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PREFACE

This book deals with the fundamentals of the Digital Signal Processing Theory, paying 
particular attention to its application to measurement issues. Therefore, the sampling 
theorem is thoroughfully analyzed under different points of view, in order to emphasise 
its impact on the measurement accuracy. Different methods are also explained for the 
mitigation of the measurement errors that may arise from a not totally correct sampling 
strategy.

The discrete systems are also considered and analyzed, in order to frame the digital 
filters into a strict mathematical approach. The FIR and IIR filters are then introduced, 
and the basic guidelines for their specification, design and use are given. 

This book is therefore mainly devoted to graduated and post-graduated students of 
technical faculties, and to professionals that want to have a closer look to the Digital 
Signal Processing theory in order to apply it to the practical situations in the correct and 
most effective way. 



CHAPTER 1 

THE DIGITAL SIGNAL PROCESSING 

An introductory overview 

The digital signal processing finds its origins, as a well defined subject, during the 
seventeenth and eighteenth centuries, thanks also to the work of the two great 
mathematicians Newton and Gauss. At that time its applications were typically oriented 
to the numerical calculus, since this subject was mainly concerned with the representation 
of the mathematical functions by means of sequences of numbers, or symbols, and the 
elaboration of such sequences. In this respect, the classical numerical techniques, such as 
those used for the interpolation, integration and derivation of functions can be fully 
considered as Digital Signal Processing (DSP) techniques. 

Only recently, approximately starting from the second half of the 70s, in the 20th

century, the evolution of the computing devices and the Analog-to-Digital (AD) 
converters has greatly extended the application field of this subject. 

One of the fields which most benefit of this evolution is that of measurement, and in 
particular the electric and electronic measurement. It is well known that the measurement 
activity typically consist in observing a physical phenomenon, both spontaneous (as is the 
case, for instance, of measurements of natural phenomena, such as those performed in 
astronomy or seismology), or artificially originated in order to perform the measurements 
(as is the case, for instance, of the test measurements on devices or machines, where the 
device under test is properly stimulated). 

It is known as well that a physical phenomenon can be observed through the variation 
of physical quantities to which the information describing that phenomenon is associated. 
For instance, the presence of an electric field can be detected by analysing the 
distribution of the electric potential in the region of space where the electric field is 
present. Once a proper reference potential is taken, the observation of the electric field 
can be attained by means of measurements of potential differences. It is then possible to 
associate the information related to the observed physical phenomenon (the electric field) 
to the values taken by these potential differences and their variation in time. 

In this example, the potential differences play the role of measurement signals, whose 
processing allows to extract the required information. The possible ways the 
measurement signals can be processed may be, in this case, for instance, the evaluation of 
the peak value, from which the maximum intensity of the field can be obtained, the 
evaluation of the rms value, to which the capability of the field to do an electric work can 
be associated, or the analysis of the spectral components, to which the field behaviour in 
the frequency domain can be associated. 

The key point in a measurement process is therefore processing one or more 
measurement signals in order to extract the required information from the signals 
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themselves. This processing is generally described by a more or less complex 
mathematical relationship. Still considering the above example, the rms value of a 
potential difference u(t), periodic with period T over time t, is expressed by the following 
relationship: 

( ) 0
2 ,1 0

0
tdttu

T
U

t

Tt
∀=

−
 (1.1) 

This result is not easy to obtain with the traditional analog techniques. In the past, 
electromechanical devices have been adopted, such as the electrodynamic instruments, 
where, due to the mechanical action caused by the interaction between currents, a driving 
torque, proportional to the square of the applied voltage, is exerted on a pivoted moving 
coil. The mechanical inertia of the moving coil acts as a low-pass filter, so that, in the 
presence of a spring restraining torque, the displacement angle of the moving coil is 
proportional to the mean value of the squared voltage. If a pointer is fixed on the moving 
coil rotation axes, its displacement on a square-law scale provides the desired rms value. 

It can be easily understood that, if a good accuracy is required, the mechanical 
structure becomes critical and very expensive. When the analog electronic components 
became available, instruments based on electronic multipliers and low-pass filters could 
be realized, with a far better accuracy and wider bandwidth than the electromechanical 
instruments. However, the number of components required to process the input signal is 
still large, and therefore there is a large number of uncertainty sources to control in order 
to feature a good accuracy, which results in a high cost for the whole system. The 
problem becomes even more difficult to solve with the analog techniques when the 
measurement of quantities defined by more complex mathematical relationships are 
considered, such as, for instance, the spectral components of a signal. 

On the other hand, the numerical calculus provides a relatively simple and direct 
solution to (1.1). In fact, if a device is available, able to sample u(t) with a constant 
sampling period Tc, convert the obtained samples into a digital code, store the obtained 
sequence of codes into a digital memory and process them digitally, it is possible to prove 
that, under a number of given conditions that will be discussed in the following chapters, 
(1.1) can be written as: 

( )=
k

TkTu
T

U cc
21  (1.2) 

The block diagram of an instrument able to perform the above-listed operations is 
schematically drawn in Figure 1.1.  

In such an instrument the result of the measurement is obtained by computing (1.2), 
with a proper program stored in the memory of the processor; this means that it is 
possible to perform different measurements, always starting from the same samples of 
u(t), by simply changing the program, thus attaining also a dramatic cost reduction.  
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The above examples show that the operating principle of a digital instrument that 
employs DSP techniques is based on the instrument capability of sampling the input 
signals over time, converting the samples into digital values and processing them with a 
suitable algorithm in order to attain the result of the desired measurement. 

+ Memory 

Measurement  
result 

U

Input 
signal 

u(t)

processing techniques. 

When an analog signal is sampled and the samples are converted into digital values, 
the mathematical object sequence is obtained, defined in the discrete-time domain. This 

variable n, whilst a function f(t) of time t is defined for real values of the independent 
variable t, and is therefore defined in the continuous-time domain. 

Since the obtained values are coded into a finite number of digits, generally 
representing a binary code, the input signal is allowed to assume only a finite number of 
values also in amplitude, thus giving rise to the quantization phenomenon. 

A digital instrument, based on DSP techniques is hence characterized by a double 
transformation of the input signal from the continuous to the discrete domain, both in 
time and amplitude. This double transformation is the characterizing element of this kind 
of instruments, and differentiates them from another class of so-called digital instruments 
that process the input signals in the continuous time and amplitude domains and provide 
only the measurement result in a digital format. 

The double domain transformation represents also the most critical part of the 
theoretical analysis of the DSP-based instruments, since the very first question to be 
answered is whether this double transformation modifies the information associated to 
the input signals or not. 

This book is therefore aimed to analyse the mathematical theory that describes the two 
domain transformations, and in particular the transformation from the continuous to the 
discrete time, since this transformation is responsible for the most dangerous changes in 
the information associated with the input samples when nowadays sampling and 
converting devices are employed. 

The devices in the block diagram in Fig. 1.1 are then considered, in order to evaluate 
their metrological characteristics and the way they contribute to the metrological 
performance of the whole DSP-based instrument. 

Sampling device 

A/D converter 

Samples 
Processor 

means that any sequence s(n) is defined only for integer values of the independent 

At last the discrete systems are considered and analyzed in order to study a very 
imporant family of systems in the DSP technique: the digital filters.

Figure 1.1. Block diagram for a measuring instrument based on the digital signal 
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Some of the considered items can be analysed only by means of advanced 
mathematical tools. Since this book is concerned with the digital processing of 
measurement signals rather than the mathematics of the discrete-time signals, the 
mathematical derivations will be limited to the amount that is strictly required to the 
correct comprehension of the presented theory. The readers are invited to refer to 
mathematics books if they wish to investigate the mathematical approach more in depth. 



CHAPTER 2 

DISCRETE-TIME SIGNALS AND SYSTEMS 

INTRODUCTION.

As shown in the previous chapter, the signals are the sources of the measurement 
information. Generally, the systems that are dealt with in practical situations evolve in 
time with continuity. Due to this property, they can be mathematically represented by 
functions of the independent variable time that belongs to the set of the real numbers. For 
this reason, these functions are generally referred to as belonging to the continuous time
domain, and the signals are called continuous-time signals.

On the other hand, situations exist where the signals do not evolve with continuity in 
their appertaining domain. This is the typical case of the signals that represent quantities 
in the quantum mechanics, and it is also the more simple case of the periodic signals 
when they are represented in the frequency domain. The Fourier theory shows that, in this 
case, the signal is defined, in the frequency domain, only for discrete values of the 
independent variable frequency. 

When the independent variable is time and the signal is defined only for discrete 
values of the independent variable, the signal is defined as belonging to the discrete time
domain and is synthetically called a discrete-time signal. When the independent variable 
takes only discrete values, it sweeps over its axis by quanta; therefore it can be 
represented only by integer numbers, that represent actually the serial number of the 
quantum. For this reason, the independent variable of the mathematical object that 
represents a discrete-time signal belongs to the set of the integer numbers; the 
mathematical object is called a sequence.

An example of discrete-time signal is provided by a signal obtained by sampling a 
continuous-time signal with a constant sampling period. Usually, most discrete-time 
signals are obtained by sampling continuous-time signals. Anyway, for the sake of 
generality, a discrete-time signal can be seen as generated by a process defined in the 
discrete time domain. 

For this reason, the discrete-time signals will be analysed by their own, without 
referring to their possible origin in a sampling operation. In this way the properties of the 
discrete-time signals can be fully perceived, and the mathematical tools can be defined 
that are required to provide an answer to the fundamental question of the digital signal 
processing theory: how and with which changes the information associated to a 
continuous-time signal is transferred to a discrete-time signal by sampling the 
continuous-time signal? 
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THE SEQUENCES. 

Definition.

A discrete-time signal is mathematically represented by a sequence of values x:

( ){ } ∞≤≤∞−= nnxx ,  (2.1) 

The n-th value x(n) in the sequence is also called the n-th sample of the sequence. 
As already stated, the independent variable n belongs to the set of the integer numbers; 

this means that {x(n)} is mathematically defined only for integer values of n, and is not 
defined for non-integer1 values of n.

Fig. 2.1 shows an example of graphical representation of a sequence. 

7-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 8 9 10 11 12

x(0) 

x(1) 

x(2)

x(-1) 

x(-2) 

n

x(n)

Figure 2.1. Graphical representation of a sequence 

Sometimes, when the whole sequence cannot be confused with its own samples, the 
notation in (2.1) is uselessly complex, and therefore the whole sequence is referred to as 
x(n).

                                                          
1  It is a common mistake stating that x(n) = 0 for non-integer values of n. This is absolutely incorrect, since a 

sequence cannot be mathematically defined for non-integer values of its independent variable n.
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Particular sequences.

Some sequences play a very important role in the analysis of the discrete-time signals. 
The most important is the unit sample sequence, which is mathematically defined as: 

( )
=
≠

=δ
0,1
0,0

n
n

n  (2.2) 

and is graphically represented in Fig. 2.2. 

0

1

-10 -5 0 5 10

n

δ(n )

Figure 2.2. Unit sample sequence 

This sequence is important because it plays, in the analysis of the discrete-time signals 
and systems, a similar role as that played by the Dirac impulse in the analysis of the 
continuous-time signals and systems. For this reason, the unit sample sequence is often, 
though not properly, called discrete-time impulse, or impulse sequence. It is worth while 

the Dirac impulse. 
A second important sequence is the unit step sequence. It is graphically shown in Fig. 

2.3, and is mathematically defined as: 

( )
<
≥

=
0,0
0,1

n
n

nu  (2.3) 

Similarly to the unit sample, the unit step too plays, in the discrete-time domain, the 
same role played by the step function in the continuous-time domain. 

According to (2.1) and (2.3), the unit step sequence can be written in terms of the unit 
sample sequence as: 

( ) ( )δ=
n

knu (2.4) 

noting that its mathematical definition is very simple, if compared with the definition of 

k =− ∝
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0

1

-10 -5 0 5 10 15

n

u(n)

Figure 2.3. Unit step sequence 

This can be proved by recalling that, due to (2.2), the elements in the sum (2.4) are 

sum (2.4) are zero, and therefore u(n) = 0 for n < 0. For n ≥ 0 only one non-zero term 

proved.
The inverse relationship, linking the unit sample sequence to the unit step sequence, 

can be readily written as: 

δ(n) = u(n) - u(n-1) (2.5) 

Fig. 2.4 shows the real exponential sequence, whose mathematical expression is: 

( ) nanx =  (2.6) 

with a a real number. 

-5 0 5 10 15

n

x(n)

Figure 2.4. Real exponential sequence 

More generally, the complex exponential sequence can be defined as: 

non-zero (and equal to 1) only if k  = 0. For negative values of n, all elements in the 

exists, for each value of n, and it is equal to 1 for k = 0. Therefore u(n) = 1 for n ≥ 0, 
and 2.4 is 

( ) nanx = , with a < 1
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( ) ( )njenx 0ω+σ=  (2.7) 

where σ and ω0 are real numbers. 
The sinusoid sequence can be obtained from the complex exponential sequence for σ = 

0. This sequence is graphically represented in Fig. 2.5 and can be mathematically written 
also as: 

( ) ( )ϕ+ω= nAnx 0cos  (2.8) 

where A, ω0 and ϕ are still real numbers. 

-20 -10 0 10 20 30 40
n

x (n )

Figure 2.5. Sinusoid sequence 

Periodic sequences. 

When the continuous-time signals are considered, the sinusoid function and the complex 
exponential function with σ = 0 are periodic in time. Similarly, when the discrete-time 
signals are considered, the sinusoid sequence and the complex exponential sequence with 
σ = 0 could be expected to be periodic too. However, since in this last case the 
independent variable n belongs to the set of the integer numbers, these sequences could 
not be periodic. 

The definition of a periodic sequence x(n), over the period N, is given by the following 
relationship: 

( ) ( ) nNnxnx ∀+= ,  (2.9) 

Since the independent variable of a sequence must belong to the set of the integer 
numbers, period N must be an integer too. Therefore, the sinusoid sequence and complex 
exponential sequence with σ = 0 are periodic with period 2π/ω0 only if this quantity is an 
integer number. If 2π/ω0 is not an integer, but is a rational number, these sequences 
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still periodic, but their period will be an integer multiple of 2π/ω0. If 2π/ω0 is neither a 
rational number, these sequences are not periodic. 

This property of the periodic sequences is very important, because it explains how the 
information associated to a continuous-time periodic signal can be modified after the 
signal itself has been sampled. 

Let s(t) be a sinusoidal, continuous-time signal, with period T. This signal is described 
by the following equation: 

( ) ϕ+π= t
T

Ats 2sin  (2.10) 

Let s(t) be sampled with Ts sampling period, so that: 

integeran  ,s NNTT =  (2.11) 

s

( ) ϕ+π=
T

kTAkTs s
s 2sin ,

that, taking into account (2.11), leads to the following sequence: 

( ) ϕ+π= k
N

Aks 2sinˆ  (2.12) 

It can be readily checked that, in (2.12), 
N
π=ω 2

0 and therefore, having supposed N an 
integer, the sequence in (2.12) is periodic with period N. It can be hence concluded that 
the sequence obtained by sampling the periodic signal s(t) is still periodic and the 
relationship between the period of the continuous-time signal and that of the discrete-time 
signal is given by: T = NTs.

On the other hand, signal (2.10) could have been sampled with a sampling period '
sT

so that: '
smTT =  with m a real number. In this case (2.12) would have become: 

( ) ϕ+π= k
m

Aks 2sinˆ

and, not being m an integer or a rational number, this sequence is not periodic. It can be 
concluded that the sampling operation, in this case, has changed the information 
associated with the continuous-time signal, because a non-periodic sequence has been 
obtained from a periodic signal. As it will be shown in the next chapter, condition (2.11) 

are

Eq. (2.10), evaluated at each sampling time kT , provides: 
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is one of the conditions that must be satisfied in order to sample a periodic signal 
correctly.

Coming back to the sinusoid and complex exponential sequences, the ω0 parameter is 
called the angular frequency (and 

π
ω=
2

0
0f  the frequency) of the sequences, no matter 

whether they are periodic or not. 

Operations between sequences. 

The sum and product operations can be defined for the sequences. In particular, the sum 
of two sequences, x and y, is a sequence whose samples are obtained as the sum of the 
corresponding samples of the two sequences. From the mathematical point of view, it is: 

x + y = {x(n) + y(n)} (2.13) 

Similarly, the product of two sequences is defined as a sequence whose samples are 
obtained as the product of the corresponding samples of the two sequences. From the 
mathematical point of view, it is: 

x · y = {x(n) · y(n)} (2.14) 

It can be easily proven that the sum and product operations between sequences satisfy 
the commutative and associative properties, and the product satisfies also the distributive 
property with respect to the sum. 

The product of a sequence x by a number a is defined as the sequence whose samples 
are those of sequence x, each multiplied by a. It is: 

x · a = {a · x(n)} (2.15) 

At last, the shift operation is defined as the operation that, starting from a sequence x,
provides its replica, shifted along the n axis by a given integer quantity n0; from the 
mathematical point of view, this can be written as: 

y(n) = x(n - n0) (2.16) 

When n0 > 0 the original sequence is shifted on the right, over the n axis, whilst when 
n0 < 0 it is shifted on the left. 

If shifted versions of the unit sample sequence are employed, any sequence can be 
expressed in terms of the unit sample sequence. Given a sequence x(n), it is indeed 
possible to write: 
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( ) ( ) ( )
+∞

−∞=
−δ=

k
knkxnx  (2.17) 

The above relationship can be readily proven by considering that the shifted unit 
sample sequence δ(n-k) is non zero (and equal to 1) only for n - k = 0, and hence for n = 
k. Therefore, the sum at the right-hand side of (2.17) has only one non-zero term, for n = 
k, whose value is equal to sample x(n), ∀n. Eq. (2.17) is then proven. 

THE DISCRETE-TIME SYSTEMS. 

Definition.

A system, whichever is the domain it belongs to, is mathematically defined as a unique 
transformation that maps an input quantity x into an output quantity y. In the discrete time 
domain, the system’s input and output quantities are sequences, which means that a 
discrete-time system transforms the input sequence x(n) into the output sequence y(n)
univocally. As a matter of fact, a discrete-time transformation can be seen as an algorithm 
that processes the samples of the input sequence in order to provide the samples of the 
output sequence. 

From the mathematical point of view, a transformation is expressed as: 

( ) ( )[ ]nxny T=

and is graphically represented as shown in Fig. 2.6. 

T[ ] 
x(n) y(n)

Figure 2.6. Graphical representation of a system and related transformation 

The output sequence y(n) is also called the response of system T to the input sequence 
x(n).

The analysis of a generic system and its related transformation is generally quite 
complex, unless suitable constraints are introduced that limit the freedom degrees of the 
system itself, by defining suitable classes of transformations. The most important class is 
that of the linear systems, to which the overwhelming majority of the algorithms 
employed in the measurement field belongs. 
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The linear systems. 

The linear systems can be mathematically defined by means of the superposition 
principle. Given the two input sequences x1(n) and x2(n), let y1(n) and y2(n) be the 
responses of a system T to the given input sequences respectively, so that: 

( ) ( )[ ]nxny 11 T=    and ( ) ( )[ ]nxny 22 T=

According to the superposition principle, system T is linear if and only if: 

( ) ( )[ ] ( )[ ] ( )[ ] ( ) ( )nbynaynxbnxanbxnax 212121 TTT +=+=+  (2.18) 

where a and b are arbitrary constants. 
Since, according to (2.17), any sequence can be written in terms of the unit sample 

sequence, the response of a system can be written as: 

( ) ( ) ( )−δ=
+∞

−∞=k
knkxny T  (2.19) 

If system T is linear, (2.18) applies and (2.19) can be written as: 

( ) ( ) ( )[ ]
+∞

−∞=
−δ=

k
knkxny T  (2.20) 

Let hk(n) be the system response to the shifted unit sample sequence δ (n - k); (2.20) 
can be written as: 

( ) ( ) ( )
+∞

−∞=
=

k
k nhkxny  (2.21) 

This last equation shows that the response of a linear system to an input sequence 
depends on response hk(n) to the shifted unit sample sequence. However, this response 
depends on both n and k, thus limiting the practical utility of (2.21). 

The shift-invariant linear systems. 

An important sub-set of the linear systems is that of the shift-invariant linear systems. 
These systems represent the counterpart, in the discrete time domain, of the time-
invariant systems in the continuous time domain, and have the property that, being y(n)
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the response to the input sequence x(n), the response to the  shifted sequence x(n - k) is 
y(n- k), that is the same response as that to sequence x(n), shifted by the same quantity k.

Due to this property, it can be immediately proved that, if h(n) is the system response 
to the unit sample sequence δ(n), then the response to the shifted unit sample sequence 
δ(n- k) is h(n - k). For the shift-invariant linear systems, eq. (2.21) becomes: 

( ) ( ) ( )
+∞

−∞=
−=

k
knhkxny  (2.22) 

Therefore, it can be stated that a shift-invariant linear system is fully characterized by 
its response h(n) to the unit sample sequence. Eq. (2.22) shows that, once h(n) is known, 
it is possible to determine the response to any other input sequence x(n).

Eq. (2.22) is called the convolution sum, and the resulting sequence y(n) is called the 
convolution of the two sequences x(n) and h(n). The usual notation for the convolution 
operation is: 

y(n) = x(n) ∗ h(n)

It can be readily proved that the convolution sum satisfies the commutative property, 
that is: 

y(n) = x(n) ∗ h(n) = h(n) ∗ x(n) (2.23) 

To prove this property, let’s substitute variable k with k = n - m in (2.22), that 
becomes: 

( ) ( ) ( )
( )

+∞

−∞=−
−=

mn
mhmnxny

For a given value of n, having quantity n - m varying from -∞ to +∞ is the same as 
having quantity m varying in the same interval. Therefore, we get: 

( ) ( ) ( ) ( ) ( )
+∞

−∞=
∗=−=

m
nxnhmnxmhny

which proves (2.23). 
Having proved that the convolution sum satisfies the commutative property leads to 

the conclusion that the response of a shift-invariant linear system does not change if the 
input sequence and the response to the unit sample sequence are interchanged. In other 
words, the response of a shift-invariant linear system, featuring h(n) as the response to the 
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unit sample sequence, to sequence x(n) is the same as that of a system, featuring x(n) as 
the response to the unit sample sequence, to sequence h(n).

The convolution sum satisfies also the associative property. Considering three generic 
sequences x(n), y(n) and w(n), it can be proven that: 

( ) ( ) ( )[ ] ( ) ( )[ ] ( )nwnynxnwnynx ∗∗=∗∗  (2.24) 

In order to prove (2.24), let ( ) ( ) ( )nwnyn ∗=ϑ , so that: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
∞+

−∞=

∞+

−∞=

+∞

−∞=

+∞

−∞=

+∞

−∞=

−−=

=−−=−ϑ=ϑ∗

k j

k jk

jknwjykx

jknwjykxknkxnnx

 (2.25) 

Similarly, let ( ) ( ) ( )nynxn ∗=ξ , so that, taking into account the commutative property 
of the convolution sum: 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
∞+

−∞=

∞+

−∞=

+∞

−∞=

+∞

−∞=

+∞

−∞=

−−=

=−−=−ξ=∗ξ

k j

k jk

jknxjykw

jknxjykwknkwnwn

If the variable m = n - k - j is introduced, so that k = n - m - j, the above equation can 
be rewritten as: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
∞+

−∞=

∞+

−∞=

+∞

−∞=−−

+∞

−∞=

−−=

=−−=∗ξ

m j

jmn j

jmnwjymx

mxjyjmnwnwn

 (2.26) 

Since the right-hand terms of (2.25) and (2.26) are equal, the associative property is 
proved.

According to this property, it is possible to prove that the response to the unit sample 
sequence of a system realized by cascading two systems, as shown in Fig. 2.7, is given by 
the convolution of the responses of the two single systems to the unit sample sequence. 
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h1(n) h2(n)

h1(n)*h2(n)

x(n)

x(n)

y(n)

y(n)

Figure 2.7. Cascaded shift-invariant linear systems 

Let y1(n) be the output of the first sub-system and h1(n) its response to the unit sample 
sequence; it is: 

y1(n) = x(n) ∗ h1(n)

that leads to write the output y(n) of the whole system as: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ]nhnhnxnhnhnxnhnyny 212121 ∗∗=∗∗=∗=  (2.27) 

proving that the system response to the unit sample sequence is given by the convolution 
of the single responses. 

Taking into account also the commutative property of the convolution sum, it can be 
stated that the system output is independent on the order with which the two sub-systems 
are cascaded. Since a discrete-time system is, as a matter of fact, an algorithm, this means 
that, if a signal processing procedure consists of two or more algorithms executed in 
series, the order with which the algorithms are executed does not affect the final result. 

At last, it can be immediately checked that the convolution sum satisfies also the 
distributive property with respect to the addition. For this reason, if two shift-invariant 
linear systems are connected in parallel, as shown in Fig. 2.8, the response of the whole 
system to the unit sample sequence is given by the sum of the responses of the single 
systems. The proof of this last property is very simple and is left to the reader.  

The convolution computation. 

The convolution sum plays, for the linear systems in the discrete time domain, a similar 
role as that played by the convolution integral for the linear systems in the continuous 
time domain. They are both extremely important in the theoretical analysis of this kind of 
systems. However, the convolution integrals are often difficult to solve, so that their 
importance is generally confined to the theoretical analysis, being the practical 
application limited to a few particular situations. 

On the other hand, the convolution sum can be computed in a far less difficult way and 
its computation is quite immediate when the two sequences have a finite length, as in 



Discrete-time signals and systems 17

many practical cases. This extends the importance of the convolution sum from the 
theoretical analysis to the practical applications, assigning it an even greater importance 
than that assigned to the convolution integral; moreover this is one of the reasons for the 
digital techniques are nowadays preferred to the analog ones. 

h1(n)

h2(n)
+

x(n) y(n)

h1(n)+h2(n)
x(n) y(n)

Figure 2.8. Shift-invariant linear systems connected in parallel 

The convolution sum represents also a very important tool to understand some 
fundamental concepts about signal sampling and the way the sampling operation may 
generate sequences carrying a different information than the one provided by the 
continuous-time signal. For this reason, the way the convolution sum of two sequences is 
computed is now described into details. 

Let us consider the two sequences in Fig. 2.9: 

( ) ≤≤
=

otherwise,0
40,1 n

nx  (2.28) 

and

( ) ≤≤
=

otherwise,0
40,5.0 n

ny  (2.29) 

According to definition (2.22), the convolution of these two sequences is given by: 

( ) ( ) ( )
+∞

−∞=
−=

k
knykxnw  (2.30) 

The first step in the computation of the convolution is, according to (2.30), the 
generation of sequence y(-k). It can be immediately seen that this sequence is obtained by 
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reversing y(k) with respect to the vertical axes, as shown in Fig. 2.10 where both 
sequences x(k) and y(-k) are drawn. 
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Figure 2.9. x(n) and y(n) sequences 
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Figure 2.10. x(k) and y(-k) sequences 
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The next step is the generation of sequence y(n - k), obtained, for every value of n, by 
shifting sequence y(-k) by n. It can be immediately checked that, for the considered 
sequences (2.28) and (2.29), their convolution w(n) in (2.30) has non-zero values only for 
0 ≤ n ≤ 9, since the shifted sequence y(n - k) has non-zero values where x(n) has non-zero 
values only in this range of n values. 

To better understand this point, let us consider the case of n = -1. Fig. 2.11 shows the 
resulting sequences x(k) and y(-1 - k).
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Figure 2.11. Convolution step for n = -1 

It can be immediately seen that all products x(k)y(-1 - k) are zero, for every value of k,
so that sample w(-1) in the convolution will be zero too. The above applies to every value 
n ≤ -1. 

Let us now consider the case of n = 0. The two resulting sequences x(k) and y(-k) are 
represented in Fig. 2.10, and it can be seen that the only non-zero product in (2.30) is 
w(0) = x(0)y(0) = 0.5, which represents the convolution value for n = 0. 

When n = 1, the two resulting sequences x(k) and y(1 - k) are represented in Fig. 2.12. 
It can be seen that only two products in (2.30) have non-zero values: 

 x(0)y(0) = 0.5 

and

x(1)y(1) = 0.5 

Therefore, the convolution sample for n = 1 is given by: 
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w(1) = 0.5 + 0.5 = 1 
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Figure 2.12. Convolution step for n = 1 

It is then possible to verify, in a quite similar way, that: 

w(2) = 0.5 + 0.5 + 0.5 = 1.5 

w(3) = 0.5 + 0.5 +0.5 + 0.5 = 2 

When n = 4, the non-zero samples of the resulting sequences x(k) and y(4 - k) take the 
same position, as shown by Fig. 2.13. Therefore: 

w(4) = 0.5 + 0.5 +0.5 + 0.5 + 0.5 = 2.5 

and the convolution reaches its maximum value. 
This can be readily understood looking at Fig. 2.14, which shows the resulting 

sequences x(k) and y(5 - k) for the case of n = 5. In this case, only 4 non-zero samples of 
sequence x(k) are in the same position as the non-zero samples of sequence y(5 - k), so 
that the corresponding convolution sample will be: 

w(5) = 0.5 + 0.5 + 0.5 + 0.5 = 2. 
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Figure 2.13. Convolution step for n = 4 
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Figure 2.14. Convolution step for n = 5 

The remaining samples of w(n) can be computed in a quite similar way, obtaining: 

w(6) = 0.5 + 0.5 + 0.5 = 1.5, 
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w(7) = 0.5 + 0.5 = 1, 

w(8) = 0.5. 

At last, it can be easily checked that, for n = 9, none of the non-zero samples of the 
resulting sequence y(9 - k) is in the same position as the non-zero samples of sequence 
x(k), so that w(9) = 0. The same applies for n > 9. 

The convolution w(n) = x(n) ∗ y(n) is hence the sequence shown in Fig. 2.15. 

0
0.5

1
1.5

2
2.5

3

-10 -5 0 5 10 15

n

w(n)

Figure 2.15. Convolution result 

This figure shows that the obtained sequence has a longer length than that of the two 
starting sequences. This example can be generalized, showing that the convolution of two 
sequences, with finite length of N and M samples respectively, will be again a finite 
length sequence, with length equal to N + M - 1 samples. 

Stability and causality. 

introducing the linearity and shift invariance constraints. Two new constraints are now 
introduced, the stability and causality, that lead to the definition of two new sets of linear, 
shift-invariant systems, very important in the study of the digital filters, as it will be 
shown in the next chapters. 

A system is stable when, for any input sequence with bounded amplitude, it provides 
an output sequence that is bounded in amplitude too. The necessary and sufficient 
condition to ensure that a linear, shift invariant system is stable is that its response h(n) to 
the unit sample sequence meets the following condition: 

( ) ∞<=
+∞

−∞=
Skh

k
 (2.31) 

It is possible to prove that this condition is sufficient to ensure the system stability by 
considering a bounded input sequence x(n), so that |x(n)| < M, ∀n. The system output 

The previous paragraphs have defined an important class of discrete-time systems by 
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sequence can be obtained by applying (2.22); supposing that condition (2.31) is also 
satisfied, it can be written: 

( ) ( ) ( ) ( ) ∞<≤−=
+∞

−∞=

+∞

−∞= kk
khMknxkhny

thus proving that the output sequence is also bounded in amplitude. 
 It can be now proved that condition (2.31) is necessary to ensure stability by proving 

that, if S = ∞, an input sequence can be found with bounded amplitude that gives rise to  
an output sequence with unbounded amplitude. Let us consider a linear, shift-invariant 
system characterized by a response h(n) to the unit sample sequence, and let us consider 
an input sequence: 

( )
( )
( ) ( )

( ) =

≠
−
−

=
∗

0,0

0,

nh

nh
nh
nh

nx

where h*(n) is the complex conjugate of h(n). x(n) is bounded because of the way it has 
been defined. If the output sequence y(n) is now evaluated by applying (2.22), its value 
for n = 0 is given by: 

( ) ( ) ( ) ( ) ( )
( )

( )
( ) ( ) Skh
kh

kh
kh

khkhkhkxy
kkkk

====−=
+∞

−∞=

+∞

−∞=

+∞

−∞=

+∞

−∞=

2*
0

Therefore, if S = ∞, the output sequence is unbounded even in the presence of a 
bounded input sequence. This proves that condition (2.31) is a necessary condition too. 

A system is causal when its output y(n), for every n = n0, depends on the input samples 
for n ≤ n0 only. For this reason, if x1(n) and x2(n) are two input sequences to a causal 
system, taken in such a way that x1(n) = x2(n) for n < n0, then the system’s output 
sequences y1(n) and y2(n) will feature y1(n) = y2(n) for n < n0.

A linear, shift-invariant, causal system has the property that its response to the unit 
sample sequence is zero for n < 0. This can be proved by considering the system output, 
evaluated in n = n0, in terms of (2.22) where the commutative property of the convolution 
has been considered too: 

( ) ( ) ( )
+∞

−∞=
−=

k
knxkhny 00  (2.32) 
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In (2.32) the samples of x(n) for n > n0 are obtained when k < 0. In order to prevent 
0

it must be h(k) = 0 for k < 0, as stated. 
For this reason a sequence with zero samples for n < 0 is called causal. This is 

somehow justified by the fact that this sequence could be the response of a linear, shift-
invariant, causal system to the unit sample sequence. 

An example of linear, shift-invariant, causal and stable system is a system whose 
response to the unit sample sequence is: 

h(n) = anu(n)

Due to the presence of the unit step sequence u(n), h(n) = 0 for n < 0, so that the 
system is causal. In order to ensure the system stability, (2.31) must be verified, which 
means that the following quantity: 

( )
+∞

=

+∞

−∞=
==

0k

k

k
akhS (2.33) 

must be finite. 
It can be noted that the quantity in the right-hand side of (2.33) is a geometrical series 

that converges to the finite quantity: 

a
S

−
=

1
1

for |a| < 1, otherwise the series diverges to infinite. Therefore, the system is stable only if 
|a| < 1. 

FREQUENCY-DOMAIN REPRESENTATION OF THE DISCRETE-TIME SIGNALS 
AND SYSTEMS. 

The frequency response of the linear, shift-invariant systems. 

In the previous sections it has been shown how a linear, shift-invariant system can be 
fully characterized by its response to the unit sample sequence. This property of the 
discrete-time systems is the counterpart, in the discrete time, of the property of the 
continuous-time linear, time-invariant systems to be fully characterized by their impulse 
response.

Another fundamental properties of these continuous-time systems is that their steady-
state response to a sinusoidal input is still a sinewave, with the same frequency as the 
input sinewave, with amplitude and phase determined by the system. It is because of this 

these samples to contribute to the sum in (2.32), and hence to the determination of y(n ),
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property that the linear, time-invariant systems are usefully represented as a suitable 
combination of sinewaves or complex exponential signals (Fourier representation). 

This property can be extended to the discrete-time systems in a straightforward way. 
Let us consider the following sequence as the input sequence of a discrete-time, linear, 
shift-invariant system: 

( ) +∞<<∞−= ω nenx nj ,  (2.34) 

It can be immediately recognized that this sequence is a complex exponential sequence 
with σ = 0 and ω angular frequency. According to (2.22), the output sequence of a linear, 
shift-invariant system with h(n) response to the unit sample sequence is: 

( ) ( ) ( ) ( ) ω−ω
+∞

−∞=

−ω == kjnj

k

knj ekheekhny  (2.35) 

Supposing that the series at the right-hand side of (2.35) is convergent, the following 
function is obtained: 

( ) ( ) ω−ω = kjj ekheH  (2.36) 

and (2.35) can be rewritten as: 

( ) ( ) njj eeHny ωω=  (2.37) 

or, taking into account (2.34): 

( ) ( ) ( )nxeHny jω=  (2.38) 

Equations (2.37) and (2.38) show that the complex exponential input sequence x(n),
due to the transformation T introduced by the linear, shift-invariant system, goes through 
a variation in its amplitude and phase only, variation that is described by the complex 
function H(e jω). H (e jω) is a continuous function of the angular frequency ω and is called 
the frequency response of the system whose response to the unit sample sequence is h(n).

The above conclusion is valid, as mentioned in deriving (2.36), only if the response to 
the unit sample sequence h(n) allows (2.36) to converge to H (e jω). If this is verified, 
H (e jω) is not only a continuous function of the angular frequency ω, but it is also 
periodic in ω with a 2π period. This last property comes directly from (2.36), since: 

+∞

−∞=k

+∞

−∞=k
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( ) kjkj ee ωπ+ω =2

The fact that H(e jω) takes the same values for any ω = ω0 and ω = ω0 + 2π means that 
the discrete-time system provides the same response to complex exponential sequences 
with these two angular frequency values. This is totally justified by the fact that the two 
complex exponential sequences do not differ. 

As an example of the above conclusions, let us consider a linear, shift-invariant 
system, whose response to the unit sample sequence is given by: 

( ) −≤≤
=

otherwise,0
10,1 Nn

nh  (2.39) 

as shown in Fig. 2.16 for the particular case of N = 8. 
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Figure 2.16. Response (2.39) to the unit sample sequence for N=8 

When (2.36) is applied, the following frequency response is obtained: 

( ) ( )
( )

( ) 21
1

0 2sin
2sin

1
1 ω−−

ω−

ω−−

=

ω−ω
ω

ω=
−

−== Nj
j

NjN

k

kjj eN
e

eeeH  (2.40) 

Amplitude and phase of (2.40) are shown in Fig. 2.17 a and b respectively, for N = 8. 
Since the frequency response (2.36) is a continuous, periodic function of ω, it can be 

developed in terms of Fourier series. Actually, (2.36) expresses H(e jω) in terms of its 
Fourier series coefficients, which are equal to the samples of the unit sample sequence 
response h(n). It is therefore possible to express this double relationship between the 
frequency response and the response to the unit sample sequence as: 
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Figure 2.17. Amplitude (a) and phase (b) of the frequency response (2.40) for N=8 
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( ) ( )
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eeHnh d
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 (2.41) 

where the first equation represents the direct Fourier series analysis for H(e jω), and the 
second equation represents the inverse Fourier synthesis equation. 

These equations can be also interpreted in a rather different, though more interesting 

exponential components, whose complex amplitudes are determined by the second 
equation in (2.41). In this respect, the equations in (2.41) can be seen as, respectively, the 
inverse and direct Fourier transform pair for sequence h(n).

This representation provides also a rule for establishing whether the series at the right-
hand side of the second equation in (2.41) converges or not, and hence H(e jω) exists or 
not. According to the Fourier theory this convergence is ensured if: 

|

way. The first equation in (2.41) describes sequence h(n) in terms of elementary 



28 Chapter 2 

( ) ∞<
+∞

−∞=n
nh ,

that is if h(n) is absolutely summable and the series is absolutely convergent. In this 
situation, (2.36) or the second equation in (2.41), converges to a continuous function of 
ω. Taking into account (2.31), this leads to the conclusion that it is always possible to 
define the frequency response of stable systems. 

It can be also proved that, since: 

( ) ( )
2

2 ≤
nn

nhnh ,

if h(n) is absolutely summable, it will be also: 

( ) ∞<
+∞

−∞=n
nh 2

which means that h(n) has finite energy. The contrary is not a priori verified, that is a 
finite energy sequence may not be absolutely summable. In this case, the Fourier theory 
proves that the Fourier transform of such a sequence still exists, but it will be a generally 
continuous function of ω, instead of being a continuous function. 

This is the case of the following sequence: 

( ) ( )
n

nnh
π
ω= 0sin  (2.42) 

which is shown in Fig. 2.18 for the particular case of ω0 = π/3. 

