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PREFACE

This book deals with the fundamentals of the Digital Signal Processing Theory, paying
particular attention to its application to measurement issues. Therefore, the sampling
theorem is thoroughfully analyzed under different points of view, in order to emphasise
its impact on the measurement accuracy. Different methods are also explained for the
mitigation of the measurement errors that may arise from a not totally correct sampling
strategy.

The discrete systems are also considered and analyzed, in order to frame the digital
filters into a strict mathematical approach. The FIR and IIR filters are then introduced,
and the basic guidelines for their specification, design and use are given.

This book is therefore mainly devoted to graduated and post-graduated students of
technical faculties, and to professionals that want to have a closer look to the Digital
Signal Processing theory in order to apply it to the practical situations in the correct and
most effective way.



CHAPTER 1

THE DIGITAL SIGNAL PROCESSING

An introductory overview

The digital signal processing finds its origins, as a well defined subject, during the
seventeenth and eighteenth centuries, thanks also to the work of the two great
mathematicians Newton and Gauss. At that time its applications were typically oriented
to the numerical calculus, since this subject was mainly concerned with the representation
of the mathematical functions by means of sequences of numbers, or symbols, and the
elaboration of such sequences. In this respect, the classical numerical techniques, such as
those used for the interpolation, integration and derivation of functions can be fully
considered as Digital Signal Processing (DSP) techniques.

Only recently, approximately starting from the second half of the 70s, in the 20"
century, the evolution of the computing devices and the Analog-to-Digital (AD)
converters has greatly extended the application field of this subject.

One of the fields which most benefit of this evolution is that of measurement, and in
particular the electric and electronic measurement. It is well known that the measurement
activity typically consist in observing a physical phenomenon, both spontaneous (as is the
case, for instance, of measurements of natural phenomena, such as those performed in
astronomy or seismology), or artificially originated in order to perform the measurements
(as is the case, for instance, of the test measurements on devices or machines, where the
device under test is properly stimulated).

It is known as well that a physical phenomenon can be observed through the variation
of physical quantities to which the information describing that phenomenon is associated.
For instance, the presence of an electric field can be detected by analysing the
distribution of the electric potential in the region of space where the electric field is
present. Once a proper reference potential is taken, the observation of the electric field
can be attained by means of measurements of potential differences. It is then possible to
associate the information related to the observed physical phenomenon (the electric field)
to the values taken by these potential differences and their variation in time.

In this example, the potential differences play the role of measurement signals, whose
processing allows to extract the required information. The possible ways the
measurement signals can be processed may be, in this case, for instance, the evaluation of
the peak value, from which the maximum intensity of the field can be obtained, the
evaluation of the rms value, to which the capability of the field to do an electric work can
be associated, or the analysis of the spectral components, to which the field behaviour in
the frequency domain can be associated.

The key point in a measurement process is therefore processing one or more
measurement signals in order to extract the required information from the signals
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themselves. This processing is generally described by a more or less complex
mathematical relationship. Still considering the above example, the rms value of a
potential difference u(¢), periodic with period 7 over time ¢, is expressed by the following
relationship:

_ Lo >
U= TJ:O—T” (0)de, Vi, (1.1)

This result is not easy to obtain with the traditional analog techniques. In the past,
electromechanical devices have been adopted, such as the electrodynamic instruments,
where, due to the mechanical action caused by the interaction between currents, a driving
torque, proportional to the square of the applied voltage, is exerted on a pivoted moving
coil. The mechanical inertia of the moving coil acts as a low-pass filter, so that, in the
presence of a spring restraining torque, the displacement angle of the moving coil is
proportional to the mean value of the squared voltage. If a pointer is fixed on the moving
coil rotation axes, its displacement on a square-law scale provides the desired rms value.

It can be easily understood that, if a good accuracy is required, the mechanical
structure becomes critical and very expensive. When the analog electronic components
became available, instruments based on electronic multipliers and low-pass filters could
be realized, with a far better accuracy and wider bandwidth than the electromechanical
instruments. However, the number of components required to process the input signal is
still large, and therefore there is a large number of uncertainty sources to control in order
to feature a good accuracy, which results in a high cost for the whole system. The
problem becomes even more difficult to solve with the analog techniques when the
measurement of quantities defined by more complex mathematical relationships are
considered, such as, for instance, the spectral components of a signal.

On the other hand, the numerical calculus provides a relatively simple and direct
solution to (1.1). In fact, if a device is available, able to sample u(f) with a constant
sampling period 7., convert the obtained samples into a digital code, store the obtained
sequence of codes into a digital memory and process them digitally, it is possible to prove
that, under a number of given conditions that will be discussed in the following chapters,
(1.1) can be written as:

U= FZuz(ch)Tc (1.2)

The block diagram of an instrument able to perform the above-listed operations is
schematically drawn in Figure 1.1.

In such an instrument the result of the measurement is obtained by computing (1.2),
with a proper program stored in the memory of the processor; this means that it is
possible to perform different measurements, always starting from the same samples of
u(t), by simply changing the program, thus attaining also a dramatic cost reduction.
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The above examples show that the operating principle of a digital instrument that
employs DSP techniques is based on the instrument capability of sampling the input
signals over time, converting the samples into digital values and processing them with a
suitable algorithm in order to attain the result of the desired measurement.

Input . . Measurement

- Sampling device

signal Samples result
— P + = Memory ———0p Processor

u(?) A/D converter U

Figure 1.1. Block diagram for a measuring instrument based on the digital signal
processing techniques.

When an analog signal is sampled and the samples are converted into digital values,
the mathematical object sequence is obtained, defined in the discrete-time domain. This
means that any sequence s(n) is defined only for integer values of the independent
variable 7, whilst a function f{¢) of time ¢ is defined for real values of the independent
variable ¢, and is therefore defined in the continuous-time domain.

Since the obtained values are coded into a finite number of digits, generally
representing a binary code, the input signal is allowed to assume only a finite number of
values also in amplitude, thus giving rise to the quantization phenomenon.

A digital instrument, based on DSP techniques is hence characterized by a double
transformation of the input signal from the continuous to the discrete domain, both in
time and amplitude. This double transformation is the characterizing element of this kind
of instruments, and differentiates them from another class of so-called digital instruments
that process the input signals in the continuous time and amplitude domains and provide
only the measurement result in a digital format.

The double domain transformation represents also the most critical part of the
theoretical analysis of the DSP-based instruments, since the very first question to be
answered is whether this double transformation modifies the information associated to
the input signals or not.

This book is therefore aimed to analyse the mathematical theory that describes the two
domain transformations, and in particular the transformation from the continuous to the
discrete time, since this transformation is responsible for the most dangerous changes in
the information associated with the input samples when nowadays sampling and
converting devices are employed.

The devices in the block diagram in Fig. 1.1 are then considered, in order to evaluate
their metrological characteristics and the way they contribute to the metrological
performance of the whole DSP-based instrument.

At last the discrete systems are considered and analyzed in order to study a very
imporant family of systems in the DSP technique: the digital filters.
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Some of the considered items can be analysed only by means of advanced
mathematical tools. Since this book is concerned with the digital processing of
measurement signals rather than the mathematics of the discrete-time signals, the
mathematical derivations will be limited to the amount that is strictly required to the
correct comprehension of the presented theory. The readers are invited to refer to
mathematics books if they wish to investigate the mathematical approach more in depth.



CHAPTER 2

DISCRETE-TIME SIGNALS AND SYSTEMS

INTRODUCTION.

As shown in the previous chapter, the signals are the sources of the measurement
information. Generally, the systems that are dealt with in practical situations evolve in
time with continuity. Due to this property, they can be mathematically represented by
functions of the independent variable time that belongs to the set of the real numbers. For
this reason, these functions are generally referred to as belonging to the continuous time
domain, and the signals are called continuous-time signals.

On the other hand, situations exist where the signals do not evolve with continuity in
their appertaining domain. This is the typical case of the signals that represent quantities
in the quantum mechanics, and it is also the more simple case of the periodic signals
when they are represented in the frequency domain. The Fourier theory shows that, in this
case, the signal is defined, in the frequency domain, only for discrete values of the
independent variable frequency.

When the independent variable is time and the signal is defined only for discrete
values of the independent variable, the signal is defined as belonging to the discrete time
domain and is synthetically called a discrete-time signal. When the independent variable
takes only discrete values, it sweeps over its axis by quanta; therefore it can be
represented only by integer numbers, that represent actually the serial number of the
quantum. For this reason, the independent variable of the mathematical object that
represents a discrete-time signal belongs to the set of the integer numbers; the
mathematical object is called a sequence.

An example of discrete-time signal is provided by a signal obtained by sampling a
continuous-time signal with a constant sampling period. Usually, most discrete-time
signals are obtained by sampling continuous-time signals. Anyway, for the sake of
generality, a discrete-time signal can be seen as generated by a process defined in the
discrete time domain.

For this reason, the discrete-time signals will be analysed by their own, without
referring to their possible origin in a sampling operation. In this way the properties of the
discrete-time signals can be fully perceived, and the mathematical tools can be defined
that are required to provide an answer to the fundamental question of the digital signal
processing theory: how and with which changes the information associated to a
continuous-time signal is transferred to a discrete-time signal by sampling the
continuous-time signal?
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THE SEQUENCES.

Definition.

A discrete-time signal is mathematically represented by a sequence of values x:

x={x(n)}, —o<n<ew 2.1

The n-th value x(n) in the sequence is also called the n-th sample of the sequence.

As already stated, the independent variable n belongs to the set of the integer numbers;
this means that {x(n)} is mathematically defined only for integer values of », and is not
defined for non-integer' values of n.

Fig. 2.1 shows an example of graphical representation of a sequence.

x(n) 4
x(0)
p
x(-1)
b x(1
x(-2) 0( )
°
.
. .X(Z)
.
o
[ ] L4 ° o - [ L4 e,
T T T T T T T T T T T T hd T T T T l. v T T T
-10 9 8 -7 6 5 4 -3 -2 -1 1234‘156389101112’1
e ®

Figure 2.1. Graphical representation of a sequence

Sometimes, when the whole sequence cannot be confused with its own samples, the
notation in (2.1) is uselessly complex, and therefore the whole sequence is referred to as

x(n).

' It is a common mistake stating that x(n) = 0 for non-integer values of n. This is absolutely incorrect, since a

sequence cannot be mathematically defined for non-integer values of its independent variable 7.
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Particular sequences.

Some sequences play a very important role in the analysis of the discrete-time signals.
The most important is the unit sample sequence, which is mathematically defined as:

0, n#0

HOE {1 o 2.2)

and is graphically represented in Fig. 2.2.

3(n)

1@

e o o o o S e o S S S S S S 2 T
-10 -5 0 5 10

Figure 2.2. Unit sample sequence

This sequence is important because it plays, in the analysis of the discrete-time signals
and systems, a similar role as that played by the Dirac impulse in the analysis of the
continuous-time signals and systems. For this reason, the unit sample sequence is often,
though not properly, called discrete-time impulse, or impulse sequence. It is worth while
noting that its mathematical definition is very simple, if compared with the definition of
the Dirac impulse.

A second important sequence is the unit step sequence. It is graphically shown in Fig.
2.3, and is mathematically defined as:

1, n=20
u(n)={0 <0 (2.3)

Similarly to the unit sample, the unit step too plays, in the discrete-time domain, the
same role played by the step function in the continuous-time domain.

According to (2.1) and (2.3), the unit step sequence can be written in terms of the unit
sample sequence as:

uln) =" 8(k) (2.4)
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190000000000

-10 5 0 5 10 15

Figure 2.3. Unit step sequence

This can be proved by recalling that, due to (2.2), the elements in the sum (2.4) are
non-zero (and equal to 1) only if & = 0. For negative values of n, all elements in the
sum (2.4) are zero, and therefore u(n) = 0 for n < 0. For n = 0 only one non-zero term
exists, for each value of n, and it is equal to 1 for k = 0. Therefore u(n) =1 for n 2 0,
and 2.4 is proved.

The inverse relationship, linking the unit sample sequence to the unit step sequence,
can be readily written as:

o(n) = u(n) - u(n-1) (2.5)

Fig. 2.4 shows the real exponential sequence, whose mathematical expression is:

x(n)=a" (2.6)
with a a real number.
o X(N)
'
[ )
e o [ ] o o 0o 0
°
[ ]
n
°, ..
e
-5 0 5 10 15

Figure 2.4. Real exponential sequence x(n)=a", with a <1

More generally, the complex exponential sequence can be defined as:
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x(n) = elo+j®0)n 2.7

where ¢ and w, are real numbers.

The sinusoid sequence can be obtained from the complex exponential sequence for ¢ =
0. This sequence is graphically represented in Fig. 2.5 and can be mathematically written
also as:

x(n)= Acos(wyn + ¢) (2.8)

where A, @y and ¢ are still real numbers.

[}
n
-20 —'Iﬁ. i 1 0 30 40
°

[ ]
V4 (¥

Figure 2.5. Sinusoid sequence

Periodic sequences.

When the continuous-time signals are considered, the sinusoid function and the complex
exponential function with ¢ = 0 are periodic in time. Similarly, when the discrete-time
signals are considered, the sinusoid sequence and the complex exponential sequence with
6 = 0 could be expected to be periodic too. However, since in this last case the
independent variable n belongs to the set of the integer numbers, these sequences could
not be periodic.

The definition of a periodic sequence x(n), over the period N, is given by the following
relationship:

x(n)=x(n+N), Vn (2.9)

Since the independent variable of a sequence must belong to the set of the integer
numbers, period N must be an integer too. Therefore, the sinusoid sequence and complex
exponential sequence with ¢ = 0 are periodic with period 27/®y, only if this quantity is an
integer number. If 21/, is not an integer, but is a rational number, these sequences
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are still periodic, but their period will be an integer multiple of 2m/w,. If 21/0, is neither a
rational number, these sequences are not periodic.

This property of the periodic sequences is very important, because it explains how the
information associated to a continuous-time periodic signal can be modified after the

signal itself has been sampled.
Let s(?) be a sinusoidal, continuous-time signal, with period 7. This signal is described

by the following equation:
. (2%;
S(t)=ASln(Tt+(pj (210)

Let 5(f) be sampled with 7, sampling period, so that:

T/T; =N, N aninteger (2.11)

Eq. (2.10), evaluated at each sampling time k7, provides:

s(kTy)=4 sin(2n k;s‘ + (p) ,
that, taking into account (2.11), leads to the following sequence:

$(k) = Asin(%kn%pj (2.12)

. . 2 .
It can be readily checked that, in (2.12), o, = ZT and therefore, having supposed N an

integer, the sequence in (2.12) is periodic with period N. It can be hence concluded that
the sequence obtained by sampling the periodic signal s(f) is still periodic and the
relationship between the period of the continuous-time signal and that of the discrete-time
signal is given by: 7= NT.

On the other hand, signal (2.10) could have been sampled with a sampling period 7,
so that: T = mTS' with m a real number. In this case (2.12) would have become:

s(k)= Asin(z—nk + (pj
m

and, not being m an integer or a rational number, this sequence is not periodic. It can be
concluded that the sampling operation, in this case, has changed the information
associated with the continuous-time signal, because a non-periodic sequence has been
obtained from a periodic signal. As it will be shown in the next chapter, condition (2.11)
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is one of the conditions that must be satisfied in order to sample a periodic signal
correctly.

Coming back to the sinusoid and complex exponential sequences, the ®, parameter is
o
called the angular frequency (and f =2—0 the frequency) of the sequences, no matter
T

whether they are periodic or not.

Operations between sequences.

The sum and product operations can be defined for the sequences. In particular, the sum
of two sequences, x and y, is a sequence whose samples are obtained as the sum of the
corresponding samples of the two sequences. From the mathematical point of view, it is:

x+y={x(n)+yn)} (2.13)

Similarly, the product of two sequences is defined as a sequence whose samples are
obtained as the product of the corresponding samples of the two sequences. From the
mathematical point of view, it is:

Xy ={x(n) - y(n)} (2.14)

It can be easily proven that the sum and product operations between sequences satisfy
the commutative and associative properties, and the product satisfies also the distributive
property with respect to the sum.

The product of a sequence x by a number a is defined as the sequence whose samples
are those of sequence x, each multiplied by a. It is:

x-a={a-x(n)} (2.15)

At last, the shift operation is defined as the operation that, starting from a sequence x,
provides its replica, shifted along the n axis by a given integer quantity ny; from the
mathematical point of view, this can be written as:

¥(n) = x(n - no) (2.16)

When n, > 0 the original sequence is shifted on the right, over the » axis, whilst when
no < 0 it is shifted on the left.

If shifted versions of the unit sample sequence are employed, any sequence can be
expressed in terms of the unit sample sequence. Given a sequence x(n), it is indeed
possible to write:
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+oo

x(n)= > x(k)d(n—k) (2.17)

f=—oc0

The above relationship can be readily proven by considering that the shifted unit
sample sequence d(n-k) is non zero (and equal to 1) only for n - k£ = 0, and hence for n =
k. Therefore, the sum at the right-hand side of (2.17) has only one non-zero term, for n =
k, whose value is equal to sample x(n), Vn. Eq. (2.17) is then proven.

THE DISCRETE-TIME SYSTEMS.

Definition.

A system, whichever is the domain it belongs to, is mathematically defined as a unique
transformation that maps an input quantity x into an output quantity y. In the discrete time
domain, the system’s input and output quantities are sequences, which means that a
discrete-time system transforms the input sequence x(n) into the output sequence y(n)
univocally. As a matter of fact, a discrete-time transformation can be seen as an algorithm
that processes the samples of the input sequence in order to provide the samples of the
output sequence.
From the mathematical point of view, a transformation is expressed as:

y(n)=T[x(n)]

and is graphically represented as shown in Fig. 2.6.

SN IR ()

Figure 2.6. Graphical representation of a system and related transformation

The output sequence y(n) is also called the response of system T to the input sequence
x(n).

The analysis of a generic system and its related transformation is generally quite
complex, unless suitable constraints are introduced that limit the freedom degrees of the
system itself, by defining suitable classes of transformations. The most important class is
that of the linear systems, to which the overwhelming majority of the algorithms
employed in the measurement field belongs.
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The linear systems.

The linear systems can be mathematically defined by means of the superposition
principle. Given the two input sequences xi(n) and x,(n), let y;(n) and y,(n) be the
responses of a system T to the given input sequences respectively, so that:

y1(n)=Tly(n)] and  y,(n)=Tlx,(n)]
According to the superposition principle, system T is linear if and only if:
Tlax; (n)+bx; (n)] = a Tlx ()] + 6 Ty ()] = ayy (n) + by, (n) - (2.18)

where a and b are arbitrary constants.
Since, according to (2.17), any sequence can be written in terms of the unit sample
sequence, the response of a system can be written as:

k=—c0

y(n)=T|: fx(k)&(n—k)} (2.19)

If system T is linear, (2.18) applies and (2.19) can be written as:

~+oo

y(n)=" x(k)T[8(n - k)] (2.20)

k=—c0

Let i (n) be the system response to the shifted unit sample sequence 0 (n - k); (2.20)
can be written as:

Y= S (e () @21)

Jfr=—oo

This last equation shows that the response of a linear system to an input sequence
depends on response /(n) to the shifted unit sample sequence. However, this response
depends on both 7 and £, thus limiting the practical utility of (2.21).

The shift-invariant linear systems.

An important sub-set of the linear systems is that of the shift-invariant linear systems.
These systems represent the counterpart, in the discrete time domain, of the time-
invariant systems in the continuous time domain, and have the property that, being y(#)
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the response to the input sequence x(7), the response to the shifted sequence x(n - k) is
X(n- k), that is the same response as that to sequence x(r), shifted by the same quantity &.

Due to this property, it can be immediately proved that, if 4(n) is the system response
to the unit sample sequence 6(n), then the response to the shifted unit sample sequence
O(n- k) is h(n - k). For the shift-invariant linear systems, eq. (2.21) becomes:

+oo

y(n)=D" x(k)h(n—k) (2.22)

k=—c0

Therefore, it can be stated that a shift-invariant linear system is fully characterized by
its response /(n) to the unit sample sequence. Eq. (2.22) shows that, once A(n) is known,
it is possible to determine the response to any other input sequence x(n).

Eq. (2.22) is called the convolution sum, and the resulting sequence y(n) is called the
convolution of the two sequences x(n) and s(n). The usual notation for the convolution
operation is:

y(n) = x(n) * h(n)

It can be readily proved that the convolution sum satisfies the commutative property,
that is:

y(n) = x(n) * h(n) = h(n) * x(n) (2.23)

To prove this property, let’s substitute variable £ with £ = n - m in (2.22), that
becomes:

Y= xln—m)i(m)

(-

For a given value of n, having quantity n - m varying from -oo to +eo is the same as
having quantity m varying in the same interval. Therefore, we get:

Y = )= m) = () (o)

m=—oo

which proves (2.23).

Having proved that the convolution sum satisfies the commutative property leads to
the conclusion that the response of a shift-invariant linear system does not change if the
input sequence and the response to the unit sample sequence are interchanged. In other
words, the response of a shift-invariant linear system, featuring 4(n) as the response to the
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unit sample sequence, to sequence x(n) is the same as that of a system, featuring x(#) as
the response to the unit sample sequence, to sequence /(n).

The convolution sum satisfies also the associative property. Considering three generic
sequences x(n), y(n) and w(n), it can be proven that:

x(n)# [y(n) = w(n)] = [x(n) % y(n)]* w(n) (2.24)
In order to prove (2.24), let ¥(n) = y(n)* w(n), so that:

oo

x(n)*d(n)= Zx(k)ﬁ(n k)= Z Zy wn—k—j)=
L ke e (2.25)
=2, 2 ky(wln—k =)
k=—oco j=—o0

Similarly, let &(n)= x(n)* y(n), so that, taking into account the commutative property
of the convolution sum:

e wlin)= S wlkEm—K)= 3 wlk) S y()eln—k - )=
f=—oo koo jm—oo
= 3 Sk )
k=—oc0 j=—00

If the variable m = n - k - j is introduced, so that k = n - m - j, the above equation can
be rewritten as:

Eewl)= S S wln-m— j)y(i)elm)=

n—m—j:—oo j:—oo

- ¥ S nn-m-)

m=—oo ]_—oo

(2.26)

Since the right-hand terms of (2.25) and (2.26) are equal, the associative property is
proved.

According to this property, it is possible to prove that the response to the unit sample
sequence of a system realized by cascading two systems, as shown in Fig. 2.7, is given by
the convolution of the responses of the two single systems to the unit sample sequence.
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x(n) y(n)
—» h(n) P hn) —»

O hmyhany |28

Figure 2.7. Cascaded shift-invariant linear systems

Let y;(n) be the output of the first sub-system and /,(n) its response to the unit sample
sequence; it is:

yi(n) = x(n) * hy(n)

that leads to write the output y(n) of the whole system as:
() = yi(n)* hy(n) = [x(n) % Iy ()] By (n) = x(n) # [y (m) 5 By ()] (2.27)

proving that the system response to the unit sample sequence is given by the convolution
of the single responses.

Taking into account also the commutative property of the convolution sum, it can be
stated that the system output is independent on the order with which the two sub-systems
are cascaded. Since a discrete-time system is, as a matter of fact, an algorithm, this means
that, if a signal processing procedure consists of two or more algorithms executed in
series, the order with which the algorithms are executed does not affect the final result.

At last, it can be immediately checked that the convolution sum satisfies also the
distributive property with respect to the addition. For this reason, if two shift-invariant
linear systems are connected in parallel, as shown in Fig. 2.8, the response of the whole
system to the unit sample sequence is given by the sum of the responses of the single
systems. The proof of this last property is very simple and is left to the reader.

The convolution computation.

The convolution sum plays, for the linear systems in the discrete time domain, a similar
role as that played by the convolution integral for the linear systems in the continuous
time domain. They are both extremely important in the theoretical analysis of this kind of
systems. However, the convolution integrals are often difficult to solve, so that their
importance is generally confined to the theoretical analysis, being the practical
application limited to a few particular situations.

On the other hand, the convolution sum can be computed in a far less difficult way and
its computation is quite immediate when the two sequences have a finite length, as in
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many practical cases. This extends the importance of the convolution sum from the
theoretical analysis to the practical applications, assigning it an even greater importance
than that assigned to the convolution integral; moreover this is one of the reasons for the
digital techniques are nowadays preferred to the analog ones.

hy(n) |
x(n) )

hy(n)

N

Figure 2.8. Shift-invariant linear systems connected in parallel

The convolution sum represents also a very important tool to understand some
fundamental concepts about signal sampling and the way the sampling operation may
generate sequences carrying a different information than the one provided by the
continuous-time signal. For this reason, the way the convolution sum of two sequences is
computed is now described into details.

Let us consider the two sequences in Fig. 2.9:

() 1, 0<n<4 2.28)
x(n)= .
0, otherwise
and
() 0.5, 0<n<4 (2.29)
n)= .
Y 0, otherwise

According to definition (2.22), the convolution of these two sequences is given by:

+oo

w(n)= Y x(k)y(n—k) (2.30)

k=—oco

The first step in the computation of the convolution is, according to (2.30), the
generation of sequence y(-k). It can be immediately seen that this sequence is obtained by
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reversing y(k) with respect to the vertical axes, as shown in Fig. 2.10 where both
sequences x(k) and y(-k) are drawn.

x(n) 1 oe000
0.8
0.6
0.4
0.2

Figure 2.9. x(n) and y(n) sequences

Figure 2.10. x(k) and y(-k) sequences
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The next step is the generation of sequence y(n - k), obtained, for every value of n, by
shifting sequence y(-k) by n. It can be immediately checked that, for the considered
sequences (2.28) and (2.29), their convolution w(#) in (2.30) has non-zero values only for
0 <n <9, since the shifted sequence y(n - k) has non-zero values where x(n) has non-zero
values only in this range of n values.

To better understand this point, let us consider the case of n = -1. Fig. 2.11 shows the
resulting sequences x(k) and y(-1 - k).

X(k) 1 g0000
0.8
0.6
0.4
0.2 K

Figure 2.11. Convolution step for n = -1

It can be immediately seen that all products x(k)y(-1 - k) are zero, for every value of £,
so that sample w(-1) in the convolution will be zero too. The above applies to every value
n<-1.

Let us now consider the case of n = 0. The two resulting sequences x(k) and y(-k) are
represented in Fig. 2.10, and it can be seen that the only non-zero product in (2.30) is
w(0) = x(0)y(0) = 0.5, which represents the convolution value for » = 0.

When n = 1, the two resulting sequences x(k) and y(1 - k) are represented in Fig. 2.12.
It can be seen that only two products in (2.30) have non-zero values:

x(0)y(0)=0.5
and
x(D)y(1)=0.5

Therefore, the convolution sample for n = 1 is given by:
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w(1)=0.5+05=1

Figure 2.12. Convolution step for n = 1
It is then possible to verify, in a quite similar way, that:

w2)=05+05+05=15

w3)=05+05+05+0.5=2

When n = 4, the non-zero samples of the resulting sequences x(k) and y(4 - k) take the
same position, as shown by Fig. 2.13. Therefore:

w(4)=05+05+0.5+05+05=2.5

and the convolution reaches its maximum value.

This can be readily understood looking at Fig. 2.14, which shows the resulting
sequences x(k) and y(5 - k) for the case of n = 5. In this case, only 4 non-zero samples of
sequence x(k) are in the same position as the non-zero samples of sequence y(5 - k), so
that the corresponding convolution sample will be:

w(5)=0.5+0.5+0.5+05=2.
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x(k) 1 90000
0.8
0.6
0.4
0.2 K

-10 -5 0 5 10 15

Figure 2.13. Convolution step for n = 4

Xx(k) 190000
0.8
0.6
0.4

-10 -5 0 5 10 15

Figure 2.14. Convolution step forn =5

The remaining samples of w(n) can be computed in a quite similar way, obtaining:

w(6)=0.5+0.5+0.5=1.5,

21
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w(7)=0.5+05=1,

w(8)=0.5.

At last, it can be easily checked that, for n = 9, none of the non-zero samples of the
resulting sequence y(9 - k) is in the same position as the non-zero samples of sequence
x(k), so that w(9) = 0. The same applies for n > 9.

The convolution w(n) = x(n) * y(n) is hence the sequence shown in Fig. 2.15.

w(n) 3
25 )
2 o o
1.5 [ [
141@ [ J
0.5 o n

Figure 2.15. Convolution result

This figure shows that the obtained sequence has a longer length than that of the two
starting sequences. This example can be generalized, showing that the convolution of two
sequences, with finite length of N and M samples respectively, will be again a finite
length sequence, with length equal to N + M - 1 samples.

Stability and causality.

The previous paragraphs have defined an important class of discrete-time systems by
introducing the linearity and shift invariance constraints. Two new constraints are now
introduced, the stability and causality, that lead to the definition of two new sets of linear,
shift-invariant systems, very important in the study of the digital filters, as it will be
shown in the next chapters.

A system is stable when, for any input sequence with bounded amplitude, it provides
an output sequence that is bounded in amplitude too. The necessary and sufficient
condition to ensure that a linear, shift invariant system is stable is that its response A(#) to
the unit sample sequence meets the following condition:

400
D |ak) =8 < oo (2.31)
fr=—o0

It is possible to prove that this condition is sufficient to ensure the system stability by
considering a bounded input sequence x(n), so that |[x(n)] < M, Vn. The system output
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sequence can be obtained by applying (2.22); supposing that condition (2.31) is also
satisfied, it can be written:

n)|= +Z.oh(k)x(n—k)SM +ZOO:|h(k)<
k=—o0 k=—o0

thus proving that the output sequence is also bounded in amplitude.

It can be now proved that condition (2.31) is necessary to ensure stability by proving
that, if S = e, an input sequence can be found with bounded amplitude that gives rise to
an output sequence with unbounded amplitude. Let us consider a linear, shift-invariant
system characterized by a response /(#n) to the unit sample sequence, and let us consider
an input sequence:

FEn
x()={ iy 70
0, h(n)=0

where /' (n) is the complex conjugate of /(n). x(n) is bounded because of the way it has
been defined. If the output sequence y(n) is now evaluated by applying (2.22), its value
for n =0 is given by:

0= St = § U0 5 EEE S

Therefore, if S = o, the output sequence is unbounded even in the presence of a
bounded input sequence. This proves that condition (2.31) is a necessary condition too.

A system is causal when its output y(n), for every n = ny, depends on the input samples
for n < ny only. For this reason, if x;(n) and x,(n) are two input sequences to a causal
system, taken in such a way that x;(n) = x,(n) for n < ny, then the system’s output
sequences y(n) and y,(n) will feature y;(n) = y,(n) for n < ny.

A linear, shift-invariant, causal system has the property that its response to the unit
sample sequence is zero for n < 0. This can be proved by considering the system output,
evaluated in n = ny, in terms of (2.22) where the commutative property of the convolution
has been considered too:

ylng)= Y hlk)x(ng k) (2.32)
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In (2.32) the samples of x(n) for n > n, are obtained when £ < 0. In order to prevent
these samples to contribute to the sum in (2.32), and hence to the determination of y(ny),
it must be A(k) = 0 for £ <0, as stated.

For this reason a sequence with zero samples for n < 0 is called causal. This is
somehow justified by the fact that this sequence could be the response of a linear, shift-
invariant, causal system to the unit sample sequence.

An example of linear, shift-invariant, causal and stable system is a system whose
response to the unit sample sequence is:

h(n) = a"u(n)
Due to the presence of the unit step sequence u(n), A(n) = 0 for n < 0, so that the

system is causal. In order to ensure the system stability, (2.31) must be verified, which
means that the following quantity:

+oo +oo
s= > nw)|= " (2.33)
k=—c0 k=0

must be finite.
It can be noted that the quantity in the right-hand side of (2.33) is a geometrical series
that converges to the finite quantity:

1
-~ 1-d]

for |a| < 1, otherwise the series diverges to infinite. Therefore, the system is stable only if
la| < 1.

FREQUENCY-DOMAIN REPRESENTATION OF THE DISCRETE-TIME SIGNALS
AND SYSTEMS.

The frequency response of the linear, shift-invariant systems.

In the previous sections it has been shown how a linear, shift-invariant system can be
fully characterized by its response to the unit sample sequence. This property of the
discrete-time systems is the counterpart, in the discrete time, of the property of the
continuous-time linear, time-invariant systems to be fully characterized by their impulse
response.

Another fundamental properties of these continuous-time systems is that their steady-
state response to a sinusoidal input is still a sinewave, with the same frequency as the
input sinewave, with amplitude and phase determined by the system. It is because of this



Discrete-time signals and systems 25

property that the linear, time-invariant systems are usefully represented as a suitable
combination of sinewaves or complex exponential signals (Fourier representation).

This property can be extended to the discrete-time systems in a straightforward way.
Let us consider the following sequence as the input sequence of a discrete-time, linear,
shift-invariant system:

x(n)=e/, —co<n< oo (2.34)
It can be immediately recognized that this sequence is a complex exponential sequence

with ¢ = 0 and ® angular frequency. According to (2.22), the output sequence of a linear,
shift-invariant system with /(n) response to the unit sample sequence is:

+oo +oo
y(n)= Y h(k)e/On=k) = eJon" p(j)e= ok (2.35)
k=—co k=—oo

Supposing that the series at the right-hand side of (2.35) is convergent, the following
function is obtained:

+o0
Hle®)= " nk)eiok (2.36)
f=—oc0
and (2.35) can be rewritten as:
¥(n)= Hles®)ejon (2.37)
or, taking into account (2.34):
y(n)=H(ef(°)x(n) (2.38)

Equations (2.37) and (2.38) show that the complex exponential input sequence x(n),
due to the transformation T introduced by the linear, shift-invariant system, goes through
a variation in its amplitude and phase only, variation that is described by the complex
function H(e’®). H(e’®) is a continuous function of the angular frequency ® and is called
the frequency response of the system whose response to the unit sample sequence is A(n).

The above conclusion is valid, as mentioned in deriving (2.36), only if the response to
the unit sample sequence /(n) allows (2.36) to converge to H(e’®). If this is verified,
H(e’®) is not only a continuous function of the angular frequency ®, but it is also
periodic in ® with a 2w period. This last property comes directly from (2.36), since:
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ej(co+2n)k = o0k

The fact that H(e’®) takes the same values for any ® = @, and ® = @y + 27 means that
the discrete-time system provides the same response to complex exponential sequences
with these two angular frequency values. This is totally justified by the fact that the two
complex exponential sequences do not differ.

As an example of the above conclusions, let us consider a linear, shift-invariant
system, whose response to the unit sample sequence is given by:

, 0Sn<N-1

h(n)={ (239)

0, otherwise

as shown in Fig. 2.16 for the particular case of N = 8.

h(n)

1 eeo0o0o00o0

[ A - T oo y 1
-10 -5 0 5 10 15

Figure 2.16. Response (2.39) to the unit sample sequence for N=8

When (2.36) is applied, the following frequency response is obtained:

N-1 —ioN :
: . 1—e /N sin(0N/2) _ (-
Jo)= Jok — = J(N-1)/2
Hler®) kz_oe o () ¢ (2.40)

Amplitude and phase of (2.40) are shown in Fig. 2.17 a and b respectively, for N = 8.

Since the frequency response (2.36) is a continuous, periodic function of , it can be
developed in terms of Fourier series. Actually, (2.36) expresses H(e’®) in terms of its
Fourier series coefficients, which are equal to the samples of the unit sample sequence

response A(n). It is therefore possible to express this double relationship between the
frequency response and the response to the unit sample sequence as:
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IH(E")]

Figure 2.17. Amplitude (a) and phase (b) of the frequency response (2.40) for N=8

IR
h(n)=— H(ef‘”)ef"’”d(o
2+Ttw—n (2.41)
Hei®)= " h(n)eion
n=—oo0

where the first equation represents the direct Fourier series analysis for H’®), and the
second equation represents the inverse Fourier synthesis equation.

These equations can be also interpreted in a rather different, though more interesting
way. The first equation in (2.41) describes sequence A(n) in terms of elementary
exponential components, whose complex amplitudes are determined by the second
equation in (2.41). In this respect, the equations in (2.41) can be seen as, respectively, the
inverse and direct Fourier transform pair for sequence 4(n).

This representation provides also a rule for establishing whether the series at the right-
hand side of the second equation in (2.41) converges or not, and hence H(e’®) exists or
not. According to the Fourier theory this convergence is ensured if:
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S i) <o,

Hn=—co

that is if A(n) is absolutely summable and the series is absolutely convergent. In this
situation, (2.36) or the second equation in (2.41), converges to a continuous function of
. Taking into account (2.31), this leads to the conclusion that it is always possible to
define the frequency response of stable systems.

It can be also proved that, since:

S @h(nﬂz,

if (n) is absolutely summable, it will be also:

+f|h(n)|2 <oo

n=—oo0

which means that A(n) has finite energy. The contrary is not a priori verified, that is a
finite energy sequence may not be absolutely summable. In this case, the Fourier theory
proves that the Fourier transform of such a sequence still exists, but it will be a generally
continuous function of ®, instead of being a continuous function.

This is the case of the following sequence:

h(n) = w (2.42)

which is shown in Fig. 2.18 for the particular case of w, = 1/3.

h(n) 0.4 -

-20 10 O ® 10 20
-0.1 -

Figure 2.18. Sequence (2.42) for the particular case of wy = /3
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It can be easily checked that this sequence cannot be absolutely summed, but has finite
energy. Therefore, its Fourier transform exists, and is a generally continuous function of
, with a 27 period:

Hle®)= {1’ jof < @ (2.43)

0, wp<lo<m

This equation is therefore the frequency response of a system whose response to the
unit sample sequence is given by (2.42). It can be noticed that (2.43) is a real function,
which means that the phase of the frequency response is nil for every value of ®. By
looking at the plot of (2.43), shown in Fig. 2.19 in the case of ®, = /3, it can be noted
that it is the same as the frequency response of an ideal low-pass filter. It is worth noting
that, since its response to the unit sample sequence (2.42) is not absolutely summable, a
digital system acting as an ideal low-pass filter is not stable.

()]

2l — 2 °
-(2m-0) -0y Y W (21-a0p)

Figure 2.19. Frequency response (2.43) for @, = n/3

The Fourier transform of a sequence.

In the last paragraph, the Fourier transform of the sequence obtained as the response to
the unit sample sequence of a linear, shift-invariant system has been derived by analysing
the response of such a system to the generalized sinusoid sequence. The result of this
analysis can be extended to any sequence, so that the Fourier transform of a sequence
x(n) can be defined as:

+oo
Xlero)= Y x(m)eron, (2:44)

n=—oo
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provided that (2.44) is convergent. The rules to establish whether (2.44) converges to
X(€®) or not are, of course, the same as those seen for (2.36).

If (2.44) converges, then, similarly to (2.36), it converges to a continuous, or generally
continuous function of ®, periodic in @ with a 2w period. This conclusion is very
important, because it shows that any sequence, provided it has a Fourier transform, has a
periodic Fourier transform, with a 27 period in ®. This outlines, as it will be shown into
details in the following chapter, a first important source of modification of the
information associated to a signal, when moving from the continuous time domain to the
discrete time domain after a sampling operation. Every sequence obtained by sampling a
continuous-time signal will show a periodic spectrum (Fourier transform) with a 2w
period in ®, no matter on how the spectrum of the continuous-time signal is. If we
consider that the continuous-time signals that are generally dealt with in practical
situations have a non-periodic spectrum, the significance of the modifications to which
the information associated to a signal is subjected because of the sampling operation is
quite evident.

Similarly to what was done for the Fourier transform of %(n), it is possible to define
the inverse Fourier transform of X(¢/®) as:

x(n)= 1 X(e-im)ej‘””dw (2.45)

Having defined the Fourier transform of a sequence, it is possible to determine the
Fourier transform of the output y(n) of a linear, shift-invariant system, with input
sequence x(n) and /(n) response to the unit sample sequence.

Applying (2.44) to (2.22) we get:

y(e/o)= E { fh(n—k)x(k)}fﬂm (2.46)

k=—oco

n=—co
If m = n - k is taken, (2.46) becomes:

m=—oo | k=—o0

)= § | St -

= Jrzmh(m)e_j‘”m Jrzmx(k)e_j‘”k

m=—oo k=—c0

which, taking into account (2.44), leads to write:

v(e/0)= Hle/®). x (/) (2.47)
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Eq. (2.47) shows that, similarly to the continuous-time, linear, time-invariant systems,
the Fourier transform of the output sequence of a discrete-time, linear, shift-invariant
system is given by the product of the Fourier transform of the input sequence by the
frequency response, given by the Fourier transform of the response to the unit sample
sequence.

If (2.22) is considered, (2.47) shows that the convolution between two sequences in
the discrete time domain is changed into the product between the Fourier transforms of
the two sequences in the ® domain. It is also possible to prove that the product between
two sequences in the discrete time domain is changed into the convolution between the
Fourier transforms of the two sequences in the ® domain.

Symmetry properties of the Fourier transform.

