.R.Schroeder and B. Atal, “Code-Excited Linear Prediction (CELP): High Quality Speech
at Very Low Bit Rates,” Proc. ICASSP-85, p. 937, Apr. 1985. 7,9, 63

[2] S.Singhal and B. Atal, “Improving the Performance of Multi-Pulse Coders at Low Bit Rates,”
Proc. ICASSP-84, p. 1.3.1,1984. 7, 63

[3] B.S.Atal andJ. Remde, “A New Model for LPC Excitation for Producing Natural Sounding
Speech at Low Bit Rates,” Proc. IEEE ICASSP-82, pp. 614-617, Apr. 1982. 7

[4] R. Salami e# al., “Design and Description of CS-ACELP: A Toll Quality 8 kb/s Speech
Coder,” IEEE Trans. on Speech and Audio Proc., vol. 6, no. 2, pp. 116-130, Mar. 1998.
DOI:10.1109/89.661471 7,10, 78

[5] B. Bessette e al, “The Adaptive Multi-Rate Wideband Speech Codec (AMR-WB),”
IEEE Trans. on Speech and Audio Proc., vol. 10, no. 8, pp. 620-636, Nov. 2002.
DOI: 10.1109/T'SA.2002.804299 7, 11, 49, 78, 90

[6] ML.R. Schroeder, B.S. Atal, and J.L. Hall, “Optimising Digital Speech Coders by Ex-
ploiting Masking Properties of the Human Ear,” [ Acoust. Soc. Am., vol. 66, 1979.
DOI:10.1121/1.383662 7

[7] P.Kroon, E. Deprettere, and R.J. Sluyeter, “Regular-Pulse Excitation-A Novel Approach to
Effective and Efficient Multi-pulse Coding of Speech,” IEEE Trans. on Acoustics, Speech, and
Signal Proc., vol. 34, no. 5, pp. 1054-1063, Oct. 1986. DOI: 10.1109/TASSP.1986.1164946
7

[8] I. Boyd and C. Southcott, “A Speech Codec for the Skyphone Service,” Br. Telecom Technical
J., vol. 6(2), pp. 51-55, Apr. 1988. DOI: 10.1007/s10550-007-0070-0 7

[9] GSM 06.10, “GSM Full-Rate Transcoding,” Technical Report Version 3.2, ETSI/GSM,
Jul. 1989. 7

[10] B.S. Atal, “Predictive Coding of Speech at Low Bit Rates,” IEEE Trans. on Comm., vol. 30,
no. 4, p. 600, Apr. 1982. 7

[11] B. Atal and M.R. Schroeder, “Stochastic Coding of Speech Signals At Very Low Bit Rates,”
Proc. Int. Conf. Comm., pp. 1610-1613, May 1984. 7



http://dx.doi.org/10.1109/89.661471
http://dx.doi.org/10.1109/TSA.2002.804299
http://dx.doi.org/10.1121/1.383662
http://dx.doi.org/10.1109/TASSP.1986.1164946
http://dx.doi.org/10.1007/s10550-007-0070-0

94 BIBLIOGRAPHY

[12] G.Davidsonand A. Gersho, “Complexity Reduction Methods for Vector Excitation Coding,”
Proc. IEEE ICASSP-86, p. 3055, 1986. 9

[13] W.B. Kleijn ez al., “Fast Methods for the CELP Speech Coding Algorithm,” IEEE Trans. on
Acoustics, Speech, and Signal Proc.,vol. 38, no. 8, pp. 1330, Aug. 1990. DOI: 10.1109/29.57568
9

[14] I.Trancoso and B. Atal, “Efficient Search Procedures for Selecting the Optimum Innovation
in Stochastic Coders,” IEEE Trans. ASSP-38(3), p. 385, Mar. 1990. DOI: 10.1109/29.106858
9

[15] I. Gerson and M.A. Jasiuk, “Vector Sum Excited Linear Prediction (VSELP) Speech
Coding at 8 kb/s,” Proc. IEEE ICASSP-90, vol. 1, pp. 461-464, Apr. 1990.
DOI: 10.1109/ICASSP.1990.115749 9, 10

[16] I. Gerson and M. Jasiuk, “Techniques for Improving the Performance of CELP-type speech
coders,” Proc. IEEE ICASSP-91, pp. 205-208, May 1991. DOI: 10.1109/49.138990 9

[17] P.Kroonand B. Atal, “Pitch Predictors with High Temporal Resolution,” Proc. IEEE ICASSP-
90, pp. 661-664, Apr. 1990. DOI: 10.1109/ICASSP.1990.115832 9, 71