-0.1

0

0.1
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-20 -10 0 10 20
n

h (n )

Figure 2.18. Sequence (2.42) for the particular case of  ω 0 = π /3 
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It can be easily checked that this sequence cannot be absolutely summed, but has finite 
energy. Therefore, its Fourier transform exists, and is a generally continuous function of 
ω, with a 2π period: 

( )
π≤ω<ω

ω≤ω
=ω

0

0
,0
,1jeH  (2.43) 

This equation is therefore the frequency response of a system whose response to the 
unit sample sequence is given by (2.42). It can be noticed that (2.43) is a real function, 
which means that the phase of the frequency response is nil for every value of ω. By 
looking at the plot of (2.43), shown in Fig. 2.19 in the case of ω0 = π/3, it can be noted 
that it is the same as the frequency response of an ideal low-pass filter. It is worth noting 
that, since its response to the unit sample sequence (2.42) is not absolutely summable, a 
digital system acting as an ideal low-pass filter is not stable. 

|H(ejω)|

-2π
-(2π-ω0) -ω0 0 ω0 (2π-ω0)

2π ω

1

Figure 2.19. Frequency response (2.43) for ω 0 = π /3 

The Fourier transform of a sequence. 

In the last paragraph, the Fourier transform of the sequence obtained as the response to 
the unit sample sequence of a linear, shift-invariant system has been derived by analysing 
the response of such a system to the generalized sinusoid sequence. The result of this 
analysis can be extended to any sequence, so that the Fourier transform of a sequence 
x(n) can be defined as: 

( ) ( )
+∞

−∞=

ω−ω =
n

njj enxeX , (2.44) 
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provided that (2.44) is convergent. The rules to establish whether (2.44) converges to 
X(ejω) or not are, of course, the same as those seen for (2.36). 

If (2.44) converges, then, similarly to (2.36), it converges to a continuous, or generally 
continuous function of ω, periodic in ω with a 2π period. This conclusion is very 
important, because it shows that any sequence, provided it has a Fourier transform, has a 
periodic Fourier transform, with a 2π period in ω. This outlines, as it will be shown into 
details in the following chapter, a first important source of modification of the 
information associated to a signal, when moving from the continuous time domain to the 
discrete time domain after a sampling operation. Every sequence obtained by sampling a 
continuous-time signal will show a periodic spectrum (Fourier transform) with a 2π
period in ω, no matter on how the spectrum of the continuous-time signal is. If we 
consider that the continuous-time signals that are generally dealt with in practical 
situations have a non-periodic spectrum, the significance of the modifications to which 
the information associated to a signal is subjected because of the sampling operation is 
quite evident. 

Similarly to what was done for the Fourier transform of h(n), it is possible to define 
the inverse Fourier transform of X(ejω) as: 

( ) ( )
π

π−

ωω ω
π

= d
2
1 njj eeXnx  (2.45) 

Having defined the Fourier transform of a sequence, it is possible to determine the 
Fourier transform of the output y(n) of a linear, shift-invariant system, with input 
sequence x(n) and h(n) response to the unit sample sequence. 

Applying (2.44) to (2.22) we get: 

( ) ( ) ( )
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j ekxknheY (2.46)

If m = n - k is taken, (2.46) becomes: 
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+∞

−∞=

+ω−
+∞

−∞=

ω

=

==

k

kj

m

mj

m

kmj

k

j

ekxemh

ekxmheY

which, taking into account (2.44), leads to write: 

( ) ( ) ( )ωωω ⋅= jjj eXeHeY  (2.47) 
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Eq. (2.47) shows that, similarly to the continuous-time, linear, time-invariant systems, 
the Fourier transform of the output sequence of a discrete-time, linear, shift-invariant 
system is given by the product of the Fourier transform of the input sequence by the 
frequency response, given by the Fourier transform of the response to the unit sample 
sequence.

If (2.22) is considered, (2.47) shows that the convolution between two sequences in 
the discrete time domain is changed into the product between the Fourier transforms of 
the two sequences in the ω domain. It is also possible to prove that the product between 
two sequences in the discrete time domain is changed into the convolution between the 
Fourier transforms of the two sequences in the ω domain. 

Symmetry properties of the Fourier transform. 

Similarly to the Fourier transform of the continuous-time functions, the Fourier transform 
of the sequences satisfies some very useful properties of symmetry that come mainly 
from the property of any sequence to be decomposed into the sum of a conjugate 
symmetric sequence and a conjugate antisymmetric sequence. In this section, the most 
significant properties will be shortly recalled, without entering into the mathematical 
details of the proofs, that are well known from the Fourier theory. 

A sequence of complex samples xcs(n) is called conjugate symmetric when the 
following relationship applies: 

( ) ( )nxnx −= ∗
cscs

where the superscript * stands for complex conjugate. Similarly, a sequence of complex 
samples xca(n) is called conjugate antisymmetric when the following relationship applies: 

( ) ( )nxnx −−= ∗
caca

It can be proved that any sequence x(n) can be written as: 

x(n) = xcs(n) + xca(n) (2.48) 

where : 

( ) ( ) ( )[ ]nxnxnx −+= ∗
2
1

cs  (2.49) 

and : 

( ) ( ) ( )[ ]nxnxnx −−= ∗
2
1

ca  (2.50) 
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A real conjugate symmetric sequence, that is a sequence for which xcs(n) = xcs(-n)
applies, is called an even sequence. Similarly, a real conjugate antisymmetric sequence, 
that is a sequence for which xca(n) = -xca(-n) applies, is called an odd sequence. 

As for the Fourier transform, the same properties as those valid for the continuous-
time functions still apply, so that it can be decomposed as: 

( ) ( ) ( )ωωω += jjj eXeXeX cacs  (2.51) 

where:

( ) ( ) ( )[ ]ω−∗ωω += jjj eXeXeX
2
1

cs  (2.52) 

and: 

( ) ( ) ( )[ ]ω−∗ωω −= jjj eXeXeX
2
1

ca  (2.53) 

If x(n) is a real sequence, then its Fourier transform is a conjugate symmetric function, 
that is: 

( ) ( )ω−∗ω = jj eXeX  (2.54) 

If x(n) is an even sequence, then its Fourier transform is a real function. 



CHAPTER 3 

SIGNAL TRANSFORMATION FROM THE CONTINUOUS 
TIME TO THE DISCRETE TIME DOMAIN 

The sampling theorem and its consequences 

INTRODUCTION.

It has been already stated in the previous chapters that the modern digital measuring 
instruments are more and more based on the DSP techniques. This means that the input 
signals are converted into a sequence of sampled values by means of a sampling 
operation performed at given time instants, with a constant sampling period.  

According to the analysis done in the last chapter 2, this sampling operation results in 
a domain transformation, from the continuous time domain where the original analog 
signal s(t) is defined, to the discrete time domain where the resulting sequence of 
sampled data s(n) is defined. 

The main problem of the Digital Signal Processing theory is therefore assessing 
whether the information associated with the original signal s(t) is correctly transferred 
into the resulting sequence s(n) after the domain transformation operated by the sampling 
operation, or, if not, how far it is modified and which kind of errors the sampling 
operation introduces in the measuring process. 

 From a very intuitive point of view, the sampling operation does not leave the 
information associated with the original signal s(t) unaltered. However, still from a very 
intuitive point of view, if a sufficient number of samples is taken, the information 
associated with the original signal can be still retrieved from the sequence of sampled 
data s(n). This is well shown by Fig. 3.1 and Fig. 3.2, which show a continuous-time 
signal s(t) and the sequence of sampled data s(n) respectively, where the samples have 
been obtained sampling s(t) with a sample rate of 40 samples/period.  

t

s(t)

Figure 3.1. Example of continuous-time signal 
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n

s(n)

Figure 3.2. Sequence obtained by means of a correct sampling of the signal in Fig. 3.1 

The original signal s(t) can be easily recognized in the sequence of sampled data 
represented in Fig. 3.2. If now the same signal s(t) is sampled with a much lower sample 
rate of only 10 samples/period, as shown in Fig. 3.3, the original signal can be no longer 
recognized in the sequence of sampled signals. 

n

s(n)

Figure 3.3. Sequence obtained by means of an incorrect sampling of the signal in Fig. 3.1 

This intuitive approach is confirmed by the considerations, exposed in the previous 
chapter 2, concerning the Fourier transform of a sequence. Eq. (2.44) shows that the 
Fourier transform of a sequence is always periodic, with a 2π period in ω. This means 
that any sequence obtained by sampling a time-continuous signal has a periodic spectrum 
in the frequency domain, no matter on the spectrum of the sampled signal itself. Since 
most of the signals of practical interest show aperiodic spectra, the above consideration 
leads to the conclusion that the transformation from the continuous time domain to the 
discrete time domain operated by the sampling operation always modifies the information 
associated with the sampled signal. 

The main question to which the DSP theory must give an answer is therefore if, how 
and under which conditions the original information can be still retrieved from the 
sequence of sample data. 

Again from an intuitive point of view, the original information is still available in the 
sequence of sampled data if the modifications introduced by the sampling operation are 
somehow additive and redundant with respect to the original information and do not 
interfere with the original information in a destructive way. This consideration is 
compatible with the fact that the Fourier transform of a sequence is periodic if, as it will 
be shown later, the different periods of the spectrum are separated replicas of the 
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spectrum of the sampled signal. In this case the information associated with the sampled 
signal can be thought to be associated, unmodified, with a single period of the spectrum 
of the sequence of the sampled data. 

The strict proof of this statement is given, in a mathematically sound way, by the 
sampling theorem. The following sections of this chapter will deal with this theorem in a 
thorough way, from the general, theoretically important approach, to the particular 
application to the case of periodic signals, which is very important in the practical 
applications. 

THE SAMPLING THEOREM. 

The general formulation. 

In order to establish how the information associated with a signal in the continuous time 
domain is transferred into the discrete time domain after having sampled the continuous-
time signal, let us consider a signal sct(t), defined in the continuous time domain. 

Let us suppose that the Fourier transform can be defined for this signal, so that its 
direct and inverse Fourier transform pair can be written as: 

( ) ( )
+∞

∞−

Ω−=Ω tetsjS tj dctct  (3.1) 

( ) ( )
+∞

∞−

Ω ΩΩ
π

= d
2
1

ctct
tjejSts  (3.2) 

where Ω is the angular frequency. 
Let us also suppose that the Fourier transform of sct(t) is limited in Ω, so that: 

( )
( ) 0ct

0ct

for 0
,for 0

Ω≥Ω=Ω

Ω<Ω≠Ω

jS
jS

 (3.3) 

This situation is graphically represented in Fig. 3.4, where an example of Fourier 
transform of such a signal is shown. 

Let us now suppose to sample signal sct(t), with a constant sampling period Ts, to 
which a sampling frequency fs = 1/Ts and an angular sampling frequency Ωs = 2π/Ts
correspond. A sequence s(n) is obtained, whose samples are equal to the values taken by 
signal sct(t) at the sampling periods: 
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Figure 3.4. Example of Fourier transform of the considered continuous-time signal 

 s(n) = sct(nTs) (3.4) 

Supposing that this sequence has a Fourier transform S(e jω) given by (2.44), each 
sample of this same sequence can be written, according to (2.45), in terms of S(e jω) as: 

( ) ( )
π+

π

ωω ω
π

=
-

d
2
1 njj eeSns  (3.5) 

Due to (3.4), the same samples can be obtained starting from (3.2) as: 

( ) ( ) ( )
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2
1 snTj

s ejSnTsns  (3.6) 

Since the left-hand sides of (3.5) and (3.6) are the same, if a relationship can be 
obtained, starting from these two equations, between the Fourier transform Sct(jΩ) of the 
continuous-time signal sct(t) and the Fourier transform S(e jω) of the discrete-time 
sequence s(n) of samples of sct(t), the way the information associated with sct(t) is 
transferred to s(n) is also found. 

over intervals with finite length 2π/Ts. We get: 
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In order to find this relationship, let us express the integral in (3.6) as a sum of integrals 
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Since both q and n are integer, e j2πqn = 1. Due to the linearity of the Fourier transform, 
the order of integration and summation in (3.8) can be interchanged, so that (3.8) 
becomes: 
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If now Ω = ω/Ts is taken, (3.9) becomes: 

( )
π+

π−

ω
∞+

−∞=
ωπ+ω

π
= d21

2
1

ss
ct

s

nj

q
e

T
qj

T
jS

T
ns  (3.10) 

which is formally the same as (3.5). Therefore, it is possible to write: 
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or, if the angular frequency Ω is considered: 

( ) +∞

∞=

Ω π+Ω=
-q s

ct
s

21s
T

qjjS
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eS Tj  (3.12) 

Equations (3.11) and (3.12) represent the relationship between the Fourier transform of 
a continuous-time signal and the Fourier transform of the discrete-time signal obtained by 
sampling the continuous-time signal with a constant sampling period. 

First of all it can be noted that the Fourier transform of the resulting discrete-time 
signal is periodic with a 2π period in ω (as expected, since it is the Fourier transform of a 

s s

frequency) in Ω.

If now the new variable Ω + 2πq/Ts is considered instead of Ω, each integral in (3.7) 
can be written over the interval (-πTs, +πTs), still with finite length 2π/Ts. (3.7) becomes: 

sequence), and periodic with a Ω  = 2π/T  period (which is equal to the angular sampling 
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Figure 3.5. Relationship between the Fourier transforms of a continuous-time and a 
discrete-time signal. (a) Fourier transform of the continuous-time signal. (b) Fourier 
transform of the discrete-time signal obtained by a correct sampling. (c) Fourier 
transform of the discrete-time signal obtained by an incorrect sampling. 

On the contrary, if Ωs < 2Ω0, the shifted replicas of Sct(jΩ) in (3.11) are overlapping 
over an interval whose length depends on how lower Ωs is than 2Ω0, as shown in Fig. 3.6. 

Looking at Fig. 3.5, and according to (3.11) and (3.12), it can be concluded that, if Ωs ≥ 2Ω0,
each period of (3.11) is an undistorted replica of the Fourier transform of sct(t), and 
therefore the information associated with this signal can be still retrieved from the 
sequence of sampled values s(n).
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Figure 3.6. Aliasing effect on the Fourier transform of the discrete-time signal. (a) 
Fourier transform of the continuous time signal. (b) Fourier transform of the discrete-
time signal affected by aliasing. (c) Same aliasing situation as in (b), but caused by a 
lower sampling frequency. 

Fig. 3.6 shows that when the aliasing situation occurs, the high frequency components 
in the Fourier transform of the continuous-time signal are folded back over the lower 

In this case, the information associated with sct(t) is modified irreparably, and cannot be 
retrieved from the sequence of sampled values any longer. This phenomenon is called 
aliasing and must be absolutely avoided in order to get correct results from the digital 
processing of the input signal. 
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This phenomenon can be extremely dangerous, because the sequence of sampled data 
might apparently reproduce a signal with similar characteristics as those of the original 
sampled signal. For instance, Fig. 3.7 shows a sinewave with angular frequency Ω1 = 1, 
sampled with an angular sampling frequency Ωs = 0.9091. It can be readily recognized 
that the sampled values of this signal belong also to a sinewave with angular frequency 
Ω2 = 0.0909, and can be obtained by this one by sampling it with the same angular 
sampling frequency Ωs. Due to the aliasing, the original frequency-domain component at 
angular frequency Ω1 has been therefore shifted to the lower angular frequency Ω2. If no 
information on the original signal is known, but the waveform, the sequence obtained 
from the incorrect sampling operation might appear as correct, thus leading to dramatic 
measurement errors. 

-1

0

1

t

s(t )

2π 4π 6π 8π 10π 12π 14π 16π 18π

Figure 3.7. Aliasing effects: a high frequency sinewave appears to be a low frequency 
sinewave

The sampling theorem and the above considerations lead to conclude that a 
continuous-time signal is correctly sampled, that is aliasing is avoided and the 
information associated with this signal can be still retrieved from the sequence of 
sampled values, if the following conditions are met. 
1. The Fourier transform (spectrum) of the continuous-time signal is upper-bounded in 

frequency at Ω0, as shown by (3.3). 
2. The sampling period Ts is constant. 
3. The angular sampling frequency Ωs is taken in such a way that Ωs ≥ 2Ω0. The lowest 

limit for the sampling frequency Ωsm = 2Ω0 is called the Nyquist frequency. 
4. The signal is sampled over the whole time axis (that is from t0 = -∞ to t1 = +∞).

frequency components, thus modifying them. The lower is the sampling frequency with 
respect to the 2Ω0 limit, the more are the frequency-domain components of the signal 
affected by the aliasing, so that the information associated with the original signal is 
totally lost in the sequence of sampled data. 
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Shannon interpolation formula. 

The above paragraph proved that the information associated with a continuous-time 
signal in the frequency domain can be still retrieved from the sequence of sampled 

theory states that, if the Fourier transform exists, there is a perfect equivalence between 
the time and the frequency domains. This means that everything is proved as valid in one 
domain is also valid in the other domain. Coming to the sampling theory, the domain 
equivalence stated by the Fourier theory leads to conclude that, if the conditions of the 
sampling theorem are met, the information associated with a continuous-time signal must 
be retrieved also in the time-domain. This means that we must be able to find the value 
taken by the signal at any time t, starting by the sampled values at time kTs.

To prove this statement, let us suppose that the continuous-time signal sct(t) has been 
sampled correctly, that is Ωs ≥ 2Ω0. Over the ω axis this means that Ω0 ≤ π/Ts. Under this 
condition, (3.12) leads to: 
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as graphically shown in Fig. 3.5b. 
Taking into account the inverse Fourier transform (3.2) for the continuous-time signal, 

we get: 
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Since, according to (2.44), it is: 
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(3.14) becomes: 
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and, by interchanging the order of integration and the summation: 

values, provided that the sampling operation meets the above listed conditions. The Fourier 
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Keeping into account the solution of the integral in the square brackets, (3.16) 
becomes: 
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Equation (3.17) is due to Shannon and is generally called the Shannon interpolation 
formula. It shows that it is possible to evaluate the value taken by the continuous-time 

ct s
that the sampling theorem conditions are met and no aliasing occurs. It has been hence 
proved that the information associated with the continuous-time signal can be retrieved 
from the sequence of sampled data both in the frequency and time domains. 

Equation (3.17) has a great theoretical importance, but a limited practical utility, 
because it requires to interpolate an infinite number of samples, which means that the 
observation interval must be of infinite length. 

This last statement is in perfect agreement with the conditions of the sampling 
theorem, listed at the end of the previous section, which are the direct consequence of 
having assumed no restrictions for the signal, except the limited bandwidth in the 
frequency-domain. Since the signal can be a priori aperiodic and its duration can be not 
limited in time, it is necessary to observe it over an infinite length interval to retrieve the 
whole amount of information associated with it. 

In the practical situations, however, this kind of signals is not generally met. The 
phenomena that are generally dealt with are represented either by finite length signals, 
that are not required to be observed outside their duration, either by periodic signals, 
whose associated information can be retrieved by observing only one single period. 

The finite length signals could not be sampled, from a strict theoretical point of view, 
since the Fourier transform of such signals does not show a finite bandwidth. From the 
practical point of view, however, the bandwidth of the Fourier transform can be forced to 
be limited by filtering the signal with a low-pass filter. This will introduce some decaying 
exponential terms in the original signal that extend its duration to infinity. However, 
since this components are generally rapidly decaying, they fall below the resolution of the 
Analog-to Digital converter employed, and the signal can be still considered with a finite 
duration, at least from the practical point of view. 

The periodic signals need a separate analysis. It has been already shown in Chapter 2 
that a sequence obtained by sampling a periodic signal might not be periodic any longer. 
Therefore it may happen that the sequence of the sampled values of a periodic, 
continuous-time signal does not allow to retrieve the information associated with the 
signal itself, even if the signal has been sampled with a sampling frequency greater than 
the Nyquist frequency, because it loses the original periodicity. 

signal s (t) at any time t, starting from the values taken at the sampling instants kT , provided 
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The sampling theorem must be hence reconsidered, in order to find if a condition 
exists that allows to sample a periodic signal correctly. 

The case of the periodic signals. 

Fourier-series approach. 

Let sct(t) be a continuous-time signal, represented by a generally continuous function of 
time t, periodic with period T in t, and absolutely integrable in t. Under these conditions, 
sct(t) can be represented by means of the Fourier series: 
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which means that sct(t) has a bounded spectrum. 
Let us now suppose to sample sct(t) with constant sampling period Ts taken in such a 

s

T = (2N + 1)Ts (3.22) 

showing that the signal period and the sampling period are synchronous.

way that exactly 2N+1 samples are taken over the signal period T, from -T/2 to T/2. This 
means that the following relationship applies between T and T :

It is also assumed that the following condition is satisfied: 
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Starting from the sampled values of sct(t) and taking into account (3.22), the Fourier 
series coefficient in (3.19) and (3.20) can be evaluated as, respectively: 
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Due to the relationship (3.22) between T and Ts, the integrals in (3.19) and (3.20) can 
be still obtained from (3.23) and (3.24) as: 
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According to Eulero, as far as (3.25) is concerned,  and Gauss, as far as (3.26) is 
concerned, these relationships can be further on simplified, removing the limit operation. 
The following equations are obtained: 
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It can be immediately recognized that, if condition (3.21) is satisfied, then the 
summations in (3.27) and (3.28) are equal to zero, for any value of |k| ≤ N. This means 
that: 
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It can also be recognized, by computing the summations in (3.27) and (3.28), that, for 
N < k ≤ 2N , the Fourier series coefficients obtained from (3.25) and (3.26) provide: 
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which confirms that the Fourier components of a sequence are periodic in the frequency 
domain. 

If condition (3.22) is removed, that is if: 

T ≠ (2N +1)Ts, (3.31) 

Eulero and Gauss relationships (3.27) and (3.28) are not applicable any longer, so that, if 
the signal period and the sampling period are not synchronous, it is always: 
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Therefore, it can be concluded that a continuous-time, periodic signal is correctly 
sampled if and only if both the Nyquist condition Ωs ≥ 2Ω0 and the synchronous 
sampling condition (3.22) are satisfied. Under this assumption, the original information 
associated with the continuous-time signal can be retrieved from the discrete-time signal, 
as shown by (3.29); otherwise, the original information cannot be retrieved any longer 
from the discrete-time signal. 

From a very intuitive point of view, this conclusion is explained, in a graphical way, 
by Fig. 3.8 a and b. Fig. 3.8 a) shows the sequence of samples obtained by sampling a 
sinewave with 20 samples/period, in a synchronous way (T = 20Ts). The two periods of 
the sampled signal shown in Fig. 3.8 a) have been drawn by duplicating the samples 
obtained from one single period of the original signal, shifting them by 20Ts, and 
attaching them to the right of the first period plot. It can be immediately recognized that 
the original sinewave appears unaltered.  

Fig. 3.8 b) has been drawn in the same way as Fig. 3.8 a), again sampling a sinewave 
with 20 samples/period, but not in a synchronous way (T ≠ 20Ts). It can be immediately 
recognized that a distortion appears in the sinewave, at zero crossing, as evidenced on 
Fig. 3.8 b) by an ellipse. 

The above mathematical derivation and the intuitive example reported in Fig. 3.8 
prove that the synchronous sampling condition must be satisfied in order to preserve the 
original information associated with the continuous-time signal after the sampling 
operation. 

Unfortunately, the synchronous condition (3.22) can be barely satisfied under practical 
conditions. In fact, it requires the knowledge of the signal period, which is generally 
unknown, and an infinite resolution of the sampling clock in order to generate the 
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sampling pulses that satisfy (3.22) for every possible signal period T.

Figure 3.8. Example of correct, synchronous sampling (a) and incorrect, asynchronous 
sampling (b) of a periodic signal 

Due to these reasons, the synchronous sampling conditions cannot generally be 
achieved, unless the signal period is a priori known and remains stable for the whole 
observation interval. It is therefore important to understand what kind of errors are 
generated by the lack of synchronism, quantify them and investigate the possible methods 
for their reduction. 

The followed Fourier-series approach to the sampling theorem for periodic signals 
leads in quite straightforward way to the synchronous sampling condition, but does not 
allow to explain the errors that arise when this condition is not satisfied and, 
consequently, does not allow to identify the possible methods that can be adopted to 
reduce them. 
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Convolution approach 

The approaches to the sampling operation described in the previous sections are all based 
on a mathematical representation in terms of functions, in the continuous time domain, 
and sequences, in the discrete time domain. 

A generalization of this approach is possible if distributions are considered instead of 
functions. If the sampling distribution g’(t), shown in Fig. 3.9, is defined as a proper 
combination of Dirac impulses, equally spaced by the sampling period Ts:
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k
skTttg , (3.33) 

represented by the product of s (t) by the sampling distribution (3.33): 

( ) ( ) ( )tgtstp ′⋅=′ (3.34) 

where p’(t) is a distribution of Dirac impulses, equally spaced by the sampling period Ts,
whose amplitude is weighed by the value taken by function s (t) at each sampling time. 

1

0
Ts

t

g’(t)

Figure 3.9. Representation of the sampling distribution for an infinite duration 
observation interval 

In the frequency domain, the Fourier transform G’(jΩ) of g’(t) is again a combination 
of Dirac impulses, scaled by the quantity 1/Ts and equally spaced in angular frequency by 
a quantity s2 Tπ . G’(jΩ) is therefore expressed by: 
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and graphically represented in Fig. 3.10. 

ct expressed as a function of time s (t) is mathematically sampling a continuous-time signal s ct

ct

ct

ct
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1/Ts

0
j2π/Ts

jΩ

G’(jΩ)

Figure 3.10. Frequency domain representation of the sampling distribution for infinite 
duration observation interval 

Taking into account the properties of the Fourier transform, the Fourier transform of 
the sampled distribution p’(t) in (3.34) can be obtained as the convolution of the Fourier 
transforms of s(t) and g’(t):

( ) ( ) ( )Ω′∗Ω=Ω′ jGjSjP (3.36) 

It can be immediately recognized that, due to the periodicity of the Dirac impulses that 
constitute G’(jΩ), P’(jΩ) is the periodic replica of S (jΩ) with period Ωs = 2π/Ts. If S (jΩ) 
is upperbounded at angular frequency Ω0 = Ωs/2, each period of P’(jΩ) is a scaled replica 
of S (jΩ), otherwise aliasing occurs, as already shown in the previous sections. 

considered, it is possible to define the Fourier transform of this signal, as a combination 
of Dirac impulses, equally spaced, in angular frequency, by a quantity j2π/T, and 

harmonic component. 
s

2N+1 samples are taken over the period, and the sampling theorem is satisfied. The 
observation interval is therefore To = (2N+1)Ts. Under these conditions, the sampling 
distribution (3.33) becomes: 
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Nk
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and the sampled signal can again be mathematically expressed by the product: 

( ) ( ) ( )tgtstp ⋅= (3.38) 

In the frequency domain, the Fourier transform of g(t) is no longer given by a 
sequence of Dirac impulses, because of the finite duration of g(t) itself. The Fourier 

ct

ct ct

ct

ctLet us now consider a periodic signal s (t), with period T. If the distribution theory is 

weighed by the Fourier series complex coefficients appertaining to each harmonic 
component. Let the Fourier transform of s (t) be upperbounded, in frequency, by the N-thct

 Let us now suppose to sample only one period of s (t), with sampling period T , so that ct

ct
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transform of g(t) is given by: 
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and is graphically represented in Fig. 3.11 for the case of N = 16 and Ts = 0.628 ms. 

Figure 3.11. Fourier transform of the sampling distribution when the observation 
interval has finite duration. The case of N=16 and Ts=0.628 ms is represented. 

It can be immediately recognized that G(jΩ) is a continuous function and is again 
periodic with period 2π/Ts in Ω. Since (3.37) is an even distribution, (3.39) is a real 
function. 

The Fourier transform P(jΩ) of  the sampled distribution (3.38) is given again by the 
convolution theorem: 

( ) ( ) ( )Ω∗Ω=Ω jGjSjP  (3.40) ct
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analysed. It can be noted that this function has its zero crossings at: 
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and has the peak value of the main lobes at: 
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It can be noted that both the zero crossings and the peak values are located at integer 
multiples of the inverse of the observation interval T0 = (2N+1)Ts. If the synchronous 
sampling condition  (3.22) is satisfied, the observation interval is the same as the signal 

0 s
either under the peak value of the main lobe or at the zero crossings of (3.93), as shown 
in Fig. 3.12. 

Figure 3.12. Relative position of the Fourier transforms of S (jΩ) and G(jΩ) when the 
synchronous sampling condition is satisfied 

In order to analyse the relationship between P(jΩ) and S (jΩ), G(jΩ) should be ct

period: T  = T = (2N+1)T . This means that the harmonic components of s (t) are located ct

ct
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When the convolution (3.40) is considered, at each step of the convolution, only one 
harmonic component is located under the peak of the main lobe of G(jΩ), while all other 
components are located at the zero crossings of G(jΩ). These components are therefore 
weighed by zero, and do not contribute to the computation of each convolution value. 

those taken by S (jΩ), except for a constant scale factor. 

The interpolation formula 

As already stated when the general formulation of the sampling theorem has been 
derived, if the conditions of this theorem are met, the information associated with the 
continuous-time signal must be retrieved, from the discrete-time signal, also in the time 
domain. This statement led to the interpolation formula (3.17), due to Shannon, that has 
been derived under the assumption that the signal was observed for an infinite duration 
interval. 

When the sampled signal sct(t) is periodic, with period T, the above proved sampling 
theorem states that, if its spectrum is upper-bounded at harmonic N, the signal itself can 
be observed for a finite observation interval equal to period T, provided that 2N + 1 
samples are taken over this period and the synchronous condition (3.22) is met. This 
means that all other values taken by sct(t) outside the sampling instants must be retrieved 
by the 2N + 1 samples. 

This can be proved by expressing the continuous-time signal sct(t) as a function of its 
harmonic components: 
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Ts being the sampling period and 
12

2
+
π=ω

N
 the fundamental angular frequency. 

Since all conditions of the sampling theorem are met, the spectral components of the 
sampled signal can be obtained starting from the sequence of sampled values s(n) = sct(nTs) as: 
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If (3.44) is considered in (3.43), the following relationship can be written: 
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(jΩ) are the same as Therefore, the values taken by P(jΩ) at each harmonic frequency of Sct

ct

ct

ct
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By separating the term that depends on n only by those that depend on n and k, it is 
possible to write: 
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Taking into account that: 
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Equation (3.47) represents the interpolation formula for periodic signals. It shows not 
only the same theoretical importance as Shannon interpolation formula (3.17), but it can 
also be of practical use, since it is a summation of a finite number of terms and can 
therefore be computed. 

The leakage errors 

The convolution approach to the sampling theorem in the case of periodic signals shows 
that the Fourier transform (3.40) of the distribution (3.38) of the sampled data is given by 

Fourier transform G(jΩ), given by 3.39, of the sampling distribution g(t), given by 3.37. 
When the synchronous sampling condition (3.22) is satisfied, that is when the signal 

period T and the sampling period Ts are related by: T = (2N+1)Ts, the harmonic angular 
frequencies Ωk = 2πk/T of the continuous time signal are the same as the zero-crossing 
frequencies (3.41) of G(jΩ), except for the case of k = (2N+1), when the harmonic 
angular frequency of the continuous time signal is the same as the frequency of the peak 
of the main lobe of G(jΩ). This situation is represented in Fig. 3.13, which is an 
enlargement of Fig. 3.12 where the signal harmonic components are located. 

the convolution of the Fourier transform S (jΩ) of the continuous time signal and the ct
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Figure 3.13. Position of the harmonic components of sct(t) when the synchronous 
sampling condition is satisfied 

As it has been already shown, only one harmonic component of the continuous-time 
signal, the one that lies under the main lobe of G(jΩ), is weighed by a non-zero value at 
each step of convolution (3.40), so that the values of the harmonic components of the 
sequence of the sampled, discrete-time signal are the same as the harmonic components 
of the continuous-time signal. 

On the contrary, when the synchronous sampling condition (3.22) is not satisfied, that 
is when T ≠ (2N+1)Ts, the zero-crossing angular frequencies (3.41) for G(jΩ) are not the 
same as the harmonic angular frequencies of the continuous-time signal any longer. 

correspond to an harmonic angular frequency of the continuous-time signal. This 
situation is depicted in Fig. 3.14, where the same signal as that in Fig. 3.13 is supposed to 
be sampled with a higher sampling frequency than the one adopted in Fig. 3.13, but 
without meeting the synchronous sampling condition (3.22). 

(3.40), the harmonic component ( )+
π

s12
2

TN
kjP  of the sampled signal, evaluated 

starting from the acquired samples, is related to the harmonic component π
T

kjS 2  of 

Similarly, the angular frequency for the peak of the main lobe of G(jΩ) does no longer 

Due to the different relative position of G(jΩ) and S (jΩ), at each step of convolution ct

ct
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the continuous time signal by the following relationship: 
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Figure 3.14. Position of the harmonic components of sct(t) when the synchronous 
sampling condition is not satisfied 

The first term in the right side of (3.48) is due to the fact that the harmonic component 

the main lobe itself. If the amplitude of the main lobe of G(jΩ) is normalized to 1, then 

coefficient α, with 0 ≤ α ≤ 1. The value of α depends on how displaced is the signal 
harmonic component with respect to the centre of the main lobe of G(jΩ). This 
displacement is given, in terms of angular frequency, by: 
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ct ct

of S (jΩ) that lies under the main lobe of G(jΩ) is not centred exactly under the peak of ct

ctthe harmonic component of S (jΩ) that lies under the main lobe of G(jΩ) is weighed by a 
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value of α depends also, of course, on the shape of the main lobe of G(jΩ).
The second term in the right side of (3.48) is due to the fact that the harmonic 

crossings of G(jΩ). Therefore, they are weighed by a coefficient β, with β ≥ 0, and give a 
generally non-zero contribution to convolution (3.40). The values taken by each βh
coefficient depend on how displaced is the signal harmonic component with respect to 
the nearest zero-crossing of the side lobes of G(jΩ). Therefore, once again, they depend 
on the value of ∆Ω given by (3.49) and on the shape of the side lobes of G(jΩ).

Of course, under synchronous sampling conditions, ∆Ω = 0, α = 1, βh = 0, ∀h, and 

therefore ( )
π=

+
π

T
kjS

TN
kjP 2
12

2

s
.

The errors coming from the non-synchronous sampling conditions are generally called 
leakage errors. This name comes from the fact that the spectral energy of each impulse of 
(3.35), that when the signal is observed for an infinite length interval is confined in an 
infinitesimal frequency range, leaks out in a finite frequency range, equal to the width of 
the lobes of (3.39), when the signal is observed for a finite length interval. 

In particular, the error that arises when α < 1 is called short range leakage error, 

when βh ≠ 0 is called long range leakage error because it is due to the spectral leakage of 
the side lobes of (3.39). Since this error can also be seen as the interference of the 
harmonic components other than the one under evaluation with this last one, it is also 
called spectral interference error. 

components of S (jΩ) that fall outside the main lobe of G(jΩ) are not located at the zero-

and gives the distance of the actual sampling condition  from the synchronous one. The 

ct

ct

because it is due to the spectral leakage of the main lobe of (3.39). The error that arises 



CHAPTER 4 

METHODS FOR THE REDUCTION OF THE LEAKAGE 
ERRORS

INTRODUCTION.

The discussion of the sampling theorem reported in the previous Chapter 3 showed that a 
periodic signal with period T and only N non-zero harmonic components is sampled 

s s
Chapter 3 showed as well that leakage errors arise if this condition is not satisfied and 

showed that these errors are related to the difference between the signal period T and the 
observation interval To = (2N + 1)Ts, and the shape of the Fourier transform of the 
sampling distribution. 

Of course, the only way to avoid the leakage errors is, theoretically speaking, the 
synchronization between the sampling clock and the signal period, so that (3.22) is 
satisfied. Unfortunately, this synchronization can hardly be attained in practice, due to the 
following reasons: 
– the signal period is generally unknown; 
– provided that the signal period has been measured, the sampling clock has generally 

not enough resolution to satisfy (3.22); 
– provided that the signal period has been measured and the sampling clock has enough 

resolution to satisfy (3.22), the signal period is not generally stable enough to ensure 
that (3.22) is satisfied along the whole measurement process. 

Due to the above reasons, a periodic signal is almost never sampled in the strict 
mathematical correct way prescribed by the sampling theorem. Suitable methods must 
therefore be investigated in order to reduce the leakage errors that arise because of the 
lack of synchronization between the signal period and the sampling period. 

The most widely used methods rely on the use of windows, different from the 
rectangular one (3.37), for weighing the sampled signal. This Chapter will show how the 
use of suitable windows results in a reduction of the leakage errors and will discuss also 
other methods, such as the interpolation methods in the time and frequency domains, for 
reducing these errors further on. 

At last, an hardware structure for the automatic synchronization of the sampling clock 
to the signal period will be shortly described, and the conditions under which the 
synchronization can be obtained in an effective way will be also discussed. 

correctly if at least 2N + 1 samples are taken over period T  in such a way that the signal
period and the minimum sampling period T  are related by (3.22), that is: T = (2N+1)T .
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THE WEIGHING WINDOWS. 

The rectangular window. 

When a signal has to be observed for a limited time, such as the period for the periodic 
signals, the main purpose of a weighing window is to truncate the signal outside the 
required observation interval. The most immediate weighing window is the rectangular 
one, that weighs by 1 the samples which fall inside the observation interval, and by 0 
those which fall outside this interval. 

This window has already been discussed in the previous Chapter 3, where it has been 
defined by (3.37). In Chapter 3 it has been considered symmetrical with respect to the 
time origin for the sake of simplicity; in fact, in this case, it could be represented by the 
even distribution (3.37), so that its Fourier transform (3.39) is real and can be handled in 
a quite simple way. 

In the practice, a signal is observed starting from the initial time ti = 0, and therefore 
the rectangular window is mathematically described by: 
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Since this window is used to weigh the acquired samples, it is generally applied to a 
sequence in the discrete-time domain, rather than to the continuous-time signal. It is 
therefore more convenient to re-write (4.1) as a sequence, in the discrete time domain: 
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where δ (n) is the unit sample sequence defined by (2.2). 
The rectangular window can be written also as: 
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The Fourier transform of (4.3) can be immediately obtained as: 
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It is immediate to check that (4.4) is the same, in the discrete-time domain, as (3.39), 
except for the exponential term that takes into account the N-samples right-shift of (4.2) 
with respect to (3.37). 

The magnitude of the Fourier transform of the rectangular window is given by: 
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and is graphically represented in Fig. 4.1 for N = 16. 

Figure 4.1. Magnitude of the Fourier transform of the rectangular window for N=16 

By analysing (4.5), the following interesting characteristics can be found for the 
magnitude of the Fourier transform of the rectangular window: 
– the amplitude of the second lobe is only 13 dB below the amplitude of the main lobe; 
– Fig. 4.1 shows also that the asymptotical decaying of the side lobes is very poor; this 

last characteristic of the Fourier transform of the rectangular window is directly 
related to the discontinuity of the window itself at each end in the time domain. Since 
the window and all its derivatives are not continue at the end of the window, the 

Methods for the reduction of the leakage errors 
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Fourier transform shows the maximum amplitude of the side lobes and the minimum 
asymptotical decaying;  

– at last, the width of the main lobe of the rectangular window is equal to 2π/(N+1) and 
is equal to the width of all side lobes. 

All above characteristics make the rectangular window very unsuitable to reduce the 
effects of the lack of synchronism between the signal period and the sampling period. In 
fact, for a given value of ∆Ω in (3.49), the rectangular window provides the maximum 
values for coefficients βh and the maximum deviation from 1 for coefficient α in 
(3.48).Therefore the maximum short and long-range leakage errors are obtained with this 
window. 