Similarly to the Fourier transform of the continuous-time functions, the Fourier transform
of the sequences satisfies some very useful properties of symmetry that come mainly
from the property of any sequence to be decomposed into the sum of a conjugate
symmetric sequence and a conjugate antisymmetric sequence. In this section, the most
significant properties will be shortly recalled, without entering into the mathematical
details of the proofs, that are well known from the Fourier theory.

A sequence of complex samples x.(n) is called conjugate symmetric when the
following relationship applies:

Xes (n) = x:s (_ n)

where the superscript * stands for complex conjugate. Similarly, a sequence of complex
samples x.,(7) is called conjugate antisymmetric when the following relationship applies:

Xca (n) = _x:a (_ n)
It can be proved that any sequence x(#) can be written as:
x(n) = xes() + Xea(1) (2.48)

where :

[x(n) +x* (- n)] (2.49)

N | —

Xes (n) =

and :

[x(n)—x*(—n)] (2.50)
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A real conjugate symmetric sequence, that is a sequence for which x.(n) = xc(-n)
applies, is called an even sequence. Similarly, a real conjugate antisymmetric sequence,
that is a sequence for which x..(7) = -x..(-n) applies, is called an odd sequence.

As for the Fourier transform, the same properties as those valid for the continuous-
time functions still apply, so that it can be decomposed as:

X(e/0)= X (e79)+ X (e7@) @2.51)
where:
Xglei®)= % [x(e/@)+ x*(e=o)] (2.52)
and:
Xaaler®)=2[xlero)- x7 (o) (2.53)

If x(n) is a real sequence, then its Fourier transform is a conjugate symmetric function,
that is:

X(e/®)= x*(eio) (2.54)

If x(n) is an even sequence, then its Fourier transform is a real function.



CHAPTER 3

SIGNAL TRANSFORMATION FROM THE CONTINUOUS
TIME TO THE DISCRETE TIME DOMAIN

The sampling theorem and its consequences

INTRODUCTION.

It has been already stated in the previous chapters that the modern digital measuring
instruments are more and more based on the DSP techniques. This means that the input
signals are converted into a sequence of sampled values by means of a sampling
operation performed at given time instants, with a constant sampling period.

According to the analysis done in the last chapter 2, this sampling operation results in
a domain transformation, from the continuous time domain where the original analog
signal s(¢) is defined, to the discrete time domain where the resulting sequence of
sampled data s(n) is defined.

The main problem of the Digital Signal Processing theory is therefore assessing
whether the information associated with the original signal s(¢) is correctly transferred
into the resulting sequence s(n) after the domain transformation operated by the sampling
operation, or, if not, how far it is modified and which kind of errors the sampling
operation introduces in the measuring process.

From a very intuitive point of view, the sampling operation does not leave the
information associated with the original signal s(f) unaltered. However, still from a very
intuitive point of view, if a sufficient number of samples is taken, the information
associated with the original signal can be still retrieved from the sequence of sampled
data s(n). This is well shown by Fig. 3.1 and Fig. 3.2, which show a continuous-time
signal s(f) and the sequence of sampled data s(n) respectively, where the samples have
been obtained sampling s(¢) with a sample rate of 40 samples/period.

s(t) |

| ' \_\I/—_/t

Figure 3.1. Example of continuous-time signal
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s(n)
°
i o‘. .'o
Yy YY)
o %

. .
%e000, 00000 1
®0e0®

Figure 3.2. Sequence obtained by means of a correct sampling of the signal in Fig. 3.1

The original signal s(f) can be easily recognized in the sequence of sampled data
represented in Fig. 3.2. If now the same signal s(#) is sampled with a much lower sample
rate of only 10 samples/period, as shown in Fig. 3.3, the original signal can be no longer
recognized in the sequence of sampled signals.

s |

b ° [ ]

Figure 3.3. Sequence obtained by means of an incorrect sampling of the signal in Fig. 3.1

This intuitive approach is confirmed by the considerations, exposed in the previous
chapter 2, concerning the Fourier transform of a sequence. Eq. (2.44) shows that the
Fourier transform of a sequence is always periodic, with a 21 period in ®. This means
that any sequence obtained by sampling a time-continuous signal has a periodic spectrum
in the frequency domain, no matter on the spectrum of the sampled signal itself. Since
most of the signals of practical interest show aperiodic spectra, the above consideration
leads to the conclusion that the transformation from the continuous time domain to the
discrete time domain operated by the sampling operation a/ways modifies the information
associated with the sampled signal.

The main question to which the DSP theory must give an answer is therefore if, how
and under which conditions the original information can be still retrieved from the
sequence of sample data.

Again from an intuitive point of view, the original information is still available in the
sequence of sampled data if the modifications introduced by the sampling operation are
somehow additive and redundant with respect to the original information and do not
interfere with the original information in a destructive way. This consideration is
compatible with the fact that the Fourier transform of a sequence is periodic if, as it will
be shown later, the different periods of the spectrum are separated replicas of the
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spectrum of the sampled signal. In this case the information associated with the sampled
signal can be thought to be associated, unmodified, with a single period of the spectrum
of the sequence of the sampled data.

The strict proof of this statement is given, in a mathematically sound way, by the
sampling theorem. The following sections of this chapter will deal with this theorem in a
thorough way, from the general, theoretically important approach, to the particular
application to the case of periodic signals, which is very important in the practical
applications.

THE SAMPLING THEOREM.

The general formulation.

In order to establish how the information associated with a signal in the continuous time
domain is transferred into the discrete time domain after having sampled the continuous-
time signal, let us consider a signal s.(¢), defined in the continuous time domain.

Let us suppose that the Fourier transform can be defined for this signal, so that its
direct and inverse Fourier transform pair can be written as:

oo

St (jQ) = [ser(t)edr 3.1)
17

salt) =5 [Sa(i@)eian (3.2)

—oo

where Q is the angular frequency.
Let us also suppose that the Fourier transform of s.(?) is limited in €2, so that:

Se(jQ)#0  for|Q < Qy, (3.3)
S (jQ)=0 for|Q=Q, '

This situation is graphically represented in Fig. 3.4, where an example of Fourier
transform of such a signal is shown.

Let us now suppose to sample signal s.(#), with a constant sampling period T, to
which a sampling frequency f; = 1/7 and an angular sampling frequency Q, = 27/T;
correspond. A sequence s(#) is obtained, whose samples are equal to the values taken by
signal s.(7) at the sampling periods:
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Sal j€2)

Q

-

-Q Q

Figure 3.4. Example of Fourier transform of the considered continuous-time signal

s(n) = s(nTy) 3.4

Supposing that this sequence has a Fourier transform SE’®) given by (2.44), each
sample of this same sequence can be written, according to (2.45), in terms of SE’®) as:

+T
s(n)zz—lTC -iS(ejm)ejw”dm (3.5)

Due to (3.4), the same samples can be obtained starting from (3.2) as:

+oo

1 . i
()= s (1y) =[S (jR)e/ ¥ d2 (3:6)

Since the left-hand sides of (3.5) and (3.6) are the same, if a relationship can be
obtained, starting from these two equations, between the Fourier transform S,(j€2) of the
continuous-time signal s.(f) and the Fourier transform SE’®) of the discrete-time
sequence s(n) of samples of s.(f), the way the information associated with s.(¢) is
transferred to s(n) is also found.

In order to find this relationship, let us express the integral in (3.6) as a sum of integrals

over intervals with finite length 27t/7,. We get:

“+ oo (2q+1)n/TS
st)==—>" cht( 7Q) e/ T 40 (3.7)
=-e° (2¢-1)n/T;
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If now the new variable € + 2mg/T; is considered instead of €2, each integral in (3.7)
can be written over the interval (-n7, +nTy), still with finite length 2t/ (3.7) becomes:

400 TC/T
Z j Ct(]9+ j ]efQ"Ts e/2mangQ 3.8)
—'°°—1t/T

Since both ¢ and # are integer, ¢”*™" = 1. Due to the linearity of the Fourier transform,

the order of integration and summation in (3.8) can be interchanged, so that (3.8)

becomes:
| +1/Ty
S(I’Z)ZE J. [

_TC/ TS

> Sc{jQ+ J j]ejQ”TSdQ (3.9)
S

g=—o0

If now Q = /Ty is taken, (3.9) becomes:

s(n)= [ Z Sct(]—+] T J]ej“’”du) (3.10)

S g=—o

which is formally the same as (3.5). Therefore, it is possible to write:

- 1 & jo . 27g
Sleo)=— %" s t(—+]—j (.11)
T q:z_w AL T T

or, if the angular frequency Q is considered:

+oo
D) Sct[jmjz;‘qj (3.12)

S q=-c° S

Equations (3.11) and (3.12) represent the relationship between the Fourier transform of
a continuous-time signal and the Fourier transform of the discrete-time signal obtained by
sampling the continuous-time signal with a constant sampling period.

First of all it can be noted that the Fourier transform of the resulting discrete-time
signal is periodic with a 2x period in ® (as expected, since it is the Fourier transform of a
sequence), and periodic with a € = 2w/T; period (which is equal to the angular sampling
frequency) in Q.
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Looking at Fig. 3.5, and according to (3.11) and (3.12), it can be concluded that, if Qg > 2€2,
each period of (3.11) is an undistorted replica of the Fourier transform of s.(¢), and
therefore the information associated with this signal can be still retrieved from the
sequence of sampled values s(n).

S t,l(]gz)

1

.: K 1‘ ]

s 1 . Jl.
| ', :‘r ! Qn{T“ (£ ), 2”5?; Ly : Q:
-475 -2?1: -52[)7; C) 520 TS 2?1: 47t 0}

Figure 3.5. Relationship between the Fourier transforms of a continuous-time and a
discrete-time signal. (a) Fourier transform of the continuous-time signal. (b) Fourier
transform of the discrete-time signal obtained by a correct sampling. (c) Fourier
transform of the discrete-time signal obtained by an incorrect sampling.

On the contrary, if Qg < 2Q,, the shifted replicas of S,(j€2) in (3.11) are overlapping
over an interval whose length depends on how lower € is than 2Q, as shown in Fig. 3.6.
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In this case, the information associated with s.(7) is modified irreparably, and cannot be
retrieved from the sequence of sampled values any longer. This phenomenon is called
aliasing and must be absolutely avoided in order to get correct results from the digital
processing of the input signal.

Sal/€2)
Jhl
Q
-QO } Q{}
a
iy
S(e )A 1
T
¢ i 2 ) ) Iu, = 2
il v W l’ § Iy W
[ L f t ! 1 i A
| " 1 ' rl : s ‘-.\I \
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-6m -4n -2n b) 2n 4n 6m
it
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l',‘ 4 ‘\ .'l. Ll ,’ 1\ i 3 f’ 2 JJ l". f ‘\ .l.‘
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N & i £ i T s I
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Figure 3.6. Aliasing effect on the Fourier transform of the discrete-time signal. (a)
Fourier transform of the continuous time signal. (b) Fourier transform of the discrete-
time signal affected by aliasing. (c) Same aliasing situation as in (b), but caused by a
lower sampling frequency.

Fig. 3.6 shows that when the aliasing situation occurs, the high frequency components
in the Fourier transform of the continuous-time signal are folded back over the lower
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frequency components, thus modifying them. The lower is the sampling frequency with
respect to the 2€2, limit, the more are the frequency-domain components of the signal
affected by the aliasing, so that the information associated with the original signal is
totally lost in the sequence of sampled data.

This phenomenon can be extremely dangerous, because the sequence of sampled data
might apparently reproduce a signal with similar characteristics as those of the original
sampled signal. For instance, Fig. 3.7 shows a sinewave with angular frequency Q, = 1,
sampled with an angular sampling frequency Qs = 0.9091. It can be readily recognized
that the sampled values of this signal belong also to a sinewave with angular frequency
€, = 0.0909, and can be obtained by this one by sampling it with the same angular
sampling frequency €. Due to the aliasing, the original frequency-domain component at
angular frequency Q; has been therefore shifted to the lower angular frequency €,. If no
information on the original signal is known, but the waveform, the sequence obtained
from the incorrect sampling operation might appear as correct, thus leading to dramatic
measurement errors.

s(1) . >

-1 _

Figure 3.7. Aliasing effects: a high frequency sinewave appears to be a low frequency
sinewave

The sampling theorem and the above considerations lead to conclude that a
continuous-time signal is correctly sampled, that is aliasing is avoided and the
information associated with this signal can be still retrieved from the sequence of
sampled values, if the following conditions are met.

1. The Fourier transform (spectrum) of the continuous-time signal is upper-bounded in
frequency at Q,, as shown by (3.3).

2. The sampling period 7 is constant.

3. The angular sampling frequency € is taken in such a way that Qg > 2€,. The lowest
limit for the sampling frequency €, = 2€) is called the Nyquist frequency.

4. The signal is sampled over the whole time axis (that is from #) = -eo to #; = +o0).
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Shannon interpolation formula.

The above paragraph proved that the information associated with a continuous-time
signal in the frequency domain can be still retrieved from the sequence of sampled
values, provided that the sampling operation meets the above listed conditions. The Fourier
theory states that, if the Fourier transform exists, there is a perfect equivalence between
the time and the frequency domains. This means that everything is proved as valid in one
domain is also valid in the other domain. Coming to the sampling theory, the domain
equivalence stated by the Fourier theory leads to conclude that, if the conditions of the
sampling theorem are met, the information associated with a continuous-time signal must
be retrieved also in the time-domain. This means that we must be able to find the value
taken by the signal at any time ¢, starting by the sampled values at time k7.

To prove this statement, let us suppose that the continuous-time signal s.(¢) has been
sampled correctly, that is Q; > 2Q,. Over the ® axis this means that Q, < 1w/7,. Under this
condition, (3.12) leads to:

S(efQTs ):Tisct(jsz), -—<Q<

S

(3.13)

o33

K2
T
as graphically shown in Fig. 3.5b.

Taking into account the inverse Fourier transform (3.2) for the continuous-time signal,

we get:

+1/ Ty
salt) = [7i5(e/% Jes2 dg (3.14)
-1/ T

Since, according to (2.44), it is:

+oo
S/ )= 3 s (kT eIk

k=-c0
(3.14) becomes:
T /TS oo
sa)=25 [ | D o (KT ) e IOTH | 4y (3.15)
21 i
- S

and, by interchanging the order of integration and the summation:
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o0 T +TE/TS
sal)= Y sq (kL) 25 [T 40 (3.16)
ke 2,

Keeping into account the solution of the integral in the square brackets, (3.16)
becomes:

_ ¥ sin[(m/T, )t — kT)]
se(t)= kzZ_wsct (kr)= T kT (3.17)

Equation (3.17) is due to Shannon and is generally called the Shannon interpolation
formula. It shows that it is possible to evaluate the value taken by the continuous-time
signal s.(?) at any time ¢, starting from the values taken at the sampling instants £7;, provided
that the sampling theorem conditions are met and no aliasing occurs. It has been hence
proved that the information associated with the continuous-time signal can be retrieved
from the sequence of sampled data both in the frequency and time domains.

Equation (3.17) has a great theoretical importance, but a limited practical utility,
because it requires to interpolate an infinite number of samples, which means that the
observation interval must be of infinite length.

This last statement is in perfect agreement with the conditions of the sampling
theorem, listed at the end of the previous section, which are the direct consequence of
having assumed no restrictions for the signal, except the limited bandwidth in the
frequency-domain. Since the signal can be a priori aperiodic and its duration can be not
limited in time, it is necessary to observe it over an infinite length interval to retrieve the
whole amount of information associated with it.

In the practical situations, however, this kind of signals is not generally met. The
phenomena that are generally dealt with are represented either by finite length signals,
that are not required to be observed outside their duration, either by periodic signals,
whose associated information can be retrieved by observing only one single period.

The finite length signals could not be sampled, from a strict theoretical point of view,
since the Fourier transform of such signals does not show a finite bandwidth. From the
practical point of view, however, the bandwidth of the Fourier transform can be forced to
be limited by filtering the signal with a low-pass filter. This will introduce some decaying
exponential terms in the original signal that extend its duration to infinity. However,
since this components are generally rapidly decaying, they fall below the resolution of the
Analog-to Digital converter employed, and the signal can be still considered with a finite
duration, at least from the practical point of view.

The periodic signals need a separate analysis. It has been already shown in Chapter 2
that a sequence obtained by sampling a periodic signal might not be periodic any longer.
Therefore it may happen that the sequence of the sampled values of a periodic,
continuous-time signal does not allow to retrieve the information associated with the
signal itself, even if the signal has been sampled with a sampling frequency greater than
the Nyquist frequency, because it loses the original periodicity.



Signal transformation from the continuous time to the discrete time domain 43

The sampling theorem must be hence reconsidered, in order to find if a condition
exists that allows to sample a periodic signal correctly.

The case of the periodic signals.

Fourier-series approach.

Let s5.(¢) be a continuous-time signal, represented by a generally continuous function of
time ¢, periodic with period 7 in ¢, and absolutely integrable in ¢. Under these conditions,
S.(f) can be represented by means of the Fourier series:

+oo +oo
selt) = % + Z a COS(ZT;kt) + Z by sin(znTk[j (3.18)
k:—oc k:—oc
where:
T
2
2 2mkt
ay = 7 _J; Sct (t)cos( T )dt (3.19)
2
and:

bkz

-_.NH

% Set (t)sin(znTkt}dt (3.20)

~

S|

It is also assumed that the following condition is satisfied:

a =0  forf|>N

b =0 forlk|>N (3-21)

which means that s.(#) has a bounded spectrum.

Let us now suppose to sample s.(#) with constant sampling period 7 taken in such a
way that exactly 2N+1 samples are taken over the signal period 7, from -7/2 to 7/2. This
means that the following relationship applies between 7 and 7:

T=@2N+ DT, (3.22)

showing that the signal period and the sampling period are synchronous.
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Starting from the sampled values of s.(¢) and taking into account (3.22), the Fourier
series coefficient in (3.19) and (3.20) can be evaluated as, respectively:

N
. y s( nT jcos(k 21 j (3.23)
2N+1 =, 2N +1 2N +1
N
~ 2 nT . 2nn
= sin| k 3.24
% 2N+1n=Z_NS(2N+1) ( 2N+1j 29

Due to the relationship (3.22) between 7" and 7, the integrals in (3.19) and (3.20) can
be still obtained from (3.23) and (3.24) as:

ax = lim ay (3.25)
N—o

b= lim by (3.26)
N —oo

According to Eulero, as far as (3.25) is concerned, and Gauss, as far as (3.26) is

concerned, these relationships can be further on simplified, removing the limit operation.
The following equations are obtained:

a =d -, [aj(2N+1)+k + aj(2N+1)—k] (3.27)
j=1

be=b -y [bj(2N+1)+k - bj(2N+1)—k] (3.28)
=

It can be immediately recognized that, if condition (3.21) is satisfied, then the

summations in (3.27) and (3.28) are equal to zero, for any value of |k| < N. This means
that:

KT forlk < N (3.29)
by = by
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It can also be recognized, by computing the summations in (3.27) and (3.28), that, for
N <k <2N, the Fourier series coefficients obtained from (3.25) and (3.26) provide:

A =N +1)-k (3.30)
by ==boN+1)-k

which confirms that the Fourier components of a sequence are periodic in the frequency
domain.
If condition (3.22) is removed, that is if:

T#@QN+DT, (3.31)

Eulero and Gauss relationships (3.27) and (3.28) are not applicable any longer, so that, if
the signal period and the sampling period are not synchronous, it is always:

a~k # ayg
~ forany k (3.32)
bk ES bk

Therefore, it can be concluded that a continuous-time, periodic signal is correctly
sampled if and only if both the Nyquist condition Qg = 2€; and the synchronous
sampling condition (3.22) are satisfied. Under this assumption, the original information
associated with the continuous-time signal can be retrieved from the discrete-time signal,
as shown by (3.29); otherwise, the original information cannot be retrieved any longer
from the discrete-time signal.

From a very intuitive point of view, this conclusion is explained, in a graphical way,
by Fig. 3.8 a and b. Fig. 3.8 a) shows the sequence of samples obtained by sampling a
sinewave with 20 samples/period, in a synchronous way (7 = 207;). The two periods of
the sampled signal shown in Fig. 3.8 a) have been drawn by duplicating the samples
obtained from one single period of the original signal, shifting them by 207, and
attaching them to the right of the first period plot. It can be immediately recognized that
the original sinewave appears unaltered.

Fig. 3.8 b) has been drawn in the same way as Fig. 3.8 a), again sampling a sinewave
with 20 samples/period, but not in a synchronous way (7 # 20T5). It can be immediately
recognized that a distortion appears in the sinewave, at zero crossing, as evidenced on
Fig. 3.8 b) by an ellipse.

The above mathematical derivation and the intuitive example reported in Fig. 3.8
prove that the synchronous sampling condition must be satisfied in order to preserve the
original information associated with the continuous-time signal after the sampling
operation.

Unfortunately, the synchronous condition (3.22) can be barely satisfied under practical
conditions. In fact, it requires the knowledge of the signal period, which is generally
unknown, and an infinite resolution of the sampling clock in order to generate the
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sampling pulses that satisfy (3.22) for every possible signal period 7.
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Figure 3.8. Example of correct, synchronous sampling (a) and incorrect, asynchronous
sampling (b) of a periodic signal

Due to these reasons, the synchronous sampling conditions cannot generally be
achieved, unless the signal period is a priori known and remains stable for the whole
observation interval. It is therefore important to understand what kind of errors are
generated by the lack of synchronism, quantify them and investigate the possible methods
for their reduction.

The followed Fourier-series approach to the sampling theorem for periodic signals
leads in quite straightforward way to the synchronous sampling condition, but does not
allow to explain the errors that arise when this condition is not satisfied and,
consequently, does not allow to identify the possible methods that can be adopted to
reduce them.
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Convolution approach

The approaches to the sampling operation described in the previous sections are all based
on a mathematical representation in terms of functions, in the continuous time domain,
and sequences, in the discrete time domain.

A generalization of this approach is possible if distributions are considered instead of
functions. If the sampling distribution g’(f), shown in Fig. 3.9, is defined as a proper
combination of Dirac impulses, equally spaced by the sampling period T:

+o0
g'(t)= D 8(c—kTy), (3.33)
fr=—o0

sampling a continuous-time signal s,, expressed as a function of time s,(f) is mathematically
represented by the product of s (#) by the sampling distribution (3.33):

p'(t)=s5.(t)- () (3.34)

where p’(f) is a distribution of Dirac impulses, equally spaced by the sampling period T,
whose amplitude is weighed by the value taken by function s,(¥) at each sampling time.

g

1

Figure 3.9. Representation of the sampling distribution for an infinite duration
observation interval

In the frequency domain, the Fourier transform G’(jQ2) of g’(#) is again a combination
of Dirac impulses, scaled by the quantity 1/7; and equally spaced in angular frequency by
a quantity 21/T, . G’(jQ) is therefore expressed by:

1 & 2mk
G(jQ)=— o jQ+
(Q)=— > [] T

S fr=—oo

j (3.35)

and graphically represented in Fig. 3.10.
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G(Q)

/T

2/ T

Figure 3.10. Frequency domain representation of the sampling distribution for infinite
duration observation interval

Taking into account the properties of the Fourier transform, the Fourier transform of
the sampled distribution p’(¢) in (3.34) can be obtained as the convolution of the Fourier
transforms of s(7) and g’(?):

P(jQ)=S,(/Q)*G'(jQ) (3.36)

It can be immediately recognized that, due to the periodicity of the Dirac impulses that
constitute G’(jQ2), P’(j€2) is the periodic replica of S (j€2) with period Q,=2n/T. If S,(j€2)
is upperbounded at angular frequency €y = Qy/2, each period of P’(jQ2) is a scaled replica
of S (jQ), otherwise aliasing occurs, as already shown in the previous sections.

Let us now consider a periodic signal s.(¢), with period 7. If the distribution theory is
considered, it is possible to define the Fourier transform of this signal, as a combination
of Dirac impulses, equally spaced, in angular frequency, by a quantity ;2m/7, and
weighed by the Fourier series complex coefficients appertaining to each harmonic
component. Let the Fourier transform of s.,(¢) be upperbounded, in frequency, by the N-th
harmonic component.

Let us now suppose to sample only one period of s.(#), with sampling period 7, so that
2N+1 samples are taken over the period, and the sampling theorem is satisfied. The
observation interval is therefore T, = (2N+1)7T,. Under these conditions, the sampling
distribution (3.33) becomes:

+N
glt)= Y 8(t—kTy) (3.37)
k=—N

and the sampled signal can again be mathematically expressed by the product:
pt) = 54(1)- g(¢) (3.38)

In the frequency domain, the Fourier transform of g(#) is no longer given by a
sequence of Dirac impulses, because of the finite duration of g(¢) itself. The Fourier
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transform of g() is given by:
sin(gz2 T,(2N + 1))

sin[gz2 T j

and is graphically represented in Fig. 3.11 for the case of N= 16 and 75 = 0.628 ms.

G(jQ) = (3.39)
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Figure 3.11. Fourier transform of the sampling distribution when the observation
interval has finite duration. The case of N=16 and T,=0.628 ms is represented.

It can be immediately recognized that G(j€2) is a continuous function and is again
periodic with period 2n/T in Q. Since (3.37) is an even distribution, (3.39) is a real
function.

The Fourier transform P(jQ2) of the sampled distribution (3.38) is given again by the
convolution theorem:

P(jQ) = 5,(/Q)*G(jQ) (3.40)
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In order to analyse the relationship between P(jQ2) and S (jQ2),
analysed. It can be noted that this function has its zero crossings at:

2k k integer
Q4 (k)= 2

@N+DT," |k#2N+1

and has the peak value of the main lobes at:

Q, (k)= 2;Ck ;  kinteger

S

It can be noted that both the zero crossings and the peak values are

G(jQ2) should be

(3.41)

(3.42)

located at integer

multiples of the inverse of the observation interval 7, = (2N+1)T;. If the synchronous
sampling condition (3.22) is satisfied, the observation interval is the same as the signal
period: Ty = T = (2N+1)T;. This means that the harmonic components of s.(f) are located
either under the peak value of the main lobe or at the zero crossings of (3.93), as shown

in Fig. 3.12.
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Figure 3.12. Relative position of the Fourier transforms of S,,(j€2) and G(j£2) when the

synchronous sampling condition is satisfied



Signal transformation from the continuous time to the discrete time domain 51

When the convolution (3.40) is considered, at each step of the convolution, only one
harmonic component is located under the peak of the main lobe of G(jQ2), while all other
components are located at the zero crossings of G(j€2). These components are therefore
weighed by zero, and do not contribute to the computation of each convolution value.
Therefore, the values taken by P(j€2) at each harmonic frequency of S,,(jQ2) are the same as
those taken by S,(j€2), except for a constant scale factor.

The interpolation formula

As already stated when the general formulation of the sampling theorem has been
derived, if the conditions of this theorem are met, the information associated with the
continuous-time signal must be retrieved, from the discrete-time signal, also in the time
domain. This statement led to the interpolation formula (3.17), due to Shannon, that has
been derived under the assumption that the signal was observed for an infinite duration
interval.

When the sampled signal s(?) is periodic, with period 7, the above proved sampling
theorem states that, if its spectrum is upper-bounded at harmonic N, the signal itself can
be observed for a finite observation interval equal to period 7, provided that 2N + 1
samples are taken over this period and the synchronous condition (3.22) is met. This
means that all other values taken by s.(¢) outside the sampling instants must be retrieved
by the 2N + 1 samples.

This can be proved by expressing the continuous-time signal s.(¢) as a function of its
harmonic components:

j2mk 2k
se(£) = ZS Javat | T (3.43)

. . . 2
T; being the sampling period and ® = 2Nn 1 the fundamental angular frequency.
+

Since all conditions of the sampling theorem are met, the spectral components of the

sampled signal can be obtained starting from the sequence of sampled values s(n) = s(nT;) as:

j 2mk N = 2mkn
Suf € 24 = Y s (nTy)e 2N+ (3.44)
n=—N

If (3.44) is considered in (3.43), the following relationship can be written:

271:kt N 27ckn

N
s Z O D sa(nTy)e 2N+ (3.45)

— n=—N

Sct
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By separating the term that depends on n only by those that depend on » and £, it is
possible to write:

n N 2wkt | 2mkn n t

sl =35 YsalnB) DT T =2 Y o) S

T
n=—N k=N n=—N k=N

Taking into account that:

and that 7= (2N+1)T, equation (3.46) becomes:

N sin{n (t —nT, )}
)

S

(3.47)

_nn}N sinLn (t —nT, )}

AN +1)T,

Equation (3.47) represents the interpolation formula for periodic signals. It shows not
only the same theoretical importance as Shannon interpolation formula (3.17), but it can
also be of practical use, since it is a summation of a finite number of terms and can
therefore be computed.

The leakage errors

The convolution approach to the sampling theorem in the case of periodic signals shows
that the Fourier transform (3.40) of the distribution (3.38) of the sampled data is given by
the convolution of the Fourier transform S;(j€2) of the continuous time signal and the
Fourier transform G(j€), given by 3.39, of the sampling distribution g(¢), given by 3.37.

When the synchronous sampling condition (3.22) is satisfied, that is when the signal
period T and the sampling period 7 are related by: T = (2N+1)7, the harmonic angular
frequencies Q, = 2mk/T of the continuous time signal are the same as the zero-crossing
frequencies (3.41) of G(jQ2), except for the case of k¥ = (2N+1), when the harmonic
angular frequency of the continuous time signal is the same as the frequency of the peak
of the main lobe of G(jQ). This situation is represented in Fig. 3.13, which is an
enlargement of Fig. 3.12 where the signal harmonic components are located.
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Figure 3.13. Position of the harmonic components of s.(t) when the synchronous
sampling condition is satisfied

As it has been already shown, only one harmonic component of the continuous-time
signal, the one that lies under the main lobe of G(j€2), is weighed by a non-zero value at
each step of convolution (3.40), so that the values of the harmonic components of the
sequence of the sampled, discrete-time signal are the same as the harmonic components
of the continuous-time signal.

On the contrary, when the synchronous sampling condition (3.22) is not satisfied, that
is when T # (2N+1)Ty, the zero-crossing angular frequencies (3.41) for G(jQ2) are not the
same as the harmonic angular frequencies of the continuous-time signal any longer.
Similarly, the angular frequency for the peak of the main lobe of G(jQ2) does no longer
correspond to an harmonic angular frequency of the continuous-time signal. This
situation is depicted in Fig. 3.14, where the same signal as that in Fig. 3.13 is supposed to
be sampled with a higher sampling frequency than the one adopted in Fig. 3.13, but
without meeting the synchronous sampling condition (3.22).

Due to the different relative position of G(j€2) and S, (jQ2), at each step of convolution
2ntk
(2N +1)T, ok
starting from the acquired samples, is related to the harmonic component S, (j Tj of

(3.40), the harmonic component P( j of the sampled signal, evaluated
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the continuous time signal by the following relationship:

P(jﬁ} ( j ZBh Sct( 2“}’) (3.48)
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Figure 3.14. Position of the harmonic components of s.(t) when the synchronous
sampling condition is not satisfied

The first term in the right side of (3.48) is due to the fact that the harmonic component
of S, (j€2) that lies under the main lobe of G(j2) is not centred exactly under the peak of
the main lobe itself. If the amplitude of the main lobe of G(jQ2) is normalized to 1, then
the harmonic component of S (jQ2) that lies under the main lobe of G(jQ) is weighed by a
coefficient o, with 0 < o0 < 1. The value of o depends on how displaced is the signal
harmonic component with respect to the centre of the main lobe of G(jQ2). This
displacement is given, in terms of angular frequency, by:

1 1
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and gives the distance of the actual sampling condition from the synchronous one. The
value of o depends also, of course, on the shape of the main lobe of G(jQ2).

The second term in the right side of (3.48) is due to the fact that the harmonic
components of S, (jQ2) that fall outside the main lobe of G(jQ2) are not located at the zero-
crossings of G(jQ). Therefore, they are weighed by a coefficient B, with B > 0, and give a
generally non-zero contribution to convolution (3.40). The values taken by each [,
coefficient depend on how displaced is the signal harmonic component with respect to
the nearest zero-crossing of the side lobes of G(jQ). Therefore, once again, they depend
on the value of AQ given by (3.49) and on the shape of the side lobes of G(j€2).

Of course, under synchronous sampling conditions, AQ = 0, oo = 1, B, = 0, V4, and
therefore P( j—an = SC[( j ﬁj

(2N +1)T, T

The errors coming from the non-synchronous sampling conditions are generally called
leakage errors. This name comes from the fact that the spectral energy of each impulse of
(3.35), that when the signal is observed for an infinite length interval is confined in an
infinitesimal frequency range, leaks out in a finite frequency range, equal to the width of
the lobes of (3.39), when the signal is observed for a finite length interval.

In particular, the error that arises when o < 1 is called short range leakage error,
because it is due to the spectral leakage of the main lobe of (3.39). The error that arises
when By, # 0 is called long range leakage error because it is due to the spectral leakage of
the side lobes of (3.39). Since this error can also be seen as the interference of the
harmonic components other than the one under evaluation with this last one, it is also
called spectral interference error.
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METHODS FOR THE REDUCTION OF THE LEAKAGE
ERRORS

INTRODUCTION.

The discussion of the sampling theorem reported in the previous Chapter 3 showed that a

periodic signal with period 7 and only N non-zero harmonic components is sampled

correctly if at least 2N +1 samples are taken over period T in such a way that the signal
period and the minimum sampling period 7 are related by (3.22), that is: 7= (2N+1)7.

Chapter 3 showed as well that leakage errors arise if this condition is not satisfied and
showed that these errors are related to the difference between the signal period 7 and the
observation interval 7, = (2N + 1)7T,, and the shape of the Fourier transform of the
sampling distribution.

Of course, the only way to avoid the leakage errors is, theoretically speaking, the
synchronization between the sampling clock and the signal period, so that (3.22) is
satisfied. Unfortunately, this synchronization can hardly be attained in practice, due to the
following reasons:

— the signal period is generally unknown;

— provided that the signal period has been measured, the sampling clock has generally
not enough resolution to satisfy (3.22);

— provided that the signal period has been measured and the sampling clock has enough
resolution to satisfy (3.22), the signal period is not generally stable enough to ensure
that (3.22) is satisfied along the whole measurement process.

Due to the above reasons, a periodic signal is almost never sampled in the strict
mathematical correct way prescribed by the sampling theorem. Suitable methods must
therefore be investigated in order to reduce the leakage errors that arise because of the
lack of synchronization between the signal period and the sampling period.

The most widely used methods rely on the use of windows, different from the
rectangular one (3.37), for weighing the sampled signal. This Chapter will show how the
use of suitable windows results in a reduction of the leakage errors and will discuss also
other methods, such as the interpolation methods in the time and frequency domains, for
reducing these errors further on.

At last, an hardware structure for the automatic synchronization of the sampling clock
to the signal period will be shortly described, and the conditions under which the
synchronization can be obtained in an effective way will be also discussed.



58 Chapter 4

THE WEIGHING WINDOWS.

The rectangular window.

When a signal has to be observed for a limited time, such as the period for the periodic
signals, the main purpose of a weighing window is to truncate the signal outside the
required observation interval. The most immediate weighing window is the rectangular
one, that weighs by 1 the samples which fall inside the observation interval, and by 0
those which fall outside this interval.

This window has already been discussed in the previous Chapter 3, where it has been
defined by (3.37). In Chapter 3 it has been considered symmetrical with respect to the
time origin for the sake of simplicity; in fact, in this case, it could be represented by the
even distribution (3.37), so that its Fourier transform (3.39) is real and can be handled in
a quite simple way.

In the practice, a signal is observed starting from the initial time # = 0, and therefore
the rectangular window is mathematically described by:

2N

we(t)= > 8(e—Ty) (4.1)

k=0

Since this window is used to weigh the acquired samples, it is generally applied to a
sequence in the discrete-time domain, rather than to the continuous-time signal. It is
therefore more convenient to re-write (4.1) as a sequence, in the discrete time domain:

2N

w,(n)= Zﬁ(n—k), 4.2)

k=0

where 8 () is the unit sample sequence defined by (2.2).
The rectangular window can be written also as:

( ) I, 0<n<2N 43)
w.(n)= .
r 0, otherwise

The Fourier transform of (4.3) can be immediately obtained as:

.|
A _ —jo2N+1) Sln['(ZN +1)} _
/8 (e-lw): z o IOk _l-e - _ 2 gmJoN 4

_Jo
k=0 I-e sin(mj
2




Methods for the reduction of the leakage errors 59

It is immediate to check that (4.4) is the same, in the discrete-time domain, as (3.39),
except for the exponential term that takes into account the N-samples right-shift of (4.2)
with respect to (3.37).

The magnitude of the Fourier transform of the rectangular window is given by:

W, (efw)‘: SinB'(ZNH)}

and is graphically represented in Fig. 4.1 for N = 16.
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Figure 4.1. Magnitude of the Fourier transform of the rectangular window for N=16

By analysing (4.5), the following interesting characteristics can be found for the
magnitude of the Fourier transform of the rectangular window:

— the amplitude of the second lobe is only 13 dB below the amplitude of the main lobe;

— Fig. 4.1 shows also that the asymptotical decaying of the side lobes is very poor; this

last characteristic of the Fourier transform of the rectangular window is directly

related to the discontinuity of the window itself at each end in the time domain. Since

the window and all its derivatives are not continue at the end of the window, the
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Fourier transform shows the maximum amplitude of the side lobes and the minimum
asymptotical decaying;

— at last, the width of the main lobe of the rectangular window is equal to 2m/(N+1) and
is equal to the width of all side lobes.

All above characteristics make the rectangular window very unsuitable to reduce the
effects of the lack of synchronism between the signal period and the sampling period. In
fact, for a given value of AQ in (3.49), the rectangular window provides the maximum
values for coefficients B, and the maximum deviation from 1 for coefficient o in
(3.48).Therefore the maximum short and long-range leakage errors are obtained with this
window.

The cosine windows

According to the above considerations, a reduction in the leakage errors can be obtained
if coefficients B, in (3.48) are kept as close to zero as possible, and coefficient o in (3.48)
is kept as close to 1 as possible.

Since the value of the B, coefficients is related to the amplitude of the side lobes of the
weighing window, the reduction of these coefficients is obtained if the amplitude of the
side lobes is reduced. The presence of side lobes in the Fourier transform of a weighing
window, also known as the Gibbs phenomenon, is a well known mathematical issue and
can be moderated through a less abrupt truncation of the window at its edges. This
requires the use of a window that ensures continuity at its edges. Once this kind of
windows is defined, the value of coefficient o can be set close to 1 in a suitable range of
values for AQ by adapting the shape of the main lobe.

The most widely used weighing windows are the cosine windows, whose mathematical
properties allow to tailor their shape in a quite easy way in order to optimise the values of
coefficients B, or a.

The cosine windows are defined as:

ES 2t
w(n) = ZA[ - COS ) (4.6)

where L is the order of the window, A, are the coefficients of the window, and 2N+1 is
the length of the window. This last value is the same as the observation interval,
expressed in terms of number of samples. An example of cosine windows is shown in Fig
4.2, for L=2,A4y=0.5 and 4, =-0.5. This window is called the Hanning window, and the
way it decreases to zero with continuity is quite evident

It can be immediately recognized that, for L = 1 and 4y = 1, (4.6) degenerates in the
rectangular window, that can therefore be considered as a particular case of the cosine
windows.

The Fourier transform of a cosine window can be obtained by applying the definition
(2.44) of the Fourier transform of a sequence:
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Figure 4.2. Example of cosine window for L = 2, Ay = 0.5, A, = -0.5 and N = 64

o) 400 ion 2N L-1 nln _jom
W(e )— Zw(n)e = ZZA{ cos(zN_Hje 4.7)

Nn=—oco n=0 £{=0

The order of the two summations can be changed, so that (4.7) becomes:

L-1 2N

i 2ndn | _;

W(ej‘”)z Ay cos(zN_Hje Jon 4.8)
=0 n=0

By expressing the cosine function in its exponential form, equation (4.8) becomes:

L1 4 2N j2n{’n _j 2min
W(ejw)zz_fz o 2N+ . omJon o, TON+L | mjon |

=0 2 0

=| n=

(4.9)

L1 A 2N —j(w— 227E€ Jl’l —j[(!.)+ 2275{] jn
7{ e N+l +e N+
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Finally, this equation converges to:

2nt
(D_
sin %~(2N+l)
L-1 . il
. A —JN((D— ]
o|_ ¢ 2N+
)= 2 2nt “ ’
£=0 0-
sinl — 2N+1
2
(4.10)
2nt
sin 22N+1 -(2N+1)
Ly —_jN[(D+ ZMJ
" 7{ e 2N+
=0 ® 2nt
sin 2N +1
2

which is a linear combination of shifted Fourier transforms of the rectangular window. It
is worth to note that, for L = 1 and 4, = 1, (4.10) is actually the Fourier transform (4.4) of
the rectangular window (4.2).