[18] W.B. Kleijn, “Source-Dependent Channel Coding and its Application to CELP,” Advances
in Speech Coding, Eds. B. Atal, V. Cuperman, and A. Gersho, pp. 257-266, Kluwer Ac. Publ.,
1990. 9,12, 65

[19] A. Spanias, M. Deisher, P. Loizou and G. Lim, “Fixed-Point Implementation of the VSELP
algorithm,” ASU-TRC Technical Report, TRC-SP-ASP-9201, Jul. 1992. 9

[20] J.P.Campbell Jr., T.E. Tremain and V.C. Welch, “The Federal Standard 1016 4800 bps CELP
Voice Coder,” Digital Signal Processing, Academic Press, Vol. 1, No. 3, p. 145-155, 1991. 10,
64, 65, 66, 76, 90

[21] Federal Standard 1016, Telecommunications: Analog to Digital Conversion of Radio Voice by
4800 bit/second Code Excited Linear Prediction (CELP), National Communication System -
Office Technology and Standards, Feb. 1991. 10, 12

[22] TIA/EIA-PN 2398 (IS-54), “The 8 kbit/s VSELP Algorithm,” 1989. 10

[23] GSM 06.60, “GSM Digital Cellular Communication Standards: Enhanced Full-Rate
Transcoding,” ETSI/GSM, 1996. 10

[24] GSM 06.20, “GSM Digital Cellular Communication Standards: Half Rate Speech; Half
Rate Speech Transcoding,” ETSI/GSM, 1996. 10

[25] ITU Draft Recommendation G.728, “Coding of Speech at 16 kbit/s using Low-Delay Code
Excited Linear Prediction (LD-CELP),” 1992. 10


http://dx.doi.org/10.1109/29.57568
http://dx.doi.org/10.1109/29.106858
http://dx.doi.org/10.1109/ICASSP.1990.115749
http://dx.doi.org/10.1109/49.138990
http://dx.doi.org/10.1109/ICASSP.1990.115832

BIBLIOGRAPHY 95

[26] J. Chen, R. Cox, Y. Lin, N. Jayant, and M. Melchner, “A Low-Delay CELP Coder for the
CCITT 16 kb/s Speech Coding Standard,” IEEE Trans. on Sel. Areas in Comm., vol. 10,
no. 5, pp. 830-849, Jun. 1992. DOI: 10.1109/49.138988 10

[27] TIA/EIA/IS-96,“QCELP,” Speech Service Option 3 for Wideband Spread Spectrum Digital
Systems, TIA 1992. 10

[28] ITU Recommendation G.723.1, “Dual Rate Speech Coder for Multimedia Communications
transmitting at 5.3 and 6.3 kb/s,” Draft 1995. 10

[29] TIA/EIA/IS-641,“Cellular/PCS Radio Interface - Enhanced Full-Rate Speech Codec,” TIA
1996. 10

[30] TIA/EIA/IS-127,“Enhanced Variable Rate Codec,” Speech Service Option 3 for Wideband
Spread Spectrum Digital Systems, TIA, 1997. 10

[31] W.B. Kleijn ez al, “Generalized Analysis-by-Synthesis Coding and its Application
to Pitch Prediction,” Proc. IEEE ICASSP-92, vol. 1, pp. 337-340, Mar. 1992.
DOI: 10.1109/ICASSP.1992.225903 10

[32] ITU Study Group 15 Draft Recommendation G.729, “Coding of Speech at 8kb/s using
Conjugate-Structure Algebraic-Code-Excited Linear-Prediction (CS-ACELP),” 1995. 10

[33] J.P. Adoul ez al., “Fast CELP Coding Based on Algebraic Codes,” Proc. IEEE ICASSP-87,
vol. 12, pp. 1957-1960, Apr. 1987. 10, 78

[34] JI. Lee et al, “On Reducing Computational Complexity of Codebook Search in
CELP Coding,” IEEE Trans. on Comm., vol. 38, no. 11, pp. 1935-1937, Nov. 1990.
DOI: 10.1109/26.61473 10

[35] C.Laflamme ez al.,“On Reducing Computational Complexity of Codebook Search in CELP
Coder through the Use of Algebraic Codes,” Proc. IEEE ICASSP-90, vol. 1, pp. 177-180,
Apr. 1990. DOI: 10.1109/ICASSP.1990.115567 10