The cosine windows 

According to the above considerations, a reduction in the leakage errors can be obtained 
if coefficients βh in (3.48) are kept as close to zero as possible, and coefficient α in (3.48) 
is kept as close to 1 as possible. 

Since the value of the βh coefficients is related to the amplitude of the side lobes of the 
weighing window, the reduction of these coefficients is obtained if the amplitude of the 
side lobes is reduced. The presence of side lobes in the Fourier transform of a weighing 
window, also known as the Gibbs phenomenon, is a well known mathematical issue and 
can be moderated through a less abrupt truncation of the window at its edges. This 
requires the use of a window that ensures continuity at its edges. Once this kind of 
windows is defined, the value of coefficient α can be set close to 1 in a suitable range of 
values for ∆Ω by adapting the shape of the main lobe. 

The most widely used weighing windows are the cosine windows, whose mathematical 
properties allow to tailor their shape in a quite easy way in order to optimise the values of 
coefficients βh or α.

The cosine windows are defined as: 
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where L is the order of the window, A  are the coefficients of the window, and 2N+1 is 
the length of the window. This last value is the same as the observation interval, 
expressed in terms of number of samples. An example of cosine windows is shown in Fig 
4.2, for L = 2, A0 = 0.5 and A1 = -0.5. This window is called the Hanning window, and the 
way it decreases to zero with continuity is quite evident 

It can be immediately recognized that, for L = 1 and A0 = 1, (4.6) degenerates in the 
rectangular window, that can therefore be considered as a particular case of the cosine 
windows. 

The Fourier transform of a cosine window can be obtained by applying the definition 
(2.44) of the Fourier transform of a sequence: 
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Figure 4.2. Example of cosine window for L = 2, A0 = 0.5, A1 = -0.5 and N = 64 
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The order of the two summations can be changed, so that (4.7) becomes: 
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By expressing the cosine function in its exponential form, equation (4.8) becomes: 
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Finally, this equation converges to: 
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which is a linear combination of shifted Fourier transforms of the rectangular window. It 
is worth to note that, for L = 1 and A0 = 1, (4.10) is actually the Fourier transform (4.4) of 
the rectangular window (4.2). 

The peak value of the main lobe of (4.10) can be obtained by evaluating (4.10) for ω = 0: 
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It can be immediately recognized that all terms with ≠ 0 in (4.11) are equal to zero, 
so that (4.11) becomes: 

( ) )12(0
0 +⋅= NAeW j (4.12)

This equation has a very important meaning, because it states that, under synchronous 
sampling conditions, the Fourier series components of a periodic signal evaluated after 

weighed the signal with the rectangular window, except for the scale factor given by the 
window coefficient A0.

 In order to move from the general theoretical definition (4.6) of a cosine window to 
more practical definitions, parameters L and A  must be defined. Different criteria can be 
followed in their definition, according to the different desired characteristics. The first 
desired window characteristic is common to all windows and requires to normalize the 
window amplitude to one. 

Since the cosine windows show an even symmetry, they attain their peak value for 
n = (2N+1)/2. The normalization condition can therefore be written as: 

( ) 1cos
2

12 1

0

=π=+ −

=

L
ANw

that leads to the following condition: 

( ) 11
1
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=−
−

=

L
 (4.13) 

Since the window must be convex, the A  coefficients must have alternate signs, with 
0

1
1

0

=
−

=

L
, (4.14) 

and represents the normalization condition, that is the first condition set for coefficients 
A  in order to define suitable weighing windows. 

Cosine windows with maximum asymptotic decay 

It has already been stated that the analysis of the Gibbs phenomenon, which is 
responsible for the presence of the side lobes in the rectangular window, shows that the 

A

A
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having weighed it with a cosine window are the same as those evaluated after having 

A  > 0. If this last condition is taken into account, (4.13) becomes: 
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amplitude of the side lobes is related to the discontinuity that the windows has at its 
edges.

The same mathematical analysis proves that, for a given order L, the windows that are 
continuous at their edges and have continuous derivatives at their edges are those with the 
maximum asymptotic decay of the side lobe amplitude. 

This mathematical property suggests the conditions to set in order to find the A
coefficients for this kind of windows. Since the cosine terms in the cosine windows (4.6) 
become equal to 1 at the windows edges, that is for n = 0 and n = 2N +1, the condition 
that must be satisfied to ensure window continuity at the edges, that is: w(0) = w(2N+1) = 0, 
is:

0
1

0

=
−

=

L
A  (4.15) 

If L = 2 is taken, conditions (4.14) and (4.15) allow to determine the two A0 and A1
coefficients. In particular, we get: A0 = 0.5 and A1 = -0.5, which define the Hanning 
window shown in Fig. 4.2. Fig. 4.3 shows the magnitude of the Fourier transform (4.10) 
in the case of the Hanning window, evaluated for N = 16. The magnitude of the Fourier 
transform of the rectangular window is also reported (dotted line) in the same figure, for 
direct comparison. 

The advantage, in terms of reduction of the amplitude of the side lobes, and therefore 
in terms of reduction of the βh coefficients, is quite evident. The amplitude of the second 
lobe of the Hanning window is 31 dB below the main lobe peak, while that of the second 
lobe of the rectangular window is only 13 db below the main lobe peak. 

main lobe is twice that of the main lobe of the rectangular window. This is 
mathematically proved by analysing (4.10); the width ∆wm of the main lobe of a cosine 
window is given by: 

L
N

W ⋅
+

=∆
12

2
m

π  (4.16) 

Equation (4.16) shows that the width of the main lobe of a cosine window is directly 
proportional to the window order, and is L-times wider than that of the rectangular 
window. This may cause serious interference problems if the sampled signal has two or 
more contiguous harmonic components that fall under the main lobe of the employed 

this Chapter. 
Condition (4.15), that ensures the window continuity at its edges, is not the only 

condition that can be set to improve the asymptotic decay of the side lobes. The analysis 
of the Gibbs phenomenon shows that it can be mitigated if also the continuity of the 
window derivatives is ensured at the window edges. 

Fig. 4.3 shows also another characteristic of this cosine window. The width of the 

cosine window and requires to adopt the countermeasures that will be described later in 
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Figure 4.3. Magnitude of the Fourier transform of the Hanning (solid line) and 
rectangular (dotted line) windows in the case of N = 16 

One of the interesting mathematical properties of the cosine windows is that, since all 
their odd derivatives are expressed as a sum of sine terms, their continuity at the window 
edges is naturally ensured, without any need for additional conditions. The second 
derivative of a cosine window (4.6) is given by: 
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and its continuity at the window edges is ensured if the following condition is satisfied: 
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2 =
−

=

L
A  (4.17) 

Taking into account this condition, together with conditions (4.14) and (4.15), leads to 
the definition of the following coefficients of a third order window: A0 = 0.375, A1 = -0.5 
and A2 = 0.125. These coefficients define a third-order window, and the magnitude of its 
Fourier transform is reported in Fig. 4.4, always together with the magnitude of the 
Fourier transform of the rectangular window for direct comparison. 
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The effect, on the amplitude of the side lobes, of having ensured the continuity of 
the second derivative is quite evident. The amplitude of the second lobe of this 
window is 47 dB below the main lobe peak, that is about 20 dB below the second 

rectangular window. 
According to (4.16), the width of the main lobe is three times wider than that of the 

rectangular window, as clearly shown by Fig. 4.4. 

Figure 4.4. Magnitude of the Fourier transform of the third-order (solid line) and 
rectangular (dotted line) windows in the case of N=16 

The asymptotic decay of the side lobes can be further on increased if the continuity of 
the fourth derivative is imposed at the edges of the windows. The fourth derivative of 
(4.6) is given by: 
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and its continuity at the window edges is ensured if the following condition is satisfied: 

lobe of the Hanning window and about 30 dB below the second lobe of the 
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This new condition, together with (4.14), (4.15) and (4.17) leads to the definition of 
the coefficients of a fourth order window, the so called sin6( ) window: A0 = 10/32, 
A1 = -15/32, A2 = 6/32 and A3 = -1/32. The magnitude of the Fourier transform of this 
window is reported in Fig. 4.5, again with the magnitude of the Fourier transform of the 
rectangular window. It can be noted that the amplitude of the second lobe is 61 dB below 
that of the main lobe, thus ensuring a quite effective reduction of the long-range leakage 
errors. On the other hand, the main lobe, according to (4.16), is four times wider than the 
main lobe of the Fourier transform of the rectangular window. 

Figure 4.5. Magnitude of the Fourier transform of the sin6( ) (solid line) and rectangular 
(dotted line) windows in the case of N = 16. 

 Cosine windows with minimum amplitude for the second lobe 

The cosine windows with maximum asymptotic decay of the side lobe amplitude are 
optimized for the reduction of the long-range leakage errors. However this is not the only 
way a cosine window can be optimized. In several applications, the analyzed signals may 
show two spectral components at contiguous harmonic frequencies. In this case, a 

Methods for the reduction of the leakage errors 
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window showing the minimum amplitude of the second lobe is expected to minimize the 
harmonic interference of the two contiguous spectral components on each other. 

By reminding that the width of the main lobe of a cosine window is given by (4.16) 
and that the width of the side lobes is the same as the width of the lobes of the rectangular 
window, the minimization of the peak value of second lobe of a cosine window of given 
order L requires to determine the values of the A  coefficients that minimize the 
magnitude of the Fourier transform of the cosine window for: 
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Of course, the obtained values for the A  coefficients depend on the window order L.
If the magnitude of (4.10) is evaluated for L = 2 and ω = ωp2, it can be proven that 
the obtained value is minimized by A0 = 0.54 and A1 = -0.46. These coefficients 
define the second order window called Hamming window. Fig. 4.6 shows the 
magnitude of the Fourier transform (4.10) in the case of the Hamming window, 
evaluated for N = 16. The magnitude of the Fourier transform of the rectangular 
window is reported again, in the same Fig. 4.6, for direct comparison. 

Figure 4.6. Magnitude of the Fourier transform of the Hamming (solid line) and 
rectangular (dotted line) windows in the case of N = 16. 
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main lobe. If this window is compared with the Hanning window (which is also a second 
order window), it can be noted that the amplitude of the second lobe of the Hamming 
window (-43 dB) is much lower than the amplitude of the second lobe of the Hanning 
window (-31 dB). On the contrary, the side lobes of the Hanning window (Fig. 4.3) are 

almost constant. This can be easily explained by considering that the coefficients of the 
Hamming window do not satisfy condition (4.15) and therefore a fast decay of the side 
lobes cannot be expected. 

The same optimization as that performed on the second lobe of the second order 
windows can be done also on the third order windows. In this case, the window with the 
minimum amplitude of the second lobe is the Blackman-Harris window, whose 
coefficients are: A0 = 0.412323, A1 = -0.49755, A2 = 0.07922. The magnitude of the 
Fourier transform (4.10) of the Blackman-Harris window, evaluated for N = 16, is 
reported in Fig. 4.7, together with the magnitude of the Fourier transform of the 
rectangular window for direct comparison. 

Figure 4.7. Magnitude of the Fourier transform of the Blackman-Harris (solid line) and 
rectangular (dotted line) windows in the case of N = 16. 

The magnitude of the second lobe of the Blackman-Harris window is 65 dB below 
that of the main lobe. If this window is compared with the third-order window 

The magnitude of the second lobe of the Hamming window is 43 dB below that of the 

Methods for the reduction of the leakage errors 

more rapidly decaying than those of the Hamming window, whose amplitudes remain 

optimized for the maximum asymptotic decay of the side lobe amplitudes, it can be 
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the second lobe of that window (-47 dB). Similarly to the Hamming window, 
however, the side lobes of the Blackman-Harris window do not decay significantly, 
in agreement with the fact that the coefficients of this window do not satisfy 
condition (4.15). 

Flat-top cosine windows 

The cosine windows analyzed until now have been optimized in order to reduce the 
effects of the harmonic interference and, therefore, the long-range leakage errors. The 
performed optimization was in fact concerned with the amplitude of the side lobes of the 
window Fourier transform. 

It has been shown that, on the contrary, the short-range leakage errors are related to the 
shape of the main lobe of the Fourier transform of the employed window. In order to 
mitigate the short-range leakage error, the window main lobe should be maximally flat in 
the origin. This condition requires to annihilate, for ω = 0, as many derivatives as 
possible for the magnitude of the window Fourier transform (4.10), according to the 
window order and to the fact that the normalization condition (4.14) must always be 
satisfied.  

This kind of optimization leads to the definition of the so-called flat-top windows. If a 
third order window is considered, this optimization yields the following coefficients: A0 = 
0.2811, A1 = -0.5209, A2 = 0.1980. The magnitude of the Fourier transform of this 
window is plotted in Fig. 4.8, in the case of N = 16. 

The same figure shows also the magnitude of the Fourier transform of the third-order 
with maximum asymptotic decay (dashed line) and rectangular (dotted line) windows, so 
that the features of the obtained flat-top window can be immediately compared with those 
of these other two windows. The flatness of the main lobe is quite evident and shows that, 
for a given frequency displacement (3.49), the signal harmonic component that lies under 
the window main lobe is affected by a lower short-range leakage error than that caused 
by any other window of the same order L.

 On the other hand, the flat-top window shows a second lobe with a peak value of –45 dB, 
higher than the peak value (-47 dB) of the second lobe of the third-order window, thus 
confirming that it has not been optimized for the mitigation of the long-range leakage 
error.

If a good performance is required for reducing both the short and long-range leakage 
errors, the window order must be increased. As an example, the fifth order flat-top 
window is considered, with the following coefficients: A0 = 0.21557895, A1 = -0.41663158, 
A2 = 0.277263158, A3 = -0.083578947, A4 = 0.006947368. The magnitude of the Fourier 
transform (4.10) of this window, in the case of N = 16, is reported in Fig. 4.9. 

The efficiency of this window in mitigating the short-range leakage error is well 
evidenced by the flatness of its main lobe. The efficiency in the harmonic interference 
reduction is also good, since the second lobe peak is 84 dB below the main lobe peak. 
The main drawback in the use of this window is the width of its main lobe, equal to 5 
times the width of the main lobe of the rectangular window. 

noted that the amplitude of its second lobe (-65 dB) is lower than the amplitude of 
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Figure 4.8. Magnitude of the Fourier transform of the third order flat-top (solid line), 
maximum asymptotic decay (dashed line) and rectangular (dotted line) windows in 
the case of N = 16. 

Figure 4.9. Magnitude of the Fourier transform of the fifth order flat-top (solid line) and 
rectangular (dotted line) windows in the case of N = 16. 

Methods for the reduction of the leakage errors 
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The selection of the observation interval 

In the previous section, the width ∆wm of the main lobe of a cosine window was shown to 
be given by (4.16). This equation shows that the width of the main lobe of a cosine window 
is L-times wider than that of the rectangular window, where L is the window order. 

This means that the first zero of the window Fourier transform is located in: 

L
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+
π=ω

12
2

0  (4.20) 

If this window is employed to sample a signal with a sampling period Ts, the first zero 
of the Fourier transform of the continuous-time window is: 

( ) L
TN

⋅
+
π=Ω

s
0 12

2 , (4.21) 

remembering that ω = ΩTs. This means that even under synchronous sampling 
conditions, L spectral components of the sampled signal are located under the main lobe 
of the cosine window, as shown by Fig. 4.10, where the Hanning window is considered 
as an example. 

This situation is absolutely intolerable, since a very large spectral interference appears 
between the two adjacent spectral components of the signal that fall under the main lobe 
of the window Fourier transform.  

In order to avoid this situation, the width of the main lobe of the Fourier transform of 
the selected window must be reduced by the same enlargement factor L due to the 
window. According to (4.20) this can be done by processing  a number of samples equal 
to: M = (2N + 1)⋅L. In principle this increment in the number of processed samples can be 
obtained either by oversampling the signal with an oversampling ratio L, or by observing 
the signal for an observation interval: 

( ) s
'

o 12 TNLT ⋅+⋅=  (4.22) 

If (4.21) is considered, it can immediately be recognized that oversampling the signal 
by L does not solve the problem, because the total number of considered samples is 
always given by: M = L⋅(2N +1)⋅Ts/L = (2N +1). On the contrary, increasing the 
observation interval by L, according to (4.22), solves the problem, as shown in Fig. 4.11 
where the observation interval was doubled, since the Hanning window was employed. 

be increased by L times  with  respect  to the minimum duration observation interval 
required by the sampling theorem. 

 As a general rule, when a L-order cosine window is used, the observation interval must 
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Figure 4.10. Relative position of the Hanning window Fourier transform and the 
spectral components of the sampled signal 

Figure 4.11. Relative position of the Hanning window Fourier transform and the 
spectral components of the sampled signal after having observed the signal 
itself for two periods 

Methods for the reduction of the leakage errors 
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From the practical point of view, however, this condition should be handled with care. 
In fact, whenever an observation interval longer than the minimum-length one required 
by the theory is employed and the observed signal is supposed to be periodic, errors may 
arise if the signal itself does not remain stable for the whole observation interval. 
Therefore, before using the windows defined in the previous paragraphs, the stability of 
the sampled signal over the observation interval must be checked. 

At last, it is worth while observing that the leakage errors caused by the lack of 
synchronism between the signal period and the sampling period can be mitigated by 
using suitable windows, but this is paid in terms of an increment in the number of 
samples that must be processed and, consequently, in the observation interval: both these 
quantities become larger than the minimum ones allowed by the strict observation of all 
assumptions of the sampling theorem. 

THE INTERPOLATION METHODS 

The use of smoothing windows, such as the cosine windows shown in the previous 
paragraphs, is not the only possible method for reducing the leakage errors, though it is 
probably the most widely employed one. 

Another effective method is based on interpolation techniques that can be 
implemented both in the time domain, in order to evaluate the signal period more 
accurately, and in the frequency domain, in order to evaluate the signal spectral 
components more accurately. 

Time-domain interpolation method 

Let us consider a threshold a, taken in such a way that the sampled signal sct(t) crosses 
this threshold, with a given slope, only once in a period. Let us also suppose that the 
signal can be considered linear in a given interval around the threshold crossing. If the 
sampling period Ts is shorter than this interval, the signal can be supposed to vary linearly 
within the sampling period. Therefore, if  two samples are taken in such a way that: 

( )( ) ( ) aksTks ≤−=− 11 sct  and ( ) ( ) akskTs >=sct

the actual time at which the signal crosses the threshold can be obtained by linear 
interpolation. 

If the example in Fig. 4.12 is considered, we have that: 

( ) ( ) ( )( )sctsctct 1 TkskTsts −−=∆  (4.23) 

( ) ( )( )sctct
' 1 Tksats −−=∆  (4.24) 
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Figure 4.12. Example of time-domain linear interpolation 

and, due to the similarity of the two triangles in Fig. 4.12, we get: 
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∆
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=∆  (4.24) 

By substituting (4.22) and (4.23) into (4.24) we get: 
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−−
=∆  (4.25) 

so that the actual crossing time of threshold a is given by: 

tc = (k-1)Ts + ∆t (4.26) 

If the sequence of samples in the discrete time is considered, (4.25) becomes: 

( )
( ) ( )1

1
−−

−−=∆
ksks

ksa  (4.27) 

and the actual crossing of threshold a occurs at the fictitious sample k – 1 + ∆.
If also the successive crossing time t2c = (m-1)Ts + ∆t2 is evaluated, with m > k, the 

period of the continuous time signal can be estimated as: 

( ) ttTkmttT ∆−∆+−=−= 2scc2  (4.28) 

It can be noted that the correction factor ∆t2 - ∆t is applied to interval (m-k)Ts obtained 
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also be noted that, under synchronous sampling conditions, the threshold crossing occurs 
always at the same distance from the last sample below the threshold itself, so that  ∆t2 = ∆t,
and no correction is needed, as expected from the theory. 

This method is quite accurate if the signal can be well approximated by a linear 
function within the sampling period. Generally, this assumption is valid if a sampling 
period shorter than the one given by the sampling theorem is employed, that is if the 
signal is oversampled. This means that, in general, for a given bandwidth of the sampled 
signal, this method requires the use of a more expansive structure than the one prescribed 
by the sampling theorem, since a higher sampling frequency is required. 

Moreover, any measurement algorithm applied to the acquired samples requires to 
process a number of samples distributed over non uniform sampling periods. In fact, the 
first sampling period, in the acquired signal period, has a duration 1 - ∆t, while the last 
sampling period has a duration ∆t2. For this reason, dedicated algorithms must be 
implemented, which imply heavier computation burden and hence, once again, a higher 
cost of the employed structure, for a given bandwidth of the acquired signal. 

For the above reasons, the time-domain interpolation method is not widely employed 
in the measurement instruments based on DSP techniques. 

Frequency-domain interpolation method 

It has been shown, in the previous Chapter 3, that the leakage errors depend on the 
angular frequency shift ∆Ω (given by (3.49)) between the signal harmonic frequency and 
the inverse of the observation interval, and on the window shape. For a given window, 
and a given frequency shift ∆Ω, coefficients α and βh in (3.48) are given. 

If the windows are defined in the discrete time, as done in the previous sections of this 
chapter, (3.49) becomes: 
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+

π=ω∆
T
T

N
s

12
12  (4.29) 

It is quite obvious that, if the long-range leakage error can be neglected (that is the βh

coefficients can be neglected), and α is known, the leakage errors can be totally 
corrected. Unfortunately, α depends on ∆ω, which is an unknown quantity, so that the 
correction is not viable in this simple way. 

From the practical point of view, however, the following considerations apply: 
– a cosine window with maximum asymptotic decay must be used, in order to mitigate 

the long-range leakage error to a negligible level; 
– the width of the main lobe of the employed cosine window, in the frequency domain, 

is L-times wider than that of the rectangular window; 
– if the observation interval is correctly selected, according to (4.22), each single 

spectral component of the sampled signal remains under the main lobe of the window 

by processing the acquired samples, without applying the interpolation method. It can 
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Under these conditions, the highest spectral value obtained is the one corresponding to 
the convolution step with the spectral component closer to the centre of the window main 
lobe; this value represents the signal spectral component affected by the short-leakage 
error. The other spectral components that appear at frequencies ±2π/(2N+1) do not 
represent any signal spectral component, since these frequencies are not close to the 
signal harmonic frequencies; they appear because of the large spectral interference of the 
actual spectral component (which is still located under the window main lobe at these 
convolutions steps) and these zero spectral components. The situation is graphically 
depicted in Fig. 4.13, where the main lobe of a Hanning window is considered. 

Figure 4.13. Relative position of the main lobe of a Hanning window and the obtained 
spectral components during the steps of convolution (3.40) 

for 2L - 1 steps of convolution (3.40). 
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Let us supposed that this sinewave is sampled with sampling period Ts over an 
observation interval To = MTs, where the number of samples M is imposed by the 
sampling theorem and the order of the employed window. 

Let us also suppose that the synchronous sampling condition has been met, so that To = T.
Let us also suppose that a second order cosine window is used, so that the frequency-
domain components of the sampled signal are given by the convolution of the signal 
spectrum with the window spectrum. Since the synchronous sampling condition is 
supposed to be met, the only spectral component of (4.30) falls exactly under the peak of 
the main lobe of the window spectrum in one step of the convolution, so that the 
convolution result is given by: 

( )0
0 0 jj eWAeA ϕ=  , (4.31)

W  being the peak value of the window spectrum. 
Due to the width of the main lobe of the window spectrum, the signal spectral 

component falls under this lobe also at the previous and next steps of the convolution, as 

these two steps, even if the synchronous sampling conditions are met. In particular, the 
convolution result for the previous step will be given by: 

=
π−ϕ

− M
jj eWAeA
2

1 0  (4.32) 

and, similarly, the convolution result for the next step will be given by: 

=
π

ϕ
+ M

jj eWAeA
2

1 0  (4.33) 

It can be readily checked that, due to the symmetry of W(e jω), (4.32) and (4.33) deliver 
the same result, so that: A-1 = A+1. It is also immediate to check that: A-1 = A+1 < A0.

This result can be extended to any cosine window: under synchronous sampling 
conditions, the highest obtained spectral component is the one that falls under the peak of 
the window main lobe and corresponds to the actual signal spectral component. However, 

These fictitious spectral components can be usefully employed to estimate the unknown 
frequency shift ∆ω. In order to prove this statement, let us first consider the particular case 
of a sampled sinewave: 

( )
ϕ+π

= T
tj

Aets
2

 (4.30) 

( )0je

shown in Fig. 4.13. Therefore, the convolution result will be different from zero also for 
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frequency. The highest spectral component provided by the convolution is now given by: 

( )ω∆ϕ= jj eWAeA 00
~  (4.34) 

longer given by (4.32) and (4.33), but, respectively, by: 
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ω∆−π−
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j eWAeA
2

1 0~  (4.35) 

and: 
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j eWAeA
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1 0~  (4.36) 

with respect to the window main-lobe peak, in the previous and next steps of the convolution, 
it is: 11

~~
+− ≠ AA . It is also 11

~~
−+ > AA  if ∆ω > 0, and 11

~~
−+ < AA  if ∆ω < 0. 

Let us now consider the ratio between 0
~A  and the greatest between 1

~
−A  and 1

~
+A .

This ratio is given by: 
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if ∆ω < 0, while it is given by: 

since the signal spectral component remains under the window main lobe for 2L – 1 steps 
of the convolution, other 2L - 2 fictitious components are provided by the convolution, 
with pair-wise amplitudes A-k = A+k. This last property can be practically exploited to 
verify, from the obtained frequency domain components of a sampled sinwave, whether it 
has been sampled under synchronous sampling conditions or not. 

Let us now suppose that the synchronous sampling conditions have not been met, and 
that the frequency shift (4.29) appears between the sampling frequency and the signal 

Methods for the reduction of the leakage errors 

Similarly, the results provided by the previous and next convolution steps are no 

Since the signal spectral component does no longer fall under symmetrical positions, 
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From a strict theoretical point of view, ∆ω can be obtained by inverting (4.37) (or 
(4.38), according to the sign of ∆ω). However, due to the analytical complexity of W(ejω),
as shown by (4.10) in the case of cosine windows, this inversion is generally impractical, 
so that only approximate expressions are given, valid for high values of M and low order 
windows. 

From a practical point of view, however, a number of values can be computed for 
(4.37) and (4.38) and stored in a look-up table, together with the corresponding values of 
∆ω, for a given window. Once the frequency-domain components 0

~A , 1
~

−A  and 1
~

+A
have been computed, the ratio between 0

~A  and the greatest between 1
~

−A  and 1
~

+A  is also 
computed. The corresponding value of ∆ω is then retrieved from the look-up table by 
linear interpolation between the two stored values closest to the computed ratio. 

Once ∆ω has been estimated, the exact frequency location of the signal spectral 
component can be obtained. The exact value of the signal spectral component can be also 
obtained from (4.34). Since the computation of W(ej∆ω) can be impractical too, a look-up 
table can be employed for its estimation too. 

The above described method, known as the frequency-domain interpolation method,
has been derived under the assumption that the sampled signal was a pure sinewave. 
However this method can be applied also if the spectral interference is negligible. In this 
case, in fact, the computed values of each kA±

~  depend only on the signal spectral 
component that falls under the window main lobe, so that the same situation as the one 
described above is obtained again. In most practical situations, the spectral interference 
can be reduced to negligible levels if a cosine window with maximum asymptotic decay 
is employed. 

HARDWARE SYNCHRONIZATION 

All methods described in the previous sections of this chapter allow to mitigate, at a 
greater or lower extent, the errors due to the spectral leakage, but none of them allows to 
eliminate them completely, since, according to the developed theory, this can be done 
only if the synchronous sampling condition (3.22) is satisfied. 

This condition cannot generally be attained in an easy way because of the reasons 
briefly listed in the introduction to this chapter. However, it is possible to employ an 

( )=
ω∆+π

ω∆

+
M

j

j

eW

eW
A
A

21

0
~
~

 (4.38) 

if ∆ω > 0. It can be immediately recognized that both (4.37) and (4.38) depend only on 
the shape of the window main lobe in the frequency domain and ∆ω.
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– the output frequency must be locked on the fundamental frequency of the input 
signal, not on the frequency of any other harmonic component, in order to avoid 
errors in the implementation of (3.22). 

The hardware structure that better complies with the above requirements is the one 
shown in Fig. 4.14, based on a Digital Phase-Locked Loop (DPLL) structure. 

Band-pass 
Filter 

Digital
Phase 

Comparator
Loop filter 

Voltage 
Controlled 
Oscillator 

Frequency
Divider 

÷ M

DPLL
Frequency in 

fin 

Frequency  out 
fout = M ·fin 

Figure 4.14. Sampling clock synchronization device 

In such a structure, the frequency of the output signal is divided by M (where M is the 
desired multiplying factor) and compared with the frequency of the input signal by the 
Digital Phase Comparator (DPC). The digital output signal of the DPC is converted into 
an analog reference signal to the Voltage Controlled Oscillator (VCO) by the Loop filter 
(generally realized by a charge integrating circuit), so that the output frequency of the 
VCO is adjusted to M times that of the input signal. The frequency divider placed on the 
feedback path of the structure can be easily realized in such a way that the dividing factor 
M is selected by the operator within a given range, so that the first of the above 
requirements is satisfied. 

The main advantage in using a DPC is that it cannot lock on harmonics of the centre 
frequency, so that the correct multiplying factor M is obtained. Once the DPLL is locked 
on the input signal frequency, the frequency of the output signal is at least as stable as 
that of the input signal, thus satisfying the second of the above requirements. Moreover, 
the digital nature of this device makes the output frequency intrinsically insensitive to 
temperature variations. 

On the other hand, the DPC is characterized by a very low noise rejection. This means 
that noise components in the input signal can introduce a trigger jitter error or noise 
pulses, thus causing an error in the value of the output frequency. This problem can be 

hardware device that synchronizes the sampling period to the signal period, in such a way 
that condition (3.22) is satisfied. 

This device is basically a frequency multiplier and it must be designed in order to 
satisfy the following requirements: 
– the ratio between the output frequency and the input frequency must be 

programmable, so that the proper sampling frequency can be set, in order to avoid 
aliasing; 

– the output frequency must be stable when the input frequency is stable, in order to 
avoid jitter errors on the sampling period; 

Methods for the reduction of the leakage errors 
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In conclusion, condition (3.22) can be met, if such a synchronous sampling clock 
generator is employed, only if the fundamental frequency of the input signal is stable 
enough not to exit the pass band of the input filter. Under these conditions, the input 
signal can be sampled in the theoretically ideal conditions and no leakage errors appear. 

overcome by band-pass filtering the input signal to the DPC. Of course, the centre 
frequency of the band-pass filter must be the fundamental one of the signal to be 
sampled. 

The presence of the band-pass filter centred around the input signal fundamental 
frequency limits the capability of this kind of synchronous sampling clock generator to 
track the frequency variations of the input signal. Actually, this limitation is inherent to 
the DPLL structure, which is characterized by its pull-out range, that is the dynamic limit 
of stable operations of the DPLL itself. The presence of the filter only makes this 
limitation stricter. 



CHAPTER 5 

ARCHITECTURE AND PERFORMANCE OF DSP-BASED 
INSTRUMENTS

INTRODUCTION

The previous chapters have shown the mathematical basis of the sampling techniques, 
which represent the theoretical background for the Digital Signal Processing. In order to 
implement these techniques on a real instrument, a suitable architecture must be devised, 
capable of sampling the input signals, converting them into a digital code, store them into 
a memory device and, finally, process them in order to get the desired measurement result. 

Such an architecture has been already shown in Chapter 1, and will be discussed more 
in detail in this Chapter. Its block diagram is reported in Fig. 5.1. 

+
Us(t)

Figure 5.1. Block diagram of a DSP-based instrument 

It is possible to state, in a very intuitive way, that the capability of such a structure to 
cope with the requirements of the DSP theory depends, in a very strict way, on the 
performance of each block of the structure itself. Let us consider, for instance, the 
sampling theorem. According to the mathematical derivations in Chapter 3, the input 
signal must be sampled at a rate that is at least twice the maximum frequency in the input 
signal spectrum. Very intuitively, the rate at which the input samples can be acquired and 
processed depends on the rate at which the Analog-to-Digital Converter (ADC) converts 
the input signal into a digital code, the rate at which the converted code is stored into the 
memory, and the speed at which the processor executes the measurement algorithm. 
Therefore, since the sampling rate of the structure in Fig. 5.1 depends on the performance 
of each block, and the bandwidth of this structure is upper-bounded at half the sampling 
rate, the analysis of the performance of each block is the key element in assessing the 
bandwidth of a DSP-based instrument. 

signal Samples
Processor 

Measurement 

AD Converter 

result 
Memory 

Sampling device Input 
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On the other hand, still very intuitively, the accuracy with which the measurement 
result can be obtained depends basically on the accuracy with which the ADC converts 
the samples of the input signal into digital codes. 

Therefore, it is important to have at least a rough idea on how the performance of the 
single blocks in Fig. 5.1 can be evaluated in order to estimate the metrological 
performance of a DSP-based instrument in the correct way. 

This Chapter is aimed at providing such skills, by analysing the main characteristics of 
the blocks in Fig. 5.1. No details will be given about how these blocks are realized, since 
this in not the aim of this book, but only the concepts necessary to understand which 
feature of each block may affect the metrological performance of the whole structure. 

At last, single-channel and multi-channel structures will be considered and their 
performance evaluated. 

THE ANALOG-TO-DIGITAL CONVERSION 

Definitions

The Analog-to-Digital (AD) conversion can be defined as the process that transforms the 
input analog quantity x (generally a voltage signal) into an output digital code Y
(generally a binary code), as schematically shown in Fig. 5.2. Since the output code 
features a finite number of digits (bits), the conversion process gives origin to a 
quantization effect. Moreover, the whole conversion process requires a finite conversion 
time to be accomplished. 

AD conversion

Input analog 
quantity x

Output code Y

Figure 5.2. The AD conversion process 

The device that realizes the AD conversion is called Analog-to-Digital Converter
(ADC) and is generally characterized by a voltage analog input, a digital input for the 

output code on n bits. The block diagram of such a device is shown in Fig. 5.3. 
The following definitions are given for an ADC. 

– Number of bits n: it represents the number of binary digits of the code into which the 
input signal is converted. Since n is a finite number, the ADC features only 2n

possible different output codes. 
– Full-scale voltage Ufs: it is conventionally defined as twice the value of the input 

voltage corresponding to the output code featuring the most significant bit (MSB) 
equal to one, and all other bits equal to zero. For instance, if a 3-bit ADC is 

clock signal that marks the conversion process and n digital outputs that provide the 
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considered, this binary code is equal to 100. Let us now suppose that this code is 
obtained when the input voltage is Uh = 5 V. The full-scale voltage is therefore twice 
this value, that is: Ufs = 10 V. It is worth noting that this voltage would correspond to 
the binary code 1000, that cannot be issued by the ADC, since it features 3 bits only. 
Therefore, the full-scale voltage is greater than the maximum input voltage that can 
be converted by an ADC, and that corresponds, in this case of a 3-bit ADC, to the 
binary code: 111. 

Uin
C

ADC

clock

Figure 5.3. Block diagram of an ADC 

– Resolution R: it represents the least variation in the input signal that is capable of 
causing a variation in the output code. Since the least variation in the output code 
corresponds to the Least Significant Bit (LSB), that is to 2-n of the full scale, the 
resolution can be written, in terms of the full-scale voltage, as: 

n
U

R
2

fs=  (5.1) 

Since the value given by (5.1) represents the input voltage associated with the LSB, it 
can be seen also as the ADC “constant”, that is the dimensional quantity that allows 
to obtain the input voltage U from a given code C:

U = R⋅C (5.2) 

– Conversion time tc: it represents the time the ADC takes to convert the input voltage 
value into the corresponding output code. At first, the input voltage will be supposed 
to remain constant during the conversion time. This assumption will be removed later 
in this Chapter. 

The ideal ADC characteristic 

According to the definitions given above, an ideal ADC provides an output code 
proportional to the value of the input signal, except for the error due to its finite 
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resolution R given by (5.1). The relationship between the analog input value and the 
output code can be graphically represented by the step-like characteristic drawn in Fig. 
5.4 for a 3-bit, ideal ADC with full-scale voltage equal to 1 V. 

Uin

code
111

1/8 2/8 3/8 7/8
000

010

001

1 LSB

Quantization band 

Ideal transition

Figure 5.4. Input-output characteristic for a 3-bit ideal ADC with full-scale 
voltage equal to 1 V 

The quantization effect is quite evident: the output code provided by the ADC does not 
change until the analog input value does not change for more than 1 LSB, that is the 
width of the quantization band.

A n-bit ADC features 2n quantization bands. Since no other effects than quantization 
are supposed to affect an ideal ADC, all its quantization bands have the same width, 
equal to the ADC resolution. 

Due to this property, the line that joins the middle points of each quantization band 
(that is the geometrical locus of the middle points of all quantization bands) is a straight 
line, as shown by the dashed line in Fig. 5.4. For this reason, the characteristic of an ideal 
ADC is generally referred to as a linear characteristic. This is correct only if this 
geometrical locus is considered, otherwise a step-like characteristic as the solid one in 
Fig. 5.4 cannot be considered linear at all. However, it is worth noting that the step-like 
characteristic degenerates into the geometrical locus of the middle points of the 
quantization bands if the number of bits of the ADC tends to infinity: in this respect, the 
limit characteristic of an ideal ADC can be considered as linear. 

The quantization effect gives rise to a quantization error that, supposing to know the 
actual value of the input voltage Uin, and supposing that C is the corresponding code 
issued by the ADC, can be mathematically expressed as the analog quantity: 
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in' UCR −⋅=ε (5.3)

The same quantity can be expressed also as the digital quantity: 

R
UC in−=ε , (5.4) 

where R is the ADC resolution given by (5.1). 
If the input voltage is supposed to vary from 0 to the full-scale value, error ε takes the 

saw-tooth shape shown in Fig. 5.5. 

Uin 

code
111

1/8 2/8 3/8 7/8
000
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001

1 LSB

Quantization band 

Ideal transition

ε 

-1 LSB

1/8 2/8 3/8 7/8

Uin

Figure 5.5. Quantization error plot 

It can be readily checked that the quantization error is always negative and varies 
linearly in the range 0 – 1 LSB. Its average value is therefore -½ LSB, and is therefore 
different from zero. This means that the quantization error is biased, so that any statistical 
processing of this error cannot be effectively applied in order to mitigate it. 
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This problem can be overcome by properly shifting the whole conversion 
characteristic in such a way that the first transition occurs at ½ LSB instead of 1 LSB, as 
shown in Fig. 5.6. 

Uin 

code
111

1/8 2/8 3/8 7/8
000

010

001

1 LSB

Quantization band 

Ideal transition

ε 

-½ LSB

1/8 2/8 3/8 7/8+½ LSB

Figure 5.6. Shifted ADC characteristic, in order to have zero mean value of the 
quantization error 

The plot in Fig. 5.6 clearly shows that the total width of the error interval is always 1 
LSB, as in the case of Fig. 5.5. In this case, however, the error interval is distributed 
around the zero value, so that the quantization error has zero mean value in the 
quantization band. 

The dithering technique 

quantization band allows to implement suitable statistical processing that are expected to 
mitigate the quantization error. The most employed technique is the so called dithering
technique, which is based on the superposition of dither on the input analog signal. 

Having shifted the quantization error in such a way that it is no longer biased in the 
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The dither is an unbiased noise showing uniform probability distribution function in 
the quantization band. Therefore, being R the width of the quantization band, the 
probability distribution function of the dither is: 

( ) +≤≤−=
otherwise0

22
for1

d

RUxRU
Rxp  (5.5) 

where U is the voltage value to which this noise has been superimposed. Function (5.5) is 
graphically represented in Fig. 5.7. 