The peak value of the main lobe of (4.10) can be obtained by evaluating (4.10) for ® = 0:

, ( 2n£j . (zm’j
-1 —sin| —— 2mEN sin| —— _ 21N
W(ej0)= % 2 & 2NH 2 e 2N+
= ° |_sin| 2T sin| 2™
2-2N+1) 2-(2N +1)
=y sin[ 27;[} janN_omi
= Tt’—. e 2N+l 4o "2N+ | = (4.11)
£=0 sin _2mt
2-(2N +1)

2N +1)

. 2me
sin| ——
Z 2TEN 2
= ) Aycos
2N +1) . 21t
sin| ————
2-(
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It can be immediately recognized that all terms with £ # 0 in (4.11) are equal to zero,
so that (4.11) becomes:

W(ef°)= Ay - 2N +1) (4.12)

This equation has a very important meaning, because it states that, under synchronous
sampling conditions, the Fourier series components of a periodic signal evaluated after
having weighed it with a cosine window are the same as those evaluated after having
weighed the signal with the rectangular window, except for the scale factor given by the
window coefficient 4.

In order to move from the general theoretical definition (4.6) of a cosine window to
more practical definitions, parameters L and 4, must be defined. Different criteria can be
followed in their definition, according to the different desired characteristics. The first
desired window characteristic is common to all windows and requires to normalize the
window amplitude to one.

Since the cosine windows show an even symmetry, they attain their peak value for
n = (2N+1)/2. The normalization condition can therefore be written as:

L-1
w( 2N2+ lj = Z Ay cos(nl) =1
=0

that leads to the following condition:

1) 4, =1 (4.13)

Since the window must be convex, the A, coefficients must have alternate signs, with
Ay > 0. If this last condition is taken into account, (4.13) becomes:

L-1
> Jag| =1, (4.14)
=0

and represents the normalization condition, that is the first condition set for coefficients
Ay in order to define suitable weighing windows.

Cosine windows with maximum asymptotic decay

It has already been stated that the analysis of the Gibbs phenomenon, which is
responsible for the presence of the side lobes in the rectangular window, shows that the
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amplitude of the side lobes is related to the discontinuity that the windows has at its
edges.

The same mathematical analysis proves that, for a given order L, the windows that are
continuous at their edges and have continuous derivatives at their edges are those with the
maximum asymptotic decay of the side lobe amplitude.

This mathematical property suggests the conditions to set in order to find the 4,
coefficients for this kind of windows. Since the cosine terms in the cosine windows (4.6)
become equal to 1 at the windows edges, that is for n = 0 and n = 2N +1, the condition
that must be satisfied to ensure window continuity at the edges, that is: w(0) = w(2N+1) =0,
is:

~

-1
A, =0 (4.15)

0

N
Il

If L = 2 is taken, conditions (4.14) and (4.15) allow to determine the two 4, and A4,
coefficients. In particular, we get: 4o = 0.5 and 4; = -0.5, which define the Hanning
window shown in Fig. 4.2. Fig. 4.3 shows the magnitude of the Fourier transform (4.10)
in the case of the Hanning window, evaluated for N = 16. The magnitude of the Fourier
transform of the rectangular window is also reported (dotted line) in the same figure, for
direct comparison.

The advantage, in terms of reduction of the amplitude of the side lobes, and therefore
in terms of reduction of the Py, coefficients, is quite evident. The amplitude of the second
lobe of the Hanning window is 31 dB below the main lobe peak, while that of the second
lobe of the rectangular window is only 13 db below the main lobe peak.

Fig. 4.3 shows also another characteristic of this cosine window. The width of the
main lobe is twice that of the main lobe of the rectangular window. This is
mathematically proved by analysing (4.10); the width Aw,, of the main lobe of a cosine
window is given by:

2

AW, = :
2N +1

m

(4.16)

Equation (4.16) shows that the width of the main lobe of a cosine window is directly
proportional to the window order, and is L-times wider than that of the rectangular
window. This may cause serious interference problems if the sampled signal has two or
more contiguous harmonic components that fall under the main lobe of the employed
cosine window and requires to adopt the countermeasures that will be described later in
this Chapter.

Condition (4.15), that ensures the window continuity at its edges, is not the only
condition that can be set to improve the asymptotic decay of the side lobes. The analysis
of the Gibbs phenomenon shows that it can be mitigated if also the continuity of the
window derivatives is ensured at the window edges.
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Figure 4.3. Magnitude of the Fourier transform of the Hanning (solid line) and
rectangular (dotted line) windows in the case of N = 16

One of the interesting mathematical properties of the cosine windows is that, since all
their odd derivatives are expressed as a sum of sine terms, their continuity at the window
edges is naturally ensured, without any need for additional conditions. The second
derivative of a cosine window (4.6) is given by:

2 2 L-1
d wgn) _ [ _2m 2{214[ cos 2ntdn
dn 2N +1 s 2N +1

and its continuity at the window edges is ensured if the following condition is satisfied:

L-1

Zszf =0 (4.17)

£=0

Taking into account this condition, together with conditions (4.14) and (4.15), leads to
the definition of the following coefficients of a third order window: 4, = 0.375, 4, =-0.5
and A4, = 0.125. These coefficients define a third-order window, and the magnitude of its
Fourier transform is reported in Fig. 4.4, always together with the magnitude of the
Fourier transform of the rectangular window for direct comparison.



66 Chapter 4

The effect, on the amplitude of the side lobes, of having ensured the continuity of
the second derivative is quite evident. The amplitude of the second lobe of this
window is 47 dB below the main lobe peak, that is about 20 dB below the second
lobe of the Hanning window and about 30 dB below the second lobe of the
rectangular window.

According to (4.16), the width of the main lobe is three times wider than that of the
rectangular window, as clearly shown by Fig. 4.4.
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Figure 4.4. Magnitude of the Fourier transform of the third-order (solid line) and
rectangular (dotted line) windows in the case of N=16

The asymptotic decay of the side lobes can be further on increased if the continuity of
the fourth derivative is imposed at the edges of the windows. The fourth derivative of
(4.6) is given by:

d4w(n):( m j“i Y COS( zmj
dnd 2N +1) & TN

and its continuity at the window edges is ensured if the following condition is satisfied:
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D eta =0 (4.18)

This new condition, together with (4.14), (4.15) and (4.17) leads to the definition of
the coefficients of a fourth order window, the so called sin6(£) window: 4, = 10/32,
Ay = -15/32, A, = 6/32 and A5 = -1/32. The magnitude of the Fourier transform of this
window is reported in Fig. 4.5, again with the magnitude of the Fourier transform of the
rectangular window. It can be noted that the amplitude of the second lobe is 61 dB below
that of the main lobe, thus ensuring a quite effective reduction of the long-range leakage
errors. On the other hand, the main lobe, according to (4.16), is four times wider than the
main lobe of the Fourier transform of the rectangular window.
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Figure 4.5. Magnitude of the Fourier transform of the sin°(€) (solid line) and rectangular
(dotted line) windows in the case of N = 16.

Cosine windows with minimum amplitude for the second lobe

The cosine windows with maximum asymptotic decay of the side lobe amplitude are
optimized for the reduction of the long-range leakage errors. However this is not the only
way a cosine window can be optimized. In several applications, the analyzed signals may
show two spectral components at contiguous harmonic frequencies. In this case, a
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window showing the minimum amplitude of the second lobe is expected to minimize the
harmonic interference of the two contiguous spectral components on each other.

By reminding that the width of the main lobe of a cosine window is given by (4.16)
and that the width of the side lobes is the same as the width of the lobes of the rectangular
window, the minimization of the peak value of second lobe of a cosine window of given
order L requires to determine the values of the A4, coefficients that minimize the
magnitude of the Fourier transform of the cosine window for:

1 2z 27L V3 V3
Oy =AWy +— = + =
22N+1 2N+1 2N+1 2N+1

(2L +1)  (4.19)

Of course, the obtained values for the 4, coefficients depend on the window order L.
If the magnitude of (4.10) is evaluated for L = 2 and ® = m,;, it can be proven that
the obtained value is minimized by 4y = 0.54 and A4, = -0.46. These coefficients
define the second order window called Hamming window. Fig. 4.6 shows the
magnitude of the Fourier transform (4.10) in the case of the Hamming window,
evaluated for N = 16. The magnitude of the Fourier transform of the rectangular
window is reported again, in the same Fig. 4.6, for direct comparison.
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Figure 4.6. Magnitude of the Fourier transform of the Hamming (solid line) and
rectangular (dotted line) windows in the case of N = 16.
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The magnitude of the second lobe of the Hamming window is 43 dB below that of the
main lobe. If this window is compared with the Hanning window (which is also a second
order window), it can be noted that the amplitude of the second lobe of the Hamming
window (-43 dB) is much lower than the amplitude of the second lobe of the Hanning
window (-31 dB). On the contrary, the side lobes of the Hanning window (Fig. 4.3) are
more rapidly decaying than those of the Hamming window, whose amplitudes remain
almost constant. This can be easily explained by considering that the coefficients of the
Hamming window do not satisfy condition (4.15) and therefore a fast decay of the side
lobes cannot be expected.

The same optimization as that performed on the second lobe of the second order
windows can be done also on the third order windows. In this case, the window with the
minimum amplitude of the second lobe is the Blackman-Harris window, whose
coefficients are: Ay = 0.412323, A, = -0.49755, A, = 0.07922. The magnitude of the
Fourier transform (4.10) of the Blackman-Harris window, evaluated for N = 16, is
reported in Fig. 4.7, together with the magnitude of the Fourier transform of the
rectangular window for direct comparison.
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Figure 4.7. Magnitude of the Fourier transform of the Blackman-Harris (solid line) and
rectangular (dotted line) windows in the case of N = 16.

The magnitude of the second lobe of the Blackman-Harris window is 65 dB below
that of the main lobe. If this window is compared with the third-order window
optimized for the maximum asymptotic decay of the side lobe amplitudes, it can be
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noted that the amplitude of its second lobe (-65 dB) is lower than the amplitude of
the second lobe of that window (-47 dB). Similarly to the Hamming window,
however, the side lobes of the Blackman-Harris window do not decay significantly,
in agreement with the fact that the coefficients of this window do not satisfy
condition (4.15).

Flat-top cosine windows

The cosine windows analyzed until now have been optimized in order to reduce the
effects of the harmonic interference and, therefore, the long-range leakage errors. The
performed optimization was in fact concerned with the amplitude of the side lobes of the
window Fourier transform.

It has been shown that, on the contrary, the short-range leakage errors are related to the
shape of the main lobe of the Fourier transform of the employed window. In order to
mitigate the short-range leakage error, the window main lobe should be maximally flat in
the origin. This condition requires to annihilate, for ® = 0, as many derivatives as
possible for the magnitude of the window Fourier transform (4.10), according to the
window order and to the fact that the normalization condition (4.14) must always be
satisfied.

This kind of optimization leads to the definition of the so-called flat-fop windows. If a
third order window is considered, this optimization yields the following coefficients: 4, =
0.2811, 4, = -0.5209, 4, = 0.1980. The magnitude of the Fourier transform of this
window is plotted in Fig. 4.8, in the case of N = 16.

The same figure shows also the magnitude of the Fourier transform of the third-order
with maximum asymptotic decay (dashed line) and rectangular (dotted line) windows, so
that the features of the obtained flat-top window can be immediately compared with those
of these other two windows. The flatness of the main lobe is quite evident and shows that,
for a given frequency displacement (3.49), the signal harmonic component that lies under
the window main lobe is affected by a lower short-range leakage error than that caused
by any other window of the same order L.

On the other hand, the flat-top window shows a second lobe with a peak value of —45 dB,
higher than the peak value (-47 dB) of the second lobe of the third-order window, thus
confirming that it has not been optimized for the mitigation of the long-range leakage
error.

If a good performance is required for reducing both the short and long-range leakage
errors, the window order must be increased. As an example, the fifth order flat-top
window is considered, with the following coefficients: 4y = 0.21557895, 4, = -0.41663158,
Ay = 0.277263158, A5 = -0.083578947, A, = 0.006947368. The magnitude of the Fourier
transform (4.10) of this window, in the case of N = 16, is reported in Fig. 4.9.

The efficiency of this window in mitigating the short-range leakage error is well
evidenced by the flatness of its main lobe. The efficiency in the harmonic interference
reduction is also good, since the second lobe peak is 84 dB below the main lobe peak.
The main drawback in the use of this window is the width of its main lobe, equal to 5
times the width of the main lobe of the rectangular window.
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Figure 4.8. Magnitude of the Fourier transform of the third order flat-top (solid line),
maximum asymptotic decay (dashed line) and rectangular (dotted line) windows in
the case of N = 16.
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rectangular (dotted line) windows in the case of N = 16.
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The selection of the observation interval

In the previous section, the width Aw,, of the main lobe of a cosine window was shown to
be given by (4.16). This equation shows that the width of the main lobe of a cosine window
is L-times wider than that of the rectangular window, where L is the window order.

This means that the first zero of the window Fourier transform is located in:

_ 2
2N +1

o (4.20)

If this window is employed to sample a signal with a sampling period Ty, the first zero
of the Fourier transform of the continuous-time window is:

21

Qy=—="__ . 421
0" N +1)T, +-21)

remembering that ® = Q7,. This means that even under synchronous sampling
conditions, L spectral components of the sampled signal are located under the main lobe
of the cosine window, as shown by Fig. 4.10, where the Hanning window is considered
as an example.

This situation is absolutely intolerable, since a very large spectral interference appears
between the two adjacent spectral components of the signal that fall under the main lobe
of the window Fourier transform.

In order to avoid this situation, the width of the main lobe of the Fourier transform of
the selected window must be reduced by the same enlargement factor L due to the
window. According to (4.20) this can be done by processing a number of samples equal
to: M= (2N + 1)-L. In principle this increment in the number of processed samples can be
obtained either by oversampling the signal with an oversampling ratio L, or by observing
the signal for an observation interval:

T, =L-(2N +1)-T, (4.22)

If (4.21) is considered, it can immediately be recognized that oversampling the signal
by L does not solve the problem, because the total number of considered samples is
always given by: M = L-2N +1)-T/L = (2N +1). On the contrary, increasing the
observation interval by L, according to (4.22), solves the problem, as shown in Fig. 4.11
where the observation interval was doubled, since the Hanning window was employed.

As a general rule, when a L-order cosine window is used, the observation interval must
be increased by L times with respect to the minimum duration observation interval
required by the sampling theorem.



Methods for the reduction of the leakage errors 73

|ﬂr’(ef‘”)| D‘
[dB] -10 7
.20 i

.30 ‘ J

-40

-100

[=]
]
A

(=]
=
+

Figure 4.10. Relative position of the Hanning window Fourier transform and the
spectral components of the sampled signal
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Figure 4.11. Relative position of the Hanning window Fourier transform and the
spectral components of the sampled signal after having observed the signal
itself for two periods
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From the practical point of view, however, this condition should be handled with care.
In fact, whenever an observation interval longer than the minimum-length one required
by the theory is employed and the observed signal is supposed to be periodic, errors may
arise if the signal itself does not remain stable for the whole observation interval.
Therefore, before using the windows defined in the previous paragraphs, the stability of
the sampled signal over the observation interval must be checked.

At last, it is worth while observing that the leakage errors caused by the lack of
synchronism between the signal period and the sampling period can be mitigated by
using suitable windows, but this is paid in terms of an increment in the number of
samples that must be processed and, consequently, in the observation interval: both these
quantities become larger than the minimum ones allowed by the strict observation of all
assumptions of the sampling theorem.

THE INTERPOLATION METHODS

The use of smoothing windows, such as the cosine windows shown in the previous
paragraphs, is not the only possible method for reducing the leakage errors, though it is
probably the most widely employed one.

Another effective method is based on interpolation techniques that can be
implemented both in the time domain, in order to evaluate the signal period more
accurately, and in the frequency domain, in order to evaluate the signal spectral
components more accurately.

Time-domain interpolation method

Let us consider a threshold a, taken in such a way that the sampled signal s.(f) crosses
this threshold, with a given slope, only once in a period. Let us also suppose that the
signal can be considered linear in a given interval around the threshold crossing. If the
sampling period T is shorter than this interval, the signal can be supposed to vary linearly
within the sampling period. Therefore, if two samples are taken in such a way that:

set((k=1)T,)=s(k=1)< a and sy (kT,)=s(k)>a

the actual time at which the signal crosses the threshold can be obtained by linear
interpolation.
If the example in Fig. 4.12 is considered, we have that:

Asct(t)=Sct(kTs)_sct((k_l)Ts) (4.23)

Ase(t)=a—-sq((k-1)1;) (4.24)
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Figure 4.12. Example of time-domain linear interpolation

and, due to the similarity of the two triangles in Fig. 4.12, we get:

A
ar = Asailt) T, (4.24)

Asg (t)
By substituting (4.22) and (4.23) into (4.24) we get:

___ 975 ((k_l)Ts)
A Sct(kTs)iSct((k—l)TS)Ts (4.25)

so that the actual crossing time of threshold a is given by:
te=(k-)T, + At (4.26)
If the sequence of samples in the discrete time is considered, (4.25) becomes:

a—s(k—l)

A= 0=st-1)

(4.27)

and the actual crossing of threshold a occurs at the fictitious sample £ — 1 + A.
If also the successive crossing time 6. = (m-1)T; + At, is evaluated, with m > k, the
period of the continuous time signal can be estimated as:

T =ty —t, =(m—k)T, + Aty — At (4.28)

It can be noted that the correction factor Az, - At is applied to interval (m-k) T, obtained
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by processing the acquired samples, without applying the interpolation method. It can
also be noted that, under synchronous sampling conditions, the threshold crossing occurs
always at the same distance from the last sample below the threshold itself, so that Az, = At,
and no correction is needed, as expected from the theory.

This method is quite accurate if the signal can be well approximated by a linear
function within the sampling period. Generally, this assumption is valid if a sampling
period shorter than the one given by the sampling theorem is employed, that is if the
signal is oversampled. This means that, in general, for a given bandwidth of the sampled
signal, this method requires the use of a more expansive structure than the one prescribed
by the sampling theorem, since a higher sampling frequency is required.

Moreover, any measurement algorithm applied to the acquired samples requires to
process a number of samples distributed over non uniform sampling periods. In fact, the
first sampling period, in the acquired signal period, has a duration 1 - Az, while the last
sampling period has a duration A#,. For this reason, dedicated algorithms must be
implemented, which imply heavier computation burden and hence, once again, a higher
cost of the employed structure, for a given bandwidth of the acquired signal.

For the above reasons, the time-domain interpolation method is not widely employed
in the measurement instruments based on DSP techniques.

Frequency-domain interpolation method

It has been shown, in the previous Chapter 3, that the leakage errors depend on the
angular frequency shift AQ (given by (3.49)) between the signal harmonic frequency and
the inverse of the observation interval, and on the window shape. For a given window,
and a given frequency shift AQ, coefficients o and B, in (3.48) are given.

If the windows are defined in the discrete time, as done in the previous sections of this
chapter, (3.49) becomes:

T
Ao=2d L (4.29)
AN+1 T

It is quite obvious that, if the long-range leakage error can be neglected (that is the B,
coefficients can be neglected), and o is known, the leakage errors can be totally
corrected. Unfortunately, oo depends on Aw, which is an unknown quantity, so that the
correction is not viable in this simple way.

From the practical point of view, however, the following considerations apply:

— a cosine window with maximum asymptotic decay must be used, in order to mitigate
the long-range leakage error to a negligible level;

— the width of the main lobe of the employed cosine window, in the frequency domain,
is L-times wider than that of the rectangular window;

— if the observation interval is correctly selected, according to (4.22), each single
spectral component of the sampled signal remains under the main lobe of the window
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for 2L - 1 steps of convolution (3.40).

Under these conditions, the highest spectral value obtained is the one corresponding to
the convolution step with the spectral component closer to the centre of the window main
lobe; this value represents the signal spectral component affected by the short-leakage
error. The other spectral components that appear at frequencies +2m/(2N+1) do not
represent any signal spectral component, since these frequencies are not close to the
signal harmonic frequencies; they appear because of the large spectral interference of the
actual spectral component (which is still located under the window main lobe at these
convolutions steps) and these zero spectral components. The situation is graphically
depicted in Fig. 4.13, where the main lobe of a Hanning window is considered.
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Figure 4.13. Relative position of the main lobe of a Hanning window and the obtained
spectral components during the steps of convolution (3.40)



78 Chapter 4

These fictitious spectral components can be usefully employed to estimate the unknown
frequency shift Aw. In order to prove this statement, let us first consider the particular case
of a sampled sinewave:

2ni+(pj

s(t) = Aej( r (4.30)

Let us supposed that this sinewave is sampled with sampling period 7; over an
observation interval T, = MT;, where the number of samples M is imposed by the
sampling theorem and the order of the employed window.

Let us also suppose that the synchronous sampling condition has been met, so that 7, = T.
Let us also suppose that a second order cosine window is used, so that the frequency-
domain components of the sampled signal are given by the convolution of the signal
spectrum with the window spectrum. Since the synchronous sampling condition is
supposed to be met, the only spectral component of (4.30) falls exactly under the peak of
the main lobe of the window spectrum in one step of the convolution, so that the
convolution result is given by:

Ay = Aef‘POW(eJO) , 4.31)

w (e-] 0) being the peak value of the window spectrum.

Due to the width of the main lobe of the window spectrum, the signal spectral
component falls under this lobe also at the previous and next steps of the convolution, as
shown in Fig. 4.13. Therefore, the convolution result will be different from zero also for
these two steps, even if the synchronous sampling conditions are met. In particular, the
convolution result for the previous step will be given by:

27
. —J—
A =Ae’PW| e M (4.32)

and, similarly, the convolution result for the next step will be given by:

27
Ay = Ae’0W| e M (4.33)

It can be readily checked that, due to the symmetry of Wi’®), (4.32) and (4.33) deliver
the same result, so that: 4., = A.,. It is also immediate to check that: 4., = 4, < A,.

This result can be extended to any cosine window: under synchronous sampling
conditions, the highest obtained spectral component is the one that falls under the peak of
the window main lobe and corresponds to the actual signal spectral component. However,
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since the signal spectral component remains under the window main lobe for 2L — 1 steps
of the convolution, other 2L - 2 fictitious components are provided by the convolution,
with pair-wise amplitudes 4., = 4. This last property can be practically exploited to
verify, from the obtained frequency domain components of a sampled sinwave, whether it
has been sampled under synchronous sampling conditions or not.

Let us now suppose that the synchronous sampling conditions have not been met, and
that the frequency shift (4.29) appears between the sampling frequency and the signal
frequency. The highest spectral component provided by the convolution is now given by:

Ay = Aej(pOW(ejAw) (4.34)

Similarly, the results provided by the previous and next convolution steps are no
longer given by (4.32) and (4.33), but, respectively, by:

(35
~ . —Jj| — Ao
A =AWl e \M (4.35)
and:
- . j(z—n+Amj
Ay = Ae’PW| e \ M (4.36)

Since the signal spectral component does no longer fall under symmetrical positions,
with respect to the window main-lobe peak, in the preV10us and next steps of the convolution,

itis: A 1 ;tA] Itis also 4 " >4 1 ifAw>0, and 4 4 <4 4 if Aw<0.

Let us now consider the ratio between AO and the greatest between 2_1 and Zﬂ .

Z jA®
20 = _ ) (4.37)
A—l —/[——Aw]

Wle ‘M

This ratio is given by:

if Aw <0, while it is given by:
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Z JA®
Ao _ _wle) (4.38)

if Aw > 0. It can be immediately recognized that both (4.37) and (4.38) depend only on
the shape of the window main lobe in the frequency domain and Aw.

From a strict theoretical point of view, A®w can be obtained by inverting (4.37) (or
(4.38), according to the sign of Aw). However, due to the analytical complexity of W(e'®),
as shown by (4.10) in the case of cosine windows, this inversion is generally impractical,
so that only approximate expressions are given, valid for high values of M and low order
windows.

From a practical point of view, however, a number of values can be computed for
(4.37) and (4.38) and stored in a look-up table, together with the corresponding values of
A, for a given window. Once the frequency domain components AO, A and Ay
have been computed, the ratio between AO and the greatest between A _1 and A+1 is also

computed. The corresponding value of Aw is then retrieved from the look-up table by
linear interpolation between the two stored values closest to the computed ratio.

Once Am has been estimated, the exact frequency location of the signal spectral
component can be obtained. The exact value of the signal spectral component can be also
obtained from (4.34). Since the computation of W(¢“®) can be impractical too, a look-up
table can be employed for its estimation too.

The above described method, known as the frequency-domain interpolation method,
has been derived under the assumption that the sampled signal was a pure sinewave.
However this method can be applied also if the spectral interference is negligible. In this
case, in fact, the computed values of each Ay, depend only on the signal spectral

component that falls under the window main lobe, so that the same situation as the one
described above is obtained again. In most practical situations, the spectral interference
can be reduced to negligible levels if a cosine window with maximum asymptotic decay
is employed.

HARDWARE SYNCHRONIZATION

All methods described in the previous sections of this chapter allow to mitigate, at a
greater or lower extent, the errors due to the spectral leakage, but none of them allows to
eliminate them completely, since, according to the developed theory, this can be done
only if the synchronous sampling condition (3.22) is satisfied.

This condition cannot generally be attained in an easy way because of the reasons
briefly listed in the introduction to this chapter. However, it is possible to employ an
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hardware device that synchronizes the sampling period to the signal period, in such a way

that condition (3.22) is satisfied.

This device is basically a frequency multiplier and it must be designed in order to
satisfy the following requirements:

— the ratio between the output frequency and the input frequency must be
programmable, so that the proper sampling frequency can be set, in order to avoid
aliasing;

— the output frequency must be stable when the input frequency is stable, in order to
avoid jitter errors on the sampling period;

— the output frequency must be locked on the fundamental frequency of the input
signal, not on the frequency of any other harmonic component, in order to avoid
errors in the implementation of (3.22).

The hardware structure that better complies with the above requirements is the one
shown in Fig. 4.14, based on a Digital Phase-Locked Loop (DPLL) structure.
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Figure 4.14. Sampling clock synchronization device

In such a structure, the frequency of the output signal is divided by M (where M is the
desired multiplying factor) and compared with the frequency of the input signal by the
Digital Phase Comparator (DPC). The digital output signal of the DPC is converted into
an analog reference signal to the Voltage Controlled Oscillator (VCO) by the Loop filter
(generally realized by a charge integrating circuit), so that the output frequency of the
VCO is adjusted to M times that of the input signal. The frequency divider placed on the
feedback path of the structure can be easily realized in such a way that the dividing factor
M is selected by the operator within a given range, so that the first of the above
requirements is satisfied.

The main advantage in using a DPC is that it cannot lock on harmonics of the centre
frequency, so that the correct multiplying factor M is obtained. Once the DPLL is locked
on the input signal frequency, the frequency of the output signal is at least as stable as
that of the input signal, thus satisfying the second of the above requirements. Moreover,
the digital nature of this device makes the output frequency intrinsically insensitive to
temperature variations.

On the other hand, the DPC is characterized by a very low noise rejection. This means
that noise components in the input signal can introduce a trigger jitter error or noise
pulses, thus causing an error in the value of the output frequency. This problem can be
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overcome by band-pass filtering the input signal to the DPC. Of course, the centre
frequency of the band-pass filter must be the fundamental one of the signal to be
sampled.

The presence of the band-pass filter centred around the input signal fundamental
frequency limits the capability of this kind of synchronous sampling clock generator to
track the frequency variations of the input signal. Actually, this limitation is inherent to
the DPLL structure, which is characterized by its pull-out range, that is the dynamic limit
of stable operations of the DPLL itself. The presence of the filter only makes this

limitation stricter. . . .
In conclusion, condition (3.22) can be met, if such a synchronous sampling clock

generator is employed, only if the fundamental frequency of the input signal is stable
enough not to exit the pass band of the input filter. Under these conditions, the input
signal can be sampled in the theoretically ideal conditions and no leakage errors appear.



CHAPTER 5

ARCHITECTURE AND PERFORMANCE OF DSP-BASED
INSTRUMENTS

INTRODUCTION

The previous chapters have shown the mathematical basis of the sampling techniques,
which represent the theoretical background for the Digital Signal Processing. In order to
implement these techniques on a real instrument, a suitable architecture must be devised,
capable of sampling the input signals, converting them into a digital code, store them into
a memory device and, finally, process them in order to get the desired measurement result.

Such an architecture has been already shown in Chapter 1, and will be discussed more
in detail in this Chapter. Its block diagram is reported in Fig. 5.1.

Input Sampling device Measurement
signal mpling Samples result
— + = Memory ——=p Processor e

s() AD Converter u

Figure 5.1. Block diagram of a DSP-based instrument

It is possible to state, in a very intuitive way, that the capability of such a structure to
cope with the requirements of the DSP theory depends, in a very strict way, on the
performance of each block of the structure itself. Let us consider, for instance, the
sampling theorem. According to the mathematical derivations in Chapter 3, the input
signal must be sampled at a rate that is at least twice the maximum frequency in the input
signal spectrum. Very intuitively, the rate at which the input samples can be acquired and
processed depends on the rate at which the Analog-to-Digital Converter (ADC) converts
the input signal into a digital code, the rate at which the converted code is stored into the
memory, and the speed at which the processor executes the measurement algorithm.
Therefore, since the sampling rate of the structure in Fig. 5.1 depends on the performance
of each block, and the bandwidth of this structure is upper-bounded at half the sampling
rate, the analysis of the performance of each block is the key element in assessing the
bandwidth of a DSP-based instrument.
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On the other hand, still very intuitively, the accuracy with which the measurement
result can be obtained depends basically on the accuracy with which the ADC converts
the samples of the input signal into digital codes.

Therefore, it is important to have at least a rough idea on how the performance of the
single blocks in Fig. 5.1 can be evaluated in order to estimate the metrological
performance of a DSP-based instrument in the correct way.

This Chapter is aimed at providing such skills, by analysing the main characteristics of
the blocks in Fig. 5.1. No details will be given about how these blocks are realized, since
this in not the aim of this book, but only the concepts necessary to understand which
feature of each block may affect the metrological performance of the whole structure.

At last, single-channel and multi-channel structures will be considered and their
performance evaluated.

THE ANALOG-TO-DIGITAL CONVERSION

Definitions

The Analog-to-Digital (AD) conversion can be defined as the process that transforms the
input analog quantity x (generally a voltage signal) into an output digital code Y
(generally a binary code), as schematically shown in Fig. 5.2. Since the output code
features a finite number of digits (bits), the conversion process gives origin to a
quantization effect. Moreover, the whole conversion process requires a finite conversion
time to be accomplished.

Input analog Output code ¥
quantity x .
AD conversion

Figure 5.2. The AD conversion process

The device that realizes the AD conversion is called Analog-to-Digital Converter
(ADC) and is generally characterized by a voltage analog input, a digital input for the
clock signal that marks the conversion process and »n digital outputs that provide the
output code on 7 bits. The block diagram of such a device is shown in Fig. 5.3.

The following definitions are given for an ADC.

— Number of bits #: it represents the number of binary digits of the code into which the
input signal is converted. Since n is a finite number, the ADC features only 2"
possible different output codes.

— Full-scale voltage Uy: it is conventionally defined as twice the value of the input
voltage corresponding to the output code featuring the most significant bit (MSB)
equal to one, and all other bits equal to zero. For instance, if a 3-bit ADC is
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considered, this binary code is equal to 100. Let us now suppose that this code is
obtained when the input voltage is U, = 5 V. The full-scale voltage is therefore twice
this value, that is: U = 10 V. It is worth noting that this voltage would correspond to
the binary code 1000, that cannot be issued by the ADC, since it features 3 bits only.
Therefore, the full-scale voltage is greater than the maximum input voltage that can
be converted by an ADC, and that corresponds, in this case of a 3-bit ADC, to the
binary code: 111.

Un &
ADC >

clock

Figure 5.3. Block diagram of an ADC

— Resolution R: it represents the least variation in the input signal that is capable of
causing a variation in the output code. Since the least variation in the output code
corresponds to the Least Significant Bit (LSB), that is to 2™ of the full scale, the
resolution can be written, in terms of the full-scale voltage, as:

Yt
2}’1

R= (5.1)

Since the value given by (5.1) represents the input voltage associated with the LSB, it
can be seen also as the ADC “constant”, that is the dimensional quantity that allows
to obtain the input voltage U from a given code C:

U=RC (5.2)
— Conversion time ¢.: it represents the time the ADC takes to convert the input voltage
value into the corresponding output code. At first, the input voltage will be supposed

to remain constant during the conversion time. This assumption will be removed later
in this Chapter.

The ideal ADC characteristic

According to the definitions given above, an ideal ADC provides an output code
proportional to the value of the input signal, except for the error due to its finite
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resolution R given by (5.1). The relationship between the analog input value and the
output code can be graphically represented by the step-like characteristic drawn in Fig.
5.4 for a 3-bit, ideal ADC with full-scale voltage equal to 1 V.

A
code

1114 .. —,'—
Ideal transition ,
—_—

[ 7
4
0104 // \Quantization band
’

001 ¢+ =

7/
000 L2 — »
1/8 2/8 3/8 7 U

Figure 5.4. Input-output characteristic for a 3-bit ideal ADC with full-scale
voltage equal to 1 V

The quantization effect is quite evident: the output code provided by the ADC does not
change until the analog input value does not change for more than 1 LSB, that is the
width of the quantization band.

A n-bit ADC features 2" quantization bands. Since no other effects than quantization
are supposed to affect an ideal ADC, all its quantization bands have the same width,
equal to the ADC resolution.

Due to this property, the line that joins the middle points of each quantization band
(that is the geometrical locus of the middle points of all quantization bands) is a straight
line, as shown by the dashed line in Fig. 5.4. For this reason, the characteristic of an ideal
ADC is generally referred to as a linear characteristic. This is correct only if this
geometrical locus is considered, otherwise a step-like characteristic as the solid one in
Fig. 5.4 cannot be considered linear at all. However, it is worth noting that the step-like
characteristic degenerates into the geometrical locus of the middle points of the
quantization bands if the number of bits of the ADC tends to infinity: in this respect, the
limit characteristic of an ideal ADC can be considered as linear.

The quantization effect gives rise to a quantization error that, supposing to know the
actual value of the input voltage U,,, and supposing that C is the corresponding code
issued by the ADC, can be mathematically expressed as the analog quantity:
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e€=R-C-Uj, (5.3)
The same quantity can be expressed also as the digital quantity:

U.
e=C-—t, (5.4)

where R is the ADC resolution given by (5.1).
If the input voltage is supposed to vary from 0 to the full-scale value, error € takes the
saw-tooth shape shown in Fig. 5.5.
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Figure 5.5. Quantization error plot

It can be readily checked that the quantization error is always negative and varies
linearly in the range 0 — 1 LSB. Its average value is therefore -2 LSB, and is therefore
different from zero. This means that the quantization error is biased, so that any statistical
processing of this error cannot be effectively applied in order to mitigate it.
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This problem can be overcome by properly shifting the whole conversion
characteristic in such a way that the first transition occurs at % LSB instead of 1 LSB, as
shown in Fig. 5.6.
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Figure 5.6.  Shifted ADC characteristic, in order to have zero mean value of the
quantization error

The plot in Fig. 5.6 clearly shows that the total width of the error interval is always 1
LSB, as in the case of Fig. 5.5. In this case, however, the error interval is distributed
around the zero value, so that the quantization error has zero mean value in the
quantization band.

The dithering technique

Having shifted the quantization error in such a way that it is no longer biased in the
quantization band allows to implement suitable statistical processing that are expected to
mitigate the quantization error. The most employed technique is the so called dithering
technique, which is based on the superposition of dither on the input analog signal.
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The dither is an unbiased noise showing uniform probability distribution function in
the quantization band. Therefore, being R the width of the quantization band, the
probability distribution function of the dither is:

l forU—ESxSU+£
R 2 2

palx)= (5.5)

0  otherwise

where U is the voltage value to which this noise has been superimposed. Function (5.5) is
graphically represented in Fig. 5.7.
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Figure 5.7. Probability distribution function of dither

Let us now consider a generic constant input voltage U, to which noise (5.5) is
superimposed. The effect of noise is to make the input voltage to the ADC vary randomly
in the quantization band, as graphically shown in Fig. 5.8, where the quantization band
corresponding to the input voltage U is represented, together with the previous and next
ones.

Because of the superposition of dither d(¢), the input voltage to the ADC is now
variable with time and is given by:

u(t) = U + d(f) (5.6)

Due to the property of the superimposed dither, the input signal to the ADC varies for
no more than plus or minus half a quantization band around the given constant input
voltage U, as shown in Fig. 5.8. Therefore, the results of different conversions will
always show a quantization error within the £+ %2 LSB interval. This means that if a single
conversion result is considered, the conversion error will remain in the same range, no
matter whether the dither has been superimposed to the input signal or not.

Let us now suppose to perform several conversions. Due to the presence of dither, the
input voltage value considered by each conversion j will be given by:
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Figure 5.8. Dither effect

d; being an extraction of noise value, taken with uniform probability in the + /2 LSB
interval. The code issued by the ADC for the U; input will be:

R R
C if Ur——|<U: LU +—
(C 2) / (C 2]

C-1 if Uj<(UC—§j . (5.8)

C+1 if U; >(UC +§)

In the example of Fig. 5.8, where the constant input voltage is U > U, only codes C
and C+1 can be issued by the ADC. Of course, the number of codes issued with value C
will be proportional to the number of occurrences of input values U, within the

quantization band corresponding to code C.
If now N different U; values are taken, their average value is given by:



Architecture and performance of DSP-based instruments 91

. RN
U:F;(UnLdj):UﬁLW;dj (5.9)

Due to the characteristic of the superimposed dither, its average value tends to zero as
N tends to infinity. Therefore, the average value U of the input values supplied to the
ADC will tend to U. Similarly, the average value of all issued codes C; will be given by:

N J—
N « R
Jj=1

N—o0

U
=, 5.10
2 (5.10)

thus approaching, by the scale factor R, the actual value U of the input voltage. Of course,
N will be never infinite, so the actual value U can never be obtained, but only
approximated, and the approximation will be the better, the larger is N.

The dithering technique is therefore very helpful whenever an averaging algorithm can
be applied on the acquired samples, since it uncorrelates the quantization errors on the
different samples, so that the quantization error on the mean value of the samples is
reduced.

The real ADC characteristic

The conversion characteristic of a real ADC differs, in general, from that of an ideal
ADC, shown in Fig. 5.4, because of different effects that cause new conversion errors to
be added to the quantization error.

The offset error

Due to offset phenomena occurring in the electronic circuits that realize an ADC, the
conversion characteristic may be shifted with respect to the ideal characteristic, as shown
in Fig. 5.9.

It can be readily checked that the result of any conversion performed by the ADC is
affected by the same additive offset error. This means that, if C is the correct code,
corresponding to the input voltage U, the actual issued code C' is given by:

C'=INT(C +¢,), (5.11)

where €, is the offset error, expressed in terms of LSB. The same effect can be considered
as if it were affecting the input voltage, that is as if the actual input voltage were given by:
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U'=U+e, (5.12)

where €, is the same offset error as in (5.11), but now expressed in terms of the input

voltage.
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Figure 5.9. ADC characteristic in the presence of an offset error (dashed line) and ideal
characteristic (solid line)

It can be also seen that, if the real characteristic is shifted on the right, with respect to
the ideal one, as shown in Fig. 5.9, each issued code is lower than the correct ideal one;
therefore, in this situation, error &, in (5.11) is negative. The opposite occurs if the real
characteristic is shifted on the left.

Generally, the offset error can be compensated if suitable compensation circuits are
realized within the ADC itself. In this case, the residual offset error, after calibration, is
confined in the + > LSB range.

The gain error

Another possible way the real characteristic can be changed with respect to the ideal one,
because of imperfections in the ADC circuits, is shown in Fig. 5.10, where the real
characteristic is rotated, with centre in the axes origin, with respect to the ideal one.

It can be readily checked that the result of any conversion performed by the ADC is
affected by the same multiplicative gain error. This means that, if C is the correct code,
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corresponding to the input voltage U, the actual issued code C' is given by:
C'=INT(C ¢, ), (5.13)

where €, is the gain error, expressed in terms of LSB. The same effect can be seen again
as if it were affecting the input voltage, that is if the actual converted input voltage were:

U'=U-g,, (5.14)
where a'g is the same gain error as in (5.13), now expressed in terms of the input voltage.
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Figure 5.10. ADC characteristic in the presence of a gain error (dashed line) and ideal
characteristic (solid line)

In order to better quantify the gain error, it can be noted that, if the real characteristic
is rotated clockwise, as shown in Fig. 5.10, each issued code is lower than the ideal one;
therefore, the gain error is lower than 1. On the contrary, if the real characteristic is
rotated counter-clockwise, the gain error is greater than 1.