[36] D.N.Knisely, S. Kumar, S. Laha, and S. Navda, “Evolution of Wireless Data Services: IS-95 to
CDMA2000,” IEEE Comm. Mag.,vol. 36, pp. 140-149, Oct. 1998. DOI: 10.1109/35.722150
11

[37] ETSI AMR Qualification Phase Documentation, 1998. 11

[38] R. Ekudden, R. Hagen, I. Johansson, and J. Svedburg, “The Adaptive Multi-Rate speech
coder,” Proc. IEEE Workshop on Speech Coding, pp. 117-119, Jun. 1999. 11

[39] Y. Gao ez al.,“The SMV Algorithm Selected by TIA and 3GPP2 for CDMA Applications,”
Proc. IEEE ICASSP-01,vol. 2, pp. 709-712,May 2001. DOI: 10.1109/ICASSP.2001.941013
11



http://dx.doi.org/10.1109/49.138988
http://dx.doi.org/10.1109/ICASSP.1992.225903
http://dx.doi.org/10.1109/26.61473
http://dx.doi.org/10.1109/ICASSP.1990.115567
http://dx.doi.org/10.1109/35.722150
http://dx.doi.org/10.1109/ICASSP.2001.941013

96 BIBLIOGRAPHY

[40] Y. Gao ez al., “EX-CELP: A Speech Coding Paradigm,” Proc. IEEE ICASSP-01, vol. 2,
p g g
pp- 689-692, May 2001. DOI: 10.1109/ICASSP.2001.941008 11

[41] TIA/EIA/IS-893, “Selectable Mode Vocoder,” Service Option for Wideband Spread Spec-

trum Communications Systems, ver. 2.0, Dec. 2001. 11

[42] M. Jelinek and R. Salami, “Wideband Speech Coding Advances in VMR-WB Standard,”
IEEE Trans. on Audio, Speech and Language Processing,vol. 15, iss. 4, pp. 1167-1179, May 2007.
DOI: 10.1109/TASL.2007.894514 11, 49, 90

[43] R.Salami, R. Lefebvre, A. Lakaniemi, K. Kontola, S. Bruhn and A. Taleb, “Extended AMR-
WB for High-Quality Audio on Mobile Devices,” IEEE Transactions on Communications,
Vol. 44, No. 5, May 2006. DOI: 10.1109/MCOM.2006.1637952 12

[44] 1. Varga, S. Proust and H. Taddei, “I'TU-T G.729.1 Scalable Codec for New Wideband
Services,” IEEE Communications Magazine, Oct. 2009. 12

[45] D. Kemp ez al, “An Evaluation of 4800 bits/s Voice Coders,” Proc. ICASSP-89, p. 200,
Apr. 1989. 12

[46] D. Lin, “New Approaches to Stochastic Coding of Speech Sources at Very Low Bit Rates,”
Proc. EUPISCO-86, p. 445, 1986. 12, 65

[47] J. Chen and A. Gersho, “Real Time Vector APC Speech Coding at 4800 bps with Adaptive
Postfiltering,” Proc. ICASSP-87, pp. 2185-2188,1987. 12, 84

[48] A. Spanias, “Speech Coding: a Tutorial Review,” Proceedings of the IEEE, vol. 82, no. 10,
pp. 15411582, Oct. 1994. 13

[49] A.Spanias, T. Painter and V. Atti, Audio Signal Processing and Coding, Wiley-Interscience,
New Jersey, 2007. 13, 78

[50] S.Haykin, Adaptive Filter Theory, Prentice-Hall, New Jersey, 1996. 18, 26, 53
[51] S.L.Marple, Digital Spectral Analysis with Applications, Prentice Hall, New Jersey, 1987. 21
[52] T. Parsons, Voice and Speech Processing, McGraw-Hill, 1987. 21

[53] P.Kabal, “Ill-Conditioning and Bandwidth Expansion in Linear Prediction of Speech,” Proc.
IEEE ICASSP, vol. 1, pp. 1-824-1-827, 2003. 23

[54] PP. Vaidyanathan, The Theory of Linear Prediction, Morgan & Claypool, 2008.
DOI: 10.2200/S00086ED1V01Y200712SPR003 27

[55] J. Makhoul, “Linear Prediction: A Tutorial Review,” Proc. IEEE, Vol. 63, No. 4, pp. 561-580,
Apr. 1975. DOI: 10.1109/PROC.1975.9792 28



http://dx.doi.org/10.1109/ICASSP.2001.941008
http://dx.doi.org/10.1109/TASL.2007.894514
http://dx.doi.org/10.1109/MCOM.2006.1637952
http://dx.doi.org/10.2200/S00086ED1V01Y200712SPR003
http://dx.doi.org/10.1109/PROC.1975.9792