2
RU −

2
RU +U x

Pd(x)

R
1

Figure 5.7. Probability distribution function of dither 

Let us now consider a generic constant input voltage U, to which noise (5.5) is 
superimposed. The effect of noise is to make the input voltage to the ADC vary randomly 
in the quantization band, as graphically shown in Fig. 5.8, where the quantization band 
corresponding to the input voltage U is represented, together with the previous and next 
ones.

Because of the superposition of dither d(t), the input voltage to the ADC is now 
variable with time and is given by: 

u(t) = U + d(t) (5.6) 

Due to the property of the superimposed dither, the input signal to the ADC varies for 
no more than plus or minus half a quantization band around the given constant input 
voltage U, as shown in Fig. 5.8. Therefore, the results of different conversions will 
always show a quantization error within the ± ½ LSB interval. This means that if a single 
conversion result is considered, the conversion error will remain in the same range, no 
matter whether the dither has been superimposed to the input signal or not. 

Let us now suppose to perform several conversions. Due to the presence of dither, the 
input voltage value considered by each conversion j will be given by: 
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Uin 
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UC U U+R/2U-R/2

Figure 5.8. Dither effect 

jj dUU += , (5.7) 

dj being an extraction of noise value, taken with uniform probability in the ± ½ LSB 
interval. The code issued by the ADC for the Uj input will be: 
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In the example of Fig. 5.8, where the constant input voltage is U > UC, only codes C
and C+1 can be issued by the ADC. Of course, the number of codes issued with value C
will be proportional to the number of occurrences of input values Uj within the 
quantization band corresponding to code C.

If now N different Uj values are taken, their average value is given by: 
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Due to the characteristic of the superimposed dither, its average value tends to zero as 
N tends to infinity. Therefore, the average value U  of the input values supplied to the 
ADC will tend to U. Similarly, the average value of all issued codes Cj will be given by: 
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1 , (5.10) 

thus approaching, by the scale factor R, the actual value U of the input voltage. Of course, 
N will be never infinite, so the actual value U can never be obtained, but only 
approximated, and the approximation will be the better, the larger is N.

The dithering technique is therefore very helpful whenever an averaging algorithm can 
be applied on the acquired samples, since it uncorrelates the quantization errors on the 
different samples, so that the quantization error on the mean value of the samples is 
reduced.

The real ADC characteristic 

The conversion characteristic of a real ADC differs, in general, from that of an ideal 
ADC, shown in Fig. 5.4, because of different effects that cause new conversion errors to 
be added to the quantization error. 

The offset error 

Due to offset phenomena occurring in the electronic circuits that realize an ADC, the 
conversion characteristic may be shifted with respect to the ideal characteristic, as shown 
in Fig. 5.9. 

It can be readily checked that the result of any conversion performed by the ADC is 
affected by the same additive offset error. This means that, if C is the correct code, 
corresponding to the input voltage U, the actual issued code C  is given by: 

( )oINT' ε+= CC , (5.11) 

where εo is the offset error, expressed in terms of LSB. The same effect can be considered 
as if it were affecting the input voltage, that is as if the actual input voltage were given by: 

'
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o' ε+= UU  (5.12) 

where oε  is the same offset error as in (5.11), but now expressed in terms of the input 
voltage. 

Uin 

code
111

1/8 2/8 3/8 7/8
000

010

001

Offset error 

Figure 5.9. ADC characteristic in the presence of an offset error (dashed line) and ideal 
characteristic (solid line) 

It can be also seen that, if the real characteristic is shifted on the right, with respect to 
the ideal one, as shown in Fig. 5.9, each issued code is lower than the correct ideal one; 
therefore, in this situation, error εo in (5.11) is negative. The opposite occurs if the real 
characteristic is shifted on the left. 

Generally, the offset error can be compensated if suitable compensation circuits are 
realized within the ADC itself. In this case, the residual offset error, after calibration, is 
confined in the ± ½ LSB range. 

The gain error 

Another possible way the real characteristic can be changed with respect to the ideal one, 
because of imperfections in the ADC circuits, is shown in Fig. 5.10, where the real 
characteristic is rotated, with centre in the axes origin, with respect to the ideal one. 

It can be readily checked that the result of any conversion performed by the ADC is 
affected by the same multiplicative gain error. This means that, if C is the correct code, 

'

'
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corresponding to the input voltage U, the actual issued code C  is given by: 

( )gINT' ε⋅= CC , (5.13) 

where εg is the gain error, expressed in terms of LSB. The same effect can be seen again 
as if it were affecting the input voltage, that is if the actual converted input voltage were: 

g' ε⋅= UU , (5.14) 

where gε  is the same gain error as in (5.13), now expressed in terms of the input voltage. 
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Figure 5.10. ADC characteristic in the presence of a gain error (dashed line) and ideal 
characteristic (solid line) 

In order to better quantify the gain error, it can be noted that, if the real characteristic 
is rotated clockwise, as shown in Fig. 5.10, each issued code is lower than the ideal one; 
therefore, the gain error is lower than 1. On the contrary, if the real characteristic is 
rotated counter-clockwise, the gain error is greater than 1. 

In a similar way as the offset error, the gain error can be compensated too by suitable 
compensation circuits. In this case, the residual gain error, after calibration, is confined in 
the ± ½ LSB range. 

'

'

'
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The non-linearity error 

The ideal ADC characteristic features quantization bands with the same width, equal to 1 
LSB. However, due to imperfections in the electronic circuit, a real ADC may feature 
different widths for the different quantization bands, as shown in Fig. 5.11. 

Uin
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Figure 5.11. ADC characteristic in the presence of a non-linearity error (dashed line) 
and ideal characteristic (solid line) 

Due to the different widths of the quantization bands, the geometrical locus of the 

bands is called non-linearity error. 
The most immediate way to characterize the non-linearity error is to evaluate, for each 

quantization band j, the difference: 

LSB1nl −=ε jWj  (5.15) 

where Wj is the actual width of the considered quantization band, expressed in terms of 
LSB. However, in this way 2n different errors should be processed for a n-bit ADC and 
this is not efficient. For this reason, the maximum difference εnl = max(εnlj) is considered 
and is referred to as the differential non-linearity error.

The non-linearity error may also have a quite critical consequence when, for a generic 
quantization band j, it is: εnlj ≥ 1 LSB. In this case, in fact, the width of band j + 1 is 

middle points of all quantization bands is no longer a straight line, as in the case of the 
ideal ADC. For this reason, the error caused by the different widths of the quantization 
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and hence the code corresponding to this band is never issued. This situation is 
graphically depicted in Fig. 5.12 and is generally referred to as the missing code error.

Uin

code
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1/8 2/8 3/8 7/8
000

010

001

100

011

Figure 5.12. Missing code error due to a large non-linearity error: code 100 is never 
issued, since the non-linearity error on band 011 is greater than 1 LSB 

The above defined differential non-linearity error, being only the maximum of all 
possible non-linearity errors on the real ADC characteristic, does not provide a complete 
description of the ADC behaviour. For this reason, the integral non-linearity error is 
defined as the integral of all non-linearity errors on the whole dynamics of the ADC. 
Since the ADC dynamics is given by a finite (2n) number of quantization bands, the 
integral non-linearity error can be expressed as: 

−
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ε=ε
12
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nli
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j
j

 (5.16) 

When the two different non-linearity errors, the differential and the integral ones, are 
considered together, they provide a more detailed description of the ADC behaviour. In 
fact, a large integral non-linearity error together with a small differential non-linearity 
error shows that each quantization band does not differ too much from the ideal one 
(small differential non-linearity error), but all (or almost all) errors have the same sign 
(large integral non-linearity error). This situation is quite critical when the data converted 

zero,
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by the ADC are integrated by the measuring algorithm. In this case, in fact, the resulting 
error can be as large as εi if the input signal spans over the whole dynamics of the ADC. 

On the contrary, when a large differential non-linearity error goes together with a 
small integral non-linearity error, at least one quantization band differs from the ideal one 
significantly (large differential non-linearity error), but the signs of errors εnlj are almost 
equally distributed between the negative and positive ones, so that the integral non-
linearity error is small. This situation is not critical when the measuring algorithm 
integrates the converted data, but becomes critical when, for instance, it derivates them. 

Since the non-linearity errors involve each quantization band, and not the whole 
characteristic, as the offset and gain errors, they cannot be reduced by means of 
compensation circuits. However, they too are generally confined in the ± ½ LSB range 
for good quality ADCs. 

ADC behaviour in the presence of a variable input signal 

All concepts presented in the previous sections have been derived under the assumption 
that the input signal to the ADC remains constant during the conversion interval and 
therefore they are strictly correct if and only if the above assumption is verified. 

However, this assumption is quite strong, especially from the practical point of view, 
since most of the measurement applications, and in particular those requiring a complex 
processing of the input signals that do hence benefit of the DSP techniques, deal with 
variable signals. 

On the other hand, if the finite resolution of the ADC is taken into account, it is 
possible to loosen the above requirement. In fact, the ADC cannot sense any variation in 
the input signal that remains within the resolution of the ADC itself. Therefore, it is 
possible to state that the above assumption can be reformulated so that the input signal is 
not required to remain constant any longer, but more simply to show, in the conversion 
time, variations that are lower than the ADC resolution. 

According to this new formulation, it is interesting to evaluate if an ADC can be still 
used to convert variable signals and under which conditions. This can be done by 
considering a sinusoidal input signal, with frequency f and with a peak-to-peak amplitude 
equal to the ADC full-scale value: 

( ) ( )ft
U

tu π= 2sin
2
fs

in  (5.17) 

In order to check whether this signal can be converted correctly or not, the maximum 
variation of the signal, within the conversion time tc, must be considered and compared 
with the ADC resolution. 

Since the input signal is sinusoidal, its maximum variation occurs at zero crossing. 
Moreover, if the conversion time is supposed to be much lower than the input signal 
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cfsmax ftUu π=∆  (5.18) 

Let us now suppose that the input value falls at the centre of the corresponding 
quantization band. The maximum allowed variation in order to stay within that 
quantization band is hence ± ½LSB. Therefore, if (5.18) is taken into account, it is: 

n
U

ftU
22

1 fs
cfs ≤π  (5.19) 

From this equation, the maximum frequency allowed for the input signal, in order to 
perform the conversion correctly, for a given conversion time tc and a given number of 
bits n, is given by: 

c
12
1
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Fig. 5.13 shows the plot of the maximum allowable frequency (5.20) vs. the 
conversion time tc, for different given resolutions. 

As an example, let us consider a 12-bit ADC, featuring a conversion time tc = 1 µs.

(5.20) is applied, the resulting maximum allowable frequency is f = 38.86 Hz. It is quite 
evident that this frequency is very low, and that the result provided by (5.20) prevents to 
employ DSP-based techniques in almost every practical measurement application, unless 
suitable countermeasures are taken. 

The Sample & Hold devices 

The previous section proved that only slowly variable signals can be converted into 
digital by an ADC without introducing any additional error to those introduced by the 
conversion characteristic and already described. 

It has been also proved that the source of this additional error is represented by the 
variation of the input signal, during the conversion process, when it exceeds the ADC 
resolution. 

These considerations lead, in a quite straightforward way, to identify a very effective 
way for overcoming the problem. In fact, if the problem is the variation of the input 
signal during the conversion process, the most immediate countermeasure is to employ a 
sort of analog memory for keeping the input signal constant, or at least reduce its 

period, as is the case in most practical situations, the sine value can be approximated by 
the arc, so that the maximum signal variation is given by: 

This is a typical, high-quality ADC used in many instruments based on DSP techniques. If 
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Figure 5.13. Maximum allowable frequency for the input signal to the ADC, in order to 
avoid signal variations for more than the ADC resolution in the conversion 
interval 

Since the input signal to the ADC is generally a voltage signal, the analog memory can 
be easily realized, in principle, by employing a capacitor and a switch. When the switch 
is closed, the capacitor is connected to the signal source and is charged (sampling stage). 
When the switch is open (hold stage), the charged capacitor holds the voltage to which it 
has been charged, that is the voltage value provided by the input signal at the switch open 
time, for an ideally infinite period of time. 

Of course, this is true only for an ideal capacitor, and with a null resistance of the 
charging circuit and an infinite input resistance for the ADC, so that the capacitor is not 
discharged during the hold stage. In practical situations all this does not apply, so that a 
slightly more complex circuit, employing two voltage followers,  must be implemented, 
as shown in Fig. 5.14. The resulting device is called the Sample & Hold device. 

In such a device, when switch S is kept close by the control input, the voltage follower 
connected to the input signal Uin transfers this voltage to capacitor C, charging it. The 

variation to less than the ADC resolution, for a time interval equal to the ADC conversion 
time. 



Architecture and performance of DSP-based instruments 99
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Figure 5.14. Sample & Hold device 

The accuracy with which the input voltage is transferred to the terminals of capacitor C 
depends on τch and the time interval tch during which switch S remains closed. In fact, the 
voltage value Uc found at the capacitor terminals at time tch is given by: 
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where U0 is the initial voltage on the capacitor. Therefore, at the end of the sampling 
stage, the voltage found at the capacitor terminals differs from the input voltage by a 
quantity: 
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This last equation shows that the accuracy depends directly on the difference between 
the last sampled value and the new one, and can be improved by reducing the charge time 
constant and increasing the sampling time. However, for a given capacitor, the reduction 
of the charge time constant is limited by the value of the output resistance of the 

charge time constant τch is given by the very low output resistance of this voltage 
follower.
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longer supplied by the input signal. The voltage value at which it has been charged during 
the sampling stage is now transferred to the output signal Uout by the voltage follower on 
the right of Fig. 5.14. 

Due to the input resistance of this voltage follower, which is high, though not infinite, 
capacitor C will slowly discharge in time according to a discharge time constant τd, so 
that the output voltage is given by: 

( ) dcout
τ

−
⋅=

t

eUtU  (5.23) 

It is therefore possible, from (5.23), to evaluate the maximum time interval, in the hold 
stage, for which the variation in the output voltage is lower than the ADC resolution. In 
fact, the maximum allowed variation is given by: 
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from which we get, for a positive value of Uc:
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In order to avoid conversion errors, (5.25) must provide a time value t > tc, where tc is 
the ADC conversion time. Since the input resistance of the voltage follower is given, 
once the voltage follower has been chosen, this condition can be achieved by increasing 
the capacitance of capacitor C. However, according to (5.22), an increment of this 
capacitance causes, for a given charging time tch, a decrease of the accuracy with which 
the input signal is sampled. Therefore, the correct choice of C is a trade-off between a 
good accuracy in the sampling stage, and a low variation with time of the output voltage 
in the hold stage. 

Generally, Sample & Hold devices are available, where the two voltage followers, the 
switch and its control circuits are integrated in a single integrated circuit, and an external 
capacitor C, properly chosen by the user, is connected to this integrated circuit.  

employed voltage follower, which is small, but not zero. Similarly, the increment of the 
sampling time is upper bounded by the bandwidth requirements of the whole instrument, 
as it will be shown later in this Chapter. 

At the end of the sampling stage, switch S in Fig. 5.14 opens, so that capacitor C is no 
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as shown in Fig. 5.6, the quantization error is distributed over the quantization band ± ½ LSB 
and has zero mean value. 

In an ideal ADC this means that, if the input voltage is uniformly distributed over the 
quantization band, the quantization error is uniformly distributed too over the same band. 
Under this assumption, that can be considered also for the real ADC, at least as a first 
approximation, the mean square quantization error is the same as its variance and is given by: 
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Taking into account (5.1), (5.26) can be written in terms of the converter full scale 
voltage and bit number: 
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Equation (5.27) represents the square mean value of the quantization error of an ideal 
ADC with n-bit resolution. However, a second interpretation can be assigned to this 
equation. 2

ADCs

n are issued by the ADC itself.
If this second interpretation is followed, (5.27) can be solved with respect to n, since 

the quantization effect is now seen as an effect of a particular noise, which is added to the 
input signal internally to the ADC. The following equation is hence obtained: 
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ADC behaviour in the presence of noise 

It has been already shown that the only error affecting an ideal ADC is the quantization 
one. Moreover, if the ADC characteristic is properly positioned in the conversion plane, 

 can be seen as the mean square value of a uniformly distributed noise 

number 2  of output codes 
that is added to the input signal of an ideal, infinite-resolution ADC, so that only a finite 
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If (5.29) is considered, (5.28) becomes: 
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This last equation does not provide, up to now, any further information with respect to 
(5.27), from which it has been directly obtained. However, it is very useful because it 
allows to take into account the effect of other kinds of noise that may disturb the input 
signal, beyond the quantization one. 

In fact, let us suppose that a noise, with mean square value 2
as , is superimposed to the 

input signal. Let us also suppose that this noise and the quantization noise are not 
correlated at all, so that the mean square value of the overall noise is given by: 

2
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If this noise is considered in (5.30), instead of the simple quantization noise, the 
following number of bits is obtained: 
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Fig. 5.15 shows that, for a given quantization noise, corresponding to a given rated 
number of bits (and hence a given rated resolution), the effective number of bits neff
decreases as the input signal SNR decreases. 

In a very intuitive way, this can be explained by considering that, as the input noise 
increases, it forces the less significant bits of the output code to change because of the 
noise level and not because of real changes in the input signals. Therefore, the sensitivity 

The argument of the logarithm in (5.28) is very similar to a Signal-to-Noise-Ratio 
(SNR), if only its numerator were a mean square value. It is possible to take into account 
a SNR by supposing that the ADC input signal is a sinewave, with peak-to-peak 
amplitude equal to the ADC full-scale voltage. Therefore, the input signal rms value is 
given by: 
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Figure 5.15. Plot of the ADC effective resolution vs the input signal SNR 

The concept of the effective bit number is very important, because it shows, in a very 
clear and effective way, the role that the noise superimposed to the input signal plays in 
assessing the actual ADC resolution. 

It is extremely important to consider that part of the noise is added to the input signal 
inside the ADC itself, due to the intrinsic noise of all electronic devices that realize the 
ADC circuit. Therefore, the resolution of an ADC is upper limited mainly by the noise 
level of the electronic components used to realize the ADC itself. 

 This leaves a very small margin to the noise that can be superimposed to the input 
signal before entering the ADC, especially when a nominal resolution greater than 12 bits 
is considered. Generally, the noise level generated inside the ADC is given by the 
manufacturer, and must hence be taken into account by the final user of the ADC, 

of the ADC to the input signal variations is limited by the presence of noise and, in this 
case, it is worthless to have a high rated resolution of the ADC, because its actual one can 
be much lower. 

Fig. 5.15 shows also that the effective resolution of the ADCs tends to be the same as 
the input signal SNR decreases, no matter on the nominal number of bits of the ADC 
itself.
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great number of dedicated textbooks is available and the interested reader can refer to 
them in order to study the ADCs more in depth. 

The following short sections are aimed at providing some basic indications about the 
main features of the most used architectures, in order to give the reader some useful 
indications in their correct selection. 

The integrating converters 

These converters generally perform a voltage-to-frequency, or a voltage-to-time 
conversion by integrating the input signal. Since, when the input signal is constant, its 
integral is a ramp, they are also called ramp, or slope converters. According to the 
particular kind of the internal integrating circuit, they can be single-slope, dual-slope or 
multiple-slope converters. 

Due to the internal integrator, these converters feature a low internal noise, and 
therefore they have a very good resolution, and a high linearity. The main drawback of 
these converter is the relatively high conversion time, which ranges from a few 
milliseconds to a hundred of milliseconds. 

Due to their intrinsic slowness, these converter are not generally used in DSP-based 
instruments, unless a very high accuracy and linearity is required on a very low frequency 
band. On the other hand, they are widely used to realize Digital Voltmeters (DVM) and 
Digital Multimeters (DMM) with a resolution up to 8 digits. 

The successive approximation converters 

These converters are presently the most used ones in a great variety of practical 
applications. They are based on a closed-loop structure, where the feedback path is 
realized by a n-bit resolution Digital-to-Analog Converter (DAC) and the value of the 
input analog signal is approximated by means of a binary search algorithm. Therefore, 
the input value is converted into a n-bit digital code with only n iterations. 

Using such a structure it is possible to reach a resolution as high as 18 bits, with a 
conversion time in the order of the microsecond. In the majority of practical applications, 
12-bit to 16-bit resolution ADCs are used with a conversion time as short as some 
hundreds of nanoseconds. 

The offset and gain errors can be easily confined within the ±½ LSB range by properly 
calibrating the device.  The non-linearity  errors are  intrinsic  of  this  structure and 

because it allows to evaluate the noise margin allowed on the input signal, before 
entering the ADC, in order to preserve the ADC nominal resolution. 

ADC architectures 

Several circuital architectures can be employed to realize the Analog-to-Digital 
conversion with the properties shown in the previous sections. The discussion of these 
architectures and the analysis of their electronic circuits is not the aim of this book: a 
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nanosecond, is paid in terms of a high complexity of the electronic circuit, that limits the 
resolution to 8 bits. 

The complexity of the electronic circuit, and the presence of a great number of 
elements that must nominally show the same characteristic and the same behaviour are 
also responsible for a relatively large non-linearity error, which tends to increase as the 
resolution increases. 

The flash converters are mainly used in the digital oscilloscopes, where a very high 
conversion speed is needed to ensure a wide frequency band, but the resolution does not 
represent a strict requirement, since it cannot be fully exploited in the available graphic 
display. 

The ∆Σ converters 

The ∆Σ converters represent the last generation of the ADCs. They are realised by an 
analog modulator, based on an integrating structure, followed by a digital, low-pass FIR 
filter.

The analog modulator converts the input signal into a digital signal (the so-called bit 
stream), whose duty cycle, and hence its average value, is proportional to the input value. 
This digital signal features also a very interesting characteristic in the frequency domain: 
all noise components are shifted to the high frequencies, so that the signal spectral 
components at the lower frequencies are almost noise free. 

role of removing the noise components and extracting the average value from the bit 
stream signal, so that the output code is proportional to the input signal value. 

The number of bits of the output code is given by the resolution with which the digital 
filter processes its data and is limited only by the residual noise introduced by the 
modulator in the signal band. 

Presently, the ∆Σ converters attain a resolution up to 24 bits, though their conversion 
time is limited in the order of ten microseconds. A reduced conversion time can be 
obtained with a lower resolution, but it remains still longer than the one typical of the 
successive approximation converters. 

A further advantage of the ∆Σ converters is their very low, virtually zero non-linearity 
error, due to the integrating structure of the modulator. 

the DAC structure. However, high-quality devices may feature differential and
 integral non-linearity errors in the LSB range, so that missing code errors are avoided. 

The flash converters 

These converters are the fastest ones, being based on the direct comparison of the input 
value with all quantization levels. This high conversion speed, in the order of the 

arise in 

If the cut-off frequency of the digital filter is suitably selected, the filter plays the double 
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However, for this particular application of Digital Signal Processing, only a few features 
are critical in assessing the overall performance of the DSP-based instrument, and will be 
briefly analysed in this section. 

The most critical feature, as far as the instrument bandwidth is concerned, is the 
memory access time, the computation speed of the processor and its capability of 
parallelizing the internal operations. If the final accuracy and resolution are considered, 
the most important feature is the number of bits of the data bus, and the processor 
capability of processing data represented with this resolution with single elementary 
instructions. 

For this reason, the block diagram in Fig. 5.1 considers the processor and the memory 
in which the sampled data are stored as two separate blocks. 

affect the performance required to the processing unit: real-time operation and deferred
operation. 

A measuring instrument operates in real time when the measurement result is provided 
at the end of the observation period, before the successive observation interval expires. 
This means that real-time operations are closely dependent on the required observation 
period, and the performance requested to the processing unit can be more or less strict 
depending on the required measurement, and not only on the characteristics of the input 
signal. 

As an example, let us consider the implementation of a digital filter. In this case, the 
observation period is the sampling period, since, as it will be shown in the next Chapters, 
an output sample is expected at each new input sample. Therefore, the processing unit 
must be able to process the whole filter algorithm within one sampling period. 

On the other hand, let us consider the implementation of an averaging algorithm, such 
as, for instance, the instantaneous power averaging over the signal period in order to 
measure the electric active power under periodic conditions. In this case, a whole signal 
period is needed, at least, as the observation period. Therefore the processing unit must 
be able to process the acquired samples while the next signal period is sampled and 
acquired and complete the measurement algorithm within the next signal period in order 
to track the active power evolution and provide real-time measurement. Similar 
considerations still apply, for example, for rms measurement and frequency-domain 
component measurement. 

Let us now consider an instrument that samples the input signals over the observation 
period, and stores the acquired samples into its memory, without processing them. At the 

THE PROCESSING UNIT 

The processing unit is represented by the last two blocks on the right in the block diagram 
of Fig. 5.1, and accomplishes the task of processing the samples coming from the ADC 
unit, according to a specific measurement algorithm, in order to provide the final 
measurement result. 

Of course, the processing unit and its performances can be described and analysed 
using the well known analysis tools usually employed to represent a computing system. 

Before shortly analysing the main features of these two blocks, it is worth while
defining two possible operating modes of a DSP-based instrument, since they can deeply 
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these conditions, there is no need to track the input signals in real-time, since they are 
stable in the successive observation periods. Therefore, all processor resources can be 
devoted to a fast acquisition of the input signals, and all processing can be deferred after 

no time constraints are present. 
On the contrary, real-time operations are strictly required for in-field measurements, 

along the successive observation periods and about the absence of transient phenomena. 
Therefore, the input signals must be tracked continuously, and a new measurement value 
is required at the end of each observation period. 

In this last case, of course, part of the processor resources must be devoted to 
processing the input signals, and not only to their acquisition. Since this turns into a 
reduction of the sampling rate, as it will be shown in the next sections, suitable tricks 
must be adopted in order to optimise the instrument performance. 

The processor 

Basically, every kind of processors can be employed in a DSP-based instrument, and a 
wide variety of solutions is actually available. 

At the beginning, the first applications of the DSP techniques to measurement 
operations employed microprocessor architectures as the processing unit. The major 
drawback of these architectures is, still now, their relatively low computation speed, so 
that they are not suitable for real-time operations, unless the measurement algorithm is 
very simple. 

More recently, the microprocessor architectures have evolved towards the Digital 
Signal Processor (DSP)2 architecture. The internal architecture of a DSP is a special 
modification of the standard internal architecture of a microprocessor, realized in such a 
way to allow a very fast implementation of the multiply and accumulation operations, 
that are the fundamental operations of the Digital Signal Processing techniques. 

                                                          
2 The same acronym (DSP) is universally used for indicating both the device (Digital Signal 

Processor) and the technique (Digital Signal Processing). Attention must be paid to the context, 
in order to understand whether the device or the technique is considered. 

end of the observation period, the instrument stops sampling the signals, and starts 
processing the acquired samples. Once the measurement algorithm has been completed 
and the measurement result provided, the instrument starts sampling the input signals 
again. This kind of operation is called deferred operation, because the measurement result 
is not necessarily obtained within the next observation period and the input signals are 
not acquired in a continuous way. 

Deferred operations are very useful in laboratory measurements, when the 
measurement set-up allows repetitive operations under steady state conditions. Under 

the observation period has expired. Moreover, complex algorithms can be executed, since 

when no assumptions can be made about the repeatability and stability of the input signals 
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An ASIC (Application-Specific Integrated Circuit) is a particular integrated circuit 
with a number of elementary specific circuits that are not connected to each other. 
Different connections can be realized by the final user by properly configuring the ASIC 
in a similar way as a memory is programmed. In this way, complex functions can be 
implemented by direct hardware programming, so that very fast structures are obtained. 

An FPGA (Field-Programmable Gate Array) is a particular integrated circuit 
containing thousands of gates that implement the elementary logical operations. The 
connections between the gates can be programmed by the final user, so that very complex 
logical functions can be implemented and even basic algorithms. Similarly to an ASIC, a 
specific function can be implemented on an FPGA by suitably programming its hardware 
architecture. Very fast operations can therefore be obtained. 

It can be readily understood that architectures based on these structures, and  in 
particular architectures obtained by a suitable implementation of all these techniques, are 
particularly suitable for real-time operations, due to their optimized internal structure and 
their computation speed. Their major drawback is that they generally require long 
programming operations and, being tailored on a specific measurement function, they 
cannot be adapted to new functions in a flexible way. 

An alternative solution, when a high flexibility is required to the measurement system, 
is the use of a PC as the processing unit of the DSP-based instrument. The performances 
of the CPUs used in modern PCs are sufficiently high to virtually allow also real-time 
operations. The main problem, when real-time operations must be assured, is given by the 
operating system running on the PC: generally, the operations performed by the operating 
system are not under control of the final user, so that it is not possible to keep the 
program flow of the measurement application under total control. 

On the other hand, the performances of a modern PC in terms of computational 
capabilities, graphic interface, mass storage and user-friendly man-machine interface 
allow a relatively easy and immediate programming of the measurement functions, even 
when they are extremely complex. Development tools are presently available with large 
comprehensive libraries of measurement functions and graphic symbols, so that the 
implementation of a new measurement function, or the modification of an existing one 
are quite immediate. 

PC-based instruments are particularly suited for lab applications, where  flexibility 
requirements are generally more important than real-time ones. On the contrary, DSP and 
hardware configurable  architectures are best suited for in-field applications, where real-
time requirements are much more important than flexibility, since changes in the 

This modification is basically the duplication of some internal devices, so that parallel 
operations can be performed and the execution time optimised. Presently, the modern 
DSPs feature up to some hundreds MOPS (Million Operations Per Seconds) and even 
MFLOPS (Million Floating-point Operations Per Second) and simultaneous access to at 
least two different memory banks, and handle data coded on up to 32 bits, in fixed and 
floating-point notation. 

More recently, different structures have evolved to performances that make them 
suitable for DSP-based measurement applications: structures based on ASICs and 
FPGAs.
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time for the memory write operation is a critical parameter in assessing the sampling 
period both in real-time and deferred operations, and must be therefore carefully selected. 

In general, Direct Access Memory (DMA) operations are preferable for data transfer 
from the ADC to the memory. When real-time operations are required, the use of a dual-
port memory appears to be the best solution, because it allows a simultaneous access to 
the memory from the ADC for data storage, and the CPU for data reading and processing. 

A correct memory allocation is also extremely important when real-time operations are 
required and the observation period spans over several input samples. It has already been 
shown that, in this case, the measurement algorithm must be processed as soon as all 
samples belonging to one observation period have been acquired, and its execution must 
not stop the acquisition of the samples belonging to the next observation period. 

The most convenient way to allocate the memory, in this case, is to organize it in a 
double circular buffer, as shown in Fig. 5.16. 

1
2

N
N+1
N+2

2N

First buffer 

Second buffer 

Figure 5.16. Double circular buffer memory allocation 

Let us suppose that all data coming from the ADC are stored into the memory buffers 
in a DMA mode. Let us also suppose that each circular buffer contains N samples, and 
that the observation period contains N samples. Therefore, the first circular buffer is 
completely filled at the end of an observation period, and the stored data are available to 
be processed by the CPU. Under the assumption that data coming from the ADC can be 
stored in a DMA mode, all samples of the next observation period can be stored in the 
second buffer while the data in the first one are processed, without interrupting or 
slowing down the execution of the measurement algorithm. Once the second buffer has 

measurement functions are generally very few, but the input signals must be tracked 
continuously. 

The memory 

The main requirement for the memory block is to ensure an access as fast as possible, so 
that the samples coming from the ADC can be stored in a very short time. The access 
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BANDWIDTH ESTIMATION 

The synthetic description of the most important components of a DSP-based instrument 
and the information provided are sufficient to estimate the maximum sampling rate 
allowed by a given structure, and hence, according to the sampling theory explained in 
the previous chapters, allow to estimate the frequency bandwidth of the instrument.  

This operation is the most critical one, when DSP-based instruments are considered, 
because the correct estimation of the maximum sampling rate of the employed structure 
prevents gross mistakes that may have dramatic consequences, as incurring in the aliasing 
error.

In order to see how the sampling rate can be estimated, it is convenient to analyze 
single-channel and multi-channel structures separately. 

Single-channel structures 

According to the considerations in all previous paragraphs, the single-channel structure 
that is needed to acquire and process a single signal is schematically reported in Fig. 5.17. 

S&H ADC Memory
s(t) M

Processor 

Figure 5.17. Single-channel structure 

All blocks in the diagram of Fig. 5.17 introduce a delay in the data flow through the 
structure. In particular: 
– Each sample of the input signal is available at the output terminals of the Sample and 

Hold (S&H) block at the end of the charging time tch of the hold capacitor. The value 
of tch is obtained by (5.22), once the charge time constant τch and the maximum 
allowed deviation ∆Us between the input value and the voltage on the capacitor are 
given. 

– The digital code corresponding to the input sample value is provided by the ADC 
block with a time delay equal to the ADC conversion time tc.

– This code is stored in the data memory in a time equal to the memory access time tm.

been filled, its data can be processed and the new samples can be stored in the first 
buffer, and the whole process restarts. 

If the time required to execute the measurement algorithm is shorter than the 
observation period, real-time operations can be ensured by this particular memory 
allocation. 
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f =  (5.34) 

and, according to the sampling theorem, the input signal bandwidth must be upper-
bounded to the frequency value: 

su 2
1 ff = . (5.35) 

If real-time operations are required, the minimum sampling time should include the 
processing time tp needed to execute the measurement algorithm strictly within the next 
observation period, as stated in the previous paragraphs. Therefore, (5.33) becomes: 

pmcchsrt ttttT +++=  (5.36) 

Multi-channel structures 

Several measurement applications require to analyze and process more than one input 
signal. In this case, the structure shown in Fig. 5.17 must be suitably modified in order to 
cope with this requirement. 

The most employed multi-channel structures are the so-called non-multiplexed and 
multiplexed structures. 

The non-multiplexed structure 

The most immediate way to adapt the structure in Fig. 5.17 to acquire more than one 
signal is to duplicate all components involved with signal sampling and conversion. The 
resulting structure is shown in Fig. 5.18. 

It can be readily checked that the sampling, conversion and storage operations are 
performed in parallel on all input channels. The converted codes are then sequentially 
read by the processor from each data memory bank. A slight reduction in complexity and 
cost can be attained by using only one memory bank, which is sequentially accessed by 
each ADC, though the whole conversion and storage process is slowed down. 

Therefore, the total time required to acquire a sample and store it into the data memory 
is given by: 

mcchs tttT ++= . (5.33) 

This time represents also the minimum sampling period for deferred operations. 
Therefore, the maximum sampling rate is given by: 
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Figure 5.18. Multi-channel, non-multiplexed structure 

With such a structure, the total time required to acquire one sample on all k channels 
and store them into memory is given again by (5.33) and is the same as the total time 
required to acquire one sample on one single channel. Therefore, the structure in Fig. 
5.18 is the fastest one, since it features always the same sampling period, when deferred 
operations are considered, no matter on the number of input channels. 

In case only one memory bank is employed, (5.33) is slightly modified as: 

mcch
'

s tkttT ⋅++= . (5.37) 

Of course, the maximum sampling rate and the upper limit for the input signal 
bandwidth are always given by (5.34) and (5.35) respectively, and the processing time tp
must be added to Ts when real-time operations are considered. 

An important feature of this structure is that, if all Sample and Hold devices are 
controlled by the same signal, it allows to sample all input signals simultaneously, thus 
avoiding any phase error in the following measurement operations. 

The major drawback of this structure is its cost, since the duplicated elements in each 
channel are generally the most expensive ones. 

The multiplexed structure 

When the input signal frequency band is not too wide, so that fast sampling and 
conversion operations are not strictly required, the cost and complexity of the acquisition 
structure can be reduced by multiplexing the input signals to a single ADC, as shown in 
Fig. 5.19. 
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Figure 5.19. Multi-channel, multiplexed structure 

It can be immediately recognized that all samples coming from the different input 
signals are sequentially brought to the ADC input by the multiplexer MUX, and are 
hence sequentially converted and stored into memory. 

According to this structure, the total time required to acquire one sample on all k
channels and store them into memory is given by: 

( )mcchs ttktT +⋅+= . (5.38) 

The comparison between (5.33) and (5.38) shows in a quite clear way that this 
structure is much slower than that in Fig. 5.18, especially when the number of input 
channels increases, since the sampling period is proportional to the number k of the input 
channels.

The presence of a Sample and Hold device on each channel ensures that all input 
signals are sampled simultaneously, so that no phase error is caused. This is the reason 
for using a Sample and Hold device on each channel, and not only one inserted 
immediately before the ADC, as would be sufficient in order to avoid conversion errors 
in the presence of variable input signals. 

The maximum sampling rate and the upper limit for the input signal bandwidth are 

the processing time tp must be always added to Ts in (5.38). 
The major benefit of using the multiplexed structure in Fig. 5.19 is its relatively low 

cost, due to the fact that only one ADC and one memory bank are employed. Though this 
structure is intrinsically slower than the non-multiplexed one, it is still effective in many 
industrial applications, where low-frequency signals must be processed and the number 
of input channels does not exceed 8 to 16 channels. 

given once again by (5.34) and (5.35) respectively. If real-time operations are required, 



CHAPTER 6 

ANTI-ALIASING METHODS AND SAMPLING 
STRATEGIES

INTRODUCTION

Last Chapter 5 showed how to estimate the maximum sampling rate of an hardware 
acquisition structure, starting from its characteristic features. The sampling theorem, 
discussed in Chapter 3, proves that, in order to ensure a correct sampling, a continuous-
time signal must be upper-bounded in the frequency domain, and relates the sampling 
rate to the maximum allowable frequency. 

It may happen that the maximum sampling rate of a given structure is not high enough 
to satisfy the sampling theorem for the desired measurement application, and the 
increment of the sampling rate is not technically or economically viable. Furthermore, in 
many practical applications, the input signals cannot be considered as upper-bounded in 
the frequency domain because of the presence of noise. Therefore, suitable 
countermeasures must be taken in order to prevent aliasing errors. 

The possible countermeasures depend on the nature of the signals to be sampled. 
According to their nature, it is possible to modify the signals themselves in order to adapt 
their bandwidth to the one required by the available sampling frequency, or adopt 
different sampling strategies. The first approach requires suitable hardware devices to be 
used as the input stage of a DSP-based instrument, while the second approach requires to 
modify the way in which the signals are sampled and the acquired samples are stored into 
the data memory. 

The following sections will discuss the most widely employed approaches and will 
also show how the architecture of the data acquisition and conversion structure can be 
modified in order to increase the sampling rate, when the signal nature prevents from 
adopting any other less expensive countermeasure. 

THE ANTI-ALIASING FILTER 

From a theoretical point of view, the simplest situation is the one given by a signal whose 
upper frequency is higher than half the sampling rate, but whose frequency-domain 
components located between half the sampling rate and the upper frequency are useless, 
or even harmful, in the measurement process. This is the typical case of the noise 
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components, that do not carry useful information to the measurement process, and can be 
hence neglected without affecting the measurement result. 

In this case, the aliasing error can be avoided if the signal is filtered by an analog low-
pass filter before sampling it. Supposing that an ideal filter is employed, and that its cut-
off frequency is set at half the sampling rate fs, the frequency band of the signal after the 
filter is graphically shown in Fig. 6.1. 

½fs

|H( f )| 

1

f

Signal band

Figure 6.1. Ideal anti-aliasing filter effect. The light grey area represents the signal 
frequency band; the darker area represents the signal frequency band after it 
has been filtered 

Of course, this is an ideal situation that will never occur, since all real filters are only 
an approximation of the ideal one, whose frequency response is shown in Fig. 6.1. 