In a similar way as the offset error, the gain error can be compensated too by suitable
compensation circuits. In this case, the residual gain error, after calibration, is confined in
the £ /2> LSB range.
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The non-linearity error

The ideal ADC characteristic features quantization bands with the same width, equal to 1
LSB. However, due to imperfections in the electronic circuit, a real ADC may feature
different widths for the different quantization bands, as shown in Fig. 5.11.
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Figure 5.11. ADC characteristic in the presence of a non-linearity error (dashed line)
and ideal characteristic (solid line)

Due to the different widths of the quantization bands, the geometrical locus of the
middle points of all quantization bands is no longer a straight line, as in the case of the
ideal ADC. For this reason, the error caused by the different widths of the quantization
bands is called non-linearity error.

The most immediate way to characterize the non-linearity error is to evaluate, for each
quantization band j, the difference:

€nl, =V; ~1LSB (5.15)

where W} is the actual width of the considered quantization band, expressed in terms of
LSB. However, in this way 2" different errors should be processed for a n-bit ADC and
this is not efficient. For this reason, the maximum difference €, = max(snlj) is considered
and is referred to as the differential non-linearity error.

The non-linearity error may also have a quite critical consequence when, for a generic
quantization band j, it is: En, > 1 LSB. In this case, in fact, the width of band j + 1 is
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zero, and hence the code corresponding to this band is never issued. This situation is
graphically depicted in Fig. 5.12 and is generally referred to as the missing code error.
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Figure 5.12. Missing code error due to a large non-linearity error: code 100 is never
issued, since the non-linearity error on band 011 is greater than 1 LSB

The above defined differential non-linearity error, being only the maximum of all
possible non-linearity errors on the real ADC characteristic, does not provide a complete
description of the ADC behaviour. For this reason, the integral non-linearity error is
defined as the integral of all non-linearity errors on the whole dynamics of the ADC.
Since the ADC dynamics is given by a finite (2") number of quantization bands, the
integral non-linearity error can be expressed as:

21

&= D e, (5.16)

J=0

When the two different non-linearity errors, the differential and the integral ones, are
considered together, they provide a more detailed description of the ADC behaviour. In
fact, a large integral non-linearity error together with a small differential non-linearity
error shows that each quantization band does not differ too much from the ideal one
(small differential non-linearity error), but all (or almost all) errors have the same sign
(large integral non-linearity error). This situation is quite critical when the data converted
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by the ADC are integrated by the measuring algorithm. In this case, in fact, the resulting
error can be as large as g; if the input signal spans over the whole dynamics of the ADC.

On the contrary, when a large differential non-linearity error goes together with a
small integral non-linearity error, at least one quantization band differs from the ideal one
significantly (large differential non-linearity error), but the signs of errors €y, Are almost
equally distributed between the negative and positive ones, so that the integral non-
linearity error is small. This situation is not critical when the measuring algorithm
integrates the converted data, but becomes critical when, for instance, it derivates them.

Since the non-linearity errors involve each quantization band, and not the whole
characteristic, as the offset and gain errors, they cannot be reduced by means of
compensation circuits. However, they too are generally confined in the + % LSB range
for good quality ADCs.

ADC behaviour in the presence of a variable input signal

All concepts presented in the previous sections have been derived under the assumption
that the input signal to the ADC remains constant during the conversion interval and
therefore they are strictly correct if and only if the above assumption is verified.

However, this assumption is quite strong, especially from the practical point of view,
since most of the measurement applications, and in particular those requiring a complex
processing of the input signals that do hence benefit of the DSP techniques, deal with
variable signals.

On the other hand, if the finite resolution of the ADC is taken into account, it is
possible to loosen the above requirement. In fact, the ADC cannot sense any variation in
the input signal that remains within the resolution of the ADC itself. Therefore, it is
possible to state that the above assumption can be reformulated so that the input signal is
not required to remain constant any longer, but more simply to show, in the conversion
time, variations that are lower than the ADC resolution.

According to this new formulation, it is interesting to evaluate if an ADC can be still
used to convert variable signals and under which conditions. This can be done by
considering a sinusoidal input signal, with frequency f'and with a peak-to-peak amplitude
equal to the ADC full-scale value:

u;, (t) = %sin@nﬁ) (5.17)

In order to check whether this signal can be converted correctly or not, the maximum
variation of the signal, within the conversion time 7., must be considered and compared
with the ADC resolution.

Since the input signal is sinusoidal, its maximum variation occurs at zero crossing.
Moreover, if the conversion time is supposed to be much lower than the input signal
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period, as is the case in most practical situations, the sine value can be approximated by
the arc, so that the maximum signal variation is given by:

At o = UgsTte (5.18)

Let us now suppose that the input value falls at the centre of the corresponding
quantization band. The maximum allowed variation in order to stay within that
quantization band is hence * 2LSB. Therefore, if (5.18) is taken into account, it is:

U
Uty <55 (5.19)

2}’!

From this equation, the maximum frequency allowed for the input signal, in order to
perform the conversion correctly, for a given conversion time #, and a given number of
bits n, is given by:

fo—1 (5.20)

T on+l
27w,

Fig. 5.13 shows the plot of the maximum allowable frequency (5.20) vs. the
conversion time 7., for different given resolutions.

As an example, let us consider a 12-bit ADC, featuring a conversion time ¢, = 1 Us.
This is a typical, high-quality ADC used in many instruments based on DSP techniques. If
(5.20) is applied, the resulting maximum allowable frequency is f'= 38.86 Hz. It is quite
evident that this frequency is very low, and that the result provided by (5.20) prevents to
employ DSP-based techniques in almost every practical measurement application, unless
suitable countermeasures are taken.

The Sample & Hold devices

The previous section proved that only slowly variable signals can be converted into
digital by an ADC without introducing any additional error to those introduced by the
conversion characteristic and already described.

It has been also proved that the source of this additional error is represented by the
variation of the input signal, during the conversion process, when it exceeds the ADC
resolution.

These considerations lead, in a quite straightforward way, to identify a very effective
way for overcoming the problem. In fact, if the problem is the variation of the input
signal during the conversion process, the most immediate countermeasure is to employ a
sort of analog memory for keeping the input signal constant, or at least reduce its
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variation to less than the ADC resolution, for a time interval equal to the ADC conversion
time.
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Figure 5.13. Maximum allowable frequency for the input signal to the ADC, in order to
avoid signal variations for more than the ADC resolution in the conversion
interval

Since the input signal to the ADC is generally a voltage signal, the analog memory can
be easily realized, in principle, by employing a capacitor and a switch. When the switch
is closed, the capacitor is connected to the signal source and is charged (sampling stage).
When the switch is open (hold stage), the charged capacitor holds the voltage to which it
has been charged, that is the voltage value provided by the input signal at the switch open
time, for an ideally infinite period of time.

Of course, this is true only for an ideal capacitor, and with a null resistance of the
charging circuit and an infinite input resistance for the ADC, so that the capacitor is not
discharged during the hold stage. In practical situations all this does not apply, so that a
slightly more complex circuit, employing two voltage followers, must be implemented,
as shown in Fig. 5.14. The resulting device is called the Sample & Hold device.

In such a device, when switch S is kept close by the control input, the voltage follower
connected to the input signal U, transfers this voltage to capacitor C, charging it. The
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charge time constant T, is given by the very low output resistance of this voltage
follower.

S Uout

T

Figure 5.14. Sample & Hold device

Control
input

The accuracy with which the input voltage is transferred to the terminals of capacitor C
depends on T, and the time interval ¢, during which switch S remains closed. In fact, the
voltage value U, found at the capacitor terminals at time ., is given by:

Uy =Up|1-e T |+Uje T, (5.21)

where U, is the initial voltage on the capacitor. Therefore, at the end of the sampling
stage, the voltage found at the capacitor terminals differs from the input voltage by a
quantity:

_feh
AUs =U.-Uj, = (UO —Uin ) e b (5.22)

This last equation shows that the accuracy depends directly on the difference between
the last sampled value and the new one, and can be improved by reducing the charge time
constant and increasing the sampling time. However, for a given capacitor, the reduction
of the charge time constant is limited by the value of the output resistance of the
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employed voltage follower, which is small, but not zero. Similarly, the increment of the
sampling time is upper bounded by the bandwidth requirements of the whole instrument,
as it will be shown later in this Chapter.

At the end of the sampling stage, switch S in Fig. 5.14 opens, so that capacitor C is no
longer supplied by the input signal. The voltage value at which it has been charged during
the sampling stage is now transferred to the output signal U, by the voltage follower on
the right of Fig. 5.14.

Due to the input resistance of this voltage follower, which is high, though not infinite,
capacitor C will slowly discharge in time according to a discharge time constant tg4, so
that the output voltage is given by:

t

Ugut(1)=U, - e ™ (5.23)
It is therefore possible, from (5.23), to evaluate the maximum time interval, in the hold
stage, for which the variation in the output voltage is lower than the ADC resolution. In

fact, the maximum allowed variation is given by:

t

T U
Udl-e™ |= 2’% (5.24)
from which we get, for a positive value of U,:
_ Ufs
¢ 2i’l+1
t=-74-In U (5.25)
C

In order to avoid conversion errors, (5.25) must provide a time value ¢ > ¢, where ¢, is
the ADC conversion time. Since the input resistance of the voltage follower is given,
once the voltage follower has been chosen, this condition can be achieved by increasing
the capacitance of capacitor C. However, according to (5.22), an increment of this
capacitance causes, for a given charging time ., a decrease of the accuracy with which
the input signal is sampled. Therefore, the correct choice of C is a trade-off between a
good accuracy in the sampling stage, and a low variation with time of the output voltage
in the hold stage.

Generally, Sample & Hold devices are available, where the two voltage followers, the
switch and its control circuits are integrated in a single integrated circuit, and an external
capacitor C, properly chosen by the user, is connected to this integrated circuit.
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ADC behaviour in the presence of noise

It has been already shown that the only error affecting an ideal ADC is the quantization
one. Moreover, if the ADC characteristic is properly positioned in the conversion plane,
as shown in Fig. 5.6, the quantization error is distributed over the quantization band *+ %> LSB
and has zero mean value.

In an ideal ADC this means that, if the input voltage is uniformly distributed over the
quantization band, the quantization error is uniformly distributed too over the same band.
Under this assumption, that can be considered also for the real ADC, at least as a first
approximation, the mean square quantization error is the same as its variance and is given by:

R
sipc == 2szalx=ﬁ (5.26)
Rl 12

Taking into account (5.1), (5.26) can be written in terms of the converter full scale
voltage and bit number:

»  _ UR
SADC = "
12-4

(5.27)

Equation (5.27) represents the square mean value of the quantization error of an ideal
ADC with n-bit resolution. However, a second interpretation can be assigned to this
equation. S/ZXDC can be seen as the mean square value of a uniformly distributed noise
that is added to the input signal of an ideal, infinite-resolution ADC, so that only a finite
number 2" of output codes are issued by the ADC itself.

If this second interpretation is followed, (5.27) can be solved with respect to n, since
the quantization effect is now seen as an effect of a particular noise, which is added to the
input signal internally to the ADC. The following equation is hence obtained:

Uik 1
12

n o_
4_2
SADC

which leads to:

2 2
U U
n:log{ .- J—10g4(l2)=log4[ b ]—1.7925 (5.28)

SADC SADC
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The argument of the logarithm in (5.28) is very similar to a Signal-to-Noise-Ratio
(SNR), if only its numerator were a mean square value. It is possible to take into account
a SNR by supposing that the ADC input signal is a sinewave, with peak-to-peak
amplitude equal to the ADC full-scale voltage. Therefore, the input signal rms value is
given by:

Ufs

U= (5.29)

242

If (5.29) is considered, (5.28) becomes:
2 2
n= log4[82U j—1.7925 = 1og{ lzj ]+log4(8)—1.7925

s s

A[;C ADC (5.30)
= 10g4{ 12] ]—0.2925
SADC

This last equation does not provide, up to now, any further information with respect to
(5.27), from which it has been directly obtained. However, it is very useful because it
allows to take into account the effect of other kinds of noise that may disturb the input
signal, beyond the quantization one.

In fact, let us suppose that a noise, with mean square value sg , 1s superimposed to the
input signal. Let us also suppose that this noise and the quantization noise are not
correlated at all, so that the mean square value of the overall noise is given by:

52 =sXpc +52 (5.31)

If this noise is considered in (5.30), instead of the simple quantization noise, the
following number of bits is obtained:

2

nege = logy [U—Z] -0.2925 (5.32)
S

Fig. 5.15 shows that, for a given quantization noise, corresponding to a given rated
number of bits (and hence a given rated resolution), the effective number of bits 7
decreases as the input signal SNR decreases.

In a very intuitive way, this can be explained by considering that, as the input noise
increases, it forces the less significant bits of the output code to change because of the
noise level and not because of real changes in the input signals. Therefore, the sensitivity
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of the ADC to the input signal variations is limited by the presence of noise and, in this
case, it is worthless to have a high rated resolution of the ADC, because its actual one can
be much lower.

Fig. 5.15 shows also that the effective resolution of the ADCs tends to be the same as
the input signal SNR decreases, no matter on the nominal number of bits of the ADC
itself.
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Figure 5.15. Plot of the ADC effective resolution vs the input signal SNR

The concept of the effective bit number is very important, because it shows, in a very
clear and effective way, the role that the noise superimposed to the input signal plays in
assessing the actual ADC resolution.

It is extremely important to consider that part of the noise is added to the input signal
inside the ADC itself, due to the intrinsic noise of all electronic devices that realize the
ADC circuit. Therefore, the resolution of an ADC is upper limited mainly by the noise
level of the electronic components used to realize the ADC itself.

This leaves a very small margin to the noise that can be superimposed to the input
signal before entering the ADC, especially when a nominal resolution greater than 12 bits
is considered. Generally, the noise level generated inside the ADC is given by the
manufacturer, and must hence be taken into account by the final user of the ADC,
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because it allows to evaluate the noise margin allowed on the input signal, before
entering the ADC, in order to preserve the ADC nominal resolution.

ADC architectures

Several circuital architectures can be employed to realize the Analog-to-Digital
conversion with the properties shown in the previous sections. The discussion of these
architectures and the analysis of their electronic circuits is not the aim of this book: a
great number of dedicated textbooks is available and the interested reader can refer to
them in order to study the ADCs more in depth.

The following short sections are aimed at providing some basic indications about the
main features of the most used architectures, in order to give the reader some useful
indications in their correct selection.

The integrating converters

These converters generally perform a voltage-to-frequency, or a voltage-to-time
conversion by integrating the input signal. Since, when the input signal is constant, its
integral is a ramp, they are also called ramp, or slope converters. According to the
particular kind of the internal integrating circuit, they can be single-slope, dual-slope or
multiple-slope converters.

Due to the internal integrator, these converters feature a low internal noise, and
therefore they have a very good resolution, and a high linearity. The main drawback of
these converter is the relatively high conversion time, which ranges from a few
milliseconds to a hundred of milliseconds.

Due to their intrinsic slowness, these converter are not generally used in DSP-based
instruments, unless a very high accuracy and linearity is required on a very low frequency
band. On the other hand, they are widely used to realize Digital Voltmeters (DVM) and
Digital Multimeters (DMM) with a resolution up to 8 digits.

The successive approximation converters

These converters are presently the most used ones in a great variety of practical
applications. They are based on a closed-loop structure, where the feedback path is
realized by a n-bit resolution Digital-to-Analog Converter (DAC) and the value of the
input analog signal is approximated by means of a binary search algorithm. Therefore,
the input value is converted into a n-bit digital code with only # iterations.

Using such a structure it is possible to reach a resolution as high as 18 bits, with a
conversion time in the order of the microsecond. In the majority of practical applications,
12-bit to 16-bit resolution ADCs are used with a conversion time as short as some
hundreds of nanoseconds.

The offset and gain errors can be easily confined within the +)2 LSB range by properly
calibrating the device. The non-linearity errors are intrinsic of this structure and
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arise in the DAC structure. However, high-quality devices may feature differential and
integral non-linearity errors in the LSB range, so that missing code errors are avoided.

The flash converters

These converters are the fastest ones, being based on the direct comparison of the input
value with all quantization levels. This high conversion speed, in the order of the
nanosecond, is paid in terms of a high complexity of the electronic circuit, that limits the
resolution to 8 bits.

The complexity of the electronic circuit, and the presence of a great number of
elements that must nominally show the same characteristic and the same behaviour are
also responsible for a relatively large non-linearity error, which tends to increase as the
resolution increases.

The flash converters are mainly used in the digital oscilloscopes, where a very high
conversion speed is needed to ensure a wide frequency band, but the resolution does not
represent a strict requirement, since it cannot be fully exploited in the available graphic
display.

The AX converters

The AX converters represent the last generation of the ADCs. They are realised by an
analog modulator, based on an integrating structure, followed by a digital, low-pass FIR
filter.

The analog modulator converts the input signal into a digital signal (the so-called bit
stream), whose duty cycle, and hence its average value, is proportional to the input value.
This digital signal features also a very interesting characteristic in the frequency domain:
all noise components are shifted to the high frequencies, so that the signal spectral
components at the lower frequencies are almost noise free.

If the cut-off frequency of the digital filter is suitably selected, the filter plays the double
role of removing the noise components and extracting the average value from the bit
stream signal, so that the output code is proportional to the input signal value.

The number of bits of the output code is given by the resolution with which the digital
filter processes its data and is limited only by the residual noise introduced by the
modulator in the signal band.

Presently, the AX converters attain a resolution up to 24 bits, though their conversion
time is limited in the order of ten microseconds. A reduced conversion time can be
obtained with a lower resolution, but it remains still longer than the one typical of the
successive approximation converters.

A further advantage of the AX converters is their very low, virtually zero non-linearity
error, due to the integrating structure of the modulator.
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THE PROCESSING UNIT

The processing unit is represented by the last two blocks on the right in the block diagram
of Fig. 5.1, and accomplishes the task of processing the samples coming from the ADC
unit, according to a specific measurement algorithm, in order to provide the final
measurement result.

Of course, the processing unit and its performances can be described and analysed
using the well known analysis tools usually employed to represent a computing system.
However, for this particular application of Digital Signal Processing, only a few features
are critical in assessing the overall performance of the DSP-based instrument, and will be
briefly analysed in this section.

The most critical feature, as far as the instrument bandwidth is concerned, is the
memory access time, the computation speed of the processor and its capability of
parallelizing the internal operations. If the final accuracy and resolution are considered,
the most important feature is the number of bits of the data bus, and the processor
capability of processing data represented with this resolution with single elementary
instructions.

For this reason, the block diagram in Fig. 5.1 considers the processor and the memory
in which the sampled data are stored as two separate blocks.

Before shortly analysing the main features of these two blocks, it is worth while
defining two possible operating modes of a DSP-based instrument, since they can deeply
affect the performance required to the processing unit: real-time operation and deferred
operation.

A measuring instrument operates in real time when the measurement result is provided
at the end of the observation period, before the successive observation interval expires.
This means that real-time operations are closely dependent on the required observation
period, and the performance requested to the processing unit can be more or less strict
depending on the required measurement, and not only on the characteristics of the input
signal.

As an example, let us consider the implementation of a digital filter. In this case, the
observation period is the sampling period, since, as it will be shown in the next Chapters,
an output sample is expected at each new input sample. Therefore, the processing unit
must be able to process the whole filter algorithm within one sampling period.

On the other hand, let us consider the implementation of an averaging algorithm, such
as, for instance, the instantaneous power averaging over the signal period in order to
measure the electric active power under periodic conditions. In this case, a whole signal
period is needed, at least, as the observation period. Therefore the processing unit must
be able to process the acquired samples while the next signal period is sampled and
acquired and complete the measurement algorithm within the next signal period in order
to track the active power evolution and provide real-time measurement. Similar
considerations still apply, for example, for rms measurement and frequency-domain
component measurement.

Let us now consider an instrument that samples the input signals over the observation
period, and stores the acquired samples into its memory, without processing them. At the
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end of the observation period, the instrument stops sampling the signals, and starts
processing the acquired samples. Once the measurement algorithm has been completed
and the measurement result provided, the instrument starts sampling the input signals
again. This kind of operation is called deferred operation, because the measurement result
is not necessarily obtained within the next observation period and the input signals are
not acquired in a continuous way.

Deferred operations are very useful in laboratory measurements, when the
measurement set-up allows repetitive operations under steady state conditions. Under
these conditions, there is no need to track the input signals in real-time, since they are
stable in the successive observation periods. Therefore, all processor resources can be
devoted to a fast acquisition of the input signals, and all processing can be deferred after
the observation period has expired. Moreover, complex algorithms can be executed, since
no time constraints are present.

On the contrary, real-time operations are strictly required for in-field measurements,
when no assumptions can be made about the repeatability and stability of the input signals
along the successive observation periods and about the absence of transient phenomena.
Therefore, the input signals must be tracked continuously, and a new measurement value
is required at the end of each observation period.

In this last case, of course, part of the processor resources must be devoted to
processing the input signals, and not only to their acquisition. Since this turns into a
reduction of the sampling rate, as it will be shown in the next sections, suitable tricks
must be adopted in order to optimise the instrument performance.

The processor

Basically, every kind of processors can be employed in a DSP-based instrument, and a
wide variety of solutions is actually available.

At the beginning, the first applications of the DSP techniques to measurement
operations employed microprocessor architectures as the processing unit. The major
drawback of these architectures is, still now, their relatively low computation speed, so
that they are not suitable for real-time operations, unless the measurement algorithm is
very simple.

More recently, the microprocessor architectures have evolved towards the Digital
Signal Processor (DSP)* architecture. The internal architecture of a DSP is a special
modification of the standard internal architecture of a microprocessor, realized in such a
way to allow a very fast implementation of the multiply and accumulation operations,
that are the fundamental operations of the Digital Signal Processing techniques.

2 The same acronym (DSP) is universally used for indicating both the device (Digital Signal
Processor) and the technique (Digital Signal Processing). Attention must be paid to the context,
in order to understand whether the device or the technique is considered.
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This modification is basically the duplication of some internal devices, so that parallel
operations can be performed and the execution time optimised. Presently, the modern
DSPs feature up to some hundreds MOPS (Million Operations Per Seconds) and even
MFLOPS (Million Floating-point Operations Per Second) and simultaneous access to at
least two different memory banks, and handle data coded on up to 32 bits, in fixed and
floating-point notation.

More recently, different structures have evolved to performances that make them
suitable for DSP-based measurement applications: structures based on ASICs and
FPGAs.

An ASIC (dpplication-Specific Integrated Circuif) is a particular integrated circuit
with a number of elementary specific circuits that are not connected to each other.
Different connections can be realized by the final user by properly configuring the ASIC
in a similar way as a memory is programmed. In this way, complex functions can be
implemented by direct hardware programming, so that very fast structures are obtained.

An FPGA (Field-Programmable Gate Array) is a particular integrated circuit
containing thousands of gates that implement the elementary logical operations. The
connections between the gates can be programmed by the final user, so that very complex
logical functions can be implemented and even basic algorithms. Similarly to an ASIC, a
specific function can be implemented on an FPGA by suitably programming its hardware
architecture. Very fast operations can therefore be obtained.

It can be readily understood that architectures based on these structures, and in
particular architectures obtained by a suitable implementation of all these techniques, are
particularly suitable for real-time operations, due to their optimized internal structure and
their computation speed. Their major drawback is that they generally require long
programming operations and, being tailored on a specific measurement function, they
cannot be adapted to new functions in a flexible way.

An alternative solution, when a high flexibility is required to the measurement system,
is the use of a PC as the processing unit of the DSP-based instrument. The performances
of the CPUs used in modern PCs are sufficiently high to virtually allow also real-time
operations. The main problem, when real-time operations must be assured, is given by the
operating system running on the PC: generally, the operations performed by the operating
system are not under control of the final user, so that it is not possible to keep the
program flow of the measurement application under total control.

On the other hand, the performances of a modern PC in terms of computational
capabilities, graphic interface, mass storage and user-friendly man-machine interface
allow a relatively easy and immediate programming of the measurement functions, even
when they are extremely complex. Development tools are presently available with large
comprehensive libraries of measurement functions and graphic symbols, so that the
implementation of a new measurement function, or the modification of an existing one
are quite immediate.

PC-based instruments are particularly suited for lab applications, where flexibility
requirements are generally more important than real-time ones. On the contrary, DSP and
hardware configurable architectures are best suited for in-field applications, where real-
time requirements are much more important than flexibility, since changes in the
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measurement functions are generally very few, but the input signals must be tracked
continuously.

The memory

The main requirement for the memory block is to ensure an access as fast as possible, so
that the samples coming from the ADC can be stored in a very short time. The access
time for the memory write operation is a critical parameter in assessing the sampling
period both in real-time and deferred operations, and must be therefore carefully selected.

In general, Direct Access Memory (DMA) operations are preferable for data transfer
from the ADC to the memory. When real-time operations are required, the use of a dual-
port memory appears to be the best solution, because it allows a simultaneous access to
the memory from the ADC for data storage, and the CPU for data reading and processing.

A correct memory allocation is also extremely important when real-time operations are
required and the observation period spans over several input samples. It has already been
shown that, in this case, the measurement algorithm must be processed as soon as all
samples belonging to one observation period have been acquired, and its execution must
not stop the acquisition of the samples belonging to the next observation period.

The most convenient way to allocate the memory, in this case, is to organize it in a
double circular buffer, as shown in Fig. 5.16.
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Figure 5.16. Double circular buffer memory allocation

Let us suppose that all data coming from the ADC are stored into the memory buffers
in a DMA mode. Let us also suppose that each circular buffer contains N samples, and
that the observation period contains N samples. Therefore, the first circular buffer is
completely filled at the end of an observation period, and the stored data are available to
be processed by the CPU. Under the assumption that data coming from the ADC can be
stored in a DMA mode, all samples of the next observation period can be stored in the
second buffer while the data in the first one are processed, without interrupting or
slowing down the execution of the measurement algorithm. Once the second buffer has
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been filled, its data can be processed and the new samples can be stored in the first
buffer, and the whole process restarts.

If the time required to execute the measurement algorithm is shorter than the
observation period, real-time operations can be ensured by this particular memory
allocation.

BANDWIDTH ESTIMATION

The synthetic description of the most important components of a DSP-based instrument
and the information provided are sufficient to estimate the maximum sampling rate
allowed by a given structure, and hence, according to the sampling theory explained in
the previous chapters, allow to estimate the frequency bandwidth of the instrument.

This operation is the most critical one, when DSP-based instruments are considered,
because the correct estimation of the maximum sampling rate of the employed structure
prevents gross mistakes that may have dramatic consequences, as incurring in the aliasing
error.

In order to see how the sampling rate can be estimated, it is convenient to analyze
single-channel and multi-channel structures separately.

Single-channel structures

According to the considerations in all previous paragraphs, the single-channel structure
that is needed to acquire and process a single signal is schematically reported in Fig. 5.17.
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—»| S&H » ADC > Memory > Processor —=—>

Figure 5.17. Single-channel structure

All blocks in the diagram of Fig. 5.17 introduce a delay in the data flow through the
structure. In particular:

— Each sample of the input signal is available at the output terminals of the Sample and
Hold (S&H) block at the end of the charging time ¢, of the hold capacitor. The value
of t,, is obtained by (5.22), once the charge time constant T, and the maximum
allowed deviation AU, between the input value and the voltage on the capacitor are
given.

— The digital code corresponding to the input sample value is provided by the ADC
block with a time delay equal to the ADC conversion time ¢,.

— This code is stored in the data memory in a time equal to the memory access time #,.
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Therefore, the total time required to acquire a sample and store it into the data memory
is given by:

Ty =teh +tc+itm - (5.33)

This time represents also the minimum sampling period for deferred operations.
Therefore, the maximum sampling rate is given by:

fs = (5.34)

1
TS

and, according to the sampling theorem, the input signal bandwidth must be upper-
bounded to the frequency value:

1
fu=7 s (5.35)

If real-time operations are required, the minimum sampling time should include the
processing time 7, needed to execute the measurement algorithm strictly within the next
observation period, as stated in the previous paragraphs. Therefore, (5.33) becomes:

Tg, =tep +ic +iym +1 (5.36)

Multi-channel structures

Several measurement applications require to analyze and process more than one input
signal. In this case, the structure shown in Fig. 5.17 must be suitably modified in order to
cope with this requirement.

The most employed multi-channel structures are the so-called non-multiplexed and
multiplexed structures.

The non-multiplexed structure

The most immediate way to adapt the structure in Fig. 5.17 to acquire more than one
signal is to duplicate all components involved with signal sampling and conversion. The
resulting structure is shown in Fig. 5.18.

It can be readily checked that the sampling, conversion and storage operations are
performed in parallel on all input channels. The converted codes are then sequentially
read by the processor from each data memory bank. A slight reduction in complexity and
cost can be attained by using only one memory bank, which is sequentially accessed by
each ADC, though the whole conversion and storage process is slowed down.
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Figure 5.18. Multi-channel, non-multiplexed structure

With such a structure, the total time required to acquire one sample on all k£ channels
and store them into memory is given again by (5.33) and is the same as the total time
required to acquire one sample on one single channel. Therefore, the structure in Fig.
5.18 is the fastest one, since it features always the same sampling period, when deferred
operations are considered, no matter on the number of input channels.

In case only one memory bank is employed, (5.33) is slightly modified as:

Ty =ty +to +h-ty. (5.37)

Of course, the maximum sampling rate and the upper limit for the input signal
bandwidth are always given by (5.34) and (5.35) respectively, and the processing time ¢,
must be added to T when real-time operations are considered.

An important feature of this structure is that, if all Sample and Hold devices are
controlled by the same signal, it allows to sample all input signals simultaneously, thus
avoiding any phase error in the following measurement operations.

The major drawback of this structure is its cost, since the duplicated elements in each
channel are generally the most expensive ones.

The multiplexed structure

When the input signal frequency band is not too wide, so that fast sampling and
conversion operations are not strictly required, the cost and complexity of the acquisition
structure can be reduced by multiplexing the input signals to a single ADC, as shown in
Fig. 5.19.
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Figure 5.19. Multi-channel, multiplexed structure

It can be immediately recognized that all samples coming from the different input
signals are sequentially brought to the ADC input by the multiplexer MUX, and are
hence sequentially converted and stored into memory.

According to this structure, the total time required to acquire one sample on all k&
channels and store them into memory is given by:

Ty =tgy +k-(tg +1p). (5.38)

The comparison between (5.33) and (5.38) shows in a quite clear way that this
structure is much slower than that in Fig. 5.18, especially when the number of input
channels increases, since the sampling period is proportional to the number £ of the input
channels.

The presence of a Sample and Hold device on each channel ensures that all input
signals are sampled simultaneously, so that no phase error is caused. This is the reason
for using a Sample and Hold device on each channel, and not only one inserted
immediately before the ADC, as would be sufficient in order to avoid conversion errors
in the presence of variable input signals.

The maximum sampling rate and the upper limit for the input signal bandwidth are
given once again by (5.34) and (5.35) respectively. If real-time operations are required,
the processing time #, must be always added to 7} in (5.38).

The major benefit of using the multiplexed structure in Fig. 5.19 is its relatively low
cost, due to the fact that only one ADC and one memory bank are employed. Though this
structure is intrinsically slower than the non-multiplexed one, it is still effective in many
industrial applications, where low-frequency signals must be processed and the number
of input channels does not exceed 8 to 16 channels.
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ANTI-ALIASING METHODS AND SAMPLING
STRATEGIES

INTRODUCTION

Last Chapter 5 showed how to estimate the maximum sampling rate of an hardware
acquisition structure, starting from its characteristic features. The sampling theorem,
discussed in Chapter 3, proves that, in order to ensure a correct sampling, a continuous-
time signal must be upper-bounded in the frequency domain, and relates the sampling
rate to the maximum allowable frequency.

It may happen that the maximum sampling rate of a given structure is not high enough
to satisfy the sampling theorem for the desired measurement application, and the
increment of the sampling rate is not technically or economically viable. Furthermore, in
many practical applications, the input signals cannot be considered as upper-bounded in
the frequency domain because of the presence of noise. Therefore, suitable
countermeasures must be taken in order to prevent aliasing errors.

The possible countermeasures depend on the nature of the signals to be sampled.
According to their nature, it is possible to modify the signals themselves in order to adapt
their bandwidth to the one required by the available sampling frequency, or adopt
different sampling strategies. The first approach requires suitable hardware devices to be
used as the input stage of a DSP-based instrument, while the second approach requires to
modify the way in which the signals are sampled and the acquired samples are stored into
the data memory.

The following sections will discuss the most widely employed approaches and will
also show how the architecture of the data acquisition and conversion structure can be
modified in order to increase the sampling rate, when the signal nature prevents from
adopting any other less expensive countermeasure.

THE ANTI-ALIASING FILTER

From a theoretical point of view, the simplest situation is the one given by a signal whose
upper frequency is higher than half the sampling rate, but whose frequency-domain
components located between half the sampling rate and the upper frequency are useless,
or even harmful, in the measurement process. This is the typical case of the noise
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components, that do not carry useful information to the measurement process, and can be
hence neglected without affecting the measurement result.

In this case, the aliasing error can be avoided if the signal is filtered by an analog low-
pass filter before sampling it. Supposing that an ideal filter is employed, and that its cut-
off frequency is set at half the sampling rate f;, the frequency band of the signal after the
filter is graphically shown in Fig. 6.1.
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Figure 6.1. Ideal anti-aliasing filter effect. The light grey area represents the signal
frequency band, the darker area represents the signal frequency band after it
has been filtered

Of course, this is an ideal situation that will never occur, since all real filters are only
an approximation of the ideal one, whose frequency response is shown in Fig. 6.1.

If a real low-pass filter is employed, with cut-off frequency equal to half the sampling
rate, its frequency response differs from the ideal one, as shown in Fig. 6.2, where an
example of the possible frequency response of a Butterworth low-pass filter is reported.

It can be noted that, as expected from the design specifications, the attenuation at the
cut-off frequency is 3 dB, and that it is monotonically increasing both in the pass and stop
bands. Moreover, a finite width transition band appears. These considerations lead to the
following conclusions.

— Due to the presence of a finite width transition band, a number of signal components
located at frequency values greater than half the sampling rate is not attenuated
enough to avoid the aliasing error.

— The attenuation in the pass band is not zero over the whole band, but changes from 0 to 3
dB, thus modifying the signal components that are useful to the required measurement.
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Figure 6.2. Impact of the frequency response of a real anti-aliasing filter on the signal

It can be immediately realized that the errors caused by the filter non-ideal behaviour
can be mitigated if the cut-off frequency is modified. However, the following situations
occur.

— If the filter cut-off frequency is decreased, all signal components with frequency
values higher than half the sampling rate fall in the filter stop band, and no aliasing
error will occur. However, this means that most of the filter transition band falls in
the frequency range where the useful signal components are located. Therefore, the
virtual absence of any aliasing error is paid by the attenuation of useful signal
components, which results in a further reduction of the instrument bandwidth.

— If the filter cut-off frequency is increased, the error due to the attenuation of the
useful signal components is mitigated, but a larger aliasing error may occur, since a
larger number of signal components with frequency values higher than half the
sampling rate is supposed to be not sufficiently attenuated.

According to all above considerations, it can be stated that the correct selection of the
filter cut-off frequency and frequency response is a trade-off between these two
conflicting needs. In order to find the optimal trade-off, it is then important to assess
under which conditions the errors introduced by the anti-aliasing filters can be neglected.

The key point in this assessment is, once again, the resolution of the ADC that
converts the samples of the input signal into digital codes. In fact, the ADC is unable to
sense signal components whose amplitude is lower than its resolution, and is also unable
to sense variations in the input signal that do not exceed its resolution.

As far as the aliasing error is concerned, it does not occur if the filter frequency
response is such that the filter output is lower than the ADC resolution for all frequency
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values higher than half the sampling rate. If an input signal is considered that spans over

fs

the whole ADC dynamic range _UT’ +%, the filter gain, for frequency values higher

than half the sampling rate, must satisfy the following relationship:

G-Ug < I 6.1)

2}’!
where 7 is the number of bits of the employed ADC. This means that:

G<-L | (6.2)

2n

which leads, for n = 12, to G < -72 dB. Since the gain at the cut-off frequency is —3 dB,
the gain variation from the cut-off frequency and half the sampling rate must be —69 dB.
Therefore, if a 4™ order low-pass filter is considered, featuring a —80 dB/decade
attenuation outside the pass band, the cut-off frequency must be set at about one decade
before half the sampling rate in order to ensure that no aliasing errors occur.

Let us now consider the gain variation in the pass band. As stated, a gain variation is
reflected in the ADC output code only if the variation in the filter output signal is greater
than 1 LSB. Thus, a gain variation AG can be neglected only if it is:

AG-Ug, < Zf , (6.3)

which leads to:

AG <L (6.4)

2]1

If the filter dc gain is 1, the minimum allowed gain that does not produce variations in
the ADC output code is given by:

Gpnin =1—-——, (6.5)

that, for a 12-bit ADC, defines a band limit of —2.12-10” dB, much smaller than the —3
dB conventional pass band.

Similar considerations can be also derived for the phase frequency response. In fact, an
ideal filter features a linear phase response that does not introduce any phase distortion in
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the filter output signal. On the other hand, a real filter shows a phase distortion in the
output signal, since its phase delay is a function of frequency.

Once again, the effect of the phase distortion can be neglected if it produces variations
in the output signal that are lower than the ADC resolution.

Let us consider a At(f) phase delay variation in the pass band at signal frequency f, and
let us refer it to the reference phase delay 1 at frequency f:

At(f)=1(f)-10 (6.6)

Let us consider a sinewave as the input signal, with peak-to-peak amplitude equal to
the ADC full-scale value, and let us suppose that the filter phase delay is much smaller
than the signal period. Under these assumptions, the maximum variation in the signal
amplitude caused by a phase delay variation occurs at the zero crossing times, where the
sine function can be well approximated by its argument.

Therefore, the phase delay variation can be neglected if it is:

1 Ugs

o (6.7)

%~2nf~Ar(f)<

If period 7= 1/fis considered, the maximum relative phase delay is obtained from (6.7) as:

AT 1

T n_2n+1

(6.8)

If a 12-bit ADC is considered again, (6.8) provides a relative phase delay At 3.89-107°,

that limits the maximum allowable phase shift in the pass band to 0.244 mrad.

The results provided by (6.5) and (6.8) show that the design of an anti-aliasing filter is
a quite complex task and that its use causes a reduction of the useful bandwidth much
greater than the theoretical one given by the ideal filter. The use of the anti-aliasing filter
becomes more and more critical as the ADC resolution increases, as shown by (6.2), (6.5)
and (6.8) and therefore a great attention must be paid to this component, if present, when
discussing the accuracy of a DSP-based instrument.

THE HETERODYNE CONVERSION
The heterodyne conversion is a frequently used method for shifting a signal from a

frequency band to a different one. It is based on the mathematical property of the product
of two sinewaves. In fact, given two sinewaves at different frequencies:

N (1)2 S] ~cos(271'f1t+(p1); So(l)z SO 'COS(27'Cf0l+(P0)
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their product can be decomposed into the sum of two sinewaves, one at frequency f; — fy,
and the other one at frequency f; + fo:

20 codantf + o)+ + 0 )l(6:9)

51(0-30(0) = =L cof2nl; - fy b+ o1 =00 )]+

If the superposition principle is applied, it can be readily checked that (6.9) can be still
applied if one of the signals is no longer a sinewave, but has a finite bandwidth in the
frequency domain, as shown in Fig. 6.3. In this case, the whole spectrum of the signal,
after its multiplication by a sinewave, is decomposed into two equal replicas, the first one
shifted towards the lower frequencies, and the second one shifted towards the higher
frequencies, as shown in Fig. 6.4.

ISCf )IA

S

>
f‘

Figure 6.3. Typical finite bandwidth signal spectrum

It is then possible to discard one of the two replicas, by properly filtering the signal
provided by the multiplier. If a high-pass filter is applied, the replica of the original signal
shifted in frequency by +f; is obtained. If a low-pass filter is applied, as shown in Fig,.
6.4, the replica of the original signal shifted in frequency by —f, is obtained.

If this last solution is adopted, it is possible to translate the whole signal to a frequency
band lower than half the sampling rate, provided that the following conditions are
satisfied:

— if foin 1S the lower bound and f;.« is the upper bound of the signal frequency band, so
that the signal bandwidth is given by fiax — fmin, it must be: foax — fmin < f/2, f; being
the sampling rate;

— frequency f; of the local oscillator in the heterodyne converter shown in Fig. 6.5 must
be selected in such a way that f,,..— fo < f¢/2.
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Figure 6.4. Frequency translation of the input signal s, after multiplication by a sinewave
with frequency fy. The signal replica at the lower frequencies can be
extracted by means of a low-pass filter

fo

OSsC

Figure 6.5. Block diagram of an heterodyne converter

The above described heterodyne conversion can be implemented by the architecture
schematically shown in Fig. 6.5. The local oscillator OSC generates a sinewave with the
desired frequency fy, that multiplies the input signal s; in multiplier X. The output signal
of multiplier X is low-pass filtered, so that the low frequency replica of the input signal is
obtained as the output signal of the heterodyne converter.
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The most critical blocks in this structure are the multiplier and the local oscillator,
since they both can deeply affect the measurement accuracy.