BIBLIOGRAPHY 97
[56] J. Markel and A. Gray, Jr., Linear Prediction of Speech, Springer-Verlag, New York, 1976. 28

[57] T.E. Tremain, “The Government Standard Linear Predictive Coding Algorithm: LPC-10,”
Speech Technology, pp. 40-49, Apr. 1982. 28

[58] G. Box and G. Jenkins, Time Series Analysis Forecasting and Control, HoldenDay, Inc., San
Francisco, 1970. 28

[59] A. Gray and D. Wong, “The Burg Algorithm for LPC Speech Analysis/Synthesis,” IEEE
Trans. ASSP-28, No. 6, pp. 609-615, Dec. 1980. 28

[60] V. Viswanathan and J. Makhoul, “Quantization Properties of Transmission Parameters in
Linear Predictive Systems,” IEEE Trans. ASSP-23, pp. 309-321, Jun. 1975. 28

[61] N. Sugamura and F. Itakura, “Speech Data Compression by LSP Analysis/Synthesis Tech-
nique,” Trans. IEICE, Vol. J64, pp. 599-606, 1981. 29

[62] FK. Soong and B-H Juang, “Line Spectrum Pair (LSP) and Speech Data Compression,”
Proc. IEEE ICASSP, pp. 1.10.1-1.10.4, Mar. 1984. 29

[63] P. Kabal and R. Ramachandran, “The Computation of Line Spectral Frequencies using
Chebyshev Polynomials,” IEEE Trans. ASSP-34, No. 6, pp. 1419-1426, Dec. 1986. 49,
52

[64] G. Kang and L. Fransen, “Application of Line-Spectrum Pairs to Low-Bit-Rate Speech
Encoders,” Proc. IEEE ICASSP, vol. 10, pp. 244-247,1985. 49

[65] ].S. Collura and T.E. Tremain, “Vector Quantizer Design for the Coding of LSF Parameters,”
Proc. IEEE ICASSP, vol. 2, pp. 29-32, Apr. 1993. 49

[66] N. Farvardin and R. Laroia, “Efficient Encoding of Speech LSP Parameters using the
Discrete Cosine Transformation,” Proc. IEEE ICASSP, vol. 1, pp. 168-171, May 1989.
DOI: 10.1109/ICASSP.1989.266390 49

[67] K.K. Paliwal and B.S. Atal, “Efficient Vector Quantization of LPC Parameters at
24 bits/trame,” IEEE Trans. on Speech and Audio Processing, vol. 1, iss. 1, pp. 3—14, Jan. 1993.
DOI: 10.1109/89.221363 49

[68] J. Pan and T.R. Fischer, “Vector Quantization of Speech Line Spectrum Pair Parameters and
Reflection Coefficients,” IEEE Trans. on Speech and Audio Processing, vol. 6, iss. 2, Mar. 1998.
DOI: 10.1109/89.661470 49

[69] Y. Bistritz and S. Peller, “Immittance Spectral Pairs (ISP) for Speech Encoding,” Proc. IEEE
ICASSP, vol. 2, pp. 9-12, Apr. 1993. DOI: 10.1109/ICASSP.1993.319215 49



http://dx.doi.org/10.1109/ICASSP.1989.266390
http://dx.doi.org/10.1109/89.221363
http://dx.doi.org/10.1109/89.661470
http://dx.doi.org/10.1109/ICASSP.1993.319215

98 BIBLIOGRAPHY

[70] A. Gray Jr. and J. Markel, “Distance Measures for Speech Processing,” IEEE Trans. ASSP,
vol. 24, pp. 380-391, Oct. 1976. 57, 60

[71] F.Itakura, “Minimum Prediction Residual Principle Applied to Speech Recognition,” IEEE
Trans. ASSP, vol. 23, pp. 67-12, Feb. 1975. DOI: 10.1109/TASSP.1975.1162641 60

[72] A.V. Oppenheim, R.W. Schafer and T.C. Stockham, “Non-linear Filtering of Mul-
tiplied and Convolved Signals,” Proc. IEEE, vol. 56, pp. 1264-1291, Aug. 1968.
DOI: 10.1109/PROC.1968.6570 60