If a real low-pass filter is employed, with cut-off frequency equal to half the sampling 
rate, its frequency response differs from the ideal one, as shown in Fig. 6.2, where an 
example of the possible frequency response of a Butterworth low-pass filter is reported. 

It can be noted that, as expected from the design specifications, the attenuation at the 
cut-off frequency is 3 dB, and that it is monotonically increasing both in the pass and stop 
bands. Moreover, a finite width transition band appears. These considerations lead to the 
following conclusions. 
– Due to the presence of a finite width transition band, a number of signal components 

located at frequency values greater than half the sampling rate is not attenuated 
enough to avoid the aliasing error. 

– The attenuation in the pass band is not zero over the whole band, but changes from 0 to 3 
dB, thus modifying the signal components that are useful to the required measurement. 
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Figure 6.2. Impact of the frequency response of a real anti-aliasing filter on the signal 

It can be immediately realized that the errors caused by the filter non-ideal behaviour 
can be mitigated if the cut-off frequency is modified. However, the following situations 
occur.
– If the filter cut-off frequency is decreased, all signal components with frequency 

values higher than half the sampling rate fall in the filter stop band, and no aliasing 
error will occur. However, this means that most of the filter transition band falls in 
the frequency range where the useful signal components are located. Therefore, the 
virtual absence of any aliasing error is paid by the attenuation of useful signal 
components, which results in a further reduction of the instrument bandwidth. 

– If the filter cut-off frequency is increased, the error due to the attenuation of the 
useful signal components is mitigated, but a larger aliasing error may occur, since a 
larger number of signal components with frequency values higher than half the 
sampling rate is supposed to be not sufficiently attenuated. 

According to all above considerations, it can be stated that the correct selection of the 
filter cut-off frequency and frequency response is a trade-off between these two 
conflicting needs. In order to find the optimal trade-off, it is then important to assess 
under which conditions the errors introduced by the anti-aliasing filters can be neglected. 

The key point in this assessment is, once again, the resolution of the ADC that 
converts the samples of the input signal into digital codes. In fact, the ADC is unable to 
sense signal components whose amplitude is lower than its resolution, and is also unable 
to sense variations in the input signal that do not exceed its resolution. 

As far as the aliasing error is concerned, it does not occur if the filter frequency 
response is such that the filter output is lower than the ADC resolution for all frequency 



118 Chapter 6 

values higher than half the sampling rate. If an input signal is considered that spans over 
the whole ADC dynamic range 

2
,

2
fsfs UU

+− , the filter gain, for frequency values higher 

than half the sampling rate, must satisfy the following relationship: 

n
U

UG
2

fs
fs <⋅ , (6.1) 

where n is the number of bits of the employed ADC. This means that: 

n
G

2

1< , (6.2) 

which leads, for n = 12, to G < -72 dB. Since the gain at the cut-off frequency is –3 dB, 
the gain variation from the cut-off frequency and half the sampling rate must be –69 dB. 
Therefore, if a 4th order low-pass filter is considered, featuring a –80 dB/decade 
attenuation outside the pass band, the cut-off frequency must be set at about one decade 
before half the sampling rate in order to ensure that no aliasing errors occur. 

Let us now consider the gain variation in the pass band. As stated, a gain variation is 
reflected in the ADC output code only if the variation in the filter output signal is greater 
than 1 LSB. Thus, a gain variation ∆G can be neglected only if it is: 

n
U

UG
2

fs
fs <⋅∆ , (6.3) 

which leads to: 

n
G

2

1<∆  (6.4) 

If the filter dc gain is 1, the minimum allowed gain that does not produce variations in 
the ADC output code is given by: 

n
G

2

11min −= , (6.5) 

that, for a 12-bit ADC, defines a band limit of –2.12⋅10-3 dB, much smaller than the –3 
dB conventional pass band. 

Similar considerations can be also derived for the phase frequency response. In fact, an 
ideal filter features a linear phase response that does not introduce any phase distortion in 
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the filter output signal. On the other hand, a real filter shows a phase distortion in the 
output signal, since its phase delay is a function of frequency. 

Once again, the effect of the phase distortion can be neglected if it produces variations 
in the output signal that are lower than the ADC resolution. 

Let us consider a ∆τ(f) phase delay variation in the pass band at signal frequency f, and 
let us refer it to the reference phase delay τ0 at frequency f0:

( ) ( ) 0τ−τ=τ∆ ff  (6.6) 

Let us consider a sinewave as the input signal, with peak-to-peak amplitude equal to 

amplitude caused by a phase delay variation occurs at the zero crossing times, where the 
sine function can be well approximated by its argument. 

 Therefore, the phase delay variation can be neglected if it is: 

( )
n
ss U

ff
U

22
12

2
ff ⋅<τ∆⋅π⋅  (6.7) 

If period T= 1/f is considered, the maximum relative phase delay is obtained from (6.7) as: 

12

1
+⋅π

<τ∆
nT

 (6.8) 

If a 12-bit ADC is considered again, (6.8) provides a relative phase delay 51089.3 −⋅=τ∆
T

,
that limits the maximum allowable phase shift in the pass band to 0.244 mrad. 

The results provided by (6.5) and (6.8) show that the design of an anti-aliasing filter is 
a quite complex task and that its use causes a reduction of the useful bandwidth much 
greater than the theoretical one given by the ideal filter. The use of the anti-aliasing filter 
becomes more and more critical as the ADC resolution increases, as shown by (6.2), (6.5) 
and (6.8) and therefore a great attention must be paid to this component, if present, when 
discussing the accuracy of  a DSP-based instrument. 

THE HETERODYNE CONVERSION 

The heterodyne conversion is a frequently used method for shifting a signal from a 
frequency band to a different one. It is based on the mathematical property of the product
of two sinewaves. In fact, given two sinewaves at different frequencies: 

( ) ( ) ( ) ( )00001111 2cos;2cos ϕ+π⋅=ϕ+π⋅= tfStstfSts

the ADC full-scale value, and let us suppose that the filter phase delay is much smaller 
than the signal period. Under these assumptions, the maximum variation in the signal 
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their product can be decomposed into the sum of two sinewaves, one at frequency f1 – f0,
and the other one at frequency f1 + f0:

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]0101
01

0101
01

01 2cos
2

2cos
2

ϕ+ϕ++π⋅+ϕ−ϕ+−π⋅=⋅ tff
SS

tff
SS

tsts (6.9)

If the superposition principle is applied, it can be readily checked that (6.9) can be still 

frequency domain, as shown in Fig. 6.3. In this case, the whole spectrum of the signal, 
after its multiplication by a sinewave, is decomposed into two equal replicas, the first one 
shifted towards the lower frequencies, and the second one shifted towards the higher 
frequencies, as shown in Fig. 6.4. 

|S( f )|

f

S1

Figure 6.3. Typical finite bandwidth signal spectrum 

It is then possible to discard one of the two replicas, by properly filtering the signal 
provided by the multiplier. If a high-pass filter is applied, the replica of the original signal 
shifted in frequency by +f0 is obtained. If a low-pass filter is applied, as shown in Fig,. 
6.4,  the replica of the original signal shifted in frequency by –f0 is obtained. 

If this last solution is adopted, it is possible to translate the whole signal to a frequency 
band lower than half the sampling rate, provided that the following conditions are 
satisfied: 
– if fmin is the lower bound and fmax is the upper bound of the signal frequency band, so 

that the signal bandwidth is given by fmax – fmin, it must be: fmax – fmin < fs/2, fs being 
the sampling rate; 

– frequency f0 of the local oscillator in the heterodyne converter shown in Fig. 6.5 must 
be selected in such a way that f  – f0 < fs/2. 

applied if one of the signals is no longer a sinewave, but has a finite bandwidth in the 

max
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fmin-f0 fmin+f0 fmax+f0fmax-f0

Figure 6.4. Frequency translation of the input signal s1 after multiplication by a sinewave 
with frequency f0. The signal replica at the lower frequencies can be 
extracted by means of a low-pass filter 

X

OSC

f0

s1

Figure 6.5. Block diagram of an heterodyne converter 

The above described heterodyne conversion can be implemented by the architecture 
schematically shown in Fig. 6.5. The local oscillator OSC generates a sinewave with the 
desired frequency f0, that multiplies the input signal s1 in multiplier X. The output signal 
of multiplier X is low-pass filtered, so that the low frequency replica of the input signal is 
obtained as the output signal of the heterodyne converter.   
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The most critical blocks in this structure are the multiplier and the local oscillator, 
since they both can deeply affect the measurement accuracy. 

In particular, the local oscillator is required to generate an extremely pure sinewave, 
otherwise each frequency component of the input signal s1, located at the generic 
frequency f, will be replicated to all frequencies f – kf0, k being the harmonic order of the 
frequency-domain components of the oscillator output signal. Of course, if the oscillator 
output signal is a pure sinewave, it shows only one frequency-domain component for k = 1, 
and the heterodyne converter provides an undistorted replica of the input signal. 
Otherwise, the output signal is a distorted replica of the input signal, and the greater is the 
distortion in the oscillator output, the greater is the distortion in the converter output. 

As for the multiplier, it must feature a very high linearity, otherwise it will cause too 
some distortion on the output signal. 

Once again, the maximum allowable error is given by the resolution of the ADC 
employed to convert the input signal: the higher is its resolution, the lower is the 
allowable error. 

Presently, the heterodyne conversion is employed with good results in measurement 
applications, especially in the field of telecommunications and radar applications, where 
high frequency signals must be processed. 

THE EQUIVALENT-TIME SAMPLING TECHNIQUE 

Periodic signals represent a very important class of signals, that can be met in several 
practical applications. The main property of a periodic signal s(t), with period T, is that: 

( ) ( ) ∞=+= ,...,2,1, nnTtsts . (6.10) 

This means that the value taken by signal s at any generic sampling time kTs is taken 
again at each new period: 

( ) ( ) ∞=+= ,...,2,1, nnTkTskTs ss . (6.11) 

Let us now suppose that signal s is upper-bounded, in the frequency domain, by 
harmonic N; hence, according to the formulation of the sampling theorem reported in 
Chapter 3 for the periodic signals, at least 2N + 1 samples must be taken over period T.

However, it may happen that the hardware structure employed to acquire and process 
signal s is unable to provide the required sampling rate, and only a number of samples 
lower than 2N + 1 can be taken over period T.

Due to (6.11), this is not a problem, provided that a sufficient number of signal periods 
can be observed, since it is always possible to find the required samples in one of the 
successive periods of the input signal. 

This situation is well depicted in Fig. 6.6, where 10 samples per period have to be 
acquired from a sinewave.  
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Figure 6.6. Equivalent-time sampling technique. The upper graph shows the input signal 
and the acquired samples (one per period). The lower graph shows how the 
acquired samples are ordered so that one period of the input signal can be 
reconstructed.  

The input signal is observed for 10 periods, and only one sample is acquired from each 
period, as shown in the upper graph of Fig. 6.6. The actual sampling period is given by: 

ssa TTT += ,

where T is the input signal period, and Ts is the desired sampling period. 
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 One period of this signal is then reconstructed, as shown in the lower graph of Fig. 
6.6, by ordering the acquired samples in such a way that the time interval between two 
successive samples is equal to the desired sampling period Ts.

This sampling technique is called the equivalent-time sampling technique, because it 
provides a signal, in the discrete time domain, equivalent to the one obtained by sampling 
a continuous-time signal with sampling period Ts. It allows to push the equivalent 
sampling frequency to virtually every value, by acquiring one sample every M periods of 
the input signal, provided that at least M·(2N+1) periods are observed, if the signal is 
supposed to be reconstructed with 2N + 1 samples per period. 

This technique is based on the mathematical condition (6.10), and leads to acceptable 
results only if this theoretical condition is met in practice too. This requires that the input 
signal remains stable for the whole observation interval needed to acquire the required 
number of samples. Of course, this condition is barely satisfied when the required 
observation interval grows longer and longer, thus limiting the obtainable sampling rate 
from the virtually very high values to lower values, depending on the stability of the input 
signal. If the input signal does not remain stable during the observation interval, the 
reconstructed signal will be affected by an error which acts as an equivalent non-linearity 
error.

As for the hardware structure needed to implement the equivalent-time sampling 
technique, it basically requires the implementation of a trigger circuit that recognizes a 
specified threshold crossing condition, so that the beginning of a new signal period is 
detected and the next sampling time accordingly set. Trigger errors are reflected into the 
reconstructed signal as an equivalent linearity error again. 

This technique is generally implemented in the digital storage oscilloscopes (DSO), in 
order to increment their bandwidth when the input signals are repetitive. 

MULTI CONVERTER STRUCTURES 

All methods presented in the last sections can be usefully employed only if the input 
signals show some well defined characteristics: no useful components over half the 
sampling rate in order to apply the anti-aliasing filter, limited bandwidth in order to apply 
the heterodyne conversion, or periodicity and stability in order to apply the equivalent-
time sampling technique. 

It may happen that the input signals do not satisfy any of the above conditions, and 
none of the acquisition structures shown in Chapter 5 features a sampling rate high 
enough to sample the input signals correctly.  In this case, it is still possible to increase 
the sampling rate by modifying the acquisition structure as shown in Fig. 6.7. 



Anti-aliasing methods and sampling strategies 125

s(t)

SOC1

S&H1 

S&H

S&H4

ADC1

ADC2

ADC4

Memory Processor 
M

S&H3 ADC3

SOC2

SOC3

SOC4

Figure 6.7. Multi-converter acquisition structure featuring K = 4 converters 

It can be immediately recognized that, after the first conversion has expired, the 
converted data coming from the converters are stored into the data memory at a rate as 
high as Ts = tconv/K, thus providing an equivalent sampling rate equal to 1/Ts.

This architecture allows, at present, the highest frequency rates, up to some gigahertzs 
when fast converters are employed. 

The capability of pushing the sampling rate at even higher values is limited by the 
number of ADCs that can be employed on each input channel. This limit is given by both 
technical and economical reasons. 

The economical reason is the high cost that such structures have, due to the ADC cost 
and the complexity of the generator of the high-frequency control signals. 

As far as the technical side of the problem is concerned, the multi-converter structure 
can be considered equivalent to a single, high-speed converter structure only if all K 
channels to which the input signal is fed feature the same performances and the same 
accuracy. If the behaviour of the sampling and conversion devices is different on the 
different channels, the discrete-time signal provided by this structure will appear to be 
affected by a strong equivalent non-linearity error. 

For this reason, the multi-converter structures are presently limited to a very few 
converters for each input signal. 

The same signal is fed to all K converters, that are controlled by different Start of 
Conversion (SOC) signals, shifted by a quantity equal to tconv/K, tconv being the ADC 
conversion time. The time diagram of the control signals is shown in Fig. 6.8, for the 
same example with K = 4 as the one in Fig. 6.7. 



126 Chapter 6 

SOC1

SOC2

SOC3

SOC4

EOC1

EOC2

EOC3

EOC4

tconv1 tconv1

tconv2

tconv3

tconv4

Ts

Ts

Ts

Ts

Figure 6.8. Time diagram of the control signals for the structure in Fig. 6.7 



CHAPTER 7 

DYNAMICAL DISCRETE SYSTEMS 

LINEAR DIFFERENCE EQUATIONS AND z-TRANSFORM 

INTRODUCTION.

In this chapter the concept of discrete linear shift invariant dynamical systems and theirs 
mathematical description in terms of n-domain and z-domain representations will be 
introduced, and the preliminary concepts proposed in Chapter 3 will be revisited more in 
depth.  

DYNAMICAL DISCRETE SYSTEMS. 

A discrete system S establishes a functional relationship between the input sequence {u}
and the output sequence {y} (see fig. 7.1). 

If the system is linear the sequence a⋅{u1} + b⋅{u2} is transformed in the sequence 
a⋅{y1} + b⋅{y2}. If the system is shift invariant, for any integer value of n0, the sequence 
{u(n-n0)} is transformed in {y(n-n0)}; when the index n is associated to time the shift 
invariant system is called time invariant. 

The mathematical expression of the functional relationship S between the input and 
output sequences represents the mathematical model of the discrete system. It can be 
derived observing the input and the output sequences of the discrete system S for any 
n≥n0.

Experimental evidence shows that in general the value y(n) is not univocally 
determined by the sequence {u} only: as a matter of fact applying the same input 
sequence to two identical systems the two output sequences can be different. This 
behavior is due to the “internal situation” which can be not the same for the two systems. 

It is therefore necessary to introduce a set of q numbers (state variables) x1(n0) , … , 
xq(n0) for defining the “internal situation” (state) of the system when n = n0, in order to 
establish the analytical relationship between the input and the output sequences for any 
n n0:

( ) ( ) ( ) ( ) ( )[ ] 00001 ,;,,;,, nnnnununxnxFny q ≥∀=  (7.1) 

The minimum value of q is the order of the discrete system. 

… …
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S{u} {y}

Sa⋅{u1}+b⋅{u2} a⋅{y1}+b⋅{y2}

S{u(n-n0)} {y(n-n0)}

Discrete system 

Linear discrete 
system 

Shift invariant discrete 
system 

Figure 7.1. A discrete system establishes a relationship between an input and an output 
sequence

To illustrate this property of discrete systems let us consider the following simple 
example: the system S is an accumulator, i.e. a system summing up all the input values 
{u(k)}, for k from 0 up to n:

( ) ( )
=

=
n

k
kuny

0

Figure 7.2 shows the output sequences {y1} and {y2} for two identical accumulators 
with different state for n in the range 0≤n≤10, when the input sequence is the unit impulse 
at n=3: {u(n)} = {δ(n-3)}.

When it is possible to split equation (7.1) in the following two separate parts: 

( ) ( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( ) ( )[ ]
0

0001

000111

,
;1,,;,,

;1,,;,,
nn

nnununxnxnx

nnununxnxnx

qqq

q

>∀
−=

−=

φ

φ
 (7.2a) 

( ) ( ) ( ) ( )[ ] 01 ,;;,, nnnnunxnxgny q ≥∀=  (7.2b) 

the system is called “dynamical”.  
Using (7.2a) it is possible to evaluate the state evolution of the system for any n once 

0 [n0 , n-1],
given

for the evaluation of the state requires as arguments the whole sequence {u} in the range 

…

… …

… …

…

given the state of the system at n = n  and the input sequence {u}  in the range 
while the transformation (7.2b) allows the evaluation of the output for any n
the state and the input for the same value of the index n. It is important to point out the 
different nature of the two relationships (7.2a) and (7.2b); the former transformation 
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[n0 , n-1] together with the value of the state at n = n0, while the latter is a simple 
algebraic relationship between the value of the output of the discrete system y(n) for a 
given index n and the values of the state x1(n) … xq(n) and the system input u(n) for the 
same value of the index n.

The equations in the system (7.2a) are called state equations while relationship (7.2b) 
is called output transformation.
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Figure 7.2. Accumulator response to the unit impulse at n=3 for two different values of 
the accumulator internal state 

n-DOMAIN REPRESENTATION OF DYNAMICAL DISCRETE SYSTEMS: 
DIFFERENCE EQUATIONS. 

We have already pointed out that the peculiarity of the state equations (7.2a) is that for 
evaluating the state for a certain value of the index n>n0 it is necessary to know the state 

0 0
(7.2a) can be rewritten recursively considering the initial condition for n0=n-1, in the 
following format: 

( ) ( ) ( ) ( )[ ]

( ) ( ) ( ) ( )[ ]
0

1

111

,
;1;1,,1

;1;1,,1
nn

nnunxnxfnx

nnunxnxfnx

qqq

q

>∀
−−−=

−−−=
 (7.3) 

where the state variables are calculated now from their previous values of the state 
variables x1(n-1), …, xq(n-1) and the input u(n-1).

Dynamical discrete systems 

…

…

…

at n = n  and the input sequence {u(k)} for n ≤k≤n-1. It is trivial to verify that equations 
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g(x;u;n)x(n+1) x(n)

y(n)
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x(n0)=x0

u(n)

S

Figure 7.3. Block diagram representing in the n-domain a dynamical discrete system; 
this representation is valid ∀n≥n0

The system of equations (7.3) is known in mathematics as a particular instance of a 
system of difference equations of order q. It represents the counterpart of the system of 
differential equations for describing continuous systems. The unknowns of this set of 
equations are not numbers, as in ordinary equations, but the sequences {x1}, …, {xq} (as 
for differential equations where the unknowns are functions). 

Usually in practice it comes out to be more simple to write the state equations (7.3) 
and the output transformation (7.2b) in the following equivalent and more compact vector 
notation:

( ) ( ) ( )[ ] 0,;1;1 nnnnunn >∀−−= xfx  (7.4a) 

( ) ( ) ( )[ ] 0,;; nnnnungny ≥∀= x  (7.4b) 

where x(n) is the q×1 state vector: 

( ) ( ) ( )[ ]Tq nxnxn 1=x

and f[·] is the following q×1 vector of functions fi(·) of q+2 variables: 

[ ] [ ] [ ][ ]Tqff ⋅⋅=⋅ 1f

A dynamical system represented by the state equations (7.4a) and by the output 
transformation (7.4b) can be represented schematically as shown in figure 7.3. 

Once defined a dynamical system, its state-space (or phase-space) is a mathematical 
q-dimensional space containing the system vector state x. We can imagine the states of a 
dynamical system as points in its state-space. Assigned an initial state, as n varies the 
state of a dynamical system traces out a path in the state-space called a trajectory. The 
state motion is the state trajectory plotted as a function of n and can be represented in a 
q+1 dimensional space.

…

…
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Figure 7.4. Example of trajectory for a 3rd order dynamical system into its 3 dimensional 
state-space together with the system output sequence 

For example figure 7.4 shows the trajectory in the state-space for the following 
dynamical system state equations (Lorentz equations): 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( ) ( )[ ]−⋅−−−⋅+−=

−−−−−−⋅⋅+−=
−−−⋅+−=

131101.01
11112801.01

111.01

32133

312122

1211

nxnxnxnxnx
nxnxnxnxnxnx

nxnxnxnx

with initial state x(0) = [-10  20  -5]T.
Figure 7.4 shows the output of this dynamical system as well resulting from the 

following output transformation: 

( ) ( ) ( ) ( )nxnxnxny 321 ++=

Despite of the simple structure of the finite different equation (7.4a), it can describe 
complex behavior of dynamical systems. Let us consider for example the following state 
equation and output transformation: 

( ) ( ) ( ) ( ) ( )[ ] ( )

( ) ( ) ( ) ( ) ( )[ ] ( )α−−−+α−=

α−−−−α−=

cos11sin1

sin11cos1

2
1212

2
1211

nxnxnxnx

nxnxnxnx

Dynamical discrete systems 
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( ) ( ) ( )nxnxny 21 +=

with α = 1.3. Figure 7.5 shows the trajectory associated to the initial condition: 

( ) ( ) 21.000 21 == xx
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Figure 7.5. Example of trajectory and output sequence for a limit cycle 

The states of this trajectory lay on a closed curve. This situation is defined a limit 
cycle, since the behavior of the state vector is periodic: when it reaches the initial 
conditions it repeats indefinitely the previous trajectory. This periodic behavior of the 
state vector is observable from cycle oscillations of the system output y, as shown in 
figure 7.5. 

Figure 7.6 shows the trajectory for the same dynamical system subject to a different 
initial conditions: 

( ) ( ) 33.000 21 == xx

In this case simply changing the initial state conditions the trajectory degenerates in five 
limit cycles. This behavior can be seen also from the system output y shown in figure 7.6, 
where the five limit cycles are associated to five oscillation of the output sequence {y}.

If the discrete system is linear also the state equations (7.3) and the output 
transformation (7.2b) are linear: 
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Figure 7.6. Degeneration of the limit cycle of figure 7.5 into five limit cycles due to a 
change in the initial state vector value 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

11

111111

,
111

111
nn

nunbnxnanxnanx

nunbnxnanxnanx

qqqqqq

qq

>∀
−⋅+−⋅++−⋅=

−⋅+−⋅++−⋅=
 (7.5a) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) 011 , nnnundnxncnxncny qq ≥∀⋅+⋅++⋅=  (7.5b) 

Also (7.5) can be rewritten in vector notation as: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 0

0

,

,11

nnnundnnny

nnnunnnn
T ≥∀⋅+⋅=

>∀−⋅+−⋅=

xc

bxAx  (7.6) 

where A is the following q×q matrix: 

( )
( ) ( )

( ) ( )
=

nana

nana
n

qqq

q

1

111

A

and b and c are the q×1 vectors: 
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( ) ( ) ( )[ ] ( ) ( ) ( )[ ]T
q

T
q ncncnnbnbn 11 , == cb

If the system is shift invariant, the coefficients aij, bi, ci and d do not depend upon the 
index n.

Figure 7.7 shows the block diagram representation of a linear shift invariant system as 
given by equations (7.6). 

A

d

x(n)
y(n)UNIT 

DELAY 

x(n0)=x0

x(n+1)u(n)

S

b cT+

+ +

+

Figure 7.7. Block diagram representing in the n-domain a linear shift invariant 
dynamical discrete system, valid ∀n≥n0

Using recursively the first equation in (7.6), for a shift invariant linear system we will 
obtain the vector state sequence as a function of the initial vector state and the input 
sequence:

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) 0

1
1

0

000
2

0
3

0

000
2

000

000

00

,

213

1112

1

0

0 nnkunn

nunununn
nununnunn

nunn
nn

ZSM

n

nk

kn

ZIM

nn >∀+=

+++++=+

+++=+++=+

+=+
=

−

=

−−− bAxAx

bAbbAxAx
bAbxAbAxx

bAxx
xx

 (7.7a) 

From the last equation in (7.7a) we can see that the state vector motion is composed by 
two component: the first one is due to the initial state vector when the input sequence is 
zero (ZIM – Zero Input Motion). The second component is due to the input sequence 
when the initial state x(n0) is zero (ZSM – Zero State Motion). 

The output sequence of the linear shift invariant system results replacing the last 
expression in (7.7a) into the second equation in (7.6): 

… …

…
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( ) ( ) ( ) ( ) 0

1
1

0 ,
0

0 nnnudkunny
n

nk

knTnnT >∀⋅++=
−

=

−−− bAcxAc  (7.7b) 

If we consider now the output sequence h(n) of the system in response to the unit 
impulse δ(n), with zero initial state vector, applying (7.6) recursively it is expressed by: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) bAcbAx

AbcxcAbbAxx
bcxcbbAxx

xc0x

11

222112
111001
0000

−− ==

=+==+=
=+==+=

=+==

nTn

TT

TT

T

nhn

dh
dh

ddh

δδ
δδ
δ

 (7.8) 

Comparing the expression of the impulse response h(n) with zero state vector in (7.8) 
with the output sequence y(n) in (7.7b), this last equation can be rewritten as: 

( ) ( ) ( ) ( ) 00 ,0 nnnunhnny
ZSRZIR

nnT ≥∀∗+= − xAc  (7.9) 

This last relationship states that also the output sequence of a linear shift invariant 
system can be obtained as the superposition of two terms. The first one on the right side 
of (7.9) is the system output with no input (ZIR - Zero Input Response), while the second 
term is the system output sequence in response to the input forcing sequence u(n) when 
the initial state vector is zero (ZSR – Zero State Response). 

STABILITY OF LINEAR SHIFT INVARIANT DISCRETE SYSTEMS. 

We have seen that both the state motion and the output sequence of a linear shift invariant 
system can be split in two contributes: the response of the system to the initial state with 
zero input and the system response to the input sequence with zero initial state. 
Nevertheless usually we wish to deal with dynamical systems which response is driven 
by the input sequence only, independently on the value of the initial state vector which in 
most cases is either unknown or it is impossible to force to zero. 

Such kind of systems are characterized by a ZIM part of the state movement with all 
its vector components converging to zero as n increases. In these cases, when n will be 
large enough, the ZIM component will be negligible in comparison with the ZSM and 
consequently the system output will depend on the input sequence only and not on the 
initial state. 

In order to analyze which are the necessary conditions to have such system behavior, 
let us start considering the simplest linear shift invariant system, i.e. the system of order 
one. According to (7.7a) the system ZIM motion is expressed by: 

Dynamical discrete systems 

… …
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( ) ( )0
0 nxanx nn−=  (7.10) 

Figure 7.8 shows the state movements for the following three different values of |a|:
1. |a| = 1: the state of the system does not change with n; in this case we call the 

system stable;
2. |a| < 1: the state of the system asymptotically converge to zero as n→∞; in this 

case we call the system asymptotically stable;
3. |a| > 1: the state of the system asymptotically diverge as n→∞; in this case we 

call the system unstable.
If the system is asymptotically stable, after a certain value of the index n, it will be 

possible to determine the state movement by the input forcing sequence u(n) only, since 
the system response to the initial state will be negligible. This will not be possible in case 
of an unstable system: after a certain value of the index n the state motion in response to 
the initial state will be predominant in respect to the system response to the input 
sequence. The situation of a stable system is in between the two examined before: the ZIT
contribution to the system state motion will neither diverge nor converge to zero; it will 
just hold the same amplitude of the initial state. 

This result can be extended to higher order systems. In this case the ZIT motion is 
given by: 

( ) ( )0
0 nn nn xAx −=  (7.11) 

If we consider the vector norm of the state it can be demonstrated that, according to 
the absolute value of the q eigenvalues3 λi of the matrix A, we can have the following 
system behavior: 

1. If |λi|<1, for every i = 1…q, the norm of the system state vector asymptotically 
converge to zero as n→∞; in this case we call the system asymptotically stable;

2. If it exists at least one value of i = 1…q such that |λi|>1, the norm of the system 
state vector asymptotically diverge as n→∞; in this case we call the system 
unstable.

                                                          
3 The eigenvalues of the matrix A are the roots of the characteristic polynomial: 

( ) 0det =− AIλ
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x(n0)
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|a|>1: unstable 

|a|=1: stable 

|a|<1: asymptotically stable 

Figure 7.8. The zero input state motions for a unstable, stable and asymptotically stable 
linear shift invariant first order discrete system 

Example 1: The system defined by the following state equation: 

( )
( )

( )
( ) ( )1

0
1

1
1

05.15.0
2.005.1

2

1

2

1 −+
−
−

−
= nu

nx
nx

nx
nx

is unstable because the two eigenvalues associated to the matrix A are: 

( )
−=
+=

=−
316.0050.1
316.0050.1

0det
2

1

i
i

λ
λ

λ AI

and both are in module greater than 1. Figure 7.9 shows both the unstable motion and 
trajectory for this system with initial state [1 1]T.

Dynamical discrete systems 
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Figure 7.9. State motion and trajectory of the unstable2nd order system of example 1 

Example 2: The system defined by the following state equation: 

( )
( )

( )
( ) ( )1

0
1

1
1

9.05.0
2.09.0

2

1

2

1 −+
−
−

−
= nu

nx
nx

nx
nx

is asymptotically stable because the two eigenvalues associated to the matrix A are: 

( )
−=
+=

=−
316.0900.0
316.0900.0

0det
2

1

i
i

λ
λ

λ AI

and both are in module smaller than 1. Figure 7.10 shows both the motion and trajectory 
for this system with initial state [1 1]T.

The above internal stability definitions concerned with the system state variable 
behavior is not the only conceivable. Other kind of external stability concepts, concerned 
with the system input-output sequences behavior, are also of interest. In particular a 
linear shift invariant system is said to have bounded-input-bounded-output (BIBO)
stability if every bounded input sequence produces a bounded output sequence for every 
initial state condition (regardless of the internal state vector norm behavior). 
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Figure 7.10. State motion and trajectory of the asymptotically stable 2nd order system of 
example 2 

As shown in chapter 2 a system is BIBO stable if and only if the impulse response h(n)
of the system is absolutely convergent, i.e. iff: 

( ) ∞<
+∞

∞−
nh  (7.12) 

Condition (7.12) is sufficient because if the input sequence is bounded, exists a 
constant M such that |u(n)|≤M<∞ for any n and, if (7.12) holds, the output is bounded 
either:

( ) ( ) ( ) ( ) ∞<≤−=
+∞

−∞=

+∞

−∞= kk
khMknukhny  (7.13) 

The necessity of the condition (7.12) can be demonstrated if it is possible to find at 
least one bounded input sequence that gives an unbounded output sequence when (7.12) 
does not hold. In chapter 2 the following bounded input sequence was considered: 

( ) ( )
( ) <−−

≥−+
=

0if1
0if1

nh
nh

nu  (7.14) 

Applying this bounded input sequence the output at n=0 is not bounded: 

Dynamical discrete systems 
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( ) ( ) ( ) ( ) ∞==−=
+∞

−∞=

+∞

−∞= kk
khkukhy 0  (7.15) 

The result (7.15) shows that the condition (7.12) is necessary as well. 
Since some of the internal state variables may not contribute to determine the output of 

a linear system, BIBO stability does not imply asymptotic stability. Asymptotic stability 
is a strongest concept and can be demonstrated that it implies BIBO stability. When the 
word stable will be used without any further qualification in the text, it will mean 
asymptotical stability. 

Example 3: The system defined by the following equation: 

( )
( )

( )
( ) ( ) ( )

( )

( ) ( )
( ) ( )nu
nx
nx

ny

x
x

nu
nx
nx

nx
nx

T

⋅+=

=−+
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−

−
=

1
0
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1
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2

1

2

1

2

1

2

1

is BIBO unstable, since its impulse response, shown in figure 7.11, is unbounded. The 
system of this example has the same state equation as the unstable system described in 
example 1. Figure 7.11 reports again its unstable zero input state trajectory. 
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Figure 7.11. ZIM trajectory and impulse response of the unstable and BIBO unstable 
dynamical system of example 3 

Example 4: The system defined by the following equation: 
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is BIBO stable, since its impulse response, shown in figure 7.12, is bounded. If we 
consider now the eigenvalues of the matrix A they are: 

( )
=
=

=−
05.1
95.0

0det
2

1

λ
λ

λ AI

Given that one eigenvalue is greater than 1 the system is unstable. Figure 7.12 reports 
the unstable zero input state trajectory for this system. 

This example shows how the BIBO stability does not necessarily implies the system 
stability.
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Figure 7.12. ZIM trajectory and impulse response of the unstable and BIBO stable 
dynamical system of example 4 

THE z-TRANSFORM.

Let us consider now two infinite power series, P1(ξ) and P2(ξ), in the complex variable :

Dynamical discrete systems 
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( )
+∞

−∞=
=

n

n
nbP ξξ2

 (7.17) 

and their product P(ξ):

( ) ( ) ( )
+∞

−∞=
=⋅=

n

n
ncPPP ξξξξ 21

 (7.18) 

Analyzing the relationship between the coefficients of P(ξ) and those of P1(ξ) and 
P2(ξ), it follows: 

+∞

−∞=
−=

k
knkn bac  (7.19) 

Comparing (7.19) with the convolution product (2.22) it results that the coefficients of 
P are the convolution of the coefficients of P1 and P2.

This property can be useful if we consider the power series coefficients as element of 
sequences. In this case we obtain the remarkable result of converting the complicated 
convolution product between sequences into the simpler ordinary product between 
complex functions. 

We are ready now to introduce the z-transform X(z) of a sequence {x(n)}. It is defined 
as the power series (7.16) where the coefficients an are the elements x(n) of the sequence 
to be transformed, and the complex variable  is replaced by z-1, i.e.: 

( ) { }( ) ( )
+∞

−∞=

−
∆
==

n

nznxxzX Ζ  (7.20) 

Example 1: given the sequence {x(n)}= {δ(n+1)+δ(n-1)} its z-transform is the 
complex function: 

( )
z

zzzzX 12
1 +=+= −

Figure 7.13 shows the module of the function X(z) in the z-plane.

( )
+∞

−∞=
=

n

n
naP ξξ1

 (7.16) 
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annular region in the complex plane r<|z|<R centered on z =0. The values r and R are the 
minor and major radius of convergence, respectively. In D the power series (7.20) 
converges uniformly (and absolutely), and consequently in D the function X(z) is an 
analytic function of the complex variable z. Outside D the power series (4.20) does not 
converge; on the border D of D (7.20) may or may not converge, but at least in one 
point on D there will be a singular5 point for X(z).

It is very important to point out that there may be different sequences {x(n)} in (7.20) 
converging to the same z-transform X(z), but the convergence will be in different ROCs.

Example 2: The analytic function: 
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Figure 7.13. Module of the z-transform of the sequence {δ (n+1)+δ (n-1)} 
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Since the power series (7.20), and therefore the z-transform, is a special form of a 
Laurent series4, its region of convergence (ROC) D is always composed by the open 

                                                                                    

( ) ( )
+∞

∞−

−−= n
n zzczf 0

5 A singular point for an analytic function f(z) is a point z0 where does not exist the derivative of f(z).

4 A Laurent series of an analytic function f(z) is the power series: 
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Figure 7.14. The three ROCs D1, D2 and D3 of three sequences {x1}, {x2} and {x3} with 
the same z-transform X(z) in the example 2 
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Figure 7.15. Plot of the three sequences {x1}, {x2} and {x3} convergent to the same z-
transform X(z) of example 2 

has two singular points in z1=-2 and z2=1. As shown in figure 7.14 there are three annular 
ROCs in the complex plane: 

• the interior of the disc D1≡|z|<1;
• the annular region D2≡1<|z|<2;
• the external portion of the circle |z|=2 D3≡|z|>2.
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( ) ( ) ( )
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n zznxzX , for each z in D3

The three sequences {x1}, {x2} and {x3} are shown in figure 7.15. 
From the previous example it is possible to see that the sequences {x1}, {x2} and {x3}

have the following properties relating their respective ROC with the type of sequence: 
• {x1}, convergent for |z|<1, is a sequence with x(n)≠0 for n≤0;
• {x2}, convergent for 1<|z|<2, is a sequence with x(n)≠0 for -∞<n<+∞.
• {x3}, convergent for |z|>2, is a sequence with x(n)≠0 for n>0;

More generally it is possible to classify sequences in four groups, each of them having 
a different ROC:

1. Finite length sequence: it is a sequence {x} with x(n)≠0 only for n1≤n≤n2. For this 
type of sequences the ROC is the whole complex plane. If n2≤0 there are no 
coefficients of z-n in the z-transform with n>0, and the ROC will include the point z=0.
If n1≥0 in the z-transform there will be only terms z-n with n>0 and in this case the 
ROC will include the point z=∞.
2. Right monolateral sequence: it is a sequence {x} with x(n)≠0 only for n≥n0. If 
n0<0, the z-transform of this type of sequence is composed by two terms: 

( ) ( ) ( )
+∞

=

−
−

=

− +=
0

length finite

1

0 n

n

nn

n znxznxzX  (7.21) 

The first finite length term converge everywhere but at z=∞. To see what is the ROC
for the second term let us suppose that it is convergent for a certain z=z0. For every 
|z|>|z0| the absolute value of each term in the infinite power series in (7.21) will be 
smaller than for z=z0. As a consequence the second term will be absolutely (and 

Dynamical discrete systems 

It can be demonstrated that the following three different power series, associated to 
three different sequences {x1}, {x2} and {x3}, are convergent to the same X(z) in each 
ROC D1, D2 and D3:

( ) ( ) ( )[ ]
−∞=

−−
+∞

−∞=

− −+−==
0

1
1 21

n

nn

n

n zznxzX , for each z in D1
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The second finite length term converge everywhere but at z=0. To see what is the ROC
for the first term let us suppose that it is convergent for a certain z=z0. For every |z|<|z0|
the absolute value of each term in the infinite power series in (7.22) will be smaller 
than for z=z0. As a consequence the second term will be absolutely (and uniformly) 
convergent for |z|<R, with R equal to the maximum value of |z0|. The ROC of (7.22), 
being the intersection of the ROCs of the two power series in (7.22), will include all 
the complex plane |z|<R, without the point z=0. If n0≤0 the ROC will include this 
point.
4. Bilateral sequence: it is a sequence {x} with x(n)≠0 for -∞≤n≤+∞. The z-transform 
of this type of sequence is composed by two terms: 

( ) ( ) ( )
lmonolateraright

0

lmonolateraleft

1 +∞

=

−
−

−∞=

− +=
n

n

n

n znxznxzX  (7.23) 

The two power series in (7.23) are convergent for any |z|<R and any |z|>r respectively. 
If R>r for this type of sequence the ROC of the z-transform will be the annular ring 
r<|z|<R. If it results R<r the power series (7.23) will be not convergent and there will 
be not z-transform for the bilateral sequence. 