In particular, the local oscillator is required to generate an extremely pure sinewave,
otherwise each frequency component of the input signal s, located at the generic
frequency f, will be replicated to all frequencies f— kfy, k being the harmonic order of the
frequency-domain components of the oscillator output signal. Of course, if the oscillator
output signal is a pure sinewave, it shows only one frequency-domain component for k=1,
and the heterodyne converter provides an undistorted replica of the input signal.
Otherwise, the output signal is a distorted replica of the input signal, and the greater is the
distortion in the oscillator output, the greater is the distortion in the converter output.

As for the multiplier, it must feature a very high linearity, otherwise it will cause too
some distortion on the output signal.

Once again, the maximum allowable error is given by the resolution of the ADC
employed to convert the input signal: the higher is its resolution, the lower is the
allowable error.

Presently, the heterodyne conversion is employed with good results in measurement
applications, especially in the field of telecommunications and radar applications, where
high frequency signals must be processed.

THE EQUIVALENT-TIME SAMPLING TECHNIQUE

Periodic signals represent a very important class of signals, that can be met in several
practical applications. The main property of a periodic signal s(¢), with period 7, is that:

s(t)=st+nT), n=12,.,0. (6.10)

This means that the value taken by signal s at any generic sampling time k7 is taken
again at each new period:

s(kT, )= s(kT, +nT), n=12,.. 00. (6.11)

Let us now suppose that signal s is upper-bounded, in the frequency domain, by
harmonic N; hence, according to the formulation of the sampling theorem reported in
Chapter 3 for the periodic signals, at least 2N + 1 samples must be taken over period 7.

However, it may happen that the hardware structure employed to acquire and process
signal s is unable to provide the required sampling rate, and only a number of samples
lower than 2N + 1 can be taken over period 7.

Due to (6.11), this is not a problem, provided that a sufficient number of signal periods
can be observed, since it is always possible to find the required samples in one of the
successive periods of the input signal.

This situation is well depicted in Fig. 6.6, where 10 samples per period have to be
acquired from a sinewave.
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Figure 6.6. Equivalent-time sampling technique. The upper graph shows the input signal
and the acquired samples (one per period). The lower graph shows how the
acquired samples are ordered so that one period of the input signal can be

reconstructed.

The input signal is observed for 10 periods, and only one sample is acquired from each
period, as shown in the upper graph of Fig. 6.6. The actual sampling period is given by:

T, =T+T,,

where T is the input signal period, and T is the desired sampling period.
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One period of this signal is then reconstructed, as shown in the lower graph of Fig.
6.6, by ordering the acquired samples in such a way that the time interval between two
successive samples is equal to the desired sampling period 7.

This sampling technique is called the equivalent-time sampling technique, because it
provides a signal, in the discrete time domain, equivalent to the one obtained by sampling
a continuous-time signal with sampling period 7,. It allows to push the equivalent
sampling frequency to virtually every value, by acquiring one sample every M periods of
the input signal, provided that at least M-(2N+1) periods are observed, if the signal is
supposed to be reconstructed with 2N + 1 samples per period.

This technique is based on the mathematical condition (6.10), and leads to acceptable
results only if this theoretical condition is met in practice too. This requires that the input
signal remains stable for the whole observation interval needed to acquire the required
number of samples. Of course, this condition is barely satisfied when the required
observation interval grows longer and longer, thus limiting the obtainable sampling rate
from the virtually very high values to lower values, depending on the stability of the input
signal. If the input signal does not remain stable during the observation interval, the
reconstructed signal will be affected by an error which acts as an equivalent non-linearity
error.

As for the hardware structure needed to implement the equivalent-time sampling
technique, it basically requires the implementation of a trigger circuit that recognizes a
specified threshold crossing condition, so that the beginning of a new signal period is
detected and the next sampling time accordingly set. Trigger errors are reflected into the
reconstructed signal as an equivalent linearity error again.

This technique is generally implemented in the digital storage oscilloscopes (DSO), in
order to increment their bandwidth when the input signals are repetitive.

MULTI CONVERTER STRUCTURES

All methods presented in the last sections can be usefully employed only if the input
signals show some well defined characteristics: no useful components over half the
sampling rate in order to apply the anti-aliasing filter, limited bandwidth in order to apply
the heterodyne conversion, or periodicity and stability in order to apply the equivalent-
time sampling technique.

It may happen that the input signals do not satisfy any of the above conditions, and
none of the acquisition structures shown in Chapter 5 features a sampling rate high
enough to sample the input signals correctly. In this case, it is still possible to increase
the sampling rate by modifying the acquisition structure as shown in Fig. 6.7.
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Figure 6.7. Multi-converter acquisition structure featuring K = 4 converters

The same signal is fed to all K converters, that are controlled by different Start of
Conversion (SOC) signals, shifted by a quantity equal to f.on/K, t.ony being the ADC
conversion time. The time diagram of the control signals is shown in Fig. 6.8, for the
same example with K =4 as the one in Fig. 6.7.

It can be immediately recognized that, after the first conversion has expired, the
converted data coming from the converters are stored into the data memory at a rate as
high as T = f.,n/K, thus providing an equivalent sampling rate equal to 1/7.

This architecture allows, at present, the highest frequency rates, up to some gigahertzs
when fast converters are employed.

The capability of pushing the sampling rate at even higher values is limited by the
number of ADCs that can be employed on each input channel. This limit is given by both
technical and economical reasons.

The economical reason is the high cost that such structures have, due to the ADC cost
and the complexity of the generator of the high-frequency control signals.

As far as the technical side of the problem is concerned, the multi-converter structure
can be considered equivalent to a single, high-speed converter structure only if all K
channels to which the input signal is fed feature the same performances and the same
accuracy. If the behaviour of the sampling and conversion devices is different on the
different channels, the discrete-time signal provided by this structure will appear to be
affected by a strong equivalent non-linearity error.

For this reason, the multi-converter structures are presently limited to a very few
converters for each input signal.
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CHAPTER 7

DYNAMICAL DISCRETE SYSTEMS

LINEAR DIFFERENCE EQUATIONS AND z-TRANSFORM

INTRODUCTION.

In this chapter the concept of discrete linear shift invariant dynamical systems and theirs
mathematical description in terms of n-domain and z-domain representations will be
introduced, and the preliminary concepts proposed in Chapter 3 will be revisited more in
depth.

DYNAMICAL DISCRETE SYSTEMS.

A discrete system S establishes a functional relationship between the input sequence {u}
and the output sequence {y} (see fig. 7.1).

If the system is linear the sequence a-{u;} + b-{u,} is transformed in the sequence
a-{n} + b-{y}. If the system is shift invariant, for any integer value of n,, the sequence
{u(n-ng)} is transformed in {y(n-ng)}; when the index n is associated to time the shift
invariant system is called time invariant.

The mathematical expression of the functional relationship S between the input and
output sequences represents the mathematical model of the discrete system. It can be
derived observing the input and the output sequences of the discrete system S for any
n=ny.

Experimental evidence shows that in general the value y(n) is not univocally
determined by the sequence {u} only: as a matter of fact applying the same input
sequence to two identical systems the two output sequences can be different. This
behavior is due to the “internal situation” which can be not the same for the two systems.

It is therefore necessary to introduce a set of ¢ numbers (state variables) x,(no) , ... ,
x4(no) for defining the “internal situation” (state) of the system when n = n,, in order to
establish the analytical relationship between the input and the output sequences for any
n=ny:

y(n)=F[x, (ng)s-» X, (ny);ulng),..., u(n);nJ, Vn2n, (7.1)

The minimum value of g is the order of the discrete system.
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{u(n-ng)} S (n-ng)} Shift invariant discrete
> > system

Figure 7.1. A discrete system establishes a relationship between an input and an output
sequence

To illustrate this property of discrete systems let us consider the following simple
example: the system S is an accumulator, i.e. a system summing up all the input values
{u(k)}, for k from O up to n:

Figure 7.2 shows the output sequences {y;} and {y,} for two identical accumulators
with different state for » in the range 0<n<10, when the input sequence is the unit impulse
at n=3: {u(n)} = {d(n-3)}.

When it is possible to split equation (7.1) in the following two separate parts:

xl(n)=¢1[x1(n0),...,xq(n0);u(no),...,u(n—l);n]

, Vn > n, (7.23)

xq(n)=¢q[xl(no),...,xq(;;o);u(no),...,u(n—l);n]

y(ﬂ)=g[xl (n),...,xq(n);u(n);nj, Vn2n, (7.2b)

the system is called “dynamical”.

Using (7.2a) it is possible to evaluate the state evolution of the system for any n once
given the state of the system at n = ny and the input sequence {u} in the range [ng, n-1],
while the transformation (7.2b) allows the evaluation of the output for any » given
the state and the input for the same value of the index ». It is important to point out the
different nature of the two relationships (7.2a) and (7.2b); the former transformation
for the evaluation of the state requires as arguments the whole sequence {u} in the range
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[no , n-1] together with the value of the state at n =n,, while the latter is a simple
algebraic relationship between the value of the output of the discrete system y(n) for a
given index n and the values of the state x,(n) ... x,(n) and the system input u(#n) for the
same value of the index 7.

The equations in the system (7.2a) are called state equations while relationship (7.2b)
is called output transformation.
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Figure 7.2. Accumulator response to the unit impulse at n=3 for two different values of
the accumulator internal state

n-DOMAIN REPRESENTATION OF DYNAMICAL DISCRETE SYSTEMS:
DIFFERENCE EQUATIONS.

We have already pointed out that the peculiarity of the state equations (7.2a) is that for
evaluating the state for a certain value of the index #>n, it is necessary to know the state
at n = ny and the input sequence {u(k)} for ng<k<n-1. It is trivial to verify that equations
(7.2a) can be rewritten recursively considering the initial condition for ng=n-1, in the
following format:

xl(n)=f][x](n—1),...,'xq(n—1);u(n—1);n]

, Vn>n, (7.3)

xq(n)=fq[xl(n—1),...;xq(n—1);u(n—l);n]

where the state variables are calculated now from their previous values of the state
variables x(n-1), ..., x,(n-1) and the input u(n-1).



130 Chapter 7

Hn)
x(n+1) UNIT x(n) g(x;un) —
f(x;u;n) » DELAY >

u(n)

X(no)=xXo

Figure 7.3. Block diagram representing in the n-domain a dynamical discrete system;
this representation is valid N'n>n,

The system of equations (7.3) is known in mathematics as a particular instance of a
system of difference equations of order g. It represents the counterpart of the system of
differential equations for describing continuous systems. The unknowns of this set of
equations are not numbers, as in ordinary equations, but the sequences {xi}, ..., {x,} (as
for differential equations where the unknowns are functions).

Usually in practice it comes out to be more simple to write the state equations (7.3)
and the output transformation (7.2b) in the following equivalent and more compact vector
notation:

X(n)=f[x(n—l);u(n—l);n],Vn>n0 (7.4a)

y(n)=glx(n)u(n); n],vn2n, (7.4b)
where x(n) is the gx1 state vector:
x(n)=[x,(n) .. x, ()]
and f[-] is the following ¢gx1 vector of functions f(-) of g+2 variables:
(=[£I

A dynamical system represented by the state equations (7.4a) and by the output
transformation (7.4b) can be represented schematically as shown in figure 7.3.

Once defined a dynamical system, its state-space (or phase-space) is a mathematical
g-dimensional space containing the system vector state x. We can imagine the states of a
dynamical system as points in its state-space. Assigned an initial state, as n varies the
state of a dynamical system traces out a path in the state-space called a trajectory. The
state motion is the state trajectory plotted as a function of n and can be represented in a
g+1 dimensional space.
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Figure 7.4. Example of trajectory for a 3" order dynamical system into its 3 dimensional
state-space together with the system output sequence

For example figure 7.4 shows the trajectory in the state-space for the following
dynamical system state equations (Lorentz equations):

X, (n)= xl(n—1)+0.1-[xz(n—l)—xl(n—l)]
X, (n) X, (n—1)+0.01-[28-x1 (n—l)—x2 (n—l)—x1 (n—l)x3 (n—l)]
X, (n) X, (n—1)+0.01~[x1 (n—1)x, (n—l)—3-x3 (n—l)]

with initial state x(0) =[-10 20 -5]".
Figure 7.4 shows the output of this dynamical system as well resulting from the
following output transformation:

yln)=x, (1) + x, (1) + x, (n)

Despite of the simple structure of the finite different equation (7.4a), it can describe
complex behavior of dynamical systems. Let us consider for example the following state
equation and output transformation:
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y{n)=x1(n)+ x5 (n)
with oo =1.3. Figure 7.5 shows the trajectory associated to the initial condition:

x,(0)=x,(0)=0.21

State trajectory Output sequence
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Figure 7.5. Example of trajectory and output sequence for a limit cycle

The states of this trajectory lay on a closed curve. This situation is defined a limit
cycle, since the behavior of the state vector is periodic: when it reaches the initial
conditions it repeats indefinitely the previous trajectory. This periodic behavior of the
state vector is observable from cycle oscillations of the system output y, as shown in
figure 7.5.

Figure 7.6 shows the trajectory for the same dynamical system subject to a different
initial conditions:

x,(0)=x,(0)=0.33

In this case simply changing the initial state conditions the trajectory degenerates in five
limit cycles. This behavior can be seen also from the system output y shown in figure 7.6,
where the five limit cycles are associated to five oscillation of the output sequence {y}.

If the discrete system is linear also the state equations (7.3) and the output
transformation (7.2b) are linear:



Dynamical discrete systems

State trajectory Output sequence
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Figure 7.6. Degeneration of the limit cycle of figure 7.5 into five limit cycles due to a

change in the initial state vector value

)cl(n)=a“(n)-xl (n—1)+...+alq (n)-xq (n—1)+b1 (n)-u(n—l)
: ,Vn >
x, (n)zaq1 (n)-x1 (n—1)+...+aqq (n)~xq (n—1)+bq (n)-u(n-1)

y(n)=c,(n)-x, (n)+...+cq (n)-xq (n)+d(n)-u(n),vn>n,

Also (7.5) can be rewritten in vector notation as:

x(n)= A(n)-x(n—1)+b(n)-u(n-1),vn>n,
y(n)=c(n)" -x(n)+d(n)-uln),vn=n,

where A is the following gx¢ matrix:

ay(n) ...

and b and ¢ are the g1 vectors:

(7.5)

n,

(7.5b)

(7.6)



134 Chapter 7

b)=loy() o B, 6. c)=le) e, ()]

If the system is shift invariant, the coefficients a;;, b;, ¢; and d do not depend upon the
index n.

Figure 7.7 shows the block diagram representation of a linear shift invariant system as
given by equations (7.6).

UNIT W(n)
u(n) b x(nt1 DELAY x(n) ¢!
+
+ X(n9)=xXo

Figure 7.7. Block diagram representing in the n-domain a linear shift invariant
dynamical discrete system, valid ¥'n=n

Using recursively the first equation in (7.6), for a shift invariant linear system we will
obtain the vector state sequence as a function of the initial vector state and the input
sequence:

X(no ) = X(no )

x(n0 +1) = Ax(n0 )+ bu(n0 )

x(n, +2)= Ax(n, +1)+bu(n, +1)= A’x(n, )+ Abu(n, )+bu(n, +1)

x(n, +3)= A’x(n, )+ A2bu(n, )+ Abu(n, +1)+bu(n, +2) (7.72)

n-l1
x(n)=A""x(n, )+{z A""l""bu(k)} , Vn>n,
S .

ZIM fe=rq v
—
ZSM

From the last equation in (7.7a) we can see that the state vector motion is composed by
two component: the first one is due to the initial state vector when the input sequence is
zero (ZIM — Zero Input Motion). The second component is due to the input sequence
when the initial state x(#) is zero (ZSM — Zero State Motion).

The output sequence of the linear shift invariant system results replacing the last
expression in (7.7a) into the second equation in (7.6):
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y(n)=c" A" x(n |:ZCTA" s kbu(k)}-d-u(n),‘v’n >n, (7.7b)

k=n,

If we consider now the output sequence /4(n) of the system in response to the unit
impulse 8(r), with zero initial state vector, applying (7.6) recursively it is expressed by:

x(0)=0 h(0)=¢"x(0)+dd(0 )—
x(1)= Ax(0)+b5(0)=b  A(1l)=c"x(1)+ds(1)=c" 79)
x(2)= Ax(1)+bd(1)=Ab h(2)=c"x(2)+dd(2)=c '

x(n)=A""b h(n)=c"A"'b

Comparing the expression of the impulse response /4(n) with zero state vector in (7.8)
with the output sequence y(n) in (7.7b), this last equation can be rewritten as:

y(n)=c"A" " x(n,) +h(n)*u(n), Vn>n, (7.9)
ZIR ZSR

This last relationship states that also the output sequence of a linear shift invariant
system can be obtained as the superposition of two terms. The first one on the right side
of (7.9) is the system output with no input (Z/R - Zero Input Response), while the second
term is the system output sequence in response to the input forcing sequence u(n) when
the initial state vector is zero (ZSR — Zero State Response).

STABILITY OF LINEAR SHIFT INVARIANT DISCRETE SYSTEMS.

We have seen that both the state motion and the output sequence of a linear shift invariant
system can be split in two contributes: the response of the system to the initial state with
zero input and the system response to the input sequence with zero initial state.
Nevertheless usually we wish to deal with dynamical systems which response is driven
by the input sequence only, independently on the value of the initial state vector which in
most cases is either unknown or it is impossible to force to zero.

Such kind of systems are characterized by a ZIM part of the state movement with all
its vector components converging to zero as n increases. In these cases, when n will be
large enough, the ZIM component will be negligible in comparison with the ZSM and
consequently the system output will depend on the input sequence only and not on the
initial state.

In order to analyze which are the necessary conditions to have such system behavior,
let us start considering the simplest linear shift invariant system, i.e. the system of order
one. According to (7.7a) the system ZIM motion is expressed by:
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x(n)=a""x(n,) (7.10)

Figure 7.8 shows the state movements for the following three different values of |a|:

1. |a| = 1: the state of the system does not change with »; in this case we call the
system stable;

2. la| < 1: the state of the system asymptotically converge to zero as n—eo; in this
case we call the system asymptotically stable;

3. |a| > 1: the state of the system asymptotically diverge as n—oo; in this case we
call the system unstable.

If the system is asymptotically stable, after a certain value of the index n, it will be
possible to determine the state movement by the input forcing sequence u(#n) only, since
the system response to the initial state will be negligible. This will not be possible in case
of an unstable system: after a certain value of the index » the state motion in response to
the initial state will be predominant in respect to the system response to the input
sequence. The situation of a stable system is in between the two examined before: the ZIT
contribution to the system state motion will neither diverge nor converge to zero; it will
just hold the same amplitude of the initial state.

This result can be extended to higher order systems. In this case the ZIT motion is
given by:

x(n)=A""x(n,) (7.11)

If we consider the vector norm of the state it can be demonstrated that, according to
the absolute value of the g eigenvalues® A; of the matrix A, we can have the following
system behavior:

1. If |A4)<1, for every i = 1...q, the norm of the system state vector asymptotically
converge to zero as n—eo; in this case we call the system asymptotically stable;

2. If it exists at least one value of i = 1...q such that |1]>1, the norm of the system
state vector asymptotically diverge as n—oo; in this case we call the system
unstable.

? The eigenvalues of the matrix A are the roots of the characteristic polynomial:

det(AI-A)=0
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|a|>1: unstable

x |a|=1: stable

0

Figure 7.8. The zero input state motions for a unstable, stable and asymptotically stable
linear shift invariant first order discrete system

Example 1: The system defined by the following state equation:

A A R

is unstable because the two eigenvalues associated to the matrix A are:

A, =1.050+i0.316

det(A1—A)=0=
(A=) {/12 =1.050-i0.316

and both are in module greater than 1. Figure 7.9 shows both the unstable motion and
trajectory for this system with initial state [1 1]”.
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State motion

Figure 7.9. State motion and trajectory of the unstable2" order system of example |

Example 2: The system defined by the following state equation:

A ] N

is asymptotically stable because the two eigenvalues associated to the matrix A are:

A, =0.900+i0.316

det(A—A)=0=
A(l-4) {/12 =0.900-i0.316

and both are in module smaller than 1. Figure 7.10 shows both the motion and trajectory

for this system with initial state [1 1]".

The above infernal stability definitions concerned with the system state variable
behavior is not the only conceivable. Other kind of external stability concepts, concerned
with the system input-output sequences behavior, are also of interest. In particular a
linear shift invariant system is said to have bounded-input-bounded-output (BIBO)
stability if every bounded input sequence produces a bounded output sequence for every

initial state condition (regardless of the internal state vector norm behavior).
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State motion

State trajectory
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Figure 7.10. State motion and trajectory of the asymptotically stable 2" order system of
example 2

As shown in chapter 2 a system is BIBO stable if and only if the impulse response A(n)
of the system is absolutely convergent, i.e. iff:

S () < oo (7.12)

Condition (7.12) is sufficient because if the input sequence is bounded, exists a

constant M such that |u(n)|<M<eo for any n and, if (7.12) holds, the output is bounded
either:

<M S |h(K)] < oo (7.13)

f=—oc0

S hllYuln— 1)

f=—oo

v(n)| =

The necessity of the condition (7.12) can be demonstrated if it is possible to find at
least one bounded input sequence that gives an unbounded output sequence when (7.12)
does not hold. In chapter 2 the following bounded input sequence was considered:

_[+1 if A(=n)20 714
”(")_{—1 if h(=n)<0 719

Applying this bounded input sequence the output at #=0 is not bounded:



140 Chapter 7

(7.15)

y(0)= 3 HEu(-k)= 3[R ==

f=—co

f=—oo

The result (7.15) shows that the condition (7.12) is necessary as well.
Since some of the internal state variables may not contribute to determine the output of

a linear system, B/BO stability does not imply asymptotic stability. Asymptotic stability
is a strongest concept and can be demonstrated that it implies B/BO stability. When the
word stable will be used without any further qualification in the text, it will mean

asymptotical stability.
Example 3: The system defined by the following equation:

A B pen [

Xy (”)

R

Xy (”)

is BIBO unstable, since its impulse response, shown in figure 7.11, is unbounded. The
system of this example has the same state equation as the unstable system described in
example 1. Figure 7.11 reports again its unstable zero input state trajectory.

Impulse response

ZIM trajectory
200 — 60
» T A
s
/ AN 11150
100r ? \ [
‘ o T e
s ‘;‘ \ I | 140
| \ '
Or 3 * I ilsg
R | ;!
s ! T
-100 ‘ I 1420
o
2 ! ? 1
X | 10
200 o -~ ;d
/ S . 7 0
/ . ]
-300 ; T~ .
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// ‘ \d -10
-400 % {j 2
-50 - - v - -30
-900 0 100 200 0 20 40
n

X

Figure 7.11. ZIM trajectory and impulse response of the unstable and BIBO unstable
dynamical system of example 3

Example 4: The system defined by the following equation:
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is BIBO stable, since its impulse response, shown in figure 7.12, is bounded. If we
consider now the eigenvalues of the matrix A they are:

A, =095
det(AM-A)=0=1""
A, =1.05
Given that one eigenvalue is greater than 1 the system is unstable. Figure 7.12 reports
the unstable zero input state trajectory for this system.

This example shows how the BIBO stability does not necessarily implies the system
stability.

ZIM trajectory

Impulse response
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Figure 7.12. ZIM trajectory and impulse response of the unstable and BIBO stable
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1000 0

dynamical system of example 4

THE z-TRANSFORM.

Let us consider now two infinite power series, P1(§) and P,(&), in the complex variable &:

10%
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PE)=Ya,¢ (7.16)
P(&)= 3 h,¢" (7.17)

and their product P(§):
PO=REVPO)= Yot r.15)

Analyzing the relationship between the coefficients of P(€) and those of P(§) and
Py(&), it follows:

c,= Y ab,, (7.19)

k=—oo

Comparing (7.19) with the convolution product (2.22) it results that the coefficients of
P are the convolution of the coefficients of P; and P,.

This property can be useful if we consider the power series coefficients as element of
sequences. In this case we obtain the remarkable result of converting the complicated
convolution product between sequences into the simpler ordinary product between
complex functions.

We are ready now to introduce the z-transform X(z) of a sequence {x(n)}. It is defined
as the power series (7.16) where the coefficients a, are the elements x(#) of the sequence
to be transformed, and the complex variable & is replaced by z™, i.e.:

X(2)= 2= S xln) (7.20)

n=—o0

Example 1: given the sequence {x(n)}= {d(nt+1)+d(n-1)} its z-transform is the
complex function:

z2 +1

X(z)zz+z_1 =
z

Figure 7.13 shows the module of the function X(z) in the z-plane.
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Since the power series (7.20), and therefore the z-transform, is a special form of a
Laurent series®, its region of convergence (ROC) D is always composed by the open
annular region in the complex plane r<|z|<R centered on z=0. The values » and R are the
minor and major radius of convergence, respectively. In D the power series (7.20)
converges uniformly (and absolutely), and consequently in D the function X(z) is an
analytic function of the complex variable z. Outside D the power series (4.20) does not
converge; on the border OD of D (7.20) may or may not converge, but at least in one
point on 0D there will be a singular’ point for X(z).

It is very important to point out that there may be different sequences {x(n)} in (7.20)
converging to the same z-transform X(z), but the convergence will be in different ROCs.

Example 2: The analytic function:

ﬂ---
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Figure 7.13. Module of the z-transform of the sequence {S(n+1)+3d(n-1)}

‘A Laurs:nt series of an analytic function f{z) is the power series:
—n
fl2)=2c,(z-2)

SA singular point for an analytic function f{z) is a point z, where does not exist the derivative of f{z).
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has two singular points in z;=-2 and z,=1. As shown in figure 7.14 there are three annular

ROCs in the complex plane:

the interior of the disc D,=z|<1;

the annular region D,

1<|z<2;

o
A
]

the external portion of the circle |z]=2 D;=

KRMMBIMhL

AMMN
AMMMD
AMNMHINRR
AL
AN
AAMMMNINY
AAMMMIN)Y
RO

|

Figure 7.14. The three ROCs D\, D, and Ds of three sequences {x}, {x,} and {x3} with

2

the same z-transform X(z) in the example

Convergent in D3

b,

Convergentin

Convergent in D,

20

-04

14

-5

Figure 7.15. Plot of the three sequences {x\}, {x,} and {x3} convergent to the same z-

transform X(z) of example 2
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It can be demonstrated that the following three different power series, associated to

three different sequences {x;}, {x,} and {x;}, are convergent to the same X(z) in each
ROC D], D2 and D3:

0

X(2)= :lel (n)z"’ = Z_[1+(_2)"*‘]Z*" , for each z in D,

n=—oco

oo +oo 0
X(Z) = 2)52 (n)Z_" = ZZ_" - z (—2)"_1 z™", for each z in D,
n=1

n=—oco n=—oo

+oo

X(z)= §x3 (n)z™" :Z[l (_2)”"][" , for each z in D;

Nn=—oc0 n=1

The three sequences {x;}, {x,} and {x3} are shown in figure 7.15.
From the previous example it is possible to see that the sequences {x;}, {x,} and {x3}
have the following properties relating their respective ROC with the type of sequence:
e {x}, convergent for |z|<1, is a sequence with x(n)#0 for n<0;
o {x,}, convergent for 1<|z|<2, is a sequence with x(1n)#0 for -co<p<oo,
e {x;}, convergent for |z[>2, is a sequence with x(n)#0 for n>0;
More generally it is possible to classify sequences in four groups, each of them having
a different ROC:
1. Finite length sequence: it is a sequence {x} with x(n)#0 only for n<n<n,. For this
type of sequences the ROC is the whole complex plane. If 7,<0 there are no
coefficients of z” in the z-transform with #>0, and the ROC will include the point z=0.
If 7,20 in the z-transform there will be only terms z” with n>0 and in this case the
ROC will include the point z=co.
2. Right monolateral sequence: it is a sequence {x} with x(n)#0 only for n=n,. If
n¢<0, the z-transform of this type of sequence is composed by two terms:

X(z)= ZX('I)Z_" ++Zm:x(n)z"" (7.21)

n=ng n=0
N
finite length

The first finite length term converge everywhere but at z=es. To see what is the ROC
for the second term let us suppose that it is convergent for a certain z=z,. For every
|z[>|zo| the absolute value of each term in the infinite power series in (7.21) will be
smaller than for z=z,. As a consequence the second term will be absolutely (and
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uniformly) convergent for |z[>r, with  equal to the minimum value of |zo|. The ROC of
(7.21), being the intersection of the ROCs of the two power series in (7.21), will
include all the complex plane |z]>r, without the point z=co. If n;=0 the ROC will
include this point.

3. Left monolateral sequence: it is a sequence {x} with x(n)#0 only for n<i,. If ny>0,
the z-transform of this type of sequence is composed by two terms:

0 1y

X(z)=> x(n)z"+ Z x(n)z™" (7.22)

-
finite length

The second finite length term converge everywhere but at z=0. To see what is the ROC
for the first term let us suppose that it is convergent for a certain z=z,. For every |z|<|z|
the absolute value of each term in the infinite power series in (7.22) will be smaller
than for z=z,. As a consequence the second term will be absolutely (and uniformly)
convergent for |z|<R, with R equal to the maximum value of |zo|. The ROC of (7.22),
being the intersection of the ROCs of the two power series in (7.22), will include all
the complex plane |z|<R, without the point z=0. If 1n,<0 the ROC will include this
point.

4. Bilateral sequence: it is a sequence {x} with x(7)#0 for -co<n<+eo, The z-transform
of this type of sequence is composed by two terms:

X(2)= 3 x(n)z" +2x(n)zn (7.23)

left monolateral right monolateral

The two power series in (7.23) are convergent for any |z|[<R and any |z|>r respectively.
If R>r for this type of sequence the ROC of the z-transform will be the annular ring
r<|z|<R. If it results R<r the power series (7.23) will be not convergent and there will
be not z-transform for the bilateral sequence.

The computation of the z-transform from an arbitrary sequence {x(n)} can be quite
challenging. In table 7.1 the z-transforms and their ROCs are cataloged for some
important elementary sequences.

In digital signal processing very often we have to deal with z-transforms X(z) which
are rational functions, i.e. they results from the ratio between two polynomial in z. The
roots of the numerator polynomial, where X(z)=0, are called the zeros of the function
X(z). The roots of the denominator polynomial, which are singular values for X(z), are
called the poles of X(z). The poles lay in the z-plane on the border 0D of the ROC for the
z-transform. For the graphic representation of the z-transform of a sequence often it is
very useful to plot in the z-plane the location of the zeros, with the symbol ‘0’, and of the
poles, with the symbol ‘x’. This plot is called pole-zero diagram.
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Table 7.1. z-transforms of elementary functions

Sequence {x(n)} z-transform X(z) ROC
&n) 1 All 2
unit step /(n) z I IZ>1
z—
zZ(z+1)"
n'1(n) (( 1)2” 1
7
a"1(n) : il
z—a
1—1
az\z+a
n'a"l(n) (()t-)H Iz>{al
z—a
- az”' sin(w,)
a’sin(@yn)1 (n) 1-2az"' cos(w,) +a’z™ g
0
. 1—az™" cos(w,)
a"cos(aym) () 1-2az" cos(a,) +a’z"> S
0
oy All z, except z=0 if
a"(1[n}-1[n-ny)) 1"72] no>1 and z=oo if
1—az ne<1

It is very important to underline the close relationship between the z-transform and the
Fourier transform of a sequence. Writing the complex variable z in polar form as:

z=pe’® (7.24)
the definition (7.20) of the z transformation can be rewritten as:

X(z)=z(x)= Zx(n)p’"e'j“’” (7.25)

N=—oo

If the ROC of the z-transform includes the circle with radius one, on this circle where
lzZl=p=1 (7.25) represents the Fourier transform (2.44) of the sequence x(#); thus the
Fourier transform of the sequence can be evaluated by its z-transform (7.20) substituting
the complex variable z with e/*:

F(x)= > x(n)e " = X(ej‘") (7.26)
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The periodicity of the Fourier transform of a sequence is now obvious from this
geometric interpretation. Figure 7.16 shows the values of the module of the z-transform
of the example 1 evaluated on the circle of radius one in the z-plane.

Since X(¢) is a complex function of the real argument @, its amplitude and phase can
be plotted as function of the angular frequency w as in figure 7.17 where the values of the
amplitude and phase of the complex function X(z) assumed along the unit circle are
plotted as function of the phase of the complex number z=¢/“ (i.e. the angular frequency
). This function represent the Fourier transform of the original sequence X(¢/“).

/

Im(2) 2 2 Re(2)

Figure 7.16. The magnitude of the Fourier transform of a sequence is the absolute value
of the z-transform evaluated on the unitary circle in the z-plane
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Figure 7.17. The amplitude and phase of the z-transform computed along the unit circle
in the z-plane, representing the Fourier transform of the sequence of
example 1
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Table 7.2. Properties of z-transforms

Property Sequence z-transform X(z) ROC
x(n) X(z) r<|zZ[<R (ROC)
Notation x1(n) Xi(2) r<z[<R (ROC))
x(n) Xo(2) r<zZ[<R (ROC))
Homogeneity
: ROC
(Scaling) ox(n) axX (2)
. At least
Additivity x1(n)+xa(n) Xi(2)+Xa(2) ROCAROC,
. . At least
Linearity oxy(n)+fxy(n) X (z)+X(2) ROC, rf??SOCZ
ROC, except
Shift (Delay) x(n—nyp) z ™ X(z2) z=0 if no>0 and
z=o0 if 1ny<0
Reversal x(=n) X(1/z) V/R<[z|<1/r
Scaling in the z N ¥ )
domain @' x(n) Xa'z) lalr<iel<lalR
Complex modulation &" x(n) X(e%) ROC
Complex conjugate x (n) X(Z) ROC
Differentiation in the dX(z)
. . —z—= R
z domain (Ramping) nx(r) Sy oc
1 X
Reciprocal Decay —x[n] - j () dz ROC
n z
Periodic Extension of | < 2V X(2)
+ kN
Signal of Length N nz::; X+ kN) N1
: At least
Convolution | xy(n)*xa(n) X(@)Xal2) ROC,AROC,
T 1 z \dg At least
Multiplication x1(n)-x(n) 2—”] X, (&)X, [fj ? . r2<|z‘e<a;1 R

The z-transform Z(-) has few remarkable properties, similar to those of the Laplace
transform, and summarized in table 7.2. Here some comments are given about how they

have been obtained.

Linearity: it derives directly from the z-transform definition. The ROC of the linear
combination of two sequences {x;} and {x,} is at least the intersection of their ROCs. It
can be wider because some zeros of the combination may cancel out some poles. This
happens for example when a finite length sequence, converging everywhere but in z=0 or
in z=oo, results from the combination of two infinite length sequences. This is the case for
the finite length sequence {a"I(n)-a"1(n-2)} (see table 1) converging everywhere but at
z=0, while the two sequences {a"I(n)} and {a"1(n-2)} are convergent only for |z|>|a].
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Shift: the z-transform of a shifted (delayed) sequence by ny samples is given by

Zlx(n—n,)|= kix(k —ny)z " = ix(j)z_(”“) =z7" Z[x(n)] (7.22)

The z™™ term in (7.22) introduces poles in z=0 if 7,>0 and in z=eo if 1;<0.
Reversal: reversing a sequence results in the following z-transform

Zen)l= Skt = 3 ]@ _ X(lj (7.23)

f— oo z

Scaling: multiplying a sequence {x} with an exponential sequence {a"} results in the
following z-transform:

zla"x(n))= ix(k)akz’k = i x(k)(zj_k = X(zj (7.24)

f=—oco f=—co

If a is real, with 0<a<l, (7.24) is a compression in the z-plane of the z-transform of
x(n). If a is real with a>1 (7.24) is instead an expansion of X(z). If a is complex with
laj=1, i.e. a=¢/%, (7.24) produces a rotation for X(z) of an angle & around the origin in the
z-plane (modulation). Figure 7.18a shows the effect of different scaling on the z-
transform of the sequence {a"[Xn+1)+&n-1)]}.

On the pole-zero location the scaling has the effect to move them along radial cords in
the complex plane (see figure 7.18b). The complex modulation instead rotate the position
of poles and zeros in the z-plane (see figure 7.18b).

Conjugation: The z-transform of the complex conjugate is given by:

£le)= S e = Lix@)(z*)k}* _x()

Differentiation: it comes out directly from the derivative of the " term x(k)z* of the
z-transform of {x(n)} :

d[x(i;z)zk] =—kx(k)z"" = .
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Figure 7.18. a- Scaling and complex modulation effects on the z-transform
b - Scaling and complex modulation effects on the zeros and poles location

Reciprocal decay: it derives from the integration of the k" term x(k)z* of the z-
transform of {x(n)}:

ix(k)z

z lx(k) = i lx(k)z”‘ = i - J.x(kZ)deZ:_J'MdZ:_J'X(Z)dZ

k =k = z

—k

Convolution: on the basis of the z-transform definition, the convolution of two
sequences is the product of their transformations:

Z(x, *x,) = X,(2)- X, (2) (7.25)
The ROC of the product X (z)X5(z) is at least the intersection between the two ROCs of

X; and X;. If there is a compensation between some zeros and poles of Xi(z) and X5(z) the
ROC can be wider then just ROC;NROC,.
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Multiplication: More complicate is the transformation of the product of two
sequences:

Z('xl X, )= 2; §lX1 (g)Xz (2]? (7.26)

The integration contour I' must lie inside the ROC of both the z-transforms X;(§) and
Xo(2/8).

This property is particularly significant if considered with the Fourier transforms of
{x1} and {x,}, since we obtain the classical convolution property of continuous functions:

17 . e’ ) je'’d9
q:(xl 'xz):% J‘Xl(e”)'Xl(ejzsjj e’? =

- o e s e, fo)
4 -

Examples of z-transforms.

Example 1:
The ROC of the z-transform of the sequence:

{x(m)} = {6(n)-0.86(n-1)}

is the whole complex plane, since {x(n)} is a finite length sequence, but it will not
include the point z=0 since the sequence has only terms x(n) with #>0.

X(z) can be computed starting from the z-transform of the unit pulse sequence,
considering the linearity and shift properties, as follows

z—0.8
z

X(z)=2[6(n)]-0.82[8(n-1)]= Z[6(n)]-0.82"Z[5(n)] =

Figure 7.19 shows the pole-zero diagram for this sequence.
The Fourier transform of the sequence can be computed from X(z) replacing the z
argument with ¢/

X(e™)=1-0.8¢7* =1-0.8cos(w)+ j0.8sin(w)



Dynamical discrete systems

0.8f s
0.6F 4
04 /

0.2f !

Imaginary Part

0.2
0.4t \

06 »
-0.8f e

Figure 7.19. Pole-zero diagram for the sequence {d(n) -0.85(n-1)}
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The amplitude and phase of the Fourier transform are given instead by the following

two expression (see figure 7.20):

x(e’)| =y [1-0.8cos(@)] +[0.8sin(w

0.8sin (@

Zx(er)= arClg|:1—().8cos(a))

|

[H(e/®)|

- —m/2 0 /2
Angular frequency o [rad]

Figure 7.20. Amplitude and phase of the Fourier transform of {d(n)—0.80(n-1)}

Example 2

? = J1+0.8% —2-0.8cos(w)

Phase [deg]
P O
(=} wn [=)

|
IS
wn

-90
-

The z-transform of the finite length sequence

—T/2 0 /2 T
Angular frequency o [rad]

(x(n)} = {S5(n+2)-0.86455(n+1)+0.645(n)},
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since x(n)#0 for n<0, is convergent for every z but z=ee. To verify this result let us first
compute X(z):

X(z)=12z>-0.86452+0.64 = (z— j0.8)(z + j0.8)

0.8F e
0.6F ’
0.4 /

0.2r /

-0.2¢ !

Imaginary Part

I
P B

|

|

|

|

|

|

|

|

|

|

|

|

|

0.4} N }

06} . |
08} s fo) -7

|

-
Il

-1 -0.5 0 0.5 1
Real Part

Figure 7.21. Pole-zero diagram for the sequence {0(n)-0.8645(n-1)+ 0.64(n-2)}

3

90

[H(eJ®)|
Phase [deg]

0 -90
- —m/2 0 /2 T - —/2 0 /2 n

Angular frequency w [rad] Angular frequency o [rad]

Figure 7.22. Amplitude and phase of the Fourier transform of the sequence
{0(n)-0.86458(n-1)+ 0.645(n-2)}

There are two zeros at z=j0.8 and z=-j0.8, and X(z) is singular only in z=ee. The zero-
pole diagram for this sequence is shown in figure 7.21.