[73] A. Gersho and V. Cuperman, “Vector Quantization: A Pattern Matching Technique for
Speech Coding,” IEEE Com. Mag., Vol. 21, p. 15, Dec. 1983. 63

[74] R. Gray, “Vector Quantization,” ASSP Mag., Vol. 1, p. 4, Apr. 1984. 63

[75] M. Sabin and R. Gray, “Product Code Vector Quantizers for Speech Waveform Coding,”
Proc. Globecom-82, p. E6.5.1,1982. 64

[76] Website for the book. Awvailable online at: http://www.morganclaypool.com/page/
£s1016 60, 68, 70, 72,75

[77] S.Lin and D.J. Costello, Jr., Error Control Coding, Prentice Hall, New Jersey, 2004. 77, 80

[78] S.C. Greer and A. DeJaco, “Standardization of the Selectable Mode Vocoder,” Proc. IEEE
ICASSP, vol. 2, pp. 953-956, May 2001. DOI: 10.1109/ICASSP.2001.941074 90


http://dx.doi.org/10.1109/TASSP.1975.1162641
http://dx.doi.org/10.1109/PROC.1968.6570
http://www.morganclaypool.com/page/fs1016 
http://www.morganclaypool.com/page/fs1016 
http://dx.doi.org/10.1109/ICASSP.2001.941074

99

Authors’ Biographies

KARTHIKEYAN N. RAMAMURTHY

Karthikeyan N. Ramamurthy completed his MS in Electrical Engineering and is currently a PhD
student in the School of Electrical, Computer, and Energy Engineering at Arizona State Univer-
sity. His research interests include DSP, speech processing, sparse representations and compressive
sensing. He has worked extensively with the CELP algorithm and has created MATLAB modules
for the various functions in the algorithm. He also works in signal processing and spectral analysis
for Earth and geology systems and has created several functions in Java-DSP software for the same.

ANDREAS SPANIAS

Andreas Spanias is a Professor in the School of Electrical, Computer, and Energy Engineering at
Arizona State University (ASU). He is also the founder and director of the SenSIP industry con-
sortium. His research interests are in the areas of adaptive signal processing, speech processing, and
audio sensing. He and his student team developed the computer simulation software Java-DSP (]-
DSP - ISBN 0-9724984-0-0). He is author of two text books: Audio Processing and Coding by Wiley
and DSP: An Interactive Approach. He served as Associate Editor of the IEEE Transactions on Signal
Processing and as General Co-chair of IEEE ICASSP-99. He also served as the IEEE Signal Pro-
cessing Vice-President for Conferences. Andreas Spanias is co-recipient of the 2002 IEEE Donald
G. Fink paper prize award and was elected Fellow of the IEEE in 2003. He served as Distinguished
lecturer for the IEEE Signal processing society in 2004.




	Preface
	Introduction to Linear Predictive Coding
	Linear Predictive Coding
	Vocal Tract Parameter Estimation
	Excitation, Gain and Pitch Period
	Linear Prediction Parameter Transformations
	Long-Term Prediction

	Analysis-by-Synthesis Linear Prediction
	Code Excited Linear Prediction Algorithms
	The Federal Standard-1016 CELP

	Summary

	Autocorrelation Analysis and Linear Prediction
	Framing and Windowing the Input Speech
	Computation of Autocorrelation Lags
	The Levinson-Durbin Recursion
	Bandwidth Expansion
	Inverse Levinson-Durbin Recursion
	Summary

	Line Spectral Frequency Computation
	Construction of LSP Polynomials
	Computing the Zeros of the Symmetric Polynomial
	Computing the Zeros of the Anti-Symmetric Polynomial
	Testing Ill-Conditioned Cases
	Quantizing the Line Spectral Frequencies
	Adjusting Quantization to Preserve Monotonicity
	Summary

	Spectral Distortion
	Conversion of LSP to Direct-Form Coefficients
	Computation of Autocorrelation Lags from Reflection Coefficients
	Calculation of Distance Measures
	Summary

	The Codebook Search
	Overview of Codebook Search Procedure
	Adaptive Codebook Search
	Target Signal for Adaptive Codebook Search
	Integer Delay Search
	Sub-Multiple/Fractional Delay Search

	Stochastic Codebook Search
	Target Signal for Stochastic Codebook Search
	Search for Best Codevector

	Bitstream Generation
	Summary

	The FS-1016 Decoder
	Extracting Parameters for Synthesis
	LP Synthesis
	Postfiltering Output Speech
	Computing Distance Measures
	Summary

	Biblography
	Authors' Biographies