The computation of the z-transform from an arbitrary sequence {x(n)} can be quite 
challenging. In table 7.1 the z-transforms and their ROCs are cataloged for some 
important elementary sequences. 

In digital signal processing very often we have to deal with z-transforms X(z) which 
are rational functions, i.e. they results from the ratio between two polynomial in z. The 
roots of the numerator polynomial, where X(z)=0, are called the zeros of the function 
X(z). The roots of the denominator polynomial, which are singular values for X(z), are 
called the poles of X(z). The poles lay in the z-plane on the border D of the ROC for the 
z-transform. For the graphic representation of the z-transform of a sequence often it is 
very useful to plot in the z-plane the location of the zeros, with the symbol ‘o’, and of the 
poles, with the symbol ‘x’. This plot is called pole-zero diagram. 

uniformly) convergent for |z|>r, with r equal to the minimum value of |z0|. The ROC of 
(7.21), being the intersection of the ROCs of the two power series in (7.21), will 
include all the complex plane |z|>r, without the point z=∞. If n0≥0 the ROC will 
include this point.
3. Left monolateral sequence: it is a sequence {x} with x(n)≠0 only for n≤n0. If n0>0,
the z-transform of this type of sequence is composed by two terms: 

( ) ( ) ( )
length finite

1

0 0

=

−

−∞=

− +=
n

n

n

n

n znxznxzX  (7.22) 
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It is very important to underline the close relationship between the z-transform and the 
Fourier transform of a sequence. Writing the complex variable z in polar form as: 

z = ρe jω (7.24) 

the definition (7.20) of the z transformation can be rewritten as: 

( ) ( ) ( )
+∞

−∞=

−−==
n

njnenxxzX ωρZ  (7.25) 

If the ROC of the z-transform includes the circle with radius one, on this circle where 
|z|=ρ =1 (7.25) represents the Fourier transform (2.44) of the sequence x(n); thus the 
Fourier transform of the sequence can be evaluated by its z-transform (7.20) substituting 
the complex variable z with e jω:

( ) ( ) ( )ωω j

n

nj eXenxx ==
+∞

−∞=

−F  (7.26) 

Table 7.1. z-transforms of elementary functions 
Sequence {x(n)} z-transform X(z) ROC

δ(n) 1 All z

unit step 1(n)
1−z

z
|z|>1 

nt1(n)
( )

( ) 1

1

1
1

+

−

−
+

t

t

z
zz

|z|>1 

an1(n)
az

z
−

|z|>|a|

ntan1(n)
( )

( ) 1

1

+

−

−
+

t

t

az
azaz

|z|>|a|

ansin(ω0n)1(n) 22
0

1
0

1

)cos(21
)sin(

−−

−

+− zaaz
az

ω
ω

|z|>|a|

ancos(ω0n)1(n) 22
0

1
0

1

)cos(21
)cos(1

−−

−

+−
−

zaaz
az

ω
ω

|z|>|a|

an(1[n]–1[n–n0]) 11
1 00

−

−

−
−

az
za nn All z, except z=0 if 

n0>1 and z=∞ if 
n0<1
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The periodicity of the Fourier transform of a sequence is now obvious from this 
geometric interpretation. Figure 7.16 shows the values of the module of the z-transform 
of the example 1 evaluated on the circle of radius one in the z-plane.

Since X(ejω) is a complex function of the real argument ω, its amplitude and phase can 
be plotted as function of the angular frequency ω as in figure 7.17 where the values of the 
amplitude and phase of the complex function X(z) assumed along the unit circle are 
plotted as function of the phase of the complex number z=ejω (i.e. the angular frequency 
ω). This function represent the Fourier transform of the original sequence X(ejω).
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Figure 7.16. The magnitude of the Fourier transform of a sequence is the absolute value 
of the z-transform evaluated on the unitary circle in the z-plane 
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Figure 7.17. The amplitude and phase of the z-transform computed along the unit circle 
in the z-plane, representing the Fourier transform of the sequence of 
example 1 
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The z-transform Z(⋅) has few remarkable properties, similar to those of the Laplace 
transform, and summarized in table 7.2. Here some comments are given about how they 
have been obtained. 

Linearity: it derives directly from the z-transform definition. The ROC of the linear 
combination of two sequences {x1} and {x2} is at least the intersection of their ROCs. It 
can be wider because some zeros of the combination may cancel out some poles. This 
happens for example when a finite length sequence, converging everywhere but in z=0 or 
in z=∞, results from the combination of two infinite length sequences. This is the case for 
the finite length sequence {an1(n)-an1(n-2)} (see table 1) converging everywhere but at 
z=0, while the two sequences {an1(n)} and {an1(n-2)} are convergent only for |z|>|a|.

Table 7.2. Properties of z-transforms
Property Sequence z-transform X(z) ROC

x(n) X(z) r<|z|<R  (ROC)
x1(n) X1(z) r<|z|<R  (ROC1)Notation
x2(n) X2(z) r<|z|<R  (ROC2)

Homogeneity 
(Scaling) αx(n) αX (z) ROC

Additivity x1(n)+x2(n) X1(z)+X2(z) At least 
ROC1∩ROC2

Linearity α x1(n)+βx2(n) α X1(z)+βX2(z) At least 
ROC1∩ROC2

Shift (Delay) x(n–n0) )(0 zXz n−
ROC, except 
z=0 if n0>0 and 
z=∞ if  n0<0

Reversal x(–n) X(1/z) 1/R<|z|<1/r
Scaling in the z

domain an x(n) X(a-1z) |a|r<|z|<|a|R

Complex modulation ejθn x(n) X(e–jθz) ROC

Complex conjugate x*(n) X*(z*) ROC

Differentiation in the 
z domain (Ramping) nx(n) − z

dX z
dz

( )
ROC

Reciprocal Decay ][1 nx
n

− dz
z
zX )(

ROC

Periodic Extension of 
Signal of Length N

∞

=

+
0

)(
n

kNnx z X z
z

N

N

( )
− 1

Convolution x1(n)*x2(n) X1(z)⋅X2(z) At least 
ROC1∩ROC2

Multiplication x1(n)⋅x2(n) ( )
Γ ξ

ξ
ξ

ξ
π

dzXX
j 212

1 At least 
r1r2<|z|<R1R2

Dynamical discrete systems 
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Shift: the z-transform of a shifted (delayed) sequence by n0 samples is given by 

( )[ ] ( ) ( ) ( ) ( )[ ]nxzzjxznkxnnx n

j

nj

k

k ZZ 00
00

−
+∞

−∞=

+−
+∞

−∞=

− ==−=−  (7.22) 

The 0nz −  term in (7.22) introduces poles in z=0 if n0>0 and in z=∞ if n0<0.
Reversal: reversing a sequence results in the following z-transform 

( )[ ] ( ) ( ) ==−=−
+∞

−∞=

−+∞

−∞=

−

z
X

z
jxzkxnx

j

j

k

k 11
Z  (7.23) 

Scaling: multiplying a sequence {x} with an exponential sequence {an} results in the 
following z-transform: 

( )[ ] ( ) ( ) ===
+∞

−∞=

−+∞

−∞=

−

a
zX

a
zkxzakxnxa

k

k

k

kknZ  (7.24) 

If a is real, with 0<a<1, (7.24) is a compression in the z-plane of the z-transform of 
x(n). If a is real with a>1 (7.24) is instead an expansion of X(z). If a is complex with 
|a|=1, i.e. a=ejθ, (7.24) produces a rotation for X(z) of an angle θ around the origin in the 
z-plane (modulation). Figure 7.18a shows the effect of different scaling on the z-
transform of the sequence {an[δ(n+1)+δ(n-1)]}.

On the pole-zero location the scaling has the effect to move them along radial cords in 
the complex plane (see figure 7.18b). The complex modulation instead rotate the position 
of poles and zeros in the z-plane (see figure 7.18b). 

Conjugation: The z-transform of the complex conjugate is given by: 

( ) ( ) ( )( ) ( )**
*

*** zXzkxzkxx
k

k

k

k ===
∞+

−∞=

−∞+

−∞=

−Z

Differentiation: it comes out directly from the derivative of the kth term x(k)z-k of the 
z-transform of  {x(n)} : 

( )[ ] ( ) ( )
z
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Figure 7.18. a - Scaling and complex modulation effects on the z-transform 
b - Scaling and complex modulation effects on the zeros and poles location 

Reciprocal decay: it derives from the integration of the kth term x(k)z-k of the z-
transform of  {x(n)}:
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z
k
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z
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Convolution: on the basis of the z-transform definition, the convolution of two 
sequences is the product of their transformations: 

( ) ( ) ( )zXzXxx 2121 * ⋅=Z  (7.25) 

The ROC of the product X1(z)X2(z) is at least the intersection between the two ROCs of 
X1 and X2. If there is a compensation between some zeros and poles of X1(z) and X2(z) the 
ROC can be wider then just ROC1∩ROC2.

Dynamical discrete systems 
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Multiplication: More complicate is the transformation of the product of two 
sequences:

( ) ( )
Γ

=⋅
ξ
ξ

ξ
ξ

π
dzXX

j
xx 2121 2

1
Z  (7.26) 

The integration contour Γ must lie inside the ROC of both the z-transforms X1(ξ) and 
X2(z/ξ).

This property is particularly significant if considered with the Fourier transforms of 
{x1} and {x2}, since we obtain the classical convolution property of continuous functions: 
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Examples of z-transforms.

Example 1:
The ROC of the z-transform of the sequence: 

 {x(n)} = {δ (n)-0.8δ (n-1)}

is the whole complex plane, since {x(n)} is a finite length sequence, but it will not 
include the point z=0 since the sequence has only terms x(n) with n>0.

X(z) can be computed starting from the z-transform of the unit pulse sequence, 
considering the linearity and shift properties, as follows 

( ) ( )[ ] ( )[ ] ( )[ ] ( )[ ]
z

znZznZnZnZzX 8.08.018.0 1 −=−=−−= − δδδδ

Figure 7.19 shows the pole-zero diagram for this sequence. 
The Fourier transform of the sequence can be computed from X(z) replacing the z

argument with ejω:

( ) ( ) ( )ωωωω sin8.0cos8.018.01 jeeX jj +−=−= −
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Figure 7.19. Pole-zero diagram for the sequence {δ (n) -0.8δ(n-1)} 

The amplitude and phase of the Fourier transform are given instead by the following 
two expression (see figure 7.20): 
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Figure 7.20. Amplitude and phase of the Fourier transform of {δ(n)–0.8δ (n-1)} 

Example 2:
The z-transform of the finite length sequence  

 {x(n)} = {δ (n+2)-0.8645δ (n+1)+0.64δ (n)},
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since x(n)≠0 for n≤0, is convergent for every z but z=∞. To verify this result let us first 
compute X(z):

( ) ( )( )8.08.064.08645.02 jzjzzzzX +−=+−=
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Figure 7.21. Pole-zero diagram for the sequence {δ(n)-0.8645δ(n-1)+ 0.64δ(n-2)} 
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Figure 7.22. Amplitude and phase of the Fourier transform of the sequence               
{δ (n)-0.8645δ (n-1)+ 0.64δ (n-2)} 

There are two zeros at z=j0.8 and z=-j0.8, and X(z) is singular only in z=∞. The zero-
pole diagram for this sequence is shown in figure 7.21. 

The Fourier transform of {x(n)} can be computed substituting in X(z) the complex 
variable z with ejω:
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( )
( ) ( )[ ] ( ) ( )[ ]ωωωω

ωωω

sin8645.02sin64.0cos8645.02cos
64.08645.02

−++−=
=+−=

j
eeeX jjj

Figure 7.22 shows both the amplitude and the phase of X(ejω).

THE INVERSE z-TRANSFORM.

Given a sequence {x(n)}, the z-transformation formula (7.20) allow us to evaluate its z-
transform X(z). We will consider now the opposite operation, i.e. given the complex 
function X(z) and its ROC, we will see how to compute the elements of the sequence 
{x(n)} which admit X(z) as z-transform. 

Let us consider first the integration of the generic term x(n)z-n of the power series 
(7.20) along a circle σ with radius ρ placed in the ROC of X(z) and centered in the origin 
(see figure 7.23); on σ we can write z=ρe jω and we have: 

( ) ( )
=

≠∀
== −−−

12
102

0 nj
n

dejenxdzznx jjnnn

π
ωρρ

π ωω
σ

 (7.27) 

Since the power series (7.20) is uniformly convergent in the ROC of X(z), it can be 
integrated term-by-term. Considering (7.27), it follows: 

( ) ( ) ( )12 jxdzzkxdzzX
k

k π
σσ

+∞

−∞=

− ==  (7.28) 

Equation (7.28) shows that the first element of the sequence {x(n)}, i.e. the z-1

coefficient in X(z), can be obtained by integration along σ of X(z). If we consider now the 
z-transform X(z)zn-1, it is given by: 

( ) ( ) ( )
+∞

−∞=

−+−
+∞

−∞=

−−− ==
k

nk

k

nkn zkxzzkxzzX 111  (7.29) 

Since the z-1 coefficient in (7.29) is x(n), according to (7.28) it is given by: 

( ) ( ) −=
σπ

dzzzX
j

nx n 1

2
1  (7.30) 

Equation (7.30) represents the inverse z-transform equation for X(z).
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Figure 7.23. The value of x(1) can be determined by integration of X(z) along the circle 
σ  laying  in the ROC of X(z) 

Solving the line integrals (7.35) can be very tedious. The residue theorem offers a way 
for the computation of the line integral (7.30). This theorem states that x(n) results by the 
sum of the residues of the integrand function X(z)zn-1 at its N poles pk inside the circle σ:

( ) ( ) ( )[ ]
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−− ==
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k
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n zzXsdzzzX
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11 Re
2
1

σπ
 (7.31) 

Since the function X(z) is rational, if m is the order of a pole pk, the residue in z=pk can 
be evaluated with the formula: 
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1
1
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1Re  (7.32) 

Another very convenient method for solving the inverse z-transform of a rational 
function X(z)=N(z)/D(z), avoiding the complex line integration (7.30), is by taking its 
partial fractions. Each partial fraction may be inverted simply by looking up the table 7.1 
of elementary z-transform. 

Long division of the polynomials N(z) and D(z) is another possibility for computing 
the sequence {x(n)}.

Examples of inverse z-transforms.

Example 1: The inverse z-transform of X(z)=1/z according to (7.30) is given by: 
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σσ ππ
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nx nn 21
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Since the ROC of X(z)n-1 = zn-2 is 0<|z|<+∞, as line σ can be chosen any circle with 
radius 0<R<+∞ centered on the complex plane origin, where the variable z can be 
expressed as z = e jω. On σ, where results dz = jRejωdω, the previous inverse z-transform 
integral results in the following sequence: 
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This result could be obtained directly considering that the inverse z-transform of 
X(z)=1 is the impulse δ(n) and, by the shift property, the inverse z-transform of z-1 is 
{δ (n-1)}.

Example 2: The inverse z-transform of the function X(z)=z/(z-1) can be evaluated by 
the residue theorem. Since the function X(z) has one pole in z=1 there two ROCs for this 
z-transform and, consequently, there are two different sequences converging to the same 
z-transform X(z).

The integrand function in (7.30) for this example is given by X(z)zn-1=zn/(z-1).
If the ROC is the region |z|<1, the sequence will be left monolateral. As a matter of fact 

for n≥0 there are no poles inside the line σ and the residue of X(z)zn-1 is zero and so is 
x(n) in accordance with (7.31). For n<0 there will be instead m = –n poles in z=0. There 
the residue is given by (7.32), with m=-n:
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If the ROC of X(z) is the region |z|>1 the sequence must be right monolateral. In this 
case the integrand function zn/(z-1) in (7.30) has one pole of order m=1 in z=1 when n≥0,
where according (7.32) the residue is given by: 
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For n<0 there will be two poles inside σ, one in z=0 of order m = -n and another one in 
z=1 of order m=1. According to the residue formula (7.32) the sequence {x(n)} for n<0 is 
given by: 
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Example 3: The inverse z-transform of: 

( )
8.08.01

1
1 −

=
−

= − z
z

z
zX

can be computed directly , term by term, using the polynomial long division algorithm 
as shown below: 

Sequence {x(n)} → 1 0.8z-1 0.82z-2 0.83z-3 … 
z -0.8 z ← Numerator of X(z)

z -0.8    
 0.8    
 0.8 -0.82z-1   
  0.82z-1   
  0.82z-1 -0.83z-2

   0.83z-2

↑
Denominator of X(z)

    … 

Example 4: The inverse z-transform of the rational function X(z):
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( ) ( )( ) 23
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21

3
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33
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zz
z

zz
z

zD
zNzX

can be computed first reducing X(z), using the long division algorithm, to the sum of the 
quotient polynomial Q(z) and the ratio between the remainder R(z) and the denominator 
D(z) polynomials. 

Quotient → z 3    
z2 -3z +2 z3 0 0 -3 ← Numerator of X(z)

z3 -3z2 +2z 0 
 3z2 -2z -3  
 3z2 -9z +6  

↑
Denominator of 

X(z)
  7z -9 ← Remainder 
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21
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The inversion of Q(z) can be obtained directly as sum of shifted impulse sequences. 
The inversion of R(z)/D(z) can be obtained instead, after partial factor expansion, by the 
residue theorem applied to each factor. The partial fraction expansion of R(z)/D(z) is: 
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giving the following expression for X(z):
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The inverse z-transform of X(z) is then: 
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The poles pk and pj in the residues depends on the ROC where to make the inversion. 
In this example the function X(z) admits three ROCs, each associated to different poles 
and thus to different sequences. 

In the region D1, where 0≤|z|<1, for n≥1 there are no poles and results 
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For n<1 there are m = -n+1 poles pk and pj in z=0, giving the following residues: 
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In D1 the left monolateral inverse z-transform is: 
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In the region D2, where 1<|z|<2, for n≥1 there is only a simple pole pk in z=1, giving 
the following residue: 
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For n<1 there is one pole pk in z=1, of order m=1, and in z=0 one pole pk and one pole  
pj of order m = –n+1. The three residues are: 
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In D2 the bilateral inverse z-transform is: 
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In the region D3, where 2<|z|<+∞, for n≥1 there are a simple pole pk in z=1 and pj in 
z=2, giving the following residues: 
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For n<1 the poles pk are in z=1 of order m=1 and in z=0 of order m=–n+1. The poles pj
are in z=2 of order m=1 and in z=0 of order m = –n+1:
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In D3 the right monolateral inverse z-transform is: 
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Figure 7.24. Inverse z-transform of X(z)=(z3-3)/(z2-3z+2) for three different ROCs of X(z)

z-DOMAIN REPRESENTATION OF CAUSAL DISCRETE LINEAR SHIFT 
INVARIANT SYSTEMS. 

Considering the z-transform of the state equations and of the output transformation for a 
linear shift invariant causal discrete system (7.6) it is possible to extend the well known 
concept of transfer function of a linear time invariant continuous systems to a linear shift 
invariant discrete systems. Applying the z-transform to the state equation (7.6), and 
considering that this equation is valid only for n>n0 and that x(n)=0, ∀n<n0, it results: 
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 (7.33) 

Applying (7.33) to the output transformation (7.6) it is possible to establish the 
following relationship between the z-transform of the input and output sequences: 
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 (7.34) 

As for the n-domain analysis also in the z-domain the output is composed by two 
terms. The first is the system response to the initial state with zero input; the second one 
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is the system response to the input sequence with zero vector state. Figure 7.25 shows in 
a block diagram the z-domain representation (7.34) of a linear discrete system. 

b

d

Y(z)U(z)

S

+

+

z-n0x(n0)

+
(zI-A)-1

+

X(z)
cT

Figure 7.25. Block diagram representing in the z-domain a linear shift invariant 
dynamical discrete system 

The complex function in squared brackets is defined as the transfer function of the 
discrete linear shift invariant system. Comparing (7.34) with the convolution product 
(7.9) it results that the transfer function of a discrete system is the z-transform of its 
impulse response h(n) with zero vector state: 

( ) ( ) ( ) ( )
( )u
yhdzzH T

Z
Z

Z ==+−= −
∆

bAIc 1  (7.35) 

The transfer function H(z) in (7.35) is a rational function. The roots of the numerator 
are called the zeros of the transfer function, while the roots of the denominator are the 
poles of the system. The poles of the transfer function thus are the values of z for which 
the matrix (zI-A) is singular; they are the roots of the characteristic polynomial of the 
matrix A.

Since system stability requires that all the system poles must have module smaller than 
one, it means that they all must lay inside the unit circle. The BIBO system stability 
instead requires that the ROC of H(z) includes the unit circle. As a matter of fact from 
this condition it follows that 

Dynamical discrete systems 
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The converse is also true for rational H(z).
System causality is another important property, completely unrelated to BIBO

stability. It implies that the ROC of H(z) is outside the outermost pole. 
As already mentioned before the BIBO stability is a weaker concept than asymptotic 

stability: a system must be causal and BIBO stable for having all poles inside the unit 
circle and consequently being asymptotically stable. 

Example 1: The system with the following transfer function: 

( ) ( )( )5.05.1
1

−−
=

zz
zH

is
• causal and BIBO unstable if the ROC is |z|>1.5;
• anti-causal and BIBO unstable if the ROC is |z|<0.5;
• bilateral and BIBO stable if the ROC is 0.5<|z|<1.5.

Since one pole is outside the unit circle it is not asymptotically stable. 

Example 2: The system with transfer function: 

( ) ( )( )5.08.0
1

−−
=

zz
zH

is
• causal and BIBO stable (thus asymptotically stable as well) if the ROC is |z|>0.8;
• anti-causal and BIBO unstable (thus unstable) if the ROC is |z|<0.5;
• bilateral and BIBO stable (but not asymptotically stable) if the ROC is 

0.5<|z|<0.8.

Another important interpretation of the transfer function H(z) derives directly from the 
analysis of the response of a linear system with zero state to an exponential input 
sequence { }nz~ . This is given by the convolution product between the system impulse 
response h(n) and the input sequence nz~ , i.e.: 

( ) ( ) ( ) ( )
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knn zkhzzkhznhny ~~~~*  (7.37) 

Since H(z) is the z-transform of h(n), (7.37) can be rewritten as: 
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( ) ( ) nzzHny ~~ ⋅=  (7.38) 

Equation (7.38) shows that for linear shift invariant discrete dynamical systems the 
response {y(n)} to an exponential input { }nz~  is an exponential sequence as well, weighed 
by a complex numerical factor given by the transfer function H(z) evaluated at zz ~= , i.e. 
for linear shift invariant dynamical discrete systems the system’s eigenfunctions are the 
exponential sequences. 

In chapter 2 it was shown how to compute the impulse response of a system composed 
by a connection of various subsystems and represented by a block diagram in the n-
domain. This computation is generally quite cumbersome. Even in the simple case of two 
subsystems connected in cascade the impulse response is given by the convolution 
product of the impulse responses of the two subsystems. Much easier is the elaboration of 
the block diagram represented in the z-domain. In this case all the convolution products 
are replaced by simple products. In figure 7.26 are given some simple examples of block 
interconnection and their transfer function H(z).

H1(z) H2(z)

H(z)

U(z) Y(z)
H(z) = H1(z)⋅H2(z)

cascade

H1(z)

H2(z)

H(z)

U(z) Y(z)
H(z) = H1(z)+H2(z)

parallel+

H1(z)

H2(z)

H(z)

U(z) Y(z)

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )zHzH

zHzH

zEzHzY
zYzHzUzE

21

1

1

2

1+
=

=
−=

negative feedback 

-
+ E(z)

Figure 7.26. Examples of discrete systems interconnections in the z-domain 

Dynamical discrete systems 
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LINEAR SHIFT INVARIANT DISCRETE FILTERS. 

In digital signal processing the most interesting class of linear shift invariant systems are 
the discrete filters of order q, for which the state variables at step n are the values of the 
system output at the N previous steps and of the input at the M previous steps: 

( ) ( ) ( ) ( ) ( )[ ]TMnunuNnynyn −−−−= 11x  (7.39) 

Considering the output transformation in (7.6), the output of a discrete filter can be 
written as: 
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The previous difference equation (7.40) can also be written as: 

( ) ( ) ( )
==

−−−=
N

k
k

M

k
k knyknuny

10
βα  (7.41) 

with αk=ck+N, α0=d and βk = -ck
The transfer function for this type of system can be evaluated by applying the z-

transform to (7.41): 
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Hence factorizing (7.42) and applying relationship (7.35) it follows: 
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In (7.43) at the coefficient β0 is given the value 1. 
If Zk and Pk are respectively zeros and poles of the transfer function, the polynomials 

at numerator and denominator of (7.43) can be factorized giving a different expression of 
the transfer function H(z):

… …
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the computation of the output sequence and is equal to the number of the system’s poles. 
For discrete filters this is less than M+N. As a matter of fact from (7.44) results that the 
discrete filter has N poles in Pk plus other M-N poles in the origin only if M>N. The entire 
number of poles, i.e. the system’s order, is thus the greater number between M and N.

The complex function (7.44) can be split in two equations, one for the amplitude of 
H(z) and another one for the phase: 
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The frequency response of the system can be derived from the polar expressions of 
H(z) (7.45) simply by substitution of the complex variable z with e jω:
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If in (7.46a) the generic pole and zero is expressed in polar form as γe jθ, the single 
factor in (7.46a) is given by: 

( )ωθγγγγ ωθθω −−+=−=− − cos211 2jjjj eeee  (7.47) 

Dynamical discrete systems 

The order  of a discrete system is the minimum number of state variables necessary for q
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Since cos(θ -ω) is maximum for θ =ω (7.47) will be minimum at that frequency. This 
means that, if (7.47) represents a zero in (7.46a), there will be a dip in the frequency 
response at that frequency. If (7.47) represents a pole of (7.46a) the magnitude of the 
frequency response will increase. Figure 7.27 shows an example of this behavior for a 
transfer function with two poles at z=0.8e± jπ /4 and a zero at z = 1.2e jπ.

−π −3π/4 −π/2 −π/4 0 π/4 π/2 3π/4 π
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-1 0 1
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Real Part

poles at ω=π/4 

zero at ω =π

Figure 7.27. Frequency magnitude response and zero-pole diagram for the transfer 
function ( ) ( )( )4/4/ 8.08.0

2.1
ππ jj ezez

zzH
−−−

+=

The geometric interpretation of (7.47) is given in figure 7.28, where the magnitude 
response of (7.47) is given by traveling along the unit circle and evaluating the length of 
the vector r.

For a specific frequency ω the magnitude of H(e jω ) in (7.46a) can be obtained by 
multiplying the length of all vectors connecting all the zeros to the point on the unit circle 
at angle ω, and dividing by the length of all vectors connecting all the poles to the same 
point on the unit circle and multiplying the result by |α0|. If there is a zero or a pole on the 
unit circle the magnitude response goes either to zero or infinity, respectively, at that 
frequency. Poles and zeros at the origin and at infinity do not affect the magnitude 
response because they are equidistant from every point of the unit circle. 

The phase response of the generic pole or zero term in (7.46) is: 

( ) φγ θω =∠=−∠ ree jj  (7.48) 
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The geometric interpretation of (7.48) and (7.46b) is that for a specific frequency ω the 
phase of H(ejω) in (7.46b) can be obtained by summing together the angles of all vectors 
connecting all the zeros to the point on the unit circle at angle ω, and subtracting the 
angles of all vectors connecting all the poles to the same point on the unit circle and 
adding ∠α0+(N-M)ω to the result. If there is a zero or a pole on the unit circle the phase 
flips π radians at that frequency. Poles and zeros at infinity do not affect the phase 
response, while poles and zeros in the origin add the linear phase term (N-M)ω.

Im(z)

Re(z)

e jωγ e jθ

r = e jω-γe jθ

ω
γ

φ

Figure 7.28. Geometric view for the computation of amplitude and phase of the generic 
term r = z-γ e jθ evaluated on the unit circle z=e jω

RELATIONSHIPS BETWEEN SEQUENCES AND SAMPLED FUNCTIONS IN THE 
z AND s DOMAINS. 

As sequences can be analyzed by the z-transform so the main tool for the analysis of 
continuous functions is the Laplace transform. The relationships between the two 

functions, can be established by the shift theorem. Let us first consider a continuous 
function g(t) of the variable t and its Laplace transform: 

( ) ( )[ ]tgLsG =  (7.49) 

The shift theorem states that: 

( )[ ] ( )sGekTtgL kTs ⋅=− −  (7.50) 

Dynamical discrete systems 

transformation tools, when the discrete sequences derive from sampling continuous 
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If the discrete sequence {x(n)} is the result of samples taken from the continuous 
function g(t), with sampling period T, it can be represented as: 

( ){ } ( ) ( )
+∞

−∞=
−=

n
nTtnTgnx δ  (7.51) 

Equation (7.51) establishing a link between the sequence {x(n)} and the function g(t),
allows the interpretation of the series of samples either as a sequence (left-hand side of 
(7.51)) or a function (right-hand side of (7.51)). The z-transform and the Laplace 
transform of the sequence/function (7.51) are expressed by: 
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In (7.52b) the shift theorem (7.50) has been applied to the Laplace transform of the 
impulse function δ (t-nT). By forcing the two transforms (7.52) a and b to be equal the 
following relationship between the complex variables z and s must be satisfied: 

Tsez =  (7.53a)

z
T

s ln1=  (7.53b)

The maps (7.53) a and b are not bijective. The mapping (7.53a) maps several points in 
the s-plane to the same point in the z-plane. Vice versa the mapping (7.53b) maps one 
single point in the z-plane to several points in the s-plane. This is another interpretation of 
the aliasing effect described in chapter 3. To better understand this behavior let us write 
the complex variable s as 

s = σ + jΩ (7.54) 

Replacing (7.54) into relationship (7.53a) it is equivalent to 

( ) ( )[ ]Ω+Ω== Ω TjTeeez TjTT sincosσσ  (7.55) 
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From (7.55) it results that every point in the s-plane ( )Tkjs /2πσ +Ω+=  is mapped 
in the z-plane to the same point ( ) ( )[ ]TjTez Tj Ω+Ω= sincosσ  and, inversely each point 
z  is mapped to infinite points in the s-plane aligned on a vertical line and separated by 
2π /T, as shown in figure 7.29. This property of the conformal map z=eTs means that given 
the z-transform XD(z) of the samples sequence {x(n)} the related Laplace transform XC(s)
must be periodic in each strip of the s-plane as shown in figure 7.29. 

Ω

σ

ΩN=π/T

-ΩN=-π/T

3π/T

-3π/T

Im(z) 

Re(z) 1-1

s-plane z-plane 

Figure 7.29. Graphical representation of the 2π/T periodicity in the s-domain along lines 
parallel to the imaginary axis due to the conformal mapping z=eTs

From (7.55) the following properties of the s→z mapping can be easily derived (see 
figure 7.29 and 7.30): 

• the vertical lines ( ) .Re consts == σ , parallel to the imaginary axis in the s-
plane, maps onto circle of radius σTe in the z-plane;

• the imaginary axis s=jΩ of the s-plane maps to the unit circle z=ejTΩ in the z-
plane;

• the horizontal lines ( ) .Im consts =Ω= , parallel to the real axis in the s-plane,
maps onto radial lines with slope ΩT  in the z-plane;

• the DC point s=0 maps to z=e j0=1;
• the Nyquist angular frequency ΩN = ±π /T maps to z=e±jπ=-1;
• the stable left-hand half plane σ <0 in the s domain is mapped to the interior 

of the unit circle in the z-plane.

Dynamical discrete systems 
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Figure 7.30. Properties of the conformal map z=eTs

Expression (7.51) can also be Fourier transformed. If ω∈[-π,π ) represents the angular 
frequency in the discrete domain and Ω∈(-∞,∞) the angular frequency in the continuous 
domain, the two transformations can be obtained replacing z with e jω and s with jΩ in 
(7.52) a and b, giving the following expressions for the two Fourier transforms: 
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Forcing the two Fourier transforms (7.56) a and b to be the same the following 
relationship between the angular frequencies ω and Ω must be satisfied: 
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Relationship (7.57) is very important because it shows that the two Fourier transforms 
XD(e jω) and XC( jΩ) in the discrete and continuous domain are both periodic, the former 
with period 2π and the latter with period 2π/T. One period of Fourier transform XC( jΩ)
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can be obtained from one period of the Fourier transform XD(ejω) simply by scaling the 
frequency axis by T:

( ) ( )Tj
DC eXjX Ω=Ω  (7.58) 

with Ω∈[-π /T,π /T).
More complex instead is the relationship between the Fourier transform G( jΩ) and 

C
applying equation (3.12): 

( )
+∞

∞=

+Ω=Ω
-k

21
T

kjjG
T

jC
π  (7.59) 

This results can be also derived rewriting (7.51) as: 
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and considering the Fourier series of the periodic function ( ) ( )
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Replacing (7.61) into (7.60) an taking the Fourier transform of the resulting function, 
it follows: 

( ) ( )
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 (7.62) 

in agreement with the sampling theory result (7.59). 

Dynamical discrete systems 

X ( jΩ). It can be derived directly from the sampling theory developed in chapter 3 

X
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Example: Given the function 

( )
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<∀

=
0
00
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its Laplace transform is 
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1
−

=
s

sG

The Fourier transform of g(t) can be derived from G(s):
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2

1
−Ω

=Ω
j

jG

If the function g(t) is sampled with a sampling frequency T, the sequence obtained 
with these samples is expressed as 
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The z-transform of {x(n)} is (see z-transform table 7.1) 

( ) TD ez
zzX 2−

=

The Fourier transform of {x(n)} can be derived from XD(z):
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j
j

D ee
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= ω
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The Fourier transform as a function of the analog angular frequency Ω can be obtained 
using the scaling (7.58): 
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Figure 7.31. Magnitude and phase of the Fourier transforms G(jΩ) and XC(jΩ) of the 
function g(t)=e2t and of the sequence x(n) = g(nT), respectively, when the 
sampling period is T=1 s 
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Figure 7.32. Magnitude and phase of the Fourier transforms G(jΩ) and XC( jΩ) of the 
function g(t)=e2t and of the sequence x(n) = g(nT), respectively, when the 
sampling period is T=0.1 s 
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In figure 7.31 and 7.32 are shown the Fourier transforms G(jΩ) of the continuous 
function and XC(jΩ) of the samples sequence with sampling period equal to 1 s and 0.1 s 
respectively. The two Fourier transforms are not equal because of the aliasing effect. In 
particular in figure 7.31 the great difference between XC(jΩ) and G(jΩ) is due to the long 
sampling period (T = 1 s) compared to the exponential time constant in g(t) (τ = 1/2 s). 
This difference, apart for a scaling factor, is greatly reduced in figure 7.32 since the 
sampling period has been reduced to 0.1 s. 

In figure 7.33 is shown instead the Fourier transform XD(ejω) obtained with a sampling 
period of 0.1 s. Comparing this picture with figure 7.32 it is possible to see the 
equivalence with XC(jΩ) apart for the rescaling of the angular frequency axis. It is 
noteworthy also the change in the measurement unit for the angular frequencies. In the 
discrete domain the angular frequency is an angle in the z-domain and thus it is measured 
in radians or degrees. In the continuous domain instead the measurement unit of the 
angular frequency is the ratio between the measurement units of an angle and of the 
sampling period. In this example since the sampling is in the time domain the angular 
frequency Ω is measured in rad/s. 
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Figure 7.33.  Magnitude and phase of the Fourier transform XD(ejω) of the sequence x(n) 
obtained sampling the function g(t)=e2t with a sampling period T=0.1 s 

The intuitive result obtained in the previous example that the Fourier transform XC(jΩ)
converge to G(jΩ) when the sampling period T→0, can be formalized and generalized to 
the Laplace transforms XC(s) and G(s) considering the definition of the Laplace transform 
of a function: 
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By definition the integral in (7.59) is the limit: 
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Comparing the limit (7.60) with the definition (7.52b) it results the following 
relationship between the Laplace transforms XC(s) and G(s):

( ) ( )sTXsG CT 0
lim

→
=  (7.61) 

i.e. as the sampling period T decreases the Laplace transform of the samples sequence 
XC(s) converge the Laplace transform G(s) of the sampled function g(t) scaled by the 
sample period T. Obviously the result (7.61) can be considered for the Fourier transforms 
as well: 

( ) ( )Ω=Ω
→

jTXjG CT 0
lim  (7.62) 

Figure 7.34 shows the convergence (7.62) for the function of example 1, sampled with 
a sampling period T ranging from 0.1 s to 0.9 s. The periodicity of the Fourier transforms 
XC(jΩ) of the samples sequences is evident in this figure. The period of each 
transformation XC(jΩ) is 2π/T.
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Figure 7.34.  Comparison between the magnitude of the Fourier transform TXC(jΩ) and 
G(jΩ) with sampling periods T of 0.1 s, 0.5 s and 0.9 s 
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CHAPTER 8 

FINITE IMPULSE RESPONSE (FIR) FILTERS 

N-DOMAIN REPRESENTATION OF FIR FILTERS. 

As the name says a finite impulse response (FIR) filter is a linear shift invariant filter 
with an impulse response sequence h(n) of finite length q+1<+∞:

( ){ } ( ) ( ) ( ){ }qnhnhnhnh q −++−+= δδδ 110  (8.1) 

The output sequence {y(n)} to an arbitrary input sequence {u(n)} is given by the 
convolution product between the impulse response and the input sequence: 

( ) ( ) ( ) ( ) ( )
=

−=∗=
q

k
knukhnunhny

0

 (8.2) 

The block diagram in figure 8.1 shows the n-domain implementation of the FIR filter 
resulting directly from equations (8.2). 

By direct comparison of equation (8.2) with the difference equation (7.41) defining a 
general linear discrete filter, it result that a FIR filter is a particular discrete filter with 
M=q and N=0. Being M>N, the filter order is q.

The state vector for this type of filter, according to (7.39), is given by the q values of 
the input sequence {u} preceding the current step n:

( ) ( ) ( ) ( )[ ]Tqnununun −−−= 11x  (8.3) 

Example 1: A first example of a FIR filter is the moving average filter, which just 
compute the average of the last q+1 input samples: 
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Comparing this equation with (8.2) it follows that the impulse response for the moving 
average filter of order q is: 
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×h(1) ×h(0)× h(q)×

Figure 8.1. n-domain block diagram of a FIR filter 

Z-DOMAIN REPRESENTATION OF FIR FILTERS. 

The transfer function of a qth order FIR filter is given by the z-transform of its impulse 
response (8.1): 
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The q poles of a qth order FIR filter are in the origin of the z-plane. The filter has also q
zeros given by the roots of the polynomial at numerator of (8.4). 

The frequency response of the filter can be derived from the transfer function 
expression for z=ejω:
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Since the frequency response H(ejω) is a periodic function, with period 2π , the q+1
filter coefficients h(k), according to (8.5), form the Fourier series expansion of H(e jω ).