The Fourier transform of {x(n)} can be computed substituting in X(z) the complex
variable z with &/*:
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X(e’)= e’ —0.8645¢7 +0.64 =
= [cos(2m) — 0.8645 cos(@) + 0.64] + j[sin(2w) — 0.8645sin(w)]

Figure 7.22 shows both the amplitude and the phase of X(¢/“).

THE INVERSE z-TRANSFORM.

Given a sequence {x(n)}, the z-transformation formula (7.20) allow us to evaluate its z-
transform X(z). We will consider now the opposite operation, i.e. given the complex
function X(z) and its ROC, we will see how to compute the elements of the sequence
{x(n)} which admit X(z) as z-transform.

Let us consider first the integration of the generic term x(n)z" of the power series
(7.20) along a circle o with radius p placed in the ROC of X(z) and centered in the origin
(see figure 7.23); on o'we can write z=pe’® and we have:

0 Vn#l
25 n=1

ix(n)z'"dz =x(n)ﬁ”p'”e_j"”jpej“’da):{ (7.27)

Since the power series (7.20) is uniformly convergent in the ROC of X{(z), it can be
integrated term-by-term. Considering (7.27), it follows:

§x()dz = 3 § ()= dz =2x() (7.28)

Equation (7.28) shows that the first element of the sequence {x(n)}, i.e. the z
coefficient in X(z), can be obtained by integration along o of X(z). If we consider now the
z-transform X(z)z"", it is given by:

X(Z)ZWI = ZX(k)kazH = ZX(/{)Z*’”H (7.29)

f=—co fk=—co

Since the z”' coefficient in (7.29) is x(n), according to (7.28) it is given by:

x(n) = 21”] X(z)z""dz (7.30)

Equation (7.30) represents the inverse z-transform equation for X(z).
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Im(z) 4

ROC

Figure 7.23. The value of x(1) can be determined by integration of X(z) along the circle
o laying in the ROC of X(z)

Solving the line integrals (7.35) can be very tedious. The residue theorem offers a way
for the computation of the line integral (7.30). This theorem states that x(n) results by the
sum of the residues of the integrand function X(z)z"" at its N poles p inside the circle o

x(n)= 217[] ) X(2)z""dz = ﬁRss[X(z)z"-l] (7.31)

Since the function X(z) is rational, if m is the order of a pole py, the residue in z=p; can
be evaluated with the formula:

Reslr(e) ] ! - {5 o= p. ) () ]} (7.32)

Z=Pk

Another very convenient method for solving the inverse z-transform of a rational
function X(z)=N(z)/D(z), avoiding the complex line integration (7.30), is by taking its
partial fractions. Each partial fraction may be inverted simply by looking up the table 7.1
of elementary z-transform.

Long division of the polynomials N(z) and D(z) is another possibility for computing
the sequence {x(n)}.

Examples of inverse z-transforms.

Example 1: The inverse z-transform of X(z)=1/z according to (7.30) is given by:
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=

_ l n-1 _ 1 n=2
(n)—z—”] X(z)z dz-z—ﬂ_ji’z dz

Since the ROC of X(z)"' =Z"? is 0<|z|<+oo, as line o can be chosen any circle with
radius O<R<+eo centered on the complex plane origin, where the variable z can be
expressed as z =Re’”. On o, where results dz=jRe'“dw, the previous inverse z-transform
integral results in the following sequence:

0 Vnzl

x(n) ! 2" dz= L TR0 g gy = {1 |
n =

_275jﬂ 2r o

This result could be obtained directly considering that the inverse z-transform of
X(z)=1 is the impulse &n) and, by the shift property, the inverse z-transform of z' is

{6(n-1)}.

Example 2: The inverse z-transform of the function X(z)=z/(z-1) can be evaluated by
the residue theorem. Since the function X(z) has one pole in z=1 there two ROCs for this
z-transform and, consequently, there are two different sequences converging to the same
z-transform X(z).

The integrand function in (7.30) for this example is given by X(z)z"'=z"/(z-1).

If the ROC is the region |z|<I, the sequence will be left monolateral. As a matter of fact
for n>0 there are no poles inside the line ¢ and the residue of X(z)z"" is zero and so is
x(n) in accordance with (7.31). For n<0 there will be instead m = —n poles in z=0. There
the residue is given by (7.32), with m=-n:

x(n) = Res[x (z)z" ] = —1 {d”[ ! }}Foz—l Vn<0

=0 (~n-1)|dz"" 21

If the ROC of X(z) is the region |z>1 the sequence must be right monolateral. In this
case the integrand function z"/(z-1) in (7.30) has one pole of order m=1 in z=1 when n>0,
where according (7.32) the residue is given by:

x(n)= RZSIS[X(Z)Z”"' J: {z" }::1 =1 Vnz20

For n<0 there will be two poles inside o, one in z=0 of order m = -n and another one in
z=1 of order m=1. According to the residue formula (7.32) the sequence {x(n)} for n<0 is
given by:

x(n)= R.SOS[X(Z)ZH_I ]+ RSIS[X(Z)Z”_I]z -1+1=0 Vn<0
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Example 3: The inverse z-transform of:

1 z
X = =
(Z) 1-0.8z" z-0.8

can be computed directly , term by term, using the polynomial long division algorithm
as shown below:

Sequence {x(n)} — 1 0.8z 0.8z 0.8°z7
z -0.8 z < Numerator of X(z)
T z 0.8
Denominator of X(z) 0.8
0.8 -0.8%7"
0.8
0.8%" 0.8z
0.8z

Example 4: The inverse z-transform of the rational function X(z):

_N(z)_ 2’ -3 _ 2’ -3
()= DG) (-1z-2) 22-3z+2

can be computed first reducing X(z), using the long division algorithm, to the sum of the
quotient polynomial Q(z) and the ratio between the remainder R(z) and the denominator

D(z) polynomials.

Quotient »  z 3
z 3z 2 z 0 0 -3 < Numerator of X(z)
) 2 37 2z 0
Denominator of 322 2z -3
X(2) 3272 9z +6
7z -9 < Remainder
N (Z) R(z) 7z-9
X(z)= =0(z)+ =z+3+
=56 20 " oy
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The inversion of O(z) can be obtained directly as sum of shifted impulse sequences.
The inversion of R(z)/D(z) can be obtained instead, after partial factor expansion, by the
residue theorem applied to each factor. The partial fraction expansion of R(z)/D(z) is:

with A and B given by

A+B=T7 [4=2
24+B=9 |B=5
giving the following expression for X(z):

5
+
z—=1 z-2

X(z)=Z+3+

The inverse z-transform of X{(z) is then:

. 25Dk . ZI=D;

x(n)=8(n+1)+368(n +ZRes[ } ZRes[

g

The poles p; and p; in the residues depends on the ROC where to make the inversion.
In this example the function X(z) admits three ROCs, each associated to different poles
and thus to different sequences.

In the region D,, where 0<|z|<1, for n=1 there are no poles and results

ZRes{ 2 z"l}zo
P Z=Pk Z—l
}:0

For n<1 there are m = -n+1 poles p; and p; in z=0, giving the following residues:

e )2

ZRe s{

z=p;
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e

z=0

In D, the left monolateral inverse z-transform is:

)= Sn+1)+8(n)=0 Vn =1
x(n {5(n+1)+5(n)—2—5-2"1 Vn<l

In the region D,, where 1<|z|<2, for n=1 there is only a simple pole p; in z=1, giving

the following residue:
Res[ } o] -

For n<1 there is one pole p; in z=1, of order m=1, and in z=0 one pole p; and one pole
p; of order m = —n+1. The three residues are:

Res[ 2 z”’l}:{bz”_l I =2
=l | z-1

el el o

z=0

In D, the bilateral inverse z-transform is:

Vn=>1
Vn<l1

_[8(n+1)+8(n)+2=2
i) {5(n+1)+5(n)+2_2_5.2"1:5(n+1)+5(n)_5.z"1

In the region Ds, where 2<|z|<+oo, for n>1 there are a simple pole p; in z=1 and p; in
z=2, giving the following residues:

Res[z } loz] ., =
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z—

%?2S|:52n21 :| _ {[52”71 ]}2:2 =5.9n1

For n<1 the poles p, are in z=1 of order m=1 and in z=0 of order m=-n+1. The poles p;
are in z=2 of order m=1 and in z=0 of order m = —n+1:

Rze_:l{ 2 z"! } = {[22”_' ]}z:l =2

z—1

In D; the right monolateral inverse z-transform is:

()= S(n+1)+8(n)+2+5-2"" =2+5.2"" Vn>1
Sn+1)+8(n)+2-2+5-2""=5.2"" =S(n+1)+8(n) Vn<l
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Figure 7.24. Inverse z-transform of X(z)=(z*-3)/(z*-3z+2) for three different ROCs of X(z)

z-DOMAIN REPRESENTATION OF CAUSAL DISCRETE LINEAR SHIFT
INVARIANT SYSTEMS.

Considering the z-transform of the state equations and of the output transformation for a
linear shift invariant causal discrete system (7.6) it is possible to extend the well known
concept of transfer function of a linear time invariant continuous systems to a linear shift
invariant discrete systems. Applying the z-transform to the state equation (7.6), and
considering that this equation is valid only for n>n, and that x(n)=0, Vr<n,, it results:

X(2)= 2lx(n)]= 3 x(k)z* = x(ng )= + k if(k)z-k = o)

k=—c0

=x(n, )z +z'[A-X(z)+b-U(z)]

Applying (7.33) to the output transformation (7.6) it is possible to establish the
following relationship between the z-transform of the input and output sequences:

Y(z)=c"z(x)+d z(u)= 34
=z CT (ZI - A)_] X(”o )+ [cT (ZI - A)_l b+ d]U(Z) (7. )

ZSR

ZIR

As for the n-domain analysis also in the z-domain the output is composed by two
terms. The first is the system response to the initial state with zero input; the second one
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is the system response to the input sequence with zero vector state. Figure 7.25 shows in
a block diagram the z-domain representation (7.34) of a linear discrete system.

i X(no 70
: +
1 X
| (I-A)? (Z)= f
i +
Ui b
| d

Figure 7.25.  Block diagram representing in the z-domain a linear shift invariant
dynamical discrete system

The complex function in squared brackets is defined as the transfer function of the
discrete linear shift invariant system. Comparing (7.34) with the convolution product
(7.9) it results that the transfer function of a discrete system is the z-transform of its
impulse response /(n) with zero vector state:

~—

HE)=¢" (A-A)"b+d = z(h)= Z{y (7.35)

Z(u

~—

The transfer function H(z) in (7.35) is a rational function. The roots of the numerator
are called the zeros of the transfer function, while the roots of the denominator are the
poles of the system. The poles of the transfer function thus are the values of z for which
the matrix (zI-A) is singular; they are the roots of the characteristic polynomial of the
matrix A.

Since system stability requires that all the system poles must have module smaller than
one, it means that they all must lay inside the unit circle. The B/IBO system stability
instead requires that the ROC of H(z) includes the unit circle. As a matter of fact from
this condition it follows that
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)| =| Z k| < Z(o] e |= Tlpwl< 736

The converse is also true for rational H(z).

System causality is another important property, completely unrelated to BIBO
stability. It implies that the ROC of H(z) is outside the outermost pole.

As already mentioned before the B/BO stability is a weaker concept than asymptotic
stability: a system must be causal and B/BO stable for having all poles inside the unit
circle and consequently being asymptotically stable.

Example 1: The system with the following transfer function:

1
HE)= 5 09)
is
e causal and B/BO unstable if the ROC is |z]>1.5;
e anti-causal and B/BO unstable if the ROC is [z]<0.5;
e bilateral and B/BO stable if the ROC is 0.5<|z|<1.5.
Since one pole is outside the unit circle it is not asymptotically stable.

Example 2: The system with transfer function:

1
HE)= 081 =0s)
is
e causal and BIBO stable (thus asymptotically stable as well) if the ROC is |z|>0.8;
e anti-causal and B/BO unstable (thus unstable) if the ROC is |z|<0.5;
e bilateral and BIBO stable (but not asymptotically stable) if the ROC is
0.5<|z|<0.8.

Another important interpretation of the transfer function H(z) derives directly from the
analysis of the response of a linear system with zero state to an exponential input
sequence {E”} This is given by the convolution product between the system impulse

response A(n) and the input sequence z", i.e.:

W)= h(n) 2" = S HEE™ =2 3 h(k)E (7.37)

k=—co k=—co

Since H(z) is the z-transform of /(n), (7.37) can be rewritten as:
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yn)=H(Z)-z" (7.38)

Equation (7.38) shows that for linear shift invariant discrete dynamical systems the
response {y(n)} to an exponential input {Z"} is an exponential sequence as well, weighed

by a complex numerical factor given by the transfer function H(z) evaluated at z =7, i.e.
for linear shift invariant dynamical discrete systems the system’s eigenfunctions are the
exponential sequences.

In chapter 2 it was shown how to compute the impulse response of a system composed
by a connection of various subsystems and represented by a block diagram in the -
domain. This computation is generally quite cumbersome. Even in the simple case of two
subsystems connected in cascade the impulse response is given by the convolution
product of the impulse responses of the two subsystems. Much easier is the elaboration of
the block diagram represented in the z-domain. In this case all the convolution products
are replaced by simple products. In figure 7.26 are given some simple examples of block
interconnection and their transfer function H(z).

H(z) = Hi(z)-Hx(z)

cascade

H(z) = Hi(2)+Ha(2)

parallel

H(z) H, (Z)

T+ H,(H,(2)

negative feedback

Figure 7.26. Examples of discrete systems interconnections in the z-domain
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LINEAR SHIFT INVARIANT DISCRETE FILTERS.

In digital signal processing the most interesting class of linear shift invariant systems are
the discrete filters of order ¢, for which the state variables at step n are the values of the
system output at the N previous steps and of the input at the M previous steps:

X(n)z[y(n—l) . yn=N) uln-1) .. u(n—M)]T (7.39)

Considering the output transformation in (7.6), the output of a discrete filter can be
written as:

M
y(n)=c¢"x(n)+du(n Zc,y n—k)+> coyuln—k)+dun) (740
k=1
The previous difference equation (7.40) can also be written as:

y(n)= f u(n—k)- Zﬂkyn k) (7.41)

with ¢4=c+y, o=d and S, = -c;
The transfer function for this type of system can be evaluated by applying the z-
transform to (7.41):

Za,\z Z(u Zﬂkz'kz (7.42)

Hence factorizing (7.42) and applying relationship (7.35) it follows:

z(y) & (7.43)

k=

S

In (7.43) at the coefficient £ is given the value 1.

If Z; and P, are respectively zeros and poles of the transfer function, the polynomials
at numerator and denominator of (7.43) can be factorized giving a different expression of
the transfer function H(z):
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10-2,7) -2
H(Z)—Oto g = o2 g (7.44)
H(I_sz 1) H(Z_Pk)

The order g of a discrete system is the minimum number of state variables necessary for
the computation of the output sequence and is equal to the number of the system’s poles.
For discrete filters this is less than M+N. As a matter of fact from (7.44) results that the
discrete filter has NV poles in Py plus other M-N poles in the origin only if M>N. The entire
number of poles, i.e. the system’s order, is thus the greater number between M and N.

The complex function (7.44) can be split in two equations, one for the amplitude of
H(z) and another one for the phase:

M
-2

N-M ‘ 1 (7.45a)

N
[Tz~

k=

‘H(z)‘ 2‘0(0‘~‘Z

L-2,)-Y 2z-p)  (14b)

1 k=1

Mk

LH@)= Zay + 2(z" 7 )+

b
Il

The frequency response of the system can be derived from the polar expressions of
H(z) (7.45) simply by substitution of the complex variable z with e/

lM_[‘e”” Z‘
L B A R —
I1

k=1

(7.46a)
e’ —P ‘

M=

Au(e)= za, +(N-M)o+

Lo -2,)-3 L™ —p,) (1.46b)

b
Il

1

If in (7.46a) the generic pole and zero is expressed in polar form as ye’’ the single
factor in (7.46a) is given by:

‘ej‘” _ }e/’B‘ _ ‘1_ }eiee—.fw‘ _ \/1_,_ 7 —27/cos(6’— a)) (7.47)
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Since cos(6-w) is maximum for O=w (7.47) will be minimum at that frequency. This
means that, if (7.47) represents a zero in (7.46a), there will be a dip in the frequency
response at that frequency. If (7.47) represents a pole of (7.46a) the magnitude of the
frequency response will increase. Figure 7.27 shows an example of this behavior for a
transfer function with two poles at z=0.8¢*"* and a zero at z= 1.2¢’".

8

IH(e/®)|

E U

O 1
- =3n/4 —/2 —n/4 0 /4 /2 3n/4 T
Angular frequency o

Imaginary Part
o
|
|
|
|
|
|
|
|
T
|

Real Part

Figure 7.27. Frequency magnitude response and zero-pole diagram for the transfer

. 1.2
Junction H(Z) - (Z - O.8ej”/z4—)'_(z —0.8¢ 77/ )

The geometric interpretation of (7.47) is given in figure 7.28, where the magnitude
response of (7.47) is given by traveling along the unit circle and evaluating the length of
the vector .

For a specific frequency @ the magnitude of H(e’“)in (7.46a) can be obtained by
multiplying the length of all vectors connecting all the zeros to the point on the unit circle
at angle o, and dividing by the length of all vectors connecting all the poles to the same
point on the unit circle and multiplying the result by ||. If there is a zero or a pole on the
unit circle the magnitude response goes either to zero or infinity, respectively, at that
frequency. Poles and zeros at the origin and at infinity do not affect the magnitude
response because they are equidistant from every point of the unit circle.

The phase response of the generic pole or zero term in (7.46) is:

e -1 )=2r=¢ (7.48)
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The geometric interpretation of (7.48) and (7.46b) is that for a specific frequency @ the
phase of H(&'®) in (7.46b) can be obtained by summing together the angles of all vectors
connecting all the zeros to the point on the unit circle at angle @, and subtracting the
angles of all vectors connecting all the poles to the same point on the unit circle and
adding Zoy+(N-M)w to the result. If there is a zero or a pole on the unit circle the phase
flips m radians at that frequency. Poles and zeros at infinity do not affect the phase
response, while poles and zeros in the origin add the linear phase term (N-M) @.

Im(z)
p r= e/ yel?
ye'® | o/®
/4
a) »
Re(z2)

Figure 7.28. Geometric view for the computation of amplitude and phase of the generic
term r = z-ye'® evaluated on the unit circle z=e’®

RELATIONSHIPS BETWEEN SEQUENCES AND SAMPLED FUNCTIONS IN THE
z AND s DOMAINS.

As sequences can be analyzed by the z-transform so the main tool for the analysis of
continuous functions is the Laplace transform. The relationships between the two
transformation tools, when the discrete sequences derive from sampling continuous
functions, can be established by the shift theorem. Let us first consider a continuous
function g() of the variable ¢ and its Laplace transform:

G(s)=L[g(t)] (7.49)

The shift theorem states that:

Il
Q
L
]
2
)
SN—

Llg(r—kT)] (7.50)
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If the discrete sequence {x(n)} is the result of samples taken from the continuous
function g(¥), with sampling period 7, it can be represented as:

b= Y gnT)o(t-nT) (7.51)

n=—oco

Equation (7.51) establishing a link between the sequence {x(n)} and the function g(?),
allows the interpretation of the series of samples either as a sequence (left-hand side of
(7.51)) or a function (right-hand side of (7.51)). The z-transform and the Laplace
transform of the sequence/function (7.51) are expressed by:

X,(z)= Y x(n)z™ (7.524)
Xc(s)= ig(nT)e’"TS = ix(n)e”’“ (7.52b)

n=—oo k=—c

In (7.52b) the shift theorem (7.50) has been applied to the Laplace transform of the
impulse function o(z-nT). By forcing the two transforms (7.52) a and b to be equal the
following relationship between the complex variables z and s must be satisfied:

z=e" (7.53a)

R (7.53b)
T

The maps (7.53) a and b are not bijective. The mapping (7.53a) maps several points in
the s-plane to the same point in the z-plane. Vice versa the mapping (7.53b) maps one
single point in the z-plane to several points in the s-plane. This is another interpretation of
the aliasing effect described in chapter 3. To better understand this behavior let us write
the complex variable s as

§=0+jQ (7.54)
Replacing (7.54) into relationship (7.53a) it is equivalent to

z=e""e’™ =" [cos(TQ)+ j sin(TQ))] (7.55)
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From (7.55) it results that every point in the s-plane § =& + (ﬁ +ik27 /T ) is mapped
in the z-plane to the same point z = ¢/°" [cos(ﬁT )+ j sin(ﬁT)] and, inversely each point
z is mapped to infinite points in the s-plane aligned on a vertical line and separated by
270/, as shown in figure 7.29. This property of the conformal map z=e™ means that given
the z-transform Xp(z) of the samples sequence {x(n)} the related Laplace transform Xc(s)
must be periodic in each strip of the s-plane as shown in figure 7.29.

Q4 s-plane z-plane

m 34T

»

L] Re(z)

//

3T

Figure 7.29. Graphical representation of the 27/T periodicity in the s-domain along lines
parallel to the imaginary axis due to the conformal mapping z=e"

From (7.55) the following properties of the s—z mapping can be easily derived (see
figure 7.29 and 7.30):
e the vertical lines Re(s) = 0 = const., parallel to the imaginary axis in the s-

plane, maps onto circle of radius e’ in the z-plane;

e the imaginary axis s=jQ of the s-plane maps to the unit circle z=¢/"* in the z-
plane;

e the horizontal lines Im(s)= Q = const., parallel to the real axis in the s-plane,

maps onto radial lines with slope 7Q in the z-plane;

e the DC point s=0 maps to z=e’’=1;

e the Nyquist angular frequency Qy = +7/T maps to z=e™"=-1;

e the stable left-hand half plane 0<0 in the s domain is mapped to the interior
of the unit circle in the z-plane.
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Figure 7.30. Properties of the conformal map z=e"

Expression (7.51) can also be Fourier transformed. If we [-7,7) represents the angular
frequency in the discrete domain and Q€ (-eo,e0) the angular frequency in the continuous

domain, the two transformations can be obtained replacing z with ¢/ and s with jQ in
(7.52) a and b, giving the following expressions for the two Fourier transforms:

oo

X, (ej‘”)z Zx(n)e_‘f"” (7.56a)
X (jQ)= 3 xln)e (7.560)

Forcing the two Fourier transforms (7.56) a and b to be the same the following
relationship between the angular frequencies ® and Q must be satisfied:

=2k ko1t (7.57)
7T

Relationship (7.57) is very important because it shows that the two Fourier transforms
Xp(e’”) and X(jQ) in the discrete and continuous domain are both periodic, the former
with period 27 and the latter with period 277T. One period of Fourier transform Xc(j<2)



Dynamical discrete systems 173

can be obtained from one period of the Fourier transform X,(¢/) simply by scaling the
frequency axis by T:

X (jQ)= X, (") (7.58)

with Qe [-7/T,7/T).

More complex instead is the relationship between the Fourier transform G(;j<Q) and
Xc(jQ). It can be derived directly from the sampling theory developed in chapter 3
applying equation (3.12):

_1 ZG[]-QHWJ (7.59)
T & T
This results can be also derived rewriting (7.51) as:

=S g()5(t-nT)= zaf nT) (7.60)

and considering the Fourier series of the periodic function f 25 t—nT with

n=—oco

period T

= +i:é‘(t—nT)

+Tf2f +Tf2§ (761)
,T/z 4/2
w2E teo 427
(t)= Z‘,Cke/krt=l eth
fmst Ti=

Replacing (7.61) into (7.60) an taking the Fourier transform of the resulting function,
it follows:

(]Q Z ]Q+]n;[j

2
=— > G| jQ+ jn—
TZ(J m)

n=—oo

(7.62)

in agreement with the sampling theory result (7.59).
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Example: Given the function

its Laplace transform is

The Fourier transform of g(¢) can be derived from G(s):

1
G(jQ)=
(j©2) 02

If the function g(¢) is sampled with a sampling frequency 7, the sequence obtained
with these samples is expressed as

{x(n)y=

0 Vn<0
e Yn=0

The z-transform of {x(n)} is (see z-transform table 7.1)

The Fourier transform as a function of the analog angular frequency Q can be obtained
using the scaling (7.58):

j0.1Q
e/

70.1Q 2T
e’ —e

Xc(jQ)=
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Figure 7.31. Magnitude and phase of the Fourier transforms G(C) and X(jQ) of the
function g(t)=e” and of the sequence x(n) = g(nT), respectively, when the
sampling period is T=1 s
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Figure 7.32. Magnitude and phase of the Fourier transforms G(jQ) and X(j<Q2) of the
function g(t)=e”" and of the sequence x(n) = g(nT), respectively, when the
sampling period is T=0.1 s
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In figure 7.31 and 7.32 are shown the Fourier transforms G(j2) of the continuous
function and X(j€2) of the samples sequence with sampling period equal to 1 s and 0.1 s
respectively. The two Fourier transforms are not equal because of the aliasing effect. In
particular in figure 7.31 the great difference between X(jQ2) and G(jQ2) is due to the long
sampling period (7 = 1 s) compared to the exponential time constant in g(¢) (7= 1/2 s).
This difference, apart for a scaling factor, is greatly reduced in figure 7.32 since the
sampling period has been reduced to 0.1 s.

In figure 7.33 is shown instead the Fourier transform Xp(¢/) obtained with a sampling
period of 0.1 s. Comparing this picture with figure 7.32 it is possible to see the
equivalence with X(jQ2) apart for the rescaling of the angular frequency axis. It is
noteworthy also the change in the measurement unit for the angular frequencies. In the
discrete domain the angular frequency is an angle in the z-domain and thus it is measured
in radians or degrees. In the continuous domain instead the measurement unit of the
angular frequency is the ratio between the measurement units of an angle and of the
sampling period. In this example since the sampling is in the time domain the angular
frequency Q is measured in rad/s.

| | |
| | |

30—~ "l -t s T
| | |
e | | |
_ g | | |

3 = 200F - - - - - ko=
= 3 | |
Q = | { |
5 XQ | | |
2 100 | | I
< | |
| | |
1 1 1

- —n/2 0 /2 T - —n/2 0 /2 T
Angular frequency o [rad] Angular frequency o [rad]

Figure 7.33.  Magnitude and phase of the Fourier transform Xp(€®) of the sequence x(n)
obtained sampling the function g(t)=e” with a sampling period T=0.1 s

The intuitive result obtained in the previous example that the Fourier transform Xc(j€2)
converge to G(jQ2) when the sampling period 7—0, can be formalized and generalized to

the Laplace transforms X(s) and G(s) considering the definition of the Laplace transform
of a function:

Gls)= [ele)edr (7.59)

By definition the integral in (7.59) is the limit:

Cim S —snT 7.60
G(s)= lrlgé Zg(nT)e T (7.60)

n=—co
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Comparing the limit (7.60) with the definition (7.52b) it results the following
relationship between the Laplace transforms X(s) and G(s):

Gl(s)= zlrin%TXC (s) (7.61)

i.e. as the sampling period 7T decreases the Laplace transform of the samples sequence
Xc(s) converge the Laplace transform G(s) of the sampled function g(¢) scaled by the
sample period 7. Obviously the result (7.61) can be considered for the Fourier transforms
as well:

G(jQ)= lim7X (jQ) (7.62)

Figure 7.34 shows the convergence (7.62) for the function of example 1, sampled with
a sampling period 7 ranging from 0.1 s to 0.9 s. The periodicity of the Fourier transforms
Xc(jQ) of the samples sequences is evident in this figure. The period of each
transformation X(jQ) is 24/T.

0.5 ;

| TX ()
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0.4+ X0 6(Q)
T=05s

17, (jo)l
o
N

[T )l

———— T=09s Sl——
-30 -20 -10 0 10 20 30
Angular frequency Q [rad/s]

Figure 7.34. Comparison between the magnitude of the Fourier transform TXc(j€2) and
G (<) with sampling periods T of 0.1 s, 0.5 s and 0.9 s



CHAPTER 8

FINITE IMPULSE RESPONSE (FIR) FILTERS

N-DOMAIN REPRESENTATION OF FIR FILTERS.

As the name says a finite impulse response (FIR) filter is a linear shift invariant filter
with an impulse response sequence /(n) of finite length g+1<+oco:

{h(n)}={h05(n)+hl5(n—l)+...+hq5(n—q)} (8.1)

The output sequence {y(n)} to an arbitrary input sequence {u(n)} is given by the
convolution product between the impulse response and the input sequence:

y(n)zh(n)*u(n)th(k)u(n—k) (8.2)

q
k=0

The block diagram in figure 8.1 shows the #n-domain implementation of the FIR filter
resulting directly from equations (8.2).

By direct comparison of equation (8.2) with the difference equation (7.41) defining a
general linear discrete filter, it result that a FIR filter is a particular discrete filter with
M=g and N=0. Being M>N, the filter order is q.

The state vector for this type of filter, according to (7.39), is given by the g values of
the input sequence {u} preceding the current step n:

X(n)z[u(n—l) u(n—l) u(n—q)]T (8.3)

Example 1: A first example of a FIR filter is the moving average filter, which just
compute the average of the last g+1 input samples:

q

) =—— uln—k)

g+1is
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Comparing this equation with (8.2) it follows that the impulse response for the moving
average filter of order ¢ is:

qg+1 qg+1 qg+1

{h(n)}={15(n)+l5(n—1)+...+15(n—q)}

u(n) ¢ JouNnir | #e-D] o uNir
SHIFT > SHIFT

UNIT
SHIFT

;2: 1(0) h(1)

) 4

&

Figure 8.1. n-domain block diagram of a FIR filter

Z-DOMAIN REPRESENTATION OF FIR FILTERS.

The transfer function of a ¢” order FIR filter is given by the z-transform of its impulse
response (8.1):

H()=3 k) = h(0)z* +h(1)z""" + ... h(g) (8.4)

q

k=0 z

The g poles of a ¢" order FIR filter are in the origin of the z-plane. The filter has also ¢
zeros given by the roots of the polynomial at numerator of (8.4).

The frequency response of the filter can be derived from the transfer function
expression for z=¢/*:

h(0)e”® + h(1)e’ ™ + . h(q)

Jjqo

H(e™®)= h(k)e 7 = (8.5)

q
k=0 €

Since the frequency response H(¢'®) is a periodic function, with period 27 , the g+1
filter coefficients A(k), according to (8.5), form the Fourier series expansion of H(e’?).



Finite impulse response (FIR) filters 181

An important property of FIR filters is that they can approximate any stable and causal
linear discrete filter. Considering the frequency response of a general linear discrete filter,
being a 2z period function of @, can always be expressed as an infinite Fourier series:

oo
H(ej“’)= Zakejk“’ (8.6)
Jfi=—co
with
1 T j ), - jko 8.7
o = Hle™ e ™ daw (8.7)

-

Since the transfer function H(¢/*) is the Fourier transform of the discrete filter impulse
response A(n):

Hle)= 3 hk)e (88)

k=—oo

comparing, term-by-term, (8.6) with (8.8) it results that the coefficients ¢ of the series
(8.6) form the filter impulse response sequence A(n):

{nn)t=1{... edn+1) holn) a.,6n-1) ..} (8.9

If the discrete filter is causal the coefficients ¢4 in (8.9) are zero for £>0, reducing
(8.6) to:

H(e./w): Zo:akejkw — i h(k)eﬁikw (8.10)

f=—oco

If the ﬁlt¢r is stable A(k) tends to zero as k tends to infinity and, consequently, the
function H(¢'”) can be approximated by the series (8.10) with a finite number g of terms:

H(e)= > hlk)e (8.11)

k=0

By direct comparison of (8.10) with (8.5) it is immediate to see that the generic
discrete filter transfer function H(¢“) can be approximated by a FIR filter of order g, as
far as ¢ is large enough for the approximation (8.11).
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Example 1: The transfer function of the moving average FIR filter is given by

LG a1 (S e )
no= b3 = (S )

k=0 qg+1is k=q+l

1 1 zla+) 1 1-z 0 g
Tg+ll—z" 1-z7) g+l 1-z Cg+1z4(z-1)

The moving average filter has g poles in the origin and one pole at z=1. The g+1 zeros
of the filter are on the unit circle at z=¢**7“*V with k=0,1...,q. The pole and zero at z=1,
for /=0, compensate with each other and the ROC of H(z) is the whole complex plane
|z>0.

The magnitude response and the zero-pole diagram of a 5™ order moving average FIR
filter is shown in figure 8.2.
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Figure 8.2. Magnitude response and zero-pole diagram of a 5" order moving average

filter

Example 2: Other simple FIR filters are the comb filters, which output at step # is simply
either the sum or the difference between u(n) and u(n-N). The transfer functions for these
filters are given by:

H(z)=1%z" =

The comb filters, as the moving average filter, have N poles in the origin. The comb
filter with transfer function H(z):l-i-z'N has N zeros at z=¢™™" with k=1,2,....N. Its
magnitude frequency response and zero-pole diagram are shown in figure 8.3.

The zeros of the comb filter with transfer function H(z)=1-z" are at z= with
k=0,2,...,N-1. Its magnitude frequency response and zero-pole diagram are shown in
figure 8.4.

e/'k2 N
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The comb filter with H(z)=1-z", having one zero at z=1, has a zero DC gain, while the
comb filter with H(z)=1+z", having no zero at z=1, has finite DC gain.

H(e/®)|

Normalized angular frequency w/2z

Real Part

Figure 8.3. Magnitude frequency response and zero-pole diagram for a comb filter with
transfer function H(z)=1+z" and N=5

[H(e@)|

Normalized angular frequency w/2r ’ = .

Real Part

Figure 8.4. Magnitude frequency response and zero-pole diagram for a comb filter with
transfer function H(z)=1-z" and N=5

Example 3: A particular comb FIR filter is the cosine filter defined by the following
difference equation:

y{n)=fuln)+u(n-1)]

N | =

The transfer function for the cosine filter is:

H(Z)z%(l+z_l)= 2+l

z



184 Chapter 8

with a pole in z=0 and a zero at z=j, as shown in figure 8.5 together with the filter impulse
response A(n).
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Figure 8.5. Impulse response and pole-zero diagram of a cosine filter
Its Fourier transform is given by

jol!2 —jo/2
(1+e)zever & T8 Ze =e " cos(w/2)

H(e”")z%

which amplitude |H(¢/“)|=cos(@¥2) gives the name to this filter.

The phase frequency response of the cosine filter is linear versus @ and expressed by
ZH(¢“)=-2. Figure 8.6 shows both the amplitude and phase response of the filter. The
cosine filter behaves as a low pass filter; the effect of the zero at w=rx is to select

components with angular frequency w=n and allows to pass low angular frequencies up
to DC.
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Figure 8.6. Amplitude and phase response of a cosine filter
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We have seen that the cosine filter has got one zero and one pole and that the zero in
z=-1 is responsible for the its low pass filter behavior. If we consider now a FIR filter
with a transfer function with two zeros in z=-1 and two poles in z=0, i.e. of the type

2
H(z)z (24212) Z%(I—FZZ_] +z_2)

we should obtain a more selective low pass filter at w=z. The Fourier transform for this
filter is expressed by:

H(e,-w)zi(l+2e_jm+e_z,-w)=;e_,-w(nefue-m} 1

5 Ee_j“’ [1+ cos(w)]

Because of the amplitude response this type of FIR filter is called raised cosine filter.
Figure 8.7 shows the amplitude and the linear phase frequency responses of the raised
cosine filter. Comparing this picture with figure 8.6, reporting the frequency response of
a cosine filter, it is evident the increased selective low pass filtering action of the raised
cosine filter obtained just adding a further zero at z=-1, i.e. increasing the filter length.
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Figure 8.7. Frequency response of a raised cosine FIR filter
From the transfer function it is simple to derive the impulse response of this filter and

its pole-zero diagram, as reported in figure 8.8. The transfer function H(z) define also the
difference equation of this filter:

y(n) = % [u(n)+2u(n —1)+u(n —2)]
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Figure 8.8. Impulse response and pole-zero diagram of a raised cosine FIR filter

LINEAR PHASE FIR FILTERS

In digital signal processing a distortionless filter is often required. This implies that, when
the spectrum of the filter input sequence {u(n)} lays inside the filter pass-band, the filter
output sequence {y(n)} is just proportional to a translated version of {u(n)}:

¥(n) = G-u(n-N) (8.12)

where G is the filter gain in the pass-band and N is the translation step shift.
The corresponding requirements in the frequency domain can be gained tacking the
Fourier transform of (8.12):

Y(e) = G-e™°U(?) (8.13)

Thus, for distorsionless filters, the transfer function in the pass-band must be
expressed by:

H(e™”)= L= Ge ™ (8.14)

More generally |[H(¢/“)| can be expressed as a positive real function G(¢/*) with:
G(e’®) = 1, in the filter pass-band,;
G(e’®) = 0, in the filter stop-band;
0<G(e’®)<1, in the filter transition-band.

The filter transfer function (8.14) becomes then:

H(e™®) = G(e’®)-e™ (8.15)
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This implies that for no distortion at the output of the linear shift invariant filter two
requirements must be satisfied in the pass-band:
1. the amplitude frequency response is flat, i.e.:

|H(¢®)| = 1, in the pass-band (8.16a)

2. the phase frequency response is a linear function of the angular frequency , that
is:

0(¢°) = LH(e’”) = -Nw, in the pass-band (8.16b)

The impulse response of a distorsionless filter is given by the inverse Fourier
transform of H(¢'“) in (8.15):

h(n) = i MG(e jo )e""“’("m)e"”“’da) _ i TG(ejw )e"(””v)‘”da) (8.17)

-

If the real 27 periodic function G(¢/®) is split into its even Gg(e’”)and odd Go(e’)
parts:

G(ej“’ )+ G(e’j‘”)

Gele'”)= 2 (8.18)

the impulse response becomes:
h(n)= L IGE (ej‘” )cos[(n —N)oldw+ | IGO (ej‘" )sin[(n —N)oldo| 819
T 0 0

If 7(n) must be real G(¢/“) must be an even function, i.e.:
G(e"”)= Gil(e’”), Go(e') =0, (8.20)

resulting in the following expression for the impulse response:

)= :;]rc(efw )oos[(n - Mok (8.21)
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Hence from relationship (8.20) we have learnt that in order to design a discrete linear
phase filter we must specify an even amplitude frequency response; once defined the
function G(¢/) the filter coefficients can be computed using (8.21).

For an arbitrary amplitude response the number of the resulting filter coefficients 4,
will not be finite. However in the previous paragraph it was shown with equation (8.11)
that any stable and causal linear discrete filter can be approximated by a FIR filter just
considering the first g+1 filter coefficient A(n) in (8.21).

For example figure 8.9 shows the amplitude and phase response of a 10™ order FIR
filter with shift N=1, approximating an ideal low pass filter with a cut off angular
frequency of /2. The effect of having limited the number of filter coefficients (8.21) in
the FIR approximation appears clearly in the plot of figure 8.9: both the amplitude and
phase responses are far from the ideal one, shown in figure as dotted line.
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Figure 8.9.  Frequency response for 10" order FIR filter, with a step shift of N=I,
approximating an ideal low pass linear phase filter
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Figure 8.10. Frequency response for a 100" order FIR filter, with a step shift of N=I,
approximating an ideal low pass linear phase filter
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In figure 8.10 is shown the result obtained increasing the order of the FIR filter. The
figure has been obtained rising the number of coefficients in the FIR approximation from
11 to 101. Although the number of coefficients in the FIR filter approximation of (8.11)
is largely increased, in comparison with the previous approximation shown in figure 8.9,
the situation is not improved much. Both the amplitude and phase responses are not
converging towards the ideal low-pass linear phase frequency response.

The reasons for this behaviour can be understood considering that the finite length
approximation (8.11) is valid only for stable and causal linear filters, but from expression
(8.21) results that the impulse response for the ideal distortionless filter must be an even
sequence of n and therefore cannot be causal. Looking at the impulse responses {4(n)}
for the two FIR filters shown in figure 8.11, since the FIR approximation is causal, both
the impulse responses are forced to zero for n<0, removing all those coefficients {/(n)}
in (8.21) with n<0. Thus if the step shift N is undersized, coefficients with large values
can be removed as well from the FIR expansion limiting the effectiveness of the finite
length FIR approximation.

10" order FIR filter 100" order FIR filter
0.6 0.6
p
0.4 0.4
L ] »
0.2 0.2
h h
0 . l . . ? 0 fﬁm-—-—.
02 -0.2
0 5 10 0 50 100
n n

Figure 8.11. Impulse responses of the 10™ and 100" order FIR filters whose frequency
responses are shown in figure 8.9 and 8.10

In order to preserve in the finite length expansion (8.11) the coefficients with largest
absolute value |/, the shift N cannot be arbitrary. In particular if the even structure of the
sequence {h(n)} is to be maintained besides the FIR truncation, the shift in (8.21) must be
N=q/2. This shift assumes an integer value only when the filter order ¢ is even. Figure
8.12 shows the two impulse responses for both the 10™ and 100™ order FIR filters, when
N is equal to 5 and 50 respectively. In this cases from the picture it can be seen that the
impulse response, although of finite length, retain the even property of {A(n)} around the
shift N, i.e. it results:

h(n) = h(g-n) (8.22)
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10" order FIR filter 100" order FIR filter

0.6 0.6

0.4 0.4

0.2 0.2

h h
[ .
O l . . i . 0¢ >

-0.2 -0.2
5 10 0 50 100
n n

Figure 8.12. Impulse responses for two FIR filter of order q equal to 10 and 100, when

the step shift N is q/2
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Figure 8.13.  Amplitude frequency responses for the two FIR filters whose impulse
responses are shown in figure 8.12

Figure 8.13 shows the amplitude frequency response for the two FIR filters.
Comparing this picture with the amplitude frequency responses shown in figure 8.9 and
8.10 it is clear the better convergence behaviour towards the ideal low-pass filter.
Furthermore the increased order of the filter produces a frequency response convergent
towards the ideal one.

Even better is the phase frequency response since this is not approximating a liner
behaviour, but if condition (8.22) is sustained the phase response is exactly linear. This
can be verified just replacing (8.22) into (8.11) and factorizing. The factorization is
slightly different for ¢ even and odd. In case of ¢ even it results:
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4

q 2 q
H(e?)=Y hk)e ™ =S hk)e ™ + > h(k)e 7 + h(qjeﬂv’” -
k=0 k=0 k=q/2+1 2
4,
2 _ _ _ (8.23a)
=S [ak)e 7 + h(g - k)e 7 |+ h[qjeﬂw =
k=0 2
4y
e |2 q q
=e > 1> 2h(k)cos [ -~ kja) + h(j
pan) 2 2
If g is odd instead the factorisation gives:
q-1
2 q
H(e)= hk)e ™ =3 hk)e ™ + > h(k)e ™ =
k=0 k=0 ot
2
o (8.23b)
2 .
=3 [h(k)e 7 + hlg — k)e o4 ]=
k=0
gq-1
|2 q
=e 2 ZZh(k)cos (—k)a)
k=0 2
180f N 1
s 90 ' \\\ .
£ 0| \\\ | 1
-180} N ‘ p
05 -0.25 0 0.25 05

Normalized angular frequency w/2 7z

Figure 8.14. Phase response of a 10™ order linear phase FIR filter

Since the coefficients A(k) are real, the terms in braces are real as well and the phase of
the frequency response (8.23) is exactly linear. The step shift of the FIR filter as said
before is g/2 and it is integer only when the filter order ¢ is even. Figure 8.14 reports the
phase response for the 10" order FIR approximation whose impulse and amplitude
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responses are shown in the previous figures 8.12 and 8.13. It can be seen that in the pass-
band the FIR approximation follows exactly the dotted line, representing the phase
response of the ideal low-pass filter.

FIR FILTER SYNTHESIS BY FOURIER SERIES EXPANSION.

The previous paragraph suggests a simple way for the synthesis of a qth order FIR
filter. Firstly the theoretical amplitude frequency response |Hsp(¢/®)| is defined. Secondly
the theoretical impulse response /Agp(n) of the filter is specified by the inverse Fourier
transform of Hgp(¢/®), assuming linear phase response -g @2, accordingly with (8.21):

o) = J|i (efw]cosﬂn_‘zfjw}dw (8.24)

g

Thirdly, since generally the impulse response /gp(n) will not be of finite length and
causal, the impulse response /(n) of the ¢™ order FIR filter, approximating the amplitude
response |Hspl, is derived simply limiting /(n) only to the first g+1 terms of Agp(n):

h(n)=0 Vneo0..q

(8.25)
h(n)=hg(n) VneoO...q

This last operation is equivalent to the product of the infinite length sequence /gp(7)
with a rectangular weighting window sequence w(n):

h(n)=hg,(n)-w(n) (8.26)

where the rectangular window w(n) is defined as:

1 Vneo...
win)= neted (8.27)
0 VneO..q

Equation (8.26) is equivalent, in the frequency domain, to the complex convolution
between Hgp(¢'”) and the Fourier transform W(e'®) of the sequence w(n):

e )=o) il 629

-

The Fourier transform of the rectangular windowing sequence w(n) can be determined
from its z-transform W(z):
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q oo oo
W)=> wlk)-z*=>z"->z*=
k=0 kzz(; k%] (8.29)
1 Z—(q+1) l_z-(q+1)
T1-z' 1=zt 1=z

by replacing in (8.29) the complex variable z with &/“:

. (q
—jlg+)o 4, Sll’l( \J
w1z e A2 (8:30)
1-e™® . (1
sin| — @
>

Figure 8.15 shows the amplitude of (8.30) setting ¢ to 5 and 50 respectively. The function
[W(&®)| is composed by one main lobe in the region _ 27 <w< 2z

g+l qg+1
decreasing oscillatory side lobes for higher frequencies. Increasing the order ¢ of the
filter will increase the amplitudes of both the main and the side lobes, while decreasing
their width and leaving unchanged the subtended area.

and ¢-1

g=5 q=50

q+1=6 q+1=51
g g
2 2
H z

0 0 . "

- 2z 0 27 T - 0 V4

q+1 q+1
Angular frequency Angular frequency o

Figure 8.15. Amplitude of W(e’®) for two values (5 and 50) of the FIR filter order q

The convolution product (8.28) will certainly change the shape of the actual FIR
transfer function H(e’”) with respect to the specified transfer function Hgp(e’®). The
distortion effect due to the sliding window W(ej(f’“’)) in (8.28) can be understood
considering for example the convolution product with the low-pass response HSP(e‘]f)
shown in figure 8.16. The result is a smoothed amplitude response H(e’”), where the
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effect of the main lobe in W(e’”) is to limit the steepness of the FIR filter response at the
cut-off frequency, while the side lobes introduce ripples in H(¢“). Increasing the filter
order will decrease the main lobe width, allowing a sharper transition at the cut-off
frequency. The ripple amplitude instead will not decrease since the area underneath each
side lobe remain constant as the filter order increases (Gibb’s phenomenon).

Hgp(@) W& ) H(e")
S Ve
/}\
A N\ 0 ~
0O ‘ . v
|
- 0 o i T 0 z
Angular frequency & Angular frequency o

Figure 8.16. Effect of the convolution between Hsp(e'®) with W(e’®)

|H(e’)| . |H(e®)
1+6; | g . >
+
1 e (b)
1- (5,u 1- 5P 2

H(e™)

(C) 1+5P1
1-6

H(" 4

1+ 5[’ Z
1

////////

1-6 |

Figure 8.17. Typical design masks in the frequency domain for (a) pass-band,(b) stop-
band, (c) low-pass and (d) high-pass filters
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The specification in the frequency domain of the actual FIR filter response is usually
given considering one of the masks shown in figure 8.17 for band-pass, stop-band, low-
pass and high-pass filters with center frequency @c. Each mask defines one or more stop
bands Aws, pass bands Awp and transition bands A@r. In the pass and stop bands some
ripple, dp and Js respectively, is allowed. The filter design phase consists in determining
the coefficients of the shortest FIR filter meeting the filter specifications.

Using a rectangular window, and increasing the filter order, the filter specifications
can be met only in the transition-band. As far as the ripple in the pass and stop bands is
concerned the filter order will leave its level unchanged, because of the Gibb’s
phenomenon; one possibility for reducing the ripple is thus by changing the window
shape with another one whose spectra introduces less ripple than that of the rectangular
window. Figure 8.18 shows a comparison between the rectangular window with the
triangular window, which avoids the abrupt truncation caused by the rectangular window
of the specified infinite length impulse response /gp(n). In this case the side lobes are 24
dB down the main lobe, much less than the 13 dB of the rectangular window. The
consequence of a reduced amplitude of the side lobes is an increase in the transition-band
due to a double width for the main lobe, as shown in figure 8.18.

100000000000 11

N 20

‘ 10

w(n)
|w(e/o)]

0 5 10 -0.5 05 -05 0 0.5

)
w(ei®)|

-40

o

0 T T=== N -60
5 10 -%.5 0 05 -05 0 0.5
n wl2r wl27

oe

Figure 8.18. The main lobe width for triangular windows is double than for rectangular
windows, but the side lobe amplitude is lower (24 dB vs. 13 dB)
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Windows shapes, other than the rectangular and triangular, have been proposed by
various authors. They are characterized by different values of the main lobe width and
side lobes amplitude. The most important and frequently used are:

e  The rectangular window:

1 0<n<
w(n) = n=4 (8.31)
0 otherwise

e  The Bartlett (triangular)r window:

2 g<p<d
i YRR o
- 4 y< q
qg 2
e  The Hanning window:
05—05(:052—”” 0<n<
W(,l): . . p sn=>q (8.33)
0 otherwise
e  The Hamming window:
0.54-0.46c08 2| 0<ns<
W(n) _JY . p sn>q (8.34)
0 otherwise
e  The Blackman window:
2 4
J0.42-0.5c08 T |+0.08cos] 1| 0<n<gq (8.35)
w(n) = q q
0 otherwise

A further window used for FIR filter design is the Kaiser window:
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1| B j1-{1--"
)= A { q/2:| (8.36)

- 0<n<gq
1,(B)
0 otherwise

where /y(-) is the 0" order modified Bessel function of the first kind, and /3 a parameter
optimizing the threshold between the main lobe width and the side lobes amplitudes.
Typical values of fare between 4 and 9.

Figure 8.19 shows the n-domain shape and @-domain spectra for these windows, while
table 8.1 reports their main characteristics.

1 0
0.5 (a) -50W W

0 oo -100

Ll s Y
2
ae? e, "“’EWW
a0l S
RIS

0
9 05
step index n Normalized angular frequency w/2 z

w(n)

|W(eJo)|[dB]

o
o o
°
.
—e
——eo —e —e

e
()]
-_—
o

Figure 8.19.  Comparison between the (a) uniform, (b) Bartlett,(c) Hanning, (d)
Hamming, (e) Blackman and (f) Kaiser (/=9) windows with length q=10,
in both the n-domain shape and the @-domain spectra
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Table 8.1
Window Main lobe | Side lobe
width amplitude
Rectangular | 47/(g+1) -13dB

Bartlett 87/(g+1) -24 dB
Hanning 87/(g+1) -32dB
Hamming 87/(g+1) -37dB
Blackman 127/(g+1) -62 dB

Example: For a low-pass FIR filter the following specifications in the frequency
domain are given:

e Cut-off frequency: @c=m/6 rad
e Ripple: 05 =0p=0.02
e Transition band: Awr=1/30 rad

From (8.24) is simple to derive the infinite length impulse response for the specified
filter with linear phase £Hgp(e’”) = -qw/2:

7 . q|7
|+ 1 1 SmK" _2j 6}
hg,(n)=— ﬂHSP (e "”)‘ cosKn -~ qja)}da) =— jcosKn - qja)}da) = =
T 2 T 2 6 [n q ] T
2)6

Figure 8.20 shows, together with the low-pass filter specification mask, the amplitude
frequency response of a 20™ order FIR filter obtained with a rectangular window and
approximating the specified low-pass filter with a cut-off frequency at 776. The FIR filter
frequency response does not meet the specification because both the transition band and
the ripple in the stop and pass bands are too wide.

Figure 8.21 shows the result obtained increasing the filter order from 20 to 35, still
using a rectangular window. In this case the transition band meet the requirements, but
since the amplitude of the side lobes does not decrease with filter order, the ripple
amplitude is not decreased. In figure 8.22 is reported the amplitude frequency response
computed with a 35™ order FIR filter but designed using the Hamming window. The
ripple this time is lower than dp and &, but the transition band is wider than Awr because
the wider main lobe of the Hamming window than the rectangular window.

By increasing the filter order from 35 to 80, still using the Hamming window, the filter
amplitude response finally meets the specifications, as shown in figure 8.23. Figure 8.24
instead shows the response of a 80" order FIR filter designed using the rectangular

window; again it is possible to see that the ripple has the same level as the 20" order FIR
filter whose amplitude frequency response is shown in figure 8.20.
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|w (e/o)]

0 0.1 0.2 0.3 0.4 0.5
Normalized angular frequency w/2 7

Figure 8.20. Amplitude response of a 20" order FIR filter with rectangular window
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Figure 8.21. Amplitude response of a 35" order FIR filter with rectangular window
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Figure 8.22. Amplitude response of a 35™ order FIR filter with Hamming window
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1.2
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Figure 8.23. Amplitude response of a 80" order FIR filter with Hamming window

|w (e/o)|
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Figure 8.24. Amplitude response of a 80" order FIR filter with rectangular window

FIR FILTER SYNTHESIS BY THE FREQUENCY SAMPLING METHOD.

Another possibility for the design of FIR filters derives from the consideration that the
discrete filter frequency response is a periodic function of @ with period 2. According to
the sampling theory of periodic functions, developed in chapter 3, the specified frequency
response Hsp(¢) can be defined by ¢+1 samples, with g=2N, taken at frequency multiple

of @, = 27/(q+1). The frequency response Hsp(¢) can be reconstructed from its g+1
samples



Finite impulse response (FIR) filters 201

I:[sp (k):HSP (ejm ) (8.37)

using the Shannon interpolation formula for periodic functions (3.47):

| 2N +1 2w
- e B Vo
Hg (ejw): I:ISP (k) (8.38)
INHLE sin 1 w—k 2z j
2 2N +1

The interpolation formula (8.38) will give the specified frequency response Hgp(¢/?)
only if its Fourier transform satisfies the Shannon theorem for periodic synchronous
sampling. This is usually not true since the specified frequency response is a theoretical
one and as such it is very sharp at the cut-off frequencies, resulting in a Fourier
transform, which is the impulse response of the specified filter, very long lasting. The
interpolation formula (8.38) will give then only an approximation H(¢'®) of the function

ng(ej"’):

[2N+1 2

1 M\ v 2,39

Hem)=— L% i, 39
IN+1,2, il o 27
2 2N +1

The interpolation (8.39) has the property that at the sample frequency ke the specified
frequency response assumes the same values of H(¢'“):

Hg (e )= Hle") with—N<k<N (8.40)

Figure 8.25 shows an example of the application of (8.40) to an ideal low-pass filter
with cut-off frequency at @ = 772 and ¢g=10. From this picture it results clearly how
H(®) does not match Hgp(¢/) but at the sampling frequencies ka,.

Taking into account that:

. (2N+1 j
Sin [0} N
2 = S (8.41)
sin(1 a)j m=n
2

equation (8.39) can be rewritten as:
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= (8.42)
2N +1 2

1.4

|H(e™®)|

|H (/)|

Normalized angular frequency w/2 7

Figure 8.25. Amplitude response |H(e’®)| obtained sampling the specified frequency
response Hsp(e’®) in 11 points

It is trivial now to compute the impulse response of the FIR filter, just taking the
inverse Fourier transform of (8.42):

h(n)= 1 H( )ej"‘"da)z
2 5 (8.43)
1 1 z ZN: e_jkaN,-[f—l +T J n+m)wdw
T2 AN+ A = J
The integral In (8.43) is equal to:
Te frem)o gy e/ UrmE _ gilmm) Py sin[(n +m)r| _ 0 Vm#-n (8.44)
4 j(n+m) (n+m)r 2r Vm=-n

By substitution of (8.44) into (8.43) results in the following expression for the
coefficients of the FIR filter:

1 LA Jon %
h(n)= H (ke 2+ (8.45)
2N +1,2=
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Figure 8.26 shows the impulse response of length g+1=11 obtained using (8.45) for
the low-pass FIR filter of figure 8.25. The impulse response is not causal, since it is
centered on n=0. In order to obtain a casual FIR filter the impulse response should be
shifted by N steps. In the frequency domain it results in a multiplication of H(¢/®) by the
complex function e’ Therefore the causal FIR filter interpolation and impulse response
formulas as derived from (8.39) and (8.45) are given by:

2N +1 27
N e I Yo
(e./“’)z ° ﬁSP( ) (8.46)
2N +1,2 ( 2
sin| —| @—
2N +1
1 & H-N)2E
hin)= H (ke 2N+ (8.47)
(n) 2N+1E‘N or (k)
0.6
0.4} 1
<
0 [ ] L ‘ ‘ ‘ [ ]
0.2 ]
5 0 5

Figure 8.26. Anti-causal impulse response obtained taking 11 samples from the ideal
low-pass filter response shown in figure 8.26

A design limitation of the frequency sampling method can occur when the specified
amplitude frequency response |Hsp(¢/“)| undergoes an abrupt change in amplitude across
the transition band. The result is a strong ripple in the FIR filter frequency response
H(e’”) owing to the Gibb’s phenomenon, as shown in figure 8.25. This difficulty can be
alleviate relaxing the transition band requirements and allowing that some frequency
samples around the cut-off frequency take values different from the ideal filter response.
For example in figure 8.27 is shown the result obtained with the sampling frequency
method when at the two samples around the cut-off frequencies @ = t7/2 are assigned
the values f »=0=05 instead than the theoretical nil value. In the same figure with
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dashed line is shown the FIR filter transfer function obtained without forcing these two
samples to take values different from the ideal low-pass filter frequency response. It is
clear that the ripple is greatly reduced, although the transition band is now wider.

Another example of a similar approach to the design of a FIR filter is shown in figure
8.28, where at four samples around the cut-off frequencies @c = £7/2 are assigned values
different than the theoretical low-pass filter frequency response. This time the values
assigned to the two samples around the cut-off frequency are ]—}SP =]-¢ and IfISP =,
with >0 (@¢=0.2 in the example of figure 8.28). Again the result is a reduced ripple with
an increased transition width.

14

A el (&) 1
o = ,

0.8 |HSP(elkws)| : »

0.6+
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-0.5 0 0.5
Normalized angular frequency w/2x

Figure 8.27.  Filter design with the frequency sampling method obtained with one
frequency sample specified in the transition band
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Figure 8.28.  Filter design with the frequency sampling method obtained with two
frequency samples specified in the transition band
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The abovementioned criteria for designing FIR filter using the sampling frequency
method can lead to an automatic procedure for the computation of the filter coefficients.
The methodology is based on the definition of the design objective in terms of a design
error £(e’®) specified in the frequency domain and defined as the difference of the actual
FIR filter frequency response H(e’”) and the specified ideal filter frequency response
H, Sp(ejw)I

£(e’”) = H(e'®) - Hyp(e'®) (8.48)

The design criterion takes normally the form of an optimisation algorithm based on a
mathematical metrics applied to the design error £(¢’”). The metrics used are the L, (mean
square) and L.. (maximum) norm, leading to the following optimisation design criteria:

e Minimum Square Error (MSE)

1= - T o] o
e  Minimax:
H, (k)= ;{ni&l)[max‘s(e"w)‘ ] (8.50)

Since relationship (8.46) is linear in the parameters A (k) the optimization problems
(8.49) and (8.50) can be solved numerically using linear optimization algorithms.

The two metrics in (8.49) and (8.50) have different advantages and disadvantages. The
MSE criterion generally leads to simpler algorithms, but the solution could have large
local errors although the mean square error was small. On the other way the minimax
criterion is more complicate computationally but it limits the worst case error.

A weakness of the sampling frequency design method is that the samples 7 (k) are
uniformly distributed along the frequency axis and this results in a lack of flexibility on
specifying the cut-off frequencies of the filter. Increasing the number of frequency
samples will improve the ability to specify the frequency response transition at the cut-off
frequencies but this will be highly inefficient.

The transfer function of the FIR filter is given by the z-transform of the impulse
transform (8.47):
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@)=3 hn) = L3 S A, ()
H(z)=) hln)z™" = H .k 2N+ T =
Z; 2N+IZ;;N ¥ (8.51)
1 N . —jkN2 2N 2T 2z
H k 2N+1 2N+l 1
2N+1k; s (k)e > € z

The second summation in (8.51) is the z-transform of the sequence:

{ [l(n)—](n—zN—l)]} (8.52)

which according to table 7.1 is equal to:

" 2 1_27(2N+1)
ze "N g Ze 2N+] I(n—2N—l)]z’" — (8.52)

2r
-1
2N+1 z

n=0 n=—co Jk

l—-e

Replacing the relationship (8.52) into (8.50) it results the following expression for the
transfer function of the FIR filter obtained with the frequency sampling method:

2r
2N+1

1=z i A )—— (8.53)

2z
Jk i}
1—6 2N+IZ

EFFECTS OF FILTER COEFFICIENTS QUANTIZATION

Limitation in the number of bits available for storing the filter coefficients and the
internal data results in a change in its frequency response. The quantization effect on the
frequency response can be analyzed in the frequency domain in terms of an error function
AH(e’®) which is the difference between the actual frequency response H(¢/®), resulting
from the coefficients and data quantization, and the theoretical frequency response

H TH(ejw):
AH(e’®) = H(e’®) - Hp(e'®) (8.54)
Let us start considering first the effect due to the quantization of the filter coefficients

only. If A represents the quantization step, the rounding error Ak(k) on each coefficients
h(k) of the filter will be:
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\Ah(k)<A/2, YkeO...q (8.55)

Taking into account the FIR filter transfer function (8.5) the maximum value of
AH(?) is given by:

g A
ol < (g 41 (8.56)
Z S¢ <(q )2

k=0

max‘AH(e"‘”)‘ =max

In many cases the worst case estimation (8.56) of the coefficients quantization effect is
too rough. A better estimation can be obtained modeling the quantization error Ak(k) of
each filter coefficient as a random noise uniformly distributed between -4/2 and 4/2. The
filter coefficients variance is in this case:

o*[An(k)]== (8.57)

12

Considering statistically independent the quantization noise on each filter coefficient,
the standard deviation of the (8.54) is given by the uncertainity propagation law applied
to (8.5):

2

oH

an(e)| 7 O=Ye [ o [ank)]  ®:58)

k=0

o larle -

k=0

Since |¢/*|=1 expression (8.58) simplifies to:
9
S o2 [an(k)] = \/ﬁ A (8.59)
=0 3 2

The estimation (8.59) of the quantization effect on the filter frequency response is
smaller than (8.56) but it is more significant since the worst case error (8.56) is very
unlikely.

If dsp = min(Jp,ds) is the minimum ripple allowed by the filter specifications and & is
the ripple obtained without quantizing the filter coefficients, the variance (8.59) must
satisfy the following limit:

olar]= |41 A L 9o =00 (8.60)

If Nc is the number of bit used for representing the each filter coefficient (and its sign),
the quantization step is expressed by:
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. max‘h(k)‘ (8.61)

2N(~—1

A useful formula for estimating the number of bits required for representing the filter
coefficients can be obtained from (8.61) together with the inequality (8.60):

max](k) Vg + 1 max(h(i) (8.62)
A (551’ - 50 )\/5

The consequences of filter coefficients quantization can be studied also in terms of its
effects on the zeros location. Starting from the expression of the FIR filter transfer
function (8.4), which can be factorized as:

N.=1+log, 21+log,

H(Z_Zj)

H(z)= h(O)FIT (8.63)

i

q

and using the derivative chain rule to calculate the transfer function derivative with
respect to the filter coefficients:

oH | _|oH| 9 (8.64)
ah(k) 2=, - dz, 2=z, ah(k)

the sensitivity of the i™ zero location to the quantization of the A™ coefficient A(k) is
expressed by the derivative dz;/0h(k) in (8.64). The derivative dH/0h(k) in (8.64) derives
directly from (8.4):

{%} o (8.65)

while the derivative dH/0dz; results from (8.63):

q

[1G -=,)

j=1

_h(o)f':fiq (8.66)
Z.

i

—
Sk
|
A
Il
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Replacing (8.66) and (8.65) in (8.64) and solving for dz/0h(k) the i"™ zero sensitivity to
the ™ filter coefficient quantization is given by the following formula:

oz, zi™* (8.67)

oh(k) g

The importance of formula (8.67) is that it shows how the sensitivity of zero location
due to the coefficients quantization could be very high if the filter poles were very close
to each other, since the denominator of (8.67) tends to zero. Figure 8.29 shows this effect
for a 8" order FIR filter with linear phase with transfer function:

H(z)=l+az"' +bz7 +cz” +dz ™ +cz° +bz +az” +z7° (8.68)

In figure 8.29 are shown four of the eight zeros with circles and with asterisks the
zeros when the four coefficients a, b, ¢ and d in (8.68) are affected by a 0.5% random
perturbation. In figure 8.29b the eight zeros of (8.68) are more far apart from each other
than in figure 8.29a. It is evident from the picture that the change in location of the zeros,
due to the coefficient quantization, is smaller in figure 8.29b than in figure 8.294 as
predicted by equation (8.67).

a b
2 2
theoretical zero theoretical zero
15 1.5
b
E IR o g - [
~ o ~
* 8 AN \ i ® AN \
05 v zero with 0.5 N zero with
* \ Quantization v quantization
\ |
0 ‘ 0 ‘
0 1 2 0 1 2
Re(2) Re(2)

Figure 8.29. Effect on the zeros location of 0.5% random perturbation on the
coefficients of a 8" order linear phase FIR filter: (a) close zeros - (b)
distant zeros

FIR FILTER ARCHITECTURES.

The structure of a linear discrete filter is composed by a discrete dynamical system
implementing digitally the operations involved in the difference state equations (7.4a)
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and the output transformation (7.4b). The operations involved are storage, multiplication
and addition. Furthermore the complexity of the system is determined by the number of
these three types of operations needed and by their precision in terms of the number of

bits required for the data and coefficients quantization.

The simplest architecture for implementing a ¢™ order FIR filter can be derived
directly from equation (8.2) as shown in the block diagram of figure 8.1 and reported

here in figure 8.30 for convenience. This architecture, named direct structure, requires:

e 2g+1 memory registers (for storing the filter coefficients and state),

e ¢+1 multipliers,

e ¢ adders.

u(n). | UNIT
SHIFT

UNIT

SHIFT

(1)

|
!

Ly h(0)
| e
i

|

|

) 4

¢

UNIT
SHIFT

(1)

UNIT
SHIFT

UNIT
SHIFT

h(2)

Figure 8.31. Transposed structure of a " order FIR filter

The architecture of figure 8.30 is not the only way the arrange the calculations
required for implementing a FIR filter. Another structure, named transposed, can be




Finite impulse response (FIR) filters 211

derived from the direct realization of figure 8.30 by inverting all the signal flows: figure
8.31 shows the resulting numerical network. The complexity of the new structure is the
same as for the direct implementation:

e 2¢+1 memory registers (for storing the filter coefficients the state),

e g+1 multipliers,

e g adders.

If the FIR filter has linear phase the filter coefficients are real and have to satisfy the
symmetry condition (8.22). This condition can be exploited to halve the number of
multiplication and sums and the number of registers required for storing the filter
coefficients. The architecture for g™ order linear phase FIR filter is given in figure 8.32
for ¢ even and in figure 8.33 for ¢ odd. The complexity of these architecture are
summarized, respectively, by the following figures:

g even:

®  (3¢*+2)/2 memory registers (for storing the filter coefficients and state),

e ¢/2+1 multipliers,
e g adders.
g odd:
e (3¢+1)/2 memory registers (for storing the filter coefficients and state),
e (g+1)/2 multipliers,
e g adders.
[ _I
I -
u(n) , UNIT | UNIT - UNIT |
I | SHIFT | SHIFT v " SHIFT :
! i
UNIT [, UNIT |, - UNIT .
: SHIFT [ SHIFT [* ‘ SHIFT !
. |
! u(n) u(n-q)  u(n-1) u(n-g-1) u(n-2) u(n-g-2) u(n-q/2) I
! i

h(0) h(1) h(2) ;é h(q/2)]

Figure 8.32. Reduced multiplication g™ order linear phase FIR architecture, with q even
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From the above figures it results that the numbers of multipliers necessary for
implementing a linear phase filter are about half the number required for a direct structure
while the number of memory registers are about g/2 less.

u(n) - | UNIT | UNIT
"l SHIFT SHIFT i

SHIFT |[* SHIFT

I
|
! UNIT UNIT
|
|

I u(n) u(n-q) u(n-1) u(n-q-1)  u(n-2) u(n-q-2) u(n - qT-H)

h(0) (1) h(2)

Figure 8.33. Reduced multiplication g™ order linear phase FIR architecture, with q odd

An important limitation concerning the FIR filter structures previously discussed
regards the effect of coefficients quantization. This effect is particularly serious when the
filter transfer function has zeros in the z-plane closed to each other, for the reasons
explained in the previous paragraph.

In order to limit the effect of filter coefficients quantization on the zeros location let us
consider the following factorization of the FIR filter transfer function (8.4) in ¢ products
of first degree polynomials:

H(z)=hO)[[(1-2,z")=hO)] [ #, () (8.69)

q
k=1 k=1

where z; are the g zeros of the filter. The product in (8.69) of the ¢ terms:

H, (z)zl —-z,z" (8.70)

means that the impulse response of a ¢™ order FIR filter can be expressed as g
convolutions of the inverse z-transform of Hy(z). According to (2.27) this is equivalent to
think at a g™ order FIR filter as a realization of the cascade of ¢ 1 order FIR filters which
transfer function is expressed by (8.70). The effect of the filter coefficients quantization
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is limited now because each of the ¢ stages in cascade realize only one of the ¢ zero of
the FIR filter.

The difference equation which corresponds to (8.70), reminding that the term z™' is
equivalent to a unit shift, is:

yk(n):uk(n)_zk 'uk(n_l) (8.71)

where u,(n) and y(n) represent the " section input and output sequences, respectively.
The block diagram of the numerical network implementing one of the ¢ first order
section (8.71) is shown figure 8.34. Each section requires:
e 2 memory registers (for storing the filter coefficients and state),
e | multiplier,
e 1 adder.

A 4

u(n)y UNIT | 4D
: SHIFT

yi(n) .

Figure 8.34. First order stage implementing the zeros z; of a FIR filter using complex
arithmetic

Since the zeros z; are generally complex, the structure shown in figure 8.34 requires
the implementation of complex arithmetic operations. If the FIR filter has real
coefficients, i.e. impulse response is real, the zeros of its transfer function take place in
pairs complex conjugate:

(@) _ .. =it
Zk —rke

{Z,({l) =r.e'% (8.72)

In this case it is better to factorize the filter transfer function (8.69) with ¢/2 second
order polynomial in z':
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HE)=hO] (1 +a,z" +b,27) (8.73)
with:

(8.74)

2

{ak =—2Re(z,)

b, :‘Zk‘

If g is odd the factors in (8.71) are (g+1)/2, with b1y, = 0.

The advantage of the factorization (8.73) is that the coefficients a1y, ar and by are
real. The difference equation which corresponds to the second order polynomials in
(8.73) is:

yk(n)zuk(n)+ak-uk(n—l)+bk-uk(n—2) (8.75)

Figure 8.35 shows the digital network implementing (8.75). The complexity of this
section is given by:
e 4 memory registers (for storing the filter coefficients the filter state),
e 2 multipliers,
e 2 adders.

() UNIT | MeDE N | 402)
SHIFT SHIFT

Figure 8.35. Second order stage implementing a FIR filter with real impulse response,
without using complex arithmetic

Equation (8.74) shows that the effect of quantization on the coefficients a;, and b,
results in the quantization of the squared absolute vale and of the real part of the zero z;
and its complex conjugate. Figure 8.36a shows this effect when the filter coefficients
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(8.74) are quantized with 4 bits. The zeros cannot lay anywhere in the complex plane, but
they must stay on the grid defined by the intersection of the continuous and dotted lines.
For example in figure 8.36) with dots are shown the zeros that can be obtained with the
2" order stage of figure 8.35 when the coefficients quantization is made using 6 bits.

§

T T T T T T T T TTIITTIT
oot

T T T

[ A A N NN

0.5

Im(z)

’
’
s
o v’

0.5 1
Re(2)

Figure 8.36. Zeros location for a 2" order FIR filter stage with quantized coefficients;
(a) grid for 4 bits quantization, (b) zeros location with 6 bits quantization

If the FIR filter has linear phase its complex zeros happens to be grouped in reciprocal
pair, i.e. if z; is a zero so is 1/z; as well. Moreover if the filter has real coefficients the
zeros must be in complex conjugate pairs, so that the zeros must occur in groups of four
complex numbers such that:

z,(cl) =re’ ) = — /%

e (8.76)
Z(Z) — rke_ja" Zl(c4) —J6

T

This particular distribution of the roots is shown in figure 8.37 where the four zeros
(8.76) are plotted together with the unit circle in the z-plane.

Adopting two 2™ order stages for realizing the 4 zeros, because of the quantization of
their coefficients, the actual roots will only approximate (8.76). If one 2™ order stage
realizes the complex conjugate pair zl({]) and zf) while the other stage the pair zf) and
z,(c“) the actual zeros will be two complex conjugate pairs that generally will not satisfy
relation (8.76) with each other, i.e. the resulting filter will not have liner phase.

To force the filter to have linear phase, even though the coefficients quantization, it is
necessary to factorize the filter transfer function (8.4) into fourth order factors with real
coefficients having the symmetry property (8.22) of the FIR filter coefficients:
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q
4
H(Z)zh(O)l_[(l+akz_1 +b,z7 +a,z” +Z_4) (8.77)
k=1
with:
1
a, =—2Re| z, +—
Zk (8.78)
2 1 1
b, =|z,| +—5+4Re(z, )Re[}
zk‘ Zi
1 P ozf)
08f e o\\\
06 / A AN
/ k \
04f , .
© ! \
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Figure 8.37. Location of complex zeros in the z-plane for a linear phase FIR filter

In this way the linear phase FIR filter is realized as the cascade of ¢/4 stages such that

each of them is a linear phase 4™ order FIR filter with transfer function given by (8.77).

To the factor (8.77) corresponds the following difference equation in the n-domain and

the numerical network shown in figure 8.38:

Vi (n)= [”k (n)+ Uy (n - 4)]"' - [uk (n - 1)+ Uy (n - 3)]+ b -u, (n - 2) (8.79)

The complexity of this structure is reduced because of the coefficients symmetry and

given by:
e 6 memory registers (for storing the filter coefficients and state),
e 2 multipliers,
e 4 adders.
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Compared to a pair of 2™ order stages the 4™ order linear phase structure requires two

less memory registers and multipliers.

UNIT UNIT
| SHIFT SHIFT
|
i UNIT UNIT
| SHIFT sHrFT  [*
|
| u(n) u(n-4)  u(n-1) u(n-3) u(n-2)

‘Si—bA

yi(m)

Figure 8.38. Fourth order stage implementing a FIR filter with real impulse response

and linear phase

0.5

Im(z)

Im(z)

0.5
Re(z)

Figure 8.39. Zeros location for a 4" order linear phase FIR filter stage with quantized
coefficients and 0.55z;|<0.5" (a) grid for 4 bits quantization; (b) zeros

location with 6 bits quantization

A far as the filter coefficients quantization is concerned figure 8.39a shows the grid for
the zeros positions in the complex z-plane considering 4 bits for the quantization of the
coefficients (8.78) when 0.5<|z/<0.5". Figure 8.395 shows instead the zeros positions
when the quantization is obtained using 6 bits. The two figures illustrate the bad coverage
of the z-plane due to the quantization of the coefficients (8.78) of the fourth order
structure. The situation is even worse under the hypothesis that 0.05<|z,/<0.05™, as shown
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in figure 8.40, where a resolution of 5 bits has been considered for the coefficients
quantization. The reason for that are the term z; and 1/z; in (8.78); when |z;/—0 the
dynamics of the coefficients growths to infinity and the quantization became coarser. The
effect on the zeros location grid is shown in figure 8.40 for |z;|<1; the grid results very
dense only around the circle |z;/=0.05 (and the circle |z/=0.05" not shown in figure 8.40)
and very sparse elsewhere.

10

7

”

Im(z)

Im(z)
(6]

Cirissy
////////

sy

T T T T T TTTTTTTTITTITTTITiimg

Figure 8.40. Zeros location grid for a 4" order linear phase FIR filter stage with
quantized coefficients on 5 bits and 0.1=|z|<0.1"

A better coverage of the z-plane after coefficient quantization can be gained forcing
the 4™ order stage zeros to stand a quantization as uniform as possible, for example with
the following quantization of the zeros positioning:

o, = —2Re(zk )
B = ‘Zk‘z

(8.80)

In this case the transfer function of a single stage assume the following form:

H, (Z)=(1+a,cz'1 +bz7 +a,z” +z_4)=
(8.81)

=i(l+0(kz’l +,Bkz’2)(ﬂk +a,z” +Z’2)
k

Figure 8.41 shows the resulting numerical network, characterized by:
e 7 memory registers (for storing the filter coefficients and state),
e 5 multipliers,
e 4 adders.
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Figure 8.42. Zeros location grid for a 4" order linear phase FIR filter stage with
quantized coefficients on 5 bits and 0.1= |z <0.1"

Figure 8.43 shows the numerical network for the synthesis of a FIR filter with the
frequency sampling method (8.53). It composed by a comb FIR filter in cascade with the
parallel of N+1 stages characterized by a feedback loop. This stages are filter with an
infinite impulse response and will be described in the next chapter.
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Figure 8.43. Numerical structure of a FIR filter designed with the sampling frequency
method



CHAPTER 9

INFINITE IMPULSE RESPONSE (IIR) FILTERS

z-DOMAIN REPRESENTATION OF IIR FILTERS.

An infinite impulse response (IIR) filter of order ¢ is linear shift invariant causal discrete
systems having as the g state variables at step n the values of the system output at the N
previous steps and the system input at the M previous steps, with g=max(V, M). As the name
suggests the impulse response of an IIR filter is a sequence /(n) persisting forever:

{n(n)}={n(0)5(n)+ n(1)5(n —1)+...} (CRY

In the z-domain the IIR filter can be analyzed in terms of its transfer function:
H(z)=3 hk)z 92)

which, as explained in chapter 7, can be written in the format (7.43) here reported for
convenience:

N(z) Zakz'

H(z)z =_*=0

k
9.3)
D(Z) 1+ Zﬂszk
k=1

If M>N the ratio (9.3), between the numerator polynomial N(z) of degree M and the
denominator polynomial D(z) of degree N, can be split as the sum of a quotient
polynomial Q(z) of degree M-N and the ratio between the remainder polynomial R(z) of
degree N-1 and the denominator D(z):
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M-N fakz_k
H(z)=0()+ R(z) =Nyt g (9.4)

In (9.4) the transfer function Q(z) corresponds to a FIR filter of order M-N.

In If M<N the quotient O(z) is zero.

As shown in chapter 7 the transfer function (9.3) admit the factorization (7.44),
reported below:

(I—Zszl)

H(z)=a, ©-3)

= e
= =

(1-pz")

=
n
=
n

An IIR filter is characterized by M zeros in Z;, N poles in P; and in the origin, if N>M
there are N-M zeros otherwise if N<M there M-N poles.

The frequency response of an IIR filter can be determined from either (9.4) or (9.5) by
replacing z with ¢/

N-1
—jkw
H(e’w)—ﬂg] —jka k:oake _
- yke + N -
= - jko
k=0 1+AZ:;,BA,€ / 9.6)
ﬁ (ejw —-Z )

zaoej(N—M)a) k=1

n-DOMAIN REPRESENTATION OF IIR FILTERS.

The difference equation in the n-domain representing the relationship between the
input sequence {u(n)} and the output sequence {y(n)} for an IIR filter can be derived
directly from the expression of the transfer function (9.3):
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M

z a.z *
Y(z)=—2 —U(2)

N
1
k=

+

2h=" 9.7)

U
y<n>=aou<n)+§aku<n—k)—gﬁmn—k)

The block diagram in figure 9.1 shows graphically this relationship.

|
W) | uwir [ @D o UNIT  |ue-M)
: | SHIFT SHIFT SHIFT i
i i
! !
i ;2)‘_060 o o :
|
i i
! !
! NG !
! !
1 I
i i
i Y(n-N) UNIT Y(n-N-1) Y(n-1) UNIT H(n) i
i SHIFT i
i i
I !
i B !
! !
! !
! !
i Y 1y(n)
i i o

Figure 9.1. n-domain block diagram of an IIR filter
The state vector for this type of filter, according to (7.39), is given by the M values of

the input sequence {u} and the N values of the output sequence {y} preceding the current
step n:

X(n)z[y(n—l) i y(n=N) uln-1) ... u(n—M)]T 9.8)
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The block diagram of figure 9.1 shows that an IIR filter can be seen as the cascade of a
FIR filter and a purely recursive IIR section with transfer function

Ho()=— 9.9)

responsible of the infinite impulse response of the filter.

An important property of IIR filters is that the feedback loop due to the purely
recursive stage allows the synthesis of more selective filtering transfer function synthesis
if compared with the transfer function attainable with a FIR filter of the same order.

By factorization of the purely recursive stage transfer function Hy(z):

Hy@)=o o (9.10)
k=

[10-7-") [IG-#)

k=1 1

it results that this stage is responsible for the synthesis of the N poles of the whole IIR
filter (9.5), while the FIR stage realizes the M zeros of H(z). Since each stage realize also
N zeros and M poles in the origin respectively this explains why in (9.5) are present also
N-M zeros in the origin.