…

…

…
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An important property of FIR filters is that they can approximate any stable and causal 
linear discrete filter. Considering the frequency response of a general linear discrete filter, 
being a 2π period function of ω, can always be expressed as an infinite Fourier series: 

( ) +∞

−∞=

=
k

jk
k

j eeH ωω α  (8.6) 

with

( )
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−=
π

π

ωω ω
π

α deeH jkj
k 2

1  (8.7) 

Since the transfer function H(ejω) is the Fourier transform of the discrete filter impulse 
response h(n):

( ) ( )
+∞

−∞=

−=
k

jkj ekheH ωω  (8.8) 

comparing, term-by-term, (8.6) with (8.8) it results that the coefficients αk of the series 
(8.6) form the filter impulse response sequence h(n):

( ){ } ( ) ( ) ( ){ }11 101 −+= − nnhnnh δαδδα  (8.9) 

If the discrete filter is causal the coefficients αk in (8.9) are zero for k>0, reducing 
(8.6) to: 

( ) ( )
+∞

=

−

−∞=

==
0

0

k

jk

k

jk
k

j ekheeH ωωω α  (8.10) 

If the filter is stable h(k) tends to zero as k tends to infinity and, consequently, the 
function H(ejω) can be approximated by the series (8.10) with a finite number q of terms: 

( ) ( )
=

−≅
q

k

jkj ekheH
0

ωω  (8.11) 

By direct comparison of (8.10) with (8.5) it is immediate to see that the generic 
discrete filter transfer function H(ejω) can be approximated by a FIR filter of order q, as 
far as q is large enough for the approximation (8.11). 

Finite impulse response (FIR) filters 
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Example 1: The transfer function of the moving average FIR filter is given by 
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The moving average filter has q poles in the origin and one pole at z=1. The q+1 zeros 
of the filter are on the unit circle at z=ejk2π/(q+1) with k=0,1…,q. The pole and zero at z=1,
for k=0, compensate with each other and the ROC of H(z) is the whole complex plane 
|z|>0.

The magnitude response and the zero-pole diagram of a 5th order moving average FIR 
filter is shown in figure 8.2. 
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Figure 8.2. Magnitude response and zero-pole diagram of a 5th order moving average 
filter

Example 2: Other simple FIR filters are the comb filters, which output at step n is simply 
either the sum or the difference between u(n) and u(n-N). The transfer functions for these 
filters are given by: 

( ) N

N
N

z
zzzH 11 ±=±= −

The comb filters, as the moving average filter, have N poles in the origin. The comb 
filter with transfer function H(z)=1+z-N has N zeros at z=ejk2π/N with k=1,2,…,N. Its 
magnitude frequency response and zero-pole diagram are shown in figure 8.3. 

The zeros of the comb filter with transfer function H(z)=1-z-N are at z=ejk2π/N with 
k=0,2,…,N-1. Its magnitude frequency response and zero-pole diagram are shown in 
figure 8.4. 
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The comb filter with H(z)=1-z-N, having one zero at z=1, has a zero DC gain, while the 
comb filter with H(z)=1+z-N, having no zero at z=1, has finite DC gain. 
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Figure 8.3. Magnitude frequency response and zero-pole diagram for a comb filter with 
transfer function H(z)=1+z-N and N=5
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Figure 8.4. Magnitude frequency response and zero-pole diagram for a comb filter with 
transfer function H(z)=1-z-N and N=5

Example 3: A particular comb FIR filter is the cosine filter defined by the following 
difference equation: 
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The transfer function for the cosine filter is: 
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with a pole in z=0 and a zero at z=j, as shown in figure 8.5 together with the filter impulse 
response h(n).
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Figure 8.5. Impulse response and pole-zero diagram of a cosine filter 

Its Fourier transform is given by 

( ) ( ) ( )2cos
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which amplitude |H(ejω)|=cos(ω/2) gives the name to this filter. 
The phase frequency response of the cosine filter is linear versus ω and expressed by 

∠H(ejω)=-ω/2. Figure 8.6 shows both the amplitude and phase response of the filter. The 
cosine filter behaves as a low pass filter; the effect of the zero at ω=π is to select 
components with angular frequency ω=π and allows to pass low angular frequencies up 
to DC. 
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Figure 8.6. Amplitude and phase response of a cosine filter 
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We have seen that the cosine filter has got one zero and one pole and that the zero in 
z=-1 is responsible for the its low pass filter behavior. If we consider now a FIR filter 
with a transfer function with two zeros in z=-1 and two poles in z=0, i.e. of the type 

( ) ( ) ( )21
2

2

21
4
1

4
1 −− ++=+= zz

z
zzH

we should obtain a more selective low pass filter at ω=π. The Fourier transform for this 
filter is expressed by: 
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Because of the amplitude response this type of FIR filter is called raised cosine filter. 
Figure 8.7 shows the amplitude and the linear phase frequency responses of the raised 
cosine filter. Comparing this picture with figure 8.6, reporting the frequency response of 
a cosine filter, it is evident the increased selective low pass filtering action of the raised 
cosine filter obtained just adding a further zero at z=-1, i.e. increasing the filter length. 
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Figure 8.7. Frequency response of a raised cosine FIR filter 

From the transfer function it is simple to derive the impulse response of this filter and 
its pole-zero diagram, as reported in figure 8.8. The transfer function H(z) define also the 
difference equation of this filter: 
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Figure 8.8. Impulse response and pole-zero diagram of a raised cosine FIR filter 

LINEAR PHASE FIR FILTERS 

In digital signal processing a distortionless filter is often required. This implies that, when 
the spectrum of the filter input sequence {u(n)} lays inside the filter pass-band, the filter 
output sequence {y(n)} is just proportional to a translated version of {u(n)}:

 y(n) = G⋅u(n-N) (8.12) 

where G is the filter gain in the pass-band and N is the translation step shift. 
The corresponding requirements in the frequency domain can be gained tacking the 

Fourier transform of (8.12): 

Y(ejω) = G⋅e-jNωU(ejω) (8.13) 

Thus, for distorsionless filters, the transfer function in the pass-band must be 
expressed by: 
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More generally |H(ejω)| can be expressed as a positive real function G(ejω) with: 
G(e jω) = 1, in the filter pass-band; 
G(e jω) = 0, in the filter stop-band; 
0<G(e jω)<1, in the filter transition-band. 

The filter transfer function (8.14) becomes then: 

H(e jω ) = G(e jω )⋅e-jNω (8.15) 
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This implies that for no distortion at the output of the linear shift invariant filter two 
requirements must be satisfied in the pass-band: 

1. the amplitude frequency response is flat, i.e.: 

|H(ejω , in the pass-band (8.16a)

2. the phase frequency response is a linear function of the angular frequency ω, that 
is:

θ (ejω) = ∠H(e jω) = -Nω, in the pass-band (8.16b)

The impulse response of a distorsionless filter is given by the inverse Fourier 
transform of H(ejω) in (8.15): 

( ) ( ) ( ) ( ) ( )
+

−

−
+

−

− ==
π

π

ωω
π

π

ωφω ω
π

ω
π

ω
deeGdeeeGnh Nnjjjnejj j

2
1

2
1  (8.17) 

If the real 2π periodic function G(ejω) is split into its even GE(e jω) and odd GO(e jω )
parts:
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the impulse response becomes: 
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 (8.19) 

If h(n) must be real G(ejω) must be an even function, i.e.: 

G(e jω) = GE(e jω ), GO(e jω) = 0, (8.20)

resulting in the following expression for the impulse response: 
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Hence from relationship (8.20) we have learnt that in order to design a discrete linear 
phase filter we must specify an even amplitude frequency response; once defined the 
function G(ejω) the filter coefficients can be computed using (8.21). 

For an arbitrary amplitude response the number of the resulting filter coefficients hn
will not be finite. However in the previous paragraph it was shown with equation (8.11) 
that any stable and causal linear discrete filter can be approximated by a FIR filter just 
considering the first q+1 filter coefficient h(n) in (8.21). 

For example figure 8.9 shows the amplitude and phase response of a 10th order FIR 
filter with shift N=1, approximating an ideal low pass filter with a cut off angular 
frequency of π/2. The effect of having limited the number of filter coefficients (8.21) in 
the FIR approximation appears clearly in the plot of figure 8.9: both the amplitude and 
phase responses are far from the ideal one, shown in figure as dotted line. 
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Figure 8.9.  Frequency response for 10th order FIR filter, with a step shift of N=1, 
approximating an ideal low pass linear phase filter 
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Figure 8.10.  Frequency response for a 100th order FIR filter, with a step shift of N=1, 
approximating an ideal low pass linear phase filter 
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In figure 8.10 is shown the result obtained increasing the order of the FIR filter. The 
figure has been obtained rising the number of coefficients in the FIR approximation from 
11 to 101. Although the number of coefficients in the FIR filter approximation of (8.11) 
is largely increased, in comparison with the previous approximation shown in figure 8.9, 
the situation is not improved much. Both the amplitude and phase responses are not 
converging towards the ideal low-pass linear phase frequency response. 

The reasons for this behaviour can be understood considering that the finite length 
approximation (8.11) is valid only for stable and causal linear filters, but from expression 
(8.21) results that the impulse response for the ideal distortionless filter must be an even 
sequence of n and therefore cannot be causal. Looking at the impulse responses {h(n)}
for the two FIR filters shown in figure 8.11, since the FIR approximation is causal, both 
the impulse responses are forced to zero for n<0, removing all those coefficients {h(n)}
in (8.21) with n<0. Thus if the step shift N is undersized, coefficients with large values 
can be removed as well from the FIR expansion limiting the effectiveness of the finite 
length FIR approximation. 
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Figure 8.11.  Impulse responses of the 10th and 100th order FIR filters whose frequency 
responses are shown in figure 8.9 and 8.10 

In order to preserve in the finite length expansion (8.11) the coefficients with largest 
absolute value |hk|, the shift N cannot be arbitrary. In particular if the even structure of the 
sequence {h(n)} is to be maintained besides the FIR truncation, the shift in (8.21) must be 
N=q/2. This shift assumes an integer value only when the filter order q is even. Figure 
8.12 shows the two impulse responses for both the 10th and 100th order FIR filters, when 
N is equal to 5 and 50 respectively. In this cases from the picture it can be seen that the 
impulse response, although of finite length, retain the even property of {h(n)} around the 
shift N, i.e. it results: 

h(n) = h(q-n) (8.22) 

Finite impulse response (FIR) filters 
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Figure 8.12.  Impulse responses for two FIR filter of order q equal to 10 and 100, when 
the step shift N is q/2
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Figure 8.13.  Amplitude frequency responses for the two FIR filters whose impulse 
responses are shown in figure 8.12

Figure 8.13 shows the amplitude frequency response for the two FIR filters. 
Comparing this picture with the amplitude frequency responses shown in figure 8.9 and 
8.10 it is clear the better convergence behaviour towards the ideal low-pass filter. 
Furthermore the increased order of the filter produces a frequency response convergent 
towards the ideal one. 

Even better is the phase frequency response since this is not approximating a liner 
behaviour, but if condition (8.22) is sustained the phase response is exactly linear. This 
can be verified just replacing (8.22) into (8.11) and factorizing. The factorization is 
slightly different for q even and odd. In case of q even it results: 
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If q is odd instead the factorisation gives: 
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Figure 8.14. Phase response of a 10th order linear phase FIR filter 

Since the coefficients h(k) are real, the terms in braces are real as well and the phase of 
the frequency response (8.23) is exactly linear. The step shift of the FIR filter as said 
before is q/2 and it is integer only when the filter order q is even. Figure 8.14 reports the 
phase response for the 10th order FIR approximation whose impulse and amplitude 
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responses are shown in the previous figures 8.12 and 8.13. It can be seen that in the pass-
band the FIR approximation follows exactly the dotted line, representing the phase 
response of the ideal low-pass filter. 

FIR FILTER SYNTHESIS BY FOURIER SERIES EXPANSION. 

The previous paragraph suggests a simple way for the synthesis of a qth order FIR 
filter. Firstly the theoretical amplitude frequency response |HSP(ejω)| is defined. Secondly 
the theoretical impulse response hSP(n) of the filter is specified by the inverse Fourier 
transform of HSP(ejω), assuming linear phase response -qω/2, accordingly with (8.21): 

( ) ( )
+

−=
π

ω ωω
π 0 2

cos1 dqneHnh j
SPSP

 (8.24) 

Thirdly, since generally the impulse response hSP(n) will not be of finite length and 
causal, the impulse response h(n) of the qth order FIR filter, approximating the amplitude 
response |HSP|, is derived simply limiting h(n) only to the first q+1 terms of hSP(n):
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SP 0
00

∈∀=
∉∀=  (8.25) 

This last operation is equivalent to the product of the infinite length sequence hSP(n)
with a rectangular weighting window sequence w(n):

( ) ( ) ( )nwnhnh SP ⋅=  (8.26) 

where the rectangular window w(n) is defined as: 
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Equation (8.26) is equivalent, in the frequency domain, to the complex convolution 
between HSP(ejω) and the Fourier transform W(ejω) of the sequence w(n):
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The Fourier transform of the rectangular windowing sequence w(n) can be determined 
from its z-transform W(z):
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by replacing in (8.29) the complex variable z with ejω:
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Figure 8.15 shows the amplitude of (8.30) setting q to 5 and 50 respectively. The function 
|W(ejω)| is composed by one main lobe in the region 
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qq
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decreasing oscillatory side lobes for higher frequencies. Increasing the order q of the 
filter will increase the amplitudes of both the main and the side lobes, while decreasing 
their width and leaving unchanged the subtended area. 
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Figure 8.15. Amplitude of W(e jω) for two values (5 and 50) of the  FIR filter order q 

The convolution product (8.28) will certainly change the shape of the actual FIR 
transfer function H(e jω ) with respect to the specified transfer function HSP(e jω). The 
distortion effect due to the sliding window W(e j(ξ-ω)) in (8.28) can be understood 
considering for example the convolution product with the low-pass response HSP(e jξ)
shown in figure 8.16. The result is a smoothed amplitude response H(e jω), where the 
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cut-off frequency, while the side lobes introduce ripples in H(ejω). Increasing the filter 
order will decrease the main lobe width, allowing a sharper transition at the cut-off 
frequency. The ripple amplitude instead will not decrease since the area underneath each 
side lobe remain constant as the filter order increases (Gibb’s phenomenon). 

0

0

Angular frequency ξ
0

0

Angular frequency ω
ω-π π

HSP(ejξ) W(ej(ξ-ω))

-π π

H(ejω)

Figure 8.16. Effect of the convolution between HSP(e jω) with W(e jω)
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Figure 8.17.  Typical design masks in the frequency domain for (a) pass-band,(b) stop-
band, (c) low-pass and (d) high-pass filters 
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effect of the main lobe in W(e jω ) is to limit the steepness of the FIR filter response at the 
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The specification in the frequency domain of the actual FIR filter response is usually 
given considering one of the masks shown in figure 8.17 for band-pass, stop-band, low-
pass and high-pass filters with center frequency ωC. Each mask defines one or more stop 
bands ∆ωS, pass bands ∆ωP and transition bands ∆ωT. In the pass and stop bands some 
ripple, δP and δS respectively, is allowed. The filter design phase consists in determining 
the coefficients of the shortest FIR filter meeting the filter specifications. 

Using a rectangular window, and increasing the filter order, the filter specifications 
can be met only in the transition-band. As far as the ripple in the pass and stop bands is 
concerned the filter order will leave its level unchanged, because of the Gibb’s 
phenomenon; one possibility for reducing the ripple is thus by changing the window 
shape with another one whose spectra introduces less ripple than that of the rectangular 
window. Figure 8.18 shows a comparison between the rectangular window with the 
triangular window, which avoids the abrupt truncation caused by the rectangular window 
of the specified infinite length impulse response hSP(n). In this case the side lobes are 24 
dB down the main lobe, much less than the 13 dB of the rectangular window. The 
consequence of a reduced amplitude of the side lobes is an increase in the transition-band 
due to a double width for the main lobe, as shown in figure 8.18. 
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Figure 8.18.  The main lobe width for triangular windows is double than for rectangular 
windows, but the side lobe amplitude is lower (24 dB vs. 13 dB) 
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Windows shapes, other than the rectangular and triangular, have been proposed by 
various authors. They are characterized by different values of the main lobe width and 
side lobes amplitude. The most important and frequently used are: 

• The rectangular window:
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=

otherwise
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01  (8.31) 

• The Bartlett (triangular)r window:
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• The Hanning window:
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 (8.33) 

• The Hamming window:
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• The Blackman window:
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 (8.35) 

A further window used for FIR filter design is the Kaiser window: 
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where I0(⋅) is the 0th order modified Bessel function of the first kind, and β a parameter 
optimizing the threshold between the main lobe width and the side lobes amplitudes. 
Typical values of β are between 4 and 9. 

Figure 8.19 shows the n-domain shape and ω-domain spectra for these windows, while 
table 8.1 reports their main characteristics. 
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Hamming, (e) Blackman and (f ) Kaiser (β=9) windows with length q=10, 
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Table 8.1 
Window Main lobe 

width 
Side lobe 
amplitude

Rectangular 4π /(q+1) -13 dB 
Bartlett 8π /(q+1) -24 dB 
Hanning 8π /(q+1) -32 dB 

Hamming 8π /(q+1) -37 dB 
Blackman 12π /(q+1) -62 dB 

Example: For a low-pass FIR filter the following specifications in the frequency 
domain are given: 

• Cut-off frequency: ωC=π/6 rad 
• Ripple:     δS = δP = 0.02 
• Transition band:  ∆ωT = π/30 rad 

From (8.24) is simple to derive the infinite length impulse response for the specified 
filter with linear phase ∠HSP(e jω) = -qω /2:
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Figure 8.20 shows, together with the low-pass filter specification mask, the amplitude 
frequency response of a 20th order FIR filter obtained with a rectangular window and 
approximating the specified low-pass filter with a cut-off frequency at π/6. The FIR filter 
frequency response does not meet the specification because both the transition band and 
the ripple in the stop and pass bands are too wide. 

Figure 8.21 shows the result obtained increasing the filter order from 20 to 35, still 
using a rectangular window. In this case the transition band meet the requirements, but 
since the amplitude of the side lobes does not decrease with filter order, the ripple 
amplitude is not decreased. In figure 8.22 is reported the amplitude frequency response 
computed with a 35th order FIR filter but designed using the Hamming window. The 
ripple this time is lower than δP and δS, but the transition band is wider than ∆ωT because 
the wider main lobe of the Hamming window than the rectangular window. 

By increasing the filter order from 35 to 80, still using the Hamming window, the filter 
amplitude response finally meets the specifications, as shown in figure 8.23. Figure 8.24 
instead shows the response of a 80th order FIR filter designed using the rectangular 
window; again it is possible to see that the ripple has the same level as the 20th order FIR 
filter whose amplitude frequency response is shown in figure 8.20. 
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Figure 8.20. Amplitude response of a 20th order FIR filter with rectangular window 
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Figure 8.21. Amplitude response of a 35th order FIR filter with rectangular window
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Figure 8.22. Amplitude response of a 35th order FIR filter with Hamming window
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Figure 8.23. Amplitude response of a 80th order FIR filter with Hamming window
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Figure 8.24. Amplitude response of a 80th order FIR filter with rectangular window

FIR FILTER SYNTHESIS BY THE FREQUENCY SAMPLING METHOD. 

Another possibility for the design of FIR filters derives from the consideration that the 
discrete filter frequency response is a periodic function of ω with period 2π. According to 
the sampling theory of periodic functions, developed in chapter 3, the specified frequency 
response HSP(ejω) can be defined by q+1 samples, with q=2N, taken at frequency multiple 
of ωs = 2π/(q+1). The frequency response HSP(ejω) can be reconstructed from its q+1
samples 
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( ) ( )sjk
SPSP eHkH ω=ˆ  (8.37) 

using the Shannon interpolation formula for periodic functions (3.47): 
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The interpolation formula (8.38) will give the specified frequency response HSP(ejω)
only if its Fourier transform satisfies the Shannon theorem for periodic synchronous 
sampling. This is usually not true since the specified frequency response is a theoretical 
one and as such it is very sharp at the cut-off frequencies, resulting in a Fourier 
transform, which is the impulse response of the specified filter, very long lasting. The 
interpolation formula (8.38) will give then only an approximation H(ejω) of the function 
HSP(ejω):
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The interpolation (8.39) has the property that at the sample frequency kωs the specified 
frequency response assumes the same values of H(ejω):

( ) ( ) NkNeHeH ss jkjk
SP ≤≤−= withωω  (8.40) 

Figure 8.25 shows an example of the application of (8.40) to an ideal low-pass filter 
with cut-off frequency at ωC = π/2 and q=10. From this picture it results clearly how 
H(ejω) does not match HSP(ejω) but at the sampling frequencies kωs.

Taking into account that: 
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equation (8.39) can be rewritten as: 
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Figure 8.25.  Amplitude response |H(e jω)| obtained sampling the specified frequency 
response HSP(ejω ) in 11 points

It is trivial now to compute the impulse response of the FIR filter, just taking the 
inverse Fourier transform of (8.42): 
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The integral In (8.43) is equal to: 
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By substitution of (8.44) into (8.43) results in the following expression for the 
coefficients of the FIR filter: 
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Figure 8.26 shows the impulse response of length q+1=11 obtained using (8.45) for 
the low-pass FIR filter of figure 8.25. The impulse response is not causal, since it is 
centered on n=0. In order to obtain a casual FIR filter the impulse response should be 
shifted by N steps. In the frequency domain it results in a multiplication of H(ejω) by the 
complex function e-jNω. Therefore the causal FIR filter interpolation and impulse response 
formulas as derived from (8.39) and (8.45) are given by: 
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Figure 8.26. Anti-causal impulse response obtained taking 11 samples from the ideal 
low-pass filter response shown in figure 8.26 

A design limitation of the frequency sampling method can occur when the specified 
amplitude frequency response |HSP(ejω)| undergoes an abrupt change in amplitude across 
the transition band. The result is a strong ripple in the FIR filter frequency response 
H(e jω) owing to the Gibb’s phenomenon, as shown in figure 8.25. This difficulty can be 
alleviate relaxing the transition band requirements and allowing that some frequency 
samples around the cut-off frequency take values different from the ideal filter response. 
For example in figure 8.27 is shown the result obtained with the sampling frequency 
method when at the two samples around the cut-off frequencies ωC = ±π/2 are assigned 
the values 5.0ˆ == αSPH  instead than the theoretical nil value. In the same figure with 

Finite impulse response (FIR) filters 
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dashed line is shown the FIR filter transfer function obtained without forcing these two 
samples to take values different from the ideal low-pass filter frequency response. It is 
clear that the ripple is greatly reduced, although the transition band is now wider. 

Another example of a similar approach to the design of a FIR filter is shown in figure 
8.28, where at four samples around the cut-off frequencies ωC = ±π/2 are assigned values 
different than the theoretical low-pass filter frequency response. This time the values 
assigned to the two samples around the cut-off frequency are α−= 1ˆ

SPH  and α=SPĤ ,
with α >0 (α =0.2 in the example of figure 8.28). Again the result is a reduced ripple with 
an increased transition width. 
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Figure 8.27.  Filter design with the frequency sampling method obtained with one 
frequency sample specified in the transition band 
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The abovementioned criteria for designing FIR filter using the sampling frequency 
method can lead to an automatic procedure for the computation of the filter coefficients. 
The methodology is based on the definition of the design objective in terms of a design 
error ε(e jω) specified in the frequency domain and defined as the difference of the actual 
FIR filter frequency response H(e jω) and the specified ideal filter frequency response 
HSP(e jω):

ε(e jω) = H(e jω ) - HSP(e jω) (8.48) 

The design criterion takes normally the form of an optimisation algorithm based on a 
mathematical metrics applied to the design error ε (e jω). The metrics used are the L2 (mean 
square) and L∞ (maximum) norm, leading to the following optimisation design criteria: 

• Minimum Square Error (MSE)  

( )
( )

( )=
+
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π

π

ω ωε
π

dekH j
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2

ˆ 2
1minˆ  (8.49) 

• Minimax: 

( )
( )

( )= ωε j

kH
SP ekH

SP

maxminˆ
ˆ

 (8.50) 

Since relationship (8.46) is linear in the parameters ( )kHSP
ˆ , the optimization problems 

(8.49) and (8.50) can be solved numerically using linear optimization algorithms. 
The two metrics in (8.49) and (8.50) have different advantages and disadvantages. The 

MSE criterion generally leads to simpler algorithms, but the solution could have large 
local errors although the mean square error was small. On the other way the minimax 
criterion is more complicate computationally but it limits the worst case error. 

A weakness of the sampling frequency design method is that the samples ( )kHSP
ˆ  are 

uniformly distributed along the frequency axis and this results in a lack of flexibility on 
specifying the cut-off frequencies of the filter. Increasing the number of frequency 
samples will improve the ability to specify the frequency response transition at the cut-off 
frequencies but this will be highly inefficient. 

The transfer function of the FIR filter is given by the z-transform of the impulse 
transform (8.47): 

Finite impulse response (FIR) filters 
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( ) ( ) ( ) ( )

( )
−= =

−++
−

= −=

−+
−

=

−

+
=

=
+

==

N

Nk

N

n

nN
jkn

N
jkN

SP

N

n

N

Nk

nN
Nnjk

SP

N

n

n

zeekH
N

zekH
N

znhzH

2

0

12
2

12
2

2

0

12
22

0

ˆ
12

1

ˆ
12

1

ππ

π

 (8.51) 

The second summation in (8.51) is the z-transform of the sequence: 
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which according to table 7.1 is equal to: 
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Replacing the relationship (8.52) into (8.50) it results the following expression for the 
transfer function of the FIR filter obtained with the frequency sampling method: 
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EFFECTS OF FILTER COEFFICIENTS QUANTIZATION 

Limitation in the number of bits available for storing the filter coefficients and the 
internal data results in a change in its frequency response. The quantization effect on the 
frequency response can be analyzed in the frequency domain in terms of an error function 
∆H(e jω) which is the difference between the actual frequency response H(ejω), resulting 
from the coefficients and data quantization, and the theoretical frequency response 
HTH(e jω):

∆H(e jω) = H(e jω ) - HTH(e jω ) (8.54) 

Let us start considering first the effect due to the quantization of the filter coefficients 
only. If ∆ represents the quantization step, the rounding error ∆h(k) on each coefficients 
h(k) of the filter will be: 
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|∆h(k)|≤∆ /2, ∀k∈0…q (8.55) 

Taking into account the FIR filter transfer function (8.5) the maximum value of 
∆H(ejω) is given by: 
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In many cases the worst case estimation (8.56) of the coefficients quantization effect is 
too rough. A better estimation can be obtained modeling the quantization error ∆h(k) of 
each filter coefficient as a random noise uniformly distributed between -∆ /2 and ∆ /2. The 
filter coefficients variance is in this case: 
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12

2
2 ∆=∆ khσ  (8.57) 

Considering statistically independent the quantization noise on each filter coefficient, 
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Since |e jkω | =1 expression (8.58) simplifies to: 
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The estimation (8.59) of the quantization effect on the filter frequency response is 
smaller than (8.56) but it is more significant since the worst case error (8.56) is very 
unlikely.

If δSP = min(δP,δS) is the minimum ripple allowed by the filter specifications and δ0 is 
the ripple obtained without quantizing the filter coefficients, the variance (8.59) must 
satisfy the following limit: 

[ ]
223

1 0δδσ −
≤∆+=∆ SPqH  (8.60) 

If NC is the number of bit used for representing the filter coefficient  (and its sign),  
the quantization step is expressed by: 

Finite impulse response (FIR) filters 

the standard deviation of the (8.54) is given by the uncertainity propagation law applied 
to (8.5): 

each
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A useful formula for estimating the number of bits required for representing the filter 
coefficients can be obtained from (8.61) together with the inequality (8.60): 
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The consequences of filter coefficients quantization can be studied also in terms of its 
effects on the zeros location. Starting from the expression of the FIR filter transfer 
function (8.4), which can be factorized as: 
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and using the derivative chain rule to calculate the transfer function derivative with 
respect to the filter coefficients: 
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the sensitivity of the ith zero location to the quantization of the kth coefficient h(k) is 
expressed by the derivative ∂zi/∂h(k) in (8.64). The derivative ∂H/∂h(k) in (8.64) derives 
directly from (8.4): 
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while the derivative ∂H/∂zi results from (8.63): 
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Replacing (8.66) and (8.65) in (8.64) and solving for ∂zi/∂h(k) the ith zero sensitivity to 
the kth filter coefficient quantization is given by the following formula: 
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The importance of formula (8.67) is that it shows how the sensitivity of zero location 
due to the coefficients quantization could be very high if the filter poles were very close 
to each other, since the denominator of (8.67) tends to zero. Figure 8.29 shows this effect 
for a 8th order FIR filter with linear phase with transfer function: 

( ) 876543211 −−−−−−−− ++++++++= zazbzczdzczbzazzH  (8.68) 

In figure 8.29 are shown four of the eight zeros with circles and with asterisks the 
zeros when the four coefficients a, b, c and d in (8.68) are affected by a 0.5% random 
perturbation. In figure 8.29b the eight zeros of (8.68) are more far apart from each other 
than in figure 8.29a. It is evident from the picture that the change in location of the zeros, 
due to the coefficient quantization, is smaller in figure 8.29b than in figure 8.29a as 
predicted by equation (8.67). 
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Figure 8.29.  Effect on the zeros location of 0.5% random perturbation on the 
coefficients of a 8th order linear phase FIR filter: (a) close zeros - (b) 
distant zeros

FIR FILTER ARCHITECTURES. 

The structure of a linear discrete filter is composed by a discrete dynamical system 
implementing digitally the operations involved in the difference state equations (7.4a) 
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and the output transformation (7.4b). The operations involved are storage, multiplication 
and addition. Furthermore the complexity of the system is determined by the number of 
these three types of operations needed and by their precision in terms of the number of 
bits required for the data and coefficients quantization. 

The simplest architecture for implementing a qth order FIR filter can be derived 
directly from equation (8.2) as shown in the block diagram of figure 8.1 and reported 
here in figure 8.30 for convenience. This architecture, named direct structure, requires: 

• 2q+1 memory registers (for storing the filter coefficients and state), 
• q+1 multipliers, 
• q adders. 

+

UNIT 
SHIFT

UNIT 
SHIFT

UNIT 
SHIFT

h(2) 

+ +

u(n)

y(n)

u(n-1) u(n-2) u(n-q)

×h(1) ×h(0)× h(q)×

Figure 8.30. Direct structure of a qth order FIR filter 

UNIT 
SHIFT

UNIT
SHIFT 

UNIT
SHIFT + + +

y(n)

u(n)

h(2) ×h(1) ×h(0) × h(q)×

Figure 8.31. Transposed structure of a qth order FIR filter 

The architecture of figure 8.30 is not the only way the arrange the calculations 
required for implementing a FIR filter. Another structure, named transposed, can be 
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derived from the direct realization of figure 8.30 by inverting all the signal flows: figure 
8.31 shows the resulting numerical network. The complexity of the new structure is the 
same as for the direct implementation: 

• 2q+1 memory registers (for storing the filter coefficients the state), 
• q+1 multipliers, 
• q adders.

If the FIR filter has linear phase the filter coefficients are real and have to satisfy the 
symmetry condition (8.22). This condition can be exploited to halve the number of 
multiplication and sums and the number of registers required for storing the filter 
coefficients. The architecture for qth order linear phase FIR filter is given in figure 8.32 
for q even and in figure 8.33 for q odd. The complexity of these architecture are 
summarized, respectively, by the following figures: 

q even:
• (3q+2)/2 memory registers (for storing the filter coefficients and state), 
• q/2+1 multipliers, 
• q adders. 

q odd:
• (3q+1)/2 memory registers (for storing the filter coefficients and state), 
• (q+1)/2 multipliers, 
• q adders. 
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u(n-1) u(n-2) u(n-q/2)

UNIT 
SHIFT

UNIT
SHIFT 

UNIT
SHIFT 

u(n-q-1) u(n-q-2)

+ + +

u(n-q)u(n)

h(2) ×h(1)×h(0) × h(q/2) ×

Figure 8.32. Reduced multiplication qth order linear phase FIR architecture, with q even 
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From the above figures it results that the numbers of multipliers necessary for 
implementing a linear phase filter are about half the number required for a direct structure 
while the number of memory registers are about q/2 less. 
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Figure 8.33. Reduced multiplication qth order linear phase FIR architecture, with q odd 

An important limitation concerning the FIR filter structures previously discussed 
regards the effect of coefficients quantization. This effect is particularly serious when the 
filter transfer function has zeros in the z-plane closed to each other, for the reasons 
explained in the previous paragraph. 

In order to limit the effect of filter coefficients quantization on the zeros location let us 
consider the following factorization of the FIR filter transfer function (8.4) in q products 
of first degree polynomials: 
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where zk are the q zeros of the filter. The product in (8.69) of the q terms: 

( ) 11 −−= zzzH kk  (8.70) 

means that the impulse response of a qth order FIR filter can be expressed as q
convolutions of the inverse z-transform of Hk(z). According to (2.27) this is equivalent to 
think at a qth order FIR filter as a realization of the cascade of q 1st order FIR filters which 
transfer function is expressed by (8.70). The effect of the filter coefficients quantization 
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is limited now because each of the q stages in cascade realize only one of the q zero of 
the FIR filter. 

The difference equation which corresponds to (8.70), reminding that the term z-1 is 
equivalent to a unit shift, is: 

( ) ( ) ( )1−⋅−= nuznuny kkkk  (8.71) 

where uk(n) and yk(n) represent the kth section input and output sequences, respectively. 
The block diagram of the numerical network implementing one of the q first order 

section (8.71) is shown figure 8.34. Each section requires: 
• 2 memory registers (for storing the filter coefficients and state), 
• 1 multiplier, 
• 1 adder. 

u(n-1) UNIT 
SHIFT

+

uk(n)

yk(n)

 -zk×

Figure 8.34. First order stage implementing the zeros zk of a FIR filter using complex 
arithmetic

Since the zeros zk are generally complex, the structure shown in figure 8.34 requires 
the implementation of complex arithmetic operations. If the FIR filter has real 
coefficients, i.e. impulse response is real, the zeros of its transfer function take place in 
pairs complex conjugate: 
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In this case it is better to factorize the filter transfer function (8.69) with q/2 second 
order polynomial in z-1:
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If q is odd the factors in (8.71) are (q+1)/2, with b(q+1)/2 = 0.

The advantage of the factorization (8.73) is that the coefficients a(q+1)/2, ak and bk are 
real. The difference equation which corresponds to the second order polynomials in 
(8.73) is: 

( ) ( ) ( ) ( )21 −⋅+−⋅+= nubnuanuny kkkkkk  (8.75) 

Figure 8.35 shows the digital network implementing (8.75). The complexity of this 
section is given by: 

• 4 memory registers (for storing the filter coefficients the filter state), 
• 2 multipliers, 
•  adders. 
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 bk
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uk(n)

yk(n)

u(n-1) u(n-2) 

× ak×

Figure 8.35. Second order stage implementing a FIR filter with real impulse response, 
without using complex arithmetic 

Equation (8.74) shows that the effect of quantization on the coefficients ak and bk
results in the quantization of the squared absolute vale and of the real part of the zero zk
and its complex conjugate. Figure 8.36a shows this effect when the filter coefficients 

2
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(8.74) are quantized with 4 bits. The zeros cannot lay anywhere in the complex plane, but 
they must stay on the grid defined by the intersection of the continuous and dotted lines. 
For example in figure 8.36b with dots are shown the zeros that can be obtained with the 
2nd order stage of figure 8.35 when the coefficients quantization is made using 6 bits. 
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Figure 8.36. Zeros location for a 2nd order FIR filter stage with quantized coefficients; 
(a) grid for 4 bits quantization; (b) zeros location with 6 bits quantization 

If the FIR filter has linear phase its complex zeros happens to be grouped in reciprocal 
pair, i.e. if zk is a zero so is 1/zk as well. Moreover if the filter has real coefficients the 
zeros must be in complex conjugate pairs, so that the zeros must occur in groups of four 
complex numbers such that: 

( )

( ) =

=

− k

k

j
kk

j
kk

erz

erz

θ

θ

2

1 ( )

( ) =

=

− k

k

j

k
k

j

k
k

e
r

z

e
r

z

θ

θ

1

1

4

3

 (8.76) 

This particular distribution of the roots is shown in figure 8.37 where the four zeros 
(8.76) are plotted together with the unit circle in the z-plane.

Adopting two 2nd order stages for realizing the 4 zeros, because of the quantization of 
their coefficients, the actual roots will only approximate (8.76). If one 2nd order stage 
realizes the complex conjugate pair ( )1

kz  and ( )2
kz  while the other stage the pair ( )3

kz  and 
( )4
kz  the actual zeros will be two complex conjugate pairs that generally will not satisfy 

relation (8.76) with each other, i.e. the resulting filter will not have liner phase. 
To force the filter to have linear phase, even though the coefficients quantization, it is 

necessary to factorize the filter transfer function (8.4) into fourth order factors with real 
coefficients having the symmetry property (8.22) of the FIR filter coefficients: 
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Figure 8.37. Location of complex zeros in the z-plane for a linear phase FIR filter 

In this way the linear phase FIR filter is realized as the cascade of q/4 stages such that 
each of them is a linear phase 4th order FIR filter with transfer function given by (8.77). 

To the factor (8.77) corresponds the following difference equation in the n-domain and 
the numerical network shown in figure 8.38: 
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The complexity of this structure is reduced because of the coefficients symmetry and 
given by: 

• 6 memory registers (for storing the filter coefficients and state), 
• 2 multipliers, 
• 4 adders. 
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Compared to a pair of 2nd order stages the 4th order linear phase structure requires two 
less memory registers  multipliers and  .

UNIT
SHIFT

UNIT
SHIFT

+ +

uk(n)

yk(n)

u(n-1) u(n-2)

UNIT
SHIFT

UNIT
SHIFT

u(n-3)

+ +

u(n-4) u(n)

 bk× ak×

Figure 8.38. Fourth order stage implementing a FIR filter with real impulse response 
and linear phase 
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Figure 8.39. Zeros location for a 4th order linear phase FIR filter stage with quantized 
coefficients and 0.5≤ |zk|≤0.5-1; (a) grid for 4 bits quantization; (b) zeros 
location with 6 bits quantization 

A far as the filter coefficients quantization is concerned figure 8.39a shows the grid for 
the zeros positions in the complex z-plane considering 4 bits for the quantization of the 
coefficients (8.78) when 0.5≤|zk|≤0.5-1. Figure 8.39b shows instead the zeros positions 
when the quantization is obtained using 6 bits. The two figures illustrate the bad coverage 
of the z-plane due to the quantization of the coefficients (8.78) of the fourth order 
structure. The situation is even worse under the hypothesis that 0.05≤|zk|≤0.05-1, as shown 
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in figure 8.40, where a resolution of  bits has been considered for the coefficients 
quantization. The reason for that are the term zk and 1/zk in (8.78); when |zk|→0 the 
dynamics of the coefficients growths to infinity and the quantization became coarser. The 
effect on the zeros location grid is shown in figure 8.40 for |zk|≤1; the grid results very 
dense only around the circle |zk|=0.05 (and the circle |zk|=0.05-1 not shown in figure 8.40) 
and very sparse elsewhere. 
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Figure 8.40. Zeros location grid for a 4th order linear phase FIR filter stage with 
quantized coefficients on 5 bits and 0.1≤ |zk|≤ 0.1-1

A better coverage of the z-plane after coefficient quantization can be gained forcing 
the 4th order stage zeros to stand a quantization as uniform as possible, for example with 
the following quantization of the zeros positioning: 
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In this case the transfer function of a single stage assume the following form: 
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Figure 8.41 shows the resulting numerical network, characterized by: 
• 7 memory registers (for storing the filter coefficients and state), 
• 5 multipliers, 
• 4 adders. 
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uk(n)

+

UNIT 
SHIFT 

UNIT 
SHIFT 

×αk×

kβ
1

×

+

UNIT 
SHIFT 

+

××

+
UNIT 
SHIFT 

yk(n)

βk

βk αk

Figure 8.41. Numerical network for one stage of a linear phase 4th order FIR filter 
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Figure 8.42. Zeros location grid for a 4th order linear phase FIR filter stage with 
quantized coefficients on 5 bits and 0.1≤ |zk|≤ 0.1-1

Figure 8.43 shows the numerical network for the synthesis of a FIR filter with the 
frequency sampling method (8.53). It composed by a comb FIR filter in cascade with the 
parallel of N+1 stages characterized by a feedback loop. This stages are filter with an 
infinite impulse response and will be described in the next chapter. 
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Figure 8.43. Numerical structure of a FIR filter designed with the sampling frequency 
method
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CHAPTER 9 

INFINITE IMPULSE RESPONSE (IIR) FILTERS 

z-DOMAIN REPRESENTATION OF IIR FILTERS. 

An infinite impulse response (IIR) filter of order q is linear shift invariant causal discrete 
systems having as the q state variables at step n the values of the system output at the N

suggests the impulse response of an IIR filter is a sequence h(n) persisting forever: 

( ){ } ( ) ( ) ( ) ( ){ }+−+= 110 nhnhnh δδ  (9.1) 

In the z-domain the IIR filter can be analyzed in terms of its transfer function: 
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which, as explained in chapter 7, can be written in the format (7.43) here reported for 
convenience:
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If M ≥N the ratio (9.3), between the numerator polynomial N(z) of degree M and the 
denominator polynomial D(z) of degree N, can be split as the sum of a quotient 
polynomial Q(z) of degree M-N and the ratio between the remainder polynomial R(z) of 
degree N-1 and the denominator D(z):

…

previous steps and the system input at the M previous steps, with q=max( , ). As the name MN
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In (9.4) the transfer function Q(z) corresponds to a FIR filter of order M-N.
In If M<N the quotient Q(z) is zero. 
As shown in chapter 7 the transfer function (9.3) admit the factorization (7.44), 

reported below: 
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An IIR filter is characterized by M zeros in Zk, N poles in Pk and in the origin, if N>M
there are N-M zeros otherwise if N<M there M-N poles. 

The frequency response of an IIR filter can be determined from either (9.4) or (9.5) by 
replacing z with ejω:
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 (9.6) 

n-DOMAIN REPRESENTATION OF IIR FILTERS. 

The difference equation in the n-domain representing the relationship between the 
input sequence {u(n)} and the output sequence {y(n)} for an IIR filter can be derived 
directly from the expression of the transfer function (9.3): 
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 (9.7) 

The block diagram in figure 9.1 shows graphically this relationship. 
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Figure 9.1. n-domain block diagram of an IIR filter 

The state vector for this type of filter, according to (7.39), is given by the M values of 
the input sequence {u} and the N values of the output sequence {y} preceding the current 
step n:

( ) ( ) ( ) ( ) ( )[ ]TMnunuNnynyn −−−−= 11x  (9.8) 

Infinite impulse response (IIR) filters 
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The block diagram of figure 9.1 shows that an IIR filter can be seen as the cascade of a 
FIR filter and a purely recursive IIR section with transfer function 

( )

=

−+
= N

k

k
k

R

z
zH

1
1

1

β

 (9.9) 

responsible of the infinite impulse response of the filter.  
An important property of IIR filters is that the feedback loop due to the purely 

recursive stage allows the synthesis of more selective filtering transfer function synthesis 
if compared with the transfer function attainable with a FIR filter of the same order. 

By factorization of the purely recursive stage transfer function HR(z):
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it results that this stage is responsible for the synthesis of the N poles of the whole IIR 
filter (9.5), while the FIR stage realizes the M zeros of H(z). Since each stage realize also 
N zeros and M poles in the origin respectively this explains why in (9.5) are present also 
N-M zeros in the origin. 

PURELY RECURSIVE IIR FILTERS 

Considering figure 9.1, the simplest IIR filter is a filter with no FIR stage and with a 
recursive stage composed by one unit shift block only, as shown in figure 9.2. 

u(n)
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SHIFT 

y(n-1) y(n)

−β1×

+
y(n)

 α0

×

Figure 9.2. Block diagram of a first order purely recursive IIR filter 

The consequential difference equation is given by: 
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( ) ( ) ( )110 −−= nynuny βα  (9.11) 

Comparing (9.11) with the more general difference equation (9.7) it results M=0 and 
N=1, giving a filter order q=M+N=1. This type of IIR filter is known as a first order 
purely recursive IIR filter.

The transfer function of the first order purely recursive filter is given by the z-
transform of (9.11): 
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The first order purely recursive filter has 1 zero in the origin and one pole at z=-β1.
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Figure 9.3.  Frequency response, zero-pole diagram and impulse response for a first 
order purely recursive IIR filter with a pole in z=0.5 

As an example the frequency response, together with the zero-pole diagram and the 
impulse response, for this type of filter is shown in figure 9.3. The pole is placed at z=0.5
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by setting β1=-0.5. In order to maintain a unit DC gain the value of α0 was forced to the 
following value: 
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From the frequency response diagram of figure 9.3 it appears that this simple IIR filter 
can behave as a low pass filter. A similar behavior can be obtained with a FIR filter of the 
same order and therefore of similar complexity. For example the response of a 1st order 
moving average FIR filter is shown in figure 9.4. It is evident how the feedback loop of 
the IIR filter results in a much higher selectivity in the frequency response, although it is 
noteworthy the highly non linearity of the IIR phase response. 
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Figure 9.4.  Frequency response, zero-pole diagram and impulse response for a first 
order moving average FIR filter

In the previous chapter it was shown that FIR filters have poles in the origin only; this 
property makes this type of filters always stable. On the contrary the poles o purely 
recursive IIR filters are not in the origin making the design of IIR filer somehow more 
cumbersome because it is necessary to guaranty the filter stability. 

For example in figure 9.5 is shown the frequency response of a 1st order purely 
recursive filter with a pole in z=2 and unit DC gain. By comparison of this picture with 
the frequency response shown in figure 9.3 for an IIR filter with a pole in z=0.5 it can be 
seen that the amplitude response is the same, while the phase response is different. But 

| H
( e

j ω
)|

h(
n)

P
ha

se
 [d

eg
]

Im
ag

in
ar

y 
P

ar
t



227

looking at the impulse response of the two filters another important difference emerge: 
the filter with a pole in z=0.5 is stable, while the filter with a pole in z=2 is unstable. This 
behavior, as explained in chapter 7, is due the filter pole location outside the unite circle. 
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Figure 9.5.  Frequency response, zero-pole diagram and impulse response for an 
unstable first order purely recursive IIR filter with a pole in z=2 

Another IIR filter noteworthy is the 2nd order purely recursive filter obtained adding 
one more state variable (i.e. a further unit shift block) to the first order purely recursive 
filter of figure 9.2, as shown in the block diagram of figure 9.6. 

u(n)

UNIT 
SHIFT 

y(n-2) y(n-1)

−β2×

+
y(n)

 α0

×

UNIT 
SHIFT 

y(n)

−β1×

+

Figure 9.6. Block diagram of a second order purely recursive IIR filter 

The difference equation implemented by the digital network of figure 9.10 is: 
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( ) ( ) ( ) ( )21 210 −−−−= nynynuny ββα  (9.14) 

The transfer function of the second order purely recursive filter is given by the z-
transform of (9.14): 
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giving for the transfer function of a second order purely recursive filter two zeros in the 
origin and two poles P1 and P2, which are the roots of the denominator polynomial 
z2+β1z+β2=0.

If the two coefficients β1 and β2 are real, the two poles P1 and P2 are a complex 
conjugate pair. Representing the poles in polar form as: 

θθ jj rePreP −== 21 ,  (9.16) 

the coefficients β1 and β2 are given by: 
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As an example the frequency response, together with the zero-pole diagram and the 
impulse response, for a second order purely recursive filter with real coefficients is 
shown in figure 9.7. The poles are placed at z=0.5e±jπ/4 by setting β1=-√2/2 and β2=0.25.
In order to maintain a unit DC gain the value of α0 was forced to the following value: 
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Usually the poles of a second order purely recursive filter are specified in terms of 
their radius r, called natural angular frequency and represented with the symbol ωn, and 
the damping ratio ξ defined as the ratio between their real part and the natural frequency: 
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Using this new parameters (9.19) for the poles classification with relationships (9.17) 
and (9.18), the transfer function H(z) in (9.15) can be rewritten as: 
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Figure 9.7.  Frequency response, zero-pole diagram and impulse response for a second 
order purely recursive IIR filter with two poles in z=0.5e±jπ/4

Figure 9.8 shows the complex conjugate pair location in the z-plane as a function of ωn
and ξ. Since the angle θ is in the range 0÷π, the damping ratio being the cosine of θ must 
lay in the interval -1÷1.

Figure 9.9 shows the amplitude and impulse response for a 2nd order purely recursive 
filter with natural frequency ωn = 0.5 and damping ratio ξ in the range 0.1 ÷ 1. Looking at 
the impulse responses it is evident the significance of the damping ratio: the higher is its 
value the more damped is the response to an impulse input sequence. This behavior is 
also reflected on the shape of the magnitude frequency response. 
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Figure 9.8. Complex conjugate poles location in the z-plane as a function of the natural 
angular frequency ωn and the damping ratio ξ
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Figure 9.9. Amplitude and impulse responses for a second order purely recursive IIR 
filter with ωn=0.5 and damping ratio ξ increasing from 0.1 to 1 

IIR FILTERS DESIGN FROM ANALOG SPECIFICATIONS. 

The simplest way for the design of IIR filters meeting some prescribed specifications 
is carrying out the following procedure: 
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• Convert the discrete domain specs in the continuous analog domain; 
• Design the analog filter; 
• Convert the analog filter from the continuous analog domain to the discrete 

domain. 
Before stepping into the detail of the analog to discrete mapping, let us first introduce 

the characteristics of the three most popular analog filter prototypes. 

Butterworth filters 

The square magnitude response of a Nth order Butterworth filter is 
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G
2

2

1

1

Ω
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=Ω  (9.21) 

where ΩC is the-3dB cutoff angular frequency. Figure 9.10 shows the Butterworth 
magnitude response for N=2, 5 and 8. 

Butterworth filters have the following properties: 
• maximally flat pass-band, i.e. the fist 2N-1 derivatives of (9.21) are zero at 

DC;
• there are no ripples in both the pass-band and the stop-band, i.e. the 

magnitude response is monotonic decreasing with Ω.
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Figure 9.10. The monotonic magnitude frequency responses of the Butterworth low-pass 
filters of order N=2, 5 and 8 

The transfer function G(s) can be obtained replacing jΩ with s in (9.21): 

CΩCΩ−

2
1

Infinite impulse response (IIR) filters 
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The 2N poles of |G(s)|2 are: 

12,,1,0,1 2
2

222
2

22 −=Ω==−=
Ω

+++
Nkese

j
s N

k
N

j

C
N

k
N

j
N

C

πππππ

 (9.23) 

as shown in figure 9.11a. The poles (9.23), laying on the circle of radius ΩC, are the poles 
of both G(s) and G(-s). If the filter is causal and stable the poles of G(s) are those with 
negative real part as shown in figure 9.11b.
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Figure 9.11. (a) – poles of |G(s)|2 = G(s)G(-s)      (b) – poles of G(s) 

Chebyshev filters 

Since filter specifications allow a certain ripple level in the pass and stop bands, a 
more efficient design can be attained with the Chebyshev filters, characterised by having 
a not-monotonic magnitude frequency response. There are two types of Chebyshev 
filters: type I filters are characterized by ripple in the pass-band only, while type II filters 
have ripple in the stop-band only. The squared magnitude frequency response is given by 
(9.24) and (9.25) for the type I and type II filters, respectively. 
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In (9.24) and (9.25) δ is the ripple level either in the pass-band or in the stop-band. 
The function TN(x) is the Chebyshev polynomial of order N:
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Figure 9.12 shows the comparison between a Butterworth filter and Type I and II 
Chebyshev filters of the same order: the ripple in the Chebyshev filters allows a sharper 
transition between the pass-band and the stop-band. 
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Figure 9.12.  Comparison between the magnitude responses of Butterworth and 
Chebyshev I and II low pass filters of the same order 

Elliptic filters 

Elliptic filters are even more efficient than Chebyshev since with this filters ripple is 
possible in both the pass-band and stop-band. The magnitude squared of the frequency 
response is given by: 
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with δ the ripple level and UN(x) the Jacobian elliptic function of order N:
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Figure 9.13 shows a comparison between Butterworth, Chebyshev and elliptic filters 
with the same ripple level and transition bandwidth. The result is that the elliptic filter, 
allowing ripple in both the stop and pass bands, meet the specifications with the lowest 
order.
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Figure 9.13.  Comparison between the magnitude responses of Butterworth, Chebyshev I 
and elliptic filters with the same transition band and ripple level 

Analog to discrete domain mapping 

The mapping of the continuous system to the discrete domain can be accomplished in two 
different ways. A first possibility is to define a discrete system such that its response to 
samples of a given class of input functions is equal to the samples of the response of the 
specified continuous system, as shown in the continuous frequency domain Ω in the 
block diagram of figure 9.14. 
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Figure 9.14. Impute response invariance synthesis 
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Another possibility for the conversion from the continuous to the discrete domain 
consists in the definition of a mapping s=s(z)between the s-domain and the z-domain and, 
through this mapping, convert the continuous transfer function G(s) to the discrete system 
transfer function HD(z) setting HD (z) = G[s(z)]. 

This two different approaches will be discussed in the following two paragraphs. 

Input response invariance 

A common method for the synthesis of a discrete system transfer function HC(jΩ) is by 
conversion of a given transfer function G(jΩ) of a continuous system in such a way that 
the responses of the two system to a special class of input signals are the same, as shown 
in the block diagram of figure 9.14. Typical input signal are the impulse, the unit step and 
the ramp. 

If U(jΩ) is the Fourier transform of the input signal to the continuous system with 
transfer function G(s), the Fourier transform Y(jΩ)of the output signal is: 

( ) ( ) ( )ΩΩ=Ω jUjGjY  (9.29) 
Once sampled, with sampling period T, the spectrum of the continuous system 

response is given by: 
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If HC(jΩ) is the frequency response of the discrete system in the continuous domain, 
the Fourier transform of the discrete system output must be equal to (9.30) and given by: 
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From (9.31) and (9.30) it results the following expression for the discrete system 
frequency response satisfying the input  response invariance: 

( ) ( )
+∞

−∞=
Ω

+Ω+Ω=Ω
n

Tj
D

C T
jnjU

T
jnjG

eTU
jH ππ 221  (9.32a)

Considering as input signal an impulse (impulse invariance) expression (9.32a)
simplifies to: 

Infinite impulse response (IIR) filters 
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( )
+∞

−∞=

+Ω=Ω
n

C T
jnjG

T
jH π21  (9.32b)

If the condition: 

( )
T

jG π≥Ω=Ω for0  (9.33) 

is satisfied than there is no aliasing and the two transfer functions in (9.32) a and b are 
given by: 

( ) ( )
( ) ( )

T
jG

eTU
jUjH

Tj
D

C
π<ΩΩ

Ω
=Ω

Ω
for  (9.34a)

( ) ( )
T

jG
T

jH C
π<ΩΩ=Ω for1  (9.34b)

The above conditions are satisfied when T is small enough to avoid aliasing in G(jΩ);
but according to (7.61) when T→0 it must be UD(e jΩT)≈U( jΩ)/T and (9.43a) simplifies to: 

( ) ( ) 0for →Ω≈Ω TjGjH C  (9.35) 

Usually condition (9.33) is not met and therefore the invariance of the input response 
forces the transfer functions of the discrete and continuous systems to be different in the 
interval |Ω|<π/T, although (9.35) shows that in the limit T→0 it must be HC( jΩ)→G( jΩ).

The previous limit is not valid anymore if we consider the system response to an input 
impulse. In this case (9.34b) shows that when T→0 it must be HC( jΩ)→G( jΩ)/T. Thus 
the impulse invariance frequency response for short sampling periods T is characterized 
by a very large magnitude response; this is the reason why often it is necessary to 
implement a filter with frequency response THC( jΩ) instead than HC( jΩ).

In general to manage equation (9.32) a or b for the input response invariance design is 
quite cumbersome, but it can be avoided by considering the partial fraction expansion of 
the continuous system transfer function to elementary functions and using the table for 
the Laplace and z transforms for the inversion as shown in the following two examples. 

Example 1: Impulse invariance - If for example G(s) has no repeated poles the partial 
fraction expansion has the form: 
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( )
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 (9.36) 

and the impulse response y(t) is the sum of N exponentials: 

( ) ( )t1eAty
N

k

ts
k

k=
=1

 (9.37) 

The samples of the impulse response (9.37) are: 

( ) ( )nT1eAnTy
N

k

nTs
k

k=
=1

 (9.38) 

and the sequence associated to the samples of the impulse response of the continuous 
system is given by: 

( ) ( )nT1eAny
N

k

nTs
kD

k=
=1

 (9.39) 

The z-transform of the impulse response (9.39), which by definition is the discrete 
system transfer function, can be derived by the z-transform table 7.1 and expressed as: 

( )
=

−−
=
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k
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D ze
A

zH
k

1
11

 (9.40) 

Equation (9.40) shows that the poles sk of G(s) are mapped to Tske  in the z-domain; 
this mapping assures that a stable continuous system is mapped to a stable discrete 
system, since if |sk|<0 it must be 1<Tske .

The Fourier transform in the continuous domain Ω of the discrete system is: 

( ) ( )
=

Ω−
Ω

−
==Ω

N

k
TjTs

kTj
DC ee

A
eHjH

k
1 1

 (9.41) 

Figure 9.15 compares the magnitude response of the continuous system with the 
magnitude response of the discrete system synthesized with the impulse invariance 
method when the sampling period is T = 0.2 s and the continuous transfer function is: 
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( )
1

2
103

3
+

−
+

=
ss

sG  (9.42) 

It is noteworthy that the comparison, according to (9.34b), is between |G(jΩ)| and 
C

transfer function is periodic with period twice the Nyquist angular frequency ΩN = π/T. In 
the time domain instead the two impulse responses shown in figure 9.15 are the same as 
imposed by the design method. 
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Figure 9.15.  Comparison between the impulse and the magnitude responses of the 
continuous system (9.42) and the impulse invariance discrete system 
(9.41) 

Example 2: Step invariance - If as in the previous example the transfer function G(s) has 
no repeated poles, the partial fraction expansion of the Laplace transform for the 
continuous system step response has the following form: 

( ) ( )
= −

==
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k k
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11  (9.43) 

The step response in the time domain can be derived inverting the Laplace transform 
(9.43):
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1  (9.44) 

The sequence composed by samples of the step response (9.44) is expressed by: 

|TH  ( jΩ)|. The two frequency responses are different and in particular the discrete system 
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1  (9.45) 

The step-invariance discrete system transfer function results from the ration between 
the z-transform of (9.45) and the z-transform of the step sequence 1(n):

( ) ( )

( )
=

−

−

= −
−

=
−

−
−

−=

=

−

=

N

k
Ts

Ts

k

k
N

k
Ts

k

k

D
D

ze
ze

s
A

z
z

ez
z

s
A

z
z

z
z

zYzH

k

k

k
1

1

1

1 1
1

1
1

1  (9.46) 

Figure 9.16 compares the magnitude response of the continuous system with the 
magnitude response of the discrete system synthesized with the step invariance method, 
in case of a sampling period T = 0.2 s and the continuous transfer function (9.42) of the 
previous example. 
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Figure 9.16. Comparison between the step and the magnitude responses of the 
continuous system (9.42) and the step invariance discrete system (9.46) 

It is noteworthy that the comparison in this case, according to (9.35), is not between 
|G(jΩ)| and |THC(jΩ)| as for the impulse invariance synthesis but between |G(jΩ)| and 
|HC(jΩ)|. The two frequency responses are different and in particular the discrete system 
transfer function is periodic with period twice the Nyquist angular frequency ΩN = π/T. In 
the time domain instead the two step responses shown in figure 9.16 are the same as 
imposed by the design method. 
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Frequency domain design 

Another possibility for the conversion of a continuous system transfer function G(s) is 
to define a transformation 

( )zss =′  (9.47) 

from the z-domain to the s-domain so that the discrete system transfer function is given 
by: 

( ) ( )[ ]zsGzH D =  (9.48) 

Several ways for defining the mapping (9.47) are available. The methodologies 
described here are all based on numerical integration formulas approximating the 
continuous integration. 

In the discrete domain any numerical integration algorithm can be expressed in terms 
of its z-transform HD(z). On the other side in the continuous domain context the 
integration is expressed, in terms of its Laplace transform, as 1/s. Putting together the two 
expressions the following z to s mapping outcomes 

( ) ( )zH
szH

s D
D

11 =′=
′

 (9.49) 

FORWARD INTEGRATION

It is natural to obtain a first z to s transformation by considering the Euler’s or forward 
rectangles integration formula reported below and motivated graphically in figure 9.17: 

( ) ( ) ( ) Tkukyky ⋅−+−= 11  (9.50) 
where T is the sampling period. 

The z-transform of the digital integrator (9.50) is given by 

( )
1

1

1 −

−

−
=

z
TzzH D

 (9.51) 

Applying (9.49) to the above expression of HD(z) it follows the transformation: 

Tsz
T

zs

′+=

−=′

1

1
 (9.52) 
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The mapping of the stability region in the s-domain on the z-plane for the 
transformation (9.52) is shown in figure 9.18, where it can be seen that with the Euler’s 
integration formula a stable continuous system can be transformed in an unstable discrete 
system. 

t

u

(k-1)T

u(k-1)

kT

y(k-1) 

u(k-1)T

Figure 9.17.  Euler’s integration formula: the integral y(k) at step k is computed adding 
the rectangle area u(k-1)T to the integral y(k-1) at the previous step k-1

Figure 9.18.  Mapping of the stability region |s|<0 in the s-domain on the z-plane for the 
forward integration formula (9.52) 

The goodness of the approximation to a pure integrator obtained with Euler’s 
approximation (9.52) can be analyzed in the frequency domain. The theoretical 
continuous time frequency response of a pure integrator is given by: 

( )
Ω

=Ω
j

jG 1  (9.53) 
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while the frequency response HC(jΩ) can be derived tacking the Fourier transform of the 
discrete integrator (9.51): 

( ) ( ) ( )2sin
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==Ω
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Ω−
Ω  (9.54) 

The magnitude and phase of the two frequency responses HC(jΩ) and G(jΩ) are shown 
in figure 9.19 (for T = 1 s) and expressed by the following relationships: 
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jH

C

C

π

 (9.55) 

From the responses reported in figure 9.19 it is evident the distortion in phase and 
magnitude due to the approximation of the Euler’s integration formula. 
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Figure 9.19.  Magnitude and phase frequency responses for the forward integration 
formula with sampling period T = 1 s 

BACKWARD INTEGRATION

Another possibility for the numerical approximation of the pure integration is given by 
the backward rectangles integration formula (see figure 9.20): 

( ) ( ) ( ) Tkukyky ⋅+−= 1  (9.56) 
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t

u

kT(k-1)T

y(k-1) 

u(k)T

Figure 9.20. Backward rectangles integration formula: the integral y(k) at step k is 
computed adding the rectangle area u(k)T to the integral y(k-1) at the 
previous step k-1

Figure 9.21.  Mapping of the stability region |s|<0 in the s-domain on the z-plane for the 
backward rectangles integration formula (9.56) 

In this case the transfer function of the discrete integrator is: 

( )
11 −−

=
z

TzH D
 (9.57) 

which, according to (9.49), defines the z-s mapping: 
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 (9.58) 
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The mapping of the stability region in the s-domain on the z-plane for the 
transformation (9.58) is shown in figure 9.21. This type of transformation is better then 
the forward integration formula because stable continuous systems are always 
transformed in a stable discrete systems. There are however also unstable continuous 
systems that are transformed into stable discrete systems. 

The frequency response in the continuous domain Ω of the discrete filter derives 
directly from (9.57) 
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==Ω
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Ω  (9.59) 

and the comparison with the frequency response of a pure integrator is shown in figure 
9.22 according to the following results: 
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 (9.60) 
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Figure 9.22. Magnitude and phase frequency responses for a backwards rectangles 
formula discrete integrator with sampling period T = 1 s 

As shown in figure 9.22 the backward rectangles integration formula is not a better 
approximation of a pure integrator than the forward transformation. Even at low 
frequency although the amplitude response of the discrete integrator approximate very 
well the response of the pure integrator, there is still a strong difference in the two phase 
responses.
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CENTRAL INTEGRATION

A third possibility for the approximation of a pure integral is to use a further rectangles 
integration formula which is in between the two formulas (backward and forward) seen 
before as shown in graphically in figure 9.23. The finite difference equation resultant 
from the computation of figure 9.23 is: 

( ) ( ) ( ) Tkukyky 212 ⋅−+−=  (9.61) 

The z-transform for this type of digital integrator is given by 
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 (9.62) 

which, according to (9.49), defines the z-s mapping: 

( ) 1
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TsTsz

zT
zs  (9.63) 

The mapping of the stability region in the s-domain on the z-plane for the 
transformation (9.63) is shown in figure 9.24, where it can be seen that with the  central 
rectangles integration formula (9.61) a stable continuous system can be transformed in an 
unstable discrete system and an unstable continuous system can be transformed in a 
stable discrete system. 
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t

u

(k-2)T kT
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u(k-1)2T

(k-1)T

Figure 9.23.  Central rectangles integration formula: the integral y(k) at step k is 
computed adding the rectangle area 2u(k-1)T to the integral y(k-2) at 
step k-2
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Figure 9.24.  Mapping of the stability region |s|<0 in the s-domain on the z-plane for the 
central rectangles integration formula (9.61) 

The comparison between the numerical and the continuous integration can be done 
comparing the pure integration Fourier transform (9.53) with the frequency response 
HC(jΩ ) associated to the z-transform (9.62): 

( ) ( ) ( )T
Tj

e
TeeHjH Tj

Tj
Tj

DC Ω
−=

−
==Ω Ω−

Ω−
Ω

sin1
2

2
 (9.64) 

-2 0 2
-10

0

10

20

30

Angular frequency Ω  [rad/sec]
-2 0 2

-100

-50

0

50

100

Angular frequency Ω  [rad/sec]

HC(jΩ)

G(jΩ)

HC(jΩ)

G(jΩ)

Figure 9.25.  Magnitude and phase frequency responses for the central rectangle 
integration formula(9.61) with sampling period T = 1 s 

C
in figure 9.25 (for T = 1 s) and expressed by the following relationships: 
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The magnitude and phase of the two frequency responses H ( jΩ) and G( jΩ) are shown 
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In this case the transformation does not produce any phase distortion, but the 
magnitude response approximate the pure integrator response only at low frequency if 
compared with the two previous digital integrators. 

SIMPSON INTEGRATION

A better approximation can be obtained considering a discrete filter which adopts the 
Simpson integration formula (see figure 9.26): 

( ) ( ) ( ) ( ) Tkukukyky ⋅−++−=
2

11  (9.66) 
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Figure 9.26.  Simpson integration formula: the integral y(k) at step k is computed adding 
the trapezium area [u(k)+u(k-1)]T/2 to the integral y(k-1) at the previous 
step k-1 

Applying the same analysis as before the frequency response in the discrete domain ω
is:
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At (9.67) corresponds to the following frequency response in the continuous domain 
Ω:
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The magnitude and phase frequency responses of the Fourier transforms (9.68) are 
given by 
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Figure 9.27. shows graphically the frequency responses (9.69). It is clear from this 
figure that in this case the phase response of the numerical integrator is equal to the 
theoretical one and the magnitude response is in better agreement that with the central 
rectangles integration formula used before. 
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Figure 9.27.  Magnitude and phase frequency responses for a discrete integrator based 
on the Simpson integration formula with sampling period T = 1 s 

The z-transform (9.67), according to (9.49), defines the z-s mapping: 
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The transformation (9.70) is known as the bilinear or Tustin’s transformation. Figure 
9.28 shows the mapping of the stability region in the s-domain on the z-plane for the 
bilinear transformation (9.70).With this formula the left half s-plane is mapped into the 
interior of the unit disc in the z-domain. Therefore stable continuous systems are 
transformed in a stable discrete system and unstable continuous systems are transformed 
in unstable discrete systems. 

Figure 9.28.  Mapping of the stability region |s|<0 in the s-domain on the z-plane for the 
bilinear transformation 

A problem with the transformation just discussed is that the frequency axis is 
distorted. According to (9.53) and (9.68) the distortion is given by: 

( ) =Ω′
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tan21 ω
TjH
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 (9.71) 

This effect, called frequency warping, is shown graphically in figure 9.29 where a 
continuous low-pass filter is approximated with a discrete low-pass filter. The 
approximation, due to the frequency warping, is good at low frequencies only and worsen 
increasing the frequency. 

It is possible to modify the transformation (9.70) in order to eliminate the frequency 
distortion at a specific frequency ω1 adopting the following s-z transformation: 
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Using (9.72) the distortion at ω1 will be eliminated, but there will be however a 
distortion at the other frequencies. 

Figure 9.30 shows the magnitude frequency response of different digital filters 
obtained by impulse invariance and Tustin’s methods approximating a 4th order low pass 
elliptic filter. The sampling period is 0.01 s in both cases, i.e. the Nyquist angular 
frequency is 314 rad/s. It is evident the frequency warping for the filter obtained by the 
Tustin’s method. 
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Figure 9.29. Frequency warping due to the bilinear transformation 

Frequency transformation from low-pass filters to band-pass and band-
stop filters 

The design of analog high-pass, band-pass and band-stop filters is typically done by 
firstly computing the parameters of a prototype low-pass filter and secondly by means of 
proper algebraic transformations to convert the analog low-pass filter to a high-pass, 
band-pass or band-stop one. A similar design method can be adopted in the digital 
domain. 

This approach has the advantage to allow the design of high-pass or band-stop filters 
with the input invariance method. As matter of fact because of the aliasing it would be 
impossible to transform the transfer function of these types of filters; but it is possible to 
design with this method a low pass filter and subsequently to transform it to a frequency 
selective filter. 

PΩ SΩ

Pω

Sω
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Since the IIR filter transfer functions are rational functions of z, the transformation in 
the digital domain can be formalized as a mapping between two complex planes, z and Z,
defined by the function 

Z=T(z) (9.73) 

If HLP(z) is the transfer function of the prototype discrete low-pass filter, the transfer 
function of the frequency selective filter is given by 

( ) ( )[ ]zTHzH LP=  (9.74) 

The transformation T(z) must guarantee that if the prototype transfer function HLP(z) is 
a rational transfer function of causal and stable system than also H(z) must be a rational 
transfer function of a stable and causal system. This mapping must satify the following 
conditions:

• the unit circle in the z-plane is transformed in the unit circle in the Z-plane;
• the interior of the unit circle in the z-plane is mapped on the interior of the 

unit circle in the Z-plane;
• T(z) must be a rational function. 

The most general form for such a transformation is: 
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In table 9.1 are reported all the transformations (9.75) from the low-pass prototype 
filter to any other frequency selective filter. 

0 50 100 150 200 250 300
-120

-100

-80

-60

-40

-20

0

Ω [rad/s]

Impulse
invariance 

Bilinear
transformation 

Figure 9.30.  Magnitude response of a 4th order elliptic filter and discrete 
approximations obtained with the impulse invariance method and the 
bilinear transformation 
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Table 9.1. Transformation from a prototype low pass filter with cutoff frequency θP

Filter type T(z) Design parameters 
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IIR DESIGN BY NUMERICAL OPTIMIZATION. 

The IIR filter design methods shown in the previous paragraph were based on the 
transformation of a prototype analog transfer function. This approach to the synthesis of 
discrete filters transfer function is not always appropriate either because the specification 
are given directly in the frequency domain or because the prototype analog transfer 
functions do not satisfy specific constraints. 

In this cases it is possible to proceed to the computation of the IIR filter coefficients 
using numerical optimization techniques. This approach is based on the definition of a 
loss function L which is a function of the unknown filter parameters. The optimization 
process consist in the minimization of L subject to the possible constraint imposed by the 
design method. 

If HSP(ejω) is the specified IIR filter frequency response and H(ejω;m) is the actual 
approximation of HSP(ejω) dependent on the unknown IIR design parameter vector  m,
typical optimization loss functions have the form of a mean error of order p. For example 
if the design is in terms of the amplitude frequency response, the loss function is: 
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with W(ω) a proper weight function. 
If the phase response is relevant, another type of loss function is given by: 

( ) ( ) ( )[ ]
+

−

−=′′
π

π

ωω ωττω deeWL pjj
SP

 (9.77a)

where τ(ejω) is the filter group delay defined as: 
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ω
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Usually the loss functions are not defined on the whole ω axis, but only at certain 
frequencies ωk. In this case the previous expressions (9.76a) and (9.77a) are 
reformulated as: 
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can be solved numerically finding the solution of the following set of M non-linear 
equations:
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Figure 9.31. IIR filter designed by numerical optimization using as loss function the 
mean squared error and the mean error of order 4, respectively 

If the transfer function H(z) is given in the factorized form: 
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If M is the number of the unknown filter parameters in the vector m, and there are not 
any constrained on their values, the unconstrained optimization problem: 
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the M parameters mi in (9.80) are the 2N+1 coefficients A, ak, bk, ck and dk.
Figure 9.31 shows the result obtained for N = 2 with a loss function of type (9.76b) for 

the two cases with p equal to 2 and 4. The values of the weight function W(ω) were 1 in 
the pass-band, 0.1 in the stop-band and 0.5 in the transition band. 

Another important advantage of the IIR filter design by numerical optimization is that 
the specified frequency response does not require to be defined at uniformly spaced 
frequencies, as shown in the example of figure 9.31. 

EFFECTS OF FILTER COEFFICIENTS QUANTIZATION. 

As for FIR filters, the limitation in the number of bits available for storing the IIR 
filters coefficients and the internal data results in a change in its frequency response. 
Expressing the IIR transfer function as the polynomials ratio (9.3), the quantization effect 
on the frequency response can be analyzed in the frequency domain in terms of a 
numerator and denominator error functions: 
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Since, according to (9.3), the numerator and denominator of H(z) are given by 
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If δαk and δβk are the rounding error in the filter coefficients, the frequency responses 
of the numerator and denominator error functions are: 
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If ∆ represents the quantization step the maximum values of ∆N(ejω) and ∆D(ejω) are 
given by: 
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When N and M exceed few units the worst case estimation (9.85) of the coefficients 
quantization effect is too large and very unlikely. A better estimation can be obtained 
modeling the quantization error of each filter coefficient as a random noise uniformly 
distributed between -∆/2 and ∆/2. The filter coefficients variance is in this case: 
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Considering statistically independent the quantization noise on each filter coefficient, 
the standard deviation of the (9.84) is given by the uncertainty propagation law applied to 
(9.83):
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Since |e jkω |=1 expression (9.87) simplifies to: 
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Since the filter behavior is determined by the zeros in the stop-band and by the poles 
in the pass-band, the consequences of rounding the filter coefficients will be considered 
separately in the two bands. 

In the stop-band, neglecting the rounding effect on the poles, according to (9.82) the 
standard deviation of the frequency response approximation is given by: 
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Similarly in the pass-band the standard deviation of the approximation obtained with 
the quantized coefficients is: 
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If δS and δP are the specified ripple in the stop-band and pass-band, and δS0 and δP0 are 
the ripple without filter coefficients quantization, the two standard deviations (9.89) and 
(9.90) are limited by: 
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Generally the second condition in (9.91) is more restrictive since |D(ejω)| has very low 
value in the pass-band. This is especially true for very selective filters. 

If NC is the number of bit used for representing the filter coefficients (and theirs signs), 
the quantization step is expressed by: 
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−
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kβ  (9.92) 

A useful formula for estimating the number of bits required for representing the filter 
coefficients can be obtained from (9.88) and (9.92) together with the inequality (9.91): 
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Filter coefficients quantization can be studied also in terms of its effects on the zeros 
and poles perturbation in the z-plain, as done in the previous chapter for the zeros of FIR 
filters. Starting from the expression of either the numerator or the denominator of the IIR 
filter transfer function H(z):
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with Q=M and γk=αk if P(z) represents the numerator N(z) or Q=N and γk=βk if P(z)
represents the denominator D(z).
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The Q roots zi of the polynomial (9.94) represent either the M zeros or the N poles of 
the IIR filter. The perturbation ∆zi of their values due to the quantization ∆γk of the 
coefficients γk is given by: 
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 (9.95) 

The partial derivative ∂zi/∂γk in (9.95) is the i-th pole/zero sensitivity to the 
quantization of the k-th coefficient. As done for the analysis of FIR filters, each 
sensitivity can be determined using the derivative chain rule applied to the P(z) derivative 
with respect to γk:
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The derivatives ∂P/∂γk and ∂P/∂zi in (9.96) derive directly from (9.94): 
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Replacing the expressions (9.97) and (9.98) in (9.96) and solving for ∂zi/∂γk the ith zero 
sensitivity to the kth filter coefficient quantization is given by the following formula: 
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Equation (9.99) is equivalent to the formula (8.67) obtained for the sensitivity to 
coefficients quantization in FIR filters. It shows how the sensitivity of zeros/poles 
location in the z-plane to the coefficients quantization could be very high if the filter has 
zeros or poles zi and zj very close to each other.
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IIR FILTER ARCHITECTURES. 

Several architectures are possible for implementing IIR filters. A first solution is given 
by the direct formulation of the IIR transfer function (9.3) reformulated as the cascade of 
a FIR filter, with transfer function H1(z), synthesizing the numerator and a purely 
recursive IIR filter, with transfer function H2(z), synthesizing the denominator: 
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Figure 9.32 shows the resultant filter structures, called direct I form. 
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Figure 9.32. Direct I structure of a qth order IIR filter, with q =max(N,M) 

Another possibility is to invert the position of the IIR and FIR section in the cascade, 
as shown in figure 9.33. This new architecture is called direct II form. It is evident from 
figure 9.33 that the state variables are stored twice in this numerical network. Figure 9.34 
shows the result obtained using the same state variables for both the IIR and FIR sections 
of the filter. The direct II form has the advantage of requiring the minimum number of 
memory registers for the state variables. 
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Figure 9.33. Direct II structure

+
α2

u(n) × y(n)

×

×

×

α1

α0

αq

+

+

x(n-q)

x(n-2) 

x(n-1) 

+

+

+

 -β2

×

×

×

 -β1

 -βq

UNIT 
SHIFT 

UNIT 
SHIFT 

UNIT 
SHIFT 

Figure 9.34. Direct II structure using the minimum number of unit shift 



261

For limiting the effects of coefficients quantization, it is better to realize IIR filters as a 
cascade of 2nd order direct II form sections, called biquad. The block diagram of a biquad 
is shown in figure 9.35. 

Other architectures derived from the previous direct I and II forms are the transposed 
version of these structures, known as the transposed direct I and transposed direct II 
forms and shown in figures 9.36 and 9.37. 
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Figure 9.35. 2nd order direct II structure (biquad) 
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Figure 9.36. Transposed direct I structure 
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