PURELY RECURSIVE IIR FILTERS

Considering figure 9.1, the simplest IIR filter is a filter with no FIR stage and with a
recursive stage composed by one unit shift block only, as shown in figure 9.2.

L DI §)NS § W BY(D)
SHIFT [¢

u(n) y(ng

Figure 9.2. Block diagram of a first order purely recursive IIR filter

The consequential difference equation is given by:
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y(n)=au(n)-p,y(n-1) (9.11)

Comparing (9.11) with the more general difference equation (9.7) it results M=0 and
N=1, giving a filter order g=M+N=1. This type of IIR filter is known as a first order
purely recursive IIR filter.

The transfer function of the first order purely recursive filter is given by the z-
transform of (9.11):

TE)=aUle)-ATE): = U ()
U 1 9.12)
Y(z) o &z

H@z)= U(Z)= 1+ 8,z - z+ f3,

The first order purely recursive filter has 1 zero in the origin and one pole at z=-/,.
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Figure 9.3, Frequency response, zero-pole diagram and impulse response for a first
order purely recursive IIR filter with a pole in z=0.5

As an example the frequency response, together with the zero-pole diagram and the
impulse response, for this type of filter is shown in figure 9.3. The pole is placed at z=0.5
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by setting £=-0.5. In order to maintain a unit DC gain the value of ¢, was forced to the
following value:

__ %
=01+ f,

(e’ ) —1 = a,=1+5 (9.13)

From the frequency response diagram of figure 9.3 it appears that this simple IIR filter
can behave as a low pass filter. A similar behavior can be obtained with a FIR filter of the
same order and therefore of similar complexity. For example the response of a 1% order
moving average FIR filter is shown in figure 9.4. It is evident how the feedback loop of
the IIR filter results in a much higher selectivity in the frequency response, although it is
noteworthy the highly non linearity of the IIR phase response.

1 | | |
| | |
0.8 70 ) Ry S
—_ ) | |
— o
= 06 g RN
2 o4 g TN
E © | | |
roag ) M B RN NN
0.2 50 | | ]
. I
- —T/2 0 w2 T - —Tt/2 0 /2 T
Angular frequency @ [rad] Angular frequency o [rad]
1 PEEE N 0.5¢¢
, | N
- N 0.4
Fos
|
> . | ' =03
5 0O % - L4 %
® o5 | iy 02
E™ N | L 0.1
-1 \\\:7// 0 —eooocecsecscocecee
-1 0 1 0 10 20
Real Part n

Figure 9.4.  Frequency response, zero-pole diagram and impulse response for a first
order moving average FIR filter

In the previous chapter it was shown that FIR filters have poles in the origin only; this
property makes this type of filters always stable. On the contrary the poles o purely
recursive IIR filters are not in the origin making the design of IIR filer somehow more
cumbersome because it is necessary to guaranty the filter stability.

For example in figure 9.5 is shown the frequency response of a 1% order purely
recursive filter with a pole in z=2 and unit DC gain. By comparison of this picture with
the frequency response shown in figure 9.3 for an IIR filter with a pole in z=0.5 it can be
seen that the amplitude response is the same, while the phase response is different. But
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looking at the impulse response of the two filters another important difference emerge:
the filter with a pole in z=0.5 is stable, while the filter with a pole in z=2 is unstable. This
behavior, as explained in chapter 7, is due the filter pole location outside the unite circle.

Figure 9.5.
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Frequency response, zero-pole diagram and impulse response for an
unstable first order purely recursive IIR filter with a pole in z=2

Another IIR filter noteworthy is the 2™ order purely recursive filter obtained adding
one more state variable (i.e. a further unit shift block) to the first order purely recursive
filter of figure 9.2, as shown in the block diagram of figure 9.6.

Y| uNr [y UNIT  [3(1)
SHIFT SHIFT |
. )
lam
u(n) o0 NG y(n) .

Figure 9.6. Block diagram of a second order purely recursive IIR filter

The difference equation implemented by the digital network of figure 9.10 is:



228 Chapter 9

y(n)=ayu(n)-Byn—1)-p,y(n-2) (9.14)

The transfer function of the second order purely recursive filter is given by the z-
transform of (9.14):

Y(z)=a,Ulz)- B Y () =By (e)e > =—— 20— _u(z)
1+8z" +B,z7
U (9.15)
H(z)= Y(z) a, oz

U(z) B 1+ﬁ'lzfl +,6’zzf2 s +8,z+ 5,

giving for the transfer function of a second order purely recursive filter two zeros in the
origin and two poles P, and P,, which are the roots of the denominator polynomial
2+ B2+ 3=0.

If the two coefficients £ and S, are real, the two poles P; and P, are a complex
conjugate pair. Representing the poles in polar form as:

B =re’, Py=re’’ (9.16)
the coefficients f; and /3 are given by:

B, =—P, —P, =-2rcos@

, (9.17)
B, =PP,=r

2Bzt f, :(z—m(z—a):{

As an example the frequency response, together with the zero-pole diagram and the
impulse response, for a second order purely recursive filter with real coefficients is
shown in figure 9.7. The poles are placed at z=0.5¢9"* by setting =-V2/2 and $,=0.25.
In order to maintain a unit DC gain the value of ¢ was forced to the following value:

. o
Hle’® — 0 =1 = o =1+ + (918)
"), =15 o =145+ 5,

Usually the poles of a second order purely recursive filter are specified in terms of
their radius r, called natural angular frequency and represented with the symbol @,, and
the damping ratio £ defined as the ratio between their real part and the natural frequency:
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o, =|R|=r
(9.19)
£= Re(Pl): rcosé — cosd
w r

n

Using this new parameters (9.19) for the poles classification with relationships (9.17)
and (9.18), the transfer function H(z) in (9.15) can be rewritten as:

(1 -2lw, + ! )22 (9.20)
2’ =2lw 2+ .

H(z)=

>
= @
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Figure 9.7.  Frequency response, zero-pole diagram and impulse response for a second
order purely recursive IIR filter with two poles in z=0.5¢%"*

Figure 9.8 shows the complex conjugate pair location in the z-plane as a function of @),
and & Since the angle @is in the range 0+7, the damping ratio being the cosine of & must
lay in the interval -1+1.

Figure 9.9 shows the amplitude and impulse response for a 2™ order purely recursive
filter with natural frequency @, = 0.5 and damping ratio £in the range 0.1 + 1. Looking at
the impulse responses it is evident the significance of the damping ratio: the higher is its
value the more damped is the response to an impulse input sequence. This behavior is
also reflected on the shape of the magnitude frequency response.
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Figure 9.8. Complex conjugate poles location in the z-plane as a function of the natural
angular frequency @, and the damping ratio &
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Figure 9.9. Amplitude and impulse responses for a second order purely recursive IIR
filter with @,=0.5 and damping ratio & increasing from 0.1 to 1

IIR FILTERS DESIGN FROM ANALOG SPECIFICATIONS.

The simplest way for the design of IIR filters meeting some prescribed specifications
is carrying out the following procedure:
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e  Convert the discrete domain specs in the continuous analog domain;
e Design the analog filter;
e Convert the analog filter from the continuous analog domain to the discrete
domain.
Before stepping into the detail of the analog to discrete mapping, let us first introduce
the characteristics of the three most popular analog filter prototypes.

Butterworth filters

The square magnitude response of a N order Butterworth filter is

- 1 9.21)

where Q¢ is the-3dB cutoff angular frequency. Figure 9.10 shows the Butterworth
magnitude response for N=2, 5 and 8.
Butterworth filters have the following properties:
e maximally flat pass-band, i.e. the fist 2N-1 derivatives of (9.21) are zero at
DC;
e there are no ripples in both the pass-band and the stop-band, i.e. the
magnitude response is monotonic decreasing with Q.

1

1
2
¢

Figure 9.10. The monotonic magnitude frequency responses of the Butterworth low-pass
filters of order N=2, 5 and 8

The transfer function G(s) can be obtained replacing jQ with s in (9.21):
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1 (9.22)

The 2N poles of |G(s)[ are:

(r 2z T, 7 2z
S L la B o v 02
JQc

as shown in figure 9.11a. The poles (9.23), laying on the circle of radius Q, are the poles
of both G(s) and G(-s). If the filter is causal and stable the poles of G(s) are those with
negative real part as shown in figure 9.115b.
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Figure 9.11. (a) — poles of |G(s)]> = G(s)G(-s)  (b) — poles of G(s)

Chebyshev filters

Since filter specifications allow a certain ripple level in the pass and stop bands, a
more efficient design can be attained with the Chebyshev filters, characterised by having
a not-monotonic magnitude frequency response. There are two types of Chebyshev
filters: type I filters are characterized by ripple in the pass-band only, while type II filters
have ripple in the stop-band only. The squared magnitude frequency response is given by
(9.24) and (9.25) for the type I and type II filters, respectively.

1
1+e[T, (Q/Q. ) (9:24)

e=(1-6)"-1

@) =
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1+ [1, Q. Q) (9.25)
e=(1-6)"-1

In (9.24) and (9.25) Jis the ripple level either in the pass-band or in the stop-band.
The function T(x) is the Chebyshev polynomial of order N:

()= cos[N arccos(x)] |x[<1 (9.26)
v= Ch[N arcCh(x)] |x[>1

Figure 9.12 shows the comparison between a Butterworth filter and Type I and II
Chebyshev filters of the same order: the ripple in the Chebyshev filters allows a sharper
transition between the pass-band and the stop-band.

1 - 1

\ \Chebyshevl
08 V| N=4 08 -~
Chebyshev |1
— 06 — 06 || N4
o o Butterworth
© 04 O g4 N
0.2 0.2
0 0
0 0.2 0.4 0 0.2 0.4
Angular frequency Q Angular frequency Q

Figure 9.12.  Comparison between the magnitude responses of Butterworth and
Chebyshev I and Il low pass filters of the same order

Elliptic filters

Elliptic filters are even more efficient than Chebyshev since with this filters ripple is
possible in both the pass-band and stop-band. The magnitude squared of the frequency
response is given by:

2

1evuylere,)f 9.27)

G(jQ)




234 Chapter 9

with dthe ripple level and Ux(x) the Jacobian elliptic function of order N:

(9.28)

U, ()= [

iy i-n2y?)

Figure 9.13 shows a comparison between Butterworth, Chebyshev and elliptic filters
with the same ripple level and transition bandwidth. The result is that the elliptic filter,
allowing ripple in both the stop and pass bands, meet the specifications with the lowest
order.

/

0.8 \ . Butterworth 7
— Chebyshev | v, N=8
= 06 . ,
a N=4 N
© 04f ' Eliptc |

N=3
0.2
0 L L
0 0.1 0.2 0.3 0.4 0.5

Angular frequency Q

Figure 9.13. Comparison between the magnitude responses of Butterworth, Chebyshev I
and elliptic filters with the same transition band and ripple level

Analog to discrete domain mapping

The mapping of the continuous system to the discrete domain can be accomplished in two
different ways. A first possibility is to define a discrete system such that its response to
samples of a given class of input functions is equal to the samples of the response of the
specified continuous system, as shown in the continuous frequency domain Q in the
block diagram of figure 9.14.

uGQ)

Ideal
Sampler

A 7(Q) Ideal | Yn(e!™)

G(L2) Sampler
Un( ejQT) Y (ejQT)
> He(jQ) >

Figure 9.14. Impute response invariance synthesis
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Another possibility for the conversion from the continuous to the discrete domain
consists in the definition of a mapping s=s(z)between the s-domain and the z-domain and,
through this mapping, convert the continuous transfer function G(s) to the discrete system
transfer function Hp(z) setting Hp (z) = G[s(2)].

This two different approaches will be discussed in the following two paragraphs.

Input response invariance

A common method for the synthesis of a discrete system transfer function Hc(j€2) is by
conversion of a given transfer function G(j€2) of a continuous system in such a way that
the responses of the two system to a special class of input signals are the same, as shown
in the block diagram of figure 9.14. Typical input signal are the impulse, the unit step and
the ramp.

If U(Q) is the Fourier transform of the input signal to the continuous system with
transfer function G(s), the Fourier transform Y(jQ)of the output signal is:

Y(jQ)=G(jQuU(jQ) (929

Once sampled, with sampling period 7, the spectrum of the continuous system
response is given by:

YD(e-’m):% iY(jQ+jn2;[j:

n=—oco

= 2 27
TZ [J jn T) (] j Tj

n=—oco

(9.30)

If HA(jQ) is the frequency response of the discrete system in the continuous domain,
the Fourier transform of the discrete system output must be equal to (9.30) and given by:

vl )=He (o, ) ©31)

From (9.31) and (9.30) it results the following expression for the discrete system
frequency response satisfying the input response invariance:

1 & 27 27
H.(jQ)= : Gl jQ+ in==1|U| jQ+ jn== (9.32a)
() 0. Z‘; (] J T) (J J Tj

Considering as input signal an impulse (impulse invariance) expression (9.32a)
simplifies to:



236 Chapter 9

. LS A6, 27
H(2)=1 ZG( jQ+ jn T) (9.32)

n=—oo

If the condition:
G(jQ)=0 for |Q> ; (9.33)

is satisfied than there is no aliasing and the two transfer functions in (9.32) a and b are
given by:

. U(jQ _ .

HC(JQ)zm(]ej%}G(]Q) for \Q\<? (9.34a)
D

Hc(JQ)=%G(jQ) for \Q\<% (9.34b)

The above conditions are satisfied when 7' is small enough to avoid aliasing in G(j€2);
but according to (7.61) when T—0 it must be Up(e’™" )=U(jQ)/T and (9.43a) simplifies to:

H.(jQ)=G(jQ) for T =0 (9.35)

Usually condition (9.33) is not met and therefore the invariance of the input response
forces the transfer functions of the discrete and continuous systems to be different in the
interval |Q|<z/T, although (9.35) shows that in the limit 7—0 it must be H(jQ)—>G(jQ2).

The previous limit is not valid anymore if we consider the system response to an input
impulse. In this case (9.34b) shows that when 7—0 it must be H(jQ)—G(jQ)/T. Thus
the impulse invariance frequency response for short sampling periods 7 is characterized
by a very large magnitude response; this is the reason why often it is necessary to
implement a filter with frequency response TH(jQ2) instead than Hc(jQ2).

In general to manage equation (9.32) a or b for the input response invariance design is
quite cumbersome, but it can be avoided by considering the partial fraction expansion of
the continuous system transfer function to elementary functions and using the table for
the Laplace and z transforms for the inversion as shown in the following two examples.

Example 1: Impulse invariance - If for example G(s) has no repeated poles the partial
fraction expansion has the form:
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(9.36)

and the impulse response y(¢) is the sum of N exponentials:

N
W)= [z Ao j](z) 9.37)

k=1

The samples of the impulse response (9.37) are:
N

JnT) = (z 40 jl(nT) 9.38)

k=1

and the sequence associated to the samples of the impulse response of the continuous
system is given by:

v (n)= (i A ]I(nT) (9.39)

The z-transform of the impulse response (9.39), which by definition is the discrete
system transfer function, can be derived by the z-transform table 7.1 and expressed as:

N Ak

HD(Z):Z ol 1

k:]l—e z

(9.40)

Equation (9.40) shows that the poles s; of G(s) are mapped to ¢*’ in the z-domain;

this mapping assures that a stable continuous system is mapped to a stable discrete

system, since if |s,/<0 it must be |¢%"| < 1.

The Fourier transform in the continuous domain €2 of the discrete system is:

A (9.41)

.~ jar \ _ Ak
HC(jQ)—HD(e/ )— )M o T

N
o=
Figure 9.15 compares the magnitude response of the continuous system with the

magnitude response of the discrete system synthesized with the impulse invariance
method when the sampling period is 7= 0.2 s and the continuous transfer function is:



238 Chapter 9

()= 2 (9.42)

T 35410 s+1

It is noteworthy that the comparison, according to (9.34b), is between |G(jQ2)| and
|THc(j€2)|. The two frequency responses are different and in particular the discrete system
transfer function is periodic with period twice the Nyquist angular frequency Qy= 7/T. In
the time domain instead the two impulse responses shown in figure 9.15 are the same as
imposed by the design method.
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2 ” THGo)]
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o 04 h()—_ a
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[ [}

o \ s

£ 08 o) £

Q [}

E 4 3
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g

-1.2 0
0 1 2 = 50 Q0 Q 50

time [s] Angular frequency Q [rad/sec]

Figure 9.15.  Comparison between the impulse and the magnitude responses of the

continuous system (9.42) and the impulse invariance discrete system
(9.41)

Example 2: Step invariance - If as in the previous example the transfer function G(s) has
no repeated poles, the partial fraction expansion of the Laplace transform for the
continuous system step response has the following form:

A,

S—=8,

(9.43)

Y(s)= iZN;

The step response in the time domain can be derived inverting the Laplace transform
(9.43):

0= S -0 044

k=1 S

The sequence composed by samples of the step response (9.44) is expressed by:



Infinite impulse response (IIR) filters 239

N

yp(n)=y(nT)= (Z At (goor _ 1)}1@) (9.45)

k=1 Sk

The step-invariance discrete system transfer function results from the ration between
the z-transform of (9.45) and the z-transform of the step sequence /(n):

1,(6)="E) =
. (9.46)

Figure 9.16 compares the magnitude response of the continuous system with the
magnitude response of the discrete system synthesized with the step invariance method,
in case of a sampling period 7' = 0.2 s and the continuous transfer function (9.42) of the
previous example.

0

-0.5

Step response

Magnitude frequency response

0 2 4
time [s] Angular frequency Q [rad/sec]

(o2}

Figure 9.16. Comparison between the step and the magnitude responses of the
continuous system (9.42) and the step invariance discrete system (9.46)

It is noteworthy that the comparison in this case, according to (9.35), is not between
|G(jQ2)| and |THAjC2)| as for the impulse invariance synthesis but between |G(j€2)| and
|[Hc(jQ)|. The two frequency responses are different and in particular the discrete system
transfer function is periodic with period twice the Nyquist angular frequency Qy = 7/T. In
the time domain instead the two step responses shown in figure 9.16 are the same as
imposed by the design method.
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Frequency domain design

Another possibility for the conversion of a continuous system transfer function G(s) is
to define a transformation

s’ = s(z) (9.47)

from the z-domain to the s-domain so that the discrete system transfer function is given
by:

H,(z)=Gls(z)] (9.48)

Several ways for defining the mapping (9.47) are available. The methodologies
described here are all based on numerical integration formulas approximating the
continuous integration.

In the discrete domain any numerical integration algorithm can be expressed in terms
of its z-transform Hp(z). On the other side in the continuous domain context the
integration is expressed, in terms of its Laplace transform, as 1/s. Putting together the two
expressions the following z to s mapping outcomes

L b, ()= (9.49)

FORWARD INTEGRATION

It is natural to obtain a first z to s transformation by considering the Euler’s or forward
rectangles integration formula reported below and motivated graphically in figure 9.17:
y(k)=y(k=1)+u(k-1)-T  (9.50)
where 7 is the sampling period.
The z-transform of the digital integrator (9.50) is given by

Hy(2)= (9.51)

s'= (9.52)
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The mapping of the stability region in the s-domain on the z-plane for the
transformation (9.52) is shown in figure 9.18, where it can be seen that with the Euler’s
integration formula a stable continuous system can be transformed in an unstable discrete
system.

't

(k-1)T kT

Figure 9.17. Euler’s integration formula: the integral y(k) at step k is computed adding
the rectangle area u(k-1)T to the integral y(k-1) at the previous step k-1
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Figure 9.18. Mapping of the stability region |s|<0 in the s-domain on the z-plane for the
forward integration formula (9.52)

The goodness of the approximation to a pure integrator obtained with Euler’s
approximation (9.52) can be analyzed in the frequency domain. The theoretical
continuous time frequency response of a pure integrator is given by:

o) L 9.53
G(jQ) o (9.53)
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while the frequency response H(j£2) can be derived tacking the Fourier transform of the
discrete integrator (9.51):

The magnitude and phase of the two frequency responses Hc(jQ2) and G(jQ2) are shown
in figure 9.19 (for =1 s) and expressed by the following relationships:

—jer ar T
H.(jQ)=H ,(e™" )= Te =—je 2 A (9.54)

1 .
G(jQ) = ‘Q‘ |H . (/Q) = M (9.55)

Q)=-"_
£G(jQ)= 542 |y (ja)=-E 9T Lsin(QTz)

From the responses reported in figure 9.19 it is evident the distortion in phase and
magnitude due to the approximation of the Euler’s integration formula.
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Figure 9.19.  Magnitude and phase frequency responses for the forward integration
formula with sampling period T =1 s
BACKWARD INTEGRATION

Another possibility for the numerical approximation of the pure integration is given by
the backward rectangles integration formula (see figure 9.20):

(k)= ylk =1)+ulk)-T (9.56)
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w(k)y u(k)T

't

(k-1)T kT

Figure 9.20. Backward rectangles integration formula: the integral y(k) at step k is
computed adding the rectangle area u(k)T to the integral y(k-1) at the
previous step k-1

@

’—M T
% asn—u

Z s

Figure 9.21. Mapping of the stability region |s|<0 in the s-domain on the z-plane for the
backward rectangles integration formula (9.56)

In this case the transfer function of the discrete integrator is:

T

H,(z)= ] (9.57)
1-z~
which, according to (9.49), defines the z-s mapping:
, z-—1
s =
zT (9.58)
1
z =
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The mapping of the stability region in the s-domain on the z-plane for the
transformation (9.58) is shown in figure 9.21. This type of transformation is better then
the forward integration formula because stable continuous systems are always
transformed in a stable discrete systems. There are however also unstable continuous
systems that are transformed into stable discrete systems.

The frequency response in the continuous domain Q of the discrete filter derives
directly from (9.57)

e, T & T (9.59)
e

and the comparison with the frequency response of a pure integrator is shown in figure
9.22 according to the following results:

6=t P
€ v _‘sin(Q%)‘ (9.60)
ZG(/Q):‘%"ZQ LHC(jQ):—%+%—4sin(QT2)
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g = H (i)
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Figure 9.22. Magnitude and phase frequency responses for a backwards rectangles
formula discrete integrator with sampling period T = 1 s

As shown in figure 9.22 the backward rectangles integration formula is not a better
approximation of a pure integrator than the forward transformation. Even at low
frequency although the amplitude response of the discrete integrator approximate very
well the response of the pure integrator, there is still a strong difference in the two phase
responses.
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CENTRAL INTEGRATION
A third possibility for the approximation of a pure integral is to use a further rectangles
integration formula which is in between the two formulas (backward and forward) seen

before as shown in graphically in figure 9.23. The finite difference equation resultant
from the computation of figure 9.23 is:

y(k)=y(k=2)+ulk—1)-2T (9.61)

The z-transform for this type of digital integrator is given by

-1
Hy(2)=2 9.62)
1-z~
which, according to (9.49), defines the z-s mapping:
. z? -1
- 2zT (9.63)

z=5"T+(s'T) +1

The mapping of the stability region in the s-domain on the z-plane for the
transformation (9.63) is shown in figure 9.24, where it can be seen that with the central
rectangles integration formula (9.61) a stable continuous system can be transformed in an
unstable discrete system and an unstable continuous system can be transformed in a
stable discrete system.

u(k-1) u(k-1)2T

Figure 9.23.  Central rectangles integration formula: the integral y(k) at step k is
computed adding the rectangle area 2u(k-1)T to the integral y(k-2) at
step k-2
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. s

Figure 9.24. Mapping of the stability region |s|<0 in the s-domain on the z-plane for the
central rectangles integration formula (9.61)

The comparison between the numerical and the continuous integration can be done
comparing the pure integration Fourier transform (9.53) with the frequency response
H(j€2) associated to the z-transform (9.62):

2Te ™" T

H,.(jQ)=H, (" )= = (9.64)
c D — ;
1—e™ /297 sin(QT')
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L HQ)
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Figure 9.25.  Magnitude and phase frequency responses for the central rectangle
integration formula(9.61) with sampling period T = 1 s

The magnitude and phase of the two frequency responses Hc(j€2) and G(j€2) are shown
in figure 9.25 (for 7= 1 s) and expressed by the following relationships:
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_ L
<

T
[sin(Q7) (9.65)
LG(jQ)z—g—LQ LHC(jQ)z—g—Lsin(QT)

G(Q) H . (jQ)

In this case the transformation does not produce any phase distortion, but the
magnitude response approximate the pure integrator response only at low frequency if
compared with the two previous digital integrators.

SIMPSON INTEGRATION

A better approximation can be obtained considering a discrete filter which adopts the
Simpson integration formula (see figure 9.26):

y(k)= y(k—1)+u(k)+;(k_1)-T (9.66)

~Y

(k-1)T kT

Figure 9.26. Simpson integration formula: the integral y(k) at step k is computed adding

the trapezium area [u(k)+u(k-1)]T/2 to the integral y(k-1) at the previous
step k-1

Applying the same analysis as before the frequency response in the discrete domain @
is:

Hy(s) =1 (9.67)
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At (9.67) corresponds to the following frequency response in the continuous domain
Q:

T 14 T 1 (9.68)

H(jQ) =218 =2
A (QT}
tanT

The magnitude and phase frequency responses of the Fourier transforms (9.68) are
given by

T
Gl)= 1 el

t(mj
5 (9.69)

ZH,(jQ)= —Z—Ltan(gjj

4G(j9)=—§—49

Figure 9.27. shows graphically the frequency responses (9.69). It is clear from this
figure that in this case the phase response of the numerical integrator is equal to the
theoretical one and the magnitude response is in better agreement that with the central
rectangles integration formula used before.
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Figure 9.27. Magnitude and phase frequency responses for a discrete integrator based
on the Simpson integration formula with sampling period T = 1 s

The z-transform (9.67), according to (9.49), defines the z-s mapping:
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S,_zz—l
T z+1 (9.70)
2+4s5'T

Z=——"7
2—-5T

The transformation (9.70) is known as the bilinear or Tustin’s transformation. Figure
9.28 shows the mapping of the stability region in the s-domain on the z-plane for the
bilinear transformation (9.70).With this formula the left half s-plane is mapped into the
interior of the unit disc in the z-domain. Therefore stable continuous systems are
transformed in a stable discrete system and unstable continuous systems are transformed
in unstable discrete systems.

.

Z> 5

Figure 9.28. Mapping of the stability region |s|<0 in the s-domain on the z-plane for the
bilinear transformation

A problem with the transformation just discussed is that the frequency axis is
distorted. According to (9.53) and (9.68) the distortion is given by:

e - Ztan(wj ©.71)
H.(jQ) T 2

This effect, called frequency warping, is shown graphically in figure 9.29 where a
continuous low-pass filter is approximated with a discrete low-pass filter. The
approximation, due to the frequency warping, is good at low frequencies only and worsen
increasing the frequency.

It is possible to modify the transformation (9.70) in order to eliminate the frequency
distortion at a specific frequency @, adopting the following s-z transformation:
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, @, z-1 9.72)

s = -—
[ T)z+1

tan| @, —

2

Using (9.72) the distortion at @y will be eliminated, but there will be however a
distortion at the other frequencies.

Figure 9.30 shows the magnitude frequency response of different digital filters
obtained by impulse invariance and Tustin’s methods approximating a 4™ order low pass
elliptic filter. The sampling period is 0.01 s in both cases, i.e. the Nyquist angular
frequency is 314 rad/s. It is evident the frequency warping for the filter obtained by the
Tustin’s method.

1G(jQ)l

Figure 9.29. Frequency warping due to the bilinear transformation

Frequency transformation from low-pass filters to band-pass and band-
stop filters

The design of analog high-pass, band-pass and band-stop filters is typically done by
firstly computing the parameters of a prototype low-pass filter and secondly by means of
proper algebraic transformations to convert the analog low-pass filter to a high-pass,
band-pass or band-stop one. A similar design method can be adopted in the digital
domain.

This approach has the advantage to allow the design of high-pass or band-stop filters
with the input invariance method. As matter of fact because of the aliasing it would be
impossible to transform the transfer function of these types of filters; but it is possible to
design with this method a low pass filter and subsequently to transform it to a frequency
selective filter.
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Since the IIR filter transfer functions are rational functions of z, the transformation in
the digital domain can be formalized as a mapping between two complex planes, z and Z,
defined by the function

7-T(z) 9.73)

If H;p(z) is the transfer function of the prototype discrete low-pass filter, the transfer
function of the frequency selective filter is given by

H(z)=H ,[1(z)] (9.74)

The transformation 7(z) must guarantee that if the prototype transfer function Hyp(z) is
a rational transfer function of causal and stable system than also H(z) must be a rational
transfer function of a stable and causal system. This mapping must satify the following
conditions:
e the unit circle in the z-plane is transformed in the unit circle in the Z-plane;
e the interior of the unit circle in the z-plane is mapped on the interior of the
unit circle in the Z-plane;
e T(z) must be a rational function.
The most general form for such a transformation is:

-1
l-oz (9.75)

k=1 Z O

In table 9.1 are reported all the transformations (9.75) from the low-pass prototype
filter to any other frequency selective filter.

ok ‘ ‘ ‘Impulse ‘ ‘ "]
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g -100} Bilinear !
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Figure 9.30. Magnitude response of a 4" order elliptic filter and discrete
approximations obtained with the impulse invariance method and the
bilinear transformation
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Table 9.1. Transformation from a prototype low pass filter with cutoff frequency 6Gp

Filter type 1(z) Design parameters
wp = cutoff frequency
1 -1 Sin(ap_a)f)j
Low-pass Z = —laz _ 2
='-a e o
sin| —X——%
2
w, = cutoff frequency
6, +w,
ol
joh- =_ 2
High-pass VA = o=— Py
cos| L—7L
2
w,; = lower cutoff frequency
w,> = upper cutoff frequency
Wp, + Wp,y
Band 5 (k=17 ~20kz™ +k+1 az_m( 2 j
AaEpass (k+1)z7 —2akz™" + k-1 cos| Pr2 = Pn
2
Wpy — @ g
k = cot| —2—"1 |tan| 2
2 2
w,; = lower cutoff frequency
w,, = upper cutoff frequency
COS( Wp, + Wp, j
1-k)z? =202 +1+k _ 2
Band-stop Z=- )272 - == o —w
(I+k)z7 =20z +1-k cog 2= %n
2
k = tan| 222~ %81 |an 3
2 2
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IIR DESIGN BY NUMERICAL OPTIMIZATION.

The TIR filter design methods shown in the previous paragraph were based on the
transformation of a prototype analog transfer function. This approach to the synthesis of
discrete filters transfer function is not always appropriate either because the specification
are given directly in the frequency domain or because the prototype analog transfer
functions do not satisfy specific constraints.

In this cases it is possible to proceed to the computation of the IIR filter coefficients
using numerical optimization techniques. This approach is based on the definition of a
loss function L which is a function of the unknown filter parameters. The optimization
process consist in the minimization of L subject to the possible constraint imposed by the
design method.

If Hgp(€'®) is the specified IIR filter frequency response and H(¢/“sm) is the actual
approximation of Hgp(¢/®) dependent on the unknown IIR design parameter vector m,
typical optimization loss functions have the form of a mean error of order p. For example
if the design is in terms of the amplitude frequency response, the loss function is:

L,(m) = TW(O))HHSP (ejw] - ‘H(ejw;m)‘]p do (9.76a)

with W(w) a proper weight function.
If the phase response is relevant, another type of loss function is given by:

L= TW(C())[TSP (e)-rle™ ) dew 9.77a)

where 7(¢/) is the filter group delay defined as:

)= - sm(ee) 9.78)

dw
Usually the loss functions are not defined on the whole w axis, but only at certain

frequencies wk. In this case the previous expressions (9.76a) and (9.77a) are
reformulated as:

| Hle™ m)\]ﬂ (9.76b)

L'(m)= Zk: W@, )UHSP (eij )
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L"= 2 W (®, )[TSP (ejwk )_ T(ejmk )]p (9.776)

k

If M is the number of the unknown filter parameters in the vector m, and there are not
any constrained on their values, the unconstrained optimization problem:

i = min L(m) 9.79)

m

can be solved numerically finding the solution of the following set of M non-linear
equations:

oL

—0; 1<i<M (9.80)
om

[H(e/®)|

[H(el)|

Figure 9.31. IIR filter designed by numerical optimization using as loss function the
mean squared error and the mean error of order 4, respectively

If the transfer function H(z) is given in the factorized form:

N l+a,z" +bz7
2

H(z)=4 (9.81)

i l+c,z" +d, z
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the M parameters m; in (9.80) are the 2N+1 coefficients 4, ay, by, ¢, and d,.

Figure 9.31 shows the result obtained for N = 2 with a loss function of type (9.76b) for
the two cases with p equal to 2 and 4. The values of the weight function W(@) were 1 in
the pass-band, 0.1 in the stop-band and 0.5 in the transition band.

Another important advantage of the IIR filter design by numerical optimization is that
the specified frequency response does not require to be defined at uniformly spaced
frequencies, as shown in the example of figure 9.31.

EFFECTS OF FILTER COEFFICIENTS QUANTIZATION.

As for FIR filters, the limitation in the number of bits available for storing the IIR
filters coefficients and the internal data results in a change in its frequency response.
Expressing the IIR transfer function as the polynomials ratio (9.3), the quantization effect

on the frequency response can be analyzed in the frequency domain in terms of a
numerator and denominator error functions:

_ N(z)+AN(z)
H(z)= D)+ ADE) (9.82)

Since, according to (9.3), the numerator and denominator of H(z) are given by
M N
N@E)=Y a,z7*, D(z)=> Bz (9.83)
k=0 k=0

If d¢y, and I, are the rounding error in the filter coefficients, the frequency responses
of the numerator and denominator error functions are:

M N
AN(e)=> sare7, AD(e’)= 88,67 (9-84)
k=0 k=0

If A represents the quantization step the maximum values of AN(€“) and AD(€'”) are
given by:

, MA A

AN(e’) = —e <M +1)=
max‘ (e )‘ maxkz:(:)ze ( )2 055

max‘AD(ej“’)‘ = max ié e < (N+1)é

i 2 2
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When N and M exceed few units the worst case estimation (9.85) of the coefficients
quantization effect is too large and very unlikely. A better estimation can be obtained
modeling the quantization error of each filter coefficient as a random noise uniformly
distributed between -4/2 and 4/2. The filter coefficients variance is in this case:

o le)=0"(5)=" (9.86)

Considering statistically independent the quantization noise on each filter coefficient,
the standard deviation of the (9.84) is given by the uncertainty propagation law applied to
(9.83):

2
ol )l= 3P o2 g, )= Sl £
imo| 9oy =0 (9.87)
o’ [AD(@M))] ﬁ“ aD(Z) =i‘e—jkw‘2 A’
k=0 aﬂk k=0
Since |e”*“|=1 expression (9.87) simplifies to:
1A
3.2 (9.88)
N+L A
3 2

Since the filter behavior is determined by the zeros in the stop-band and by the poles
in the pass-band, the consequences of rounding the filter coefficients will be considered
separately in the two bands.

In the stop-band, neglecting the rounding effect on the poles, according to (9.82) the
standard deviation of the frequency response approximation is given by:

A NEHANG) ey olante)] 9.89)
H( )_ D(Z) [H( )]_ ‘D(ejw)‘ - 9.89

Similarly in the pass-band the standard deviation of the approximation obtained with
the quantized coefficients is:
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_ ‘N(e””}
ple)’

)= N o)

olapleelle  (9.90)
D)+ AD() 2ot}

If & and Jp are the specified ripple in the stop-band and pass-band, and gy and Jp are
the ripple without filter coefficients quantization, the two standard deviations (9.89) and
(9.90) are limited by:

e NE S o] s, -5,

i )]_D<Z) 2 New) 2 (9.91)
jo <N<Z) Op =0 O-[AD(ejw)]<5P_5PO

olile )]_D(z) 2 ple] T 2

Generally the second condition in (9.91) is more restrictive since |[D(¢/)| has very low
value in the pass-band. This is especially true for very selective filters.

If N¢ is the number of bit used for representing the filter coefficients (and theirs signs),
the quantization step is expressed by:

A= max|3,| (9.92)

9 Ne-l

A useful formula for estimating the number of bits required for representing the filter
coefficients can be obtained from (9.88) and (9.92) together with the inequality (9.91):

VN +1 max‘ﬁk‘ (9.93)
(5SP -0, )\/§ (gla}sr}[‘D‘

max‘ﬁk‘
A

N, =1+log, 21+log,

Filter coefficients quantization can be studied also in terms of its effects on the zeros
and poles perturbation in the z-plain, as done in the previous chapter for the zeros of FIR
filters. Starting from the expression of either the numerator or the denominator of the IIR
filter transfer function H(z):

Qo
0 HZ_Zk
k=1

P)=2 72" =y (9.94)

k=0 z

with O=M and y=q; if P(z) represents the numerator NM(z) or Q=N and y=p; if P(z)
represents the denominator D(z).



258 Chapter 9

The Q roots z; of the polynomial (9.94) represent either the M zeros or the N poles of
the IIR filter. The perturbation Az; of their values due to the quantization Ay of the
coefficients ¥ is given by:

o
Az, =Y dz, Ay, (9.95)

The partial derivative dz/dy in (9.95) is the i-th pole/zero sensitivity to the
quantization of the k-th coefficient. As done for the analysis of FIR filters, each
sensitivity can be determined using the derivative chain rule applied to the P(z) derivative
with respect to :

97, |. 9z, |._. 9%

The derivatives dP/dy and dP/dz; in (9.96) derive directly from (9.94):

)| _ (9.97)
% J...

lgI(Zi _Zj)

1

i (9.98)

W

oz, zZ;

i

Replacing the expressions (9.97) and (9.98) in (9.96) and solving for dz,/0% the i zero
sensitivity to the ™ filter coefficient quantization is given by the following formula:

%, (9.99)

Equation (9.99) is equivalent to the formula (8.67) obtained for the sensitivity to
coefficients quantization in FIR filters. It shows how the sensitivity of zeros/poles
location in the z-plane to the coefficients quantization could be very high if the filter has
zeros or poles z; and z; very close to each other.



Infinite impulse response (IIR) filters 259

IIR FILTER ARCHITECTURES.

Several architectures are possible for implementing IIR filters. A first solution is given
by the direct formulation of the IIR transfer function (9.3) reformulated as the cascade of
a FIR filter, with transfer function H)(z), synthesizing the numerator and a purely
recursive IIR filter, with transfer function Hy(z), synthesizing the denominator:

H(Z)=Hl(Z)-Hz(z)ziakz’k S (9.100)

=0 1+ z ﬂkzik
k=1

Figure 9.32 shows the resultant filter structures, called direct I form.

________ FIR stage . __ . __.__ — . — burely recursive IR stage __ __
oo | | )
u(n) o ; : ¥
l %Y i v l >
UNIT UNIT
SHIFT SHIFT
¢(11 ¢'ﬁl
u(n- 11—’@—'() —j‘—®‘—1,"(’1' ]
UNIT UNIT
SHIFT SHIFT

v

|

I

i

[

[

[

[

|

-5 I
(—j‘—é‘—‘y(ﬂ) i
|

!

|

!

|

!

!

UNIT UNIT
SHIFT SHIFT
& P
| un-g) | >} X Iyn-g)

Figure 9.32. Direct I structure of a " order IIR filter, with ¢ =max(N,M)

Another possibility is to invert the position of the IIR and FIR section in the cascade,
as shown in figure 9.33. This new architecture is called direct II form. It is evident from
figure 9.33 that the state variables are stored twice in this numerical network. Figure 9.34
shows the result obtained using the same state variables for both the IIR and FIR sections
of the filter. The direct II form has the advantage of requiring the minimum number of
memory registers for the state variables.
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e purely recursive IIR sfage _ . _ . _ pmrmemomamd FIRstage _ . _._._. -
1 1
1 1 i %

u(n) : /_p ! i D ! ),
K l ! . l KT '
' 1 | 1
' 1 | 1
1 UNIT | 1 UNIT i
i SHIFT \ 1 SHIFT \
! - i 1 ¢a\ 1
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Figure 9.33. Direct Il structure
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Figure 9.34. Direct Il structure using the minimum number of unit shift
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For limiting the effects of coefficients quantization, it is better to realize IIR filters as a
cascade of 2™ order direct II form sections, called biquad. The block diagram of a biquad
is shown in figure 9.35.

Other architectures derived from the previous direct I and II forms are the transposed
version of these structures, known as the transposed direct I and transposed direct II
forms and shown in figures 9.36 and 9.37.

2
u(n) é;\ N0
¥ l & ¥
UNIT
SHIFT
)\-ﬁl 2%
€ X (1) 6{\ o
AP v K
UNIT
s SHIFT @
5{\ [x(n-2) é@

Figure 9.35. 2" order direct II structure (biquad)
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Figure 9.36. Transposed direct I structure
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Figure 9.37. Transposed direct Il structure
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